Variable Star Observing in Hungary
NASA Astrophysics Data System (ADS)
Mizser, Attila
1986-12-01
Astronomy and variable star observing has a long history in Hungary, dating back to the private observatories erected by the Hungarian nobility in the late 19th Century. The first organized network of amateur variable star observers, the Variable Star Section of the new Hungarian Astronomical Association, was organized around the Urania Observatory in Budapest in 1948. Other groups, dedicated to various types of variables, have since been organized.
NASA Astrophysics Data System (ADS)
Guarcello, M. G.; Flaccomio, E.; Micela, G.; Argiroffi, C.; Sciortino, S.; Venuti, L.; Stauffer, J.; Rebull, L.; Cody, A. M.
2017-06-01
Context. Pre-main sequence stars are variable sources. The main mechanisms responsible for their variability are variable extinction, unsteady accretion, and rotational modulation of both hot and dark photospheric spots and X-ray-active regions. In stars with disks, this variability is related to the morphology of the inner circumstellar region (≤0.1 AU) and that of the photosphere and corona, all impossible to be spatially resolved with present-day techniques. This has been the main motivation for the Coordinated Synoptic Investigation of NGC 2264, a set of simultaneous observations of NGC 2264 with 15 different telescopes. Aims: In this paper, we focus on the stars with disks. We analyze the X-ray spectral properties extracted during optical bursts and dips in order to unveil the nature of these phenomena. Stars without disks are studied in a companion paper. Methods: We analyze simultaneous CoRoT and Chandra/ACIS-I observations to search for coherent optical and X-ray flux variability in stars with disks. Then, stars are analyzed in two different samples. In stars with variable extinction, we look for a simultaneous increase of optical extinction and X-ray absorption during the optical dips; in stars with accretion bursts, we search for soft X-ray emission and increasing X-ray absorption during the bursts. Results: We find evidence for coherent optical and X-ray flux variability among the stars with variable extinction. In 9 of the 24 stars with optical dips, we observe a simultaneous increase of X-ray absorption and optical extinction. In seven dips, it is possible to calculate the NH/AV ratio in order to infer the composition of the obscuring material. In 5 of the 20 stars with optical accretion bursts, we observe increasing soft X-ray emission during the bursts that we associate to the emission of accreting gas. It is not surprising that these properties are not observed in all the stars with dips and bursts, since favorable geometric configurations are required. Conclusions: The observed variable absorption during the dips is mainly due to dust-free material in accretion streams. In stars with accretion bursts, we observe, on average, a larger soft X-ray spectral component not observed in non-accreting stars.
Variable Star and Exoplanet Section of the Czech Astronomical Society
NASA Astrophysics Data System (ADS)
Brát, L.; Zejda, M.
2010-12-01
We present activities of Czech variable star observers organized in the Variable Star and Exoplanet Section of the Czech Astronomical Society. We work in four observing projects: B.R.N.O. - eclipsing binaries, MEDUZA - intrinsic variable stars, TRESCA - transiting exoplanets and candidates, HERO - objects of high energy astrophysics. Detailed information together with O-C gate (database of eclipsing binaries minima timings) and OEJV (Open European Journal on Variable stars) are available on our internet portal http://var.astro.cz.
NASA Astrophysics Data System (ADS)
Michalska, G.; Pigulski, A.; Stęlicki, M.; Narwid, A.
2009-12-01
We present results of variability search in the field of the young open cluster NGC 1502. Eight variable stars were discovered. Of six other stars in the observed field that were suspected for variability, we confirm variability of two, including one β Cep star, NGC 1502-26. The remaining four suspects were found to be constant in our photometry. In addition, UBVIC photometry of the well-known massive eclipsing binary SZ Cam was obtained. The new variable stars include: two eclipsing binaries of which one is a relatively bright detached system with an EA-type light curve, an α2 CVn-type variable, an SPB candidate, a field RR Lyr star and three other variables showing variability of unknown origin. The variability of two of them is probably related to their emission in Hα, which has been measured by means of the α index obtained for 57 stars brighter than V≍16 mag in the central part of the observed field. Four other non-variable stars with emission in Hα were also found. Additionally, we provide VIC photometry for stars down to V=17 mag and UB photometry for about 50 brightest stars in the observed field. We also show that the 10 Myr isochrone fits very well the observed color-magnitude diagram if a distance of 1 kpc and mean reddening, E(V-IC)=0.9 mag are adopted.
IUE observations of variability in winds from hot stars
NASA Technical Reports Server (NTRS)
Grady, C. A.; Snow, T. P., Jr.
1981-01-01
Observations of variability in stellar winds or envelopes provide an important probe of their dynamics. For this purpose a number of O, B, Be, and Wolf-Rayet stars were repeatedly observed with the IUE satellite in high resolution mode. In the course of analysis, instrumental and data handling effects were found to introduce spurious variability in many of the spectra. software was developed to partially compensate for these effects, but limitations remain on the type of variability that can be identified from IUE spectra. With these contraints, preliminary results of multiple observations of two OB stars, one Wolf-Rayet star, and a Be star are discussed.
Félix de Roy: a life of variable stars
NASA Astrophysics Data System (ADS)
Shears, J.
2011-08-01
Félix de Roy (1883-1942), an internationally recognised amateur astronomer, made significant contributions to variable star research. As an active observer, he made some 91,000 visual estimates of a number of different variable stars. A Belgian national, he took refuge in England during World War I. While there, de Roy became well enough known to serve later as Director of the BAA Variable Star Section for seventeen years. Through this office, and his connections with other organisations around the world, he encouraged others to pursue the observation of variable stars. Not merely content to accumulate observational data, de Roy also analysed the data and published numerous papers.
X-ray variability of Pleiades late-type stars as observed with the ROSAT-PSPC
NASA Astrophysics Data System (ADS)
Marino, A.; Micela, G.; Peres, G.; Sciortino, S.
2003-08-01
We present a comprehensive analysis of X-ray variability of the late-type (dF7-dM) Pleiades stars, detected in all ROSAT-PSPC observations; X-ray variations on short (hours) and medium (months) time scales have been explored. We have grouped the stars in two samples: 89 observations of 42 distinct dF7-dK2 stars and 108 observations of 61 dK3-dM stars. The Kolmogorov-Smirnov test applied on all X-ray photon time series show that the percentage of cases of significant variability is quite similar on both samples, suggesting that the presence of variability does not depend on mass for the time scales and mass range explored. The comparison between the Time X-ray Amplitude Distribution functions (XAD) of the set of dF7-dK2 and of the dK3-dM show that, on short time scales, dK3-dM stars show larger variations than dF7-dK2. A subsample of eleven dF7-dK2 and eleven dK3-dM Pleiades stars allows the study of variability on longer time scales: we found that variability on medium - long time scales is relatively more common among dF7-dK2 stars than among dK3-dM ones. For both dF7-dK2 Pleiades stars and dF7-dK2 field stars, the variability on short time scales depends on Lx while this dependence has not been observed among dK3-dM stars. It may be that the variability among dK3-dM stars is dominated by flares that have a similar luminosity distribution for stars of different Lx, while flaring distribution in dF7-dK2 stars may depend on X-ray luminosity. The lowest mass stars show significant rapid variability (flares?) and no evidence of rotation modulation or cycles. On the contrary, dF7-dK2 Pleiades stars show both rapid variability and variations on longer time scales, likely associated with rotational modulation or cycles.
