Zhang, Kai; Li, Yun; Schwartz, Joel D.; O'Neill, Marie S.
2014-01-01
Hot weather increases risk of mortality. Previous studies used different sets of weather variables to characterize heat stress, resulting in variation in heat-mortality- associations depending on the metric used. We employed a statistical learning method – random forests – to examine which of various weather variables had the greatest impact on heat-related mortality. We compiled a summertime daily weather and mortality counts dataset from four U.S. cities (Chicago, IL; Detroit, MI; Philadelphia, PA; and Phoenix, AZ) from 1998 to 2006. A variety of weather variables were ranked in predicting deviation from typical daily all-cause and cause-specific death counts. Ranks of weather variables varied with city and health outcome. Apparent temperature appeared to be the most important predictor of heat-related mortality for all-cause mortality. Absolute humidity was, on average, most frequently selected one of the top variables for all-cause mortality and seven cause-specific mortality categories. Our analysis affirms that apparent temperature is a reasonable variable for activating heat alerts and warnings, which are commonly based on predictions of total mortality in next few days. Additionally, absolute humidity should be included in future heat-health studies. Finally, random forests can be used to guide choice of weather variables in heat epidemiology studies. PMID:24834832
NASA Technical Reports Server (NTRS)
Deissler, R. G.; Loeffler, A. L., Jr.
1959-01-01
A previous analysis of turbulent heat transfer and flow with variable fluid properties in smooth passages is extended to flow over a flat plate at high Mach numbers, and the results are compared with experimental data. Velocity and temperature distributions are calculated for a boundary layer with appreciative effects of frictional heating and external heat transfer. Viscosity and thermal conductivity are assumed to vary as a power or the temperature, while Prandtl number and specific heat are taken as constant. Skin-friction and heat-transfer coefficients are calculated and compared with the incompressible values. The rate of boundary-layer growth is obtained for various Mach numbers.
Modeling and impacts of the latent heat of phase change and specific heat for phase change materials
NASA Astrophysics Data System (ADS)
Scoggin, J.; Khan, R. S.; Silva, H.; Gokirmak, A.
2018-05-01
We model the latent heats of crystallization and fusion in phase change materials with a unified latent heat of phase change, ensuring energy conservation by coupling the heat of phase change with amorphous and crystalline specific heats. We demonstrate the model with 2-D finite element simulations of Ge2Sb2Te5 and find that the heat of phase change increases local temperature up to 180 K in 300 nm × 300 nm structures during crystallization, significantly impacting grain distributions. We also show in electrothermal simulations of 45 nm confined and 10 nm mushroom cells that the higher amorphous specific heat predicted by this model increases nucleation probability at the end of reset operations. These nuclei can decrease set time, leading to variability, as demonstrated for the mushroom cell.
Urban Heat Wave Hazard Assessment
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Jedlovec, Gary; Meyer, Paul J.; LaFontaine, Frank J.; Crane, Dakota L.
2016-01-01
Heat waves are the largest cause of environment-related deaths globally. On average, over 6,000 people in the United States alone are hospitalized each summer due to excessive heat. Key elements leading to these disasters are elevated humidity and the urban heat island effect, which act together to increase apparent temperature and amplify the effects of a heat wave. Urban demographics and socioeconomic factors also play a role in determining individual risk. Currently, advisories of impending heat waves are often too generalized, with limited or no spatial variability over urban regions. This frequently contributes to a lack of specific response on behalf of the population. A goal of this project is to develop a product that has the potential to provide more specific heat wave guidance invoking greater awareness and action.
Relative Role of Horizontal and Vertical Processes in Arctic Amplification
NASA Astrophysics Data System (ADS)
Kim, K. Y.
2017-12-01
The physical mechanism of Arctic amplification is still controversial. Specifically, relative role of vertical processes resulting from the reduction of sea ice in the Barents-Kara Seas is not clearly understood in comparison with the horizontal advection of heat and moisture. Using daily data, heat and moisture budgets are analyzed during winter (Dec. 1-Feb. 28) over the region of sea ice reduction in order to delineate the relative roles of horizontal and vertical processes. Detailed heat and moisture budgets in the atmospheric column indicate that the vertical processes, release of turbulent heat fluxes and evaporation, are a major contributor to the increased temperature and specific humidity over the Barents-Kara Seas. In addition, greenhouse effect caused by the increased specific humidity, also plays an important role in Arctic amplification. Horizontal processes such as advection of heat and moisture are the primary source of variability (fluctuations) in temperature and specific humidity in the atmospheric column. Advection of heat and moisture, on the other hand, is little responsible for the net increase in temperature and specific humidity over the Barents-Kara Seas.
Quantifying Livestock Heat Stress Impacts in the Sahel
NASA Astrophysics Data System (ADS)
Broman, D.; Rajagopalan, B.; Hopson, T. M.
2014-12-01
Livestock heat stress, especially in regions of the developing world with limited adaptive capacity, has a largely unquantified impact on food supply. Though dominated by ambient air temperature, relative humidity, wind speed, and solar radiation all affect heat stress, which can decrease livestock growth, milk production, reproduction rates, and mortality. Indices like the thermal-humidity index (THI) are used to quantify the heat stress experienced from climate variables. Livestock experience differing impacts at different index critical thresholds that are empirically determined and specific to species and breed. This lack of understanding has been highlighted in several studies with a limited knowledge of the critical thresholds of heat stress in native livestock breeds, as well as the current and future impact of heat stress,. As adaptation and mitigation strategies to climate change depend on a solid quantitative foundation, this knowledge gap has limited such efforts. To address the lack of study, we have investigated heat stress impacts in the pastoral system of Sub-Saharan West Africa. We used a stochastic weather generator to quantify both the historic and future variability of heat stress. This approach models temperature, relative humidity, and precipitation, the climate variables controlling heat stress. Incorporating large-scale climate as covariates into this framework provides a better historical fit and allows us to include future CMIP5 GCM projections to examine the climate change impacts on heat stress. Health and production data allow us to examine the influence of this variability on livestock directly, and are considered in conjunction with the confounding impacts of fodder and water access. This understanding provides useful information to decision makers looking to mitigate the impacts of climate change and can provide useful seasonal forecasts of heat stress risk. A comparison of the current and future heat stress conditions based on climate variables for West Africa will be presented, An assessment of current and future risk was obtained by linking climatic heat stress to cattle health and production. Seasonal forecasts of heat stress are also provided by modeling the heat stress climate variables using persistent large-scale climate features.
William T. Simpson
2006-01-01
Heat sterilization is used to kill insects and fungi in wood being traded internationally. Determining the time required to reach the kill temperature is difficult considering the many variables that can affect it, such as heating temperature, target center temperature, initial wood temperature, wood configuration dimensions, specific gravity, and moisture content. In...
Residential Variable-Capacity Heat Pumps Sized to Heating Loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munk, Jeffrey D.; Jackson, Roderick K.; Odukomaiya, Adewale
2014-01-01
Variable capacity heat pumps are an emerging technology offering significant energy savings potential and improved efficiency. With conventional single-speed systems, it is important to appropriately size heat pumps for the cooling load as over-sizing would result in cycling and insufficient latent capacity required for humidity control. These appropriately sized systems are often under-sized for the heating load and require inefficient supplemental electric resistance heat to meet the heating demand. Variable capacity heat pumps address these shortcomings by providing an opportunity to intentionally size systems for the dominant heating season load without adverse effects of cycling or insufficient dehumidification in themore » cooling season. This intentionally-sized system could result in significant energy savings in the heating season, as the need for inefficient supplemental electric resistance heat is drastically reduced. This is a continuation of a study evaluating the energy consumption of variable capacity heat pumps installed in two unoccupied research homes in Farragut, a suburb of Knoxville, Tennessee. In this particular study, space conditioning systems are intentionally sized for the heating season loads to provide an opportunity to understand and evaluate the impact this would have on electric resistance heat use and dehumidification. The results and conclusions drawn through this research are valid and specific for portions of the Southeastern and Midwestern United States falling in the mixed-humid climate zone. While other regions in the U.S. do not experience this type of climate, this work provides a basis for, and can help understand the implications of other climate zones on residential space conditioning energy consumption. The data presented here will provide a framework for fine tuning residential building EnergyPlus models that are being developed.« less
Effects of variable specific heat on energy transfer in a high-temperature supersonic channel flow
NASA Astrophysics Data System (ADS)
Chen, Xiaoping; Li, Xiaopeng; Dou, Hua-Shu; Zhu, Zuchao
2018-05-01
An energy transfer mechanism in high-temperature supersonic turbulent flow for variable specific heat (VSH) condition through turbulent kinetic energy (TKE), mean kinetic energy (MKE), turbulent internal energy (TIE) and mean internal energy (MIE) is proposed. The similarities of energy budgets between VSH and constant specific heat (CSH) conditions are investigated by introducing a vibrational energy excited degree and considering the effects of fluctuating specific heat. Direct numerical simulation (DNS) of temporally evolving high-temperature supersonic turbulent channel flow is conducted at Mach number 3.0 and Reynolds number 4800 combined with a constant dimensional wall temperature 1192.60 K for VSH and CSH conditions to validate the proposed energy transfer mechanism. The differences between the terms in the two kinetic energy budgets for VSH and CSH conditions are small; however, the magnitude of molecular diffusion term for VSH condition is significantly smaller than that for CSH condition. The non-negligible energy transfer is obtained after neglecting several small terms of diffusion, dissipation and compressibility related. The non-negligible energy transfer involving TIE includes three processes, in which energy can be gained from TKE and MIE and lost to MIE. The same non-negligible energy transfer through TKE, MKE and MIE is observed for both the conditions.
An Analysis of Inter-annual Variability and Uncertainty of Continental Surface Heat Fluxes
NASA Astrophysics Data System (ADS)
Huang, S. Y.; Deng, Y.; Wang, J.
2016-12-01
The inter-annual variability and the corresponding uncertainty of land surface heat fluxes during the first decade of the 21st century are re-evaluated at continental scale based on the heat fluxes estimated by the maximum entropy production (MEP) model. The MEP model predicted heat fluxes are constrained by surface radiation fluxes, automatically satisfy surface energy balance, and are independent of temperature/moisture gradient, wind speed, and roughness lengths. The surface radiation fluxes and temperature data from Clouds and the Earth's Radiant Energy System and the surface specific humidity data from Modern-Era Retrospective analysis for Research and Applications were used to reproduce the global surface heat fluxes with land-cover data from the NASA Energy and Water cycle Study (NEWS). Our analysis shows that the annual means of continental latent heat fluxes have increasing trends associated with increasing trends in surface net radiative fluxes. The sensible heat fluxes also have increasing trends over most continents except for South America. Ground heat fluxes have little trends. The continental-scale analysis of the MEP fluxes are compared with other existing global surface fluxes data products and the implications of the results for inter-annual to decadal variability of regional surface energy budget are discussed.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-14
.... The waiver is specific to the Daikin VRV III-PB variable refrigerant flow (VRF) multi-split commercial... this notice to test and rate its VRV III-PB variable refrigerant flow (VRF) multi-split commercial heat... Institute (ANSI/ AHRI) Standard 1230-2010, ``Performance Rating of Variable Refrigerant Flow (VRF) Multi...
NASA Astrophysics Data System (ADS)
Liguori, Giovanni; Di Lorenzo, Emanuele; Cabos, William
2017-02-01
Changes in surface heat fluxes affect several climate processes controlling the Mediterranean climate. These include the winter formation of deep waters, which is the primary driver of the Mediterranean Sea overturning circulation. Previous studies that characterize the spatial and temporal variability of surface heat flux anomalies over the basin reveal the existence of two statistically dominant patterns of variability: a monopole of uniform sign and an east-west dipole of opposite signs. In this work, we use the 12 regional climate model ensemble from the EU-FP6 ENSEMBLES project to diagnose the large-scale atmospheric processes that control the variability of heat fluxes over the Mediterranean Sea from interannual to decadal timescales (here defined as timescales > 6 year). Our findings suggest that while the monopole structure captures variability in the winter-to-winter domain-average net heat flux, the dipole pattern tracks changes in the Mediterranean climate that are connected to the East Atlantic/Western Russia (EA/WR) atmospheric teleconnection pattern. Furthermore, while the monopole exhibits significant differences in the spatial structure across the multi-model ensemble, the dipole pattern is very robust and more clearly identifiable in the anomaly maps of individual years. A heat budget analysis of the dipole pattern reveals that changes in winds associated with the EA/WR pattern exert dominant control through both a direct effect on the latent heat flux (i.e., wind speed) and an indirect effect through specific humidity (e.g., wind advection). A simple reconstruction of the heat flux variability over the deep-water formation regions of the Gulf of Lion and the Aegean Sea reveals that the combination of the monopole and dipole time series explains over 90 % of the heat flux variance in these regions. Given the important role that surface heat flux anomalies play in deep-water formation and the regional climate, improving our knowledge on the dynamics controlling the leading modes of heat flux variability may enhance our predictability of the climate of the Mediterranean area.
Identifying Changes in the Probability of High Temperature, High Humidity Heat Wave Events
NASA Astrophysics Data System (ADS)
Ballard, T.; Diffenbaugh, N. S.
2016-12-01
Understanding how heat waves will respond to climate change is critical for adequate planning and adaptation. While temperature is the primary determinant of heat wave severity, humidity has been shown to play a key role in heat wave intensity with direct links to human health and safety. Here we investigate the individual contributions of temperature and specific humidity to extreme heat wave conditions in recent decades. Using global NCEP-DOE Reanalysis II daily data, we identify regional variability in the joint probability distribution of humidity and temperature. We also identify a statistically significant positive trend in humidity over the eastern U.S. during heat wave events, leading to an increased probability of high humidity, high temperature events. The extent to which we can expect this trend to continue under climate change is complicated due to variability between CMIP5 models, in particular among projections of humidity. However, our results support the notion that heat wave dynamics are characterized by more than high temperatures alone, and understanding and quantifying the various components of the heat wave system is crucial for forecasting future impacts.
The field theory of specific heat
NASA Astrophysics Data System (ADS)
Gusev, Yu. V.
2016-01-01
Finite temperature quantum field theory in the heat kernel method is used to study the heat capacity of condensed matter. The lattice heat is treated à la P. Debye as energy of the elastic (sound) waves. The dimensionless functional of free energy is re-derived with a cut-off parameter and used to obtain the specific heat of crystal lattices. The new dimensionless thermodynamical variable is formed as Planck's inverse temperature divided by the lattice constant. The dimensionless constant, universal for the class of crystal lattices, which determines the low temperature region of molar specific heat, is introduced and tested with the data for diamond lattice crystals. The low temperature asymptotics of specific heat is found to be the fourth power in temperature instead of the cubic power law of the Debye theory. Experimental data for the carbon group elements (silicon, germanium) and other materials decisively confirm the quartic law. The true low temperature regime of specific heat is defined by the surface heat, therefore, it depends on the geometrical characteristics of the body, while the absolute zero temperature limit is geometrically forbidden. The limit on the growth of specific heat at temperatures close to critical points, known as the Dulong-Petit law, appears from the lattice constant cut-off. Its value depends on the lattice type and it is the same for materials with the same crystal lattice. The Dulong-Petit values of compounds are equal to those of elements with the same crystal lattice type, if one mole of solid state matter were taken as the Avogadro number of the composing atoms. Thus, the Neumann-Kopp law is valid only in some special cases.
Heat Stress Equation Development and Usage for Dryden Flight Research Center (DFRC)
NASA Technical Reports Server (NTRS)
Houtas, Franzeska; Teets, Edward H., Jr.
2012-01-01
Heat Stress Indices are equations that integrate some or all variables (e.g. temperature, relative humidity, wind speed), directly or indirectly, to produce a number for thermal stress on humans for a particular environment. There are a large number of equations that have been developed which range from simple equations that may ignore basic factors (e.g. wind effects on thermal loading, fixed contribution from solar heating) to complex equations that attempt to incorporate all variables. Each equation is evaluated for a particular use, as well as considering the ease of use and reliability of the results. The meteorology group at the Dryden Flight Research Center has utilized and enhanced the American College of Sports Medicine equation to represent the specific environment of the Mojave Desert. The Dryden WBGT Heat Stress equation has been vetted and implemented as an automated notification to the entire facility for the safety of all personnel and visitors.
Huang, Ming; Tamura, Toshiyo; Chen, Wenxi; Kanaya, Shigehiko
2015-01-01
To help pave a path toward the practical use of continuous unconstrained noninvasive deep body temperature measurement, this study aims to evaluate the structural and thermophysical effects on measurement accuracy for the dual-heat-flux method (DHFM). By considering the thermometer's height, radius, conductivity, density and specific heat as variables affecting the accuracy of DHFM measurement, we investigated the relationship between those variables and accuracy using 3-D models based on finite element method. The results of our simulation study show that accuracy is proportional to the radius but inversely proportional to the thickness of the thermometer when the radius is less than 30.0mm, and is also inversely proportional to the heat conductivity of the heat insulator inside the thermometer. The insights from this study would help to build a guideline for design, fabrication and optimization of DHFM-based thermometers, as well as their practical use. Copyright © 2014 Elsevier Ltd. All rights reserved.
Onozuka, Daisuke; Hagihara, Akihito
2016-02-15
Several studies have reported the burden of climate change on extreme heat-related mortality or morbidity. However, few studies have investigated the spatial and temporal variation in emergency transport during periods of extreme heat on a national scale. Daily emergency ambulance dispatch data from 2007 to 2010 were acquired from all 47 prefectures of Japan. The temporal variability in the relationship between heat and morbidity in each prefecture was estimated using Poisson regression combined with a distributed lag non-linear model and adjusted for time trends. The spatial variability in the heat-morbidity relationships between prefectures was estimated using a multivariate meta-analysis. A total of 5,289,660 emergency transports were reported during the summer months (June through September) within the study period. The overall cumulative relative risk (RR) at the 99th percentile vs. the minimum morbidity percentile was 1.292 (95% CI: 1.251-1.333) for all causes, 1.039 (95% CI: 0.989-1.091) for cardiovascular diseases, and 1.287 (95% CI: 1.210-1.368) for respiratory diseases. Temporal variation in the estimated effects indicated a non-linear relationship, and there were differences in the temporal variations between heat and all-cause and cause-specific morbidity. Spatial variation between prefectures was observed for all causes (Cochran Q test, p<0.001; I(2)=45.8%); however, there was no significant spatial heterogeneity for cardiovascular (Cochran Q test, p=0.054; I(2)=15.1%) and respiratory (Cochran Q test, p=0.681; I(2)=1.0%) diseases. Our nationwide study demonstrated differences in the spatial and temporal variations in the relative risk for all-cause and cause-specific emergency transport during periods of extreme heat in Japan between 2007 and 2010. Our results suggest that public health strategies aimed at controlling heat-related morbidity should be tailored according to region-specific weather conditions. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Lansing, F. L.
1979-01-01
A computer program which can distinguish between different receiver designs, and predict transient performance under variable solar flux, or ambient temperatures, etc. has a basic structure that fits a general heat transfer problem, but with specific features that are custom-made for solar receivers. The code is written in MBASIC computer language. The methodology followed in solving the heat transfer problem is explained. A program flow chart, an explanation of input and output tables, and an example of the simulation of a cavity-type solar receiver are included.
Large-Eddy Simulations of Noise Generation in Supersonic Jets at Realistic Engine Temperatures
NASA Astrophysics Data System (ADS)
Liu, Junhui; Corrigan, Andrew; Kailasanath, K.; Taylor, Brian
2015-11-01
Large-eddy simulations (LES) have been carried out to investigate the noise generation in highly heated supersonic jets at temperatures similar to those observed in high-performance jet engine exhausts. It is found that the exhaust temperature of high-performance jet engines can range from 1000K at an intermediate power to above 2000K at a maximum afterburning power. In low-temperature jets, the effects of the variation of the specific heat ratio as well as the radial temperature profile near the nozzle exit are small and are ignored, but it is not clear whether those effects can be also ignored in highly heated jets. The impact of the variation of the specific heat ratio is assessed by comparing LES results using a variable specific heat ratio with those using a constant specific heat ratio. The impact on both the flow field and the noise distributions are investigated. Because the total temperature near the nozzle wall can be substantially lower than the nozzle total temperature either due to the heating loss through the nozzle wall or due to the cooling applied near the wall, this lower wall temperature may impact the temperature in the shear layer, and thus impact the noise generation. The impact of the radial temperature profile on the jet noise generation is investigated by comparing results of lower nozzle wall temperatures with those of the adiabatic wall condition.
NASA Astrophysics Data System (ADS)
Isobe, Takanori; Kitahara, Tadayuki; Fukutani, Kazuhiko; Shimada, Ryuichi
Variable frequency induction heating has great potential for industrial heating applications due to the possibility of achieving heating distribution control; however, large-scale induction heating with variable frequency has not yet been introduced for practical use. This paper proposes a high frequency soft-switching inverter for induction heating that can achieve variable frequency operation. One challenge of variable frequency induction heating is increasing power electronics ratings. This paper indicates that its current source type dc-link configuration and soft-switching characteristics can make it possible to build a large-scale system with variable frequency capability. A 90-kVA 150-1000Hz variable frequency experimental power supply for steel strip induction heating was developed. Experiments confirmed the feasibility of variable frequency induction heating with proposed converter and the advantages of variable frequency operation.
den Besten, Heidy M W; Berendsen, Erwin M; Wells-Bennik, Marjon H J; Straatsma, Han; Zwietering, Marcel H
2017-07-17
Realistic prediction of microbial inactivation in food requires quantitative information on variability introduced by the microorganisms. Bacillus subtilis forms heat resistant spores and in this study the impact of strain variability on spore heat resistance was quantified using 20 strains. In addition, experimental variability was quantified by using technical replicates per heat treatment experiment, and reproduction variability was quantified by using two biologically independent spore crops for each strain that were heat treated on different days. The fourth-decimal reduction times and z-values were estimated by a one-step and two-step model fitting procedure. Grouping of the 20 B. subtilis strains into two statistically distinguishable groups could be confirmed based on their spore heat resistance. The reproduction variability was higher than experimental variability, but both variabilities were much lower than strain variability. The model fitting approach did not significantly affect the quantification of variability. Remarkably, when strain variability in spore heat resistance was quantified using only the strains producing low-level heat resistant spores, then this strain variability was comparable with the previously reported strain variability in heat resistance of vegetative cells of Listeria monocytogenes, although in a totally other temperature range. Strains that produced spores with high-level heat resistance showed similar temperature range for growth as strains that produced low-level heat resistance. Strain variability affected heat resistance of spores most, and therefore integration of this variability factor in modelling of spore heat resistance will make predictions more realistic. Copyright © 2017. Published by Elsevier B.V.
Climate not to blame for African civil wars
Buhaug, Halvard
2010-01-01
Vocal actors within policy and practice contend that environmental variability and shocks, such as drought and prolonged heat waves, drive civil wars in Africa. Recently, a widely publicized scientific article appears to substantiate this claim. This paper investigates the empirical foundation for the claimed relationship in detail. Using a host of different model specifications and alternative measures of drought, heat, and civil war, the paper concludes that climate variability is a poor predictor of armed conflict. Instead, African civil wars can be explained by generic structural and contextual conditions: prevalent ethno-political exclusion, poor national economy, and the collapse of the Cold War system. PMID:20823241
Structural and Trajectory Control of Variable Geometry Planetary Entry Systems
NASA Technical Reports Server (NTRS)
Quadrelli, Marco; Kwok, Kawai; Pellegrino, Sergio
2009-01-01
The results presented in this paper apply to a generic vehicle entering a planetary atmosphere which makes use of a variable geometry change to modulate the heat, drag, and acceleration loads. Two structural concepts for implementing the cone angle variation, namely a segmented shell and a corrugated shell, are presented. A structural analysis of these proposed structural configuration shows that the stress levels are tolerable during entry. The analytic expressions of the longitudinal aerodynamic coefficients are also derived, and guidance laws that track reference heat flux, drag, and aerodynamic acceleration loads are also proposed. These guidance laws have been tested in an integrated simulation environment, and the results indicate that use of variable geometry is feasible to track specific profiles of dynamic load conditions during reentry.
NASA Astrophysics Data System (ADS)
Stevens, Catherine; Thomas, Bart; Grommen, Mart
2015-04-01
Climate change is driven by global processes such as the global ocean circulation and its variability over time leading to changing weather patterns on regional scales as well as changes in the severity and occurrence of extreme events such as heavy rain- and windstorms, floods, drought, heat waves, etc. The summer 2003 European heat wave was the hottest summer on record in Europe over the past centuries leading to health crises in several countries like France and caused up to 70.000 excess deaths over four months in Central and Western Europe. The main risks induced by global climate change in urbanised areas are considered to be overheating and resulting health effects, increased exposure to flood events, increased damage losses from extreme weather conditions but also shortages in the provision of life-sustaining services. Moreover, the cities themselves create specific or inherent risks and urban adaptation is often very demanding. As most of Europe's inhabitants live in cities, it is of particular relevance to examine the impact of climate variability on urban areas and their populations. The present study focusses on the identification of heat stress variables related to human health and the extraction of this information by processing daily temperature statistics of local urban climate simulations over multiple timeframes of 20 years and three different European cities based on recent, near future and far future global climate predictions. The analyses have been conducted in the framework of the NACLIM FP7 project funded by the European Commission involving local stakeholders such as the cities of Antwerp (Belgium), Berlin (Germany) and Almada (Portugal) represented by different climate and urban characteristics. Apart from the urban-rural temperature increment (urban heat island effect), additional heat stress parameters such as the average number of heat wave days together with their duration and intensities have been covered during this research. In a subsequent step, the heat stress variables are superposed on relevant socio-economic datasets targeting total population and its distribution per age class as well as vulnerable institutions such as hospitals, schools, rest homes and child/day care facilities in order to generate heat stress exposure maps for each use case city and various climate, urban planning and mitigation scenarios. The specifications and requirements for the various scenarios have been consolidated in close collaboration with the local stakeholders during dedicated end-users workshops. The results of this study will allow urban planners and policy makers facing the challenges of climate change and develop sound strategies for evolving towards sustainable and climate resilient cities.
A Soft Sensor for Bioprocess Control Based on Sequential Filtering of Metabolic Heat Signals
Paulsson, Dan; Gustavsson, Robert; Mandenius, Carl-Fredrik
2014-01-01
Soft sensors are the combination of robust on-line sensor signals with mathematical models for deriving additional process information. Here, we apply this principle to a microbial recombinant protein production process in a bioreactor by exploiting bio-calorimetric methodology. Temperature sensor signals from the cooling system of the bioreactor were used for estimating the metabolic heat of the microbial culture and from that the specific growth rate and active biomass concentration were derived. By applying sequential digital signal filtering, the soft sensor was made more robust for industrial practice with cultures generating low metabolic heat in environments with high noise level. The estimated specific growth rate signal obtained from the three stage sequential filter allowed controlled feeding of substrate during the fed-batch phase of the production process. The biomass and growth rate estimates from the soft sensor were also compared with an alternative sensor probe and a capacitance on-line sensor, for the same variables. The comparison showed similar or better sensitivity and lower variability for the metabolic heat soft sensor suggesting that using permanent temperature sensors of a bioreactor is a realistic and inexpensive alternative for monitoring and control. However, both alternatives are easy to implement in a soft sensor, alone or in parallel. PMID:25264951
A soft sensor for bioprocess control based on sequential filtering of metabolic heat signals.
Paulsson, Dan; Gustavsson, Robert; Mandenius, Carl-Fredrik
2014-09-26
Soft sensors are the combination of robust on-line sensor signals with mathematical models for deriving additional process information. Here, we apply this principle to a microbial recombinant protein production process in a bioreactor by exploiting bio-calorimetric methodology. Temperature sensor signals from the cooling system of the bioreactor were used for estimating the metabolic heat of the microbial culture and from that the specific growth rate and active biomass concentration were derived. By applying sequential digital signal filtering, the soft sensor was made more robust for industrial practice with cultures generating low metabolic heat in environments with high noise level. The estimated specific growth rate signal obtained from the three stage sequential filter allowed controlled feeding of substrate during the fed-batch phase of the production process. The biomass and growth rate estimates from the soft sensor were also compared with an alternative sensor probe and a capacitance on-line sensor, for the same variables. The comparison showed similar or better sensitivity and lower variability for the metabolic heat soft sensor suggesting that using permanent temperature sensors of a bioreactor is a realistic and inexpensive alternative for monitoring and control. However, both alternatives are easy to implement in a soft sensor, alone or in parallel.
NASA Technical Reports Server (NTRS)
Johnson, R. C.
1972-01-01
Procedures for calculating the mass flow rate of methane and natural gas through nozzles are given, along with the FORTRAN 4 subroutines used to make these calculations. Three sets of independent variables are permitted in these routines. In addition to the plenum pressure and temperature, the third independent variable is either nozzle exit pressure, Mach number, or temperature. A critical-flow factor that becomes a convenient means for determining the mass flow rate of methane through critical-flow nozzles is tabulated. Other tables are included for nozzle throat velocity and critical pressure, density, and temperature ratios, along with some thermodynamic properties of methane, including compressibility factor, enthalpy, entropy, specific heat, specific-heat ratio, and speed of sound. These tabulations cover a temperature range from 120 to 600 K and pressures to 3 million N/sq m.
NASA Astrophysics Data System (ADS)
Jiang, Q. F.; Zhuang, M.; Zhu, Z. G.; Y Zhang, Q.; Sheng, L. H.
2017-12-01
Counter-flow plate-fin heat exchangers are commonly utilized in cryogenic applications due to their high effectiveness and compact size. For cryogenic heat exchangers in helium liquefaction/refrigeration systems, conventional design theory is no longer applicable and they are usually sensitive to longitudinal heat conduction, heat in-leak from surroundings and variable fluid properties. Governing equations based on distributed parameter method are developed to evaluate performance deterioration caused by these effects. The numerical model could also be applied in many other recuperators with different structures and, hence, available experimental data are used to validate it. For a specific case of the multi-stream heat exchanger in the EAST helium refrigerator, quantitative effects of these heat losses are further discussed, in comparison with design results obtained by the common commercial software. The numerical model could be useful to evaluate and rate the heat exchanger performance under the actual cryogenic environment.
An Engineering Approach to the Variable Fluid Property Problem in Free Convection
NASA Technical Reports Server (NTRS)
Gregg, J. L.; Sparrow, E. M.
1956-01-01
An analysis is made for the variable fluid property problem for laminar free convection on an isothermal vertical flat plate. For a number of specific cases, solutions of the boundary layer equations appropriate to the variable property situation were carried out for gases and liquid mercury. Utilizing these findings, a simple and accurate shorthand procedure is presented for calculating free convection heat transfer under variable property conditions. This calculation method is well established in the heat transfer field. It involves the use of results which have been derived for constant property fluids, and of a set of rules (called reference temperatures) for extending these constant property results to variable property situations. For gases, the constant property heat transfer results are generalized to the variable property situation by replacing beta (expansion coefficient) by one over T sub infinity and evaluating the other properties at T sub r equals T sub w minus zero point thirty-eight (T sub w minus T sub infinity). For liquid mercury, the generalization may be accomplished by evaluating all the properties (including beta) at this same T sub r. It is worthwhile noting that for these fluids, the film temperature (with beta equals one over T sub infinity for gases) appears to serve as an adequate reference temperature for most applications. Results are also presented for boundary layer thickness and velocity parameters.
Momentum and Heat Flux Measurements in the Exhaust of VASIMR using Helium Propellant
NASA Technical Reports Server (NTRS)
Chavers, D. Gregory; Chang-Diaz, Franklin R.; Irvine, Claude; Squire, Jared P.
2003-01-01
Interplanetary travel requires propulsion systems that can provide high specific impulse (Isp), while also having sufficient thrust to rapidly accelerate large payloads. One such propulsion system is the Variable Specific Impulse Magneto-plasma Rocket (VASIMR), which creates, heats, and ejects plasma to provide variable thrust and Isp, designed to optimally meet the mission requirements. The fraction of the total energy invested in creating the plasma, as compared to the plasma's total kinetic energy, is an important factor in determining the overall system efficiency. In VASIMR, this 'frozen flow loss' is appreciable when at high thrust, but negligible at high Isp. The loss applies to other electric thrusters as well. If some of this energy could be recovered through recombination processes, and reinjected as neutral kinetic energy, the efficiency of VASIMR, in its low Isp/high thrust mode may be improved. An experiment is being conducted to investigate the possibility of recovering some of the energy used to create the plasma by studying the flow characteristics of the charged and neutral particles in the exhaust of the thruster. This paper will cover the measurements of momentum flux and heat flux in the exhaust of the VASIMR test facility using helium as the propellant where the heat flux is comprised of both kinetic and plasma recombination energy. The flux measurements also assist in diagnosing and verifying the plasma conditions in the existing experiment.
The Base Engine for Solar Stirling Power
NASA Technical Reports Server (NTRS)
Meijer, R. J.; Godett, T. M.
1984-01-01
A new concept in Stirling engine technology is embodied in the base engine now being developed at Stirling Thermal Motors, Inc. This is a versatile energy conversion unit suitable for many different applications and heat sources. The base engine, rated 40 kW at 2800 RPM, is a four-cylinder, double-acting variable displacement Stirling engine with pressurized crankcase and rotating shaft seal. Remote-heating technology is incorporated with a stacked-heat-exchanger configuration and a liquid metal heat pipe connected to a distinctly separate combustor or other heat source. High efficiency over a wide range of operating conditions, long life, low manufacturing cost and low material cost are specifically emphasized. The base engine, its design philosophy and approach, its projected performance, and some of its more attractive applications are described.
Thermal Technology Development Activities at the Goddard Space Flight Center - 2001
NASA Technical Reports Server (NTRS)
Butler, Dan
2002-01-01
This presentation provides an overview of thermal technology development activities carried out at NASA's Goddard Space Flight Center during 2001. Specific topics covered include: two-phase systems (heat pipes, capillary pumped loops, vapor compression systems and phase change materials), variable emittance systems, advanced coatings, high conductivity materials and electrohydrodynamic (EHD) thermal coatings. The application of these activities to specific space missions is also discussed.
NASA Technical Reports Server (NTRS)
Hung, R. J.; Lee, C. C.; Liu, J. W.
1990-01-01
Significant advantages of the Variable Polarity Plasma Arc (VPPA) Welding Process include faster welding, fewer repairs, less joint preparation, reduced weldment distortion, and absence of porosity. Flow profiles and power distribution of argon plasma gas as a working fluid to produce plasma arc jet in the VPPA welding process was analyzed. Major loss of heat transfer for flow through the nozzle is convective heat transfer; for the plasma jet flow between the outlet of the nozzle and workpiece is radiative heat transfer; and for the flow through the keyhole of the workpiece is convective heat transfer. The majority of the power absorbed by the keyhole of the workpiece is used for melting the solid metal workpiece into a molten metallic puddle. The crown and root widths and the crown and root heights can be predicted. An algorithm for promoting automatic control of flow parameters and the dimensions of the final product of the welding specification to be used for the VPPA Welding System operated at MSFC are provided.
Gabriel, Alonzo A; Cayabyab, Jochelle Elysse C; Tan, Athalie Kaye L; Corook, Mark Lester F; Ables, Errol John O; Tiangson-Bayaga, Cecile Leah P
2015-06-15
A predictive response surface model for the influences of product (soluble solids and titratable acidity) and process (temperature and heating time) parameters on the degradation of ascorbic acid (AA) in heated simulated fruit juices (SFJs) was established. Physicochemical property ranges of freshly squeezed and processed juices, and a previously established decimal reduction times of Escherichiacoli O157:H7 at different heating temperatures were used in establishing a Central Composite Design of Experiment that determined the combinations of product and process variable used in the model building. Only the individual linear effects of temperature and heating time significantly (P<0.05) affected AA reduction (%AAr). Validating systems either over- or underestimated actual %AAr with bias factors 0.80-1.20. However, all validating systems still resulted in acceptable predictive efficacy, with accuracy factor 1.00-1.26. The model may be useful in establishing unique process schedules for specific products, for the simultaneous control and improvement of food safety and quality. Copyright © 2015 Elsevier Ltd. All rights reserved.
Determination of the temperature field of shell structures
NASA Astrophysics Data System (ADS)
Rodionov, N. G.
1986-10-01
A stationary heat conduction problem is formulated for the case of shell structures, such as those found in gas-turbine and jet engines. A two-dimensional elliptic differential equation of stationary heat conduction is obtained which allows, in an approximate manner, for temperature changes along a third variable, i.e., the shell thickness. The two-dimensional problem is reduced to a series of one-dimensional problems which are then solved using efficient difference schemes. The approach proposed here is illustrated by a specific example.
NASA Astrophysics Data System (ADS)
Houpert, Loïc; Testor, Pierre; Durrieu de Madron, Xavier; Estournel, Claude; D'Ortenzio, Fabrizio
2013-04-01
Heat fluxes across the ocean-atmosphere interface play a crucial role in the upper turbulent mixing. The depth reached by this turbulent mixing is indicated by an homogenization of seawater properties in the surface layer, and is defined as the Mixed Layer Depth (MLD). The thickness of the mixed layer determines also the heat content of the layer that directly interacts with the atmosphere. The seasonal variability of these air-sea fluxes is crucial in the calculation of heat budget. An improvement in the estimate of these fluxes is needed for a better understanding of the Mediterranean ocean circulation and climate, in particular in Regional Climate Models. There are few estimations of surface heat fluxes based on oceanic observations in the Mediterranean, and none of them are based on mixed layer observations. So, we proposed here new estimations of these upper-ocean heat fluxes based on mixed layer. We present high resolution Mediterranean climatology (0.5°) of the mean MLD based on a comprehensive collection of temperature profiles of last 43 years (1969-2012). The database includes more than 150,000 profiles, merging CTD, XBT, ARGO Profiling floats, and gliders observations. This dataset is first used to describe the seasonal cycle of the mixed layer depth on the whole Mediterranean on a monthly climatological basis. Our analysis discriminates several regions with coherent behaviors, in particular the deep water formation sites, characterized by significant differences in the winter mixing intensity. Heat storage rates (HSR) were calculated as the time rate of change of the heat content integrated from the surface down to a specific depth that is defined as the MLD plus an integration constant. Monthly climatology of net heat flux (NHF) from ERA-Interim reanalysis was balanced by the 1°x1° resolution heat storage rate climatology. Local heat budget balance and seasonal variability in the horizontal heat flux are then discussed by taking into account uncertainties, due to errors in monthly value estimation and to intra-annual and inter-annual variability.
Exact solution of conductive heat transfer in cylindrical composite laminate
NASA Astrophysics Data System (ADS)
Kayhani, M. H.; Shariati, M.; Nourozi, M.; Karimi Demneh, M.
2009-11-01
This paper presents an exact solution for steady-state conduction heat transfer in cylindrical composite laminates. This laminate is cylindrical shape and in each lamina, fibers have been wound around the cylinder. In this article heat transfer in composite laminates is being investigated, by using separation of variables method and an analytical relation for temperature distribution in these laminates has been obtained under specific boundary conditions. Also Fourier coefficients in each layer obtain by solving set of equations that related to thermal boundary layer conditions at inside and outside of the cylinder also thermal continuity and heat flux continuity between each layer is considered. In this research LU factorization method has been used to solve the set of equations.
Theory and design of variable conductance heat pipes
NASA Technical Reports Server (NTRS)
Marcus, B. D.
1972-01-01
A comprehensive review and analysis of all aspects of heat pipe technology pertinent to the design of self-controlled, variable conductance devices for spacecraft thermal control is presented. Subjects considered include hydrostatics, hydrodynamics, heat transfer into and out of the pipe, fluid selection, materials compatibility and variable conductance control techniques. The report includes a selected bibliography of pertinent literature, analytical formulations of various models and theories describing variable conductance heat pipe behavior, and the results of numerous experiments on the steady state and transient performance of gas controlled variable conductance heat pipes. Also included is a discussion of VCHP design techniques.
Low-order modeling of internal heat transfer in biomass particle pyrolysis
Wiggins, Gavin M.; Daw, C. Stuart; Ciesielski, Peter N.
2016-05-11
We present a computationally efficient, one-dimensional simulation methodology for biomass particle heating under conditions typical of fast pyrolysis. Our methodology is based on identifying the rate limiting geometric and structural factors for conductive heat transport in biomass particle models with realistic morphology to develop low-order approximations that behave appropriately. Comparisons of transient temperature trends predicted by our one-dimensional method with three-dimensional simulations of woody biomass particles reveal good agreement, if the appropriate equivalent spherical diameter and bulk thermal properties are used. Here, we conclude that, for particle sizes and heating regimes typical of fast pyrolysis, it is possible to simulatemore » biomass particle heating with reasonable accuracy and minimal computational overhead, even when variable size, aspherical shape, anisotropic conductivity, and complex, species-specific internal pore geometry are incorporated.« less
Low-Order Modeling of Internal Heat Transfer in Biomass Particle Pyrolysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiggins, Gavin M.; Ciesielski, Peter N.; Daw, C. Stuart
2016-06-16
We present a computationally efficient, one-dimensional simulation methodology for biomass particle heating under conditions typical of fast pyrolysis. Our methodology is based on identifying the rate limiting geometric and structural factors for conductive heat transport in biomass particle models with realistic morphology to develop low-order approximations that behave appropriately. Comparisons of transient temperature trends predicted by our one-dimensional method with three-dimensional simulations of woody biomass particles reveal good agreement, if the appropriate equivalent spherical diameter and bulk thermal properties are used. We conclude that, for particle sizes and heating regimes typical of fast pyrolysis, it is possible to simulate biomassmore » particle heating with reasonable accuracy and minimal computational overhead, even when variable size, aspherical shape, anisotropic conductivity, and complex, species-specific internal pore geometry are incorporated.« less
This analysis evaluates exposure factors as potential determinants of the heterogeneity in city-specific associations between PM2.5 and mortality. Exposure factor variables were created based on housing characteristics, commuting patterns, heating fuel usage, and climatic factors...
NASA Astrophysics Data System (ADS)
Sulis, Mauro; Langensiepen, Matthias; Shrestha, Prabhakar; Schickling, Anke; Simmer, Clemens; Kollet, Stefan
2015-04-01
Vegetation has a significant influence on the partitioning of radiative forcing, the spatial and temporal variability of soil water and soil temperature. Therefore plant physiological properties play a key role in mediating and amplifying interactions and feedback mechanisms in the soil-vegetation-atmosphere continuum. Because of the direct impact on latent heat fluxes, these properties may also influence weather generating processes, such as the evolution of the atmospheric boundary layer (ABL). In land surface models, plant physiological properties are usually obtained from literature synthesis by unifying several plant/crop species in predefined vegetation classes. In this work, crop-specific physiological characteristics, retrieved from detailed field measurements, are included in the bio-physical parameterization of the Community Land Model (CLM), which is a component of the Terrestrial Systems Modeling Platform (TerrSysMP). The measured set of parameters for two typical European mid-latitudinal crops (sugar beet and winter wheat) is validated using eddy covariance measurements (sensible heat and latent heat) over multiple years from three measurement sites located in the North Rhine-Westphalia region, Germany. We found clear improvements of CLM simulations, when using the crop-specific physiological characteristics of the plants instead of the generic crop type when compared to the measurements. In particular, the increase of latent heat fluxes in conjunction with decreased sensible heat fluxes as simulated by the two new crop-specific parameter sets leads to an improved quantification of the diurnal energy partitioning. These findings are cross-validated using estimates of gross primary production extracted from net ecosystem exchange measurements. This independent analysis reveals that the better agreement between observed and simulated latent heat using the plant-specific physiological properties largely stems from an improved simulation of the photosynthesis process owing to a better estimation of the Rubisco enzyme kinematics. Finally, to evaluate the effects of the crop-specific parameterizations on the ABL dynamics, we perform a series of semi-idealized land-atmosphere coupled simulations by hypothesizing three cropland configurations. These numerical experiments reveal different heat and moisture budgets of the ABL that clearly impact the evolution of the boundary layer when using the crop-specific physiological properties.
An exact closed form solution for constant area compressible flow with friction and heat transfer
NASA Technical Reports Server (NTRS)
Sturas, J. I.
1971-01-01
The well-known differential equation for the one-dimensional flow of a compressible fluid with heat transfer and wall friction has no known solution in closed form for the general case. This report presents a closed form solution for the special case of constant heat flux per unit length and constant specific heat. The solution was obtained by choosing the square of a dimensionless flow parameter as one of the independent variables to describe the flow. From this exact solution, an approximate simplified form is derived that is applicable for predicting subsonic flow performance characteristics for many types of constant area passages in internal flow. The data included in this report are considered sufficiently accurate for use as a guide in analyzing and designing internal gas flow systems.
Evaluating penalized logistic regression models to predict Heat-Related Electric grid stress days
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bramer, Lisa M.; Rounds, J.; Burleyson, C. D.
Understanding the conditions associated with stress on the electricity grid is important in the development of contingency plans for maintaining reliability during periods when the grid is stressed. In this paper, heat-related grid stress and the relationship with weather conditions were examined using data from the eastern United States. Penalized logistic regression models were developed and applied to predict stress on the electric grid using weather data. The inclusion of other weather variables, such as precipitation, in addition to temperature improved model performance. Several candidate models and combinations of predictive variables were examined. A penalized logistic regression model which wasmore » fit at the operation-zone level was found to provide predictive value and interpretability. Additionally, the importance of different weather variables observed at various time scales were examined. Maximum temperature and precipitation were identified as important across all zones while the importance of other weather variables was zone specific. In conclusion, the methods presented in this work are extensible to other regions and can be used to aid in planning and development of the electrical grid.« less
Evaluating penalized logistic regression models to predict Heat-Related Electric grid stress days
Bramer, Lisa M.; Rounds, J.; Burleyson, C. D.; ...
2017-09-22
Understanding the conditions associated with stress on the electricity grid is important in the development of contingency plans for maintaining reliability during periods when the grid is stressed. In this paper, heat-related grid stress and the relationship with weather conditions were examined using data from the eastern United States. Penalized logistic regression models were developed and applied to predict stress on the electric grid using weather data. The inclusion of other weather variables, such as precipitation, in addition to temperature improved model performance. Several candidate models and combinations of predictive variables were examined. A penalized logistic regression model which wasmore » fit at the operation-zone level was found to provide predictive value and interpretability. Additionally, the importance of different weather variables observed at various time scales were examined. Maximum temperature and precipitation were identified as important across all zones while the importance of other weather variables was zone specific. In conclusion, the methods presented in this work are extensible to other regions and can be used to aid in planning and development of the electrical grid.« less
NASA Astrophysics Data System (ADS)
Lee, Eungul; Bieda, Rahama; Shanmugasundaram, Jothiganesh; Basara Richter, Heather
2016-06-01
Exposure to extreme heat was reconstructed based on regional land-atmosphere processes from 1979 to 2010 in the South Central U.S. The study region surrounds the Chickasaw Nation (CN), a predominantly Native American population with a highly prevalent burden of climate-sensitive chronic diseases. Land surface and atmospheric conditions for summer heat waves were analyzed during spring (March-April-May, MAM) and summer (June-July-August, JJA) based on the Climate and Ocean: Variability, Predictability, and Change maximum temperature definition for heat wave frequency (HWF). The spatial-temporal pattern of HWF was determined using empirical orthogonal function (EOF) analysis and the corresponding principle component time series of the first EOF of HWF. Statistically significant analyses of observed conditions indicated that sensible heat increased and latent heat fluxes decreased with high HWF in the South Central U.S. The largest positive correlations of sensible heat flux to HWF and the largest negative correlations of latent heat flux to HWF were specifically observed over the CN. This is a significantly different energy transfer regime due to less available soil moisture during the antecedent MAM and JJA. The higher sensible heat from dry soil could cause significant warming from the near surface (>2.0°C) to the lower troposphere (>1.5°C), and accumulated boundary layer heat could induce the significant patterns of higher geopotential height and enhance anticyclonic circulations (negative vorticity anomaly) at the midtroposphere. Results suggested a positive land-atmosphere feedback associated with heat waves and called attention to the need for region-specific climate adaptation planning.
NASA Astrophysics Data System (ADS)
Lee, Eungul; Bieda, Rahama; Shanmugasundaram, Jothiganesh; Richter, Heather
2017-04-01
Exposure to extreme heat was reconstructed based on regional land-atmosphere processes from 1979 to 2010 in the South Central U.S. The study region surrounds the Chickasaw Nation (CN), a predominantly Native American population with a highly prevalent burden of climate-sensitive chronic diseases. Land surface and atmospheric conditions for summer heat waves were analyzed during spring (March-April-May, MAM) and summer (June-July-August, JJA) based on the Climate and Ocean: Variability, Predictability, and Change maximum temperature definition for heat wave frequency (HWF). The spatial-temporal pattern of HWF was determined using empirical orthogonal function (EOF) analysis and the corresponding principle component time series of the first EOF of HWF. Statistically significant analyses of observed conditions indicated that sensible heat increased and latent heat fluxes decreased with high HWF in the South Central U.S. The largest positive correlations of sensible heat flux to HWF and the largest negative correlations of latent heat flux to HWF were specifically observed over the CN. This is a significantly different energy transfer regime due to less available soil moisture during the antecedent MAM and JJA. The higher sensible heat from dry soil could cause significant warming from the near surface (> 2.0°C) to the lower troposphere (> 1.5°C), and accumulated boundary layer heat could induce the significant patterns of higher geopotential height and enhance anticyclonic circulations (negative vorticity anomaly) at the midtroposphere. Results suggested a positive land-atmosphere feedback associated with heat waves and called attention to the need for region-specific climate adaptation planning.
Heat, chloride, and specific conductance as ground water tracers near streams
Cox, M.H.; Su, G.W.; Constantz, J.
2007-01-01
Commonly measured water quality parameters were compared to heat as tracers of stream water exchange with ground water. Temperature, specific conductance, and chloride were sampled at various frequencies in the stream and adjacent wells over a 2-year period. Strong seasonal variations in stream water were observed for temperature and specific conductance. In observation wells where the temperature response correlated to stream water, chloride and specific conductance values were similar to stream water values as well, indicating significant stream water exchange with ground water. At sites where ground water temperature fluctuations were negligible, chloride and/or specific conductance values did not correlate to stream water values, indicating that ground water was not significantly influenced by exchange with stream water. Best-fit simulation modeling was performed at two sites to derive temperature-based estimates of hydraulic conductivities of the alluvial sediments between the stream and wells. These estimates were used in solute transport simulations for a comparison of measured and simulated values for chloride and specific conductance. Simulation results showed that hydraulic conductivities vary seasonally and annually. This variability was a result of seasonal changes in temperature-dependent hydraulic conductivity and scouring or clogging of the streambed. Specific conductance fits were good, while chloride data were difficult to fit due to the infrequent (quarterly) stream water chloride measurements during the study period. Combined analyses of temperature, chloride, and specific conductance led to improved quantification of the spatial and temporal variability of stream water exchange with shallow ground water in an alluvial system. ?? 2007 National Ground Water Association.
Convection in the Rayleigh-Bénard flow with all fluid properties variable
NASA Astrophysics Data System (ADS)
Sassos, Athanasios; Pantokratoras, Asterios
2011-10-01
In the present paper, the effect of variable fluid properties (density, viscosity, thermal conductivity and specific heat) on the convection in the classical Rayleigh-Bénard problem is investigated. The investigation concerns water, air, and engine oil by taking into account the variation of fluid properties with temperature. The results are obtained by numerically solving the governing equations, using the SIMPLE algorithm and covering large temperature differences. It is found that the critical Rayleigh number increases as the temperature difference increases considering all fluid properties variable. However, when the fluid properties are kept constant, calculated at the mean temperature, and only density is considered variable, the critical Rayleigh number either decreases or remains constant.
Tran, Kathy V; Azhar, Gulrez S; Nair, Rajesh; Knowlton, Kim; Jaiswal, Anjali; Sheffield, Perry; Mavalankar, Dileep; Hess, Jeremy
2013-06-18
Extreme heat is a significant public health concern in India; extreme heat hazards are projected to increase in frequency and severity with climate change. Few of the factors driving population heat vulnerability are documented, though poverty is a presumed risk factor. To facilitate public health preparedness, an assessment of factors affecting vulnerability among slum dwellers was conducted in summer 2011 in Ahmedabad, Gujarat, India. Indicators of heat exposure, susceptibility to heat illness, and adaptive capacity, all of which feed into heat vulnerability, was assessed through a cross-sectional household survey using randomized multistage cluster sampling. Associations between heat-related morbidity and vulnerability factors were identified using multivariate logistic regression with generalized estimating equations to account for clustering effects. Age, preexisting medical conditions, work location, and access to health information and resources were associated with self-reported heat illness. Several of these variables were unique to this study. As sociodemographics, occupational heat exposure, and access to resources were shown to increase vulnerability, future interventions (e.g., health education) might target specific populations among Ahmedabad urban slum dwellers to reduce vulnerability to extreme heat. Surveillance and evaluations of future interventions may also be worthwhile.
Base Heating Sensitivity Study for a 4-Cluster Rocket Motor Configuration in Supersonic Freestream
NASA Technical Reports Server (NTRS)
Mehta, Manish; Canabal, Francisco; Tashakkor, Scott B.; Smith, Sheldon D.
2011-01-01
In support of launch vehicle base heating and pressure prediction efforts using the Loci-CHEM Navier-Stokes computational fluid dynamics solver, 35 numerical simulations of the NASA TND-1093 wind tunnel test have been modeled and analyzed. This test article is composed of four JP-4/LOX 500 lbf rocket motors exhausting into a Mach 2 - 3.5 wind tunnel at various ambient pressure conditions. These water-cooled motors are attached to a base plate of a standard missile forebody. We explore the base heating profiles for fully coupled finite-rate chemistry simulations, one-way coupled RAMP (Reacting And Multiphase Program using Method of Characteristics)-BLIMPJ (Boundary Layer Integral Matrix Program - Jet Version) derived solutions and variable and constant specific heat ratio frozen flow simulations. Variations in turbulence models, temperature boundary conditions and thermodynamic properties of the plume have been investigated at two ambient pressure conditions: 255 lb/sq ft (simulated low altitude) and 35 lb/sq ft (simulated high altitude). It is observed that the convective base heat flux and base temperature are most sensitive to the nozzle inner wall thermal boundary layer profile which is dependent on the wall temperature, boundary layer s specific energy and chemical reactions. Recovery shock dynamics and afterburning significantly influences convective base heating. Turbulence models and external nozzle wall thermal boundary layer profiles show less sensitivity to base heating characteristics. Base heating rates are validated for the highest fidelity solutions which show an agreement within +/-10% with respect to test data.
Carrier fluid temperature data in vertical ground heat exchangers with a varying pipe separation.
Makasis, Nikolas; Narsilio, Guillermo A; Bidarmaghz, Asal; Johnston, Ian W
2018-06-01
The dataset in this article is related to shallow geothermal energy systems, which efficiently provide renewable heating and cooling to buildings, and specifically to the performance of the vertical ground heat exchangers (GHE) embedded in the ground. GHEs incorporate pipes with a circulating (carrier) fluid, exchanging heat between the ground and the building. The data show the average and inlet temperatures of the carrier fluid circulating in the pipes embedded in the GHEs (which directly relate to the performance of these systems). These temperatures were generated using detailed finite element modelling and comprise part of the daily output of various one-year simulations, accounting for numerous design parameters (including different pipe geometries) and ground conditions. An expanded explanation of the data as well as comprehensive analyses on how they were used can be found in the article titled "Ground-source heat pump systems: the effect of variable pipe separation in ground heat exchangers" (Makasis N, Narsilio GA, Bidarmaghz A, Johnston IW, 2018) [1].
NASA Astrophysics Data System (ADS)
Jiang, H.; Lin, T.
2017-12-01
Rain-fed corn production systems are subject to sub-seasonal variations of precipitation and temperature during the growing season. As each growth phase has varied inherent physiological process, plants necessitate different optimal environmental conditions during each phase. However, this temporal heterogeneity towards climate variability alongside the lifecycle of crops is often simplified and fixed as constant responses in large scale statistical modeling analysis. To capture the time-variant growing requirements in large scale statistical analysis, we develop and compare statistical models at various spatial and temporal resolutions to quantify the relationship between corn yield and weather factors for 12 corn belt states from 1981 to 2016. The study compares three spatial resolutions (county, agricultural district, and state scale) and three temporal resolutions (crop growth phase, monthly, and growing season) to characterize the effects of spatial and temporal variability. Our results show that the agricultural district model together with growth phase resolution can explain 52% variations of corn yield caused by temperature and precipitation variability. It provides a practical model structure balancing the overfitting problem in county specific model and weak explanation power in state specific model. In US corn belt, precipitation has positive impact on corn yield in growing season except for vegetative stage while extreme heat attains highest sensitivity from silking to dough phase. The results show the northern counties in corn belt area are less interfered by extreme heat but are more vulnerable to water deficiency.
Variable pressure power cycle and control system
Goldsberry, Fred L.
1984-11-27
A variable pressure power cycle and control system that is adjustable to a variable heat source is disclosed. The power cycle adjusts itself to the heat source so that a minimal temperature difference is maintained between the heat source fluid and the power cycle working fluid, thereby substantially matching the thermodynamic envelope of the power cycle to the thermodynamic envelope of the heat source. Adjustments are made by sensing the inlet temperature of the heat source fluid and then setting a superheated vapor temperature and pressure to achieve a minimum temperature difference between the heat source fluid and the working fluid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Childs, K.W.
1991-07-01
HEATING is a FORTRAN program designed to solve steady-state and/or transient heat conduction problems in one-, two-, or three- dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heating generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- and position-dependent. The boundary conditions, which maymore » be surface-to-boundary or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General graybody radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING is variably dimensioned and utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution (for one-dimensional or two-dimensional problems), and conjugate gradient. Transient problems may be solved using one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method (which for some circumstances allows a time step greater than the CEP stability criterion). The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-02
... specific to the Carrier Super Modular Multi-System (SMMSi) variable refrigerant flow (VRF) multi-split... in this notice to test and rate its SMMSi VRF multi-split commercial heat pumps. DATES: This Decision... its SMMSi VRF multi-split products. Carrier must use the alternate test procedure provided in this...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-19
... conditioners and heat pumps. The waiver is specific to the Sanyo variable capacity ECO-i (commercial) multi... in this notice to test and rate its ECO-i multi-split products. DATES: This Decision and Order is..., Building Technologies Program, Mailstop EE-2J, 1000 Independence Avenue, SW., Washington, DC 20585-0121...
Ocean carbon and heat variability in an Earth System Model
NASA Astrophysics Data System (ADS)
Thomas, J. L.; Waugh, D.; Gnanadesikan, A.
2016-12-01
Ocean carbon and heat content are very important for regulating global climate. Furthermore, due to lack of observations and dependence on parameterizations, there has been little consensus in the modeling community on the magnitude of realistic ocean carbon and heat content variability, particularly in the Southern Ocean. We assess the differences between global oceanic heat and carbon content variability in GFDL ESM2Mc using a 500-year, pre-industrial control simulation. The global carbon and heat content are directly out of phase with each other; however, in the Southern Ocean the heat and carbon content are in phase. The global heat mutli-decadal variability is primarily explained by variability in the tropics and mid-latitudes, while the variability in global carbon content is primarily explained by Southern Ocean variability. In order to test the robustness of this relationship, we use three additional pre-industrial control simulations using different mesoscale mixing parameterizations. Three pre-industrial control simulations are conducted with the along-isopycnal diffusion coefficient (Aredi) set to constant values of 400, 800 (control) and 2400 m2 s-1. These values for Aredi are within the range of parameter settings commonly used in modeling groups. Finally, one pre-industrial control simulation is conducted where the minimum in the Gent-McWilliams parameterization closure scheme (AGM) increased to 600 m2 s-1. We find that the different simulations have very different multi-decadal variability, especially in the Weddell Sea where the characteristics of deep convection are drastically changed. While the temporal frequency and amplitude global heat and carbon content changes significantly, the overall spatial pattern of variability remains unchanged between the simulations.
Material variability as measured by low temperature electrical resistivity.
NASA Technical Reports Server (NTRS)
Clark, A. F.; Tryon, P. V.
1972-01-01
Low temperature electrical resistivity was used to determine the material variability (1) between different manufacturers, (2) between different heats from the same manufacturer, and (3) within a given heat for Al 2024, Al-5% Mg alloys, Inconel 718, A286 stainless, and AISI 316. Generally, the coefficient of variation for solution annealed alloys ranged from 1.2 to 14% between manufacturers, 0.8 to 5.1% between heats, and 0.1 to 1.6% within a heat with stainless steels at the low ends and Al 2024 at the high ends. The variability is increased if the material is in a precipitation-hardened condition. A statistical analysis suggests that the variability within a heat is non-normal.
Using a conformal water bolus to adjust heating patterns of microwave waveguide applicators
NASA Astrophysics Data System (ADS)
Stauffer, Paul R.; Rodrigues, Dario B.; Sinahon, Randolf; Sbarro, Lyndsey; Beckhoff, Valeria; Hurwitz, Mark D.
2017-02-01
Background: Hyperthermia, i.e., raising tissue temperature to 40-45°C for 60 min, has been demonstrated to increase the effectiveness of radiation and chemotherapy for cancer. Although multi-element conformal heat applicators are under development to provide more adjustable heating of contoured anatomy, to date the most often used applicator to heat superficial disease is the simple microwave waveguide. With only a single power input, the operator must be resourceful to adjust heat treatment to accommodate variable size and shape tumors spreading across contoured anatomy. Methods: We used multiphysics simulation software that couples electromagnetic, thermal and fluid dynamics physics to simulate heating patterns in superficial tumors from commercially available microwave waveguide applicators. Temperature distributions were calculated inside homogenous muscle and layered skin-fat-muscle-tumor-bone tissue loads for a typical range of applicator coupling configurations and size of waterbolus. Variable thickness waterbolus was simulated as necessary to accommodate contoured anatomy. Physical models of several treatment configurations were constructed for comparison of simulation results with experimental specific absorption rate (SAR) measurements in homogenous muscle phantom. Results: Accuracy of the simulation model was confirmed with experimental SAR measurements of three unique applicator setups. Simulations demonstrated the ability to generate a wide range of power deposition patterns with commercially available waveguide antennas by controllably varying size and thickness of the waterbolus layer. Conclusion: Heating characteristics of 915 MHz waveguide antennas can be varied over a wide range by controlled adjustment of microwave power, coupling configuration, and waterbolus lateral size and thickness. The uniformity of thermal dose delivered to superficial tumors can be improved by cyclic switching of waterbolus thickness during treatment to proactively shift heat peaks and nulls around under the aperture, thereby reducing patient pain while increasing minimum thermal dose by end of treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Childs, K.W.
1993-02-01
HEATING is a general-purpose conduction heat transfer program written in Fortran 77. HEATING can solve steady-state and/or transient heat conduction problems in one-, two-, or three-dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may also be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heat-generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- andmore » position-dependent. The boundary conditions, which may be surface-to-environment or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General gray-body radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING uses a runtime memory allocation scheme to avoid having to recompile to match memory requirements for each specific problem. HEATING utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution, and conjugate gradient. Transient problems may be solved using any one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method. The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Childs, K.W.
1993-02-01
HEATING is a general-purpose conduction heat transfer program written in Fortran 77. HEATING can solve steady-state and/or transient heat conduction problems in one-, two-, or three-dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may also be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heat-generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- andmore » position-dependent. The boundary conditions, which may be surface-to-environment or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General gray-body radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING uses a runtime memory allocation scheme to avoid having to recompile to match memory requirements for each specific problem. HEATING utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution, and conjugate gradient. Transient problems may be solved using any one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method. The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.« less
Without Warning: Worker Deaths From Heat 2014-2016.
Roelofs, Cora
2018-01-01
Worker deaths from heat exposure are unlike heat deaths in the general population; workers tend to be outside in variable temperatures and younger than sixty-five years. Climate change will increase the frequency, duration, and variability of hot temperatures. Public health warning systems, such as the Heat Index of the National Weather Service, do not generally account for workers' greater likelihood of exposure to direct sunlight or exertion. Only 28% of the 79 worker heat-related fatalities during 2014-2016 occurred on days when the National Weather Service warning would have included the possibility of fatal heat stroke. Common heat illness prevention advice ignores workers' lack of control over their ability to rest and seek cooler temperatures. Additionally, acclimatization, or phased-in work in the heat, may be less useful given temperature variability under climate change. Workers' vulnerability and context of heat exposure should inform public health surveillance and response to prevent heat illness and death.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orange, N. Brice; Chesny, David L.; Gendre, Bruce
Solar variability investigations that include magnetic energy coupling are paramount to solving many key solar/stellar physics problems, particularly for understanding the temporal variability of magnetic energy redistribution and heating processes. Using three years of observations from the Solar Dynamics Observatory ’ s Atmospheric Imaging Assembly and Heliosemic Magnetic Imager, we measured radiative and magnetic fluxes from gross features and at full-disk scales, respectively. Magnetic energy coupling analyses support radiative flux descriptions via the plasma heating connectivity of dominant (magnetic) and diffuse components, specifically of the predominantly closed-field corona. Our work shows that this relationship favors an energetic redistribution efficiency acrossmore » large temperature gradients, and potentially sheds light on the long-standing issue of diffuse unresolved low corona emission. The close connection between magnetic energy redistribution and plasma conditions revealed by this work lends significant insight into the field of stellar physics, as we have provided possible means for probing distant sources in currently limited and/or undetectable radiation distributions.« less
Improved ablative materials for the ASRM nozzle
NASA Technical Reports Server (NTRS)
Canfield, A.; Clinton, R. G.; Armour, W.; Koenig, J.
1992-01-01
Rayon precursor carbon-cloth phenolic was developed more than 30 years ago and is used in most nozzles today including the Poseidon, Trident, Peacekeeper, Small ICBM, Space Shuttle, and numerous tactical and space systems. Specifications and manufacturing controls were placed on these materials and, once qualified, a no-change policy was instituted. The current material is acceptable; however, prepreg variability does not always accommodate the requirements of automation. The advanced solid rocket motor requires material with less variability for automated manufacturing. An advanced solid rocket motor materials team, composed of NASA, Thiokol, Aerojet, SRI, and Lockheed specialists, along with materials suppliers ICI Fiberite/Polycarbon, BP Chemicals/Hitco, and Amoco, embarked on a program to improve the current materials. The program consisted of heat treatment studies and standard and low-density material improvements evaluation. Improvements evaluated included fiber/fabric heat treatments, weave variations, resin application methods, process controls, and monitors.
Notley, Sean R; Park, Joonhee; Tagami, Kyoko; Ohnishi, Norikazu; Taylor, Nigel A S
2017-05-01
What is the central question of this study? Can sex-related differences in cutaneous vascular and sudomotor responses be explained primarily by variations in the ratio between body surface area and mass during compensable exercise that elicits equivalent heat-loss requirements and mean body temperature changes across participants? What is the main finding and its importance? Mass-specific surface area was a significant determinant of vasomotor and sudomotor responses in men and women, explaining 10-48% of the individual thermoeffector variance. Nonetheless, after accounting for changes in mean body temperature and morphological differences, sex explained only 5% of that inter-individual variability. It was concluded that sex differences in thermoeffector function are morphologically dependent, but not sex dependent. Sex is sometimes thought to be an independent modulator of cutaneous vasomotor and sudomotor function during heat exposure. Nevertheless, it was hypothesized that, when assessed during compensable exercise that evoked equal heat-loss requirements across participants, sex differences in those thermoeffectors would be explained by variations in the ratio between body surface area and mass (specific surface area). To evaluate that possibility, vasomotor and sudomotor functions were assessed in 60 individuals (36 men and 24 women) with widely varying (overlapping) specific surface areas (range, 232.3-292.7 and 241.2-303.1 cm 2 kg -1 , respectively). Subjects completed two trials in compensable conditions (28°C, 36% relative humidity) involving rest (20 min) and steady-state cycling (45 min) at fixed, area-specific metabolic heat-production rates (light, ∼135 W m -2 ; moderate, ∼200 W m -2 ). Equivalent heat-loss requirements and mean body temperature changes were evoked across participants. Forearm blood flow and vascular conductance were positively related to specific surface area during light work in men (r = 0.67 and r = 0.66, respectively; both P < 0.05) and during both exercise intensities in women (light, r = 0.57 and r = 0.69; and moderate, r = 0.64 and r = 0.68; all P < 0.05). Whole-body and local sweat rates were negatively related to that ratio (correlation coefficient range, -0.33 to -0.62; all P < 0.05) during both work rates in men and women. Those relationships accounted for 10-48% of inter-individual thermoeffector variance (P < 0.05). Furthermore, after accounting for morphological differences, sex explained no more than 5% of that variability (P < 0.05). It was concluded that, when assessed during compensable exercise, sex differences in thermoeffector function were largely determined morphologically, rather than being sex dependent. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.
NASA Astrophysics Data System (ADS)
Stepanov, Dmitry; Gusev, Anatoly; Diansky, Nikolay
2016-04-01
Based on numerical simulations the study investigates impact of atmospheric forcing on heat content variability of the sub-surface layer in Japan/East Sea (JES), 1948-2009. We developed a model configuration based on a INMOM model and atmospheric forcing extracted from the CORE phase II experiment dataset 1948-2009, which enables to assess impact of only atmospheric forcing on heat content variability of the sub-surface layer of the JES. An analysis of kinetic energy (KE) and total heat content (THC) in the JES obtained from our numerical simulations showed that the simulated circulation of the JES is being quasi-steady state. It was found that the year-mean KE variations obtained from our numerical simulations are similar those extracted from the SODA reanalysis. Comparison of the simulated THC and that extracted from the SODA reanalysis showed significant consistence between them. An analysis of numerical simulations showed that the simulated circulation structure is very similar that obtained from the PALACE floats in the intermediate and abyssal layers in the JES. Using empirical orthogonal function analysis we studied spatial-temporal variability of the heat content of the sub-surface layer in the JES. Based on comparison of the simulated heat content variations with those obtained from natural observations an assessment of the atmospheric forcing impact on the heat content variability was obtained. Using singular value decomposition analysis we considered relationships between the heat content variability and wind stress curl as well as sensible heat flux in winter. It was established the major role of sensible heat flux in decadal variability of the heat content of the sub-surface layer in the JES. The research was supported by the Russian Foundation for Basic Research (grant N 14-05-00255) and the Council on the Russian Federation President Grants (grant N MK-3241.2015.5)
NASA Astrophysics Data System (ADS)
Zaigham Zia, Q. M.; Ullah, Ikram; Waqas, M.; Alsaedi, A.; Hayat, T.
2018-03-01
This research intends to elaborate Soret-Dufour characteristics in mixed convective radiated Casson liquid flow by exponentially heated surface. Novel features of exponential space dependent heat source are introduced. Appropriate variables are implemented for conversion of partial differential frameworks into a sets of ordinary differential expressions. Homotopic scheme is employed for construction of analytic solutions. Behavior of various embedding variables on velocity, temperature and concentration distributions are plotted graphically and analyzed in detail. Besides, skin friction coefficients and heat and mass transfer rates are also computed and interpreted. The results signify the pronounced characteristics of temperature corresponding to convective and radiation variables. Concentration bears opposite response for Soret and Dufour variables.
NASA Technical Reports Server (NTRS)
Glass, Christopher E.
1990-01-01
The computer program EASI, an acronym for Equilibrium Air Shock Interference, was developed to calculate the inviscid flowfield, the maximum surface pressure, and the maximum heat flux produced by six shock wave interference patterns on a 2-D, cylindrical configuration. Thermodynamic properties of the inviscid flowfield are determined using either an 11-specie, 7-reaction equilibrium chemically reacting air model or a calorically perfect air model. The inviscid flowfield is solved using the integral form of the conservation equations. Surface heating calculations at the impingement point for the equilibrium chemically reacting air model use variable transport properties and specific heat. However, for the calorically perfect air model, heating rate calculations use a constant Prandtl number. Sample calculations of the six shock wave interference patterns, a listing of the computer program, and flowcharts of the programming logic are included.
NASA Astrophysics Data System (ADS)
Glass, Christopher E.
1990-08-01
The computer program EASI, an acronym for Equilibrium Air Shock Interference, was developed to calculate the inviscid flowfield, the maximum surface pressure, and the maximum heat flux produced by six shock wave interference patterns on a 2-D, cylindrical configuration. Thermodynamic properties of the inviscid flowfield are determined using either an 11-specie, 7-reaction equilibrium chemically reacting air model or a calorically perfect air model. The inviscid flowfield is solved using the integral form of the conservation equations. Surface heating calculations at the impingement point for the equilibrium chemically reacting air model use variable transport properties and specific heat. However, for the calorically perfect air model, heating rate calculations use a constant Prandtl number. Sample calculations of the six shock wave interference patterns, a listing of the computer program, and flowcharts of the programming logic are included.
