NASA Technical Reports Server (NTRS)
Herrera, J. I.; Reddoch, T. W.; Lawler, J. S.
1985-01-01
As efforts are accelerated to improve the overall capability and performance of wind electric systems, increased attention to variable speed configurations has developed. A number of potentially viable configurations have emerged. Various attributes of variable speed systems need to be carefully tested to evaluate their performance from the utility points of view. With this purpose, the NASA experimental variable speed constant frequency (VSCF) system has been tested. In order to determine the usefulness of these systems in utility applications, tests are required to resolve issues fundamental to electric utility systems. Legitimate questions exist regarding how variable speed generators will influence the performance of electric utility systems; therefore, tests from a utility perspective, have been performed on the VSCF system and an induction generator at an operating power level of 30 kW on a system rated at 200 kVA and 0.8 power factor.
A conceptual framework for evaluating variable speed generator options for wind energy applications
NASA Technical Reports Server (NTRS)
Reddoch, T. W.; Lipo, T. A.; Hinrichsen, E. N.; Hudson, T. L.; Thomas, R. J.
1995-01-01
Interest in variable speed generating technology has accelerated as greater emphasis on overall efficiency and superior dynamic and control properties in wind-electric generating systems are sought. This paper reviews variable speed technology options providing advantages and disadvantages of each. Furthermore, the dynamic properties of variable speed systems are contrasted with synchronous operation. Finally, control properties of variable speed systems are examined.
Role of pump hydro in electric power systems
NASA Astrophysics Data System (ADS)
Bessa, R.; Moreira, C.; Silva, B.; Filipe, J.; Fulgêncio, N.
2017-04-01
This paper provides an overview of the expected role that variable speed hydro power plants can have in future electric power systems characterized by a massive integration of highly variable sources. Therefore, it is discussed the development of a methodology for optimising the operation of hydropower plants under increasing contribution from new renewable energy sources, addressing the participation of a hydropower plant with variable speed pumping in reserve markets. Complementarily, it is also discussed the active role variable speed generators can have in the provision of advanced frequency regulation services.
Multiple and variable speed electrical generator systems for large wind turbines
NASA Technical Reports Server (NTRS)
Andersen, T. S.; Hughes, P. S.; Kirschbaum, H. S.; Mutone, G. A.
1982-01-01
A cost effective method to achieve increased wind turbine generator energy conversion and other operational benefits through variable speed operation is presented. Earlier studies of multiple and variable speed generators in wind turbines were extended for evaluation in the context of a specific large sized conceptual design. System design and simulation have defined the costs and performance benefits which can be expected from both two speed and variable speed configurations.
NREL`s variable speed test bed: Preliminary results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlin, P.W.; Fingersh, L.J.; Fuchs, E.F.
1996-10-01
Under an NREL subcontract, the Electrical and Computer Engineering Department of the University of Colorado (CU) designed a 20-kilowatt, 12-pole, permanent-magnet, electric generator and associated custom power electronics modules. This system can supply power over a generator speed range from 60 to 120 RPM. The generator was fabricated and assembled by the Denver electric-motor manufacturer, Unique Mobility, and the power electronics modules were designed and fabricated at the University. The generator was installed on a 56-foot tower in the modified nacelle of a Grumman Windstream 33 wind turbine in early October 1995. For checkout it was immediately loaded directly intomore » a three-phase resistive load in which it produced 3.5 kilowatts of power. Abstract only included. The ten-meter Grumman host wind machine is equipped with untwisted, untapered, NREL series S809 blades. The machine was instrumented to record both mechanical hub power and electrical power delivered to the utility. Initial tests are focusing on validating the calculated power surface. This mathematical surface shows the wind machine power as a function of both wind speed and turbine rotor speed. Upon the completion of this task, maximum effort will be directed toward filling a test matrix in which variable-speed operation will be contrasted with constant-speed mode by switching the variable speed control algorithm with the baseline constant speed control algorithm at 10 minutes time intervals. Other quantities in the test matrix will be analyzed to detect variable speed-effects on structural loads and power quality.« less
NASA Astrophysics Data System (ADS)
Cheng, Jilin; Zhang, Lihua; Zhang, Rentian; Gong, Yi; Zhu, Honggeng; Deng, Dongsheng; Feng, Xuesong; Qiu, Jinxian
2010-06-01
A dynamic planning model for optimizing operation of variable speed pumping system, aiming at minimum power consumption, was proposed to achieve economic operation. The No. 4 Jiangdu Pumping Station, a source pumping station in China's Eastern Route of South-to-North Water Diversion Project, is taken as a study case. Since the sump water level of Jiangdu Pumping Station is affected by the tide of Yangtze River, the daily-average heads of the pumping system varies yearly from 3.8m to 7.8m and the tide level difference in one day up to 1.2m. Comparisons of operation electricity cost between optimized variable speed and fixed speed operations of pumping system were made. When the full load operation mode is adopted, whether or not electricity prices in peak-valley periods are considered, the benefits of variable speed operation cannot compensate the energy consumption of the VFD. And when the pumping system operates in part load and the peak-valley electricity prices are considered, the pumping system should cease operation or lower its rotational speed in peak load hours since the electricity price are much higher, and to the contrary the pumping system should raise its rotational speed in valley load hours to pump more water. The computed results show that if the pumping system operates in 80% or 60% loads, the energy consumption cost of specified volume of water will save 14.01% and 26.69% averagely by means of optimal variable speed operation, and the investment on VFD will be paid back in 2 or 3 years. However, if the pumping system operates in 80% or 60% loads and the energy cost is calculated in non peak-valley electricity price, the repayment will be lengthened up to 18 years. In China's S-to-N Water Diversion Project, when the market operation and peak-valley electricity prices are taken into effect to supply water and regulate water levels in regulation reservoirs as Hongzehu Lake, Luomahu Lake, etc. the economic operation of water-diversion pumping stations will be vital, and the adoption of VFDs to achieve optimal operation may be a good choice.
NASA Astrophysics Data System (ADS)
Herrera, J. I.; Reddoch, T. W.
1988-02-01
Variable speed electric generating technology can enhance the general use of wind energy in electric utility applications. This enhancement results from two characteristic properties of variable speed wind turbine generators: an improvement in drive train damping characteristics, which results in reduced structural loading on the entire wind turbine system, and an improvement in the overall efficiency by using a more sophisticated electrical generator. Electronic converter systems are the focus of this investigation -- in particular, the properties of a wound-rotor induction generator with the slip recovery system and direct-current link converter. Experience with solid-state converter systems in large wind turbines is extremely limited. This report presents measurements of electrical performances of the slip recovery system and is limited to the terminal characteristics of the system. Variable speed generating systems working effectively in utility applications will require a satisfactory interface between the turbine/generator pair and the utility network. The electrical testing described herein focuses largely on the interface characteristics of the generating system. A MOD-O wind turbine was connected to a very strong system; thus, the voltage distortion was low and the total harmonic distortion in the utility voltage was less than 3 percent (within the 5 percent limit required by most utilities). The largest voltage component of a frequency below 60 Hz was 40 dB down from the 60-Hz less than component.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrera, J.I.; Reddoch, T.W.
1988-02-01
Variable speed electric generating technology can enhance the general use of wind energy in electric utility applications. This enhancement results from two characteristic properties of variable speed wind turbine generators: an improvement in drive train damping characteristics, which results in reduced structural loading on the entire wind turbine system, and an improvement in the overall efficiency by using a more sophisticated electrical generator. Electronic converter systems are the focus of this investigation -- in particular, the properties of a wound-rotor induction generator with the slip recovery system and direct-current link converter. Experience with solid-state converter systems in large wind turbinesmore » is extremely limited. This report presents measurements of electrical performances of the slip recovery system and is limited to the terminal characteristics of the system. Variable speed generating systems working effectively in utility applications will require a satisfactory interface between the turbine/generator pair and the utility network. The electrical testing described herein focuses largely on the interface characteristics of the generating system. A MOD-O wind turbine was connected to a very strong system; thus, the voltage distortion was low and the total harmonic distortion in the utility voltage was less than 3% (within the 5% limit required by most utilities). The largest voltage component of a frequency below 60 Hz was 40 dB down from the 60-Hz< component. 8 refs., 14 figs., 8 tabs.« less
VFDs: Are They Electrical Parasites?
ERIC Educational Resources Information Center
Frank, Ned
2013-01-01
Variable Frequency Drives (VFDs) are electronic speed controllers used mainly to modulate and reduce the overall speed and power consumption of an electrical motor. They can be used as soft starters for equipment that has a large rotational mass, thus reducing belt ware and large electrical peaks when starting large pieces of equipment. VFDs have…
30 CFR 18.65 - Flame test of hose.
Code of Federal Regulations, 2010 CFR
2010-07-01
... MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Inspections and Tests § 18.65 Flame... variable-speed electric fan and an ASME flow nozzle (16-81/2 inches reduction) to attain constant air velocities at any speed between 50-500 feet a minute. (4) An electric timer or stopwatch to measure the...
Wind Velocity and Position Sensor-less Operation for PMSG Wind Generator
NASA Astrophysics Data System (ADS)
Senjyu, Tomonobu; Tamaki, Satoshi; Urasaki, Naomitsu; Uezato, Katsumi; Funabashi, Toshihisa; Fujita, Hideki
Electric power generation using non-conventional sources is receiving considerable attention throughout the world. Wind energy is one of the available non-conventional energy sources. Electrical power generation using wind energy is possible in two ways, viz. constant speed operation and variable speed operation using power electronic converters. Variable speed power generation is attractive, because maximum electric power can be generated at all wind velocities. However, this system requires a rotor speed sensor, for vector control purpose, which increases the cost of the system. To alleviate the need of rotor speed sensor in vector control, we propose a new sensor-less control of PMSG (Permanent Magnet Synchronous Generator) based on the flux linkage. We can estimate the rotor position using the estimated flux linkage. We use a first-order lag compensator to obtain the flux linkage. Furthermore‚we estimate wind velocity and rotation speed using a observer. The effectiveness of the proposed method is demonstrated thorough simulation results.
Variable speed generator technology options for wind turbine generators
NASA Technical Reports Server (NTRS)
Lipo, T. A.
1995-01-01
The electrical system options for variable speed operation of a wind turbine generator are treated in this paper. The key operating characteristics of each system are discussed and the major advantages and disadvantages of each are identified
Variable-speed controller provides flexibility to electrical submersible pumps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butlin, D.
1986-06-09
The performance of an electric submersible pump (ESP) is dramatically modified by a variable speed controller (VSC). Variable frequency power directly controls pump speed and thus the hydraulic performance of the pump. Even though the ESP is the primary form of artificial lift for high volume, deep oil wells (particularly where gas is unavailable), the biggest disadvantage has been the pump's inflexibility when run at a constant speed, i.e., the unit is limited to a fixed head output at each rate. The VSC has rapidly gained acceptance as a valuable ESP accessory to alleviate this restriction. By allowing the pumpmore » speed to be varied, the rate and head, or both, can be adjusted with no modification of the downhole unit. There are now over 700 VSCs running with ESPs on every continent of the world. Pumping flexibility was the main purpose of applying the VSC to the ESP, but several other benefits have become apparent. Of particular interest are those that can extend downhole equipment life, e.g., soft start, automatically controlled speed, line-transient suppression, and elimination of surface chokes.« less
NASA Astrophysics Data System (ADS)
Sakai, Kazuto; Takahashi, Norio; Shimomura, Eiji; Arata, Masanobu; Nakazawa, Yousuke; Tajima, Toshinobu
Regarding environmental and energy issues, increasing importance has been placed on energy saving in various systems. To save energy, it would be desirable if the total efficiency of various types of equipment were increased.Recently, a hybrid electric vehicle (HEV) and an electric vehicle (EV) have been developed. The use of new technologies will eventually lead to the realization of the new- generation vehicle with high efficiency. One new technology is the variable-speed drive over a wide range of speeds. The motor driving systems of the EV or the HEV must operate in the variable-speed range of up to 1:5. This has created the need for a high-efficiency motor that is capable of operation over a wide speed range. In this paper, we describe the concept of a novel permanent magnet reluctance motor (PRM) and discuss its characteristics. We developed the PRM, which has the capability of operating over a wide speed range with high efficiency. The PRM has a rotor with a salient pole, which generates magnetic anisotropy. In addition, the permanent magnets embedded in the rotor core counter the q-axis flux by the armature reaction. Then, the power density and the power factor increase. The PRM produces reluctance torque and torque by permanent magnet (PM) flux. The reluctance torque is 1 to 2 times larger than the PM torque. When the PRM operates over a constant-power speed range, the field component of the current will be regulated to maintain a constant voltage. The output power of the developed PRM is 8 to 250kW. It is clarified that the PRM operates at a wide variable-speed range (1:5) with high efficiency (92-97%). It is concluded that the PRM has high performance over a wide constant-power speed range. In addition, the PRM is constructed using a small PM, so that we can solve the problem of cost. Thus, the PRM is a superior machine that is suited for variable-speed drive applications.
Wind turbine power tracking using an improved multimodel quadratic approach.
Khezami, Nadhira; Benhadj Braiek, Naceur; Guillaud, Xavier
2010-07-01
In this paper, an improved multimodel optimal quadratic control structure for variable speed, pitch regulated wind turbines (operating at high wind speeds) is proposed in order to integrate high levels of wind power to actively provide a primary reserve for frequency control. On the basis of the nonlinear model of the studied plant, and taking into account the wind speed fluctuations, and the electrical power variation, a multimodel linear description is derived for the wind turbine, and is used for the synthesis of an optimal control law involving a state feedback, an integral action and an output reference model. This new control structure allows a rapid transition of the wind turbine generated power between different desired set values. This electrical power tracking is ensured with a high-performance behavior for all other state variables: turbine and generator rotational speeds and mechanical shaft torque; and smooth and adequate evolution of the control variables. 2010 ISA. Published by Elsevier Ltd. All rights reserved.
Electric propulsion system for wheeled vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramos, J.A.
1981-11-03
An electric propulsion system for a wheeled vehicle has a generator and motor connected to a drive shaft and an electrical system for charging a battery during all conditions of power transfer from the wheels of the vehicle to the generator to minimize energy required for propulsion. A variable speed power coupling unit connecting the motor to the drive shaft has sprockets revolving about a belt connected sun sprocket with speed control effected by varying the rate of satellite sprocket rotation.
Liu, Yong; Gracia, Jose R,; King, Jr, Thomas J.; ...
2014-05-16
The U.S. Eastern Interconnection (EI) is one of the largest electric power grids in the world and is expected to have difficulties in dealing with frequency regulation and oscillation damping issues caused by the increasing wind power. On the other side, variable-speed wind generators can actively engage in frequency regulation or oscillation damping with supplementary control loops. This paper creates a 5% wind power penetration simulation scenario based on the 16 000-bus EI system dynamic model and developed the user-defined wind electrical control model in PSS (R) E that incorporates additional frequency regulation and oscillation damping control loops. We evaluatedmore » the potential contributions of variable-speed wind generations to the EI system frequency regulation and oscillation damping, and simulation results demonstrate that current and future penetrations of wind power are promising in the EI system frequency regulation and oscillation damping.« less
Idling speed control system of an internal combustion engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyazaki, M.; Ishii, M.; Kako, H.
1986-09-16
This patent describes an idling speed control system of an internal combustion engine comprising: a valve device which controls the amount of intake air for the engine; an actuator which includes an electric motor for variably controlling the opening of the value device; rotation speed detector means for detecting the rotation speed of the engine; idling condition detector means for detecting the idling condition of the engine; feedback control means responsive to the detected output of the idling condition detector means for generating feedback control pulses to intermittently drive the electric motor so that the detected rotation speed of themore » engine under the idling condition may converge into a target idling rotation speed; and control means responsive to the output of detector means that detects an abnormally low rotation speed of the engine detected by the rotation speed detector means for generating control pulses that do not overlap the feedback control pulses to drive the electric motor in a predetermined direction.« less
Principle and Basic Characteristics of Variable-Magnetic-Force Memory Motors
NASA Astrophysics Data System (ADS)
Sakai, Kazuto; Yuki, Kazuaki; Hashiba, Yutaka; Takahashi, Norio; Yasui, Kazuya; Kovudhikulrungsri, Lilit
A reduction in the power consumed by motors is required for energy saving in the case of electrical appliances and electric vehicles (EV). The motors used for operating these apparatus operate at variable speeds. Further, the motors operate with small load in stationary mode and with large load in start-up mode. A permanent magnet motor can operate at the rated power with a high efficiency. However, the efficiency is lower at small load or high speed because the large constant magnetic force results in substantial core loss. Furthermore, the flux-weakening current that depresses voltage at high speed leads to significant copper loss. Therefore, we have developed a new technique for controlling the magnetic force of permanent magnet on the basis of the load or speed of the motor. In this paper, we propose the novel motor that can vary magnetic flux and we clarify the principle.
Can variable frequency drives reduce irrigation costs for rice producers?
USDA-ARS?s Scientific Manuscript database
Variable Frequency Drives (VFD's) allow for variable speed operation of electrical motor drive irrigation pumps and are an emerging technology for agricultural irrigation, primarily for pressurized irrigation systems. They are considered an energy savings device, but less is known about their app...
Fractional order PID controller for improvement of PMSM speed control in aerospace applications
NASA Astrophysics Data System (ADS)
Saraji, Ali Motalebi; Ghanbari, Mahmood
2014-12-01
Because of the benefits reduced size, cost and maintenance, noise, CO2 emissions and increased control flexibility and precision, to meet these expectations, electrical equipment increasingly utilize in modern aircraft systems and aerospace industry rather than conventional mechanic, hydraulic, and pneumatic power systems. Electric motor drives are capable of converting electrical power to drive actuators, pumps, compressors, and other subsystems at variable speeds. In the past decades, permanent magnet synchronous motor (PMSM) and brushless dc (BLDC) motor were investigated for aerospace applications such as aircraft actuators. In this paper, the fractional-order PID controller is used in the design of speed loop of PMSM speed control system. Having more parameters for tuning fractional order PID controller lead to good performance ratio to integer order. This good performance is shown by comparison fractional order PID controller with the conventional PI and tuned PID controller by Genetic algorithm in MATLAB soft wear.
Variable-speed wind power system with improved energy capture via multilevel conversion
Erickson, Robert W.; Al-Naseem, Osama A.; Fingersh, Lee Jay
2005-05-31
A system and method for efficiently capturing electrical energy from a variable-speed generator are disclosed. The system includes a matrix converter using full-bridge, multilevel switch cells, in which semiconductor devices are clamped to a known constant DC voltage of a capacitor. The multilevel matrix converter is capable of generating multilevel voltage wave waveform of arbitrary magnitude and frequencies. The matrix converter can be controlled by using space vector modulation.
Dual motor drive vehicle speed synchronization and coordination control strategy
NASA Astrophysics Data System (ADS)
Huang, Hao; Tu, Qunzhang; Jiang, Chenming; Ma, Limin; Li, Pei; Zhang, Hongxing
2018-04-01
Multi-motor driven systems are more and more widely used in the field of electric engineering vehicles, as a result of the road conditions and the variable load of engineering vehicles, makes multi-motors synchronization coordinated control system as a key point of the development of the electric vehicle drive system. This paper based on electrical machinery transmission speed in the process of engineering vehicles headed for coordinated control problem, summarized control strategies at home and abroad in recent years, made analysis and comparison of the characteristics, finally discussed the trend of development of the multi-motor coordination control, provided a reference for synchronized control system research of electric drive engineering vehicles.
1995-07-19
New renovated NASA Ames Research Center 12 foot Pressure Wind Tunnel, seen here is the single stage, 20 blade axial-flow fan powered by a 15,000 horsepower variable speed, synchronous electric motor that provides airflow in the closed-return, variable-density tunnel.
1995-07-19
New renovated NASA Ames Research Center 12 foot Pressure Wind Tunnel, seen here is the single stage, 20 blade axial-flow fan powered by a 15,000 horsepower variable speed, synchronous electric motor that provides airflow in the closed-return, variable-density tunnel.
Variable speed drives for pumps used in intensive pond culture systems
USDA-ARS?s Scientific Manuscript database
Prior to about 2010, the only large pumps on most catfish farms were those associated with the water supply. Water from wells is usually pumped to the surface using single-speed, vertical, lineshaft turbine pumps powered by three phase, electric motors. Since 2010, several catfish farmers have bui...
Code of Federal Regulations, 2011 CFR
2011-01-01
... with NEMA Design A or B characteristics, or equivalent designs such as IEC Design N (IEC); and (8... design for use at variable speeds. However, NEMA Design A or B motors that are single speed, meet all... single-speed induction motor, built in a two-digit frame number series in accordance with NEMA Standards...
Code of Federal Regulations, 2012 CFR
2012-01-01
... with NEMA Design A or B characteristics, or equivalent designs such as IEC Design N (IEC); and (8... design for use at variable speeds. However, NEMA Design A or B motors that are single speed, meet all... single-speed induction motor, built in a two-digit frame number series in accordance with NEMA Standards...
NASA Astrophysics Data System (ADS)
Velayudhan, C.; Bundell, J. H.
This paper investigates a variable-speed, constant-frequency double output induction generator which is capable of absorbing the mechanical energy from a fixed pitch wind turbine and converting it into electrical energy at constant grid voltage and frequency. Rotor power at varying voltage and frequency is either fed to electronically controlled resistances and used as heat energy or is rectified, inverted by a controllable line-commutated inverter and returned to the grid. Optimal power tracking is by means of an adaptive controller which controls the developed torque of the generator by monitoring the shaft speed.
Ameid, Tarek; Menacer, Arezki; Talhaoui, Hicham; Azzoug, Youness
2018-05-03
This paper presents a methodology for the broken rotor bars fault detection is considered when the rotor speed varies continuously and the induction machine is controlled by Field-Oriented Control (FOC). The rotor fault detection is obtained by analyzing a several mechanical and electrical quantities (i.e., rotor speed, stator phase current and output signal of the speed regulator) by the Discrete Wavelet Transform (DWT) in variable speed drives. The severity of the fault is obtained by stored energy calculation for active power signal. Hence, it can be a useful solution as fault indicator. The FOC is implemented in order to preserve a good performance speed control; to compensate the broken rotor bars effect in the mechanical speed and to ensure the operation continuity and to investigate the fault effect in the variable speed. The effectiveness of the technique is evaluated in simulation and in a real-time implementation by using Matlab/Simulink with the real-time interface (RTI) based on dSpace 1104 board. Copyright © 2018. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Béguin, A.; Nicolet, C.; Hell, J.; Moreira, C.
2017-04-01
The paper explores the improvement in ancillary services that variable speed technologies can provide for the case of an existing pumped storage power plant of 2x210 MVA which conversion from fixed speed to variable speed is investigated with a focus on the power step performances of the units. First two motor-generator variable speed technologies are introduced, namely the Doubly Fed Induction Machine (DFIM) and the Full Scale Frequency Converter (FSFC). Then a detailed numerical simulation model of the investigated power plant used to simulate power steps response and comprising the waterways, the pump-turbine unit, the motor-generator, the grid connection and the control systems is presented. Hydroelectric system time domain simulations are performed in order to determine the shortest response time achievable, taking into account the constraints from the maximum penstock pressure and from the rotational speed limits. It is shown that the maximum instantaneous power step response up and down depends on the hydro-mechanical characteristics of the pump-turbine unit and of the motor-generator speed limits. As a results, for the investigated test case, the FSFC solution offer the best power step response performances.
An electricity consumption model for electric vehicular flow
NASA Astrophysics Data System (ADS)
Xiao, Hong; Huang, Hai-Jun; Tang, Tie-Qiao
2016-09-01
In this paper, we apply the relationships between the macro and micro variables of traffic flow to develop an electricity consumption model for electric vehicular flow. We use the proposed model to study the quantitative relationships between the electricity consumption/total power and speed/density under uniform flow, and the electricity consumptions during the evolution processes of shock, rarefaction wave and small perturbation. The numerical results indicate that the proposed model can perfectly describe the electricity consumption for electric vehicular flow, which shows that the proposed model is reasonable.
40 CFR 1042.505 - Testing engines using discrete-mode or ramped-modal duty cycles.
Code of Federal Regulations, 2013 CFR
2013-07-01
... used with) controllable-pitch propellers or with electrically coupled propellers, unless these engines... engines that are used with (or intended to be used with) controllable-pitch propellers or with electrically coupled propellers. Use this duty cycle also for variable-speed propulsion marine engines that are...
40 CFR 1042.505 - Testing engines using discrete-mode or ramped-modal duty cycles.
Code of Federal Regulations, 2011 CFR
2011-07-01
... used with) controllable-pitch propellers or with electrically coupled propellers, unless these engines... engines that are used with (or intended to be used with) controllable-pitch propellers or with electrically coupled propellers. Use this duty cycle also for variable-speed propulsion marine engines that are...
40 CFR 1042.505 - Testing engines using discrete-mode or ramped-modal duty cycles.
Code of Federal Regulations, 2012 CFR
2012-07-01
... used with) controllable-pitch propellers or with electrically coupled propellers, unless these engines... engines that are used with (or intended to be used with) controllable-pitch propellers or with electrically coupled propellers. Use this duty cycle also for variable-speed propulsion marine engines that are...
Considerations when using variable frequency drive technology for pond aquculture
USDA-ARS?s Scientific Manuscript database
Some farmers have decided to use variable frequency drives (VFDs) to control pump speed and water flow rate to reduce operational cost and costs associated with repairs and maintenance. Mixed performance issues with VFDs and electric motors have been reported. Examples include frequent drive failure...
Fractional order PID controller for improvement of PMSM speed control in aerospace applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saraji, Ali Motalebi; Ghanbari, Mahmood
Because of the benefits reduced size, cost and maintenance, noise, CO2 emissions and increased control flexibility and precision, to meet these expectations, electrical equipment increasingly utilize in modern aircraft systems and aerospace industry rather than conventional mechanic, hydraulic, and pneumatic power systems. Electric motor drives are capable of converting electrical power to drive actuators, pumps, compressors, and other subsystems at variable speeds. In the past decades, permanent magnet synchronous motor (PMSM) and brushless dc (BLDC) motor were investigated for aerospace applications such as aircraft actuators. In this paper, the fractional-order PID controller is used in the design of speed loopmore » of PMSM speed control system. Having more parameters for tuning fractional order PID controller lead to good performance ratio to integer order. This good performance is shown by comparison fractional order PID controller with the conventional PI and tuned PID controller by Genetic algorithm in MATLAB soft wear.« less
Control strategy for a variable-speed wind energy conversion system
NASA Technical Reports Server (NTRS)
Jacob, A.; Veillette, D.; Rajagopalan, V.
1979-01-01
A control concept for a variable-speed wind energy conversion system is proposed, for which a self-exited asynchronous cage generator is used along with a system of thyristor converters. The control loops are the following: (1) regulation of the entrainment speed as function of available mechanical energy by acting on the resistance couple of the asynchronous generator; (2) control of electric power delivered to the asynchronous machine, functioning as a motor, for start-up of the vertical axis wind converter; and (3) limitation of the slip value, and by consequence, of the induction currents in the presence of sudden variations of input parameters.
Current superimposition variable flux reluctance motor with 8 salient poles
NASA Astrophysics Data System (ADS)
Takahara, Kazuaki; Hirata, Katsuhiro; Niguchi, Noboru; Kohara, Akira
2017-12-01
We propose a current superimposition variable flux reluctance motor for a traction motor of electric vehicles and hybrid electric vehicles, which consists of 10 salient poles in the rotor and 12 slots in the stator. However, iron losses of this motor in high rotation speed ranges is large because the number of salient poles is large. In this paper, we propose a current superimposition variable flux reluctance motor that consists of 8 salient poles and 12 slots. The characteristics of the 10-pole-12-slot and 8-pole-12-slot current superimposition variable flux reluctance motors are compared using finite element analysis under vector control.
NASA Technical Reports Server (NTRS)
Dankanich, John W.; Walker, Mitchell; Swiatek, Michael W.; Yim, John T.
2013-01-01
The electric propulsion community has been implored to establish and implement a set of universally applicable test standards during the research, development, and qualification of electric propulsion systems. Variability between facility-to-facility and more importantly ground-to-flight performance can result in large margins in application or aversion to mission infusion. Performance measurements and life testing under appropriate conditions can be costly and lengthy. Measurement practices must be consistent, accurate, and repeatable. Additionally, the measurements must be universally transportable across facilities throughout the development, qualification, spacecraft integration, and on-orbit performance. A recommended practice for making pressure measurements, pressure diagnostics, and calculating effective pumping speeds with justification is presented.
Variable speed generator application on the MOD-5A 7.3 mW wind turbine generator
NASA Technical Reports Server (NTRS)
Barton, Robert S.
1995-01-01
This paper describes the application of a Scherbiustat type variable speed subsystem in the MOD-5A Wind Turbine Generator. As designed by General Electric Company, Advanced Energy Programs Department, under contract DEN3-153 with NASA Lewis Research Center and DOE, the MOD-5A utilizes the subsystem for both starting assistance in a motoring mode and generation in a controlled airgap torque mode. Reactive power control is also provided. The Scherbiustat type arrangement of a wound rotor machine with a cycloconverter in the rotor circuit was selected after an evaluation of variable speed technologies that followed a system evaluation of drivetrain cost and risk. The paper describes the evaluation factors considered, the results of the evaluations and summarizes operating strategy and performance simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence, R.G.; Finney, D.; Davidson, D.F.
1988-07-01
The construction, testing, and installation of a 6500 r/min 15 000-hp adjustable-speed electric drive for a centrifugal gas compressor is presented. A power electronic converter is applied to control the speed of a 5-kV motor. The motor is directly coupled to a 6500 r/min compressor and replaced a steam turbine. Dual converters are used in a twelve-pulse arrangement at both the utility and the motor. The motor is of solid rotor construction, with dual 30/sup 0/ displaced stator windings. Finite-element analysis is used to optimize the motor designs for use with a variable-frequency static converter. Full-power tests are completed whichmore » confirm theoretical predictions on losses, performance, and operation. The electrical drive takes up considerably less space and is much more efficient than the steam turbine it replaced.« less
A variable-mode stator consequent pole memory machine
NASA Astrophysics Data System (ADS)
Yang, Hui; Lyu, Shukang; Lin, Heyun; Zhu, Z. Q.
2018-05-01
In this paper, a variable-mode concept is proposed for the speed range extension of a stator-consequent-pole memory machine (SCPMM). An integrated permanent magnet (PM) and electrically excited control scheme is utilized to simplify the flux-weakening control instead of relatively complicated continuous PM magnetization control. Due to the nature of memory machine, the magnetization state of low coercive force (LCF) magnets can be easily changed by applying either a positive or negative current pulse. Therefore, the number of PM poles may be changed to satisfy the specific performance requirement under different speed ranges, i.e. the machine with all PM poles can offer high torque output while that with half PM poles provides wide constant power range. In addition, the SCPMM with non-magnetized PMs can be considered as a dual-three phase electrically excited reluctance machine, which can be fed by an open-winding based dual inverters that provide direct current (DC) bias excitation to further extend the speed range. The effectiveness of the proposed variable-mode operation for extending its operating region and improving the system reliability is verified by both finite element analysis (FEA) and experiments.
NASA Technical Reports Server (NTRS)
Ramakumar, R.; Bahrami, K.
1981-01-01
This paper discusses the application of field modulated generator systems (FMGS) to dispersed solar-thermal-electric generation from a parabolic dish field with electric transport. Each solar generation unit is rated at 15 kWe and the power generated by an array of such units is electrically collected for insertion into an existing utility grid. Such an approach appears to be most suitable when the heat engine rotational speeds are high (greater than 6000 r/min) and, in particular, if they are operated in the variable speed mode and if utility-grade a.c. is required for direct insertion into the grid without an intermediate electric energy storage and reconversion system. Predictions of overall efficiencies based on conservative efficiency figures for the FMGS are in the range of 25 per cent and should be encouraging to those involved in the development of cost-effective dispersed solar thermal power systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erdman, W.; Behnke, M.
2005-11-01
Kilowatt ratings of modern wind turbines have progressed rapidly from 50 kW to 1,800 kW over the past 25 years, with 3.0- to 7.5-MW turbines expected in the next 5 years. The premise of this study is simple: The rapid growth of wind turbine power ratings and the corresponding growth in turbine electrical generation systems and associated controls are quickly making low-voltage (LV) electrical design approaches cost-ineffective. This report provides design detail and compares the cost of energy (COE) between commercial LV-class wind power machines and emerging medium-voltage (MV)-class multi-megawatt wind technology. The key finding is that a 2.5% reductionmore » in the COE can be achieved by moving from LV to MV systems. This is a conservative estimate, with a 3% to 3.5% reduction believed to be attainable once purchase orders to support a 250-turbine/year production level are placed. This evaluation considers capital costs as well as installation, maintenance, and training requirements for wind turbine maintenance personnel. Subsystems investigated include the generator, pendant cables, variable-speed converter, and padmount transformer with switchgear. Both current-source and voltage-source converter/inverter MV topologies are compared against their low-voltage, voltage-source counterparts at the 3.0-, 5.0-, and 7.5-MW levels.« less
Four quadrant control of induction motors
NASA Technical Reports Server (NTRS)
Hansen, Irving G.
1991-01-01
Induction motors are the nation's workhorse, being the motor of choice in most applications due to their simple rugged construction. It has been estimated that 14 to 27 percent of the country's total electricity use could be saved with adjustable speed drives. Until now, induction motors have not been suited well for variable speed or servo-drives, due to the inherent complexity, size, and inefficiency of their variable speed controls. Work at NASA Lewis Research Center on field oriented control of induction motors using pulse population modulation method holds the promise for the desired drive electronics. The system allows for a variable voltage to frequency ratio which enables the user to operate the motor at maximum efficiency, while having independent control of both the speed and torque of an induction motor in all four quadrants of the speed torque map. Multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of machine. The pulse population technique, results to date, and projections for implementation of this existing new motor control technology are discussed.
St. Martin, Clara M.; Lundquist, Julie K.; Handschy, Mark A.
2015-04-02
The variability in wind-generated electricity complicates the integration of this electricity into the electrical grid. This challenge steepens as the percentage of renewably-generated electricity on the grid grows, but variability can be reduced by exploiting geographic diversity: correlations between wind farms decrease as the separation between wind farms increases. However, how far is far enough to reduce variability? Grid management requires balancing production on various timescales, and so consideration of correlations reflective of those timescales can guide the appropriate spatial scales of geographic diversity grid integration. To answer 'how far is far enough,' we investigate the universal behavior of geographic diversity by exploring wind-speed correlations using three extensive datasets spanning continents, durations and time resolution. First, one year of five-minute wind power generation data from 29 wind farms span 1270 km across Southeastern Australia (Australian Energy Market Operator). Second, 45 years of hourly 10 m wind-speeds from 117 stations span 5000 km across Canada (National Climate Data Archive of Environment Canada). Finally, four years of five-minute wind-speeds from 14 meteorological towers span 350 km of the Northwestern US (Bonneville Power Administration). After removing diurnal cycles and seasonal trends from all datasets, we investigate dependence of correlation length on time scale by digitally high-pass filtering the data on 0.25–2000 h timescales and calculating correlations between sites for each high-pass filter cut-off. Correlations fall to zero with increasing station separation distance, but the characteristic correlation length varies with the high-pass filter applied: the higher the cut-off frequency, the smaller the station separation required to achieve de-correlation. Remarkable similarities between these three datasets reveal behavior that, if universal, could be particularly useful for grid management. For high-pass filter time constants shorter than about τ = 38 h, all datasets exhibit a correlation lengthmore » $$\\xi $$ that falls at least as fast as $${{\\tau }^{-1}}$$ . Since the inter-site separation needed for statistical independence falls for shorter time scales, higher-rate fluctuations can be effectively smoothed by aggregating wind plants over areas smaller than otherwise estimated.« less
NASA Astrophysics Data System (ADS)
St. Martin, Clara M.; Lundquist, Julie K.; Handschy, Mark A.
2015-04-01
The variability in wind-generated electricity complicates the integration of this electricity into the electrical grid. This challenge steepens as the percentage of renewably-generated electricity on the grid grows, but variability can be reduced by exploiting geographic diversity: correlations between wind farms decrease as the separation between wind farms increases. But how far is far enough to reduce variability? Grid management requires balancing production on various timescales, and so consideration of correlations reflective of those timescales can guide the appropriate spatial scales of geographic diversity grid integration. To answer ‘how far is far enough,’ we investigate the universal behavior of geographic diversity by exploring wind-speed correlations using three extensive datasets spanning continents, durations and time resolution. First, one year of five-minute wind power generation data from 29 wind farms span 1270 km across Southeastern Australia (Australian Energy Market Operator). Second, 45 years of hourly 10 m wind-speeds from 117 stations span 5000 km across Canada (National Climate Data Archive of Environment Canada). Finally, four years of five-minute wind-speeds from 14 meteorological towers span 350 km of the Northwestern US (Bonneville Power Administration). After removing diurnal cycles and seasonal trends from all datasets, we investigate dependence of correlation length on time scale by digitally high-pass filtering the data on 0.25-2000 h timescales and calculating correlations between sites for each high-pass filter cut-off. Correlations fall to zero with increasing station separation distance, but the characteristic correlation length varies with the high-pass filter applied: the higher the cut-off frequency, the smaller the station separation required to achieve de-correlation. Remarkable similarities between these three datasets reveal behavior that, if universal, could be particularly useful for grid management. For high-pass filter time constants shorter than about τ = 38 h, all datasets exhibit a correlation length ξ that falls at least as fast as {{τ }-1} . Since the inter-site separation needed for statistical independence falls for shorter time scales, higher-rate fluctuations can be effectively smoothed by aggregating wind plants over areas smaller than otherwise estimated.
A calibration loop to test hot-wire response under supercritical conditions
NASA Astrophysics Data System (ADS)
Radulović, Ivana; Vukoslavčević, P. V.; Wallace, J. M.
2004-11-01
A calibration facility to test the response of hot-wires in CO2 flow under supercritical conditions has been designed and constructed. It is capable of inducing variable speeds at different temperatures and pressures in the ranges of 0.15 - 2 m/s, 15 - 70 deg. C and 1 - 100 bar. The facility is designed as a closed loop with a test section, pump, electrical heater, DC motor and different regulating and measuring devices. The test section is a small tunnel, with a diffuser, honeycomb, screens and a nozzle to provide a uniform flow with a low turbulence level. The speed variation is created by a sealed, magnetic driven gear pump, with a variable rpm DC motor. Using the electrical heater and regulating the amount of CO2 in the facility, the desired temperature and pressure can be reached. The dimensions of the instalation are minimized to reduce the heat, pump power required, and CO2 consumption and to optimize safety. Preliminary testing of a single hot-wire velocity sensor at constant pressure (80 bar) and variable speed and temperature will be briefly described. The hot-wire probes calibrated in this loop will be used to measure turbulence properties in supercritical CO2 in support of improved designs of nuclear reactors to be cooled by supercritical fluids.
NASA Astrophysics Data System (ADS)
Finley, Christopher
Power generation using wind turbines increases the electrical system balancing, regulation and ramp rate requirements due to the minute to minute variability in wind speed and the difficulty in accurately forecasting wind speeds. The addition of thermal energy storage, such as ice storage, to a building's space cooling equipment increases the operational flexibility of the equipment by allowing the owner to choose when the chiller is run. The ability of the building owner to increase the power demand from the chiller (e.g. make ice) or to decrease the power demand (e.g. melt ice) to provide electrical system ancillary services was evaluated.
Method and apparatus for electrospark deposition
Bailey, Jeffrey A.; Johnson, Roger N.; Park, Walter R.; Munley, John T.
2004-12-28
A method and apparatus for controlling electrospark deposition (ESD) comprises using electrical variable waveforms from the ESD process as a feedback parameter. The method comprises measuring a plurality of peak amplitudes from a series of electrical energy pulses delivered to an electrode tip. The maximum peak value from among the plurality of peak amplitudes correlates to the contact force between the electrode tip and a workpiece. The method further comprises comparing the maximum peak value to a set point to determine an offset and optimizing the contact force according to the value of the offset. The apparatus comprises an electrode tip connected to an electrical energy wave generator and an electrical signal sensor, which connects to a high-speed data acquisition card. An actuator provides relative motion between the electrode tip and a workpiece by receiving a feedback drive signal from a processor that is operably connected to the actuator and the high-speed data acquisition card.
NASA Astrophysics Data System (ADS)
Cross, B.; Kohfeld, K. E.; Cooper, A.; Bailey, H. J.; Rucker, M.
2013-12-01
The use of wind power is growing rapidly in the Pacific Northwest (PNW ) due to environmental concerns, decreasing costs of implementation, strong wind speeds, and a desire to diversify electricity sources to minimize the impacts of streamflow variability on electricity prices and system flexibility. In hydroelectric dominated systems, like the PNW, the benefits of wind power can be maximized by accounting for the relationship between long term variability in wind speeds and reservoir inflows. Clean energy policies in British Columbia make the benefits of increased wind power generation during low streamflow periods particularly large, by preventing the overbuilding of marginal hydroelectric projects. The goal of this work was to quantify long-term relationships between wind speed and streamflow behavior in British Columbia. Wind speed data from the North American Regional Reanalysis (NARR) and cumulative usable inflows (CUI) from BC Hydro were used to analyze 10m wind speed and density (WD) trends, WD-CUI correlations, and WD anomalies during low and high inflow periods in the PNW (40°N to 65°N, 110°W to 135°W) from 1979-2010. Statistically significant positive wind speed and density trends were found for most of the PNW, with the largest increases along the Pacific Coast. CUI-WD correlations were weakly positive for most regions, with the highest values along the US coast (r ~0.55), generally weaker correlations to the north, and negative correlations (r ~ -0.25) along BC's North Coast. When considering seasonal relationships, the Spring freshet was coincident with lower WD anomalies west of the Rocky Mountains and higher WDs to the east. A similar but opposite pattern was observed for low inflow winter months. When considering interannual variability, lowest inflow years experienced positive WD anomalies (up to 40% increases) for the North Coast. In highest inflow years, positive WD anomalies were widespread in the US and for smaller patches of central BC. By accounting for regional and temporal differences in the relationship between wind (WD) and streamflow (CUI) behaviour during wind farm site selection, the benefits of energy diversification can be maximized.
EVA Metro Sedan electric-propulsion system: test and evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reimers, E.
1979-09-01
The procedure and results of the performance evaluation of the EVA Metro Sedan (car No. 1) variable speed dc chopper motor drive and its three speed automatic transmission are presented. The propulsion system for a battery powered vehicle manufactured by Electric Vehicle Associates, Valley View, Ohio, was removed from the vehicle, mounted on the programmable electric dynamometer test facility and evaluated with the aid of a hp 3052A Data Acquisition System. Performance data for the automatic transmission, the solid state dc motor speed controller, and the dc motor in the continuous and pulsating dc power mode, as derived on themore » dynamometer test facility, as well as the entire propulsion system are given. This concept and the system's components were evaluated in terms of commercial applicability, maintainability, and energy utility to establish a design base for the further development of this system or similar propulsion drives. The propulsion system of the EVA Metro Sedan is powered by sixteen 6-volt traction batteries, Type EV 106 (Exide Battery Mfg. Co.). A thyristor controlled cable form Pulsomatic Mark 10 controller, actuated by a foot throttle, controls the voltage applied to a dc series field motor, rated at 10 hp at 3800 rpm (Baldor Electric Co.). Gear speed reduction to the wheel is accomplished by the original equipment three speed automatic transmission with torque converter (Renault 12 Sedan). The brake consists of a power-assisted, hydraulic braking system with front wheel disk and rear drum. An ability to recuperate electric energy with subsequent storage in the battery power supply is not provided.« less
Voltage directive drive with claw pole motor and control without rotor position indicator
NASA Astrophysics Data System (ADS)
Stroenisch, Volker Ewald
Design and testing of a voltage directive drive for synchronous variable speed claw pole motor and control without rotor position indicator is described. Economic analysis of the designed regulation is performed. Computations of stationary and dynamic behavior are given and experimental operational behavior is determined. The motors can be used for electric transportation vehicles, diesel motors, and electric railway engines.
Principle and Basic Characteristics of a Hybrid Variable-Magnetic-Force Motor
NASA Astrophysics Data System (ADS)
Sakai, Kazuto; Kuramochi, Satoru
Reduction in the power consumed by motors is important for energy saving in the case of electrical appliances and electric vehicles (EVs). The motors used for operating these devices operate at variable speeds. Further, the motors operate with a small load in the stationary mode and a large load in the starting mode. A permanent magnet motor can be operated at the rated power with a high efficiency. However, the efficiency is low at a small load or at a high speed because the large constant magnetic force results in substantial core loss. Furthermore, the flux-weakening current that decreases the voltage at a high speed leads to significant copper loss and core loss. Therefore, we have developed a new technique for controlling the magnetic force of a permanent magnet on the basis of the load or speed of the motor. In this paper, we propose a novel motor that can vary the magnetic flux of a permanent magnet and clarify the principle and basic characteristics of the motor. The new motor has a permanent magnet that is magnetized by the magnetizing coil of the stator. The analysis results show that the magnetic flux linkage of the motor can be changed from 37% to 100% that a high torque can be produced.
An integrated modeling method for wind turbines
NASA Astrophysics Data System (ADS)
Fadaeinedjad, Roohollah
To study the interaction of the electrical, mechanical, and aerodynamic aspects of a wind turbine, a detailed model that considers all these aspects must be used. A drawback of many studies in the area of wind turbine simulation is that either a very simple mechanical model is used with a detailed electrical model, or vice versa. Hence the interactions between electrical and mechanical aspects of wind turbine operation are not accurately taken into account. In this research, it will be shown that a combination of different simulation packages, namely TurbSim, FAST, and Simulink can be used to model the aerodynamic, mechanical, and electrical aspects of a wind turbine in detail. In this thesis, after a review of some wind turbine concepts and software tools, a simulation structure is proposed for studying wind turbines that integrates the mechanical and electrical components of a wind energy conversion device. Based on the simulation structure, a comprehensive model for a three-bladed variable speed wind turbine with doubly-fed induction generator is developed. Using the model, the impact of a voltage sag on the wind turbine tower vibration is investigated under various operating conditions such as power system short circuit level, mechanical parameters, and wind turbine operating conditions. It is shown how an electrical disturbance can cause more sustainable tower vibrations under high speed and turbulent wind conditions, which may disrupt the operation of pitch control system. A similar simulation structure is used to model a two-bladed fixed speed wind turbine with an induction generator. An extension of the concept is introduced by adding a diesel generator system. The model is utilized to study the impact of the aeroelastic aspects of wind turbine (i.e. tower shadow, wind shears, yaw error, turbulence, and mechanical vibrations) on the power quality of a stand-alone wind-diesel system. Furthermore, an IEEE standard flickermeter model is implemented in a Simulink environment to study the flicker contribution of the wind turbine in the wind-diesel system. By using a new wind power plant representation method, a large wind farm (consisting of 96 fixed speed wind turbines) is modelled to study the power quality of wind power system. The flicker contribution of wind farm is also studied with different wind turbine numbers, using the flickermeter model. Keywords. Simulink, FAST, TurbSim, AreoDyn, wind energy, doubly-fed induction generator, variable speed wind turbine, voltage sag, tower vibration, power quality, flicker, fixed speed wind turbine, wind shear, tower shadow, and yaw error.
NASA Technical Reports Server (NTRS)
Estes, Christa; Spiggle, Charles; Swift, Shannon; Vangeffen, Stephen; Younger, Frank
1992-01-01
This report details a new design for a variable speed controller which can be used to operate lunar machinery without the astronaut using his or her upper body. In order to demonstrate the design, a treadle for an industrial sewing machine was redesigned to be used by a standing operator. Since the invention of an electrically powered sewing machine, the operator has been seated. Today, companies are switching from sit down to stand up operation involving modular stations. The old treadle worked well with a sitting operator, but problems have been found when trying to use the same treadle with a standing operator. Emphasis is placed on the ease of use by the operator along with the ergonomics involved. Included with the design analysis are suggestions for possible uses for the speed controller in other applications.
Hybrid Turbine Electric Vehicle
NASA Technical Reports Server (NTRS)
Viterna, Larry A.
1997-01-01
Hybrid electric power trains may revolutionize today's ground passenger vehicles by significantly improving fuel economy and decreasing emissions. The NASA Lewis Research Center is working with industry, universities, and Government to develop and demonstrate a hybrid electric vehicle. Our partners include Bowling Green State University, the Cleveland Regional Transit Authority, Lincoln Electric Motor Division, the State of Ohio's Department of Development, and Teledyne Ryan Aeronautical. The vehicle will be a heavy class urban transit bus offering double the fuel economy of today's buses and emissions that are reduced to 1/10th of the Environmental Protection Agency's standards. At the heart of the vehicle's drive train is a natural-gas-fueled engine. Initially, a small automotive engine will be tested as a baseline. This will be followed by the introduction of an advanced gas turbine developed from an aircraft jet engine. The engine turns a high-speed generator, producing electricity. Power from both the generator and an onboard energy storage system is then provided to a variable-speed electric motor attached to the rear drive axle. An intelligent power-control system determines the most efficient operation of the engine and energy storage system.
NASA Astrophysics Data System (ADS)
Doering, K.; Steinschneider, S.
2017-12-01
The variability of renewable energy supply and drivers of demand across space and time largely determines the energy balance within power systems with a high penetration of renewable technologies. This study examines the joint spatiotemporal variability of summertime climate linked to renewable energy production (precipitation, wind speeds, insolation) and energy demand (temperature) across the contiguous United States (CONUS) between 1948 and 2015. Canonical correlation analysis is used to identify the major modes of joint variability between summer wind speeds and precipitation and related patterns of insolation and temperature. Canonical variates are then related to circulation anomalies to identify common drivers of the joint modes of climate variability. Results show that the first two modes of joint variability between summer wind speeds and precipitation exhibit pan-US dipole patterns with centers of action located in the eastern and central CONUS. Temperature and insolation also exhibit related US-wide dipoles. The relationship between canonical variates and lower-tropospheric geopotential height indicates that these modes are related to variability in the North Atlantic subtropical high (NASH). This insight can inform optimal strategies for siting renewables in an interconnected electric grid, and has implications for the impacts of climate variability and change on renewable energy systems.
? stability of wind turbine switching control
NASA Astrophysics Data System (ADS)
Palejiya, Dushyant; Shaltout, Mohamed; Yan, Zeyu; Chen, Dongmei
2015-01-01
In order to maximise the wind energy capture, wind turbines are operated at variable speeds. Depending on the wind speed, a turbine switches between two operating modes: a low wind speed mode and a high wind speed mode. During the low wind speed mode, the control objective is to maximise wind energy capture by controlling both the blade pitch angle and the electrical generator torque. During the high wind speed mode, the control goal is to maintain the rated power generation by only adjusting the blade pitch angle. This paper establishes the stability criteria for the switching operation of wind turbines using ? gain under the nonlinear control framework. Also, the performance of the wind turbine system is analysed by using the step response, a well-known measure for second-order linear systems.
Wind speed time series reconstruction using a hybrid neural genetic approach
NASA Astrophysics Data System (ADS)
Rodriguez, H.; Flores, J. J.; Puig, V.; Morales, L.; Guerra, A.; Calderon, F.
2017-11-01
Currently, electric energy is used in practically all modern human activities. Most of the energy produced came from fossil fuels, making irreversible damage to the environment. Lately, there has been an effort by nations to produce energy using clean methods, such as solar and wind energy, among others. Wind energy is one of the cleanest alternatives. However, the wind speed is not constant, making the planning and operation at electric power systems a difficult activity. Knowing in advance the amount of raw material (wind speed) used for energy production allows us to estimate the energy to be generated by the power plant, helping the maintenance planning, the operational management, optimal operational cost. For these reasons, the forecast of wind speed becomes a necessary task. The forecast process involves the use of past observations from the variable to forecast (wind speed). To measure wind speed, weather stations use devices called anemometers, but due to poor maintenance, connection error, or natural wear, they may present false or missing data. In this work, a hybrid methodology is proposed, and it uses a compact genetic algorithm with an artificial neural network to reconstruct wind speed time series. The proposed methodology reconstructs the time series using a ANN defined by a Compact Genetic Algorithm.
Bucak, Ihsan Ömür
2010-01-01
In the automotive industry, electromagnetic variable reluctance (VR) sensors have been extensively used to measure engine position and speed through a toothed wheel mounted on the crankshaft. In this work, an application that already uses the VR sensing unit for engine and/or transmission has been chosen to infer, this time, the indirect position of the electric machine in a parallel Hybrid Electric Vehicle (HEV) system. A VR sensor has been chosen to correct the position of the electric machine, mainly because it may still become critical in the operation of HEVs to avoid possible vehicle failures during the start-up and on-the-road, especially when the machine is used with an internal combustion engine. The proposed method uses Chi-square test and is adaptive in a sense that it derives the compensation factors during the shaft operation and updates them in a timely fashion.
Bucak, İhsan Ömür
2010-01-01
In the automotive industry, electromagnetic variable reluctance (VR) sensors have been extensively used to measure engine position and speed through a toothed wheel mounted on the crankshaft. In this work, an application that already uses the VR sensing unit for engine and/or transmission has been chosen to infer, this time, the indirect position of the electric machine in a parallel Hybrid Electric Vehicle (HEV) system. A VR sensor has been chosen to correct the position of the electric machine, mainly because it may still become critical in the operation of HEVs to avoid possible vehicle failures during the start-up and on-the-road, especially when the machine is used with an internal combustion engine. The proposed method uses Chi-square test and is adaptive in a sense that it derives the compensation factors during the shaft operation and updates them in a timely fashion. PMID:22294906
Code of Federal Regulations, 2014 CFR
2014-07-01
...) General cycle. Propulsion engines that are used with (or intended to be used with) fixed-pitch propellers, propeller-law auxiliary engines, and any other engines for which the other duty cycles of this section do... value. (c) Variable-pitch and electrically coupled propellers. (1) Constant-speed propulsion engines...
Code of Federal Regulations, 2013 CFR
2013-07-01
...) General cycle. Propulsion engines that are used with (or intended to be used with) fixed-pitch propellers, propeller-law auxiliary engines, and any other engines for which the other duty cycles of this section do... value. (c) Variable-pitch and electrically coupled propellers. (1) Constant-speed propulsion engines...
Code of Federal Regulations, 2012 CFR
2012-07-01
...) General cycle. Propulsion engines that are used with (or intended to be used with) fixed-pitch propellers, propeller-law auxiliary engines, and any other engines for which the other duty cycles of this section do... value. (c) Variable-pitch and electrically coupled propellers. (1) Constant-speed propulsion engines...
Code of Federal Regulations, 2011 CFR
2011-07-01
...) General cycle. Propulsion engines that are used with (or intended to be used with) fixed-pitch propellers, propeller-law auxiliary engines, and any other engines for which the other duty cycles of this section do... value. (c) Variable-pitch and electrically coupled propellers. (1) Constant-speed propulsion engines...
NASA Astrophysics Data System (ADS)
Dhanasekaran, A.; Kumaraswamy, S.
2018-01-01
Pressure pulsation causes vibration in the Electric Submersible Pump (ESP) and affects the life and performance of its system. ESP systems are installed at depths ranging from a few meters to several hundred meters. Unlike pumps used on the surface, once they are installed they become inaccessible for maintenance or for any kind of diagnostic measurement that might be taken directly on them. Therefore a detailed knowledge of mean and fluctuating pressures is required to achieve an optimal pressure distribution inside the ESP. This paper presents the results of an experimental investigation of the stage-wise pulsating pressure in ESP at shut-off condition at different speeds. Experiments were conducted on a pump having five stages. A variable frequency drive was used to operate the pump at five different speeds. Piezoresistive transducers were mounted at each stage of ESP to capture the unsteady pressure signals. Fast Fourier Transformation was carried out on the pressure signals to convert into frequency domain and the spectra of pressure pulsation signals were analyzed. The obtained results indicated the existence of fundamental frequency corresponding to the speed of rotation times the number of impeller blades and of the whole series of harmonics of higher frequencies.
Aerodynamic design on high-speed trains
NASA Astrophysics Data System (ADS)
Ding, San-San; Li, Qiang; Tian, Ai-Qin; Du, Jian; Liu, Jia-Li
2016-04-01
Compared with the traditional train, the operational speed of the high-speed train has largely improved, and the dynamic environment of the train has changed from one of mechanical domination to one of aerodynamic domination. The aerodynamic problem has become the key technological challenge of high-speed trains and significantly affects the economy, environment, safety, and comfort. In this paper, the relationships among the aerodynamic design principle, aerodynamic performance indexes, and design variables are first studied, and the research methods of train aerodynamics are proposed, including numerical simulation, a reduced-scale test, and a full-scale test. Technological schemes of train aerodynamics involve the optimization design of the streamlined head and the smooth design of the body surface. Optimization design of the streamlined head includes conception design, project design, numerical simulation, and a reduced-scale test. Smooth design of the body surface is mainly used for the key parts, such as electric-current collecting system, wheel truck compartment, and windshield. The aerodynamic design method established in this paper has been successfully applied to various high-speed trains (CRH380A, CRH380AM, CRH6, CRH2G, and the Standard electric multiple unit (EMU)) that have met expected design objectives. The research results can provide an effective guideline for the aerodynamic design of high-speed trains.