NASA Astrophysics Data System (ADS)
Templeton, Matthew R.; Henden, A. A.; Davis, K.; Kinne, R.; Watson, C.; Saladyga, M.; Waagen, E.; Beck, S.; Menali, G.; Price, A.; Turner, R.
2010-05-01
The American Association of Variable Star Observers (AAVSO) holds the largest single online database of variable star data in the world, collected from thousands of amateur and professional observers during the past century. One of our core missions is to preserve and distribute these data to the research community in service to the science of variable star astronomy. But as an organization, the AAVSO is much more than a data archive. Our services to the research community include: monitoring for and announcement of major astronomical events like novae and supernovae; organization and management of observing campaigns; support for satellite and other TOO observing programs by the professional community; creation of comparison star sequences and generation of charts for the observer community; and observational and other support for the amateur, professional, and educator communities in all things related to variable stars. As we begin a new century of variable star astronomy we invite you to take advantage of the services the AAVSO can provide, and to become a part of our organization yourselves. In this poster, we highlight some of the most important services the AAVSO can provide to the professional research community, as well as suggest ways in which your research may be enhanced with support from the AAVSO.
Time Resolved X-Ray Spectral Analysis of Class II YSOs in NGC 2264 During Optical Dips and Bursts
NASA Astrophysics Data System (ADS)
Guarcello, Mario Giuseppe; Flaccomio, Ettore; Micela, Giuseppina; Argiroffi, Costanza; Venuti, Laura
2016-07-01
Pre-Main Sequence stars are variable sources. The main mechanisms responsible for their variability are variable extinction, unsteady accretion, and rotational modulation of both hot and dark photospheric spots and X-ray active regions. In stars with disks this variability is thus related to the morphology of the inner circumstellar region (<0.1 AU) and that of photosphere and corona, all impossible to be spatially resolved with present day techniques. This has been the main motivations of the Coordinated Synoptic Investigation of NGC2264, a set of simultaneous observations of NGC2264 with 15 different telescopes.We analyze the X-ray spectral properties of stars with disks extracted during optical bursts and dips in order to unveil the nature of these phenomena. Stars are analyzed in two different samples. In stars with variable extinction a simultaneous increase of optical extinction and X-ray absorption is searched during the optical dips; in stars with accretion bursts we search for soft X-ray emission and increasing X-ray absorption during the bursts. In 9/33 stars with variable extinction we observe simultaneous increase of X-ray absorption and optical extinction. In seven dips it is possible to calculate the NH/AV ratio in order to infer the composition of the obscuring material. In 5/27 stars with optical accretion bursts, we observe soft X-ray emission during the bursts that we associate to the emission of accreting gas. It is not surprising that these properties are not observed in all the stars with dips and bursts since favorable geometric configurations are required. The observed variable absorption during the dips is mainly due to dust-free material in accretion streams. In stars with accretion bursts we observe in average a larger soft X-ray spectral component not observed in non accreting stars. This indicates that this soft X-ray emission arises from the accretion shocks.
Imaging Variable Stars with HST
NASA Astrophysics Data System (ADS)
Karovska, Margarita
2011-05-01
The Hubble Space Telescope (HST) observations of astronomical sources, ranging from objects in our solar system to objects in the early Universe, have revolutionized our knowledge of the Universe its origins and contents.I will highlight results from HST observations of variable stars obtained during the past twenty or so years. Multiwavelength observations of numerous variable stars and stellar systems were obtained using the superb HST imaging capabilities and its unprecedented angular resolution, especially in the UV and optical. The HST provided the first detailed images probing the structure of variable stars including their atmospheres and circumstellar environments. AAVSO observations and light curves have been critical for scheduling of many of these observations and provided important information and context for understanding of the imaging results of many variable sources. I will describe the scientific results from the imaging observations of variable stars including AGBs, Miras, Cepheids, semi-regular variables (including supergiants and giants), YSOs and interacting stellar systems with a variable stellar components. These results have led to an unprecedented understanding of the spatial and temporal characteristics of these objects and their place in the stellar evolutionary chains, and in the larger context of the dynamic evolving Universe.
Imaging Variable Stars with HST
NASA Astrophysics Data System (ADS)
Karovska, M.
2012-06-01
(Abstract only) The Hubble Space Telescope (HST) observations of astronomical sources, ranging from objects in our solar system to objects in the early Universe, have revolutionized our knowledge of the Universe its origins and contents. I highlight results from HST observations of variable stars obtained during the past twenty or so years. Multiwavelength observations of numerous variable stars and stellar systems were obtained using the superb HST imaging capabilities and its unprecedented angular resolution, especially in the UV and optical. The HST provided the first detailed images probing the structure of variable stars including their atmospheres and circumstellar environments. AAVSO observations and light curves have been critical for scheduling of many of these observations and provided important information and context for understanding of the imaging results of many variable sources. I describe the scientific results from the imaging observations of variable stars including AGBs, Miras, Cepheids, semiregular variables (including supergiants and giants), YSOs and interacting stellar systems with a variable stellar components. These results have led to an unprecedented understanding of the spatial and temporal characteristics of these objects and their place in the stellar evolutionary chains, and in the larger context of the dynamic evolving Universe.
Caroline Furness and the Evolution of Visual Variable Star Observing
NASA Astrophysics Data System (ADS)
Larsen, Kristine
2017-01-01
An Introduction to the Study of Variable Stars by Dr. Caroline Ellen Furness (1869-1936), Director of the Vassar College Observatory, was published in October 2015. Issued in honor of the fiftieth anniversary of the founding of Vassar College, the work was meant to fill a void in the literature, namely as both an introduction to the topic of variable stars as well as a manual explaining how they should be observed and the resulting data analyzed. It was judged to be one of the hundred best books written by an American woman in the last hundred years at the 1933 World’s Fair in Chicago. The book covers the relevant history of and background on types of variable stars, star charts, catalogs, and the magnitude scale, then describes observing techniques, including visual, photographic, and photoelectric photometry. The work finishes with a discussion of light curves and patterns of variability, with a special emphasis on eclipsing binaries and long period variables. Furness’s work is therefore a valuable snapshot of the state of astronomical knowledge, technology, and observing techniques from a century ago. Furness’s book and its reception in the scientific community are analyzed, and parallels with (and departures from) the current advice given by the AAVSO to beginning variable star observers today are highlighted.