Seven-Year SSM/I-Derived Global Ocean Surface Turbulent Fluxes
NASA Technical Reports Server (NTRS)
Chou, Shu-Hsien; Shie, Chung-Lin; Atlas, Robert M.; Ardizzone, Joe
2000-01-01
A 7.5-year (July 1987-December 1994) dataset of daily surface specific humidity and turbulent fluxes (momentum, latent heat, and sensible heat) over global oceans has been retrieved from the Special Sensor Microwave/Imager (SSM/I) data and other data. It has a spatial resolution of 2.0 deg.x 2.5 deg. latitude-longitude. The retrieved surface specific humidity is generally accurate over global oceans as validated against the collocated radiosonde observations. The retrieved daily wind stresses and latent heat fluxes show useful accuracy as verified by those measured by the RV Moana Wave and IMET buoy in the western equatorial Pacific. The derived turbulent fluxes and input variables are also found to agree generally with the global distributions of annual-and seasonal-means of those based on 4-year (1990-93) comprehensive ocean-atmosphere data set (COADS) with adjustment in wind speeds and other climatological studies. The COADS has collected the most complete surface marine observations, mainly from merchant ships. However, ship measurements generally have poor accuracy, and variable spatial coverages. Significant differences between the retrieved and COADS-based are found in some areas of the tropical and southern extratropical oceans, reflecting the paucity of ship observations outside the northern extratropical oceans. Averaged over the global oceans, the retrieved wind stress is smaller but the latent heat flux is larger than those based on COADS. The former is suggested to be mainly due to overestimation of the adjusted ship-estimated wind speeds (depending on sea states), while the latter is suggested to be mainly due to overestimation of ship-measured dew point temperatures. The study suggests that the SSM/I-derived turbulent fluxes can be used for climate studies and coupled model validations.
Evaluating penalized logistic regression models to predict Heat-Related Electric grid stress days
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bramer, L. M.; Rounds, J.; Burleyson, C. D.
Understanding the conditions associated with stress on the electricity grid is important in the development of contingency plans for maintaining reliability during periods when the grid is stressed. In this paper, heat-related grid stress and the relationship with weather conditions is examined using data from the eastern United States. Penalized logistic regression models were developed and applied to predict stress on the electric grid using weather data. The inclusion of other weather variables, such as precipitation, in addition to temperature improved model performance. Several candidate models and datasets were examined. A penalized logistic regression model fit at the operation-zone levelmore » was found to provide predictive value and interpretability. Additionally, the importance of different weather variables observed at different time scales were examined. Maximum temperature and precipitation were identified as important across all zones while the importance of other weather variables was zone specific. The methods presented in this work are extensible to other regions and can be used to aid in planning and development of the electrical grid.« less
Spatio-Temporal Variability of Urban Heat Island and Urban Mobility
NASA Astrophysics Data System (ADS)
Kar, B.; Omitaomu, O.
2017-12-01
A 2016 report by the U.S. Census stated that while the rural areas cover 97% of the U.S. landmass, these areas house only 19.7% of the nation's population. Given that the U.S. coastal counties are home to more than 50% of the U.S. population, these urban areas are clustered along the coast that is susceptible to sea level rise induced impacts. In light of increasing climate variability and extreme events, it is pertinent to understand the Urban Heat Island (UHI) effect that results from increasing population density and mobility in the urban areas, and that contributes to increased energy consumption and temperature as well as unmitigated flooding events. For example, in Illinois, warmer summers contribute to heavy precipitation that overwhelms the region's drainage capacity. This study focuses on understanding the spatio-temporal variability of the relationship between population density and mobility distribution, and creation of UHI due to temperature change in selected cities across the U.S. This knowledge will help us understand the role of UHI in energy-water nexus in urban areas, specifically, energy consumption.
Variable conductance heat pipe technology
NASA Technical Reports Server (NTRS)
Marcus, B. D.; Edwards, D. K.; Anderson, W. T.
1973-01-01
Research and development programs in variable conductance heat pipe technology were conducted. The treatment has been comprehensive, involving theoretical and/or experimental studies in hydrostatics, hydrodynamics, heat transfer into and out of the pipe, fluid selection, and materials compatibility, in addition to the principal subject of variable conductance control techniques. Efforts were not limited to analytical work and laboratory experimentation, but extended to the development, fabrication and test of spacecraft hardware, culminating in the successful flight of the Ames Heat Pipe Experiment on the OAO-C spacecraft.
The Effect of Cathode Composition on the Thermal Characteristics of Lithium-Ion Cells
NASA Technical Reports Server (NTRS)
Vaidyanathan, Hari; Rao, Gopalakrishna M.
1999-01-01
The specific thermal capacity and heat dissipation rate for lithium ion cells containing LiNiO2 and mixed oxide (75%LiCoO2+ 25%LiNiO2) as cathode materials are compared. The experimental measurements were made using a radiative calorimeter consisting of a copper chamber maintained at -168 C by circulating liquid nitrogen and enclosed in a vacuum bell jar. The specific thermal capacity was determined based on warm-up and cool-down transients. The heat dissipation rate was calculated from the values measured for heat radiated and stored, and the resulting values were corrected for conductive heat dissipation through the leads. The specific heat was 1.117 J/ C-g for the LiNiO2 cell and 0.946 J/ C-g for the 75%LiCoO2,25%LiNiO2 cell. Endothermic cooling at the beginning of charge was very apparent for the cell containing 75%LiCoO2,25%LiNiO2 as the cathode. Exothermic heating began at a higher state of charge for the cell with the 75%LiCoO2,25%LiNiO2 cathode compared to the LiNiO2 cathode cell. During discharge, the rate of heat dissipation increased with increase in the discharge current for both types of cells. The maximum heat dissipated at C/5 discharge was 0.065 W and 0.04 W for the LiNiO2 and 75%LiCoO2,25%LiNiO2 cells, respectively, The thermoneutral potential showed variability toward the end of discharge. The plateau region of the curves was used to calculate average thermoneutral potentials of 3.698 V and 3.837 V for the LiNiO2 cell and the 75%LiCoO2,25%LiNiO2 cell, respectively.
Testing of a single graded groove variable conductance heat pipe
NASA Astrophysics Data System (ADS)
Kapolnek, Michael R.; Holmes, H. R.; Hager, Brian
1992-07-01
Variable conductance heat pipes (VCHPs) with transport capacities in the 50,000 to 100,000 Watt-inch range will be required to transport the large heat loads anticipated for advanced spacecraft. A high-reliability, nonarterial constant conductance heat pipe with this capacity, the Single Graded Groove (SGG) heat pipe, was developed for NASA's Space Station Freedom. The design and testing of a variable conductance SGG heat pipe are described. Response of the pipe to startup and heat load changes was excellent. After correcting for condenser temperature changes, the evaporator temperature varied by only +/- 4 F for large evaporator heat load changes. The surface tension difference between ends of the gas blocked region was found to measurably affect the performance of the pipe. Performance was negligibly affected by Marangoni flow in the gas blocked region.
Genome-Wide Analysis of Yield in Europe: Allelic Effects Vary with Drought and Heat Scenarios1[OPEN
Millet, Emilie J.; Welcker, Claude; Kruijer, Willem; Negro, Sandra; Coupel-Ledru, Aude; Laborde, Jacques; Bauland, Cyril; Praud, Sebastien; Presterl, Thomas; Usadel, Björn; Charcosset, Alain; Van Eeuwijk, Fred; Tardieu, François
2016-01-01
Assessing the genetic variability of plant performance under heat and drought scenarios can contribute to reduce the negative effects of climate change. We propose here an approach that consisted of (1) clustering time courses of environmental variables simulated by a crop model in current (35 years × 55 sites) and future conditions into six scenarios of temperature and water deficit as experienced by maize (Zea mays L.) plants; (2) performing 29 field experiments in contrasting conditions across Europe with 244 maize hybrids; (3) assigning individual experiments to scenarios based on environmental conditions as measured in each field experiment; frequencies of temperature scenarios in our experiments corresponded to future heat scenarios (+5°C); (4) analyzing the genetic variation of plant performance for each environmental scenario. Forty-eight quantitative trait loci (QTLs) of yield were identified by association genetics using a multi-environment multi-locus model. Eight and twelve QTLs were associated to tolerances to heat and drought stresses because they were specific to hot and dry scenarios, respectively, with low or even negative allelic effects in favorable scenarios. Twenty-four QTLs improved yield in favorable conditions but showed nonsignificant effects under stress; they were therefore associated with higher sensitivity. Our approach showed a pattern of QTL effects expressed as functions of environmental variables and scenarios, allowing us to suggest hypotheses for mechanisms and candidate genes underlying each QTL. It can be used for assessing the performance of genotypes and the contribution of genomic regions under current and future stress situations and to accelerate breeding for drought-prone environments. PMID:27436830
January and July global distributions of atmospheric heating for 1986, 1987, and 1988
NASA Technical Reports Server (NTRS)
Schaack, Todd K.; Johnson, Donald R.
1994-01-01
Three-dimensional global distributions of atmospheric heating are estimated for January and July of the 3-year period 1986-88 from the European Center for Medium Weather Forecasts (ECMWF) Tropical Ocean Global Atmosphere (TOGA) assimilated datasets. Emphasis is placed on the interseasonal and interannual variability of heating both locally and regionally. Large fluctuations in the magnitude of heating and the disposition of maxima/minima in the Tropics occur over the 3-year period. This variability, which is largely in accord with anomalous precipitation expected during the El Nino-Southern Oscillation (ENSO) cycle, appears realistic. In both January and July, interannual differences of 1.0-1.5 K/day in the vertically averaged heating occur over the tropical Pacific. These interannual regional differences are substantial in comparison with maximum monthly averaged heating rates of 2.0-2.5 K/day. In the extratropics, the most prominent interannual variability occurs along the wintertime North Atlantic cyclone track. Vertical profiles of heating from selected regions also reveal large interannual variability. Clearly evident is the modulation of the heating within tropical regions of deep moist convection associated with the evolution of the ENSO cycle. The heating integrated over continental and oceanic basins emphasizes the impact of land and ocean surfaces on atmospheric energy balance and depicts marked interseasonal and interannual large-scale variability.
Yamamoto, Ayako; Palter, Jaime B
2016-03-15
Northern Hemisphere climate responds sensitively to multidecadal variability in North Atlantic sea surface temperature (SST). It is therefore surprising that an imprint of such variability is conspicuously absent in wintertime western European temperature, despite that Europe's climate is strongly influenced by its neighbouring ocean, where multidecadal variability in basin-average SST persists in all seasons. Here we trace the cause of this missing imprint to a dynamic anomaly of the atmospheric circulation that masks its thermodynamic response to SST anomalies. Specifically, differences in the pathways Lagrangian particles take to Europe during anomalous SST winters suppress the expected fluctuations in air-sea heat exchange accumulated along those trajectories. Because decadal variability in North Atlantic-average SST may be driven partly by the Atlantic Meridional Overturning Circulation (AMOC), the atmosphere's dynamical adjustment to this mode of variability may have important implications for the European wintertime temperature response to a projected twenty-first century AMOC decline.
NASA Astrophysics Data System (ADS)
Gálisová, Lucia
2018-05-01
Ground-state properties of a hybrid double-tetrahedral chain, in which the localized Ising spins regularly alternate with triangular plaquettes occupied by a variable number of mobile electrons, are exactly investigated. We demonstrate that the zero-temperature phase diagram of the model involves several non-degenerate, two-fold degenerate and macroscopically degenerate chiral phases. Low-temperature dependencies of the entropy and specific heat are also examined in order to gain a deeper insight into the degeneracy of individual ground-state phases and phase transitions. It is shown that a diversity of the ground-state degeneracy manifests itself in multiple-peak structures of both thermodynamic quantities. A remarkable temperature dependencies of the specific heat with two and three Schottky-type maxima are discussed in detail.
The vertical structure of upper ocean variability at the Porcupine Abyssal Plain during 2012-2013
NASA Astrophysics Data System (ADS)
Damerell, Gillian M.; Heywood, Karen J.; Thompson, Andrew F.; Binetti, Umberto; Kaiser, Jan
2016-05-01
This study presents the characterization of variability in temperature, salinity and oxygen concentration, including the vertical structure of the variability, in the upper 1000 m of the ocean over a full year in the northeast Atlantic. Continuously profiling ocean gliders with vertical resolution between 0.5 and 1 m provide more information on temporal variability throughout the water column than time series from moorings with sensors at a limited number of fixed depths. The heat, salt and dissolved oxygen content are quantified at each depth. While the near surface heat content is consistent with the net surface heat flux, heat content of the deeper layers is driven by gyre-scale water mass changes. Below ˜150m, heat and salt content display intraseasonal variability which has not been resolved by previous studies. A mode-1 baroclinic internal tide is detected as a peak in the power spectra of water mass properties. The depth of minimum variability is at ˜415m for both temperature and salinity, but this is a depth of high variability for oxygen concentration. The deep variability is dominated by the intermittent appearance of Mediterranean Water, which shows evidence of filamentation. Susceptibility to salt fingering occurs throughout much of the water column for much of the year. Between about 700-900 m, the water column is susceptible to diffusive layering, particularly when Mediterranean Water is present. This unique ability to resolve both high vertical and temporal variability highlights the importance of intraseasonal variability in upper ocean heat and salt content, variations that may be aliased by traditional observing techniques.
High Power Ion Cyclotron Heating in the VASIMR
NASA Astrophysics Data System (ADS)
Longmier, B. W.; Brukardt, M. S.; Bering, E. A.; Chang Diaz, F.; Squire, J.
2009-12-01
The Variable Specific Impulse Magnetoplasma Rocket (VASIMR®) is an electric propulsion system under development at Ad Astra Rocket Company that utilizes several processes of ion acceleration and heating that occur in the Birkeland currents of an auroral arc system. Among these processes are parallel electric field acceleration, lower hybrid resonance heating, and ion cyclotron resonance heating. The VASIMR® is capable of laboratory simulation of electromagnetic ion cyclotron wave heating during a single pass of ions through the resonance region. The plasma is generated by a helicon discharge of 35 kW then passes through a 176 kW RF booster stage that couples left hand polarized slow mode waves from the high field side of the resonance. VX-200 auroral simulation results from the past year are discussed. Ambipolar acceleration has been shown to produce 35eV argon ions in the helicon exhaust. The effects on the ion exhaust with an addition of 150-200 kW of ion cyclotron heating are presented. The changes to the VASIMR® experiment at Ad Astra Rocket Company's new facility in Webster, Texas will also be discussed, including the possibility of collaborative experiments.
How Vial Geometry Variability Influences Heat Transfer and Product Temperature During Freeze-Drying.
Scutellà, Bernadette; Passot, Stéphanie; Bourlés, Erwan; Fonseca, Fernanda; Tréléa, Ioan Cristian
2017-03-01
Vial design features can play a significant role in heat transfer between the shelf and the product and, consequently, in the final quality of the freeze-dried product. Our objective was to investigate the impact of the variability of some geometrical dimensions of a set of tubing vials commonly used for pharmaceuticals production on the distribution of the vial heat transfer coefficients (K v ) and its potential consequence on product temperature. Sublimation tests were carried out using pure water and 8 combinations of chamber pressure (4-50 Pa) and shelf temperature (-40°C and 0°C) in 2 freeze-dryers. K v values were individually determined for 100 vials located in the center of the shelf. Vial bottom curvature depth and contact area between the vial and the shelf were carefully measured for 120 vials and these data were used to calculate K v distribution due to variability in vial geometry. At low pressures commonly used for sensitive products (below 10 Pa), the vial-shelf contact area appeared crucial for explaining K v heterogeneity and was found to generate, in our study, a product temperature distribution of approximately 2°C during sublimation. Our approach provides quantitative guidelines for defining vial geometry tolerance specifications and product temperature safety margins. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Loop Heat Pipe with Thermal Control Valve as a Variable Thermal Link
NASA Technical Reports Server (NTRS)
Hartenstine, John; Anderson, William G.; Walker, Kara; Dussinger, Pete
2012-01-01
Future lunar landers and rovers will require variable thermal links that allow for heat rejection during the lunar daytime and passively prevent heat rejection during the lunar night. During the lunar day, the thermal management system must reject the waste heat from the electronics and batteries to maintain them below the maximum acceptable temperature. During the lunar night, the heat rejection system must either be shut down or significant amounts of guard heat must be added to keep the electronics and batteries above the minimum acceptable temperature. Since guard heater power is unfavorable because it adds to system size and complexity, a variable thermal link is preferred to limit heat removal from the electronics and batteries during the long lunar night. Conventional loop heat pipes (LHPs) can provide the required variable thermal conductance, but they still consume electrical power to shut down the heat transfer. This innovation adds a thermal control valve (TCV) and a bypass line to a conventional LHP that proportionally allows vapor to flow back into the compensation chamber of the LHP. The addition of this valve can achieve completely passive thermal control of the LHP, eliminating the need for guard heaters and complex controls.
NASA Astrophysics Data System (ADS)
Irfan, M.; Khan, M.; Khan, W. A.
Inspired by modern deeds of nanotechnology and nanoscience and their abundant applications in the field of science and engineering, we establish a mathematical relation for unsteady 3D forced convective flow of Carreau nanofluid over a bidirectional stretched surface. Heat transfer phenomena of Carreau nanofluid is inspected through the variable thermal conductivity and heat generation/absorption impact. Furthermore, this research paper presents a more convincing approach for heat and mass transfer phenomenon of nanoliquid by utilizing new mass flux condition. Practically, zero mass flux condition is more adequate because in this approach we assume nanoparticle amends itself accordingly on the boundaries. Now the features of Buongiorno's relation for Carreau nanofluid can be applied in a more efficient way. An appropriate transformation is vacant to alter the PDEs into ODEs and then tackled numerically by employing bvp4c scheme. The numerous consequence of scheming parameters on the Carreau nanoliquid velocity components, temperature and concentration fields are portrayed graphically and deliberated in detail. The numerical outcomes for local skin friction and the wall temperature gradient for nanoliquid are intended and vacant through tables. The outcomes conveyed here manifest that impact of Brownian motion parameter Nb on the rate of heat transfer for nanoliquids becomes negligible for the recently recommended revised relation. Addationally, for authentication of the present relation, the achieved results are distinguished with earlier research works in specific cases and marvelous agreement has been noted.
NASA Astrophysics Data System (ADS)
Hayat, Tasawar; Qayyum, Sumaira; Khan, Muhammad Ijaz; Alsaedi, Ahmed
2018-01-01
Simultaneous effects of viscous dissipation and Joule heating in flow by rotating disk of variable thickness are examined. Radiative flow saturating porous space is considered. Much attention is given to entropy generation outcome. Developed nonlinear ordinary differential systems are computed for the convergent series solutions. Specifically, the results of velocity, temperature, entropy generation, Bejan number, coefficient of skin friction, and local Nusselt number are discussed. Clearly the entropy generation rate depends on velocity and temperature distributions. Moreover the entropy generation rate is a decreasing function of Hartmann number, Eckert number, and Reynolds number, while they gave opposite behavior for Bejan numbers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, W.L.; Pines, H.S.; Silvester, L.F.
1978-03-01
A new heat exchanger program, SIZEHX, is described. This program allows single step multiparameter cost optimizations on single phase or supercritical exchanger arrays with variable properties and arbitrary fouling for a multitude of matrix configurations and fluids. SIZEHX uses a simplified form of Tinker's method for characterization of shell side performance; the Starling modified BWR equation for thermodynamic properties of hydrocarbons; and transport properties developed by NBS. Results of four parameter cost optimizations on exchangers for specific geothermal applications are included. The relative mix of capital cost, pumping cost, and brine cost ($/Btu) is determined for geothermal exchangers illustrating themore » invariant nature of the optimal cost distribution for fixed unit costs.« less
NASA Astrophysics Data System (ADS)
Burton-Johnson, Alex; Halpin, Jacqueline; Whittaker, Joanne; Watson, Sally
2017-04-01
Seismic and magnetic geophysical methods have both been employed to produce estimates of heat flux beneath the Antarctic ice sheet. However, both methods use a homogeneous upper crustal model despite the variable concentration of heat producing elements within its composite lithologies. Using geological and geochemical datasets from the Antarctic Peninsula we have developed a new methodology for incorporating upper crustal heat production in heat flux models and have shown the greater variability this introduces in to estimates of crustal heat flux, with implications for glaciological modelling.
Magnetically Modulated Heat Transport in a Global Simulation of Solar Magneto-convection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cossette, Jean-Francois; Charbonneau, Paul; Smolarkiewicz, Piotr K.
We present results from a global MHD simulation of solar convection in which the heat transported by convective flows varies in-phase with the total magnetic energy. The purely random initial magnetic field specified in this experiment develops into a well-organized large-scale antisymmetric component undergoing hemispherically synchronized polarity reversals on a 40 year period. A key feature of the simulation is the use of a Newtonian cooling term in the entropy equation to maintain a convectively unstable stratification and drive convection, as opposed to the specification of heating and cooling terms at the bottom and top boundaries. When taken together, themore » solar-like magnetic cycle and the convective heat flux signature suggest that a cyclic modulation of the large-scale heat-carrying convective flows could be operating inside the real Sun. We carry out an analysis of the entropy and momentum equations to uncover the physical mechanism responsible for the enhanced heat transport. The analysis suggests that the modulation is caused by a magnetic tension imbalance inside upflows and downflows, which perturbs their respective contributions to heat transport in such a way as to enhance the total convective heat flux at cycle maximum. Potential consequences of the heat transport modulation for solar irradiance variability are briefly discussed.« less
Numerical Study on Natural Vacuum Solar Desalination System with Varying Heat Source Temperature
NASA Astrophysics Data System (ADS)
Ambarita, H.
2017-03-01
A natural vacuum desalination unit with varying low grade heat source temperature is investigated numerically. The objective is to explore the effects of the variable temperature of the low grade heat source on performances and characteristics of the desalination unit. The specifications of the desalination unit are naturally vacuumed with surface area of seawater in evaporator and heating coil are 0.2 m2 and 0.188 m2, respectively. Temperature of the heating coil is simulated based on the solar radiation in the Medan city. A program to solve the governing equations in forward time step marching technique is developed. Temperature of the evaporator, fresh water production rate, and thermal efficiency of the desalination unit are analysed. Simulation is performed for 9 hours, it starts from 8.00 and finishes at 17.00 of local time. The results show that, the desalination unit with operation time of 9 hours can produce 5.705 L of freshwater and thermal efficiency is 81.8 %. This reveals that varying temperature of the heat source of natural vacuum desalination unit shows better performance in comparison with constant temperature of the heat source.
The vertical structure of upper ocean variability at the Porcupine Abyssal Plain during 2012–2013
Heywood, Karen J.; Thompson, Andrew F.; Binetti, Umberto; Kaiser, Jan
2016-01-01
Abstract This study presents the characterization of variability in temperature, salinity and oxygen concentration, including the vertical structure of the variability, in the upper 1000 m of the ocean over a full year in the northeast Atlantic. Continuously profiling ocean gliders with vertical resolution between 0.5 and 1 m provide more information on temporal variability throughout the water column than time series from moorings with sensors at a limited number of fixed depths. The heat, salt and dissolved oxygen content are quantified at each depth. While the near surface heat content is consistent with the net surface heat flux, heat content of the deeper layers is driven by gyre‐scale water mass changes. Below ∼150m, heat and salt content display intraseasonal variability which has not been resolved by previous studies. A mode‐1 baroclinic internal tide is detected as a peak in the power spectra of water mass properties. The depth of minimum variability is at ∼415m for both temperature and salinity, but this is a depth of high variability for oxygen concentration. The deep variability is dominated by the intermittent appearance of Mediterranean Water, which shows evidence of filamentation. Susceptibility to salt fingering occurs throughout much of the water column for much of the year. Between about 700–900 m, the water column is susceptible to diffusive layering, particularly when Mediterranean Water is present. This unique ability to resolve both high vertical and temporal variability highlights the importance of intraseasonal variability in upper ocean heat and salt content, variations that may be aliased by traditional observing techniques. PMID:27840785
Alonso-Torres, Beatriz; Hernández-Pérez, José Alfredo; Sierra-Espinoza, Fernando; Schenker, Stefan; Yeretzian, Chahan
2013-01-01
Heat and mass transfer in individual coffee beans during roasting were simulated using computational fluid dynamics (CFD). Numerical equations for heat and mass transfer inside the coffee bean were solved using the finite volume technique in the commercial CFD code Fluent; the software was complemented with specific user-defined functions (UDFs). To experimentally validate the numerical model, a single coffee bean was placed in a cylindrical glass tube and roasted by a hot air flow, using the identical geometrical 3D configuration and hot air flow conditions as the ones used for numerical simulations. Temperature and humidity calculations obtained with the model were compared with experimental data. The model predicts the actual process quite accurately and represents a useful approach to monitor the coffee roasting process in real time. It provides valuable information on time-resolved process variables that are otherwise difficult to obtain experimentally, but critical to a better understanding of the coffee roasting process at the individual bean level. This includes variables such as time-resolved 3D profiles of bean temperature and moisture content, and temperature profiles of the roasting air in the vicinity of the coffee bean.
Radin, J W; Lu, Z; Percy, R G; Zeiger, E
1994-01-01
Responses of stomata to environment have been intensively studied, but little is known of genetic effects on stomatal conductance or their consequences. In Pima cotton (Gossypium barbadense L.), a crop that is bred for irrigated production in very hot environments, stomatal conductance varies genetically over a wide range and has increased with each release of new higher-yielding cultivars. A cross between heat-adapted (high-yielding) and unadapted genotypes produced F2 progeny cosegregating for stomatal conductance and leaf temperature. Within segregating populations in the field, conductance was negatively correlated with foliar temperature because of evaporative cooling. Plants were selected from the F2 generation specifically and solely for differing stomatal conductance. Among F3 and F4 populations derived from these selections, conductance and leaf cooling were significantly correlated with fruiting prolificacy during the hottest period of the year and with yield. Conductance was not associated with other factors that might have affected yield potential (single-leaf photosynthetic rate, leaf water potential). As breeders have increased the yield of this crop, genetic variability for conductance has allowed inadvertent selection for "heat avoidance" (evaporative cooling) in a hot environment. PMID:11607487
NASA Astrophysics Data System (ADS)
Tian, Ran; Dai, Xiaoye; Wang, Dabiao; Shi, Lin
2018-06-01
In order to improve the prediction performance of the numerical simulations for heat transfer of supercritical pressure fluids, a variable turbulent Prandtl number (Prt) model for vertical upward flow at supercritical pressures was developed in this study. The effects of Prt on the numerical simulation were analyzed, especially for the heat transfer deterioration conditions. Based on the analyses, the turbulent Prandtl number was modeled as a function of the turbulent viscosity ratio and molecular Prandtl number. The model was evaluated using experimental heat transfer data of CO2, water and Freon. The wall temperatures, including the heat transfer deterioration cases, were more accurately predicted by this model than by traditional numerical calculations with a constant Prt. By analyzing the predicted results with and without the variable Prt model, it was found that the predicted velocity distribution and turbulent mixing characteristics with the variable Prt model are quite different from that predicted by a constant Prt. When heat transfer deterioration occurs, the radial velocity profile deviates from the log-law profile and the restrained turbulent mixing then leads to the deteriorated heat transfer.
A Global Assessment of Oceanic Heat Loss: Conductive Cooling and Hydrothermal Redistribution of Heat
NASA Astrophysics Data System (ADS)
Hasterok, D. P.; Chapman, D. S.; Davis, E. E.
2011-12-01
A new dataset of ~15000 oceanic heat flow measurements is analyzed to determine the conductive heat loss through the seafloor. Many heat flow values in seafloor younger than 60 Ma are lower than predicted by models of conductively cooled lithosphere. This heat flow deficit is caused by ventilated hydrothermal circulation discharging at crustal outcrops or through thin sedimentary cover. Globally filtering of heat flow data to retain sites with sediment cover >400 m thick and located >60 km from the nearest seamount minimizes the effect of hydrothermal ventilation. Filtered heat flow exhibit a much higher correlation coefficient with seafloor age (up to 0.95 for filtered data in contrast to 0.5 for unfiltered data) and lower variability (reduction by 30%) within an age bin. A small heat flow deficit still persists at ages <25 Ma, possibly as a result of global filtering limitations and incomplete thermal rebound following sediment burial. Detailed heat flow surveys co-located with seismic data can identify environments favoring conductive heat flow; heat flow collected in these environments is higher than that determined by the global dataset, and is more consistent with conductive cooling of the lithosphere. The new filtered data analysis and a growing number of site specific surveys both support estimates of global heat loss in the range 40-47 TW. The estimated hydrothermal deficit is consistent with estimates from geochemical studies ~7 TW, but is a few TW lower than previous estimates derived from heat flow determinations.
Meridional Propagation of the MJO/ISO and Prediction of Off-equatorial Monsoon Variability
NASA Technical Reports Server (NTRS)
Wu, Man Li C.; Schubert, S.; Suarez, M.; Pegion, P.; Bacmeister, J.; Waliser, D.
2004-01-01
In this study we examine the links between tropical heating, the Madden Julian Oscillation (MJO)/Intraseasonal Oscillation (ISO), and the off-equatorial monsoon development. We examine both observations and idealized "MJO heating" experiments employing the NASA Seasonal-Interannual Prediction Project (NSIPP) atmospheric general circulation model (AGCM). In the simulations, the model is forced by climatological SST and an idealized eastward propagating heating profile that is meant to mimic the canonical heating associated with the MJO in the Indian Ocean and western Pacific. The observational analysis highlights the strong link between the Indian summer monsoon and the tropical ISO/MJO activity and heating. Here we focus on the potential for skillful predictions of the monsoon on subseasonal time scales associated with the meridional propagation of the ISOMJO. In particular, we show that the variability of the Indian summer monsoon lags behind the variability of tropical ISOMJO heating by about 15 days when the tropical heating is around 60E and 90E. This feature of the ISOMJO is reproduced in the AGCM experiments with the idealized eastward propagating MJO-like heating, suggesting that models with realistic ISOM0 variability should provide useful skill of monsoon breaks and surges on subseasonal time scales.
NASA Astrophysics Data System (ADS)
Burton-Johnson, A.; Halpin, J.; Whittaker, J. M.; Graham, F. S.; Watson, S. J.
2017-12-01
We present recently published findings (Burton-Johnson et al., 2017) on the variability of Antarctic sub-glacial heat flux and the impact from upper crustal geology. Our new method reveals that the upper crust contributes up to 70% of the Antarctic Peninsula's subglacial heat flux, and that heat flux values are more variable at smaller spatial resolutions than geophysical methods can resolve. Results indicate a higher heat flux on the east and south of the Peninsula (mean 81 mWm-2) where silicic rocks predominate, than on the west and north (mean 67 mWm-2) where volcanic arc and quartzose sediments are dominant. Whilst the data supports the contribution of HPE-enriched granitic rocks to high heat flux values, sedimentary rocks can be of comparative importance dependent on their provenance and petrography. Models of subglacial heat flux must utilize a heterogeneous upper crust with variable radioactive heat production if they are to accurately predict basal conditions of the ice sheet. Our new methodology and dataset facilitate improved numerical model simulations of ice sheet dynamics. The most significant challenge faced remains accurate determination of crustal structure, particularly the depths of the HPE-enriched sedimentary basins and the sub-glacial geology away from exposed outcrops. Continuing research (particularly detailed geophysical interpretation) will better constrain these unknowns and the effect of upper crustal geology on the Antarctic ice sheet. Burton-Johnson, A., Halpin, J.A., Whittaker, J.M., Graham, F.S., and Watson, S.J., 2017, A new heat flux model for the Antarctic Peninsula incorporating spatially variable upper crustal radiogenic heat production: Geophysical Research Letters, v. 44, doi: 10.1002/2017GL073596.
Linking the South Atlantic Meridional Overturning Circulation and the Global Monsoons
NASA Astrophysics Data System (ADS)
Lopez, H.; Dong, S.; Goni, G. J.; Lee, S. K.
2016-02-01
This study tested the hypothesis whether low frequency decadal variability of the South Atlantic meridional heat transport (SAMHT) influences decadal variability of the global monsoons. A multi-century run from a state-of-the-art coupled general circulation model is used as basis for the analysis. Our findings indicate that multi-decadal variability of the South Atlantic Ocean plays a key role in modulating atmospheric circulation via interhemispheric changes in Atlantic Ocean heat content. Weaker SAMHT produces anomalous ocean heat divergence over the South Atlantic resulting in negative ocean heat content anomaly about 15 years later. This, in turn, forces a thermally direct anomalous interhemispheric Hadley circulation in the atmosphere, transporting heat from the northern hemisphere (NH) to the southern hemisphere (SH) and moisture from the SH to the NH, thereby intensify (weaken) summer (winter) monsoon in the NH and winter (summer) monsoon in the SH. Results also show that anomalous atmospheric eddies, both transient and stationary, transport heat northward in both hemispheres producing eddy heat flux convergence (divergence) in the NH (SH) around 15-30°, reinforcing the anomalous Hadley circulation. Overall, SAMHT decadal variability leads its atmospheric response by about 15 years, suggesting that the South Atlantic is a potential predictor of global climate variability.
Optimization of a GO2/GH2 Impinging Injector Element
NASA Technical Reports Server (NTRS)
Tucker, P. Kevin; Shyy, Wei; Vaidyanathan, Rajkumar
2001-01-01
An injector optimization methodology, method i, is used to investigate optimal design points for a gaseous oxygen/gaseous hydrogen (GO2/GH2) impinging injector element. The unlike impinging element, a fuel-oxidizer- fuel (F-O-F) triplet, is optimized in terms of design variables such as fuel pressure drop, (Delta)P(sub f), oxidizer pressure drop, (Delta)P(sub o), combustor length, L(sub comb), and impingement half-angle, alpha, for a given mixture ratio and chamber pressure. Dependent variables such as energy release efficiency, ERE, wall heat flux, Q(sub w), injector heat flux, Q(sub inj), relative combustor weight, W(sub rel), and relative injector cost, C(sub rel), are calculated and then correlated with the design variables. An empirical design methodology is used to generate these responses for 163 combinations of input variables. Method i is then used to generate response surfaces for each dependent variable. Desirability functions based on dependent variable constraints are created and used to facilitate development of composite response surfaces representing some, or all, of the five dependent variables in terms of the input variables. Three examples illustrating the utility and flexibility of method i are discussed in detail. First, joint response surfaces are constructed by sequentially adding dependent variables. Optimum designs are identified after addition of each variable and the effect each variable has on the design is shown. This stepwise demonstration also highlights the importance of including variables such as weight and cost early in the design process. Secondly, using the composite response surface which includes all five dependent variables, unequal weights are assigned to emphasize certain variables relative to others. Here, method i is used to enable objective trade studies on design issues such as component life and thrust to weight ratio. Finally, specific variable weights are further increased to illustrate the high marginal cost of realizing the last increment of injector performance and thruster weight.
Specific heat and magnetic susceptibility of CeNiSn doped with Rh.
Slebarski, A; Maple, M B; Fijałkowski, M; Goraus, J
2010-04-28
CeNiSn is known as a semimetallic system with a small pseudogap at the Fermi energy. We investigate the effect of Rh doping on the Kondo insulator CeNiSn by means of measurements of ac magnetic susceptibility and specific heat. We show that the formation of the Kondo insulator narrow gap in CeNi(1 - x)Rh(x)Sn is associated with disorder-induced f-electron localization. For doped CeNiSn with x ≤ 0.06, the electrical resistivity data follow an activation and variable range hopping behaviour at low T, consistent with weak disorder and localization, while C/T is large, which is not a common feature of Kondo insulators. For x > 0.06, the system is metallic and exhibits non-Fermi liquid behaviour with magnetic susceptibility χ ∼ T( - n) with n ∼ 0.4 and electrical resistivity ρ ∼ T.
Variable Specific Impulse Magnetoplasma Rocket Engine
NASA Technical Reports Server (NTRS)
Chang-Diaz, Franklin R. (Inventor)
2002-01-01
An engine is disclosed, including a controllable output plasma generator, a controllable heater for selectably raising a temperature of the plasma connected to an outlet of the plasma generator, and a nozzle connected to an outlet of the heater, through which heated plasma is discharged to provide thrust. In one embodiment, the source of plasma is a helicon generator. In one embodiment, the heater is an ion cyclotron resonator. In one embodiment, the nozzle is a radially diverging magnetic field disposed on a discharge side of the heater so that helically travelling particles in the beater exit the heater at high axial velocity. A particular embodiment includes control circuits for selectably directing a portion of radio frequency power from an RF generator to the helicon generator and to the cyclotron resonator so that the thrust output and the specific impulse of the engine can be selectively controlled. A method of propelling a vehicle is also disclosed. The method includes generating a plasma, heating said plasma, and discharging the heated plasma through a nozzle. In one embodiment, the nozzle is a diverging magnetic field. In this embodiment, the heating is performed by applying a radio frequency electro magnetic field to the plasma at the ion cyclotron frequency in an axially polarized DC magnetic field.
NASA Astrophysics Data System (ADS)
D'Addezio, Joseph M.; Subrahmanyam, Bulusu
2018-01-01
The Madden-Julian oscillation (MJO) is the dominant driver of intraseasonal variability across the equatorial domain of the global ocean with alternating wet and dry bands that propagate eastward primarily between 5°N and 5°S. Past research has shown that MJOs impact the surface and subsurface variability of the Seychelles-Chagos thermocline ridge (SCTR) (55°E-65°E, 5°S-12°S) located in the southwest tropical Indian Ocean (SWTIO), but investigations of how SWTIO internal dynamics may play an important role in producing MJO events remain limited. This study uses Argo, in conjunction with several remote sensing and reanalysis products, to demonstrate that SWTIO oceanic dynamics, particularly barrier layer formation and near surface heat buildup, may be associated with MJO genesis between August and December of most years between 2005 and 2013. A total of eight SWTIO specific MJO events are observed, all occurring between August and December. Four of the eight events are correlated with positive SWTIO total heat content (THC) and barrier layer thickness (BLT) interannual anomalies. Two others formed over the SWTIO during times when only one of the variables was at or above their seasonal average, while two additional events occurred when both variables experienced negative interannual anomalies. Lacking complete 1:1 correlation between the hypothesized oceanic state and the identified SWTIO MJO events, we conclude that additional work is required to better understand when variability in key oceanic variables plays a primary role in regional MJO genesis or when other factors, such as atmospheric variability, are the dominate drivers.
Resist heating effect on e-beam mask writing at 75 kV and 60 A/cm2
NASA Astrophysics Data System (ADS)
Benes, Zdenek; Deverich, Christina; Huang, Chester; Lawliss, Mark
2003-12-01
Resist heating has been known to be one of the main contributors to local CD variation in mask patterning using variable shape e-beam tools. Increasingly complex mask patterns require increased number of shapes which drives the need for higher electron beam current densities to maintain reasonable write times. As beam current density is increased, CD error resulting from resist heating may become a dominating contributor to local CD variations. In this experimental study, the IBM EL4+ mask writer with high voltage and high current density has been used to quantitatively investigate the effect of resist heating on the local CD uniformity. ZEP 7000 and several chemically amplified resists have been evaluated under various exposure conditions (single-pass, multi-pass, variable spot size) and pattern densities. Patterns were designed specifically to allow easy measurement of local CD variations with write strategies designed to maximize the effect of resist heating. Local CD variations as high as 15 nm in 18.75 × 18.75 μm sub-field size have been observed for ZEP 7000 in a single-pass writing with full 1000 nm spots at 50% pattern density. This number can be reduced by increasing the number of passes or by decreasing the maximum spot size. The local CD variation has been reduced to as low as 2 nm for ZEP 7000 for the same pattern under modified exposure conditions. The effectiveness of various writing strategies is discussed as well as their possible deficiencies. Minimal or no resist heating effects have been observed for the chemically amplified resists studied. The results suggest that the resist heating effect can be well controlled by careful selection of the resist/process system and/or writing strategy and that resist heating does not have to pose a problem for high throughput e-beam mask making that requires high voltage and high current densities.
Ma, Wenjun; Zeng, Weilin; Zhou, Maigeng; Wang, Lijun; Rutherford, Shannon; Lin, Hualiang; Liu, Tao; Zhang, Yonghui; Xiao, Jianpeng; Zhang, Yewu; Wang, Xiaofeng; Gu, Xin; Chu, Cordia
2015-02-01
Many studies have reported increased mortality risk associated with heat waves. However, few have assessed the health impacts at a nation scale in a developing country. This study examines the mortality effects of heat waves in China and explores whether the effects are modified by individual-level and community-level characteristics. Daily mortality and meteorological variables from 66 Chinese communities were collected for the period 2006-2011. Heat waves were defined as ≥2 consecutive days with mean temperature ≥95th percentile of the year-round community-specific distribution. The community-specific mortality effects of heat waves were first estimated using a Distributed Lag Non-linear Model (DLNM), adjusting for potential confounders. To investigate effect modification by individual characteristics (age, gender, cause of death, education level or place of death), separate DLNM models were further fitted. Potential effect modification by community characteristics was examined using a meta-regression analysis. A total of 5.0% (95% confidence intervals (CI): 2.9%-7.2%) excess deaths were associated with heat waves in 66 Chinese communities, with the highest excess deaths in north China (6.0%, 95% CI: 1%-11.3%), followed by east China (5.2%, 95% CI: 0.4%-10.2%) and south China (4.5%, 95% CI: 1.4%-7.6%). Our results indicate that individual characteristics significantly modified heat waves effects in China, with greater effects on cardiovascular mortality, cerebrovascular mortality, respiratory mortality, the elderly, females, the population dying outside of a hospital and those with a higher education attainment. Heat wave mortality effects were also more pronounced for those living in urban cities or densely populated communities. Heat waves significantly increased mortality risk in China with apparent spatial heterogeneity, which was modified by some individual-level and community-level factors. Our findings suggest adaptation plans that target vulnerable populations in susceptible communities during heat wave events should be developed to reduce health risks. Copyright © 2014 Elsevier Ltd. All rights reserved.
Effect of Cattaneo-Christov heat flux on Jeffrey fluid flow with variable thermal conductivity
NASA Astrophysics Data System (ADS)
Hayat, Tasawar; Javed, Mehwish; Imtiaz, Maria; Alsaedi, Ahmed
2018-03-01
This paper presents the study of Jeffrey fluid flow by a rotating disk with variable thickness. Energy equation is constructed by using Cattaneo-Christov heat flux model with variable thermal conductivity. A system of equations governing the model is obtained by applying boundary layer approximation. Resulting nonlinear partial differential system is transformed to ordinary differential system. Homotopy concept leads to the convergent solutions development. Graphical analysis for velocities and temperature is made to examine the influence of different involved parameters. Thermal relaxation time parameter signifies that temperature for Fourier's heat law is more than Cattaneo-Christov heat flux. A constitutional analysis is made for skin friction coefficient and heat transfer rate. Effects of Prandtl number on temperature distribution and heat transfer rate are scrutinized. It is observed that larger Reynolds number gives illustrious temperature distribution.
Geographic dimensions of heat-related mortality in seven U.S. cities.
Hondula, David M; Davis, Robert E; Saha, Michael V; Wegner, Carleigh R; Veazey, Lindsay M
2015-04-01
Spatially targeted interventions may help protect the public when extreme heat occurs. Health outcome data are increasingly being used to map intra-urban variability in heat-health risks, but there has been little effort to compare patterns and risk factors between cities. We sought to identify places within large metropolitan areas where the mortality rate is highest on hot summer days and determine if characteristics of high-risk areas are consistent from one city to another. A Poisson regression model was adapted to quantify temperature-mortality relationships at the postal code scale based on 2.1 million records of daily all-cause mortality counts from seven U.S. cities. Multivariate spatial regression models were then used to determine the demographic and environmental variables most closely associated with intra-city variability in risk. Significant mortality increases on extreme heat days were confined to 12-44% of postal codes comprising each city. Places with greater risk had more developed land, young, elderly, and minority residents, and lower income and educational attainment, but the key explanatory variables varied from one city to another. Regression models accounted for 14-34% of the spatial variability in heat-related mortality. The results emphasize the need for public health plans for heat to be locally tailored and not assume that pre-identified vulnerability indicators are universally applicable. As known risk factors accounted for no more than one third of the spatial variability in heat-health outcomes, consideration of health outcome data is important in efforts to identify and protect residents of the places where the heat-related health risks are the highest. Copyright © 2015 Elsevier Inc. All rights reserved.
An Analytic Approach to Modeling Land-Atmosphere Interaction: 1. Construct and Equilibrium Behavior
NASA Astrophysics Data System (ADS)
Brubaker, Kaye L.; Entekhabi, Dara
1995-03-01
A four-variable land-atmosphere model is developed to investigate the coupled exchanges of water and energy between the land surface and atmosphere and the role of these exchanges in the statistical behavior of continental climates. The land-atmosphere system is substantially simplified and formulated as a set of ordinary differential equations that, with the addition of random noise, are suitable for analysis in the form of the multivariate Îto equation. The model treats the soil layer and the near-surface atmosphere as reservoirs with storage capacities for heat and water. The transfers between these reservoirs are regulated by four states: soil saturation, soil temperature, air specific humidity, and air potential temperature. The atmospheric reservoir is treated as a turbulently mixed boundary layer of fixed depth. Heat and moisture advection, precipitation, and layer-top air entrainment are parameterized. The system is forced externally by solar radiation and the lateral advection of air and water mass. The remaining energy and water mass exchanges are expressed in terms of the state variables. The model development and equilibrium solutions are presented. Although comparisons between observed data and steady state model results re inexact, the model appears to do a reasonable job of partitioning net radiation into sensible and latent heat flux in appropriate proportions for bare-soil midlatitude summer conditions. Subsequent work will introduce randomness into the forcing terms to investigate the effect of water-energy coupling and land-atmosphere interaction on variability and persistence in the climatic system.
Meridional Propagation of the MJO/ISO and Prediction of Off-equatorial Monsoon Variability
NASA Technical Reports Server (NTRS)
Wu, Man Li C.; Schubert, S.; Suarez, M.; Pegion, P.; Waliser, D.
2003-01-01
This study was examine the links between tropical heating, the Madden Julian Oscillation (MJO)/Intraseasonal Oscillation (ISO), and the off-equatorial monsoon development. We examine both observations and idealized "MJO heating" experiments employing the NASA Seasonal-Interannual Prediction Project (NSIPP) atmospheric general circulation model (AGCM). In the simulations, the model is forced by climatological SST and an idealized eastward propagating heating profile that is meant 'to mimic the canonical heating associated with the MJO in the Indian Ocean and western Pacific. The observational analysis highlights the strong link between the Indian summer monsoon and the tropical ISO/MJO activity and heating. Here we focus on the potential for skillful predictions of the monsoon on sub-seasonal time scales associated with the meridional propagation of the ISO/MJO. In particular, we show that the variability of the Indian summer monsoon lags behind the variability of tropical ISO/MJO heating by about 15 days when the tropical heating is around 60E and 90E. This feature of the ISO/MJO is reproduced in the AGCM experiments with the idealized eastward propagating MJO-like heating, suggesting that models with realistic ISO/MJO variability should provide useful skill of monsoon breaks and surges on sub-seasonal time scales.
NASA Astrophysics Data System (ADS)
Lindgren, E. A.; Sheshadri, A.; Plumb, R. A.
2017-12-01
Tropospheric heating perturbations are used to create Northern Hemisphere winter-like stratospheric variability in an idealized atmospheric GCM. Model results with wave 1 and 2 heating perturbations are compared to a model with wave 2 topography, which has previously been shown to produce a realistic sudden stratospheric warming frequency. It is found that both wave 1 and wave 2 heating perturbations cause both split and displacement sudden warmings. This is different from the wave 2 topographic forcing, which only produces splits. Furthermore, the tropospheric heating is shown to produce more reasonable annular mode timescales in the troposphere compared to the topographic forcing. It is argued that the model with wave 2 tropospheric heating perturbation is better at simulating Northern Hemisphere stratospheric variability compared to the model with wave 2 topographic forcing. The long-term variability of zonal winds in the wave 2 heating run is also investigated, under both perpetual winter conditions and with a seasonal cycle. It is found that midlatitude winds in the perpetual winter version of the model exhibit variability on timescales of around 1000 days. These variations are thought to be connected to the QBO-like oscillations in tropical winds found in the model. This connection is further explored in the seasonal cycle version of the model as well as full GCMs with QBOs, where the correlations between tropical winds and polar vortex strength are investigated.
Development of a heat vulnerability index for New York State.
Nayak, S G; Shrestha, S; Kinney, P L; Ross, Z; Sheridan, S C; Pantea, C I; Hsu, W H; Muscatiello, N; Hwang, S A
2017-12-01
The frequency and intensity of extreme heat events are increasing in New York State (NYS) and have been linked with increased heat-related morbidity and mortality. But these effects are not uniform across the state and can vary across large regions due to regional sociodemographic and environmental factors which impact an individual's response or adaptive capacity to heat and in turn contribute to vulnerability among certain populations. We developed a heat vulnerability index (HVI) to identify heat-vulnerable populations and regions in NYS. Census tract level environmental and sociodemographic heat-vulnerability variables were used to develop the HVI to identify heat-vulnerable populations and areas. Variables were identified from a comprehensive literature review and climate-health research in NYS. We obtained data from 2010 US Census Bureau and 2011 National Land Cover Database. We used principal component analysis to reduce correlated variables to fewer uncorrelated components, and then calculated the cumulative HVI for each census tract by summing up the scores across the components. The HVI was then mapped across NYS (excluding New York City) to display spatial vulnerability. The prevalence rates of heat stress were compared across HVI score categories. Thirteen variables were reduced to four meaningful components representing 1) social/language vulnerability; 2) socioeconomic vulnerability; 3) environmental/urban vulnerability; and 4) elderly/ social isolation. Vulnerability to heat varied spatially in NYS with the HVI showing that metropolitan areas were most vulnerable, with language barriers and socioeconomic disadvantage contributing to the most vulnerability. Reliability of the HVI was supported by preliminary results where higher rates of heat stress were collocated in the regions with the highest HVI. The NYS HVI showed spatial variability in heat vulnerability across the state. Mapping the HVI allows quick identification of regions in NYS that could benefit from targeted interventions. The HVI will be used as a planning tool to help allocate appropriate adaptation measures like cooling centers and issue heat alerts to mitigate effects of heat in vulnerable areas. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Early emergence of anthropogenically forced heat waves in the western United States and Great Lakes
NASA Astrophysics Data System (ADS)
Lopez, Hosmay; West, Robert; Dong, Shenfu; Goni, Gustavo; Kirtman, Ben; Lee, Sang-Ki; Atlas, Robert
2018-05-01
Climate projections for the twenty-first century suggest an increase in the occurrence of heat waves. However, the time at which externally forced signals of anthropogenic climate change (ACC) emerge against background natural variability (time of emergence (ToE)) has been challenging to quantify, which makes future heat-wave projections uncertain. Here we combine observations and model simulations under present and future forcing to assess how internal variability and ACC modulate US heat waves. We show that ACC dominates heat-wave occurrence over the western United States and Great Lakes regions, with ToE that occurred as early as the 2020s and 2030s, respectively. In contrast, internal variability governs heat waves in the northern and southern Great Plains, where ToE occurs in the 2050s and 2070s; this later ToE is believed to be a result of a projected increase in circulation variability, namely the Great Plain low-level jet. Thus, greater mitigation and adaptation efforts are needed in the Great Lakes and western United States regions.
Yamamoto, Ayako; Palter, Jaime B.
2016-01-01
Northern Hemisphere climate responds sensitively to multidecadal variability in North Atlantic sea surface temperature (SST). It is therefore surprising that an imprint of such variability is conspicuously absent in wintertime western European temperature, despite that Europe's climate is strongly influenced by its neighbouring ocean, where multidecadal variability in basin-average SST persists in all seasons. Here we trace the cause of this missing imprint to a dynamic anomaly of the atmospheric circulation that masks its thermodynamic response to SST anomalies. Specifically, differences in the pathways Lagrangian particles take to Europe during anomalous SST winters suppress the expected fluctuations in air–sea heat exchange accumulated along those trajectories. Because decadal variability in North Atlantic-average SST may be driven partly by the Atlantic Meridional Overturning Circulation (AMOC), the atmosphere's dynamical adjustment to this mode of variability may have important implications for the European wintertime temperature response to a projected twenty-first century AMOC decline. PMID:26975331
The Role and Variability of Ocean Heat Content in the Arctic Ocean: 1948-2009
2014-06-01
moved from the Bering Sea past the Bering Strait into the Beaufort Sea (Logerwell 2008). However, besides the risks of ocean acidification and...VARIABILITY OF OCEAN HEAT CONTENT IN THE ARCTIC OCEAN : 1948–2009 by Dominic F. DiMaggio June 2014 Thesis Co-Advisors: Wieslaw Maslowski...COVERED Master’s Thesis 4. TITLE AND SUBTITLE THE ROLE AND VARIABILITY OF OCEAN HEAT CONTENT IN THE ARCTIC OCEAN : 1948–2009 5. FUNDING NUMBERS 6
Stillman, Jonathon H; Tagmount, Abderrahmane
2009-10-01
Central predictions of climate warming models include increased climate variability and increased severity of heat waves. Physiological acclimatization in populations across large-scale ecological gradients in habitat temperature fluctuation is an important factor to consider in detecting responses to climate change related increases in thermal fluctuation. We measured in vivo cardiac thermal maxima and used microarrays to profile transcriptome heat and cold stress responses in cardiac tissue of intertidal zone porcelain crabs across biogeographic and seasonal gradients in habitat temperature fluctuation. We observed acclimatization dependent induction of heat shock proteins, as well as unknown genes with heat shock protein-like expression profiles. Thermal acclimatization had the largest effect on heat stress responses of extensin-like, beta tubulin, and unknown genes. For these genes, crabs acclimatized to thermally variable sites had higher constitutive expression than specimens from low variability sites, but heat stress dramatically induced expression in specimens from low variability sites and repressed expression in specimens from highly variable sites. Our application of ecological transcriptomics has yielded new biomarkers that may represent sensitive indicators of acclimatization to habitat temperature fluctuation. Our study also has identified novel genes whose further description may yield novel understanding of cellular responses to thermal acclimatization or thermal stress.
NASA Astrophysics Data System (ADS)
Guha, Anirban; Han, Jimei; Cummings, Cadan; McLennan, David A.; Warren, Jeffrey M.
2018-06-01
Extreme summer heat waves are known to induce foliar and stem mortality in temperate forest ecosystems, yet our mechanistic knowledge of physiological thresholds for damage is lacking. Current spatiotemporal simulations of forest growth responses to climate change fail to explain the variability between co-occurring tree species to climate extremes, indicating a need for new model frameworks that include mechanistic understanding of trait-specific responses. In this context, using manipulative heat wave (hw) experiments we investigated ecophysiological responses and physiological recovery in four co-occurring temperate tree species of the southeastern United States including three deciduous angiosperms: southern red oak (Quercus falcata Michx.), shumard oak (Q. shumardii Buckl.) and, tulip-poplar (Liriodendron tulipifera L.) and one evergreen conifer: eastern white pine (Pinus strobus L.). The objectives were to investigate inter-specific differences in ecophysiological responses to hw events to understand mechanistic differences in resilience that may be useful for future model development. Two-year-old, well-irrigated potted saplings were exposed to progressively increasing extreme hw diurnal cycles followed by a recovery cycle, with peak midday air temperature increasing from 37 °C to a maximum of 51 °C on the third day of the hw. Plants were assessed for various photosynthetic and water use responses, chlorophyll fluorescence and photosystem-II (PSII) activity, leaf temperature and foliar pigments. Intense heat caused progressive down-regulation in net photosynthesis, but the stomata remained operational, which helped cool leaves through loss of latent heat. Even though whole plant transpiration increased for all species, the rate plateaued at higher hw events that allowed leaf temperature to exceed 45 °C, well beyond the optimal range. A significant increase in non-photochemical quenching over the hw cycles was evident in all species though indications of both transient and chronic PSII damage were evident in the most heat sensitive species, pine and tulip poplar. The oaks, especially Q. falcata, showed greater thermotolerance than other species with a higher threshold for photodamage to PSII, rapid overnight recovery of photoinhibition and minimal heat-induced canopy necrosis. We conclude that these co-occurring tree species exhibit large variability in thermotolerance and in their capability to repair both transient and chronic photodamage. Our results indicate that extreme heat induced damage to PSII within the leaf chloroplasts may be a mechanistic trait that can be used to project how different species respond to extreme weather events.
A Comparison of Latent Heat Fluxes over Global Oceans for Four Flux Products
NASA Technical Reports Server (NTRS)
Chou, Shu-Hsien; Nelkin, Eric; Ardizzone, Joe; Atlas, Robert M.
2003-01-01
To improve our understanding of global energy and water cycle variability, and to improve model simulations of climate variations, it is vital to have accurate latent heat fluxes (LHF) over global oceans. Monthly LHF, 10-m wind speed (U10m), 10-m specific humidity (Q10h), and sea-air humidity difference (Qs-Q10m) of GSSTF2 (version 2 Goddard Satellite-based Surface Turbulent Fluxes) over global Oceans during 1992-93 are compared with those of HOAPS (Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data), NCEP (NCEP/NCAR reanalysis). The mean differences, standard deviations of differences, and temporal correlation of these monthly variables over global Oceans during 1992-93 between GSSTF2 and each of the three datasets are analyzed. The large-scale patterns of the 2yr-mean fields for these variables are similar among these four datasets, but significant quantitative differences are found. The temporal correlation is higher in the northern extratropics than in the south for all variables, with the contrast being especially large for da Silva as a result of more missing ship data in the south. The da Silva has extremely low temporal correlation and large differences with GSSTF2 for all variables in the southern extratropics, indicating that da Silva hardly produces a realistic variability in these variables. The NCEP has extremely low temporal correlation (0.27) and large spatial variations of differences with GSSTF2 for Qs-Q10m in the tropics, which causes the low correlation for LHF. Over the tropics, the HOAPS LHF is significantly smaller than GSSTF2 by approx. 31% (37 W/sq m), whereas the other two datasets are comparable to GSSTF2. This is because the HOAPS has systematically smaller LHF than GSSTF2 in space, while the other two datasets have very large spatial variations of large positive and negative LHF differences with GSSTF2 to cancel and to produce smaller regional-mean differences. Our analyses suggest that the GSSTF2 latent heat flux, surface air humidity, and winds are likely to be more realistic than the other three flux datasets examined, although those of GSSTF2 are still subject to regional biases.
Interhemispheric Changes in Atlantic Ocean Heat Content and Their Link to Global Monsoons
NASA Astrophysics Data System (ADS)
Lopez, H.; Lee, S. K.; Dong, S.; Goni, G. J.
2015-12-01
This study tested the hypothesis whether low frequency decadal variability of the South Atlantic meridional heat transport (SAMHT) influences decadal variability of the global monsoons. A multi-century run from a state-of-the-art coupled general circulation model is used as basis for the analysis. Our findings indicate that multi-decadal variability of the South Atlantic Ocean plays a key role in modulating atmospheric circulation via interhemispheric changes in Atlantic Ocean heat content. Weaker SAMHT produces anomalous ocean heat divergence over the South Atlantic resulting in negative ocean heat content anomaly about 15 years later. This, in turn, forces a thermally direct anomalous interhemispheric Hadley circulation in the atmosphere, transporting heat from the northern hemisphere (NH) to the southern hemisphere (SH) and moisture from the SH to the NH, thereby intensify (weaken) summer (winter) monsoon in the NH and winter (summer) monsoon in the SH. Results also show that anomalous atmospheric eddies, both transient and stationary, transport heat northward in both hemispheres producing eddy heat flux convergence (divergence) in the NH (SH) around 15-30°, reinforcing the anomalous Hadley circulation. The effect of eddies on the NH (SH) poleward of 30° is opposite with heat flux divergence (convergence), which must be balanced by sinking (rising) motion, consistent with a poleward (equatorward) displacement of the jet stream and mean storm track. The mechanism described here could easily be interpreted for the case of strong SAMHT, with the reverse influence on the interhemispheric atmospheric circulation and monsoons. Overall, SAMHT decadal variability leads its atmospheric response by about 15 years, suggesting that the South Atlantic is a potential predictor of global climate variability.
Enders, Laramy S.; Bickel, Ryan D.; Brisson, Jennifer A.; Heng-Moss, Tiffany M.; Siegfried, Blair D.; Zera, Anthony J.; Miller, Nicholas J.
2014-01-01
Environmental stress affects basic organismal functioning and can cause physiological, developmental, and reproductive impairment. However, in many nonmodel organisms, the core molecular stress response remains poorly characterized and the extent to which stress-induced transcriptional changes differ across qualitatively different stress types is largely unexplored. The current study examines the molecular stress response of the soybean aphid (Aphis glycines) using RNA sequencing and compares transcriptional responses to multiple stressors (heat, starvation, and plant defenses) at a standardized stress level (27% adult mortality). Stress-induced transcriptional changes showed remarkable variation, with starvation, heat, and plant defensive stress altering the expression of 3985, 510, and 12 genes, respectively. Molecular responses showed little overlap across all three stressors. However, a common transcriptional stress response was identified under heat and starvation, involved with up-regulation of glycogen biosynthesis and molecular chaperones and down-regulation of bacterial endosymbiont cellular and insect cuticular components. Stressor-specific responses indicated heat affected expression of heat shock proteins and cuticular components, whereas starvation altered a diverse set of genes involved in primary metabolism, oxidative reductive processes, nucleosome and histone assembly, and the regulation of DNA repair and replication. Exposure to host plant defenses elicited the weakest response, of which half of the genes were of unknown function. This study highlights the need for standardizing stress levels when comparing across stress types and provides a basis for understanding the role of general vs. stressor specific molecular responses in aphids. PMID:25538100
NASA Astrophysics Data System (ADS)
Zamora, Blas; Kaiser, Antonio S.
2012-01-01
The effects of the air variable properties (density, viscosity and thermal conductivity) on the buoyancy-driven flows established in open square cavities are investigated, as well as the influence of the stated boundary conditions at open edges and the employed differencing scheme. Two-dimensional, laminar, transitional and turbulent simulations are obtained, considering both uniform wall temperature and uniform heat flux heating conditions. In transitional and turbulent cases, the low-Reynolds k - ω turbulence model is employed. The average Nusselt number and the dimensionless mass-flow rate have been obtained for a wide and not yet covered range of the Rayleigh number varying from 103 to 1016. The results obtained taking into account variable properties effects are compared with those calculated assuming constant properties and the Boussinesq approximation. For uniform heat flux heating, a correlation for the critical heating parameter above which the burnout phenomenon can be obtained is presented, not reported in previous works. The effects of variable properties on the flow patterns are analyzed.
Urban heat islands in the subsurface of German cities
NASA Astrophysics Data System (ADS)
Menberg, K.; Blum, P.; Zhu, K.; Bayer, P.
2012-04-01
In the subsurface of many cities there are widespread and persistent thermal anomalies (subsurface urban heat islands) that result in a warming of urban aquifers. The reasons for this heating are manifold. Possible heat sources are basements of buildings, leakage of sewage systems, buried district heating networks, re-injection of cooling water and solar irradiation on paved surfaces. In the current study, the reported groundwater temperatures in several German cities, such as Berlin, Munich, Cologne and Karlsruhe, are compared. Available data sets are supplemented by temperature measurements and depth profiles in observation wells. Trend analyses are conducted with time series of groundwater temperatures, and three-dimensional groundwater temperature maps are provided. In all investigated cities, pronounced positive temperature anomalies are present. The distribution of groundwater temperatures appears to be spatially and temporally highly variable. Apparently, the increased heat input into the urban subsurface is controlled by very local and site-specific parameters. In the long-run, the superposition of various heat sources results in an extensive temperature increase. In many cases, the maximum temperature elevation is found close to the city centre. Regional groundwater temperature differences between the city centre and the rural background are up to 5 °C, with local hot spots of even more pronounced anomalies. Particular heat sources, like cooling water injections or case-specific underground constructions, can cause local temperatures > 20°C in the subsurface. Examination of the long-term variations in isotherm maps shows that temperatures have increased by about 1°C in the city, as well as in the rural background areas over the last decades. This increase could be reproduced with trend analysis of temperature data gathered from several groundwater wells. Comparison between groundwater and air temperatures in Karlsruhe, for example, also indicates a spatial correlation between the urban heat island effect in the subsurface and in the atmosphere.
CTS TEP thermal anomalies: Heat pipe system performance
NASA Technical Reports Server (NTRS)
Marcus, B. D.
1977-01-01
A part of the investigation is summarized of the thermal anomalies of the transmitter experiment package (TEP) on the Communications Technology Satellite (CTS) which were observed on four occasions in 1977. Specifically, the possible failure modes of the variable conductance heat pipe system (VCHPS) used for principal thermal control of the high-power traveling wave tube in the TEP are considered. Further, the investigation examines how those malfunctions may have given rise to the TEP thermal anomalies. Using CTS flight data information, ground test results, analysis conclusions, and other relevant information, the investigation concentrated on artery depriming as the most likely VCHPS failure mode. Included in the study as possible depriming mechanisms were freezing of the working fluid, Marangoni flow, and gas evolution within the arteries. The report concludes that while depriming of the heat pipe arteries is consistent with the bulk of the observed data, the factors which cause the arteries to deprime have yet to be identified.
Topologically Associating Domains: An invariant framework or a dynamic scaffold?
Cubeñas-Potts, Caelin; Corces, Victor G
2015-01-01
Metazoan genomes are organized into regions of topologically associating domains (TADs). TADs are demarcated by border elements, which are enriched for active genes and high occupancy architectural protein binding sites. We recently demonstrated that 3D chromatin architecture is dynamic in response to heat shock, a physiological stress that downregulates transcription and causes a global redistribution of architectural proteins. We utilized a quantitative measure of border strength after heat shock, transcriptional inhibition, and architectural protein knockdown to demonstrate that changes in both transcription and architectural protein occupancy contribute to heat shock-induced TAD dynamics. Notably, architectural proteins appear to play a more important role in altering 3D chromatin architecture. Here, we discuss the implications of our findings on previous studies evaluating the dynamics of TAD structure during cellular differentiation. We propose that the subset of variable TADs observed after differentiation are representative of cell-type specific gene expression and are biologically significant.
Variable dual-frequency electrostatic wave launcher for plasma applications.
Jorns, Benjamin; Sorenson, Robert; Choueiri, Edgar
2011-12-01
A variable tuning system is presented for launching two electrostatic waves concurrently in a magnetized plasma. The purpose of this system is to satisfy the wave launching requirements for plasma applications where maximal power must be coupled into two carefully tuned electrostatic waves while minimizing erosion to the launching antenna. Two parallel LC traps with fixed inductors and variable capacitors are used to provide an impedance match between a two-wave source and a loop antenna placed outside the plasma. Equivalent circuit analysis is then employed to derive an analytical expression for the normalized, average magnetic flux density produced by the antenna in this system as a function of capacitance and frequency. It is found with this metric that the wave launcher can couple to electrostatic modes at two variable frequencies concurrently while attenuating noise from the source signal at undesired frequencies. An example based on an experiment for plasma heating with two electrostatic waves is used to demonstrate a procedure for tailoring the wave launcher to accommodate the frequency range and flux densities of a specific two-wave application. This example is also used to illustrate a method based on averaging over wave frequencies for evaluating the overall efficacy of the system. The wave launcher is shown to be particularly effective for the illustrative example--generating magnetic flux densities in excess of 50% of the ideal case at two variable frequencies concurrently--with a high adaptability to a number of plasma dynamics and heating applications.
Maleki, Soheila J; Casillas, Adrian M; Kaza, Ujwala; Wilson, Brian A; Nesbit, Jacqueline B; Reimoneqnue, Chantrel; Cheng, Hsiaopo; Bahna, Sami L
2010-12-01
Peanut allergenicity has been reported to be influenced by heat treatment, yet the commonly available extracts for skin prick testing (SPT) are derived from raw extracts. To assess the effect of heat treatment on the SPT reactivity and specific IgE binding to peanut. Three commercial extracts and 3 laboratory-prepared extracts, including raw, roasted, and boiled, were used for SPT in 19 patients with suspected peanut allergy and in 4 individuals who eat peanut without any symptoms. Serum samples were obtained to measure total IgE in addition to specific IgE binding to the study extracts by immunoblotting. Peanut allergy was confirmed with challenge test unless the individual had a convincing history of a severe reaction. Eleven study participants were considered peanut allergic based on a strong history or positive challenge test result. SPT with the prepared and commercial reagents showed that the boiled extract had the highest specificity (67% vs 42%-63% for the other extracts). The prepared extracts showed similar SPT sensitivity (81%). Three patients with a history of severe reaction and elevated specific IgE levels to peanut to the 3 study extracts had variable SPT reactivity to 1 or more of the commercial extracts. IgE binding to Ara h 2 was found in nearly all patients, regardless of their clinical reactivity. None of the extracts tested showed optimal diagnostic reliability regarding both sensitivity and specificity. Perhaps testing should be performed with multiple individual extracts prepared by different methods. Copyright © 2010 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
BREEDING AND GENETICS SYMPOSIUM: Resilience and lessons from studies in genetics of heat stress.
Misztal, I
2017-04-01
Production environments are expected to change, mostly to a hotter climate but also possibly more extreme and drier. Can the current generation of farm animals cope with the changes or should it be specifically selected for changing conditions? In general, genetic selection produces animals with a smaller environmental footprint but also with smaller environmental flexibility. Some answers are coming from heat-stress research across species, with heat tolerance partly understood as a greater environmental flexibility. Specific studies in various species show the complexities of defining and selecting for heat tolerance. In Holsteins, the genetic component for effect of heat stress on production approximately doubles in second and quadruples in third parity. Cows with elevated body temperature have the greatest production under heat stress but probably are at risk for increased mortality. In hot but less intensive environments, the effect of heat stress on production is minimal, although the negative effect on fertility remains. Mortality peaks under heat stress and increases with parity. In Angus, the effect of heat stress is stronger only in selected regions, probably because of adaptation of calving seasons to local conditions and crossbreeding. Genetically, the direct effect shows variability because of heat stress, but the maternal effect does not, probably because dams shield calves from environmental challenges. In pigs, the effect of heat stress is strong for commercial farms but almost nothing for nucleus farms, which have lower pig density and better heat abatement. Under intensive management, heat stress is less evident in drier environments because of more efficient cooling. A genetic component of heat stress exists, but it is partly masked by improving management and selection based on data from elite farms. Genetic selection may provide superior identification of heat-tolerant animals, but a few cycles may be needed for clear results. Also, simple traits exist that are strongly related to heat stress (e.g., slick hair in dairy cattle and shedding intensity in Angus). Defining resilience may be difficult, especially when masked by improving environment. Under climate change, the current selection strategies may be adequate if they 1) are accompanied by constantly improving management, 2) use commercial data, and 3) include traits important under climate change (e.g., mortality).
Development of the Variable Emittance Thermal Suite for the Space Technology 5 Microsatellite
NASA Technical Reports Server (NTRS)
Douglas, Donya M.; Swanson, Theodore; Osiander, Robert; Champion, John; Darrin, Ann Garrison; Biter, William; Chandrasekhar, Prasanna; Obenschain, Arthur (Technical Monitor)
2001-01-01
The advent of very small satellites, such as nano and microsatellites, logically leads to a requirement for smaller thermal control subsystems. In addition, the thermal control needs of the smaller spacecraft/instrument may well be different from more traditional situations. For example, power for traditional heaters may be very limited or unavailable, mass allocations may be severely limited, and fleets of nano/microsatellites will require a generic thermal design as the cost of unique designs will be prohibitive. Some applications may require significantly increased power levels while others may require extremely low heat loss for extended periods. Small spacecraft will have low thermal capacitance thus subjecting them to large temperature swings when either the heat generation rate changes or the thermal sink temperature changes. This situation, combined with the need for tighter temperature control, will present a challenging situation during transient operation. The use of "off-the-shelf" commercial spacecraft buses for science instruments will also present challenges. Older thermal technology, such as heaters, thermostats, and heat pipes, will almost certainly not be sufficient to meet the requirements of these new spacecraft/instruments. They are generally too heavy, not scalable to very small sizes, and may consume inordinate amounts of power. Hence there is a strong driver to develop new technology to meet these emerging needs. Variable emittance coatings offer an exciting alternative to traditional control methodologies and are one of the technologies that will be flown on Space Technology 5, a mission of three microsatellites designed to validate "enabling" technologies. Several studies have identified variable emittance coatings as applicable to a wide range of spacecraft, and to potentially offer substantial savings in mass and/or power over traditional approaches. This paper discusses the development of the variable emittance thermal suite for ST-5. More specifically, it provides a description of and the infusion and validation plans for the variable emittance coatings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yanai, Michio; Tomita, Tomohiko
1997-11-01
In this paper, an analysis of the heat and moisture budgets of the troposphere is revised and extended. The analysis is based on the National Centers for Environmental Prediction (NCEP) and National Center for Atmospheric Research (NCAR) reanalysis from 1980 to 1994. The seasonal and interannual variability of heat sources and sinks and the nature of heating over various geographical locations is examined in detail. Results presented include global distributions of the 15-year mean of the vertically integrated heat source and moisture sink and the outgoing longwave radiation flux for northern winter and northern summer. A time series of monthlymore » mean anomalies of the apparent heat source, the apparent moisture sink, outgoing longwave radiation, sea surface temperature, and divergence at wind fields of 850 hPa and 200 hPa are presented for the equatorial Indian Ocean, the equatorial eastern Pacific Ocean, western Tibet, and eastern Tibet. In the equatorial Indian Ocean, short period oscillation is superimposed upon longer periods. Over the eastern Pacific, a longer periodicity is dominant and the variability of the heat source is very well correlated with similar variations of outgoing longwave radiation, sea surface temperature, and horizontal divergence. The high correlation with these variables suggests that anomalous heating is accompanied by intensified convective activity favored by warmer sea surface temperature. 13 refs., 5 figs.« less
A Mulitivariate Statistical Model Describing the Compound Nature of Soil Moisture Drought
NASA Astrophysics Data System (ADS)
Manning, Colin; Widmann, Martin; Bevacqua, Emanuele; Maraun, Douglas; Van Loon, Anne; Vrac, Mathieu
2017-04-01
Soil moisture in Europe acts to partition incoming energy into sensible and latent heat fluxes, thereby exerting a large influence on temperature variability. Soil moisture is predominantly controlled by precipitation and evapotranspiration. When these meteorological variables are accumulated over different timescales, their joint multivariate distribution and dependence structure can be used to provide information of soil moisture. We therefore consider soil moisture drought as a compound event of meteorological drought (deficits of precipitation) and heat waves, or more specifically, periods of high Potential Evapotraspiration (PET). We present here a statistical model of soil moisture based on Pair Copula Constructions (PCC) that can describe the dependence amongst soil moisture and its contributing meteorological variables. The model is designed in such a way that it can account for concurrences of meteorological drought and heat waves and describe the dependence between these conditions at a local level. The model is composed of four variables; daily soil moisture (h); a short term and a long term accumulated precipitation variable (Y1 and Y_2) that account for the propagation of meteorological drought to soil moisture drought; and accumulated PET (Y_3), calculated using the Penman Monteith equation, which can represent the effect of a heat wave on soil conditions. Copula are multivariate distribution functions that allow one to model the dependence structure of given variables separately from their marginal behaviour. PCCs then allow in theory for the formulation of a multivariate distribution of any dimension where the multivariate distribution is decomposed into a product of marginal probability density functions and two-dimensional copula, of which some are conditional. We apply PCC here in such a way that allows us to provide estimates of h and their uncertainty through conditioning on the Y in the form h=h|y_1,y_2,y_3 (1) Applying the model to various Fluxnet sites across Europe, we find the model has good skill and can particularly capture periods of low soil moisture well. We illustrate the relevance of the dependence structure of these Y variables to soil moisture and show how it may be generalised to offer information of soil moisture on a widespread scale where few observations of soil moisture exist. We then present results from a validation study of a selection of EURO CORDEX climate models where we demonstrate the skill of these models in representing these dependencies and so offer insight into the skill seen in the representation of soil moisture in these models.