High-throughput electrical measurement and microfluidic sorting of semiconductor nanowires.
Akin, Cevat; Feldman, Leonard C; Durand, Corentin; Hus, Saban M; Li, An-Ping; Hui, Ho Yee; Filler, Michael A; Yi, Jingang; Shan, Jerry W
2016-05-24
Existing nanowire electrical characterization tools not only are expensive and require sophisticated facilities, but are far too slow to enable statistical characterization of highly variable samples. They are also generally not compatible with further sorting and processing of nanowires. Here, we demonstrate a high-throughput, solution-based electro-orientation-spectroscopy (EOS) method, which is capable of automated electrical characterization of individual nanowires by direct optical visualization of their alignment behavior under spatially uniform electric fields of different frequencies. We demonstrate that EOS can quantitatively characterize the electrical conductivities of nanowires over a 6-order-of-magnitude range (10(-5) to 10 S m(-1), corresponding to typical carrier densities of 10(10)-10(16) cm(-3)), with different fluids used to suspend the nanowires. By implementing EOS in a simple microfluidic device, continuous electrical characterization is achieved, and the sorting of nanowires is demonstrated as a proof-of-concept. With measurement speeds two orders of magnitude faster than direct-contact methods, the automated EOS instrument enables for the first time the statistical characterization of highly variable 1D nanomaterials.
Design study of steel V-Belt CVT for electric vehicles
NASA Technical Reports Server (NTRS)
Swain, J. C.; Klausing, T. A.; Wilcox, J. P.
1980-01-01
A continuously variable transmission (CVT) design layout was completed. The intended application was for coupling the flywheel to the driveline of a flywheel battery hybrid electric vehicle. The requirements were that the CVT accommodate flywheel speeds from 14,000 to 28,000 rpm and driveline speeds of 850 to 5000 rpm without slipping. Below 850 rpm a slipping clutch was used between the CVT and the driveline. The CVT was required to accommodate 330 ft-lb maximum torque and 100 hp maximum transient. The weighted average power was 22 hp, the maximum allowable full range shift time was 2 seconds and the required lift was 2600 hours. The resulting design utilized two steel V-belts in series to accommodate the required wide speed ratio. The size of the CVT, including the slipping clutch, was 20.6 inches long, 9.8 inches high and 13.8 inches wide. The estimated weight was 155 lb. An overall potential efficiency of 95 percent was projected for the average power condition.
Hanson, Thomas F.
1982-01-01
A Magnus effect windmill for generating electrical power is disclosed. A large nacelle-hub mounted pivotally (in Azimuth) atop a support tower carries, in the example disclosed, three elongated barrels arranged in a vertical plane and extending symmetrically radially outwardly from the nacelle. The system provides spin energy to the barrels by internal mechanical coupling in the proper sense to cause, in reaction to an incident wind, a rotational torque of a predetermined sense on the hub. The rotating hub carries a set of power take-off rollers which ride on a stationary circular track in the nacelle. Shafts carry the power, given to the rollers by the wind driven hub, to a central collector or accumulator gear assembly whose output is divided to drive the spin mechanism for the Magnus barrels and the main electric generator. A planetary gear assembly is interposed between the collector gears and the spin mechanism functioning as a differential which is also connected to an auxiliary electric motor whereby power to the spin mechanism may selectively be provided by the motor. Generally, the motor provides initial spin to the barrels for start-up after which the motor is braked and the spin mechanism is driven as though by a fixed ratio coupling from the rotor hub. During high wind or other unusual conditions, the auxiliary motor may be unbraked and excess spin power may be used to operate the motor as a generator of additional electrical output. Interposed between the collector gears of the rotating hub and the main electric generator is a novel variable speed drive-fly wheel system which is driven by the variable speed of the wind driven rotor and which, in turn, drives the main electric generator at constant angular speed. Reference is made to the complete specification for disclosure of other novel aspects of the system such as, for example, the aerodynamic and structural aspects of the novel Magnus barrels as well as novel gearing and other power coupling combination apparatus of the invention. A reading of the complete specification is recommended for a full understanding of the principles and features of the disclosed system.
Down-hole periodic seismic generator
Hardee, H.C.; Hills, R.G.; Striker, R.P.
1982-10-28
A down hole periodic seismic generator system is disclosed for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.
Advanced downhole periodic seismic generator
Hardee, Harry C.; Hills, Richard G.; Striker, Richard P.
1991-07-16
An advanced downhole periodic seismic generator system for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.
Down hole periodic seismic generator
Hardee, Harry C.; Hills, Richard G.; Striker, Richard P.
1989-01-01
A down hole periodic seismic generator system for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.
Integration of Variable Speed Pumped Hydro Storage in Automatic Generation Control Systems
NASA Astrophysics Data System (ADS)
Fulgêncio, N.; Moreira, C.; Silva, B.
2017-04-01
Pumped storage power (PSP) plants are expected to be an important player in modern electrical power systems when dealing with increasing shares of new renewable energies (NRE) such as solar or wind power. The massive penetration of NRE and consequent replacement of conventional synchronous units will significantly affect the controllability of the system. In order to evaluate the capability of variable speed PSP plants participation in the frequency restoration reserve (FRR) provision, taking into account the expected performance in terms of improved ramp response capability, a comparison with conventional hydro units is presented. In order to address this issue, a three area test network was considered, as well as the corresponding automatic generation control (AGC) systems, being responsible for re-dispatching the generation units to re-establish power interchange between areas as well as the system nominal frequency. The main issue under analysis in this paper is related to the benefits of the fast response of variable speed PSP with respect to its capability of providing fast power balancing in a control area.
This standard operating procedure (SOP) describes a new, rapid, and relatively inexpensive way to remove a precise area of paint from the substrate of building structures in preparation for quantitative analysis. This method has been applied successfully in the laboratory, as we...
Variable speed wind turbine generator with zero-sequence filter
Muljadi, Eduard
1998-01-01
A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.
Variable Speed Wind Turbine Generator with Zero-sequence Filter
Muljadi, Eduard
1998-08-25
A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.
Variable speed wind turbine generator with zero-sequence filter
Muljadi, E.
1998-08-25
A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility. 14 figs.
NASA Technical Reports Server (NTRS)
Sadey, David J.; Taylor, Linda M.; Beach, Raymond F.
2016-01-01
The development of ultra-efficient commercial vehicles and the transition to low-carbon emission propulsion are seen as thrust paths within NASA Aeronautics. A critical enabler to these paths comes in the form of hybrid-electric propulsion systems. For megawatt-class systems, the best power system topology for these hybrid-electric propulsion systems is debatable. Current proposals within NASA and the Aero community suggest using a combination of AC and DC for power transmission. This paper proposes an alternative to the current thought model through the use of a primarily high voltage AC power generation, transmission, and distribution systems, supported by the Convergent Aeronautics Solutions (CAS) Project. This system relies heavily on the use of dual-fed induction machines, which provide high power densities, minimal power conversion, and variable speed operation. The paper presents background on the project along with the system architecture, development status and preliminary results.
NASA Astrophysics Data System (ADS)
Modafe, Alireza
This dissertation summarizes the research activities that led to the development of the first microball-bearing-supported linear electrostatic micromotor with benzocyclobutene (BCB) low-k polymer insulating layers. The primary application of this device is long-range, high-speed linear micropositioning. The future generations of this device include rotary electrostatic micromotors and microgenerators. The development of the first generation of microball-bearing-supported micromachines, including device theory, design, and modeling, material characterization, process development, device fabrication, and device test and characterization is presented. The first generation of these devices is based on a 6-phase, bottom-drive, linear, variable-capacitance micromotor (B-LVCM). The design of the electrical and mechanical components of the micromotor, lumped-circuit modeling of the device and electromechanical characteristics, including variable capacitance, force, power, and speed are presented. Electrical characterization of BCB polymers, characterization of BCB chemical mechanical planarization (CMP), development of embedded BCB in silicon (EBiS) process, and integration of device components using microfabrication techniques are also presented. The micromotor consists of a silicon stator, a silicon slider, and four stainless-steel microballs. The aligning force profile of the micromotor was extracted from simulated and measured capacitances of all phases. An average total aligning force of 0.27 mN with a maximum of 0.41 mN, assuming a 100 V peak-to-peak square-wave voltage, was measured. The operation of the micromotor was verified by applying square-wave voltages and characterizing the slider motion. An average slider speed of 7.32 mm/s when excited by a 40 Hz, 120 V square-wave voltage was reached without losing the synchronization. This research has a pivotal impact in the field of power microelectromechanical systems (MEMS). It establishes the foundation for the development of more reliable, efficient electrostatic micromachines with variety of applications such as micropropulsion, high-speed micropumping, microfluid delivery, and microsystem power generation.
Digital slip frequency generator and method for determining the desired slip frequency
Klein, Frederick F.
1989-01-01
The output frequency of an electric power generator is kept constant with variable rotor speed by automatic adjustment of the excitation slip frequency. The invention features a digital slip frequency generator which provides sine and cosine waveforms from a look-up table, which are combined with real and reactive power output of the power generator.
Machine finishes balls to high degree of roundness
NASA Technical Reports Server (NTRS)
Angele, W.; Hill, J. P., Jr.
1972-01-01
Machine was developed to finish ball to roundness within 12.5 nm (half a microinch) from any types of hard material. Grinding and polishing to this tolerance is accomplished by lapping elements on four to six motor-driven spindles. Spindles are adjustably spring-loaded to ensure constant contact pressure on ball and are driven by variable speed electric motors.
Bittner, J.W.; Biscardi, R.W.
1991-03-19
An electronic measurement circuit is disclosed for high speed comparison of the relative amplitudes of a predetermined number of electrical input signals independent of variations in the magnitude of the sum of the signals. The circuit includes a high speed electronic switch that is operably connected to receive on its respective input terminals one of said electrical input signals and to have its common terminal serve as an input for a variable-gain amplifier-detector circuit that is operably connected to feed its output to a common terminal of a second high speed electronic switch. The respective terminals of the second high speed electronic switch are operably connected to a plurality of integrating sample and hold circuits, which in turn have their outputs connected to a summing logic circuit that is operable to develop first, second and third output voltages, the first output voltage being proportional to a predetermined ratio of sums and differences between the compared input signals, the second output voltage being proportional to a second summed ratio of predetermined sums and differences between said input signals, and the third output voltage being proportional to the sum of signals to the summing logic circuit. A servo system that is operably connected to receive said third output signal and compare it with a reference voltage to develop a slowly varying feedback voltage to control the variable-gain amplifier in said common amplifier-detector circuit in order to make said first and second output signals independent of variations in the magnitude of the sum of said input signals. 2 figures.
Bittner, John W.; Biscardi, Richard W.
1991-01-01
An electronic measurement circuit for high speed comparison of the relative amplitudes of a predetermined number of electrical input signals independent of variations in the magnitude of the sum of the signals. The circuit includes a high speed electronic switch that is operably connected to receive on its respective input terminals one of said electrical input signals and to have its common terminal serve as an input for a variable-gain amplifier-detector circuit that is operably connected to feed its output to a common terminal of a second high speed electronic switch. The respective terminals of the second high speed electronic switch are operably connected to a plurality of integrating sample and hold circuits, which in turn have their outputs connected to a summing logic circuit that is operable to develop first, second and third output voltages, the first output voltage being proportional to a predetermined ratio of sums and differences between the compared input signals, the second output voltage being proportional to a second summed ratio of predetermined sums and differences between said input signals, and the third output voltage being proportional to the sum of signals to the summing logic circuit. A servo system that is operably connected to receive said third output signal and compare it with a reference voltage to develop a slowly varying feedback voltage to control the variable-gain amplifier in said common amplifier-detector circuit in order to make said first and second output signals independent of variations in the magnitude of the sum of said input signals.
Gas engine heat pump cycle analysis. Volume 1: Model description and generic analysis
NASA Astrophysics Data System (ADS)
Fischer, R. D.
1986-10-01
The task has prepared performance and cost information to assist in evaluating the selection of high voltage alternating current components, values for component design variables, and system configurations and operating strategy. A steady-state computer model for performance simulation of engine-driven and electrically driven heat pumps was prepared and effectively used for parametric and seasonal performance analyses. Parametric analysis showed the effect of variables associated with design of recuperators, brine coils, domestic hot water heat exchanger, compressor size, engine efficiency, insulation on exhaust and brine piping. Seasonal performance data were prepared for residential and commercial units in six cities with system configurations closely related to existing or contemplated hardware of the five GRI engine contractors. Similar data were prepared for an advanced variable-speed electric unit for comparison purposes. The effect of domestic hot water production on operating costs was determined. Four fan-operating strategies and two brine loop configurations were explored.
Method and apparatus for monitoring the rotating frequency of de-energized induction motors
Mikesell, H.E.; Lucy, E.
1998-02-03
The rotational speed of a coasting induction motor is measured by sensing e residual electrical voltages at the power terminals of the motor, thus eliminating the need for conventional tachometer equipment, additional mechanical components or modifications to the induction motor itself. The power terminal voltage signal is detected and transformed into a DC voltage proportional to the frequency of the signal. This DC voltage can be input to the control system of a variable frequency motor controller to regulate the output characteristics thereof relative to the speed of the coasting motor. 6 figs.
Method and apparatus for monitoring the rotating frequency of de-energized induction motors
Mikesell, Harvey E.; Lucy, Eric
1998-01-01
The rotational speed of a coasting induction motor is measured by sensing e residual electrical voltages at the power terminals of the motor, thus eliminating the need for conventional tachometer equipment, additional mechanical components or modifications to the induction motor itself. The power terminal voltage signal is detected and transformed into a DC voltage proportional to the frequency of the signal. This DC voltage can be input to the control system of a variable frequency motor controller to regulate the output characteristics thereof relative to the speed of the coasting motor.
Nano- and micro-electromechanical switch dynamics
NASA Astrophysics Data System (ADS)
Pulskamp, Jeffrey S.; Proie, Robert M.; Polcawich, Ronald G.
2013-01-01
This paper reports theoretical analysis and experimental results on the dynamics of piezoelectric MEMS mechanical logic relays. The multiple degree of freedom analytical model, based on modal decomposition, utilizes modal parameters obtained from finite element analysis and an analytical model of piezoelectric actuation. The model accounts for exact device geometry, damping, drive waveform variables, and high electric field piezoelectric nonlinearity. The piezoelectrically excited modal force is calculated directly and provides insight into design optimization for switching speed. The model accurately predicts the propagation delay dependence on actuation voltage of mechanically distinct relay designs. The model explains the observed discrepancies in switching speed of these devices relative to single degree of freedom switching speed models and suggests the strong potential for improved switching speed performance in relays designed for mechanical logic and RF circuits through the exploitation of higher order vibrational modes.
NASA Astrophysics Data System (ADS)
Alligné, S.; Nicolet, C.; Béguin, A.; Landry, C.; Gomes, J.; Avellan, F.
2017-04-01
The prediction of pressure and output power fluctuations amplitudes on Francis turbine prototype is a challenge for hydro-equipment industry since it is subjected to guarantees to ensure smooth and reliable operation of the hydro units. The European FP7 research project Hyperbole aims to setup a methodology to transpose the pressure fluctuations induced by the cavitation vortex rope from the reduced scale model to the prototype generating units. A Francis turbine unit of 444MW with a specific speed value of ν = 0.29, is considered as case study. A SIMSEN model of the power station including electrical system, controllers, rotating train and hydraulic system with transposed draft tube excitation sources is setup. Based on this model, a frequency analysis of the hydroelectric system is performed for all technologies to analyse potential interactions between hydraulic excitation sources and electrical components. Three technologies have been compared: the classical fixed speed configuration with Synchronous Machine (SM) and the two variable speed technologies which are Doubly Fed Induction Machine (DFIM) and Full Size Frequency Converter (FSFC).
Simulation of pump-turbine prototype fast mode transition for grid stability support
NASA Astrophysics Data System (ADS)
Nicolet, C.; Braun, O.; Ruchonnet, N.; Hell, J.; Béguin, A.; Avellan, F.
2017-04-01
The paper explores the additional services that Full Size Frequency Converter, FSFC, solution can provide for the case of an existing pumped storage power plant of 2x210 MW, for which conversion from fixed speed to variable speed is investigated with a focus on fast mode transition. First, reduced scale model tests experiments of fast transition of Francis pump-turbine which have been performed at the ANDRITZ HYDRO Hydraulic Laboratory in Linz Austria are presented. The tests consist of linear speed transition from pump to turbine and vice versa performed with constant guide vane opening. Then existing pumped storage power plant with pump-turbine quasi homologous to the reduced scale model is modelled using the simulation software SIMSEN considering the reservoirs, penstocks, the two Francis pump-turbines, the two downstream surge tanks, and the tailrace tunnel. For the electrical part, an FSFC configuration is considered with a detailed electrical model. The transitions from turbine to pump and vice versa are simulated, and similarities between prototype simulation results and reduced scale model experiments are highlighted.
NASA Astrophysics Data System (ADS)
Shauly, Eitan; Parag, Allon; Khmaisy, Hafez; Krispil, Uri; Adan, Ofer; Levi, Shimon; Latinski, Sergey; Schwarzband, Ishai; Rotstein, Israel
2011-04-01
A fully automated system for process variability analysis of high density standard cell was developed. The system consists of layout analysis with device mapping: device type, location, configuration and more. The mapping step was created by a simple DRC run-set. This database was then used as an input for choosing locations for SEM images and for specific layout parameter extraction, used by SPICE simulation. This method was used to analyze large arrays of standard cell blocks, manufactured using Tower TS013LV (Low Voltage for high-speed applications) Platforms. Variability of different physical parameters like and like Lgate, Line-width-roughness and more as well as of electrical parameters like drive current (Ion), off current (Ioff) were calculated and statistically analyzed, in order to understand the variability root cause. Comparison between transistors having the same W/L but with different layout configurations and different layout environments (around the transistor) was made in terms of performances as well as process variability. We successfully defined "robust" and "less-robust" transistors configurations, and updated guidelines for Design-for-Manufacturing (DfM).
NASA Astrophysics Data System (ADS)
Pachauri, Rupendra Kumar; Chauhan, Yogesh K.
2017-02-01
This paper is a novel attempt to combine two important aspects of fuel cell (FC). First, it presents investigations on FC technology and its applications. A description of FC operating principles is followed by the comparative analysis of the present FC technologies together with the issues concerning various fuels. Second, this paper also proposes a model for the simulation and performances evaluation of a proton exchange membrane fuel cell (PEMFC) generation system. Furthermore, a MATLAB/Simulink-based dynamic model of PEMFC is developed and parameters of FC are so adjusted to emulate a commercially available PEMFC. The system results are obtained for the PEMFC-driven adjusted speed induction motor drive (ASIMD) system, normally used in electric vehicles and analysis is carried out for different operating conditions of FC and ASIMD system. The obtained results prove the validation of system concept and modelling.
Wind farms production: Control and prediction
NASA Astrophysics Data System (ADS)
El-Fouly, Tarek Hussein Mostafa
Wind energy resources, unlike dispatchable central station generation, produce power dependable on external irregular source and that is the incident wind speed which does not always blow when electricity is needed. This results in the variability, unpredictability, and uncertainty of wind resources. Therefore, the integration of wind facilities to utility electrical grid presents a major challenge to power system operator. Such integration has significant impact on the optimum power flow, transmission congestion, power quality issues, system stability, load dispatch, and economic analysis. Due to the irregular nature of wind power production, accurate prediction represents the major challenge to power system operators. Therefore, in this thesis two novel models are proposed for wind speed and wind power prediction. One proposed model is dedicated to short-term prediction (one-hour ahead) and the other involves medium term prediction (one-day ahead). The accuracy of the proposed models is revealed by comparing their results with the corresponding values of a reference prediction model referred to as the persistent model. Utility grid operation is not only impacted by the uncertainty of the future production of wind farms, but also by the variability of their current production and how the active and reactive power exchange with the grid is controlled. To address this particular task, a control technique for wind turbines, driven by doubly-fed induction generators (DFIGs), is developed to regulate the terminal voltage by equally sharing the generated/absorbed reactive power between the rotor-side and the gridside converters. To highlight the impact of the new developed technique in reducing the power loss in the generator set, an economic analysis is carried out. Moreover, a new aggregated model for wind farms is proposed that accounts for the irregularity of the incident wind distribution throughout the farm layout. Specifically, this model includes the wake effect and the time delay of the incident wind speed of the different turbines on the farm, and to simulate the fluctuation in the generated power more accurately and more closer to real-time operation. Recently, wind farms with considerable output power ratings have been installed. Their integrating into the utility grid will substantially affect the electricity markets. This thesis investigates the possible impact of wind power variability, wind farm control strategy, wind energy penetration level, wind farm location, and wind power prediction accuracy on the total generation costs and close to real time electricity market prices. These issues are addressed by developing a single auction market model for determining the real-time electricity market prices.
Global map of solar power production efficiency, considering micro climate factors
NASA Astrophysics Data System (ADS)
Hassanpour Adeh, E.; Higgins, C. W.
2017-12-01
Natural resources degradation and greenhouse gas emissions are creating a global crisis. Renewable energy is the most reliable option to mitigate this environmental dilemma. Abundancy of solar energy makes it highly attractive source of electricity. The existing global spatial maps of available solar energy are created with various models which consider the irradiation, latitude, cloud cover, elevation, shading and aerosols, and neglect the influence of local meteorological conditions. In this research, the influences of microclimatological variables on solar energy productivity were investigated with an in-field study at the Rabbit Hills solar arrays near Oregon State University. The local studies were extended to a global level, where global maps of solar power were produced, taking the micro climate variables into account. These variables included: temperature, relative humidity, wind speed, wind direction, solar radiation. The energy balance approach was used to synthesize the data and compute the efficiencies. The results confirmed that the solar power efficiency can be directly affected by the air temperature and wind speed.
NASA Technical Reports Server (NTRS)
Sadey, David J.; Taylor, Linda M.; Beach, Raymond F.
2017-01-01
The development of ultra-efficient commercial vehicles and the transition to low-carbon emission propulsion are seen as strategic thrust paths within NASA Aeronautics. A critical enabler to these paths comes in the form of hybrid electric propulsion systems. For megawatt-class systems, the best power system topology for these hybrid electric propulsion systems is debatable. Current proposals within NASA and the Aero community suggest using a combination of alternating current (AC) and direct current (DC) for power generation, transmission, and distribution. This paper proposes an alternative to the current thought model through the use of a primarily high voltage AC power system, supported by the Convergent Aeronautics Solutions (CAS) Project. This system relies heavily on the use of doubly-fed induction machines (DFIMs), which provide high power densities, minimal power conversion, and variable speed operation. The paper presents background on the activity along with the system architecture, development status, and preliminary results.
Investment appraisal of technology innovations on dairy farm electricity consumption.
Upton, J; Murphy, M; De Boer, I J M; Groot Koerkamp, P W G; Berentsen, P B M; Shalloo, L
2015-02-01
The aim of this study was to conduct an investment appraisal for milk-cooling, water-heating, and milk-harvesting technologies on a range of farm sizes in 2 different electricity-pricing environments. This was achieved by using a model for electricity consumption on dairy farms. The model simulated the effect of 6 technology investment scenarios on the electricity consumption and electricity costs of the 3 largest electricity-consuming systems within the dairy farm (i.e., milk-cooling, water-heating, and milking machine systems). The technology investment scenarios were direct expansion milk-cooling, ice bank milk-cooling, milk precooling, solar water-heating, and variable speed drive vacuum pump-milking systems. A dairy farm profitability calculator was combined with the electricity consumption model to assess the effect of each investment scenario on the total discounted net income over a 10-yr period subsequent to the investment taking place. Included in the calculation were the initial investments, which were depreciated to zero over the 10-yr period. The return on additional investment for 5 investment scenarios compared with a base scenario was computed as the investment appraisal metric. The results of this study showed that the highest return on investment figures were realized by using a direct expansion milk-cooling system with precooling of milk to 15°C with water before milk entry to the storage tank, heating water with an electrical water-heating system, and using standard vacuum pump control on the milking system. Return on investment figures did not exceed the suggested hurdle rate of 10% for any of the ice bank scenarios, making the ice bank system reliant on a grant aid framework to reduce the initial capital investment and improve the return on investment. The solar water-heating and variable speed drive vacuum pump scenarios failed to produce positive return on investment figures on any of the 3 farm sizes considered on either the day and night tariff or the flat tariff, even when the technology costs were reduced by 40% in a sensitivity analysis of technology costs. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
The Mitigation of Radio Noise from External Sources at Receiving Sites
2007-05-01
Controller at a Hydroponics Farm ................................................................. 61 Figure 53 Power Feed for Hydroponics Farm...Among these are: • Variable-speed controller providing power to a fractional horse power electric motor driving a pump at a hydroponics farm... hydroponics farm located about 11 km from a receiving site. The controller is shown in the top view and the three motors it controls are shown in the
Island Concept Electrically Variable Transmission (EVT)
2006-10-01
ice. There are also known sophisticated differential types (such as Torsen , speed-sensitive, self locking, magnetoreological, etc) which are able in...complex torsen differential can be replaced by a simple planetary gear set). Apparently more complex, the configuration can lead to a superior vehicle...with the EM2 through a differential mechanism, whereas typically one may find using a planetary gear set for this application. The differential
Heat engine generator control system
Rajashekara, K.; Gorti, B.V.; McMullen, S.R.; Raibert, R.J.
1998-05-12
An electrical power generation system includes a heat engine having an output member operatively coupled to the rotor of a dynamoelectric machine. System output power is controlled by varying an electrical parameter of the dynamoelectric machine. A power request signal is related to an engine speed and the electrical parameter is varied in accordance with a speed control loop. Initially, the sense of change in the electrical parameter in response to a change in the power request signal is opposite that required to effectuate a steady state output power consistent with the power request signal. Thereafter, the electrical parameter is varied to converge the output member speed to the speed known to be associated with the desired electrical output power. 8 figs.
Heat engine generator control system
Rajashekara, Kaushik; Gorti, Bhanuprasad Venkata; McMullen, Steven Robert; Raibert, Robert Joseph
1998-01-01
An electrical power generation system includes a heat engine having an output member operatively coupled to the rotor of a dynamoelectric machine. System output power is controlled by varying an electrical parameter of the dynamoelectric machine. A power request signal is related to an engine speed and the electrical parameter is varied in accordance with a speed control loop. Initially, the sense of change in the electrical parameter in response to a change in the power request signal is opposite that required to effectuate a steady state output power consistent with the power request signal. Thereafter, the electrical parameter is varied to converge the output member speed to the speed known to be associated with the desired electrical output power.
Investigation into response characteristics of the chitosan gel artificial muscle
NASA Astrophysics Data System (ADS)
Zhao, Gang; Yang, Junjie; Wang, Yujian; Zhao, Honghao; Fu, Yu; Zhang, Guangli; Yu, Shuqin; Wu, Yuda; Wei, Chengye; Liu, Xuxiong; Wang, Zhijie
2018-01-01
Bionic artificial muscle made from chitosan gel is an emerging type of the ionic electro active polymer with advantages of large deformation, low cost and environmental protection etc, which leads to a research focus and wide application in the fields of bionic engineering and intelligence material recently. In this paper, effects and improvement mechanisms of the direct casting and genipin cross-linking processes on response speed properties of the chitosan gel artificial muscle (CGAM) were mainly studied. Based on in-depth analysis of the CGAM response mechanism, a platform was built for testing the response performance of the CGAM, then its equivalent circuit and mathematical models were also established. Furthermore, control experiments were carried out to test and analyze several performances of the CGAM on response speed, electrical conductivity, mechanical properties and microstructure with different control variables. The experimental results illustrated that the CGAM assembled by direct casting enabled its electric actuating membrane and non-metallic electrode membrane tightly attached together with low contact resistance, which dramatically promoted the electrical conductivity of the CGAM resulting in nearly doubled response speed. Besides, different concentrations of genipin were adopted to cross-link the CGAM actuating membranes, and then it was found that the response speed of the uncross-linked CGAM was fast in the initial stage, but as time increased, it declined rapidly with poor steadiness. While there was no obvious decrease over time on the response speed of the CGAM cross-linked with low genipin concentration. Namely, its stability was getting better and better. In addition, the response speed of the CGAM cross-linked with low concentration of genipin was roughly the same as uncross-linked CGAM, which was quicker than that of high concentration. In this work, its internal mechanisms, feasible assembly technique and green modification method were provided to further explore the practical applications significantly.
NASA Technical Reports Server (NTRS)
Glaser, F. W.; Woodward, R. P.; Lucas, J. G.
1977-01-01
Far field noise data and related aerodynamic performance are presented for a variable pitch fan stage having characteristics suitable for low noise, STOL engine application. However, no acoustic suppression material was used in the flow passages. The fan was externally driven by an electric motor. Tests were made at several forward thrust rotor blade pitch angles and one for reverse thrust. Fan speed was varied from 60 to 120 percent of takeoff (design) speed, and exhaust nozzles having areas 92 to 105 percent of design were tested. The fan noise level was at a minimum at the design rotor blade pitch angles of 64 deg for takeoff thrust and at 57 deg for approach (50 percent takeoff thrust). Perceived noise along a 152.4-m sideline reached 100.1 PNdb for the takeoff (design) configuration for a stage pressure ratio of 1.17 and thrust of 57,600 N. For reverse thrust the PNL values were 4 to 5 PNdb above the takeoff values at comparable fan speeds.
Electric vehicle drive train with direct coupling transmission
Tankersley, J.B.; Boothe, R.W.; Konrad, C.E.
1995-04-04
An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox. 6 figures.
Electric vehicle drive train with direct coupling transmission
Tankersley, Jerome B.; Boothe, Richard W.; Konrad, Charles E.
1995-01-01
An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox.
NASA Technical Reports Server (NTRS)
Dustin, M. O.
1983-01-01
The propulsion system of the Lewis Research Center's electric propulsion system test bed vehicle was tested on the road load simulator under the DOE Electric and Hybrid Vehicle Program. This propulsion system, consisting of a series-wound dc motor controlled by an infinitely variable SCR chopper and an 84-V battery pack, is typical of those used in electric vehicles made in 1976. Steady-state tests were conducted over a wide range of differential output torques and vehicle speeds. Efficiencies of all of the components were determined. Effects of temperature and voltage variations on the motor and the effect of voltage changes on the controller were examined. Energy consumption and energy efficiency for the system were determined over the B and C driving schedules of the SAE J227a test procedure.
NASA Astrophysics Data System (ADS)
Oka, Mohachiro; Enokizono, Masato; Mori, Yuji; Yamazaki, Kazumasa
2018-04-01
Recently, the application areas for electric motors have been expanding. For instance, electric motors are used in new technologies such as rovers, drones, cars, and robots. The motor used in such machinery should be small, high-powered, highly-efficient, and high-speed. In such motors, loss at high-speed rotation must be especially minimal. Eddy-current loss in the stator core is known to increase greatly during loss at high-speed rotation of the motor. To produce an efficient high-speed motor, we are developing a stator core for a motor using an ultrathin electrical steel sheet with only a small amount of eddy-current loss. Furthermore, the magnetic property evaluation for efficient, high-speed motor stator cores that use conventional commercial frequency is insufficient. Thus, we made a new high-speed magnetic property evaluation system to evaluate the magnetic properties of the efficient high-speed motor stator core. This system was composed of high-speed A/D converters, D/A converters, and a high-speed power amplifier. In experiments, the ultrathin electrical steel sheet dramatically suppressed iron loss and, in particular, eddy-current loss. In addition, a new high-speed magnetic property evaluation system accurately evaluated the magnetic properties of the efficient high-speed motor stator core.
Optimal control in microgrid using multi-agent reinforcement learning.
Li, Fu-Dong; Wu, Min; He, Yong; Chen, Xin
2012-11-01
This paper presents an improved reinforcement learning method to minimize electricity costs on the premise of satisfying the power balance and generation limit of units in a microgrid with grid-connected mode. Firstly, the microgrid control requirements are analyzed and the objective function of optimal control for microgrid is proposed. Then, a state variable "Average Electricity Price Trend" which is used to express the most possible transitions of the system is developed so as to reduce the complexity and randomicity of the microgrid, and a multi-agent architecture including agents, state variables, action variables and reward function is formulated. Furthermore, dynamic hierarchical reinforcement learning, based on change rate of key state variable, is established to carry out optimal policy exploration. The analysis shows that the proposed method is beneficial to handle the problem of "curse of dimensionality" and speed up learning in the unknown large-scale world. Finally, the simulation results under JADE (Java Agent Development Framework) demonstrate the validity of the presented method in optimal control for a microgrid with grid-connected mode. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Variable force, eddy-current or magnetic damper
NASA Technical Reports Server (NTRS)
Cunningham, R. E. (Inventor)
1985-01-01
An object of the invention is to provide variable damping for resonant vibrations which may occur at different rotational speeds in the range of rpms in which a rotating machine is operated. A variable force damper in accordance with the invention includes a rotating mass carried on a shaft which is supported by a bearing in a resilient cage. The cage is attached to a support plate whose rim extends into an annular groove in a housing. Variable damping is effected by tabs of electrically conducting nonmagnetic material which extend radially from the cage. The tabs at an index position lie between the pole face of respective C shaped magnets. The magnets are attached by cantilever spring members to the housing.
Real-time fuzzy inference based robot path planning
NASA Technical Reports Server (NTRS)
Pacini, Peter J.; Teichrow, Jon S.
1990-01-01
This project addresses the problem of adaptive trajectory generation for a robot arm. Conventional trajectory generation involves computing a path in real time to minimize a performance measure such as expended energy. This method can be computationally intensive, and it may yield poor results if the trajectory is weakly constrained. Typically some implicit constraints are known, but cannot be encoded analytically. The alternative approach used here is to formulate domain-specific knowledge, including implicit and ill-defined constraints, in terms of fuzzy rules. These rules utilize linguistic terms to relate input variables to output variables. Since the fuzzy rulebase is determined off-line, only high-level, computationally light processing is required in real time. Potential applications for adaptive trajectory generation include missile guidance and various sophisticated robot control tasks, such as automotive assembly, high speed electrical parts insertion, stepper alignment, and motion control for high speed parcel transfer systems.
Dynamic simulation solves process control problem in Oman
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-11-16
A dynamic simulation study solved the process control problems for a Saih Rawl, Oman, gas compressor station operated by Petroleum Development of Oman (PDO). PDO encountered persistent compressor failure that caused frequent facility shutdowns, oil production deferment, and gas flaring. It commissioned MSE (Consultants) Ltd., U.K., to find a solution for the problem. Saih Rawl, about 40 km from Qarn Alam, produces oil and associated gas from a large number of low and high-pressure wells. Oil and gas are separated in three separators. The oil is pumped to Qarn Alam for treatment and export. Associated gas is compressed in twomore » parallel trains. Train K-1115 is a 350,000 standard cu m/day, four-stage reciprocating compressor driven by a fixed-speed electric motor. Train K-1120 is a 1 million standard cu m/day, four-stage reciprocating compressor driven by a fixed-speed electric motor. Train K-1120 is a 1 million standard cu m/day, four-stage centrifugal compressor driven by a variable-speed motor. The paper describes tripping and surging problems with the gas compressor and the control simplifications that solved the problem.« less
NASA Puffin Electric Tailsitter VTOL Concept
NASA Technical Reports Server (NTRS)
Moore, Mark D.
2010-01-01
Electric propulsion offers dramatic new vehicle mission capabilities, not possible with turbine or reciprocating engines; including high reliability and efficiency, low engine weight and maintenance, low cooling drag and volume required, very low noise and vibration, and zero emissions. The only penalizing characteristic of electric propulsion is the current energy storage technology level, which is set to triple over the next 5-10 years through huge new investments in this field. Most importantly, electric propulsion offers incredible new degrees of freedom in aircraft system integration to achieve unprecedented levels of aerodynamic, propulsive, control, and structural synergistic coupling. A unique characteristic of electric propulsion is that the technology is nearly scale-free, permitting small motors to be parallelized for fail-safe redundancy, or distributed across the airframe for tightly coupled interdisciplinary functionality without significant impacts in motor-controller efficiency or specific weight. Maximizing the potential benefit of electric propulsion is dependent on applying this technology to synergistic mission concepts. The vehicle missions with the most benefit include those which constrain environmental impact (or limit noise, exhaust, or emission signatures) are short range, or where large differences exist in the propulsion system sizing between takeoff and cruise conditions. Electric propulsion offers the following unique capabilities that other propulsion systems can t provide for short range Vertical Takeoff and Landing (VTOL) aircraft; elimination of engine noise and emissions, drastic reduction in engine cooling and radiated heat, drastic reduction in vehicle vibration levels, drastic improvement in reliability and operating costs, variable speed output at full power, for improved cruise efficiency at low tip-speed, elimination of high/hot sizing penalty, and reduction of engine-out penalties.
Development of a 5.5 m diameter vertical axis wind turbine, phase 3
NASA Astrophysics Data System (ADS)
Dekitsch, A.; Etzler, C. C.; Fritzsche, A.; Lorch, G.; Mueller, W.; Rogalla, K.; Schmelzle, J.; Schuhwerk, W.; Vollan, A.; Welte, D.
1982-06-01
In continuation of development of a 5.5 m diameter vertical axis windmill that consists in conception, building, and wind tunnel testing, a Darrieus rotor windpowered generator feeding an isolated network under different wind velocity conditions and with optimal energy conversion efficiency was designed built, and field tested. The three-bladed Darrieus rotor tested in the wind tunnel was equiped with two variable pitch Savonius rotors 2 m in diameter. By means of separate measures of the aerodynamic factors and the energy consumption, effect of revisions and optimizations on different elements was assessed. Pitch adjustement of the Savonius blades, lubrication of speed reducer, rotor speed at cut-in of generator field excitation, time constant of field excitation, stability conditions, switch points of ohmic resistors which combined with a small electric battery simulated a larger isolated network connected with a large storage battery, were investigated. Fundamentals for the economic series production of windpowered generators with Darrieus rotors for the control and the electric conversion system are presented.
Jovian dust streams: A monitor of Io's volcanic plume activity
Kruger, H.; Geissler, P.; Horanyi, M.; Graps, A.L.; Kempf, S.; Srama, R.; Moragas-Klostermeyer, G.; Moissl, R.; Johnson, T.V.; Grun, E.
2003-01-01
Streams of high speed dust particles originate from Jupiter's moon Io. After release from Io, the particles collect electric charges in the Io plasma torus, gain energy from the co-rotating electric field of Jupiter's magnetosphere, and leave the Jovian system into interplanetary space with escape speeds over 200 km s-1. The Galileo spacecraft has continuously monitored the dust streams during 34 revolutions about Jupiter between 1996 and 2002. The observed dust fluxes exhibit large orbit-to-orbit variability due to systematic and stochastic changes. After removal of the systematic variations, the total dust emission rate of Io has been calculated. It varies between 10-3 and 10 kg s-1, and is typically in the range of 0.1 to 1 kg s-1. We compare the dust emission rate with other markers of volcanic activity on Io like large-area surface changes caused by volcanic deposits and sightings of volcanic plumes. Copyright 2003 by the American Geophysical Union.
Design studies of continuously variable transmissions for electric vehicles
NASA Technical Reports Server (NTRS)
Parker, R. J.; Loewenthal, S. H.; Fischer, G. K.
1981-01-01
Preliminary design studies were performed on four continuously variable transmission (CVT) concepts for use with a flywheel equipped electric vehicle of 1700 kg gross weight. Requirements of the CVT's were a maximum torque of 450 N-m (330 lb-ft), a maximum output power of 75 kW (100 hp), and a flywheel speed range of 28,000 to 14,000 rpm. Efficiency, size, weight, cost, reliability, maintainability, and controls were evaluated for each of the four concepts which included a steel V-belt type, a flat rubber belt type, a toroidal traction type, and a cone roller traction type. All CVT's exhibited relatively high calculated efficiencies (68 percent to 97 percent) over a broad range of vehicle operating conditions. Estimated weight and size of these transmissions were comparable to or less than equivalent automatic transmission. The design of each concept was carried through the design layout stage.
NASA Astrophysics Data System (ADS)
Woldesellasse, H. T.; Marpu, P. R.; Ouarda, T.
2016-12-01
Wind is one of the crucial renewable energy sources which is expected to bring solutions to the challenges of clean energy and the global issue of climate change. A number of linear and nonlinear multivariate techniques has been used to predict the stochastic character of wind speed. A wind forecast with good accuracy has a positive impact on the reduction of electricity system cost and is essential for the effective grid management. Over the past years, few studies have been done on the assessment of teleconnections and its possible effects on the long-term wind speed variability in the UAE region. In this study Nonlinear Canonical Correlation Analysis (NLCCA) method is applied to study the relationship between global climate oscillation indices and meteorological variables, with a major emphasis on wind speed and wind direction, of Abu Dhabi, UAE. The wind dataset was obtained from six ground stations. The first mode of NLCCA is capable of capturing the nonlinear mode of the climate indices at different seasons, showing the symmetry between the warm states and the cool states. The strength of the nonlinear canonical correlation between the two sets of variables varies with the lead/lag time. The performance of the models is assessed by calculating error indices such as the root mean square error (RMSE) and Mean absolute error (MAE). The results indicated that NLCCA models provide more accurate information about the nonlinear intrinsic behaviour of the dataset of variables than linear CCA model in terms of the correlation and root mean square error. Key words: Nonlinear Canonical Correlation Analysis (NLCCA), Canonical Correlation Analysis, Neural Network, Climate Indices, wind speed, wind direction
NASA Astrophysics Data System (ADS)
St. Martin, Clara Mae
Wind turbines and groups of wind turbines, or "wind plants", interact with the complex and heterogeneous boundary layer of the atmosphere. We define the boundary layer as the portion of the atmosphere directly influenced by the surface, and this layer exhibits variability on a range of temporal and spatial scales. While early developments in wind energy could ignore some of this variability, recent work demonstrates that improved understanding of atmosphere-turbine interactions leads to the discovery of new ways to approach turbine technology development as well as processes such as performance validation and turbine operations. This interaction with the atmosphere occurs at several spatial and temporal scales from continental-scale to turbine-scale. Understanding atmospheric variability over continental-scales and across plants can facilitate reliance on wind energy as a baseload energy source on the electrical grid. On turbine scales, understanding the atmosphere's contribution to the variability in power production can improve the accuracy of power production estimates as we continue to implement more wind energy onto the grid. Wind speed and directional variability within a plant will affect wind turbine wakes within the plants and among neighboring plants, and a deeper knowledge of these variations can help mitigate effects of wakes and possibly even allow the manipulation of these wakes for increased production. Herein, I present the extent of my PhD work, in which I studied outstanding questions at these scales at the intersections of wind energy and atmospheric science. My work consists of four distinct projects. At the coarsest scales, I analyze the separation between wind plant sites needed for statistical independence in order to reduce variability for grid-integration of wind. At lower wind speeds, periods of unstable and more turbulent conditions produce more power than periods of stable and less turbulent conditions, while at wind speeds closer to rated wind speed, periods of unstable and more turbulent conditions produce less power than periods of stable and less turbulent conditions. Using these new, stability- and turbulence-specific power curves to calculate annual energy production (AEP) estimates results in smaller AEPs than if calculated using no stability and turbulence filters, which could have implications for manufacturers and operators. In my third project, I address the problem of expensive power production validation. Rather than erecting towers to provide upwind wind measurements, I explore the utility of using nacelle-mounted anemometers for power curve verification studies. I calculate empirical nacelle transfer functions (NTFs) with upwind tower and turbine measurements. The fifth-order and second-order NTFs show a linear relationship between upwind wind speed and nacelle wind speed at wind speeds less than about 9 m s-1 , but this relationship becomes non-linear at wind speeds higher than about 9 m s-1. The use of NTFs results in AEPs within 1 % of an AEP using upwind wind speeds. Additionally, during periods of unstable conditions as well as during more turbulent conditions, the nacelle-mounted anemometer underestimates the upwind wind speed more than during periods of stable conditions and less turbulence conditions at some wind speed bins below rated speed. Finally, in my fourth project, I consider spatial scales on the order of a wind plant. Using power production data from over 300 turbines from four neighboring wind farms in the western US along with simulations using the Weather Research and Forecasting model's Wind Farm Parameterization (WRF-WFP), I investigate the advantage of using the WFP to simulate wakes. During this case, winds from the west and north-northwest range from about 5 to 11 m s-1. A down-ramp occurs in this case study, which WRF predicts too early. The early prediction of the down-ramp likely affects the error in WRF-predicted power, the results of which show exaggerated wake effects. While these projects span a range of spatio-temporal scales, a unifying theme is the important aspect of atmospheric variation on wind power production, wind power production estimates, and means for facilitating the integration of wind-generated electricity into power grids. Future work, such as universal NTFs for sites with similar characteristics, NTFs for waked turbines, or the deployment of lidars on turbine nacelles for operation purposes, should continue to study the mutually-important interconnections between these two fields. (Abstract shortened by ProQuest.).
NASA Technical Reports Server (NTRS)
Viterna, Larry A.
1997-01-01
A government, industry, and university cooperative is developing an advanced hybrid electric city transit bus. Goals of this effort include doubling the fuel economy compared to current buses and reducing emissions to one-tenth of current EPA standards. Unique aspects of the vehicle's power system include the use of ultra-capacitors as an energy storage system, and a planned natural gas fueled turbogenerator developed from a small jet engine. Power from both the generator and energy storage system is provided to a variable speed electric motor attached to the rear axle. At over 15000 kg gross weight, this is the largest vehicle of its kind ever built using ultra-capacitor energy storage. This paper describes the overall power system architecture, the evolution of the control strategy, and its performance over industry standard drive cycles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, R.A.; Downing, B.R.; Pearce, T.C.
The consumption of primary energy by diesel, petrol and electric versions of a light van was compared under high-density urban traffic conditions. The vehicles were driven repeatedly round a 10km route in Central London and measurements of fuel consumption, distance travelled and time were made for each route section. Multiple regression analysis established vehicle sensitivities to variations in average speed, payload, road type, regenerated energy (electric vehicle), kinetic energy, weather and driver. The diesel vehicle used primary energy more efficiently than either the petrol or the electric vehicle over the entire speed range observed, the ratio of energy consumption (diesel:petrol:electric)more » being 100:185:198 at the average speed during the experiment (17.58km/h). The petrol vehicle was more efficient than the electric over most of the speed range, but was less efficient at speeds below about 14km/h. It is concluded that the diesel vehicle is the most efficient for urban delivery duties.« less
NASA Technical Reports Server (NTRS)
Lord, Paul; Kao, Edward; Abobo, Joey B.; Collins, Todd A.; Ma, Leong; Murad, Adnan; Naran, Hitesh; Nguyen, Thuan P.; Nuon, Timithy I.; Thomas, Dimitri D.
1992-01-01
Technology in aeronautics has advanced dramatically since the last design of a production High Speed Civil Transport (HSCT) aircraft. Newly projected requirements call for a new High Speed Civil Transport aircraft with a range of approximately 550 nm and at least 275 passenger capacity. The aircraft must be affordable and marketable. The new HSCT must be able to sustain long-duration flights and to absorb the abuse of daily operation. The new aircraft must be safe and simple to fly and require a minimum amount of maintenance. This aircraft must meet FAA certification criteria of FAR Part 25 and environmental constraints. Several design configurations were examined and two designs were selected for further investigation. The first design employs the delta planform wings and conventional empennage layout. The other design uses a swing wing layout and conventional empennage. Other engineering challenges, including materials and propulsion are also discussed. At a cruise flight speed between Mach 2.2 and Mach 3.0, no current generation of materials can endure the thermal loading of supersonic flight and satisfy the stringent weight requirements. A new generation of lightweight composite materials must be developed for the HSCT. With the enforcement of stage 3 noise restrictions, these new engines must be able to propel the aircraft and satisfy the noise limit. The engine with the most promise is the variable cycle engine. At low subsonic speeds the engine operates like a turbofan engine, providing the most efficient performance. At higher speeds the variable cycle engine operates as a turbojet power plant. The two large engine manufacturers, General Electric and Pratt & Whitney in the United States, are combining forces to make the variable cycle engine a reality.
On error sources during airborne measurements of the ambient electric field
NASA Technical Reports Server (NTRS)
Evteev, B. F.
1991-01-01
The principal sources of errors during airborne measurements of the ambient electric field and charge are addressed. Results of their analysis are presented for critical survey. It is demonstrated that the volume electric charge has to be accounted for during such measurements, that charge being generated at the airframe and wing surface by droplets of clouds and precipitation colliding with the aircraft. The local effect of that space charge depends on the flight regime (air speed, altitude, particle size, and cloud elevation). Such a dependence is displayed in the relation between the collector conductivity of the aircraft discharging circuit - on one hand, and the sum of all the residual conductivities contributing to aircraft discharge - on the other. Arguments are given in favor of variability in the aircraft electric capacitance. Techniques are suggested for measuring from factors to describe the aircraft charge.
Performance Analysis of Three-Phase Induction Motor with AC Direct and VFD
NASA Astrophysics Data System (ADS)
Kumar, Dinesh
2018-03-01
The electrical machine analysis and performance calculation is a very important aspect of efficient drive system design. The development of power electronics devices and power converters provide smooth speed control of Induction Motors by changing the frequency of input supply. These converters, on one hand are providing a more flexible speed control that also leads to problems of harmonics and their associated ailments like pulsating torque, distorted current and voltage waveforms, increasing losses etc. This paper includes the performance analysis of three phase induction motor with three-phase AC direct and variable frequency drives (VFD). The comparison has been concluded with respect to various parameters. MATLAB-SIMULINKTM is used for the analysis.
Safety and interaction of patients with implantable cardiac defibrillators driving a hybrid vehicle.
Tondato, Fernando; Bazzell, Jane; Schwartz, Linda; Mc Donald, Bruce W; Fisher, Robert; Anderson, S Shawn; Galindo, Arcenio; Dueck, Amylou C; Scott, Luis R
2017-01-15
Electromagnetic interference (EMI) can affect the function of implantable cardioverter defibrillators (ICD). Hybrid electric vehicles (HEV) have increased popularity and are a potential source of EMI. Little is known about the in vivo effects of EMI generated by HEV on ICD. This study evaluated the in vivo interaction between EMI generated by HEV with ICD. Thirty patients (73±9 y/o; 80% male) with stable ICD function were exposed to EMI generated by a Toyota Prius Hybrid®. The vehicle was lifted above the ground, allowing safe changes in engine rotation and consequent variations in electromagnetic emission. EMI was measured (NARDA STS® model EHP-50C) and expressed in A/m (magnetic), Volts/m (electrical), and Hertz (frequency). Six positions were evaluated: driver, front passenger, right and left back seats, outside, at the back and front of the car. Each position was evaluated at idle, 30 mph, 60 mph and variable speeds (acceleration-deceleration-brake). All ICD devices were continuously monitored during the study. The levels of EMI generated were low (highest mean levels: 2.09A/m at right back seat at 30 mph; and 3.5V/m at driver seat at variable speeds). No episode of oversensing or inadvertent change in ICD programming was observed. It is safe for patients with ICD to interact with HEV. This is the first study to address this issue using an in vivo model. Further studies are necessary to evaluate the interaction of different models of HEV or electric engine with ICD or unipolar pacemakers. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Prediction on the charging demand for electric vehicles in Chengdu
NASA Astrophysics Data System (ADS)
yun, Cai; wanquan, Zhang; wei, You; pan, Mao
2018-03-01
The development of the electric vehicle charging station facilities speed directly affect the development of electric vehicle speed. And the charging demand of electric vehicles is one of the main factors influencing the electric vehicle charging facilities. The paper collected and collated car ownership in recent years, the use of elastic coefficient to predict Chengdu electric vehicle ownership, further modeling to give electric vehicle charging demand.
NASA Technical Reports Server (NTRS)
Levi, E.
1983-01-01
The efficiency, weight, and cost of various propulsion system for 4-passenger electric vehicles are compared. These systems comprise the electric motor and the required speed reducing transmission to obtain the appropriate speed at the wheel. Three types of motors, dc synchronous, and squirrel-cage were considered at 6000 ycm and 24 000 rpm for a peak power of 40 kW. Two types of gearing selected were a single speed differential and a differential with a differential with a 4-speed gearbox. Only components that were readily realizable within present state-of-the-art were considered.
NASA Astrophysics Data System (ADS)
Levi, E.
1983-05-01
The efficiency, weight, and cost of various propulsion system for 4-passenger electric vehicles are compared. These systems comprise the electric motor and the required speed reducing transmission to obtain the appropriate speed at the wheel. Three types of motors, dc synchronous, and squirrel-cage were considered at 6000 ycm and 24 000 rpm for a peak power of 40 kW. Two types of gearing selected were a single speed differential and a differential with a differential with a 4-speed gearbox. Only components that were readily realizable within present state-of-the-art were considered.
Electrical Stimulation of the Midbrain to Promote Recovery from Traumatic Forebrain Injury
2009-04-01
the beneficial trophic effects . The cylinder test, taken to indicate somatosensory function, gave highly variable results. We were unable to see a...learning in a hidden-platform water maze test was speeded by both dorsal and median raphe stimulation. Rearing movements in a transparent cylinder ...sensorimotor performance) were normalized by the median but not the dorsal raphe. One adverse effect was seen: the dorsal but not the median raphe reduced
Avila, Irene; Lin, Shih-Chieh
2014-03-01
The survival of animals depends critically on prioritizing responses to motivationally salient stimuli. While it is generally believed that motivational salience increases decision speed, the quantitative relationship between motivational salience and decision speed, measured by reaction time (RT), remains unclear. Here we show that the neural correlate of motivational salience in the basal forebrain (BF), defined independently of RT, is coupled with faster and also more precise decision speed. In rats performing a reward-biased simple RT task, motivational salience was encoded by BF bursting response that occurred before RT. We found that faster RTs were tightly coupled with stronger BF motivational salience signals. Furthermore, the fraction of RT variability reflecting the contribution of intrinsic noise in the decision-making process was actively suppressed in faster RT distributions with stronger BF motivational salience signals. Artificially augmenting the BF motivational salience signal via electrical stimulation led to faster and more precise RTs and supports a causal relationship. Together, these results not only describe for the first time, to our knowledge, the quantitative relationship between motivational salience and faster decision speed, they also reveal the quantitative coupling relationship between motivational salience and more precise RT. Our results further establish the existence of an early and previously unrecognized step in the decision-making process that determines both the RT speed and variability of the entire decision-making process and suggest that this novel decision step is dictated largely by the BF motivational salience signal. Finally, our study raises the hypothesis that the dysregulation of decision speed in conditions such as depression, schizophrenia, and cognitive aging may result from the functional impairment of the motivational salience signal encoded by the poorly understood noncholinergic BF neurons.
Avila, Irene; Lin, Shih-Chieh
2014-01-01
The survival of animals depends critically on prioritizing responses to motivationally salient stimuli. While it is generally believed that motivational salience increases decision speed, the quantitative relationship between motivational salience and decision speed, measured by reaction time (RT), remains unclear. Here we show that the neural correlate of motivational salience in the basal forebrain (BF), defined independently of RT, is coupled with faster and also more precise decision speed. In rats performing a reward-biased simple RT task, motivational salience was encoded by BF bursting response that occurred before RT. We found that faster RTs were tightly coupled with stronger BF motivational salience signals. Furthermore, the fraction of RT variability reflecting the contribution of intrinsic noise in the decision-making process was actively suppressed in faster RT distributions with stronger BF motivational salience signals. Artificially augmenting the BF motivational salience signal via electrical stimulation led to faster and more precise RTs and supports a causal relationship. Together, these results not only describe for the first time, to our knowledge, the quantitative relationship between motivational salience and faster decision speed, they also reveal the quantitative coupling relationship between motivational salience and more precise RT. Our results further establish the existence of an early and previously unrecognized step in the decision-making process that determines both the RT speed and variability of the entire decision-making process and suggest that this novel decision step is dictated largely by the BF motivational salience signal. Finally, our study raises the hypothesis that the dysregulation of decision speed in conditions such as depression, schizophrenia, and cognitive aging may result from the functional impairment of the motivational salience signal encoded by the poorly understood noncholinergic BF neurons. PMID:24642480
Optical Polarization and Spectral Variability in the M87 Jet
NASA Technical Reports Server (NTRS)
Perlman, Eric S.; Adams, Steven C.; Cara, Mihai; Bourque, Matthew; Harris, D. E.; Madrid, Juan P.; Simons, Raymond C.; Clausen-Brown, Eric; Cheung, C. C.; Stawarz, Lukasz;
2011-01-01
During the last decade, M87's jet has been the site of an extraordinary variability event, with one knot (HST-1) increasing by over a factor 100 in brightness. Variability was also seen on timescales of months in the nuclear flux. Here we discuss the optical-UV polarization and spectral variability of these components, which show vastly different behavior. HST -1 shows a highly significant correlation between flux and polarization, with P increasing from approx 20% at minimum to > 40% at maximum, while the orientation of its electric vector stayed constant. HST-l's optical-UV spectrum is very hard (alpha(sub uv-0) approx. 0.5, F(sub v) varies as (v(exp -alpha)), and displays "hard lags" during epochs 2004.9-2005.5, including the peak of the flare, with soft lags at later epochs. We interpret the behavior of HST-1 as enhanced particle acceleration in a shock, with cooling from both particle aging and the relaxation of the compression. We set 2alpha upper limits of 0.5 delta parsecs and 1.02c on the size and advance speed of the flaring region. The slight deviation of the electric vector orientation from the jet PA, makes it likely that on smaller scales the flaring region has either a double or twisted structure. By contrast, the nucleus displays much more rapid variability, with a highly variable electric vector orientation and 'looping' in the (I, P) plane. The nucleus has a much steeper spectrum ((alpha(sub uv-0) approx. 1.5) but does not show UV-optical spectral variability. Its behavior can be interpreted as either a helical distortion to a steady jet or a shock propagating through a helical jet.