Photometric Variations of Solar-type Stars: Results of the Cloudcroft Survey
NASA Technical Reports Server (NTRS)
Giampapa, M. S.
1984-01-01
The results of a synoptic program to search for the occurrence of photometric variability in solar type stars as seen in continuum band photometry are summarized. The survey disclosed the existence of photometric variability in solar type stars that is related to the presence of spots on the stellar surface. The observed variability detected in solar type stars is at enhanced levels compared to that observed for the Sun.
Observations of red-giant variable stars by Aboriginal Australians
NASA Astrophysics Data System (ADS)
Hamacher, Duane W.
2018-04-01
Aboriginal Australians carefully observe the properties and positions of stars, including both overt and subtle changes in their brightness, for subsistence and social application. These observations are encoded in oral tradition. I examine two Aboriginal oral traditions from South Australia that describe the periodic changing brightness in three pulsating, red-giant variable stars: Betelgeuse (Alpha Orionis), Aldebaran (Alpha Tauri), and Antares (Alpha Scorpii). The Australian Aboriginal accounts stand as the only known descriptions of pulsating variable stars in any Indigenous oral tradition in the world. Researchers examining these oral traditions over the last century, including anthropologists and astronomers, missed the description of these stars as being variable in nature as the ethnographic record contained several misidentifications of stars and celestial objects. Arguably, ethnographers working on Indigenous Knowledge Systems should have academic training in both the natural and social sciences.
Amateur-Professional Collaborations in the AAVSO
NASA Astrophysics Data System (ADS)
Hawkins, G.; Mattei, J. A.; Waagen, E. O.
2000-05-01
The AAVSO coordinates, collects, evaluates, and archives variable star observations made largely by amateur astronomers around the world, and publishes and disseminates these observations to researchers and educators worldwide. Its electronic database of nearly 10 million visual variable star observations contributed by 6,000 amateur astronomers in over 40 countries since 1911 is the world's largest and longest-running. The AAVSO has a long history of collaborations between its amateur astronomer observers and professional astronomers. Many of the over 275 requests received yearly from astronomers for AAVSO data and services result in collaborative projects - particularly in multiwavelength observations of variable stars using ground-based telescopes and/or satellites - to help schedule observing runs; provide sumultaneous optical coverage of observing targets and immediate notification of their activity during particular satellite observations; correlate multiwavelength data; and analyze long-term variable star behavior. Among the more dramatic collaborations AAVSO observers have participated in are numerous multi-satellite observing runs on specific variable stars triggered in response to real-time alerts to stellar activity from AAVSO observers; and the variable star observations made during the Astro-2 mission, in which real-time observations by AAVSO observers directed shuttle astronauts to observing targets, and resulted in seminal new information about the cataclysmic variable Z Camelopardalis. The AAVSO is embarking on an exciting new collaboration with Gamma-Ray astronomers at NASA/Marshall Space Flight Center. The AAVSO and the MSFC Gamma-Ray Burst Team have established a Gamma-Ray Burst Network, in which participating AAVSO observers will be alerted immediately via pagers and email to the detection of gamma-ray bursts and will use their own CCD-equipped telescopes to search for the optical counterpart. We gratefully acknowledge partial funding of this network by NASA. Contact the AAVSO at aavso@aavso.org or http://www.aavso.org.
A Study of Nonthermal X-Ray and Radio Emission from the O Star 9 Sgr
NASA Technical Reports Server (NTRS)
Waldron, Wayne L.; Corcoran, Michael F.; Drake, Stephen A.
1999-01-01
The observed X-ray and highly variable nonthermal radio emission from OB stars has eluded explanation for more than 18 years. The most favorable model of X-ray production in these stars (shocks) predicts both nonthermal radio and X-ray emission. The nonthermal X-ray emission should occur above 2 keV and the variability of this X-ray component should also be comparable to the observed radio variability. To test this scenario, we proposed an ASC/VLA monitoring program to observe the OB star, 9 Sgr, a well known nonthermal, variable radio source and a strong X-ray source. We requested 625 ks ASCA observations with a temporal spacing of approximately 4 days which corresponds to the time required for a density disturbance to propagate to the 6 cm radio free-free photosphere. The X-ray observations were coordinated with 5 multi-wavelength VLA observations. These observations represent the first systematic attempt to investigate the relationship between the X-ray and radio emission in OB stars.
NASA Astrophysics Data System (ADS)
Moździerski, D.; Pigulski, A.; Kopacki, G.; Kołaczkowski, Z.; Stęślicki, M.
2014-06-01
We present results of a BVIC variability survey in the young open cluster NGC 457 based on observations obtained during three separate runs spanning almost 20 years. In total, we found 79 variable stars, of which 66 are new. The BVIC photometry was transformed to the standard system and used to derive cluster parameters by means of isochrone fitting. The cluster is about 20 Myr old, the mean reddening amounts to about 0.48 mag in terms of the color excess E(B-V). Depending on the metallicity, the isochrone fitting yields a distance between 2.3 kpc and 2.9 kpc, which locates the cluster in the Perseus arm of the Galaxy. Using the complementary Hα photometry carried out in two seasons separated by over 10 years, we find that the cluster is very rich in Be stars. In total, 15 stars in the observed field of which 14 are cluster members showed Hα in emission either during our observations or in the past. Most of the Be stars vary in brightness on different time scales including short-period variability related most likely to g-mode pulsations. A single-epoch spectrum of NGC 457-6 shows that this Be star is presently in the shell phase. The inventory of variable stars in the observed field consists of a single β Cep-type star, NGC 457-8, 13 Be stars, 21 slowly pulsating B stars, seven δ Sct stars, one γ Dor star, 16 unclassified periodic stars, 8 eclipsing systems and a dozen of stars with irregular variability, of which six are also B-type stars. As many as 45 variable stars are of spectral type B which is the largest number in all open clusters presented in this series of papers. The most interesting is the discovery of a large group of slowly pulsating B stars which occupy the cluster main sequence in the range between V=11 mag and 14.5 mag, corresponding to spectral types B3 to B8. They all have very low amplitudes and about half show pulsations with frequencies higher than 3 d-1. We argue that these are most likely fast-rotating slowly pulsating B stars, observed also in other open clusters.
GORGONA - the characteristic of the software system.
NASA Astrophysics Data System (ADS)
Artim, M.; Zejda, M.
A description of the new software system is given. The GORGONA system is established to the processing, making and administration of archives of periodic variable stars observations, observers and observed variable stars.
The TAROT Suspected Variable Star Catalog
NASA Astrophysics Data System (ADS)
Damerdji, Y.; Klotz, A.; Boër, M.