Method and apparatus for thermal management of vehicle exhaust systems
Benson, David K.; Potter, Thomas F.
1995-01-01
A catalytic converter is surrounded by variable conductance insulation for maintaining the operating temperature of the catalytic converter at an optimum level, for inhibiting heat loss when raising catalytic converter temperature to light-off temperature, for storing excess heat to maintain or accelerate reaching light-off temperature, and for conducting excess heat away from the catalytic converter after reaching light-off temperature. The variable conductance insulation includes vacuum gas control and metal-to-metal thermal shunt mechanisms. Radial and axial shielding inhibits radiation and convection heat loss. Thermal storage media includes phase change material, and heat exchanger chambers and fluids carry heat to and from the catalytic converter.
Evaluation of the heat balance constituents of the upper mixed layer in the North Atlantic
NASA Astrophysics Data System (ADS)
Polonsky, A. B.; Sukhonos, P. A.
2016-11-01
Different physical mechanisms which cause interannual and interdecadal temperature anomalies in the upper mixed layer (UML) of the North Atlantic are investigated using the data of ORA-S3 reanalysis for the period of 1959-2011. It is shown that the annual mean heat budget in UML is mainly caused by the balance between advective heat transfer and horizontal turbulent mixing (estimated as a residual term in the equation of thermal balance). The local UML temperature change and contribution from the heat fluxes on the lower boundary of the UML to the heat budget of the upper layer are insignificant for the time scale under consideration. The contribution of the heat fluxes on the upper UML boundary to the low-frequency variability of the upper layer temperature in the whole North Atlantic area is substantially less than 30%. Areas like the northwestern part of the Northern Subtropical Anticyclonic Gyre (NSAG), where their contribution exceeds 30-60%, are exceptions. The typical time scales of advective heat transfer variability are revealed. In the NSAG area, an interannual variability associated with the North Atlantic Oscillation dominates, while in the North Atlantic subpolar gyre, an interdecadal variability of advective transfers with periods of more than 30 years prevails.
Inter-annual Variability of Temperature and Extreme Heat Events during the Nairobi Warm Season
NASA Astrophysics Data System (ADS)
Scott, A.; Misiani, H. O.; Zaitchik, B. F.; Ouma, G. O.; Anyah, R. O.; Jordan, A.
2016-12-01
Extreme heat events significantly stress all organisms in the ecosystem, and are likely to be amplified in peri-urban and urban areas. Understanding the variability and drivers behind these events is key to generating early warnings, yet in Equatorial East Africa, this information is currently unavailable. This study uses daily maximum and minimum temperature records from weather stations within Nairobi and its surroundings to characterize variability in daily minimum temperatures and the number of extreme heat events. ERA-Interim reanalysis is applied to assess the drivers of these events at event and seasonal time scales. At seasonal time scales, high temperatures in Nairobi are a function of large scale climate variability associated with the Atlantic Multi-decadal Oscillation (AMO) and Global Mean Sea Surface Temperature (GMSST). Extreme heat events, however, are more strongly associated with the El Nino Southern Oscillation (ENSO). For instance, the persistence of AMO and ENSO, in particular, provide a basis for seasonal prediction of extreme heat events/days in Nairobi. It is also apparent that the temporal signal from extreme heat events in tropics differs from classic heat wave definitions developed in the mid-latitudes, which suggests that a new approach for defining these events is necessary for tropical regions.
An Investigation of Turbulent Heat Exchange in the Subtropics
2014-09-30
meteorological sensors aboard the research vessel the R/V Revelle during the DYNAMO field program. In situ meteorology and high-rate flux sensors operated...continuously while in the sampling period for DYNAMO Leg 3. This included all sensors operating during Leg 2 with the addition of a closed-path LI...stress; wave data; surface and near surface sea temperatures, salinity and currents; and other key variables specifically requested by DYNAMO /LASP PIs
NASA Astrophysics Data System (ADS)
Fuchs, Sven; Balling, Niels; Förster, Andrea
2015-12-01
In this study, equations are developed that predict for synthetic sedimentary rocks (clastics, carbonates and evapourates) thermal properties comprising thermal conductivity, specific heat capacity and thermal diffusivity. The rock groups are composed of mineral assemblages with variable contents of 15 major rock-forming minerals and porosities of 0-30 per cent. Petrophysical properties and their well-logging-tool-characteristic readings were assigned to these rock-forming minerals and to pore-filling fluids. Relationships are explored between each thermal property and other petrophysical properties (density, sonic interval transit time, hydrogen index, volume fraction of shale and photoelectric absorption index) using multivariate statistics. The application of these relations allows computing continuous borehole profiles for each rock thermal property. The uncertainties in the prediction of each property vary depending on the selected well-log combination. Best prediction is in the range of 2-8 per cent for the specific heat capacity, of 5-10 per cent for the thermal conductivity, and of 8-15 for the thermal diffusivity, respectively. Well-log derived thermal conductivity is validated by laboratory data measured on cores from deep boreholes of the Danish Basin, the North German Basin, and the Molasse Basin. Additional validation of thermal conductivity was performed by comparing predicted and measured temperature logs. The maximum deviation between these logs is <3 °C. The thermal-conductivity calculation allowed an evaluation of the depth range in which the palaeoclimatic effect on the subsurface temperature field can be observed in the North German Basin. This effect reduces the surface heat-flow density by 25 mW m-2.
Measurement of the controlled variable during heating of Ti6Al4V for thixoforging
NASA Astrophysics Data System (ADS)
Gerlach, O.; Lechler, A.; Verl, A.
2018-02-01
Controlled heating of metal billets into the semi-solid state for thixoforming is a challenging task, mainly due to the difficulties in measuring the liquid fraction of the billet during heating. Past research primarily focused on methods measuring the liquid fraction during heating of low-melting aluminium alloys. One of these methods is time constant measurement, a contactless measurement method that uses the heating coil as a sensor. The current through the coil is used to determine the electrical time constant of the heating circuit, which itself is influenced by the specific resistance of the billet inside the coil. While previous works focused on the suitability of this method for industrial applications using aluminum alloys, this paper extends this research to the high-melting titanium alloy Ti6Al4V. This alloys shows high strength, low density and excellent corrosion resistance. It is therefore used to produce light-weight and durable components for medical and aerospace applications. Ti6Al4V is an expensive and difficult to machine alloy. Thus, it is an interesting alloy for thixoforging. However, heating of the billet into a homogeneous state of defined liquid fraction is difficult due to the poor thermal conductivity of Ti6Al4V. This paper analyses the potential of using time constant measurement for controlled heating of Ti6Al4V into the semi-solid state.
NASA Technical Reports Server (NTRS)
Walker, D.; Fischbach, D.; Tetreault, R.
1996-01-01
The objective of this project was to investigate the feasibility of constructing a heat pump suitable for use as a heat rejection device in applications such as a lunar base. In this situation, direct heat rejection through the use of radiators is not possible at a temperature suitable for lde support systems. Initial analysis of a heat pump of this type called for a temperature lift of approximately 378 deg. K, which is considerably higher than is commonly called for in HVAC and refrigeration applications where heat pumps are most often employed. Also because of the variation of the rejection temperature (from 100 to 381 deg. K), extreme flexibility in the configuration and operation of the heat pump is required. A three-stage compression cycle using a refrigerant such as CFC-11 or HCFC-123 was formulated with operation possible with one, two or three stages of compression. Also, to meet the redundancy requirements, compression was divided up over multiple compressors in each stage. A control scheme was devised that allowed these multiple compressors to be operated as required so that the heat pump could perform with variable heat loads and rejection conditions. A prototype heat pump was designed and constructed to investigate the key elements of the high-lift heat pump concept. Control software was written and implemented in the prototype to allow fully automatic operation. The heat pump was capable of operation over a wide range of rejection temperatures and cooling loads, while maintaining cooling water temperature well within the required specification of 40 deg. C +/- 1.7 deg. C. This performance was verified through testing.
A Plasma Diagnostic Set for the Study of a Variable Specific Impulse Magnetoplasma Rocket
NASA Astrophysics Data System (ADS)
Squire, J. P.; Chang-Diaz, F. R.; Bengtson Bussell, R., Jr.; Jacobson, V. T.; Wootton, A. J.; Bering, E. A.; Jack, T.; Rabeau, A.
1997-11-01
The Advanced Space Propulsion Laboratory (ASPL) is developing a Variable Specific Impulse Magnetoplasma Rocket (VASIMR) using an RF heated magnetic mirror operated asymmetrically. We will describe the initial set of plasma diagnostics and data acquisition system being developed and installed on the VASIMR experiment. A U.T. Austin team is installing two fast reciprocating probes: a quadruple Langmuir and a Mach probe. These measure electron density and temperature profiles, electrostatic plasma fluctuations, and plasma flow profiles. The University of Houston is developing an array of 20 highly directional Retarding Potential Analyzers (RPA) for measuring ion energy distribution function profiles in the rocket plume, giving a measurement of total thrust. We have also developed a CAMAC based data acquisition system using LabView running on a Power Macintosh communicating through a 2 MB/s serial highway. We will present data from initial plasma operations and discuss future diagnostic development.
Effect of Variable Emittance Coatings on the Operation of a Miniature Loop Heat Pipe
NASA Technical Reports Server (NTRS)
Douglas, Donya M.; Ku, Jentung; Ottenstein, Laura; Swanson, Theodore; Hess, Steve; Darrin, Ann
2005-01-01
Abstract. As the size of spacecraft shrink to accommodate small and more efficient instruments, smaller launch vehicles, and constellation missions, all subsystems must also be made smaller. Under NASA NFL4 03-OSS-02, Space Technology-8 (ST 8), NASA Goddard Space Flight Center and Jet Propulsion Laboratory jointly conducted a Concept Definition study to develop a miniature loop heat pipe (MLHP) thermal management system design suitable for future small spacecraft. The proposed MLHP thermal management system consists of a miniature loop heat pipe (LHP) and deployable radiators that are coated with variable emittance coatings (VECs). As part of the Phase A study and proof of the design concept, variable emittance coatings were integrated with a breadboard miniature loop heat pipe. The miniature loop heat pipe was supplied by the Jet Propulsion Laboratory (PL), while the variable emittance technology were supplied by Johns Hopkins University Applied Physics Laboratory and Sensortex, Inc. The entire system was tested under vacuum at various temperature extremes and power loads. This paper summarizes the results of this testing and shows the effect of the VEC on the operation of a miniature loop heat pipe.
Preliminary Design of Critical Function Monitoring System of PGSFR
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2015-07-01
A PGSFR (Prototype Gen-IV Sodium-cooled Fast Reactor) is under development at Korea Atomic Energy Research Institute. A critical function monitoring system of the PGSFR is preliminarily studied. The functions of CFMS are to display critical plant variables related to the safety of the plant during normal and accident conditions and guide the operators corrective actions to keep the plant in a safe condition and mitigate the consequences of accidents. The minimal critical functions of the PGSFR are composed of reactivity control, reactor core cooling, reactor coolant system integrity, primary heat transfer system(PHTS) heat removal, sodium water reaction mitigation, radiation controlmore » and containment conditions. The variables and alarm legs of each critical function of the PGSFR are as follows; - Reactivity control: The variables of reactivity control function are power range neutron flux instrumentation, intermediate range neutron flux instrumentation, source range neutron flux instrumentation, and control rod bottom contacts. The alarm leg to display the reactivity controls consists of status of control drop malfunction, high post trip power and thermal reactivity addition. - Reactor core cooling: The variables are PHTS sodium level, hot pool temperature of PHTS, subassembly exit temperature, cold pool temperature of the PHTS, PHTS pump current, and PHTS pump breaker status. The alarm leg consists of high core delta temperature, low sodium level of the PHTS, high subassembly exit temperature, and low PHTS pump load. - Reactor coolant system integrity: The variables are PHTS sodium level, cover gas pressure, and safeguard vessel sodium level. The alarm leg is composed of low sodium level of PHTS, high cover gas pressure and high sodium level of the safety guard vessel. - PHTS heat removal: The variables are PHTS sodium level, hot pool temperature of PHTS, core exit temperature, cold pool temperature of the PHTS, flow rate of passive residual heat removal system, flow rate of active residual heat removal system, and temperatures of air heat exchanger temperature of residual heat removal systems. The alarm legs are composed of two legs of a 'passive residual heat removal system not cooling' and 'active residual heat removal system not cooling'. - Sodium water reaction mitigation: The variables are intermediate heat transfer system(IHTS) pressure, pressure and temperature and level of sodium dump tank, the status of rupture disk, hydrogen concentration in IHTS and direct variable of sodium-water-reaction measure. The alarm leg consists of high IHTS pressure, the status of sodium water reaction mitigation system and the indication of direct measure. - Radiation control: The variables are radiation of PHTS, radiation of IHTS, and radiation of containment purge. The alarm leg is composed of high radiation of PHTS and IHTS, and containment purge system. - Containment condition: The variables are containment pressure, containment isolation status, and sodium fire. The alarm leg consists of high containment pressure, status of containment isolation and status of sodium fire. (authors)« less
NASA Technical Reports Server (NTRS)
Bugby, David C.; Farmer, Jeffery T.; Stouffer, Charles J.
2013-01-01
This paper describes the development and testing of a scalable thermal management architecture for instruments, subsystems, or systems that must operate in severe space environments with wide variations in sink temperature. The architecture involves a serial linkage of one or more hot-side variable conductance heat pipes (VCHPs) to one or more cold-side loop heat pipes (LHPs). The VCHPs provide wide area heat acquisition, limited distance thermal transport, modest against gravity pumping, concentrated LHP startup heating, and high switching ratio variable conductance operation. The LHPs provide localized heat acquisition, long distance thermal transport, significant against gravity pumping, and high switching ratio variable conductance operation. The single-VCHP, single-LHP system described herein was developed to maintain thermal control of a small robotic lunar lander throughout the lunar day-night thermal cycle. It is also applicable to other variable heat rejection space missions in severe environments. Operationally, despite a 60-70% gas blocked VCHP condenser during ON testing, the system was still able to provide 2-4 W/K ON conductance, 0.01 W/K OFF conductance, and an end-to-end switching ratio of 200-400. The paper provides a detailed analysis of VCHP condenser performance, which quantified the gas blockage situation. Future multi-VCHP/multi-LHP thermal management system concepts that provide power/transport length scalability are also discussed.
Approximate convective heating equations for hypersonic flows
NASA Technical Reports Server (NTRS)
Zoby, E. V.; Moss, J. N.; Sutton, K.
1979-01-01
Laminar and turbulent heating-rate equations appropriate for engineering predictions of the convective heating rates about blunt reentry spacecraft at hypersonic conditions are developed. The approximate methods are applicable to both nonreacting and reacting gas mixtures for either constant or variable-entropy edge conditions. A procedure which accounts for variable-entropy effects and is not based on mass balancing is presented. Results of the approximate heating methods are in good agreement with existing experimental results as well as boundary-layer and viscous-shock-layer solutions.
Transient characteristics of a grooved water heat pipe with variable heat load
NASA Technical Reports Server (NTRS)
Jang, Jong Hoon
1990-01-01
The transient characteristics of a grooved water heat pipe were studied by using variable heat load. First, the effects of the property variations of the working fluid with temperature were investigated by operating the water heat pipe at several different temperatures. The experimental results show that, even for the same heat input profile and heat pipe configuration, the heat pipe transports more heat at higher temperature within the tested temperature range. Adequate liquid return to the evaporator due to decreasing viscosity of the working fluid permits continuous vaporization of water without dry-out. Second, rewetting of the evaporator was studied after the evaporator had experienced dry-out. To rewet the evaporator, the elevation of the condenser end was the most effective way. Without elevating the condenser end, rewetting is not straight-forward even with power turned off unless the heat pipe is kept at isothermal condition for sufficiently long time.
Vacuum-insulated catalytic converter
Benson, David K.
2001-01-01
A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.
NASA Astrophysics Data System (ADS)
Burton-Johnson, A.; Halpin, J. A.; Whittaker, J. M.; Graham, F. S.; Watson, S. J.
2017-06-01
A new method for modeling heat flux shows that the upper crust contributes up to 70% of the Antarctic Peninsula's subglacial heat flux and that heat flux values are more variable at smaller spatial resolutions than geophysical methods can resolve. Results indicate a higher heat flux on the east and south of the Peninsula (mean 81 mW m-2) where silicic rocks predominate, than on the west and north (mean 67 mW m-2) where volcanic arc and quartzose sediments are dominant. While the data supports the contribution of heat-producing element-enriched granitic rocks to high heat flux values, sedimentary rocks can be of comparative importance dependent on their provenance and petrography. Models of subglacial heat flux must utilize a heterogeneous upper crust with variable radioactive heat production if they are to accurately predict basal conditions of the ice sheet. Our new methodology and data set facilitate improved numerical model simulations of ice sheet dynamics.
Müller-Ribeiro, Flávia C; Wanner, Samuel P; Santos, Weslley H M; Malheiros-Lima, Milene R; Fonseca, Ivana A T; Coimbra, Cândido C; Pires, Washington
2017-01-01
Enhanced cardiovascular strain is one of the factors that explains degraded aerobic capacity in hot environments. The cardiovascular system is regulated by the autonomic nervous system, whose activity can be indirectly evaluated by analyzing heart rate variability (HRV) and systolic arterial pressure (SAP) variability. However, no study has addressed whether HRV or SAP variability can predict aerobic performance during a single bout of exercise. Therefore, this study aimed to investigate whether there is an association between cardiovascular variability and performance in rats subjected to treadmill running at two ambient temperatures. In addition, this study investigated whether the heat-induced changes in cardiovascular variability and reductions in performance are associated with each other. Male Wistar rats were implanted with a catheter into their carotid artery for pulsatile blood pressure recordings. After recovery from surgery, the animals were subjected to incremental-speed exercise until they were fatigued under temperate (25°C) and hot (35°C) conditions. Impaired performance and exaggerated cardiovascular responses were observed in the hot relative to the temperate environment. Significant and negative correlations between most of the SAP variability components (standard deviation, variance, very low frequency [VLF], and low frequency [LF]) at the earlier stages of exercise and total exercise time were observed in both environmental conditions. Furthermore, the heat-induced changes in the sympathetic components of SAP variability (VLF and LF) were associated with heat-induced impairments in performance. Overall, the results indicate that SAP variability at the beginning of exercise predicts the acute performance of rats. Our findings also suggest that heat impairments in aerobic performance are associated with changes in cardiovascular autonomic control. Copyright © 2016 Elsevier Ltd. All rights reserved.
Convective and Stratiform Precipitation Processes and their Relationship to Latent Heating
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Lang, Steve; Zeng, Xiping; Shige, Shoichi; Takayabu, Yukari
2009-01-01
The global hydrological cycle is central to the Earth's climate system, with rainfall and the physics of its formation acting as the key links in the cycle. Two-thirds of global rainfall occurs in the Tropics. Associated with this rainfall is a vast amount of heat, which is known as latent heat. It arises mainly due to the phase change of water vapor condensing into liquid droplets; three-fourths of the total heat energy available to the Earth's atmosphere comes from tropical rainfall. In addition, fresh water provided by tropical rainfall and its variability exerts a large impact upon the structure and motions of the upper ocean layer. An improved convective -stratiform heating (CSH) algorithm has been developed to obtain the 3D structure of cloud heating over the Tropics based on two sources of information: 1) rainfall information, namely its amount and the fraction due to light rain intensity, observed directly from the Precipitation Radar (PR) on board the TRMM satellite and 2) synthetic cloud physics information obtained from cloud-resolving model (CRM) simulations of cloud systems. The cloud simulations provide details on cloud processes, specifically latent heating, eddy heat flux convergence and radiative heating/cooling, that. are not directly observable by satellite. The new CSH algorithm-derived heating has a noticeably different heating structure over both ocean and land regions compared to the previous CSH algorithm. One of the major differences between new and old algorithms is that the level of maximum cloud heating occurs 1 to 1.5 km lower in the atmosphere in the new algorithm. This can effect the structure of the implied air currents associated with the general circulation of the atmosphere in the Tropics. The new CSH algorithm will be used provide retrieved heating data to other heating algorithms to supplement their performance.
Low velocity opposed-flow frame spread in a transport-controlled environment DARTFire
NASA Technical Reports Server (NTRS)
West, Jeff; Thomas, Pete; Chao, Ruian; Bhattacharjee, Subrata; Tang, TI; Altenkirch, Robert A.; Olson, Sandra L.
1995-01-01
The overall objectives of the DARTFire project are to uncover the underlying physics and increase understanding of the mechanisms that cause flames to propagate over solid fuels against a low velocity of oxidizer flow in a low-gravity environment. Specific objectives are (1) to analyze experimentally observed flame shapes, measured gas-phase field variables, spread rates, radiative characteristics, and solid-phase regression rates for comparison with previously developed model prediction capability that will be continually extended, and (2) to investigate the transition from ignition to either flame propagation or extinction in order to determine the characteristics of those environments that lead to flame evolution. To meet the objectives, a series of sounding rocket experiments has been designed to exercise several of the dimensional, controllable variables that affect the flame spread process over PMMA in microgravity, i.e., the opposing flow velocity (1-20 cm/s), the external radiant flux directed to the fuel surface (0-2 W/cm(exp 2)), and the oxygen concentration of the environment (35-70%). Because radiative heat transfer is critical to these microgravity flame spread experiments, radiant heating is imposed, and radiant heat loss will be measured. These are the first attempts at such an experimental control and measurement in microgravity. Other firsts associated with the experiment are (1) the control of the low velocity, opposed flow, which is of the same order as diffusive velocities and Stefan flows; (2) state-of-the-art quantitative flame imaging for species-specific emissions (both infrared and ultraviolet) in addition to novel intensified array imaging to obtain a color image of the very dim, low-gravity flames.
FUor and EXor Variables, a NIR High-Resolution Spectroscopic Survey
NASA Astrophysics Data System (ADS)
Liskowsky, Joseph Paul
To better understand the labyrinth of heating and cooling processes in YSOs (young stellar objects), we study systems where there exists a large variability in the heating of this gas due to accretion. This research project focuses on several classes of early young eruptable T-Tauri stars, namely the FUors, the EXors and the so-called FU Ori-like, which all have the property of large amplitude oscillations in accretion rate. Each of these categories may well represent specific stages in early low-mass stellar evolution. While these objects have specific spectroscopic and circumstellar diagnostics (as means of identification) our research suggests that there are at least several objects that defy (typical) classification. The young objects ZCMa and L1551 IRS5 both show circumstellar diagnostics different from what is expected for an FUor (though ZCMa and L1551 are classified as such). In ZCMa we see an obvious accretion event, but the ro-vibrational overtone lines of CO are in emission. Typically, for an accreting FUor, these lines would be in absorption due to the physics of the disk. Very strangely, we see the fundamental lines in emission. Because of the relationship between the Einstein A coefficients for these transitions, we would expect to see either both the fundamental and overtone lines together in emission or absorption. This mystery may be solved by modeling and before we can make an intelligent claim about the heating mechanisms in YSOs, we need to understand these special cases first (it may turn out that these are not-so-special after-all and are indicative of a subclass of the FUor or EXor class).
Post-heading heat stress and yield impact in winter wheat of China.
Liu, Bing; Liu, Leilei; Tian, Liying; Cao, Weixing; Zhu, Yan; Asseng, Senthold
2014-02-01
Wheat is sensitive to high temperatures, but the spatial and temporal variability of high temperature and its impact on yield are often not known. An analysis of historical climate and yield data was undertaken to characterize the spatial and temporal variability of heat stress between heading and maturity and its impact on wheat grain yield in China. Several heat stress indices were developed to quantify heat intensity, frequency, and duration between heading and maturity based on measured maximum temperature records of the last 50 years from 166 stations in the main wheat-growing region of China. Surprisingly, heat stress between heading and maturity was more severe in the generally cooler northern wheat-growing regions than the generally warmer southern regions of China, because of the delayed time of heading with low temperatures during the earlier growing season and the exposure of the post-heading phase into the warmer part of the year. Heat stress between heading and maturity has increased in the last decades in most of the main winter wheat production areas of China, but the rate was higher in the south than in the north. The correlation between measured grain yields and post-heading heat stress and average temperature were statistically significant in the entire wheat-producing region, and explained about 29% of the observed spatial and temporal yield variability. A heat stress index considering the duration and intensity of heat between heading and maturity was required to describe the correlation of heat stress and yield variability. Because heat stress is a major cause of yield loss and the number of heat events is projected to increase in the future, quantifying the future impact of heat stress on wheat production and developing appropriate adaptation and mitigation strategies are critical for developing food security policies in China and elsewhere. © 2013 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Bayer, P.; Menberg, K.; Zhu, K.; Blum, P.
2012-12-01
In the subsurface of many cities there are widespread and persistent thermal anomalies. These so-called subsurface urban heat islands (UHIs), which also stimulate warming of urban aquifers, are triggered by various processes. Possible heat sources are basements of buildings, leakage of sewage systems, buried district heating networks, re-injection of cooling water and solar irradiation on paved surfaces. In the current study, the reported groundwater temperatures in several Central European cities, such as Berlin, Cologne (Germany) and Zurich (Switzerland) are compared. Available data sets are supplemented by temperature measurements and depth profiles in observation wells. Trend analyses are conducted with time series of groundwater temperatures, and three-dimensional groundwater temperature maps are provided. In all investigated cities, pronounced positive temperature anomalies are present. The distribution of groundwater temperatures appears to be spatially and temporally highly variable. Apparently, the increased heat input into the urban subsurface is controlled by very local and site-specific parameters. In the long-run, the combination of various heat sources results in an extensive temperature increase. In many cases, the maximum temperature elevation is found close to the city center. Regional groundwater temperature differences between the city center and the rural background are up to 5 °C, with local hot spots of even more pronounced anomalies. Particular heat sources, like cooling water injections or case-specific underground constructions, can cause local temperatures > 20 °C in the subsurface. Examination of the long-term variations in isotherm maps shows that temperatures have increased by about 1 °C in the city, as well as in the rural background areas over the last decades. This increase could be reproduced with trend analysis of temperature data gathered from several groundwater wells. Comparison between groundwater and air temperatures in the city of Karlsruhe (Germany), for example, also indicates a spatial correlation between the urban heat island effect in the subsurface and in the atmosphere.
Observations of the Winter Thermal Structure of Lake Superior
NASA Astrophysics Data System (ADS)
Titze, Daniel James
Moored thermistor strings that span the water column have been deployed at up to seven locations throughout Lake Superior from 2005 through present, producing a unique year-round record of the thermal structure of a large lake. This extensive temperature record reveals significant interannual and spatial variability in Lake Superior's winter heat content, thermocline depth, and phenology. Of particular mention is a stark contrast in thermal structure between the cold, icy winter of 2009 and the much warmer winter of 2012, during which especially strong and weak negative stratification was observed, respectively. Significant interannual and spatial variability was also observed in Lake Superior ice cover, as shown through data extracted from Ice Mapping System satellite imagery (NOAA/NESDIS 2004). When water column heat content was estimated from temperature data and analyzed in concert with lake ice-cover data, it was found that ice cover can inhibit heat flux between the lake and the atmosphere, and that spatial variability in ice cover can translate into spatial variability in end-of-winter heat content. Such variability in end-of-winter heat content is found to be preserved through the spring warming season, and is strongly correlated with variability in the timing of the onset of summer stratification, with regions that have warmer end-of-winter water columns stratifying earlier than regions with colder end-of-winter water-columns.
Cause-Specific Hospital Admissions on Hot Days in Sydney, Australia
Vaneckova, Pavla; Bambrick, Hilary
2013-01-01
Background While morbidity outcomes for major disease categories during extreme heat have received increasing research attention, there has been very limited investigation at the level of specific disease subcategories. Methodology/Principal Findings We analyzed daily hospital admissions for cardiovascular (CVD), respiratory (RD), genitourinary (GU) and mental diseases (MD), diabetes (DIA), dehydration (DEH) and ‘the effects of heat and light’ (HEAT) in Sydney between 1991 and 2009. We further investigated the sensitivity to heat of subcategories within the major disease groups. We defined hot days as those with temperatures in the 95th and 99th percentiles within the study period. We applied time-stratified case-crossover analysis to compare the hospital admissions on hot days with those on non-hot days matched by day of the week. We calculated the odds ratios (OR) of admissions between the two types of days, accounting for other environmental variables (relative humidity, ozone and particulate matter) and non-environmental trends (public and school holidays). On hot days, hospital admissions increased for all major categories except GU. This increase was not shared homogeneously across all diseases within a major category: within RD, only ‘other diseases of the respiratory system’ (includes pleurisy or empyema) increased significantly, while admissions for asthma decreased. Within MD, hospital admissions increased only for psychoses. Admissions due to some major categories increased one to three days after a hot day (e.g., DIA, RD and CVD) and on two and three consecutive days (e.g., HEAT and RD). Conclusions/Significance High ambient temperatures were associated with increased hospital admissions for several disease categories, with some within-category variation. Future analyses should focus on subgroups within broad disease categories to pinpoint medical conditions most affected by ambient heat. PMID:23408986
Method and apparatus for thermal management of vehicle exhaust systems
Benson, D.K.; Potter, T.F.
1995-12-26
A catalytic converter is surrounded by variable conductance insulation for maintaining the operating temperature of the catalytic converter at an optimum level, for inhibiting heat loss when raising catalytic converter temperature to light-off temperature, for storing excess heat to maintain or accelerate reaching light-off temperature, and for conducting excess heat away from the catalytic converter after reaching light-off temperature. The variable conductance insulation includes vacuum gas control and metal-to-metal thermal shunt mechanisms. Radial and axial shielding inhibits radiation and convection heat loss. Thermal storage media includes phase change material, and heat exchanger chambers and fluids carry heat to and from the catalytic converter. 7 figs.
NASA Astrophysics Data System (ADS)
Afshari, Ebrahim; Ziaei-Rad, Masoud; Jahantigh, Nabi
2016-06-01
In PEM fuel cells, during electrochemical generation of electricity more than half of the chemical energy of hydrogen is converted to heat. This heat of reactions, if not exhausted properly, would impair the performance and durability of the cell. In general, large scale PEM fuel cells are cooled by liquid water that circulates through coolant flow channels formed in bipolar plates or in dedicated cooling plates. In this paper, a numerical method has been presented to study cooling and temperature distribution of a polymer membrane fuel cell stack. The heat flux on the cooling plate is variable. A three-dimensional model of fluid flow and heat transfer in cooling plates with 15 cm × 15 cm square area is considered and the performances of four different coolant flow field designs, parallel field and serpentine fields are compared in terms of maximum surface temperature, temperature uniformity and pressure drop characteristics. By comparing the results in two cases, the constant and variable heat flux, it is observed that applying constant heat flux instead of variable heat flux which is actually occurring in the fuel cells is not an accurate assumption. The numerical results indicated that the straight flow field model has temperature uniformity index and almost the same temperature difference with the serpentine models, while its pressure drop is less than all of the serpentine models. Another important advantage of this model is the much easier design and building than the spiral models.
Experimental and Theoretical Studies of Axisymmetric Free Jets
NASA Technical Reports Server (NTRS)
Love, Eugene S.; Grigsby, Carl E.; Lee, Louise P.; Woodling, Mildred J.
1959-01-01
Some experimental and theoretical studies have been made of axisymmetric free jets exhausting from sonic and supersonic nozzles into still air and into supersonic streams with a view toward problems associated with propulsive jets and the investigation of these problems. For jets exhausting into still air, consideration is given to the effects of jet Mach number, nozzle divergence angle, and jet static pressure ratio upon jet structure, jet wavelength, and the shape and curvature of the jet boundary. Studies of the effects of the ratio of specific heats of the jets are included are observations pertaining to jet noise and jet simulation. For jets exhausting into supersonic streams, an attempt has been made to present primarily theoretical certain jet interference effects and in formulating experimental studies. The primary variables considered are jet Mach number, free stream Mach number, jet static pressure ratio, ratio of specific heats of the jet, nozzle exit angle, and boattail angle. The simulation problem and the case of a hypothetical hypersonic vehicle are examined, A few experimental observations are included.
Nickels, Tara M; Ingram, Audrey L; Maraoulaite, Dalia K; White, Robert L
2015-12-01
Processes involved in thermal desorption of benzoic acid from sodium and calcium montmorillonite clays are investigated by using variable temperature diffuse reflection Fourier transform infrared spectroscopy (DRIFTS). By monitoring the temperature dependence of infrared absorbance bands while heating samples, subtle changes in molecular vibrations are detected and employed to characterize specific benzoic acid adsorption sites. Abrupt changes in benzoic acid adsorption site properties occur for both clay samples at about 125 °C. Difference spectra absorbance band frequency variations indicate that adsorbed benzoic acid interacts with interlayer cations through water bridges and that these interactions can be disrupted by the presence of organic anions, in particular, benzoate.
M3FT-16OR0203052-Test Design for FeCrAl Alloy Tube Irradiation in HFIR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terrani, Kurt A.; Petrie, Christian M.
2016-05-01
This calculation summarizes thermal analyses of a flexible rabbit design for irradiating a variety of pressurized water reactor (PWR) cladding materials (stainless steel, iron-chromium aluminum [FeCrAl], Zircaloy, and Inconel) with variable dimensions at a temperature of 350 °C in the flux trap of the High Flux Isotope Reactor (HFIR). The design can accommodate standard cladding for outer diameters (ODs) of approximately 9.50 mm with thickness ranging from 0.30 mm to 0.70 mm. The length is generally between 10 and 50 mm. The specimens contain moly inserts with a variable OD that provides the heat flux necessary to achieve the designmore » temperature with such a small fixed gas gap. The primary outer containment is an Al-6061 housing with a slightly enlarged inner diameter (ID) of 9.60 mm. The specimen temperature is controlled by determining a helium/argon gas mixture specific to the as-built specimen and housing. Variables that affect the required gas mixture are the cladding material (thermal expansion, density, heat generation rate), cladding OD, housing ID, and cladding ID. This calculation documents the analyses performed to determine required gas mixtures for a variety of scenarios.« less
da Silva, Wilma Emanuela; Leite, Jacinara Hody Gurgel Morais; de Sousa, José Ernandes Rufino; Costa, Wirton Peixoto; da Silva, Wallace Sostene Tavares; Guilhermino, Magda Maria; Asensio, Luis Alberto Bermejo; Façanha, Débora Andréa Evangelista
2017-07-01
The goal of this study was to evaluate the daily rhythmicity of the thermoregulatory responses of Morada Nova ewes that were raised in a semiarid environment. The experiment was conducted during the dry season. Data were collected from 5:00 a.m. to 4:00 a.m.. Samples were taken over the course of 8 days, with a 1-week interval between sampling periods. During each day that the data were collected, animals were measured once an hour for 24 h in an area directly exposed to solar radiation. The environment was characterized by measuring the following variables: air temperature (TA), relative humidity (RH), Black Globe Humidity Index (BGHI), radiant heat load (RHL), and wind speed (WS). Physiological variables that were measured included rectal temperature (RT, °C), respiratory rate (RR, breaths/min), surface temperature (ST, °C), and sweating rate (SR, g m 2 h -1 ). We observed that RT, RR, and ST increased as environmental conditions became more stressful. Specifically, environmental conditions became more stressful as RHL, air temperature, and BGHI increased, while RH decreased. All physiological variables of the animals were strongly affected by the time of the day: environmental variables changed drastically between nighttime and noon. Physiological parameters increased sharply from the morning (7:00 a.m.-10:00 a.m.) until noon (11:00 a.m.-2:00 p.m.), except for sweating rate. After noon, these variables began to drop until nighttime (11:00 p.m.-6:00 am), and values of the main physiological indexes were stable during this period. The Morada Nova breed exhibited daily cyclic variations in thermoregulatory responses. Evaporative heat loss mechanisms were triggered during the most stressful times of the day. The first mechanism that animals used was panting, which was an immediate response to environmental heat stress. Cutaneous evaporation had a slower response mechanism to environmental heat stress. Homeothermy conditions were restored to the animals at approximately 5:00 p.m.; however, these findings confirm the importance of providing environmental protection during critical periods of the day, even for locally adapted breeds. These responses suggest that the use of thermal storage allowed the animals to achieve equilibrium with the environment and maintain a stable body temperature.
NASA Astrophysics Data System (ADS)
da Silva, Wilma Emanuela; Leite, Jacinara Hody Gurgel Morais; de Sousa, José Ernandes Rufino; Costa, Wirton Peixoto; da Silva, Wallace Sostene Tavares; Guilhermino, Magda Maria; Asensio, Luis Alberto Bermejo; Façanha, Débora Andréa Evangelista
2017-07-01
The goal of this study was to evaluate the daily rhythmicity of the thermoregulatory responses of Morada Nova ewes that were raised in a semiarid environment. The experiment was conducted during the dry season. Data were collected from 5:00 a.m. to 4:00 a.m.. Samples were taken over the course of 8 days, with a 1-week interval between sampling periods. During each day that the data were collected, animals were measured once an hour for 24 h in an area directly exposed to solar radiation. The environment was characterized by measuring the following variables: air temperature (TA), relative humidity (RH), Black Globe Humidity Index (BGHI), radiant heat load (RHL), and wind speed (WS). Physiological variables that were measured included rectal temperature (RT, °C), respiratory rate (RR, breaths/min), surface temperature (ST, °C), and sweating rate (SR, g m2 h-1). We observed that RT, RR, and ST increased as environmental conditions became more stressful. Specifically, environmental conditions became more stressful as RHL, air temperature, and BGHI increased, while RH decreased. All physiological variables of the animals were strongly affected by the time of the day: environmental variables changed drastically between nighttime and noon. Physiological parameters increased sharply from the morning (7:00 a.m.-10:00 a.m.) until noon (11:00 a.m.-2:00 p.m.), except for sweating rate. After noon, these variables began to drop until nighttime (11:00 p.m.-6:00 am), and values of the main physiological indexes were stable during this period. The Morada Nova breed exhibited daily cyclic variations in thermoregulatory responses. Evaporative heat loss mechanisms were triggered during the most stressful times of the day. The first mechanism that animals used was panting, which was an immediate response to environmental heat stress. Cutaneous evaporation had a slower response mechanism to environmental heat stress. Homeothermy conditions were restored to the animals at approximately 5:00 p.m.; however, these findings confirm the importance of providing environmental protection during critical periods of the day, even for locally adapted breeds. These responses suggest that the use of thermal storage allowed the animals to achieve equilibrium with the environment and maintain a stable body temperature.
Apparatus and method for prevention of cracking in welded brittle alloys
Kronberg, James W.; Younkins, Robert M.
2000-01-01
An apparatus and method for reducing cracking in a heated material as the material cools. The apparatus includes a variable frequency electric signal generator that is coupled to a transducer. The transducer produces a variable frequency acoustic signal in response to the variable frequency electric signal, which is applied to the heated material to reduce cracking as the material cools.
Ion Cyclotron Waves in the VASIMR
NASA Astrophysics Data System (ADS)
Brukardt, M. S.; Bering, E. A.; Chang-Diaz, F. R.; Squire, J. P.; Longmier, B.
2008-12-01
The Variable Specific Impulse Magnetoplasma Rocket is an electric propulsion system under development at Ad Astra Rocket Company that utilizes several processes of ion acceleration and heating that occur in the Birkeland currents of an auroral arc system. Among these processes are parallel electric field acceleration, lower hybrid resonance heating, and ion cyclotron resonance heating. The VASIMR is capable of laboratory simulation of electromagnetic ion cyclotron wave heating during a single pass of the plasma through the resonance region. The plasma is generated by a helicon discharge of about 25 kW then passes through an RF booster stage that shoots left hand polarized slow mode waves from the high field side of the resonance. This paper will focus on the upgrades to the VX-200 test model over the last year. After summarizing the VX- 50 and VX-100 results, the new data from the VX-200 model will be presented. Lastly, the changes to the VASIMR experiment due to Ad Astra Rocket Company's new facility in Webster, Texas will also be discussed, including the possibility of collaborative experiments at the new facility.
Thermal modifications of root transparency and implications for aging: a pilot study.
Gibelli, Daniele; De Angelis, Danilo; Rossetti, Francesca; Cappella, Annalisa; Frustaci, Michela; Magli, Francesca; Mazzarelli, Debora; Mazzucchi, Alessandra; Cattaneo, Cristina
2014-01-01
Root transparency has proven to be related to age and has been considered by different odontological methods for age estimation. Very little is known concerning possible variations of root transparency with heat, although the applicability of the method to burnt remains depends on the possible modifications of this specific variable. This pilot study presents the results of an experiment performed on 105 teeth obtained from dental patients and autopsy material, heated in an industrial oven at 50°C, 100°C, 150°C and 200°C. Root transparency was measured before and after the charring experiment. The heating process proved to radically modify root transparency, which decreased in 20% of samples at 50°C, in 34.6% at 100°C, in 50% at 150°C, in 77% at 200°C. The overall correlation index (CI) between decrease in root transparency and increase in temperature amounted to 0.96. These results show that heat may modify root transparency and suggest caution in using methods based on root transparency for age estimation. © 2013 American Academy of Forensic Sciences.
Cunningham, Jane; Hasker, Epco; Das, Pradeep; El Safi, Sayda; Goto, Hiro; Mondal, Dinesh; Mbuchi, Margaret; Mukhtar, Maowia; Rabello, Ana; Rijal, Suman; Sundar, Shyam; Wasunna, Monique; Adams, Emily; Menten, Joris; Peeling, Rosanna; Boelaert, Marleen
2012-11-15
Poor access to diagnosis stymies control of visceral leishmaniasis (VL). Antibody-detecting rapid diagnostic tests (RDTs) can be performed in peripheral health settings. However, there are many brands available and published reports of variable accuracy. Commercial VL RDTs containing bound rK39 or rKE16 antigen were evaluated using archived human sera from confirmed VL cases (n = 750) and endemic non-VL controls (n = 754) in the Indian subcontinent (ISC), Brazil, and East Africa to assess sensitivity and specificity with 95% confidence intervals. A subset of RDTs were also evaluated after 60 days' heat incubation (37°C, 45°C). Interlot and interobserver variability was assessed. All test brands performed well against ISC panels (sensitivity range, 92.8%-100%; specificity range, 96%-100%); however, sensitivity was lower against Brazil and East African panels (61.5%-91% and 36.8%-87.2%, respectively). Specificity was consistently > 95% in Brazil and ranged between 90.8% and 98% in East Africa. Performance of some products was adversely affected by high temperatures. Agreement between lots and readers was good to excellent (κ > 0.73-0.99). Diagnostic accuracy of VL RDTs varies between the major endemic regions. Many tests performed well and showed good heat stability in the ISC; however, reduced sensitivity against Brazilian and East African panels suggests that in these regions, used alone, several RDTs are inadequate for excluding a VL diagnosis. More research is needed to assess ease of use and to compare performance using whole blood instead of serum and in patients coinfected with human immunodeficiency virus.
Two-Dimensional Thermal Boundary Layer Corrections for Convective Heat Flux Gauges
NASA Technical Reports Server (NTRS)
Kandula, Max; Haddad, George
2007-01-01
This work presents a CFD (Computational Fluid Dynamics) study of two-dimensional thermal boundary layer correction factors for convective heat flux gauges mounted in flat plate subjected to a surface temperature discontinuity with variable properties taken into account. A two-equation k - omega turbulence model is considered. Results are obtained for a wide range of Mach numbers (1 to 5), gauge radius ratio, and wall temperature discontinuity. Comparisons are made for correction factors with constant properties and variable properties. It is shown that the variable-property effects on the heat flux correction factors become significant
NASA Astrophysics Data System (ADS)
Qayyum, Sajid; Hayat, Tasawar; Alsaedi, Ahmed
2018-05-01
Mathematical modeling for magnetohydrodynamic (MHD) radiative flow of third grade nano-material bounded by a nonlinear stretching sheet with variable thickness is introduced. The sheet moves with nonlinear velocity. Definitions of thermal radiation and heat generation/absorption are utilized in the energy expression. Intention in present investigation is to develop a model for nanomaterial comprising Brownian motion and thermophoresis phenomena. Newtonian conditions for heat and mass species are imposed. Governing equations of the locally similar flow are attempted through a homotopic technique and behaviors of involved variables on the flow fields are displayed graphically. It is revealed that increasing values of thermal conjugate variable corresponds to high temperature. Numerical investigation are explored to obtain the results of skin friction coefficient and local Nusselt and Sherwood numbers. It is revealed that velocity field reduces in the frame of magnetic variable while reverse situation is observed due to mixed convection parameter. Here qualitative behaviors of thermal field and heat transfer rate are opposite for thermophoresis variable. Moreover nanoparticle concentration and local Sherwood number via Brownian motion parameter are opposite.
Identifying Population Vulnerable to Extreme Heat Events in San Jose, California.
NASA Astrophysics Data System (ADS)
Rivera, A. L.
2016-12-01
The extreme heat days not only make cities less comfortable for living but also they are associated with increased morbidity and mortality. Mapping studies have demonstrated spatial variability in heat vulnerability. A study conducted between 2000 and 2011 in New York City shows that deaths during heat waves was more likely to occur in black individuals, at home in census tracts which received greater public assistance. This map project intends to portray areas in San Jose California that are vulnerable to extreme heat events. The variables considered to build a vulnerability index are: land surface temperature, vegetated areas (NDVI), and people exposed to these area (population density).
Crystal diffraction lens with variable focal length
Smither, R.K.
1991-04-02
A method and apparatus for altering the focal length of a focusing element of one of a plurality of pre-determined focal lengths by changing heat transfer within selected portions of the element by controlled quantities is disclosed. Control over heat transfer is accomplished by manipulating one or more of a number of variables, including: the amount of heat or cold applied to surfaces; type of fluids pumped through channels for heating and cooling; temperatures, directions of flow and rates of flow of fluids; and placement of channels. 19 figures.
Antonucci, Francesca; Pallottino, Federico; Costa, Corrado; Rimatori, Valentina; Giorgi, Stefano; Papetti, Patrizia; Menesatti, Paolo
2011-01-01
The aim of this study was to investigate the suitability of active infrared thermography and thermometry in combination with multivariate statistical partial least squares analysis as rapid soil water content detection techniques both in the laboratory and the field. Such techniques allow fast soil water content measurements helpful in both agricultural and environmental fields. These techniques, based on the theory of heat dissipation, were tested by directly measuring temperature dynamic variation of samples after heating. For the assessment of temperature dynamic variations data were collected during three intervals (3, 6 and 10 s). To account for the presence of specific heats differences between water and soil, the analyses were regulated using slopes to linearly describe their trends. For all analyses, the best model was achieved for a 10 s slope. Three different approaches were considered, two in the laboratory and one in the field. The first laboratory-based one was centred on active infrared thermography, considered measurement of temperature variation as independent variable and reported r = 0.74. The second laboratory-based one was focused on active infrared thermometry, added irradiation as independent variable and reported r = 0.76. The in-field experiment was performed by active infrared thermometry, heating bare soil by solar irradiance after exposure due to primary tillage. Some meteorological parameters were inserted as independent variables in the prediction model, which presented r = 0.61. In order to obtain more general and wide estimations in-field a Partial Least Squares Discriminant Analysis on three classes of percentage of soil water content was performed obtaining a high correct classification in the test (88.89%). The prediction error values were lower in the field with respect to laboratory analyses. Both techniques could be used in conjunction with a Geographic Information System for obtaining detailed information on soil heterogeneity.
Antonucci, Francesca; Pallottino, Federico; Costa, Corrado; Rimatori, Valentina; Giorgi, Stefano; Papetti, Patrizia; Menesatti, Paolo
2011-01-01
The aim of this study was to investigate the suitability of active infrared thermography and thermometry in combination with multivariate statistical partial least squares analysis as rapid soil water content detection techniques both in the laboratory and the field. Such techniques allow fast soil water content measurements helpful in both agricultural and environmental fields. These techniques, based on the theory of heat dissipation, were tested by directly measuring temperature dynamic variation of samples after heating. For the assessment of temperature dynamic variations data were collected during three intervals (3, 6 and 10 s). To account for the presence of specific heats differences between water and soil, the analyses were regulated using slopes to linearly describe their trends. For all analyses, the best model was achieved for a 10 s slope. Three different approaches were considered, two in the laboratory and one in the field. The first laboratory-based one was centred on active infrared thermography, considered measurement of temperature variation as independent variable and reported r = 0.74. The second laboratory–based one was focused on active infrared thermometry, added irradiation as independent variable and reported r = 0.76. The in-field experiment was performed by active infrared thermometry, heating bare soil by solar irradiance after exposure due to primary tillage. Some meteorological parameters were inserted as independent variables in the prediction model, which presented r = 0.61. In order to obtain more general and wide estimations in-field a Partial Least Squares Discriminant Analysis on three classes of percentage of soil water content was performed obtaining a high correct classification in the test (88.89%). The prediction error values were lower in the field with respect to laboratory analyses. Both techniques could be used in conjunction with a Geographic Information System for obtaining detailed information on soil heterogeneity. PMID:22346632
Monte Carlo method for photon heating using temperature-dependent optical properties.
Slade, Adam Broadbent; Aguilar, Guillermo
2015-02-01
The Monte Carlo method for photon transport is often used to predict the volumetric heating that an optical source will induce inside a tissue or material. This method relies on constant (with respect to temperature) optical properties, specifically the coefficients of scattering and absorption. In reality, optical coefficients are typically temperature-dependent, leading to error in simulation results. The purpose of this study is to develop a method that can incorporate variable properties and accurately simulate systems where the temperature will greatly vary, such as in the case of laser-thawing of frozen tissues. A numerical simulation was developed that utilizes the Monte Carlo method for photon transport to simulate the thermal response of a system that allows temperature-dependent optical and thermal properties. This was done by combining traditional Monte Carlo photon transport with a heat transfer simulation to provide a feedback loop that selects local properties based on current temperatures, for each moment in time. Additionally, photon steps are segmented to accurately obtain path lengths within a homogenous (but not isothermal) material. Validation of the simulation was done using comparisons to established Monte Carlo simulations using constant properties, and a comparison to the Beer-Lambert law for temperature-variable properties. The simulation is able to accurately predict the thermal response of a system whose properties can vary with temperature. The difference in results between variable-property and constant property methods for the representative system of laser-heated silicon can become larger than 100K. This simulation will return more accurate results of optical irradiation absorption in a material which undergoes a large change in temperature. This increased accuracy in simulated results leads to better thermal predictions in living tissues and can provide enhanced planning and improved experimental and procedural outcomes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Enginer, J. E.; Luedke, E. E.; Wanous, D. J.
1976-01-01
Continuing efforts in large gains in heat-pipe performance are reported. It was found that gas-controlled variable-conductance heat pipes can perform reliably for long periods in space and effectively provide temperature stabilization for spacecraft electronics. A solution was formulated that allows the control gas to vent through arterial heat-pipe walls, thus eliminating the problem of arterial failure under load, due to trace impurities of noncondensable gas trapped in an arterial bubble during priming. This solution functions well in zero gravity. Another solution was found that allows priming at a much lower fluid charge. A heat pipe with high capacity, with close temperature control of the heat source and independent of large variations in sink temperature was fabricated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. Withers, J. Cummings, B. Nigusse, E. Martin
A new generation of central, ducted variable-capacity heat pump systems has come on the market, promising very high cooling and heating efficiency. Instead of cycling on at full capacity and then cycling off when the thermostat is satisfied, they vary their cooling and heating output over a wide range (approximately 40 to 118% of nominal full capacity); thus, staying 'on' for 60% to 100% more hours per day compared to fixed-capacity systems. Current Phase 4 experiments in an instrumented lab home with simulated occupancy evaluate the impact of duct R-value enhancement on the overall operating efficiency of the variable-capacity systemmore » compared to the fixed-capacity system.« less
NASA Astrophysics Data System (ADS)
Casanueva, Ana; Kotlarski, Sven; Liniger, Mark A.
2017-04-01
Future climate change is likely to have important impacts in many socio-economic sectors. In particular, higher summer temperatures or more prolonged heat waves may be responsible for health problems and productivity losses related to heat stress, especially affecting people exposed to such situations (e.g. working under outside settings or in non-acclimatized workplaces). Heat stress on the body under work load and consequently their productivity loss can be described through heat stress indices that are based on multiple meteorological parameters such as temperature, humidity, wind and radiation. Exploring the changes of these variables under a warmer climate is of prime importance for the Impacts, Adaptation and Vulnerability communities. In particular, the H2020 project HEAT-SHIELD aims at analyzing the impact of climate change on heat stress in strategic industries in Europe (manufacturing, construction, transportation, tourism and agriculture) within an inter-sectoral framework (climate scientists, biometeorologists, physiologists and stakeholders). In the present work we explore present and future heat stress over Europe using an ensemble of the state-of-the-art RCMs from the EURO-CORDEX initiative. Since RCMs cannot be directly used in impact studies due to their partly substantial biases, a standard bias correction method (empirical quantile mapping) is applied to correct the individual variables that are then used to derive heat stress indices. The objectives of this study are twofold, 1) to test the ability of the separately bias corrected variables to reproduce the main characteristics of heat stress indices in present climate conditions and 2) to explore climate change projections of heat stress indices. We use the wet bulb globe temperature (WBGT) as primary heat stress index, considering two different versions for indoor (or in the shade, based on temperature and humidity conditions) and outdoor settings (including also wind and radiation). The WBGT is the most widely used heat stress index for working people and can be easily interpreted by means of ISO standards. Within the HEAT-SHIELD project, climate change projections of the WBGT will be used to assess the impact of climate change on workers' health and productivity.
NASA Astrophysics Data System (ADS)
Ndukwu, M. C.; Bennamoun, L.; Anozie, O.
2018-05-01
Interest in picralima nitida is growing over the years because of its therapeutic application in human and animal medicine. In many countries the dried seed is compounded and sold as drugs but there is limited information on the process variables associated with its thermal processing. The study therefore, is focused on the evolution of physical properties, heat and mass transfer coefficient, specific heat capacity, energy utilization and quality characteristics of the seed during oven and microwave drying. The goal is to generate data using theoretical and empirical steps for process model development that can be applied in dryer design. The results obtained showed that the coefficient of heat and mass transfer varied from 0.0421-1.326 W/m2 K and 1.49 × 10-7 - 8.47 × 10-6 m/s respectively while the specific heat capacity ranged between 1189 and 2531 J/ kg K. The volume of the seed shrank gradually with a non-linear exponential shape for all drying treatments. The intrinsic particle and bulk densities decreased while the porosity of the seed increased with drying period, indicating an increase in internal voids of the seeds. The energy and specific energy utilized for drying peaked after 14 h, 12 h and 7 h of continuous drying at 50, 60 and 70 °C for oven drying treatment. Effective moisture diffusivities for all treatments ranged from 5.37 × 10-10 - 1.45 × 10-7 m/s2 with activation energy of 27.82 kJ/mol and 20 W/g for oven and microwave respectively. Flavonoide was the least stable at high temperature among the screend compound.
NASA Astrophysics Data System (ADS)
Zieliński, Mariusz; Fortuniak, Krzysztof; Pawlak, Włodzimierz; Siedlecki, Mariusz
2018-01-01
We investigate the area-averaged sensible heat flux (QH ) obtained with a scintillometer along a 3.1-km path length over the city centre of Łódź, Central Poland. The annual cycle of QH peaks in June but is lower by the middle of summer. In winter, due to a large amount of anthropogenic heat input, QH remains positive all day long, with positive night-time fluxes also found during months with frequent cold advection, e.g., June 2010. In the diurnal cycle of this flux, several features specific to urban areas are seen: the peak shifts 1-2 h after noon, the heat flux turns from positive to negative 1-2 h after sunset. In Łódź QH was observed during inflow from the north and north-west, i.e. from the city centre. As this area is mostly covered with impervious materials, most of the heat exchanged between the ground and the overlying air is in the form of sensible heat flux. Under the conditions of inflow from the east and south-east, the maximum heat flux is approximately 100 W m^{-2} lower than during the inflow from the city centre, since more vegetation exists to the east and south-east of the scintillometer path. Cold and warm advection are found to be a vital factor in the observed heat-flux variability in the centre of Łódź.
NASA Astrophysics Data System (ADS)
Zieliński, Mariusz; Fortuniak, Krzysztof; Pawlak, Włodzimierz; Siedlecki, Mariusz
2018-06-01
We investigate the area-averaged sensible heat flux (QH) obtained with a scintillometer along a 3.1-km path length over the city centre of Łódź, Central Poland. The annual cycle of QH peaks in June but is lower by the middle of summer. In winter, due to a large amount of anthropogenic heat input, QH remains positive all day long, with positive night-time fluxes also found during months with frequent cold advection, e.g., June 2010. In the diurnal cycle of this flux, several features specific to urban areas are seen: the peak shifts 1-2 h after noon, the heat flux turns from positive to negative 1-2 h after sunset. In Łódź QH was observed during inflow from the north and north-west, i.e. from the city centre. As this area is mostly covered with impervious materials, most of the heat exchanged between the ground and the overlying air is in the form of sensible heat flux. Under the conditions of inflow from the east and south-east, the maximum heat flux is approximately 100 W m^{-2} lower than during the inflow from the city centre, since more vegetation exists to the east and south-east of the scintillometer path. Cold and warm advection are found to be a vital factor in the observed heat-flux variability in the centre of Łódź.
Mortality risks during extreme temperature events (ETEs) using a distributed lag non-linear model
NASA Astrophysics Data System (ADS)
Allen, Michael J.; Sheridan, Scott C.
2018-01-01
This study investigates the relationship between all-cause mortality and extreme temperature events (ETEs) from 1975 to 2004. For 50 U.S. locations, these heat and cold events were defined based on location-specific thresholds of daily mean apparent temperature. Heat days were defined by a 3-day mean apparent temperature greater than the 95th percentile while extreme heat days were greater than the 97.5th percentile. Similarly, calculations for cold and extreme cold days relied upon the 5th and 2.5th percentiles. A distributed lag non-linear model assessed the relationship between mortality and ETEs for a cumulative 14-day period following exposure. Subsets for season and duration effect denote the differences between early- and late-season as well as short and long ETEs. While longer-lasting heat days resulted in elevated mortality, early season events also impacted mortality outcomes. Over the course of the summer season, heat-related risk decreased, though prolonged heat days still had a greater influence on mortality. Unlike heat, cold-related risk was greatest in more southerly locations. Risk was highest for early season cold events and decreased over the course of the winter season. Statistically, short episodes of cold showed the highest relative risk, suggesting unsettled weather conditions may have some relationship to cold-related mortality. For both heat and cold, results indicate higher risk to the more extreme thresholds. Risk values provide further insight into the role of adaptation, geographical variability, and acclimatization with respect to ETEs.
Changes In The Heating Degree-days In Norway Due Toglobal Warming
NASA Astrophysics Data System (ADS)
Skaugen, T. E.; Tveito, O. E.; Hanssen-Bauer, I.
A continuous spatial representation of temperature improves the possibility topro- duce maps of temperature-dependent variables. A temperature scenario for the period 2021-2050 is obtained for Norway from the Max-Planck-Institute? AOGCM, GSDIO ECHAM4/OPEC 3. This is done by an ?empirical downscaling method? which in- volves the use of empirical links between large-scale fields and local variables to de- duce estimates of the local variables. The analysis is obtained at forty-six sites in Norway. Spatial representation of the anomalies of temperature in the scenario period compared to the normal period (1961-1990) is obtained with the use of spatial interpo- lation in a GIS. The temperature scenario indicates that we will have a warmer climate in Norway in the future, especially during the winter season. The heating degree-days (HDD) is defined as the accumulated Celsius degrees be- tween the daily mean temperature and a threshold temperature. For Scandinavian countries, this threshold temperature is 17 Celsius degrees. The HDD is found to be a good estimate of accumulated cold. It is therefore a useful index for heating energy consumption within the heating season, and thus to power production planning. As a consequence of the increasing temperatures, the length of the heating season and the HDD within this season will decrease in Norway in the future. The calculations of the heating season and the HDD is estimated at grid level with the use of a GIS. The spatial representation of the heating season and the HDD can then easily be plotted. Local information of the variables being analysed can be withdrawn from the spatial grid in a GIS. The variable is prepared for further spatial analysis. It may also be used as an input to decision making systems.
Edwards, Tara D; Bain, Erich D; Cole, Shawn T; Freeney, Reygan M; Halls, Virginia A; Ivancik, Juliana; Lenhart, Joseph L; Napadensky, Eugene; Yu, Jian H; Zheng, James Q; Mrozek, Randy A
2018-04-01
This paper describes a new witness material for quantifying the back face deformation (BFD) resulting from high rate impact of ballistic protective equipment. Accurate BFD quantification is critical for the assessment and certification of personal protective equipment, such as body armor and helmets, and ballistic evaluation. A common witness material is ballistic clay, specifically, Roma Plastilina No. 1 (RP1). RP1 must be heated to nearly 38°C to pass calibration, and used within a limited time frame to remain in calibration. RP1 also exhibits lot-to-lot variability and is sensitive to time, temperature, and handling procedures, which limits the BFD accuracy and reproducibility. A new silicone composite backing material (SCBM) was developed and tested side-by-side with heated RP1 using quasi-static indentation and compression, low velocity impact, spherical projectile penetration, and both soft and hard armor ballistic BFD measurements to compare their response over a broad range of strain rates and temperatures. The results demonstrate that SCBM mimics the heated RP1 response at room temperature and exhibits minimal temperature sensitivity. With additional optimization of the composition and processing, SCBM could be a drop-in replacement for RP1 that is used at room temperature during BFD quantification with minimal changes to the current RP1 handling protocols and infrastructure. It is anticipated that removing the heating requirement, and temperature-dependence, associated with RP1 will reduce test variability, simplify testing logistics, and enhance test range productivity. Published by Elsevier B.V.
Suomi, Visa; Jaros, Jiri; Treeby, Bradley; Cleveland, Robin O
2018-05-01
High-intensity focused ultrasound (HIFU) therapy can be used for noninvasive treatment of kidney (renal) cancer, but the clinical outcomes have been variable. In this study, the efficacy of renal HIFU therapy was studied using nonlinear acoustic and thermal simulations in three patients. The acoustic simulations were conducted with and without refraction in order to investigate its effect on the shape, size, and pressure distribution at the focus. The values for the attenuation, sound speed, perfusion, and thermal conductivity of the kidney were varied over the reported ranges to determine the effect of variability on heating. Furthermore, the phase aberration was studied in order to quantify the underlying phase shifts using a second-order polynomial function. The ultrasound field intensity was found to drop on average 11.1 dB with refraction and 6.4 dB without refraction. Reflection at tissue interfaces was found to result in a loss less than 0.1 dB. Focal point splitting due to refraction significantly reduced the heating efficacy. Of all the tissue parameters, perfusion was found to affect the heating the most. Small changes in temperature were seen with varying attenuation and thermal conductivity, but no visible changes were present with sound speed variations. The aberration study revealed an underlying trend in the spatial distribution of the phase shifts. The results show that the efficacy of HIFU therapy in the kidney could be improved with aberration correction. A method is proposed by which patient specific pretreatment calculations could be used to overcome the aberration and therefore make ultrasound treatment possible.
Mesoscale eddies control meridional heat flux variability in the subpolar North Atlantic
NASA Astrophysics Data System (ADS)
Zhao, Jian; Bower, Amy; Yang, Jiayan; Lin, Xiaopei; Zhou, Chun
2017-04-01
The meridional heat flux in the subpolar North Atlantic is vital to the climate of the high-latitude North Atlantic. For the basinwide heat flux across a section between Greenland and Scotland, much of the variability occurs in the Iceland basin, where the North Atlantic Current (NAC) carries relatively warm and salty water northward. As a component of the Overturning in the Subpolar North Atlantic Program (OSNAP), WHOI and OUC are jointly operating gliders in the Iceland Basin to continuously monitor the circulation and corresponding heat flux in this eddy-rich region. Based on one year of observations, two circulation regimes in the Iceland basin have been identified: a mesoscale eddy like circulation pattern and northward NAC circulation pattern. When a mesoscale eddy is generated, the rotational currents associated with the eddy lead to both northward and southward flow in the Iceland basin. This is quite different from the broad northward flow associated with the NAC when there is no eddy. The transition between the two regimes coupled with the strong temperature front in the Iceland basin can modify the meridional heat flux on the order of 0.3PW, which is the dominant source for the heat flux change the Iceland Basin. According to high-resolution numerical model results, the Iceland Basin has the largest contribution to the meridional heat flux variability along the section between Greenland and Scotland. Therefore, mesoscale eddies in the Iceland Basin provide important dynamics to control the meridional heat flux variability in the subpolar North Atlantic.
Performance Charts for a Turbojet System
NASA Technical Reports Server (NTRS)
Karp, Irving M.
1947-01-01
Convenient charts are presented for computing the thrust, fuel consumption, and other performance values of a turbojet system. These charts take into account the effects of ram pressure, compressor pressure ratio, ratio of combustion-chamber-outlet temperature to atmospheric temperature, compressor efficiency, turbine efficiency, combustion efficiency, discharge-nozzle coefficient, losses in total pressure in the inlet to the jet-propulsion unit and in the combustion chamber, and variation in specific heats with temperature. The principal performance charts show clearly the effects of the primary variables and correction charts provide the effects of the secondary variables. The performance of illustrative cases of turbojet systems is given. It is shown that maximum thrust per unit mass rate of air flow occurs at a lower compressor pressure ratio than minimum specific fuel consumption. The thrust per unit mass rate of air flow increases as the combustion-chamber discharge temperature increases. For minimum specific fuel consumption, however, an optimum combustion-chamber discharge temperature exists, which in some cases may be less than the limiting temperature imposed by the strength temperature characteristics of present materials.
NASA Astrophysics Data System (ADS)
Reddy, G. Janardhana; Hiremath, Ashwini; Kumar, Mahesh
2018-03-01
The present paper aims to investigate the effect of Prandtl number for unsteady third-grade fluid flow over a uniformly heated vertical cylinder using Bejan's heat function concept. The mathematical model of this problem is given by highly time-dependent non-linear coupled equations and are resolved by an efficient unconditionally stable implicit scheme. The time histories of average values of momentum and heat transport coefficients as well as the steady-state flow variables are displayed graphically for distinct values of non-dimensional control parameters arising in the system. As the non-dimensional parameter value gets amplified, the time taken for the fluid flow variables to attain the time-independent state is decreasing. The dimensionless heat function values are closely associated with an overall rate of heat transfer. Thermal energy transfer visualization implies that the heat function contours are compact in the neighborhood of the leading edge of the hot cylindrical wall. It is noticed that the deviations of flow-field variables from the hot wall for a non-Newtonian third-grade fluid flow are significant compared to the usual Newtonian fluid flow.
Heat sink effects on weld bead: VPPA process
NASA Technical Reports Server (NTRS)
Steranka, Paul O., Jr.
1990-01-01
An investigation into the heat sink effects due to weldment irregularities and fixtures used in the variable polarity plasma arc (VPPA) process was conducted. A basic two-dimensional model was created to represent the net heat sink effect of surplus material using Duhamel's theorem to superpose the effects of an infinite number of line heat sinks of variable strength. Parameters were identified that influence the importance of heat sink effects. A characteristic length, proportional to the thermal diffusivity of the weldment material divided by the weld torch travel rate, correlated with heat sinking observations. Four tests were performed on 2219-T87 aluminum plates to which blocks of excess material were mounted in order to demonstrate heat sink effects. Although the basic model overpredicted these effects, it correctly indicated the trends shown in the experimental study and is judged worth further refinement.
Heat sink effects on weld bead: VPPA process
NASA Technical Reports Server (NTRS)
Steranka, Paul O., Jr.
1989-01-01
An investigation into the heat sink effects due to weldment irregularities and fixtures used in the variable polarity plasma arc (VPPA) process was conducted. A basic two-dimensional model was created to represent the net heat sink effect of surplus material using Duhamel's theorem to superpose the effects of an infinite number of line heat sinks of variable strength. Parameters were identified that influence the importance of heat sink effects. A characteristic length, proportional to the thermal diffusivity of the weldment material divided by the weld torch travel rate, correlated with heat sinking observations. Four tests were performed on 2219-T87 aluminum plates to which blocks of excess material were mounted in order to demonstrate heat sink effects. Although the basic model overpredicted these effects, it correctly indicated the trends shown in the experimental study and is judged worth further refinement.
NASA Technical Reports Server (NTRS)
Dejarnette, F. R.
1972-01-01
A relatively simple method is presented for including the effect of variable entropy at the boundary-layer edge in a heat transfer method developed previously. For each inviscid surface streamline an approximate shockwave shape is calculated using a modified form of Maslen's method for inviscid axisymmetric flows. The entropy for the streamline at the edge of the boundary layer is determined by equating the mass flux through the shock wave to that inside the boundary layer. Approximations used in this technique allow the heating rates along each inviscid surface streamline to be calculated independent of the other streamlines. The shock standoff distances computed by the present method are found to compare well with those computed by Maslen's asymmetric method. Heating rates are presented for blunted circular and elliptical cones and a typical space shuttle orbiter at angles of attack. Variable entropy effects are found to increase heating rates downstream of the nose significantly higher than those computed using normal-shock entropy, and turbulent heating rates increased more than laminar rates. Effects of Reynolds number and angles of attack are also shown.
Effect of the environmental stimuli upon the human body in winter outdoor thermal environment.
Kurazumi, Yoshihito; Kondo, Emi; Ishii, Jin; Sakoi, Tomonori; Fukagawa, Kenta; Bolashikov, Zhecho Dimitrov; Tsuchikawa, Tadahiro; Matsubara, Naoki; Horikoshi, Tetsumi
2013-01-01
In order to manage the outdoor thermal environment with regard to human health and the environmental impact of waste heat, quantitative evaluations are indispensable. It is necessary to use a thermal environment evaluation index. The purpose of this paper is to clarify the relationship between the psychological thermal responses of the human body and winter outdoor thermal environment variables. Subjective experiments were conducted in the winter outdoor environment. Environmental factors and human psychological responses were measured. The relationship between the psychological thermal responses of the human body and the outdoor thermal environment index ETFe (enhanced conduction-corrected modified effective temperature) in winter was shown. The variables which influence the thermal sensation vote of the human body are air temperature, long-wave thermal radiation and short-wave solar radiation. The variables that influence the thermal comfort vote of the human body are air temperature, humidity, short-wave solar radiation, long-wave thermal radiation, and heat conduction. Short-wave solar radiation, and heat conduction are among the winter outdoor thermal environment variables that affect psychological responses to heat. The use of thermal environment evaluation indices that comprise short-wave solar radiation and heat conduction in winter outdoor spaces is a valid approach.
Interaction between Tropical Atlantic Variability and El Niño-Southern Oscillation.