Control system design for the MOD-5A 7.3 mW wind turbine generator
NASA Technical Reports Server (NTRS)
Barton, Robert S.; Hosp, Theodore J.; Schanzenbach, George P.
1995-01-01
This paper provides descriptions of the requirements analysis, hardware development and software development phases of the Control System design for the MOD-5A 7.3 mW Wind Turbine Generator. The system, designed by General Electric Company, Advanced Energy Programs Department, under contract DEN 3-153 with NASA Lewis Research Center and DOE, provides real time regulation of rotor speed by control of both generator torque and rotor torque. A variable speed generator system is used to provide both airgap torque control and reactive power control. The wind rotor is designed with segmented ailerons which are positioned to control blade torque. The central component of the control system, selected early in the design process, is a programmable controller used for sequencing, alarm monitoring, communication, and real time control. Development of requirements for use of aileron controlled blades and a variable speed generator required an analytical simulation that combined drivetrain, tower and blade elastic modes with wind disturbances and control behavior. An orderly two phase plan was used for controller software development. A microcomputer based turbine simulator was used to facilitate hardware and software integration and test.
Kenyon, Brian J; Van Zyl, Ian; Louie, Kenneth G
2005-08-01
The high-speed high-torque (electric motor) handpiece is becoming more popular in dental offices and laboratories in the United States. It is reported to cut more precisely and to assist in the creation of finer margins that enhance cavity preparations. The authors conducted an in vitro study to compare the quality of cavity preparations fabricated with a high-speed high-torque (electric motor) handpiece and a high-speed low-torque (air turbine) handpiece. Eighty-six dental students each cut two Class I preparations, one with an air turbine handpiece and the other with an electric motor high-speed handpiece. The authors asked the students to cut each preparation accurately to a circular outline and to establish a flat pulpal floor with 1.5 millimeters' depth, 90-degree exit angles, parallel vertical walls and sharp internal line angles, as well as to refine the preparation to achieve flat, smooth walls with a well-defined cavosurface margin. A single faculty member scored the preparations for criteria and refinement using a nine-point scale (range, 1-9). The authors analyzed the data statistically using paired t tests. In preparation criteria, the electric motor high-speed handpiece had a higher average grade than did the air turbine handpiece (5.07 and 4.90, respectively). For refinement, the average grade for the air turbine high-speed handpiece was greater than that for the electric motor high-speed handpiece (5.72 and 5.52, respectively). The differences were not statistically significant. The electric motor high-speed handpiece performed as well as, but not better than, the air turbine handpiece in the fabrication of high-quality cavity preparations.
Research on motor rotational speed measurement in regenerative braking system of electric vehicle
NASA Astrophysics Data System (ADS)
Pan, Chaofeng; Chen, Liao; Chen, Long; Jiang, Haobin; Li, Zhongxing; Wang, Shaohua
2016-01-01
Rotational speed signals acquisition and processing techniques are widely used in rotational machinery. In order to realized precise and real-time control of motor drive and regenerative braking process, rotational speed measurement techniques are needed in electric vehicles. Obtaining accurate motor rotational speed signal will contribute to the regenerative braking force control steadily and realized higher energy recovery rate. This paper aims to develop a method that provides instantaneous speed information in the form of motor rotation. It addresses principles of motor rotational speed measurement in the regenerative braking systems of electric vehicle firstly. The paper then presents ideal and actual Hall position sensor signals characteristics, the relation between the motor rotational speed and the Hall position sensor signals is revealed. Finally, Hall position sensor signals conditioning and processing circuit and program for motor rotational speed measurement have been carried out based on measurement error analysis.
Electromagnetic interference in electrical systems of motor vehicles
NASA Astrophysics Data System (ADS)
Dziubiński, M.; Drozd, A.; Adamiec, M.; Siemionek, E.
2016-09-01
Electronic ignition system affects the electronic equipment of the vehicle by electric and magnetic fields. The measurement of radio electromagnetic interference originating from the ignition system affecting the audiovisual test bench was carried out with a variable speed of the ignition system. The paper presents measurements of radio electromagnetic interference in automobiles. In order to determine the level of electromagnetic interference, the audiovisual test bench was equipped with a set of meters for power consumption and assessment of the level of electromagnetic interference. Measurements of the electromagnetic interference level within the audiovisual system were performed on an experimental test bench consisting of the ignition system, starting system and charging system with an alternator and regulator.
Flow processes in electric discharge drivers
NASA Technical Reports Server (NTRS)
Baganoff, D.
1975-01-01
The performance of an electric discharge shock tube is discussed from the point of view that the conditions at the sonic station are the primary controlling variables (likewise in comparing designs), and that the analysis of the flow on either side of the sonic station should be done separately. The importance of considering mass-flow rate in matching a given driver design to the downstream flow required for a particular shock-wave speed is stressed. It is shown that a driver based on the principle of liquid injection (of H2) is superior to one based on the Ludwieg tube, because of the greater mass-flow rate and the absence of a massive diaphragm.
Preliminary power train design for a state-of-the-art electric vehicle
NASA Technical Reports Server (NTRS)
Mighdoll, P.; Hahn, W. F.
1978-01-01
Power train designs which can be implemented within the current state-of-the-art were identified by means of a review of existing electric vehicles and suitable off-the-shelf components. The affect of various motor/transmission combinations on vehicle range over the SAE J227a schedule D cycle was evaluated. The selected, state-of-the-art power train employs a dc series wound motor, SCR controller, variable speed transmission, regenerative braking, drum brakes and radial ply tires. Vehicle range over the SAE cycle can be extended by approximately 20% by the further development of separately excited, shunt wound DC motors and electrical controllers. Approaches which could improve overall power train efficiency, such as AC motor systems, are identified. However, future emphasis should remain on batteries, tires and lightweight structures if substantial range improvements are to be achieved.
Design study of flat belt CVT for electric vehicles
NASA Technical Reports Server (NTRS)
Kumm, E. L.
1980-01-01
A continuously variable transmission (CVT) was studied, using a novel flat belt pulley arrangement which couples the high speed output shaft of an energy storage flywheel to the drive train of an electric vehicle. A specific CVT arrangement was recommended and its components were selected and sized, based on the design requirements of a 1700 KG vehicle. A design layout was prepared and engineering calculations made of component efficiencies and operating life. The transmission efficiency was calculated to be significantly over 90% with the expected vehicle operation. A design consistent with automotive practice for low future production costs was considered, together with maintainability. The technology advancements required to develop the flat belt CVT were identified and an estimate was made of how the size of the flat belt CVT scales to larger and smaller design output torques. The suitability of the flat belt CVT for alternate application to an electric vehicle powered by an electric motor without flywheel and to a hybrid electric vehicle powered by an electric motor with an internal combustion engine was studied.
NASA Technical Reports Server (NTRS)
Suder, Kenneth L.; Prahst, Patricia S.; Thorp, Scott A.
2011-01-01
NASA s Fundamental Aeronautics Program is investigating turbine-based combined cycle (TBCC) propulsion systems for access to space because it provides the potential for aircraft-like, space-launch operations that may significantly reduce launch costs and improve safety. To this end, National Aeronautics and Space Administration (NASA) and General Electric (GE) teamed to design a Mach 4 variable cycle turbofan/ramjet engine for access to space. To enable the wide operating range of a Mach 4+ variable cycle turbofan ramjet required the development of a unique fan stage design capable of multi-point operation to accommodate variations in bypass ratio (10 ), fan speed (7 ), inlet mass flow (3.5 ), inlet pressure (8 ), and inlet temperature (3 ). In this paper, NASA has set out to characterize a TBCC engine fan stage aerodynamic performance and stability limits over a wide operating range including power-on and hypersonic-unique "windmill" operation. Herein, we will present the fan stage design, and the experimental test results of the fan stage operating from 15 to 100 percent corrected design speed. Whereas, in the companion paper, we will provide an assessment of NASA s APNASA code s ability to predict the fan stage performance and operability over a wide range of speed and bypass ratio.
Evaluation of sounds for hybrid and electric vehicles operating at low speed
DOT National Transportation Integrated Search
2012-10-22
Electric vehicles (EV) and hybrid electric vehicles (HEVs), operated at low speeds may reduce auditory cues used by pedestrians to assess the state of nearby traffic creating a safety issue. This field study compares the auditory detectability of num...
NASA Astrophysics Data System (ADS)
Qiang, Jiang; Meng-wei, Liao; Ming-jie, Luo
2018-03-01
Abstract.The control performance of Permanent Magnet Synchronous Motor will be affected by the fluctuation or changes of mechanical parameters when PMSM is applied as driving motor in actual electric vehicle,and external disturbance would influence control robustness.To improve control dynamic quality and robustness of PMSM speed control system, a new second order integral sliding mode control algorithm is introduced into PMSM vector control.The simulation results show that, compared with the traditional PID control,the modified control scheme optimized has better control precision and dynamic response ability and perform better with a stronger robustness facing external disturbance,it can effectively solve the traditional sliding mode variable structure control chattering problems as well.
Dynamic Time Expansion and Compression Using Nonlinear Waveguides
Findikoglu, Alp T.; Hahn, Sangkoo F.; Jia, Quanxi
2004-06-22
Dynamic time expansion or compression of a small amplitude input signal generated with an initial scale is performed using a nonlinear waveguide. A nonlinear waveguide having a variable refractive index is connected to a bias voltage source having a bias signal amplitude that is large relative to the input signal to vary the reflective index and concomitant speed of propagation of the nonlinear waveguide and an electrical circuit for applying the small amplitude signal and the large amplitude bias signal simultaneously to the nonlinear waveguide. The large amplitude bias signal with the input signal alters the speed of propagation of the small-amplitude signal with time in the nonlinear waveguide to expand or contract the initial time scale of the small-amplitude input signal.
Dynamic time expansion and compression using nonlinear waveguides
Findikoglu, Alp T [Los Alamos, NM; Hahn, Sangkoo F [Los Alamos, NM; Jia, Quanxi [Los Alamos, NM
2004-06-22
Dynamic time expansion or compression of a small-amplitude input signal generated with an initial scale is performed using a nonlinear waveguide. A nonlinear waveguide having a variable refractive index is connected to a bias voltage source having a bias signal amplitude that is large relative to the input signal to vary the reflective index and concomitant speed of propagation of the nonlinear waveguide and an electrical circuit for applying the small-amplitude signal and the large amplitude bias signal simultaneously to the nonlinear waveguide. The large amplitude bias signal with the input signal alters the speed of propagation of the small-amplitude signal with time in the nonlinear waveguide to expand or contract the initial time scale of the small-amplitude input signal.
Note: A kinematic shaker system for high amplitude, low frequency vibration testing
NASA Astrophysics Data System (ADS)
Swaminathan, Anand; Poese, Matthew E.; Smith, Robert W. M.; Garrett, Steven L.
2015-11-01
This note describes a shaker system capable of high peak-velocity, large amplitude, low frequency, near-sinusoidal excitation that has been constructed and employed in experiments on the inhibition of Rayleigh-Bénard convection using acceleration modulation. The production of high peak-velocity vibration is of interest in parametric excitation problems of this type and reaches beyond the capabilities of standard electromagnetic shakers. The shaker system described employs a kinematic linkage to two counter-rotating flywheels, driven by a variable-speed electrical motor, producing peak-to-peak displacements of 15.24 cm to a platform mounted on two guide rails. In operation, this shaker has been demonstrated to produce peak speeds of up to 3.7 m/s without failure.
NASA Technical Reports Server (NTRS)
Ingle, B. D.; Ryan, J. P.
1972-01-01
A design for a solid-state parasitic speed controller using digital logic was analyzed. Parasitic speed controllers are used in space power electrical generating systems to control the speed of turbine-driven alternators within specified limits. The analysis included the performance characteristics of the speed controller and the generation of timing functions. The speed controller using digital logic applies step loads to the alternator. The step loads conduct for a full half wave starting at either zero or 180 electrical degrees.
NASA Astrophysics Data System (ADS)
Ramesh, S.; Ashok, S. Denis; Nagaraj, Shanmukha; Reddy, M. Lohith Kumar; Naulakha, Niranjan Kumar; Adithyakumar, C. R.
2018-02-01
At present, energy consumption is to such an extent that if the same trend goes on then in the future at some point of time, the energy sources will all be exploited. Energy conservation in a hydraulic power pack refers to the reduction in the energy consumed by the power pack. Many experiments have been conducted to reduce the energy consumption and one of those methods is by introducing a variable frequency drive. The main objective of the present work is to reduce the energy consumed by the hydraulic power pack using variable frequency drive. Variable Frequency drive is used to vary the speed of the motor by receiving electrical signals from the pressure switch which acts as the feedback system. Using this concept, the speed of the motor can be varied between the specified limits. In the present work, a basic hydraulic power pack and a variable frequency drive based hydraulic power pack were designed and compared both of them with the results obtained. The comparison was based on the power consumed, rise in temperature, noise levels, and flow of oil through pressure relief valve, total oil flow during loading cycle. By comparing both the circuits, it is found that for the proposed system, consumption of power reduces by 78.4% and is as powerful as the present system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larsen, Peter H.; LaCommare, Kristina H.; Eto, Joseph H.
Here, this study examines the relationship between annual changes in electricity reliability reported by a large cross-section of U.S. electricity distribution utilities over a period of 13 years and a broad set of potential explanatory variables, including weather and utility characteristics. We find statistically significant correlations between the average number of power interruptions experienced annually and above average wind speeds, precipitation, lightning strikes, and a measure of population density: customers per line mile. We also find significant relationships between the average number of minutes of power interruptions experienced and above average wind speeds, precipitation, cooling degree-days, and one strategy usedmore » to mitigate the impacts of severe weather: the amount of underground transmission and distribution line miles. Perhaps most importantly, we find a significant time trend of increasing annual average number of minutes of power interruptions over time—especially when interruptions associated with extreme weather are included. Lastly, the research method described in this analysis can provide a basis for future efforts to project long-term trends in reliability and the associated benefits of strategies to improve grid resiliency to severe weather—both in the U.S. and abroad.« less
Long-term variability of wind patterns at hub-height over Texas
NASA Astrophysics Data System (ADS)
Jung, J.; Jeon, W.; Choi, Y.; Souri, A.
2017-12-01
Wind energy is getting more attention because of its environmentally friendly attributes. Texas is a state with significant capacity and number of wind turbines. Wind power generation is significantly affected by wind patterns, and it is important to understand this seasonal and decadal variability for long-term power generation from wind turbines. This study focused on the trends of changes in wind pattern and its strength at two hub-heights (80 m and 110 m) over 30-years (1986 to 2015). We only analyzed summer data(June to September) because of concentrated electricity usage in Texas. We extracted hub-height wind data (U and V components) from the three-hourly National Centers for Environmental Prediction-North American Regional Reanalysis (NCEP-NARR) and classified wind patterns properly by using nonhierarchical K-means method. Hub-height wind patterns in summer seasons of 1986 to 2015 were classified in six classes at day and seven classes at night. Mean wind speed was 4.6 ms-1 at day and 5.4 ms-1 at night, but showed large variability in time and space. We combined each cluster's frequencies and wind speed tendencies with large scale atmospheric circulation features and quantified the amount of wind power generation.
Longrigg, Paul
1987-01-01
The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.
An automatically-shifted two-speed transaxle system for an electric vehicle
NASA Technical Reports Server (NTRS)
Gordon, H. S.; Hassman, G. V.
1980-01-01
An automatic shifting scheme for a two speed transaxle for use with an electric vehicle propulsion system is described. The transaxle system was to be installed in an instrumented laboratory propulsion system of an ac electric vehicle drive train. The transaxle which had been fabricated is also described.
Electric field measurements from Halley, Antarctica
NASA Astrophysics Data System (ADS)
Nicoll, Keri; Harrison, R. Giles
2016-04-01
Antarctica is a unique location for the study of atmospheric electricity. Not only is it one of the most pollutant free places on Earth, but its proximity to the south magnetic pole means that it is an ideal location to study the effects of solar variability on the atmospheric electric field. This is due to the reduced shielding effect of the geomagnetic field at the poles which leads to a greater flux of incoming Galactic Cosmic Rays (GCRs) as well as an increased probability of energetic particle precipitation from SEPs and relativistic electrons. To investigate such effects, two electric field mills of different design were installed at the British Antarctic Survey Halley base in February 2015 (75. 58 degrees south, 26.66 degrees west). Halley is situated on the Brunt Ice Shelf in the south east of the Weddell Sea and has snow cover all year round. Preliminary analysis has focused on selection of fair weather criteria using wind speed and visibility measurements which are vital to assess the effects of falling snow, blowing snow and freezing fog on the electric field measurements. When the effects of such adverse weather conditions are removed clear evidence of the characteristic Carnegie Curve diurnal cycle exists in the Halley electric field measurements (with a mean value of 50V/m and showing a 40% peak to peak variation in comparison to the 34% variation in the Carnegie data). Since the Carnegie Curve represents the variation in thunderstorm activity across the Earth, its presence in the Halley data confirms the presence of the global atmospheric electric circuit signal at Halley. The work presented here will discuss the details of the Halley electric field dataset, including the variability in the fair weather measurements, with a particular focus on magnetic field fluctuations.
Powertrain system for a hybrid electric vehicle
Reed, Jr., Richard G.; Boberg, Evan S.; Lawrie, Robert E.; Castaing, Francois J.
1999-08-31
A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.
Powertrain system for a hybrid electric vehicle
Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.
1999-08-31
A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.
NASA Astrophysics Data System (ADS)
Kedous-Lebouc, A.; Messal, O.; Youmssi, A.
2017-03-01
Mechanical punching of electrical steels causes a degradation of their magnetic characteristics which can extend several millimeters from the cut edge. So, in the field of industrial applications, particularly that of small electrical machines, the stator core made of rigid and thin teeth would be subject to more losses. Thus, this topic of the effect of punching has to be submitted to further deep characterization and development in order to give some insight into the different mechanisms. In this framework, this paper evaluates the combined effect of punching and frequency on the magnetization curve and iron losses in thin SiFe and CoFe soft magnetic sheets. These alloys are typically suitable for the manufacture of high-speed electrical machines used in on board applications (aircraft power generators, automotive, etc). Two SiFe alloys and a CoFe alloy have been investigated. First, different rectangular samples of variable width (15, 10, 5, 3 mm) have been industrially punched. Then, a dedicated magnetic characterization has been made, using basically a mini-Epstein frame. Measurements have been performed from 50 Hz to 1 kHz and from 0.3 T to near saturation. Both rolling and transverse directions have been considered. Finally, a first attempt to predict the degradation due to the punching is presented. A useful description of the magnetic permeability as a function of B and f is given and the degradation parameters are estimated based on the knowledge of the reference permeability.
Fixed-axis electric sail deployment dynamics analysis using hub-mounted momentum control
NASA Astrophysics Data System (ADS)
Fulton, JoAnna; Schaub, Hanspeter
2018-03-01
The deployment dynamics of a spin stabilized electric sail (E-sail) with a hub-mounted control actuator are investigated. Both radial and tangential deployment mechanisms are considered to take the electric sail from a post-launch stowed configuration to a fully deployed configuration. The tangential configuration assumes the multi-kilometer tethers are wound up on the exterior of the spacecraft hub, similar to yo-yo despinner configurations. The deployment speed is controlled through the hub rate. The radial deployment configuration assumes each tether is on its own spool. Here both the hub and spool rate are control variables. The sensitivity of the deployment behavior to E-sail length, maximum rate and tension parameters is investigated. A constant hub rate deployment is compared to a time varying hub rate that maintains a constant tether tension condition. The deployment time can be reduced by a factor of 2 or more by using a tension controlled deployment configuration.
Software and hardware complex for research and management of the separation process
NASA Astrophysics Data System (ADS)
Borisov, A. P.
2018-01-01
The article is devoted to the development of a program for studying the operation of an asynchronous electric drive using vector-algorithmic switching of windings, as well as the development of a hardware-software complex for controlling parameters and controlling the speed of rotation of an asynchronous electric drive for investigating the operation of a cyclone. To study the operation of an asynchronous electric drive, a method was used in which the average value of flux linkage is found and a method for vector-algorithmic calculation of the power and electromagnetic moment of an asynchronous electric drive feeding from a single-phase network is developed, with vector-algorithmic commutation, and software for calculating parameters. The software part of the complex allows to regulate the speed of rotation of the motor by vector-algorithmic switching of transistors or, using pulse-width modulation (PWM), set any engine speed. Also sensors are connected to the hardware-software complex at the inlet and outlet of the cyclone. The developed cyclone with an inserted complex allows to receive high efficiency of product separation at various entrance speeds. At an inlet air speed of 18 m / s, the cyclone’s maximum efficiency is achieved. For this, it is necessary to provide the rotational speed of an asynchronous electric drive with a frequency of 45 Hz.
Erdman, William L.; Lettenmaier, Terry M.
2006-07-04
An approach to wind farm design using variable speed wind turbines with low pulse number electrical output. The output of multiple wind turbines are aggregated to create a high pulse number electrical output at a point of common coupling with a utility grid network. Power quality at each individual wind turbine falls short of utility standards, but the aggregated output at the point of common coupling is within acceptable tolerances for utility power quality. The approach for aggregating low pulse number electrical output from multiple wind turbines relies upon a pad mounted transformer at each wind turbine that performs phase multiplication on the output of each wind turbine. Phase multiplication converts a modified square wave from the wind turbine into a 6 pulse output. Phase shifting of the 6 pulse output from each wind turbine allows the aggregated output of multiple wind turbines to be a 24 pulse approximation of a sine wave. Additional filtering and VAR control is embedded within the wind farm to take advantage of the wind farm's electrical impedence characteristics to further enhance power quality at the point of common coupling.
The conical pendulum: the tethered aeroplane
NASA Astrophysics Data System (ADS)
Mazza, Anthony P.; Metcalf, William E.; Cinson, Anthony D.; Lynch, John J.
2007-01-01
The introductory physics lab curriculum usually has one experiment on uniform circular motion (UCM). Physics departments typically have several variable-speed rotators in storage that, if they work, no longer work well. Replacing these rotators with new ones is costly, especially when they are only used once a year. This article describes how an inexpensive (ap10) tethered aeroplane, powered by a small electric motor, can be used to study UCM. The aeroplane is easy to see and entertaining to watch. For a given string length and air speed, a tethered aeroplane quickly finds a stable, horizontal, circular orbit. Using a digital video (DV) camcorder, VideoPoint Capture, QuickTime player, metre sticks and a stopwatch, data on the aeroplane's motion were obtained. The length of the string was varied from 120 to 340 cm while the air speed ranged from 200 to 480 cm s-1. For each string length and air speed, the period of the orbit and the diameter of the path were carefully measured. Theoretical values of path radii were then calculated using Newton's second law. The agreement between experiment and theory was usually better than 2%.
NASA Astrophysics Data System (ADS)
Pezzani, Carlos M.; Bossio, José M.; Castellino, Ariel M.; Bossio, Guillermo R.; De Angelo, Cristian H.
2017-02-01
Condition monitoring in permanent magnet synchronous machines has gained interest due to the increasing use in applications such as electric traction and power generation. Particularly in wind power generation, non-invasive condition monitoring techniques are of great importance. Usually, in such applications the access to the generator is complex and costly, while unexpected breakdowns results in high repair costs. This paper presents a technique which allows using vibration analysis for bearing fault detection in permanent magnet synchronous generators used in wind turbines. Given that in wind power applications the generator rotational speed may vary during normal operation, it is necessary to use special sampling techniques to apply spectral analysis of mechanical vibrations. In this work, a resampling technique based on order tracking without measuring the rotor position is proposed. To synchronize sampling with rotor position, an estimation of the rotor position obtained from the angle of the voltage vector is proposed. This angle is obtained from a phase-locked loop synchronized with the generator voltages. The proposed strategy is validated by laboratory experimental results obtained from a permanent magnet synchronous generator. Results with single point defects in the outer race of a bearing under variable speed and load conditions are presented.
Hydroelectric power plant with variable flow on drinking water adduction
NASA Astrophysics Data System (ADS)
Deaconu, S. I.; Babău, R.; Popa, G. N.; Gherman, P. L.
2018-01-01
The water feeding system of the urban and rural localities is mainly collected with feed pipes which can have different lengths and different levels. Before using, water must be treated. Since the treatment take place in the tanks, the pressure in the inlet of the station must be diminished. Many times the pressure must be reduced with 5-15 Barr and this is possible using valves, cavils, and so on. The flow capacity of the water consumption is highly fluctuating during one day, depending on the season, etc. This paper presents a method to use the hydroelectric potential of the feed pipes using a hydraulic turbine instead of the classical methods for decreasing the pressure. To avoid the dissipation of water and a good behavior of the power parameters it is used an asynchronous generator (AG) which is coupled at the electrical distribution network through a static frequency converter (SFC). The turbine has a simple structure without the classical devices (used to regulate the turbine blades). The speed of rotation is variable, depending on the necessary flow capacity in the outlet of the treatment station. The most important element of the automation is the static frequency converter (SFC) which allows speeds between 0 and 1.5 of the rated speed of rotation and the flow capacity varies accordingly with it.
Examining Impulse-Variability in Kicking.
Chappell, Andrew; Molina, Sergio L; McKibben, Jonathon; Stodden, David F
2016-07-01
This study examined variability in kicking speed and spatial accuracy to test the impulse-variability theory prediction of an inverted-U function and the speed-accuracy trade-off. Twenty-eight 18- to 25-year-old adults kicked a playground ball at various percentages (50-100%) of their maximum speed at a wall target. Speed variability and spatial error were analyzed using repeated-measures ANOVA with built-in polynomial contrasts. Results indicated a significant inverse linear trajectory for speed variability (p < .001, η2= .345) where 50% and 60% maximum speed had significantly higher variability than the 100% condition. A significant quadratic fit was found for spatial error scores of mean radial error (p < .0001, η2 = .474) and subject-centroid radial error (p < .0001, η2 = .453). Findings suggest variability and accuracy of multijoint, ballistic skill performance may not follow the general principles of impulse-variability theory or the speed-accuracy trade-off.
System and method to determine electric motor efficiency nonintrusively
Lu, Bin [Kenosha, WI; Habetler, Thomas G [Snellville, GA; Harley, Ronald G [Lawrenceville, GA
2011-08-30
A system and method for nonintrusively determining electric motor efficiency includes a processor programed to, while the motor is in operation, determine a plurality of stator input currents, electrical input data, a rotor speed, a value of stator resistance, and an efficiency of the motor based on the determined rotor speed, the value of stator resistance, the plurality of stator input currents, and the electrical input data. The determination of the rotor speed is based on one of the input power and the plurality of stator input currents. The determination of the value of the stator resistance is based on at least one of a horsepower rating and a combination of the plurality of stator input currents and the electrical input data. The electrical input data includes at least one of an input power and a plurality of stator input voltages.
An examination of loads and responses of a wind turbine undergoing variable-speed operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, A.D.; Buhl, M.L. Jr.; Bir, G.S.
1996-11-01
The National Renewable Energy Laboratory has recently developed the ability to predict turbine loads and responses for machines undergoing variable-speed operation. The wind industry has debated the potential benefits of operating wind turbine sat variable speeds for some time. Turbine system dynamic responses (structural response, resonance, and component interactions) are an important consideration for variable-speed operation of wind turbines. The authors have implemented simple, variable-speed control algorithms for both the FAST and ADAMS dynamics codes. The control algorithm is a simple one, allowing the turbine to track the optimum power coefficient (C{sub p}). The objective of this paper is tomore » show turbine loads and responses for a particular two-bladed, teetering-hub, downwind turbine undergoing variable-speed operation. The authors examined the response of the machine to various turbulent wind inflow conditions. In addition, they compare the structural responses under fixed-speed and variable-speed operation. For this paper, they restrict their comparisons to those wind-speed ranges for which limiting power by some additional control strategy (blade pitch or aileron control, for example) is not necessary. The objective here is to develop a basic understanding of the differences in loads and responses between the fixed-speed and variable-speed operation of this wind turbine configuration.« less
NASA Astrophysics Data System (ADS)
Lee, Dae-Dong; Kang, Hyun-Il; Shim, Jae-Myung
2015-09-01
Electric brake systems are used in high-speed trains to brake trains by converting the kinetic energy of a railway vehicle to electric energy. The electric brake system consists of a regenerative braking system and a dynamic braking system. When the electric energy generated during the dynamic braking process is changed to heat through the braking resistor, the braking resistor can overheat; thus, failures can occur to the motor block. In this paper, a braking resistor for a high-speed train was used to perform thermal analyses and tests, and the results were analyzed. The analyzed data were used to estimate the dependence of the brake currents and the temperature rises on speed changes up to 300 km/h, at which a test could not be performed.
2009-07-22
NASA Research Park (NRP) Moffett Field, California: Timothy Collins, President and Chairman, KleenSpeed Technologies, Inc. and Captain Andrew Butte, rescue helicopter pilot and former Army Aviator, with Butte's 1999 SWIFT. ChampCar Butte has given his racecar to KleenSpeed for conversion to electric. KleenSpeed is an advanced R&D firm focusing on scalable electric propulsion systems for transportation.
Phase change water processing for Space Station
NASA Technical Reports Server (NTRS)
Zdankiewicz, E. M.; Price, D. F.
1985-01-01
The use of a vapor compression distillation subsystem (VCDS) for water recovery on the Space Station is analyzed. The self-contained automated system can process waste water at a rate of 32.6 kg/day and requires only 115 W of electric power. The improvements in the mechanical components of VCDS are studied. The operation of VCDS in the normal mode is examined. The VCDS preprototype is evaluated based on water quality, water production rate, and specific energy. The relation between water production rate and fluids pump speed is investigated; it is concluded that a variable speed fluids pump will optimize water production. Components development and testing currently being conducted are described. The properties and operation of the proposed phase change water processing system for the Space Station, based on vapor compression distillation, are examined.
Simulation of demand management and grid balancing with electric vehicles
NASA Astrophysics Data System (ADS)
Druitt, James; Früh, Wolf-Gerrit
2012-10-01
This study investigates the potential role of electric vehicles in an electricity network with a high contribution from variable generation such as wind power. Electric vehicles are modelled to provide demand management through flexible charging requirements and energy balancing for the network. Balancing applications include both demand balancing and vehicle-to-grid discharging. This study is configured to represent the UK grid with balancing requirements derived from wind generation calculated from weather station wind speeds on the supply side and National Grid data from on the demand side. The simulation models 1000 individual vehicle entities to represent the behaviour of larger numbers of vehicles. A stochastic trip generation profile is used to generate realistic journey characteristics, whilst a market pricing model allows charging and balancing decisions to be based on realistic market price conditions. The simulation has been tested with wind generation capacities representing up to 30% of UK consumption. Results show significant improvements to load following conditions with the introduction of electric vehicles, suggesting that they could substantially facilitate the uptake of intermittent renewable generation. Electric vehicle owners would benefit from flexible charging and selling tariffs, with the majority of revenue derived from vehicle-to-grid participation in balancing markets.
NASA Astrophysics Data System (ADS)
Semay, Claude; Lo Bue, Francesco; Mélin, Soizic; Michel, Francis
2018-05-01
In 1849, Hippolyte Fizeau determined the speed of light in a famous experiment. The idea was to measure the time taken for a pulse of light to travel between an intense light source and a mirror about 8 km away. A rotating cogwheel with 720 notches, that could be rotated at a variable speed, was used to chop the light beam and determine the flight time. In 2017, physicists and technicians of the University of Mons in Belgium reproduced the experiment with modern devices to allow members of the public to measure the speed of light themselves. The light source used was a low power laser, and the cogwheel was replaced by an electrically driven chopper, but the general spirit of Fizeau’s experiment was preserved. The exhibition was organised in the belfry of Mons, a baroque-style building classified as a UNESCO World Heritage site. The solutions found for the main problems encountered are presented here to help colleagues intending to reproduce the experiment.
NASA Astrophysics Data System (ADS)
Sapundzhiev, M.; Evtimov, I.; Ivanov, R.
2017-10-01
The paper presents an upgraded methodology for determination of the electric motor power considering the time for acceleration. The influence of the speed factor of electric motor on the value of needed power at same acceleration time is studied. Some calculations on the basis of real vehicle were made. The numeric and graphical results are given. They show a decrease of needed power with the increase of the speed factor of motor, because the high speed factor allows the use of a larger range of the characteristic with the maximum power of the motor. An experimental verification of methodology was done.
Kalns, Ilmars
1981-01-01
Disclosed is a drive assembly (10) for an electrically powered vehicle (12). The assembly includes a transaxle (16) having a two-speed transmission (40) and a drive axle differential (46) disposed in a unitary housing assembly (38), an oil-cooled prime mover or electric motor (14) for driving the transmission input shaft (42), an adapter assembly (24) for supporting the prime mover on the transaxle housing assembly, and a hydraulic system (172) providing pressurized oil flow for cooling and lubricating the electric motor and transaxle and for operating a clutch (84) and a brake (86) in the transmission to shift between the two-speed ratios of the transmission. The adapter assembly allows the prime mover to be supported in several positions on the transaxle housing. The brake is spring-applied and locks the transmission in its low-speed ratio should the hydraulic system fail. The hydraulic system pump is driven by an electric motor (212) independent of the prime mover and transaxle.
Structural integrity of power generating speed bumps made of concrete foam composite
NASA Astrophysics Data System (ADS)
Syam, B.; Muttaqin, M.; Hastrino, D.; Sebayang, A.; Basuki, W. S.; Sabri, M.; Abda, S.
2018-02-01
In this paper concrete foam composite speed bumps were designed to generate electrical power by utilizing the movements of commuting vehicles on highways, streets, parking gates, and drive-thru station of fast food restaurants. The speed bumps were subjected to loadings generated by vehicles pass over the power generating mechanical system. In this paper, we mainly focus our discussion on the structural integrity of the speed bumps and discuss the electrical power generating speed bumps in another paper. One aspect of structural integrity is its ability to support designed loads without breaking and includes the study of past structural failures in order to prevent failures in future designs. The concrete foam composites were used for the speed bumps; the reinforcement materials are selected from empty fruit bunch of oil palm. In this study, the speed bump materials and structure were subjected to various tests to obtain its physical and mechanical properties. To analyze the structure stability of the speed bumps some models were produced and tested in our speed bump test station. We also conduct a FEM-based computer simulation to analyze stress responses of the speed bump structures. It was found that speed bump type 1 significantly reduced the radial voltage. In addition, the speed bump is equipped with a steel casing is also suitable for use as a component component in generating electrical energy.
NASA Technical Reports Server (NTRS)
Howard, Samuel
2012-01-01
A variable-speed power turbine concept is analyzed for rotordynamic feasibility in a Large Civil Tilt-Rotor (LCTR) class engine. Implementation of a variable-speed power turbine in a rotorcraft engine would enable high efficiency propulsion at the high forward velocities anticipated of large tilt-rotor vehicles. Therefore, rotordynamics is a critical issue for this engine concept. A preliminary feasibility study is presented herein to address this concern and identify if variable-speed is possible in a conceptual engine sized for the LCTR. The analysis considers critical speed placement in the operating speed envelope, stability analysis up to the maximum anticipated operating speed, and potential unbalance response amplitudes to determine that a variable-speed power turbine is likely to be challenging, but not impossible to achieve in a tilt-rotor propulsion engine.
Speed control variable rate irrigation
USDA-ARS?s Scientific Manuscript database
Speed control variable rate irrigation (VRI) is used to address within field variability by controlling a moving sprinkler’s travel speed to vary the application depth. Changes in speed are commonly practiced over areas that slope, pond or where soil texture is predominantly different. Dynamic presc...
Electric vehicle drive train with rollback detection and compensation
Konrad, C.E.
1994-12-27
An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared. 6 figures.
Electric vehicle drive train with rollback detection and compensation
Konrad, Charles E.
1994-01-01
An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared.
Quantifying a cellular automata simulation of electric vehicles
NASA Astrophysics Data System (ADS)
Hill, Graeme; Bell, Margaret; Blythe, Phil
2014-12-01
Within this work the Nagel-Schreckenberg (NS) cellular automata is used to simulate a basic cyclic road network. Results from SwitchEV, a real world Electric Vehicle trial which has collected more than two years of detailed electric vehicle data, are used to quantify the results of the NS automata, demonstrating similar power consumption behavior to that observed in the experimental results. In particular the efficiency of the electric vehicles reduces as the vehicle density increases, due in part to the reduced efficiency of EVs at low speeds, but also due to the energy consumption inherent in changing speeds. Further work shows the results from introducing spatially restricted speed restriction. In general it can be seen that induced congestion from spatially transient events propagates back through the road network and alters the energy and efficiency profile of the simulated vehicles, both before and after the speed restriction. Vehicles upstream from the restriction show a reduced energy usage and an increased efficiency, and vehicles downstream show an initial large increase in energy usage as they accelerate away from the speed restriction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munk, Jeffrey D; Odukomaiya, Adewale O; Gehl, Anthony C
2014-01-01
With the recent advancements in the application of variable-speed (VS) compressors to residential HVAC systems, opportunities are now available to size heat pumps (HPs) to more effectively meet heating and cooling loads in many of the climate zones in the US with limited use of inefficient resistance heat. This is in contrast to sizing guidance for traditional single-speed HPs that limits the ability to oversize with regard to cooling loads, because of risks of poor dehumidification during the cooling season and increased cycling losses. VS-drive HPs can often run at 30-40% of their rated cooling capacity to reduce cycling losses,more » and can adjust fan speed to provide better indoor humidity control. Detailed air-side performance data was collected on two VS-drive heat pumps installed in a single unoccupied research house in Knoxville, TN, a mixed-humid climate. One system provided space conditioning for the upstairs, while the other unit provided space conditioning for the downstairs. Occupancy was simulated by operating the lights, shower, appliances, other plug loads, etc. to simulate the sensible and latent loads imposed on the building space by internal electric loads and human occupants according to the Building America Research Benchmark (2008). The seasonal efficiency and energy use of the units are calculated. Annual energy use is compared to that of the single speed minimum efficiency HPs tested in the same house previously. Sizing of the units relative to the measured building load and manual J design load calculations is examined. The impact of the unit sizing with regards to indoor comfort is also evaluated.« less
Cruz, Antonio M; Vidondo, Beatriz; Ramseyer, Alessandra A; Maninchedda, Ugo E
2018-02-01
OBJECTIVE To assess effects of speed on kinematic variables measured by use of extremity-mounted inertial measurement units (IMUs) in nonlame horses performing controlled exercise on a treadmill. ANIMALS 10 nonlame horses. PROCEDURES 6 IMUs were attached at predetermined locations on 10 nonlame Franches Montagnes horses. Data were collected in triplicate during trotting at 3.33 and 3.88 m/s on a high-speed treadmill. Thirty-three selected kinematic variables were analyzed. Repeated-measures ANOVA was used to assess the effect of speed. RESULTS Significant differences between the 2 speeds were detected for most temporal (11/14) and spatial (12/19) variables. The observed spatial and temporal changes would translate into a gait for the higher speed characterized by increased stride length, protraction and retraction, flexion and extension, mediolateral movement of the tibia, and symmetry, but with similar temporal variables and a reduction in stride duration. However, even though the tibia coronal range of motion was significantly different between speeds, the high degree of variability raised concerns about whether these changes were clinically relevant. For some variables, the lower trotting speed apparently was associated with more variability than was the higher trotting speed. CONCLUSIONS AND CLINICAL RELEVANCE At a higher trotting speed, horses moved in the same manner (eg, the temporal events investigated occurred at the same relative time within the stride). However, from a spatial perspective, horses moved with greater action of the segments evaluated. The detected changes in kinematic variables indicated that trotting speed should be controlled or kept constant during gait evaluation.
Optimizing Aggregation Scenarios for Integrating Renewable Energy into the U.S. Electric Grid
NASA Astrophysics Data System (ADS)
Corcoran, B. A.; Jacobson, M. Z.
2010-12-01
This study is an analysis of 2006 and 2007 electric load data, wind speed and solar irradiance data, and existing hydroelectric, geothermal, and other power plant data to quantify benefits of aggregating clean electric power from various Federal Energy Regulatory Commission (FERC) regions in the contiguous United States. First, various time series, statistics, and probability methods are applied to the electric load data to determine if there are any desirable demand-side results—specifically reducing variability and/or coincidence of peak events, which could reduce the amount of required carbon-based generators—in combining the electricity demands from geographically and temporally diverse areas. Second, an optimization algorithm is applied to determine the least-cost portfolio of energy resources to meet the electric load for a range of renewable portfolio standards (RPS’s) for each FERC region and for various aggregation scenarios. Finally, the installed capacities, ramp rates, standard deviation, and corresponding generator requirements from these optimization test runs are compared against the transmission requirements to determine the most economical organizational structure of the contiguous U.S. electric grid. Ideally, results from this study will help to justify and identify a possible structure of a federal RPS and offer insight into how to best organize regions for transmission planning.
Role of optical computers in aeronautical control applications
NASA Technical Reports Server (NTRS)
Baumbick, R. J.
1981-01-01
The role that optical computers play in aircraft control is determined. The optical computer has the potential high speed capability required, especially for matrix/matrix operations. The optical computer also has the potential for handling nonlinear simulations in real time. They are also more compatible with fiber optic signal transmission. Optics also permit the use of passive sensors to measure process variables. No electrical energy need be supplied to the sensor. Complex interfacing between optical sensors and the optical computer is avoided if the optical sensor outputs can be directly processed by the optical computer.
High speed turbogenerator for power recovery from fluid flow within conduit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irvine, M. D.
1985-11-26
A high speed turbogenerator functionally combining, in one machine, an electrical generator and an expansion turbine. The electrical generator itself has a shaft supported on two bearings and the expansion turbine comprises an expander wheel overhung on the generator shaft and which rotates as a high pressure gas is let down in the expansion turbine to a lower pressure at a minimum predetermined flow rate and pressure drop. The shaft operates at speeds of about 6,000 rpm to 32,000 rpm, preferably at the higher end of such range, i.e. 20,000 to 24,000 rpm. The unit is sufficiently compact that amore » new use for the electrical generator is to modify the same such that the entire high speed turbogenerator is contained within the conduit carrying the gas to be let down in pressure and only electrical wires need be led through the conduit. The integrity of the conduit is thus retained to the extent possible and only a high pressure cable fitting extends through the conduit. In the preferred embodiment, the high speed turbogenerator is entirely fitted within a natural gas conduit in a gas distribution station, thereby achieving the pressure letdown and also obtaining useful electrical power.« less
NASA Technical Reports Server (NTRS)
Edie, P. C.
1981-01-01
Performance data on the Prestolite MTC-4001 series wound dc motor and General Electric EV-1 Chopper Controller is supplied for the electric vehicle manufacturer. Data are provided for both straight and chopped dc input to the motor, at 2 motor temperature levels. Testing was done at 6 voltage increments to the motor, and 2 voltage increments to the controller. Data results are presented in both tabular and graphical forms. Tabular information includes motor voltage and current input data, motor speed and torque output data, power data and temperature data. Graphical information includes torque-speed, motor power output-speed, torque-current, and efficiency-speed plots under the various operating conditions. The data resulting from this testing show the speed-torque plots to have the most variance with operating temperature. The maximum motor efficiency is between 76% and 82%, regardless of temperature or mode of operation.
NASA Astrophysics Data System (ADS)
Perez, Marc J. R.
With extraordinary recent growth of the solar photovoltaic industry, it is paramount to address the biggest barrier to its high-penetration across global electrical grids: the inherent variability of the solar resource. This resource variability arises from largely unpredictable meteorological phenomena and from the predictable rotation of the earth around the sun and about its own axis. To achieve very high photovoltaic penetration, the imbalance between the variable supply of sunlight and demand must be alleviated. The research detailed herein consists of the development of a computational model which seeks to optimize the combination of 3 supply-side solutions to solar variability that minimizes the aggregate cost of electricity generated therefrom: Storage (where excess solar generation is stored when it exceeds demand for utilization when it does not meet demand), interconnection (where solar generation is spread across a large geographic area and electrically interconnected to smooth overall regional output) and smart curtailment (where solar capacity is oversized and excess generation is curtailed at key times to minimize the need for storage.). This model leverages a database created in the context of this doctoral work of satellite-derived photovoltaic output spanning 10 years at a daily interval for 64,000 unique geographic points across the globe. Underpinning the model's design and results, the database was used to further the understanding of solar resource variability at timescales greater than 1-day. It is shown that--as at shorter timescales--cloud/weather-induced solar variability decreases with geographic extent and that the geographic extent at which variability is mitigated increases with timescale and is modulated by the prevailing speed of clouds/weather systems. Unpredictable solar variability up to the timescale of 30 days is shown to be mitigated across a geographic extent of only 1500km if that geographic extent is oriented in a north/south bearing. Using technical and economic data reflecting today's real costs for solar generation technology, storage and electric transmission in combination with this model, we determined the minimum cost combination of these solutions to transform the variable output from solar plants into 3 distinct output profiles: A constant output equivalent to a baseload power plant, a well-defined seasonally-variable output with no weather-induced variability and a variable output but one that is 100% predictable on a multi-day ahead basis. In order to do this, over 14,000 model runs were performed by varying the desired output profile, the amount of energy curtailment, the penetration of solar energy and the geographic region across the continental United States. Despite the cost of supplementary electric transmission, geographic interconnection has the potential to reduce the levelized cost of electricity when meeting any of the studied output profiles by over 65% compared to when only storage is used. Energy curtailment, despite the cost of underutilizing solar energy capacity, has the potential to reduce the total cost of electricity when meeting any of the studied output profiles by over 75% compared to when only storage is used. The three variability mitigation strategies are thankfully not mutually exclusive. When combined at their ideal levels, each of the regions studied saw a reduction in cost of electricity of over 80% compared to when only energy storage is used to meet a specified output profile. When including current costs for solar generation, transmission and energy storage, an optimum configuration can conservatively provide guaranteed baseload power generation with solar across the entire continental United States (equivalent to a nuclear power plant with no down time) for less than 0.19 per kilowatt-hour. If solar is preferentially clustered in the southwest instead of evenly spread throughout the United States, and we adopt future expected costs for solar generation of 1 per watt, optimal model results show that meeting a 100% predictable output target with solar will cost no more than $0.08 per kilowatt-hour.
Hourly Wind Speed Interval Prediction in Arid Regions
NASA Astrophysics Data System (ADS)
Chaouch, M.; Ouarda, T.
2013-12-01
The long and extended warm and dry summers, the low rate of rain and humidity are the main factors that explain the increase of electricity consumption in hot arid regions. In such regions, the ventilating and air-conditioning installations, that are typically the most energy-intensive among energy consumption activities, are essential for securing healthy, safe and suitable indoor thermal conditions for building occupants and stored materials. The use of renewable energy resources such as solar and wind represents one of the most relevant solutions to overcome the increase of the electricity demand challenge. In the recent years, wind energy is gaining more importance among the researchers worldwide. Wind energy is intermittent in nature and hence the power system scheduling and dynamic control of wind turbine requires an estimate of wind energy. Accurate forecast of wind speed is a challenging task for the wind energy research field. In fact, due to the large variability of wind speed caused by the unpredictable and dynamic nature of the earth's atmosphere, there are many fluctuations in wind power production. This inherent variability of wind speed is the main cause of the uncertainty observed in wind power generation. Furthermore, producing wind power forecasts might be obtained indirectly by modeling the wind speed series and then transforming the forecasts through a power curve. Wind speed forecasting techniques have received substantial attention recently and several models have been developed. Basically two main approaches have been proposed in the literature: (1) physical models such as Numerical Weather Forecast and (2) statistical models such as Autoregressive integrated moving average (ARIMA) models, Neural Networks. While the initial focus in the literature has been on point forecasts, the need to quantify forecast uncertainty and communicate the risk of extreme ramp events has led to an interest in producing probabilistic forecasts. In short term context, probabilistic forecasts might be more relevant than point forecasts for the planner to build scenarios In this paper, we are interested in estimating predictive intervals of the hourly wind speed measures in few cities in United Arab emirates (UAE). More precisely, given a wind speed time series, our target is to forecast the wind speed at any specific hour during the day and provide in addition an interval with the coverage probability 0
Larsen, Peter H.; LaCommare, Kristina H.; Eto, Joseph H.; ...
2016-10-27
Here, this study examines the relationship between annual changes in electricity reliability reported by a large cross-section of U.S. electricity distribution utilities over a period of 13 years and a broad set of potential explanatory variables, including weather and utility characteristics. We find statistically significant correlations between the average number of power interruptions experienced annually and above average wind speeds, precipitation, lightning strikes, and a measure of population density: customers per line mile. We also find significant relationships between the average number of minutes of power interruptions experienced and above average wind speeds, precipitation, cooling degree-days, and one strategy usedmore » to mitigate the impacts of severe weather: the amount of underground transmission and distribution line miles. Perhaps most importantly, we find a significant time trend of increasing annual average number of minutes of power interruptions over time—especially when interruptions associated with extreme weather are included. Lastly, the research method described in this analysis can provide a basis for future efforts to project long-term trends in reliability and the associated benefits of strategies to improve grid resiliency to severe weather—both in the U.S. and abroad.« less
Pryor, S. C.; Barthelmie, R. J.
2011-01-01
The energy sector comprises approximately two-thirds of global total greenhouse gas emissions. For this and other reasons, renewable energy resources including wind power are being increasingly harnessed to provide electricity generation potential with negligible emissions of carbon dioxide. The wind energy resource is naturally a function of the climate system because the “fuel” is the incident wind speed and thus is determined by the atmospheric circulation. Some recent articles have reported historical declines in measured near-surface wind speeds, leading some to question the continued viability of the wind energy industry. Here we briefly articulate the challenges inherent in accurately quantifying and attributing historical tendencies and making robust projections of likely future wind resources. We then analyze simulations from the current generation of regional climate models and show, at least for the next 50 years, the wind resource in the regions of greatest wind energy penetration will not move beyond the historical envelope of variability. Thus this work suggests that the wind energy industry can, and will, continue to make a contribution to electricity provision in these regions for at least the next several decades. PMID:21536905
Pryor, S C; Barthelmie, R J
2011-05-17
The energy sector comprises approximately two-thirds of global total greenhouse gas emissions. For this and other reasons, renewable energy resources including wind power are being increasingly harnessed to provide electricity generation potential with negligible emissions of carbon dioxide. The wind energy resource is naturally a function of the climate system because the "fuel" is the incident wind speed and thus is determined by the atmospheric circulation. Some recent articles have reported historical declines in measured near-surface wind speeds, leading some to question the continued viability of the wind energy industry. Here we briefly articulate the challenges inherent in accurately quantifying and attributing historical tendencies and making robust projections of likely future wind resources. We then analyze simulations from the current generation of regional climate models and show, at least for the next 50 years, the wind resource in the regions of greatest wind energy penetration will not move beyond the historical envelope of variability. Thus this work suggests that the wind energy industry can, and will, continue to make a contribution to electricity provision in these regions for at least the next several decades.
NASA Astrophysics Data System (ADS)
Kunisetti, V. Praveen Kumar; Thippiripati, Vinay Kumar
2018-01-01
Open End Winding Induction Motors (OEWIM) are popular for electric vehicles, ship propulsion applications due to less DC link voltage. Electric vehicles, ship propulsions require ripple free torque. In this article, an enhanced three-level voltage switching state scheme for direct torque controlled OEWIM drive is implemented to reduce torque and flux ripples. The limitations of conventional Direct Torque Control (DTC) are: possible problems during low speeds and starting, it operates with variable switching frequency due to hysteresis controllers and produces higher torque and flux ripple. The proposed DTC scheme can abate the problems of conventional DTC with an enhanced voltage switching state scheme. The three-level inversion was obtained by operating inverters with equal DC-link voltages and it produces 18 voltage space vectors. These 18 vectors are divided into low and high frequencies of operation based on rotor speed. The hardware results prove the validity of proposed DTC scheme during steady-state and transients. From simulation and experimental results, proposed DTC scheme gives less torque and flux ripples on comparison to two-level DTC. The proposed DTC is implemented using dSPACE DS-1104 control board interface with MATLAB/SIMULINK-RTI model.
NASA Astrophysics Data System (ADS)
Kunisetti, V. Praveen Kumar; Thippiripati, Vinay Kumar
2018-06-01
Open End Winding Induction Motors (OEWIM) are popular for electric vehicles, ship propulsion applications due to less DC link voltage. Electric vehicles, ship propulsions require ripple free torque. In this article, an enhanced three-level voltage switching state scheme for direct torque controlled OEWIM drive is implemented to reduce torque and flux ripples. The limitations of conventional Direct Torque Control (DTC) are: possible problems during low speeds and starting, it operates with variable switching frequency due to hysteresis controllers and produces higher torque and flux ripple. The proposed DTC scheme can abate the problems of conventional DTC with an enhanced voltage switching state scheme. The three-level inversion was obtained by operating inverters with equal DC-link voltages and it produces 18 voltage space vectors. These 18 vectors are divided into low and high frequencies of operation based on rotor speed. The hardware results prove the validity of proposed DTC scheme during steady-state and transients. From simulation and experimental results, proposed DTC scheme gives less torque and flux ripples on comparison to two-level DTC. The proposed DTC is implemented using dSPACE DS-1104 control board interface with MATLAB/SIMULINK-RTI model.
Comparison between variable and constant rotor speed operation on WINDMEL-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sasamoto, Akira; Matsumiya, Hikaru; Kawamura, Shunji
1996-10-01
On a wind turbine control system for rotor revolution speed, it is believed that variable speed operation has the advantages over constant speed from a view point of both aerodynamics and mechanics. However, there is no experimental study which shows the differences. In this report, the authors intend to clarify the differences about shaft torque by using experimental data, from a new wind turbine system which has both variable and constant operation. The result in observation of the experimental data shows that variable speed operational shaft torque is lower than constant speed operational one.
Baseline tests of the battronic Minivan electric delivery van
NASA Technical Reports Server (NTRS)
Dustin, M. O.; Soltis, R. F.; Bozek, J. M.; Maslowski, E. A.
1977-01-01
An electric passenger vehicle was tested to develop data characterizing the state of the art of electric and hybrid vehicles. The test measured vehicle maximum speed, range at constant speed, range over stop-and-go driving schedules, maximum acceleration, gradeability and limit, road energy consumption, road power, indicated energy consumption, braking capability and battery charge efficiency. The data obtained are to serve as a baseline to compare improvements in electric and hybrid vehicle technologies and to assist in establishing performance standards.
Response of lead-acid batteries to chopper-controlled discharge. [for electric vehicles
NASA Technical Reports Server (NTRS)
Cataldo, R. L.
1978-01-01
The results of tests on an electric vehicle battery, using a simulated electric vehicle chopper-speed controller, show energy output losses up to 25 percent compared to constant current discharges at the same average current of 100 A. However, an energy output increase of 22 percent is noticed at the 200 A average level and 44 percent increase at the 300 A level using pulse discharging. Because of these complex results, electric vehicle battery/speed controller interactions must be considered in vehicle design.
Effect of Running Speed and Leg Prostheses on Mediolateral Foot Placement and Its Variability
Arellano, Christopher J.; McDermott, William J.; Kram, Rodger; Grabowski, Alena M.
2015-01-01
This study examined the effects of speed and leg prostheses on mediolateral (ML) foot placement and its variability in sprinters with and without transtibial amputations. We hypothesized that ML foot placement variability would: 1. increase with running speed up to maximum speed and 2. be symmetrical between the legs of non-amputee sprinters but asymmetrically greater for the affected leg of sprinters with a unilateral transtibial amputation. We measured the midline of the body (kinematic data) and center of pressure (kinetic data) in the ML direction while 12 non-amputee sprinters and 7 Paralympic sprinters with transtibial amputations (6 unilateral, 1 bilateral) ran across a range of speeds up to maximum speed on a high-speed force measuring treadmill. We quantified ML foot placement relative to the body’s midline and its variability. We interpret our results with respect to a hypothesized relation between ML foot placement variability and lateral balance. We infer that greater ML foot placement variability indicates greater challenges with maintaining lateral balance. In non-amputee sprinters, ML foot placement variability for each leg increased substantially and symmetrically across speed. In sprinters with a unilateral amputation, ML foot placement variability for the affected and unaffected leg also increased substantially, but was asymmetric across speeds. In general, ML foot placement variability for sprinters with a unilateral amputation was within the range observed in non-amputee sprinters. For the sprinter with bilateral amputations, both affected legs exhibited the greatest increase in ML foot placement variability with speed. Overall, we find that maintaining lateral balance becomes increasingly challenging at faster speeds up to maximum speed but was equally challenging for sprinters with and without a unilateral transtibial amputation. Finally, when compared to all other sprinters in our subject pool, maintaining lateral balance appears to be the most challenging for the Paralympic sprinter with bilateral transtibial amputations. PMID:25590634
Basic principles of variable speed drives
NASA Technical Reports Server (NTRS)
Loewenthal, S. H.