2007-04-01
TAROT (Télescope à Action Rapide pour les Objets Transitoires) is a robotic observatory designed to observe very early optical transients of gamma-ray bursts (GRBs). As GRBs do not often occur, we use TAROT for various other celestial targets spread over the sky. For every field observed by TAROT, we computed the magnitudes of every star. From this work, we found 1175 new variable stars brighter than 17 mag. We selected the best variable star candidates and compiled them in the TSVSC1 (TAROT Suspected Variable Star Catalog, ver. 1), which also contains Fourier-series coefficients that fit the light curves. Based on observations collected with the TAROT instrument at the Calern Observatory, France. Complementary observations were carried out with the T80 telescope at the Observatoire de Haute-Provence, France. Additional material described in § 5 is available in electronic format at the CDS at http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/AJ/.
NASA Astrophysics Data System (ADS)
Larsen, K.
2016-06-01
(Abstract only) A century and one month ago (October 1915) Dr. Caroline Ellen Furness (1869-1936), Director of the Vassar College Observatory, published An Introduction to the Study of Variable Stars. Issued in honor of the fiftieth anniversary of the founding of Vassar College, the work was meant to fill a void in the literature, namely as both an introduction to the topic of variable stars and as a manual explaining how they should be observed and the resulting data analyzed. It was judged to be one of the hundred best books written by an American woman in the last hundred years at the 1933 World's Fair in Chicago. The book covers the relevant history of and background on types of variable stars, star charts, catalogs, and the magnitude scale, then describes observing techniques, including visual, photographic, and photoelectric photometry. The work finishes with a discussion of light curves and patterns of variability, with a special emphasis on eclipsing binaries and long period variables. Furness's work is a valuable snapshot of the state of astronomical knowledge, technology, and observing techniques from a century ago. This presentation will analyze both Furness's book and its reception in the scientific community, and draw parallels to current advice given to beginning variable star observers.
Variable Stars Observed in the Galactic Disk by AST3-1 from Dome A, Antarctica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lingzhi; Ma, Bin; Hu, Yi
AST3-1 is the second-generation wide-field optical photometric telescope dedicated to time-domain astronomy at Dome A, Antarctica. Here, we present the results of an i -band images survey from AST3-1 toward one Galactic disk field. Based on time-series photometry of 92,583 stars, 560 variable stars were detected with i magnitude ≤16.5 mag during eight days of observations; 339 of these are previously unknown variables. We tentatively classify the 560 variables as 285 eclipsing binaries (EW, EB, and EA), 27 pulsating variable stars ( δ Scuti, γ Doradus, δ Cephei variable, and RR Lyrae stars), and 248 other types of variables (unclassifiedmore » periodic, multiperiodic, and aperiodic variable stars). Of the eclipsing binaries, 34 show O’Connell effects. One of the aperiodic variables shows a plateau light curve and another variable shows a secondary maximum after peak brightness. We also detected a complex binary system with an RS CVn-like light-curve morphology; this object is being followed-up spectroscopically using the Gemini South telescope.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chene, A.-N.; St-Louis, N., E-mail: achene@astro-udec.cl, E-mail: stlouis@astro.umontreal.ca
This study is the second part of a survey searching for large-scale spectroscopic variability in apparently single Wolf-Rayet (WR) stars. In a previous paper (Paper I), we described and characterized the spectroscopic variability level of 25 WR stars observable from the northern hemisphere and found 3 new candidates presenting large-scale wind variability, potentially originating from large-scale structures named corotating interaction regions (CIRs). In this second paper, we discuss an additional 39 stars observable from the southern hemisphere. For each star in our sample, we obtained 4-5 high-resolution spectra with a signal-to-noise ratio of {approx}100 and determined its variability level usingmore » the approach described in Paper I. In total, 10 new stars are found to show large-scale spectral variability of which 7 present CIR-type changes (WR 8, WR 44, WR55, WR 58, WR 61, WR 63, WR 100). Of the remaining stars, 20 were found to show small-amplitude changes and 9 were found to show no spectral variability as far as can be concluded from the data on hand. Also, we discuss the spectroscopic variability level of all single galactic WR stars that are brighter than v {approx} 12.5, and some WR stars with 12.5 < v {<=} 13.5, i.e., all the stars presented in our two papers and four more stars for which spectra have already been published in the literature. We find that 23/68 stars (33.8%) present large-scale variability, but only 12/54 stars ({approx}22.1%) are potentially of CIR type. Also, we find that 31/68 stars (45.6%) only show small-scale variability, most likely due to clumping in the wind. Finally, no spectral variability is detected based on the data on hand for 14/68 (20.6%) stars. Interestingly, the variability with the highest amplitude also has the widest mean velocity dispersion.« less
Amplitude Variability in gamma Dor and delta Sct Stars Observed by Kepler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guzik, Joyce Ann; Kosak, Mary Katherine; Bradley, Paul Andrew
2015-08-17
The NASA Kepler spacecraft data revealed a large number of new multimode nonradially pulsating gamma Dor and delta Sct variable stars. The Kepler high-precision long time-series photometry makes it possible to study amplitude variations of the frequencies, and recent literature on amplitude and frequency variations in nonradially pulsating variables is summarized. Several methods are applied to study amplitude variability in about a dozen gamma Doradus or delta Scuti candidate variable stars observed for several quarters as part of the Kepler Guest Observer program. The magnitude and timescale of the amplitude variations are discussed, along with the presence or absence ofmore » correlations between amplitude variations for different frequencies of a given star. Proposed causes of amplitude spectrum variability that will require further investigation are also discussed.« less
NASA Astrophysics Data System (ADS)
Sargent, Benjamin; Groenewegen, M. A. T.
2018-01-01
The asymptotic giant branch (AGB) phase is one of the last phases of a star's life. AGB stars lose mass in an outflow in which dust condenses and is pushed away from the star. Extreme AGB stars are so named because their very red colors suggest very large amounts of dust, which in turn suggests extremely high mass loss rates. AGB stars also vary in brightness, and studies show that extreme AGB stars tend to have longer periods than other AGB stars and are more likely to be fundamental mode pulsators than other AGB stars. Extreme AGB stars are difficult to study, as their colors are so red due to their copious amounts of circumstellar dust that they are often not detected at optical wavelengths. Therefore, they must be observed at infrared wavelengths to explore their variability. Using the Spitzer Space Telescope, my team and I have observed a sample of extreme AGB stars in the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) over Cycles 9 through 12 during the Warm Spitzer mission. For each cycle, we typically observed a set of extreme AGB stars at both 3.6 and 4.5 microns wavelength approximately monthly for most of a year. These observations reveal a wide range of variability properties. I present results from our analysis of the data obtained from these Spitzer variability programs, including light curve analyses and comparison to period-luminosity diagrams. Funding is acknowledged from JPL RSA # 1561703.
Variable Star Discoveries for Research Education at the Phillips Academy Observatory
NASA Astrophysics Data System (ADS)
Odden, Caroline; Yoon, Seokjun; Zhu, Emily; Little, John; Taylor, Isabel; Kim, Ji Seok; Briggs, John W.