NASA Astrophysics Data System (ADS)
Saravanan, R.; Chang, Ping
2000-07-01
The interaction between tropical Atlantic variability and El Niño-Southern Oscillation (ENSO) is investigated using three ensembles of atmospheric general circulation model integrations. The integrations are forced by specifying observed sea surface temperature (SST) variability over a forcing domain. The forcing domain is the global ocean for the first ensemble, limited to the tropical ocean for the second ensemble, and further limited to the tropical Atlantic region for the third ensemble. The ensemble integrations show that extratropical SST anomalies have little impact on tropical variability, but the effect of ENSO is pervasive in the Tropics. Consistent with previous studies, the most significant influence of ENSO is found during the boreal spring season and is associated with an anomalous Walker circulation. Two important aspects of ENSO's influence on tropical Atlantic variability are noted. First, the ENSO signal contributes significantly to the `dipole' correlation structure between tropical Atlantic SST and rainfall in the Nordeste Brazil region. In the absence of the ENSO signal, the correlations are dominated by SST variability in the southern tropical Atlantic, resulting in less of a dipole structure. Second, the remote influence of ENSO also contributes to positive correlations between SST anomalies and downward surface heat flux in the tropical Atlantic during the boreal spring season. However, even when ENSO forcing is absent, the model integrations provide evidence for a positive surface heat flux feedback in the deep Tropics, which is analyzed in a companion study by Chang et al. The analysis of model simulations shows that interannual atmospheric variability in the tropical Pacific-Atlantic system is dominated by the interaction between two distinct sources of tropical heating: (i) an equatorial heat source in the eastern Pacific associated with ENSO and (ii) an off-equatorial heat source associated with SST anomalies near the Caribbean. Modeling this Caribbean heat source accurately could be very important for seasonal forecasting in the Central American-Caribbean region.
County-level heat vulnerability of urban and rural residents in Tibet, China.
Bai, Li; Woodward, Alistair; Cirendunzhu; Liu, Qiyong
2016-01-12
Tibet is especially vulnerable to climate change due to the relatively rapid rise of temperature over past decades. The effects on mortality and morbidity of extreme heat in Tibet have been examined in previous studies; no heat adaptation initiatives have yet been implemented. We estimated heat vulnerability of urban and rural populations in 73 Tibetan counties and identified potential areas for public health intervention and further research. According to data availability and vulnerability factors identified previously in Tibet and elsewhere, we selected 10 variables related to advanced age, low income, illiteracy, physical and mental disability, small living spaces and living alone. We separately created and mapped county-level cumulative heat vulnerability indices for urban and rural residents by summing up factor scores produced by a principal components analysis (PCA). For both study populations, PCA yielded four factors with similar structure. The components for rural and urban residents explained 76.5 % and 77.7 % respectively of the variability in the original vulnerability variables. We found spatial variability of heat vulnerability across counties, with generally higher vulnerability in high-altitude counties. Although we observed similar median values and ranges of the cumulative heat vulnerability index values among urban and rural residents overall, the pattern varied strongly from one county to another. We have developed a measure of population vulnerability to high temperatures in Tibet. These are preliminary findings, but they may assist targeted adaptation plans in response to future rapid warming in Tibet.
NASA Technical Reports Server (NTRS)
Carr, J. H.; Hurley, P. J.; Martin, P. J.
1978-01-01
Applications of Thermal Energy Storage (TES) in a paper and pulp mill power house were studied as one approach to the transfer of steam production from fossil fuel boilers to waste fuel of (hog fuel) boilers. Data from specific mills were analyzed, and various TES concepts evaluated for application in the process steam supply system. Constant pressure and variable pressure steam accumulators were found to be the most attractive storage concepts for this application.
NASA Astrophysics Data System (ADS)
Le Bars, Michael; Worster, M. Grae
2006-07-01
A finite-element simulation of binary alloy solidification based on a single-domain formulation is presented and tested. Resolution of phase change is first checked by comparison with the analytical results of Worster [M.G. Worster, Solidification of an alloy from a cooled boundary, J. Fluid Mech. 167 (1986) 481-501] for purely diffusive solidification. Fluid dynamical processes without phase change are then tested by comparison with previous numerical studies of thermal convection in a pure fluid [G. de Vahl Davis, Natural convection of air in a square cavity: a bench mark numerical solution, Int. J. Numer. Meth. Fluids 3 (1983) 249-264; D.A. Mayne, A.S. Usmani, M. Crapper, h-adaptive finite element solution of high Rayleigh number thermally driven cavity problem, Int. J. Numer. Meth. Heat Fluid Flow 10 (2000) 598-615; D.C. Wan, B.S.V. Patnaik, G.W. Wei, A new benchmark quality solution for the buoyancy driven cavity by discrete singular convolution, Numer. Heat Transf. 40 (2001) 199-228], in a porous medium with a constant porosity [G. Lauriat, V. Prasad, Non-darcian effects on natural convection in a vertical porous enclosure, Int. J. Heat Mass Transf. 32 (1989) 2135-2148; P. Nithiarasu, K.N. Seetharamu, T. Sundararajan, Natural convective heat transfer in an enclosure filled with fluid saturated variable porosity medium, Int. J. Heat Mass Transf. 40 (1997) 3955-3967] and in a mixed liquid-porous medium with a spatially variable porosity [P. Nithiarasu, K.N. Seetharamu, T. Sundararajan, Natural convective heat transfer in an enclosure filled with fluid saturated variable porosity medium, Int. J. Heat Mass Transf. 40 (1997) 3955-3967; N. Zabaras, D. Samanta, A stabilized volume-averaging finite element method for flow in porous media and binary alloy solidification processes, Int. J. Numer. Meth. Eng. 60 (2004) 1103-1138]. Finally, new benchmark solutions for simultaneous flow through both fluid and porous domains and for convective solidification processes are presented, based on the similarity solutions in corner-flow geometries recently obtained by Le Bars and Worster [M. Le Bars, M.G. Worster, Interfacial conditions between a pure fluid and a porous medium: implications for binary alloy solidification, J. Fluid Mech. (in press)]. Good agreement is found for all tests, hence validating our physical and numerical methods. More generally, the computations presented here could now be considered as standard and reliable analytical benchmarks for numerical simulations, specifically and independently testing the different processes underlying binary alloy solidification.
NASA Astrophysics Data System (ADS)
Gireesha, B. J.; Kumar, P. B. Sampath; Mahanthesh, B.; Shehzad, S. A.; Abbasi, F. M.
2018-05-01
The nonlinear convective flow of kerosene-Alumina nanoliquid subjected to an exponential space dependent heat source and temperature dependent viscosity is investigated here. This study is focuses on augmentation of heat transport rate in liquid propellant rocket engine. The kerosene-Alumina nanoliquid is considered as the regenerative coolant. Aspects of radiation and viscous dissipation are also covered. Relevant nonlinear system is solved numerically via RK based shooting scheme. Diverse flow fields are computed and examined for distinct governing variables. We figured out that the nanoliquid's temperature increased due to space dependent heat source and radiation aspects. The heat transfer rate is higher in case of changeable viscosity than constant viscosity.
NASA Astrophysics Data System (ADS)
Gireesha, B. J.; Kumar, P. B. Sampath; Mahanthesh, B.; Shehzad, S. A.; Abbasi, F. M.
2018-02-01
The nonlinear convective flow of kerosene-Alumina nanoliquid subjected to an exponential space dependent heat source and temperature dependent viscosity is investigated here. This study is focuses on augmentation of heat transport rate in liquid propellant rocket engine. The kerosene-Alumina nanoliquid is considered as the regenerative coolant. Aspects of radiation and viscous dissipation are also covered. Relevant nonlinear system is solved numerically via RK based shooting scheme. Diverse flow fields are computed and examined for distinct governing variables. We figured out that the nanoliquid's temperature increased due to space dependent heat source and radiation aspects. The heat transfer rate is higher in case of changeable viscosity than constant viscosity.
ERIC Educational Resources Information Center
Charnock, H.
1980-01-01
Described is physical oceanography as analyzed by seven dependent variables, (three components of velocity, the pressure, density, temperature and salinity) as a function of three space variables and time. Topics discussed include the heat balance of the earth, current patterns in the ocean, heat transport, the air-sea interaction, and prospects…
Variable Gravity Effects on the Cooling Performance of a Single Phase Confined Spray
NASA Technical Reports Server (NTRS)
Michalak, Travis; Yerkes, Kirk; Baysinger, Karri; McQuillen, John
2005-01-01
The objective of this paper is to discuss the testing of a spray cooling experiment designed to be flown on NASA's KC-135 Reduced Gravity Testing Platform. Spray cooling is an example of a thermal management technique that may be utilized in high flux heat acquisition and high thermal energy transport concepts. Many researchers have investigated the utility of spray cooling for the thermal management of devices generating high heat fluxes. However, there has been little research addressing the physics and ultimate performance of spray cooling in a variable gravity environment. An experimental package, consisting of a spray chamber coupled to a fluid delivery loop system, was fabricated for variable gravity flight tests. The spray chamber contains two opposing nozzles spraying on target Indium Tin Oxide (ITO) heaters. These heaters are mounted on glass pedestals, which are part of a sump system to remove unconstrained liquid from the test chamber. Liquid is collected in the sumps and returned to the fluid delivery loop. Thermocouples mounted in and around the pedestals are used to determine both the heat loss through the underside of the IT0 heater and the heat extracted by the spray. A series of flight tests were carried out aboard the KC-135, utilizing the ability of the aircraft to produce various gravity conditions. During the flight tests, for a fixed flow rate, heat input was varied at 20, 30, 50, and 80W with variable gravities of 0.01, 0.16, 0.36, and 1.8g. Flight test data was compared to terrestrial baseline data in addition to analytical and numerical solutions to evaluate the heat transfer in the heater and support structure . There were significant differences observed in the spray cooling performance as a result of variable gravity conditions and heat inputs. In general, the Nussult number at the heater surface was found to increase with decreasing gravity conditions for heat loads greater than 30W.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Eric; Withers, Chuck; McIlvaine, Janet
Low-load homes can present a challenge when selecting appropriate space-conditioning equipment. Conventional, fixed-capacity heating and cooling equipment is often oversized for small homes, causing increased first costs and operating costs. This report evaluates the performance of variable-capacity comfort systems, with a focus on inverter-driven, variable-capacity systems, as well as proposed system enhancements.
NASA Astrophysics Data System (ADS)
Khan, M. Ijaz; Hayat, Tasawar; Alsaedi, Ahmed
2018-02-01
This modeling and computations present the study of viscous fluid flow with variable properties by a rotating stretchable disk. Rotating flow is generated through nonlinear rotating stretching surface. Nonlinear thermal radiation and heat generation/absorption are studied. Flow is conducting for a constant applied magnetic field. No polarization is taken. Induced magnetic field is not taken into account. Attention is focused on the entropy generation rate and Bejan number. The entropy generation rate and Bejan number clearly depend on velocity and thermal fields. The von Kármán approach is utilized to convert the partial differential expressions into ordinary ones. These expressions are non-dimensionalized, and numerical results are obtained for flow variables. The effects of the magnetic parameter, Prandtl number, radiative parameter, heat generation/absorption parameter, and slip parameter on velocity and temperature fields as well as the entropy generation rate and Bejan number are discussed. Drag forces (radial and tangential) and heat transfer rates are calculated and discussed. Furthermore the entropy generation rate is a decreasing function of magnetic variable and Reynolds number. The Bejan number effect on the entropy generation rate is reverse to that of the magnetic variable. Also opposite behavior of heat transfers is observed for varying estimations of radiative and slip variables.
NASA Astrophysics Data System (ADS)
Williams, Karen Ann
One section of college students (N = 25) enrolled in an algebra-based physics course was selected for a Piagetian-based learning cycle (LC) treatment while a second section (N = 25) studied in an Ausubelian-based meaningful verbal reception learning treatment (MVRL). This study examined the students' overall (concept + problem solving + mental model) meaningful understanding of force, density/Archimedes Principle, and heat. Also examined were students' meaningful understanding as measured by conceptual questions, problems, and mental models. In addition, students' learning orientations were examined. There were no significant posttest differences between the LC and MVRL groups for students' meaningful understanding or learning orientation. Piagetian and Ausubelian theories explain meaningful understanding for each treatment. Students from each treatment increased their meaningful understanding. However, neither group altered their learning orientation. The results of meaningful understanding as measured by conceptual questions, problem solving, and mental models were mixed. Differences were attributed to the weaknesses and strengths of each treatment. This research also examined four variables (treatment, reasoning ability, learning orientation, and prior knowledge) to find which best predicted students' overall meaningful understanding of physics concepts. None of these variables were significant predictors at the.05 level. However, when the same variables were used to predict students' specific understanding (i.e. concept, problem solving, or mental model understanding), the results were mixed. For forces and density/Archimedes Principle, prior knowledge and reasoning ability significantly predicted students' conceptual understanding. For heat, however, reasoning ability was the only significant predictor of concept understanding. Reasoning ability and treatment were significant predictors of students' problem solving for heat and forces. For density/Archimedes Principle, treatment was the only significant predictor of students' problem solving. None of the variables were significant predictors of mental model understanding. This research suggested that Piaget and Ausubel used different terminology to describe learning yet these theories are similar. Further research is needed to validate this premise and validate the blending of the two theories.
Design and Modeling of a Variable Heat Rejection Radiator
NASA Technical Reports Server (NTRS)
Miller, Jennifer R.; Birur, Gajanana C.; Ganapathi, Gani B.; Sunada, Eric T.; Berisford, Daniel F.; Stephan, Ryan
2011-01-01
Variable Heat Rejection Radiator technology needed for future NASA human rated & robotic missions Primary objective is to enable a single loop architecture for human-rated missions (1) Radiators are typically sized for maximum heat load in the warmest continuous environment resulting in a large panel area (2) Large radiator area results in fluid being susceptible to freezing at low load in cold environment and typically results in a two-loop system (3) Dual loop architecture is approximately 18% heavier than single loop architecture (based on Orion thermal control system mass) (4) Single loop architecture requires adaptability to varying environments and heat loads
Development of cryogenic thermal control heat pipes. [of stainless steels
NASA Technical Reports Server (NTRS)
1978-01-01
The development of thermal control heat pipes that are applicable to the low temperature to cryogenic range was investigated. A previous effort demonstrated that stainless steel axially grooved tubing which met performance requirements could be fabricated. Three heat pipe designs utilizing stainless steel axially grooved tubing were fabricated and tested. One is a liquid trap diode heat pipe which conforms to the configuration and performance requirements of the Heat Pipe Experiment Package (HEPP). The HEPP is scheduled for flight aboard the Long Duration Flight Exposure Facility (LDEF). Another is a thermal switch heat pipe which is designed to permit energy transfer at the cooler of the two identical legs. The third thermal component is a hybrid variable conductance heat pipe (VCHP). The design incorporates both a conventional VCHP system and a liquid trap diode. The design, fabrication and thermal testing of these heat pipes is described. The demonstrated heat pipe behavior including start-up, forward mode transport, recovery after evaporator dry-out, diode performance and variable conductance control are discussed.
Variable temperature seat climate control system
Karunasiri, Tissa R.; Gallup, David F.; Noles, David R.; Gregory, Christian T.
1997-05-06
A temperature climate control system comprises a variable temperature seat, at least one heat pump, at least one heat pump temperature sensor, and a controller. Each heat pump comprises a number of Peltier thermoelectric modules for temperature conditioning the air in a main heat exchanger and a main exchanger fan for passing the conditioned air from the main exchanger to the variable temperature seat. The Peltier modules and each main fan may be manually adjusted via a control switch or a control signal. Additionally, the temperature climate control system may comprise a number of additional temperature sensors to monitor the temperature of the ambient air surrounding the occupant as well as the temperature of the conditioned air directed to the occupant. The controller is configured to automatically regulate the operation of the Peltier modules and/or each main fan according to a temperature climate control logic designed both to maximize occupant comfort during normal operation, and minimize possible equipment damage, occupant discomfort, or occupant injury in the event of a heat pump malfunction.
Santos, Juliana L P; Samapundo, Simbarashe; Gülay, Sonay M; Van Impe, Jan; Sant'Ana, Anderson S; Devlieghere, Frank
2018-04-21
The major aims of this study were to assess inter- and intra-species variability of heat resistant moulds (HRMs), Byssochlamys fulva and Byssochlamys nivea, with regards to (i) heat resistance and (ii) effect of heat treatment intensity on subsequent outgrowth. Four-week-old ascospores were suspended in buffered glucose solution (13° Brix, pH 3.5) and heat treated in a thermal cycler adjusted at 85 °C, 90 °C and 93 °C. Two variants of the Weibull model were fitted to the survival data and the following inactivation parameters estimated: b (inactivation rate, min -1 ), n (curve shape) and δ (the time taken for first decimal reduction, min). In addition to the assessment of heat resistance, outgrowth of Byssochlamys sp. from ascospores heated at 70 °C, 75 °C, 80 °C, 85 °C and 90 °C for 10 min and at 93 °C for 30 and 70 s was determined at 22 °C for up to 30 days. The Baranyi and Roberts model was fitted to the growth data to estimate the radial growth rates (μ max , mm.day -1 ) and lag times (λ, days). Inter-species variability and significant differences (p < 0.05) were observed for both inactivation and growth estimated parameters among B. fulva and B. nivea strains. The effect of heat treatment intensity on outgrowth of B. fulva strains was more apparent at the most intense heat treatment evaluated (90 °C/10 min), which was also the condition in which greater dispersion of the estimated kinetic parameters was observed. On the other hand, B. nivea strains were more affected by heating, resulting in greater variability of growth parameters estimated at different heating intensities and in very long lag phases (up to 25 days). The results show that inter- and intra-species variability in the kinetic parameters of Byssochlamys sp. needs to be taken into account for more accurate spoilage prediction. Furthermore, the effect of thermal treatments on subsequent outgrowth from ascospores should be explored in combination with other relevant factors such as °Brix and oxygen to develop thermal processes and storage conditions which can prevent the growth of HRMs and spoilage of heat treated food products. Copyright © 2018 Elsevier B.V. All rights reserved.
Limitations and possibilities of AC calorimetry in diamond anvil cells
NASA Astrophysics Data System (ADS)
Geballe, Zachary; Colins, Gilbert; Jeanloz, Raymond
2013-06-01
Dynamic laser heating or internal resistive heating could allow for the determination of calorimetric properties of samples that are held statically at high pressure. However, the highly non-adiabatic environment of high-pressure cells presents several challenges. Here, we quantify the errors in AC calorimetry measurements using laser heating or internal resistive heating inside diamond anvil cells, summarize the equipment requirements of supplying sufficient power modulated at a high enough frequency to measure specific heats and latent heats of phase transitions, and propose two new experiments in internally-heated diamond anvil cells: an absolute measurement of specific heat (with ~10% uncertainty) of non-magnetic metals using resistive heating at ~10 MHz, and a relative measurement to detect changes in either the specific heat of metals or in the effusively (the product of specific heat, density and thermal conductivity) of an insulator.
Northern Eurasian Heat Waves and Droughts
NASA Technical Reports Server (NTRS)
Schubert, Siegfried; Wang, Hailan; Koster, Randal; Suarez, Max; Groisman, Pavel
2013-01-01
This article reviews our understanding of the characteristics and causes of northern Eurasian summertime heat waves and droughts. Additional insights into the nature of temperature and precipitation variability in Eurasia on monthly to decadal time scales and into the causes and predictability of the most extreme events are gained from the latest generation of reanalyses and from supplemental simulations with the NASA GEOS-5 AGCM. Key new results are: 1) the identification of the important role of summertime stationary Rossby waves in the development of the leading patterns of monthly Eurasian surface temperature and precipitation variability (including the development of extreme events such as the 2010 Russian heat wave), 2) an assessment of the mean temperature and precipitation changes that have occurred over northern Eurasia in the last three decades and their connections to decadal variability and global trends in SST, and 3) the quantification (via a case study) of the predictability of the most extreme simulated heat wave/drought events, with some focus on the role of soil moisture in the development and maintenance of such events. A literature survey indicates a general consensus that the future holds an enhanced probability of heat waves across northern Eurasia, while there is less agreement regarding future drought, reflecting a greater uncertainty in soil moisture and precipitation projections. Substantial uncertainties remain in our understanding of heat waves and drought, including the nature of the interactions between the short-term atmospheric variability associated with such extremes and the longer-term variability and trends associated with soil moisture feedbacks, SST anomalies, and an overall warming world.
The role of transcriptome resilience in resistance of corals to bleaching.
Seneca, Francois O; Palumbi, Stephen R
2015-04-01
Wild populations increasingly experience extreme conditions as climate change amplifies environmental variability. How individuals respond to environmental extremes determines the impact of climate change overall. The variability of response from individual to individual can represent the opportunity for natural selection to occur as a result of extreme conditions. Here, we experimentally replicated the natural exposure to extreme temperatures of the reef lagoon at Ofu Island (American Samoa), where corals can experience severe heat stress during midday low tide. We investigated the bleaching and transcriptome response of 20 Acropora hyacinthus colonies 5 and 20 h after exposure to control (29 °C) or heated (35 °C) conditions. We found a highly dynamic transcriptome response: 27% of the coral transcriptome was significantly regulated 1 h postheat exposure. Yet 15 h later, when heat-induced coral bleaching became apparent, only 12% of the transcriptome was differentially regulated. A large proportion of responsive genes at the first time point returned to control levels, others remained differentially expressed over time, while an entirely different subset of genes was successively regulated at the second time point. However, a noteworthy variability in gene expression was observed among individual coral colonies. Among the genes of which expression lingered over time, fast return to normal levels was associated with low bleaching. Colonies that maintained higher expression levels of these genes bleached severely. Return to normal levels of gene expression after stress has been termed transcriptome resilience, and in the case of some specific genes may signal the physiological health and response ability of individuals to environmental stress. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Garner, G.; Hannah, D. M.; Malcolm, I.; Sadler, J. P.
2012-12-01
Riparian forest is recognised as important for moderating stream temperature variability and has the potential to mitigate thermal extremes in a changing climate. Previous research on the heat exchanges controlling water column temperature has often been short-term or seasonally-constrained, with the few multi-year studies limited to a maximum of two years. This study advances previous work by providing a longer-term perspective which allows assessment of inter-annual variability in stream temperature, microclimate and heat exchange dynamics between a semi-natural woodland and a moorland (no trees) reach of the Girnock Burn, a tributary of the Scottish Dee. Automatic weather stations collected 15-minute data over seven consecutive years, which to our knowledge is a unique data set in providing the longest term perspective to date on stream temperature, microclimate and heat exchange processes. Results for spring-summer indicate that the presence of a riparian canopy has a consistent effect between years in reducing the magnitude and variability of mean daily water column temperature and daily net energy totals. Differences in the magnitude and variability in net energy fluxes between the study reaches were driven primarily by fluctuations in net radiation and latent heat fluxes in response to between- and within-year variability in growth of the riparian forest canopy at the forest and prevailing weather conditions at both the forest and moorland. This research provides new insights on the inter-annual variability of stream energy exchanges for moorland and forested reaches under a wide range of climatological and hydrological conditions. The findings therefore provide a more robust process basis for modelling the impact of changes in forest practice and climate change on river thermal dynamics.
An approach to evaluate the intra-urban thermal variability in summer using an urban indicator.
Massetti, Luciano; Petralli, Martina; Brandani, Giada; Orlandini, Simone
2014-09-01
Urban planners and managers need tools to evaluate the performance of the present state and future development of cities in terms of comfort and quality of life. In this paper, an approach to analyse the intra-urban summer thermal variability, using an urban planning indicator, is presented. The proportion of buildings and concrete surfaces in a specific buffer area are calculated. Besides, the relationship between urban and temperature indicators is investigated and used to produce thermal maps of the city. This approach is applied to the analysis of intra-urban variability in Florence (Italy), of two thermal indices (heat index and cooling degree days) used to evaluate impacts on thermal comfort and energy consumption for indoor cooling. Our results suggest that urban planning indicators can describe intra-urban thermal variability in a way that can easily be used by urban planners for evaluating the effects of future urbanization scenarios on human health. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Calegari, E. J.; Lausmann, A. C.; Magalhaes, S. G.; Chaves, C. M.; Troper, A.
2015-03-01
In this work the specific heat of a two-dimensional Hubbard model, suitable to discuss high-Tc superconductors (HTSC), is studied taking into account hopping to first (t) and second (t2) nearest neighbors. Experimental results for the specific heat of HTSC's, for instance, the YBCO and LSCO, indicate a close relation between the pseudogap and the specific heat. In the present work, we investigate the specific heat by the Green's function method within a n-pole approximation. The specific heat is calculated on the pseudogap and on the superconducting regions. In the present scenario, the pseudogap emerges when the antiferromagnetic (AF) fluctuations become sufficiently strong. The specific heat jump coefficient Δγ decreases when the total occupation per site (nT) reaches a given value. Such behavior of Δγ indicates the presence of a pseudogap in the regime of high occupation.
Efremov, A A; Bratseva, I I
1985-01-01
New method for optimized computing thermoelectric coolers is proposed for the case of variable temperatures within heat-transfer media. The operation of the device is analyzed when the temperature of the cooled medium is greater than the temperature of the heated one, i. e. under conditions of the negative temperature difference. The comparative analysis of the computed and experimental data in values of the cooling and electric power demonstrates fully satisfactory results.
Large variable conductance heat pipe. Transverse header
NASA Technical Reports Server (NTRS)
Edelstein, F.
1975-01-01
The characteristics of gas-loaded, variable conductance heat pipes (VCHP) are discussed. The difficulties involved in developing a large VCHP header are analyzed. The construction of the large capacity VCHP is described. A research project to eliminate some of the problems involved in large capacity VCHP operation is explained.
Simulation of Mesoscale Cellular Convection in Marine Stratocumulus. Part I: Drizzling Conditions
Zhou, Xiaoli; Ackerman, Andrew S.; Fridlind, Ann M.; ...
2018-01-01
This study uses eddy-permitting simulations to investigate the mechanisms that promote mesoscale variability of moisture in drizzling stratocumulus-topped marine boundary layers. Simulations show that precipitation tends to increase horizontal scales. Analysis of terms in the prognostic equation for total water mixing ratio variance indicates that moisture stratification plays a leading role in setting horizontal scales. This result is supported by simulations in which horizontal mean thermodynamic profiles are strongly nudged to their initial well-mixed state, which limits cloud scales. It is found that the spatial variability of subcloud moist cold pools surprisingly tends to respond to, rather than determine, themore » mesoscale variability, which may distinguish them from dry cold pools associated with deeper convection. Finally, simulations also indicate that moisture stratification increases cloud scales specifically by increasing latent heating within updrafts, which increases updraft buoyancy and favors greater horizontal scales.« less
Simulation of Mesoscale Cellular Convection in Marine Stratocumulus. Part I: Drizzling Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xiaoli; Ackerman, Andrew S.; Fridlind, Ann M.
This study uses eddy-permitting simulations to investigate the mechanisms that promote mesoscale variability of moisture in drizzling stratocumulus-topped marine boundary layers. Simulations show that precipitation tends to increase horizontal scales. Analysis of terms in the prognostic equation for total water mixing ratio variance indicates that moisture stratification plays a leading role in setting horizontal scales. This result is supported by simulations in which horizontal mean thermodynamic profiles are strongly nudged to their initial well-mixed state, which limits cloud scales. It is found that the spatial variability of subcloud moist cold pools surprisingly tends to respond to, rather than determine, themore » mesoscale variability, which may distinguish them from dry cold pools associated with deeper convection. Finally, simulations also indicate that moisture stratification increases cloud scales specifically by increasing latent heating within updrafts, which increases updraft buoyancy and favors greater horizontal scales.« less
Advanced diesel electronic fuel injection and turbocharging
NASA Astrophysics Data System (ADS)
Beck, N. J.; Barkhimer, R. L.; Steinmeyer, D. C.; Kelly, J. E.
1993-12-01
The program investigated advanced diesel air charging and fuel injection systems to improve specific power, fuel economy, noise, exhaust emissions, and cold startability. The techniques explored included variable fuel injection rate shaping, variable injection timing, full-authority electronic engine control, turbo-compound cooling, regenerative air circulation as a cold start aid, and variable geometry turbocharging. A Servojet electronic fuel injection system was designed and manufactured for the Cummins VTA-903 engine. A special Servojet twin turbocharger exhaust system was also installed. A series of high speed combustion flame photos was taken using the single cylinder optical engine at Michigan Technological University. Various fuel injection rate shapes and nozzle configurations were evaluated. Single-cylinder bench tests were performed to evaluate regenerative inlet air heating techniques as an aid to cold starting. An exhaust-driven axial cooling air fan was manufactured and tested on the VTA-903 engine.
The relevance of rooftops: Analyzing the microscale surface energy balance in the Chicago region
NASA Astrophysics Data System (ADS)
Khosla, Radhika
Spatial structure in climate variables often exist over very short length scales within an urban area, and this structure is a result of various site-specific features. In order to analyze the seasonal and diurnal energy flows that take place at a microclimatic surface, this work develops a semi-empirical energy balance model. For this, radiation fluxes and meteorological measurements are determined by direct observation; sensible heat and latent heat fluxes by parameterizations; and the heat storage flux by a 1-D mechanistic model that allows analysis of the temperature profile and heat storage within an underlying slab. Two sites receive detailed study: an anthropogenic site, being a University of Chicago building rooftop, and a natural site, outside Chicago in the open country. Two identical sets of instruments record measurements contemporaneously from these locations during June-November 2007, the entire period for which analyses are carried out. The study yields seasonal trends in surface temperature, surface-to-air temperature contrast and net radiation. At both sites, a temporal hysteresis between net radiation and heat storage flux indicates that surplus energy absorbed during daylight is released to the atmosphere later in the evening. The surface energy balance model responds well to site specific features for both locations. An analysis of the surface energy balance shows that the flux of sensible heat is the largest non-radiative contributor to the roof's surface cooling, while the flux of latent heat (also referred to as evaporative cooling) is the largest heat sink for the soil layer. In the latter part of the study, the surface energy balance model is upgraded by adding the capability to compute changes in surface temperature and non-radiative fluxes for any specified set of thermal and reflective roof properties. The results of this analysis allow an examination of the relationship between the roof temperature, the heat flux entering the building interior through the roof, and the physical properties of the surface. These results hold particular relevance for urban heat island mitigation strategies. Based on the results of this work, recommendations are proposed for widespread adoption of various techniques that enhance building energy efficiency (particularly targeting rooftops), mitigate the negative impacts of the urban heat island, and overcome the current barriers to transforming the market.
Evaluation of Working Fluids for Organic Rankine Cycle Based on Exergy Analysis
NASA Astrophysics Data System (ADS)
Setiawan, D.; Subrata, I. D. M.; Purwanto, Y. A.; Tambunan, A. H.
2018-05-01
One of the crucial aspects to determine the performance of Organic Rankine Cycle (ORC) is the selection of appropriate working fluids. This paper describes the simulative performance of several organic fluid and water as working fluid of an ORC based on exergy analysis with a heat source from waste heat recovery. The simulation was conducted by using Engineering Equation Solver (EES). The effect of several parameters and thermodynamic properties of working fluid was analyzed, and part of them was used as variables for the simulation in order to determine their sensitivity to the exergy efficiency changes. The results of this study showed that water is not appropriate to be used as working fluid at temperature lower than 130 °C, because the expansion process falls in saturated area. It was also found that Benzene had the highest exergy efficiency, i.e. about 10.49%, among the dry type working fluid. The increasing turbine inlet temperature did not lead to the increase of exergy efficiency when using organic working fluids with critical temperature near heat source temperature. Meanwhile, exergy efficiency decreasing linearly with the increasing condenser inlet temperature. In addition, it was found that working fluid with high latent heat of vaporization and specific heat exert in high exergy efficiency.
NASA Astrophysics Data System (ADS)
Nazarian, Negin; Martilli, Alberto; Kleissl, Jan
2018-03-01
As urbanization progresses, more realistic methods are required to analyze the urban microclimate. However, given the complexity and computational cost of numerical models, the effects of realistic representations should be evaluated to identify the level of detail required for an accurate analysis. We consider the realistic representation of surface heating in an idealized three-dimensional urban configuration, and evaluate the spatial variability of flow statistics (mean flow and turbulent fluxes) in urban streets. Large-eddy simulations coupled with an urban energy balance model are employed, and the heating distribution of urban surfaces is parametrized using sets of horizontal and vertical Richardson numbers, characterizing thermal stratification and heating orientation with respect to the wind direction. For all studied conditions, the thermal field is strongly affected by the orientation of heating with respect to the airflow. The modification of airflow by the horizontal heating is also pronounced for strongly unstable conditions. The formation of the canyon vortices is affected by the three-dimensional heating distribution in both spanwise and streamwise street canyons, such that the secondary vortex is seen adjacent to the windward wall. For the dispersion field, however, the overall heating of urban surfaces, and more importantly, the vertical temperature gradient, dominate the distribution of concentration and the removal of pollutants from the building canyon. Accordingly, the spatial variability of concentration is not significantly affected by the detailed heating distribution. The analysis is extended to assess the effects of three-dimensional surface heating on turbulent transfer. Quadrant analysis reveals that the differential heating also affects the dominance of ejection and sweep events and the efficiency of turbulent transfer (exuberance) within the street canyon and at the roof level, while the vertical variation of these parameters is less dependent on the detailed heating of urban facets.
Measurement of temperature-dependent specific heat of biological tissues.
Haemmerich, Dieter; Schutt, David J; dos Santos, Icaro; Webster, John G; Mahvi, David M
2005-02-01
We measured specific heat directly by heating a sample uniformly between two electrodes by an electric generator. We minimized heat loss by styrofoam insulation. We measured temperature from multiple thermocouples at temperatures from 25 degrees C to 80 degrees C while heating the sample, and corrected for heat loss. We confirm method accuracy with a 2.5% agar-0.4% saline physical model and obtain specific heat of 4121+/-89 J (kg K)(-1), with an average error of 3.1%.
Power control of SAFE reactor using fuzzy logic
NASA Astrophysics Data System (ADS)
Irvine, Claude
2002-01-01
Controlling the 100 kW SAFE (Safe Affordable Fission Engine) reactor consists of design and implementation of a fuzzy logic process control system to regulate dynamic variables related to nuclear system power. The first phase of development concentrates primarily on system power startup and regulation, maintaining core temperature equilibrium, and power profile matching. This paper discusses the experimental work performed in those areas. Nuclear core power from the fuel elements is simulated using resistive heating elements while heat rejection is processed by a series of heat pipes. Both axial and radial nuclear power distributions are determined from neuronic modeling codes. The axial temperature profile of the simulated core is matched to the nuclear power profile by varying the resistance of the heating elements. The SAFE model establishes radial temperature profile equivalence by establishing 32 control zones as the nodal coordinates. Control features also allow for slow warm up, since complete shutoff can occur in the heat pipes if heat-source temperatures drop/rise below a certain minimum value, depending on the specific fluid and gas combination in the heat pipe. The entire system is expected to be self-adaptive, i.e., capable of responding to long-range changes in the space environment. Particular attention in the development of the fuzzy logic algorithm shall ensure that the system process remains at set point, virtually eliminating overshoot on start-up and during in-process disturbances. The controller design will withstand harsh environments and applications where it might come in contact with water, corrosive chemicals, radiation fields, etc. .
Kumar, Dinesh; Rai, K N
2016-12-01
Hyperthermia is a process that uses heat from the spatial heat source to kill cancerous cells without damaging the surrounding healthy tissues. Efficacy of hyperthermia technique is related to achieve temperature at the infected cells during the treatment process. A mathematical model on heat transfer in multilayer tissues in finite domain is proposed to predict the control temperature profile at hyperthermia position. The treatment technique uses dual-phase-lag model of heat transfer in multilayer tissues with modified Gaussian distribution heat source subjected to the most generalized boundary condition and interface at the adjacent layers. The complete dual-phase-lag model of bioheat transfer is solved using finite element Legendre wavelet Galerkin approach. The present solution has been verified with exact solution in a specific case and provides a good accuracy. The effect of the variability of different parameters such as lagging times, external heat source, metabolic heat source and the most generalized boundary condition on temperature profile in multilayer tissues is analyzed and also discussed the effective approach of hyperthermia treatment. Furthermore, we studied the modified thermal damage model with regeneration of healthy tissues as well. For viewpoint of thermal damage, the least thermal damage has been observed in boundary condition of second kind. The article concludes with a discussion of better opportunities for future clinical application of hyperthermia treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Glenn Steady-State Heat Pipe Code Users Manual, DOS Input. Version 2
NASA Technical Reports Server (NTRS)
Tower, Leonard K.
2000-01-01
The heat pipe code LERCHP has been revised, corrected, and extended. New features include provisions for pipes with curvature and bends in "G" fields. Heat pipe limits are examined in detail and limit envelopes are shown for some sodium and lithium-filled heat pipes. Refluxing heat pipes and gas-loaded or variable conductance heat pipes were not considered.
Omidfar, Kobra; Rasaee, Mohhamad Javad; Kashanian, Soheila; Paknejad, Malieheh; Bathaie, Zahra
2007-01-01
Camelids have a unique immune system capable of producing heavy-chain antibodies lacking the light chains and CH1 (constant heavy-chain domain 1). It has been shown that, in contrast with conventional antibody fragments, the variable domains of these heavy-chain antibodies are functional at or after exposure to high temperatures. In the present study, the VHH (variable domain of heavy-chain antibody) camel antibody was subcloned into vector Ppiczc and expressed in Pichia pastoris. ORB1-83 VHH antibody recognizes the external domain of the mutant EGFR [EGF (epidermal growth factor) receptor], EGFR VIII. This tumour-specific antigen is ligand-independent, contains a constitutively active tyrosine kinase domain and has been shown to be present in a number of human malignancies. We report here that, although expression from P. pastoris resulted in a significantly increased level of expression of the anti-EGFR VIII VHH antibodies compared with Escherichia coli [Omidfar, Rasaee, Modjtahedi, Forouzandeh, Taghikhani, Bakhtiari, Paknejad and Kashanian (2004) Tumor Biol. 25, 179-187; Omidfar, Rasaee, Modjtahedi, Forouzandeh, Taghikhani and Golmakany (2004) Tumor Biol. 25, 296-305], this antibody selectively bound to the EGFR VIII peptide and reacted specifically with the immunoaffinity-purified antigen from non-small-cell lung cancer. Furthermore, thermal denaturation stability and CD spectra analysis of the Camelus bactrianus (Bactrian camel) VHH and heavy-chain antibodies at different temperature proved reversibility and binding activity after heat denaturation. Our results indicate that the P. pastoris expression system may be useful for the expression of camel single domain antibody and the ability of the expressed protein to reversibly melt without aggregation, allowing it to regain binding activity after heat denaturation.
Heat flow in variable polarity plasma arc welds
NASA Technical Reports Server (NTRS)
Abdelmessih, Amanie N.
1992-01-01
The space shuttle external tank and the space station Freedom are fabricated by the variable polarity plasma arc (VPPA) welding. Heat sink effects (taper) are observed when there are irregularities in the work-piece configuration especially if these irregularities are close to the weld bead. These heat sinks affect the geometry of the weld bead, and in extreme cases they could cause defects such as incomplete fusion. Also, different fixtures seem to have varying heat sink effects. The objective of the previous, present, and consecutive research studies is to investigate the effect of irregularities in the work-piece configuration and fixture differences on the weld bead geometry with the ultimate objective to compensate automatically for the heat sink effects and achieve a perfect weld.
Effects of whole body heating on dynamic baroreflex regulation of heart rate in humans
NASA Technical Reports Server (NTRS)
Crandall, C. G.; Zhang, R.; Levine, B. D.
2000-01-01
The purpose of this project was to identify whether dynamic baroreflex regulation of heart rate (HR) is altered during whole body heating. In 14 subjects, dynamic baroreflex regulation of HR was assessed using transfer function analysis. In normothermic and heat-stressed conditions, each subject breathed at a fixed rate (0. 25 Hz) while beat-by-beat HR and systolic blood pressure (SBP) were obtained. Whole body heating significantly increased sublingual temperature, HR, and forearm skin blood flow. Spectral analysis of HR and SBP revealed that the heat stress significantly reduced HR and SBP variability within the high-frequency range (0.2-0.3 Hz), reduced SBP variability within the low-frequency range (0.03-0.15 Hz), and increased the ratio of low- to high-frequency HR variability (all P < 0.01). Transfer function gain analysis showed that the heat stress reduced dynamic baroreflex regulation of HR within the high-frequency range (from 1.04 +/- 0.06 to 0.54 +/- 0.6 beats. min(-1). mmHg(-1); P < 0.001) without significantly affecting the gain in the low-frequency range (P = 0.63). These data suggest that whole body heating reduced high-frequency dynamic baroreflex regulation of HR associated with spontaneous changes in blood pressure. Reduced vagal baroreflex regulation of HR may contribute to reduced orthostatic tolerance known to occur in humans during heat stress.
Design and control of a variable geometry turbofan with an independently modulated third stream
NASA Astrophysics Data System (ADS)
Simmons, Ronald J.
Emerging 21st century military missions task engines to deliver the fuel efficiency of a high bypass turbofan while retaining the ability to produce the high specific thrust of a low bypass turbofan. This study explores the possibility of satisfying such competing demands by adding a second independently modulated bypass stream to the basic turbofan architecture. This third stream can be used for a variety of purposes including: providing a cool heat sink for dissipating aircraft heat loads, cooling turbine cooling air, and providing a readily available stream of constant pressure ratio air for lift augmentation. Furthermore, by modulating airflow to the second and third streams, it is possible to continuously match the engine's airflow demand to the inlet's airflow supply thereby reducing spillage and increasing propulsive efficiency. This research begins with a historical perspective of variable cycle engines and shows a logical progression to proposed architectures. Then a novel method for investigating optimal performance is presented which determines most favorable on design variable geometry settings, most beneficial moment to terminate flow holding, and an optimal scheduling of variable features for fuel efficient off design operation. Mission analysis conducted across the three candidate missions verifies that these three stream variable cycles can deliver fuel savings in excess of 30% relative to a year 2000 reference turbofan. This research concludes by evaluating the relative impact of each variable technology on the performance of adaptive engine architectures. The most promising technologies include modulated turbine cooling air, variable high pressure turbine inlet area and variable third stream nozzle throat area. With just these few features it is possible to obtain nearly optimal performance, including 90% or more of the potential fuel savings, with far fewer variable features than are available in the study engine. It is abundantly clear that three stream variable architectures can significantly outperform existing two stream turbofans in both fuel efficiency and at the vehicle system level with only a modest increase in complexity and weight. Such engine architectures should be strongly considered for future military applications.
STUDY OF THE SUBARCTIC HEAT ISLAND AT FAIRBANKS, ALASKA
The heat island associated with the City of Fairbanks, Alaska was studied as a means of isolating the effects of self-heating modified radiative transfer from other causes of heat islands. Minimal winter insolation virtually eliminated the effects of variable albedo and the daily...
Importance of ocean mesoscale variability for air-sea interactions in the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Putrasahan, D. A.; Kamenkovich, I.; Le Hénaff, M.; Kirtman, B. P.
2017-06-01
Mesoscale variability of currents in the Gulf of Mexico (GoM) can affect oceanic heat advection and air-sea heat exchanges, which can influence climate extremes over North America. This study is aimed at understanding the influence of the oceanic mesoscale variability on the lower atmosphere and air-sea heat exchanges. The study contrasts global climate model (GCM) with 0.1° ocean resolution (high resolution; HR) with its low-resolution counterpart (1° ocean resolution with the same 0.5° atmosphere resolution; LR). The LR simulation is relevant to current generation of GCMs that are still unable to resolve the oceanic mesoscale. Similar to observations, HR exhibits positive correlation between sea surface temperature (SST) and surface turbulent heat flux anomalies, while LR has negative correlation. For HR, we decompose lateral advective heat fluxes in the upper ocean into mean (slowly varying) and mesoscale-eddy (fast fluctuations) components. We find that the eddy flux divergence/convergence dominates the lateral advection and correlates well with the SST anomalies and air-sea latent heat exchanges. This result suggests that oceanic mesoscale advection supports warm SST anomalies that in turn feed surface heat flux. We identify anticyclonic warm-core circulation patterns (associated Loop Current and rings) which have an average diameter of 350 km. These warm anomalies are sustained by eddy heat flux convergence at submonthly time scales and have an identifiable imprint on surface turbulent heat flux, atmospheric circulation, and convective precipitation in the northwest portion of an averaged anticyclone.
Guellouz, Asma; Valerio-Lepiniec, Marie; Urvoas, Agathe; Chevrel, Anne; Graille, Marc; Fourati-Kammoun, Zaineb; Desmadril, Michel; van Tilbeurgh, Herman; Minard, Philippe
2013-01-01
We previously designed a new family of artificial proteins named αRep based on a subgroup of thermostable helicoidal HEAT-like repeats. We have now assembled a large optimized αRep library. In this library, the side chains at each variable position are not fully randomized but instead encoded by a distribution of codons based on the natural frequency of side chains of the natural repeats family. The library construction is based on a polymerization of micro-genes and therefore results in a distribution of proteins with a variable number of repeats. We improved the library construction process using a "filtration" procedure to retain only fully coding modules that were recombined to recreate sequence diversity. The final library named Lib2.1 contains 1.7×10(9) independent clones. Here, we used phage display to select, from the previously described library or from the new library, new specific αRep proteins binding to four different non-related predefined protein targets. Specific binders were selected in each case. The results show that binders with various sizes are selected including relatively long sequences, with up to 7 repeats. ITC-measured affinities vary with Kd values ranging from micromolar to nanomolar ranges. The formation of complexes is associated with a significant thermal stabilization of the bound target protein. The crystal structures of two complexes between αRep and their cognate targets were solved and show that the new interfaces are established by the variable surfaces of the repeated modules, as well by the variable N-cap residues. These results suggest that αRep library is a new and versatile source of tight and specific binding proteins with favorable biophysical properties.
Chevrel, Anne; Graille, Marc; Fourati-Kammoun, Zaineb; Desmadril, Michel; van Tilbeurgh, Herman; Minard, Philippe
2013-01-01
We previously designed a new family of artificial proteins named αRep based on a subgroup of thermostable helicoidal HEAT-like repeats. We have now assembled a large optimized αRep library. In this library, the side chains at each variable position are not fully randomized but instead encoded by a distribution of codons based on the natural frequency of side chains of the natural repeats family. The library construction is based on a polymerization of micro-genes and therefore results in a distribution of proteins with a variable number of repeats. We improved the library construction process using a “filtration” procedure to retain only fully coding modules that were recombined to recreate sequence diversity. The final library named Lib2.1 contains 1.7×109 independent clones. Here, we used phage display to select, from the previously described library or from the new library, new specific αRep proteins binding to four different non-related predefined protein targets. Specific binders were selected in each case. The results show that binders with various sizes are selected including relatively long sequences, with up to 7 repeats. ITC-measured affinities vary with Kd values ranging from micromolar to nanomolar ranges. The formation of complexes is associated with a significant thermal stabilization of the bound target protein. The crystal structures of two complexes between αRep and their cognate targets were solved and show that the new interfaces are established by the variable surfaces of the repeated modules, as well by the variable N-cap residues. These results suggest that αRep library is a new and versatile source of tight and specific binding proteins with favorable biophysical properties. PMID:24014183
Chemically reactive species in squeezed flow through modified Fourier's and Fick's laws
NASA Astrophysics Data System (ADS)
Farooq, M.; Ahmad, S.; Javed, M.; Anjum, Aisha
2018-02-01
The squeezing flow of a Newtonian fluid with variable viscosity over a stretchable sheet embedded in Darcy porous medium is addressed. Cattaneo-Christov double diffusion models are adopted to disclose the salient features of heat and mass transport via variable thermal conductivity and variable mass diffusivity instead of conventional Fourier's and Fick's laws. Further, the concept of heat generation/absorption coefficient and first-order chemical reaction are also imposed to illustrate the characteristics of heat and mass transfer. Highly nonlinear computations are developed in dimensionless form and analyzed via the homotopic technique. The variation of flow parameters on velocity, concentration, and temperature distributions are sketched and disclosed physically. The results found that both concentration and temperature distributions decay for higher solutal and thermal relaxation parameters, respectively. Moreover, a higher chemical reaction parameter results in the reduction of the concentration field whereas the temperature profile enhances for a higher heat generation/absorption parameter.
Variable Temperature Equipment for a Commercial Magnetic Susceptibility Balance
ERIC Educational Resources Information Center
Lotz, Albert
2008-01-01
Variable temperature equipment for the magnetic susceptibility balance MSB-MK1 of Sherwood Scientific, Ltd., is described. The sample temperature is controlled with streaming air heated by water in a heat exchanger. Whereas the balance as sold commercially can be used only for room temperature measurements, the setup we designed extends the…
NASA Astrophysics Data System (ADS)
Zhao, Rui; Zhang, Sijie; Liu, Jie; Gu, Junjie
2015-12-01
Lithium ion (Li-ion) battery has emerged as an important power source for portable devices and electric vehicles due to its superiority over other energy storage technologies. A mild temperature variation as well as a proper operating temperature range are essential for a Li-ion battery to perform soundly and have a long service life. In this review paper, the heat generation and dissipation of Li-ion battery are firstly analyzed based on the energy conservation equations, followed by an examination of the hazardous effects of an above normal operating temperature. Then, advanced techniques in respect of electrode modification and systematic battery thermal management are inspected in detail as solutions in terms of reducing internal heat production and accelerating external heat dissipation, respectively. Specifically, variable parameters like electrode thickness and particle size of active material, along with optimization methods such as coating, doping, and adding conductive media are discussed in the electrode modification section, while the current development in air cooling, liquid cooling, heat pipe cooling, and phase change material cooling systems are reviewed in the thermal management part as different ways to improve the thermal performance of Li-ion batteries.
Comparative study on aerodynamic heating under perfect and nonequilibrium hypersonic flows
NASA Astrophysics Data System (ADS)
Wang, Qiu; Li, JinPing; Zhao, Wei; Jiang, ZongLin
2016-02-01
In this study, comparative heat flux measurements for a sharp cone model were conducted by utilizing a high enthalpy shock tunnel JF-10 and a large-scale shock tunnel JF-12, responsible for providing nonequilibrium and perfect gas flows, respectively. Experiments were performed at the Key Laboratory of High Temperature Gas Dynamics (LHD), Institute of Mechanics, Chinese Academy of Sciences. Corresponding numerical simulations were also conducted in effort to better understand the phenomena accompanying in these experiments. By assessing the consistency and accuracy of all the data gathered during this study, a detailed comparison of sharp cone heat transfer under a totally different kind of freestream conditions was build and analyzed. One specific parameter, defined as the product of the Stanton number and the square root of the Reynold number, was found to be more characteristic for the aerodynamic heating phenomena encountered in hypersonic flight. Adequate use of said parameter practically eliminates the variability caused by the deferent flow conditions, regardless of whether the flow is in dissociation or the boundary condition is catalytic. Essentially, the parameter identified in this study reduces the amount of ground experimental data necessary and eases data extrapolation to flight.
Effect of the Environmental Stimuli upon the Human Body in Winter Outdoor Thermal Environment
Kurazumi, Yoshihito; Kondo, Emi; Ishii, Jin; Sakoi, Tomonori; Fukagawa, Kenta; Bolashikov, Zhecho Dimitrov; Tsuchikawa, Tadahiro; Matsubara, Naoki; Horikoshi, Tetsumi
2013-01-01
In order to manage the outdoor thermal environment with regard to human health and the environmental impact of waste heat, quantitative evaluations are indispensable. It is necessary to use a thermal environment evaluation index. The purpose of this paper is to clarify the relationship between the psychological thermal responses of the human body and winter outdoor thermal environment variables. Subjective experiments were conducted in the winter outdoor environment. Environmental factors and human psychological responses were measured. The relationship between the psychological thermal responses of the human body and the outdoor thermal environment index ETFe (enhanced conduction-corrected modified effective temperature) in winter was shown. The variables which influence the thermal sensation vote of the human body are air temperature, long-wave thermal radiation and short-wave solar radiation. The variables that influence the thermal comfort vote of the human body are air temperature, humidity, short-wave solar radiation, long-wave thermal radiation, and heat conduction. Short-wave solar radiation, and heat conduction are among the winter outdoor thermal environment variables that affect psychological responses to heat. The use of thermal environment evaluation indices that comprise short-wave solar radiation and heat conduction in winter outdoor spaces is a valid approach. PMID:23861691
Regionally dependent summer heat wave response to increased surface temperature in the US
NASA Astrophysics Data System (ADS)
Lopez, H.; Dong, S.; Kirtman, B. P.; Goni, G. J.; Lee, S. K.; Atlas, R. M.; West, R.
2017-12-01
Climate projections for the 21st Century suggest an increase in the occurrence of heat waves. However, the time it takes for the externally forced signal of climate change to emerge against the background of natural variability (i.e., Time of Emergence, ToE) particularly on the regional scale makes reliable future projection of heat waves challenging. Here, we combine observations and model simulations under present and future climate forcing to assess internal variability versus external forcing in modulating US heat waves. We characterized the most common heat wave patterns over the US by the use of clustering of extreme events by their spatial distribution. For each heat wave cluster, we assess changes in the probability density function (PDF) of summer temperature extremes by modeling the PDF as a stochastically generated skewed (SGS) distribution. The probability of necessary causation for each heat wave cluster was also quantified, allowing to make assessments of heat extreme attribution to anthropogenic climate change. The results suggest that internal variability will dominate heat wave occurrence over the Great Plains with ToE occurring in the 2050s (2070s) and of occurrence of ratio of warm-to-cold extremes of 1.7 (1.7) for the Northern (Southern) Plains. In contrast, external forcing will dominate over the Western (Great Lakes) region with ToE occurring as early as in the 2020s (2030s) and warm-to-cold extremes ratio of 6.4 (10.2), suggesting caution in attributing heat extremes to external forcing due to their regional dependence.
Hass, Alisa L.; Ellis, Kelsey N.; Reyes Mason, Lisa; Hathaway, Jon M.; Howe, David A.
2016-01-01
Daily weather conditions for an entire city are usually represented by a single weather station, often located at a nearby airport. This resolution of atmospheric data fails to recognize the microscale climatic variability associated with land use decisions across and within urban neighborhoods. This study uses heat index, a measure of the combined effects of temperature and humidity, to assess the variability of heat exposure from ten weather stations across four urban neighborhoods and two control locations (downtown and in a nearby nature center) in Knoxville, Tennessee, USA. Results suggest that trees may negate a portion of excess urban heat, but are also associated with greater humidity. As a result, the heat index of locations with more trees is significantly higher than downtown and areas with fewer trees. Trees may also reduce heat stress by shading individuals from incoming radiation, though this is not considered in this study. Greater amounts of impervious surfaces correspond with reduced evapotranspiration and greater runoff, in terms of overall mass balance, leading to a higher temperature, but lower relative humidity. Heat index and relative humidity were found to significantly vary between locations with different tree cover and neighborhood characteristics for the full study time period as well as for the top 10% of heat index days. This work demonstrates the need for high-resolution climate data and the use of additional measures beyond temperature to understand urban neighborhood exposure to extreme heat, and expresses the importance of considering vulnerability differences among residents when analyzing neighborhood-scale impacts. PMID:26761021
Hass, Alisa L; Ellis, Kelsey N; Reyes Mason, Lisa; Hathaway, Jon M; Howe, David A
2016-01-11
Daily weather conditions for an entire city are usually represented by a single weather station, often located at a nearby airport. This resolution of atmospheric data fails to recognize the microscale climatic variability associated with land use decisions across and within urban neighborhoods. This study uses heat index, a measure of the combined effects of temperature and humidity, to assess the variability of heat exposure from ten weather stations across four urban neighborhoods and two control locations (downtown and in a nearby nature center) in Knoxville, Tennessee, USA. Results suggest that trees may negate a portion of excess urban heat, but are also associated with greater humidity. As a result, the heat index of locations with more trees is significantly higher than downtown and areas with fewer trees. Trees may also reduce heat stress by shading individuals from incoming radiation, though this is not considered in this study. Greater amounts of impervious surfaces correspond with reduced evapotranspiration and greater runoff, in terms of overall mass balance, leading to a higher temperature, but lower relative humidity. Heat index and relative humidity were found to significantly vary between locations with different tree cover and neighborhood characteristics for the full study time period as well as for the top 10% of heat index days. This work demonstrates the need for high-resolution climate data and the use of additional measures beyond temperature to understand urban neighborhood exposure to extreme heat, and expresses the importance of considering vulnerability differences among residents when analyzing neighborhood-scale impacts.
Individual thermal profiles as a basis for comfort improvement in space and other environments
NASA Technical Reports Server (NTRS)
Koscheyev, V. S.; Coca, A.; Leon, G. R.; Dancisak, M. J.
2002-01-01
BACKGROUND: The development of individualized countermeasures to address problems in thermoregulation is of considerable importance for humans in space and other extreme environments. A methodology is presented for evaluating minimal/maximal heat flux from the total human body and specific body zones, and for assessing individual differences in the efficiency of heat exchange from these body areas. The goal is to apply this information to the design of individualized protective equipment. METHODS: A multi-compartment conductive plastic tubing liquid cooling/warming garment (LCWG) was developed. Inlet water temperatures of 8-45 degrees C were imposed sequentially to specific body areas while the remainder of the garment was maintained at 33 degrees C. RESULTS: There were significant differences in heat exchange level among body zones in both the 8 degrees and 45 degrees C temperature conditions (p < 0.001). The greatest amount of heat was absorbed/released by the following areas: thighs (8 degrees C: -2.12 +/- 0.14 kcal min(-1); 45 degrees C: +1.58 +/- 0.23); torso (8 degrees C: -2.12 +/- 0.13 kcal min(-1); 45 degrees C: +1.31 +/- 0.27); calves (8 degrees C: -1.59 +/- 0.26 kcal min(-1); 45 degrees C: +1.53 +/- 0.24); and forearms (8 degrees C: -1.67 +/- 0.29 kcal x min(-1); 45 degrees C: +1.45 +/- 0.20). These are primarily zones with relatively large muscle mass and adipose tissue. Calculation of absorption/release heat rates standardized per unit tube length and flow rate instead of zonal surface area covered showed that there was significantly greater heat transfer in the head, hands, and feet (p < 0.001). The areas in which there was considerable between-subject variability in rates of heat transfer and thus most informative for individual profile design were the torso, thighs, shoulders, and calves or forearms. CONCLUSIONS: The methodology developed is sensitive to individual differences in the process of heat exchange and variations in different body areas, depending on their size and tissue mass content. The design of individual thermal profiles is feasible for better comfort of astronauts on long-duration missions and personnel in other extreme environments.
Investigation of Condensing Ice Heat Exchangers for MTSA Technology Development
NASA Technical Reports Server (NTRS)
Padilla, Sebastian; Powers, Aaron; Ball, Tyler; Iacomini, Christie; Paul, Heather, L.
2008-01-01
Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal, carbon dioxide (CO2) and humidity control for a Portable Life Support Subsystem (PLSS). Metabolically-produced CO2 present in the ventilation gas of a PLSS is collected using a CO2selective adsorbent via temperature swing adsorption. The temperature swing is initiated through cooling to well below metabolic temperatures. Cooling is achieved with a sublimation heat exchanger using water or liquid carbon dioxide (LCO2) expanded below sublimation temperature when exposed to low pressure or vacuum. Subsequent super heated vapor, as well as additional coolant, is used to further cool the astronaut. The temperature swing on the adsorbent is then completed by warming the adsorbent with a separate condensing ice heat exchanger (CIHX) using metabolic heat from moist ventilation gas. The condensed humidity in the ventilation gas is recycled at the habitat. The water condensation from the ventilation gas is a significant heat transfer mechanism for the warming of the adsorbent bed because it represents as much as half of the energy potential in the moist ventilation gas. Designing a heat exchanger to efficiently transfer this energy to the adsorbent bed and allow the collection of the water is a challenge since the CIHX will operate in a temperature range from 210K to 280K. The ventilation gas moisture will first freeze and then thaw, sometimes existing in three phases simultaneously. A NASA Small Business Innovative Research (SBIR) Phase 1 contract was performed to investigate condensing and icing as applied to MTSA to enable higher fidelity modeling and assess the impact of geometry variables on CIHX performance for future CIHX design optimization. Specifically, a design tool was created using analytical relations to explore the complex, interdependent design space of a condensing ice heat exchanger. Numerous variables were identified as having nontrivial contributions to performance such as hydraulic diameter, heat exchanger effectiveness, ventilation gas mass flow rate and surface roughness. Using this tool, four test articles were designed and manufactured to map to a full MTSA subassembly (the adsorbent bed, the sublimation heat exchanger for cooling and the condensing ice heat exchanger for warming). The design mapping considered impacts due to CIHX geometry as well as subassembly impacts such as thermal mass and thermal resistance through the adsorbent bed. The test articles were tested at simulated PLSS ventilation loop temperature, moisture content and subambient pressure. Ice accumulation and melting were observed. Data and test observations were analyzed to identify drivers of the condensing ice heat exchanger performance. This paper will discuss the analytical models, the test article designs, and testing procedures. Testing issues will be discussed to better describe data and share lessons learned. Data analysis and subsequent conclusions will be presented.
A Thermodynamical Theory with Internal Variables Describing Thermal Effects in Viscous Fluids
NASA Astrophysics Data System (ADS)
Ciancio, Vincenzo; Palumbo, Annunziata
2018-04-01
In this paper the heat conduction in viscous fluids is described by using the theory of classical irreversible thermodynamics with internal variables. In this theory, the deviation from the local equilibrium is characterized by vectorial internal variables and a generalized entropy current density expressed in terms of so-called current multipliers. Cross effects between heat conduction and viscosity are also considered and some phenomenological generalizations of Fourier's and Newton's laws are obtained.
Variability of the subtropical mode water in the Southwest Pacific
NASA Astrophysics Data System (ADS)
Fernandez, Denise; Sutton, Philip; Bowen, Melissa
2017-09-01
The variability of Subtropical Mode Water (STMW) in the Southwest Pacific is investigated using a 28 year-long time series (1986-2014) of high-resolution expendable bathythermograph data north of New Zealand (PX06) and a shorter time series, the Roemmich-Gilson monthly Argo optimal interpolation for the 2004-2014 period. The variability in STMW inventories is compared to the variability in air-sea heat fluxes, mixed layer depths and transport of the East Auckland Current (EAUC) to assess both the atmospheric and oceanic roles influencing the formation and decay of STMW. The STMW north of New Zealand has a short lifespan with little persistence of the water mass from 1 year to the next one. Deeper mixed layers and negative anomalies in surface heat fluxes are correlated with increased formation of STMW. The heat content of the STMW layer is anticorrelated with inventories, particularly during the El Niño years. This suggests that large volumes of STMW are coincident with cooler conditions in the prior winter and less oceanic heat storage. There is significant seasonal and interannual variability in STMW inventories, however there are no trends in STMW properties, including its core layer temperature over the last decade. The variability of the winter EAUC transport is highly correlated with the STMW inventories and thermocline depth in the following spring, suggesting ocean dynamics deepen the thermocline and precondition for deeper mixed layers.
Immunologic changes in children with egg allergy ingesting extensively heated egg.
Lemon-Mulé, Heather; Sampson, Hugh A; Sicherer, Scott H; Shreffler, Wayne G; Noone, Sally; Nowak-Wegrzyn, Anna
2008-11-01
Prior studies have suggested that heated egg might be tolerated by some children with egg allergy. We sought to confirm tolerance of heated egg in a subset of children with egg allergy, to evaluate clinical and immunologic predictors of heated egg tolerance, to characterize immunologic changes associated with continued ingestion of heated egg, and to determine whether a diet incorporating heated egg is well tolerated. Subjects with documented IgE-mediated egg allergy underwent physician-supervised oral food challenges to extensively heated egg (in the form of a muffin and a waffle), with tolerant subjects also undergoing regular egg challenges (in a form of scrambled egg or French toast). Heated egg-tolerant subjects incorporated heated egg into their diets. Skin prick test wheal diameters and egg white, ovalbumin, and ovomucoid IgE levels, as well as ovalbumin and ovomucoid IgG4 levels, were measured at baseline for all subjects and at 3, 6, and 12 months for those tolerant of heated egg. Sixty-four of 117 subjects tolerated heated egg, 23 tolerated regular egg, and 27 reacted to heated egg. Heated egg-reactive subjects had larger skin test wheals and greater egg white-specific, ovalbumin-specific, and ovomucoid-specific IgE levels compared with heated egg- and egg-tolerant subjects. Continued ingestion of heated egg was associated with decreased skin test wheal diameters and ovalbumin-specific IgE levels and increased ovalbumin-specific and ovomucoid-specific IgG4 levels. The majority of subjects with egg allergy were tolerant of heated egg. Continued ingestion of heated egg was well tolerated and associated with immunologic changes that paralleled the changes observed with the development of clinical tolerance to regular egg.
NASA Technical Reports Server (NTRS)
Bugby, D. C.; Farmer, J. T.; Stouffer, C. J.
2013-01-01
This paper describes the development and testing of a scalable thermal control architecture for instruments, subsystems, or systems that must operate in severe space environments with wide variations in sink temperature. The architecture is comprised by linking one or more hot-side variable conductance heat pipes (VCHPs) in series with one or more cold-side loop heat pipes (LHPs). The VCHPs provide wide area heat acquisition, limited distance thermal transport, modest against gravity pumping, concentrated LHP startup heating, and high switching ratio variable conductance operation. The LHPs provide localized heat acquisition, long distance thermal transport, significant against gravity pumping, and high switching ratio variable conductance operation. Combining two variable conductance devices in series ensures very high switching ratio isolation from severe environments like the Earth's moon, where each lunar day spans 15 Earth days (270 K sink, with a surface-shielded/space viewing radiator) and each lunar night spans 15 Earth days (80-100 K radiative sink, depending on location). The single VCHP-single LHP system described herein was developed to maintain thermal control of International Lunar Network (ILN) anchor node lander electronics, but it is also applicable to other variable heat rejection space missions in severe environments. The LHPVCHP system utilizes a stainless steel wire mesh wick ammonia VCHP, a Teflon wick propylene LHP, a pair of one-third square meter high ? radiators (one capillary-pumped horizontal radiator and a second gravity-fed vertical radiator), a half-meter of transport distance, and a wick-bearing co-located flow regulator (CLFR) to allow operation with a hot (deactivated) radiator. The VCHP was designed with a small reservoir formed by extending the length of its stainless steel heat pipe tubing. The system was able to provide end-to-end switching ratios of 300-500 during thermal vacuum testing at ATK, including 3-5 W/K ON conductance and 0.01 W/K OFF conductance. The test results described herein also include an in-depth analysis of VCHP condenser performance to explain VCHP switching operation in detail. Future multi-VCHP/multi-LHP thermal management system concepts that provide scalability to higher powers/longer transport lengths are also discussed in the paper.
Predictive models of energy consumption in multi-family housing in College Station, Texas
NASA Astrophysics Data System (ADS)
Ali, Hikmat Hummad
Patterns of energy consumption in apartment buildings are different than those in single-family houses. Apartment buildings have different physical characteristics, and their inhabitants have different demographic attributes. This study develops models that predict energy usage in apartment buildings in College Station. This is accomplished by analyzing and identifying the predictive variables that affect energy usage, studying the consumption patterns, and creating formulas based on combinations of these variables. According to the hypotheses and the specific research context, a cross-sectional design strategy is adopted. This choice implies analyses across variations within a sample of fourplex apartments in College Station. The data available for analysis include the monthly billing data along with the physical characteristics of the building, climate data for College Station, and occupant demographic characteristics. A simple random sampling procedure is adopted. The sample size of 176 apartments is drawn from the population in such a way that every possible sample has the same chance of being selected. Statistical methods used to interpret the data include univariate analysis (mean, standard deviation, range, and distribution of data), correlation analysis, regression analysis, and ANOVA (analyses of variance). The results show there are significant differences in cooling efficiency and actual energy consumption among different building types, but there are no significant differences in heating consumption. There are no significant differences in actual energy consumption between student and non-student groups or among ethnic groups. The findings indicate that there are significant differences in actual energy consumption among marital status groups and educational level groups. The multiple regression procedures show there is a significant relationship between normalized annual consumption and the combined variables of floor area, marital status, dead band, construction material, summer thermostat setting, heating, slope, and base load, as well as a relationship between cooling slope and the combined variables of share wall, floor level, summer thermostat setting, external wall, and American household. In addition, there is a significant relationship between heating slope and the combined variables of winter thermostat setting, market value, student, and rent. The results also indicate there is a relationship between base load and the combined variables of floor area, market value, age of the building, marital status, student, and summer thermostat setting.
Heat Rejection from a Variable Conductance Heat Pipe Radiator Panel
NASA Technical Reports Server (NTRS)
Jaworske, D. A.; Gibson, M. A.; Hervol, D. S.
2012-01-01
A titanium-water heat pipe radiator having an innovative proprietary evaporator configuration was evaluated in a large vacuum chamber equipped with liquid nitrogen cooled cold walls. The radiator was manufactured by Advanced Cooling Technologies, Inc. (ACT), Lancaster, PA, and delivered as part of a Small Business Innovative Research effort. The radiator panel consisted of five titanium-water heat pipes operating as thermosyphons, sandwiched between two polymer matrix composite face sheets. The five variable conductance heat pipes were purposely charged with a small amount of non-condensable gas to control heat flow through the condenser. Heat rejection was evaluated over a wide range of inlet water temperature and flow conditions, and heat rejection was calculated in real-time utilizing a data acquisition system programmed with the Stefan-Boltzmann equation. Thermography through an infra-red transparent window identified heat flow across the panel. Under nominal operation, a maximum heat rejection value of over 2200 Watts was identified. The thermal vacuum evaluation of heat rejection provided critical information on understanding the radiator s performance, and in steady state and transient scenarios provided useful information for validating current thermal models in support of the Fission Power Systems Project.
Liu, Xiaobing; Zheng, O'Neill; Niu, Fuxin
2016-01-01
Most commercial ground source heat pump systems (GSHP) in the United States are in a distributed configuration. These systems circulate water or an anti-freeze solution through multiple heat pump units via a central pumping system, which usually uses variable speed pump(s). Variable speed pumps have potential to significantly reduce pumping energy use; however, the energy savings in reality could be far away from its potential due to improper pumping system design and controls. In this paper, a simplified hydronic pumping system was simulated with the dynamic Modelica models to evaluate three different pumping control strategies. This includes two conventional controlmore » strategies, which are to maintain a constant differential pressure across either the supply and return mains, or at the most hydraulically remote heat pump; and an innovative control strategy, which adjusts system flow rate based on the demand of each heat pump. The simulation results indicate that a significant overflow occurs at part load conditions when the variable speed pump is controlled to main a constant differential pressure across the supply and return mains of the piping system. On the other hand, an underflow occurs at part load conditions when the variable speed pump is controlled to maintain a constant differential pressure across the furthest heat pump. The flow-demand-based control can provide needed flow rate to each heat pump at any given time, and with less pumping energy use than the two conventional controls. Finally, a typical distributed GSHP system was studied to evaluate the energy saving potential of applying the flow-demand-based pumping control strategy. This case study shows that the annual pumping energy consumption can be reduced by 62% using the flow-demand-based control compared with that using the conventional pressure-based control to maintain a constant differential pressure a cross the supply and return mains.« less
NASA Astrophysics Data System (ADS)
Alamirew, Netsanet K.; Todd, Martin C.; Ryder, Claire L.; Marsham, John H.; Wang, Yi
2018-01-01
The Saharan heat low (SHL) is a key component of the west African climate system and an important driver of the west African monsoon across a range of timescales of variability. The physical mechanisms driving the variability in the SHL remain uncertain, although water vapour has been implicated as of primary importance. Here, we quantify the independent effects of variability in dust and water vapour on the radiation budget and atmospheric heating of the region using a radiative transfer model configured with observational input data from the Fennec field campaign at the location of Bordj Badji Mokhtar (BBM) in southern Algeria (21.4° N, 0.9° E), close to the SHL core for June 2011. Overall, we find dust aerosol and water vapour to be of similar importance in driving variability in the top-of-atmosphere (TOA) radiation budget and therefore the column-integrated heating over the SHL (˜ 7 W m-2 per standard deviation of dust aerosol optical depth - AOD). As such, we infer that SHL intensity is likely to be similarly enhanced by the effects of dust and water vapour surge events. However, the details of the processes differ. Dust generates substantial radiative cooling at the surface (˜ 11 W m-2 per standard deviation of dust AOD), presumably leading to reduced sensible heat flux in the boundary layer, which is more than compensated by direct radiative heating from shortwave (SW) absorption by dust in the dusty boundary layer. In contrast, water vapour invokes a radiative warming at the surface of ˜ 6 W m-2 per standard deviation of column-integrated water vapour in kg m-2. Net effects involve a pronounced net atmospheric radiative convergence with heating rates on average of 0.5 K day-1 and up to 6 K day-1 during synoptic/mesoscale dust events from monsoon surges and convective cold-pool outflows (haboobs
). On this basis, we make inferences on the processes driving variability in the SHL associated with radiative and advective heating/cooling. Depending on the synoptic context over the region, processes driving variability involve both independent effects of water vapour and dust and compensating events in which dust and water vapour are co-varying. Forecast models typically have biases of up to 2 kg m-2 in column-integrated water vapour (equivalent to a change in 2.6 W m-2 TOA net flux) and typically lack variability in dust and thus are expected to poorly represent these couplings. An improved representation of dust and water vapour and quantification of associated radiative impact in models is thus imperative to further understand the SHL and related climate processes.