1973-01-01
An understanding of the principles which govern variable speed drive operation is discussed for successful drive application. The fundamental factors of torque, speed ratio, and power as they relate to drive selection are discussed. The basic types of variable speed drives, their operating characteristics and their applications are also presented.
Design study of toroidal traction CVT for electric vehicles
NASA Technical Reports Server (NTRS)
Raynard, A. E.; Kraus, J.; Bell, D. D.
1980-01-01
The development, evaluation, and optimization of a preliminary design concept for a continuously variable transmission (CVT) to couple the high-speed output shaft of an energy storage flywheel to the drive train of an electric vehicle is discussed. An existing computer simulation program was modified and used to compare the performance of five CVT design configurations. Based on this analysis, a dual-cavity full-toroidal drive with regenerative gearing is selected for the CVT design configuration. Three areas are identified that will require some technological development: the ratio control system, the traction fluid properities, and evaluation of the traction contact performance. Finally, the suitability of the selected CVT design concept for alternate electric and hybrid vehicle applications and alternate vehicle sizes and maximum output torques is determined. In all cases the toroidal traction drive design concept is applicable to the vehicle system. The regenerative gearing could be eliminated in the electric powered vehicle because of the reduced ratio range requirements. In other cases the CVT with regenerative gearing would meet the design requirements after appropriate adjustments in size and reduction gearing ratio.
Domain switching of fatigued ferroelectric thin films
NASA Astrophysics Data System (ADS)
Tak Lim, Yun; Yeog Son, Jong; Shin, Young-Han
2014-05-01
We investigate the domain wall speed of a ferroelectric PbZr0.48Ti0.52O3 (PZT) thin film using an atomic force microscope incorporated with a mercury-probe system to control the degree of electrical fatigue. The depolarization field in the PZT thin film decreases with increasing the degree of electrical fatigue. We find that the wide-range activation field previously reported in ferroelectric domains result from the change of the depolarization field caused by the electrical fatigue. Domain wall speed exhibits universal behavior to the effective electric field (defined by an applied electric field minus the depolarization field), regardless of the degree of the electrical fatigue.
Dynamic Range Enhancement of High-Speed Electrical Signal Data via Non-Linear Compression
NASA Technical Reports Server (NTRS)
Laun, Matthew C. (Inventor)
2016-01-01
Systems and methods for high-speed compression of dynamic electrical signal waveforms to extend the measuring capabilities of conventional measuring devices such as oscilloscopes and high-speed data acquisition systems are discussed. Transfer function components and algorithmic transfer functions can be used to accurately measure signals that are within the frequency bandwidth but beyond the voltage range and voltage resolution capabilities of the measuring device.
2009-07-22
Timothy Collins, President and Chairman, KleenSpeed Technologies, Inc. and Captain Andrew Butte, rescue helicopter pilot and former Army Aviator, with Butte's 1999 SWIFT. ChampCar Butte has given his racecar to KleenSpeed for conversion to electric. KleenSpeed is an advanced R&D firm focusing on scalable electric propulsion systems for transportation. The company is based at the NASA Research Park (NRP) Moffett Field, California as a lease holder.
Measured effects of wind turbine generation at the Block Island Power Company
NASA Technical Reports Server (NTRS)
Wilreker, V. F.; Smith, R. F.; Stiller, P. H.; Scot, G. W.; Shaltens, R. K.
1984-01-01
Data measurements made on the NASA MOD-OA 200-kw wind-turbine generator (WTG) installed on a utility grid form the basis for an overall performance analysis. Fuel displacement/-savings, dynamic interactions, and WTG excitation (reactive-power) control effects are studied. Continuous recording of a large number of electrical and mechanical variables on FM magnetic tape permit evaluation and correlation of phenomena over a bandwidth of at least 20 Hz. Because the wind-power penetration reached peaks of 60 percent, the impact of wind fluctuation and wind-turbine/diesel-utility interaction is evaluated in a worst-case scenario. The speed-governor dynamics of the diesel units exhibited an underdamped response, and the utility operation procedures were not altered to optimize overall WTG/utility performance. Primary findings over the data collection period are: a calculated 6.7-percent reduction in fuel consumption while generating 11 percent of the total electrical energy; acceptable system voltage and frequency fluctuations with WTG connected; and applicability of WTG excitation schemes using voltage, power, or VARS as the controlled variable.
Electronic differential control of 2WD electric vehicle considering steering stability
NASA Astrophysics Data System (ADS)
Hua, Yiding; Jiang, Haobin; Geng, Guoqing
2017-03-01
Aiming at the steering wheel differential steering control technology of rear wheel independent driving electric wheel, considering the assisting effect of electronic differential control on vehicle steering, based on the high speed steering characteristic of electric wheel car, the electronic differential speed of auxiliary wheel steering is also studied. A yaw moment control strategy is applied to the vehicle at high speed. Based on the vehicle stability reference value, yaw rate is used to design the fuzzy controller to distribute the driving wheel torque. The simulation results show that the basic electronic differential speed function is realized based on the yaw moment control strategy, while the vehicle stability control is improved and the driving safety is enhanced. On the other hand, the torque control strategy can also assist steering of vehicle.
Butera, R J; Wilson, C G; Delnegro, C A; Smith, J C
2001-12-01
We present a novel approach to implementing the dynamic-clamp protocol (Sharp et al., 1993), commonly used in neurophysiology and cardiac electrophysiology experiments. Our approach is based on real-time extensions to the Linux operating system. Conventional PC-based approaches have typically utilized single-cycle computational rates of 10 kHz or slower. In thispaper, we demonstrate reliable cycle-to-cycle rates as fast as 50 kHz. Our system, which we call model reference current injection (MRCI); pronounced merci is also capable of episodic logging of internal state variables and interactive manipulation of model parameters. The limiting factor in achieving high speeds was not processor speed or model complexity, but cycle jitter inherent in the CPU/motherboard performance. We demonstrate these high speeds and flexibility with two examples: 1) adding action-potential ionic currents to a mammalian neuron under whole-cell patch-clamp and 2) altering a cell's intrinsic dynamics via MRCI while simultaneously coupling it via artificial synapses to an internal computational model cell. These higher rates greatly extend the applicability of this technique to the study of fast electrophysiological currents such fast a currents and fast excitatory/inhibitory synapses.
Development of a working Hovercraft model
NASA Astrophysics Data System (ADS)
Noor, S. H. Mohamed; Syam, K.; Jaafar, A. A.; Mohamad Sharif, M. F.; Ghazali, M. R.; Ibrahim, W. I.; Atan, M. F.
2016-02-01
This paper presents the development process to fabricate a working hovercraft model. The purpose of this study is to design and investigate of a fully functional hovercraft, based on the studies that had been done. The different designs of hovercraft model had been made and tested but only one of the models is presented in this paper. In this thesis, the weight, the thrust, the lift and the drag force of the model had been measured and the electrical and mechanical parts are also presented. The processing unit of this model is Arduino Uno by using the PSP2 (Playstation 2) as the controller. Since our prototype should be functioning on all kind of earth surface, our model also had been tested in different floor condition. They include water, grass, cement and tile. The Speed of the model is measured in every case as the respond variable, Current (I) as the manipulated variable and Voltage (V) as the constant variable.
2008-11-02
Airship Ventures Zeppelin Dedication during the Moffett Field Diamond Jubilee. New NRP Partner KleenSpeed Chairman Timothy Collins (l) with THRUXAR electric race car at the Nov. 21 Diamond Jubilee exhibits. KleenSpeed is an advanced R&D firm focusing on scalable electric propulsion systems for transportation
76 FR 50213 - Environmental Impacts Statements; Notice of Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-12
... Bakersfield Section High-Speed Train, Proposes to Construct, Operate, and Maintain an Electric-Powered High...): Merced to Fresno Section High-Speed Train, Proposes to Construct, Operate, and Maintain an Electric.... 20110190, Draft EIS, FRA, MS, Tupelo Railroad Relocation Planning and Environmental Study, To Improve...
Pair aligning improved motility of Quincke rollers.
Lu, Shi Qing; Zhang, Bing Yue; Zhang, Zhi Chao; Shi, Yan; Zhang, Tian Hui
2018-06-06
Density-dependent speed is studied in a two-dimensional active colloid in which the colloidal particles are propelled by an external electric field via a Quincke rotation. Above the critcal electric field, dense dynamic clusters form spotaneously, in which the particles are highly aligned in velocity and move much faster than isolated units. Detailed observations on pair collision reveal that the alignment of velocity is induced by the long-ranged hydrodynamic interactions and the improvement of speed in the clusters arises from pair aligning in which two particles are closely paired and rotate synchronically. In the aligning state, the short-range in-plane dipole-dipole attraction enhances the rotation torque and gives rises to a larger rolling speed. The pair aligning becomes difficult and unstable at high electric field where the normal dipole-dipole repulsion becomes dominant. As a consequence, the dependence of speed on density becomes weak increasingly upon the increase of the electric field. This result offers an interpretation for the discrepancy between our and previous observations on Quincke rollers.
Speed but not amplitude of visual feedback exacerbates force variability in older adults.
Kim, Changki; Yacoubi, Basma; Christou, Evangelos A
2018-06-23
Magnification of visual feedback (VF) impairs force control in older adults. In this study, we aimed to determine whether the age-associated increase in force variability with magnification of visual feedback is a consequence of increased amplitude or speed of visual feedback. Seventeen young and 18 older adults performed a constant isometric force task with the index finger at 5% of MVC. We manipulated the vertical (force gain) and horizontal (time gain) aspect of the visual feedback so participants performed the task with the following VF conditions: (1) high amplitude-fast speed; (2) low amplitude-slow speed; (3) high amplitude-slow speed. Changing the visual feedback from low amplitude-slow speed to high amplitude-fast speed increased force variability in older adults but decreased it in young adults (P < 0.01). Changing the visual feedback from low amplitude-slow speed to high amplitude-slow speed did not alter force variability in older adults (P > 0.2), but decreased it in young adults (P < 0.01). Changing the visual feedback from high amplitude-slow speed to high amplitude-fast speed increased force variability in older adults (P < 0.01) but did not alter force variability in young adults (P > 0.2). In summary, increased force variability in older adults with magnification of visual feedback was evident only when the speed of visual feedback increased. Thus, we conclude that in older adults deficits in the rate of processing visual information and not deficits in the processing of more visual information impair force control.
Residential Variable-Capacity Heat Pumps Sized to Heating Loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munk, Jeffrey D.; Jackson, Roderick K.; Odukomaiya, Adewale
2014-01-01
Variable capacity heat pumps are an emerging technology offering significant energy savings potential and improved efficiency. With conventional single-speed systems, it is important to appropriately size heat pumps for the cooling load as over-sizing would result in cycling and insufficient latent capacity required for humidity control. These appropriately sized systems are often under-sized for the heating load and require inefficient supplemental electric resistance heat to meet the heating demand. Variable capacity heat pumps address these shortcomings by providing an opportunity to intentionally size systems for the dominant heating season load without adverse effects of cycling or insufficient dehumidification in themore » cooling season. This intentionally-sized system could result in significant energy savings in the heating season, as the need for inefficient supplemental electric resistance heat is drastically reduced. This is a continuation of a study evaluating the energy consumption of variable capacity heat pumps installed in two unoccupied research homes in Farragut, a suburb of Knoxville, Tennessee. In this particular study, space conditioning systems are intentionally sized for the heating season loads to provide an opportunity to understand and evaluate the impact this would have on electric resistance heat use and dehumidification. The results and conclusions drawn through this research are valid and specific for portions of the Southeastern and Midwestern United States falling in the mixed-humid climate zone. While other regions in the U.S. do not experience this type of climate, this work provides a basis for, and can help understand the implications of other climate zones on residential space conditioning energy consumption. The data presented here will provide a framework for fine tuning residential building EnergyPlus models that are being developed.« less
NASA Astrophysics Data System (ADS)
Horodinca, M.
2016-08-01
This paper intend to propose some new results related with computer aided monitoring of transient regimes on machine-tools based on the evolution of active electrical power absorbed by the electric motor used to drive the main kinematic chains and the evolution of rotational speed and acceleration of the main shaft. The active power is calculated in numerical format using the evolution of instantaneous voltage and current delivered by electrical power system to the electric motor. The rotational speed and acceleration of the main shaft are calculated based on the signal delivered by a sensor. Three real-time analogic signals are acquired with a very simple computer assisted setup which contains a voltage transformer, a current transformer, an AC generator as rotational speed sensor, a data acquisition system and a personal computer. The data processing and analysis was done using Matlab software. Some different transient regimes were investigated; several important conclusions related with the advantages of this monitoring technique were formulated. Many others features of the experimental setup are also available: to supervise the mechanical loading of machine-tools during cutting processes or for diagnosis of machine-tools condition by active electrical power signal analysis in frequency domain.
Ultrafast rotation of magnetically levitated macroscopic steel spheres
Schuck, Marcel; Steinert, Daniel; Nussbaumer, Thomas; Kolar, Johann W.
2018-01-01
Our world is increasingly powered by electricity, which is largely converted to or from mechanical energy using electric motors. Several applications have driven the miniaturization of these machines, resulting in high rotational speeds. Although speeds of several hundred thousand revolutions per minute have been used industrially, we report the realization of an electrical motor reaching 40 million rpm to explore the underlying physical boundaries. Millimeter-scale steel spheres, which are levitated and accelerated by magnetic fields inside a vacuum, are used as a rotor. Circumferential speeds exceeding 1000 m/s and centrifugal accelerations of more than 4 × 108 times gravity were reached. The results open up new research possibilities, such as the testing of materials under extreme centrifugal load, and provide insights into the development of future electric drive systems. PMID:29326976
Ultrafast rotation of magnetically levitated macroscopic steel spheres.
Schuck, Marcel; Steinert, Daniel; Nussbaumer, Thomas; Kolar, Johann W
2018-01-01
Our world is increasingly powered by electricity, which is largely converted to or from mechanical energy using electric motors. Several applications have driven the miniaturization of these machines, resulting in high rotational speeds. Although speeds of several hundred thousand revolutions per minute have been used industrially, we report the realization of an electrical motor reaching 40 million rpm to explore the underlying physical boundaries. Millimeter-scale steel spheres, which are levitated and accelerated by magnetic fields inside a vacuum, are used as a rotor. Circumferential speeds exceeding 1000 m/s and centrifugal accelerations of more than 4 × 10 8 times gravity were reached. The results open up new research possibilities, such as the testing of materials under extreme centrifugal load, and provide insights into the development of future electric drive systems.
Power-based Shift Schedule for Pure Electric Vehicle with a Two-speed Automatic Transmission
NASA Astrophysics Data System (ADS)
Wang, Jiaqi; Liu, Yanfang; Liu, Qiang; Xu, Xiangyang
2016-11-01
This paper introduces a comprehensive shift schedule for a two-speed automatic transmission of pure electric vehicle. Considering about driving ability and efficiency performance of electric vehicles, the power-based shift schedule is proposed with three principles. This comprehensive shift schedule regards the vehicle current speed and motor load power as input parameters to satisfy the vehicle driving power demand with lowest energy consumption. A simulation model has been established to verify the dynamic and economic performance of comprehensive shift schedule. Compared with traditional dynamic and economic shift schedules, simulation results indicate that the power-based shift schedule is superior to traditional shift schedules.
Prado-Medeiros, Christiane L; Sousa, Catarina O; Souza, Andréa S; Soares, Márcio R; Barela, Ana M F; Salvini, Tania F
2011-01-01
The addition of functional electrical stimulation (FES) to treadmill gait training with partial body weight support (BWS) has been proposed as a strategy to facilitate gait training in people with hemiparesis. However, there is a lack of studies that evaluate the effectiveness of FES addition on ground level gait training with BWS, which is the most common locomotion surface. To investigate the additional effects of commum peroneal nerve FES combined with gait training and BWS on ground level, on spatial-temporal gait parameters, segmental angles, and motor function. Twelve people with chronic hemiparesis participated in the study. An A1-B-A2 design was applied. A1 and A2 corresponded to ground level gait training using BWS, and B corresponded to the same training with the addition of FES. The assessments were performed using the Modified Ashworth Scale (MAS), Functional Ambulation Category (FAC), Rivermead Motor Assessment (RMA), and filming. The kinematics analyzed variables were mean walking speed of locomotion; step length; stride length, speed and duration; initial and final double support duration; single-limb support duration; swing period; range of motion (ROM), maximum and minimum angles of foot, leg, thigh, and trunk segments. There were not changes between phases for the functional assessment of RMA, for the spatial-temporal gait variables and segmental angles, no changes were observed after the addition of FES. The use of FES on ground level gait training with BWS did not provide additional benefits for all assessed parameters.
Estimators of wheel slip for electric vehicles using torque and encoder measurements
NASA Astrophysics Data System (ADS)
Boisvert, M.; Micheau, P.
2016-08-01
For the purpose of regenerative braking control in hybrid and electrical vehicles, recent studies have suggested controlling the slip ratio of the electric-powered wheel. A slip tracking controller requires an accurate slip estimation in the overall range of the slip ratio (from 0 to 1), contrary to the conventional slip limiter (ABS) which calls for an accurate slip estimation in the critical slip area, estimated at around 0.15 in several applications. Considering that it is not possible to directly measure the slip ratio of a wheel, the problem is to estimate the latter from available online data. To estimate the slip of a wheel, both wheel speed and vehicle speed must be known. Several studies provide algorithms that allow obtaining a good estimation of vehicle speed. On the other hand, there is no proposed algorithm for the conditioning of the wheel speed measurement. Indeed, the noise included in the wheel speed measurement reduces the accuracy of the slip estimation, a disturbance increasingly significant at low speed and low torque. Herein, two different extended Kalman observers of slip ratio were developed. The first calculates the slip ratio with data provided by an observer of vehicle speed and of propeller wheel speed. The second observer uses an original nonlinear model of the slip ratio as a function of the electric motor. A sinus tracking algorithm is included in the two observers, in order to reject harmonic disturbances of wheel speed measurement. Moreover, mass and road uncertainties can be compensated with a coefficient adapted online by an RLS. The algorithms were implemented and tested with a three-wheel recreational hybrid vehicle. Experimental results show the efficiency of both methods.
Lin, Fang-Zheng; Wu, Tsu-Hsiu; Chiu, Yi-Jen
2009-06-08
A new monolithic integration scheme, namely cascaded-integration (CI), for improving high-speed optical modulation is proposed and demonstrated. High-speed electroabsorption modulators (EAMs) and semiconductor optical amplifiers (SOAs) are taken as the integrated elements of CI. This structure is based on an optical waveguide defined by cascading segmented EAMs with segmented SOAs, while high-impedance transmission lines (HITLs) are used for periodically interconnecting EAMs, forming a distributive optical re-amplification and re-modulation. Therefore, not only the optical modulation can be beneficial from SOA gain, but also high electrical reflection due to EAM low characteristic impedance can be greatly reduced. Two integration schemes, CI and conventional single-section (SS), with same total EAM- and SOA- lengths are fabricated and compared to examine the concept. Same modulation-depth against with EAM bias (up to 5V) as well as SOA injection current (up to 60mA) is found in both structures. In comparison with SS, a < 1dB extra optical-propagation loss in CI is measured due to multi-sections of electrical-isolation regions between EAMs and SOAs, suggesting no significant deterioration in CI on DC optical modulation efficiency. Lower than -12dB of electrical reflection from D.C. to 30GHz is observed in CI, better than -5dB reflection in SS for frequency of above 5GHz. Superior high-speed electrical properties in CI structure can thus lead to higher speed of electrical-to-optical (EO) response, where -3dB bandwidths are >30GHz and 13GHz for CI and SS respectively. Simulation results on electrical and EO response are quite consistent with measurement, confirming that CI can lower the driving power at high-speed regime, while the optical loss is still kept the same level. Taking such distributive advantage (CI) with optical gain, not only higher-speed modulation with high output optical power can be attained, but also the trade-off issue due to impedance mismatch can be released to reduce the driving power of modulator. Such kind of monolithic integration scheme also has potential for the applications of other high-speed optoelectronics devices.
The Need for Speed in Rodent Locomotion Analyses
Batka, Richard J.; Brown, Todd J.; Mcmillan, Kathryn P.; Meadows, Rena M.; Jones, Kathryn J.; Haulcomb, Melissa M.
2016-01-01
Locomotion analysis is now widely used across many animal species to understand the motor defects in disease, functional recovery following neural injury, and the effectiveness of various treatments. More recently, rodent locomotion analysis has become an increasingly popular method in a diverse range of research. Speed is an inseparable aspect of locomotion that is still not fully understood, and its effects are often not properly incorporated while analyzing data. In this hybrid manuscript, we accomplish three things: (1) review the interaction between speed and locomotion variables in rodent studies, (2) comprehensively analyze the relationship between speed and 162 locomotion variables in a group of 16 wild-type mice using the CatWalk gait analysis system, and (3) develop and test a statistical method in which locomotion variables are analyzed and reported in the context of speed. Notable results include the following: (1) over 90% of variables, reported by CatWalk, were dependent on speed with an average R2 value of 0.624, (2) most variables were related to speed in a nonlinear manner, (3) current methods of controlling for speed are insufficient, and (4) the linear mixed model is an appropriate and effective statistical method for locomotion analyses that is inclusive of speed-dependent relationships. Given the pervasive dependency of locomotion variables on speed, we maintain that valid conclusions from locomotion analyses cannot be made unless they are analyzed and reported within the context of speed. PMID:24890845
Speed Sensorless Induction Motor Drives for Electrical Actuators: Schemes, Trends and Tradeoffs
NASA Technical Reports Server (NTRS)
Elbuluk, Malik E.; Kankam, M. David
1997-01-01
For a decade, induction motor drive-based electrical actuators have been under investigation as potential replacement for the conventional hydraulic and pneumatic actuators in aircraft. Advantages of electric actuator include lower weight and size, reduced maintenance and operating costs, improved safety due to the elimination of hazardous fluids and high pressure hydraulic and pneumatic actuators, and increased efficiency. Recently, the emphasis of research on induction motor drives has been on sensorless vector control which eliminates flux and speed sensors mounted on the motor. Also, the development of effective speed and flux estimators has allowed good rotor flux-oriented (RFO) performance at all speeds except those close to zero. Sensorless control has improved the motor performance, compared to the Volts/Hertz (or constant flux) controls. This report evaluates documented schemes for speed sensorless drives, and discusses the trends and tradeoffs involved in selecting a particular scheme. These schemes combine the attributes of the direct and indirect field-oriented control (FOC) or use model adaptive reference systems (MRAS) with a speed-dependent current model for flux estimation which tracks the voltage model-based flux estimator. Many factors are important in comparing the effectiveness of a speed sensorless scheme. Among them are the wide speed range capability, motor parameter insensitivity and noise reduction. Although a number of schemes have been proposed for solving the speed estimation, zero-speed FOC with robustness against parameter variations still remains an area of research for speed sensorless control.
Operation ranges and dynamic capabilities of variable-speed pumped-storage hydropower
NASA Astrophysics Data System (ADS)
Mercier, Thomas; Olivier, Mathieu; Dejaeger, Emmanuel
2017-04-01
The development of renewable and intermittent power generation creates incentives for the development of both energy storage solutions and more flexible power generation assets. Pumped-storage hydropower (PSH) is the most established and mature energy storage technology, but recent developments in power electronics have created a renewed interest by providing PSH units with a variable-speed feature, thereby increasing their flexibility. This paper reviews technical considerations related to variable-speed PSH in link with the provision of primary frequency control, also referred to as frequency containment reserves (FCRs). Based on the detailed characteristics of a scale model pump-turbine, the variable-speed operation ranges in pump and turbine modes are precisely assessed and the implications for the provision of FCRs are highlighted. Modelling and control for power system studies are discussed, both for fixed- and variable-speed machines and simulation results are provided to illustrate the high dynamic capabilities of variable-speed PSH.
Development of a DC propulsion system for an electric vehicle
NASA Technical Reports Server (NTRS)
Kelledes, W. L.
1984-01-01
The suitability of the Eaton automatically shifted mechanical transaxle concept for use in a near-term dc powered electric vehicle is evaluated. A prototype dc propulsion system for a passenger electric vehicle was designed, fabricated, tested, installed in a modified Mercury Lynx vehicle and track tested at the contractor's site. The system consisted of a two-axis, three-speed, automatically-shifted mechanical transaxle, 15.2 Kw rated, separately excited traction motor, and a transistorized motor controller with a single chopper providing limited armature current below motor base speed and full range field control above base speed at up to twice rated motor current. The controller utilized a microprocessor to perform motor and vehicle speed monitoring and shift sequencing by means of solenoids applying hydraulic pressure to the transaxle clutches. Bench dynamometer and track testing was performed. Track testing showed best system efficiency for steady-state cruising speeds of 65-80 Km/Hz (40-50 mph). Test results include acceleration, steady speed and SAE J227A/D cycle energy consumption, braking tests and coast down to characterize the vehicle road load.
NASA Astrophysics Data System (ADS)
Grigoryev, Evgeny G.
2011-01-01
Simultaneous electro discharge sintering of high strength structure of tungsten carbide—cobalt composite and connection it with high-speed steel substrate is investigated and suitable operating parameters are defined. Tungsten carbide—cobalt and high-speed steel joining was produced by the method of high voltage electrical discharge together with application of mechanical pressure to powder compact. It was found that the density and hardness of composite material reach its maximum values at certain magnitudes of applied pressure and high voltage electrical discharge parameters. We show that there is an upper level for the discharge voltage beyond which the powder of composite material disintegrates like an exploding wire. Due to our results it is possible to determine optimal parameters for simultaneous electro discharge sintering of WC-Co and bonding it with high-speed steel substrate.
Hurt, Christopher P.; Brown, David A.
2018-01-01
Background Step kinematic variability has been characterized during gait using spatial and temporal kinematic characteristics. However, people can adopt different trajectory paths both between individuals and even within individuals at different speeds. Single point measures such as minimum toe clearance (MTC) and step length (SL) do not necessarily account for the multiple paths that the foot may take during the swing phase to reach the same foot fall endpoint. The purpose of this study was to test a step-by-step foot trajectory area (SBS-FTA) variability measure that is able to characterize sagittal plane foot trajectories of varying areas, and compare this measure against MTC and SL variability at different speeds. We hypothesize that the SBS-FTA variability would demonstrate increased variability with speed. Second, we hypothesize that SBS-FTA would have a stronger curvilinear fit compared with the CV and SD of SL and MTC. Third, we hypothesize SBS-FTA would be more responsive to change in the foot trajectory at a given speed compared to SL and MTC. Fourth, SBS-FTA variability would not strongly co-vary with SL and MTC variability measures since it represents a different construct related to foot trajectory area variability. Methods We studied 15 nonimpaired individuals during walking at progressively faster speeds. We calculated SL, MTC, and SBS-FTA area. Results SBS-FTA variability increased with speed, had a stronger curvilinear fit compared with the CV and SD of SL and MTC, was more responsive at a given speed, and did not strongly co-vary with SL and MTC variability measures. Conclusion SBS foot trajectory area variability was sensitive to change with faster speeds, captured a relationship that the majority of the other measures did not demonstrate, and did not co-vary strongly with other measures that are also components of the trajectory. PMID:29370202
Variable-Speed Simulation of a Dual-Clutch Gearbox Tiltrotor Driveline
NASA Technical Reports Server (NTRS)
DeSmidt, Hans; Wang, Kon-Well; Smith, Edward C.; Lewicki, David G.
2012-01-01
This investigation explores the variable-speed operation and shift response of a prototypical two-speed dual-clutch transmission tiltrotor driveline in forward flight. Here, a Comprehensive Variable-Speed Rotorcraft Propulsion System Modeling (CVSRPM) tool developed under a NASA funded NRA program is utilized to simulate the drive system dynamics. In this study, a sequential shifting control strategy is analyzed under a steady forward cruise condition. This investigation attempts to build upon previous variable-speed rotorcraft propulsion studies by 1) including a fully nonlinear transient gas-turbine engine model, 2) including clutch stick-slip friction effects, 3) including shaft flexibility, 4) incorporating a basic flight dynamics model to account for interactions with the flight control system. Through exploring the interactions between the various subsystems, this analysis provides important insights into the continuing development of variable-speed rotorcraft propulsion systems.
Gait variability in community dwelling adults with Alzheimer disease.
Webster, Kate E; Merory, John R; Wittwer, Joanne E
2006-01-01
Studies have shown that measures of gait variability are associated with falling in older adults. However, few studies have measured gait variability in people with Alzheimer disease, despite the high incidence of falls in Alzheimer disease. The purpose of this study was to compare gait variability of community-dwelling older adults with Alzheimer disease and control subjects at various walking speeds. Ten subjects with mild-moderate Alzheimer disease and ten matched control subjects underwent gait analysis using an electronic walkway. Participants were required to walk at self-selected slow, preferred, and fast speeds. Stride length and step width variability were determined using the coefficient of variation. Results showed that stride length variability was significantly greater in the Alzheimer disease group compared with the control group at all speeds. In both groups, increases in walking speed were significantly correlated with decreases in stride length variability. Step width variability was significantly reduced in the Alzheimer disease group compared with the control group at slow speed only. In conclusion, there is an increase in stride length variability in Alzheimer disease at all walking speeds that may contribute to the increased incidence of falls in Alzheimer disease.
Chen, Ching-Fu; Chen, Cheng-Wen
2011-05-01
This paper focuses on a special segment of motorcyclists in Taiwan--riders of heavy motorcycles--and investigates their speeding behavior and its affecting factors. It extends the theory of planned behavior (TPB) to explore motorcyclist speeding behavior by including the variables of psychological flow theory. The levels of sensation-seeking and riding experience are also used as grouping variables to investigate group differences from the influences of their affecting factors on speeding behavior. The results reveal that the psychological flow variables have greater predictive power in explaining speeding behavior than the TPB variables, providing useful insights into the unique nature of this group of motorcyclists, who are more prone to engage in speeding. Group differences with regard to both sensation-seeking and rider experience in speeding behavior are highlighted, and the implications of the findings are discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.
Talhaoui, Hicham; Menacer, Arezki; Kessal, Abdelhalim; Kechida, Ridha
2014-09-01
This paper presents new techniques to evaluate faults in case of broken rotor bars of induction motors. Procedures are applied with closed-loop control. Electrical and mechanical variables are treated using fast Fourier transform (FFT), and discrete wavelet transform (DWT) at start-up and steady state. The wavelet transform has proven to be an excellent mathematical tool for the detection of the faults particularly broken rotor bars type. As a performance, DWT can provide a local representation of the non-stationary current signals for the healthy machine and with fault. For sensorless control, a Luenberger observer is applied; the estimation rotor speed is analyzed; the effect of the faults in the speed pulsation is compensated; a quadratic current appears and used for fault detection. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Shukla, Krishna Dayal; Saxena, Nishant; Manivannan, Anbarasu
2017-12-01
Recent advancements in commercialization of high-speed non-volatile electronic memories including phase change memory (PCM) have shown potential not only for advanced data storage but also for novel computing concepts. However, an in-depth understanding on ultrafast electrical switching dynamics is a key challenge for defining the ultimate speed of nanoscale memory devices that demands for an unconventional electrical setup, specifically capable of handling extremely fast electrical pulses. In the present work, an ultrafast programmable electrical tester (PET) setup has been developed exceptionally for unravelling time-resolved electrical switching dynamics and programming characteristics of nanoscale memory devices at the picosecond (ps) time scale. This setup consists of novel high-frequency contact-boards carefully designed to capture extremely fast switching transient characteristics within 200 ± 25 ps using time-resolved current-voltage measurements. All the instruments in the system are synchronized using LabVIEW, which helps to achieve various programming characteristics such as voltage-dependent transient parameters, read/write operations, and endurance test of memory devices systematically using short voltage pulses having pulse parameters varied from 1 ns rise/fall time and 1.5 ns pulse width (full width half maximum). Furthermore, the setup has successfully demonstrated strikingly one order faster switching characteristics of Ag 5 In 5 Sb 60 Te 30 (AIST) PCM devices within 250 ps. Hence, this novel electrical setup would be immensely helpful for realizing the ultimate speed limits of various high-speed memory technologies for future computing.
NASA Astrophysics Data System (ADS)
Shukla, Krishna Dayal; Saxena, Nishant; Manivannan, Anbarasu
2017-12-01
Recent advancements in commercialization of high-speed non-volatile electronic memories including phase change memory (PCM) have shown potential not only for advanced data storage but also for novel computing concepts. However, an in-depth understanding on ultrafast electrical switching dynamics is a key challenge for defining the ultimate speed of nanoscale memory devices that demands for an unconventional electrical setup, specifically capable of handling extremely fast electrical pulses. In the present work, an ultrafast programmable electrical tester (PET) setup has been developed exceptionally for unravelling time-resolved electrical switching dynamics and programming characteristics of nanoscale memory devices at the picosecond (ps) time scale. This setup consists of novel high-frequency contact-boards carefully designed to capture extremely fast switching transient characteristics within 200 ± 25 ps using time-resolved current-voltage measurements. All the instruments in the system are synchronized using LabVIEW, which helps to achieve various programming characteristics such as voltage-dependent transient parameters, read/write operations, and endurance test of memory devices systematically using short voltage pulses having pulse parameters varied from 1 ns rise/fall time and 1.5 ns pulse width (full width half maximum). Furthermore, the setup has successfully demonstrated strikingly one order faster switching characteristics of Ag5In5Sb60Te30 (AIST) PCM devices within 250 ps. Hence, this novel electrical setup would be immensely helpful for realizing the ultimate speed limits of various high-speed memory technologies for future computing.
Advanced multi-megawatt wind turbine design for utility application
NASA Technical Reports Server (NTRS)
Pijawka, W. C.
1984-01-01
A NASA/DOE program to develop a utility class multimegawatt wind turbine, the MOD-5A, is described. The MOD-5A features a 400 foot diameter rotor which is teetered and positioned upwind of the tower; a 7.3 megawatt power rating with a variable speed electric generating system; and a redundant rotor support and torque transmission structure. The rotor blades were fabricated from an epoxy-bonded wood laminate material which was a successful outgrowth of the MOD-OA airfoil design. Preliminary data from operational tests carried out at the NASA Plumbrook test facility are presented.
Advanced multi-megawatt wind turbine design for utility application
NASA Astrophysics Data System (ADS)
Pijawka, W. C.
1984-08-01
A NASA/DOE program to develop a utility class multimegawatt wind turbine, the MOD-5A, is described. The MOD-5A features a 400 foot diameter rotor which is teetered and positioned upwind of the tower; a 7.3 megawatt power rating with a variable speed electric generating system; and a redundant rotor support and torque transmission structure. The rotor blades were fabricated from an epoxy-bonded wood laminate material which was a successful outgrowth of the MOD-OA airfoil design. Preliminary data from operational tests carried out at the NASA Plumbrook test facility are presented.
Preliminary design package for solar heating and cooling systems
NASA Technical Reports Server (NTRS)
1978-01-01
Summarized preliminary design information on activities associated with the development, delivery and support of solar heating and cooling systems is given. These systems are for single family dwellings and commercial applications. The heating/cooling system use a reversible vapor compression heat pump that is driven in the cooling mode by a Rankine power loop, and in the heating mode by a variable speed electric motor. The heating/cooling systems differ from the heating-only systems in the arrangement of the heat pump subsystem and the addition of a cooling tower to provide the heat sink for cooling mode operation.
1978-11-03
gas turbine m; E T3; ?V,S; ?T,S (dt; is necessary. Beneath Eq. (1) we use the fuel flow as the control variable mBr = f(t) (6), and further on T = f...Speed Configuration Applications General Electric 2400 kW1 Semi- Submerged T-64 1000 r.p.m. Platform "Kaimalino" AVCO Lycominq 2500 kW Amphibious Assault...important technology for hydrofoil ships with fukly submerged foil systems. These vehicles are inherently dynamically unstable and must often operate in an
Baseline test data for the EVA electric vehicle. [low energy consumption automobiles
NASA Technical Reports Server (NTRS)
Harhay, W. C.; Bozek, J.
1976-01-01
Two electric vehicles from Electric Vehicle Associates were evaluated for ERDA at the Transportation Research Center of Ohio. The vehicles, loaded to a gross vehicle weight of 3750 pounds, had a range of 56.3 miles at a steady speed of 25 mph and a 27.4 miles range during acceleration-deceleration tests to a top speed of 30 mph. Energy consumption varied from 0.48 kw-hr/mi. to 0.59 kw-hr/mi.
Analysis of hybrid electric/thermofluidic inputs for wet shape memory alloy actuators
NASA Astrophysics Data System (ADS)
Flemming, Leslie; Mascaro, Stephen
2013-01-01
A wet shape memory alloy (SMA) actuator is characterized by an SMA wire embedded within a compliant fluid-filled tube. Heating and cooling of the SMA wire produces a linear contraction and extension of the wire. Thermal energy can be transferred to and from the wire using combinations of resistive heating and free/forced convection. This paper analyzes the speed and efficiency of a simulated wet SMA actuator using a variety of control strategies involving different combinations of electrical and thermofluidic inputs. A computational fluid dynamics (CFD) model is used in conjunction with a temperature-strain model of the SMA wire to simulate the thermal response of the wire and compute strains, contraction/extension times and efficiency. The simulations produce cycle rates of up to 5 Hz for electrical heating and fluidic cooling, and up to 2 Hz for fluidic heating and cooling. The simulated results demonstrate efficiencies up to 0.5% for electric heating and up to 0.2% for fluidic heating. Using both electric and fluidic inputs concurrently improves the speed and efficiency of the actuator and allows for the actuator to remain contracted without continually delivering energy to the actuator, because of the thermal capacitance of the hot fluid. The characterized speeds and efficiencies are key requirements for implementing broader research efforts involving the intelligent control of electric and thermofluidic networks to optimize the speed and efficiency of wet actuator arrays.
Housing assembly for electric vehicle transaxle
Kalns, Ilmars
1981-01-01
Disclosed is a drive assembly (10) for an electrically powered vehicle (12). The assembly includes a transaxle (16) having a two-speed transmission (40) and a drive axle differential (46) disposed in a unitary housing assembly (38), an oil-cooled prime mover or electric motor (14) for driving the transmission input shaft (42), an adapter assembly (24) for supporting the prime mover on the transaxle housing assembly, and a hydraulic system (172) providing pressurized oil flow for cooling and lubricating the electric motor and transaxle and for operating a clutch (84) and a brake (86) in the transmission to shift between the two-speed ratios of the transmission. The adapter assembly allows the prime mover to be supported in several positions on the transaxle housing. The brake is spring-applied and locks the transmission in its low-speed ratio should the hydraulic system fail. The hydraulic system pump is driven by an electric motor (212) independent of the prime mover and transaxle.
NASA Astrophysics Data System (ADS)
Grinevich, I.; Nikishin, Vl.; Mozga, N.; Laitans, M.
2017-06-01
The paper deals with the possibilities of reducing the consumption of electrical energy of the impact screwdriver during the assembly of fixed threaded joints. The recommendations related to a decrease in electrical energy consumption would allow reducing product costs but so far there have been no such recommendations from the producers of the tool as to the effective operating regimes of the impact screwdrivers in relation to electrical energy consumption and necessary tightening moment of the nut. The aim of the study is to find out the economical operating mode of the electrical impact screwdriver when assembling fixed threaded joints. By varying the set speed of the rotor head and working time of the impact mechanism, there is an opportunity to determine electrical energy consumption of the tool for the given tightening moment. The results of the experiment show that at the same tightening moment obtained the electrical energy consumption of the impact screwdriver is less at a higher starting set speed of the rotor head but shorter operating time of the impact mechanism than at a lower speed of the rotor head and longer operating time of the impact mechanism.
blue rule Main stage: See through car with battery, engine, generator, power split device, and electric motor visible. The car is moving at a low speed. There are arrows flowing from the battery to the electric motor to the power split device to the front wheels. Main stage: See through car with battery
Molina, Sergio L; Stodden, David F
2018-04-01
This study examined variability in throwing speed and spatial error to test the prediction of an inverted-U function (i.e., impulse-variability [IV] theory) and the speed-accuracy trade-off. Forty-five 9- to 11-year-old children were instructed to throw at a specified percentage of maximum speed (45%, 65%, 85%, and 100%) and hit the wall target. Results indicated no statistically significant differences in variable error across the target conditions (p = .72), failing to support the inverted-U hypothesis. Spatial accuracy results indicated no statistically significant differences with mean radial error (p = .18), centroid radial error (p = .13), and bivariate variable error (p = .08) also failing to support the speed-accuracy trade-off in overarm throwing. As neither throwing performance variability nor accuracy changed across percentages of maximum speed in this sample of children as well as in a previous adult sample, current policy and practices of practitioners may need to be reevaluated.
NASA Technical Reports Server (NTRS)
DeSmidt, Hans A.; Smith, Edward C.; Bill, Robert C.; Wang, Kon-Well
2013-01-01
This project develops comprehensive modeling and simulation tools for analysis of variable rotor speed helicopter propulsion system dynamics. The Comprehensive Variable-Speed Rotorcraft Propulsion Modeling (CVSRPM) tool developed in this research is used to investigate coupled rotor/engine/fuel control/gearbox/shaft/clutch/flight control system dynamic interactions for several variable rotor speed mission scenarios. In this investigation, a prototypical two-speed Dual-Clutch Transmission (DCT) is proposed and designed to achieve 50 percent rotor speed variation. The comprehensive modeling tool developed in this study is utilized to analyze the two-speed shift response of both a conventional single rotor helicopter and a tiltrotor drive system. In the tiltrotor system, both a Parallel Shift Control (PSC) strategy and a Sequential Shift Control (SSC) strategy for constant and variable forward speed mission profiles are analyzed. Under the PSC strategy, selecting clutch shift-rate results in a design tradeoff between transient engine surge margins and clutch frictional power dissipation. In the case of SSC, clutch power dissipation is drastically reduced in exchange for the necessity to disengage one engine at a time which requires a multi-DCT drive system topology. In addition to comprehensive simulations, several sections are dedicated to detailed analysis of driveline subsystem components under variable speed operation. In particular an aeroelastic simulation of a stiff in-plane rotor using nonlinear quasi-steady blade element theory was conducted to investigate variable speed rotor dynamics. It was found that 2/rev and 4/rev flap and lag vibrations were significant during resonance crossings with 4/rev lagwise loads being directly transferred into drive-system torque disturbances. To capture the clutch engagement dynamics, a nonlinear stick-slip clutch torque model is developed. Also, a transient gas-turbine engine model based on first principles mean-line compressor and turbine approximations is developed. Finally an analysis of high frequency gear dynamics including the effect of tooth mesh stiffness variation under variable speed operation is conducted including experimental validation. Through exploring the interactions between the various subsystems, this investigation provides important insights into the continuing development of variable-speed rotorcraft propulsion systems.
Okeniyi, Joshua Olusegun; Ohunakin, Olayinka Soledayo; Okeniyi, Elizabeth Toyin
2015-01-01
Electricity generation in rural communities is an acute problem militating against socioeconomic well-being of the populace in these communities in developing countries, including Nigeria. In this paper, assessments of wind-energy potential in selected sites from three major geopolitical zones of Nigeria were investigated. For this, daily wind-speed data from Katsina in northern, Warri in southwestern and Calabar in southeastern Nigeria were analysed using the Gumbel and the Weibull probability distributions for assessing wind-energy potential as a renewable/sustainable solution for the country's rural-electrification problems. Results showed that the wind-speed models identified Katsina with higher wind-speed class than both Warri and Calabar that were otherwise identified as low wind-speed sites. However, econometrics of electricity power simulation at different hub heights of low wind-speed turbine systems showed that the cost of electric-power generation in the three study sites was converging to affordable cost per kWh of electric energy from the wind resource at each site. These power simulations identified cost/kWh of electricity generation at Kaduna as €0.0507, at Warri as €0.0774, and at Calabar as €0.0819. These bare positive implications on renewable/sustainable rural electrification in the study sites even as requisite options for promoting utilization of this viable wind-resource energy in the remote communities in the environs of the study sites were suggested. PMID:25879063
Okeniyi, Joshua Olusegun; Ohunakin, Olayinka Soledayo; Okeniyi, Elizabeth Toyin
2015-01-01
Electricity generation in rural communities is an acute problem militating against socioeconomic well-being of the populace in these communities in developing countries, including Nigeria. In this paper, assessments of wind-energy potential in selected sites from three major geopolitical zones of Nigeria were investigated. For this, daily wind-speed data from Katsina in northern, Warri in southwestern and Calabar in southeastern Nigeria were analysed using the Gumbel and the Weibull probability distributions for assessing wind-energy potential as a renewable/sustainable solution for the country's rural-electrification problems. Results showed that the wind-speed models identified Katsina with higher wind-speed class than both Warri and Calabar that were otherwise identified as low wind-speed sites. However, econometrics of electricity power simulation at different hub heights of low wind-speed turbine systems showed that the cost of electric-power generation in the three study sites was converging to affordable cost per kWh of electric energy from the wind resource at each site. These power simulations identified cost/kWh of electricity generation at Kaduna as €0.0507, at Warri as €0.0774, and at Calabar as €0.0819. These bare positive implications on renewable/sustainable rural electrification in the study sites even as requisite options for promoting utilization of this viable wind-resource energy in the remote communities in the environs of the study sites were suggested.
NASA Astrophysics Data System (ADS)
Wrona, Paweł; Różański, Zenon; Pach, Grzegorz; Domagała, Lech
2016-09-01
The paper presents the results of numerical simulations into the distribution of methane concentration at the intersection of two excavations with a fan (turned on) giving the air stream to the area of the crossing. Assumed case represents emergency situation related to the unexpected flow of methane from an excavation and its mixing with fresh air. It is possible when sudden gas outburst takes place, methane leaks from methane drainage system or gas leaks out the pipelines of underground coal gasification devices. Three options were considered - corresponding to three different speeds of the jet fan. They represent three stages of fan work. First - low air speed is forced by a pneumatic fan, when electricity is cut off after high methane concentration detection. Medium speed can be forced by pneumatic-electric device when methane concentration allows to turn on the electricity. Third, the highest speed is for electric fans. Simulations were carried out in the Fire Dynamics Simulator (FDS) belongs to the group of programs Computational Fluid Dynamics (CFD). The governing equations are being solved in a numerical way. It was shown that proposed solution allows partial dilution of methane in every variant of speed what should allow escape of the miners from hazardous area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romberger, Jeff
An adjustable-speed drive (ASD) includes all devices that vary the speed of a rotating load, including those that vary the motor speed and linkage devices that allow constant motor speed while varying the load speed. The Variable Frequency Drive Evaluation Protocol presented here addresses evaluation issues for variable-frequency drives (VFDs) installed on commercial and industrial motor-driven centrifugal fans and pumps for which torque varies with speed. Constant torque load applications, such as those for positive displacement pumps, are not covered by this protocol.
40 CFR 1037.640 - Variable vehicle speed limiters.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Variable vehicle speed limiters. 1037... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW HEAVY-DUTY MOTOR VEHICLES Special Compliance Provisions § 1037.640 Variable vehicle speed limiters. This section specifies provisions that apply for vehicle...
40 CFR 1037.640 - Variable vehicle speed limiters.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Variable vehicle speed limiters. 1037... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW HEAVY-DUTY MOTOR VEHICLES Special Compliance Provisions § 1037.640 Variable vehicle speed limiters. This section specifies provisions that apply for vehicle...
Sensorless Modeling of Varying Pulse Width Modulator Resolutions in Three-Phase Induction Motors
Marko, Matthew David; Shevach, Glenn
2017-01-01
A sensorless algorithm was developed to predict rotor speeds in an electric three-phase induction motor. This sensorless model requires a measurement of the stator currents and voltages, and the rotor speed is predicted accurately without any mechanical measurement of the rotor speed. A model of an electric vehicle undergoing acceleration was built, and the sensorless prediction of the simulation rotor speed was determined to be robust even in the presence of fluctuating motor parameters and significant sensor errors. Studies were conducted for varying pulse width modulator resolutions, and the sensorless model was accurate for all resolutions of sinusoidal voltage functions. PMID:28076418
Sensorless Modeling of Varying Pulse Width Modulator Resolutions in Three-Phase Induction Motors.
Marko, Matthew David; Shevach, Glenn
2017-01-01
A sensorless algorithm was developed to predict rotor speeds in an electric three-phase induction motor. This sensorless model requires a measurement of the stator currents and voltages, and the rotor speed is predicted accurately without any mechanical measurement of the rotor speed. A model of an electric vehicle undergoing acceleration was built, and the sensorless prediction of the simulation rotor speed was determined to be robust even in the presence of fluctuating motor parameters and significant sensor errors. Studies were conducted for varying pulse width modulator resolutions, and the sensorless model was accurate for all resolutions of sinusoidal voltage functions.
Measurement of direct current electric fields and plasma flow speeds in Jupiter's magnetosphere
NASA Technical Reports Server (NTRS)
Kellogg, Paul J.; Goetz, K.; Howard, R. L.; Monson, S. J.; Balogh, A.; Forsyth, R. J.
1993-01-01
During the encounter of Ulysses with Jupiter, we have measured two components of the dc electric field and deduced from them the flow speed in the Io toms, as well as the presence of a polar cap region end what we interpret as a cleft region. Within the toms the flow speed is approximately equal to the speed of a plasma corotating with Jupiter but has significant deviations. The dominant deviations have an apparent period of the order of Jupiter's rotation period, but this might be a latitudinal effect. Other important periods are about 40 min and less than 25 min.
REAL-TIME MODEL-BASED ELECTRICAL POWERED WHEELCHAIR CONTROL
Wang, Hongwu; Salatin, Benjamin; Grindle, Garrett G.; Ding, Dan; Cooper, Rory A.
2009-01-01
The purpose of this study was to evaluate the effects of three different control methods on driving speed variation and wheel-slip of an electric-powered wheelchair (EPW). A kinematic model as well as 3-D dynamic model was developed to control the velocity and traction of the wheelchair. A smart wheelchair platform was designed and built with a computerized controller and encoders to record wheel speeds and to detect the slip. A model based, a proportional-integral-derivative (PID) and an open-loop controller were applied with the EPW driving on four different surfaces at three specified speeds. The speed errors, variation, rise time, settling time and slip coefficient were calculated and compared for a speed step-response input. Experimental results showed that model based control performed best on all surfaces across the speeds. PMID:19733494
Gutierrez-Villalobos, Jose M.; Rodriguez-Resendiz, Juvenal; Rivas-Araiza, Edgar A.; Martínez-Hernández, Moisés A.
2015-01-01
Three-phase induction motor drive requires high accuracy in high performance processes in industrial applications. Field oriented control, which is one of the most employed control schemes for induction motors, bases its function on the electrical parameter estimation coming from the motor. These parameters make an electrical machine driver work improperly, since these electrical parameter values change at low speeds, temperature changes, and especially with load and duty changes. The focus of this paper is the real-time and on-line electrical parameters with a CMAC-ADALINE block added in the standard FOC scheme to improve the IM driver performance and endure the driver and the induction motor lifetime. Two kinds of neural network structures are used; one to estimate rotor speed and the other one to estimate rotor resistance of an induction motor. PMID:26131677
Gutierrez-Villalobos, Jose M; Rodriguez-Resendiz, Juvenal; Rivas-Araiza, Edgar A; Martínez-Hernández, Moisés A
2015-06-29
Three-phase induction motor drive requires high accuracy in high performance processes in industrial applications. Field oriented control, which is one of the most employed control schemes for induction motors, bases its function on the electrical parameter estimation coming from the motor. These parameters make an electrical machine driver work improperly, since these electrical parameter values change at low speeds, temperature changes, and especially with load and duty changes. The focus of this paper is the real-time and on-line electrical parameters with a CMAC-ADALINE block added in the standard FOC scheme to improve the IM driver performance and endure the driver and the induction motor lifetime. Two kinds of neural network structures are used; one to estimate rotor speed and the other one to estimate rotor resistance of an induction motor.
Toda, Haruki; Nagano, Akinori; Luo, Zhiwei
2016-01-01
[Purpose] The purpose of this study was to clarify whether walking speed affects acceleration variability of the head, lumbar, and lower extremity by simultaneously evaluating of acceleration. [Subjects and Methods] Twenty young individuals recruited from among the staff at Kurashiki Heisei Hospital participated in this study. Eight accelerometers were used to measure the head, lumbar and lower extremity accelerations. The participants were instructed to walk at five walking speeds prescribed by a metronome. Acceleration variability was assessed by a cross-correlation analysis normalized using z-transform in order to evaluate stride-to-stride variability. [Results] Vertical acceleration variability was the smallest in all body parts, and walking speed effect had laterality. Antero-posterior acceleration variability was significantly associated with walking speed at sites other than the head. Medio-lateral acceleration variability of the bilateral hip alone was smaller than the antero-posterior variability. [Conclusion] The findings of this study suggest that the effect of walking speed changes on the stride-to-stride acceleration variability was individual for each body parts, and differs among directions. PMID:27390419
Solar-Powered Refrigeration System
NASA Technical Reports Server (NTRS)
Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)
2001-01-01
A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure. and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.
Solar-Powered Refrigeration System
NASA Technical Reports Server (NTRS)
Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)
2002-01-01
A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.
Solar Powered Refrigeration System
NASA Technical Reports Server (NTRS)
Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)
2002-01-01
A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.
Variable-Speed Induction Motor Drives for Aircraft Environmental Control Compressors
NASA Technical Reports Server (NTRS)
Mildice, J. W.; Hansen, I. G.; Schreiner, K. E.; Roth, M. E.
1996-01-01
New, more-efficient designs for aircraft jet engines are not capable of supplying the large quantities of bleed air necessary to provide pressurization and air conditioning for the environmental control systems (ECS) of the next generation of large passenger aircraft. System analysis and engineering have determined that electrically-driven ECS can help to maintain the improved fuel efficiencies; and electronic controllers and induction motors are now being developed in a NASA/NPD SBIR Program to drive both types of ECS compressors. Previous variable-speed induction motor/controller system developments and publications have primarily focused on field-oriented control, with large transient reserve power, for maximum acceleration and optimum response in actuator and robotics systems. The application area addressed herein is characterized by slowly-changing inputs and outputs, small reserve power capability for acceleration, and optimization for maximum efficiency. This paper therefore focuses on the differences between this case and the optimum response case, and shows the development of this new motor/controller approach. It starts with the creation of a new set of controller requirements. In response to those requirements, new control algorithms are being developed and implemented in an embedded computer, which is integrated into the motor controller closed loop. Buffered logic outputs are used to drive the power switches in a resonant-technology, power processor/motor-controller, at switching/resonant frequencies high enough to support efficient high-frequency induction motor operation at speeds up to 50,000-RPA
DOT National Transportation Integrated Search
1993-08-01
The U.S. has implemented a national initiative to develop maglev (magnetic levitation) and other high-speed rail (HSR) : systems. There are concerns for potential adverse health effects of the Extremely Lou Frequency (3-3,000 Hz) electric : and magne...
Exposure to electromagnetic fields aboard high-speed electric multiple unit trains.
Niu, D; Zhu, F; Qiu, R; Niu, Q
2016-01-01
High-speed electric multiple unit (EMU) trains generate high-frequency electric fields, low-frequency magnetic fields, and high-frequency wideband electromagnetic emissions when running. Potential human health concerns arise because the electromagnetic disturbances are transmitted mainly into the car body from windows, and from there to passengers and train staff. The transmission amount and amplitude distribution characteristics that dominate electromagnetic field emission need to be studied, and the exposure level of electromagnetic field emission to humans should be measured. We conducted a series of tests of the on board electromagnetic field distribution on several high-speed railway lines. While results showed that exposure was within permitted levels, the possibility of long-term health effects should be investigated.
NASA Technical Reports Server (NTRS)
Marte, J. E.; Bryant, J. A.; Livingston, R.
1983-01-01
Dynamometer performance of a South Coast Technology electric conversion of a Volkswagen (VW) Rabbit designated SCT-8 was tested. The SCT-8 vehicle was fitted with a transistorized chopper in the motor armature circuit to supplement the standard motor speed control via field weakening. The armature chopper allowed speed control below the motor base speed. This low speed control was intended to reduce energy loss at idle during stop-and-go traffic; to eliminate the need for using the clutch below base motor speed; and to improve the drivability. Test results indicate an improvement of about 3.5% in battery energy economy for the SAE J227a-D driving cycle and 6% for the C-cycle with only a minor reduction in acceleration performance. A further reduction of about 6% would be possible if provision were made for shutting down field power during the idle phases of the driving cycles. Drivability of the vehicle equipped with the armature chopper was significantly improved compared with the standard SCT Electric Rabbit.