2014-06-01
The discovery and publication of unknown variable stars by high school students is a highly engaging activity in a new hands-on research course developed at Phillips Academy in Andover, Massachusetts. Students use MPO Canopus software to recognize candidate variable stars in image series typically recorded for asteroid rotation studies. Follow-up observations are made using the 16-inch DFM telescopes at the Phillips Academy Observatory and at the HUT Observatory near Eagle, Colorado, as well as with a remote-access 20-inch at New Mexico Skies Observatory near Mayhill, New Mexico. The Catalina Sky Survey can provide additional photometric measurements. Confirmed variables, with light curves and periods, are submitted to the International Variable Star Index and Journal of the American Association of Variable Star Observers. Asteroid rotation studies are published in Minor Planet Bulletin.
Searching for Variable Stars in the SDSS Calibration Fields (Abstract)
NASA Astrophysics Data System (ADS)
Smith, J. A.; Butner, M.; Tucker, D.; Allam, S.
2018-06-01
(Abstract only) We are searching the Sloan Digital Sky Survey (SDSS) calibration fields for variable stars. This long neglected data set, taken with a 0.5-m telescope, contains nearly 200,000 stars in more than 100 fields which were observed over the course of 8+ years during the observing portion of the SDSS-I and SDSS-II surveys. During the course of the survey, each field was visited from 10 to several thousand times, so our initial pass is just to identify potential variable stars. Our initial "quick-look" effort shows several thousand potential candidates and includes at least one nearby supernova. We present our plans for a follow-up observational program for further identification of variable types and period determinations.
Transits, Spots, and Eclipses: The SunÃs Role in Pedagogy and Outreach (Abstract)
NASA Astrophysics Data System (ADS)
Larsen, K.
2018-06-01
(Abstract only) While most people observe variable stars at night, the observers of the AAVSO Solar Section make a single observation per day, but only if it is sunny, because our variable is the Sun itself. While the Sun can play an important role in astronomy outreach and pedagogy in general, as demonstrated by the recent 2017 eclipse, it can also serve as an ambassador for variable stars. This talk will examine how our sun can be used as a tool to explain several types of variable star behaviors, including transits, spots, and eclipses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chojnowski, S. Drew; Holtzman, Jon A.; Wisniewski, John P.
2017-04-01
We report on the H -band spectral variability of classical Be stars observed over the course of the Apache Point Galactic Evolution Experiment (APOGEE), one of four subsurveys comprising SDSS-III. As described in the first paper of this series, the APOGEE B-type emission-line (ABE) star sample was culled from the large number of blue stars observed as telluric standards during APOGEE observations. In this paper, we explore the multi-epoch ABE sample, consisting of 1100 spectra for 213 stars. These “snapshots” of the circumstellar disk activity have revealed a wealth of temporal variability including, but not limited to, gradual disappearance ofmore » the line emission and vice versa over both short and long timescales. Other forms of variability include variation in emission strength, emission peak intensity ratios, and emission peak separations. We also analyze radial velocities (RVs) of the emission lines for a subsample of 162 stars with sufficiently strong features, and we discuss on a case-by-case basis whether the RV variability exhibited by some stars is caused by binary motion versus dynamical processes in the circumstellar disks. Ten systems are identified as convincing candidates for binary Be stars with as of yet undetected companions.« less
Optical Monitoring of Young Stellar Objects
NASA Astrophysics Data System (ADS)
Kar, Aman; Jang-Condell, Hannah; Kasper, David; Findlay, Joseph; Kobulnicky, Henry A.
2018-06-01
Observing Young Stellar Objects (YSOs) for variability in different wavelengths enables us to understand the evolution and structure of the protoplanetary disks around stars. The stars observed in this project are known YSOs that show variability in the Infrared. Targets were selected from the Spitzer Space Telescope Young Stellar Object Variability (YSOVAR) Program, which monitored star-forming regions in the mid-infrared. The goal of our project is to investigate any correlation between the variability in the infrared versus the optical. Infrared variability of YSOs is associated with the heating of the protoplanetary disk while accretion signatures are observed in the H-alpha region. We used the University of Wyoming’s Red Buttes Observatory to monitor these stars for signs of accretion using an H-alpha narrowband filter and the Johnson-Cousins filter set, over the Summer of 2017. We perform relative photometry and inspect for an image-to-image variation by observing these targets for a period of four months every two to three nights. The study helps us better understand the link between accretion and H-alpha activity and establish a disk-star connection.
Overview of the observations of symbiotic stars
NASA Technical Reports Server (NTRS)
Viotti, Roberto
1993-01-01
The term Symbiotic stars commonly denotes variable stars whose optical spectra simultaneously present a cool absorption spectrum (typically TiO absorption bands) and emission lines of high ionization energy. This term is now used for the category of variable stars with composite spectrum. The main spectral features of these objects are: (1) the presence of the red continuum typical of a cool star, (2) the rich emission line spectrum, and (3) the UV excess, frequently with the Balmer continuum in emission. In addition to the peculiar spectrum, the very irregular photometric and spectroscopic variability is the major feature of the symbiotic stars. Moreover, the light curve is basic to identify the different phases of activity in a symbiotic star. The physical mechanisms that cause the symbiotic phenomenon and its variety are the focus of this paper. An astronomical phenomenon characterized by a composite stellar spectrum with two apparently conflicting features, and large variability has been observed. Our research set out to find the origin of this behavior and, in particular, to identify and measure the physical mechanism(s) responsible for the observed phenomena.
The History of Variable Stars: A Fresh Look
NASA Astrophysics Data System (ADS)
Hatch, R. A.
2012-06-01
(Abstract only) For historians of astronomy, variable stars are important for a simple reason - stars change. But good evidence suggests this is a very modern idea. Over the millennia, our species has viewed stars as eternal and unchanging, forever fixed in time and space - indeed, the Celestial Dance was a celebration of order, reason, and stability. But everything changed in the period between Copernicus and Newton. According to tradition, two New Stars announced the birth of the New Science. Blazing across the celestial stage, Tycho's Star (1572) and Kepler's Star (1604) appeared dramatically - and just as unexpectedly - disappeared forever. But variable stars were different. Mira Ceti, the oldest, brightest, and most controversial variable star, was important because it appeared and disappeared again and again. Mira was important because it did not go away. The purpose of this essay is to take a fresh look at the history of variable stars. In re-thinking the traditional narrative, I begin with the first sightings of David Fabricius (1596) and his contemporaries - particularly Hevelius (1662) and Boulliau (1667) - to new traditions that unfolded from Newton and Maupertuis to Herschel (1780) and Pigott (1805). The essay concludes with important 19th-century developments, particularly by Argelander (1838), Pickering (1888), and Lockyer (1890). Across three centuries, variable stars prompted astronomers to re-think all the ways that stars were no longer "fixed." New strategies were needed. Astronomers needed to organize, to make continuous observations, to track changing magnitudes, and to explain stellar phases. Importantly - as Mira suggested from the outset - these challenges called for an army of observers with the discipline of Spartans. But recruiting that army required a strategy, a set of theories with shared expectations. Observation and theory worked hand-in-hand. In presenting new historical evidence from neglected printed sources and unpublished manuscripts, this essay aims to offer a fresh look at the history of variable stars.