Frontiers in Decadal Climate Variability: Proceedings of a Workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purcell, Amanda
A number of studies indicate an apparent slowdown in the overall rise in global average surface temperature between roughly 1998 and 2014. Most models did not predict such a slowdown--a fact that stimulated a lot of new research on variability of Earth's climate system. At a September 2015 workshop, leading scientists gathered to discuss current understanding of climate variability on decadal timescales (10 to 30 years) and whether and how prediction of it might be improved. Many researchers have focused their attention on the climate system itself, which is known to vary across seasons, decades, and other timescales. Several naturalmore » variables produce "ups and downs" in the climate system, which are superimposed on the long-term warming trend due to human influence. Understanding decadal climate variability is important not only for assessing global climate change but also for improving decision making related to infrastructure, water resources, agriculture, energy, and other realms. Like the well-studied El Nino and La Nina interannual variations, decadal climate variability is associated with specific regional patterns of temperature and precipitation, such as heat waves, cold spells, and droughts. Several participants shared research that assesses decadal predictive capability of current models.« less
The Heat Is on: An Inquiry-Based Investigation for Specific Heat
ERIC Educational Resources Information Center
Herrington, Deborah G.
2011-01-01
A substantial number of upper-level science students and practicing physical science teachers demonstrate confusion about thermal equilibrium, heat transfer, heat capacity, and specific heat capacity. The traditional method of instruction, which involves learning the related definitions and equations, using equations to solve heat transfer…
Thermophysical property sensitivity effects in steel solidification
NASA Technical Reports Server (NTRS)
Overfelt, Tony
1993-01-01
The simulation of advanced solidification processes via digital computer techniques has gained widespread acceptance during the last decade or so. Models today can predict transient temperature fields, fluid flow fields, important microstructural parameters, and potential defects in castings. However, the lack of accurate thermophysical property data on important industrial alloys threatens to limit the ability of manufacturers to fully capitalize on the technology's benefits. A study of the sensitivity of one such numerical model of a steel plate casting to imposed variations in the data utilized for the thermal conductivity, specific heat, density, and heat of fusion is described. The sensitivity of the data's variability is characterized by its effects on the net solidification time of various points along the centerline of the plate casting. Recommendations for property measurements are given and the implications of data uncertainty for modelers are discussed.
Screening for heat transport by groundwater in closed geothermal systems.
Ferguson, Grant
2015-01-01
Heat transfer due to groundwater flow can significantly affect closed geothermal systems. Here, a screening method is developed, based on Peclet numbers for these systems and Darcy's law. Conduction-only conditions should not be expected where specific discharges exceed 10(-8) m/s. Constraints on hydraulic gradients allow for preliminary screening for advection based on rock or soil types. Identification of materials with very low hydraulic conductivity, such as shale and intact igneous and metamorphic rock, allow for analysis with considering conduction only. Variability in known hydraulic conductivity allows for the possibility of advection in most other rocks and soil types. Further screening relies on refinement of estimates of hydraulic gradients and hydraulic conductivity through site investigations and modeling until the presence or absence of conduction can be confirmed. © 2014, National Ground Water Association.
The Oceanic Contribution to Atlantic Multi-Decadal Variability
NASA Astrophysics Data System (ADS)
Wills, R. C.; Armour, K.; Battisti, D. S.; Hartmann, D. L.
2017-12-01
Atlantic multi-decadal variability (AMV) is typically associated with variability in ocean heat transport (OHT) by the Atlantic Meridional Overturning Circulation (AMOC). However, recent work has cast doubt on this connection by showing that slab-ocean climate models, in which OHT cannot vary, exhibit similar variability. Here, we apply low-frequency component analysis to isolate the variability of Atlantic sea-surface temperatures (SSTs) that occurs on decadal and longer time scales. In observations and in pre-industrial control simulations of comprehensive climate models, we find that AMV is confined to the extratropics, with the strongest temperature anomalies in the North Atlantic subpolar gyre. We show that warm subpolar temperatures are associated with a strengthened AMOC, increased poleward OHT, and local heat fluxes from the ocean into the atmosphere. In contrast, the traditional index of AMV based on the basin-averaged SST anomaly shows warm temperatures preceded by heat fluxes from the atmosphere into the ocean, consistent with the atmosphere driving this variability, and shows a weak relationship with AMOC. The autocorrelation time of the basin-averaged SST index is 1 year compared to an autocorrelation time of 5 years for the variability of subpolar temperatures. This shows that multi-decadal variability of Atlantic SSTs is sustained by OHT variability associated with AMOC, while atmosphere-driven SST variability, such as exists in slab-ocean models, contributes primarily on interannual time scales.
Sensitivity analysis of infectious disease models: methods, advances and their application
Wu, Jianyong; Dhingra, Radhika; Gambhir, Manoj; Remais, Justin V.
2013-01-01
Sensitivity analysis (SA) can aid in identifying influential model parameters and optimizing model structure, yet infectious disease modelling has yet to adopt advanced SA techniques that are capable of providing considerable insights over traditional methods. We investigate five global SA methods—scatter plots, the Morris and Sobol’ methods, Latin hypercube sampling-partial rank correlation coefficient and the sensitivity heat map method—and detail their relative merits and pitfalls when applied to a microparasite (cholera) and macroparasite (schistosomaisis) transmission model. The methods investigated yielded similar results with respect to identifying influential parameters, but offered specific insights that vary by method. The classical methods differed in their ability to provide information on the quantitative relationship between parameters and model output, particularly over time. The heat map approach provides information about the group sensitivity of all model state variables, and the parameter sensitivity spectrum obtained using this method reveals the sensitivity of all state variables to each parameter over the course of the simulation period, especially valuable for expressing the dynamic sensitivity of a microparasite epidemic model to its parameters. A summary comparison is presented to aid infectious disease modellers in selecting appropriate methods, with the goal of improving model performance and design. PMID:23864497
Ribeiro, Pedro Leite; Camacho, Agustín; Navas, Carlos Arturo
2012-01-01
The thermal limits of individual animals were originally proposed as a link between animal physiology and thermal ecology. Although this link is valid in theory, the evaluation of physiological tolerances involves some problems that are the focus of this study. One rationale was that heating rates shall influence upper critical limits, so that ecological thermal limits need to consider experimental heating rates. In addition, if thermal limits are not surpassed in experiments, subsequent tests of the same individual should yield similar results or produce evidence of hardening. Finally, several non-controlled variables such as time under experimental conditions and procedures may affect results. To analyze these issues we conducted an integrative study of upper critical temperatures in a single species, the ant Atta sexdens rubropiosa, an animal model providing large numbers of individuals of diverse sizes but similar genetic makeup. Our specific aims were to test the 1) influence of heating rates in the experimental evaluation of upper critical temperature, 2) assumptions of absence of physical damage and reproducibility, and 3) sources of variance often overlooked in the thermal-limits literature; and 4) to introduce some experimental approaches that may help researchers to separate physiological and methodological issues. The upper thermal limits were influenced by both heating rates and body mass. In the latter case, the effect was physiological rather than methodological. The critical temperature decreased during subsequent tests performed on the same individual ants, even one week after the initial test. Accordingly, upper thermal limits may have been overestimated by our (and typical) protocols. Heating rates, body mass, procedures independent of temperature and other variables may affect the estimation of upper critical temperatures. Therefore, based on our data, we offer suggestions to enhance the quality of measurements, and offer recommendations to authors aiming to compile and analyze databases from the literature. PMID:22384147
NASA Astrophysics Data System (ADS)
Qayyum, Sajid; Hayat, Tasawar; Alsaedi, Ahmed
Nonlinear thermal radiation and chemical reaction in magnetohydrodynamic (MHD) flow of third grade nanofluid over a stretching sheet with variable thickness are addressed. Heat generation/absorption and nonlinear convection are considered. The sheet moves with nonlinear velocity. Sheet is convectively heated. In addition zero mass flux condition for nanoparticle concentration is imposed. Results for velocity, temperature, concentration, skin friction and local Nusselt number are presented and examined. It is found that velocity and boundary layer thickness are increasing for Reynolds number. Temperature is a increasing function of the heat generation/absorption parameter while it causes a decrease in the heat transfer rate. Moreover effect of Brownian motion and chemical reaction on the concentration are quite reverse.
Variable Density Multilayer Insulation for Cryogenic Storage
NASA Technical Reports Server (NTRS)
Hedayat, A.; Brown, T. M.; Hastings, L. J.; Martin, J.
2000-01-01
Two analytical models for a foam/Variable Density Multi-Layer Insulation (VD-MLI) system performance are discussed. Both models are one-dimensional and contain three heat transfer mechanisms, namely conduction through the spacer material, radiation between the shields, and conduction through the gas. One model is based on the methodology developed by McIntosh while the other model is based on the Lockheed semi-empirical approach. All models input variables are based on the Multi-purpose Hydrogen Test Bed (MHTB) geometry and available values for material properties and empirical solid conduction coefficient. Heat flux predictions are in good agreement with the MHTB data, The heat flux predictions are presented for the foam/MLI combinations with 30, 45, 60, and 75 MLI layers
NASA Technical Reports Server (NTRS)
Rubesin, M. W.; Rose, W. C.
1973-01-01
The time-dependent, turbulent mean-flow, Reynolds stress, and heat flux equations in mass-averaged dependent variables are presented. These equations are given in conservative form for both generalized orthogonal and axisymmetric coordinates. For the case of small viscosity and thermal conductivity fluctuations, these equations are considerably simpler than the general Reynolds system of dependent variables for a compressible fluid and permit a more direct extension of low speed turbulence modeling to computer codes describing high speed turbulence fields.
Deuterium and lithium-6 MAS NMR studies of manganese oxide electrode materials
NASA Astrophysics Data System (ADS)
Paik, Younkee
Electrolytic manganese dioxide (EMD) is used world wide as the cathode materials in both lithium and alkaline primary (non-rechargeable) batteries. We have developed deuterium and lithium MAS NMR techniques to study EMD and related manganese oxides and hydroxides, where diffraction techniques are of limited value due to a highly defective nature of the structures. Deuterons in EMD, manganite, groutite, and deuterium-intercalated pyrolusite and ramsdellite were detected by NMR, for the first time, and their locations and motions in the structures were analyzed by applying variable temperature NMR techniques. Discharge mechanisms of EMD in alkaline (aqueous) electrolytes were studied, in conjunction with step potential electrochemical spectroscopic (SPECS) method, and five distinctive discharge processes were proposed. EMD is usually heat-treated at about 300--400°C to remove water to be used in lithium batteries. Details of the effects of heat-treatment, such as structural and compositional changes as a function of heat-treatment temperature, were studied by a combination of MAS NMR, XRD, and thermogravimetric analysis. Lithium local environments in heat-treated EMD (HEMD) that were discharged in lithium cells, were described in terms of related environments found in model compounds pyrolusite and ramsdellite where specific Li + sites were detected by MAS NMR and the hyperfine shift scale method of Grey et al. Acid-leaching of Li2MnO3 represents an approach for synthesizing new or modified manganese oxide electrode materials for lithium rechargeable batteries. Progressive removal of lithium from specific crystallographic sites, followed by a gradual change of the crystal structure, was monitored by a combination of NMR and XRD techniques.
Heat Diffusion in Gases, Including Effects of Chemical Reaction
NASA Technical Reports Server (NTRS)
Hansen, C. Frederick
1960-01-01
The diffusion of heat through gases is treated where the coefficients of thermal conductivity and diffusivity are functions of temperature. The diffusivity is taken proportional to the integral of thermal conductivity, where the gas is ideal, and is considered constant over the temperature interval in which a chemical reaction occurs. The heat diffusion equation is then solved numerically for a semi-infinite gas medium with constant initial and boundary conditions. These solutions are in a dimensionless form applicable to gases in general, and they are used, along with measured shock velocity and heat flux through a shock reflecting surface, to evaluate the integral of thermal conductivity for air up to 5000 degrees Kelvin. This integral has the properties of a heat flux potential and replaces temperature as the dependent variable for problems of heat diffusion in media with variable coefficients. Examples are given in which the heat flux at the stagnation region of blunt hypersonic bodies is expressed in terms of this potential.
den Besten, Heidy M W; Wells-Bennik, Marjon H J; Zwietering, Marcel H
2018-03-25
Heat treatments are widely used in food processing often with the aim of reducing or eliminating spoilage microorganisms and pathogens in food products. The efficacy of applying heat to control microorganisms is challenged by the natural diversity of microorganisms with respect to their heat robustness. This review gives an overview of the variations in heat resistances of various species and strains, describes modeling approaches to quantify heat robustness, and addresses the relevance and impact of the natural diversity of microorganisms when assessing heat inactivation. This comparison of heat resistances of microorganisms facilitates the evaluation of which (groups of) organisms might be troublesome in a production process in which heat treatment is critical to reducing the microbial contaminants, and also allows fine-tuning of the process parameters. Various sources of microbiological variability are discussed and compared for a range of species, including spore-forming and non-spore-forming pathogens and spoilage organisms. This benchmarking of variability factors gives crucial information about the most important factors that should be included in risk assessments to realistically predict heat inactivation of bacteria and spores as part of the measures for controlling shelf life and safety of food products.
Effect of warming temperatures on US wheat yields.
Tack, Jesse; Barkley, Andrew; Nalley, Lawton Lanier
2015-06-02
Climate change is expected to increase future temperatures, potentially resulting in reduced crop production in many key production regions. Research quantifying the complex relationship between weather variables and wheat yields is rapidly growing, and recent advances have used a variety of model specifications that differ in how temperature data are included in the statistical yield equation. A unique data set that combines Kansas wheat variety field trial outcomes for 1985-2013 with location-specific weather data is used to analyze the effect of weather on wheat yield using regression analysis. Our results indicate that the effect of temperature exposure varies across the September-May growing season. The largest drivers of yield loss are freezing temperatures in the Fall and extreme heat events in the Spring. We also find that the overall effect of warming on yields is negative, even after accounting for the benefits of reduced exposure to freezing temperatures. Our analysis indicates that there exists a tradeoff between average (mean) yield and ability to resist extreme heat across varieties. More-recently released varieties are less able to resist heat than older lines. Our results also indicate that warming effects would be partially offset by increased rainfall in the Spring. Finally, we find that the method used to construct measures of temperature exposure matters for both the predictive performance of the regression model and the forecasted warming impacts on yields.
An experimental investigation of pulsed laser-assisted machining of AISI 52100 steel
NASA Astrophysics Data System (ADS)
Panjehpour, Afshin; Soleymani Yazdi, Mohammad R.; Shoja-Razavi, Reza
2014-11-01
Grinding and hard turning are widely used for machining of hardened bearing steel parts. Laser-assisted machining (LAM) has emerged as an efficient alternative to grinding and hard turning for hardened steel parts. In most cases, continuous-wave lasers were used as a heat source to cause localized heating prior to material removal by a cutting tool. In this study, an experimental investigation of pulsed laser-assisted machining of AISI 52100 bearing steel was conducted. The effects of process parameters (i.e., laser mean power, pulse frequency, pulse energy, cutting speed and feed rate) on state variables (i.e., material removal temperature, specific cutting energy, surface roughness, microstructure, tool wear and chip formation) were investigated. At laser mean power of 425 W with frequency of 120 Hz and cutting speed of 70 m/min, the benefit of LAM was shown by 25% decrease in specific cutting energy and 18% improvement in surface roughness, as compared to those of the conventional machining. It was shown that at constant laser power, the increase of laser pulse energy causes the rapid increase in tool wear rate. Pulsed laser allowed efficient control of surface temperature and heat penetration in material removal region. Examination of the machined subsurface microstructure and microhardness profiles showed no change under LAM and conventional machining. Continuous chips with more uniform plastic deformation were produced in LAM.
Akterian, S G; Fernandez, P S; Hendrickx, M E; Tobback, P P; Periago, P M; Martinez, A
1999-03-01
A risk analysis was applied to experimental heat resistance data. This analysis is an approach for processing experimental thermobacteriological data in order to study the variability of D and z values of target microorganisms depending on the deviations range of environmental factors, to determine the critical factors and to specify their critical tolerance. This analysis is based on sets of sensitivity functions applied to a specific case of experimental data related to the thermoresistance of Clostridium sporogenes and Bacillus stearothermophilus spores. The effect of the following factors was analyzed: the type of target microorganism; nature of the heating substrate; pH, temperature; type of acid employed and NaCl concentration. The type of target microorganism to be inactivated, the nature of the substrate (reference or real food) and the heating temperature were identified as critical factors, determining about 90% of the alteration of the microbiological risk. The effect of the type of acid used for the acidification of products and the concentration of NaCl can be assumed to be negligible factors for the purposes of engineering calculations. The critical non-uniformity in temperature during thermobacteriological studies was set as 0.5% and the critical tolerances of pH value and NaCl concentration were 5%. These results are related to a specific case study, for that reason their direct generalization is not correct.
Calibration of ultrasonic power output in water, ethanol and sodium polytungstate
NASA Astrophysics Data System (ADS)
Mentler, Axel; Schomakers, Jasmin; Kloss, Stefanie; Zechmeister-Boltenstern, Sophie; Schuller, Reinhard; Mayer, Herwig
2017-10-01
Ultrasonic power is the main variable that forms the basis for many soil disaggregation experiments. Thus, a procedure for the rapid determination of this variable has been developed and is described in this article. Calorimetric experiments serve to measure specific heat capacity and ultrasonic power. Ultrasonic power is determined experimentally for deionised water, 30% ethanol and sodium polytungstate with a density of 1.6 g cm-3 and 1.8 g cm-3. All experiments are performed with a pre-selected ultrasonic probe vibration amplitude. Under these conditions, it was found that the emitted ultrasonic power was comparable in the four fluids. It is suggested, however, to perform calibration experiments prior to dispersion experiments, since the used fluid, as well as the employed ultrasonic equipment, may influence the power output.
Characterization of Plasma Discharges in a High-Field Magnetic Tandem Mirror
NASA Technical Reports Server (NTRS)
Chang-Diaz, Franklin R.
1998-01-01
High density magnetized plasma discharges in open-ended geometries, like Tandem Mirrors, have a variety of space applications. Chief among them is the production of variable Specific Impulse (I(sub sp)) and variable thrust in a magnetic nozzle. Our research group is pursuing the experimental characterization of such discharges in our high-field facility located at the Advanced Space Propulsion Laboratory (ASPL). These studies focus on identifying plasma stability criteria as functions of density, temperature and magnetic field strength. Plasma heating is accomplished by both Electron and Ion Cyclotron Resonance (ECR and ICR) at frequencies of 2-3 Ghz and 1-30 Mhz respectively, for both Hydrogen and Helium. Electron density and temperature has measured by movable Langmuir probes. Macroscopic plasma stability is being investigated in ongoing research.
NASA Astrophysics Data System (ADS)
Wang, Pinya; Tang, Jianping; Sun, Xuguang; Liu, Jianyong; Juan, Fang
2018-03-01
Using the Weather Research and Forecasting (WRF) model, this paper analyzes the spatiotemporal features of heat waves in 20-year regional climate simulations over East Asia, and investigates the capability of WRF to reproduce observational heat waves in China. Within the framework of the Coordinated Regional Climate Downscaling Experiment (CORDEX), the WRF model is driven by the ERA-Interim (ERAIN) reanalysis, and five continuous simulations are conducted from 1989 to 2008. Of these, four runs apply the interior spectral nudging (SN) technique with different wavenumbers, nudging variables and nudging coefficients. Model validations show that WRF can reasonably reproduce the spatiotemporal features of heat waves in China. Compared with the experiment without SN, the application of SN is effectie on improving the skill of the model in simulating both the spatial distributions and temporal variations of heat waves of different intensities. The WRF model shows advantages in reproducing the synoptic circulations with SN and therefore yields better representations for heat wave events. Besides, the SN method is able to preserve the variability of large-scale circulations quite well, which in turn adjusts the extreme temperature variability towards the observation. Among the four SN experiments, those with stronger nudging coefficients perform better in modulating both the spatial and temporal features of heat waves. In contrast, smaller nudging coefficients weaken the effects of SN on improving WRF's performances.
Changes in heart rate variability during the induction and decay of heat acclimation.
Flouris, Andreas D; Poirier, Martin P; Bravi, Andrea; Wright-Beatty, Heather E; Herry, Christophe; Seely, Andrew J; Kenny, Glen P
2014-10-01
We evaluated the changes in core temperature, heart rate, and heart rate variability (HRV) during the induction and decay of heat acclimation. Ten males (23 ± 3 years; 79.5 ± 3.5 kg; 15.2 ± 4.5 percent body fat; 51.13 ± 4.61 mLO(2)∙kg(-1)∙min(-1) peak oxygen uptake) underwent a 14-day heat acclimation protocol comprising of 90-min cycling at ~50 % peak oxygen uptake at 40 °C and ~20 % relative humidity. Core temperature, heart rate, and 102 HRV measures were recorded during a heat tolerance test conducted at baseline (day 0) and at the end of the induction (day 14) and decay (day 28) phases. Heat acclimation resulted in significantly reduced core temperature [rectal (χ (2) = 1298.14, p < 0.001); esophageal (χ (2) = 1069.88, p < 0.001)] and heart rate (χ (2) = 1230.17, p < 0.001). Following the decay phase, 26, 40, and 60 % of the heat acclimation-induced reductions in rectal temperature, esophageal temperature, and heart rate, respectively, were lost. Heat acclimation was accompanied by profound and broad changes in HRV: at the end of the induction phase, 75 of the 102 variability measures computed were significantly different (p < 0.001), compared to only 47 of the 102 at the end of the decay phase. Heat acclimation is accompanied by reduced core temperature, significant bradycardia, and marked alterations in HRV, which we interpret as being related to vagal dominance. The observed changes in core temperature persist for at least 2 weeks of non-exposure to heat, while the changes in heart rate and HRV decay faster and are only partly evident after 2 weeks of non-exposure to heat.
Surface Salinity Variability in the North Atlantic During Recent Decades
NASA Technical Reports Server (NTRS)
Haekkinen, Sirpa
2001-01-01
The sea surface salinity (SSS) variability in the North Atlantic is investigated using numerical model simulations for the last 50 years based on atmospheric forcing variability from Comprehensive Atmosphere Ocean Data Set (COADS) and National Center for Environmental Prediction / National Center for Atmospheric Research (NCEP/NCAR) Reanalysis. The largest interannual and longer term variability occurs in two regions: the Labrador Sea and the North Equatorial Countercurrent (NECC) region. In both regions the seasonality of the surface salinity variability is prominent with the maximum standard deviation occurring in the summer/fall period. In the Labrador Sea the summer SSS anomalies far exceed those of wintertime in amplitude. The interannual SSS variability in the subpolar gyre can be attributed to two factors: excess ice melt and heat flux (i.e. deep mixing) variations. On the other hand, heat flux variability can also lead to meridional overturning changes on decadal time scales such that weak overturning is manifested in fresh surface conditions in the subpolar gyre. The overturning changes also influence the NECC region SSS variability. Moreover, the subpolar freshening events are expected to occur during the negative phase of North Atlantic Oscillation which is associated with a weak wintertime surface heat loss in the subpolar gyre. No excess sea ice melt or precipitation is necessary for the formation of the fresh anomalies, because with the lack of wide-spread deep mixing, the fresh water that would be expected based on climatology, would accumulate at the surface. Thus, the fresh water 'conveyor' in the Atlantic operates via the overturning circulation such that deep mixing inserts fresh water while removing heat from the water column.
NASA Technical Reports Server (NTRS)
Roberts, J. Brent; Clayson, Carol A.
2012-01-01
The Eastern tropical ocean basins are regions of significant atmosphere-ocean interaction and are important to variability across subseasonal to decadal time scales. The numerous physical processes at play in these areas strain the abilities of coupled general circulation models to accurately reproduce observed upper ocean variability. Furthermore, limitations in the observing system of important terms in the surface temperature balance (e.g., turbulent and radiative heat fluxes, advection) introduce uncertainty into the analyses of processes controlling sea surface temperature variability. This study presents recent efforts to close the surface temperature balance through estimation of the terms in the mixed layer temperature budget using state-of-the-art remotely sensed and model-reanalysis derived products. A set of twelve net heat flux estimates constructed using combinations of radiative and turbulent heat flux products - including GEWEX-SRB, ISCCP-SRF, OAFlux, SeaFlux, among several others - are used with estimates of oceanic advection, entrainment, and mixed layer depth variability to investigate the seasonal variability of ocean surface temperatures. Particular emphasis is placed on how well the upper ocean temperature balance is, or is not, closed on these scales using the current generation of observational and model reanalysis products. That is, the magnitudes and spatial variability of residual imbalances are addressed. These residuals are placed into context within the current uncertainties of the surface net heat fluxes and the role of the mixed layer depth variability in scaling the impact of those uncertainties, particularly in the shallow mixed layers of the Eastern tropical ocean basins.
Vicente-Pérez, Ricardo; Avendaño-Reyes, Leonel; Mejía-Vázquez, Ángel; Álvarez-Valenzuela, F Daniel; Correa-Calderón, Abelardo; Mellado, Miguel; Meza-Herrera, Cesar A; Guerra-Liera, Juan E; Robinson, P H; Macías-Cruz, Ulises
2016-01-01
Rectal temperature (RT) is the foremost physiological variable indicating if an animal is suffering hyperthermia. However, this variable is traditionally measured by invasive methods, which may compromise animal welfare. Models to predict RT have been developed for growing pigs and lactating dairy cows, but not for pregnant heat-stressed ewes. Our aim was to develop a prediction equation for RT using non-invasive physiological variables in pregnant ewes under heat stress. A total of 192 records of respiratory frequency (RF) and hair coat temperature in various body regions (i.e., head, rump, flank, shoulder, and belly) obtained from 24 Katahdin × Pelibuey pregnant multiparous ewes were collected during the last third of gestation (i.e., d 100 to lambing) with a 15 d sampling interval. Hair coat temperatures were taken using infrared thermal imaging technology. Initially, a Pearson correlation analysis examined the relationship among variables, and then multiple linear regression analysis was used to develop the prediction equations. All predictor variables were positively correlated (P<0.01; r=0.59-0.67) with RT. The adjusted equation which best predicted RT (P<0.01; Radj(2)=56.15%; CV=0.65%) included as predictors RF and head and belly temperatures. Comparison of predicted and observed values for RT indicates a suitable agreement (P<0.01) between them with moderate accuracy (Radj(2)=56.15%) when RT was calculated with the adjusted equation. In general, the final equation does not violate any assumption of multiple regression analysis. The RT in heat-stressed pregnant ewes can be predicted with an adequate accuracy using non-invasive physiologic variables, and the final equation was: RT=35.57+0.004 (RF)+0.067 (heat temperature)+0.028 (belly temperature). Copyright © 2015 Elsevier Ltd. All rights reserved.
Comparison of UTCI to selected thermal indices.
Blazejczyk, Krzysztof; Epstein, Yoram; Jendritzky, Gerd; Staiger, Henning; Tinz, Birger
2012-05-01
Over the past century more than 100 indices have been developed and used to assess bioclimatic conditions for human beings. The majority of these indices are used sporadically or for specific purposes. Some are based on generalized results of measurements (wind chill, cooling power, wet bulb temperature) and some on the empirically observed reactions of the human body to thermal stress (physiological strain, effective temperature). Those indices that are based on human heat balance considerations are referred to as "rational indices". Several simple human heat balance models are known and are used in research and practice. This paper presents a comparative analysis of the newly developed Universal Thermal Climate Index (UTCI), and some of the more prevalent thermal indices. The analysis is based on three groups of data: global data-set, synoptic datasets from Europe, and local scale data from special measurement campaigns of COST Action 730. We found the present indices to express bioclimatic conditions reasonably only under specific meteorological situations, while the UTCI represents specific climates, weather, and locations much better. Furthermore, similar to the human body, the UTCI is very sensitive to changes in ambient stimuli: temperature, solar radiation, wind and humidity. UTCI depicts temporal variability of thermal conditions better than other indices. The UTCI scale is able to express even slight differences in the intensity of meteorological stimuli.
An Inquiry into the Effect of Heating on Ascorbic Acid
ERIC Educational Resources Information Center
Yip, Din Yan
2009-01-01
Investigations that study the effect of heating on ascorbic acid are commonly performed in schools, but the conclusions obtained are quite variable and controversial. Some results indicate that heating may destroy vitamin C, but others suggest that heating may have no effect. This article reports an attempt to resolve this confusion through a…
The second law of thermodynamics and quantum heat engines: Is the law strictly enforced?
NASA Astrophysics Data System (ADS)
Keefe, Peter D.
2010-01-01
A quantum heat engine is a construct having a working medium which is cyclically processed through a pair of control variables of state involving a Bose-Einstein condensation (BEC) in which a heat input is converted into a work output. Of interest is a first species of quantum heat engine in which the working medium is macroscopic in the sense the size scale is sufficiently large that the BEC is not volumetrically coherent. In this first species of quantum heat engine, near Carnot efficiencies may be possible. Of particular interest is a second species of quantum heat engine in which the working medium is mesoscopic in the sense that the size scale is sufficiently small that the BEC is volumetrically coherent. In this second species of quantum heat engine, the resulting in-process non-equilibrium condition affects the finally arrived at control variables of state such that Carnot efficiencies and beyond may be possible. A Type I superconductor is used to model the first and second species of quantum heat engine.
Scutellà, Bernadette; Bourlès, Erwan; Plana-Fattori, Artemio; Fonseca, Fernanda; Flick, Denis; Trelea, Ioan-Cristian; Passot, Stephanie
2018-04-14
During the freeze-drying process, vials located at the border of the shelf usually present higher heat flow rates that result in higher product temperatures than vials in the center. This phenomenon, referred to as edge vial effect, can lead to product quality variability within the same batch of vials and between batches at different scales. Our objective was to investigate the effect of various freeze dryer design features on heat transfer variability. A 3D mathematical model previously developed in COMSOL Multiphysics and experimentally validated was used to simulate the heat transfer of a set of vials located at the edge and in the center of the shelf. The design features considered included the vials loading configurations, the thermal characteristics, and some relevant dimensions of the drying chamber geometry. The presence of the rail in the loading configuration and the value of the shelf emissivity strongly impacted the heat flow rates received by the vials. Conversely, the heat transfer was not significantly influenced by modifications of the thermal conductivity of the rail, the emissivity of the walls, or the geometry of the drying chamber. The model developed turned out to be a powerful tool for cycle development and scale-up. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Oomah, B Dave; Kotzeva, Lily; Allen, Meghan; Bassinello, Priscila Zaczuk
2014-05-01
Heat pretreatment is considered the first step in grain milling. This study therefore evaluated microwave and micronization heat treatments in improving the dehulling characteristics, phenolic composition and antioxidant and α-amylase activities of bean cultivars from three market classes. Heat treatments improved dehulling characteristics (hull yield, rate coefficient and reduced abrasive hardness index) depending on bean cultivar, whereas treatment effects increased with dehulling time. Micronization increased minor phenolic components (tartaric esters, flavonols and anthocyanins) of all beans but had variable effects on total phenolic content depending on market class. Microwave treatment increased α-amylase inhibitor concentration, activity and potency, which were strongly correlated (r² = 0.71, P < 0.0001) with the flavonol content of beans. Heat treatment had variable effects on the phenolic composition of bean hulls obtained by abrasive dehulling without significantly altering the antioxidant activity of black and pinto bean hulls. Principal component analysis on 22 constituents analyzed in this study demonstrated the differences in dehulling characteristics and phenolic components of beans and hulls as major factors in segregating the beneficial heat treatment effects. Heat treatment may be useful in developing novel dietary fibers from beans with variable composition and bioactivity with a considerable range of applications as functional food ingredients. © 2013 Society of Chemical Industry.
Interfacial force field characterization of a constrained vapor bubble thermosyphon using IAI
NASA Technical Reports Server (NTRS)
Dasgupta, Sunando; Plawsky, Joel L.; Wayner, Peter C., Jr.
1994-01-01
The isothermal profiles of the extended meniscus in a quartz cuvette were measured in a gravitational field using IAI (image analyzing interferometer) which is based on computer enhanced video microscopy of the naturally occurring interference fringes. The experimental results for heptane and pentane menisci were analyzed using the extended Young-Laplace Equation. These isothermal results characterized the interfacial force field in-situ at the start of the heat transfer experiments by quantifying the dispersion constant for the specific liquid-solid system. The experimentally obtained values of the disjoining pressures and the dispersion constants are compared to the subsequent non-isothermal experiments because one of the major variables in the heat sink capability of the CVBT is the dispersion constant. In all previous studies of micro heat pipes the value of the dispersion constant has been 'guesstimated'. The major advantages of the current glass cell is the ability to view the extended meniscus at all times. Experimentally, we find that the extended Young-Laplace Equation is an excellent model for for the force field at the solid-liquid vapor interfaces.
NASA Astrophysics Data System (ADS)
Zhao, Te; Ye, Hong; Zhang, Lisong; Cai, Qilin
2017-10-01
As typical phenolic resin-based ablative materials, the high silica/phenolic and carbon/phenolic composites are widely used in aerospace field. The specific heat of the carbonized ablators after ablation is an important thermophysical parameter in the process of heat transfer, but it is rarely reported. In this investigation, the carbonized samples of the high silica/phenolic and carbon/phenolic were obtained through carbonization experiments, and the specific heat of the carbonized samples was determined by a 3D DSC from 150 °C to 970 °C. Structural and compositional characterizations were performed to determine the mass fractions of the fiber and the carbonized product of phenolic which are the two constituents of the carbonized samples, while the specific heat of each constituent was also measured by 3D DSC. The masses of the carbonized samples were reduced when heated to a high temperature in the specific heat measurements, due to the thermal degradation of the carbonized product of phenolic resin in the carbonized samples. The raw experimental specific heat of the two carbonized samples and the carbonized product of phenolic resin was modified according to the quality changes of the carbonized samples presented by TGA results. Based on the mass fraction and the specific heat of each constituent, a weighted average method was adopted to obtain the calculated results of the carbonized samples. Due to the unconsolidated property of the fiber samples which impacts the reliability of the DSC measurement, there is a certain deviation between the experimental and calculated results of the carbonized samples. Considering the similarity of composition and structure, the data of quartz glass and graphite were used to substitute the specific heat of the high silica fiber and carbon fiber, respectively, resulting in better agreements with the experimental ones. Furthermore, the accurate specific heat of the high silica fiber and carbon fiber bundles was obtained by inversion, enabling the prediction of the specific heat of the carbonized ablators with different constituent mass fractions by means of the weighted average method in engineering.
NASA Technical Reports Server (NTRS)
Chou, Shu-Hsien; Chou, Ming-Dah; Chan, Pui-King; Lin, Po-Hsiung; Wang, Kung-Hwa
2003-01-01
Seasonal and interannual variations of the net surface heating F(sub NET) and sea surface temperature tendency (T(sub s)/dt) in the tropical eastern Indian and western Pacific Oceans are studied. The surface heat fluxes are derived from the Special Sensor Microwave/Imager and Japanese Geostationary Meteorological Satellite radiance measurements for the period October 1997-September 2000. It is found that the magnitude of solar heating is lager than that of evaporative cooling, but the spatial variation of the latter is significantly large than the former. As a result, the spatial variations of seasonal and interannual variability of F(sub NET), follow closely that of evaporative cooling. Seasonal variations of F(sub NET) and T(sub s)/dt are significantly correlated, except for the equatorial western Pacific. The high correlation is primarily attributable to high correlation between seasonal cycles of solar heating and T(sub s)/dt. The change of F(sub NET) between 1997-98 El Nino and 1998-99 La Nina is significantly larger in the tropical eastern Indian Ocean than tropical western Pacific. For the former region, the reduced evaporative cooling arising from weakened winds during the El Nino is generally associated with enhanced solar heating due to decreased cloudiness, and thus increases the interannual variability of F(sub NET). For the latter region, the reduced evaporative cooling due to weakened winds is generally associated with but exceeds the reduced solar heating arising from increased cloudiness, and vise versa. Thus the interannual variability of F(sub NET) is reduced due to this offsetting effect. Interannual variations of F(sub NET) and T(sub s)/dt have very low correlation. This is most likely related to interannual variability of ocean dynamics, which includes the variations of solar radiation penetrating through oceanic mixed layer, upwelling of cold thermocline water, Indonesian throughflow for transporting heat from the Pacific to Indian Ocean, and interhemispheric transport in the Indian Ocean.
NASA Astrophysics Data System (ADS)
Sharma, A.; Woodruff, S.; Budhathoki, M.; Hamlet, A. F.; Fernando, H. J. S.; Chen, F.
2017-12-01
Urban areas provide organized, engineered, sociological and economical infrastructure designed to provide a high quality of life, but the implementation and management of urban infrastructure has been a continued challenge. Increasing urbanization, warming climate, as well as anthropogenic heat emissions that accompany urban development generates "stress". This rapidly increasing `urban stress' affects the sustainability of cities, making populations more vulnerable to extreme hazards, such as heat. Cities are beginning to extensively use green roofs as a potential urban heat mitigation strategy. This study explores the potential of green roofs to reduce summertime temperatures in the most vulnerable neighborhoods of the Chicago metropolitan area by combining social vulnerability indices (a function of exposure, sensitivity and adaptive capacity), and temperatures from mesoscale model. Numerical simulations using urbanized version the Advanced Research Weather Research and Forecasting (WRF) model were performed to measure rooftop temperatures, a representative variable for exposure in this study. The WRF simulations were dynamically coupled with a green roof algorithm as a part of urban parameterization within WRF. Specifically, the study examines roof surface temperature with changing green roof fractions and how would they help reduce exposure to heat stress for vulnerable urban communities. This study shows an example of applied research that can directly benefit urban communities and be used by urban planners to evaluate mitigation strategies.
Roberts, Michael F; Lightfoot, Edwin N; Porter, Warren P
2011-01-01
Our recent article (Roberts et al. 2010 ) proposes a mechanistic model for the relation between basal metabolic rate (BMR) and body mass (M) in mammals. The model is based on heat-transfer principles in the form of an equation for distributed heat generation within the body. The model can also be written in the form of the allometric equation BMR = aM(b), in which a is the coefficient of the mass term and b is the allometric exponent. The model generates two interesting results: it predicts that b takes the value 2/3, indicating that BMR is proportional to surface area in endotherms. It also provides an explanation of the physiological components that make up a, that is, respiratory heat loss, core-skin thermal conductance, and core-skin thermal gradient. Some of the ideas in our article have been questioned (Seymour and White 2011 ), and this is our response to those questions. We specifically address the following points: whether a heat-transfer model can explain the level of BMR in mammals, whether our test of the model is inadequate because it uses the same literature data that generated the values of the physiological variables, and whether geometry and empirical values combine to make a "coincidence" that makes the model only appear to conform to real processes.
Thermal transistor behavior of a harmonic chain
NASA Astrophysics Data System (ADS)
Kim, Sangrak
2017-09-01
Thermal transistor behavior of a harmonic chain with three heat reservoirs is explicitly analyzed. Temperature profile and heat currents of the rather general system are formulated and then heat currents for the simplest system are exactly calculated. The matrix connecting the three temperatures of the reservoirs and those of the particles comprises a stochastic matrix. The ratios R 1 and R 2 between heat currents, characterizing thermal signals can be expressed in terms of two external variables and two material parameters. It is shown that the ratios R 1 and R 2 can have wide range of real values. The thermal system shows a thermal transistor behavior such as the amplification of heat current by appropriately controlling the two variables and two parameters. We explicitly demonstrate the characteristics and mechanisms of thermal transistor with the simplest model.
NASA Astrophysics Data System (ADS)
M. Salem, A.; Rania, Fathy
2012-05-01
The effect of variable viscosity and thermal conductivity on steady magnetohydrodynamic (MHD) heat and mass transfer flow of viscous and incompressible fluid near a stagnation point towards a permeable stretching sheet embedded in a porous medium are presented, taking into account thermal radiation and internal heat genberation/absorbtion. The stretching velocity and the ambient fluid velocity are assumed to vary linearly with the distance from the stagnation point. The Rosseland approximation is used to describe the radiative heat flux in the energy equation. The governing fundamental equations are first transformed into a system of ordinary differential equations using a scaling group of transformations and are solved numerically by using the fourth-order Rung—Kutta method with the shooting technique. A comparison with previously published work has been carried out and the results are found to be in good agreement. The results are analyzed for the effect of different physical parameters, such as the variable viscosity and thermal conductivity, the ratio of free stream velocity to stretching velocity, the magnetic field, the porosity, the radiation and suction/injection on the flow, and the heat and mass transfer characteristics. The results indicate that the inclusion of variable viscosity and thermal conductivity into the fluids of light and medium molecular weight is able to change the boundary-layer behavior for all values of the velocity ratio parameter λ except for λ = 1. In addition, the imposition of fluid suction increases both the rate of heat and mass transfer, whereas fluid injection shows the opposite effect.
Heat Pipe Technology: A bibliography with abstracts
NASA Technical Reports Server (NTRS)
1974-01-01
This bibliography lists 149 references with abstracts and 47 patents dealing with applications of heat pipe technology. Topics covered include: heat exchangers for heat recovery; electrical and electronic equipment cooling; temperature control of spacecraft; cryosurgery; cryogenic, cooling; nuclear reactor heat transfer; solar collectors; laser mirror cooling; laser vapor cavitites; cooling of permafrost; snow melting; thermal diodes variable conductance; artery gas venting; and venting; and gravity assisted pipes.
Parametric Evaluation of Interstellar Exploration Mission Concepts
NASA Technical Reports Server (NTRS)
Adams, Robert B.
2017-01-01
One persistent difficulty in evaluating the myriad advanced propulsion concepts proposed over the last 60 years is a true apples to apples comparison of the expected gain in performance. This analysis is complicated by numerous factors including, multiple missions of interest to the advanced propulsion community, the lack of a credible closed form solution to 'medium thrust' trajectories, and lack of detailed design data for most proposed concepts that lend credibility to engine performance estimates. This paper describes a process on how to make fair comparisons of different propulsion concepts for multiple missions over a wide range of performance values. The figure below illustrates this process. This paper describes in detail the process and outlines the status so far in compiling the required data. Parametric data for several missions are calculated and plotted against specific power-specific impulse scatter plots of expected propulsion system performance. The overlay between required performance as defined by the trajectory parametrics and expected performance as defined in the literature for major categories of propulsion systems clearly defines which propulsion systems are the most apt for a given mission. The application of the Buckingham Pi theorem to general parameters for interstellar exploration ( mission time, mass, specific impulse, specific power, distance, propulsion source energy/mass, etc.) yields a number of dimensionless variables. The relationships of these variables can then be explored before application to a particular mission. Like in the fields of fluid mechanics and heat transfer, the use of the Buckingham Pi theorem results in new variables to make apples to apples comparisons.
Variable frequency microwave heating apparatus
Bible, Don W.; Lauf, Robert J.; Johnson, Arvid C.; Thigpen, Larry T.
1999-01-01
A variable frequency microwave heating apparatus (10) designed to allow modulation of the frequency of the microwaves introduced into a multi-mode microwave cavity (34) for testing or other selected applications. The variable frequency microwave heating apparatus (10) includes a microwave signal generator (12) and a high-power microwave amplifier (20) or a high-power microwave oscillator (14). A power supply (22) is provided for operation of the high-power microwave oscillator (14) or microwave amplifier (20). A directional coupler (24) is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity (34). A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).
McTavish, Rebecca K; Richard, Lucie; McArthur, Eric; Shariff, Salimah Z; Acedillo, Rey; Parikh, Chirag R; Wald, Ron; Wilk, Piotr; Garg, Amit X
2018-02-01
An association between high heat and acute kidney injury (AKI) has been reported in warm climates. However, whether this association generalizes to a northern climate, with more variable temperatures, is unknown. Matched case-control study. Our study focused on older adults (mean age, 80 years) in the northern climate of Ontario, Canada. 52,913 case patients who had a hospital encounter with AKI in April through September 2005 to 2012 were matched with 174,222 controls for exact date, age, sex, rural residence, income, and history of chronic kidney disease. Heat periods were defined as 3 consecutive days exceeding the 95th percentile of area-specific maximum temperature. Hospital encounter (inpatient admission or emergency department visit) with a diagnosis of AKI. ORs (95% CIs) were used to assess the association between heat periods and AKI. To quantify the effect in absolute terms, we multiplied the population incidence rate of AKI in the absence of heat periods by our adjusted OR (an approximate of relative risk). Heat periods were significantly associated with higher risk for AKI (adjusted OR, 1.11; 95% CI, 1.00-1.23). Heat periods in absolute terms were associated with an additional 182 cases of AKI per 100,000 person-years during the warm season. We did not know how long persons were outside or if they had access to air conditioning. In a northern climate, periods of higher environmental heat were associated with a modestly higher risk for hospital encounter with AKI among older adults. Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Houpert, Loïc; Testor, Pierre; Durrieu de Madron, Xavier; Somot, Samuel; D'Ortenzio, Fabrizio; Estournel, Claude; Lavigne, Héloïse
2014-05-01
We present a relatively high resolution Mediterranean climatology (0.5°x0.5°x12 months) of the seasonal thermocline based on a comprehensive collection of temperature profiles of the last 44 years (1969-2012). The database includes more than 190,000 profiles, merging CTD, XBT, profiling floats, and gliders observations. This data set is first used to describe the seasonal cycle of the mixed layer depth and of the seasonal thermocline and on the whole Mediterranean on a monthly climatological basis. Our analysis discriminates several regions with coherent behaviors, in particular the deep water formation sites, characterized by significant differences in the winter mixing intensity. Heat Storage Rate (HSR) is calculated as the time rate of change of the heat content due to variations in the temperature integrated from the surface down to the base of the seasonal thermocline. Heat Entrainment Rate (HER) is calculated as the time rate of change of the heat content due to the deepening of thermocline base. We propose a new independent estimate of the seasonal cycle of the Net surface Heat Flux, calculated on average over the Mediterranean Sea for the 1979-2011 period, based only on in-situ observations. We used our new climatologies of HSR and of HER, combined to existing climatology of the horizontal heat flux at Gibraltar Strait. Although there is a good agreement between our estimation of NHF, from observations, with modeled NHF, some differences may be noticed during specific periods. A part of these differences may be explained by the high temporal and spatial variability of the Mixed Layer Depth and of the seasonal thermocline, responsible for very localized heat transfer in the ocean.
Role of subsurface ocean in decadal climate predictability over the South Atlantic.
Morioka, Yushi; Doi, Takeshi; Storto, Andrea; Masina, Simona; Behera, Swadhin K
2018-06-04
Decadal climate predictability in the South Atlantic is explored by performing reforecast experiments using a coupled general circulation model with two initialization schemes; one is assimilated with observed sea surface temperature (SST) only, and the other is additionally assimilated with observed subsurface ocean temperature and salinity. The South Atlantic is known to undergo decadal variability exhibiting a meridional dipole of SST anomalies through variations in the subtropical high and ocean heat transport. Decadal reforecast experiments in which only the model SST is initialized with the observation do not predict well the observed decadal SST variability in the South Atlantic, while the other experiments in which the model SST and subsurface ocean are initialized with the observation skillfully predict the observed decadal SST variability, particularly in the Southeast Atlantic. In-depth analysis of upper-ocean heat content reveals that a significant improvement of zonal heat transport in the Southeast Atlantic leads to skillful prediction of decadal SST variability there. These results demonstrate potential roles of subsurface ocean assimilation in the skillful prediction of decadal climate variability over the South Atlantic.
NASA Astrophysics Data System (ADS)
Sarkar, S.; Peters-Lidard, C.; Chiu, L.; Kafatos, M.
2005-12-01
Increasing population and urbanization have created stress on developing nations. The quickly shifting patterns of vegetation change in different parts of the world have given rise to the pertinent question of feedback on the climate prevailing on local to regional scales. It is now known with some certainty, that vegetation changes can affect the climate by influencing the heat and water balance. The hydrological cycle particularly is susceptible to changes in vegetation. The Monsoon rainfall forms a vital link in the hydrological cycle prevailing over South East Asia This work examines the variability of vegetation over South East Asia and assesses its impact on the monsoon rainfall. We explain the role of changing vegetation and show how this change has affected the heat and energy balance. We demonstrate the role of vegetation one season earlier in influencing rainfall intensity over specific areas in South East Asia and show the ramification of vegetation change on the summer rainfall behavior. The vegetation variability study specifically focuses on India and China, two of the largest and most populous nations. We have done an assessment to find out the key meteorological and human induced parameters affecting vegetation over the study area through a spatial analysis of monthly NDVI values. This study highlights the role of monsoon rainfall, regional climate dynamics and large scale human induced pollution to be the crucial factors governing the vegetation and vegetation distribution. The vegetation is seen to follow distinct spatial patterns that have been found to be crucial in its eventual impact on monsoon rainfall. We have carried out a series of sensitivity experiments using a land surface hydrologic modeling scheme. The vital energy and water balance parameters are identified and the daily climatological cycles are examined for possible change in behavior for different boundary conditions. It is found that the change from native deciduous forest vegetation to crop land affects monsoon rainfall in two ways: 1) The presence of cropland increases the sensible heat release from ground, increasing the chances for development of forced convection; 2) Large scale irrigation associated with spring crop development creates a moister lower boundary layer thus inducing more moist instability and free convection in the succeeding season.
Timing of climate variability and grassland productivity
Craine, Joseph M.; Nippert, Jesse B.; Elmore, Andrew J.; Skibbe, Adam M.; Hutchinson, Stacy L.; Brunsell, Nathaniel A.
2012-01-01
Future climates are forecast to include greater precipitation variability and more frequent heat waves, but the degree to which the timing of climate variability impacts ecosystems is uncertain. In a temperate, humid grassland, we examined the seasonal impacts of climate variability on 27 y of grass productivity. Drought and high-intensity precipitation reduced grass productivity only during a 110-d period, whereas high temperatures reduced productivity only during 25 d in July. The effects of drought and heat waves declined over the season and had no detectable impact on grass productivity in August. If these patterns are general across ecosystems, predictions of ecosystem response to climate change will have to account not only for the magnitude of climate variability but also for its timing. PMID:22331914
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, J.; Moon, T.J.; Howell, J.R.
This paper presents an analysis of the heat transfer occurring during an in-situ curing process for which infrared energy is provided on the surface of polymer composite during winding. The material system is Hercules prepreg AS4/3501-6. Thermoset composites have an exothermic chemical reaction during the curing process. An Eulerian thermochemical model is developed for the heat transfer analysis of helical winding. The model incorporates heat generation due to the chemical reaction. Several assumptions are made leading to a two-dimensional, thermochemical model. For simplicity, 360{degree} heating around the mandrel is considered. In order to generate the appropriate process windows, the developedmore » heat transfer model is combined with a simple winding time model. The process windows allow for a proper selection of process variables such as infrared energy input and winding velocity to give a desired end-product state. Steady-state temperatures are found for each combination of the process variables. A regression analysis is carried out to relate the process variables to the resulting steady-state temperatures. Using regression equations, process windows for a wide range of cylinder diameters are found. A general procedure to find process windows for Hercules AS4/3501-6 prepreg tape is coded in a FORTRAN program.« less
Madani, S Hadi; Sedghi, Saeid; Biggs, Mark J; Pendleton, Phillip
2015-12-21
A qualitative interpretation is proposed to interpret isosteric heats of adsorption by considering contributions from three general classes of interaction energy: fluid-fluid heat, fluid-solid heat, and fluid-high-energy site (HES) heat. Multiple temperature adsorption isotherms are defined for nitrogen, T=(75, 77, 79) K, argon at T=(85, 87, 89) K, and for water and methanol at T=(278, 288, 298) K on a well-characterized polymer-based, activated carbon. Nitrogen and argon are subjected to isosteric heat analyses; their zero filling isosteric heats of adsorption are consistent with slit-pore, adsorption energy enhancement modelling. Water adsorbs entirely via specific interactions, offering decreasing isosteric heat at low pore filling followed by a constant heat slightly in excess of water condensation enthalpy, demonstrating the effects of micropores. Methanol offers both specific adsorption via the alcohol group and non-specific interactions via its methyl group; the isosteric heat increases at low pore filling, indicating the predominance of non-specific interactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermo-Mechanical Processing in Friction Stir Welds
NASA Technical Reports Server (NTRS)
Schneider, Judy
2003-01-01
Friction stir welding is a solid-phase joining, or welding process that was invented in 1991 at The Welding Institute (TWI). The process is potentially capable of joining a wide variety of aluminum alloys that are traditionally difficult to fusion weld. The friction stir welding (FSW) process produces welds by moving a non-consumable rotating pin tool along a seam between work pieces that are firmly clamped to an anvil. At the start of the process, the rotating pin is plunged into the material to a pre-determined load. The required heat is produced by a combination of frictional and deformation heating. The shape of the tool shoulder and supporting anvil promotes a high hydrostatic pressure along the joint line as the tool shears and literally stirs the metal together. To produce a defect free weld, process variables (RPM, transverse speed, and downward force) and tool pin design must be chosen carefully. An accurate model of the material flow during the process is necessary to guide process variable selection. At MSFC a plastic slip line model of the process has been synthesized based on macroscopic images of the resulting weld material. Although this model appears to have captured the main features of the process, material specific interactions are not understood. The objective of the present research was to develop a basic understanding of the evolution of the microstructure to be able to relate it to the deformation process variables of strain, strain rate, and temperature.
Characterization of extreme air-sea turbulent fluxes
NASA Astrophysics Data System (ADS)
Gulev, Sergey; Belyaev, Konstantin
2017-04-01
Extreme ocean-atmosphere turbulent fluxes play a critical role in the convective processes in the mid and subpolar latitudes and may also affect a variety of atmospheric processes, such as generation and re-intensification of extreme cyclones in the areas of the mid latitude storm tracks. From the ocean dynamics perspective, specifically for quantifying extreme vertical mixing, characterization of the extreme fluxes requires, besides estimation of the extreme events, also consideration of the relative extremeness of surface fluxes and their timing, e.g. the duration of periods of high surface fluxes. In order to comprehensively characterize extreme turbulent fluxes at sea surface we propose a formalism based upon probability density distributions of surface turbulent fluxes and flux-related variables. Individual absolute flux extremes were derived using Modified Fisher-Tippett (MFT) distribution of turbulent fluxes. Then, we extend this distribution to the fractional distribution, characterizing the fraction of time-integrated turbulent heat flux provided by the fluxes exceeding a given percentile. Finally, we consider the time durations during which fluxes of a given intensity provide extreme accumulations of heat loss from the surface. For estimation of these characteristics of surface fluxes we use fluxes recomputed from the state variables available from modern era reanalyses (ERA-Interim, MERRA and CFSR) for the period from 1979 onwards. Applications of the formalism to the VOS (Voluntary Observing Ship) - based surface fluxes are also considered. We discuss application of the new metrics of mesoscale and synoptic variability of surface fluxes to the dynamics of mixed layer depth in the North Atlantic.
NASA Astrophysics Data System (ADS)
Tomita, H.; Hihara, T.; Kubota, M.
2018-01-01
Near-surface air-specific humidity is a key variable in the estimation of air-sea latent heat flux and evaporation from the ocean surface. An accurate estimation over the global ocean is required for studies on global climate, air-sea interactions, and water cycles. Current remote sensing techniques are problematic and a major source of errors for flux and evaporation. Here we propose a new method to estimate surface humidity using satellite microwave radiometer instruments, based on a new finding about the relationship between multichannel brightness temperatures measured by satellite sensors, surface humidity, and vertical moisture structure. Satellite estimations using the new method were compared with in situ observations to evaluate this method, confirming that it could significantly improve satellite estimations with high impact on satellite estimation of latent heat flux. We recommend the adoption of this method for any satellite microwave radiometer observations.
The three-dimensional steady radial expansion of a viscous gas from a sonic source into a vacuum.
NASA Technical Reports Server (NTRS)
Bush, W. B.; Rosen, R.
1971-01-01
The three-dimensional steady radial expansion of a viscous, heat-conducting, compressible fluid from a spherical sonic source into a vacuum is analyzed using the Navier-Stokes equations as a basis. It is assumed that the model fluid is a perfect gas having constant specific heats, a constant Prandtl number of order unity, and viscosity coefficients varying as a power of the absolute temperature. Limiting forms for the flow variable solutions are studied for the Reynolds number based on the sonic source conditions, going to infinity and the Newtonian parameter both fixed and going to zero. For the case of the viscosity-temperature exponent between .5 and 1, it is shown that the velocity as well as the pressure approach zero as the radial distance goes to infinity. The formulations of the distinct regions that span the domain extending from the sonic source to the vacuum are presented.
Power spectrum analysis of cardiovascular variability during passive heating in conscious rats.
Moura, Anselmo Gomes; Pires, Washington; Leite, Laura Hora Rios; da Cunha, Daise Nunes Queiroz; Peçanha, Tiago; de Lima, Jorge Roberto Peurrot; Natali, Antônio José; Prímola-Gomes, Thales Nicolau
2016-12-01
The cardiovascular system plays a direct role in the maintenance of body temperature. Whether passive heating alters cardiovascular autonomic modulation in conscious rats is still unknown. This study investigated the effects of passive heating on systolic blood pressure variability (SBPV) and heart rate variability (HRV) in conscious rats and the involvement of the renin-angiotensin system in the passive heating effects on SBPV and HRV. Fourteen male Wistar rats were randomly assigned to the control group or the losartan treatment group. A catheter was implanted in the left carotid artery to record pulsatile arterial pressure (PAP), and a telemetry sensor was implanted in the abdominal cavity to measure body temperature (T body ). After recovering from surgery, the animals were subjected to a passive heating protocol (35°C; 30min) in resting conditions, during which T body , tail skin temperature and PAP were measured. The mean arterial pressure, systolic and diastolic blood pressure, heart rate, double product (i.e., the product of systolic blood pressure by heart rate), SBPV and HRV were calculated from the PAP. SBPV and HRV were analyzed in terms of both time and frequency domains. Increases in the thermoregulatory and cardiovascular parameters were observed during passive heating in both groups, and those increases were reflected in the higher time and frequency domains of the SBPV. However, passive heating was not effective in altering HRV. Passive heating altered SBPV but not HRV in conscious rats when they were treated with losartan. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fuchs, Sven; Balling, Niels; Förster, Andrea
2016-04-01
Numerical temperature models generated for geodynamic studies as well as for geothermal energy solutions heavily depend on rock thermal properties. Best practice for the determination of those parameters is the measurement of rock samples in the laboratory. Given the necessity to enlarge databases of subsurface rock parameters beyond drill core measurements an approach for the indirect determination of these parameters is developed, for rocks as well a for geological formations. We present new and universally applicable prediction equations for thermal conductivity, thermal diffusivity and specific heat capacity in sedimentary rocks derived from data provided by standard geophysical well logs. The approach is based on a data set of synthetic sedimentary rocks (clastic rocks, carbonates and evaporates) composed of mineral assemblages with variable contents of 15 major rock-forming minerals and porosities varying between 0 and 30%. Petrophysical properties are assigned to both the rock-forming minerals and the pore-filling fluids. Using multivariate statistics, relationships then were explored between each thermal property and well-logged petrophysical parameters (density, sonic interval transit time, hydrogen index, volume fraction of shale and photoelectric absorption index) on a regression sub set of data (70% of data) (Fuchs et al., 2015). Prediction quality was quantified on the remaining test sub set (30% of data). The combination of three to five well-log parameters results in predictions on the order of <15% for thermal conductivity and thermal diffusivity, and of <10% for specific heat capacity. Comparison of predicted and benchmark laboratory thermal conductivity from deep boreholes of the Norwegian-Danish Basin, the North German Basin, and the Molasse Basin results in 3 to 5% larger uncertainties with regard to the test data set. With regard to temperature models, the use of calculated TC borehole profiles approximate measured temperature logs with an error of <3°C along a 4 km deep profile. A benchmark comparison for thermal diffusivity and specific heat capacity is pending. Fuchs, Sven; Balling, Niels; Förster, Andrea (2015): Calculation of thermal conductivity, thermal diffusivity and specific heat capacity of sedimentary rocks using petrophysical well logs, Geophysical Journal International 203, 1977-2000, doi: 10.1093/gji/ggv403
DeVine, Aubrey C; Vu, Phuong T; Yost, Michael G; Seto, Edmund Y W; Busch Isaksen, Tania M
2017-08-20
This research analyzed the relationship between extreme heat and Emergency Medical Service (EMS) calls in King County, WA, USA between 2007 and 2012, including the effect of community-level characteristics. Extreme heat thresholds for the Basic Life Support (BLS) data and the Advanced Life Support (ALS) data were found using a piecewise generalized linear model with Akaike Information Criterion (AIC). The association between heat exposure and EMS call rates was investigated using a generalized estimating equations with Poisson mean model, while adjusting for community-level indicators of poverty, impervious surface, and elderly population (65+). In addition, we examined the effect modifications of these community-level factors. Extreme-heat thresholds of 31.1 °C and 33.5 °C humidex were determined for the BLS and ALS data, respectively. After adjusting for other variables in the model, increased BLS call volume was significantly associated with occurring on a heat day (relative rate (RR) = 1.080, p < 0.001), as well as in locations with higher percent poverty (RR = 1.066, p < 0.001). No significant effect modification was identified for the BLS data on a heat day. Controlling for other variables, higher ALS call volume was found to be significantly associated with a heat day (RR = 1.067, p < 0.001), as well as in locations with higher percent impervious surface (RR = 1.015, p = 0.039), higher percent of the population 65 years or older (RR = 1.057, p = 0.005), and higher percent poverty (RR = 1.041, p = 0.016). Furthermore, percent poverty and impervious surface were found to significantly modify the relative rate of ALS call volumes between a heat day and non-heat day. We conclude that EMS call volume increases significantly on a heat day compared to non-heat day for both call types. While this study shows that there is some effect modification between the community-level variables and call volume on a heat day, further research is necessary. Our findings also suggest that with adequate power, spatially refined analyses may not be necessary to accurately estimate the extreme-heat effect on health.
NASA Astrophysics Data System (ADS)
Akilu, S.; Baheta, A. T.; Sharma, K. V.; Said, M. A.
2017-09-01
Nanostructured ceramic materials have recently attracted attention as promising heat transfer fluid additives owing to their outstanding heat storage capacities. In this paper, experimental measurements of the specific heats of SiO2-Glycerol, SiO2-Ethylene Glycol, and SiO2-Glycerol/Ethylene Glycol mixture 60:40 ratio (by mass) nanofluids with different volume concentrations of 1.0-4.0% have been carried out using differential scanning calorimeter at temperatures of 25 °C and 50 °C. Experimental results indicate lower specific heat capacities are found with SiO2 nanofluids compared to their respective base fluids. The specific heat was decreasing with the increase of concentration, and this decrement depends on upon the type of the base fluid. It is observed that temperature has a positive impact on the specific heat capacity. Furthermore, the experimental values were compared with the theoretical model predictions, and a satisfactory agreement was established.
Sensitivity study of the monogroove with screen heat pipe design
NASA Technical Reports Server (NTRS)
Evans, Austin L.; Joyce, Martin
1988-01-01
The present sensitivity study of design variable effects on the performance of a monogroove-with-screen heat pipe obtains performance curves for maximum heat-transfer rates vs. operating temperatures by means of a computer code; performance projections for both 1-g and zero-g conditions are obtainable. The variables in question were liquid and vapor channel design, wall groove design, and the number of feed lines in the evaporator and condenser. The effect on performance of three different working fluids, namely ammonia, methanol, and water, were also determined. Greatest sensitivity was to changes in liquid and vapor channel diameters.
A nuclear wind/solar oil-shale system for variable electricity and liquid fuels production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forsberg, C.
2012-07-01
The recoverable reserves of oil shale in the United States exceed the total quantity of oil produced to date worldwide. Oil shale contains no oil, rather it contains kerogen which when heated decomposes into oil, gases, and a carbon char. The energy required to heat the kerogen-containing rock to produce the oil is about a quarter of the energy value of the recovered products. If fossil fuels are burned to supply this energy, the greenhouse gas releases are large relative to producing gasoline and diesel from crude oil. The oil shale can be heated underground with steam from nuclear reactorsmore » leaving the carbon char underground - a form of carbon sequestration. Because the thermal conductivity of the oil shale is low, the heating process takes months to years. This process characteristic in a system where the reactor dominates the capital costs creates the option to operate the nuclear reactor at base load while providing variable electricity to meet peak electricity demand and heat for the shale oil at times of low electricity demand. This, in turn, may enable the large scale use of renewables such as wind and solar for electricity production because the base-load nuclear plants can provide lower-cost variable backup electricity. Nuclear shale oil may reduce the greenhouse gas releases from using gasoline and diesel in half relative to gasoline and diesel produced from conventional oil. The variable electricity replaces electricity that would have been produced by fossil plants. The carbon credits from replacing fossil fuels for variable electricity production, if assigned to shale oil production, results in a carbon footprint from burning gasoline or diesel from shale oil that may half that of conventional crude oil. The U.S. imports about 10 million barrels of oil per day at a cost of a billion dollars per day. It would require about 200 GW of high-temperature nuclear heat to recover this quantity of shale oil - about two-thirds the thermal output of existing nuclear reactors in the United States. With the added variable electricity production to enable renewables, additional nuclear capacity would be required. (authors)« less
How Well Has Global Ocean Heat Content Variability Been Measured?
NASA Astrophysics Data System (ADS)
Nelson, A.; Weiss, J.; Fox-Kemper, B.; Fabienne, G.
2016-12-01
We introduce a new strategy that uses synthetic observations of an ensemble of model simulations to test the fidelity of an observational strategy, quantifying how well it captures the statistics of variability. We apply this test to the 0-700m global ocean heat content anomaly (OHCA) as observed with in-situ measurements by the Coriolis Dataset for Reanalysis (CORA), using the Community Climate System Model (CCSM) version 3.5. One-year running mean OHCAs for the years 2005 onward are found to faithfully capture the variability. During these years, synthetic observations of the model are strongly correlated at 0.94±0.06 with the actual state of the model. Overall, sub-annual variability and data before 2005 are significantly affected by the variability of the observing system. In contrast, the sometimes-used weighted integral of observations is not a good indicator of OHCA as variability in the observing system contaminates dynamical variability.
Spatiotemporal trends in human vulnerability to the heat across the United States
NASA Astrophysics Data System (ADS)
Sheridan, S. C.; Dixon, P. G.
2016-12-01
While human vulnerability to excessive heat has been well documented, relatively few studies have examined long-term trends in vulnerability to heat events. In this research, we examine temporal trends in mortality associated with heat waves, defined using three different definitions of heat wave, for the largest 51 metropolitan areas of the US, over a 36-year period (1975-2010). Regardless of the definition of heat wave, an overall decline in heat vulnerability is seen over the period. While in the first years of the study, 18 to 26 metropolitan areas showed statistically significant increases in mortality on heat wave days, by the final decade of the study period, this had decreased to 6 to 7. Within this narrative, however, examining individual metropolitan areas shows greater variability within the downward trend. Several contributing factors to the variability were observed, including the occurrence of an extreme heat wave affecting the overall heat wave-mortality relationship, and the frequency of heat events over a given period. These broad decreases in heat vulnerability, while encouraging, should be viewed in a cautionary sense. With society aging, there will be a greater number of highly susceptible individuals in the future; further adaptation gains are difficult in many places as air conditioning is now available in most homes in the US. Further, increased use of air conditioning has been associated with a stronger heat island; which, moving forward, is likely to occur alongside a greater number of heat events.
NASA Technical Reports Server (NTRS)
Robert, J. Brent; Robertson, Franklin R.; Clayson, Carol Anne; Bosilovich, Michael G.
2012-01-01
Turbulent fluxes of heat and moisture across the atmosphere-ocean interface are fundamental components of the Earth's energy and water balance. Characterizing both the spatiotemporal variability and the fidelity of these exchanges of heat and moisture is critical to understanding the global water and energy cycle variations, quantifying atmosphere-ocean feedbacks, and improving model predictability. This study examines the veracity of the recently completed NASA Modern-Era Retrospective analysis for Research and Applications (MERRA) product with respect to its representation of the surface turbulent heat fluxes. A validation of MERRA turbulent heat fluxes and near-surface bulk variables at local, high-resolution space and time scales is achieved by making comparisons to a large suite of direct observations. Both in situ and satellite-observed gridded surface heat flux estimates are employed to investigate the spatial and temporal variability of the surface fluxes with respect to their annual mean climatologies, their seasonal covariability of near-surface bulk parameters, and their representation of extremes. The impact of data assimilation on the near-surface parameters is assessed through evaluation of incremental analysis update tendencies produced by the assimilation procedure. It is found that MERRA turbulent surface heat fluxes are relatively accurate for typical conditions but have systematically weak vertical gradients in moisture and temperature and have a weaker covariability between the near-surface gradients and wind speed than found in observations. This results in an underestimate of the surface latent and sensible heat fluxes over the western boundary current and storm track regions. The assimilation of observations mostly acts to bring MERRA closer to observational products by increasing moisture and temperature near the surface and decreasing the near-surface wind speeds. The major patterns of spatial and temporal variability of the turbulent heat fluxes produced by MERRA compare favorably to observationally based estimates. However, MERRA is distinct in terms of amplitude. These results suggest that MERRA is likely to be a valuable resource for a number of research applications though, as with all turbulent flux estimates, systematic issues should be taken into account
NASA Technical Reports Server (NTRS)
Roberts, J. Brent; Robertson, Franklin R.; Clayson, Carol Anne; Bosilovich, Michael G.
2012-01-01
Turbulent fluxes of heat and moisture across the atmosphere-ocean interface are fundamental components of the Earth s energy and water balance. Characterizing both the spatiotemporal variability and the fidelity of these exchanges of heat and moisture is critical to understanding the global water and energy cycle variations, quantifying atmosphere-ocean feedbacks, and improving model predictability. This study examines the veracity of the recently completed NASA Modern-Era Retrospective analysis for Research and Applications (MERRA) product with respect to its representation of the surface turbulent heat fluxes. A validation of MERRA turbulent heat fluxes and near-surface bulk variables at local, high-resolution space and time scales is achieved by making comparisons to a large suite of direct observations. Both in situ and satellite-observed gridded surface heat flux estimates are employed to investigate the spatial and temporal variability of the surface fluxes with respect to their annual mean climatologies, their seasonal covariability of near-surface bulk parameters, and their representation of extremes. The impact of data assimilation on the near-surface parameters is assessed through evaluation of incremental analysis update tendencies produced by the assimilation procedure. It is found that MERRA turbulent surface heat fluxes are relatively accurate for typical conditions but have systematically weak vertical gradients in moisture and temperature and have a weaker covariability between the near-surface gradients and wind speed than found in observations. This results in an underestimate of the surface latent and sensible heat fluxes over the western boundary current and storm track regions. The assimilation of observations mostly acts to bring MERRA closer to observational products by increasing moisture and temperature near the surface and decreasing the near-surface wind speeds. The major patterns of spatial and temporal variability of the turbulent heat fluxes produced by MERRA compare favorably to observationally based estimates. However, MERRA is distinct in terms of amplitude. These results suggest that MERRA is likely to be a valuable resource for a number of research applications though, as with all turbulent flux estimates, systematic issues should be taken into account.
Heat recovery system employing a temperature controlled variable speed fan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, W.T.
1986-05-20
A heat recovery system is described for use in recovering heat from an industrial process producing a heated fluid comprising: a source of inlet air; a housing coupled to the source and including a heat exchanger; means for passing the heated fluid through the heat exchanger; the housing including means for moving a variable volume of air adjustable over a continuous range from the source through the heat exchanger; air discharge means communicating with the housing for discharging air which has passed through the heat exchanger; a control system including first temperature sensing means for sensing the discharge temperature ofmore » the discharge air moving through the discharge means and a control circuit coupled to the first temperature sensing means and to the moving means for varying the volume of air moved in response to the sensed discharge temperature to control the temperature of discharge air passing through the discharge means at a first predetermined value; and the control system including second temperature sensing means for sensing the temperature of the source of inlet air and valve means coupled to and controlled by the control circuit to cause liquid to bypass the heat exchanger when the inlet air temperature rises above a second predetermined value.« less
NASA Technical Reports Server (NTRS)
Branscome, Lee E.; Bleck, Rainer; Obrien, Enda
1990-01-01
The project objectives are to develop process models to investigate the interaction of planetary and synoptic-scale waves including the effects of latent heat release (precipitation), nonlinear dynamics, physical and boundary-layer processes, and large-scale topography; to determine the importance of latent heat release for temporal variability and time-mean behavior of planetary and synoptic-scale waves; to compare the model results with available observations of planetary and synoptic wave variability; and to assess the implications of the results for monitoring precipitation in oceanic-storm tracks by satellite observing systems. Researchers have utilized two different models for this project: a two-level quasi-geostrophic model to study intraseasonal variability, anomalous circulations and the seasonal cycle, and a 10-level, multi-wave primitive equation model to validate the two-level Q-G model and examine effects of convection, surface processes, and spherical geometry. It explicitly resolves several planetary and synoptic waves and includes specific humidity (as a predicted variable), moist convection, and large-scale precipitation. In the past year researchers have concentrated on experiments with the multi-level primitive equation model. The dynamical part of that model is similar to the spectral model used by the National Meteorological Center for medium-range forecasts. The model includes parameterizations of large-scale condensation and moist convection. To test the validity of results regarding the influence of convective precipitation, researchers can use either one of two different convective schemes in the model, a Kuo convective scheme or a modified Arakawa-Schubert scheme which includes downdrafts. By choosing one or the other scheme, they can evaluate the impact of the convective parameterization on the circulation. In the past year researchers performed a variety of initial-value experiments with the primitive-equation model. Using initial conditions typical of climatological winter conditions, they examined the behavior of synoptic and planetary waves growing in moist and dry environments. Surface conditions were representative of a zonally averaged ocean. They found that moist convection associated with baroclinic wave development was confined to the subtropics.