NASA Technical Reports Server (NTRS)
Edie, P. C.
1981-01-01
Performance data on the General Electric 5BT 2366C10 series wound dc motor and EV-1 Chopper Controller is supplied for the electric vehicle manufacturer. Data is provided for both straight and chopped dc input to the motor, at 2 motor temperature levels. Testing was done at 6 voltage increments to the motor, and 2 voltage increments to the controller. Data results are presented in both tabular and graphical forms. Tabular information includes motor voltage and current input data, motor speed and torque output data, power data and temperature data. Graphical information includes torque-speed, motor power output-speed, torque-current, and efficiency-speed plots under the various operating conditions. The data resulting from this testing shows the speed-torque plots to have the most variance with operating temperature. The maximum motor efficiency is between 86% and 87%, regardless of temperature or mode of operation. When the chopper is utilized, maximum motor efficiency occurs when the chopper duty cycle approaches 100%.
NASA Astrophysics Data System (ADS)
Orloff, Nathan D.; Long, Christian J.; Obrzut, Jan; Maillaud, Laurent; Mirri, Francesca; Kole, Thomas P.; McMichael, Robert D.; Pasquali, Matteo; Stranick, Stephan J.; Alexander Liddle, J.
2015-11-01
Advances in roll-to-roll processing of graphene and carbon nanotubes have at last led to the continuous production of high-quality coatings and filaments, ushering in a wave of applications for flexible and wearable electronics, woven fabrics, and wires. These applications often require specific electrical properties, and hence precise control over material micro- and nanostructure. While such control can be achieved, in principle, by closed-loop processing methods, there are relatively few noncontact and nondestructive options for quantifying the electrical properties of materials on a moving web at the speed required in modern nanomanufacturing. Here, we demonstrate a noncontact microwave method for measuring the dielectric constant and conductivity (or geometry for samples of known dielectric properties) of materials in a millisecond. Such measurement times are compatible with current and future industrial needs, enabling real-time materials characterization and in-line control of processing variables without disrupting production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koralewicz, Przemyslaw J; Gevorgian, Vahan; Wallen, Robert B
Power-hardware-in-the-loop (PHIL) is a simulation tool that can support electrical systems engineers in the development and experimental validation of novel, advanced control schemes that ensure the robustness and resiliency of electrical grids that have high penetrations of low-inertia variable renewable resources. With PHIL, the impact of the device under test on a generation or distribution system can be analyzed using a real-time simulator (RTS). PHIL allows for the interconnection of the RTS with a 7 megavolt ampere (MVA) power amplifier to test multi-megawatt renewable assets available at the National Wind Technology Center (NWTC). This paper addresses issues related to themore » development of a PHIL interface that allows testing hardware devices at actual scale. In particular, the novel PHIL interface algorithm and high-speed digital interface, which minimize the critical loop delay, are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koralewicz, Przemyslaw J; Gevorgian, Vahan; Wallen, Robert B
Power-hardware-in-the-loop (PHIL) is a simulation tool that can support electrical systems engineers in the development and experimental validation of novel, advanced control schemes that ensure the robustness and resiliency of electrical grids that have high penetrations of low-inertia variable renewable resources. With PHIL, the impact of the device under test on a generation or distribution system can be analyzed using a real-time simulator (RTS). PHIL allows for the interconnection of the RTS with a 7 megavolt ampere (MVA) power amplifier to test multi-megawatt renewable assets available at the National Wind Technology Center (NWTC). This paper addresses issues related to themore » development of a PHIL interface that allows testing hardware devices at actual scale. In particular, the novel PHIL interface algorithm and high-speed digital interface, which minimize the critical loop delay, are discussed.« less
Orloff, Nathan D.; Long, Christian J.; Obrzut, Jan; Maillaud, Laurent; Mirri, Francesca; Kole, Thomas P.; McMichael, Robert D.; Pasquali, Matteo; Stranick, Stephan J.; Alexander Liddle, J.
2015-01-01
Advances in roll-to-roll processing of graphene and carbon nanotubes have at last led to the continuous production of high-quality coatings and filaments, ushering in a wave of applications for flexible and wearable electronics, woven fabrics, and wires. These applications often require specific electrical properties, and hence precise control over material micro- and nanostructure. While such control can be achieved, in principle, by closed-loop processing methods, there are relatively few noncontact and nondestructive options for quantifying the electrical properties of materials on a moving web at the speed required in modern nanomanufacturing. Here, we demonstrate a noncontact microwave method for measuring the dielectric constant and conductivity (or geometry for samples of known dielectric properties) of materials in a millisecond. Such measurement times are compatible with current and future industrial needs, enabling real-time materials characterization and in-line control of processing variables without disrupting production. PMID:26592441
Agricultural Electricity. Electric Motors. Student Manual.
ERIC Educational Resources Information Center
Benson, Robert T.
Addressed to the student, this manual, which includes supplementary diagrams, discusses the following topics and principles: Electromagnetic fields, electromagnets, parts of an electric motor, determining speed of an electric motor, types of electric motors in common use (split-phase, capacitor, repulsion-induction, three-phase), the electric…
High Speed Stream as driver of low latitude ionosphere variability: A study case in Brazilian sector
NASA Astrophysics Data System (ADS)
Nicoli Candido, C. M.; Batista, I. S.; Becker-Guedes, F.; Klausner, V.; da Silva, R.
2016-12-01
The solar activity period of solar cycle 23 was unusually long and quiet in comparison to other solar minima in last century. Several reports have analyzed its features and its impact under diverse points-of-view. In this work, we analyze the low latitude ionosphere behavior in Brazil and its response during this peculiar period. The ionospheric variation is analyzed through typical parameters such as vertical total electron content (VTEC), the peak height of F2 layer and its critical frequency, hmF2 and foF2, in 2008, around the southern crest of the Equatorial Ionization Anomaly (EIA), in Cachoeira Paulista (22.5º S, 45.0 ºW, mag. lat: 16 º S, dip angle: -32.3º) and at an equatorial station, São Luís (2.33º S, 44.2º W, dip angle: -6.7º). VTEC values present a semiannual variation pattern and two well-defined peaks in March and October. It was observed periodicities observed of 9, 13.5 and 27 days in VTEC and hmF2, mainly at the first and the second half of 2008. These periods match with the observed periods in solar and geomagnetic indexes such as Vsw, Kp and AE and are associated with occurrence of high speed streams (HSS) coming from solar coronal holes. A complex response of the low latitude ionosphere is observed, with prominent increases and decreases of VTEC at daytime during the interval of occurrence of HSSs. It is suggested that a combination of several factors such as prompt penetration of electric field, disturbed dynamo electric field, meridional winds, thermal expansion of thermosphere and composition changes of neutral atmosphere are responsible for the high day-to-day variability of the ionosphere.
NASA Astrophysics Data System (ADS)
Mirbaha, Babak; Saffarzadeh, Mahmoud; AmirHossein Beheshty, Seyed; Aniran, MirMoosa; Yazdani, Mirbahador; Shirini, Bahram
2017-10-01
Analysis of vehicle speed with different weather condition and traffic characteristics is very effective in traffic planning. Since the weather condition and traffic characteristics vary every day, the prediction of average speed can be useful in traffic management plans. In this study, traffic and weather data for a two-lane highway located in Northwest of Iran were selected for analysis. After merging traffic and weather data, the linear regression model was calibrated for speed prediction using STATA12.1 Statistical and Data Analysis software. Variables like vehicle flow, percentage of heavy vehicles, vehicle flow in opposing lane, percentage of heavy vehicles in opposing lane, rainfall (mm), snowfall and maximum daily wind speed more than 13m/s were found to be significant variables in the model. Results showed that variables of vehicle flow and heavy vehicle percent acquired the positive coefficient that shows, by increasing these variables the average vehicle speed in every weather condition will also increase. Vehicle flow in opposing lane, percentage of heavy vehicle in opposing lane, rainfall amount (mm), snowfall and maximum daily wind speed more than 13m/s acquired the negative coefficient that shows by increasing these variables, the average vehicle speed will decrease.
Cottin, F; Metayer, N; Goachet, A G; Julliand, V; Slawinski, J; Billat, V; Barrey, E
2010-11-01
Arabian horses have morphological, muscular and metabolic features designed for endurance races. Their gas exchange and gait variables were therefore measured during a field exercise test. This study presents original respiratory and locomotor data recorded in endurance horses under field conditions. Respiratory gas exchange ratio (RER) of Arabian horses at the speed required to win endurance races (18 km/h for 120-160 km) are <1 and running economy (RE) is also low in order to maintain exercise intensity using aerobic metabolism for long intervals. The purpose of this study was to measure oxygen consumption and gait variables in Arabian endurance horses running in the field in order to estimate RER and RE. Five Arabian horses trained for endurance racing were test ridden at increasing speeds on the field. Their speed was recorded and controlled by the rider using a GPS logger. Each horse was equipped with a portable respiratory gas analyser, which measured breath-by-breath respiratory variables and heart rate. The gait variables were recorded using tri-axial accelerometer data loggers and software for gait analysis. Descriptive statistics and linear regressions were used to analyse the speed related changes in each variable with P < 0.05 taken as significant. At a canter speed corresponding to endurance race winning speed (18 km/h), horses presented a VO(2) = 42 ± 9 ml/min/kg bwt, RER = 0.96 ± 0.10 and RE (= VO(2) /speed) = 134 ± 27 l/km/kg bwt. Linear relationships were observed between speed and VO(2,) HR and gait variables. Significant correlations were observed between VO(2) and gait variables. The RER of 0.96 at winning endurance speed indicates that Arabian horses mainly use aerobic metabolism based on lipid oxidation and that RER may also be related to a good coordination between running speed, respiratory and gait parameters. © 2010 EVJ Ltd.
Mahoney, Jeannette; Verghese, Joe
2014-01-01
Background. The relationship between executive functions (EF) and gait speed is well established. However, with the exception of dual tasking, the key components of EF that predict differences in gait performance have not been determined. Therefore, the current study was designed to determine whether processing speed, conflict resolution, and intraindividual variability in EF predicted variance in gait performance in single- and dual-task conditions. Methods. Participants were 234 nondemented older adults (mean age 76.48 years; 55% women) enrolled in a community-based cohort study. Gait speed was assessed using an instrumented walkway during single- and dual-task conditions. The flanker task was used to assess EF. Results. Results from the linear mixed effects model showed that (a) dual-task interference caused a significant dual-task cost in gait speed (estimate = 35.99; 95% CI = 33.19–38.80) and (b) of the cognitive predictors, only intraindividual variability was associated with gait speed (estimate = −.606; 95% CI = −1.11 to −.10). In unadjusted analyses, the three EF measures were related to gait speed in single- and dual-task conditions. However, in fully adjusted linear regression analysis, only intraindividual variability predicted performance differences in gait speed during dual tasking (B = −.901; 95% CI = −1.557 to −.245). Conclusion. Among the three EF measures assessed, intraindividual variability but not speed of processing or conflict resolution predicted performance differences in gait speed. PMID:24285744
Automated manual transmission clutch controller
Lawrie, Robert E.; Reed, Jr., Richard G.; Rausen, David J.
1999-11-30
A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.
Automated manual transmission shift sequence controller
Lawrie, Robert E.; Reed, Richard G.; Rausen, David J.
2000-02-01
A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both, an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.
Automated manual transmission mode selection controller
Lawrie, Robert E.
1999-11-09
A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.
Automated manual transmission controller
Lawrie, Robert E.; Reed, Jr., Richard G.; Bernier, David R.
1999-12-28
A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.
Vehicle test report: Electric Vehicle Associates electric conversion of an AMC Pacer
NASA Technical Reports Server (NTRS)
Price, T. W.; Wirth, V. A., Jr.; Pampa, M. F.
1981-01-01
The change of pace, an electric vehicle was tested. These tests were performed to characterize certain parameters of the electric vehicle pacer and to provide baseline data that can be used for the comparison of improved batteries that may be incorporated into the vehicle at a later time. The vehicle tests were concentrated on the electrical drive subsystem, the batteries, controller and motor. Coastdowns to characterize the road load, and range evaluations for both cyclic and constant speed conditions were performed. The vehicle's performance was evaluated by comparing its constant speed range performance with described vehicles. It is found that the pacer performance is approximately equal to the majority of the vehicles tested in the 1977 assessment.
Electronically commutated dc motors for electric vehicles
NASA Technical Reports Server (NTRS)
Maslowski, E. A.
1981-01-01
A motor development program to explore the feasibility of electronically commutated dc motors (also known as brushless) for electric cars is described. Two different design concepts and a number of design variations based on these concepts are discussed. One design concept is based on a permanent magnet, medium speed, machine rated at 7000 to 9000 rpm, and powered via a transistor inverter power conditioner. The other concept is based on a permanent magnet, high speed, machine rated at 22,000 to 26,000 rpm, and powered via a thyristor inverter power conditioner. Test results are presented for a medium speed motor and a high speed motor each of which have been fabricated using samarium cobalt permanent magnet material.
Hybrid-secondary uncluttered induction machine
Hsu, John S.
2001-01-01
An uncluttered secondary induction machine (100) includes an uncluttered rotating transformer (66) which is mounted on the same shaft as the rotor (73) of the induction machine. Current in the rotor (73) is electrically connected to current in the rotor winding (67) of the transformer, which is not electrically connected to, but is magnetically coupled to, a stator secondary winding (40). The stator secondary winding (40) is alternately connected to an effective resistance (41), an AC source inverter (42) or a magnetic switch (43) to provide a cost effective slip-energy-controlled, adjustable speed, induction motor that operates over a wide speed range from below synchronous speed to above synchronous speed based on the AC line frequency fed to the stator.
Visualizing Special Relativity: The Field of An Electric Dipole Moving at Relativistic Speed
ERIC Educational Resources Information Center
Smith, Glenn S.
2011-01-01
The electromagnetic field is determined for a time-varying electric dipole moving with a constant velocity that is parallel to its moment. Graphics are used to visualize this field in the rest frame of the dipole and in the laboratory frame when the dipole is moving at relativistic speed. Various phenomena from special relativity are clearly…
Drag Reduction Through Distributed Electric Propulsion
NASA Technical Reports Server (NTRS)
Stoll, Alex M.; Bevirt, JoeBen; Moore, Mark D.; Fredericks, William J.; Borer, Nicholas K.
2014-01-01
One promising application of recent advances in electric aircraft propulsion technologies is a blown wing realized through the placement of a number of electric motors driving individual tractor propellers spaced along each wing. This configuration increases the maximum lift coefficient by providing substantially increased dynamic pressure across the wing at low speeds. This allows for a wing sized near the ideal area for maximum range at cruise conditions, imparting the cruise drag and ride quality benefits of this smaller wing size without decreasing takeoff and landing performance. A reference four-seat general aviation aircraft was chosen as an exemplary application case. Idealized momentum theory relations were derived to investigate tradeoffs in various design variables. Navier-Stokes aeropropulsive simulations were performed with various wing and propeller configurations at takeoff and landing conditions to provide insight into the effect of different wing and propeller designs on the realizable effective maximum lift coefficient. Similar analyses were performed at the cruise condition to ensure that drag targets are attainable. Results indicate that this configuration shows great promise to drastically improve the efficiency of small aircraft.
Passive wide spectrum harmonic filter for adjustable speed drives in oil and gas industry
NASA Astrophysics Data System (ADS)
Al Jaafari, Khaled Ali
Non-linear loads such as variable speed drives constitute the bulky load of oil and gas industry power systems. They are widely used in driving induction and permanent magnet motors for variable speed applications. That is because variable speed drives provide high static and dynamic performance. Moreover, they are known of their high energy efficiency and high motion quality, and high starting torque. However, these non-linear loads are main sources of current and voltage harmonics and lower the quality of electric power system. In fact, it is the six-pulse and twelve-pulse diode and thyristor rectifiers that spoil the AC power line with the dominant harmonics (5th, 7th, 11th). They provide DC voltage to the inverter of the variable speed drives. Typical problems that arise from these harmonics are Harmonic resonances', harmonic losses, interference with electronic equipment, and line voltage distortion at the Point of Common Coupling (PCC). Thus, it is necessary to find efficient, reliable, and economical harmonic filters. The passive filters have definite advantage over active filters in terms of components count, cost and reliability. Reliability and maintenance is a serious issue in drilling rigs which are located in offshore and onshore with extreme operating conditions. Passive filters are tuned to eliminate a certain frequency and therefore there is a need to equip the system with more than one passive filter to eliminate all unwanted frequencies. An alternative solution is Wide Spectrum Harmonic passive filter. The wide spectrum harmonic filters are becoming increasingly popular in these applications and found to overcome some of the limitations of conventional tuned passive filter. The most important feature of wide spectrum harmonic passive filters is that only one capacitor is required to filter a wide range of harmonics. Wide spectrum filter is essentially a low-pass filter for the harmonic at fundamental frequency. It can also be considered as a single-stage passive filter plus input and output inductors. The work proposed gives a complete analysis of wide spectrum harmonic passive filters, the methodology to choose its parameters according to the operational condition, effect of load and source inductance on its characteristics. Also, comparison of the performance of the wide band passive filter with tuned filter is given. The analyses are supported with the simulation results and were verified experimentally. The analysis given in this thesis will be useful for the selection of proper wide spectrum harmonic filters for harmonic mitigation applications in oil and gas industry.
Instrument for analysis of electric motors based on slip-poles component
Haynes, Howard D.; Ayers, Curtis W.; Casada, Donald A.
1996-01-01
A new instrument for monitoring the condition and speed of an operating electric motor from a remote location. The slip-poles component is derived from a motor current signal. The magnitude of the slip-poles component provides the basis for a motor condition monitor, while the frequency of the slip-poles component provides the basis for a motor speed monitor. The result is a simple-to-understand motor health monitor in an easy-to-use package. Straightforward indications of motor speed, motor running current, motor condition (e.g., rotor bar condition) and synthesized motor sound (audible indication of motor condition) are provided. With the device, a relatively untrained worker can diagnose electric motors in the field without requiring the presence of a trained engineer or technician.
Instrument for analysis of electric motors based on slip-poles component
Haynes, H.D.; Ayers, C.W.; Casada, D.A.
1996-11-26
A new instrument is described for monitoring the condition and speed of an operating electric motor from a remote location. The slip-poles component is derived from a motor current signal. The magnitude of the slip-poles component provides the basis for a motor condition monitor, while the frequency of the slip-poles component provides the basis for a motor speed monitor. The result is a simple-to-understand motor health monitor in an easy-to-use package. Straightforward indications of motor speed, motor running current, motor condition (e.g., rotor bar condition) and synthesized motor sound (audible indication of motor condition) are provided. With the device, a relatively untrained worker can diagnose electric motors in the field without requiring the presence of a trained engineer or technician. 4 figs.
NASA Technical Reports Server (NTRS)
Sargent, N. B.
1980-01-01
The steady state test results on a breadboard version of the General Electric Near Term Electric Vehicle (ETV-1) are discussed. The breadboard was built using exact duplicate vehicle propulsion system components with few exceptions. Full instrumentation was provided to measure individual component efficiencies. Tests were conducted on a 50 hp dynamometer in a road load simulator facility. Characterization of the propulsion system over the lower half of the speed-torque operating range has shown the system efficiency to be composed of a predominant motor loss plus a speed dependent transaxle loss. At the lower speeds with normal road loads the armature chopper loss is also a significant factor. At the conditions corresponding to a cycle for which the vehicle system was specifically designed, the efficiencies are near optimum.
Demonstration of variable speed permanent magnet generator at small, low-head hydro site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown Kinloch, David
Small hydro developers face a limited set of bad choices when choosing a generator for a small low-head hydro site. Direct drive synchronous generators are expensive and technically complex to install. Simpler induction generators are higher speed, requiring a speed increaser, which results in inefficiencies and maintenance problems. In addition, both induction and synchronous generators turn at a fixed speed, causing the turbine to run off its peak efficiency curve whenever the available head is different than the designed optimum head.The solution to these problems is the variable speed Permanent Magnet Generators (PMG). At the Weisenberger Mill in Midway, KY,more » a variable speed Permanent Magnet Generator has been installed and demonstrated. This new PMG system replaced an existing induction generator that had a HTD belt drive speed increaser system. Data was taken from the old generator before it was removed and compared to data collected after the PMG system was installed. The new variable speed PMG system is calculated to produce over 96% more energy than the old induction generator system during an average year. This significant increase was primarily due to the PMG generator operating at the correct speed at the maximum head, and the ability for the PMG generator to reduce its speed to lower optimum speeds as the stream flow increased and the net head decreased.This demonstration showed the importance of being able to adjust the speed of fixed blade turbines. All fixed blade turbines with varying net heads could achieve higher efficiencies if the speed can be matched to the optimum speed as the head changes. In addition, this demonstration showed that there are many potential efficiencies that could be realized with variable speed technology at hydro sites where mismatched turbine and generator speeds result in lower power output, even at maximum head. Funding for this project came from the US Dept. of Energy, through Award Number DE-EE0005429.« less
Performance testing of EVs in the EPRI/TVA EV program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Driggans, R.L.
1983-01-01
Performance testing has been completed on four electric vehicles: the Grumman-Olson Kubvan, SCT Electric (VW) Pickup, Jet Industries Electrica, and VW Electrotransporter Bus. The tests performed included vehicle dc energy consumption and driving range at constant speeds and on the SAE J227a C cycle, on-road driving range, hill climbing, maximum acceleration, top speed, and braking performance. Descriptions of the vehicles tested and comparisons of major performance parameters on all four vehicles are presented. This testing was performed at the TVA Electric Vehicle Test Facility.
NASA Astrophysics Data System (ADS)
Chen, Te; Xu, Xing; Chen, Long; Jiang, Haobing; Cai, Yingfeng; Li, Yong
2018-02-01
Accurate estimation of longitudinal force, lateral vehicle speed and yaw rate is of great significance to torque allocation and stability control for four-wheel independent driven electric vehicle (4WID-EVs). A fusion method is proposed to estimate the longitudinal force, lateral vehicle speed and yaw rate for 4WID-EVs. The electric driving wheel model (EDWM) is introduced into the longitudinal force estimation, the longitudinal force observer (LFO) is designed firstly based on the adaptive high-order sliding mode observer (HSMO), and the convergence of LFO is analyzed and proved. Based on the estimated longitudinal force, an estimation strategy is then presented in which the strong tracking filter (STF) is used to estimate lateral vehicle speed and yaw rate simultaneously. Finally, co-simulation via Carsim and Matlab/Simulink is carried out to demonstrate the effectiveness of the proposed method. The performance of LFO in practice is verified by the experiment on chassis dynamometer bench.
NASA Astrophysics Data System (ADS)
Zhang, Yuyan; Sun, Shasha; Guo, Quanli; Yang, Degong; Sun, Dongtao
2016-11-01
In the high speed sliding electrical contact with large current, the temperature of contact area rises quickly under the coupling action of the friction heating, the Joule heating and electric arc heating. The rising temperature seriously affects the conductivity of the components and the yield strength of materials, as well affects the contact state and lead to damage, so as to shorten the service life of the contact elements. Therefore, there is vital significance to measure the temperature accurately and investigate the temperature effect on damage of rail surface. Aiming at the problem of components damage in high speed sliding electrical contact, the transient heat effect on the contact surface was explored and its influence and regularity on the sliding components damage was obtained. A kind of real-time temperature measurement method on rail surface of high speed sliding electrical contact is proposed. Under the condition of 2.5 kA current load, based on the principle of infrared radiation non-contact temperature sensor was used to measure the rail temperature. The dynamic distribution of temperature field was obtained through the simulation analysis, further, the connection between temperature changes and the rail surface damage morphology, the damage volume was analyzed and established. Finally, the method to reduce rail damage and improve the life of components by changing the temperature field was discussed.
Selective Use of Optical Variables to Control Forward Speed
NASA Technical Reports Server (NTRS)
Johnson, Walter W.; Awe, Cynthia A.; Hart, Sandra G. (Technical Monitor)
1994-01-01
Previous work on the perception and control of simulated vehicle speed has examined the contributions of optical flow rate (angular visual speed) and texture, or edge rate (frequency of passing terrain objects or markings) on the perception and control of forward speed. However, these studies have not examined the ability to selectively use edge rate or flow rate. The two studies reported here show that subjects found it very difficult to arbitrarily direct attention to one or the other of these variables; but that the ability to selectively use these variables is linked to the visual contextual information about the relative validity (linkage with speed) of the two variables. The selectivity also resulted in different velocity adaptation levels for events in which flow rate and edge rate specified forward speed. Finally, the role of visual context in directing attention was further buttressed by the finding that the incorrect perception of changes in ground texture density tended to be coupled with incorrect perceptions of changes in forward speed.
Assessment of C-Type Darrieus Wind Turbine Under Low Wind Speed Condition
NASA Astrophysics Data System (ADS)
Misaran, M. S.; Rahman, Md. M.; Muzammil, W. K.; Ismail, M. A.
2017-07-01
Harvesting wind energy in in a low wind speed region is deem un-economical if not daunting task. Study shows that a minimum cut in speed of 3.5 m/s is required to extract a meaningful wind energy for electricity while a mean speed of 6 m/s is preferred. However, in Malaysia the mean speed is at 2 m/s with certain potential areas having 3 m/s mean speed. Thus, this work aims to develop a wind turbine that able to operate at lower cut-in speed and produce meaningful power for electricity generation. A C-type Darrieus blade is selected as it shows good potential to operate in arbitrary wind speed condition. The wind turbine is designed and fabricated in UMS labs while the performance of the wind turbine is evaluated in a simulated wind condition. Test result shows that the wind turbine started to rotate at 1 m/s compared to a NACA 0012 Darrieus turbine that started to rotate at 3 m/s. The performance of the turbine shows that it have good potential to be used in an intermittent arbitrary wind speed condition as well as low mean wind speed condition.
Analysis of Power Generating Speed Bumps Made of Concrete Foam Composite
NASA Astrophysics Data System (ADS)
Syam, B.; Muttaqin, M.; Hastrino, D.; Sebayang, A.; Basuki, W. S.; Sabri, M.; Abda, S.
2017-03-01
This paper discusses the analysis of speed bump made of concrete foam composite which is used to generate electrical power. Speed bumps are designed to decelerate the speed of vehicles before passing through toll gates, public areas, or any other safety purposes. In Indonesia a speed bump should be designed in the accordance with KM Menhub 3 year 1994. In this research, the speed bump was manufactured with dimensions and geometry comply to the regulation mentioned above. Concrete foam composite speed bumps were used due to its light weight and relatively strong to receive vertical forces from the tyres of vehicles passing over the bumps. The reinforcement materials are processed from empty fruit bunch of oil palm. The materials were subjected to various tests to obtain its physical and mechanical properties. To analyze the structure stability of the speed bumps some models were analyzed using a FEM-based numerical softwares. It was obtained that the speed bumps coupled with polymeric composite bar (3 inches in diameter) are significantly reduce the radial stresses. In addition, the speed bumps equipped with polymeric composite casing or steel casing are also suitable for use as part of system components in producing electrical energy.
NASA Technical Reports Server (NTRS)
Welch, Gerand E.
2010-01-01
The main rotors of the NASA Large Civil Tilt-Rotor notional vehicle operate over a wide speed-range (100% at take-off to 54% at cruise). The variable-speed power turbine, when coupled to a fixed-gear-ratio transmission, offers one approach to accomplish this speed variation. The key aero-challenges of the variable-speed power turbine are related to high work factors at cruise, where the power turbine operates at 54% of take-off speed, wide incidence variations into the vane, blade, and exit-guide-vane rows associated with the power-turbine speed change, and the impact of low aft-stage Reynolds number (transitional flow) at 28 kft cruise. Meanline and 2-D Reynolds-Averaged Navier- Stokes analyses are used to characterize the variable-speed power-turbine aerodynamic challenges and to outline a conceptual design approach that accounts for multi-point operation. Identified technical challenges associated with the aerodynamics of high work factor, incidence-tolerant blading, and low Reynolds numbers pose research needs outlined in the paper
Backup Mechanical Brake System of the Wind Turbine
NASA Astrophysics Data System (ADS)
Sirotkin, E. A.; Solomin, E. V.; Gandzha, S. A.; Kirpichnikova, I. M.
2018-01-01
Paper clarifies the necessity of the emergency mechanical brake systems usage for wind turbines. We made a deep analysis of the wind turbine braking methods available on the market, identifying their strengths and weaknesses. The electromechanical braking appeared the most technically reasonable and economically attractive. We described the developed combined electromechanical brake system for vertical axis wind turbine driven from electric drive with variable torque enough to brake over the turbine even on the storm wind speed up to 45 m/s. The progress was made due to the development of specific kinematic brake system diagram and intelligent control system managed by special operation algorithm.
Holtzer, Roee; Mahoney, Jeannette; Verghese, Joe
2014-08-01
The relationship between executive functions (EF) and gait speed is well established. However, with the exception of dual tasking, the key components of EF that predict differences in gait performance have not been determined. Therefore, the current study was designed to determine whether processing speed, conflict resolution, and intraindividual variability in EF predicted variance in gait performance in single- and dual-task conditions. Participants were 234 nondemented older adults (mean age 76.48 years; 55% women) enrolled in a community-based cohort study. Gait speed was assessed using an instrumented walkway during single- and dual-task conditions. The flanker task was used to assess EF. Results from the linear mixed effects model showed that (a) dual-task interference caused a significant dual-task cost in gait speed (estimate = 35.99; 95% CI = 33.19-38.80) and (b) of the cognitive predictors, only intraindividual variability was associated with gait speed (estimate = -.606; 95% CI = -1.11 to -.10). In unadjusted analyses, the three EF measures were related to gait speed in single- and dual-task conditions. However, in fully adjusted linear regression analysis, only intraindividual variability predicted performance differences in gait speed during dual tasking (B = -.901; 95% CI = -1.557 to -.245). Among the three EF measures assessed, intraindividual variability but not speed of processing or conflict resolution predicted performance differences in gait speed. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Design and Performance Improvement of AC Machines Sharing a Common Stator
NASA Astrophysics Data System (ADS)
Guo, Lusu
With the increasing demand on electric motors in various industrial applications, especially electric powered vehicles (electric cars, more electric aircrafts and future electric ships and submarines), both synchronous reluctance machines (SynRMs) and interior permanent magnet (IPM) machines are recognized as good candidates for high performance variable speed applications. Developing a single stator design which can be used for both SynRM and IPM motors is a good way to reduce manufacturing and maintenance cost. SynRM can be used as a low cost solution for many electric driving applications and IPM machines can be used in power density crucial circumstances or work as generators to meet the increasing demand for electrical power on board. In this research, SynRM and IPM machines are designed sharing a common stator structure. The prototype motors are designed with the aid of finite element analysis (FEA). Machine performances with different stator slot and rotor pole numbers are compared by FEA. An 18-slot, 4-pole structure is selected based on the comparison for this prototype design. Sometimes, torque pulsation is the major drawback of permanent magnet synchronous machines. There are several sources of torque pulsations, such as back-EMF distortion, inductance variation and cogging torque due to presence of permanent magnets. To reduce torque pulsations in permanent magnet machines, all the efforts can be classified into two categories: one is from the design stage, the structure of permanent magnet machines can be optimized with the aid of finite element analysis. The other category of reducing torque pulsation is after the permanent magnet machine has been manufactured or the machine structure cannot be changed because of other reasons. The currents fed into the permanent magnet machine can be controlled to follow a certain profile which will make the machine generate a smoother torque waveform. Torque pulsation reduction methods in both categories will be discussed in this dissertation. In the design stage, an optimization method based on orthogonal experimental design will be introduced. Besides, a universal current profiling technique is proposed to minimize the torque pulsation along with the stator copper losses in modular interior permanent magnet motors. Instead of sinusoidal current waveforms, this algorithm will calculate the proper currents which can minimize the torque pulsation. Finite element analysis and Matlab programing will be used to develop this optimal current profiling algorithm. Permanent magnet machines are becoming more attractive in some modern traction applications, such as traction motors and generators for an electrified vehicle. The operating speed or the load condition in these applications may be changing all the time. Compared to electric machines used to operate at a constant speed and constant load, better control performance is required. In this dissertation, a novel model reference adaptive control (MRAC) used on five-phase interior permanent magnet motor drives is presented. The primary controller is designed based on artificial neural network (ANN) to simulate the nonlinear characteristics of the system without knowledge of accurate motor model or parameters. The proposed motor drive decouples the torque and flux components of five-phase IPM motors by applying a multiple reference frame transformation. Therefore, the motor can be easily driven below the rated speed with the maximum torque per ampere (MTPA) operation or above the rated speed with the flux weakening operation. The ANN based primary controller consists of a radial basis function (RBF) network which is trained on-line to adapt system uncertainties. The complete IPM motor drive is simulated in Matlab/Simulink environment and implemented experimentally utilizing dSPACE DS1104 DSP board on a five-phase prototype IPM motor. The proposed model reference adaptive control method has been applied on the commons stator SynRM and IPM machine as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armstrong, Peter; Jiang, Wei; Winiarski, David W.
2009-03-31
this paper develops component and subsystem models used to evaluat4e the performance of a low-lift cooling system with an air-colled chiller optimized for variable-speed and low-pressure-ratio operation, a hydronic radient distribution system, variable-speed transport miotor controls, and peak-shifting controls.
Hydraulic system for a ratio change transmission
Kalns, Ilmars
1981-01-01
Disclosed is a drive assembly (10) for an electrically powered vehicle (12). The assembly includes a transaxle (16) having a two-speed transmission (40) and a drive axle differential (46) disposed in a unitary housing assembly (38), an oil-cooled prime mover or electric motor (14) for driving the transmission input shaft (42), an adapter assembly (24) for supporting the prime mover on the transaxle housing assembly, and a hydraulic system (172) providing pressurized oil flow for cooling and lubricating the electric motor and transaxle and for operating a clutch (84) and a brake (86) in the transmission to shift between the two-speed ratios of the transmission. The adapter assembly allows the prime mover to be supported in several positions on the transaxle housing. The brake is spring-applied and locks the transmission in its low-speed ratio should the hydraulic system fail. The hydraulic system pump is driven by an electric motor (212) independent of the prime mover and transaxle.
Variable Speed Limit (VSL) - Best Management Practice [Summary
DOT National Transportation Integrated Search
2012-01-01
In variable speed limit (VSL) zones, the speed : limit changes in response to traffic congestion, : adverse weather, or road conditions. VSL zones are : often highly automated and have been employed : successfully in several U.S. and European : locat...
Ramratan, Wendy S; Rabin, Laura A; Wang, Cuiling; Zimmerman, Molly E; Katz, Mindy J; Lipton, Richard B; Buschke, Herman
2012-03-01
Individuals with amnestic mild cognitive impairment (aMCI) show deficits on traditional episodic memory tasks and reductions in speed of performance on reaction time tasks. We present results on a novel task, the Cued-Recall Retrieval Speed Task (CRRST), designed to simultaneously measure level and speed of retrieval. A total of 390 older adults (mean age, 80.2 years), learned 16 words based on corresponding categorical cues. In the retrieval phase, we measured accuracy (% correct) and retrieval speed/reaction time (RT; time from cue presentation to voice onset of a correct response) across 6 trials. Compared to healthy elderly adults (HEA, n = 303), those with aMCI (n = 87) exhibited poorer performance in retrieval speed (difference = -0.13; p < .0001) and accuracy on the first trial (difference = -0.19; p < .0001), and their rate of improvement in retrieval speed was slower over subsequent trials. Those with aMCI also had greater within-person variability in processing speed (variance ratio = 1.22; p = .0098) and greater between-person variability in accuracy (variance ratio = 2.08; p = .0001) relative to HEA. Results are discussed in relation to the possibility that computer-based measures of cued-learning and processing speed variability may facilitate early detection of dementia in at-risk older adults.
Kempton, Thomas; Sullivan, Courtney; Bilsborough, Johann C; Cordy, Justin; Coutts, Aaron J
2015-01-01
To determine the match-to-match variability in physical activity and technical performance measures in Australian Football, and examine the influence of playing position, time of season, and different seasons on these measures of variability. Longitudinal observational study. Global positioning system, accelerometer and technical performance measures (total kicks, handballs, possessions and Champion Data rank) were collected from 33 players competing in the Australian Football League over 31 matches during 2011-2012 (N=511 observations). The global positioning system data were categorised into total distance, mean speed (mmin(-1)), high-speed running (>14.4 kmh(-1)), very high-speed running (>19.9 kmh(-1)), and sprint (>23.0 kmh(-1)) distance while player load was collected from the accelerometer. The data were log transformed to provide coefficient of variation and the between subject standard deviation (expressed as percentages). Match-to-match variability was increased for higher speed activities (high-speed running, very high-speed running, sprint distance, coefficient of variation %: 13.3-28.6%) compared to global measures (speed, total distance, player load, coefficient of variation %: 5.3-9.2%). The between-match variability was relativity stable for all measures between and within AFL seasons, with only few differences between positions. Higher speed activities (high-speed running, very high-speed running, sprint distance), but excluding mean speed, total distance and player load, were all higher in the final third phase of the season compared to the start of the season. While global measures of physical performance are relatively stable, higher-speed activities and technical measures exhibit a large degree of between-match variability in Australian Football. However, these measures remain relatively stable between positions, and within and between Australian Football League seasons. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
The selective use of functional optical variables in the control of forward speed
NASA Technical Reports Server (NTRS)
Johnson, Walter W.; Awe, Cynthia A.
1994-01-01
Previous work on the perception and control of simulated vehicle speed has examined the contributions of optical flow rate (angular visual speed) and texture, or edge rate (frequency of passing terrain objects or markings) on the perception and control of forward speed. However, these studies have not examined the ability to selectively use edge rate or flow rate. The two studies presented here show that this ability is far greater for pilots than non-pilots, as would be expected since pilots must control vehicular speed over a variety of altitudes where flow rates change independently of forward speed. These studies also show that this ability to selectively use these variables is linked to the visual contextual information about the relative validity (linkage with speed) of the two variables. Subjective judgment data also indicated that awareness of altitude and ground texture density did not mediate ground speed awareness.
Vehicle test report: Electric Vehicle Associates electric conversion of an AMC Pacer
NASA Technical Reports Server (NTRS)
Price, T. W.; Wirth, V. A., Jr.; Pompa, M. F.
1981-01-01
Tests were performed to characterize certain parameters of the EVA Pacer and to provide baseline data that can be used for the comparison of improved batteries that may be incorporated into the vehicle at a later time. The vehicle tests were concentrated on the electrical drive subsystem; i.e., the batteries, controller and motor. The tests included coastdowns to characterize the road load, and range evaluations for both cyclic and constant speed conditions. A qualitative evaluation of the vehicle's performance was made by comparing its constant speed range performance with other electric and hybrid vehicles. The Pacer performance was approximately equal to the majority of those vehicles assessed in 1977.
ERIC Educational Resources Information Center
Manpower Administration (DOL), Washington, DC. Job Corps.
This self-study program for high-school level contains lessons on: Speed, Acceleration, and Velocity; Force, Mass, and Distance; Types of Motion and Rest; Electricity and Magnetism; Electrical, Magnetic, and Gravitational Fields; The Conservation and Conversion of Matter and Energy; Simple Machines and Work; Gas Laws; Principles of Heat Engines;…
Measure Guideline. Replacing Single-Speed Pool Pumps with Variable Speed Pumps for Energy Savings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunt, A.; Easley, S.
2012-05-01
This measure guideline evaluates potential energy savings by replacing traditional single-speed pool pumps with variable speed pool pumps, and provides a basic cost comparison between continued uses of traditional pumps verses new pumps. A simple step-by-step process for inspecting the pool area and installing a new pool pump follows.
Measure Guideline: Replacing Single-Speed Pool Pumps with Variable Speed Pumps for Energy Savings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunt, A.; Easley, S.
2012-05-01
The report evaluates potential energy savings by replacing traditional single-speed pool pumps with variable speed pool pumps, and provide a basic cost comparison between continued uses of traditional pumps verses new pumps. A simple step-by-step process for inspecting the pool area and installing a new pool pump follows.
Hydro pumped storage, international experience: An overview of ASCE task committee report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarechian, A.H.; Rummel, G.
1995-12-31
This paper presents an overview of a report that is being prepared by ASCE Task Committee on Pumped Storage, International Experience. The reader is referred to the committee report that will be available in 1996. Many pumped storage projects in Europe, but particularly in Japan are becoming an indispensable resource in management of loads and resources on the electrical system. They serve to enhance reliability of the system and to provide for efficient utilization of thermal resources. Pumped storage is increasingly being used as a system management tool. To serve such purposes and to function in this key role, pumpedmore » storage projects are designed for very fast loading and unloading, for very fast mode reversals from pumping to generating and visa versa, for synchronous generation, and more importantly for load ramping during the pumping mode. This is achieved by use of variable-speed pump turbine units. The use of variable-speed units has proven so successful in Japan that many older projects are retrofitted with this new feature. Other interesting equipment applications are discussed including utilization of multi-stage unregulated pump turbines for very high heads (up to 1,250 m), and continued extension of the experience for high head reversible Francis unit, currently in excess of 750 m.« less
Variability in Light-Duty Gasoline Vehicle Emission Factors from Trip-Based Real-World Measurements.
Liu, Bin; Frey, H Christopher
2015-10-20
Using data obtained with portable emissions measurements systems (PEMS) on multiple routes for 100 gasoline vehicles, including passenger cars (PCs), passenger trucks (PTs), and hybrid electric vehicles (HEVs), variability in tailpipe emission rates was evaluated. Tier 2 emission standards are shown to be effective in lowering NOx, CO, and HC emission rates. Although PTs are larger, heavier vehicles that consume more fuel and produce more CO2 emissions, they do not necessarily produce more emissions of regulated pollutants compared to PCs. HEVs have very low emission rates compared to tier 2 vehicles under real-world driving. Emission factors vary with cycle average speed and road type, reflecting the combined impact of traffic control and traffic congestion. Compared to the slowest average speed and most congested cycles, optimal emission rates could be 50% lower for CO2, as much as 70% lower for NOx, 40% lower for CO, and 50% lower for HC. There is very high correlation among vehicles when comparing driving cycles. This has implications for how many cycles are needed to conduct comparisons between vehicles, such as when comparing fuels or technologies. Concordance between empirical and predicted emission rates using the U.S. Environmental Protection Agency's MOVES model was also assessed.
GeneratorSE: A Sizing Tool for Variable-Speed Wind Turbine Generators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sethuraman, Latha; Dykes, Katherine L
This report documents a set of analytical models employed by the optimization algorithms within the GeneratorSE framework. The initial values and boundary conditions employed for the generation of the various designs and initial estimates for basic design dimensions, masses, and efficiency for the four different models of generators are presented and compared with empirical data collected from previous studies and some existing commercial turbines. These models include designs applicable for variable-speed, high-torque application featuring direct-drive synchronous generators and low-torque application featuring induction generators. In all of the four models presented, the main focus of optimization is electromagnetic design with themore » exception of permanent-magnet and wire-wound synchronous generators, wherein the structural design is also optimized. Thermal design is accommodated in GeneratorSE as a secondary attribute by limiting the winding current densities to acceptable limits. A preliminary validation of electromagnetic design was carried out by comparing the optimized magnetic loading against those predicted by numerical simulation in FEMM4.2, a finite-element software for analyzing electromagnetic and thermal physics problems for electrical machines. For direct-drive synchronous generators, the analytical models for the structural design are validated by static structural analysis in ANSYS.« less
Terahertz electrical writing speed in an antiferromagnetic memory
Kašpar, Zdeněk; Campion, Richard P.; Baumgartner, Manuel; Sinova, Jairo; Kužel, Petr; Müller, Melanie; Kampfrath, Tobias
2018-01-01
The speed of writing of state-of-the-art ferromagnetic memories is physically limited by an intrinsic gigahertz threshold. Recently, realization of memory devices based on antiferromagnets, in which spin directions periodically alternate from one atomic lattice site to the next has moved research in an alternative direction. We experimentally demonstrate at room temperature that the speed of reversible electrical writing in a memory device can be scaled up to terahertz using an antiferromagnet. A current-induced spin-torque mechanism is responsible for the switching in our memory devices throughout the 12-order-of-magnitude range of writing speeds from hertz to terahertz. Our work opens the path toward the development of memory-logic technology reaching the elusive terahertz band. PMID:29740601
Evaluation of variable advisory speed limits in work zones.
DOT National Transportation Integrated Search
2013-08-01
Variable advisory speed limit (VASL) systems could be effective at both urban and rural work zones, at both uncongested and congested sites. At uncongested urban work zones, the average speeds with VASL were lower than without VASL. But the standard ...
Xue, Mei; Wang, Kang L.
2012-01-01
The use of a functional molecular unit acting as a state variable provides an attractive alternative for the next generations of nanoscale electronics. It may help overcome the limits of conventional MOSFETd due to their potential scalability, low-cost, low variability, and highly integratable characteristics as well as the capability to exploit bottom-up self-assembly processes. This bottom-up construction and the operation of nanoscale machines/devices, in which the molecular motion can be controlled to perform functions, have been studied for their functionalities. Being triggered by external stimuli such as light, electricity or chemical reagents, these devices have shown various functions including those of diodes, rectifiers, memories, resonant tunnel junctions and single settable molecular switches that can be electronically configured for logic gates. Molecule-specific electronic switching has also been reported for several of these device structures, including nanopores containing oligo(phenylene ethynylene) monolayers, and planar junctions incorporating rotaxane and catenane monolayers for the construction and operation of complex molecular machines. A specific electrically driven surface mounted molecular rotor is described in detail in this review. The rotor is comprised of a monolayer of redox-active ligated copper compounds sandwiched between a gold electrode and a highly-doped P+ Si. This electrically driven sandwich-type monolayer molecular rotor device showed an on/off ratio of approximately 104, a read window of about 2.5 V, and a retention time of greater than 104 s. The rotation speed of this type of molecular rotor has been reported to be in the picosecond timescale, which provides a potential of high switching speed applications. Current-voltage spectroscopy (I-V) revealed a temperature-dependent negative differential resistance (NDR) associated with the device. The analysis of the device I–V characteristics suggests the source of the observed switching effects to be the result of the redox-induced ligand rotation around the copper metal center and this attribution of switching is consistent with the observed temperature dependence of the switching behavior as well as the proposed energy diagram of the device. The observed resistance switching shows the potential for future non-volatile memories and logic devices applications. This review will discuss the progress and provide a perspective of molecular motion for nanoelectronics and other applications.
Impacts of low speed vehicles on transportation infrastructure and safety
DOT National Transportation Integrated Search
2010-12-01
There are increasing numbers of low-speed electric vehicles (LSVs) on public roadways. These vehicles are designed to be used within protected environments and on roadways with a maximum posted speed of 25 mph. Currently these vehicles are not subjec...
Performance ‘S’ Type Savonius Wind Turbine with Variation of Fin Addition on Blade
NASA Astrophysics Data System (ADS)
Pamungkas, S. F.; Wijayanto, D. S.; Saputro, H.; Widiastuti, I.
2018-01-01
Wind power has been receiving attention as the new energy resource in addressing the ecological problems of burning fossil fuels. Savonius wind rotor is a vertical axis wind turbines (VAWT) which has relatively simple structure and low operating speed. These characteristics make it suitable for areas with low average wind speed as in Indonesia. To identify the performance of Savonius rotor in generating electrical energy, this research experimentally studied the effect of fin addition for the ‘S’ shape of Savonius VAWT. The fin is added to fill the space in the blade in directing the wind flow. This rotor has two turbine blades, a rotor diameter of 1.1 m and rotor height of 1.4 m, used pulley transmission system with 1:4.2 multiplication ratio, and used a generator type PMG 200 W. The research was conducted during dry season by measuring the wind speed in the afternoon. The average wind speed in the area is 2.3 m/s with the maximum of 4.5 m/s. It was found that additional fin significantly increase the ability of Savonius rotor VAWT to generate electrical energy shown by increasing of electrical power. The highest power generated is 13.40 Watt at a wind speed of 4.5 m/s by adding 1 (one) fin in the blade. It increased by 22.71% from the rotor blade with no additional fin. However, increasing number of fins in the blade was not linearly increase the electrical power generated. The wind rotor blade with 4 additional fins is indicated has the lowest performance, generating only 10.80 Watt electrical power, accounted lower than the one generated by no fin-rotor blade. By knowing the effect of the rotor shape, the rotor dimension, the addition of fin, transmission, and generator used, it is possible to determine alternative geometry design in increasing the electrical power generated by Savonius wind turbine.
Unsafe riding practice among electric bikers in Suzhou, China: an observational study
Yang, Jie; Hu, Yihe; Du, Wei; Powis, Brent; Ozanne-Smith, Joan; Liao, Yilan; Li, Ning; Wu, Ming
2014-01-01
Background Electric bike (E-bike)-related deaths have been increasing rapidly in China and such injuries may be partly attributable to unsafe riding practice. Objectives To describe potentially unsafe riding behaviours among electric bikers (E-bikers) and to investigate factors influencing these practices in China. Methods In September 2012, a cross-sectional observation study including a speed measurement component was conducted in Wuzhong (an urban district) and Zhangjiagang (a rural district) of Suzhou, Jiangsu Province, China. Hand-held radar speed metres were used to read travelling speeds of E-bikes and a pro forma observation checklist was used to collect data on road riding practice. Mixed-effect logistic regressions were used to calculate adjusted ORs and 95% CIs for the association between speeding, road rule violations and helmet use and their influencing factors. Results Among 800 E-bikes with a speed reading, 70.9% exceeded the designed speed limit of 20 km/h. Among a further 20 647 E-bikers observed, 38.3% did not comply with the road rules when entering intersections; and only 2.2% wore helmets. No regional variation was identified between urban and rural areas. Male E-bikers were associated with more speeding and road rule violations, whereas riding a pedal-equipped E-bike was associated with less road rule violations and less helmet use. Conclusions Unsafe riding practices such as speeding, road rule violations and lack of helmet use were commonplace among E-bikers, especially among men. The study findings indicate that measures aimed at improving E-bike safety are required in China. PMID:24435891
Innovative on board payload optical architecture for high throughput satellites
NASA Astrophysics Data System (ADS)
Baudet, D.; Braux, B.; Prieur, O.; Hughes, R.; Wilkinson, M.; Latunde-Dada, K.; Jahns, J.; Lohmann, U.; Fey, D.; Karafolas, N.
2017-11-01
For the next generation of HighThroughPut (HTP) Telecommunications Satellites, space end users' needs will result in higher link speeds and an increase in the number of channels; up to 512 channels running at 10Gbits/s. By keeping electrical interconnections based on copper, the constraints in term of power dissipation, number of electrical wires and signal integrity will become too demanding. The replacement of the electrical links by optical links is the most adapted solution as it provides high speed links with low power consumption and no EMC/EMI. But replacing all electrical links by optical links of an On Board Payload (OBP) is challenging. It is not simply a matter of replacing electrical components with optical but rather the whole concept and architecture have to be rethought to achieve a high reliability and high performance optical solution. In this context, this paper will present the concept of an Innovative OBP Optical Architecture. The optical architecture was defined to meet the critical requirements of the application: signal speed, number of channels, space reliability, power dissipation, optical signals crossing and components availability. The resulting architecture is challenging and the need for new developments is highlighted. But this innovative optically interconnected architecture will substantially outperform standard electrical ones.
Electric Vehicles at Kennedy Space Center
NASA Technical Reports Server (NTRS)
Chesson, Bruce E.
2007-01-01
The story of how the transportation office began by introducing low speed electric cars (LSEV) to the fleet managers and employees. This sparked and interest in purchasing some of these LSEV and the usage on KSC. Transportation was approached by a vender of High Speed Electric Vehicle (HSEV) we decided to test the HSEV to see if they would meet our fleet vehicle needs. Transportation wrote a Space Act Agreement (SAA) for the loan of three Lithium Powered Electric vehicles for a one year test. The vehicles have worked very well and we have extended the test for another year. The use of HSEV has pushed for an independent Electric Vehicle Study to be performed to consider ways to effectively optimize the use of electric vehicles in replacement of gasoline vehicles in the KSC vehicle fleet. This will help the center to move closer to meeting the Executive Order 13423.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-17
..., LLC High-Speed Passenger Train Project AGENCY: Bureau of Land Management, Interior. ACTION: Notice of... (ROD) for the DesertXpress Enterprises, LLC High-Speed Passenger Train Project (DesertXpress Project...-managed lands to build an Electrical Multiple Unit (EMU) high-speed passenger rail line in compliance with...
Diurnal and seasonal variability of outdoor radon concentration in the area of the NRPI Prague.
Jilek, K; Slezákova, M; Thomas, J
2014-07-01
In autumn 2010, an outdoor measuring station for measurement of atmospheric radon, gamma equivalent dose rate in the range of 100 nSv h(-1)-1 Sv h(-1) and proper meteorological parameters such as thermal air gradient, relative air humidity, wind speed and direction and solar radiation intensity was built in the area of the National Radiation Protection Institute vvi. The station was designed to be independent of an electrical network and enables on-line wireless transfer of all data. After introduction of the station, illustrations of its measurement properties and the results of measured diurnal and seasonal variability of atmospheric radon, based on annual continuous measurement using a high-volume scintillation cell at a height of 2.5 m above the ground, are presented. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2001-12-01
This case study was prepared by participants in the Laboratories for the 21st Century program, a joint endeavor of the U.S. Environmental Protection Agency and the U.S. Department of Energy's Federal Energy Management Program. The goal of this program is to foster greater energy efficiency in new laboratory buildings for both the public and the private sectors. Retrofits of existing laboratories are also encouraged. The energy-efficient features of the laboratories in the Fred Hutchinson Cancer Research Center complex in Seattle, Washington, include extensive use of efficient lighting, variable-air-volume controls, variable-speed drives, motion sensors, and high-efficiency chillers and motors. With aboutmore » 532,000 gross square feet, the complex is estimated to use 33% less electrical energy than most traditional research facilities consume because of its energy-efficient design and features.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2002-03-01
This case study was prepared by participants in the Laboratories for the 21st Century program, a joint endeavor of the U.S. Environmental Protection Agency and the U.S. Department of Energy's Federal Energy Management Program. The goal of this program is to foster greater energy efficiency in new laboratory buildings for both the public and the private sectors. Retrofits of existing laboratories are also encouraged. The energy-efficient features of the laboratories in the Fred Hutchinson Cancer Research Center complex in Seattle, Washington, include extensive use of efficient lighting, variable-air-volume controls, variable-speed drives, motion sensors, and high-efficiency chillers and motors. With aboutmore » 532,000 gross square feet, the complex is estimated to use 33% less electrical energy than most traditional research facilities consume because of its energy-efficient design and features.« less
Can Neural Activity Propagate by Endogenous Electrical Field?
Qiu, Chen; Shivacharan, Rajat S.; Zhang, Mingming
2015-01-01
It is widely accepted that synaptic transmissions and gap junctions are the major governing mechanisms for signal traveling in the neural system. Yet, a group of neural waves, either physiological or pathological, share the same speed of ∼0.1 m/s without synaptic transmission or gap junctions, and this speed is not consistent with axonal conduction or ionic diffusion. The only explanation left is an electrical field effect. We tested the hypothesis that endogenous electric fields are sufficient to explain the propagation with in silico and in vitro experiments. Simulation results show that field effects alone can indeed mediate propagation across layers of neurons with speeds of 0.12 ± 0.09 m/s with pathological kinetics, and 0.11 ± 0.03 m/s with physiologic kinetics, both generating weak field amplitudes of ∼2–6 mV/mm. Further, the model predicted that propagation speed values are inversely proportional to the cell-to-cell distances, but do not significantly change with extracellular resistivity, membrane capacitance, or membrane resistance. In vitro recordings in mice hippocampi produced similar speeds (0.10 ± 0.03 m/s) and field amplitudes (2.5–5 mV/mm), and by applying a blocking field, the propagation speed was greatly reduced. Finally, osmolarity experiments confirmed the model's prediction that cell-to-cell distance inversely affects propagation speed. Together, these results show that despite their weak amplitude, electric fields can be solely responsible for spike propagation at ∼0.1 m/s. This phenomenon could be important to explain the slow propagation of epileptic activity and other normal propagations at similar speeds. SIGNIFICANCE STATEMENT Neural activity (waves or spikes) can propagate using well documented mechanisms such as synaptic transmission, gap junctions, or diffusion. However, the purpose of this paper is to provide an explanation for experimental data showing that neural signals can propagate by means other than synaptic transmission, gap junction, or diffusion. The results indicate that electric fields (ephaptic effects) are capable of mediating propagation of self-regenerating neural waves. This novel mechanism coupling cell-by-volume conduction could be involved in other types of propagating neural signals, such as slow-wave sleep, sharp hippocampal waves, theta waves, or seizures. PMID:26631463
DOT National Transportation Integrated Search
2011-04-01
Variable Advisory Speed Systems (VASS) provide drivers with advanced warning regarding traffic speeds downstream to help them make better decisions. Vehicle use on highways is increasing and the need to improve highways brings increased construction ...
Variable Speed Limit (VSL) - Best Management Practice
DOT National Transportation Integrated Search
2012-07-01
The Variable Speed Limit (VSL) system on the I-4 corridor in Orlando was implemented by Florida Department of Transportation in 2008, and since its deployment, it was revealed that the majority of traffic exceeds the speed limit by more mph when the ...