Report on the Photometric Observations of the Variable Stars DH Pegasi, DY Pegasi, and RZ Cephei
NASA Astrophysics Data System (ADS)
Abu-Sharkh, I.; Fang, S.; Mehta, S.; Pham, D.
2014-12-01
We report 872 observations on two RR Lyrae variable stars, DH Pegasi and RZ Cephei, and on one SX Phoenicis variable, DY Pegasi. This paper discusses the methodology of our measurements, the light curves, magnitudes, epochs, and epoch prediction of the above stars. We also derived the period of DY Pegasi. All measurements and analyses are compared with prior publications and known values from multiple databases.
SpecDB: The AAVSO’s Public Repository for Spectra of Variable Stars
NASA Astrophysics Data System (ADS)
Kafka, Stella; Weaver, John; Silvis, George; Beck, Sara
2018-01-01
SpecDB is the American Association of Variable Star Observers (AAVSO) spectral database. Accessible to any astronomer with the capability to perform spectroscopy, SpecDB provides an unprecedented scientific opportunity for amateur and professional astronomers around the globe. Backed by the Variable Star Index, one of the most utilized variable star catalogs, SpecDB is expected to become one of the world leading databases of its kind. Once verified by a team of expert spectroscopists, an observer can upload spectra of variable stars target easily and efficiently. Uploaded spectra can then be searched for, previewed, and downloaded for inclusion in publications. Close community development and involvement will ensure a user-friendly and versatile database, compatible with the needs of 21st century astrophysics. Observations of 1D spectra are submitted as FITS files. All spectra are required to be preprocessed for wavelength calibration and dark subtraction; Bias and flat are strongly recommended. First time observers are required to submit a spectrum of a standard (non-variable) star to be checked for errors in technique or equipment. Regardless of user validation, FITS headers must include several value cards detailing the observation, as well as information regarding the observer, equipment, and observing site in accordance with existing AAVSO records. This enforces consistency and provides necessary details for follow up analysis. Requirements are provided to users in a comprehensive guidebook and accompanying technical manual. Upon submission, FITS headers are automatically checked for errors and any anomalies are immediately fed back to the user. Successful candidates can then submit at will, including multiple simultaneous submissions. All published observations can be searched and interactively previewed. Community involvement will be enhanced by an associated forum where users can discuss observation techniques and suggest improvements to the database.
NASA Astrophysics Data System (ADS)
Ma, Shu-Guo; Esamdin, Ali; Ma, Lu; Niu, Hu-Biao; Fu, Jian-Ning; Zhang, Yu; Liu, Jin-Zhong; Yang, Tao-Zhi; Song, Fang-Fang; Pu, Guang-Xin
2018-04-01
Following the LAMOST Spectroscopic Survey and the Xuyi's Photometric Survey of the Galactic Anti-center, we plan to carry out a time-domain survey of the Galactic Anti-center (TDS-GAC) to study variable stars by using the Nanshan 1-meter telescope. Before the beginning of TDS-GAC, a precursive sky survey (PSS) has been executed. The goal of the PSS is to optimize the observation strategy of TDS-GAC and to detect some strong transient events, as well as to find some short time-scale variable stars of different types. By observing a discontinuous sky area of 15.03 deg2 with the standard Johnson-Cousin-Bessel V filter, 48 variable stars are found and the time series are analyzed. Based on the behaviors of the light curves, 28 eclipsing binary stars, 10 RR Lyraes, 3 periodic pulsating variables of other types have been classified. The rest 7 variables stay unclassified with deficient data. In addition, the observation strategy of TD-GAC is described, and the pipeline of data reduction is tested.
NASA Astrophysics Data System (ADS)
McDonald, I.; Zijlstra, A. A.; Sloan, G. C.; Kerins, E.; Lagadec, E.; Minniti, D.
2014-04-01
Variability is examined in over 2.6 million stars covering 11 square degrees of the core of the Sagittarius dwarf spheroidal galaxy (Sgr dSph) from Visible and Infrared Survey Telescope for Astronomy Z-band observations. Generally, pulsation on the Sgr dSph giant branches appears to be excited by the internal κ mechanism. Pulsation amplitudes appear identical between red and asymptotic (red giant branch/asymptotic giant branch) giant stars, and between unreddened carbon and oxygen-rich stars at the same luminosity. The lack of correlation between infrared excess and variability among oxygen-rich stars indicates that pulsations do not contribute significantly to wind driving in oxygen-rich stars in the Sgr dSph, though the low amplitudes of these stars mean this may not apply elsewhere. The dust-enshrouded carbon stars have the highest amplitudes of the stars we observe. Only in these stars does an external κ-mechanism-driven pulsation seem likely, caused by variations in their more opaque carbon-rich molecules or dust. This may allow pulsation driving of winds to be effective in carbon stars. Variability can be simplified to a power law (A ∝ L/T2), as in other systems. In total, we identify 3026 variable stars (with rms variability of δZ ≳ 0.015 mag), of which 176 are long-period variables associable with the upper giant branches of the Sgr dSph. We also identify 324 candidate RR Lyrae variables in the Sgr dSph and 340 in the outer Galactic bulge.
Variable Stars in the Field of TrES-3b (Abstract)
NASA Astrophysics Data System (ADS)
Aadland, E.
2018-06-01
(Abstract only) The star field around the exoplanet TrES-3b has potential for finding unknown variable stars. The field was observed over several nights using Minnesota State University MoorheadÃs Feder Observatory. A light curve for each star was created and are being evaluated for variability and periodicity. A python program is in development to help complete the analysis by automating some of the process. Several stars in the field appear to be variable and are being further analyzed to determine a period and to classify the type of variable.
Variable stars in the Pegasus dwarf galaxy (DDO 216)
NASA Technical Reports Server (NTRS)
Hoessel, J. G.; Abbott, Mark J.; Saha, A.; Mossman, Amy E.; Danielson, G. Edward
1990-01-01
Observations obtained over a period of five years of the resolved stars in the Pegasus dwarf irregular galaxy (DDO 216) have been searched for variable stars. Thirty-one variables were found, and periods established for 12. Two of these variable stars are clearly eclipsing variables, seven are very likely Cepheid variables, and the remaining three are probable Cepheids. The period-luminosity relation for the Cepheids indicates a distance modulus for Pegasus of m - M = 26.22 + or - 0.20. This places Pegasus very near the zero-velocity surface of the Local Group.
Zeta Pegasi: An SPB Variable Star
NASA Technical Reports Server (NTRS)
Goebel, John H.
2007-01-01
Broadband photometric observations of the bright star Zeta Pegasi are presented that display brightness variability of 488.2 +/- 6.6 micromag (ppm) range with a period of 22.952 +/- 0.804 hr (f approx. equals 1.04566 c/d). The variation is monosinusoidal, so the star is recommended for membership in the class of small-amplitude Slowly Pulsating B-Stars (SPB) variables oscillating in a non-radial g-mode.