Preliminary design package for solar heating and cooling systems
NASA Technical Reports Server (NTRS)
1978-01-01
Summarized preliminary design information on activities associated with the development, delivery and support of solar heating and cooling systems is given. These systems are for single family dwellings and commercial applications. The heating/cooling system use a reversible vapor compression heat pump that is driven in the cooling mode by a Rankine power loop, and in the heating mode by a variable speed electric motor. The heating/cooling systems differ from the heating-only systems in the arrangement of the heat pump subsystem and the addition of a cooling tower to provide the heat sink for cooling mode operation.
NASA Astrophysics Data System (ADS)
Pecho, J.; Výberči, D.; Jarošová, M.; Å¥Astný, P. Å.
2010-09-01
Analysis of long-term changes and temporal variability of heat waves incidence in the region of southern Slovakia within the 1901-2009 periods is a goal of the presented contribution. It is expected that climate change in terms of global warming would amplify temporal frequency and spatial extension of extreme heat wave incidence in region of central Europe in the next few decades. The frequency of occurrence and amplitude of heat waves may be impacted by changes in the temperature regime. Heat waves can cause severe thermal environmental stress leading to higher hospital admission rates, health complications, and increased mortality. These effects arise because of one or more meteorology-related factors such as higher effective temperatures, sunshine, more consecutive hot days and nights, stagnation, increased humidity, increased pollutant emissions, and accelerated photochemical smog and particulate formation. Heat waves bring about higher temperatures, increased solar heating of buildings, inhibited ventilation, and a larger number of consecutive warm days and nights. All of these effects increase the thermal loads on buildings, reduce their ability to cool down, and increase indoor temperatures. The paper is focused to analysis of long-term and inter-decadal temporal variability of heat waves occurrence at meteorological station Hurbanovo (time-series of daily maximum air temperature available from at least 1901). We can characterize the heat waves by its magnitude and duration, hence both of these characteristics need to be investigated together using sophisticated statistical methods developed particularly for the analysis of extreme hydrological events. We investigated particular heat wave periods either from the severity point of view using HWI index. In the paper we also present the results of statistical analysis of daily maximum air temperature within 1901-2009 period. Apart from these investigation efforts we also focused on synoptic causes of heat wave incidence in connection with macro scale circulation patterns in central European region.
NASA Astrophysics Data System (ADS)
Mohyud Din, S. T.; Zubair, T.; Usman, M.; Hamid, M.; Rafiq, M.; Mohsin, S.
2018-04-01
This study is devoted to analyze the influence of variable diffusion coefficient and variable thermal conductivity on heat and mass transfer in Casson fluid flow. The behavior of concentration and temperature profiles in the presence of Joule heating and viscous dissipation is also studied. The dimensionless conversation laws with suitable BCs are solved via Modified Gegenbauer Wavelets Method (MGWM). It has been observed that increase in Casson fluid parameter (β ) and parameter ɛ enhances the Nusselt number. Moreover, Nusselt number of Newtonian fluid is less than that of the Casson fluid. The phenomenon of mass transport can be increased by solute of variable diffusion coefficient rather than solute of constant diffusion coefficient. A detailed analysis of results is appropriately highlighted. The obtained results, error estimates, and convergence analysis reconfirm the credibility of proposed algorithm. It is concluded that MGWM is an appropriate tool to tackle nonlinear physical models and hence may be extended to some other nonlinear problems of diversified physical nature also.
Sita, Kumari; Sehgal, Akanksha; HanumanthaRao, Bindumadhava; Nair, Ramakrishnan M.; Vara Prasad, P. V.; Kumar, Shiv; Gaur, Pooran M.; Farooq, Muhammad; Siddique, Kadambot H. M.; Varshney, Rajeev K.; Nayyar, Harsh
2017-01-01
Ambient temperatures are predicted to rise in the future owing to several reasons associated with global climate changes. These temperature increases can result in heat stress- a severe threat to crop production in most countries. Legumes are well-known for their impact on agricultural sustainability as well as their nutritional and health benefits. Heat stress imposes challenges for legume crops and has deleterious effects on the morphology, physiology, and reproductive growth of plants. High-temperature stress at the time of the reproductive stage is becoming a severe limitation for production of grain legumes as their cultivation expands to warmer environments and temperature variability increases due to climate change. The reproductive period is vital in the life cycle of all plants and is susceptible to high-temperature stress as various metabolic processes are adversely impacted during this phase, which reduces crop yield. Food legumes exposed to high-temperature stress during reproduction show flower abortion, pollen and ovule infertility, impaired fertilization, and reduced seed filling, leading to smaller seeds and poor yields. Through various breeding techniques, heat tolerance in major legumes can be enhanced to improve performance in the field. Omics approaches unravel different mechanisms underlying thermotolerance, which is imperative to understand the processes of molecular responses toward high-temperature stress. PMID:29123532
Heat waves in Senegal : detection, characterization and associated processes.
NASA Astrophysics Data System (ADS)
Gnacoussa Sambou, Marie Jeanne; Janicot, Serge; Badiane, Daouda; Pohl, Benjamin; Dieng, Abdou L.; Gaye, Amadou T.
2017-04-01
Atmospheric configuration and synoptic evolution of patterns associated with Senegalese heat wave (HW) are examined on the period 1979-2014 using the Global Surface Summary of the Day (GSOD) observational database and ERA-Interim reanalysis. Since there is no objective and uniform definition of HW events, threshold methods based on atmospheric variables as daily maximum (Tmax) / minimum (Tmin) temperatures and daily mean apparent temperature (AT) are used to define HW threshold detection. Each criterion is related to a specific category of HW events: Tmax (warm day events), Tmin (warm night events) and AT (combining temperature and moisture). These definitions are used in order to characterize as well as possible the warm events over the Senegalese regions (oceanic versus continental region). Statistics on time evolution and spatial distribution of warm events are carried out over the 2 seasons of maximum temperature (March-May and October-November). For each season, a composite of HW events, as well as the most extended event over Senegal (as a case study) are analyzed using usual atmospheric fields (sea level pressure, geopotential height, total column water content, wind components, 2m temperature). This study is part of the project ACASIS (https://acasis.locean-ipsl.upmc.fr/doku.php) on heat waves occurrences over the Sahel and their impact on health. Keywords: heat wave, Senegal, ACASIS.
Sita, Kumari; Sehgal, Akanksha; HanumanthaRao, Bindumadhava; Nair, Ramakrishnan M; Vara Prasad, P V; Kumar, Shiv; Gaur, Pooran M; Farooq, Muhammad; Siddique, Kadambot H M; Varshney, Rajeev K; Nayyar, Harsh
2017-01-01
Ambient temperatures are predicted to rise in the future owing to several reasons associated with global climate changes. These temperature increases can result in heat stress- a severe threat to crop production in most countries. Legumes are well-known for their impact on agricultural sustainability as well as their nutritional and health benefits. Heat stress imposes challenges for legume crops and has deleterious effects on the morphology, physiology, and reproductive growth of plants. High-temperature stress at the time of the reproductive stage is becoming a severe limitation for production of grain legumes as their cultivation expands to warmer environments and temperature variability increases due to climate change. The reproductive period is vital in the life cycle of all plants and is susceptible to high-temperature stress as various metabolic processes are adversely impacted during this phase, which reduces crop yield. Food legumes exposed to high-temperature stress during reproduction show flower abortion, pollen and ovule infertility, impaired fertilization, and reduced seed filling, leading to smaller seeds and poor yields. Through various breeding techniques, heat tolerance in major legumes can be enhanced to improve performance in the field. Omics approaches unravel different mechanisms underlying thermotolerance, which is imperative to understand the processes of molecular responses toward high-temperature stress.
Probability of US Heat Waves Affected by a Subseasonal Planetary Wave Pattern
NASA Technical Reports Server (NTRS)
Teng, Haiyan; Branstator, Grant; Wang, Hailan; Meehl, Gerald A.; Washington, Warren M.
2013-01-01
Heat waves are thought to result from subseasonal atmospheric variability. Atmospheric phenomena driven by tropical convection, such as the Asian monsoon, have been considered potential sources of predictability on subseasonal timescales. Mid-latitude atmospheric dynamics have been considered too chaotic to allow significant prediction skill of lead times beyond the typical 10-day range of weather forecasts. Here we use a 12,000-year integration of an atmospheric general circulation model to identify a pattern of subseasonal atmospheric variability that can help improve forecast skill for heat waves in the United States. We find that heat waves tend to be preceded by 15-20 days by a pattern of anomalous atmospheric planetary waves with a wavenumber of 5. This circulation pattern can arise as a result of internal atmospheric dynamics and is not necessarily linked to tropical heating.We conclude that some mid-latitude circulation anomalies that increase the probability of heat waves are predictable beyond the typical weather forecast range.
Effect of surface hydroxyl groups on heat capacity of mesoporous silica
NASA Astrophysics Data System (ADS)
Marszewski, Michal; Butts, Danielle; Lan, Esther; Yan, Yan; King, Sophia C.; McNeil, Patricia E.; Galy, Tiphaine; Dunn, Bruce; Tolbert, Sarah H.; Hu, Yongjie; Pilon, Laurent
2018-05-01
This paper quantifies the effect of surface hydroxyl groups on the effective specific and volumetric heat capacities of mesoporous silica. To achieve a wide range of structural diversity, mesoporous silica samples were synthesized by various methods, including (i) polymer-templated nanoparticle-based powders, (ii) polymer-templated sol-gel powders, and (iii) ambigel silica samples dried by solvent exchange at room temperature. Their effective specific heat capacity, specific surface area, and porosity were measured using differential scanning calorimetry and low-temperature nitrogen adsorption-desorption measurements. The experimentally measured specific heat capacity was larger than the conventional weight-fraction-weighted specific heat capacity of the air and silica constituents. The difference was attributed to the presence of OH groups in the large internal surface area. A thermodynamic model was developed based on surface energy considerations to account for the effect of surface OH groups on the specific and volumetric heat capacity. The model predictions fell within the experimental uncertainty.
Review of Methods for Buildings Energy Performance Modelling
NASA Astrophysics Data System (ADS)
Krstić, Hrvoje; Teni, Mihaela
2017-10-01
Research presented in this paper gives a brief review of methods used for buildings energy performance modelling. This paper gives also a comprehensive review of the advantages and disadvantages of available methods as well as the input parameters used for modelling buildings energy performance. European Directive EPBD obliges the implementation of energy certification procedure which gives an insight on buildings energy performance via exiting energy certificate databases. Some of the methods for buildings energy performance modelling mentioned in this paper are developed by employing data sets of buildings which have already undergone an energy certification procedure. Such database is used in this paper where the majority of buildings in the database have already gone under some form of partial retrofitting - replacement of windows or installation of thermal insulation but still have poor energy performance. The case study presented in this paper utilizes energy certificates database obtained from residential units in Croatia (over 400 buildings) in order to determine the dependence between buildings energy performance and variables from database by using statistical dependencies tests. Building energy performance in database is presented with building energy efficiency rate (from A+ to G) which is based on specific annual energy needs for heating for referential climatic data [kWh/(m2a)]. Independent variables in database are surfaces and volume of the conditioned part of the building, building shape factor, energy used for heating, CO2 emission, building age and year of reconstruction. Research results presented in this paper give an insight in possibilities of methods used for buildings energy performance modelling. Further on it gives an analysis of dependencies between buildings energy performance as a dependent variable and independent variables from the database. Presented results could be used for development of new building energy performance predictive model.
The Role of Global Hydrologic Processes in Interannual and Long-Term Climate Variability
NASA Technical Reports Server (NTRS)
Robertson, Franklin R.
1997-01-01
The earth's climate and its variability is linked inextricably with the presence of water on our planet. El Nino / Southern Oscillation-- the major mode of interannual variability-- is characterized by strong perturbations in oceanic evaporation, tropical rainfall, and radiation. On longer time scales, the major feedback mechanism in CO2-induced global warming is actually that due to increased water vapor holding capacity of the atmosphere. The global hydrologic cycle effects on climate are manifested through influence of cloud and water vapor on energy fluxes at the top of atmosphere and at the surface. Surface moisture anomalies retain the "memory" of past precipitation anomalies and subsequently alter the partitioning of latent and sensible heat fluxes at the surface. At the top of atmosphere, water vapor and cloud perturbations alter the net amount of radiation that the earth's climate system receives. These pervasive linkages between water, radiation, and surface processes present major complexities for observing and modeling climate variations. Major uncertainties in the observations include vertical structure of clouds and water vapor, surface energy balance, and transport of water and heat by wind fields. Modeling climate variability and change on a physical basis requires accurate by simplified submodels of radiation, cloud formation, radiative exchange, surface biophysics, and oceanic energy flux. In the past, we m safely say that being "data poor' has limited our depth of understanding and impeded model validation and improvement. Beginning with pre-EOS data sets, many of these barriers are being removed. EOS platforms with the suite of measurements dedicated to specific science questions are part of our most cost effective path to improved understanding and predictive capability. This talk will highlight some of the major questions confronting global hydrology and the prospects for significant progress afforded by EOS-era measurements.
NASA Astrophysics Data System (ADS)
Wild, Simon; Befort, Daniel J.; Leckebusch, Gregor C.
2015-04-01
The development of European surface wind storms out of normal mid-latitude cyclones is substantially influenced by upstream tropospheric growth factors over the Northern Atlantic. The main factors include divergence and vorticity advection in the upper troposphere, latent heat release and the presence of instabilities of short baroclinic waves of suitable wave lengths. In this study we examine a subset of these potential growth factors and their related influences on the transformation of extra-tropical cyclones into severe damage prone surface storm systems. Previous studies have shown links between specific growth factors and surface wind storms related to extreme cyclones. In our study we investigate in further detail spatial and temporal variability patterns of these upstream processes at different vertical levels of the troposphere. The analyses will comprise of the three growth factors baroclinicity, latent heat release and upper tropospheric divergence. Our definition of surface wind storms is based on the Storm Severity Index (SSI) alongside a wind tracking algorithm identifying areas of exceedances of the local 98th percentile of the 10m wind speed. We also make use of a well-established extra-tropical cyclone identification and tracking algorithm. These cyclone tracks form the base for a composite analysis of the aforementioned growth factors using ERA-Interim Reanalysis from 1979 - 2014 for the extended winter season (ONDJFM). Our composite analysis corroborates previous similar studies but extends them by using an impact based algorithm for the identification of strong wind systems. Based on this composite analysis we further identify variability patterns for each growth factor most important for the transformation of a cyclone into a surface wind storm. We thus also address the question whether the link between storm intensity and related growth factor anomaly taking into account its spatial variability is stable and can be quantified. While the robustness of our preliminary results is generally dependent on the growth factor investigated, some examples include i) the overall availability of latent heat seems to be less important than its spatial structure around the cyclone core and ii) the variability of upper-tropospheric baroclinicity appears to be highest north of the surface position of the cyclone, especially for those that transform into a surface storm.
NASA Astrophysics Data System (ADS)
Hayat, Tasawar; Qayyum, Sajid; Shehzad, Sabir Ali; Alsaedi, Ahmed
2018-03-01
The present research article focuses on three-dimensional flow of viscoelastic(second grade) nanofluid in the presence of Cattaneo-Christov double-diffusion theory. Flow caused is due to stretching sheet. Characteristics of heat transfer are interpreted by considering the heat generation/absorption. Nanofluid theory comprises of Brownian motion and thermophoresis. Cattaneo-Christov double-diffusion theory is introduced in the energy and concentration expressions. Such diffusions are developed as a part of formulating the thermal and solutal relaxation times framework. Suitable variables are implemented for the conversion of partial differential systems into a sets of ordinary differential equations. The transformed expressions have been explored through homotopic algorithm. Behavior of sundry variables on the velocities, temperature and concentration are scrutinized graphically. Numerical values of skin friction coefficients are also calculated and examined. Here thermal field enhances for heat generation parameter while reverse situation is noticed for heat absorption parameter.
Mazon, E E; Villa-Martínez, E; Hernández-Sámano, A; Córdova-Fraga, T; Ibarra-Sánchez, J J; Calleja, H A; Leyva Cruz, J A; Barrera, A; Estrada, J C; Paz, J A; Quintero, L H; Cano, M E
2017-08-01
A scanning system for specific absorption rate of ferrofluids with superparamagnetic nanoparticles is presented in this study. The system contains an induction heating device designed and built with a resonant inverter in order to generate magnetic field amplitudes up to 38 mT, over the frequency band 180-525 kHz. Its resonant circuit involves a variable capacitor with 1 nF of capacitance steps to easily select the desired frequency, reaching from 0.3 kHz/nF up to 5 kHz/nF of resolution. The device performance is characterized in order to compare with the theoretical predictions of frequency and amplitude, showing a good agreement with the resonant inverters theory. Additionally, the setup is tested using a synthetic iron oxide with 10 ± 1 nm diameter suspended in liquid glycerol, with concentrations at 1%. Meanwhile, the temperature rise is measured to determine the specific absorption rate and calculate the dissipated power density for each f. This device is a suitable alternative to studying ferrofluids and analyzes the dependence of the power absorption density with the magnetic field intensity and frequency.
Design of a High Temperature Radiator for the Variable Specific Impulse Magnetoplasma Rocket
NASA Technical Reports Server (NTRS)
Sheth, Rubik B.; Ungar, Eugene K.; Chambliss, Joe P.
2012-01-01
The Variable Specific Impulse Magnetoplasma Rocket (VASIMR), currently under development by Ad Astra Rocket Company (Webster, TX), is a unique propulsion system that could change the way space propulsion is performed. VASIMR's efficiency, when compared to that of a conventional chemical rocket, reduces the propellant needed for exploration missions by a factor of 10. Currently plans include flight tests of a 200 kW VASIMR system, titled VF-200, on the International Space Station (ISS). The VF-200 will consist of two 100 kW thruster units packaged together in one engine bus. Each thruster core generates 27 kW of waste heat during its 15 minute firing time. The rocket core will be maintained between 283 and 573 K by a pumped thermal control loop. The design of a high temperature radiator is a unique challenge for the vehicle design. This paper will discuss the path taken to develop a steady state and transient-based radiator design. The paper will describe the radiator design option selected for the VASIMR thermal control system for use on ISS, and how the system relates to future exploration vehicles.
NASA Astrophysics Data System (ADS)
Shang, De-Yi; Zhong, Liang-Cai
2017-01-01
Our novel models for fluid's variable physical properties are improved and reported systematically in this work for enhancement of theoretical and practical value on study of convection heat and mass transfer. It consists of three models, namely (1) temperature parameter model, (2) polynomial model, and (3) weighted-sum model, respectively for treatment of temperature-dependent physical properties of gases, temperature-dependent physical properties of liquids, and concentration- and temperature-dependent physical properties of vapour-gas mixture. Two related components are proposed, and involved in each model for fluid's variable physical properties. They are basic physic property equations and theoretical similarity equations on physical property factors. The former, as the foundation of the latter, is based on the typical experimental data and physical analysis. The latter is built up by similarity analysis and mathematical derivation based on the former basic physical properties equations. These models are available for smooth simulation and treatment of fluid's variable physical properties for assurance of theoretical and practical value of study on convection of heat and mass transfer. Especially, so far, there has been lack of available study on heat and mass transfer of film condensation convection of vapour-gas mixture, and the wrong heat transfer results existed in widespread studies on the related research topics, due to ignorance of proper consideration of the concentration- and temperature-dependent physical properties of vapour-gas mixture. For resolving such difficult issues, the present novel physical property models have their special advantages.
VS2DRTI: Simulating Heat and Reactive Solute Transport in Variably Saturated Porous Media.
Healy, Richard W; Haile, Sosina S; Parkhurst, David L; Charlton, Scott R
2018-01-29
Variably saturated groundwater flow, heat transport, and solute transport are important processes in environmental phenomena, such as the natural evolution of water chemistry of aquifers and streams, the storage of radioactive waste in a geologic repository, the contamination of water resources from acid-rock drainage, and the geologic sequestration of carbon dioxide. Up to now, our ability to simulate these processes simultaneously with fully coupled reactive transport models has been limited to complex and often difficult-to-use models. To address the need for a simple and easy-to-use model, the VS2DRTI software package has been developed for simulating water flow, heat transport, and reactive solute transport through variably saturated porous media. The underlying numerical model, VS2DRT, was created by coupling the flow and transport capabilities of the VS2DT and VS2DH models with the equilibrium and kinetic reaction capabilities of PhreeqcRM. Flow capabilities include two-dimensional, constant-density, variably saturated flow; transport capabilities include both heat and multicomponent solute transport; and the reaction capabilities are a complete implementation of geochemical reactions of PHREEQC. The graphical user interface includes a preprocessor for building simulations and a postprocessor for visual display of simulation results. To demonstrate the simulation of multiple processes, the model is applied to a hypothetical example of injection of heated waste water to an aquifer with temperature-dependent cation exchange. VS2DRTI is freely available public domain software. © 2018, National Ground Water Association.
49 CFR 179.100-10 - Postweld heat treatment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100-10 Postweld heat... heat treated as a unit in compliance with the requirements of AAR Specifications for Tank Cars...
49 CFR 179.100-10 - Postweld heat treatment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100-10 Postweld heat... heat treated as a unit in compliance with the requirements of AAR Specifications for Tank Cars...
49 CFR 179.100-10 - Postweld heat treatment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100-10 Postweld heat... heat treated as a unit in compliance with the requirements of AAR Specifications for Tank Cars...
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCulloch, R.W.; Post, D.W.; Lovell, R.T.
1981-04-01
Variable-width ribbon heating elements that provide a chopped-cosine variable heat flux profile have been fabricated for fuel pin simulators used in test loops by the Breeder Reactor Program Thermal-Hydraulic Out-of-Reactor Safety test facility and the Gas-Cooled Fast Breeder Reactor-Core Flow Test Loop. Thermal, mechanical, and electrical design considerations are used to derive an analytical expression that precisely describes ribbon contour in terms of the major fabrication parameters. These parameters are used to generate numerical control tapes that control ribbon cutting and winding machines. Infrared scanning techniques are developed to determine the optimum transient thermal profile of the coils and relatemore » this profile to that generated by the coils in completed fuel pin simulators.« less
Development of a Variable-Speed Residential Air-Source Integrated Heat Pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rice, C Keith; Shen, Bo; Munk, Jeffrey D
2014-01-01
A residential air-source integrated heat pump (AS-IHP) is under development in partnership with a U.S. manufacturer. A nominal 10.6 kW (3-ton) cooling capacity variable-speed unit, the system provides both space conditioning and water heating. This multi-functional unit can provide domestic water heating (DWH) in either full condensing (FC) (dedicated water heating or simultaneous space cooling and water heating) or desuperheating (DS) operation modes. Laboratory test data were used to calibrate a vapor-compression simulation model for each mode of operation. The model was used to optimize the internal control options for efficiency while maintaining acceptable comfort conditions and refrigerant-side pressures andmore » temperatures within allowable operating envelopes. Annual simulations were performed with the AS-IHP installed in a well-insulated house in five U.S. climate zones. The AS-IHP is predicted to use 45 to 60% less energy than a DOE minimum efficiency baseline system while meeting total annual space conditioning and water heating loads. Water heating energy use is lowered by 60 to 75% in cold to warmer climates, respectively. Plans are to field test the unit in Knoxville, TN.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaobing; Zheng, O'Neill; Niu, Fuxin
Most commercial ground source heat pump systems (GSHP) in the United States are in a distributed configuration. These systems circulate water or an anti-freeze solution through multiple heat pump units via a central pumping system, which usually uses variable speed pump(s). Variable speed pumps have potential to significantly reduce pumping energy use; however, the energy savings in reality could be far away from its potential due to improper pumping system design and controls. In this paper, a simplified hydronic pumping system was simulated with the dynamic Modelica models to evaluate three different pumping control strategies. This includes two conventional controlmore » strategies, which are to maintain a constant differential pressure across either the supply and return mains, or at the most hydraulically remote heat pump; and an innovative control strategy, which adjusts system flow rate based on the demand of each heat pump. The simulation results indicate that a significant overflow occurs at part load conditions when the variable speed pump is controlled to main a constant differential pressure across the supply and return mains of the piping system. On the other hand, an underflow occurs at part load conditions when the variable speed pump is controlled to maintain a constant differential pressure across the furthest heat pump. The flow-demand-based control can provide needed flow rate to each heat pump at any given time, and with less pumping energy use than the two conventional controls. Finally, a typical distributed GSHP system was studied to evaluate the energy saving potential of applying the flow-demand-based pumping control strategy. This case study shows that the annual pumping energy consumption can be reduced by 62% using the flow-demand-based control compared with that using the conventional pressure-based control to maintain a constant differential pressure a cross the supply and return mains.« less
NASA Astrophysics Data System (ADS)
Sun, Xiaoqin; Lee, Kyoung Ok; Medina, Mario A.; Chu, Youhong; Li, Chuanchang
2018-06-01
Differential scanning calorimetry (DSC) analysis is a standard thermal analysis technique used to determine the phase transition temperature, enthalpy, heat of fusion, specific heat and activation energy of phase change materials (PCMs). To determine the appropriate heating rate and sample mass, various DSC measurements were carried out using two kinds of PCMs, namely N-octadecane paraffin and calcium chloride hexahydrate. The variations in phase transition temperature, enthalpy, heat of fusion, specific heat and activation energy were observed within applicable heating rates and sample masses. It was found that the phase transition temperature range increased with increasing heating rate and sample mass; while the heat of fusion varied without any established pattern. The specific heat decreased with the increase of heating rate and sample mass. For accuracy purpose, it is recommended that for PCMs with high thermal conductivity (e.g. hydrated salt) the focus will be on heating rate rather than sample mass.
NASA Astrophysics Data System (ADS)
Alvesalo, T. A.; Haavasoja, T.; Manninen, M. T.; Soinne, A. T.
1980-04-01
The specific heat of liquid 3He has been measured from 1 to 10 mK between 0 and 32.5 bars. The values implied for the effective mass are considerably smaller than the currently accepted ones. Near zero pressure the specific-heat jump is close to the BCS value 1.43, and at 32.5 bars it has reached 1.90 in the B phase and 2.04 in the A phase. The temperature dependence of the specific heat in the B phase agrees with a model of Serene and Rainer. The latent heat at the A-B transition has been measured.
Hong, Haoyuan; Tsangaratos, Paraskevas; Ilia, Ioanna; Liu, Junzhi; Zhu, A-Xing; Xu, Chong
2018-07-15
The main objective of the present study was to utilize Genetic Algorithms (GA) in order to obtain the optimal combination of forest fire related variables and apply data mining methods for constructing a forest fire susceptibility map. In the proposed approach, a Random Forest (RF) and a Support Vector Machine (SVM) was used to produce a forest fire susceptibility map for the Dayu County which is located in southwest of Jiangxi Province, China. For this purpose, historic forest fires and thirteen forest fire related variables were analyzed, namely: elevation, slope angle, aspect, curvature, land use, soil cover, heat load index, normalized difference vegetation index, mean annual temperature, mean annual wind speed, mean annual rainfall, distance to river network and distance to road network. The Natural Break and the Certainty Factor method were used to classify and weight the thirteen variables, while a multicollinearity analysis was performed to determine the correlation among the variables and decide about their usability. The optimal set of variables, determined by the GA limited the number of variables into eight excluding from the analysis, aspect, land use, heat load index, distance to river network and mean annual rainfall. The performance of the forest fire models was evaluated by using the area under the Receiver Operating Characteristic curve (ROC-AUC) based on the validation dataset. Overall, the RF models gave higher AUC values. Also the results showed that the proposed optimized models outperform the original models. Specifically, the optimized RF model gave the best results (0.8495), followed by the original RF (0.8169), while the optimized SVM gave lower values (0.7456) than the RF, however higher than the original SVM (0.7148) model. The study highlights the significance of feature selection techniques in forest fire susceptibility, whereas data mining methods could be considered as a valid approach for forest fire susceptibility modeling. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Splitter, Derek A; Kaul, Brian C; Szybist, James P
This work explores the dependence of fuel ignition delay on stochastic pre-ignition (SPI). Findings are based on bulk gas thermodynamic state, where the effects of kinetically controlled bulk gas pre-spark heat release (PSHR) are correlated to SPI tendency and magnitude. Specifically, residual gas and low temperature PSHR chemistry effects and observations are explored, which are found to be indicative of bulk gas conditions required for strong SPI events. Analyzed events range from non-knocking SPI to knocking SPI and even detonation SPI events in excess of 325 bar peak cylinder pressure. The work illustrates that singular SPI event count and magnitudemore » are found to be proportional to PSHR of the bulk gas mixture and residual gas fraction. Cycle-to-cycle variability in trapped residual mass and temperature are found to impose variability in singular SPI event count and magnitude. However, clusters and short lived bursts of multiple SPI events are found to better correlate with fuel-wall interaction. The results highlight the interplay of bulk gas thermodynamics and SPI ignition source, on SPI event magnitude and cluster tendency. Moreover, the results highlight fundamental fuel reactivity and associated hypersensitivity to operating conditions at SPI prone operating conditions.« less
An analysis code for the Rapid Engineering Estimation of Momentum and Energy Losses (REMEL)
NASA Technical Reports Server (NTRS)
Dechant, Lawrence J.
1994-01-01
Nonideal behavior has traditionally been modeled by defining efficiency (a comparison between actual and isentropic processes), and subsequent specification by empirical or heuristic methods. With the increasing complexity of aeropropulsion system designs, the reliability of these more traditional methods is uncertain. Computational fluid dynamics (CFD) and experimental methods can provide this information but are expensive in terms of human resources, cost, and time. This report discusses an alternative to empirical and CFD methods by applying classical analytical techniques and a simplified flow model to provide rapid engineering estimates of these losses based on steady, quasi-one-dimensional governing equations including viscous and heat transfer terms (estimated by Reynold's analogy). A preliminary verification of REMEL has been compared with full Navier-Stokes (FNS) and CFD boundary layer computations for several high-speed inlet and forebody designs. Current methods compare quite well with more complex method results and solutions compare very well with simple degenerate and asymptotic results such as Fanno flow, isentropic variable area flow, and a newly developed, combined variable area duct with friction flow solution. These solution comparisons may offer an alternative to transitional and CFD-intense methods for the rapid estimation of viscous and heat transfer losses in aeropropulsion systems.
Method of and apparatus for thermomagnetically processing a workpiece
Kisner, Roger A.; Rios, Orlando; Wilgen, John B.; Ludtka, Gerard M.; Ludtka, Gail M.
2014-08-05
A method of thermomagnetically processing a material includes disposing a workpiece within a bore of a magnet; exposing the workpiece to a magnetic field of at least about 1 Tesla generated by the magnet; and, while exposing the workpiece to the magnetic field, applying heat energy to the workpiece at a plurality of frequencies to achieve spatially-controlled heating of the workpiece. An apparatus for thermomagnetically processing a material comprises: a high field strength magnet having a bore extending therethrough for insertion of a workpiece therein; and an energy source disposed adjacent to an entrance to the bore. The energy source is an emitter of variable frequency heat energy, and the bore comprises a waveguide for propagation of the variable frequency heat energy from the energy source to the workpiece.
A probabilistic model of a porous heat exchanger
NASA Technical Reports Server (NTRS)
Agrawal, O. P.; Lin, X. A.
1995-01-01
This paper presents a probabilistic one-dimensional finite element model for heat transfer processes in porous heat exchangers. The Galerkin approach is used to develop the finite element matrices. Some of the submatrices are asymmetric due to the presence of the flow term. The Neumann expansion is used to write the temperature distribution as a series of random variables, and the expectation operator is applied to obtain the mean and deviation statistics. To demonstrate the feasibility of the formulation, a one-dimensional model of heat transfer phenomenon in superfluid flow through a porous media is considered. Results of this formulation agree well with the Monte-Carlo simulations and the analytical solutions. Although the numerical experiments are confined to parametric random variables, a formulation is presented to account for the random spatial variations.
Heat Wave Vulnerability Mapping for India.
Azhar, Gulrez; Saha, Shubhayu; Ganguly, Partha; Mavalankar, Dileep; Madrigano, Jaime
2017-03-30
Assessing geographic variability in heat wave vulnerability forms the basis for planning appropriate targeted adaptation strategies. Given several recent deadly heatwaves in India, heat is increasingly being recognized as a public health problem. However, to date there has not been a country-wide assessment of heat vulnerability in India. We evaluated demographic, socioeconomic, and environmental vulnerability factors and combined district level data from several sources including the most recent census, health reports, and satellite remote sensing data. We then applied principal component analysis (PCA) on 17 normalized variables for each of the 640 districts to create a composite Heat Vulnerability Index (HVI) for India. Of the total 640 districts, our analysis identified 10 and 97 districts in the very high and high risk categories (> 2SD and 2-1SD HVI) respectively. Mapping showed that the districts with higher heat vulnerability are located in the central parts of the country. On examination, these are less urbanized and have low rates of literacy, access to water and sanitation, and presence of household amenities. Therefore, we concluded that creating and mapping a heat vulnerability index is a useful first step in protecting the public from the health burden of heat. Future work should incorporate heat exposure and health outcome data to validate the index, as well as examine sub-district levels of vulnerability.
A novel simulation theory and model system for multi-field coupling pipe-flow system
NASA Astrophysics Data System (ADS)
Chen, Yang; Jiang, Fan; Cai, Guobiao; Xu, Xu
2017-09-01
Due to the lack of a theoretical basis for multi-field coupling in many system-level models, a novel set of system-level basic equations for flow/heat transfer/combustion coupling is put forward. Then a finite volume model of quasi-1D transient flow field for multi-species compressible variable-cross-section pipe flow is established by discretising the basic equations on spatially staggered grids. Combining with the 2D axisymmetric model for pipe-wall temperature field and specific chemical reaction mechanisms, a finite volume model system is established; a set of specific calculation methods suitable for multi-field coupling system-level research is structured for various parameters in this model; specific modularisation simulation models can be further derived in accordance with specific structures of various typical components in a liquid propulsion system. This novel system can also be used to derive two sub-systems: a flow/heat transfer two-field coupling pipe-flow model system without chemical reaction and species diffusion; and a chemical equilibrium thermodynamic calculation-based multi-field coupling system. The applicability and accuracy of two sub-systems have been verified through a series of dynamic modelling and simulations in earlier studies. The validity of this system is verified in an air-hydrogen combustion sample system. The basic equations and the model system provide a unified universal theory and numerical system for modelling and simulation and even virtual testing of various pipeline systems.
Chao, Lu-men; Sun, Jian-xin
2009-12-01
Temporal changes in air temperature and urban heat island (UHI) effects during 1956-1998 were compared between a coastal city, Ji' nan, and an inland city, Xi' an, which were similar in latitude, size and development. During 1956-1978, except that the annual mean minimum temperature in Ji' nan increased by 0.37 degrees C x 10 a(-1), the temperature variables in the two cities did not display any apparent trend. During 1979-1998, all temperature variables of the two cities showed an increasing trend. Comparing with that in Ji' nan, the increasing rate of annual mean maximum temperature and annual mean temperature in Xi' an was greater, but that of annual mean minimum temperature was smaller. In the two cities, heat island effect occurred during 1956-1978 but without any apparent trend, whereas during 1979-1998, this effect increased with time, especially in Xi' an where the annual mean minimum temperature and annual mean temperature increased by 0.22 degrees C x 10 a(-1) and 0.32 degrees C x 10 a(-1), respectively. Both the level and the inter-annual variation of the heat island effect were much greater in Ji' nan than in Xi' an, but the increasing rate of this effect was greater in Xi' an than in Ji' nan. Obvious differences were observed in the increasing rate of annual mean maximum air temperature, annual mean air temperature, and annual mean minimum temperature as well as the heat island effect in Ji' nan, whereas negligible differences were found in Xi' an. Among the three temperature variables, annual mean minimum temperature displayed the most obvious increasing trend and was most affected by heat island effect, while annual mean maximum temperature was most variable inter-annually. Geographical location not only affected the magnitude of urban warming, but also affected the mode of urban warming and the strength of heat island effect.
Preservation of Specific Protein Signaling States Using Heat Based Stabilizor System.
Borén, Mats
2017-01-01
The ability to adequately measure the phosphorylation state of a protein has major biological as well as clinical relevance. Due to its variable nature, reversible protein phosphorylations are sensitive to changes in the tissue environment. Stabilizor TM T1 is a system for rapid inactivation of enzymatic activity in biological samples. Enzyme inactivation is accomplished using thermal denaturation in a rapid, homogeneous, and reproducible fashion without the need of added chemical inhibitors. Using pCREB(Ser133) as a model system, the applicability of the Stabilizor system to preserve a rapidly lost phosphorylation is shown.
Code of Federal Regulations, 2014 CFR
2014-10-01
... must be considered as essential variables: Number of passes; thickness of plate; heat input per pass... not be used. The number of passes, thickness of plate, and heat input per pass may not vary more than... machine heat processes, provided such surfaces are remelted in the subsequent welding process. Where there...
Code of Federal Regulations, 2013 CFR
2013-10-01
... must be considered as essential variables: Number of passes; thickness of plate; heat input per pass... not be used. The number of passes, thickness of plate, and heat input per pass may not vary more than... machine heat processes, provided such surfaces are remelted in the subsequent welding process. Where there...
Code of Federal Regulations, 2012 CFR
2012-10-01
... must be considered as essential variables: Number of passes; thickness of plate; heat input per pass... not be used. The number of passes, thickness of plate, and heat input per pass may not vary more than... machine heat processes, provided such surfaces are remelted in the subsequent welding process. Where there...
Code of Federal Regulations, 2011 CFR
2011-10-01
... must be considered as essential variables: Number of passes; thickness of plate; heat input per pass... not be used. The number of passes, thickness of plate, and heat input per pass may not vary more than... machine heat processes, provided such surfaces are remelted in the subsequent welding process. Where there...
Muñoz, David J.; Miller Hesed, Kyle; Grant, Evan H. Campbell; Miller, David A.W.
2016-01-01
Multiple pathways exist for species to respond to changing climates. However, responses of dispersal-limited species will be more strongly tied to ability to adapt within existing populations as rates of environmental change will likely exceed movement rates. Here, we assess adaptive capacity in Plethodon cinereus, a dispersal-limited woodland salamander. We quantify plasticity in behavior and variation in demography to observed variation in environmental variables over a 5-year period. We found strong evidence that temperature and rainfall influence P. cinereus surface presence, indicating changes in climate are likely to affect seasonal activity patterns. We also found that warmer summer temperatures reduced individual growth rates into the autumn, which is likely to have negative demographic consequences. Reduced growth rates may delay reproductive maturity and lead to reductions in size-specific fecundity, potentially reducing population-level persistence. To better understand within-population variability in responses, we examined differences between two common color morphs. Previous evidence suggests that the color polymorphism may be linked to physiological differences in heat and moisture tolerance. We found only moderate support for morph-specific differences for the relationship between individual growth and temperature. Measuring environmental sensitivity to climatic variability is the first step in predicting species' responses to climate change. Our results suggest phenological shifts and changes in growth rates are likely responses under scenarios where further warming occurs, and we discuss possible adaptive strategies for resulting selective pressures.
Mortality related to extreme temperature for 15 cities in northeast Asia.
Chung, Yeonseung; Lim, Youn-Hee; Honda, Yasushi; Guo, Yue-Liang Leon; Hashizume, Masahiro; Bell, Michelle L; Chen, Bing-Yu; Kim, Ho
2015-03-01
Multisite time-series studies for temperature-related mortality have been conducted mainly in the United States and Europe, but are lacking in Asia. This multisite time-series study examined mortality related to extreme temperatures (both cold and hot) in Northeast Asia, focusing on 15 cities of 3 high-income countries. This study includes 3 cities in Taiwan for 1994-2007, 6 cities in Korea for 1992-2010, and 6 cities in Japan for 1972-2009. We used 2-stage Bayesian hierarchical Poisson semiparametric regression to model the nonlinear relationship between temperature and mortality, providing city-specific and country-wide estimates for cold and heat effects. Various exposure time frames, age groups, and causes of death were considered. Cold effects had longer time lags (5-11 days) than heat effects, which were immediate (1-3 days). Cold effects were larger for cities in Taiwan, whereas heat effects were larger for cities in Korea and Japan. Patterns of increasing effects with age were observed in both cold and heat effects. Both cold and heat effects were larger for cardiorespiratory mortality than for other causes of death. Several city characteristics related to weather or air pollution were associated with both cold and heat effects. Mortality increased with either cold or hot temperature in urban populations of high-income countries in Northeast Asia, with spatial variations of effects among cities and countries. Findings suggest that climate factors are major contributors to the spatial heterogeneity of effects in this region, although further research is merited to identify other factors as determinants of variability.
Oswald, Stephen A; Arnold, Jennifer M
2012-06-01
There is now abundant evidence that contemporary climatic change has indirectly affected a wide-range of species by changing trophic interactions, competition, epidemiology and habitat. However, direct physiological impacts of changing climates are rarely reported for endothermic species, despite being commonly reported for ectotherms. We review the evidence for changing physiological constraints on endothermic vertebrates at high temperatures, integrating theoretical and empirical perspectives on the morphology, physiology and behavior of marine birds. Potential for increasing heat stress exposure depends on changes in multiple environmental variables, not just air temperature, as well as organism-specific morphology, physiology and behavior. Endotherms breeding at high latitudes are vulnerable to the forecast, extensive temperature changes because of the adaptations they possess to minimize heat loss. Low-latitude species will also be challenged as they currently live close to their thermal limits and will likely suffer future water shortages. Small, highly-active species, particularly aerial foragers, are acutely vulnerable as they are least able to dissipate heat at high temperatures. Overall, direct physiological impacts of climatic change appear underrepresented in the published literature, but available data suggest they have much potential to shape behavior, morphology and distribution of endothermic species. Coincidence between future heat stress events and other energetic constraints on endotherms remains largely unexplored but will be key in determining the physiological impacts of climatic change. Multi-scale, biophysical modeling, informed by experiments that quantify thermoregulatory responses of endotherms to heat stress, is an essential precursor to urgently-needed analyses at the population or species level. © 2012 ISZS, Blackwell Publishing and IOZ/CAS.
Ocean heat content variability in an ensemble of twentieth century ocean reanalyses
NASA Astrophysics Data System (ADS)
de Boisséson, Eric; Balmaseda, Magdalena Alonso; Mayer, Michael
2017-08-01
This paper presents a ten-member ensemble of twentieth century Ocean ReAnalyses called ORA-20C. ORA-20C assimilates temperature and salinity profiles and is forced by the ECMWF twentieth century atmospheric reanalysis (ERA-20C) over the 1900-2010 period. This study attempts to identify robust signals of ocean heat content change in ORA-20C and detect contamination by model errors, initial condition uncertainty, surface fluxes and observing system changes. It is shown that ORA-20C trends and variability in the first part of the century result from the surface fluxes and model drift towards a warmer mean state and weak meridional overturning circulation. The impact of the observing system in correcting the mean state causes the deceleration of the warming trend and alters the long-term climate signal. The ensemble spread reflects the long-lasting memory of the initial conditions and the convergence of the system to a solution compatible with surface fluxes, the ocean model and observational constraints. Observations constrain the ocean heat uptake trend in the last decades of the twentieth century, which is similar to trend estimations from the post-satellite era. An ocean heat budget analysis attributes ORA-20C heat content changes to surface fluxes in the first part of the century. The heat flux variability reflects spurious signals stemming from ERA-20C surface fields, which in return result from changes in the atmospheric observing system. The influence of the temperature assimilation increments on the heat budget is growing with time. Increments control the most recent ocean heat uptake signals, highlighting imbalances in forced reanalysis systems in the ocean as well as in the atmosphere.
TIME-DEPENDENT TURBULENT HEATING OF OPEN FLUX TUBES IN THE CHROMOSPHERE, CORONA, AND SOLAR WIND
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woolsey, L. N.; Cranmer, S. R., E-mail: lwoolsey@cfa.harvard.edu
We investigate several key questions of plasma heating in open-field regions of the corona that connect to the solar wind. We present results for a model of Alfvén-wave-driven turbulence for three typical open magnetic field structures: a polar coronal hole, an open flux tube neighboring an equatorial streamer, and an open flux tube near a strong-field active region. We compare time-steady, one-dimensional turbulent heating models against fully time-dependent three-dimensional reduced-magnetohydrodynamic modeling of BRAID. We find that the time-steady results agree well with time-averaged results from BRAID. The time dependence allows us to investigate the variability of the magnetic fluctuations andmore » of the heating in the corona. The high-frequency tail of the power spectrum of fluctuations forms a power law whose exponent varies with height, and we discuss the possible physical explanation for this behavior. The variability in the heating rate is bursty and nanoflare-like in nature, and we analyze the amount of energy lost via dissipative heating in transient events throughout the simulation. The average energy in these events is 10{sup 21.91} erg, within the “picoflare” range, and many events reach classical “nanoflare” energies. We also estimated the multithermal distribution of temperatures that would result from the heating-rate variability, and found good agreement with observed widths of coronal differential emission measure distributions. The results of the modeling presented in this paper provide compelling evidence that turbulent heating in the solar atmosphere by Alfvén waves accelerates the solar wind in open flux tubes.« less
A Freezable Heat Exchanger for Space Suit Radiator Systems
NASA Technical Reports Server (NTRS)
Nabity, James A.; Mason, Georgia R.; Copeland, Robert J.; Trevino, Luis a.
2008-01-01
During an ExtraVehicular Activity (EVA), both the heat generated by the astronaut s metabolism and that produced by the Portable Life Support System (PLSS) must be rejected to space. The heat sources include the heat of adsorption of metabolic CO2, the heat of condensation of water, the heat removed from the body by the liquid cooling garment and the load from the electrical components. Although the sublimator hardware to reject this load weighs only 1.58 kg (3.48 lbm), an additional 3.6 kg (8 lbm) of water are loaded into the unit, most of which is sublimated and lost to space, thus becoming the single largest expendable during an eight-hour EVA. Using a radiator to reject heat from the astronaut during an EVA can reduce the amount of expendable water consumed in the sublimator. Radiators have no moving parts and are thus highly reliable. Past freezable radiators have been too heavy, but the weight can be greatly reduced by placing a small and freeze tolerant heat exchanger between the astronaut and radiator, instead of making the very large radiator freeze tolerant. Therefore, the key technological innovation to improve space suit radiator performance was the development of a lightweight and freezable heat exchanger that accommodates the variable heat load generated by the astronaut. Herein, we present the heat transfer performance of a newly designed heat exchanger that endured several freeze / thaw cycles without any apparent damage. The heat exchanger was also able to continuously turn down or turn up the heat rejection to follow the variable load.
Moderate temperature control technology for a lunar base
NASA Technical Reports Server (NTRS)
Swanson, Theodore D.; Sridhar, K. R.; Gottmann, Matthias
1993-01-01
A parametric analysis is performed to compare different heat pump based thermal control systems for a Lunar Base. Rankine cycle and absorption cycle heat pumps are compared and optimized for a 100 kW cooling load. Variables include the use or lack of an interface heat exchanger, and different operating fluids. Optimization of system mass to radiator rejection temperature is performed. The results indicate a relatively small sensitivity of Rankine cycle system mass to these variables, with optimized system masses of about 6000 kg for the 100 kW thermal load. It is quantitaively demonstrated that absorption based systems are not mass competitive with Rankine systems.
Testing of a Loop Heat Pipe Subjected to Variable Accelerating Forces
NASA Technical Reports Server (NTRS)
Ku, Jentung; Ottenstein, Laura; Kaya, Tarik; Rogers, Paul; Hoff, Craig
2000-01-01
This paper presents viewgraphs of the functionality of a loop heat pipe that was subjected to variable accelerating forces. The topics include: 1) Summary of LHP (Loop Heat Pipe) Design Parameters; 2) Picture of the LHP; 3) Schematic of Test Setup; 4) Test Configurations; 5) Test Profiles; 6) Overview of Test Results; 7) Start-up; 8) Typical Start-up without Temperature Overshoot; 9) Start-up with a Large Temperature Overshoot; 10) LHP Operation Under Stationary Condition; 11) LHP Operation Under Continuous Acceleration; 12) LHP Operation Under Periodic Acceleration; 13) Effects of Acceleration on Temperature Oscillation and Hysteresis; 14) Temperature Oscillation/Hysteresis vs Spin Rate; and 15) Summary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
A new generation of central, ducted variable-capacity heat pump systems has come on the market, promising very high cooling and heating efficiency. Instead of cycling on at full capacity and then cycling off when the thermostat is satisfied, they vary their cooling and heating output over a wide range (approximately 40 to 118% of nominal full capacity); thus, staying 'on' for 60% to 100% more hours per day compared to fixed-capacity systems. Current Phase 4 experiments in an instrumented lab home with simulated occupancy evaluate the impact of duct R-value enhancement on the overall operating efficiency of the variable-capacity systemmore » compared to the fixed-capacity system.« less
Fungistatic activity of heat-treated flaxseed determined by response surface methodology.
Xu, Y; Hall, C; Wolf-Hall, C
2008-08-01
The objective of this study was to evaluate the effect of heat treatment on the fungistatic activity of flaxseed (Linum usitatissimum) in potato dextrose agar (PDA) medium and a fresh noodle system. The radial growth of Penicilliumn chrysogenum, Aspergillus flavus, and a Penicillium sp. isolated from moldy noodles, as well as the mold count of fresh noodle enriched with heat treated flaxseed, were used to assess antifungal activity. A central composite design in the response surface methodology was used to predict the effect of heating temperature and time on antifungal activity of flaxseed flour (FF). Statistical analysis determined that the linear terms of both variables (that is, heating temperature and time) and the quadratic terms of the heating temperature had significant (P<0.05) effects on the radial growth of all 3 test fungi and the mold count log-cycle reduction of fresh noodle. The interactions between the temperature and time were significant for all dependent variables (P<0.05). Significant reductions in antifungal activities were found when FF was subjected to high temperatures, regardless of heating time. In contrast, prolonging the heating time did not substantially affect the antifungal activities of FF at low temperature. However, 60% of the antifungal activity was retained after FF was heated at 100 degrees C for 15 min, which suggests a potential use of FF as an antifungal additive in food products subjected to low to mild heat treatments.
NASA Astrophysics Data System (ADS)
Roy, M.; Rios, D.; Cosburn, K.
2017-12-01
Shear between the moving lithosphere and the underlying asthenospheric mantle can produce dynamic pressure gradients that control patterns of melt migration by percolative flow. Within continental interiors these pressure gradients may be large enough to focus melt migration into zones of low dynamic pressure and thus influence the surface distribution of magmatism. We build upon previous work to show that for a lithospheric keel that protrudes into the "mantle wind," spatially-variable melt migration can lead to spatially-variable thermal weakening of the lithosphere. Our models treat advective heat transfer in porous flow in the limit that heat transfer between the melt and surrounding matrix dominates over conductive heat transfer within either the melt or the solid alone. The models are parameterized by a heat transfer coefficient that we interpret to be related to the efficiency of heat transfer across the fluid-rock interface, related to the geometry and distribution of porosity. Our models quantitatively assess the viability of spatially variable thermal-weakening caused by melt-migration through continental regions that are characterized by variations in lithospheric thickness. We speculate upon the relevance of this process in producing surface patterns of Cenozoic magmatism and heatflow at the Colorado Plateau in the western US.
Variability, trends, and predictability of seasonal sea ice retreat and advance in the Chukchi Sea
NASA Astrophysics Data System (ADS)
Serreze, Mark C.; Crawford, Alex D.; Stroeve, Julienne C.; Barrett, Andrew P.; Woodgate, Rebecca A.
2016-10-01
As assessed over the period 1979-2014, the date that sea ice retreats to the shelf break (150 m contour) of the Chukchi Sea has a linear trend of -0.7 days per year. The date of seasonal ice advance back to the shelf break has a steeper trend of about +1.5 days per year, together yielding an increase in the open water period of 80 days. Based on detrended time series, we ask how interannual variability in advance and retreat dates relate to various forcing parameters including radiation fluxes, temperature and wind (from numerical reanalyses), and the oceanic heat inflow through the Bering Strait (from in situ moorings). Of all variables considered, the retreat date is most strongly correlated (r ˜ 0.8) with the April through June Bering Strait heat inflow. After testing a suite of statistical linear models using several potential predictors, the best model for predicting the date of retreat includes only the April through June Bering Strait heat inflow, which explains 68% of retreat date variance. The best model predicting the ice advance date includes the July through September inflow and the date of retreat, explaining 67% of advance date variance. We address these relationships by discussing heat balances within the Chukchi Sea, and the hypothesis of oceanic heat transport triggering ocean heat uptake and ice-albedo feedback. Developing an operational prediction scheme for seasonal retreat and advance would require timely acquisition of Bering Strait heat inflow data. Predictability will likely always be limited by the chaotic nature of atmospheric circulation patterns.
The 2011 heat wave in Greater Houston: Effects of land use on temperature.
Zhou, Weihe; Ji, Shuang; Chen, Tsun-Hsuan; Hou, Yi; Zhang, Kai
2014-11-01
Effects of land use on temperatures during severe heat waves have been rarely studied. This paper examines land use-temperature associations during the 2011 heat wave in Greater Houston. We obtained high resolution of satellite-derived land use data from the US National Land Cover Database, and temperature observations at 138 weather stations from Weather Underground, Inc (WU) during the August of 2011, which was the hottest month in Houston since 1889. Land use regression and quantile regression methods were applied to the monthly averages of daily maximum/mean/minimum temperatures and 114 land use-related predictors. Although selected variables vary with temperature metric, distance to the coastline consistently appears among all models. Other variables are generally related to high developed intensity, open water or wetlands. In addition, our quantile regression analysis shows that distance to the coastline and high developed intensity areas have larger impacts on daily average temperatures at higher quantiles, and open water area has greater impacts on daily minimum temperatures at lower quantiles. By utilizing both land use regression and quantile regression on a recent heat wave in one of the largest US metropolitan areas, this paper provides a new perspective on the impacts of land use on temperatures. Our models can provide estimates of heat exposures for epidemiological studies, and our findings can be combined with demographic variables, air conditioning and relevant diseases information to identify 'hot spots' of population vulnerability for public health interventions to reduce heat-related health effects during heat waves. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Ollendorf, S. (Inventor)
1979-01-01
An apparatus for maintaining a heat dissipating load at a substantially constant temperature, and more particularly, to such an apparatus where in variable conductance heat pipes control the radiating area of a radiator is described.
SPECIFIC HEAT DATA ANALYSIS PROGRAM FOR THE IBM 704 DIGITAL COMPUTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roach, P.R.
1962-01-01
A computer program was developed to calculate the specific heat of a substance in the temperature range from 0.3 to 4.2 deg K, given temperature calibration data for a carbon resistance thermometer, experimental temperature drift, and heating period data. The speciftc heats calculated from these data are then fitted by a curve by the methods of least squares and the specific heats are corrected for the effect of the curvature of the data. The method, operation, program details, and program stops are discussed. A program listing is included. (M.C.G.)
Two Dimensional Heat Transfer around Penetrations in Multilayer Insulation
NASA Technical Reports Server (NTRS)
Johnson, Wesley L.; Kelly, Andrew O.; Jumper, Kevin M.
2012-01-01
The objective of this task was to quantify thermal losses involving integrating MLI into real life situations. Testing specifically focused on the effects of penetrations (including structural attachments, electrical conduit/feedthroughs, and fluid lines) through MLI. While there have been attempts at quantifying these losses both analytically and experimentally, none have included a thorough investigation of the methods and materials that could be used in such applications. To attempt to quantify the excess heat load coming into the system due to the integration losses, a calorimeter was designed to study two dimensional heat transfer through penetrated MLI. The test matrix was designed to take as many variables into account as was possible with the limited test duration and system size. The parameters varied were the attachment mechanism, the buffer material (for buffer attachment mechanisms only), the thickness of the buffer, and the penetration material. The work done under this task is an attempt to measure the parasitic heat loads and affected insulation areas produced by system integration, to model the parasitic loads, and from the model produce engineering equations to allow for the determination of parasitic heat loads in future applications. The methods of integration investigated were no integration, using a buffer to thermally isolate the strut from the MLI, and temperature matching the MLI on the strut. Several materials were investigated as a buffer material including aerogel blankets, aerogel bead packages, cryolite, and even an evacuated vacuum space (in essence a no buffer condition).
Gas engine heat pump cycle analysis. Volume 1: Model description and generic analysis
NASA Astrophysics Data System (ADS)
Fischer, R. D.
1986-10-01
The task has prepared performance and cost information to assist in evaluating the selection of high voltage alternating current components, values for component design variables, and system configurations and operating strategy. A steady-state computer model for performance simulation of engine-driven and electrically driven heat pumps was prepared and effectively used for parametric and seasonal performance analyses. Parametric analysis showed the effect of variables associated with design of recuperators, brine coils, domestic hot water heat exchanger, compressor size, engine efficiency, insulation on exhaust and brine piping. Seasonal performance data were prepared for residential and commercial units in six cities with system configurations closely related to existing or contemplated hardware of the five GRI engine contractors. Similar data were prepared for an advanced variable-speed electric unit for comparison purposes. The effect of domestic hot water production on operating costs was determined. Four fan-operating strategies and two brine loop configurations were explored.
Friedel, Michael J.
2001-01-01
This report describes a model for simulating transient, Variably Saturated, coupled water-heatsolute Transport in heterogeneous, anisotropic, 2-Dimensional, ground-water systems with variable fluid density (VST2D). VST2D was developed to help understand the effects of natural and anthropogenic factors on quantity and quality of variably saturated ground-water systems. The model solves simultaneously for one or more dependent variables (pressure, temperature, and concentration) at nodes in a horizontal or vertical mesh using a quasi-linearized general minimum residual method. This approach enhances computational speed beyond the speed of a sequential approach. Heterogeneous and anisotropic conditions are implemented locally using individual element property descriptions. This implementation allows local principal directions to differ among elements and from the global solution domain coordinates. Boundary conditions can include time-varying pressure head (or moisture content), heat, and/or concentration; fluxes distributed along domain boundaries and/or at internal node points; and/or convective moisture, heat, and solute fluxes along the domain boundaries; and/or unit hydraulic gradient along domain boundaries. Other model features include temperature and concentration dependent density (liquid and vapor) and viscosity, sorption and/or decay of a solute, and capability to determine moisture content beyond residual to zero. These features are described in the documentation together with development of the governing equations, application of the finite-element formulation (using the Galerkin approach), solution procedure, mass and energy balance considerations, input requirements, and output options. The VST2D model was verified, and results included solutions for problems of water transport under isohaline and isothermal conditions, heat transport under isobaric and isohaline conditions, solute transport under isobaric and isothermal conditions, and coupled water-heat-solute transport. The first three problems considered in model verification were compared to either analytical or numerical solutions, whereas the coupled problem was compared to measured laboratory results for which no known analytic solutions or numerical models are available. The test results indicate the model is accurate and applicable for a wide range of conditions, including when water (liquid and vapor), heat (sensible and latent), and solute are coupled in ground-water systems. The cumulative residual errors for the coupled problem tested was less than 10-8 cubic centimeter per cubic centimeter, 10-5 moles per kilogram, and 102 calories per cubic meter for liquid water content, solute concentration and heat content, respectively. This model should be useful to hydrologists, engineers, and researchers interested in studying coupled processes associated with variably saturated transport in ground-water systems.
The effects of orbital and climatic variations on Martian surface heat flow
NASA Technical Reports Server (NTRS)
Mellon, Michael T.; Jakosky, Bruce M.
1993-01-01
Large changes in the orbital elements of Mars on timescales of 10(exp 4) to 10(exp 6) years will cause widely varying climate, specifically surface temperatures, as a result of varying insolation. These surface temperature oscillations will produce subsurface thermal gradients which contribute to the total surface heat flux. We investigate the thermal behavior of the Martian regolith on orbital timescales and show that this climatological surface heat flux is spatially variable and contributes significantly to the total surface heat flux at many locations. We model the thermal behavior of the Martian regolith by calculating the mean annual surface temperatures for each epoch (spaced 1000 years apart to resolve orbital variations) for the past 200,000 years at a chosen location on the surface. These temperatures are used as a boundary condition for the deeper regolith and subsurface temperature oscillation are then computed. The surface climatological heat flux due to past climate changes can then be found from the temperature gradient between the surface and about 150 m depth (a fraction of the thermal skin depth on these timescales). This method provides a fairly accurate determination of the climatological heat flow component at a point; however, this method is computationally time consuming and cannot be applied to all points on the globe. To map the spatial variations in the surface heat flow we recognize that the subsurface temperature structure will be largely dominated by the most recent surface temperature oscillations. In fact, the climate component of the surface heat flow will be approximately proportional to the magnitude of the most recent surface temperature change. By calculating surface temperatures at all points globally for the present epoch and an appropriate past epoch, and combining these results with a series of more precise calculations described above, we estimate the global distribution of climatological surface heat flow.
Neutron diffraction, specific heat and magnetization studies on Nd{sub 2}CuTiO{sub 6}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rayaprol, S., E-mail: sudhindra@csr.res.in; Kaushik, S. D.; Kumar, Naresh
2016-05-23
Structural and physical properties of a double-perovskite compound, Nd{sub 2}CuTiO{sub 6} have been studied using neutron diffraction, magnetization and specific heat measurements. The compound crystallizes in an orthorhombic structure in space group Pnma. The interesting observation we make here is that, though no long range magnetic order is observed between 2 and 300 K, the low temperature specific heat and magnetic susceptibility behavior exhibits non-Fermi liquid like behavior in this insulating compound. The magnetization and specific heat data are presented and discussed in light of these observations.
49 CFR 179.220-11 - Postweld heat treatment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Postweld heat treatment. 179.220-11 Section 179... Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-11 Postweld heat treatment. (a) Postweld heat treatment of the inner container is not a specification requirement. (b) Postweld...
49 CFR 179.220-11 - Postweld heat treatment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Postweld heat treatment. 179.220-11 Section 179... Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-11 Postweld heat treatment. (a) Postweld heat treatment of the inner container is not a specification requirement. (b) Postweld...
49 CFR 179.220-11 - Postweld heat treatment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Postweld heat treatment. 179.220-11 Section 179... Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-11 Postweld heat treatment. (a) Postweld heat treatment of the inner container is not a specification requirement. (b) Postweld...
49 CFR 179.100-10 - Postweld heat treatment.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Postweld heat treatment. 179.100-10 Section 179... Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100-10 Postweld heat... heat treated as a unit in compliance with the requirements of AAR Specifications for Tank Cars...
NASA Astrophysics Data System (ADS)
Magee, Madeline R.; Wu, Chin H.
2017-12-01
Water temperatures and stratification are important drivers for ecological and water quality processes within lake systems, and changes in these with increases in air temperature and changes to wind speeds may have significant ecological consequences. To properly manage these systems under changing climate, it is important to understand the effects of increasing air temperatures and wind speed changes in lakes of different depths and surface areas. In this study, we simulate three lakes that vary in depth and surface area to elucidate the effects of the observed increasing air temperatures and decreasing wind speeds on lake thermal variables (water temperature, stratification dates, strength of stratification, and surface heat fluxes) over a century (1911-2014). For all three lakes, simulations showed that epilimnetic temperatures increased, hypolimnetic temperatures decreased, the length of the stratified season increased due to earlier stratification onset and later fall overturn, stability increased, and longwave and sensible heat fluxes at the surface increased. Overall, lake depth influences the presence of stratification, Schmidt stability, and differences in surface heat flux, while lake surface area influences differences in hypolimnion temperature, hypolimnetic heating, variability of Schmidt stability, and stratification onset and fall overturn dates. Larger surface area lakes have greater wind mixing due to increased surface momentum. Climate perturbations indicate that our larger study lakes have more variability in temperature and stratification variables than the smaller lakes, and this variability increases with larger wind speeds. For all study lakes, Pearson correlations and climate perturbation scenarios indicate that wind speed has a large effect on temperature and stratification variables, sometimes greater than changes in air temperature, and wind can act to either amplify or mitigate the effect of warmer air temperatures on lake thermal structure depending on the direction of local wind speed changes.
Heat pipe life and processing study
NASA Technical Reports Server (NTRS)
Antoniuk, D.; Luedke, E. E.
1979-01-01
The merit of adding water to the reflux charge in chemically and solvent cleaned aluminum/slab wick/ammonia heat pipes was evaluated. The effect of gas in the performance of three heat pipe thermal control systems was found significant in simple heat pipes, less significant in a modified simple heat pipe model with a short wickless pipe section. Use of gas data for the worst and best heat pipes of the matrix in a variable conductance heat pipe model showed a 3 C increase in the source temperature at full on condition after 20 and 246 years, respectively.
Heat flow and near-surface radioactivity in the Australian continental crust
Sass, J.H.; Jaeger, J.C.; Munroe, Robert J.
1976-01-01
Heat-flow data have been obtained at 44 sites in various parts of Australia. These include seven sites from the old (~ 2500 m.y.) Precambrian shield of Western Australia, seventeen from the younger (~ 600- 2000 m.y.) Precambrian rocks of South Australia, the Northern Territory, and Queensland, and twenty within the eastern Paleozoic and younger rocks. Thirty of the sites are located where no previous heat-flow data existed, and the remainder provide significant extensions or refinements of areas previously studied. Where the holes studied penetrated the crystalline basement rocks, or where the latter rocks were exposed within a few kilometers of the holes, the upper crustal radiogenic heat production has been estimated based on gamma-ray spectrometric determinations of U, Th, and K abundances. Three heat-flow provinces are recognized in Australia based on the linear relation (q = q* + DA0 ) between heat flow q and surface radioactivity A0. New data from the Western Australian shield support earlier studies showing that heat flow is low to normal with values ranging from 0.7 to 1.2 hfu and with the majority of values less than 1.0 hfu, and the parameters q* = 0.63 hfu and 0 = 4.5 km determined previously were confirmed. Heat flow in the Proterozoic shield of central Australia is quite variable, with values ranging between about l and 3 hfu. This variability is attributed mainly to variations in near-surface crustal radioactivity. The parameters of the heat-flow line are q* = 0.64 hfu and 0 = 11.1 km and moderately high temperatures are predicted for the lower crust and upper mantle. Previous suggestions of a band of l ow- to - normal heat flow near the coast in eastern Australia were confirmed in some areas, but the zone is interrupted in at least one region (the Sydney Basin), where heat flow is about 2.0 hfu over a large area. The reduced heat flow, q*, in the Paleozoic intrusive rocks of eastern Australia varies from about 0.8 to 2.0 hfu . This variability might be related to thermal transients associated with Late Tertiary and younger volcanic and tectonic activity, even though the relation between heat-flow values and the age of volcanism is not a simple one. Parts of the high heat-flow area in the southeast might be exploitable for geothermal energy.
Casso-Torralba, P.; de Arellano, J. V. -G.; Bosveld, F.; Soler, M.R.; Vermeulen, A.; Werner, C.; Moors, E.
2008-01-01
The diurnal and vertical variability of heat and carbon dioxide (CO2) in the atmospheric surface layer are studied by analyzing measurements from a 213 in tower in Cabauw (Netherlands). Observations of thermodynamic variables and CO2 mixing ratio as well as vertical profiles of the turbulent fluxes are used to retrieve the contribution of the budget terms in the scalar conservation equation. On the basis of the daytime evolution of turbulent fluxes, we calculate the budget terms by assuming that turbulent fluxes follow a linear profile with height. This assumption is carefully tested and the deviation ftom linearity is quantified. The budget calculation allows us to assess the importance of advection of heat and CO2 during day hours for three selected days. It is found that, under nonadvective conditions, the diurnal variability of temperature and CO2 is well reproduced from the flux divergence measurements. Consequently, the vertical transport due to the turbulent flux plays a major role in the daytime evolution of both scalars and the advection is a relatively small contribution. During the analyzed days with a strong contribution of advection of either heat or carbon dioxide, the flux divergence is still an important contribution to the budget. For heat, the quantification of the advection contribution is in close agreement with results from a numerical model. For carbon dioxide, we qualitatively corroborate the results with a Lagrangian transport model. Our estimation of advection is compared with, traditional estimations based on the Net Ecosystem-atmosphere Exchange (NEE). Copyright 2008 by the American Geophysical Union.
Warming set stage for deadly heat wave
NASA Astrophysics Data System (ADS)
Schultz, Colin
2012-04-01
In the summer of 2010, soaring temperatures and widespread forest fires ravaged western Russia, killing 55,000 and causing $15 billion in economic losses. In the wake of the record-setting heat wave, two studies sought to identify the contribution that human activities made to the event. One showed that temperatures seen during the deadly heat wave fell within the bounds of natural variability, while another attributed the heat wave to human activity, arguing that anthropogenic warming increased the chance of record-breaking temperatures occurring. Merging the stances of both studies, Otto et al. sought to show that while human contributions to climate change did not necessarily cause the deadly heat wave, they did play a role in setting the stage for its occurrence. Using an ensemble of climate simulations, the authors assessed the expected magnitude and frequency of an event like the 2010 heat wave under both 1960s and 2000s environmental conditions. The authors found that although the average temperature in July 2010 was 5°C higher than the average July temperature from the past half decade, the deadly heat wave was within the natural variability of 1960s, as well as 2000s, climate conditions
Elbashir, Awad A. E.; Gorafi, Yasir S. A.; Tahir, Izzat S. A.; Elhashimi, Ashraf. M. A.; Abdalla, Modather G. A.; Tsujimoto, Hisashi
2017-01-01
In wheat (Triticum aestivum L.) high temperature (≥30°C) during grain filling leads to considerable reduction in grain yield. We studied 400 multiple synthetic derivatives (MSD) lines to examine the genetic variability of heat stress–adaptive traits and to identify new sources of heat tolerance to be used in wheat breeding programs. The experiment was arranged in an augmented randomized complete block design in four environments in Sudan. A wide range of genetic variability was found in most of the traits in all environments. For all traits examined, we found MSD lines that showed better performance than their parent ‘Norin 61’ and two adapted Sudanese cultivars. Using the heat tolerance efficiency, we identified 13 highly heat-tolerant lines and several lines with intermediate heat tolerance and good yield potential. We also identified lines with alleles that can be used to increase wheat yield potential. Our study revealed that the use of the MSD population is an efficient way to explore the genetic variation in Ae. tauschii for wheat breeding and improvement. PMID:29398942
Understanding Wave-mean Flow Feedbacks and Tropospheric Annular Variability
NASA Astrophysics Data System (ADS)
Lorenz, D. J.
2016-12-01
The structure of internal tropospheric variability is important for determining the impact of the stratosphere on the troposphere. This study aims to better understand the fundamental dynamical mechanisms that control the feedbacks between the eddies and the mean flow, which in turn select the tropospheric annular mode. Recent work using Rossby Wave Chromatography suggests that "barotropic processes", which directly impact the meridional propagation of wave activity (specifically the reflectivity of the poleward flank of the mid-latitude jet), are more important for the positive feedback between the annular mode and the eddies than "baroclinic processes", which involve changes in the generation of wave activity by baroclinic instability. In this study, experiments with a fully nonlinear quasi-geostrophic model are discussed which provide independent confirmation of the importance of barotropic versus baroclinic processes. The experiments take advantage of the steady-state balance at upper-levels between the meridional gradient in diabatic heating and the second derivative of the upper-level EP flux divergence. Simulations with standard Newtonian heating are compared to simulations with constant-in-time heating taken from the climatology of the standard run and it is found that the forced annular mode response to changes in surface friction is very similar. Moreover, as expected from the annular mode response, the eddy momentum fluxes are also very similar. This is despite the fact that the upper-level EP flux divergence is very different between the two simulations (upper-level EP flux divergence must remain constant in the constant heating simulation while in the standard simulation there is no such constraint). The upper-level balances are maintained by a large change in the baroclinic wave source (i.e. vertical EP flux), which is accompanied by little momentum flux change. Therefore the eddy momentum fluxes appear to be relatively insensitive to the wave activity source. A more detailed comparison suggests a helpful rule-of-thumb relating the amplitude of the baroclinic wave source to the upper-level vorticity flux forced by this wave source.
The Effect of Seasonal Variability of Atlantic Water on the Arctic Sea Ice Cover
NASA Astrophysics Data System (ADS)
Ivanov, V. V.; Repina, I. A.