Two-Stage Winch for Kites and Tethered Balloons or Blimps
NASA Technical Reports Server (NTRS)
Miles, Ted; Bland, Geoff
2011-01-01
A winch system provides a method for launch and recovery capabilities for kites and tethered blimps or balloons. Low power consumption is a key objective, as well as low weight for portability. This is accomplished by decoupling the tether-line storage and wind ing/ unwinding functions, and providing tailored and efficient mechanisms for each. The components of this system include rotational power input devices such as electric motors or other apparatus, line winding/unwinding reel(s), line storage reel(s), and independent drive trains. Power is applied to the wind/unwind reels to transport the tether line. Power is also applied to a line storage reel, from either the wind/unwind power source, the wind/unwind reel itself, or separate power source. The speeds of the two reels are synchronized, but not dependent on each other. This is accomplished via clutch mechanisms, variable transmissions, or independent motor controls. The speed of the storage reel is modulated as the effective diameter of the reel changes with line accumulation.
Development of Ulta-Efficient Electric Motors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoykhet, B.; Schiferl, R.; Duckworth, R.
2008-05-01
Electric motors utilize a large amount of electrical energy in utility and industrial applications. Electric motors constructed with high temperature superconducting (HTS) materials have the potential to dramatically reduce electric motor size and losses. HTS motors are best suited for large motor applications at ratings above 1000 horsepower (hp), where the energy savings from the efficiency improvement can overcome the additional power required to keep the superconductors on the rotor cooled. Large HTS based motors are expected to be half the volume and have half the losses of conventional induction motors of the same rating. For a 5000 hp industrialmore » motor, this energy savings can result in $50,000 in operating cost savings over the course of a single year of operation. Since large horsepower motors utilize (or convert) about 30% of the electrical power generated in the United States and about 70% of large motors are candidates for replacement by HTS motors, the annual energy savings potential through the utilization of HTS motors can be up to $1 Billion in the United States alone. Research in the application of HTS materials to electric motors has lead to a number of HTS motor prototypes yet no industrial HTS motor product has yet been introduced. These motor demonstrations have been synchronous motors with HTS field windings, on the rotor. Figure 1-1 shows a solid model rendering of this type of motor. The rotor winding is made with HTS coils that are held at cryogenic temperature by introducing cooling fluid from the cryocooler to the rotor through a transfer coupling. The stator winding is made of copper wire. The HTS winding is thermally isolated from the warm armature and motor shafts by a vacuum insulation space and through the use of composite torque tubes. The stator in Figure 1-1 is an air core stator in that the stator teeth and a small part of the yoke is made up of nonmagnetic material so the magnetic fields distribute themselves as if in air. Between the HTS field winding and the physical air gap is a series of concentric cylinders that act as vacuum insulation space walls as well as conducting paths for induced currents to flow in order to shield the HTS winding and the rotor cold space from time dependent fields. These time dependent fields may be caused by rotor hunting, during a change in motor load, or by non-fundamental component voltages and currents applied by the inverter. These motors are variable speed controlled by the inverter. Common large motor utility and industrial applications are pump and fan drives that are best suited by a variable speed motor. Inverter control of the HTS motor eliminates the need to design the rotor for line starting, which would dump a large amount of heat into the rotor that would then heavily tax the cryogenic cooling system. The field winding is fed by a brushless exciter that provides DC current to the HTS rotor winding. The stator winding is air or water cooled. Technical and commercial hurdles to industrial HTS motor product introduction and customer acceptance include (1) the high cost of HTS wire and the cryogenic cooling system components, (2) customer concerns about reliability of HTS motors, and (3) the ability to attain the loss reduction potential of large HTS motors. Reliance Electric has demonstrated a number of HTS based electric motors up to a 1000 hp, variable speed synchronous motor with an HTS field winding in the year 2000. In 2001 this motor was tested to 1600 hp with a sinusoidal (constant frequency) supply. Figure 1-2 shows the HTS motor on the dynamometer test stand in the Reliance Electric test lab. The extensive test program of the 1000 hp motor successfully demonstrated the technical feasibility of large HTS motors and the basic technologies involved, however the test results did indicate the need for design refinements. In addition, test results served to identify other more fundamental critical technology issues, and revealed the need to continue research efforts in order to improve future HTS motor first cost, reliability, and performance. The lessons learned from the development and testing of the 1000 hp motor were the basis for the tasks proposed for the project that is being described in this final report. These eight tasks and the technology and commercial issues they address are listed in Table 1-1.« less
Reducing Stator Current Harmonics for a Doubly-Fed Induction Generator Connected to a Distorted Grid
2013-09-01
electric grid voltage harmonics, which is a potential obstacle for implementing stable wind -energy systems. Two existing rotor voltage controllers...electric grid voltage harmonics, which is a potential obstacle for implementing stable wind -energy systems. Two existing rotor voltage controllers...speed of the DFIG can be adjusted to optimize turbine efficiency for given wind conditions. A common method for controlling the operating speed is
NASA Astrophysics Data System (ADS)
Yuan, Bo; Zong, Jin; Xu, Zhicheng
2018-06-01
According to different operating characteristics of pumped storage fixed speed unit and variable speed unit, a joint dispatching model of pumped storage unit and other types of units based on mixed integer linear optimization is constructed. The model takes into account the operating conditions, reservoir capacity, cycle type and other pumped storage unit constraints, but also consider the frequent start and stop and the stability of the operation of the unit caused by the loss. Using the Cplex solver to solve the model, the empirical example of the provincial power grid shows that the model can effectively arrange the pumping storage speed and the dispatching operation of the variable speed unit under the precondition of economic life of the unit, and give full play to the function of peak shaving and accommodating new energy. Because of its more flexible regulation characteristics of power generation and pumping conditions, the variable speed unit can better improve the operating conditions of other units in the system and promote the new energy dissipation.
Post-processing method for wind speed ensemble forecast using wind speed and direction
NASA Astrophysics Data System (ADS)
Sofie Eide, Siri; Bjørnar Bremnes, John; Steinsland, Ingelin
2017-04-01
Statistical methods are widely applied to enhance the quality of both deterministic and ensemble NWP forecasts. In many situations, like wind speed forecasting, most of the predictive information is contained in one variable in the NWP models. However, in statistical calibration of deterministic forecasts it is often seen that including more variables can further improve forecast skill. For ensembles this is rarely taken advantage of, mainly due to that it is generally not straightforward how to include multiple variables. In this study, it is demonstrated how multiple variables can be included in Bayesian model averaging (BMA) by using a flexible regression method for estimating the conditional means. The method is applied to wind speed forecasting at 204 Norwegian stations based on wind speed and direction forecasts from the ECMWF ensemble system. At about 85 % of the sites the ensemble forecasts were improved in terms of CRPS by adding wind direction as predictor compared to only using wind speed. On average the improvements were about 5 %, but mainly for moderate to strong wind situations. For weak wind speeds adding wind direction had more or less neutral impact.
Photostop of iodine atoms from electrically oriented ICl molecules
NASA Astrophysics Data System (ADS)
Bao, Da-Xiao; Deng, Lian-Zhong; Xu, Liang; Yin, Jian-Ping
2015-11-01
The dynamics of photostopping iodine atoms from electrically oriented ICl molecules was numerically studied based on their orientational probability distribution functions. Velocity distributions of the iodine atoms and their production rates were investigated for orienting electrical fields of various intensities. For the ICl precursor beams with an initial rotational temperature of ∼ 1 K, the production of the iodine atoms near zero speed will be improved by about ∼ 5 times when an orienting electrical field of ∼ 200 kV/cm is present. A production rate of ∼ 0.5‰ is obtained for photostopped iodine atoms with speeds less than 10 m/s, which are suitable for magnetic trapping. The electrical orientation of ICl precursors and magnetic trapping of photostopped iodine atoms in situ can be conveniently realized with a pair of charged ring magnets. With the maximal value of the trapping field being ∼ 0.28 T, the largest trapping speed is ∼ 7.0 m/s for the iodine atom. Project supported by the National Natural Science Foundation of China (Grant Nos. 11034002, 61205198, and 11274114) and the National Key Basic Research and Development Program of China (Grant No. 2011CB921602).
Work zone variable speed limit systems: Effectiveness and system design issues.
DOT National Transportation Integrated Search
2010-03-01
Variable speed limit (VSL) systems have been used in a number of countries, particularly in Europe, as a method to improve flow and increase safety. VSLs use detectors to collect data on current traffic and/or weather conditions. Posted speed limits ...
Work zone variable speed limit systems : effectiveness and system design issues.
DOT National Transportation Integrated Search
2010-03-01
Variable speed limit (VSL) systems have been used in a number of countries, particularly in Europe, as a method to improve flow and increase safety. VSLs use detectors to collect data on current traffic and/or weather conditions. Posted speed limits ...
Variable-speed, portable routing skate
NASA Technical Reports Server (NTRS)
Pesch, W. A.
1967-01-01
Lightweight, portable, variable-speed routing skate is used on heavy metal subassemblies which are impractical to move to a stationary machine. The assembly, consisting of the housing with rollers, router, and driving mechanism with transmission, weighs about forty pounds. Both speed and depth of cut are adjustable.
DOT National Transportation Integrated Search
1993-08-01
To assess the state of knowledge about anticipated electric and magnetic field (EMF) exposures from electrical transportation systems, including electrically powered rail and magnetically levitated (maglev), research concerning biological effects of ...
Chi, Wen-Chun; Cheng, Ming-Yang
2014-03-01
Due to issues such as limited space, it is difficult if it is not impossible to employ a position sensor in the drive control of high-speed micro PMSMs. In order to alleviate this problem, this paper analyzes and implements a simple and robust position sensorless field-oriented control method of high-speed micro PMSMs based on the sliding-mode observer. In particular, the angular position and velocity of the rotor of the high-speed micro PMSM are estimated using the sliding-mode observer. This observer is able to accurately estimate rotor position in the low speed region and guarantee fast convergence of the observer in the high speed region. The proposed position sensorless control method is suitable for electric dental handpiece motor drives where a wide speed range operation is essential. The proposed sensorless FOC method is implemented using a cost-effective 16-bit microcontroller and tested in a prototype electric dental handpiece motor. Several experiments are performed to verify the effectiveness of the proposed method. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Frequency dependence of behavioral modulation by hippocampal electrical stimulation
La Corte, Giorgio; Wei, Yina; Chernyy, Nick; Gluckman, Bruce J.
2013-01-01
Electrical stimulation offers the potential to develop novel strategies for the treatment of refractory medial temporal lobe epilepsy. In particular, direct electrical stimulation of the hippocampus presents the opportunity to modulate pathological dynamics at the ictal focus, although the neuroanatomical substrate of this region renders it susceptible to altering cognition and affective processing as a side effect. We investigated the effects of three electrical stimulation paradigms on separate groups of freely moving rats (sham, 8-Hz and 40-Hz sine-wave stimulation of the ventral/intermediate hippocampus, where 8- and 40-Hz stimulation were chosen to mimic naturally occurring hippocampal oscillations). Animals exhibited attenuated locomotor and exploratory activity upon stimulation at 40 Hz, but not at sham or 8-Hz stimulation. Such behavioral modifications were characterized by a significant reduction in rearing frequency, together with increased freezing behavior. Logistic regression analysis linked the observed changes in animal locomotion to 40-Hz electrical stimulation independently of time-related variables occurring during testing. Spectral analysis, conducted to monitor the electrophysiological profile in the CA1 area of the dorsal hippocampus, showed a significant reduction in peak theta frequency, together with reduced theta power in the 40-Hz vs. the sham stimulation animal group, independent of locomotion speed (theta range: 4–12 Hz). These findings contribute to the development of novel and safe medical protocols by indicating a strategy to constrain or optimize parameters in direct hippocampal electrical stimulation. PMID:24198322
Ramratan, Wendy S.; Rabin, Laura A.; Wang, Cuiling; Zimmerman, Molly E.; Katz, Mindy J.; Lipton, Richard B.; Buschke, Herman
2013-01-01
Individuals with amnestic mild cognitive impairment (aMCI) show deficits on traditional episodic memory tasks and reductions in speed of performance on reaction time tasks. We present results on a novel task, the Cued-Recall Retrieval Speed Test (CRRST), designed to simultaneously measure level and speed of retrieval. 390 older adults (mean age of 80.2 years), learned 16 words based on corresponding categorical cues. In the retrieval phase, we measured accuracy (% correct) and retrieval speed/reaction time (RT; time from cue presentation to voice onset of a correct response) across 6 trials. Compared to healthy elderly adults (HEA, n = 303), those with aMCI (n = 87) exhibited poorer performance in retrieval speed (difference = −0.13, p<.0001) and accuracy on the first trial (difference = −0.19, p<.0001), and their rate of improvement in retrieval speed was slower over subsequent trials. Those with aMCI also had greater within-person variability in processing speed (variance ratio = 1.22, p = 0.0098) and greater between-person variability in accuracy (variance ratio = 2.08, p = 0.0001) relative to HEA. Results are discussed in relation to the possibility that computer-based measures of cued-learning and processing speed variability may facilitate early detection of dementia in at-risk older adults. PMID:22265423
21st Century HVAC System for Future Naval Surface Combatants - Concept Development Report
2007-09-01
application of permanent magnet motors to ventilation fans3. The study emphasized reducing the motor size, incorporating variable speed operation to reduce...Incorporation of permanent magnet motors and variable speed is also feasible. Permanent magnet motor technology is ideally suited for variable...family incorporates high speed permanent magnet motors and further fan blade design improvements. The fan diameters will be reduced, substantially, at the
Decomposing ADHD-Related Effects in Response Speed and Variability
Karalunas, Sarah L.; Huang-Pollock, Cynthia L.; Nigg, Joel T.
2012-01-01
Objective Slow and variable reaction times (RTs) on fast tasks are such a prominent feature of Attention Deficit Hyperactivity Disorder (ADHD) that any theory must account for them. However, this has proven difficult because the cognitive mechanisms responsible for this effect remain unexplained. Although speed and variability are typically correlated, it is unclear whether single or multiple mechanisms are responsible for group differences in each. RTs are a result of several semi-independent processes, including stimulus encoding, rate of information processing, speed-accuracy trade-offs, and motor response, which have not been previously well characterized. Method A diffusion model was applied to RTs from a forced-choice RT paradigm in two large, independent case-control samples (NCohort 1= 214 and N Cohort 2=172). The decomposition measured three validated parameters that account for the full RT distribution, and assessed reproducibility of ADHD effects. Results In both samples, group differences in traditional RT variables were explained by slow information processing speed, and unrelated to speed-accuracy trade-offs or non-decisional processes (e.g. encoding, motor response). Conclusions RT speed and variability in ADHD may be explained by a single information processing parameter, potentially simplifying explanations that assume different mechanisms are required to account for group differences in the mean and variability of RTs. PMID:23106115
Axial force and efficiency tests of fixed center variable speed belt drive
NASA Technical Reports Server (NTRS)
Bents, D. J.
1981-01-01
An investigation of how the axial force varies with the centerline force at different speed ratios, speeds, and loads, and how the drive's transmission efficiency is affected by these related forces is described. The tests, intended to provide a preliminary performance and controls characterization for a variable speed belt drive continuously variable transmission (CVT), consisted of the design and construction of an experimental test rig geometrically similar to the CVT, and operation of that rig at selected speed ratios and power levels. Data are presented which show: how axial forces exerted on the driver and driven sheaves vary with the centerline force at constant values of speed ratio, speed, and output power; how the transmission efficiency varies with centerline force and how it is also a function of the V belt coefficient; and the axial forces on both sheaves as normalized functions of the traction coefficient.
Electric urban delivery trucks: energy use, greenhouse gas emissions, and cost-effectiveness.
Lee, Dong-Yeon; Thomas, Valerie M; Brown, Marilyn A
2013-07-16
We compare electric and diesel urban delivery trucks in terms of life-cycle energy consumption, greenhouse gas (GHG) emissions, and total cost of ownership (TCO). The relative benefits of electric trucks depend heavily on vehicle efficiency associated with drive cycle, diesel fuel price, travel demand, electric drive battery replacement and price, electricity generation and transmission efficiency, electric truck recharging infrastructure, and purchase price. For a drive cycle with frequent stops and low average speed such as the New York City Cycle (NYCC), electric trucks emit 42-61% less GHGs and consume 32-54% less energy than diesel trucks, depending upon vehicle efficiency cases. Over an array of possible conditions, the median TCO of electric trucks is 22% less than that of diesel trucks on the NYCC. For a drive cycle with less frequent stops and high average speed such as the City-Suburban Heavy Vehicle Cycle (CSHVC), electric trucks emit 19-43% less GHGs and consume 5-34% less energy, but cost 1% more than diesel counterparts. Considering current and projected U.S. regional electricity generation mixes, for the baseline case, the energy use and GHG emissions ratios of electric to diesel trucks range from 48 to 82% and 25 to 89%, respectively.
NASA Astrophysics Data System (ADS)
Tan, Ting; Yan, Zhimiao; Lei, Hong
2017-07-01
Galloping-based piezoelectric energy harvesters scavenge small-scale wind energy and convert it into electrical energy. For piezoelectric energy harvesting with the same vibrational source (galloping) but different (alternating-current (AC) and direct-current (DC)) interfaces, general analytical solutions of the electromechanical coupled distributed parameter model are proposed. Galloping is theoretically proven to appear when the linear aerodynamic negative damping overcomes the electrical damping and mechanical damping. The harvested power is demonstrated as being done by the electrical damping force. Via tuning the load resistance to its optimal value for optimal or maximal electrical damping, the harvested power of the given structure with the AC/DC interface is maximized. The optimal load resistances and the corresponding performances of such two systems are compared. The optimal electrical damping are the same but with different optimal load resistances for the systems with the AC and DC interfaces. At small wind speeds where the optimal electrical damping can be realized by only tuning the load resistance, the performances of such two energy harvesting systems, including the minimal onset speeds to galloping, maximal harvested powers and corresponding tip displacements are almost the same. Smaller maximal electrical damping with larger optimal load resistance is found for the harvester with the DC interface when compared to those for the harvester with the AC interface. At large wind speeds when the maximal electrical damping rather than the optimal electrical damping can be reached by tuning the load resistance alone, the harvester with the AC interface circuit is recommended for a higher maximal harvested power with a smaller tip displacement. This study provides a method using the general electrical damping to connect and compare the performances of piezoelectric energy harvesters with same excitation source but different interfaces.
Measuring Speed Of Rotation With Two Brushless Resolvers
NASA Technical Reports Server (NTRS)
Howard, David E.
1995-01-01
Speed of rotation of shaft measured by use of two brushless shaft-angle resolvers aligned so electrically and mechanically in phase with each other. Resolvers and associated circuits generate voltage proportional to speed of rotation (omega) in both magnitude and sign. Measurement principle exploits simple trigonometric identity.
NASA Astrophysics Data System (ADS)
Slaski, G.; Ohde, B.
2016-09-01
The article presents the results of a statistical dispersion analysis of an energy and power demand for tractive purposes of a battery electric vehicle. The authors compare data distribution for different values of an average speed in two approaches, namely a short and long period of observation. The short period of observation (generally around several hundred meters) results from a previously proposed macroscopic energy consumption model based on an average speed per road section. This approach yielded high values of standard deviation and coefficient of variation (the ratio between standard deviation and the mean) around 0.7-1.2. The long period of observation (about several kilometers long) is similar in length to standardized speed cycles used in testing a vehicle energy consumption and available range. The data were analysed to determine the impact of observation length on the energy and power demand variation. The analysis was based on a simulation of electric power and energy consumption performed with speed profiles data recorded in Poznan agglomeration.
Torsional vibration characteristic study of the grid-connected DFIG wind turbine
NASA Astrophysics Data System (ADS)
Yu, Songtao; Xie, Da; Wu, Wangping; Gu, Chenghong; Li, Furong
2017-01-01
This paper studies the torsional vibration characteristics of the grid-connected doubly-fed induction generator (DFIG) wind turbine by small signal analysis method. Firstly a detailed small-signal stability union model of the grid-connected DFIG wind turbine is developed, including the mechanical system and electrical system. To study the dynamic characteristic of the blade, gearbox, low speed and high speed shafts, a three mass shaft model for the mechanical system is adopted. At the same time, small signal models of DFIG, the voltage source converter (VSC) and the transmission line of the electrical system are developed respectively. Then, through calculating the eigenvalues of the state matrix A and the corresponding participation factors, the modal analysis is conducted in the shaft torsional vibration issues. And the impact of the system parameters including the series compensation capacitor, the flat-wave reactor, the PI parameters, especially the speed controller of generator rotor on shaft torsional vibration are discussed. The results show that the speed controller strengthens association between the mechanical system and the electrical system, and also produces a low-frequency oscillation mode.
Garrett Electric Boosting Systems (EBS) Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steve Arnold; Craig Balis; Pierre Barthelet
2005-03-31
Turbo diesel engine use in passenger cars in Europe has resulted in 30-50% improvement in fuel economy. Diesel engine application is particularly suitable for US because of vehicle size and duty cycle patterns. Adopting this technology for use in the US presents two issues--emissions and driveability. Emissions reduction technology is being well addressed with advanced turbocharging, fuel injection and catalytic aftertreatment systems One way to address driveability is to eliminate turbo lag and increase low speed torque. Electrically assisted turbocharging concepts incorporated in e-Turbo{trademark} designs do both The purpose of this project is to design and develop an electrically assistedmore » turbocharger, e-Turbo{trademark}, for diesel engine use in the US. In this report, early design and development of electrical assist technology is described together with issues and potential benefits. In this early phase a mathematical model was developed and verified. The model was used in a sensitivity study. The results of the sensitivity study together with the design and test of first generation hardware was fed into second generation designs. In order to fully realize the benefits of electrical assist technology it was necessary to expand the scope of work to include technology on the compressor side as well as electronic controls concepts. The results of the expanded scope of work are also reported here. In the first instance, designs and hardware were developed for a small engine to quantify and demonstrate benefits. The turbo size was such that it could be applied in a bi-turbo configuration to an SUV sized V engine. Mathematical simulation was used to quantify the possible benefits in an SUV application. It is shown that low speed torque can be increased to get the high performance expected in US, automatic transmission vehicles. It is also shown that e-Turbo{trademark} can be used to generate modest amounts of electrical power and supplement the alternator under most load-speed conditions. It is shown that a single (large) e-Turbo{trademark} consumes slightly less electrical power for the same steady state torque shaping than a bi-Turbo configuration. However, the transient response of a bi-Turbo configuration is slightly better. It was shown that in order to make full use of additional capabilities of e-Turbo{trademark} wide compressor flow range is required. Variable geometry compressor (VGC) technology developed under a separate project was evaluated for incorporation into e-Turbo{trademark} designs. It was shown that the combination of these two technologies enables very high torque at low engine speeds. Designs and hardware combining VGC and e-Turbo{trademark} are to be developed in a future project. There is concern about high power demands (even though momentary) of e-Turbo{trademark}. Reducing the inertia of the turbocharger can reduce power demand and increase battery life. Low inertia turbocharger technology called IBT developed under a separate project was evaluated for synergy with e-Turbo{trademark} designs. It was concluded that inertial reduction provided by IBT is very beneficial for e-Turbo{trademark}. Designs and hardware combining IBT and e-Turbo{trademark} are to be developed in a future project. e-Turbo{trademark} provides several additional flexibilities including exhaust gas recirculation (EGR) for emissions reduction with minimum fuel economy penalty and exhaust temperature control for aftertreatment. In integrated multi-parameter control system is needed to realize the full potential of e-Turbo{trademark} performance. Honeywell expertise in process control systems involving hundreds of sensors and actuators was applied to demonstrate the potential benefits of multi-parameter, model based control systems.« less
DOT National Transportation Integrated Search
1993-08-01
This report reviews electric and magnetic field (EMF) exposures from electrical transportation systems, including : electrically powered rail and magnetic levitation (maglev). Material also covered includes research concerning : biological effects of...
Multivariable speed synchronisation for a parallel hybrid electric vehicle drivetrain
NASA Astrophysics Data System (ADS)
Alt, B.; Antritter, F.; Svaricek, F.; Schultalbers, M.
2013-03-01
In this article, a new drivetrain configuration of a parallel hybrid electric vehicle is considered and a novel model-based control design strategy is given. In particular, the control design covers the speed synchronisation task during a restart of the internal combustion engine. The proposed multivariable synchronisation strategy is based on feedforward and decoupled feedback controllers. The performance and the robustness properties of the closed-loop system are illustrated by nonlinear simulation results.
Permanent split capacitor single phase electric motor system
Kirschbaum, Herbert S.
1984-01-01
A permanent split capacitor single phase electric motor achieves balanced operation at more than one operating point by adjusting the voltage supplied to the main and auxiliary windings and adjusting the capacitance in the auxiliary winding circuit. An intermediate voltage tap on an autotransformer supplies voltage to the main winding for low speed operation while a capacitive voltage divider is used to adjust the voltage supplied to the auxiliary winding for low speed operation.
Advanced Multifunctional Materials for High Speed Combatant Hulls
2015-11-25
Combatant Hulls 5a. CONTRACT NUMBER 5b. GRANT NUMBER N00014-14-1-0269 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Mark S. Mirotznik 5d. PROJECT...High Speed Combatant Hulls ’ PI Information: Mark S. Mirotznik, Associate Professor Tel: (302) 831 -4241 Department of Electrical and Computer... HULLS FINAL TECHNICAL REPORT 1.0 Abstract In this ONR funded project investigators at the University of Delaware’s Department of Electrical
Manipulating Traveling Brain Waves with Electric Fields: From Theory to Experiment.
NASA Astrophysics Data System (ADS)
Gluckman, Bruce J.
2004-03-01
Activity waves in disinhibited neocortical slices have been used as a biological model for epileptic seizure propagation [1]. Such waves have been mathematically modeled with integro-differential equations [2] representing non-local reaction diffusion dynamics of an excitable medium with an excitability threshold. Stability and propagation speed of traveling pulse solutions depend strongly on the threshold in the following manner: propagation speed should decrease with increased threshold over a finite range, beyond which the waves become unstable. Because populations of neurons can be polarized with an applied electric field that effectively shifts their threshold for action potential initiation [3], we predicted, and have experimentally verified, that electric fields could be used globally or locally to speed up, slow down and even block wave propagation. [1] Telfeian and Conners, Epilepsia, 40, 1499-1506, 1999. [2] Pinto and Ermentrout, SIAM J. App. Math, 62, 206-225, 2001. [3] Gluckman, et. al. J Neurophysiol. 76, 4202-5, 1996.
NASA Astrophysics Data System (ADS)
Tøfte, Lena S.; Martino, Sara; Mo, Birger
2016-04-01
This study analyses whether and to which extent today's hydropower system and reservoirs in Mid-Norway are able to balance new intermittent energy sources in the region, in both today's and tomorrow's climate. We also investigate if the electricity marked model EMPS gives us reasonable results also when run in a multi simulation mode without recalibration. Climate related energy (CRE) is influenced by the weather, the system for energy production and transport, and by market mechanisms. In the region of Mid-Norway, nearly all power demand is generated by hydro-electric facilities. Due to energy deficiency and limitations in the power grid the region experiences a deficit of electricity. The region is likely to experience considerable investments in wind power and small-scale hydropower and the transmission grid within and out of the region will probably be extended, so this situation might change. In addition climate change scenarios for the region agree on higher temperatures, more precipitation in total and a larger portion of the precipitation coming as rain instead of snow, as well as we expect slightly higher wind speed and more storms during the winter. Changing temperatures will also change the electricity demand. EMPS is a tool for forecasting and planning in electricity markets, developed for optimization and simulation of hydrothermal power systems with a considerable share of hydro power. It takes into account transport constraints and hydrological differences between major areas or regional subsystems. During optimization the objective is to minimize the expected cost in the whole system subject to all constraints. Incremental water values (marginal costs for hydropower) are computed for each area using stochastic dynamic programming. A heuristic approach is used to treat the interaction between areas. In the simulation part of the model total system costs are minimized week by week for each climate scenario in a linear problem formulation. A detailed representation of hydropower is included and total hydro power production for each area is calculated, and the production is distributed among all available plants within each area. During simulation, the demand is affected by prices and temperatures. 6 different infrastructure scenarios of wind and power line development are analyzed. The analyses are done by running EMPS calibrated for today's situation for 11*11*8 different combinations of altered weather variables (temperature, precipitation and wind) describing different climate change scenarios, finding the climate response function for every EMPS-variable according the electricity production, such as prices and income, energy balances (supply, consumption and trade), overflow losses, probability of curtailment etc .
The Legal Status of Low Speed, Electric, Automated Vehicles in Texas : Policy Brief
DOT National Transportation Integrated Search
2018-01-01
This report explores whether vehicles that are both Neighborhood Electric Vehicles (NEVs) and Automated Vehicles (AVs) may operate legally on public roads in Texas. First is an examination of Neighborhood Electric Vehicles and how they are governed i...
Development of Predictive Energy Management Strategies for Hybrid Electric Vehicles
NASA Astrophysics Data System (ADS)
Baker, David
Studies have shown that obtaining and utilizing information about the future state of vehicles can improve vehicle fuel economy (FE). However, there has been a lack of research into the impact of real-world prediction error on FE improvements, and whether near-term technologies can be utilized to improve FE. This study seeks to research the effect of prediction error on FE. First, a speed prediction method is developed, and trained with real-world driving data gathered only from the subject vehicle (a local data collection method). This speed prediction method informs a predictive powertrain controller to determine the optimal engine operation for various prediction durations. The optimal engine operation is input into a high-fidelity model of the FE of a Toyota Prius. A tradeoff analysis between prediction duration and prediction fidelity was completed to determine what duration of prediction resulted in the largest FE improvement. Results demonstrate that 60-90 second predictions resulted in the highest FE improvement over the baseline, achieving up to a 4.8% FE increase. A second speed prediction method utilizing simulated vehicle-to-vehicle (V2V) communication was developed to understand if incorporating near-term technologies could be utilized to further improve prediction fidelity. This prediction method produced lower variation in speed prediction error, and was able to realize a larger FE improvement over the local prediction method for longer prediction durations, achieving up to 6% FE improvement. This study concludes that speed prediction and prediction-informed optimal vehicle energy management can produce FE improvements with real-world prediction error and drive cycle variability, as up to 85% of the FE benefit of perfect speed prediction was achieved with the proposed prediction methods.
Silicon-based products and solutions
NASA Astrophysics Data System (ADS)
Painchaud, Y.; Poulin, M.; Pelletier, F.; Latrasse, C.; Gagné, J.-F.; Savard, S.; Robidoux, G.; Picard, M.-.; Paquet, S.; Davidson, C.-.; Pelletier, M.; Cyr, M.; Paquet, C.; Guy, M.; Morsy-Osman, M.; Chagnon, M.; Plant, D. V.
2014-03-01
TeraXion started silicon photonics activities aiming at developing building blocks for new products and customized solutions. Passive and active devices have been developed including MMI couplers, power splitters, Bragg grating filters, high responsivity photodetectors, high speed modulators and variable optical attenuators. Packaging solutions including fiber attachment and hybrid integration using flip-chip were also developed. More specifically, a compact packaged integrated coherent receiver has been realized. Good performances were obtained as demonstrated by our system tests results showing transmission up to 4800 km with BER below hard FEC threshold. The package size is small but still limited by the electrical interface. Migrating to more compact RF interface would allow realizing the full benefit of this technology.
Development of a system for off-peak electrical energy use by air conditioners and heat pumps
NASA Astrophysics Data System (ADS)
Russell, L. D.
1980-05-01
Investigation and evaluation of several alternatives for load management for the TVA system are described. Specific data for the TVA system load characteristics were studied to determine the typical peak and off peak periods for the system. The alternative systems investigated for load management included gaseous energy storage, phase change materials energy storage, zeolite energy storage, variable speed controllers for compressors, and weather sensitive controllers. After investigating these alternatives, system design criteria were established; then, the gaseous and PCM energy storage systems were analyzed. The system design criteria include economic assessment of all alternatives. Handbook data were developed for economic assessment. A liquid/PCM energy storage system was judged feasible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doubleday, Kate; Meintz, Andrew; Markel, Tony
System right-sizing is critical to implementation of in-motion wireless power transfer (WPT) for electric vehicles. This study introduces a modeling tool, WPTSim, which uses one-second speed, location, and road grade data from an on-demand employee shuttle in operation to simulate the incorporation of WPT at fine granularity. Vehicle power and state of charge are simulated over the drive cycle to evaluate potential system designs. The required battery capacity is determined based on the rated power at a variable number of charging locations. Adding just one WPT location can more than halve the battery capacity needed. Many configurations are capable ofmore » being self sustaining with WPT, while others benefit from supplemental stationary charging.« less
Engine lubrication circuit including two pumps
Lane, William H.
2006-10-03
A lubrication pump coupled to the engine is sized such that the it can supply the engine with a predetermined flow volume as soon as the engine reaches a peak torque engine speed. In engines that operate predominately at speeds above the peak torque engine speed, the lubrication pump is often producing lubrication fluid in excess of the predetermined flow volume that is bypassed back to a lubrication fluid source. This arguably results in wasted power. In order to more efficiently lubricate an engine, a lubrication circuit includes a lubrication pump and a variable delivery pump. The lubrication pump is operably coupled to the engine, and the variable delivery pump is in communication with a pump output controller that is operable to vary a lubrication fluid output from the variable delivery pump as a function of at least one of engine speed and lubrication flow volume or system pressure. Thus, the lubrication pump can be sized to produce the predetermined flow volume at a speed range at which the engine predominately operates while the variable delivery pump can supplement lubrication fluid delivery from the lubrication pump at engine speeds below the predominant engine speed range.
Aircraft Engine Sump Fire Mitigation
NASA Technical Reports Server (NTRS)
Rosenlieb, J. W.
1973-01-01
An investigation was performed of the conditions in which fires can result and be controlled within the bearing sump simulating that of a gas turbine engine; Esso 4040 Turbo Oil, Mobil Jet 2, and Monsanto MCS-2931 lubricants were used. Control variables include the oil inlet temperature, bearing temperature, oil inlet and scavenge rates, hot air inlet temperature and flow rate, and internal sump baffling. In addition to attempting spontaneous combustion, an electric spark and a rub (friction) mechanism were employed to ignite fires. Spontaneous combustion was not obtained; however, fires were readily ignited with the electric spark while using each of the three test lubricants. Fires were also ignited using the rub mechanism with the only test lubricant evaluated, Esso 4040. Major parameters controlling ignitions were: Sump configuration; Bearing and oil temperatures, hot air temperature and flow and bearing speed. Rubbing between stationary parts and rotating parts (eg. labyrinth seal and mating rub strip) is a very potent fire source suggesting that observed accidental fires in gas turbine sumps may well arise from this cause.
Within-day variability on short and long walking tests in persons with multiple sclerosis.
Feys, Peter; Bibby, Bo; Romberg, Anders; Santoyo, Carme; Gebara, Benoit; de Noordhout, Benoit Maertens; Knuts, Kathy; Bethoux, Francois; Skjerbæk, Anders; Jensen, Ellen; Baert, Ilse; Vaney, Claude; de Groot, Vincent; Dalgas, Ulrik
2014-03-15
To compare within-day variability of short (10 m walking test at usual and fastest speed; 10MWT) and long (2 and 6-minute walking test; 2MWT/6MWT) tests in persons with multiple sclerosis. Observational study. MS rehabilitation and research centers in Europe and US within RIMS (European network for best practice and research in MS rehabilitation). Ambulatory persons with MS (Expanded Disability Status Scale 0-6.5). Subjects of different centers performed walking tests at 3 time points during a single day. 10MWT, 2MWT and 6MWT at fastest speed and 10MWT at usual speed. Ninety-five percent limits of agreement were computed using a random effects model with individual pwMS as random effect. Following this model, retest scores are with 95% certainty within these limits of baseline scores. In 102 subjects, within-day variability was constant in absolute units for the 10MWT, 2MWT and 6MWT at fastest speed (+/-0.26, 0.16 and 0.15m/s respectively, corresponding to +/-19.2m and +/-54 m for the 2MWT and 6MWT) independent on the severity of ambulatory dysfunction. This implies a greater relative variability with increasing disability level, often above 20% depending on the applied test. The relative within-day variability of the 10MWT at usual speed was +/-31% independent of ambulatory function. Absolute values of within-day variability on walking tests at fastest speed were independent of disability level and greater with short compared to long walking tests. Relative within-day variability remained overall constant when measured at usual speed. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.
Feedback Control of Rotor Overspeed
NASA Technical Reports Server (NTRS)
Churchill, G. B.
1984-01-01
Feedback system for automatically governing helicopter rotor speed promises to lessen pilot's workload, enhance maneuverability, and protect airframe. With suitable modifications, concept applied to control speed of electrical generators, automotive engines and other machinery.
Evaluation of auxiliary power subsystems for gas engine heat pumps, phase 2
NASA Astrophysics Data System (ADS)
Rasmussen, R. W.; Wahlstedt, D. A.; Planer, N.; Fink, J.; Persson, E.
1988-12-01
The need to determine the practical, technical and economic viability for a stand-alone Gas Engine Heat Pump (GEHP) system capable of generating its own needed electricity is addressed. Thirty-eight reasonable design configurations were conceived based upon small-sized power conversion equipment that is either commercially available or close to emerging on the market. Nine of these configurations were analyzed due to their potential for low first cost, high conversion efficiency, availability or simplicity. It was found that electric consumption can be reduced by over 60 percent through the implementation of high efficiency, brushless, permanent magnet motors as fan and pump drivers. Of the nine selected configurations employing variable-speed fans, two were found to have simple incremental payback periods of 4.2 to 16 years, depending on the U.S. city chosen for analysis. Although the auxiliary power subsystem option is only marginally attractive from an economic standpoint, the increased gas load provided to the local gas utility may be sufficient to encourage further development. The ability of the system to operate completely disconnected from the electric power source may be a feature of high merit.
NASA Technical Reports Server (NTRS)
Kendall, B. R. F.
1985-01-01
Charged-particle fluxes from breakdown events were studied. Methods to measure mass spectra and total emitted flux of neutral particles were developed. The design and construction of the specialized mass spectrometer was completed. Electrical breakdowns were initiated by a movable blunt contact touching the insulating surface. The contact discharge apparatus was used for final development of two different high-speed recording systems and for measurements of the composition of the materials given off by the discharge. It was shown that intense instantaneous fluxes of neutral particles were released from the sites of electrical breakdown events. A laser micropulse mass analyzer showed that visible discoloration at breakdown sites were correllated with the presence of iron on the polymer side of the film, presumably caused by punch-through to the Inconel backing. Kapton samples irradiated by an oxygen ion beam were tested. The irradiated samples were free of surface hydrocarbon contamination but otherwise behaved in the same way as the Kapton samples tested earlier. Only the two samples exposed to oxygen ion bombardment were relatively clean. This indicates an additional variable that should be considered when testing spacecraft materials in the laboratory.
Cross, Benjamin D; Kohfeld, Karen E; Bailey, Joseph; Cooper, Andrew B
2015-01-01
In hydroelectric dominated systems, the value and benefits of energy are higher during extended dry periods and lower during extended or extreme wet periods. By accounting for regional and temporal differences in the relationship between wind speed and reservoir inflow behavior during wind farm site selection, the benefits of energy diversification can be maximized. The goal of this work was to help maximize the value of wind power by quantifying the long-term (30-year) relationships between wind speed and streamflow behavior, using British Columbia (BC) and the Pacific Northwest (PNW) as a case study. Clean energy and self-sufficiency policies in British BC make the benefits of increased generation during low streamflow periods particularly large. Wind density (WD) estimates from a height of 10m (North American Regional Reanalysis, NARR) were correlated with cumulative usable inflows (CUI) for BC (collected from BC Hydro) for 1979-2010. The strongest WD-CUI correlations were found along the US coast (r ~0.55), whereas generally weaker correlations were found in northern regions, with negative correlations (r ~ -0.25) along BC's North Coast. Furthermore, during the lowest inflow years, WD anomalies increased by up to 40% above average values for the North Coast. Seasonally, high flows during the spring freshet were coincident with widespread negative WD anomalies, with a similar but opposite pattern for low inflow winter months. These poorly or negatively correlated sites could have a moderating influence on climate related variability in provincial electricity supply, by producing greater than average generation in low inflow years and reduced generation in wet years. Wind speed and WD trends were also analyzed for all NARR grid locations, which showed statistically significant positive trends for most of the PNW and the largest increases along the Pacific Coast.
Cross, Benjamin D.; Kohfeld, Karen E.; Bailey, Joseph; Cooper, Andrew B.
2015-01-01
In hydroelectric dominated systems, the value and benefits of energy are higher during extended dry periods and lower during extended or extreme wet periods. By accounting for regional and temporal differences in the relationship between wind speed and reservoir inflow behavior during wind farm site selection, the benefits of energy diversification can be maximized. The goal of this work was to help maximize the value of wind power by quantifying the long-term (30-year) relationships between wind speed and streamflow behavior, using British Columbia (BC) and the Pacific Northwest (PNW) as a case study. Clean energy and self-sufficiency policies in British BC make the benefits of increased generation during low streamflow periods particularly large. Wind density (WD) estimates from a height of 10m (North American Regional Reanalysis, NARR) were correlated with cumulative usable inflows (CUI) for BC (collected from BC Hydro) for 1979–2010. The strongest WD-CUI correlations were found along the US coast (r ~0.55), whereas generally weaker correlations were found in northern regions, with negative correlations (r ~ -0.25) along BC’s North Coast. Furthermore, during the lowest inflow years, WD anomalies increased by up to 40% above average values for the North Coast. Seasonally, high flows during the spring freshet were coincident with widespread negative WD anomalies, with a similar but opposite pattern for low inflow winter months. These poorly or negatively correlated sites could have a moderating influence on climate related variability in provincial electricity supply, by producing greater than average generation in low inflow years and reduced generation in wet years. Wind speed and WD trends were also analyzed for all NARR grid locations, which showed statistically significant positive trends for most of the PNW and the largest increases along the Pacific Coast. PMID:26271035
Permanent split capacitor single phase electric motor system
Kirschbaum, H.S.
1984-08-14
A permanent split capacitor single phase electric motor achieves balanced operation at more than one operating point by adjusting the voltage supplied to the main and auxiliary windings and adjusting the capacitance in the auxiliary winding circuit. An intermediate voltage tap on an autotransformer supplies voltage to the main winding for low speed operation while a capacitive voltage divider is used to adjust the voltage supplied to the auxiliary winding for low speed operation. 4 figs.
NASA Astrophysics Data System (ADS)
Zhu, Wenbin; Chao, Ju-Hung; Chen, Chang-Jiang; Campbell, Adrian L.; Henry, Michael G.; Yin, Stuart Shizhuo; Hoffman, Robert C.
2017-10-01
In most beam steering applications such as 3D printing and in vivo imaging, one of the essential challenges has been high-resolution high-speed multi-dimensional optical beam scanning. Although the pre-injected space charge controlled potassium tantalate niobate (KTN) deflectors can achieve speeds in the nanosecond regime, they deflect in only one dimension. In order to develop a high-resolution high-speed multi-dimensional KTN deflector, we studied the deflection behavior of KTN deflectors in the case of coexisting pre-injected space charge and composition gradient. We find that such coexistence can enable new functionalities of KTN crystal based electro-optic deflectors. When the direction of the composition gradient is parallel to the direction of the external electric field, the zero-deflection position can be shifted, which can reduce the internal electric field induced beam distortion, and thus enhance the resolution. When the direction of the composition gradient is perpendicular to the direction of the external electric field, two-dimensional beam scanning can be achieved by harnessing only one single piece of KTN crystal, which can result in a compact, high-speed two-dimensional deflector. Both theoretical analyses and experiments are conducted, which are consistent with each other. These new functionalities can expedite the usage of KTN deflection in many applications such as high-speed 3D printing, high-speed, high-resolution imaging, and free space broadband optical communication.
Description of the 3 MW SWT-3 wind turbine at San Gorgonio Pass, California
NASA Technical Reports Server (NTRS)
Rybak, S. C.
1982-01-01
The SWT-3 wind turbine, a microprocessor controlled three bladed variable speed upwind machine with a 3MW rating that is presently operational and undergoing system testing, is discussed. The tower, a rigid triangular truss configuration, is rotated about its vertical axis to position the wind turbine into the prevailing wind. The blades rotate at variable speed in order to maintain an optimum 6 to 1 tip speed ratio between cut in and fated wind velocity, thereby maximizing power extraction from the wind. Rotor variable speed is implemented by the use of a hydrostatic transmission consisting of fourteen fixed displacement pumps operating in conjunction with eighteen variable displacement motors. Full blade pitch with on-off hydraulic actuation is used to maintain 3MW of output power.
Contribution of variable-speed pump hydro storage for power system dynamic performance
NASA Astrophysics Data System (ADS)
Silva, B.; Moreira, C.
2017-04-01
This paper presents the study of variable-speed Pump Storage Powerplant (PSP) in the Portuguese power system. It evaluates the progressive integration in three major locations and compares the power system performance following a severe fault event with consequent disconnection of non-Fault Ride-through (FRT) compliant Wind Farms (WF). To achieve such objective, a frequency responsive model was developed in PSS/E and was further used to substitute existing fixed-speed PSP. The results allow identifying a clear enhancement on the power system performance by the presence of frequency responsive variable-speed PSP, especially for the scenario presented, with high level of renewables integration.
Implementation of a Non-Metallic Barrier in an Electric Motor
NASA Technical Reports Server (NTRS)
M?Sadoques, George; Carra, Michael; Beringer, Woody
2012-01-01
Electric motors that run in pure oxygen must be sealed, or "canned," for safety reasons to prevent the oxygen from entering into the electrical portion of the motor. The current canning process involves designing a metallic barrier around the rotor to provide the separation. This metallic barrier reduces the motor efficiency as speed is increased. In higher-speed electric motors, efficiency is greatly improved if a very thin, nonmetallic barrier can be utilized. The barrier thickness needs to be approximately 0.025-in. (.0.6-mm) thick and can be made of a brittle material such as glass. The motors, however, designed for space applications are typically subject to high-vibration environments. A fragile, non-metallic barrier can be utilized in a motor assembly if held in place by a set of standard rubber O-ring seals. The O-rings provide the necessary sealing to keep oxygen away from the electrical portion of the motor and also isolate the fragile barrier from the harsh motor vibration environment. The compliance of the rubber O-rings gently constrains the fragile barrier and isolates it from the harsh external motor environment. The use of a non-metallic barrier greatly improves motor performance, especially at higher speeds, while isolating the electronics from the working fluid with an inert liner.
Effect of wind speed on performance of a solar-pv array
USDA-ARS?s Scientific Manuscript database
Thousands of solar photovoltaic (PV) arrays have been installed over the past few years, but the effect of wind speed on the predicted performance of PV arrays is not usually considered by installers. An increase in wind speed will cool the PV array, and the electrical power of the PV modules will ...
All Electric Combat Vehicles (AECV) for Future Applications
2004-07-01
includes the very high-speed travels. The Super Speed Maglev System (GE Trans-rapid RTO-TR-AVT-047 8 - 3 STANDARDIZATION AND DUAL USE International GmbH...Germany). [25] Super Speed Maglev System: Dipl Ing Gerhard Wahl (WEC, 19-21 June 2000). [26] Development of Dual Use Technologies and a Strategy for
Measuring the speed of sound in a solid
NASA Astrophysics Data System (ADS)
Key, Tony; Smidrovskis, Robert; From, Milton
2000-02-01
The speed of sound in a solid is measured using an oscilloscope, a square-wave oscillator and a piezo-electric pick-up. A study of the relationship between the distance traveled and the time of arrival of the sound pulse allows a graphical determination of the speed of the pulse in the lucite rod.
Two Independent Contributions to Step Variability during Over-Ground Human Walking
Collins, Steven H.; Kuo, Arthur D.
2013-01-01
Human walking exhibits small variations in both step length and step width, some of which may be related to active balance control. Lateral balance is thought to require integrative sensorimotor control through adjustment of step width rather than length, contributing to greater variability in step width. Here we propose that step length variations are largely explained by the typical human preference for step length to increase with walking speed, which itself normally exhibits some slow and spontaneous fluctuation. In contrast, step width variations should have little relation to speed if they are produced more for lateral balance. As a test, we examined hundreds of overground walking steps by healthy young adults (N = 14, age < 40 yrs.). We found that slow fluctuations in self-selected walking speed (2.3% coefficient of variation) could explain most of the variance in step length (59%, P < 0.01). The residual variability not explained by speed was small (1.5% coefficient of variation), suggesting that step length is actually quite precise if not for the slow speed fluctuations. Step width varied over faster time scales and was independent of speed fluctuations, with variance 4.3 times greater than that for step length (P < 0.01) after accounting for the speed effect. That difference was further magnified by walking with eyes closed, which appears detrimental to control of lateral balance. Humans appear to modulate fore-aft foot placement in precise accordance with slow fluctuations in walking speed, whereas the variability of lateral foot placement appears more closely related to balance. Step variability is separable in both direction and time scale into balance- and speed-related components. The separation of factors not related to balance may reveal which aspects of walking are most critical for the nervous system to control. PMID:24015308
Underwater sympathetic detonation of pellet explosive
NASA Astrophysics Data System (ADS)
Kubota, Shiro; Saburi, Tei; Nagayama, Kunihito
2017-06-01
The underwater sympathetic detonation of pellet explosives was taken by high-speed photography. The diameter and the thickness of the pellet were 20 and 10 mm, respectively. The experimental system consists of the precise electric detonator, two grams of composition C4 booster and three pellets, and these were set in water tank. High-speed video camera, HPV-X made by Shimadzu was used with 10 Mfs. The underwater explosions of the precise electric detonator, the C4 booster and a pellet were also taken by high-speed photography to estimate the propagation processes of the underwater shock waves. Numerical simulation of the underwater sympathetic detonation of the pellet explosives was also carried out and compared with experiment.
High-speed pulse-shape generator, pulse multiplexer
Burkhart, Scott C.
2002-01-01
The invention combines arbitrary amplitude high-speed pulses for precision pulse shaping for the National Ignition Facility (NIF). The circuitry combines arbitrary height pulses which are generated by replicating scaled versions of a trigger pulse and summing them delayed in time on a pulse line. The combined electrical pulses are connected to an electro-optic modulator which modulates a laser beam. The circuit can also be adapted to combine multiple channels of high speed data into a single train of electrical pulses which generates the optical pulses for very high speed optical communication. The invention has application in laser pulse shaping for inertial confinement fusion, in optical data links for computers, telecommunications, and in laser pulse shaping for atomic excitation studies. The invention can be used to effect at least a 10.times. increase in all fiber communication lines. It allows a greatly increased data transfer rate between high-performance computers. The invention is inexpensive enough to bring high-speed video and data services to homes through a super modem.
Peeters, Elisabeth; De Beer, Thomas; Vervaet, Chris; Remon, Jean-Paul
2015-04-01
Tableting is a complex process due to the large number of process parameters that can be varied. Knowledge and understanding of the influence of these parameters on the final product quality is of great importance for the industry, allowing economic efficiency and parametric release. The aim of this study was to investigate the influence of paddle speeds and fill depth at different tableting speeds on the weight and weight variability of tablets. Two excipients possessing different flow behavior, microcrystalline cellulose (MCC) and dibasic calcium phosphate dihydrate (DCP), were selected as model powders. Tablets were manufactured via a high-speed rotary tablet press using design of experiments (DoE). During each experiment also the volume of powder in the forced feeder was measured. Analysis of the DoE revealed that paddle speeds are of minor importance for tablet weight but significantly affect volume of powder inside the feeder in case of powders with excellent flowability (DCP). The opposite effect of paddle speed was observed for fairly flowing powders (MCC). Tableting speed played a role in weight and weight variability, whereas changing fill depth exclusively influenced tablet weight. The DoE approach allowed predicting the optimum combination of process parameters leading to minimum tablet weight variability. Monte Carlo simulations allowed assessing the probability to exceed the acceptable response limits if factor settings were varied around their optimum. This multi-dimensional combination and interaction of input variables leading to response criteria with acceptable probability reflected the design space.
Continuously-Variable Positive-Mesh Power Transmission
NASA Technical Reports Server (NTRS)
Johnson, J. L.
1982-01-01
Proposed transmission with continuously-variable speed ratio couples two mechanical trigonometric-function generators. Transmission is expected to handle higher loads than conventional variable-pulley drives; and, unlike variable pulley, positive traction through entire drive train with no reliance on friction to transmit power. Able to vary speed continuously through zero and into reverse. Possible applications in instrumentation where drive-train slippage cannot be tolerated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.
This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system ismore » based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Itoh, H.; Akashi, T.; Takada, M.
1987-03-31
This patent describes a hydraulic control system for controlling a speed ratio of a hydraulically-operated continuously variable transmission of belt-and-pulley type having a variable-diameter pulley and a hydraulic cylinder for changing an effective diameter of the variable diameter-pulley of the transmission. The hydraulic control system includes a speed-ratio control valve assembly for controlling the supply and discharge of a pressurized fluid to and from the hydraulic cylinder to thereby change the speed ratio of the transmission. The speed-ratio control valve assembly comprises: a shift-direction switching valve unit disposed in fluid supply and discharge conduits communicating with the hydraulic cylinder, formore » controlling a direction in which the speed ratio of the transmission is varied; a shift-speed control valve unit of spool-valve type connected to the shift-direction switching valve unit. The shift-speed control valve unit is selectively placed in a first state in which the fluid supply and discharge flows to and from the hydraulic cylinder through the conduits are permitted, or in a second state in which the fluid supply flow is restricted while the fluid discharge flow is inhibited; an actuator means for placing the shift speed control valve unit alternately in the first and second states to control a rate of variation in the speed ratio of the transmission in the direction established by the shift-direction switching valve unit.« less
Baseline tests of the EPC Hummingbird electric passenger vehicle
NASA Technical Reports Server (NTRS)
Slavik, R. J.; Maslowski, E. A.; Sargent, N. B.; Birchenough, A. G.
1977-01-01
The rear-mounted internal combustion engine in a four-passenger Volkswagen Thing was replaced with an electric motor made by modifying an aircraft generator and powered by 12 heavy-duty, lead-acid battery modules. Vehicle performance tests were conducted to measure vehicle maximum speed, range at constant speed, range over stop-and-go driving schedules, maximum acceleration, gradeability limit, road energy consumption, road power, indicated energy consumption, braking capability, battery charger efficiency, and battery characteristics. Test results are presented in tables and charts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stenger, F.J.; Bozek, J.M.; Soltis, R.F.
1976-10-01
Five electric vehicles were tested at vehicle test tracks using the SAE. The tests provide range data at steady speeds and for several driving cycles. Most tests were conducted with lead-acid traction batteries. The Otis Van and the Copper Electric Town Car were also tested with lead-acid and nickel-zinc batteries. The tests showed a range increase of from 82 to 101 percent depending on vehicle, speed, and test cycle.
NASA Technical Reports Server (NTRS)
Stenger, F. J.; Bozek, J. M.; Soltis, R. F.
1976-01-01
Five electric vehicles were tested at vehicle test tracks using the SAE. The tests provide range data at steady speeds and for several driving cycles. Most tests were conducted with lead-acid traction batteries. The Otis Van and the Copper Electric Town Car were also tested with lead-acid and nickel-zinc batteries. The tests showed a range increase of from 82 to 101 percent depending on vehicle, speed, and test cycle.
NASA Astrophysics Data System (ADS)
Nezlobinsky, T. V.; Pravdin, S. F.; Katsnelson, L. B.; Solovyova, O. E.
2016-07-01
It is known that preferential paths for the propagation of an electrical excitation wave in the human ventricular myocardium are associated with muscle fibers in tissue. The speed of the excitation wave along a fiber is several times higher than that across the direction of the fiber. To estimate the effect of the architecture and anisotropy of the myocardium of the left ventricle on the process of its electrical activation, we have studied the relation between the speed of the electrical excitation wave in a one-dimensional isolated myocardial fiber consisting of sequentially coupled cardiomyocytes and in an identical fiber located in the wall of a threedimensional anatomical model of the left ventricle. It has been shown that the speed of a wavefront along the fiber in the three-dimensional myocardial tissue is much higher than that in the one-dimensional fiber. The acceleration of the signal is due to the rotation of directions of fibers in the wall and to the position of the excitation wavefront with respect to the direction of this fiber. The observed phenomenon is caused by the approach of the excitable tissue with rotational anisotropy in its properties to a pseudoisotropic tissue.