NASA Astrophysics Data System (ADS)
2011-04-01
Metallic asteroid 216 Kleopatra is shaped like a dog's bone and has two tiny moons - which came from the asteroid itself - according to a team of astronomers from France and the US, who also measured its surprisingly low density and concluded that it is a collection of rubble. The recent solar minimum was longer and lower than expected, with a low polar field and an unusually large number of days with no sunspots visible. Models of the magnetic field and plasma flow within the Sun suggest that fast, then slow meridional flow could account for this pattern. Variable stars are a significant scientific target for amateur astronomers. The American Association of Variable Star Observers runs the world's largest database of variable star observations, from volunteers, and reached 20 million observations in February.
Multimode delta Scuti stars in the open cluster NGC 7062
NASA Astrophysics Data System (ADS)
Freyhammer, L. M.; Arentoft, T.; Sterken, C.
2001-03-01
The central field of NGC 7062 was observed intensively with the main goal of finding delta Scuti stars suitable for use in asteroseismological tests of stellar structure and evolution theory. BV time series photometry was obtained for this northern open cluster, which has a large population of stars inside the delta Scuti instability strip, making it a probable host of several such variables. We report findings of 15 pulsating stars, including at least 13 delta Scuti stars. Ten variables oscillate in two or more frequencies. Only one of these variables was known before, for which we detected 9 frequencies. Five probable variables are mentioned, and period analysis is given for all 20 stars. Based on observations obtained at the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisíca de Canarias.
Blue large-amplitude pulsators as a new class of variable stars
NASA Astrophysics Data System (ADS)
Pietrukowicz, Paweł; Dziembowski, Wojciech A.; Latour, Marilyn; Angeloni, Rodolfo; Poleski, Radosław; di Mille, Francesco; Soszyński, Igor; Udalski, Andrzej; Szymański, Michał K.; Wyrzykowski, Łukasz; Kozłowski, Szymon; Skowron, Jan; Skowron, Dorota; Mróz, Przemek; Pawlak, Michał; Ulaczyk, Krzysztof
2017-08-01
Regular intrinsic brightness variations observed in many stars are caused by pulsations. These pulsations provide information on the global and structural parameters of the star. The pulsation periods range from seconds to years, depending on the compactness of the star and properties of the matter that forms its outer layers. Here, we report the discovery of more than a dozen previously unknown short-period variable stars: blue large-amplitude pulsators. These objects show very regular brightness variations with periods in the range of 20-40 min and amplitudes of 0.2-0.4 mag in the optical passbands. The phased light curves have a characteristic sawtooth shape, similar to the shape of classical Cepheids and RR Lyrae-type stars pulsating in the fundamental mode. The objects are significantly bluer than main-sequence stars observed in the same fields, which indicates that all of them are hot stars. Follow-up spectroscopy confirms a high surface temperature of about 30,000 K. Temperature and colour changes over the cycle prove the pulsational nature of the variables. However, large-amplitude pulsations at such short periods are not observed in any known type of stars, including hot objects. Long-term photometric observations show that the variable stars are very stable over time. Derived rates of period change are of the order of 10-7 per year and, in most cases, they are positive. According to pulsation theory, such large-amplitude oscillations may occur in evolved low-mass stars that have inflated helium-enriched envelopes. The evolutionary path that could lead to such stellar configurations remains unknown.
New Variable Stars found in the NSVS Database (2)
NASA Astrophysics Data System (ADS)
Nicholson, Martin; Sutherland, Jane
2006-01-01
In 2004 and 2005 a search for variable stars not listed in the General Catalogue of Variable Stars or in Sinbad was conducted by members of the Remote Astronomical Society in the publicly available data of the Northern Sky Variability Survey (NSVS, Wozniak et al., 2004). NSVS fields were searched for candidates with both a sufficient number of observations to allow valid analysis and also with a significantly higher magnitude scatter than normal for stars of their magnitude.
Variable Stars with the Kepler Space Telescope
NASA Astrophysics Data System (ADS)
Molnár, L.; Szabó, R.; Plachy, E.
2016-12-01
The Kepler space telescope has revolutionized our knowledge about exoplanets and stars and is continuing to do so in the K2 mission. The exquisite photometric precision, together with the long, uninterrupted observations opened up a new way to investigate the structure and evolution of stars. Asteroseismology, the study of stellar oscillations, allowed us to investigate solar-like stars, and to peer into the insides of red giants and massive stars. But many discoveries have been made about classical variable stars, too, ranging from pulsators like Cepheids and RR Lyraes to eclipsing binary stars and cataclysmic variables, and even supernovae. In this review, which is far from an exhaustive summary of all results obtained with Kepler, we collected some of the most interesting discoveries, and ponder on the role for amateur observers in this golden era of stellar astrophysics.
Near-infrared Variability in the Orion Nebula Cluster
NASA Astrophysics Data System (ADS)
Rice, Thomas S.; Reipurth, Bo; Wolk, Scott J.; Vaz, Luiz Paulo; Cross, N. J. G.
2015-10-01
Using UKIRT on Mauna Kea, we have carried out a new near-infrared J, H, K monitoring survey of almost a square degree of the star-forming Orion Nebula Cluster with observations on 120 nights over three observing seasons, spanning a total of 894 days. We monitored ˜15,000 stars down to J≈ 20 using the WFCAM instrument, and have extracted 1203 significantly variable stars from our data. By studying variability in young stellar objects (YSOs) in the H - K, K color-magnitude diagram, we are able to distinguish between physical mechanisms of variability. Many variables show color behavior indicating either dust-extinction or disk/accretion activity, but we find that when monitored for longer periods of time, a number of stars shift between these two variability mechanisms. Further, we show that the intrinsic timescale of disk/accretion variability in young stars is longer than that of dust-extinction variability. We confirm that variability amplitude is statistically correlated with evolutionary class in all bands and colors. Our investigations of these 1203 variables have revealed 73 periodic AA Tau type variables, many large-amplitude and long-period (P\\gt 15 days) YSOs, including three stars showing widely spaced periodic brightening events consistent with circumbinary disk activity, and four new eclipsing binaries. These phenomena and others indicate the activity of long-term disk/accretion variability processes taking place in young stars. We have made the light curves and associated data for these 1203 variables available online.