2018-01-01
Under the influence of global warming, the sea ice in the Arctic Ocean (AO) is expected to reduce with a transition toward a seasonal ice cover by the end of this century. A comparison of climate-model predictions with measurements shows that the actual rate of ice cover decay in the AO is higher than the predicted one. This paper argues that the rapid shrinking of the Arctic summer ice cover is due to its increased seasonality, while seasonal oscillations of the Atlantic origin water temperature create favorable conditions for the formation of negative anomalies in the ice-cover area in winter. The basis for this hypothesis is the fundamental possibility of the activation of positive feedback provided by a specific feature of the seasonal cycle of the inflowing Atlantic origin water and the peaking of temperature in the Nansen Basin in midwinter. The recently accelerated reduction in the summer ice cover in the AO leads to an increased accumulation of heat in the upper ocean layer during the summer season. The extra heat content of the upper ocean layer favors prerequisite conditions for winter thermohaline convection and the transfer of heat from the Atlantic water (AW) layer to the ice cover. This, in turn, contributes to further ice thinning and a decrease in ice concentration, accelerated melting in summer, and a greater accumulation of heat in the ocean by the end of the following summer. An important role is played by the seasonal variability of the temperature of AW, which forms on the border between the North European and Arctic basins. The phase of seasonal oscillation changes while the AW is moving through the Nansen Basin. As a result, the timing of temperature peak shifts from summer to winter, additionally contributing to enhanced ice melting in winter. The formulated theoretical concept is substantiated by a simplified mathematical model and comparison with observations.
24 CFR 3280.509 - Criteria in absence of specific data.
Code of Federal Regulations, 2010 CFR
2010-04-01
... between the duct and the insulation, heat loss/gain need not be calculated if the cavity in which the duct... § 3280.509 Criteria in absence of specific data. In the absence of specific data, for purposes of heat-loss/gain calculation, the following criteria shall be used: (a) Infiltration heat loss. In the absence...
24 CFR 3280.509 - Criteria in absence of specific data.
Code of Federal Regulations, 2011 CFR
2011-04-01
... between the duct and the insulation, heat loss/gain need not be calculated if the cavity in which the duct... § 3280.509 Criteria in absence of specific data. In the absence of specific data, for purposes of heat-loss/gain calculation, the following criteria shall be used: (a) Infiltration heat loss. In the absence...
24 CFR 3280.509 - Criteria in absence of specific data.
Code of Federal Regulations, 2013 CFR
2013-04-01
... between the duct and the insulation, heat loss/gain need not be calculated if the cavity in which the duct... § 3280.509 Criteria in absence of specific data. In the absence of specific data, for purposes of heat-loss/gain calculation, the following criteria shall be used: (a) Infiltration heat loss. In the absence...
24 CFR 3280.509 - Criteria in absence of specific data.
Code of Federal Regulations, 2012 CFR
2012-04-01
... between the duct and the insulation, heat loss/gain need not be calculated if the cavity in which the duct... § 3280.509 Criteria in absence of specific data. In the absence of specific data, for purposes of heat-loss/gain calculation, the following criteria shall be used: (a) Infiltration heat loss. In the absence...
Elements de conception d'un systeme geothermique hybride par optimisation financiere
NASA Astrophysics Data System (ADS)
Henault, Benjamin
The choice of design parameters for a hybrid geothermal system is usually based on current practices or questionable assumptions. In fact, the main purpose of a hybrid geothermal system is to maximize the energy savings associated with heating and cooling requirements while minimizing the costs of operation and installation. This thesis presents a strategy to maximize the net present value of a hybrid geothermal system. This objective is expressed by a series of equations that lead to a global objective function. Iteratively, the algorithm converges to an optimal solution by using an optimization method: the conjugate gradient combined with a combinatorial method. The objective function presented in this paper makes use of a simulation algorithm for predicting the fluid temperature of a hybrid geothermal system on an hourly basis. Thus, the optimization method selects six variables iteratively, continuous and integer type, affecting project costs and energy savings. These variables are the limit temperature at the entry of the heat pump (geothermal side), the number of heat pumps, the number of geothermal wells and the distance in X and Y between the geothermal wells. Generally, these variables have a direct impact on the cost of the installation, on the entering water temperature at the heat pumps, the cost of equipment, the thermal interference between boreholes, the total capacity of geothermal system, on system performance, etc. On the other hand, the arrangement of geothermal wells is variable and is often irregular depending on the number of selected boreholes by the algorithm. Removal or addition of one or more borehole is guided by a predefined order dicted by the designer. This feature of irregular arrangement represents an innovation in the field and is necessary for the operation of this algorithm. Indeed, this ensures continuity between the number of boreholes allowing the use of the conjugate gradient method. The proposed method provides as outputs the net present value of the optimal solution, the position of the vertical boreholes, the number of installed heat pumps, the limits of entering water temperature at the heat pumps and energy consumption of the hybrid geothermal system. To demonstrate the added value of this design method, two case studies are analyzed, for a commercial building and a residential. The two studies allow to conclude that: the net present value of hybrid geothermal systems can be significantly improved by the choice of right specifications; the economic value of a geothermal project is strongly influenced by the number of heat pumps and the number of geothermal wells or the temperature limit in heating mode; the choice of design parameters should always be driven by an objective function and not by the designer; peak demand charges favor hybrid geothermal systems with a higher capacity. Then, in order to validate the operation, this new design method is compared to the standard sizing method which is commonly used. By designing the hybrid geothermal system according to standard sizing method and to meet 70% of peak heating, the net present value over 20 years for the residential project is negative, at -61,500 while it is 43,700 for commercial hybrid geothermal system. Using the new design method presented in this thesis, the net present values of projects are respectively 162,000 and 179,000. The use of this algorithm is beneficial because it significantly increases the net present value of projects. The research presented in this thesis allows to optimize the financial performance of hybrid geothermal systems. The proposed method will allow industry stakeholders to increase the profitability of their projects associated with low temperature geothermal energy.
Study of Variable Frequency Induction Heating in Steel Making Process
NASA Astrophysics Data System (ADS)
Fukutani, Kazuhiko; Umetsu, Kenji; Itou, Takeo; Isobe, Takanori; Kitahara, Tadayuki; Shimada, Ryuichi
Induction heating technologies have been the standard technologies employed in steel making processes because they are clean, they have a high energy density, they are highly the controllable, etc. However, there is a problem in using them; in general, frequencies of the electric circuits have to be kept fixed to improve their power factors, and this constraint makes the processes inflexible. In order to overcome this problem, we have developed a new heating technique-variable frequency power supply with magnetic energy recovery switching. This technique helps us in improving the quality of steel products as well as the productivity. We have also performed numerical calculations and experiments to evaluate its effect on temperature distributions on heated steel plates. The obtained results indicate that the application of the technique in steel making processes would be advantageous.
The variable polarity plasma arc welding process: Characteristics and performance
NASA Technical Reports Server (NTRS)
Hung, R. J.; Zhu, G. J.
1991-01-01
Significant advantages of the Variable Polarity Plasma Arc (VPPA) Welding Process include faster welding, fewer repairs, less joint preparation, reduced weldment distortion, and absence of porosity. The power distribution was analyzed for an argon plasma gas flow constituting the fluid in the VPPA Welding Process. The major heat loss at the torch nozzle is convective heat transfer; in the space between the outlet of the nozzle and the workpiece; radiative heat transfer; and in the keyhole in the workpiece, convective heat transfer. The power absorbed at the workpiece produces the molten puddle that solidifies into the weld bead. Crown and root widths, and crown and root heights of the weld bead are predicted. The basis is provided for an algorithm for automatic control of VPPA welding machine parameters to obtain desired weld bead dimensions.
Utility of High Temporal Resolution Observations for Heat Health Event Characterization
NASA Astrophysics Data System (ADS)
Palecki, M. A.
2017-12-01
Many heat health watch systems produce a binary on/off warning when conditions are predicted to exceed a given threshold during a day. Days with warnings and their mortality/morbidity statistics are analyzed relative to days not warned to determine the impacts of the event on human health, the effectiveness of warnings, and other statistics. The climate analyses of the heat waves or extreme temperature events are often performed with hourly or daily observations of air temperature, humidity, and other measured or derived variables, especially the maxima and minima of these data. However, since the beginning of the century, 5-minute observations are readily available for many weather and climate stations in the United States. NOAA National Centers for Environmental Information (NCEI) has been collecting 5-minute observations from the NOAA Automated Surface Observing System (ASOS) stations since 2000, and from the U.S. Climate Reference Network (USCRN) stations since 2005. This presentation will demonstrate the efficacy of utilizing 5-minute environmental observations to characterize heat waves by counting the length of time conditions exceed extreme thresholds based on individual and multiple variables and on derived variables such as the heat index. The length and depth of recovery periods between daytime heating periods will also be examined. The length of time under extreme conditions will influence health outcomes for those directly exposed. Longer periods of dangerous conditions also could increase the chances for poor health outcomes for those only exposed intermittently through cumulative impacts.
Guizelini, Belquis P; Vandenberghe, Luciana P S; Sella, Sandra Regina B R; Soccol, Carlos Ricardo
2012-12-01
Biological indicators are important tools in infection control via sterilization process monitoring. The use of a standardized spore crop with a well-defined heat resistance will guarantee the quality of a biological indicator. Ambient factors during sporulation can affect spore characteristics and properties, including heat resistance. The aim of this study is to evaluate the main sporulation factors responsible for heat resistance in Geobacillus stearothermophilus, a useful biological indicator for steam sterilization. A sequence of a three-step optimization of variables (initial pH, nutrient concentration, tryptone, peptone, beef extract, yeast extract, manganese sulfate, magnesium sulfate, calcium chloride and potassium phosphate) was carried out to screen those that have a significant influence on heat resistance of produced spores. The variable exerting greatest influence on G. stearothermophilus heat resistance during sporulation was found to be the initial pH. Lower nutrient concentration and alkaline pH around 8.5 tended to enhance decimal reduction time at 121 °C (D(121°C)). A central composite design enabled a fourfold enhancement in heat resistance, and the model obtained accurately describes positive pH and negative manganese sulfate concentration influence on spore heat resistance.
Characterization and Thermal Properties of Nitrate Based Molten Salt for Heat Recovery System
NASA Astrophysics Data System (ADS)
Faizal Tukimon, Mohd; Muhammad, Wan Nur Azrina Wan; Nor Annuar Mohamad, Md; Yusof, Farazila
2017-10-01
Molten salt can acts like a storage medium or heat transfer fluid in heat recovery system. Heat transfer fluid is a fluid that has the capability to deliver heat this one side to another while heat recovery system is a system that transfers heat to produce energy. This studies shows about determining the new formulation of different molten nitrate/nitrite salts consisting of LiNO3, KNO2, KNO3 and NaNO2 that give a low temperature of melting point and high average specific heat capacity. Mixed alkaline molten nitrate/nitrite salt can act as a heat transfer fluid due to their advantageous in terms of its properties that feasible in heat recovery system such as high specific heat capacity, low vapour pressure, low cost and wide range of temperature in its application. The mixing of these primary substances will form a new line of quaternary nitrate salt (LiNO3 - KNO2 - KNO3 - NaNO2). The quaternary mixture was heated inside the box furnace at 150°C for four hours and rose up the temperature to 400°C for eight hours to homogenize the mixture. Through heating process, the elements of nitrate/nitrite base were mixed completely. The temperature was then reduced to 115°C for several hours before removing the mixture from the furnace. The melting point of each sample were testified by using thermal gravimetric analysis, TGA/DTA and experiment of determining the specific heat capacity were conducted by using Differential Scanning Calorimeter, DSC. From the result, it is found that the melting point Sample 1 with percentage of weightage (25.4wt% of LiNO3, 33.8wt% of KNO2, 20.7wt% of KNO3 and 20.1wt% of NaNO2) is 94.4°C whereas the average specific heat capacity was 1.0484/g°C while for Sample 3 with percentages of weightage (30.0wt% of LiNO3, 50.2wt% of KNO2, 3.1wt% of KNO3 and 16.7wt% of NaNO2), the melting point is 86.1°C with average specific heat capacity of 0.7274 J/g°C. In the nut shell, the quaternary mixture salts had been a good mixture with good thermal properties that low in melting point and have high specific heat capacity which could be a potential heat transfer fluid in heat recovery application.
NASA Astrophysics Data System (ADS)
Massina, Christopher James
The feasibility of conducting long duration human spaceflight missions is largely dependent on the provision of consumables such as oxygen, water, and food. In addition to meeting crew metabolic needs, water sublimation has long served as the primary heat rejection mechanism in space suits during extravehicular activity (EVA). During a single eight hour EVA, approximately 3.6 kg (8 lbm) of water is lost from the current suit. Reducing the amount of expended water during EVA is a long standing goal of space suit life support systems designers; but to date, no alternate thermal control mechanism has demonstrated the ability to completely eliminate the loss. One proposed concept is to convert the majority of a space suit's surface area into a radiator such that the local environment can be used as a radiative thermal sink for rejecting heat without mass loss. Due to natural variations in both internal (metabolic) loads and external (environmental) sink temperatures, radiative transport must be actively modulated in order to maintain an acceptable thermal balance. Here, variable emissivity electrochromic devices are examined as the primary mechanism for enabling variable heat rejection. This dissertation focuses on theoretical and empirical evaluations performed to determine the feasibility of using a full suit, variable emissivity radiator architecture for space suit thermal control. Operational envelopes are described that show where a given environment and/or metabolic load combination may or may not be supported by the evaluated thermal architecture. Key integration considerations and guidelines include determining allowable thermal environments, defining skin-to-radiator heat transfer properties, and evaluating required electrochromic performance properties. Analysis also considered the impacts of dynamic environmental changes and the architecture's extensibility to EVA on the Martian surface. At the conclusion of this work, the full suit, variable emissivity radiator architecture is considered to be at a technology readiness level of 3/4, indicating that analytical proof-of-concept and component level validation in a laboratory environment have been completed. While this is not a numeric increase from previous investigations, these contributions are a significant iteration within those levels. These results improve the understanding of the capabilities provided by the full suit, variable emissivity architecture.
Specific heat in KFe2As2 in zero and applied magnetic field
NASA Astrophysics Data System (ADS)
Kim, J. S.; Kim, E. G.; Stewart, G. R.; Chen, X. H.; Wang, X. F.
2011-05-01
The specific heat down to 0.08 K of the iron pnictide superconductor KFe2As2 was measured on a single-crystal sample with a residual resistivity ratio of ˜650, with a Tconset determined by a specific heat of 3.7 K. The zero-field normal-state specific heat divided by temperature, C/T, was extrapolated from above Tc to T=0 by insisting on agreement between the extrapolated normal-state entropy at Tc, Snextrap(Tc), and the measured superconducting-state entropy at Tc, Ssmeas(Tc), since for a second-order phase transition the two entropies must be equal. This extrapolation would indicate that this rather clean sample of KFe2As2 exhibits non-Fermi-liquid behavior; i.e., C/T increases at low temperatures, in agreement with the reported non-Fermi-liquid behavior in the resistivity. However, specific heat as a function of magnetic field shows that the shoulder feature around 0.7 K, which is commonly seen in KFe2As2 samples, is not evidence for a second superconducting gap as has been previously proposed but instead is due to an unknown magnetic impurity phase, which can affect the entropy balance and the extrapolation of the normal-state specific heat. This peak (somewhat larger in magnitude) with similar field dependence is also found in a less pure sample of KFe2As2, with a residual resistivity ratio of only 90 and Tconset=3.1 K. These data, combined with the measured normal-state specific heat in field to suppress superconductivity, allow the conclusion that an increase in the normal-state specific heat as T→0 is in fact not seen in KFe2As2; i.e., Fermi-liquid behavior is observed.
Calorimetric measurements on Li4C60 and Na4C60
NASA Astrophysics Data System (ADS)
Inaba, Akira; Miyazaki, Yuji; Michałowski, Paweł P.; Gracia-Espino, Eduardo; Sundqvist, Bertil; Wâgberg, Thomas
2015-04-01
We show specific heat data for Na4C60 and Li4C60 in the range 0.4-350 K for samples characterized by Raman spectroscopy and X-ray diffraction. At high temperatures, the two different polymer structures have very similar specific heats both in absolute values and in general trend. The specific heat data are compared with data for undoped polymeric and pristine C60. At high temperatures, a difference in specific heat between the intercalated and undoped C60 polymers of 100 J K-1 mol-1 is observed, in agreement with the Dulong-Petit law. At low temperatures, the specific heat data for Li4C60 and Na4C60 are modified by the stiffening of vibrational and librational molecular motion induced by the polymer bonds. The covalent twin bonds in Li4C60 affect these motions to a somewhat higher degree than the single intermolecular bonds in Na4C60. Below 1 K, the specific heats of both materials become linear in temperature, as expected from the effective dimensionality of the structure. The contribution to the total specific heat from the inserted metal ions can be well described by Einstein functions with TE = 386 K for Li4C60 and TE = 120 K for Na4C60, but for both materials we also observe a Schottky-type contribution corresponding to a first approximation to a two-level system with ΔE = 9.3 meV for Li4C60 and 3.1 meV for Na4C60, probably associated with jumps between closely spaced energy levels inside "octahedral-type" ionic sites. Static magnetic fields up to 9 T had very small effects on the specific heat below 10 K.
Almonacid, S; Simpson, R; Teixeira, A
2007-11-01
Egg and egg preparations are important vehicles for Salmonella enteritidis infections. The influence of time-temperature becomes important when the presence of this organism is found in commercial shell eggs. A computer-aided mathematical model was validated to estimate surface and interior temperature of shell eggs under variable ambient and refrigerated storage temperature. A risk assessment of S. enteritidis based on the use of this model, coupled with S. enteritidis kinetics, has already been reported in a companion paper published earlier in JFS. The model considered the actual geometry and composition of shell eggs and was solved by numerical techniques (finite differences and finite elements). Parameters of interest such as local (h) and global (U) heat transfer coefficient, thermal conductivity, and apparent volumetric specific heat were estimated by an inverse procedure from experimental temperature measurement. In order to assess the error in predicting microbial population growth, theoretical and experimental temperatures were applied to a S. enteritidis growth model taken from the literature. Errors between values of microbial population growth calculated from model predicted compared with experimentally measured temperatures were satisfactorily low: 1.1% and 0.8% for the finite difference and finite element model, respectively.
Physiological Responses to Thermal Stress and Exercise
NASA Astrophysics Data System (ADS)
Iyota, Hiroyuki; Ohya, Akira; Yamagata, Junko; Suzuki, Takashi; Miyagawa, Toshiaki; Kawabata, Takashi
The simple and noninvasive measuring methods of bioinstrumentation in humans is required for optimization of air conditioning and management of thermal environments, taking into consideration the individual specificity of the human body as well as the stress conditions affecting each. Changes in human blood circulation were induced with environmental factors such as heat, cold, exercise, mental stress, and so on. In this study, the physiological responses of human body to heat stress and exercise were investigated in the initial phase of the developmental research. We measured the body core and skin temperatures, skin blood flow, and pulse wave as the indices of the adaptation of the cardiovascular system. A laser Doppler skin blood flowmetry using an optical-sensor with a small portable data logger was employed for the measurement. These results reveal the heat-stress and exercise-induced circulatory responses, which are under the control of the sympathetic nerve system. Furthermore, it was suggested that the activity of the sympathetic nervous system could be evaluated from the signals of the pulse wave included in the signals derived from skin blood flow by means of heart rate variability assessments and detecting peak heights of velocity-plethysmogram.
Specific heat and thermal conductivity of nanomaterials
NASA Astrophysics Data System (ADS)
Bhatt, Sandhya; Kumar, Raghuvesh; Kumar, Munish
2017-01-01
A model is proposed to study the size and shape effects on specific heat and thermal conductivity of nanomaterials. The formulation developed for specific heat is based on the basic concept of cohesive energy and melting temperature. The specific heat of Ag and Au nanoparticles is reported and the effect of size and shape has been studied. We observed that specific heat increases with the reduction of particle size having maximum shape effect for spherical nanoparticle. To provide a more critical test, we extended our model to study the thermal conductivity and used it for the study of Si, diamond, Cu, Ni, Ar, ZrO2, BaTiO3 and SrTiO3 nanomaterials. A significant reduction is found in the thermal conductivity for nanomaterials by decreasing the size. The model predictions are consistent with the available experimental and simulation results. This demonstrates the suitability of the model proposed in this paper.
Duncan, John M A; Dash, Jadunandan; Atkinson, Peter M
2015-04-01
Remote sensing-derived wheat crop yield-climate models were developed to highlight the impact of temperature variation during thermo-sensitive periods (anthesis and grain-filling; TSP) of wheat crop development. Specific questions addressed are: can the impact of temperature variation occurring during the TSP on wheat crop yield be detected using remote sensing data and what is the impact? Do crop critical temperature thresholds during TSP exist in real world cropping landscapes? These questions are tested in one of the world's major wheat breadbaskets of Punjab and Haryana, north-west India. Warming average minimum temperatures during the TSP had a greater negative impact on wheat crop yield than warming maximum temperatures. Warming minimum and maximum temperatures during the TSP explain a greater amount of variation in wheat crop yield than average growing season temperature. In complex real world cereal croplands there was a variable yield response to critical temperature threshold exceedance, specifically a more pronounced negative impact on wheat yield with increased warming events above 35 °C. The negative impact of warming increases with a later start-of-season suggesting earlier sowing can reduce wheat crop exposure harmful temperatures. However, even earlier sown wheat experienced temperature-induced yield losses, which, when viewed in the context of projected warming up to 2100 indicates adaptive responses should focus on increasing wheat tolerance to heat. This study shows it is possible to capture the impacts of temperature variation during the TSP on wheat crop yield in real world cropping landscapes using remote sensing data; this has important implications for monitoring the impact of climate change, variation and heat extremes on wheat croplands. © 2014 John Wiley & Sons Ltd.
Characterizing the intra-urban spatiotemporal dynamics of High Heat Stress Zones (Hotspots)
NASA Astrophysics Data System (ADS)
Shreevastava, A.; Rao, P. S.; McGrath, G. S.
2017-12-01
In this study, we present an innovative framework to characterize the spatio-temporal dynamics of High Heat Stress Zones (Hot spots) created within an Urban area in the event of a Heat Wave. Heat waves are one of the leading causes of weather-related human mortality in many countries, and cities receive its worst brunt. The extreme heat stress within urban areas is often a synergistic combination of large-scale meteorological events, and the locally exacerbated impacts due to Urban Heat Islands (UHI). UHI is typically characterized as the difference between mean temperature of the urban and rural area. As a result, it fails to capture the significant variability that exists within the city itself. This variability arises from the diverse and complex spatial geometries of cities. Previous studies that have attempted to quantify the heat stress at an intra-urban scale are labor intensive, expensive, and difficult to emulate globally as they rely on availability of extensive data and their assimilation. The proposed study takes advantage of the well-established notion of fractal properties of cities to make the methods scalable to other cities where in-situ observational data might not be available. As an input, land surface temperatures are estimated using Landsat data. Using clustering analysis, we probe the emergence of thermal hotspots. The probability distributions (PD) of these hotspots are found to follow a power-law distribution in agreement with fractal characteristics of the city. PDs of several archetypical cities are then investigated to compare the effect of different spatial structures (e.g. monocentric v/s polycentric, sprawl v/s compact). Further, the temporal variability of the distributions on a diurnal as well as a seasonal scale is discussed. Finally, the spatiotemporal dynamics of the urban hotspots under a heat-wave (E.g. Delhi Heat wave, 2015) are compared against the non-heat wave scenarios. In summary, a technique that is globally adaptive and scale independent, achieved by building on the fractal properties of cities, is presented here. Identification of hotspots and a diagnosis of their characteristics will help in targeting resources judiciously to those areas that warrant the most attention, thereby helping design cities which better mitigate heat stress.
Miniature Loop Heat Pipe with Multiple Evaporators for Thermal Control of Small Spacecraft
NASA Technical Reports Server (NTRS)
Ku, Jentung; Ottenstein, Laura; Douglas, Denya; Pauken, Michael; Birur, Gajanana
2005-01-01
This paper presents an advanced miniature heat transport system for thermal control of small spacecraft. The thermal system consists of a loop heat pipe (LHP) with multiple evaporators and multiple deployable radiators for heat transfer, and variable emittance coatings on the radiators for performance enhancement. Thermoelectric coolers are used to control the loop operating temperature. The thermal system combines the functions of variable conductance heat pipes, thermal switches, thermal diodes, and the state-of-the-art LHPs into a single integrated thermal system. It retains all the performance characteristics of state-of-the-art LHPs and offers additional advantages to enhance the functionality, performance, versatility, and reliability of the system. Steady state and transient analytical models have been developed, and scaling criteria have also been established. A breadboard unit has been built for functional testing in laboratory and thermal vacuum environments. Experimental results show excellent performance of the thermal system and correlate very well with theoretical predictions.
24 CFR 3280.509 - Criteria in absence of specific data.
Code of Federal Regulations, 2014 CFR
2014-04-01
... is an air space of at least 1/2 inch between the duct and the insulation, heat loss/gain need not be..., 2013. In the absence of specific data, for purposes of heat-loss/gain calculation, the following criteria shall be used: (a) Infiltration heat loss. In the absence of measured infiltration heat loss data...
Study of fuel cell powerplant with heat recovery
NASA Technical Reports Server (NTRS)
King, J. M.; Grasso, A. P.; Clausi, J. V.
1975-01-01
It was shown that heat can be recovered from fuel cell power plants by replacing the air-cooled heat exchangers in present designs with units which transfer the heat to the integrated utility system. Energy availability for a 40-kW power plant was studied and showed that the total usable energy at rated power represents 84 percent of the fuel lower heating value. The effects of design variables on heat availability proved to be small. Design requirements were established for the heat recovery heat exchangers, including measurement of the characteristics of two candidate fuel cell coolants after exposure to fuel cell operating conditions. A heat exchanger test program was defined to assess fouling and other characteristics of fuel cell heat exchangers needed to confirm heat exchanger designs for heat recovery.
NASA Astrophysics Data System (ADS)
Ma, Zheshu; Wu, Jieer
2011-08-01
Indirectly or externally fired gas turbines (IFGT or EFGT) are interesting technologies under development for small and medium scale combined heat and power (CHP) supplies in combination with micro gas turbine technologies. The emphasis is primarily on the utilization of the waste heat from the turbine in a recuperative process and the possibility of burning biomass even "dirty" fuel by employing a high temperature heat exchanger (HTHE) to avoid the combustion gases passing through the turbine. In this paper, finite time thermodynamics is employed in the performance analysis of a class of irreversible closed IFGT cycles coupled to variable temperature heat reservoirs. Based on the derived analytical formulae for the dimensionless power output and efficiency, the efficiency optimization is performed in two aspects. The first is to search the optimum heat conductance distribution corresponding to the efficiency optimization among the hot- and cold-side of the heat reservoirs and the high temperature heat exchangers for a fixed total heat exchanger inventory. The second is to search the optimum thermal capacitance rate matching corresponding to the maximum efficiency between the working fluid and the high-temperature heat reservoir for a fixed ratio of the thermal capacitance rates of the two heat reservoirs. The influences of some design parameters on the optimum heat conductance distribution, the optimum thermal capacitance rate matching and the maximum power output, which include the inlet temperature ratio of the two heat reservoirs, the efficiencies of the compressor and the gas turbine, and the total pressure recovery coefficient, are provided by numerical examples. The power plant configuration under optimized operation condition leads to a smaller size, including the compressor, turbine, two heat reservoirs and the HTHE.
Life Prediction Issues in Thermal/Environmental Barrier Coatings in Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Shah, Ashwin R.; Brewer, David N.; Murthy, Pappu L. N.
2001-01-01
Issues and design requirements for the environmental barrier coating (EBC)/thermal barrier coating (TBC) life that are general and those specific to the NASA Ultra-Efficient Engine Technology (UEET) development program have been described. The current state and trend of the research, methods in vogue related to the failure analysis, and long-term behavior and life prediction of EBCITBC systems are reported. Also, the perceived failure mechanisms, variables, and related uncertainties governing the EBCITBC system life are summarized. A combined heat transfer and structural analysis approach based on the oxidation kinetics using the Arrhenius theory is proposed to develop a life prediction model for the EBC/TBC systems. Stochastic process-based reliability approach that includes the physical variables such as gas pressure, temperature, velocity, moisture content, crack density, oxygen content, etc., is suggested. Benefits of the reliability-based approach are also discussed in the report.
Surface Energy Budget Components Over an Arid Scrubland Site in Idaho
NASA Astrophysics Data System (ADS)
Zurawski, A. M.; Russell, E. S.; Liu, H.; Gao, Z.
2015-12-01
Sagebrush ecosystems comprise a large area of the North American West, and serve as habitat to threatened species such as the sagebrush sparrow. Due to natural and anthropogenic disturbances, these ecosystems are experiencing widespread degradation, causing changes to the ecosystem-atmosphere interactions. Quantifying the surface energy budget components is crucial to understanding the impacts of ecosystem degradation on climate. Eddy covariance data were collected from May through August of 2014 from sensors installed at a height of 16 m over sagebrush-dominated ecosystems near Idaho Falls, Idaho. Our objective is to study how meteorological variables affect the partitioning of surface-based net radiation into latent, sensible, and soil heat fluxes. In this arid region, decrease in soil moisture led to a decrease in latent heat flux, and an increase in sensible heat flux. Air temperature increase had no noticeable effect on latent heat flux, and led to increase in sensible heat flux. Consequently, potential climate warming and drought in this region will likely lead to increased sensible heat flux during the day time. An increase in sensible heat flux will cause an increase in atmospheric heat. This indicates that this ecosystem exhibits a positive feedback to climate warming. Night time data needs to be analyzed to better understand the effect of meteorological variables on heat fluxes during the summer season in this ecosystem.
Ground-Source Integrated Heat Pump for Near-Zero Energy Houses: Technology Status Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, Richard W; Rice, C Keith; Baxter, Van D
2007-09-01
The energy service needs of a net-zero-energy house (ZEH) include space heating and cooling, water heating, ventilation, dehumidification, and humidification, depending on the requirements of the specific location. These requirements differ in significant ways from those of current housing. For instance, the most recent DOE buildings energy data (DOE/BED 2007) indicate that on average {approx}43% of residential buildings primary energy use is for space heating and cooling, vs. {approx}12% for water heating (about a 3.6:1 ratio). In contrast, for the particular prototype ZEH structures used in the analyses in this report, that ratio ranges from about 0.3:1 to 1.6:1 dependingmore » on location. The high-performance envelope of a ZEH results in much lower space heating and cooling loads relative to current housing and also makes the house sufficiently air-tight to require mechanical ventilation for indoor air quality. These envelope characteristics mean that the space conditioning load will be closer in size to the water heating load, which depends on occupant behavior and thus is not expected to drop by any significant amount because of an improved envelope. In some locations such as the Gulf Coast area, additional dehumidification will almost certainly be required during the shoulder and cooling seasons. In locales with heavy space heating needs, supplemental humidification may be needed because of health concerns or may be desired for improved occupant comfort. The U.S. Department of Energy (DOE) has determined that achieving their ZEH goal will require energy service equipment that can meet these needs while using 50% less energy than current equipment. One promising approach to meeting this requirement is through an integrated heat pump (IHP) - a single system based on heat pumping technology. The energy benefits of an IHP stem from the ability to utilize otherwise wasted energy; for example, heat rejected by the space cooling operation can be used for water heating. With the greater energy savings the cost of the more energy efficient components required for the IHP can be recovered more quickly than if they were applied to individual pieces of equipment to meet each individual energy service need. An IHP can be designed to use either outdoor air or geothermal resources (e.g., ground, ground water, surface water) as the environmental energy source/sink. Based on a scoping study of a wide variety of possible approaches to meeting the energy service needs for a ZEH, DOE selected the IHP concept as the most promising and has supported research directed toward the development of both air- and ground-source versions. This report describes the ground-source IHP (GS-IHP) design and includes the lessons learned and best practices revealed by the research and development (R&D) effort throughout. Salient features of the GS-IHP include a variable-speed rotary compressor incorporating a brushless direct current permanent magnet motor which provides all refrigerant compression, a variable-speed fan for the indoor section, a multiple-speed ground coil circuit pump, and a single-speed pump for water heating operation. Laboratory IHP testing has thus far used R-22 because of the availability of the needed components that use this refrigerant. It is expected that HFC R-410A will be used for any products arising from the IHP concept. Data for a variable-speed compressor that uses R-410A has been incorporated into the DOE/ORNL Mark VI Heat Pump Design Model (HPDM). HPDM was then linked to TRNSYS, a time-series-dependent simulation model capable of determining the energy use of building cooling and heating equipment as applied to a defined house on a sub-hourly basis. This provided a highly flexible design analysis capability for advanced heat pump equipment; however, the program also took a relatively long time to run. This approach was used with the initial prototype design reported in Murphy et al. (2007a) and in the business case analysis of Baxter (2007).« less
Tropical Ocean Surface Energy Balance Variability: Linking Weather to Climate Scales
NASA Technical Reports Server (NTRS)
Roberts, J. Brent; Clayson, Carol Anne
2013-01-01
Radiative and turbulent surface exchanges of heat and moisture across the atmosphere-ocean interface are fundamental components of the Earth s energy and water balance. Characterizing the spatiotemporal variability of these exchanges of heat and moisture is critical to understanding the global water and energy cycle variations, quantifying atmosphere-ocean feedbacks, and improving model predictability. These fluxes are integral components to tropical ocean-atmosphere variability; they can drive ocean mixed layer variations and modify the atmospheric boundary layer properties including moist static stability, thereby influencing larger-scale tropical dynamics. Non-parametric cluster-based classification of atmospheric and ocean surface properties has shown an ability to identify coherent weather regimes, each typically associated with similar properties and processes. Using satellite-based observational radiative and turbulent energy flux products, this study investigates the relationship between these weather states and surface energy processes within the context of tropical climate variability. Investigations of surface energy variations accompanying intraseasonal and interannual tropical variability often use composite-based analyses of the mean quantities of interest. Here, a similar compositing technique is employed, but the focus is on the distribution of the heat and moisture fluxes within their weather regimes. Are the observed changes in surface energy components dominated by changes in the frequency of the weather regimes or through changes in the associated fluxes within those regimes? It is this question that the presented work intends to address. The distribution of the surface heat and moisture fluxes is evaluated for both normal and non-normal states. By examining both phases of the climatic oscillations, the symmetry of energy and water cycle responses are considered.
2017-01-01
Gout is a disease with elusive treatment options. Reduction of the size of l-alanine crystals as a model crystal for gouty tophi with the use of a monomode solid-state microwave was examined as a possible therapeutic aid. The effect of microwave heating on l-alanine crystals in the presence of gold nanoparticles (Au NPs) in solution and synovial fluid (SF) in a plastic pouch through a synthetic skin patch was investigated. In this regard, three experimental paradigms were employed: Paradigm 1 includes the effect of variable microwave power (5–10 W) and variable heating time (5–60 s) and Au NPs in water (20 nm size, volume of 10 μL) in a plastic pouch (1 × 2 cm2 in size). Paradigm 2 includes the effect of a variable volume of 20 nm Au NPs in a variable volume of SF up to 100 μL in a plastic pouch at a constant microwave power (10 W) for 30 s. Paradigm 3 includes the effect of constant microwave power (10 W) and microwave heating time (30 s), constant volume of Au NPs (100 μL), and variable size of Au NPs (20–200 nm) placed in a plastic pouch through a synthetic skin patch. In these experiments, an average of 60–100% reduction in the size of an l-alanine crystal (initial size = 450 μm) without damage to the synthetic skin or increasing the temperature of the samples beyond the physiological range was reported. PMID:28983527
Pavlaković, G; Züchner, K; Zapf, A; Bachmann, C G; Graf, B M; Crozier, T A; Pavlaković, H
2009-08-01
Various factors can influence thermal perception threshold measurements and contribute significantly to unwanted variability of the tests. To minimize this variability, testing should be performed under strictly controlled conditions. Identifying the factors that increase the variability and eliminating their influence should increase reliability and reproducibility. Currently available thermotesting devices use a water-cooling system that generates a continuous noise of approximately 60 dB. In order to analyze whether this noise could influence the thermal threshold measurements we compared the thresholds obtained with a silent thermotesting device to those obtained with a commercially available device. The subjects were tested with one randomly chosen device on 1 day and with the other device 7 days later. At each session, heat, heat pain, cold, and cold pain thresholds were determined with three measurements. Bland-Altman analysis was used to assess agreement in measurements obtained with different devices and it was shown that the intersubject variability of the thresholds obtained with the two devices was comparable for all four thresholds tested. In contrast, the intrasubject variability of the thresholds for heat, heat pain, and cold pain detection was significantly lower with the silent device. Our results show that thermal sensory thresholds measured with the two devices are comparable. However, our data suggest that, for studies with repeated measurements on the same subjects, a silent thermotesting device may allow detection of smaller differences in the treatment effects and/or may permit the use of a smaller number of tested subjects. Muscle Nerve 40: 257-263, 2009.
Geothermal Systems for School.
ERIC Educational Resources Information Center
Dinse, David H.
1998-01-01
Describes an award-winning school heating and cooling system in which two energy-efficient technologies, variable-flow pumping and geothermal heat pumps, were combined. The basic system schematic and annual energy use and cost savings statistics are provided. (GR)
Specific heat and Knight shift of cuprates within the van Hove scenario
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, S.; Das, A.N.
1996-12-01
The jump in the specific heat at {ital T}{sub {ital c}}, the specific heat in both the superconducting and normal states, and the Knight shift in the superconducting state are studied within the van Hove singularity scenario considering density of states for a two-dimensional tight-binding system and with an extended saddle-point singularity. The role of the electron-phonon interaction strength, band narrowing, second-nearest-neighbor hopping, and orthorhombic distortion on such properties is investigated. The experimental results on the specific heat and Knight shift of the Y-123 system are compared with the theoretical predictions. {copyright} {ital 1996 The American Physical Society.}
Ho, Hung Chak; Knudby, Anders; Walker, Blake Byron; Henderson, Sarah B
2017-01-01
Climate change has increased the frequency and intensity of extremely hot weather. The health risks associated with extemely hot weather are not uniform across affected areas owing to variability in heat exposure and social vulnerability, but these differences are challenging to map with precision. We developed a spatially and temporally stratified case-crossover approach for delineation of areas with higher and lower risks of mortality on extremely hot days and applied this approach in greater Vancouver, Canada. Records of all deaths with an extremely hot day as a case day or a control day were extracted from an administrative vital statistics database spanning the years of 1998-2014. Three heat exposure and 11 social vulnerability variables were assigned at the residential location of each decedent. Conditional logistic regression was used to estimate the odds ratio for a 1°C increase in daily mean temperature at a fixed site with an interaction term for decedents living above and below different values of the spatial variables. The heat exposure and social vulnerability variables with the strongest spatially stratified results were the apparent temperature and the labor nonparticipation rate, respectively. Areas at higher risk had values ≥ 34.4°C for the maximum apparent temperature and ≥ 60% of the population neither employed nor looking for work. These variables were combined in a composite index to quantify their interaction and to enhance visualization of high-risk areas. Our methods provide a data-driven framework for spatial delineation of the temperature--mortality relationship by heat exposure and social vulnerability. The results can be used to map and target the most vulnerable areas for public health intervention. Citation: Ho HC, Knudby A, Walker BB, Henderson SB. 2017. Delineation of spatial variability in the temperature-mortality relationship on extremely hot days in greater Vancouver, Canada. Environ Health Perspect 125:66-75; http://dx.doi.org/10.1289/EHP224.
Ho, Hung Chak; Knudby, Anders; Walker, Blake Byron; Henderson, Sarah B.
2016-01-01
Background: Climate change has increased the frequency and intensity of extremely hot weather. The health risks associated with extemely hot weather are not uniform across affected areas owing to variability in heat exposure and social vulnerability, but these differences are challenging to map with precision. Objectives: We developed a spatially and temporally stratified case-crossover approach for delineation of areas with higher and lower risks of mortality on extremely hot days and applied this approach in greater Vancouver, Canada. Methods: Records of all deaths with an extremely hot day as a case day or a control day were extracted from an administrative vital statistics database spanning the years of 1998–2014. Three heat exposure and 11 social vulnerability variables were assigned at the residential location of each decedent. Conditional logistic regression was used to estimate the odds ratio for a 1°C increase in daily mean temperature at a fixed site with an interaction term for decedents living above and below different values of the spatial variables. Results: The heat exposure and social vulnerability variables with the strongest spatially stratified results were the apparent temperature and the labor nonparticipation rate, respectively. Areas at higher risk had values ≥ 34.4°C for the maximum apparent temperature and ≥ 60% of the population neither employed nor looking for work. These variables were combined in a composite index to quantify their interaction and to enhance visualization of high-risk areas. Conclusions: Our methods provide a data-driven framework for spatial delineation of the temperature-–mortality relationship by heat exposure and social vulnerability. The results can be used to map and target the most vulnerable areas for public health intervention. Citation: Ho HC, Knudby A, Walker BB, Henderson SB. 2017. Delineation of spatial variability in the temperature–mortality relationship on extremely hot days in greater Vancouver, Canada. Environ Health Perspect 125:66–75; http://dx.doi.org/10.1289/EHP224 PMID:27346526
Liu, Xu-long; Hong, Wen-xue; Song, Jia-lin; Wu, Zhen-ying
2012-03-01
The skin temperature distribution of a healthy human body exhibits a contralateral symmetry. Some lesions of facial nerve function are associated with an alteration of the thermal distribution of the human body. Since the dissipation of heat through the skin occurs for the most part in the form of infrared radiation, infrared thermography is the method of choice to capture the alteration of the infrared thermal distribution. This paper presents a new method of analysis of the thermal asymmetry named effective thermal area ratio, which is a product of two variables. The first variable is mean temperature difference between the specific facial region and its contralateral region. The second variable is a ratio, which is equal to the area of the abnormal region divided by the total area. Using this new method, we performed a controlled trial to assess the facial nerve function of the healthy subjects and the patients with Bell's palsy respectively. The results show: that the mean specificity and sensitivity of this method are 0.90 and 0.87 respectively, improved by 7% and 26% compared with conventional methods. Spearman correlation coefficient between effective thermal area ratio and the degree of facial nerve function is an average of 0.664. Hence, concerning the diagnosis and assessment of facial nerve function, infrared thermography is a powerful tool; while the effective ther mal area ratio is an efficient clinical indicator.
Does the hemispheric energy balance set the mean location of ITCZ?
NASA Astrophysics Data System (ADS)
Hakuba, Maria Z.; Stephens, Graeme L.; Lee, Tong; Rapp, Anita D.; Balmaseda, Magdalena A.
2017-04-01
The Earth's energy balance has been studied for many decades and yet a number of challenges remain in quantifying it globally and in understanding its behavior regionally. Recent studies combine the total and atmospheric heat budgets derived from satellite-based TOA irradiances and atmospheric reanalysis, respectively, to infer the hemispheric surface heat budget as their residual. Here, we propose an approach that takes the perspective of the ocean, deriving the multi-annual surface net heat flux as the residual of the hemispheric ocean heat storage (OHS) and the cross-equatorial ocean heat transport (COHT). The latter is taken from ocean reanalysis (i.e. ECCOv4 and ORA-S4), while the OHS is derived from in-situ temperature profiles covering the ARGO period 2005-2015. Notable features of the hemispheric energy balance established is the dominance of the Southern hemispheric OHS (0.9 Wm-2) and the slight inter-hemispheric energy imbalance that yields a net cross-equatorial heat transport from the Southern to the Northern hemisphere. This is achieved by the oceans transporting about 0.2-0.4 PW northward across the equator, accompanied by a slight southward transport of heat by the atmosphere (0.1-0.2 PW). The main features of the hemispheric energy balance portrayed here are largely in line with earlier estimates and represent the energetic framework within which the tropical circulation acts to distribute heat across the equator. In present-day conditions, the ITCZ is located slightly North of the equator at about 7 N in the multi-annual mean, indicating that the southern Hadley Cell fluxes heat across the equator towards the Southern hemisphere. It has been proposed in recent studies that the global mean northward COHT plays a role in setting the ITCZ location, a relationship that we examine by analysis of an observation-based (GPCP, TRMM, ERA-I) dataset of ITCZ location and ocean heat transport from reanalysis. Additionally, we examine the co-variability of ITCZ location and other energy budget components as well to elucidate on the energetic drivers of tropical large-scale circulation. We find the direction of COHT and ITCZ location in the Indo-Pacific to be largely anti-correlated, both showing significant inter-annual variability that is likely driven by SST variability linked to ENSO. As expected, the Atlantic sets the global mean northward COHT and shows much less inter-annual variability. From this alone, there is evidence that, at least locally, the COHT is not the only driver of ITCZ location in the Pacific.
NASA Astrophysics Data System (ADS)
Phillips, Thomas J.; Gates, W. Lawrence; Arpe, Klaus
1992-12-01
The effects of sampling frequency on the first- and second-moment statistics of selected European Centre for Medium-Range Weather Forecasts (ECMWF) model variables are investigated in a simulation of "perpetual July" with a diurnal cycle included and with surface and atmospheric fields saved at hourly intervals. The shortest characteristic time scales (as determined by the e-folding time of lagged autocorrelation functions) are those of ground heat fluxes and temperatures, precipitation and runoff, convective processes, cloud properties, and atmospheric vertical motion, while the longest time scales are exhibited by soil temperature and moisture, surface pressure, and atmospheric specific humidity, temperature, and wind. The time scales of surface heat and momentum fluxes and of convective processes are substantially shorter over land than over oceans. An appropriate sampling frequency for each model variable is obtained by comparing the estimates of first- and second-moment statistics determined at intervals ranging from 2 to 24 hours with the "best" estimates obtained from hourly sampling. Relatively accurate estimation of first- and second-moment climate statistics (10% errors in means, 20% errors in variances) can be achieved by sampling a model variable at intervals that usually are longer than the bandwidth of its time series but that often are shorter than its characteristic time scale. For the surface variables, sampling at intervals that are nonintegral divisors of a 24-hour day yields relatively more accurate time-mean statistics because of a reduction in errors associated with aliasing of the diurnal cycle and higher-frequency harmonics. The superior estimates of first-moment statistics are accompanied by inferior estimates of the variance of the daily means due to the presence of systematic biases, but these probably can be avoided by defining a different measure of low-frequency variability. Estimates of the intradiurnal variance of accumulated precipitation and surface runoff also are strongly impacted by the length of the storage interval. In light of these results, several alternative strategies for storage of the EMWF model variables are recommended.
US Drought-Heat Wave Relationships in Past Versus Current Climates
NASA Astrophysics Data System (ADS)
Cheng, L.; Hoerling, M. P.; Eischeid, J.; Liu, Z.
2017-12-01
This study explores the relationship between droughts and heat waves over various regions of the contiguous United States that are distinguished by so-called energy-limited versus water-limited climatologies. We first examine the regional sensitivity of heat waves to soil moisture variability under 19th century climate conditions, and then compare to sensitivities under current climate that has been subjected to human-induced change. Our approach involves application of the conditional statistical framework of vine copula. Vine copula is known for its flexibility in reproducing various dependence structures exhibited by climate variables. Here we highlight its feature for evaluating the importance of conditional relationships between variables and processes that capture underlying physical factors involved in their interdependence during drought/heat waves. Of particular interest is identifying changes in coupling strength between heat waves and land surface conditions that may yield more extreme events as a result of land surface feedbacks. We diagnose two equilibrium experiments a coupled climate model (CESM1), one subjected to Year-1850 external forcing and the other to Year-2000 radiative forcing. We calculate joint heat wave/drought relationships for each climate state, and also calculate their change as a result of external radiative forcing changes across this 150-yr period. Our results reveal no material change in the dependency between heat waves and droughts, aside from small increases in coupling strength over the Great Plains. Overall, hot U.S. summer droughts of 1850-vintage do not become hotter in the current climate -- aside from the warming contribution of long-term climate change, in CESM1. The detectability of changes in hotter droughts as a consequence of anthropogenic forced changes in this single effect, i.e. coupling strength between soil moisture and hot summer temperature, is judged to be low at this time.
Soltani, Z; Ziaie, F; Ghaffari, M; Beigzadeh, A M
2017-02-01
In the present work, thermal properties of low density polyethylene (LDPE) and its nano composites are investigated. For this purpose LDPE reinforced with different weight percents of hydroxyapatite (HAP) powder which was synthesized via hydrolysis method are produced. The samples were irradiated with 10MeV electron beam at doses of 75 to 250kGy. Specific heat capacity measurement have been carried out at different temperatures, i.e. 25, 50, 75 and 100°C using modulated temperature differential scanning calorimetry (MTDSC) apparatus and the effect of three parameters include of temperature, irradiation dose and the amount of HAP nano particles as additives on the specific heat capacity of PE/HAP have been investigated precisely. The MTDSC results indicate that the specific heat capacity have decreased by addition of nano sized HAP as reinforcement for LDPE. On the other hand, the effect of radiation dose is reduction in the specific heat capacity in all materials including LDPE and its nano composites. The HAP nano particles along with cross-link junctions due to radiation restrain the movement of the polymer chains in the vicinity of each particle and improve the immobility of polymer chains and consequently lead to reduction in specific heat capacity. Also, the obtained results confirm that the radiation effect on the specific heat capacity is more efficient than the reinforcing effect of nano-sized hydroxyapatite. Copyright © 2016 Elsevier B.V. All rights reserved.
Brazaitis, Marius; Skurvydas, Albertas; Pukėnas, Kazimieras; Daniuseviciūtė, Laura; Mickevicienė, Dalia; Solianik, Rima
2012-11-01
In this study, we questioned whether local cooling of muscle or heating involving core and muscle temperatures are the main indicators for force variability. Ten volunteers performed a 2-min maximum voluntary contraction (MVC) of the knee extensors under control (CON) conditions after passive heating (HT) and cooling (CL) of the lower body. HT increased muscle and rectal temperatures, whereas CL lowered muscle temperature but did not affect rectal temperature. During 2-min MVC, peak force decreased to a lower level in HT compared with CON and CL experiments. Greater central fatigue was found in the HT experiment, and there was less in the CL experiment than in the CON experiment. Increased core and muscle temperature increased physiological tremor and the amount and structural complexity of force variability of the exercising muscles, whereas local muscle cooling decreased all force variability variables measured. Copyright © 2012 Wiley Periodicals, Inc.
Mechanisms driving variability in the ocean forcing of Pine Island Glacier
Webber, Benjamin G. M.; Heywood, Karen J.; Stevens, David P.; Dutrieux, Pierre; Abrahamsen, E. Povl; Jenkins, Adrian; Jacobs, Stanley S.; Ha, Ho Kyung; Lee, Sang Hoon; Kim, Tae Wan
2017-01-01
Pine Island Glacier (PIG) terminates in a rapidly melting ice shelf, and ocean circulation and temperature are implicated in the retreat and growing contribution to sea level rise of PIG and nearby glaciers. However, the variability of the ocean forcing of PIG has been poorly constrained due to a lack of multi-year observations. Here we show, using a unique record close to the Pine Island Ice Shelf (PIIS), that there is considerable oceanic variability at seasonal and interannual timescales, including a pronounced cold period from October 2011 to May 2013. This variability can be largely explained by two processes: cumulative ocean surface heat fluxes and sea ice formation close to PIIS; and interannual reversals in ocean currents and associated heat transport within Pine Island Bay, driven by a combination of local and remote forcing. Local atmospheric forcing therefore plays an important role in driving oceanic variability close to PIIS. PMID:28211473
Munir, Asif; Shahzad, Azeem; Khan, Masood
2014-01-01
The major focus of this article is to analyze the forced convective heat transfer in a steady boundary layer flow of Sisko fluid over a nonlinear stretching sheet. Two cases are studied, namely (i) the sheet with variable temperature (PST case) and (ii) the sheet with variable heat flux (PHF case). The heat transfer aspects are investigated for both integer and non-integer values of the power-law index. The governing partial differential equations are reduced to a system of nonlinear ordinary differential equations using appropriate similarity variables and solved numerically. The numerical results are obtained by the shooting method using adaptive Runge Kutta method with Broyden's method in the domain[Formula: see text]. The numerical results for the temperature field are found to be strongly dependent upon the power-law index, stretching parameter, wall temperature parameter, material parameter of the Sisko fluid and Prandtl number. In addition, the local Nusselt number versus wall temperature parameter is also graphed and tabulated for different values of pertaining parameters. Further, numerical results are validated by comparison with exact solutions as well as previously published results in the literature.
Numerical modeling of the autumnal thermal bar
NASA Astrophysics Data System (ADS)
Tsydenov, Bair O.
2018-03-01
The autumnal riverine thermal bar of Kamloops Lake has been simulated using atmospheric data from December 1, 2015, to January 4, 2016. The nonhydrostatic 2.5D mathematical model developed takes into account the diurnal variability of the heat fluxes and wind on the lake surface. The average values for shortwave and longwave radiation and latent and sensible heat fluxes were 19.7 W/m2, - 95.9 W/m2, - 11.8 W/m2, and - 32.0 W/m2 respectively. Analysis of the wind regime data showed prevailing easterly winds and maximum speed of 11 m/s on the 8th and 19th days. Numerical experiments with different boundary conditions at the lake surface were conducted to evaluate effects of variable heat flux and wind stress. The results of modeling demonstrated that the variable heat flux affects the process of thermal bar evolution, especially during the lengthy night cooling. However, the wind had the greatest impact on the behavior of the autumnal thermal bar: The easterly winds contributed to an earlier appearance of the thermal bar, but the strong winds generating the intensive circulations (the velocity of the upper lake flow increased to 6 cm/s) may destroy the thermal bar front.
NASA Astrophysics Data System (ADS)
Schuster, Christian; Honold, Jasmin; Lauf, Steffen; Lakes, Tobia
2017-04-01
Extreme heat has tremendous adverse effects on human health. Heat stress is expected to further increase due to urbanization, an aging population, and global warming. Previous research has identified correlations between extreme heat and mortality. However, the underlying physical, behavioral, environmental, and social risk factors remain largely unknown and comprehensive quantitative investigation on an individual level is lacking. We conducted a new cross-sectional household questionnaire survey to analyze individual heat impairment (self-assessed and reported symptoms) and a large set of potential risk factors in the city of Berlin, Germany. This unique dataset (n = 474) allows for the investigation of new relationships, especially between health/fitness and urban heat stress. Our analysis found previously undocumented associations, leading us to generate new hypotheses for future research: various health/fitness variables returned the strongest associations with individual heat stress. Our primary hypothesis is that age, the most commonly used risk factor, is outperformed by health/fitness as a dominant risk factor. Related variables seem to more accurately represent humans’ cardiovascular capacity to handle elevated temperature. Among them, active travel was associated with reduced heat stress. We observed statistical associations for heat exposure regarding the individual living space but not for the neighborhood environment. Heat stress research should further investigate individual risk factors of heat stress using quantitative methodologies. It should focus more on health and fitness and systematically explore their role in adaptation strategies. The potential of health and fitness to reduce urban heat stress risk means that encouraging active travel could be an effective adaptation strategy. Through reduced CO2 emissions from urban transport, societies could reap double rewards by addressing two root causes of urban heat stress: population health and global warming.
Petrilli, S; Durufle, A; Nicolas, B; Robineau, S; Kerdoncuff, V; Le Tallec, H; Lassalle, A; Gallien, P
2004-06-01
The effects of the modifications of temperature are well known in patients affected by multiple sclerosis (MS). They are variable and can influence daily living. This sensibility can be used in the management of the disabilities. An epidemiological study was realized on a cohort of 191 patients suffering from MS referred to the MS clinic of Rennes (France). All the patients were questioned about the influence of heat and cold on their clinical symptoms (fatigue spasticity, walking disorders, vision, em leader ). Correlations with the main clinical characteristics were studied. One hundred ninety-one patients, 129 women and 62 men with an average age of 47.6 +/- 10 years were interviewed. Average score EDSS was of 5.2 +/- 1.5. The mean duration of MS was 13.5 +/- 10 years. One hundred forty-seven patients (77%) reported a sensibility to the temperature. Heat deteriorated function in 104 cases and 82 patients improved with cold. Paradoxically 20 patients reported to be deteriorated with cold and 19 improved with heat. Fatigue and walking were the most sensitive to temperature fluctuations. No particular clinical profile could be established. Fifty percent of the patients used this sensibility with therapeutic aim in everyday life. The clear influence of temperature fluctuations on the clinical symptom was confirmed in this study. However, there is a great variability from one patient to another. Different hypotheses have been evoked to explain this phenomenon. The most likely is an influence on the nervous specific conductivity. In routine practice cold physiotherapy will be proposed on case by case basis and still has an interesting place in the rehabilitation management.
Age predicts cardiovascular, but not thermoregulatory, responses to humid heat stress.
Havenith, G; Inoue, Y; Luttikholt, V; Kenney, W L
1995-01-01
Cross-section comparisons of the effect of age on physiological responses to heat stress have yielded conflicting results, in part because of the inability to separate chronological age from factors which change in concert with the biological aging process. The present study was designed to examine the relative influence of age on cardiovascular and thermoregulatory responses to low intensity cycle exercise (60 W for 1 h) in a warm humid environment (35 degrees C, 80% relative humidity). Specifically, the relative importance of age compared to other individual characteristics [maximal oxygen uptake (VO2max), physical activity level, anthropometry, and adiposity] was determined by multiple regression analysis in a heterogeneous sample of 56 subjects in which age (20-73 years) and VO2max (1.86-4.44 l.min-1) were not interrelated. Dependent variables (with ranges) included final values of thermoregulatory responses [rectal temperature (Tre, 37.8-39.2 degrees C), calculated heat storage (S, 3.4-8.1 J.g-1), sweat loss (238-847 g.m-2)] and cardiovascular responses [heart rate (HR, 94-176 beats.min-1), forearm blood flow (FBF, 5.3-31.3 ml.100 ml-1.min-1), mean arterial blood pressure (MAP, 68-122 mmHg), and forearm vascular conductance (FVC = FBF.MAP-1, 0.06-0.44 ml.100 ml-1.min-1.mmHg-1). Age had no significant influence on Tre, S, or sweat loss, all of which were closely related to VO2max. On the other hand, HR, MAP, FBF, and FVC were related to both age and VO2max. Anthropometric variables and adiposity had secondary, but statistically significant, effects on MAP, FBF, FVC, and sweat loss.(ABSTRACT TRUNCATED AT 250 WORDS)
Damron, Leatha A.; Kim, Do-Gyoon; Mann, Kenneth A.
2007-01-01
The aim of this study was to determine the effects of cyclic loading on the debond process of a roughened stem– cement interface used in total hip arthroplasty. The specific goals were to assess the effects of two surgeon-controlled variables (stem heating and degree of stem surface roughness) and to determine if an independent finite element-based fracture mechanics model could be used to predict the debond response. A clamped cantilever beam geometry was used to determine the fatigue debond response of the stem– cement interface and was created using an experimental mold that simulated in vivo cementing conditions. A second experiment was performed using a torsion-loading model representative of the stem– cement–bone composite. For both experiments, two stem heating (room temperature and 50°C) and surface roughness conditions (grit blasted: Ra = 2.3 and 5.1 μm) were used. Finally, a finite element model of the torsion experiment with provision for crack growth was developed and compared with the experimental results. Results from both experiments revealed that neither stem preheating nor use of a stem with a greater surface roughness had a marked effect on the fatigue debond response. There was substantial variability in the debond response for all cases; this may be due to microscopic gaps at the interface for all interface conditions. The debond rate from the finite element simulation (10−7.31 m/cycle) had a magnitude similar to the experimental torsion model (10− (6.77 ± 1.25) m/cycle). This suggests that within the context of the experimental conditions studied here that the debond response could be assessed using a linear elastic fracture mechanics-type approach. PMID:16292769
[Work schedule of electric welders in heating microclimate].
Sorokin, G A; Frolova, N M
2010-01-01
The authors present results of specified hygienically justified timing regulations for setting the variants of work and rest modes within electric welders shift, who work in various postures with variable visual strain while welding in heating microclimate.
Ma, Shuangmei; Zhou, Tianjun; Stone, Dáithí A.; ...
2017-05-19
In the midsummer of 2013, Central and Eastern China (CEC) was hit by an extraordinary heat event, with the region experiencing the warmest July-August on record. To explore how human-induced greenhouse gas emissions and natural internal variability contributed to this heat event, we compare observed July-August mean surface air temperature wit h that simulated by climate models. We find that both atmospheric natural variability and anthropogenic factors contributed to this heat event. This extreme warm midsummer was associated with a positive high-pressure anomaly that was closely related to the stochastic behavior of atmospheric circulation. Diagnosis of CMIP5 models and largemore » ensembles of two atmospheric models indicates that human influence has substantially increased the chance of warm mid-summers such as 2013 in CEC, although the exact estimated increase depends on the selection of climate models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Shuangmei; Zhou, Tianjun; Stone, Dáithí A.
In the midsummer of 2013, Central and Eastern China (CEC) was hit by an extraordinary heat event, with the region experiencing the warmest July-August on record. To explore how human-induced greenhouse gas emissions and natural internal variability contributed to this heat event, we compare observed July-August mean surface air temperature wit h that simulated by climate models. We find that both atmospheric natural variability and anthropogenic factors contributed to this heat event. This extreme warm midsummer was associated with a positive high-pressure anomaly that was closely related to the stochastic behavior of atmospheric circulation. Diagnosis of CMIP5 models and largemore » ensembles of two atmospheric models indicates that human influence has substantially increased the chance of warm mid-summers such as 2013 in CEC, although the exact estimated increase depends on the selection of climate models.« less
Influence of kondo effect on the specific heat jump of anisotropic superconductors
NASA Astrophysics Data System (ADS)
Yoksan, S.
1986-01-01
A calculation for the specific heat jump of an anisotropic superconductor with Kondo impurities is presented. The impurities are treated within the Matsuura - Ichinose - Nagaoka framework and the anisotropy effect is described by the factorizable model of Markowitz and Kadanoff. We give explicit expressions for the change in specific heat jump due to anisotropy and impurities which can be tested experimentally.
1994-10-10
covered in a rudimentary way. One of the missing topics is the practice to use existing stratification in natural water bodies to interleave sewage water...hydrodynamics and heat exchange at the natural convection m ilhe laboratory basin the flow field is calculated numerically using the variables ($W). 2...hydrodynanics and heat exchange at the natural convection in the laboratory basin the flow field is calculated numerically using the variables (V, ,)- 2
Gifford, Jayson R.; Ives, Stephen J.; Park, Song-Young; Andtbacka, Robert H. I.; Hyngstrom, John R.; Mueller, Michelle T.; Treiman, Gerald S.; Ward, Christopher; Trinity, Joel D.
2014-01-01
The purpose of this study was to determine if heat inhibits α2-adrenergic vasocontraction, similarly to α1-adrenergic contraction, in isolated human skeletal muscle feed arteries (SMFA) and elucidate the role of the temperature-sensitive vanilloid-type transient receptor potential (TRPV) ion channels in this response. Isolated SMFA from 37 subjects were studied using wire myography. α1 [Phenylephrine (PE)]- and α2 [dexmedetomidine (DEX)]-contractions were induced at 37 and 39°C with and without TRPV family and TRPV4-specific inhibition [ruthenium red (RR) and RN-1734, respectively]. Endothelial function [acetylcholine (ACh)] and smooth muscle function [sodium nitroprusside (SNP) and potassium chloride (KCl)] were also assessed under these conditions. Heat and TRPV inhibition was further examined in endothelium-denuded arteries. Contraction data are reported as a percentage of maximal contraction elicited by 100 mM KCl (LTmax). DEX elicited a small and variable contractile response, one-fifth the magnitude of PE, which was not as clearly attenuated when heated from 37 to 39°C (12 ± 4 to 6 ± 2% LTmax; P = 0.18) as were PE-induced contractions (59 ± 5 to 24 ± 4% LTmax; P < 0.05). Both forms of TRPV inhibition restored PE-induced contraction at 39°C (P < 0.05) implicating these channels, particularly the TRPV4 channels, in the heat-induced attenuation of α1-adrenergic vasocontraction. TRPV inhibition significantly blunted ACh relaxation while denudation prevented heat-induced sympatholysis without having an additive effect when combined with TRPV inhibition. In conclusion, physiological increases in temperature elicit a sympatholysis-like inhibition of α1-adrenergic vasocontraction in human SMFA that appears to be mediated by endothelial TRPV4 ion channels. PMID:25172894
NASA Astrophysics Data System (ADS)
Dutta, Jaideep; Kundu, Balaram
2018-05-01
This paper aims to develop an analytical study of heat propagation in biological tissues for constant and variable heat flux at the skin surface correlated with Hyperthermia treatment. In the present research work we have attempted to impose two unique kind of oscillating boundary condition relevant to practical aspect of the biomedical engineering while the initial condition is constructed as spatially dependent according to a real life situation. We have implemented Laplace's Transform method (LTM) and Green Function (GFs) method to solve single phase lag (SPL) thermal wave model of bioheat equation (TWMBHE). This research work strongly focuses upon the non-invasive therapy by employing oscillating heat flux. The heat flux at the skin surface is considered as constant, sinusoidal, and cosine forms. A comparative study of the impact of different kinds of heat flux on the temperature field in living tissue explored that sinusoidal heat flux will be more effective if the time of therapeutic heating is high. Cosine heating is also applicable in Hyperthermia treatment due to its precision in thermal waveform. The result also emphasizes that accurate observation must be required for the selection of phase angle and frequency of oscillating heat flux. By possible comparison with the published experimental research work and published mathematical study we have experienced a difference in temperature distribution as 5.33% and 4.73%, respectively. A parametric analysis has been devoted to suggest an appropriate procedure of the selection of important design variables in viewpoint of an effective heating in hyperthermia treatment.
Investigating the Spectroscopic Variability of Magentically Active M Dwarfs In SDSS.
NASA Astrophysics Data System (ADS)
Ventura, Jean-Paul; Schmidt, Sarah J.; Cruz, Kelle; Rice, Emily; Cid, Aurora
2018-01-01
Magnetic activity, a wide range of observable phenomena produced in the outer atmospheres of stars is, currently, not well understood for M dwarfs. In higher mass stars, magnetic activity is powered by a dynamo process involving the differential rotation of a star’s inner regions. This process generates a magnetic field, heats up regions in the chromosphere and produces Hα emission line radiation from collisional excitation. Using spectroscopic data from the Sloan Digital Sky Survey (SDSS), I compare Hα emission line strengths for a subsample of 12,000 photometric variability selected M dwarfs from Pan-STARRS1 with those of a known non-variable sample. Presumably, the photometric variability originates from the occurrence of star spots at the stellar surface, which are the result of an intense magnetic field and associated chromospheric heating. We proceed with this work in order to test whether the photometric variability of the sample correlates with chromospheric Hα emission features. If not, we explore alternate reasons for that photometric variability (e.g. binarity or transiting planetary companions)
Unified trade-off optimization for general heat devices with nonisothermal processes.
Long, Rui; Liu, Wei
2015-04-01
An analysis of the efficiency and coefficient of performance (COP) for general heat engines and refrigerators with nonisothermal processes is conducted under the trade-off criterion. The specific heat of the working medium has significant impacts on the optimal configurations of heat devices. For cycles with constant specific heat, the bounds of the efficiency and COP are found to be the same as those obtained through the endoreversible Carnot ones. However, they are independent of the cycle time durations. For cycles with nonconstant specific heat, whose dimensionless contact time approaches infinity, the general alternative upper and lower bounds of the efficiency and COP under the trade-off criteria have been proposed under the asymmetric limits. Furthermore, when the dimensionless contact time approaches zero, the endoreversible Carnot model is recovered. In addition, the efficiency and COP bounds of different kinds of actual heat engines and refrigerators have also been analyzed. This paper may provide practical insight for designing and operating actual heat engines and refrigerators.
Investigation of Spray Cooling Schemes for Dynamic Thermal Management
NASA Astrophysics Data System (ADS)
Yata, Vishnu Vardhan Reddy
This study aims to investigate variable flow and intermittent flow spray cooling characteristics for efficiency improvement in active two-phase thermal management systems. Variable flow spray cooling scheme requires control of pump input voltage (or speed), while intermittent flow spray cooling scheme requires control of solenoid valve duty cycle and frequency. Several testing scenarios representing dynamic heat load conditions are implemented to characterize the overall performance of variable flow and intermittent flow spray cooling cases in comparison with the reference, steady flow spray cooling case with constant flowrate, continuous spray cooling. Tests are conducted on a small-scale, closed loop spray cooling system featuring a pressure atomized spray nozzle. HFE-7100 dielectric liquid is selected as the working fluid. Two types of test samples are prepared on 10 mm x 10 mm x 2 mm copper substrates with matching size thick film resistors attached onto the opposite side, to generate heat and simulate high heat flux electronic devices. The test samples include: (i) plain, smooth surface, and (ii) microporous surface featuring 100 ?m thick copper-based coating prepared by dual stage electroplating technique. Experimental conditions involve HFE-7100 at atmospheric pressure and 30°C and 10°C subcooling. Steady flow spray cooling tests are conducted at flow rates of 2-5 ml/cm2.s, by controlling the heat flux in increasing steps, and recording the corresponding steady-state temperatures to obtain cooling curves in the form of surface superheat vs. heat flux. Variable flow and intermittent flow spray cooling tests are done at selected flowrate and subcooling conditions to investigate the effects of dynamic flow conditions on maintaining the target surface temperatures defined based on reference steady flow spray cooling performance.
Energy Dissipation in Ex-Vivo Porcine Liver during Electrosurgery
Karaki, Wafaa; Akyildiz, Ali; De, Suvranu
2017-01-01
This paper explores energy dissipation in ex-vivo liver tissue during radiofrequency current excitation with application in electrosurgery. Tissue surface temperature for monopolar electrode configuration is measured using infrared thermometry. The experimental results are fitted to a finite element model for transient heat transfer taking into account energy storage and conduction in order to extract information about “apparent” specific heat, which encompasses storage and phase change. The average apparent specific heat determined for low temperatures is in agreement with published data. However, at temperatures approaching the boiling point of water, apparent specific heat increases by a factor of five, indicating that vaporization plays an important role in the energy dissipation through latent heat loss. PMID:27479955
NASA Astrophysics Data System (ADS)
Tarditi, Alfonso G.; Shebalin, John V.
2002-11-01
A simulation study with the NIMROD code [1] is being carried on to investigate the efficiency of the thrust generation process and the properties of the plasma detachment in a magnetic nozzle. In the simulation, hot plasma is injected in the magnetic nozzle, modeled as a 2D, axi-symmetric domain. NIMROD has two-fluid, 3D capabilities but the present runs are being conducted within the MHD, 2D approximation. As the plasma travels through the magnetic field, part of its thermal energy is converted into longitudinal kinetic energy, along the axis of the nozzle. The plasma eventually detaches from the magnetic field at a certain distance from the nozzle throat where the kinetic energy becomes larger than the magnetic energy. Preliminary NIMROD 2D runs have been benchmarked with a particle trajectory code showing satisfactory results [2]. Further testing is here reported with the emphasis on the analysis of the diffusion rate across the field lines and of the overall nozzle efficiency. These simulation runs are specifically designed for obtaining comparisons with laboratory measurements of the VASIMR experiment, by looking at the evolution of the radial plasma density and temperature profiles in the nozzle. VASIMR (Variable Specific Impulse Magnetoplasma Rocket, [3]) is an advanced space propulsion concept currently under experimental development at the Advanced Space Propulsion Laboratory, NASA Johnson Space Center. A plasma (typically ionized Hydrogen or Helium) is generated by a RF (Helicon) discharge and heated by an Ion Cyclotron Resonance Heating antenna. The heated plasma is then guided into a magnetic nozzle to convert the thermal plasma energy into effective thrust. The VASIMR system has no electrodes and a solenoidal magnetic field produced by an asymmetric mirror configuration ensures magnetic insulation of the plasma from the material surfaces. By powering the plasma source and the heating antenna at different levels it is possible to vary smoothly of the thrust-to-specific impulse ratio while maintaining maximum power utilization. [1] http://www.nimrodteam.org [2] A. V. Ilin et al., Proc. 40th AIAA Aerospace Sciences Meeting, Reno, NV, Jan. 2002 [3] F. R. Chang-Diaz, Scientific American, p. 90, Nov. 2000
Marshall, Paul W M; Cross, Rebecca; Lovell, Ric
2015-12-01
This study examined changes in muscle temperature, electrically evoked muscle contractile properties, and voluntary power before and after a soccer specific active warm-up and subsequent rest period. Ten amateur soccer players performed two experimental sessions that involved performance of a modified FIFA 11+ soccer specific warm-up, followed by a 12.5-min rest period where participants were required to wear either normal clothing or a passive electrical heating garment was applied to the upper thigh muscles. Assessments around the warm-up and cool-down included measures of maximal torque, rate of torque development, muscle temperature (Tm), and electrically evoked measures of quadriceps contractile function. Tm was increased after the warm-up by 3.2 ± 0.7°C (P < 0.001). Voluntary and evoked rates of torque development increased after the warm-up between 20% and 30% (P < 0.05), despite declines in both maximal voluntary torque and voluntary activation (P < 0.05). Application of a passive heating garment in the cool-down period after the warm-up did not effect variables measured. While Tm was reduced by 1.4 ± 0.4°C after the rest period (P < 0.001), this value was still higher than pre warm-up levels. Voluntary and evoked rate of torque development remained elevated from pre warm-up levels at the end of the cool-down (P < 0.05). The soccer specific warm-up elevated muscle temperature by 3.2°C and was associated with concomitant increases of between 20% and 30% in voluntary rate of torque development, which seems explained by elevations in rate-dependent measures of intrinsic muscle contractile function. Application of a passive heating garment did not attenuate declines in muscle temperature during a 12.5-min rest period. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Effects of thermal energy harvesting on the human - clothing - environment microsystem
NASA Astrophysics Data System (ADS)
Myers, A. C.; Jur, J. S.