Forward-biased nanophotonic detector for ultralow-energy dissipation receiver
NASA Astrophysics Data System (ADS)
Nozaki, Kengo; Matsuo, Shinji; Fujii, Takuro; Takeda, Koji; Shinya, Akihiko; Kuramochi, Eiichi; Notomi, Masaya
2018-04-01
Generally, reverse-biased photodetectors (PDs) are used for high-speed optical receivers. The forward voltage region is only utilized in solar-cells, and this photovoltaic operation would not be concurrently obtained with high efficiency and high speed operation. Here we report that photonic-crystal waveguide PDs enable forward-biased high-speed operation at 40 Gbit/s with keeping high responsivity (0.88 A/W). Within our knowledge, this is the first demonstration of the forward-biased PDs with high responsivity. This achievement is attributed to the ultracompactness of our PD and the strong light confinement within the absorber and depleted regions, thereby enabling efficient photo-carrier generation and fast extraction. This result indicates that it is possible to construct a high-speed and ultracompact photo-receiver without an electrical amplifier nor an external bias circuit. Since there is no electrical energy required, our estimation shows that the consumption energy is just the optical energy of the injected signal pulse which is about 1 fJ/bit. Hence, it will lead to an ultimately efficient and highly integrable optical-to-electrical converter in a chip, which will be a key ingredient for dense nanophotonic communication and processors.
Lin, Shuqin; Sun, Qi; Wang, Haifeng; Xie, Guomin
2018-01-10
To evaluate the influence of transcutaneous electrical nerve stimulation in patients with stroke through a systematic review and meta-analysis. PubMed, Embase, Web of Science, EBSCO, and Cochrane Library databases were searched systematically. Randomized controlled trials assessing the effect of transcutaneous electrical nerve stimulation vs placebo transcutaneous electrical nerve stimulation on stroke were included. Two investigators independently searched articles, extracted data, and assessed the quality of included studies. The primary outcome was modified Ashworth scale (MAS). Meta-analysis was performed using the random-effect model. Seven randomized controlled trials were included in the meta-analysis. Compared with placebo transcutaneous electrical nerve stimulation, transcutaneous electrical nerve stimulation supplementation significantly reduced MAS (standard mean difference (SMD) = -0.71; 95% confidence interval (95% CI) = -1.11 to -0.30; p = 0.0006), improved static balance with open eyes (SMD = -1.26; 95% CI = -1.83 to -0.69; p<0.0001) and closed eyes (SMD = -1.74; 95% CI = -2.36 to -1.12; p < 0.00001), and increased walking speed (SMD = 0.44; 95% CI = 0.05 to 0.84; p = 0.03), but did not improve results on the Timed Up and Go Test (SMD = -0.60; 95% CI=-1.22 to 0.03; p = 0.06). Transcutaneous electrical nerve stimulation is associated with significantly reduced spasticity, increased static balance and walking speed, but has no influence on dynamic balance.
A Novel Electro Conductive Graphene/Silicon-Dioxide Thermo-Electric Generator
NASA Astrophysics Data System (ADS)
Rahman, Ataur; Abdi, Yusuf
2017-03-01
Thermoelectric generators are all solid-state devices that convert heat energy into electrical energy. The total energy (fuel) supplied to the engine, approximately 30 to 40% is converted into useful mechanical work; whereas the remaining is expelled to the environment as heat through exhaust gases and cooling systems, resulting in serious green house gas (GHG) emission. By converting waste energy into electrical energy is the aim of this manuscript. The technologies reported on waste heat recovery from exhaust gas of internal combustion engines (ICE) are thermo electric generators (TEG) with finned type, Rankine cycle (RC) and Turbocharger. This paper has presented an electro-conductive graphene oxide/silicon-dioxide (GO-SiO2) composite sandwiched by phosphorus (P) and boron (B) doped silicon (Si) TEG to generate electricity from the IC engine exhaust heat. Air-cooling and liquid cooling techniques adopted conventional TEG module has been tested individually for the electricity generation from IC engine exhausts heat at engine speed of 1000-3000rpm. For the engine speed of 7000 rpm, the maximum voltage was recorded as 1.12V and 4.00V for the air-cooling and liquid cooling respectively. The GO-SiO2 simulated result shows that it’s electrical energy generation is about 80% more than conventional TEG for the exhaust temperature of 500°C. The GO-SiO2 composite TEG develops 524W to 1600W at engine speed 1000 to 5000 rpm, which could contribute to reduce the 10-12% of engine total fuel consumption and improve emission level by 20%.
Tra, Viet; Kim, Jaeyoung; Kim, Jong-Myon
2017-01-01
This paper presents a novel method for diagnosing incipient bearing defects under variable operating speeds using convolutional neural networks (CNNs) trained via the stochastic diagonal Levenberg-Marquardt (S-DLM) algorithm. The CNNs utilize the spectral energy maps (SEMs) of the acoustic emission (AE) signals as inputs and automatically learn the optimal features, which yield the best discriminative models for diagnosing incipient bearing defects under variable operating speeds. The SEMs are two-dimensional maps that show the distribution of energy across different bands of the AE spectrum. It is hypothesized that the variation of a bearing’s speed would not alter the overall shape of the AE spectrum rather, it may only scale and translate it. Thus, at different speeds, the same defect would yield SEMs that are scaled and shifted versions of each other. This hypothesis is confirmed by the experimental results, where CNNs trained using the S-DLM algorithm yield significantly better diagnostic performance under variable operating speeds compared to existing methods. In this work, the performance of different training algorithms is also evaluated to select the best training algorithm for the CNNs. The proposed method is used to diagnose both single and compound defects at six different operating speeds. PMID:29211025
NASA Astrophysics Data System (ADS)
Ouyang, Gaoyuan; Jensen, Brandt; Tang, Wei; Dennis, Kevin; Macziewski, Chad; Thimmaiah, Srinivasa; Liang, Yongfeng; Cui, Jun
2018-05-01
Fe-Si electric steel is the most widely used soft magnetic material in electric machines and transformers. Increasing the silicon content from 3.2 wt.% to 6.5 wt.% brings about large improvement in the magnetic and electrical properties. However, 6.5 wt.% silicon steel is inherited with brittleness owing to the formation of B2 and D03 ordered phase. To obtain ductility in Fe-6.5wt.% silicon steel, the ordered phase has to be bypassed with methods like rapid cooling. In present paper, the effect of cooling rate on magnetic and mechanical properties of Fe-6.5wt.% silicon steel is studied by tuning the wheel speed during melt spinning process. The cooling rate significantly alters the ordering and microstructure, and thus the mechanical and magnetic properties. X-ray diffraction data shows that D03 ordering was fully suppressed at high wheel speeds but starts to nucleate at 10m/s and below, which correlates with the increase of Young's modulus towards low wheel speeds as tested by nanoindentation. The grain sizes of the ribbons on the wheel side decrease with increasing wheel speeds, ranging from ˜100 μm at 1m/s to ˜8 μm at 30m/s, which lead to changes in coercivity.
Moon, Y.; Chandrasekaran, J.; Hsu, I.M.K.; Rice, I.M.; Hsiao-Wecksler, E.T.; Sosnoff, J.J.
2013-01-01
Background Manual wheelchair users report a high prevalence of shoulder pain. Growing evidence shows that variability in forces applied to biological tissue is related to musculoskeletal pain. The purpose of this study was to examine the variability of forces acting on the shoulder during wheelchair propulsion as a function of shoulder pain. Methods Twenty-four manual wheelchair users (13 with pain, 11 without pain) participated in the investigation. Kinetic and kinematic data of wheelchair propulsion were recorded for three minutes maintaining a constant speed at three distinct propulsion speeds (fast speed of 1.1 m/s, a self-selected speed, and a slow speed of 0.7 m/s). Peak resultant shoulder forces in the push phase were calculated using inverse dynamics. Within individual variability was quantified as the coefficient of variation of cycle to cycle peak resultant forces. Findings There was no difference in mean peak shoulder resultant force between groups. The pain group had significantly smaller variability of peak resultant force than the no pain group (p < 0.01, η2 = 0.18). Interpretation The observations raise the possibility that propulsion variability could be a novel marker of upper limb pain in manual wheelchair users. PMID:24210512
Wilkes, Donald F.; Purvis, James W.; Miller, A. Keith
1997-01-01
An infinitely variable transmission is capable of operating between a maximum speed in one direction and a minimum speed in an opposite direction, including a zero output angular velocity, while being supplied with energy at a constant angular velocity. Input energy is divided between a first power path carrying an orbital set of elements and a second path that includes a variable speed adjustment mechanism. The second power path also connects with the orbital set of elements in such a way as to vary the rate of angular rotation thereof. The combined effects of power from the first and second power paths are combined and delivered to an output element by the orbital element set. The transmission can be designed to operate over a preselected ratio of forward to reverse output speeds.
Control of variable speed variable pitch wind turbine based on a disturbance observer
NASA Astrophysics Data System (ADS)
Ren, Haijun; Lei, Xin
2017-11-01
In this paper, a novel sliding mode controller based on disturbance observer (DOB) to optimize the efficiency of variable speed variable pitch (VSVP) wind turbine is developed and analyzed. Due to the highly nonlinearity of the VSVP system, the model is linearly processed to obtain the state space model of the system. Then, a conventional sliding mode controller is designed and a DOB is added to estimate wind speed. The proposed control strategy can successfully deal with the random nature of wind speed, the nonlinearity of VSVP system, the uncertainty of parameters and external disturbance. Via adding the observer to the sliding mode controller, it can greatly reduce the chattering produced by the sliding mode switching gain. The simulation results show that the proposed control system has the effectiveness and robustness.
Alternating-Current Motor Drive for Electric Vehicles
NASA Technical Reports Server (NTRS)
Krauthamer, S.; Rippel, W. E.
1982-01-01
New electric drive controls speed of a polyphase as motor by varying frequency of inverter output. Closed-loop current-sensing circuit automatically adjusts frequency of voltage-controlled oscillator that controls inverter frequency, to limit starting and accelerating surges. Efficient inverter and ac motor would give electric vehicles extra miles per battery charge.
A reexamination of pitch angle diffusion of electrons at the boundary of the lunar wake
NASA Astrophysics Data System (ADS)
Nakagawa, T.; Iizima, M.
2006-05-01
Velocity distribution of the solar wind electrons injected into the lunar wake boundary is re-examined by using a simple model structure of inward electric field. The electrons that were flowing along the magnetic field lines undergo pitch angle scattering due to the electric field component perpendicular to the magnetic field. The electrons obtain perpendicular speeds twice as much as the drift speed. On the basis of the GEOTAIL observations of the whistler mode waves and strahl electrons, the intensity of the electric field and the thickness of the wake structure are estimated to be 28-40 mVm-1 and less than 20 km, respectively.
Smart sensorless prediction diagnosis of electric drives
NASA Astrophysics Data System (ADS)
Kruglova, TN; Glebov, NA; Shoshiashvili, ME
2017-10-01
In this paper, the discuss diagnostic method and prediction of the technical condition of an electrical motor using artificial intelligent method, based on the combination of fuzzy logic and neural networks, are discussed. The fuzzy sub-model determines the degree of development of each fault. The neural network determines the state of the object as a whole and the number of serviceable work periods for motors actuator. The combination of advanced techniques reduces the learning time and increases the forecasting accuracy. The experimental implementation of the method for electric drive diagnosis and associated equipment is carried out at different speeds. As a result, it was found that this method allows troubleshooting the drive at any given speed.
Three state-of-the-art individual electric and hybrid vehicle test reports, volume 2
NASA Technical Reports Server (NTRS)
1978-01-01
Procedures used in determining the energy efficiency and economy of a gasoline-electric hybrid taxi, an electric passenger car, and an electric van are described. Tabular and graphic data show results of driving cycle and constant speed tests, energy distribution to various components, efficiency of the components, and, for the hybrid vehicle, the emissions.
NASA Astrophysics Data System (ADS)
Alois, Stefano; Merrison, Jonathan; Iversen, Jens Jacob; Sesterhenn, Joern
2017-04-01
Contact electrification between different particles size/material can lead to electric field generation high enough to produce electrical breakdown. Experimental studies of solid aerosol contact electrification (Alois et al., 2016) has shown various electrical breakdown phenomena; these range from field emission at the contact site (nm-scale) limiting particle surface charge concentration, to visible electrical discharges (cm-scale) observed both with the use of an electrometer and high-speed camera. In these experiments micron-size particles are injected into a low-pressure chamber, where they are deviated by an applied electric field. A laser Doppler velocimeter allows the simultaneous determination of particle size and charge of single grains. Results have shown an almost constant surface charge concentration, which is likely to be due to charge limitation by field emission at the contact site between particle and injector. In a second measurement technique, the electrically isolated injector tube (i.e. a Faraday cage) is connected to an oscilloscope and synchronised to a high speed camera filming the injection. Here the electrification of a large cloud of particles can be quantified and discharging effects studied. This study advances our understanding on the physical processes leading to electrification and electrical breakdown mechanisms.
Concepts for Variable/Multi-Speed Rotorcraft Drive System
NASA Technical Reports Server (NTRS)
Stevens, Mark A.; Handschuh, Robert F.; Lewicki, David G.
2008-01-01
In several recent studies and on-going developments for advanced rotorcraft, the need for variable or multi-speed capable rotors has been raised. A speed change of up to 50 percent has been proposed for future rotorcraft to improve overall vehicle performance. Accomplishing rotor speed changes during operation requires both a rotor that can perform effectively over the operation speed/load range, and a propulsion system that can enable these speed changes. A study has been completed to investigate possible drive system arrangements that can accommodate up to the 50 percent speed change. Several concepts will be presented and evaluated. The most promising configurations will be identified and developed for future testing in a sub-scaled test facility to validate operational capability.
Performance Analyses of 38 kWe Turbo-Machine Unit for Space Reactor Power Systems
NASA Astrophysics Data System (ADS)
Gallo, Bruno M.; El-Genk, Mohamed S.
2008-01-01
This paper developed a design and investigated the performance of 38 kWe turbo-machine unit for space nuclear reactor power systems with Closed Brayton Cycle (CBC) energy conversion. The compressor and turbine of this unit are scaled versions of the NASA's BRU developed in the sixties and seventies. The performance results of turbo-machine unit are calculated for rotational speed up to 45 krpm, variable reactor thermal power and system pressure, and fixed turbine and compressor inlet temperatures of 1144 K and 400 K. The analyses used a detailed turbo-machine model developed at the University of New Mexico that accounts for the various energy losses in the compressor and turbine and the effect of compressibility of the He-Xe (40 mole/g) working fluid with increased flow rate. The model also accounts for the changes in the physical and transport properties of the working fluid with temperature and pressure. Results show that a unit efficiency of 24.5% is achievable at rotation speed of 45 krpm and system pressure of 0.75 MPa, assuming shaft and electrical generator efficiencies of 86.7% and 90%. The corresponding net electric power output of the unit is 38.5 kWe, the flow rate of the working fluid is 1.667 kg/s, the pressure ratio and polytropic efficiency for the compressor are 1.60 and 83.1%, and 1.51 and 88.3% for the turbine.
Physical and electrical properties of melt-spun Fe-Si (3–8 wt%) soft magnetic ribbons
Overman, Nicole R.; Jiang, Xiujuan; Kukkadapu, Ravi K.; ...
2017-12-13
Fe-Si alloys ranging from 3 to 8 wt% Si were rapidly solidified using melt spinning. Wheel speeds of 30 m/s and 40 m/s were employed to vary cooling rates. Mössbauer spectroscopic studies indicated the Si content significantly influenced the number of Fe sites, relative abundance of various Fe species, and internal magnetic fields/structural environments. Wheel speed altered Fe speciation only in the 3 wt% sample. Scanning electron microscopy confirmed that increasing the wheel speed refined both the ribbon thickness and grain size. Electron backscatter diffraction results suggest tailoring melt spinning process parameters and alloy chemistry may offer the ability tomore » manipulate {001} texture development. In conclusion, electrical resistivity measurements were observed to increase in response to elevated Si content. Increased hardness was correlated to elevated Si content and wheel speed.« less
NASA Astrophysics Data System (ADS)
Nondahl, T. A.; Richter, E.
1980-09-01
A design study of two types of single sided (with a passive rail) linear electric machine designs, namely homopolar linear synchronous machines (LSM's) and linear induction machines (LIM's), is described. It is assumed the machines provide tractive effort for several types of light rail vehicles and locomotives. These vehicles are wheel supported and require tractive powers ranging from 200 kW to 3735 kW and top speeds ranging from 112 km/hr to 400 km/hr. All designs are made according to specified magnetic and thermal criteria. The LSM advantages are a higher power factor, much greater restoring forces for track misalignments, and less track heating. The LIM advantages are no need to synchronize the excitation frequency precisely to vehicle speed, simpler machine construction, and a more easily anchored track structure. The relative weights of the two machine types vary with excitation frequency and speed; low frequencies and low speeds favor the LSM.
Physical and electrical properties of melt-spun Fe-Si (3–8 wt.%) soft magnetic ribbons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Overman, Nicole R.; Jiang, Xiujuan; Kukkadapu, Ravi K.
Fe-Si alloys ranging from 3 to 8 wt% Si were rapidly solidified using melt spinning. Wheel speeds of 30 m/s and 40 m/s were employed to vary cooling rates. Mössbauer spectroscopic studies indicated the Si content significantly influenced the number of Fe sites, relative abundance of various Fe species, and internal magnetic fields/structural environments. Wheel speed altered Fe speciation only in the 3 wt% sample. Scanning electron microscopy confirmed that increasing the wheel speed refined both the ribbon thickness and grain size. Electron backscatter diffraction results suggest tailoring melt spinning process parameters and alloy chemistry may offer the ability tomore » manipulate {001} texture development. Electrical resistivity measurements were observed to increase in response to elevated Si content. Increased hardness was correlated to elevated Si content and wheel speed.« less
A large high vacuum, high pumping speed space simulation chamber for electric propulsion
NASA Technical Reports Server (NTRS)
Grisnik, Stanley P.; Parkes, James E.
1994-01-01
Testing high power electric propulsion devices poses unique requirements on space simulation facilities. Very high pumping speeds are required to maintain high vacuum levels while handling large volumes of exhaust products. These pumping speeds are significantly higher than those available in most existing vacuum facilities. There is also a requirement for relatively large vacuum chamber dimensions to minimize facility wall/thruster plume interactions and to accommodate far field plume diagnostic measurements. A 4.57 m (15 ft) diameter by 19.2 m (63 ft) long vacuum chamber at NASA Lewis Research Center is described. The chamber utilizes oil diffusion pumps in combination with cryopanels to achieve high vacuum pumping speeds at high vacuum levels. The facility is computer controlled for all phases of operation from start-up, through testing, to shutdown. The computer control system increases the utilization of the facility and reduces the manpower requirements needed for facility operations.
Physical and electrical properties of melt-spun Fe-Si (3–8 wt%) soft magnetic ribbons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Overman, Nicole R.; Jiang, Xiujuan; Kukkadapu, Ravi K.
Fe-Si alloys ranging from 3 to 8 wt% Si were rapidly solidified using melt spinning. Wheel speeds of 30 m/s and 40 m/s were employed to vary cooling rates. Mössbauer spectroscopic studies indicated the Si content significantly influenced the number of Fe sites, relative abundance of various Fe species, and internal magnetic fields/structural environments. Wheel speed altered Fe speciation only in the 3 wt% sample. Scanning electron microscopy confirmed that increasing the wheel speed refined both the ribbon thickness and grain size. Electron backscatter diffraction results suggest tailoring melt spinning process parameters and alloy chemistry may offer the ability tomore » manipulate {001} texture development. In conclusion, electrical resistivity measurements were observed to increase in response to elevated Si content. Increased hardness was correlated to elevated Si content and wheel speed.« less
Precision increase in electric drive speed loop of robotic complexes and process lines
NASA Astrophysics Data System (ADS)
Tulegenov, E.; Imanova, A. A.; Platonov, V. V.
2018-05-01
The article presents the principles of synthesis of control structures for highprecision electric drives of robotic complexes and manipulators. It has been theoretically shown and experimentally confirmed that improved characteristics of speed maintenance in the zone of significant overloads are achieved in systems of series excitation. They are achieved due to the redistribution of control signals both in the zone of setting the armature current and in the excitation currents. At the same time, the characteristic of the electromagnetic torque becomes linear because the demagnetizing effect of the armature response is compensated by the setting of the excitation current. It is recommended in those cases when it is necessary to extend the range of speed control with a significant reduction in load to apply structures with two-zone speed control. The regulation of the weakening of the excitation flow is more convenient as a function of the voltage in the armature windings.
Centrifugal compressor design for electrically assisted boost
NASA Astrophysics Data System (ADS)
Y Yang, M.; Martinez-Botas, R. F.; Zhuge, W. L.; Qureshi, U.; Richards, B.
2013-12-01
Electrically assisted boost is a prominent method to solve the issues of transient lag in turbocharger and remains an optimized operation condition for a compressor due to decoupling from turbine. Usually a centrifugal compressor for gasoline engine boosting is operated at high rotational speed which is beyond the ability of an electric motor in market. In this paper a centrifugal compressor with rotational speed as 120k RPM and pressure ratio as 2.0 is specially developed for electrically assisted boost. A centrifugal compressor including the impeller, vaneless diffuser and the volute is designed by meanline method followed by 3D detailed design. Then CFD method is employed to predict as well as analyse the performance of the design compressor. The results show that the pressure ratio and efficiency at design point is 2.07 and 78% specifically.
Apparatus for high speed rotation of electrically operated devices
Williams, Keith E.; Rogus, Arnold J.
1976-10-26
Most high speed centrifuges employ a relatively small diameter elongate flexible drive shaft, sometimes called a "quill" shaft. These relatively slender shafts are flexible to absorb vibration as the assembly passes through speeds of resonance and to permit re-alignment of the axis of rotation of the shaft and the rotor driven thereby in the event the center of mass of the rotor and shaft assembly is displaced from the nominal axis of the rotation. To use such an apparatus for testing electrical devices and components, electrical conductors for wires are passed from a slip ring assembly located at an end of the quill shaft remote from the rotor and longitudinally alongside the quill shaft to the electrical device mounted on the rotor. The longitudinally extending conductors are supported against the radially outward directed centrifugal forces by a plurality of strong, self-lubricating, slightly compressible wafers or washers co-axially stacked on the slender shaft and provided with radially offset longitudinally aligned openings to support the longitudinally extending conductors. The conductors are supported against the centrifugal forces and thus protected from rupture or other damage without restricting or constraining the essential flexure or bending of the drive shaft.
Impact of Monsoon to Aquatic Productivity and Fish Landing at Pesawaran Regency Waters
NASA Astrophysics Data System (ADS)
Kunarso; Zainuri, Muhammad; Ario, Raden; Munandar, Bayu; Prayogi, Harmon
2018-02-01
Monsoon variability influences the productivity processes in the ocean and has different responses in each waters. Furthermore, variability of marine productivity affects to the fisheries resources fluctuation. This research has conducted using descriptive method to investigate the consequences of monsoon variability to aquatic productivity, sea surface temperature (SST), fish catches, and fish season periods at Pesawaran Regency waters, Lampung. Variability of aquatic productivity was determined based on chlorophyll-a indicator from MODIS satellite images. Monsoon variability was governed based on wind parameters and fish catches from fish landing data of Pesawaran fish market. The result showed that monsoon variability had affected to aquatic productivity, SST, and fish catches at Pesawaran Regency waters. Maximum wind speed and lowest SST occurred twice in a year, December to March and August to October, which the peaks were on January (2.55 m/s of wind speed and 29.66°C of SST) and September (2.44 m/s of wind speed and 29.06°C of SST). Also, Maximum aquatic productivity happened on January to March and July to September, which it was arisen simultaneously with maximum wind speed and the peaks was 0.74 mg/m3 and 0.78 mg/m3, on February and August respectively. The data showed that fish catches decreased along with strong wind speed and low SST. However, when weak wind speed and high SST occurred, fish catches increased. The correlation between Catch per Unit Effort (CPUE) with SST, wind speed, and chlorophyll-a was at value 0.76, -0.67, and -0.70, respectively. The high rate fish catches in Pesawaran emerged on March-May and September-December.
Optimum solar electric interplanetary mission opportunities from 1975 to 1990
NASA Technical Reports Server (NTRS)
Mann, F. I.; Horsewood, J. L.
1971-01-01
A collection of optimum trajectory and spacecraft data is presented for unmanned interplanetary missions from 1975 to 1990 using solar electric propulsion. Data are presented for one-way flyby and orbiter missions from Earth to Venus, Mars, Jupiter, Saturn, Uranus, Neptune, and Pluto. The solar system model assumes planetary ephemerides which very closely approximate the true motion of the planets. Direct and indirect flight profiles are investigated. Data are presented for two representative flight times for each mission. The launch vehicle is the Titan 3 B (core)/Centaur, and a constant jet exhaust speed solar electric propulsion system having a specific mass of 30 kg/kw is completely optimized in terms of power level and jet exhaust speed to yield maximum net spacecraft mass. The hyperbolic excess speeds at departure and arrival and the launch date are optimized for each mission. For orbiter missions, a chemical retro stage is used to brake the spacecraft into a highly eccentric capture orbit about the target planet.
NASA Astrophysics Data System (ADS)
Turkoglu, F.; Koseoglu, H.; Zeybek, S.; Ozdemir, M.; Aygun, G.; Ozyuzer, L.
2018-04-01
In this study, aluminum-doped zinc oxide (AZO) thin films were deposited by DC magnetron sputtering at room temperature. The distance between the substrate and target axis, and substrate rotation speed were varied to get high quality AZO thin films. The influences of these deposition parameters on the structural, optical, and electrical properties of the fabricated films were investigated by X-ray diffraction (XRD), Raman spectroscopy, spectrophotometry, and four-point probe techniques. The overall analysis revealed that both sample position and substrate rotation speed are effective in changing the optical, structural, and electrical properties of the AZO thin films. We further observed that stress in the films can be significantly reduced by off-center deposition and rotating the sample holder during the deposition. An average transmittance above 85% in the visible range and a resistivity of 2.02 × 10-3 Ω cm were obtained for the AZO films.
Miller, Lee M; Kleidon, Axel
2016-11-29
Wind turbines generate electricity by removing kinetic energy from the atmosphere. Large numbers of wind turbines are likely to reduce wind speeds, which lowers estimates of electricity generation from what would be presumed from unaffected conditions. Here, we test how well wind power limits that account for this effect can be estimated without explicitly simulating atmospheric dynamics. We first use simulations with an atmospheric general circulation model (GCM) that explicitly simulates the effects of wind turbines to derive wind power limits (GCM estimate), and compare them to a simple approach derived from the climatological conditions without turbines [vertical kinetic energy (VKE) estimate]. On land, we find strong agreement between the VKE and GCM estimates with respect to electricity generation rates (0.32 and 0.37 W e m -2 ) and wind speed reductions by 42 and 44%. Over ocean, the GCM estimate is about twice the VKE estimate (0.59 and 0.29 W e m -2 ) and yet with comparable wind speed reductions (50 and 42%). We then show that this bias can be corrected by modifying the downward momentum flux to the surface. Thus, large-scale limits to wind power use can be derived from climatological conditions without explicitly simulating atmospheric dynamics. Consistent with the GCM simulations, the approach estimates that only comparatively few land areas are suitable to generate more than 1 W e m -2 of electricity and that larger deployment scales are likely to reduce the expected electricity generation rate of each turbine. We conclude that these atmospheric effects are relevant for planning the future expansion of wind power.
Miller, Lee M.; Kleidon, Axel
2016-01-01
Wind turbines generate electricity by removing kinetic energy from the atmosphere. Large numbers of wind turbines are likely to reduce wind speeds, which lowers estimates of electricity generation from what would be presumed from unaffected conditions. Here, we test how well wind power limits that account for this effect can be estimated without explicitly simulating atmospheric dynamics. We first use simulations with an atmospheric general circulation model (GCM) that explicitly simulates the effects of wind turbines to derive wind power limits (GCM estimate), and compare them to a simple approach derived from the climatological conditions without turbines [vertical kinetic energy (VKE) estimate]. On land, we find strong agreement between the VKE and GCM estimates with respect to electricity generation rates (0.32 and 0.37 We m−2) and wind speed reductions by 42 and 44%. Over ocean, the GCM estimate is about twice the VKE estimate (0.59 and 0.29 We m−2) and yet with comparable wind speed reductions (50 and 42%). We then show that this bias can be corrected by modifying the downward momentum flux to the surface. Thus, large-scale limits to wind power use can be derived from climatological conditions without explicitly simulating atmospheric dynamics. Consistent with the GCM simulations, the approach estimates that only comparatively few land areas are suitable to generate more than 1 We m−2 of electricity and that larger deployment scales are likely to reduce the expected electricity generation rate of each turbine. We conclude that these atmospheric effects are relevant for planning the future expansion of wind power. PMID:27849587
Evaluation of 2004 Toyota Prius Hybrid Electric Drive System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staunton, R. H.; Ayers, C. W.; Marlino, L. D.
2006-05-01
The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of providing mechanical-drive power for the vehicle. The engine can deliver a peak-power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak-power output of 50 kW over the speed range of 1200–1540 rpm. Together, this engine-motor combination has a specified peak-power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economymore » compared to conventionally powered automobiles. To acquire knowledge and thereby improve understanding of the propulsion technology used in the 2004 Prius, a full range of design characterization studies were conducted to evaluate the electrical and mechanical characteristics of the 2004 Prius and its hybrid electric drive system. These characterization studies included (1) a design review, (2) a packaging and fabrication assessment, (3) bench-top electrical tests, (4) back-electromotive force (emf) and locked rotor tests, (5) loss tests, (6) thermal tests at elevated temperatures, and most recently (7) full-design-range performance testing in a controlled laboratory environment. This final test effectively mapped the electrical and thermal results for motor/inverter operation over the full range of speeds and shaft loads that these assemblies are designed for in the Prius vehicle operations. This testing was undertaken by the Oak Ridge National Laboratory (ORNL) as part of the U.S. Department of Energy (DOE) – Energy Efficiency and Renewable Energy (EERE) FreedomCAR and Vehicle Technologies (FCVT) program through its vehicle systems technologies subprogram. The thermal tests at elevated temperatures were conducted late in 2004, and this report does not discuss this testing in detail. The thermal tests explored the derating of the Prius motor design if operated at temperatures as high as is normally encountered in a vehicle engine. The continuous ratings at base speed (1200 rpm) with different coolant temperatures are projected from test data at 900 rpm. A separate, comprehensive report on this thermal control study is available. This report summarizes vehicle-level and subsystem-level test results obtained for the 2004 Prius and various electrical and mechanical subassemblies of its hybrid electric drive system. The primary objective of these tests was to (1) characterize the electrical and mechanical performance of the 2004 Prius, and (2) map the performance of the inverter/motor system over the full design speed and load ranges.« less
The experimental studies of operating modes of a diesel-generator set at variable speed
NASA Astrophysics Data System (ADS)
Obukhov, S. G.; Plotnikov, I. A.; Surkov, M. A.; Sumarokova, L. P.
2017-02-01
A diesel generator set working at variable speed to save fuel is studied. The results of experimental studies of the operating modes of an autonomous diesel generator set are presented. Areas for regulating operating modes are determined. It is demonstrated that the transfer of the diesel generator set to variable speed of the diesel engine makes it possible to improve the energy efficiency of the autonomous generator source, as well as the environmental and ergonomic performance of the equipment as compared with general industrial analogues.
NASA Astrophysics Data System (ADS)
Azorin-Molina, Cesar; Menendez, Melisa; McVicar, Tim R.; Acevedo, Adrian; Vicente-Serrano, Sergio M.; Cuevas, Emilio; Minola, Lorenzo; Chen, Deliang
2017-08-01
This study simultaneously examines wind speed trends at the land-ocean interface, and below-above the trade-wind inversion layer in the Canary Islands and the surrounding Eastern North Atlantic Ocean: a key region for quantifying the variability of trade-winds and its response to large-scale atmospheric circulation changes. Two homogenized data sources are used: (1) observed wind speed from nine land-based stations (1981-2014), including one mountain weather station (Izaña) located above the trade-wind inversion layer; and (2) simulated wind speed from two atmospheric hindcasts over ocean (i.e., SeaWind I at 30 km for 1948-2014; and SeaWind II at 15 km for 1989-2014). The results revealed a widespread significant negative trend of trade-winds over ocean for 1948-2014, whereas no significant trends were detected for 1989-2014. For this recent period wind speed over land and ocean displayed the same multi-decadal variability and a distinct seasonal trend pattern with a strengthening (late spring and summer; significant in May and August) and weakening (winter-spring-autumn; significant in April and September) of trade-winds. Above the inversion layer at Izaña, we found a predominance of significant positive trends, indicating a decoupled variability and opposite wind speed trends when compared to those reported in boundary layer. The analysis of the Trade Wind Index (TWI), the North Atlantic Oscillation Index (NAOI) and the Eastern Atlantic Index (EAI) demonstrated significant correlations with the wind speed variability, revealing that the correlation patterns of the three indices showed a spatio-temporal complementarity in shaping wind speed trends across the Eastern North Atlantic.
NASA Astrophysics Data System (ADS)
Azorin-Molina, Cesar; Menendez, Melisa; McVicar, Tim R.; Acevedo, Adrian; Vicente-Serrano, Sergio M.; Cuevas, Emilio; Minola, Lorenzo; Chen, Deliang
2018-06-01
This study simultaneously examines wind speed trends at the land-ocean interface, and below-above the trade-wind inversion layer in the Canary Islands and the surrounding Eastern North Atlantic Ocean: a key region for quantifying the variability of trade-winds and its response to large-scale atmospheric circulation changes. Two homogenized data sources are used: (1) observed wind speed from nine land-based stations (1981-2014), including one mountain weather station (Izaña) located above the trade-wind inversion layer; and (2) simulated wind speed from two atmospheric hindcasts over ocean (i.e., SeaWind I at 30 km for 1948-2014; and SeaWind II at 15 km for 1989-2014). The results revealed a widespread significant negative trend of trade-winds over ocean for 1948-2014, whereas no significant trends were detected for 1989-2014. For this recent period wind speed over land and ocean displayed the same multi-decadal variability and a distinct seasonal trend pattern with a strengthening (late spring and summer; significant in May and August) and weakening (winter-spring-autumn; significant in April and September) of trade-winds. Above the inversion layer at Izaña, we found a predominance of significant positive trends, indicating a decoupled variability and opposite wind speed trends when compared to those reported in boundary layer. The analysis of the Trade Wind Index (TWI), the North Atlantic Oscillation Index (NAOI) and the Eastern Atlantic Index (EAI) demonstrated significant correlations with the wind speed variability, revealing that the correlation patterns of the three indices showed a spatio-temporal complementarity in shaping wind speed trends across the Eastern North Atlantic.
Szturm, Tony; Maharjan, Pramila; Marotta, Jonathan J; Shay, Barbara; Shrestha, Shiva; Sakhalkar, Vedant
2013-09-01
Mobility limitations and cognitive impairments, each common with aging, reduce levels of physical and mental activity, are prognostic of future adverse health events, and are associated with an increased fall risk. The purpose of this study was to examine whether divided attention during walking at a constant speed would decrease locomotor rhythm, stability, and cognitive performance. Young healthy participants (n=20) performed a visuo-spatial cognitive task in sitting and while treadmill walking at 2 speeds (0.7 and 1.0 m/s).Treadmill speed had a significant effect on temporal gait variables and ML-COP excursion. Cognitive load did not have a significant effect on average temporal gait variables or COP excursion, but variation of gait variables increased during dual-task walking. ML and AP trunk motion was found to decrease during dual-task walking. There was a significant decrease in cognitive performance (success rate, response time and movement time) while walking, but no effect due to treadmill speed. In conclusion walking speed is an important variable to be controlled in studies that are designed to examine effects of concurrent cognitive tasks on locomotor rhythm, pacing and stability. Divided attention during walking at a constant speed did result in decreased performance of a visuo-spatial cognitive task and an increased variability in locomotor rhythm. Copyright © 2013 Elsevier B.V. All rights reserved.
The MOD-OA 200 kilowatt wind turbine generator design and analysis report
NASA Astrophysics Data System (ADS)
Andersen, T. S.; Bodenschatz, C. A.; Eggers, A. G.; Hughes, P. S.; Lampe, R. F.; Lipner, M. H.; Schornhorst, J. R.
1980-08-01
The project requirements, approach, system description, design requirements, design, analysis, system tests, installation safety considerations, failure modes and effects analysis, data acquisition, and initial performance for the MOD-OA 200 kw wind turbine generator are discussed. The components, the rotor, driven train, nacelle equipment, yaw drive mechanism and brake, tower, foundation, electrical system, and control systems are presented. The rotor includes the blades, hub and pitch change mechanism. The drive train includes the low speed shaft, speed increaser, high speed shaft, and rotor brake. The electrical system includes the generator, switchgear, transformer, and utility connection. The control systems are the blade pitch, yaw, and generator control, and the safety system. Manual, automatic, and remote control and Dynamic loads and fatigue are analyzed.
Grumman WS33 wind system: prototype construction and testing, Phase II technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adler, F.M.; Henton, P.; King, P.W.
1980-11-01
The prototype fabrication and testing of the 8 kW small wind energy conversion system are reported. The turbine is a three-bladed, down-wind machine designed to interface directly with an electrical utility network. The machine as finally fabricated is rated at 15 kW at 24 mpH and peak power of 18 kW at 35 mph. Utility compatible electrical power is generated in winds between a cut-in speed of 9 mph and a cut-out speed of 35 mph by using the torque characteristics of the unit's induction generator combined with the rotor aerodynamics to maintain essentially constant speed. Inspection procedures, pre-delivery testing,more » and a cost analysis are included.« less
The MOD-OA 200 kilowatt wind turbine generator design and analysis report
NASA Technical Reports Server (NTRS)
Andersen, T. S.; Bodenschatz, C. A.; Eggers, A. G.; Hughes, P. S.; Lampe, R. F.; Lipner, M. H.; Schornhorst, J. R.
1980-01-01
The project requirements, approach, system description, design requirements, design, analysis, system tests, installation safety considerations, failure modes and effects analysis, data acquisition, and initial performance for the MOD-OA 200 kw wind turbine generator are discussed. The components, the rotor, driven train, nacelle equipment, yaw drive mechanism and brake, tower, foundation, electrical system, and control systems are presented. The rotor includes the blades, hub and pitch change mechanism. The drive train includes the low speed shaft, speed increaser, high speed shaft, and rotor brake. The electrical system includes the generator, switchgear, transformer, and utility connection. The control systems are the blade pitch, yaw, and generator control, and the safety system. Manual, automatic, and remote control and Dynamic loads and fatigue are analyzed.
Variability in clubhead presentation characteristics and ball impact location for golfers' drives.
Betzler, Nils F; Monk, Stuart A; Wallace, Eric S; Otto, Steve R
2012-01-01
The purpose of the present study was to analyse the variability in clubhead presentation to the ball and the resulting ball impact location on the club face for a range of golfers of different ability. A total of 285 male and female participants hit multiple shots using one of four proprietary drivers. Self-reported handicap was used to quantify a participant's golfing ability. A bespoke motion capture system and user-written algorithms was used to track the clubhead just before and at impact, measuring clubhead speed, clubhead orientation, and impact location. A Doppler radar was used to measure golf ball speed. Generally, golfers of higher skill (lower handicap) generated increased clubhead speed and increased efficiency (ratio of ball speed to clubhead speed). Non-parametric statistical tests showed that low-handicap golfers exhibit significantly lower variability from shot to shot in clubhead speed, efficiency, impact location, attack angle, club path, and face angle compared with high-handicap golfers.
Design of Capillary Flows with Spatially Graded Porous Films
NASA Astrophysics Data System (ADS)
Joung, Young Soo; Figliuzzi, Bruno Michel; Buie, Cullen
2013-11-01
We have developed a new capillary tube model, consisting of multi-layered capillary tubes oriented in the direction of flow, to predict capillary speeds on spatially graded porous films. Capillary flows through thin porous media have been widely utilized for small size liquid transport systems. However, for most media it is challenging to realize arbitrary shapes and spatially functionalized micro-structures with variable flow properties. Therefore, conventional media can only be used for capillary flows obeying Washburn's equation and the modifications thereof. Given this background, we recently developed a method called breakdown anodization (BDA) to produce highly wetting porous films. The resulting surfaces show nearly zero contact angles and fast water spreading speed. Furthermore, capillary pressure and spreading diffusivity can be expressed as functions of capillary height when customized electric fields are used in BDA. From the capillary tube model, we derived a general capillary flow equation of motion in terms of capillary pressure and spreading diffusivity. The theoretical model shows good agreement with experimental capillary flows. The study will provide novel design methodologies for paper-based microfluidic devices.
A Sequential Shifting Algorithm for Variable Rotor Speed Control
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Edwards, Jason M.; DeCastro, Jonathan A.
2007-01-01
A proof of concept of a continuously variable rotor speed control methodology for rotorcraft is described. Variable rotor speed is desirable for several reasons including improved maneuverability, agility, and noise reduction. However, it has been difficult to implement because turboshaft engines are designed to operate within a narrow speed band, and a reliable drive train that can provide continuous power over a wide speed range does not exist. The new methodology proposed here is a sequential shifting control for twin-engine rotorcraft that coordinates the disengagement and engagement of the two turboshaft engines in such a way that the rotor speed may vary over a wide range, but the engines remain within their prescribed speed bands and provide continuous torque to the rotor; two multi-speed gearboxes facilitate the wide rotor speed variation. The shifting process begins when one engine slows down and disengages from the transmission by way of a standard freewheeling clutch mechanism; the other engine continues to apply torque to the rotor. Once one engine disengages, its gear shifts, the multi-speed gearbox output shaft speed resynchronizes and it re-engages. This process is then repeated with the other engine. By tailoring the sequential shifting, the rotor may perform large, rapid speed changes smoothly, as demonstrated in several examples. The emphasis of this effort is on the coordination and control aspects for proof of concept. The engines, rotor, and transmission are all simplified linear models, integrated to capture the basic dynamics of the problem.
Match-to-match variability in high-speed running activity in a professional soccer team.
Carling, Christopher; Bradley, Paul; McCall, Alan; Dupont, Gregory
2016-12-01
This study investigated variability in competitive high-speed running performance in an elite soccer team. A semi-automated tracking system quantified running performance in 12 players over a season (median 17 matches per player, 207 observations). Variability [coefficient of variation (CV)] was compared for total sprint distance (TSD, >25.2 km/h), high-speed running (HSR, 19.8-25.2 km/h), total high-speed running (THSR, ≥19.8 km/h); THSR when the team was in and out of ball possession, in individual ball possession, in the peak 5 min activity period; and distance run according to individual maximal aerobic speed (MAS). Variability for % declines in THSR and distance covered at ≥80% MAS across halves, at the end of play (final 15 min vs. mean for all 15 min periods) and transiently (5 min period following peak 5 min activity period), was analysed. Collectively, variability was higher for TSD versus HSR and THSR and lowest for distance run at ≥80% MAS (CVs: 37.1%, 18.1%, 19.8% and 11.8%). THSR CVs when the team was in/out of ball possession, in individual ball possession and during the peak 5 min period were 31.5%, 26.1%, 60.1% and 23.9%. Variability in THSR declines across halves, at the end of play and transiently, ranged from 37.1% to 142.6%, while lower CVs were observed in these metrics for running at ≥80% MAS (20.9-53.3%).These results cast doubt on the appropriateness of general measures of high-speed activity for determining variability in an elite soccer team, although individualisation of HSR thresholds according to fitness characteristics might provide more stable indicators of running performance and fatigue occurrence.
Speed control system for an access gate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bzorgi, Fariborz M
2012-03-20
An access control apparatus for an access gate. The access gate typically has a rotator that is configured to rotate around a rotator axis at a first variable speed in a forward direction. The access control apparatus may include a transmission that typically has an input element that is operatively connected to the rotator. The input element is generally configured to rotate at an input speed that is proportional to the first variable speed. The transmission typically also has an output element that has an output speed that is higher than the input speed. The input element and the outputmore » element may rotate around a common transmission axis. A retardation mechanism may be employed. The retardation mechanism is typically configured to rotate around a retardation mechanism axis. Generally the retardation mechanism is operatively connected to the output element of the transmission and is configured to retard motion of the access gate in the forward direction when the first variable speed is above a control-limit speed. In many embodiments the transmission axis and the retardation mechanism axis are substantially co-axial. Some embodiments include a freewheel/catch mechanism that has an input connection that is operatively connected to the rotator. The input connection may be configured to engage an output connection when the rotator is rotated at the first variable speed in a forward direction and configured for substantially unrestricted rotation when the rotator is rotated in a reverse direction opposite the forward direction. The input element of the transmission is typically operatively connected to the output connection of the freewheel/catch mechanism.« less
Dambreville, Charline; Labarre, Audrey; Thibaudier, Yann; Hurteau, Marie-France
2015-01-01
When speed changes during locomotion, both temporal and spatial parameters of the pattern must adjust. Moreover, at slow speeds the step-to-step pattern becomes increasingly variable. The objectives of the present study were to assess if the spinal locomotor network adjusts both temporal and spatial parameters from slow to moderate stepping speeds and to determine if it contributes to step-to-step variability in left-right symmetry observed at slow speeds. To determine the role of the spinal locomotor network, the spinal cord of 6 adult cats was transected (spinalized) at low thoracic levels and the cats were trained to recover hindlimb locomotion. Cats were implanted with electrodes to chronically record electromyography (EMG) in several hindlimb muscles. Experiments began once a stable hindlimb locomotor pattern emerged. During experiments, EMG and bilateral video recordings were made during treadmill locomotion from 0.1 to 0.4 m/s in 0.05 m/s increments. Cycle and stance durations significantly decreased with increasing speed, whereas swing duration remained unaffected. Extensor burst duration significantly decreased with increasing speed, whereas sartorius burst duration remained unchanged. Stride length, step length, and the relative distance of the paw at stance offset significantly increased with increasing speed, whereas the relative distance at stance onset and both the temporal and spatial phasing between hindlimbs were unaffected. Both temporal and spatial step-to-step left-right asymmetry decreased with increasing speed. Therefore, the spinal cord is capable of adjusting both temporal and spatial parameters during treadmill locomotion, and it is responsible, at least in part, for the step-to-step variability in left-right symmetry observed at slow speeds. PMID:26084910
Speed Variance and Its Influence on Accidents.
ERIC Educational Resources Information Center
Garber, Nicholas J.; Gadirau, Ravi
A study was conducted to investigate the traffic engineering factors that influence speed variance and to determine to what extent speed variance affects accident rates. Detailed analyses were carried out to relate speed variance with posted speed limit, design speeds, and other traffic variables. The major factor identified was the difference…
Rural variable speed limits : phase II.
DOT National Transportation Integrated Search
2012-05-01
The Wyoming Department of Transportation (WYDOT) installed its first variable speed limit (VSL) corridor along : Interstate 80 in the Elk Mountain Corridor in the Spring of 2009 in an effort to improve safety and reduce road closures, : particularly ...
Non-Destructive Techniques Based on Eddy Current Testing
García-Martín, Javier; Gómez-Gil, Jaime; Vázquez-Sánchez, Ernesto
2011-01-01
Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future. PMID:22163754
Optimisation of wire-cut EDM process parameter by Grey-based response surface methodology
NASA Astrophysics Data System (ADS)
Kumar, Amit; Soota, Tarun; Kumar, Jitendra
2018-03-01
Wire electric discharge machining (WEDM) is one of the advanced machining processes. Response surface methodology coupled with Grey relation analysis method has been proposed and used to optimise the machining parameters of WEDM. A face centred cubic design is used for conducting experiments on high speed steel (HSS) M2 grade workpiece material. The regression model of significant factors such as pulse-on time, pulse-off time, peak current, and wire feed is considered for optimising the responses variables material removal rate (MRR), surface roughness and Kerf width. The optimal condition of the machining parameter was obtained using the Grey relation grade. ANOVA is applied to determine significance of the input parameters for optimising the Grey relation grade.
An Opportunistic Wireless Charging System Design for an On-Demand Shuttle Service: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doubleday, Kate; Meintz, Andrew; Markel, Tony
System right-sizing is critical to implementation of in-motion wireless power transfer (WPT) for electric vehicles. This study introduces a modeling tool, WPTSim, which uses one-second speed, location, and road grade data from an on-demand employee shuttle in operation to simulate the incorporation of WPT at fine granularity. Vehicle power and state of charge are simulated over the drive cycle to evaluate potential system designs. The required battery capacity is determined based on the rated power at a variable number of charging locations. Adding just one WPT location can more than halve the battery capacity needed. Many configurations are capable ofmore » being self sustaining with WPT, while others benefit from supplemental stationary charging.« less
Non-destructive techniques based on eddy current testing.
García-Martín, Javier; Gómez-Gil, Jaime; Vázquez-Sánchez, Ernesto
2011-01-01
Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winterbone, D.E.; Richards, P.
A microprocessor controlled test bed was built for steady state mapping of petrol engines using a sweep mapping technique. The addition of an electric motor to the fast acting dynamometer allowed rapid load changes to be applied at nominally constant speed. This made it possible to consider the dynamic behaviour of the power generation sub-system of the engine. The engine was initially subjected to ramp changes of torque but these did not give consistent results. PRBS signals were then used for the same variable and a mathematical transfer function model developed for the engine power system. The engine was consideredmore » both as a continuous and sample data system. Results will be presented which show fuel management has an appreciable effect on the engine dynamic response.« less
Zheng, Yanting; Shen, Ming; Yang, Xianfeng
2018-01-01
To investigate head-brain injuries caused by windshield impact on riders using electric self-balancing scooters (ESS). Numerical vehicle ESS crash scenarios are constructed by combining the finite element (FE) vehicle model and multibody scooter/rider models. Impact kinematic postures of the head-windshield contact under various impact conditions are captured. Then, the processes during head-windshield contact are reconstructed using validated FE head/laminated windshield models to assess the severity of brain injury caused by the head-windshield contact. Governing factors, such as vehicle speed, ESS speed, and the initial orientation of ESS rider, have nontrivial influences over the severity of a rider's brain injuries. Results also show positive correlations between vehicle speed and head-windshield impact speeds (linear and angular). Meanwhile, the time of head-windshield contact happens earlier when the vehicle speed is faster. According to the intensive study, windshield-head contact speed (linear and angular), impact location on the windshield, and head collision area are found to be direct factors on ESS riders' brain injuries during an impact. The von Mises stress and shear stress rise when relative contact speed of head-windshield increases. Brain injury indices vary widely when the head impacting the windshield from center to the edge or impacting with different areas. PMID:29770161
NASA Astrophysics Data System (ADS)
Veronesi, F.; Grassi, S.
2016-09-01
Wind resource assessment is a key aspect of wind farm planning since it allows to estimate the long term electricity production. Moreover, wind speed time-series at high resolution are helpful to estimate the temporal changes of the electricity generation and indispensable to design stand-alone systems, which are affected by the mismatch of supply and demand. In this work, we present a new generalized statistical methodology to generate the spatial distribution of wind speed time-series, using Switzerland as a case study. This research is based upon a machine learning model and demonstrates that statistical wind resource assessment can successfully be used for estimating wind speed time-series. In fact, this method is able to obtain reliable wind speed estimates and propagate all the sources of uncertainty (from the measurements to the mapping process) in an efficient way, i.e. minimizing computational time and load. This allows not only an accurate estimation, but the creation of precise confidence intervals to map the stochasticity of the wind resource for a particular site. The validation shows that machine learning can minimize the bias of the wind speed hourly estimates. Moreover, for each mapped location this method delivers not only the mean wind speed, but also its confidence interval, which are crucial data for planners.
Interaction between electrically charged droplets in microgravity
NASA Astrophysics Data System (ADS)
Brandenbourger, Martin; Caps, Herve; Hardouin, Jerome; Vitry, Youen; Boigelot, Bernard; Dorbolo, Stephane; Grasp Team; Beams Collaboration
2015-11-01
The past ten years, electrically charged droplets have been studied tremendously for their applications in industry (electrospray, electrowetting,...). However, charged droplets are also present in nature. Indeed, it has been shown that the droplets falling from thunderclouds possess an excess of electric charges. Moreover, some research groups try to use the electrical interaction between drops in order to control the coalescence between cloud droplets and control rain generation. The common way to study this kind of system is to make hypothesis on the interaction between two charged drops. Then, these hypothesis are extended to a system of thousands of charged droplets. Thanks to microgravity conditions, we were able to study the interaction between two electrically charged droplets. In practice, the charged droplets were propelled one in front of the other at low speed (less than 1 m/s). The droplets trajectory is studied for various charges and volumes. The repulsion between two charged drops is correctly fitted by a simple Coulomb repulsion law. In the case of attractive interactions, we discuss the collisions observed as a function of the droplets speed, volume and electric charges. Thanks to FNRS for financial support.
Latash, M; Gottleib, G
1990-01-01
Problems of single-joint movement variability are analysed in the framework of the equilibrium-point hypothesis (the lambda-model). Control of the movements is described with three parameters related to movement amplitude speed, and time. Three strategies emerge from this description. Only one of them is likely to lead to a Fitts' type speed-accuracy trade-off. Experiments were performed to test one of the predictions of the model. Subjects performed identical sets of single-joint fast movements with open or closed eyes and some-what different instructions. Movements performed with closed eyes were characterized with higher peak speeds and unchanged variability in seeming violation of the Fitt's law and in a good correspondence to the model.
Fractal fluctuations in spatiotemporal variables when walking on a self-paced treadmill.
Choi, Jin-Seung; Kang, Dong-Won; Seo, Jeong-Woo; Tack, Gye-Rae
2017-12-08
This study investigated the fractal dynamic properties of stride time (ST), stride length (SL) and stride speed (SS) during walking on a self-paced treadmill (STM) in which the belt speed is automatically controlled by the walking speed. Twelve healthy young subjects participated in the study. The subjects walked at their preferred walking speed under four conditions: STM, STM with a metronome (STM+met), fixed-speed (conventional) treadmill (FTM), and FTM with a metronome (FTM+met). To compare the fractal dynamics between conditions, the mean, variability, and fractal dynamics of ST, SL, and SS were compared. Moreover, the relationship among the variables was examined under each walking condition using three types of surrogates. The mean values of all variables did not differ between the two treadmills, and the variability of all variables was generally larger for STM than for FTM. The use of a metronome resulted in a decrease in variability in ST and SS for all conditions. The fractal dynamic characteristics of SS were maintained with STM, in contrast to FTM, and only the fractal dynamic characteristics of ST disappeared when using a metronome. In addition, the fractal dynamic patterns of the cross-correlated surrogate results were identical to those of all variables for the two treadmills. In terms of the fractal dynamic properties, STM walking was generally closer to overground walking than FTM walking. Although further research is needed, the present results will be useful in research on gait fractal dynamics and rehabilitation. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Bilwakesh, K. R.; Koch, C. C.; Prince, D. C.
1972-01-01
A 0.5 hub/tip radius ratio compressor stage consisting of a 1500 ft/sec tip speed rotor, a variable camber inlet guide vane and a variable stagger stator was designed and tested with undistorted inlet flow, flow with tip radial distortion, and flow with 90 degrees, one-per-rev, circumferential distortion. At the design speed and design IGV and stator setting the design stage pressure ratio was achieved at a weight within 1% of the design flow. Analytical results on rotor tip shock structure, deviation angle and part-span shroud losses at different operating conditions are presented. The variable geometry blading enabled efficient operation with adequate stall margin at the design condition and at 70% speed. Closing the inlet guide vanes to 40 degrees changed the speed-versus-weight flow relationship along the stall line and thus provided the flexibility of operation at off-design conditions. Inlet flow distortion caused considerable losses in peak efficiency, efficiency on a constant throttle line through design pressure ratio at design speed, stall pressure ratio, and stall margin at the 0 degrees IGV setting and high rotative speeds. The use of the 40 degrees inlet guide vane setting enabled partial recovery of the stall margin over the standard constant throttle line.
A process for providing positive primary control power by wind turbines
NASA Astrophysics Data System (ADS)
Marschner, V.; Michael, J.; Liersch, J.
2014-12-01
Due to the increasing share of wind energy in electricity generation, wind turbines have to fulfil additional requirements in the context of grid integration. The paper examines to which extent wind turbines can provide positive control power following the related grid code. The additional power has to be obtained from the rotating flywheel mass of the wind turbine's rotor. A simple physical model is developed that allows to draw conclusions about appropriate concepts by means of a dynamic simulation of the variables rotational speed, torque, power output and rotor power. The paper discusses scenarios to provide control power. The supply of control power at partial load is examined in detail using simulations. Under partial load conditions control power can be fed into the grid for a short time. Thereby the rotational speed drops so that aerodynamic efficiency decreases and feed-in power is below the initial value after the control process. In this way an unfavourable situation for the grid control is produced, therefore the paper proposes a modified partial load condition with a higher rotational speed. By providing primary control power the rotor is delayed to the optimum rotational speed so that more rotational energy can be fed in and fed-in power can be increased persistently. However, as the rotor does not operate at optimum speed, a small amount of the energy yield is lost. Finally, the paper shows that a wind farm can combine these two concepts: A part of the wind turbines work under modified partial load conditions can compensate the decrease of power of the wind turbines working under partial load conditions. Therefore the requested control power is provided and afterwards the original value of power is maintained.
NASA Astrophysics Data System (ADS)
François, Baptiste; Raynaud, Damien; Hingray, Benoit; Creutin, Jean-Dominique
2017-04-01
Integration of Variable Renewable Energy (VRE) sources in the electricity system is a challenge because of temporal and spatial fluctuations of their power generation resulting from their driving weather variables (i.e. solar radiation wind speed, precipitation, and temperature). Very few attention was paid to low frequency variability (i.e. from annual to decades) even though it may have significant impact on energy system and energy market Following the current increase in electricity supplied by VRE generation, one could ask the question about the risk of ending up in a situation in which the level of production of one or more VRE is exceptionally low or exceptionally high for a long period of time and/or over a large area. What would be the risk for an investor if the return on investment has been calculated on a high energy production period? What would be the cost in term of carbon emission whether the system manager needs to turn on coal power plant to satisfy the demand? Such dramatic events would definitely impact future stakeholder decision to invest in a particular energy source or another. Weather low frequency variability is mainly governed by large-scale teleconnection patterns impacting the climate at global scale such as El Niño - Southern Oscillation (ENSO) in the tropics and in North America or the North Atlantic Oscillation (hereafter, NAO) in North America and Europe. Teleconnection pattern's influence on weather variability cascades to VRE variability and ends up by impacting electricity system. The aim of this study is to analysis the impact of the NAO on VRE generation in Europe during the winter season. The analysis is carried out over the twentieth century (i.e. from 1900 to 2010), in order to take into account climate low frequency variability, and for a set of 12 regions covering a large range of climates in Europe. Weather variable time series are obtained by using the ERA20C reanalysis and the SCAMP model (Sequential Constructive Atmospheric Analogues for Multivariate weather Predictions, Raynaud et al. 2016). The analysis is performed for solar, wind and run-of-the river energy sources taken individually. For NAO sensitive regions, results shown important deviations between power generation distributions obtained either for strongly positive or strongly negative NAO events. We also used the optimal VRE combination provided by the 100 % solution project (http://thesolutionsproject.org/). We then discuss over the 12 considered regions the vulnerability to NAO events for the energy mix suggested by the 100 % solution project. Reference: Raynaud, D., Hingray, B., Zin, I., Anquetin, S., Debionne, S., Vautard, R., 2016. Atmospheric analogues for physically consistent scenarios of surface weather in Europe and Maghreb. Int. J. Climatol. doi:10.1002/joc.4844
Materials Test Program, Contact Power Collection for High Speed Tracked Vehicles
DOT National Transportation Integrated Search
1971-01-01
A test program is defined for determining the failure modes and wear characteristics for brushes used to collect electrical power from the wayside for high speed tracked vehicles. Simulation of running conditions and the necessary instrumentation for...
2009-07-22
NASA Research Park (NRP) Timothy Collins, President and Chairman, KleenSpeed Technologies, Inc. and Captain Andrew Butte, rescue helicopter pilot and former Army Aviator, with Butte's 1999 SWIFT. ChampCar Butte has given his racecar to KleenSpeed for conversion to electric.
A High Vacuum High Speed Ion Pump
DOE R&D Accomplishments Database
Foster, J. S. Jr.; Lawrence, E. O.; Lofgren, E. J.
1952-08-27
A vacuum pump based on the properties of a magnetically collimated electric discharge is described. It has a speed in the range 3000 to 7000 liters a second and a base pressure in the order of 10{sup -6} mm. (auth)
Applications of variable speed control for contending with recurrent highway congestion.
DOT National Transportation Integrated Search
2014-07-01
This research project developed vital operational guidelines for design of a variable speed limit (VSL) system and its integrated operations with ramp metering control in contending with recurrent highway congestion. The developed guidelines can serv...
electric vehicle. An eligible vehicle must: Be a four-wheeled motor vehicle manufactured for use on public maximum speed of at least 55 mph, and Be propelled at least in part by an electric motor and associated
2008-11-02
Airship Ventures Zeppelin Dedication during the Moffett Field Diamond Jubilee. The Thruxar electric race car at the Nov. 21 Diamond Jubilee exhibits. KleenSpeed is an advanced R&D firm focusing on scalable electric propulsion systems for transportation
2015-08-30
Ultrahigh-Speed Electrically Injected 1.55 um Quantum Dot Microtube and Nanowire Lasers on Si In this report, we describe the progress made in rolled...up InP-based tube lasers and in the growth and characterization of III-nitride nanowire structures on Si. We report on the demonstration of...injected AlGaN nanowire lasers that can operate in the UV-AII (315-340 nm), UV-B (280-315nm), and UV-C (200-280 nm). The views, opinions and/or findings
Vehicle test report: Battronic pickup truck
NASA Technical Reports Server (NTRS)
Price, T. W.; Shain, T. W.; Freeman, R. J.; Pompa, M. F.
1982-01-01
An electric pickup truck was tested to characterize certain parameters and to provide baseline data that can be used for the comparison of improved batteries that may be incorporated into the vehicle at a later time. The vehicle tests were concentrated on the electrical drive subsystem; i.e., the batteries, controller, and motor. The tests included coastdowns to characterize the road load and range evaluations for both cyclic and constant speed conditions. A qualitative evaluation of the vehicle's performance was made by comparing its constant speed range performance with other vehicles.
Apparatus for millimeter-wave signal generation
Vawter, G. Allen; Hietala, Vincent M.; Zolper, John C.; Mar, Alan; Hohimer, John P.
1999-01-01
An opto-electronic integrated circuit (OEIC) apparatus is disclosed for generating an electrical signal at a frequency .gtoreq.10 GHz. The apparatus, formed on a single substrate, includes a semiconductor ring laser for generating a continuous train of mode-locked lasing pulses and a high-speed photodetector for detecting the train of lasing pulses and generating the electrical signal therefrom. Embodiments of the invention are disclosed with an active waveguide amplifier coupling the semiconductor ring laser and the high-speed photodetector. The invention has applications for use in OEICs and millimeter-wave monolithic integrated circuits (MMICs).
Response of lead-acid batteries to chopper-controlled discharge: Preliminary results
NASA Technical Reports Server (NTRS)
Cataldo, R. L.
1978-01-01
The preliminary results of simulated electric vehicle, chopper, speed controller discharge of a battery show energy output losses up to 25 percent compared to constant current discharges at the same average discharge current of 100 amperes. These energy losses are manifested as temperature rises during discharge, amounting to a two-fold increase for a 400-ampere pulse compared to the constant current case. Because of the potentially large energy inefficiency, the results suggest that electric vehicle battery/speed controller interaction must be carefully considered in vehicle design.
Response of lead-acid batteries to chopper-controlled discharge
NASA Technical Reports Server (NTRS)
Cataldo, R. L.
1978-01-01
The preliminary results of simulated electric vehicle, chopper, speed controller discharge of a battery show energy output losses at up to 25 percent compared to constant current discharges at the same average discharge current of 100 A. These energy losses are manifested as temperature rises during discharge, amounting to a two-fold increase for a 400-A pulse compared to the constant current case. Because of the potentially large energy inefficiency, the results suggest that electric vehicle battery/speed controller interaction must be carefully considered in vehicle design.
Variable/Multispeed Rotorcraft Drive System Concepts
NASA Technical Reports Server (NTRS)
Stevens, Mark A.; Handschuh, Robert F.; Lewicki, David G.
2009-01-01
Several recent studies for advanced rotorcraft have identified the need for variable, or multispeed-capable rotors. A speed change of up to 50 percent has been proposed for future rotorcraft to improve vehicle performance. Varying rotor speed during flight not only requires a rotor capable of performing effectively over the extended operation speed and load range, but also requires an advanced propulsion system to provide the required speed changes. A study has been completed, which investigated possible drive system arrangements to accommodate up to the 50 percent speed change. These concepts are presented. The most promising configurations are identified and will be developed for future validation testing.
Causal electric charge diffusion and balance functions in relativistic heavy-ion collisions
NASA Astrophysics Data System (ADS)
Kapusta, Joseph I.; Plumberg, Christopher
2018-01-01
We study the propagation and diffusion of electric charge fluctuations in high-energy heavy-ion collisions using the Cattaneo form for the dissipative part of the electric current. As opposed to the ordinary diffusion equation this form limits the speed at which charge can propagate. Including the noise term in the current, which arises uniquely from the fluctuation-dissipation theorem, we calculate the balance functions for charged hadrons in a simple 1+1-dimensional Bjorken hydrodynamical model. Limiting the speed of propagation of charge fluctuations increases the height and reduces the width of these balance functions when plotted versus rapidity. We also estimate the numerical value of the associated diffusion time constant from anti-de Sitter-space/conformal-field theory.
Strategy for improved frequency response of electric double-layer capacitors
NASA Astrophysics Data System (ADS)
Wada, Yoshifumi; Pu, Jiang; Takenobu, Taishi
2015-10-01
We propose a strategy for improving the response speed of electric double-layer capacitors (EDLCs) and electric double-layer transistors (EDLTs), based on an asymmetric structure with differently sized active materials and gate electrodes. We validate the strategy analytically by a classical calculation and experimentally by fabricating EDLCs with asymmetric Au electrodes (1:50 area ratio and 7.5 μm gap distance). The performance of the EDLCs is compared with that of conventional symmetric EDLCs. Our strategy dramatically improved the cut-off frequency from 14 to 93 kHz and this improvement is explained by fast charging of smaller electrodes. Therefore, this approach is particularly suitable to EDLTs, potentially expanding the applicability to medium speed (kHz-MHz) devices.
Two-Scale Ion Meandering Caused by the Polarization Electric Field During Asymmetric Reconnection
NASA Technical Reports Server (NTRS)
Wang, Shan; Chen, Li-Jen; Hesse, Michael; Bessho, Naoki; Gershman, Daniel J.; Dorelli, John; Giles, Barbara L.; Torbert, Roy B.; Pollock, Craig J.; Strangeway, Robert;
2016-01-01
Ion velocity distribution functions (VDFs) from a particle-in-cell simulation of asymmetric reconnection are investigated to reveal a two-scale structure of the ion diffusion region (IDR). Ions bouncing in the inner IDR are trapped mainly by the electric field normal to the current sheet (N direction), while those reaching the outer IDR are turned back mainly by the magnetic force. The resulting inner layer VDFs have counter-streaming populations along N with decreasing counter-streaming speeds away from the midplane while maintaining the out-of-plane speed, and the outer layer VDFs exhibit crescent shapes toward the out-of-plane direction. Observations of the above VDF features and the normal electric fields provide evidence for the two-scale meandering motion.
Two-scale ion meandering caused by the polarization electric field during asymmetric reconnection
NASA Astrophysics Data System (ADS)
Wang, Shan; Chen, Li-Jen; Hesse, Michael; Bessho, Naoki; Gershman, Daniel J.; Dorelli, John; Giles, Barbara; Torbert, Roy B.; Pollock, Craig J.; Strangeway, Robert; Ergun, Robert E.; Burch, James L.; Avanov, Levon; Lavraud, Benoit; Moore, Thomas E.; Saito, Yoshifumi
2016-08-01
Ion velocity distribution functions (VDFs) from a particle-in-cell simulation of asymmetric reconnection are investigated to reveal a two-scale structure of the ion diffusion region (IDR). Ions bouncing in the inner IDR are trapped mainly by the electric field normal to the current sheet (N direction), while those reaching the outer IDR are turned back mainly by the magnetic force. The resulting inner layer VDFs have counter-streaming populations along N with decreasing counter-streaming speeds away from the midplane while maintaining the out-of-plane speed, and the outer layer VDFs exhibit crescent shapes toward the out-of-plane direction. Observations of the above VDF features and the normal electric fields provide evidence for the two-scale meandering motion.
Variable current speed controller for eddy current motors
Gerth, H.L.; Bailey, J.M.; Casstevens, J.M.; Dixon, J.H.; Griffith, B.O.; Igou, R.E.
1982-03-12
A speed control system for eddy current motors is provided in which the current to the motor from a constant frequency power source is varied by comparing the actual motor speed signal with a setpoint speed signal to control the motor speed according to the selected setpoint speed. A three-phase variable voltage autotransformer is provided for controlling the voltage from a three-phase power supply. A corresponding plurality of current control resistors is provided in series with each phase of the autotransformer output connected to inputs of a three-phase motor. Each resistor is connected in parallel with a set of normally closed contacts of plurality of relays which are operated by control logic. A logic circuit compares the selected speed with the actual motor speed obtained from a digital tachometer monitoring the motor spindle speed and operated the relays to add or substract resistance equally in each phase of the motor input to vary the motor current to control the motor at the selected speed.
Temperature Prediction in High Speed Bone Grinding using Motor PWM Signal
Tai, Bruce L.; Zhang, Lihui; Wang, Anthony C.; Sullivan, Stephen; Wang, Guangjun; Shih, Albert J.
2013-01-01
This research explores the feasibility of using motor electrical feedback to estimate temperature rise during a surgical bone grinding procedure. High-speed bone grinding is often used during skull base neurosurgery to remove cranial bone and approach skull base tumors through the nasal corridor. Grinding-induced heat could propagate and potentially injure surrounding nerves and arteries, and therefore, predicting the temperature in the grinding region would benefit neurosurgeons during the operation. High-speed electric motors are controlled by pulse-width-modulation (PWM) to alter the current input and thus maintain the rotational speed. Assuming full mechanical to thermal power conversion in the grinding process, PWM can be used as feedback for heat generation and temperature prediction. In this study, the conversion model was established from experiments under a variety of grinding conditions and an inverse heat transfer method to determine heat flux. Given a constant rotational speed, the heat conversion was represented by a linear function, and could predict temperature from the experimental data with less than 20% errors. Such results support the advance of this technology for practical application. PMID:23806419
Within-person variability in response speed as an indicator of cognitive impairment in older adults.
Strauss, Esther; Bielak, Allison A M; Bunce, David; Hunter, Michael A; Hultsch, David F
2007-11-01
Within-person variability may be an important indicator of central nervous system compromise. In this study, within-person variability in response speed was examined in community-dwelling older adults, ages 64-92 years, using a new framework that takes into account both the extent (single versus multiple domains affected) and nature (amnestic versus non-amnestic) of the cognitive impairment. Those with multiple domains of impairment were more variable than those who showed an isolated area of impairment, regardless of whether memory was one of the domains affected. Further, for those with difficulties in two or more non-memory domains, increased variability was most evident in more cognitively demanding situations, when individuals had to manipulate information held briefly in mind, switch cognitive set or inhibit an automatic response. Finally, group differentiation was better achieved when within-person variability as opposed to mean speed of performance was considered.
Injury Source and Correlation Analysis of Riders in Car-Electric Bicycle Accidents.
Zou, Tiefang; Yi, Liang; Cai, Ming; Hu, Lin; Li, Yuelin
2018-01-01
The knowledge about the injury source and correlation of riders in car-electric bicycle accident will be helpful in the cross validation of traces and vehicle safety design. In order to know more information about such kind of knowledge, 57 true car-electric bicycle accidents were reconstructed by PC-Crash and then data on injury information of riders were collected directly from the reconstructed cases. These collected data were validated by some existing research results firstly, and then 4 abnormal cases were deleted according to the statistical method. Finally, conclusions can be obtained according to the data obtained from the remaining 53 cases. Direct injuries of the head and right leg are from the road pavement upon low speed; the source laws of indirect head injuries are not obvious. Upon intermediate and high speed, the injuries of the above parts are from automobiles. Injuries of the left leg, femur, and right knee are from automobiles; left knee injuries are from automobiles, the road pavement and automobiles, respectively, upon low, intermediate, and high speed. The source laws of indirect torso injuries are not obvious upon intermediate and low speed, which are from automobiles upon high speed, while direct torso injuries are from the road pavement. And there is no high correlation between all parts of the injury of riders. The largest correlation coefficient was the head-left femur and left femur-right femur, which was 0.647, followed by the head-right femur (0.638) and head-torso which was 0.617.
Examples of variable speed limit applications : speed management workshop
DOT National Transportation Integrated Search
2000-01-09
VSL systems are a type of Intelligent Transportation System (ITS) that utilizes traffic : speed and volume detection, weather information, and road surface condition technology to determine appropriate speeds at which drivers should be traveling, giv...
Fuzzy Variable Speed Limit Device Modification and Testing - Phase II
DOT National Transportation Integrated Search
2001-07-01
In a previous project, Northern Arizona University (NAU) and the Arizona Department of Transportation (ADOT) designed and implemented the prototype of a variable speed limit (VSL) system for rural highways. The VSL system implements a real-time fuzzy...
Effect of phase advance on the brushless dc motor torque speed respond
NASA Astrophysics Data System (ADS)
Mohd, M. S.; Karsiti, M. N.; Mohd, M. S.
2015-12-01
Brushless direct current (BLDC) motor is widely used in small and medium sized electric vehicles as it exhibit highest specific power and thermal efficiency as compared to the induction motor. Permanent magnets BLDC rotor create a constant magnetic flux, which limit the motor top speed. As the back electromotive force (EMF) voltage increases proportionally with motor rotational speed and it approaches the amplitude of the input voltage, the phase current amplitude will reach zero. By advancing the phase current, it is possible to extend the maximum speed of the BLDC motor beyond the rated top speed. This will allow smaller BLDC motor to be used in small electric vehicles (EV) and in larger applications will allow the use of BLDC motor without the use of multispeed transmission unit for high speed operation. However, increasing the speed of BLDC will affect the torque speed response. The torque output will decrease as speed increases. Adjusting the phase angle will affect the speed of the motor as each coil is energized earlier than the corresponding rise in the back emf of the coil. This paper discusses the phase advance strategy of Brushless DC motor by phase angle manipulation approaches using external hall sensors. Tests have been performed at different phase advance angles in advance and retard positions for different voltage levels applied. The objective is to create the external hall sensor system to commutate the BLDC motor, to establish the phase advance of the BLDC by varying the phase angle through external hall sensor manipulation, observe the respond of the motor while applying the phase advance by hall sensor adjustment.
Metro Electric Vehicle Evaluation at the Lewis Research Center
1976-05-21
The National Aeronautics and Space Administration (NASA) Lewis Research Center tested 16 commercially-manufactured electric vehicles, including this Metro, during the mid-1970s. Lewis and the Energy Research and Development Administration (ERDA) engaged in several energy-related programs in the mid-1970s, including the Electric Vehicle Project. NASA and ERDA undertook the program in 1976 to determine the state of the current electric vehicle technology. As part of the project, Lewis and ERDA tested every commercially available electric car model. Electric Vehicle Associates, located in a Cleveland suburb, modified a Renault 12 vehicle to create this Metro. Its 1040-pound golfcart-type battery provided approximately 106 minutes of operation. The tests analyzed the vehicle’s range, acceleration, coast-down, braking, and energy consumption. Some of the vehicles had analog data recording systems to measure the battery during operation and sensors to determine speed and distance. The researchers found the performance of the different vehicles varied significantly. In general, the range, acceleration, and speed were lower than that found on conventional vehicles. They also found that traditional gasoline-powered vehicles were as efficient as the electric vehicles. The researchers concluded, however, that advances in battery technology and electric drive systems would significantly improve efficiency and performance.
Change-of-Pace Electric Vehicle at the Lewis Research Center
1977-04-21
The National Aeronautics and Space Administration (NASA) Lewis Research Center tested 16 commercially-manufactured electric vehicles, including this modified Pacer, during the mid-1970s. The Electric Vehicle Project was just one of several energy-related programs that Lewis and the Energy Research and Development Administration (ERDA) undertook in the mid-1970s. NASA and ERDA embarked on this program in 1976 to determine the state of the current electric vehicle technology. As part of the project, Lewis tested a fleet composed of every commercially available electric car. The Cleveland-area Electric Vehicle Associates modified an American Motors Pacer vehicle to create this Change-of-Pace Coupe. It was powered by twenty 6-volt batteries whose voltage could be varied by a foot control. The tests analyzed the vehicle’s range, acceleration, coast-down, braking, and energy consumption. Some of the vehicles had analog data recording systems to measure the battery during operation and sensors to determine speed and distance. Lewis researchers found that the vehicle performance varied significantly from model to model. In general, the range, acceleration, and speed were lower than conventional vehicles. They also found that traditional gasoline-powered vehicles were as efficient as the electric vehicles. The researchers concluded, however, that advances in battery technology and electric drive systems would significantly improve the performance and efficiency.
USSR Report, Engineering and Equipment
1984-04-17
MEKHANIKA ZHIDKOSTI I GAZA, No 5, May 83). 17 Wave Drag of Elongated Astroid Bodies at Moderate Supersonic Flight Velocities (M, I. Follej...mechanical components of such a test stand include an electric drive motor with speed regulation, a Belt transmission, a worm gear for speed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoolboom, G.J.; Szabados, B.
The advantages/disadvantages of energy storage devices, which can provide nonpolluting automobile systems are discussed. Four types of storage devices are identified: electrochemical (batteries); hydrogen; electromechanical (flywheels); and molten salt heat storage. A high-speed flywheel with a small permanent magnet motor/generator has more advantages than any of the other systems and might become a real competitor to the internal combustion engine. A flywheel/motor/generator system for automobiles now becomes practical, because of the technological advances in materials, bearings and solid state control circuits. The motor of choice is the squirrel cage induction motor, specially designed for automobile applications. The preferred controller formore » the induction motor is a forced commutated cycloconverter, which transforms a variable voltage/variable frequency source into a controlled variable-voltage/variable-frequency supply. A modulation strategy of the cycloconverter elements is selected to maintain a unity input displacement factor (power factor) under all conditions of loads voltages and frequencies. The system is similar to that of the existing automobile, if only one motor is used: master controller-controller-motor-gears (fixed)-differential-wheels. In the case of two motors, the mechanical differential is replaced by an electric one: master controller-controller-motor-gears (fixed)-wheel. A four-wheel drive vehicle is obtained when four motors with their own controllers are used. 24 refs.« less
Quieter Cars and the Safety of Blind Pedestrians: Phase 1.
DOT National Transportation Integrated Search
2010-04-01
The National Highway Traffic Safety Administration recognizes that quieter cars such as hybrid-electric vehicles in low-speed operation using their : electric motors, may introduce a safety issue for pedestrians who are blind. This study documents th...
Chénier, Félix; Champagne, Audrey; Desroches, Guillaume; Gagnon, Dany H
2018-03-01
Manual wheelchair (MWC) propulsion is increasingly assessed on a motorized treadmill (TM), which is often considered more ecologically valid than stationary rollers. However, no clear consensus on the similarities between overground (OG) and TM propulsion has yet been reached. Furthermore, no study has investigated the participants' perceptions of propelling a MWC on a TM compared to OG. The present study aims to assess the perception of speed when propelling on a TM vs OG, and to relate this perception to measured spatiotemporal variables, kinetics and work. In this repeated-measures study, the propulsion's spatiotemporal variables, kinetics, and work of nineteen experienced wheelchair users with a spinal cord injury were compared between three conditions: 1) OG at a self-selected speed, 2) on a TM at a self-selected speed perceived as being similar to the OG speed (TM perceived ), and 3) on a TM at the same speed as OG (TM matched ). Each variable was compared between conditions using an analysis of variance for repeated measures. All participants selected a lower speed for TM perceived than OG, with a difference of -0.6 m/s (-44%). This adaptation may be due to a combination of two factors: 1) the absence of speed information, and 2) the feeling of urgency to grab the wheels during the recovery phase. The power output, work per cycle, and work per minute were also much lower on TM perceived than OG. However, in contrast to other work on MWC propulsion on a TM, the kinetic variables assessed were all similar between the OG and TM matched conditions. Training on a TM should be performed at a speed that matches the OG speed and not at a self-selected speed on the TM, which would reduce the power output and work and therefore reduce the efficiency of the training. Copyright © 2018 Elsevier B.V. All rights reserved.
Multi-Speed Transmission For Commercial Delivery Medium Duty PEDVs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chavdar, Bulent
Successful completion of the proposed project will set a course for improving quality of life by overcoming key challenges in the gearbox for commercial-delivery, medium-duty, plug-in electric drive vehicles: It will reduce US dependency on foreign oil through the use of electric driven propulsion instead of fuel driven. It will reduce health risks by replacing tailpipe emissions in densely populated city centers. Finally, it will improve the performance-cost basis to meet or exceed the expectations of the targeted medium duty vehicle fleet owners and the independent customers. The proposed multi-speed transmission will narrow motor operation to the peak efficiency region,more » thereby increasing the electric powertrain efficiency to help close the range gap. Further, it will enhance customer satisfaction by improving vehicle acceleration, top speed and gradeability over the baseline. The project was conducted in three budget periods: In BP1: Technology Development, High-level vehicle powertrain models were used to optimize candidate transmission architectures and ratios along with a variety of traction motor characteristics for concept selection. The detailed driveline designs and component dynamics were investigated to meet medium-duty EV requirements; In BP2: Technology Development and Prototype Demonstration, The modeling and simulations with multi-speed transmissions were extended to other MD and HD EV platforms. Clean sheet design of a compact, lightweight, flexible, and modular, four-speed transmission was completed. Development of novel shifting and controls strategies were started and procurement of the prototype transmission and the controller hardware was begun; In BP3: Technology Integration, Testing, and Demonstration, Prototyping the four-speed automated mechanical transmission was completed. The transmission controls system and software development and preliminary gearbox dyno tests were done at Eaton. ORNL conducted integrated powertrain HIL tests. One of the prototype units was fully integrated into a Proterra BE35 demonstration electric bus. The shift control strategy was fine-tuned on the integrated vehicle at Eaton Marshall Proving Grounds. NREL tested the vehicle and validated the performance gains. Simulations predicted up to 20% increase in system energy efficiency depending on drive cycles, a top speed of greater than70 mph on flat road, 40% faster acceleration and a doubled gradeability with four-speed transmission as compared to the baseline EVs. Chassis Dyno Tests at NREL verified the simulation results of Eaton team and the HIL test results of ORNL team. The new four-speed EV transmission is efficient, reliable, modular, scalable, light weight, small size, and will be affordable. Furthermore, four-speed transmission enables downsizing of motor, battery and final drive, thereby reducing the total system cost.« less
NASA Astrophysics Data System (ADS)
Kai, Takaaki; Tanaka, Yuji; Kaneda, Hirotoshi; Kobayashi, Daichi; Tanaka, Akio
Recently, doubly fed induction generator (DFIG) and synchronous generator are mostly applied for wind power generation, and variable speed control and power factor control are executed for high efficiently for wind energy capture and high quality for power system voltage. In variable speed control, a wind speed or a generator speed is used for maximum power point tracking. However, performances of a wind generation power fluctuation due to wind speed variation have not yet investigated for those controls. The authors discuss power smoothing by those controls for the DFIG inter-connected to 6.6kV distribution line. The performances are verified using power system simulation software PSCAD/EMTDC for actual wind speed data and are examined from an approximate equation of wind generation power fluctuation for wind speed variation.
Wheel/rail noise generated by a high-speed train investigated with a line array of microphones
NASA Astrophysics Data System (ADS)
Barsikow, B.; King, W. F.; Pfizenmaier, E.
1987-10-01
Radiated noise generated by a high-speed electric train travelling at speeds up to 250 km/h has been measured with a line array of microphones mounted along the wayside in two different orientations. The test train comprised a 103 electric locomotive, four Intercity coaches, and a dynamo coach. Some of the wheels were fitted with experimental wheel-noise absorbers. By using the directional capabilities of the array, the locations of the dominant sources of wheel/rail radiated noise were identified on the wheels. For conventional wheels, these sources lie near or on the rim at an average height of about 0·2 m above the railhead. The effect of wheel-noise absorbers and freshly turned treads on radiated noise were also investigated.
Relationship Between Motor Variability, Accuracy, and Ball Speed in the Tennis Serve
Antúnez, Ruperto Menayo; Hernández, Francisco Javier Moreno; García, Juan Pedro Fuentes; Vaíllo, Raúl Reina; Arroyo, Jesús Sebastián Damas
2012-01-01
The main objective of this study was to analyze the motor variability in the performance of the tennis serve and its relationship to performance outcome. Seventeen male tennis players took part in the research, and they performed 20 serves. Linear and non-linear variability during the hand movement was measured by 3D Motion Tracking. Ball speed was recorded with a sports radar gun and the ball bounces were video recorded to calculate accuracy. The results showed a relationship between the amount of variability and its non-linear structure found in performance of movement and the outcome of the serve. The study also found that movement predictability correlates with performance. An increase in the amount of movement variability could affect the tennis serve performance in a negative way by reducing speed and accuracy of the ball. PMID:23486998
A Lyapunov based approach to energy maximization in renewable energy technologies
NASA Astrophysics Data System (ADS)
Iyasere, Erhun
This dissertation describes the design and implementation of Lyapunov-based control strategies for the maximization of the power captured by renewable energy harnessing technologies such as (i) a variable speed, variable pitch wind turbine, (ii) a variable speed wind turbine coupled to a doubly fed induction generator, and (iii) a solar power generating system charging a constant voltage battery. First, a torque control strategy is presented to maximize wind energy captured in variable speed, variable pitch wind turbines at low to medium wind speeds. The proposed strategy applies control torque to the wind turbine pitch and rotor subsystems to simultaneously control the blade pitch and tip speed ratio, via the rotor angular speed, to an optimum point at which the capture efficiency is maximum. The control method allows for aerodynamic rotor power maximization without exact knowledge of the wind turbine model. A series of numerical results show that the wind turbine can be controlled to achieve maximum energy capture. Next, a control strategy is proposed to maximize the wind energy captured in a variable speed wind turbine, with an internal induction generator, at low to medium wind speeds. The proposed strategy controls the tip speed ratio, via the rotor angular speed, to an optimum point at which the efficiency constant (or power coefficient) is maximal for a particular blade pitch angle and wind speed by using the generator rotor voltage as a control input. This control method allows for aerodynamic rotor power maximization without exact wind turbine model knowledge. Representative numerical results demonstrate that the wind turbine can be controlled to achieve near maximum energy capture. Finally, a power system consisting of a photovoltaic (PV) array panel, dc-to-dc switching converter, charging a battery is considered wherein the environmental conditions are time-varying. A backstepping PWM controller is developed to maximize the power of the solar generating system. The controller tracks a desired array voltage, designed online using an incremental conductance extremum-seeking algorithm, by varying the duty cycle of the switching converter. The stability of the control algorithm is demonstrated by means of Lyapunov analysis. Representative numerical results demonstrate that the grid power system can be controlled to track the maximum power point of the photovoltaic array panel in varying atmospheric conditions. Additionally, the performance of the proposed strategy is compared to the typical maximum power point tracking (MPPT) method of perturb and observe (P&O), where the converter dynamics are ignored, and is shown to yield better results.
Low-speed aerodynamic test of an axisymmetric supersonic inlet with variable cowl slot
NASA Technical Reports Server (NTRS)
Powell, A. G.; Welge, H. R.; Trefny, C. J.
1985-01-01
The experimental low-speed aerodynamic characteristics of an axisymmetric mixed-compression supersonic inlet with variable cowl slot are described. The model consisted of the NASA P-inlet centerbody and redesigned cowl with variable cowl slot powered by the JT8D single-stage fan simulator and driven by an air turbine. The model was tested in the NASA Lewis Research Center 9- by 15-foot low-speed tunnel at Mach numbers of 0, 0.1, and 0.2 over a range of flows, cowl slot openings, centerbody positions, and angles of attack. The variable cowl slot was effective in minimizing lip separation at high velocity ratios, showed good steady-state and dynamic distortion characteristics, and had good angle-of-attack tolerance.
NASA Technical Reports Server (NTRS)
Welch, Gerard E.
2011-01-01
The main rotors of the NASA Large Civil Tilt-Rotor notional vehicle operate over a wide speed-range, from 100% at take-off to 54% at cruise. The variable-speed power turbine offers one approach by which to effect this speed variation. Key aero-challenges include high work factors at cruise and wide (40 to 60 deg.) incidence variations in blade and vane rows over the speed range. The turbine design approach must optimize cruise efficiency and minimize off-design penalties at take-off. The accuracy of the off-design incidence loss model is therefore critical to the turbine design. In this effort, 3-D computational analyses are used to assess the variation of turbine efficiency with speed change. The conceptual design of a 4-stage variable-speed power turbine for the Large Civil Tilt-Rotor application is first established at the meanline level. The design of 2-D airfoil sections and resulting 3-D blade and vane rows is documented. Three-dimensional Reynolds Averaged Navier-Stokes computations are used to assess the design and off-design performance of an embedded 1.5-stage portion-Rotor 1, Stator 2, and Rotor 2-of the turbine. The 3-D computational results yield the same efficiency versus speed trends predicted by meanline analyses, supporting the design choice to execute the turbine design at the cruise operating speed.
Variability in the Speed of the Brewer-Dobson Circulation as Observed by Aura/MLS
NASA Technical Reports Server (NTRS)
Flury, Thomas; Wu, Dong L.; Read, W. G.
2013-01-01
We use Aura/MLS stratospheric water vapour (H2O) measurements as tracer for dynamics and infer interannual variations in the speed of the Brewer-Dobson circulation (BDC) from 2004 to 2011. We correlate one-year time series of H2O in the lower stratosphere at two subsequent pressure levels (68 hPa, approx.18.8 km and 56 hPa, approx 19.9 km at the Equator) and determine the time lag for best correlation. The same calculation is made on the horizontal on the 100 hPa (approx 16.6 km) level by correlating the H2O time series at the Equator with the ones at 40 N and 40 S. From these lag coefficients we derive the vertical and horizontal speeds of the BDC in the tropics and extra-tropics, respectively. We observe a clear interannual variability of the vertical and horizontal branch. The variability reflects signatures of the Quasi Biennial Oscillation (QBO). Our measurements confirm the QBO meridional circulation anomalies and show that the speed variations in the two branches of the BDC are out of phase and fairly well anti-correlated. Maximum ascent rates are found during the QBO easterly phase. We also find that transport of H2O towards the Northern Hemisphere (NH) is on the average two times faster than to the Southern Hemisphere (SH) with a mean speed of 1.15m/s at 100 hPa. Furthermore, the speed towards the NH shows much more interannual variability with an amplitude of about 21% whilst the speed towards the SH varies by only 10 %. An amplitude of 21% is also observed in the variability of the ascent rate at the Equator which is on the average 0.2mm/s.
Experimental study of camel powered electricity generation unit
NASA Astrophysics Data System (ADS)
Jakhar, O. P.; Choudhary, Rahul Raj; Budaniya, Mukesh; Kumar, Ashish
2018-05-01
Developing nations are facing a huge gap in generation and demand of electricity across the world. In present scenario the demand of electricity is increasing day by day and the shortfall of electricity has become one of the major obstructions in the development of rural areas. There is a big gap between electricity supply and demand. In India it is very difficult that to give twenty four hours electric supply in rural areas. The traditional use of camel as draught animal, for the purpose of transport of goods and agricultural work, has been drastically reduced during last few decades, due to advancements and cheaper availability of mechanical machineries. In this research paper we experimentally studied the camel powered electricity generation system at National Research Centre on Camels (NRCC) Bikaner. Camel Energy in form of high torque low speed can be converted into low torque high speed through motion converting system i.e. gear and pulley mechanism for high RPM output. This high RPM (more than 3000) output is used for electricity generation. The electricity generated can be used directly or stored in the battery and later may be used whenever it is required either for DC light or AC light using inverter. According to experimental study a camel can comfortably generate electricity up to 1KW by rotating shaft. The complete set up for electricity generation using camel power has been designed, developed and physically commissioned at National Research Centre on Camels (NRCC) Bikaner.
Possible external sources of terrestrial cloud cover variability: the solar wind
NASA Astrophysics Data System (ADS)
Voiculescu, Mirela; Usoskin, Ilya; Condurache-Bota, Simona
2014-05-01
Cloud cover plays an important role in the terrestrial radiation budget. The possible influence of the solar activity on cloud cover is still an open question with contradictory answers. An extraterrestrial factor potentially affecting the cloud cover is related to fields associated with solar wind. We focus here on a derived quantity, the interplanetary electric field (IEF), defined as the product between the solar wind speed and the meridional component, Bz, of the interplanetary magnetic field (IMF) in the Geocentric Solar Magnetospheric (GSM) system. We show that cloud cover at mid-high latitudes systematically correlates with positive IEF, which has a clear energetic input into the atmosphere, but not with negative IEF, in general agreement with predictions of the global electric circuit (GEC)-related mechanism. Since the IEF responds differently to solar activity than, for instance, cosmic ray flux or solar irradiance, we also show that such a study allows distinguishing one solar-driven mechanism of cloud evolution, via the GEC, from others. We also present results showing that the link between cloud cover and IMF varies depending on composition and altitude of clouds.
System and method to determine electric motor efficiency using an equivalent circuit
Lu, Bin; Habetler, Thomas G.
2015-10-27
A system and method for determining electric motor efficiency includes a monitoring system having a processor programmed to determine efficiency of an electric motor under load while the electric motor is online. The determination of motor efficiency is independent of a rotor speed measurement. Further, the efficiency is based on a determination of stator winding resistance, an input voltage, and an input current. The determination of the stator winding resistance occurs while the electric motor under load is online.
System and method to determine electric motor efficiency using an equivalent circuit
Lu, Bin [Kenosha, WI; Habetler, Thomas G [Snellville, GA
2011-06-07
A system and method for determining electric motor efficiency includes a monitoring system having a processor programmed to determine efficiency of an electric motor under load while the electric motor is online. The determination of motor efficiency is independent of a rotor speed measurement. Further, the efficiency is based on a determination of stator winding resistance, an input voltage, and an input current. The determination of the stator winding resistance occurs while the electric motor under load is online.
NASA Astrophysics Data System (ADS)
Magee, Madeline R.; Wu, Chin H.
2017-12-01
Water temperatures and stratification are important drivers for ecological and water quality processes within lake systems, and changes in these with increases in air temperature and changes to wind speeds may have significant ecological consequences. To properly manage these systems under changing climate, it is important to understand the effects of increasing air temperatures and wind speed changes in lakes of different depths and surface areas. In this study, we simulate three lakes that vary in depth and surface area to elucidate the effects of the observed increasing air temperatures and decreasing wind speeds on lake thermal variables (water temperature, stratification dates, strength of stratification, and surface heat fluxes) over a century (1911-2014). For all three lakes, simulations showed that epilimnetic temperatures increased, hypolimnetic temperatures decreased, the length of the stratified season increased due to earlier stratification onset and later fall overturn, stability increased, and longwave and sensible heat fluxes at the surface increased. Overall, lake depth influences the presence of stratification, Schmidt stability, and differences in surface heat flux, while lake surface area influences differences in hypolimnion temperature, hypolimnetic heating, variability of Schmidt stability, and stratification onset and fall overturn dates. Larger surface area lakes have greater wind mixing due to increased surface momentum. Climate perturbations indicate that our larger study lakes have more variability in temperature and stratification variables than the smaller lakes, and this variability increases with larger wind speeds. For all study lakes, Pearson correlations and climate perturbation scenarios indicate that wind speed has a large effect on temperature and stratification variables, sometimes greater than changes in air temperature, and wind can act to either amplify or mitigate the effect of warmer air temperatures on lake thermal structure depending on the direction of local wind speed changes.
The Spectrum of Wind Power Fluctuations
NASA Astrophysics Data System (ADS)
Bandi, Mahesh
2016-11-01
Wind is a variable energy source whose fluctuations threaten electrical grid stability and complicate dynamical load balancing. The power generated by a wind turbine fluctuates due to the variable wind speed that blows past the turbine. Indeed, the spectrum of wind power fluctuations is widely believed to reflect the Kolmogorov spectrum; both vary with frequency f as f - 5 / 3. This variability decreases when aggregate power fluctuations from geographically distributed wind farms are averaged at the grid via a mechanism known as geographic smoothing. Neither the f - 5 / 3 wind power fluctuation spectrum nor the mechanism of geographic smoothing are understood. In this work, we explain the wind power fluctuation spectrum from the turbine through grid scales. The f - 5 / 3 wind power fluctuation spectrum results from the largest length scales of atmospheric turbulence of order 200 km influencing the small scales where individual turbines operate. This long-range influence spatially couples geographically distributed wind farms and synchronizes farm outputs over a range of frequencies and decreases with increasing inter-farm distance. Consequently, aggregate grid-scale power fluctuations remain correlated, and are smoothed until they reach a limiting f - 7 / 3 spectrum. This work was funded by the Collective Interactions Unit, OIST Graduate University, Japan.
Harris, John Richardson; Caporaso, George J; Sampayan, Stephen E
2013-10-22
A system and method for producing modulated electrical signals. The system uses a variable resistor having a photoconductive wide bandgap semiconductor material construction whose conduction response to changes in amplitude of incident radiation is substantially linear throughout a non-saturation region to enable operation in non-avalanche mode. The system also includes a modulated radiation source, such as a modulated laser, for producing amplitude-modulated radiation with which to direct upon the variable resistor and modulate its conduction response. A voltage source and an output port, are both operably connected to the variable resistor so that an electrical signal may be produced at the output port by way of the variable resistor, either generated by activation of the variable resistor or propagating through the variable resistor. In this manner, the electrical signal is modulated by the variable resistor so as to have a waveform substantially similar to the amplitude-modulated radiation.
NASA Technical Reports Server (NTRS)
Sarto, Anthony; VanZeghbroeck, Bart; Vanderbilt, Vern C.
1996-01-01
Electrical and optical designs for the prototype plant canopy architecture measurement system, including specified component and parts lists, are presented. Six single Metal-Semiconductor-Metal (MSM) detectors are mounted in high-speed packages.
A cycle timer for testing electric vehicles
NASA Technical Reports Server (NTRS)
Soltis, R. F.
1978-01-01
A cycle timer was developed to assist the driver of an electric vehicle in more accurately following and repeating SAE driving schedules. These schedules require operating an electric vehicle in a selected stop-and-go driving cycle and repeating this cycle pattern until the vehicle ceases to meet the requirements of the cycle. The heart of the system is a programmable read-only memory (PROM) that has the required test profiles permanently recorded on plug-in cards, one card for each different driving schedule. The PROM generates a direct current analog signal that drives a speedometer displayed on one scale of a dual movement meter. The second scale of the dual movement meter displays the actual speed of the vehicle as recorded by the fifth wheel. The vehicle operator controls vehicle speed to match the desired profile speed. The PROM controls the recycle start time as well as the buzzer activation. The cycle programmer is powered by the test vehicle's 12-volt accessory battery, through a 5-volt regulator and a 12-volt dc-to-dc converter.
Multi-Layer Artificial Neural Networks Based MPPT-Pitch Angle Control of a Tidal Stream Generator
Bouallègue, Soufiene; Garrido, Aitor J.; Haggège, Joseph
2018-01-01
Artificial intelligence technologies are widely investigated as a promising technique for tackling complex and ill-defined problems. In this context, artificial neural networks methodology has been considered as an effective tool to handle renewable energy systems. Thereby, the use of Tidal Stream Generator (TSG) systems aim to provide clean and reliable electrical power. However, the power captured from tidal currents is highly disturbed due to the swell effect and the periodicity of the tidal current phenomenon. In order to improve the quality of the generated power, this paper focuses on the power smoothing control. For this purpose, a novel Artificial Neural Network (ANN) is investigated and implemented to provide the proper rotational speed reference and the blade pitch angle. The ANN supervisor adequately switches the system in variable speed and power limitation modes. In order to recover the maximum power from the tides, a rotational speed control is applied to the rotor side converter following the Maximum Power Point Tracking (MPPT) generated from the ANN block. In case of strong tidal currents, a pitch angle control is set based on the ANN approach to keep the system operating within safe limits. Two study cases were performed to test the performance of the output power. Simulation results demonstrate that the implemented control strategies achieve a smoothed generated power in the case of swell disturbances. PMID:29695127
Multi-Layer Artificial Neural Networks Based MPPT-Pitch Angle Control of a Tidal Stream Generator.
Ghefiri, Khaoula; Bouallègue, Soufiene; Garrido, Izaskun; Garrido, Aitor J; Haggège, Joseph
2018-04-24
Artificial intelligence technologies are widely investigated as a promising technique for tackling complex and ill-defined problems. In this context, artificial neural networks methodology has been considered as an effective tool to handle renewable energy systems. Thereby, the use of Tidal Stream Generator (TSG) systems aim to provide clean and reliable electrical power. However, the power captured from tidal currents is highly disturbed due to the swell effect and the periodicity of the tidal current phenomenon. In order to improve the quality of the generated power, this paper focuses on the power smoothing control. For this purpose, a novel Artificial Neural Network (ANN) is investigated and implemented to provide the proper rotational speed reference and the blade pitch angle. The ANN supervisor adequately switches the system in variable speed and power limitation modes. In order to recover the maximum power from the tides, a rotational speed control is applied to the rotor side converter following the Maximum Power Point Tracking (MPPT) generated from the ANN block. In case of strong tidal currents, a pitch angle control is set based on the ANN approach to keep the system operating within safe limits. Two study cases were performed to test the performance of the output power. Simulation results demonstrate that the implemented control strategies achieve a smoothed generated power in the case of swell disturbances.
Hoff, Brian D.; Johnson, Kris William; Algrain, Marcelo C.; Akasam, Sivaprasad
2006-06-06
A method of controlling the delivery of fluid to an engine includes receiving a fuel flow rate signal. An electric pump is arranged to deliver fluid to the engine. The speed of the electric pump is controlled based on the fuel flow rate signal.
Use of wind turbines to generate electricity for highway buildings.
DOT National Transportation Integrated Search
1983-01-01
To determine the feasibility of using wind turbines to generate electrical power, measurements of wind speeds were made for a period of one year at three installations of the Virginia Department of Highways and Transportation. Unfortunately, the wind...
Are friends electric?: A review of the electric handpiece in clinical dental practice.
Campbell, Stuart C
2013-04-01
Contemporary restorative procedures demand precise detail in tooth preparation to achieve optimal results. Inadequate tooth preparation is a frequent cause of failure. This review considers the electric high-speed, high-torque handpiece and how it may assist clinicians in achieving greater accuracy in tooth preparation. The electric handpiece provides a satisfactory alternative to the air-turbine and may be considered by clinicians who wish greater control with operative procedures.
Design of digital load torque observer in hybrid electric vehicle
NASA Astrophysics Data System (ADS)
Sun, Yukun; Zhang, Haoming; Wang, Yinghai
2008-12-01
In hybrid electric vehicle, engine begain to work only when motor was in high speed in order to decrease tail gas emission. However, permanent magnet motor was sensitive to its load, adding engine to the system always made its speed drop sharply, which caused engine to work in low efficiency again and produced much more environment pollution. Dynamic load torque model of permanent magnet synchronous motor is established on the basic of motor mechanical equation and permanent magnet synchronous motor vector control theory, Full- digital load torque observer and compensation control system is made based on TMS320F2407A. Experiment results prove load torque observer and compensation control system can detect and compensate torque disturbing effectively, which can solve load torque disturbing and decrease gas pollution of hybrid electric vehicle.
Electric-field-induced motion of colloid particles in smectic liquid crystals
NASA Astrophysics Data System (ADS)
Jakli, Antal
2005-03-01
We present the first observations of DC electric-field-induced rotational and translational motion of finite particles in liquid crystals. The electro-rotation is basically identical to the well known Quincke rotation, which triggers the translational motion at higher fields. From the electric field dependence of the angular velocity of the rotation we obtain the viscosity of the liquid crystals. The analysis of the translational motion in smectic liquid crystals indicates elastic responses near the threshold for translation. At increasing fields the speed of the particles is increasing and at sufficiently high speeds the flow of the smectic A and smectic C liquid crystal around the beads become purely viscous. Colloid particles in smectic materials maybe considered as model systems for understanding motion of proteins in cell membranes.
Progress and issues for high-speed vertical cavity surface emitting lasers
NASA Astrophysics Data System (ADS)
Lear, Kevin L.; Al-Omari, Ahmad N.
2007-02-01
Extrinsic electrical, thermal, and optical issues rather than intrinsic factors currently constrain the maximum bandwidth of directly modulated vertical cavity surface emitting lasers (VCSELs). Intrinsic limits based on resonance frequency, damping, and K-factor analysis are summarized. Previous reports are used to compare parasitic circuit values and electrical 3dB bandwidths and thermal resistances. A correlation between multimode operation and junction heating with bandwidth saturation is presented. The extrinsic factors motivate modified bottom-emitting structures with no electrical pads, small mesas, copper plated heatsinks, and uniform current injection. Selected results on high speed quantum well and quantum dot VCSELs at 850 nm, 980 nm, and 1070 nm are reviewed including small-signal 3dB frequencies up to 21.5 GHz and bit rates up to 30 Gb/s.
High-Speed, high-power, switching transistor
NASA Technical Reports Server (NTRS)
Carnahan, D.; Ohu, C. K.; Hower, P. L.
1979-01-01
Silicon transistor rate for 200 angstroms at 400 to 600 volts combines switching speed of transistors with ruggedness, power capacity of thyristor. Transistor introduces unique combination of increased power-handling capability, unusally low saturation and switching losses, and submicrosecond switching speeds. Potential applications include high power switching regulators, linear amplifiers, chopper controls for high frequency electrical vehicle drives, VLF transmitters, RF induction heaters, kitchen cooking ranges, and electronic scalpels for medical surgery.
Electric Boosting System for Light Truck/SUV Application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnold, Steve; Balis, Craig; Barthelet, Pierre
2005-06-22
Turbo diesel engine use in passenger cars in Europe has resulted in 30-50% improvement in fuel economy. Diesel engine application is particularly suitable for US because of vehicle size and duty cycle patterns. Adopting this technology for use in the US presents two issues--emissions and driveability. Emissions reduction technology is being well addressed with advanced turbocharging, fuel injection and catalytic aftertreatment systems. One way to address driveability is to eliminate turbo lag and increase low speed torque. Electrically assisted turbocharging concepts incorporated in e-TurboTM designs do both. The purpose of this project is to design and develop an electrically assistedmore » turbocharger, e-TurboTM, for diesel engine use in the US. In this report, early design and development of electrical assist technology is described together with issues and potential benefits. In this early phase a mathematical model was developed and verified. The model was used in a sensitivity study. The results of the sensitivity study together with the design and test of first generation hardware was fed into second generation designs. In order to fully realize the benefits of electrical assist technology it was necessary to expand the scope of work to include technology on the compressor side as well as electronic controls concepts. The results of the expanded scope of work are also reported here. In the first instance, designs and hardware were developed for a small engine to quantify and demonstrate benefits. The turbo size was such that it could be applied in a bi-turbo configuration to an SUV sized V engine. Mathematical simulation was used to quantify the possible benefits in an SUV application. It is shown that low speed torque can be increased to get the high performance expected in US, automatic transmission vehicles. It is also shown that e-TurboTM can be used to generate modest amounts of electrical power and supplement the alternator under most load-speed conditions. It is shown that a single (large) e-TurboTM consumes slightly less electrical power for the same steady state torque shaping than a bi-Turbo configuration. However, the transient response of a bi-Turbo configuration in slightly better. It was shown that in order to make full use of additional capabilities of e-TurboTM wide compressor flow range is required. Variable geometry compressor (VGC) technology developed under a separate project was evaluated for incorporation into e-TurboTM designs. It was shown that the combination of these two technologies enables very high torque at low engine speeds. Designs and hardware combining VGC and e-TurboTM are to be developed in a future project. There is concern about high power demands (even though momentary) of e-TurboTM. Reducing the inertia of the turbocharger can reduce power demand and increase battery life. Low inertia turbocharger technology called IBT developed under a separate project was evaluated for synergy with e-TurboTM designs. It was concluded that inertial reduction provided by IBT is very beneficial for e-TurboTM. Designs and hardware combining IBT and e-TurboTM are to be developed in a future project. e-TurboTM provides several additional flexibilities including exhaust gas recirculation (EGR) for emissions reduction with minimum fuel economy penalty and exhaust temperature control for aftertreatment. In integrated multi-parameter control system is needed to realize the full potential of e-TurboTM performance. Honeywell expertise in process control systems involving hundreds of sensors and actuators was applied to demonstrate the potential benefits of multi-parameter, model based control systems.« less
1 At speeds above mid-range, both the engine and electric motor are used to propel the vehicle. The gasoline engine provides power to the drive-train directly and to the electric motor via the generator. Go , generator, power split device, and electric motor visible. The car is moving. There are blue arrows flowing
Street-Legal Bike Pusher Introduces EV Technology
ERIC Educational Resources Information Center
Moore, Tim
2011-01-01
The electric bicycle pusher is a legal bicycle trailer on wheels that can push a bicycle at speeds of up to 35 mph. People across the country are buying small electric cars that go no faster than that--and paying five times more than what one pays to make an electric bicycle pusher. In this article, the author provides some information on electric…
CONTROL ROD DRIVE MECHANISM FOR A NUCLEAR REACTOR
Hawke, B.C.; Liederbach, F.J.; Lones, W.
1963-05-14
A lead-screw-type control rod drive featuring an electric motor and a fluid motor arranged to provide a selectably alternative driving means is described. The electric motor serves to drive the control rod slowly during normal operation, while the fluid motor, assisted by an automatic declutching of the electric motor, affords high-speed rod insertion during a scram. (AEC)
Magnetic and electric field testing of the French train A Grande Vitesse (TGV). Volume 1 : analysis
DOT National Transportation Integrated Search
1993-05-01
The safety of magnetically levitated (maglev) and high speed rail (HSR) trains proposed for application in the United States is the responsibility of the Federal Railroad Administration (FRA). A franchise has been awarded to the Texas High Speed Rail...
NASA Astrophysics Data System (ADS)
Razali, Akhtar; Rahman, Fadhlur; Leong, Yap Wee; Razali Hanipah, Mohd; Azri Hizami, Mohd
2018-04-01
The magnetism attraction between permanent magnets and soft ironcore lamination in a conventional electric ironcore generator is often known as cogging. Cogging requires an additional input power to overcome, hence became one of the power loss sources. With the increasing of power output, the cogging is also proportionally increased. This leads to the increasing of the supplied power of the driver motor to overcome the cog. Therefore, this research is embarked to study fundamentally about the possibility of removing ironcore lamination in an electric generator to see its performance characteristic. In the maximum power point tracking test, the fabricated ironless coreless electricity generator was tested by applying the load on the ironless coreless electricity generator optimization to maximize the power generated, voltage and the current produced by the ironless coreless electricity generator when the rotational speed of the rotor increased throughout the test. The rotational torque and power output are measured, and efficiency is then analyzed. Results indicated that the generator produced RMS voltage of 200VAC at rotational speed of 318 RPM. Torque required to rotate the generator was at 10.8Nm. The generator had working efficiency of 77.73% and the power generated was at 280W.
High-Performance Computing for the Electromagnetic Modeling and Simulation of Interconnects
NASA Technical Reports Server (NTRS)
Schutt-Aine, Jose E.
1996-01-01
The electromagnetic modeling of packages and interconnects plays a very important role in the design of high-speed digital circuits, and is most efficiently performed by using computer-aided design algorithms. In recent years, packaging has become a critical area in the design of high-speed communication systems and fast computers, and the importance of the software support for their development has increased accordingly. Throughout this project, our efforts have focused on the development of modeling and simulation techniques and algorithms that permit the fast computation of the electrical parameters of interconnects and the efficient simulation of their electrical performance.
Hazuda, Helen P.
2015-01-01
Background Mexican Americans comprise the most rapidly growing segment of the older US population and are reported to have poorer functional health than European Americans, but few studies have examined factors contributing to ethnic differences in walking speed between Mexican Americans and European Americans. Objective The purpose of this study was to examine factors that contribute to walking speed and observed ethnic differences in walking speed in older Mexican Americans and European Americans using the disablement process model (DPM) as a guide. Design This was an observational, cross-sectional study. Methods Participants were 703 Mexican American and European American older adults (aged 65 years and older) who completed the baseline examination of the San Antonio Longitudinal Study of Aging (SALSA). Hierarchical regression models were performed to identify the contribution of contextual, lifestyle/anthropometric, disease, and impairment variables to walking speed and to ethnic differences in walking speed. Results The ethic difference in unadjusted mean walking speed (Mexican Americans=1.17 m/s, European Americans=1.29 m/s) was fully explained by adjustment for contextual (ie, age, sex, education, income) and lifestyle/anthropometric (ie, body mass index, height, physical activity) variables; adjusted mean walking speed in both ethnic groups was 1.23 m/s. Contextual variables explained 20.3% of the variance in walking speed, and lifestyle/anthropometric variables explained an additional 8.4%. Diseases (ie, diabetes, stroke, chronic obstructive pulmonary disease) explained an additional 1.9% of the variance in walking speed; impairments (ie, FEV1, upper leg pain, and lower extremity strength and range of motion) contributed an additional 5.5%. Thus, both nonmodifiable (ie, contextual, height) and modifiable (ie, impairments, body mass index, physical activity) factors contributed to walking speed in older Mexican Americans and European Americans. Limitations The study was conducted in a single geographic area and included only Mexican American Hispanic individuals. Conclusions Walking speed in older Mexican Americans and European Americans is influenced by modifiable and nonmodifiable factors, underscoring the importance of the DPM framework, which incorporates both factors into the physical therapist patient/client management process. PMID:25592187
Evaluation of variable speed limits on I-270/I-255 in St. Louis.
DOT National Transportation Integrated Search
2010-10-01
In May of 2008, MoDOT installed a Variable Speed Limit (VSL) system along the I270/I255 corridor in St. Louis. This project evaluated the VSL system and its potential impacts and benefits to the transportation users. The technical system ...