2017-10-01
The objective of this work is to perform an in depth investigation of garment-based thermal energy harvesting. The effect of human and environmental factors on the working efficiency of a thermal energy harvesting devices, or a thermoelectric generator (TEG), placed on the body is explored.. Variables that strongly effect the response of the TEG are as follows: skin temperature, human motion or speed, body location, environmental conditions, and the textile properties surrounding the TEG. In this study, the use of textiles for managing thermal comfort of wearable technology and energy harvesting are defined. By varying the stitch length and/or knit structure, one can manipulate the thermal conductivity of the garment in a specific location. Another method of improving TEG efficiency is through the use of a heat spreader, which increases the effective collection area of heat on the TEG hot side. Here we show the effect of a TEG on the thermal properties of a garment with regard to two knit stitches, jersey and 1 × 1 rib.
Pascual, Alvaro; Cachafeiro, Ada; Funk, Michele L; Fiscus, Susan A
2002-07-01
We compared an assay using signal amplification of a heat-dissociated p24 antigen (HDAg) with the Roche Monitor human immunodeficiency virus (HIV) RNA assay. The two assays gave comparable results when 130 specimens from 130 patients were tested (r = 0.60, P < 0.0001). The HDAg assay was almost as sensitive (85%) as the Roche HIV RNA kit (95%), just as specific (25 negative results from 25 HIV seronegative volunteers [100%]), less variable (mean log standard deviation of 0.07 compared to 0.11 when eight specimens were tested three or four times), and less expensive (reagent and labor costs, $8 versus $75). The assay appeared to be useful for monitoring established patients (n = 17) and identifying seroconverters (n = 4). HIV subtypes A to F were all recognized. This assay should be useful for monitoring patients in resource-poor countries and for monitoring vaccine recipients.
The role and importance of porosity in the deflagration rates of HMX-based materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glascoe, E A; Hsu, P C; Springer, H K
The deflagration behavior of thermally damaged HMX-based materials will be discussed. Strands of material were burned at pressures ranging from 10-300 MPa using the LLNL high pressure strand burner. Strands were heated in-situ and burned while still hot; temperatures range from 90-200 C and were chosen in order to allow for thermal damage of the material without significant decomposition of the HMX. The results indicate that multiple variables affect the burn rate but the most important are the polymorph of HMX and the nature and thermal stability of the non-HE portion of the material. Characterization of the strands indicate thatmore » the thermal soak produces significant porosity and permeability in the sample allowing for significantly faster burning due to the increased surface area and new pathways for flame spread into the material. Specifically, the deflagration rates of heated PBXN-9, LX-10, and PBX-9501 will be discussed and compared.« less
Kurokawa, Natsuko; Hirai, Tadayoshi; Takayama, Mariko; Hiwasa-Tanase, Kyoko; Ezura, Hiroshi
2013-04-01
The E8 promoter-HSP terminator expression cassette is a powerful tool for increasing the accumulation of recombinant protein in a ripening tomato fruit. Strong, tissue-specific transgene expression is a desirable feature in transgenic plants to allow the production of variable recombinant proteins. The expression vector is a key tool to control the expression level and site of transgene and recombinant protein expression in transgenic plants. The combination of the E8 promoter, a fruit-ripening specific promoter, and a heat shock protein (HSP) terminator, derived from heat shock protein 18.2 of Arabidopsis thaliana, produces the strong and fruit-specific accumulation of recombinant miraculin in transgenic tomato. Miraculin gene expression was driven by an E8 promoter and HSP terminator cassette (E8-MIR-HSP) in transgenic tomato plants, and the miraculin concentration was the highest in the ripening fruits, representing 30-630 μg miraculin of the gram fresh weight. The highest level of miraculin concentration among the transgenic tomato plant lines containing the E8-MIR-HSP cassette was approximately four times higher than those observed in a previous study using a constitutive 35S promoter and NOS terminator cassette (Hiwasa-Tanase et al. in Plant Cell Rep 30:113-124, 2011). These results demonstrate that the combination of the E8 promoter and HSP terminator cassette is a useful tool to increase markedly the accumulation of recombinant proteins in a ripening fruit-specific manner.
NASA Technical Reports Server (NTRS)
Pearl, J. C.; Sinton, W. M.
1982-01-01
The size and temperature, morphology and distribution, variability, possible absorption features, and processes of hot spots on Io are discussed, and an estimate of the global heat flux is made. Size and temperature information is deconvolved to obtain equivalent radius and temperature of hot spots, and simultaneously obtained Voyager thermal and imaging data is used to match hot sources with specific geologic features. In addition to their thermal output, it is possible that hot spots are also characterized by production of various gases and particulate materials; the spectral signature of SO2 has been seen. Origins for relatively stable, low temperature sources, transient high temperature sources, and relatively stable, high-tmperature sources are discussed.
Heat flux measurements of Tb3M series (M=Co, Rh and Ru): Specific heat and magnetocaloric properties
NASA Astrophysics Data System (ADS)
Monteiro, J. C. B.; Lombardi, G. A.; dos Reis, R. D.; Freitas, H. E.; Cardoso, L. P.; Mansanares, A. M.; Gandra, F. G.
2016-12-01
We report on the magnetic properties and magnetocaloric effect (MCE) for the Tb3M series, with M=Co, Rh and Ru, obtained using a heat flux technique. The specific heat of Tb3Co and Tb3Rh are very similar, with a first order type transition occurring around 6 K below the magnetic ordering temperature without any corresponding feature on the magnetization. The slightly enhanced electronic specific heat, the Debye temperature around 150 K and the presence of the magnetic specific heat well above the ordering temperature are also characteristic of many other compounds of the R3M family (R=Rare Earth). The specific heat for Tb3Ru, however, presents two peaks at 37 K and 74 K. The magnetization shows that below the first peak the system presents an antiferromagnetic behavior and is paramagnetic above 74 K. We obtained a magnetocaloric effect for M=Co and Rh, -∆S=12 J/kg K, but for Tb3Ru it is less than 3 J/kg K (μ0∆H=5 T). We believe that the experimental results show that the MCE is directly related with the process of hybridization of the (R)5d-(M)d electrons that occurs in the R3M materials.
Hsp70 enhances presentation of FMDV antigen to bovine CD4+ T cells in vitro
McLaughlin, Kerry; Seago, Julian; Robinson, Lucy; Kelly, Charles; Charleston, Bryan
2010-01-01
Foot-and-mouth disease virus (FMDV) is the causative agent of a highly contagious acute vesicular disease affecting cloven-hoofed animals, including cattle, sheep and pigs. The current vaccine induces a rapid humoral response, but the duration of the protective antibody response is variable, possibly associated with a variable specific CD4+ T cell response. We investigated the use of heat shock protein 70 (Hsp70) as a molecular chaperone to target viral antigen to the Major Histocompatibility Complex (MHC) class II pathway of antigen presenting cells and generate enhanced MHC II-restricted CD4+ T cell responses in cattle. Monocytes and CD4+ T cells from FMDV vaccinated cattle were stimulated in vitro with complexes of Hsp70 and FMDV peptide, or peptide alone. Hsp70 was found to consistently improve the presentation of a 25-mer FMDV peptide to CD4+ T cells, as measured by T cell proliferation. Complex formation was required for the enhanced effects and Hsp70 alone did not stimulate proliferation. This study provides further evidence that Hsp70:peptide complexes can enhance antigen-specific CD4+ T cell responses in vitro for an important pathogen of livestock. PMID:20167197
NASA Technical Reports Server (NTRS)
Sheth, Rubik B.; Ungar, Eugene K.; Chambliss, Joe P.; Cassady, Leonard D.
2011-01-01
The Variable Specific Impulse Magnetoplasma Rocket (VASIMR), currently under development by Ad Astra Rocket Company, is a unique propulsion system that can potentially change the way space propulsion is performed. VASIMR's efficiency, when compared to that of a conventional chemical rocket, reduce propellant needed for exploration missions by a factor of 10. Currently plans include flight tests of a 200 kW VASIMR system, titled VF-200, on the International Space Station. The VF-200 will consist of two 100 kW thruster units packaged together in one engine bus. Each thruster unit has a unique heat rejection requirement of about 27 kW over a firing time of 15 minutes. In order to control rocket core temperatures, peak operating temperatures of about 300 C are expected within the thermal control loop. Design of a high temperature radiator is a unique challenge for the vehicle design. This paper will discuss the path taken to develop a steady state and transient based radiator design. The paper will describe radiator design options for the VASIMR thermal control system for use on ISS as well as future exploration vehicles.
NASA Technical Reports Server (NTRS)
Gier, K. D.; Smith, M. O.
1990-01-01
The purpose of this experiment is to develop an in-depth understanding of the behavior of heat pipes in space. Both fixed conductance heat pipes (FCHPs) with axial grooves and variable conductance heat pipes (VCHPs) with porous wicks will be investigated. This understanding will be applied to the development of improved performance heat pipes subjected to various accelerations in space, including those encountered on a lunar base or Mars mission. More efficient, reliable, and lighter weight spacecraft thermal control systems should result from these investigations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... and heat input for the purpose of calculating NOX mass emissions. 75.71 Section 75.71 Protection of... MONITORING NOX Mass Emissions Provisions § 75.71 Specific provisions for monitoring NOX and heat input for... and for a flow monitoring system and an O2 or CO2 diluent gas monitoring system to measure heat input...
Spray generators for absorption refrigeration systems
Sibley, Howard W.
1979-06-19
A spray generator for an absorption refrigeration system that includes a heat exchanger comprised of a multiplicity of variably spaced heat exchange tubes. The tubes are spaced close together near the top of the heat exchanger and spaced more widely apart near the bottom of the heat exchanger. Dilute absorbent solution is sprayed down through the heat exchanger. The close nesting of the tubes in the top portion of the heat exchanger retards liquid flow and aids heating of the solution. The wide spacing of the tubes in the lower section of the heat exchanger facilitate vapor flow out of the heat exchanger and eliminates liquid "blow-off". The top tubes are covered by a baffle to prevent the liquid solution from splashing out of the heat exchanger off of these top tubes.
Variable Emissivity Through MEMS Technology
NASA Technical Reports Server (NTRS)
Darrin, Ann Garrison; Osiander, Robert; Champion, John; Swanson, Ted; Douglas, Donya; Grob, Lisa M.; Powers, Edward I. (Technical Monitor)
2000-01-01
This paper discusses a new technology for variable emissivity (vari-e) radiator surfaces, which has significant advantages over traditional radiators and promises an alternative design technique for future spacecraft thermal control systems. All spacecraft rely on radiative surfaces to dissipate waste heat. These radiators have special coatings, typically with a low solar absorptivity and a high infrared-red emissivity, that are intended to optimize performance under the expected heat load and thermal sink environment. The dynamics of the heat loads and thermal environment make it a challenge to properly size the radiator and often require some means of regulating the heat rejection rate of the radiators in order to achieve proper thermal balance. Specialized thermal control coatings, which can passively or actively adjust their emissivity offer an attractive solution to these design challenges. Such systems would allow intelligent control of the rate of heat loss from a radiator in response to heat load and thermal environmental variations. Intelligent thermal control through variable emissivity systems is well suited for nano and pico spacecraft applications where large thermal fluctuations are expected due to the small thermal mass and limited electric resources. Presently there are three different types of vari-e technologies under development: Micro ElectroMechanical Systems (MEMS) louvers, Electrochromic devices, and Electrophoretic devices. This paper will describe several prototypes of micromachined (MEMS) louvers and experimental results for the emissivity variations measured on theses prototypes. It will further discuss possible actuation mechanisms and space reliability aspects for different designs. Finally, for comparison parametric evaluations of the thermal performances of the new vari-e technology and standard thermal control systems are presented in this paper.
Hydration heat of alkali activated fine-grained ceramic
NASA Astrophysics Data System (ADS)
Jerman, Miloš; Černý, Robert
2017-07-01
Early-age hydration heat of alkali activated ceramic dust is studied as a function of silicate modulus. A mixture of sodium hydroxide and water glass is used as alkali activator. The measurements are carried out using a large-volume isothermal heat flow calorimeter which is capable of detecting even very small values of specific heat power. Experimental results show that the specific hydration heat power of alkali activated fine-ground ceramic is very low and increases with the decreasing silicate modulus of the mix.
Microchannel Heat Sink with Micro Encapsulated Phase Change Material (MEPCM) Slurry
2009-05-31
inlet temperature of the fluid, melting range of PCM and base heat flux. 15. SUBJECT TERMS Phase Change Materials; microchannel cooling; slurry...such as particle concentration, inlet temperature of the fluid, melting range of PCM , base heat flux and base fluid. Nomenclature A Aspect ratio Ab...of fluid, J/kg.K cp,p Specific heat of MEPCM particle, J/kg.K Cp, pcm Specific heat of PCM , J/kg.K D Hydraulic diameter, m d, dp Particle diameter
Variations and controls on crustal thermal regimes in Southeastern Australia
NASA Astrophysics Data System (ADS)
Mather, Ben; McLaren, Sandra; Taylor, David; Roy, Sukanta; Moresi, Louis
2018-01-01
The surface heat flow field in Australia has for many years been poorly constrained compared to continental regions elsewhere. 182 recent heat flow determinations and 66 new heat production measurements for Southeastern Australia significantly increase our understanding of local and regional lithospheric thermal regimes and allow for detailed thermal modelling. The new data give a mean surface heat flow for Victoria of 71 ± 15 mW m- 2 which fits within the 61-77 mW m- 2 range reported for Phanerozoic-aged crust globally. These data reveal three new thermally and compositionally distinct heat flow sub-provinces within the previously defined Eastern Heat Flow Province: the Delamerian heat flow sub-province (average surface heat flow 60 ± 9 mW m- 2); the Lachlan heat flow sub-province (average surface heat flow 74 ± 13 mW m- 2); and the Newer Volcanics heat flow sub-province (average surface heat flow 72 ± 16 mW m- 2) which includes extreme values that locally exceed 100 mW m- 2. Inversions of reduced heat flow and crustal differentiation find that the Delamerian sub-province has experienced significant crustal reworking compared to the Lachlan and Newer Volcanics sub-provinces. The latter has experienced volcanism within the last 8 Ma and the degree of variability observed in surface heat flow points (up to 8 mW m- 2 per kilometre laterally) cannot be replicated with steady-state thermal models through this sub-province. In the absence of a strong palaeoclimate signal, aquifer disturbances, or highly enriched granites, we suggest that this high variability arises from localised transient perturbations to the upper crust associated with recent intraplate volcanism. This is supported by a strong spatial correlation of high surface heat flow and known eruption points within the Newer Volcanics heat flow sub-province.
NASA Astrophysics Data System (ADS)
Lo Russo, Stefano; Taddia, Glenda; Verda, Vittorio
2014-05-01
The common use of well doublets for groundwater-sourced heating or cooling results in a thermal plume of colder or warmer re-injected groundwater known as the Thermal Affected Zone(TAZ). The plumes may be regarded either as a potential anthropogenic geothermal resource or as pollution, depending on downstream aquifer usage. A fundamental aspect in groundwater heat pump (GWHP) plant design is the correct evaluation of the thermally affected zone that develops around the injection well. Temperature anomalies are detected through numerical methods. Crucial elements in the process of thermal impact assessment are the sizes of installations, their position, the heating/cooling load of the building, and the temperature drop/increase imposed on the re-injected water flow. For multiple-well schemes, heterogeneous aquifers, or variable heating and cooling loads, numerical models that simulate groundwater and heat transport are needed. These tools should consider numerous scenarios obtained considering different heating/cooling loads, positions, and operating modes. Computational fluid dynamic (CFD) models are widely used in this field because they offer the opportunity to calculate the time evolution of the thermal plume produced by a heat pump, depending on the characteristics of the subsurface and the heat pump. Nevertheless, these models require large computational efforts, and therefore their use may be limited to a reasonable number of scenarios. Neural networks could represent an alternative to CFD for assessing the TAZ under different scenarios referring to a specific site. The use of neural networks is proposed to determine the time evolution of the groundwater temperature downstream of an installation as a function of the possible utilization profiles of the heat pump. The main advantage of neural network modeling is the possibility of evaluating a large number of scenarios in a very short time, which is very useful for the preliminary analysis of future multiple installations. The neural network is trained using the results from a CFD model (FEFLOW) applied to the installation at Politecnico di Torino (Italy) under several operating conditions.
Challenges associated with projecting urbanization-induced heat-related mortality.
Hondula, David M; Georgescu, Matei; Balling, Robert C
2014-08-15
Maricopa County, Arizona, anchor to the fastest growing megapolitan area in the United States, is located in a hot desert climate where extreme temperatures are associated with elevated risk of mortality. Continued urbanization in the region will impact atmospheric temperatures and, as a result, potentially affect human health. We aimed to quantify the number of excess deaths attributable to heat in Maricopa County based on three future urbanization and adaptation scenarios and multiple exposure variables. Two scenarios (low and high growth projections) represent the maximum possible uncertainty range associated with urbanization in central Arizona, and a third represents the adaptation of high-albedo cool roof technology. Using a Poisson regression model, we related temperature to mortality using data spanning 1983-2007. Regional climate model simulations based on 2050-projected urbanization scenarios for Maricopa County generated distributions of temperature change, and from these predicted changes future excess heat-related mortality was estimated. Subject to urbanization scenario and exposure variable utilized, projections of heat-related mortality ranged from a decrease of 46 deaths per year (-95%) to an increase of 339 deaths per year (+359%). Projections based on minimum temperature showed the greatest increase for all expansion and adaptation scenarios and were substantially higher than those for daily mean temperature. Projections based on maximum temperature were largely associated with declining mortality. Low-growth and adaptation scenarios led to the smallest increase in predicted heat-related mortality based on mean temperature projections. Use of only one exposure variable to project future heat-related deaths may therefore be misrepresentative in terms of direction of change and magnitude of effects. Because urbanization-induced impacts can vary across the diurnal cycle, projections of heat-related health outcomes that do not consider place-based, time-varying urban heat island effects are neglecting essential elements for policy relevant decision-making. Copyright © 2014 Elsevier B.V. All rights reserved.
Influence of snow cover changes on surface radiation and heat balance based on the WRF model
NASA Astrophysics Data System (ADS)
Yu, Lingxue; Liu, Tingxiang; Bu, Kun; Yang, Jiuchun; Chang, Liping; Zhang, Shuwen
2017-10-01
The snow cover extent in mid-high latitude areas of the Northern Hemisphere has significantly declined corresponding to the global warming, especially since the 1970s. Snow-climate feedbacks play a critical role in regulating the global radiation balance and influencing surface heat flux exchange. However, the degree to which snow cover changes affect the radiation budget and energy balance on a regional scale and the difference between snow-climate and land use/cover change (LUCC)-climate feedbacks have been rarely studied. In this paper, we selected Heilongjiang Basin, where the snow cover has changed obviously, as our study area and used the WRF model to simulate the influences of snow cover changes on the surface radiation budget and heat balance. In the scenario simulation, the localized surface parameter data improved the accuracy by 10 % compared with the control group. The spatial and temporal analysis of the surface variables showed that the net surface radiation, sensible heat flux, Bowen ratio, temperature and percentage of snow cover were negatively correlated and that the ground heat flux and latent heat flux were positively correlated with the percentage of snow cover. The spatial analysis also showed that a significant relationship existed between the surface variables and land cover types, which was not obviously as that for snow cover changes. Finally, six typical study areas were selected to quantitatively analyse the influence of land cover types beneath the snow cover on heat absorption and transfer, which showed that when the land was snow covered, the conversion of forest to farmland can dramatically influence the net radiation and other surface variables, whereas the snow-free land showed significantly reduced influence. Furthermore, compared with typical land cover changes, e.g., the conversion of forest into farmland, the influence of snow cover changes on net radiation and sensible heat flux were 60 % higher than that of land cover changes, indicating the importance of snow cover changes in the surface-atmospheric feedback system.
Thermal Vacuum Testing of a Novel Loop Heat Pipe Design for the Swift BAT Instrument
NASA Technical Reports Server (NTRS)
Ottenstein, Laura; Ku, Jentung; Feenan, David
2003-01-01
An advanced thermal control system for the Burst Alert Telescope on the Swift satellite has been designed and an engineering test unit (ETU) has been built and tested in a thermal vacuum chamber. The ETU assembly consists of a propylene loop heat pipe, two constant conductance heat pipes, a variable conductance heat pipe (VCHP), which is used for rough temperature control of the system, and a radiator. The entire assembly was tested in a thermal vacuum chamber at NASA/GSFC in early 2002. Tests were performed with thermal mass to represent the instrument and with electrical resistance heaters providing the heat to be transferred. Start-up and heat transfer of over 300 W was demonstrated with both steady and variable condenser sink temperatures. Radiator sink temperatures ranged from a high of approximately 273 K, to a low of approximately 83 K, and the system was held at a constant operating temperature of 278 K throughout most of the testing. A novel LHP temperature control methodology using both temperature-controlled electrical resistance heaters and a small VCHP was demonstrated. This paper describes the system and the tests performed and includes a discussion of the test results.
Gravity and Heater Size Effects on Pool Boiling Heat Transfer
NASA Technical Reports Server (NTRS)
Kim, Jungho; Raj, Rishi
2014-01-01
The current work is based on observations of boiling heat transfer over a continuous range of gravity levels between 0g to 1.8g and varying heater sizes with a fluorinert as the test liquid (FC-72/n-perfluorohexane). Variable gravity pool boiling heat transfer measurements over a wide range of gravity levels were made during parabolic flight campaigns as well as onboard the International Space Station. For large heaters and-or higher gravity conditions, buoyancy dominated boiling and heat transfer results were heater size independent. The power law coefficient for gravity in the heat transfer equation was found to be a function of wall temperature under these conditions. Under low gravity conditions and-or for smaller heaters, surface tension forces dominated and heat transfer results were heater size dependent. A pool boiling regime map differentiating buoyancy and surface tension dominated regimes was developed along with a unified framework that allowed for scaling of pool boiling over a wide range of gravity levels and heater sizes. The scaling laws developed in this study are expected to allow performance quantification of phase change based technologies under variable gravity environments eventually leading to their implementation in space based applications.
Assessing heat-related health risk in Europe via the Universal Thermal Climate Index (UTCI)
NASA Astrophysics Data System (ADS)
Di Napoli, Claudia; Pappenberger, Florian; Cloke, Hannah L.
2018-03-01
In this work, the potential of the Universal Thermal Climate Index (UTCI) as a heat-related health risk indicator in Europe is demonstrated. The UTCI is a bioclimate index that uses a multi-node human heat balance model to represent the heat stress induced by meteorological conditions to the human body. Using 38 years of meteorological reanalysis data, UTCI maps were computed to assess the thermal bioclimate of Europe for the summer season. Patterns of heat stress conditions and non-thermal stress regions are identified across Europe. An increase in heat stress up to 1 °C is observed during recent decades. Correlation with mortality data from 17 European countries revealed that the relationship between the UTCI and death counts depends on the bioclimate of the country, and death counts increase in conditions of moderate and strong stress, i.e., when UTCI is above 26 and 32 °C. The UTCI's ability to represent mortality patterns is demonstrated for the 2003 European heatwave. These findings confirm the importance of UTCI as a bioclimatic index that is able to both capture the thermal bioclimatic variability of Europe, and relate such variability with the effects it has on human health.
Assessing heat-related health risk in Europe via the Universal Thermal Climate Index (UTCI).
Di Napoli, Claudia; Pappenberger, Florian; Cloke, Hannah L
2018-03-15
In this work, the potential of the Universal Thermal Climate Index (UTCI) as a heat-related health risk indicator in Europe is demonstrated. The UTCI is a bioclimate index that uses a multi-node human heat balance model to represent the heat stress induced by meteorological conditions to the human body. Using 38 years of meteorological reanalysis data, UTCI maps were computed to assess the thermal bioclimate of Europe for the summer season. Patterns of heat stress conditions and non-thermal stress regions are identified across Europe. An increase in heat stress up to 1 °C is observed during recent decades. Correlation with mortality data from 17 European countries revealed that the relationship between the UTCI and death counts depends on the bioclimate of the country, and death counts increase in conditions of moderate and strong stress, i.e., when UTCI is above 26 and 32 °C. The UTCI's ability to represent mortality patterns is demonstrated for the 2003 European heatwave. These findings confirm the importance of UTCI as a bioclimatic index that is able to both capture the thermal bioclimatic variability of Europe, and relate such variability with the effects it has on human health.
Was there a basis for anticipating the 2010 Russian heat wave?
NASA Astrophysics Data System (ADS)
Dole, Randall; Hoerling, Martin; Perlwitz, Judith; Eischeid, Jon; Pegion, Philip; Zhang, Tao; Quan, Xiao-Wei; Xu, Taiyi; Murray, Donald
2011-03-01
The 2010 summer heat wave in western Russia was extraordinary, with the region experiencing the warmest July since at least 1880 and numerous locations setting all-time maximum temperature records. This study explores whether early warning could have been provided through knowledge of natural and human-caused climate forcings. Model simulations and observational data are used to determine the impact of observed sea surface temperatures (SSTs), sea ice conditions and greenhouse gas concentrations. Analysis of forced model simulations indicates that neither human influences nor other slowly evolving ocean boundary conditions contributed substantially to the magnitude of this heat wave. They also provide evidence that such an intense event could be produced through natural variability alone. Analysis of observations indicate that this heat wave was mainly due to internal atmospheric dynamical processes that produced and maintained a strong and long-lived blocking event, and that similar atmospheric patterns have occurred with prior heat waves in this region. We conclude that the intense 2010 Russian heat wave was mainly due to natural internal atmospheric variability. Slowly varying boundary conditions that could have provided predictability and the potential for early warning did not appear to play an appreciable role in this event.
Trend Assessment of Spatio-Temporal Change of Tehran Heat Island Using Satellite Images
NASA Astrophysics Data System (ADS)
Saradjian, M. R.; Sherafati, Sh.
2015-12-01
Numerous investigations on Urban Heat Island (UHI) show that land cover change is the main factor of increasing Land Surface Temperature (LST) in urban areas, especially conversion of vegetation and bare soil to concrete, asphalt and other man-made structures. On the other hand, other human activities like those which cause to burning fossil fuels, that increase the amount of carbon dioxide, may raise temperature in global scale in comparison with small scales (urban areas). In this study, multiple satellite images with different spatial and temporal resolutions have been used to determine Land Surface Temperature (LST) variability in Tehran metropolitan area. High temporal resolution of AVHRR images have been used as the main data source when investigating temperature variability in the urban area. The analysis shows that UHI appears more significant at afternoon and night hours. But the urban class temperature is almost equal to its surrounding vegetation and bare soil classes at around noon. It also reveals that there is no specific difference in UHI intense during the days throughout the year. However, it can be concluded that in the process of city expansion in years, UHI has been grown both spatially and in magnitude. In order to locate land-cover types and relate them to LST, Thematic Mapper (TM) images have been exploited. The influence of elevation on the LST has also been studied, using digital elevation model derived from SRTM database.
Variably insulating portable heater/cooler
Potter, Thomas F.
1998-01-01
A compact vacuum insulation panel comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning "on" and "off" the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls.
Variably insulating portable heater/cooler
Potter, T.F.
1998-09-29
A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.
Apparatus and method for microwave processing of materials
Johnson, A.C.; Lauf, R.J.; Bible, D.W.; Markunas, R.J.
1996-05-28
Disclosed is a variable frequency microwave heating apparatus designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency heating apparatus is used in the method of the present invention to monitor the resonant processing frequency within the furnace cavity depending upon the material, including the state thereof, from which the workpiece is fabricated. The variable frequency microwave heating apparatus includes a microwave signal generator and a high-power microwave amplifier or a microwave voltage-controlled oscillator. A power supply is provided for operation of the high-power microwave oscillator or microwave amplifier. A directional coupler is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 10 figs.
Lucio, Aline C; Alves, Benner G; Alves, Kele A; Martins, Muller C; Braga, Lucas S; Miglio, Luisa; Alves, Bruna G; Silva, Thiago H; Jacomini, José O; Beletti, Marcelo E
2016-09-01
Improvements in the estimation of male fertility indicators require advances in laboratory tests for sperm assessment. The aims of the present work were (1) to apply a multivariate analysis to examine sperm set of alterations and interactions and (2) to evaluate the importance of sperm parameters on the outcome of standard IVF and embryonic development. Bulls (n = 3) were subjected to scrotal insulation, and ejaculates were collected before (preinsulation = Day 0) and through 56 days (Days 7, 14, 21, 28, 35, 42, 49, and 56) of the experimental period. Sperm head morphometry and chromatin variables were assessed by a computational image analysis, and IVF was performed. Scrotal heat stress induced alterations in all evaluated sperm head features, as well as cleavage and blastocyst rates. A principal component analysis revealed three main components (factors) that represented almost 89% of the cumulative variance. In addition, an association of factor scores with cleavage (factor 1) and blastocyst (factor 3) rates was observed. In conclusion, several sperm traits were simultaneously altered as a result of a thermal insult. These sperm traits likely play specific roles in IVF and embryonic development. Copyright © 2016 Elsevier Inc. All rights reserved.
Experimental Shock Decomposition of Siderite to Magnetite
NASA Technical Reports Server (NTRS)
Bell, M. S.; Golden, D. C.; Zolensky, M. E.
2005-01-01
The debate about fossil life on Mars includes the origin of magnetites of specific sizes and habits in the siderite-rich portions of the carbonate spheres in ALH 84001 [1,2]. Specifically [2] were able to demonstrate that inorganic synthesis of these compositionally zoned spheres from aqueous solutions of variable ion-concentrations is possible. They further demonstrated the formation of magnetite from siderite upon heating at 550 C under a Mars-like CO2-rich atmosphere according to 3FeCO3 = Fe3O4 + 2CO2 + CO [3] and they postulated that the carbonates in ALH 84001 were heated to these temperatures by some shock event. The average shock pressure for ALH 84001, substantially based on the refractive index of diaplectic feldspar glasses [3,4,5] is some 35-40 GPa and associated temperatures are some 300-400 C [4]. However, some of the feldspar is melted [5], requiring local deviations from this average as high as 45-50 GPa. Indeed, [5] observes the carbonates in ALH 84001 to be melted locally, requiring pressures in excess of 60 GPa and temperatures > 600 C. Combining these shock studies with the above inorganic synthesis of zoned carbonates it seems possible to produce the ALH 84001 magnetites by the shock-induced decomposition of siderite.
NASA Astrophysics Data System (ADS)
Hayat, T.; Ullah, Siraj; Khan, M. Ijaz; Alsaedi, A.; Zaigham Zia, Q. M.
2018-03-01
Here modeling and computations are presented to introduce the novel concept of Darcy-Forchheimer three-dimensional flow of water-based carbon nanotubes with nonlinear thermal radiation and heat generation/absorption. Bidirectional stretching surface induces the flow. Darcy's law is commonly replace by Forchheimer relation. Xue model is implemented for nonliquid transport mechanism. Nonlinear formulation based upon conservation laws of mass, momentum and energy is first modeled and then solved by optimal homotopy analysis technique. Optimal estimations of auxiliary variables are obtained. Importance of influential variables on the velocity and thermal fields is interpreted graphically. Moreover velocity and temperature gradients are discussed and analyzed. Physical interpretation of influential variables is examined.
Simulated dynamic response of a multi-stage compressor with variable molecular weight flow medium
NASA Technical Reports Server (NTRS)
Babcock, Dale A.
1995-01-01
A mathematical model of a multi-stage compressor with variable molecular weight flow medium is derived. The modeled system consists of a five stage, six cylinder, double acting, piston type compressor. Each stage is followed by a water cooled heat exchanger which serves to transfer the heat of compression from the gas. A high molecular weight gas (CFC-12) mixed with air in varying proportions is introduced to the suction of the compressor. Condensation of the heavy gas may occur in the upper stage heat exchangers. The state equations for the system are integrated using the Advanced Continuous Simulation Language (ACSL) for determining the system's dynamic and steady state characteristics under varying operating conditions.
NASA Astrophysics Data System (ADS)
Otsuka, Mioko; Homma, Ryoei; Hasegawa, Yasuhiro
2017-05-01
The phonon and carrier thermal conductivities of thermoelectric materials were calculated using the Wiedemann-Franz law, Boltzmann equation, and a method we propose in this study called the Debye specific heat method. We prepared polycrystalline n-type doped bismuth telluride (BiTe) and bismuth antimony (BiSb) bulk alloy samples and measured six parameters (Seebeck coefficient, resistivity, thermal conductivity, thermal diffusivity, magneto-resistivity, and Hall coefficient). The carrier density and mobility were estimated for calculating the carrier thermal conductivity by using the Boltzmann equation. In the Debye specific heat method, the phonon thermal diffusivity, and thermal conductivity were calculated from the temperature dependence of the effective specific heat by using not only the measured thermal conductivity and Debye model, but also the measured thermal diffusivity. The carrier thermal conductivity was also evaluated from the phonon thermal conductivity by using the specific heat. The ratio of carrier thermal conductivity to thermal conductivity was evaluated for the BiTe and BiSb samples, and the values obtained using the Debye specific heat method at 300 K were 52% for BiTe and <5.5% for BiSb. These values are either considerably larger or smaller than those obtained using other methods. The Dulong-Petit law was applied to validate the Debye specific heat method at 300 K, which is significantly greater than the Debye temperature of the BiTe and BiSb samples, and it was confirmed that the phonon specific heat at 300 K has been accurately reproduced using our proposed method.
Northern North Atlantic Sea Surface Height and Ocean Heat Content Variability
NASA Technical Reports Server (NTRS)
Hakkinen, Sirpa; Rhines, Peter; Worthen, Denise L.
2013-01-01
The evolution of nearly 20 years of altimetric sea surface height (SSH) is investigated to understand its association with decadal to multidecadal variability of the North Atlantic heat content. Altimetric SSH is dominated by an increase of about 14 cm in the Labrador and Irminger seas from 1993 to 2011, while the opposite has occurred over the Gulf Stream region over the same time period. During the altimeter period the observed 0-700 m ocean heat content (OHC) in the subpolar gyre mirrors the increased SSH by its dominantly positive trend. Over a longer period, 1955-2011, fluctuations in the subpolar OHC reflect Atlantic multidecadal variability (AMV) and can be attributed to advection driven by the wind stress ''gyre mode'' bringing more subtropical waters into the subpolar gyre. The extended subpolar warming evident in SSH and OHC during the altimeter period represents transition of the AMV from cold to warm phase. In addition to the dominant trend, the first empirical orthogonal function SSH time series shows an abrupt change 2009-2010 reaching a new minimum in 2010. The change coincides with the change in the meridional overturning circulation at 26.5N as observed by the RAPID (Rapid Climate Change) project, and with extreme behavior of the wind stress gyre mode and of atmospheric blocking. While the general relationship between northern warming and Atlantic meridional overturning circulation (AMOC) volume transport remains undetermined, the meridional heat and salt transport carried by AMOC's arteries are rich with decade-to-century timescale variability.
Kimbell, J S; Frank, D O; Laud, Purushottam; Garcia, G J M; Rhee, J S
2013-10-18
Surgeries to correct nasal airway obstruction (NAO) often have less than desirable outcomes, partly due to the absence of an objective tool to select the most appropriate surgical approach for each patient. Computational fluid dynamics (CFD) models can be used to investigate nasal airflow, but variables need to be identified that can detect surgical changes and correlate with patient symptoms. CFD models were constructed from pre- and post-surgery computed tomography scans for 10 NAO patients showing no evidence of nasal cycling. Steady-state inspiratory airflow, nasal resistance, wall shear stress, and heat flux were computed for the main nasal cavity from nostrils to posterior nasal septum both bilaterally and unilaterally. Paired t-tests indicated that all CFD variables were significantly changed by surgery when calculated on the most obstructed side, and that airflow, nasal resistance, and heat flux were significantly changed bilaterally as well. Moderate linear correlations with patient-reported symptoms were found for airflow, heat flux, unilateral allocation of airflow, and unilateral nasal resistance as a fraction of bilateral nasal resistance when calculated on the most obstructed nasal side, suggesting that these variables may be useful for evaluating the efficacy of nasal surgery objectively. Similarity in the strengths of these correlations suggests that patient-reported symptoms may represent a constellation of effects and that these variables should be tracked concurrently during future virtual surgery planning. © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Han, W.; Li, Y.; Shinoda, T.; Wang, C.; Ravichandran, M.; Wang, J. W.
2014-12-01
Intraseasonal sea surface temperature (SST) variability over the Seychelles-Chagos thermocline ridge (SCTR) induced by boreal wintertime Madden-Julian oscillations (MJOs) is investigated by performing a series of OGCM experiments with improved model configuration and the recently available high quality satellite forcing fields. The impact of the ocean interannual variation of the thermocline depth -represented by the depth of 20C isotherm (D20) - in the SCTR is also assessed. The OGCM main run solution agrees well with the observations. The results show that for the 2001-2011 period, surface shortwave radiation (SWR), turbulent heat fluxes associated with wind speed, and wind stress-driven ocean dynamical processes are all important in causing the MJO-related intraseasonal SST variability in the SCTR region. Overall, forcing by SWR contributes ~31%, and forcing by winds (via both surface turbulent heat flux and ocean dynamics) contributes ~62%. The contribution of turbulent heat flux associated with wind speed is ~39% and that of wind-stress driven ocean dynamics is ~23%. The contribution of ocean dynamics, however, is considerably larger during strong ("prime") MJO events under "strong" thermocline condition. The overall effect of interannual variability of D20 on intraseasonal SST during 2001-2011 is significant in the eastern part of the SCTR (70E-85E), where the intraseasonal SST amplitudes are strengthened by about 20%. In general, a shallower/deeper SCTR favors larger/smaller SST responses to the MJO forcing. In the eastern SCTR, both the heat flux forcing and entrainment are greatly amplified under the strong SCTR condition, but only slightly suppressed under the weak SCTR condition, leading to an overall strengthening effect on intraseasonal SST variability.
NASA Astrophysics Data System (ADS)
Nishigori, Shijo; Seida, Osamu
2018-05-01
We have developed a new technique for measuring thermal conductivity and specific heat under pressure by improving a thermal relaxation method. In this technique, a cylindrical sample with a small disc heater is embedded in the pressure-transmitting medium, then temperature variations of the sample and heater were directly measured by thermocouples during a heating and cooling process. Thermal conductivity and specific heat are estimated by comparing the experimental data with temperature variations simulated by a finite element method. The obtained thermal conductivity and specific heat of the test sample CeRh2Si2 exhibit a small enhancement and a clear peak arising from antiferromagnetic transition, respectively. The observation of these typical behaviors for magnetic compounds indicate that the technique is valid for the study on thermal properties under pressure.
Code of Federal Regulations, 2010 CFR
2010-01-01
... specified temperature for a specific time period to kill targeted pests. Vapor heat. Heated air saturated with water vapor and used to raise the temperature of a commodity to a required point for a specific... products. Hot water immersion dip. Complete immersion of a commodity in heated water to raise the...
NASA Technical Reports Server (NTRS)
Mccarty, R. D.
1980-01-01
The thermodynamic and transport properties of selected cryogens had programmed into a series of computer routines. Input variables are any two of P, rho or T in the single phase regions and either P or T for the saturated liquid or vapor state. The output is pressure, density, temperature, entropy, enthalpy for all of the fluids and in most cases specific heat capacity and speed of sound. Viscosity and thermal conductivity are also given for most of the fluids. The programs are designed for access by remote terminal; however, they have been written in a modular form to allow the user to select either specific fluids or specific properties for particular needs. The program includes properties for hydrogen, helium, neon, nitrogen, oxygen, argon, and methane. The programs include properties for gaseous and liquid states usually from the triple point to some upper limit of pressure and temperature which varies from fluid to fluid.
NASA Technical Reports Server (NTRS)
Johnston, Richard P.
1992-01-01
Satellite surveillance in such areas as the Antarctic indicates that from time to time concentration of ozone grows and shrinks. An effort to obtain useful atmospheric data for determining the causes of ozone depletion would require a flight capable of reaching altitudes of at least 100,000 ft and flying subsonically during the sampling portion of the mission. A study of a heat rejection system for an advanced variable cycle diesel (AVCD) engine was conducted. The engine was installed in an extreme altitude, high altitude advanced research platform. Results indicate that the waste heat from an AVCD engine propulsion system can be rejected at the maximum cruise altitude of 120,000 ft. Fifteen performance points, reflecting the behavior of the engine as the vehicle proceeded through the mission, were used to characterize the heat exchanger operation. That portion of the study is described in a appendix titled, 'A Detailed Study of the Heat Rejection System for an Extreme Altitude Atmospheric Sampling Aircraft,' by a consultant, Mr. James Bourne, Lytron, Incorporated.
Reduced Urban Heat Island intensity under warmer conditions
NASA Astrophysics Data System (ADS)
Scott, Anna A.; Waugh, Darryn W.; Zaitchik, Ben F.
2018-06-01
The Urban Heat Island (UHI), the tendency for urban areas to be hotter than rural regions, represents a significant health concern in summer as urban populations are exposed to elevated temperatures. A number of studies suggest that the UHI increases during warmer conditions, however there has been no investigation of this for a large ensemble of cities. Here we compare urban and rural temperatures in 54 US cities for 2000–2015 and show that the intensity of the Urban Heat Island, measured here as the differences in daily-minimum or daily-maximum temperatures between urban and rural stations or ΔT, in fact tends to decrease with increasing temperature in most cities (38/54). This holds when investigating daily variability, heat extremes, and variability across climate zones and is primarily driven by changes in rural areas. We relate this change to large-scale or synoptic weather conditions, and find that the lowest ΔT nights occur during moist weather conditions. We also find that warming cities have not experienced an increasing Urban Heat Island effect.
Variable orifice using an iris shutter
Beeman, Raymond; Brajkovich, Steven J.
1978-01-01
A variable orifice forming mechanism utilizing an iris shutter arrangement adapted to control gas flow, conductance in vacuum systems, as a heat shield for furnace windows, as a beam shutter in sputtering operations, and in any other application requiring periodic or continuously-variable control of material, gas, or fluid flow.
Experimental investigation of refractory metals in the premelting region during fast heating
NASA Astrophysics Data System (ADS)
Senchenko, V. N.; Belikov, R. S.; Popov, V. S.
2015-11-01
This work demonstrates experimental possibility of investigation of high refractory materials around its melting point, particularly in premelting region with high accuracy. In this article authors describe the developed experimental setup based on rapid resistive self-heating of a sample by a large current pulse generated by a capacitor discharge circuit that allow fast pulse interruption by temperature feedback signal. The sample temperature was measured with a two-channel microsecond radiation pyrometer. Preliminary experiments were conducted on tantalum and molybdenum at heating speed of 108 K/s. The method allows investigating thermophysical properties of refractory conductive materials such as melting temperature, melting heat, specific resistivity, specific enthalpy and specific heat capacity in solid and liquid phase, especially in premelting area.
Malone-brayton cycle engine/heat pump
NASA Astrophysics Data System (ADS)
Gilmour, Thomas A.
1994-07-01
A machine, such as a heat pump, and having an all liquid heat exchange fluid, operates over a more nearly ideal thermodynamic cycle by adjustment of the proportionality of the volumetric capacities of a compressor and an expander to approximate the proportionality of the densities of the liquid heat exchange fluid at the chosen working pressures. Preferred forms of a unit including both the compressor and the expander on a common shaft employs difference in axial lengths of rotary pumps of the gear or vane type to achieve the adjustment of volumetric capacity. Adjustment of the heat pump system for differing heat sink conditions preferably employs variable compression ratio pumps.
Sakatsuji, Waki; Konishi, Takashi; Miyamoto, Yoshihisa
2016-12-01
The origin of two maxima in specific heat observed at the higher and the lower temperatures in the glass-transition region in the heating process has been studied for polymethyl methacrylate and polyvinyl chloride using differential scanning calorimetry, and the calculation was done using the phenomenological model equation under a thermal history of the typical annealing experiment composed of cooling, annealing, and heating. The higher maximum is observed above the glass-transition temperature, and it remains almost unchanged independent of annealing time t_{a}, while the lower one is observed above an annealing temperature T_{a} and shifts toward the higher one, increasing its magnitude with t_{a}. The analysis by the phenomenological model equation proposed in order to interpret the memory effect in the glassy state clarifies that under a typical annealing history, two maxima in specific heat essentially appear. The shift of the lower maximum toward higher temperatures from above T_{a} is caused by an increase in the amount of relaxation during annealing with t_{a}. The annealing temperature and the amount of relaxation during annealing play a major role in the determination of the number of maxima in the specific heat.
Theoretical analysis for the specific heat and thermal parameters of solid C60
NASA Astrophysics Data System (ADS)
Soto, J. R.; Calles, A.; Castro, J. J.
1997-08-01
We present the results of a theoretical analysis for the thermal parameters and phonon contribution to the specific heat in solid C60. The phonon contribution to the specific heat is calculated through the solution of the corresponding dynamical matrix, for different points in the Brillouin zone, and the construccion of the partial and generalized phonon density of states. The force constants are obtained from a first principle calculation, using a SCF Hartree-Fock wave function from the Gaussian 92 program. The thermal parameters reported are the effective temperatures and vibrational amplitudes as a function of temperature. Using this model we present a parametization scheme in order to reproduce the general behaviour of the experimental specific heat for these materials.
A 2.2 sq m /24 sq ft/ self-controlled deployable heat pipe radiator - Design and test
NASA Technical Reports Server (NTRS)
Edelstein, F.
1975-01-01
An all heat pipe, deployable radiator has been developed which can effectively control pumped fluid loop temperatures under varying loads using variable conductance panel heat pipes. The 2.2 sq m (24 sq ft) aluminum panel can be coupled to either a fluid header or a flexible heat pipe header capable of transporting 850 watts in a 90-deg bent configuration. Test results support the feasibility of using this system to passively control Freon-21 loop temperatures.
Optimization of a heat-pipe-cooled space radiator for use with a reactor-powered Stirling engine
NASA Technical Reports Server (NTRS)
Moriarty, Michael P.; French, Edward P.
1987-01-01
The design optimization of a reactor-Stirling heat-pipe-cooled radiator is presented. The radiator is a self-deploying concept that uses individual finned heat pipe 'petals' to reject waste heat from a Stirling engine. Radiator optimization methodology is presented, and the results of a parametric analysis of the radiator design variables for a 100-kW(e) system are given. The additional steps of optiminzing the radiator resulted in a net system mass savings of 3 percent.
Low frequency North Atlantic SST variability: Weather noise forcing and coupled response
NASA Astrophysics Data System (ADS)
Fan, Meizhu
A method to diagnose the causes of low frequency SST variability is developed, tested and applied in an ideal case and real climate. In the ideal case, a free simulation of the COLA CGCM is taken as synthetic observations. For real climate, we take NCEP reanalysis atmospheric data and Reynolds SST as observations. Both the synthetic and actual observation data show that weather noise is the main component of atmospheric variability at subtropics and high-latitude. Diagnoses of results from the ideal case suggest that most of the synthetic observed SST variability can be reproduced by the weather noise surface fluxes forcing. This includes the "observed" low frequency SST patterns in the North Atlantic and their corresponding time evolution. Among all the noise surface fluxes, heat flux plays a major role. The results from simulations using actual observations also suggest that the observed SST variability is mostly atmospheric weather noise forced. The regional atmospheric noise forcing, especially the heat flux noise forcing, is the major source of the low frequency SST variability in the North Atlantic. The observed SST tripole mode has about a 12 year period and it can be reasonably reproduced by the weather noise forcing in terms of its period, spatial pattern and variance. Based on our diagnosis, it is argued that the SST tripole is mainly forced by local atmospheric heat flux noise. The gyre circulation plays a secondary role: the anomalous gyre circulation advects mean thermal features across the inter-gyre boundary, and the mean gyre advection carries SST anomalies along the inter-gyre boundary. The diagnosis is compared with a delayed oscillator theory. We find that the delayed oscillator theory is not supported and that the SST tripole mode is forced by weather noise heat flux noise. However, the result may be model dependent.
Intradaily variability of water quality in a shallow tidal lagoon: Mechanisms and implications
Lucas, L.V.; Sereno, D.M.; Burau, J.R.; Schraga, T.S.; Lopez, C.B.; Stacey, M.T.; Parchevsky, K.V.; Parchevsky, V.P.
2006-01-01
Although surface water quality and its underlying processes vary over time scales ranging from seconds to decades, they have historically been studied at the lower (weekly to interannual) frequencies. The aim of this study was to investigate intradaily variability of three water quality parameters in a small freshwater tidal lagoon (Mildred Island, California). High frequency time series of specific conductivity, water temperature, and chlorophyll a at two locations within the habitat were analyzed in conjunction with supporting hydrodynamic, meteorological, biological, and spatial mapping data. All three constituents exhibited large amplitude intradaily (e.g., semidiurnal tidal and diurnal) oscillations, and periodicity varied across constituents, space, and time. Like other tidal embayments, this habitat is influenced by several processes with distinct periodicities including physical controls, such as tides, solar radiation, and wind, and biological controls, such as photosynthesis, growth, and grazing. A scaling approach was developed to estimate individual process contributions to the observed variability. Scaling results were generally consistent with observations and together with detailed examination of time series and time derivatives, revealed specific mechanisms underlying the observed periodicities, including interactions between the tidal variability, heating, wind, and biology. The implications for monitoring were illustrated through subsampling of the data set. This exercise demonstrated how quantities needed by scientists and managers (e.g., mean or extreme concentrations) may be misrepresented by low frequency data and how short-duration high frequency measurements can aid in the design and interpretation of temporally coarser sampling programs. The dispersive export of chlorophyll a from the habitat exhibited a fortnightly variability corresponding to the modulation of semidiurnal tidal currents with the diurnal cycle of phytoplankton variability, demonstrating how high frequency interactions can govern long-term trends. Process identification, as through the scaling analysis here, can help us anticipate changes in system behavior and adapt our own interactions with the system. ?? 2006 Estuarine Research Federation.
Effect of body mass and melanism on heat balance in Liolaemus lizards of the goetschi clade.
Moreno Azócar, Débora Lina; Bonino, Marcelo Fabián; Perotti, María Gabriela; Schulte, James A; Abdala, Cristian Simón; Cruz, Félix Benjamín
2016-04-15
The body temperature of ectotherms depends on the environmental temperatures and behavioral adjustments, but morphology may also have an effect. For example, in colder environments, animals tend to be larger and to show higher thermal inertia, as proposed by Bergmann's rule and the heat balance hypothesis (HBH). Additionally, dark coloration increases solar radiation absorption and should accelerate heat gain (thermal melanism hypothesis, TMH). We tested Bergmann's rule, the HBH and the TMH within the ITALIC! Liolaemus goetschilizard clade, which shows variability in body size and melanic coloration. We measured heating and cooling rates of live and euthanized animals, and tested how morphology and color affect these rates. Live organisms show less variable and faster heating rates compared with cooling rates, suggesting behavioral and/or physiological adjustments. Our results support Bergmann's rule and the HBH, as larger species show slower heating and cooling rates. However, we did not find a clear pattern to support the TMH. The influence of dorsal melanism on heating by radiation was masked by the body size effect in live animals, and results from euthanized individuals also showed no clear effects of melanism on heating rates. Comparison among three groups of live individuals with different degrees of melanism did not clarify the influence of melanism on heating rates. However, when euthanized animals from the same three groups were compared, we observed that darker euthanized animals actually heat faster than lighter ones, favoring the TMH. Although unresolved aspects remain, body size and coloration influenced heat exchange, suggesting complex thermoregulatory strategies in these lizards, probably regulated through physiology and behavior, which may allow these small lizards to inhabit harsh weather environments. © 2016. Published by The Company of Biologists Ltd.
Ma, Biao; Zhou, Xue-yan; Liu, Jiang; You, Zhanping; Wei, Kun; Huang, Xiao-feng
2016-01-01
Previous research has shown that composite shape-stabilized phase change material (CPCM) has a remarkable capacity for thermal storage and stabilization, and it can be directly applied to highway construction without leakage. However, recent studies on temperature changing behaviors of CPCM and asphalt mixture cannot intuitively reflect the thermoregulation mechanism and efficiency of CPCM on asphalt mixture. The objective of this paper is to determine the specific heat capacity of CPCM and asphalt mixtures mixed with CPCM using the heat exchange system and the data acquisition system. Studies have shown that the temperature-rise curve of 5 °C CPCM has an obvious temperature plateau, while an asphalt mixture mixed with 5 °C CPCM does not; with increasing temperature, the specific heat capacities of both 5 °C CPCM and asphalt mixture first increase and then decrease, while the variation rate of 5 °C CPCM is larger than that of the asphalt mixture, and the maximum specific heat capacity of 5 °C CPCM appears around the initial phase change temperature. It is concluded that the temperature intervals of 5 °C CPCM are −18 °C–7 °C, 7 °C–25 °C and 25 °C–44 °C, respectively, and that of the asphalt mixture are −18 °C~10 °C, −10 °C~5 °C and 5 °C~28 °C. A low dosage of 5 °C CPCM has little influence on the specific heat capacity of asphalt mixture. Finally, the functions of specific heat capacities and temperature for CPCM and asphalt mixture mixed with CPCM were recommended by the sectional regression method. PMID:28773510
Ma, Biao; Zhou, Xue-Yan; Liu, Jiang; You, Zhanping; Wei, Kun; Huang, Xiao-Feng
2016-05-19
Previous research has shown that composite shape-stabilized phase change material (CPCM) has a remarkable capacity for thermal storage and stabilization, and it can be directly applied to highway construction without leakage. However, recent studies on temperature changing behaviors of CPCM and asphalt mixture cannot intuitively reflect the thermoregulation mechanism and efficiency of CPCM on asphalt mixture. The objective of this paper is to determine the specific heat capacity of CPCM and asphalt mixtures mixed with CPCM using the heat exchange system and the data acquisition system. Studies have shown that the temperature-rise curve of 5 °C CPCM has an obvious temperature plateau, while an asphalt mixture mixed with 5 °C CPCM does not; with increasing temperature, the specific heat capacities of both 5 °C CPCM and asphalt mixture first increase and then decrease, while the variation rate of 5 °C CPCM is larger than that of the asphalt mixture, and the maximum specific heat capacity of 5 °C CPCM appears around the initial phase change temperature. It is concluded that the temperature intervals of 5 °C CPCM are -18 °C-7 °C, 7 °C-25 °C and 25 °C-44 °C, respectively, and that of the asphalt mixture are -18 °C~10 °C, -10 °C~5 °C and 5 °C~28 °C. A low dosage of 5 °C CPCM has little influence on the specific heat capacity of asphalt mixture. Finally, the functions of specific heat capacities and temperature for CPCM and asphalt mixture mixed with CPCM were recommended by the sectional regression method.
Mandla A. Tshabalala; James D. McSweeny; Roger M. Rowell
2012-01-01
Furan monomers are produced when wood is heated at high temperatures. To understand the process conditions for production of furfural (FF) and hydroxymethylfurfural (HMF) from wood, samples of milled aspen wood were subjected to autohydrolyzis by microwave heating in a sealed Teflon reactor. The experiments were designed to simulate temperature and pressure variables...
Effects Of Heat Sinks On VPPA Welds
NASA Technical Reports Server (NTRS)
Nunes, Arthur C.; Steranka, Paul O., Jr.
1991-01-01
Report describes theoretical and experimental study of absorption of heat by metal blocks in contact with metal plate while plate subjected to variable-polarity plasma-arc (VPPA) welding. Purpose of study to contribute to development of comprehensive mathematical model of temperature in weld region. Also relevant to welding of thin sheets of metal to thick blocks of metal, heat treatment of metals, and hotspots in engines.
Davis, Robert E; Hondula, David M; Patel, Anjali P
2016-06-01
Extreme heat is a leading weather-related cause of mortality in the United States, but little guidance is available regarding how temperature variable selection impacts heat-mortality relationships. We examined how the strength of the relationship between daily heat-related mortality and temperature varies as a function of temperature observation time, lag, and calculation method. Long time series of daily mortality counts and hourly temperature for seven U.S. cities with different climates were examined using a generalized additive model. The temperature effect was modeled separately for each hour of the day (with up to 3-day lags) along with different methods of calculating daily maximum, minimum, and mean temperature. We estimated the temperature effect on mortality for each variable by comparing the 99th versus 85th temperature percentiles, as determined from the annual time series. In three northern cities (Boston, MA; Philadelphia, PA; and Seattle, WA) that appeared to have the greatest sensitivity to heat, hourly estimates were consistent with a diurnal pattern in the heat-mortality response, with strongest associations for afternoon or maximum temperature at lag 0 (day of death) or afternoon and evening of lag 1 (day before death). In warmer, southern cities, stronger associations were found with morning temperatures, but overall the relationships were weaker. The strongest temperature-mortality relationships were associated with maximum temperature, although mean temperature results were comparable. There were systematic and substantial differences in the association between temperature and mortality based on the time and type of temperature observation. Because the strongest hourly temperature-mortality relationships were not always found at times typically associated with daily maximum temperatures, temperature variables should be selected independently for each study location. In general, heat-mortality was more closely coupled to afternoon and maximum temperatures in most cities we examined, particularly those typically prone to heat-related mortality. Davis RE, Hondula DM, Patel AP. 2016. Temperature observation time and type influence estimates of heat-related mortality in seven U.S. cities. Environ Health Perspect 124:795-804; http://dx.doi.org/10.1289/ehp.1509946.
Circulatory response to hyperthermia during acute normovolaemic haemodilution
NASA Astrophysics Data System (ADS)
Talwar, Anita; Fahim, M.
Cats anaesthetized with a mixture of chloralose and urethane were exposed to heat stress in two groups. In the first group (n=10) of control animals, the effect of heat stress on haemodynamic variables was recorded at control haematocrit (HCT) of 42.0+/-1.0%. In a second group, the effect of heat stress was studied after induction of acute normovolaemic haemodilution (HCT of 13.0+/-1.0%). Haemodilution was induced to a maximum of 60% replacement of blood with dextran (mol.wt. 150000). Heat stress was induced by surface heating and core body temperature was raised from 37° C to 42° C. The effect of heat stress and haemodilution on various haemodynamic variables, viz. left ventricular pressure (LVP), left ventricular contractility (LVdP/dtmax), heart rate (HR), cardiac output (CO), arterial blood pressure (ABP), right atrial pressure (RAP), and arterial blood PO2, PCO2 and pH was examined. Haemodilution produced significant (P<0.05) increases in HR and CO but there were no significant (P>0.05) changes in ABP, RAP, LVdP/dtmax and total peripherial resistance (TPR). Hyperthermia caused a significant fall (P<0.05) in TPR. However, the percentage fall in TPR was higher in the control group. On exposure to heat stress, there were significant (P<0.05I increases in HR and CO in both the groups; however, HR and CO values were significantly (P<0.05) higher in the haemodiluted group compared to the control. The latter findings could be due either to the higher basal values of these variables with the fall in HCT or to inefficient cardiovascular regulatory mechanisms. The lack of efficient regulatory control under such severe stress conditions makes the cardiovascular system of anaemic animals more vulnerable to heat stress. In conclusion, the results of the present study showed deleterious effects of heat stress in both the groups. The higher values of HR and CO in the haemodiluted group may be responsible for circulatory failure at low HCT values, indicating a higher risk in the haemodiluted group as compared to the control group.
Systematic variations of argon diffusion in feldspars and implications for thermochronometry
Cassata, William S.; Renne, Paul R.
2013-03-07
Coupled information about the time-dependent production and temperature-dependent diffusion of radiogenic argon in feldspars can be used to constrain the thermal evolution attending a host of Earth and planetary processes. To better assess the accuracy of thermal models, an understanding of the mechanisms and pathways by which argon diffuses in feldspars is desirable. Here we present step-heating Ar diffusion experiments conducted on feldspars with diverse compositions, structural states, and microstructural characteristics. The experiments reveal systematic variations in diffusive behavior that appear closely related to these variables, with apparent closure temperatures for 0.1–1 mm grains of ~200–400 °C (assuming a 10more » °C/Ma cooling rate). Given such variability, there is no broadly applicable set of diffusion parameters that can be utilized in feldspar thermal modeling; sample-specific data are required. Diffusion experiments conducted on oriented cleavage flakes do not reveal directionally-dependent diffusive anisotropy to within the resolution limits of our approach (approximately a factor of 2). Additional experiments aimed at constraining the physical significance of the diffusion domain are presented and indicate that unaltered feldspar crystals with or without coherent exsolution lamellae diffuse at the grain-scale, whereas feldspars containing hydrothermal alteration and/or incoherent sub-grain intergrowths do not. Arrhenius plots for argon diffusion in plagioclase and alkali feldspars appear to reflect a confluence of intrinsic diffusion kinetics and structural transitions that occur during incremental heating experiments. These structural transitions, along with sub-grain domain size variations, cause deviations from linearity (i.e., upward and downward curvature) on Arrhenius plots. An atomistic model for Arrhenius behavior is proposed that incorporates the variable lattice deformations of different feldspars in response to heating and compression. Furthermore, the resulting implications for accurately extrapolating laboratory-derived diffusion parameters to natural settings and over geologic time are discussed. We find that considerable inaccuracies may exist in published thermal histories obtained using multiple diffusion domain (MDD) models fit to Arrhenius plots for exsolved alkali feldspar, where the inferred Ar partial retention zones may be spuriously hot.« less
Zonal wind indices to reconstruct United States winter precipitation during El Niño
NASA Astrophysics Data System (ADS)
Farnham, D. J.; Steinschneider, S.; Lall, U.
2017-12-01
The highly discussed 2015/16 El Niño event, which many likened to the similarly strong 1997/98 El Niño event, led to precipitation impacts over the continental United States (CONUS) inconsistent with general expectations given past events and model-based forecasts. This presents a challenge for regional water managers and others who use seasonal precipitation forecasts who previously viewed El Niño events as times of enhanced confidence in seasonal water availability and flood risk forecasts. It is therefore useful to understand the extent to which wintertime CONUS precipitation during El Niño events can be explained by seasonal sea surface temperature heating patterns and the extent to which the precipitation is a product of natural variability. In this work, we define two seasonal indices based on the zonal wind field spanning from the eastern Pacific to the western Atlantic over CONUS that can explain El Niño precipitation variation spatially throughout CONUS over 11 historic El Niño events from 1950 to 2016. The indices reconstruct El Niño event wintertime (Jan-Mar) gridded precipitation over CONUS through cross-validated regression much better than the traditional ENSO sea surface temperature indices or other known modes of variability. Lastly, we show strong relationships between sea surface temperature patterns and the phases of the zonal wind indices, which in turn suggests that some of the disparate CONUS precipitation during El Niño events can be explained by different heating patterns. The primary contribution of this work is the identification of intermediate variables (in the form of zonal wind indices) that can facilitate further studies into the distinct hydroclimatic response to specific El Niño events.
Increasing influence of heat stress on French maize yields from the 1960s to the 2030s
Hawkins, Ed; Fricker, Thomas E; Challinor, Andrew J; Ferro, Christopher A T; Kit Ho, Chun; Osborne, Tom M
2013-01-01
Improved crop yield forecasts could enable more effective adaptation to climate variability and change. Here, we explore how to combine historical observations of crop yields and weather with climate model simulations to produce crop yield projections for decision relevant timescales. Firstly, the effects on historical crop yields of improved technology, precipitation and daily maximum temperatures are modelled empirically, accounting for a nonlinear technology trend and interactions between temperature and precipitation, and applied specifically for a case study of maize in France. The relative importance of precipitation variability for maize yields in France has decreased significantly since the 1960s, likely due to increased irrigation. In addition, heat stress is found to be as important for yield as precipitation since around 2000. A significant reduction in maize yield is found for each day with a maximum temperature above 32 °C, in broad agreement with previous estimates. The recent increase in such hot days has likely contributed to the observed yield stagnation. Furthermore, a general method for producing near-term crop yield projections, based on climate model simulations, is developed and utilized. We use projections of future daily maximum temperatures to assess the likely change in yields due to variations in climate. Importantly, we calibrate the climate model projections using observed data to ensure both reliable temperature mean and daily variability characteristics, and demonstrate that these methods work using retrospective predictions. We conclude that, to offset the projected increased daily maximum temperatures over France, improved technology will need to increase base level yields by 12% to be confident about maintaining current levels of yield for the period 2016–2035; the current rate of yield technology increase is not sufficient to meet this target. PMID:23504849
Scramjet Isolator Modeling and Control
2011-12-01
12 γ Ratio of specific heats . . . . . . . . . . . . . . . . . . . . 12 p1 Static pressure entering shock . . . . . . . . . . . . . . . . 12 M1 Mach...138 MAve Average stream Mach number . . . . . . . . . . . . . . . . 138 γ Ratio of specific heats ... heats , p1 is the static pressure entering the shock, and M1 is the Mach number of the flow entering the shock. Subsequent researchers [9] took a
Shehzad, Sabir Ali; Alsaedi, Ahmed; Hayat, Tasawar; Alhuthali, M. Shahab
2013-01-01
This paper looks at the series solutions of three dimensional boundary layer flow. An Oldroyd-B fluid with variable thermal conductivity is considered. The flow is induced due to stretching of a surface. Analysis has been carried out in the presence of heat generation/absorption. Homotopy analysis is implemented in developing the series solutions to the governing flow and energy equations. Graphs are presented and discussed for various parameters of interest. Comparison of present study with the existing limiting solution is shown and examined. PMID:24223780
Scheidegger, Stephan; Fuchs, Hans U; Zaugg, Kathrin; Bodis, Stephan; Füchslin, Rudolf M
2013-01-01
In order to overcome the limitations of the linear-quadratic model and include synergistic effects of heat and radiation, a novel radiobiological model is proposed. The model is based on a chain of cell populations which are characterized by the number of radiation induced damages (hits). Cells can shift downward along the chain by collecting hits and upward by a repair process. The repair process is governed by a repair probability which depends upon state variables used for a simplistic description of the impact of heat and radiation upon repair proteins. Based on the parameters used, populations up to 4-5 hits are relevant for the calculation of the survival. The model describes intuitively the mathematical behaviour of apoptotic and nonapoptotic cell death. Linear-quadratic-linear behaviour of the logarithmic cell survival, fractionation, and (with one exception) the dose rate dependencies are described correctly. The model covers the time gap dependence of the synergistic cell killing due to combined application of heat and radiation, but further validation of the proposed approach based on experimental data is needed. However, the model offers a work bench for testing different biological concepts of damage induction, repair, and statistical approaches for calculating the variables of state.
What do foraging wasps optimize in a variable environment, energy investment or body temperature?
Kovac, Helmut; Stabentheiner, Anton; Brodschneider, Robert
2015-11-01
Vespine wasps (Vespula sp.) are endowed with a pronounced ability of endothermic heat production. To show how they balance energetics and thermoregulation under variable environmental conditions, we measured the body temperature and respiration of sucrose foragers (1.5 M, unlimited flow) under variable ambient temperature (T a = 20-35 °C) and solar radiation (20-570 W m(-2)). Results revealed a graduated balancing of metabolic efforts with thermoregulatory needs. The thoracic temperature in the shade depended on ambient temperature, increasing from ~37 to 39 °C. However, wasps used solar heat gain to regulate their thorax temperature at a rather high level at low T a (mean T thorax ~ 39 °C). Only at high T a they used solar heat to reduce their metabolic rate remarkably. A high body temperature accelerated the suction speed and shortened foraging time. As the costs of foraging strongly depended on duration, the efficiency could be significantly increased with a high body temperature. Heat gain from solar radiation enabled the wasps to enhance foraging efficiency at high ambient temperature (T a = 30 °C) by up to 63 %. The well-balanced change of economic strategies in response to environmental conditions minimized costs of foraging and optimized energetic efficiency.
DEVELOPMENT OF COLD CLIMATE HEAT PUMP USING TWO-STAGE COMPRESSION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Bo; Rice, C Keith; Abdelaziz, Omar
2015-01-01
This paper uses a well-regarded, hardware based heat pump system model to investigate a two-stage economizing cycle for cold climate heat pump applications. The two-stage compression cycle has two variable-speed compressors. The high stage compressor was modelled using a compressor map, and the low stage compressor was experimentally studied using calorimeter testing. A single-stage heat pump system was modelled as the baseline. The system performance predictions are compared between the two-stage and single-stage systems. Special considerations for designing a cold climate heat pump are addressed at both the system and component levels.
Lee, Abigail H; Eme, John; Mueller, Casey A; Manzon, Richard G; Somers, Christopher M; Boreham, Douglas R; Wilson, Joanna Y
2016-04-01
Increasing incubation temperatures, caused by global climate change or thermal effluent from industrial processes, may influence embryonic development of fish. This study investigates the cumulative effects of increased incubation temperature and repeated heat shocks on developing Lake Whitefish (Coregonus clupeaformis) embryos. We studied the effects of three constant incubation temperatures (2°C, 5°C or 8°C water) and weekly, 1-h heat shocks (+3°C) on hatching time, survival and morphology of embryos, as these endpoints may be particularly susceptible to temperature changes. The constant temperatures represent the predicted magnitude of elevated water temperatures from climate change and industrial thermal plumes. Time to the pre-hatch stage decreased as constant incubation temperature increased (148d at 2°C, 92d at 5°C, 50d at 8°C), but weekly heat shocks did not affect time to hatch. Mean survival rates and embryo morphometrics were compared at specific developmental time-points (blastopore, eyed, fin flutter and pre-hatch) across all treatments. Constant incubation temperatures or +3°C heat-shock exposures did not significantly alter cumulative survival percentage (~50% cumulative survival to pre-hatch stage). Constant warm incubation temperatures did result in differences in morphology in pre-hatch stage embryos. 8°C and 5°C embryos were significantly smaller and had larger yolks than 2°C embryos, but heat-shocked embryos did not differ from their respective constant temperature treatment groups. Elevated incubation temperatures may adversely alter Lake Whitefish embryo size at hatch, but weekly 1-h heat shocks did not affect size or survival at hatch. These results suggest that intermittent bouts of warm water effluent (e.g., variable industrial emissions) are less likely to negatively affect Lake Whitefish embryonic development than warmer constant incubation temperatures that may occur due to climate change. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bonek, Mirosław; Śliwa, Agata; Mikuła, Jarosław
2016-12-01
Investigations >The language in this paper has been slightly changed. Please check for clarity of thought, and that the meaning is still correct, and amend if necessary.include Finite Element Method simulation model of remelting of PMHSS6-5-3 high-speed steel surface layer using the high power diode laser (HPDL). The Finite Element Method computations were performed using ANSYS software. The scope of FEM simulation was determination of temperature distribution during laser alloying process at various process configurations regarding the laser beam power and method of powder deposition, as pre-coated past or surface with machined grooves. The Finite Element Method simulation was performed on five different 3-dimensional models. The model assumed nonlinear change of thermal conductivity, specific heat and density that were depended on temperature. The heating process was realized as heat flux corresponding to laser beam power of 1.4, 1.7 and 2.1 kW. Latent heat effects are considered during solidification. The molten pool is composed of the same material as the substrate and there is no chemical reaction. The absorptivity of laser energy was dependent on the simulated materials properties and their surface condition. The Finite Element Method simulation allows specifying the heat affected zone and the temperature distribution in the sample as a function of time and thus allows the estimation of the structural changes taking place during laser remelting process. The simulation was applied to determine the shape of molten pool and the penetration depth of remelted surface. Simulated penetration depth and molten pool profile have a good match with the experimental results. The depth values obtained in simulation are very close to experimental data. Regarding the shape of molten pool, the little differences have been noted. The heat flux input considered in simulation is only part of the mechanism for heating; thus, the final shape of solidified molten pool will depend on more variables.
NASA Astrophysics Data System (ADS)
Facio, Jorge I.; Betancourth, D.; Cejas Bolecek, N. R.; Jorge, G. A.; Pedrazzini, Pablo; Correa, V. F.; Cornaglia, Pablo S.; Vildosola, V.; García, D. J.
2016-06-01
We analyze theoretically a common experimental process used to obtain the magnetic contribution to the specific heat of a given magnetic material. In the procedure, the specific heat of a non-magnetic analog is measured and used to subtract the non-magnetic contributions, which are generally dominated by the lattice degrees of freedom in a wide range of temperatures. We calculate the lattice contribution to the specific heat for the magnetic compounds GdMIn5 (M=Co, Rh) and for the non-magnetic YMIn5 and LaMIn5 (M=Co, Rh), using density functional theory based methods. We find that the best non-magnetic analog for the subtraction depends on the magnetic material and on the range of temperatures. While the phonon specific heat contribution of YRhIn5 is an excellent approximation to the one of GdCoIn5 in the full temperature range, for GdRhIn5 we find a better agreement with LaCoIn5, in both cases, as a result of an optimum compensation effect between masses and volumes. We present measurements of the specific heat of the compounds GdMIn5 (M=Co, Rh) up to room temperature where it surpasses the value expected from the Dulong-Petit law. We obtain a good agreement between theory and experiment when we include anharmonic effects in the calculations.