Large amplitude change in spot-induced rotational modulation of the Kepler Ap star KIC 2569073
NASA Astrophysics Data System (ADS)
Drury, Jason A.; Murphy, Simon J.; Derekas, Aliz; Sódor, Ádám; Stello, Dennis; Kuehn, Charles A.; Bedding, Timothy R.; Bognár, Zsófia; Szigeti, László; Szakáts, Róbert; Sárneczky, Krisztián; Molnár, László
2017-11-01
An investigation of the 200 × 200 pixel `superstamp' images of the centres of the open clusters NGC 6791 and NGC 6819 allows for the identification and study of many variable stars that were not included in the Kepler target list. KIC 2569073 (V = 14.22), is a particularly interesting variable Ap star that we discovered in the NGC 6791 superstamp. With a rotational period of 14.67 d and 0.034 mag variability, it has one of the largest peak-to-peak variations of any known Ap star. Colour photometry reveals an antiphase correlation between the B band, and the V, R and I bands. This Ap star is a rotational variable, also known as an α2 CVn star, and is one of only a handful of Ap stars observed by Kepler. While no change in spot period or amplitude is observed within the 4 yr Kepler time series, the amplitude shows a large increase compared to ground-based photometry obtained two decades ago.
VStar: Variable star data visualization and analysis tool
NASA Astrophysics Data System (ADS)
VStar Team
2014-07-01
VStar is a multi-platform, easy-to-use variable star data visualization and analysis tool. Data for a star can be read from the AAVSO (American Association of Variable Star Observers) database or from CSV and TSV files. VStar displays light curves and phase plots, can produce a mean curve, and analyzes time-frequency with Weighted Wavelet Z-Transform. It offers tools for period analysis, filtering, and other functions.
Variable Stars in the Field of V729 Aql
NASA Astrophysics Data System (ADS)
Cagaš, P.
2017-04-01
Wide field instruments can be used to acquire light curves of tens or even hundreds of variable stars per night, which increases the probability of new discoveries of interesting variable stars and generally increases the efficiency of observations. At the same time, wide field instruments produce a large amount of data, which must be processed using advanced software. The traditional approach, typically used by amateur astronomers, requires an unacceptable amount of time needed to process each data set. New functionality, built into SIPS software package, can shorten the time needed to obtain light curves by several orders of magnitude. Also, newly introduced SILICUPS software is intended for post-processing of stored light curves. It can be used to visualize observations from many nights, to find variable star periods, evaluate types of variability, etc. This work provides an overview of tools used to process data from the large field of view around the variable star V729 Aql. and demonstrates the results.
NASA Astrophysics Data System (ADS)
Kjurkchieva, D. P.; Dimitrov, D. P.; Radeva, V. S.; Vasileva, D. L.; Atanasova, T. V.; Stateva, I. V.; Petrov, N. I.; Iliev, I. Kh.
2018-02-01
This review paper presents the results of investigations of variable stars obtained by Bulgarian astronomers based on observations of Kepler mission. The main contributions are: determination of orbits and global parameters of more than 100 binary stars; creation of the largest catalog of eccentric stars; identification of sixty new binaries with eccentricity over 0.5; discovery of 19 heartbeat stars; detailed investigation of the spot and flare activity of several binary stars; asteroseismic study of three pulsating stars; detection of deep transits of WD 1145+017 due to its disentangling planet system. The paper illustrates not only scientific significance but also educational and social impact of the work on these tasks.
Visual Observing Manual | aavso.org
Institute CCD School Videos Student Projects Two Eyes, 3D Variable Star Astronomy H-R Diagram Plotting Student Projects Two Eyes, 3D Variable Star Astronomy H-R Diagram Plotting Activity Reporting Variable
NASA Astrophysics Data System (ADS)
Rivinius, Th.; Baade, D.; Carciofi, A. C.
2016-09-01
Context. Classical Be stars have been established as pulsating stars. Space-based photometric monitoring missions contributed significantly to that result. However, whether Be stars are just rapidly rotating SPB or β Cep stars, or whether they have to be understood differently, remains debated in the view of their highly complex power spectra. Aims: Kepler data of three known Be stars are re-visited to establish their pulsational nature and assess the properties of additional, non-pulsational variations. The three program stars turned out to be one inactive Be star, one active, continuously outbursting Be star, and one Be star transiting from a non-outbursting into an outbursting phase, thus forming an excellent sample to distill properties of Be stars in the various phases of their life-cycle. Methods: The Kepler data was first cleaned from any long-term variability with Lomb-Scargle based pre-whitening. Then a Lomb-Scargle analysis of the remaining short-term variations was compared to a wavelet analysis of the cleaned data. This offers a new view on the variability, as it enables us to see the temporal evolution of the variability and phase relations between supposed beating phenomena, which are typically not visualized in a Lomb-Scargle analysis. Results: The short-term photometric variability of Be stars must be disentangled into a stellar and a circumstellar part. The stellar part is on the whole not different from what is seen in non-Be stars. However, some of the observed phenomena might be to be due to resonant mode coupling, a mechanism not typically considered for B-type stars. Short-term circumstellar variability comes in the form of either a group of relatively well-defined, short-lived frequencies during outbursts, which are called Štefl frequencies, and broad bumps in the power spectra, indicating aperiodic variability on a time scale similar to typical low-order g-mode pulsation frequencies, rather than true periodicity. Conclusions: From a stellar pulsation perspective, Be stars are rapidly rotating SPB stars, that is they pulsate in low order g-modes, even if the rapid rotation can project the observed frequencies into the traditional high-order p-mode regime above about 4 c/d. However, when a circumstellar disk is present, Be star power spectra are complicated by both cyclic, or periodic, and aperiodic circumstellar phenomena, possibly even dominating the power spectrum.
Photometric search for variable stars in the young open cluster Berkeley 59
NASA Astrophysics Data System (ADS)
Lata, Sneh; Pandey, A. K.; Maheswar, G.; Mondal, Soumen; Kumar, Brijesh
2011-12-01
We present the time series photometry of stars located in the extremely young open cluster Berkeley 59. Using the 1.04-m telescope at Aryabhatta Research Institute of Observational Sciences (ARIES), Nainital, we have identified 42 variables in a field of ˜13 × 13 arcmin2 around the cluster. The probable members of the cluster have been identified using a (V, V-I) colour-magnitude diagram and a (J-H, H-K) colour-colour diagram. 31 variables have been found to be pre-main-sequence stars associated with the cluster. The ages and masses of the pre-main-sequence stars have been derived from the colour-magnitude diagram by fitting theoretical models to the observed data points. The ages of the majority of the probable pre-main-sequence variable candidates range from 1 to 5 Myr. The masses of these pre-main-sequence variable stars have been found to be in the range of ˜0.3 to ˜3.5 M⊙, and these could be T Tauri stars. The present statistics reveal that about 90 per cent T Tauri stars have period <15 d. The classical T Tauri stars are found to have a larger amplitude than the weak-line T Tauri stars. There is an indication that the amplitude decreases with an increase in mass, which could be due to the dispersal of the discs of relatively massive stars.
Velocity fields and spectrum peculiarities in Beta Cephei stars
NASA Technical Reports Server (NTRS)
Lesh, J. R.
1980-01-01
The acquisition of short wavelength spectra of Beta Cephei variable stars from the International Ultraviolet Explorer is reported. A total of 122 images of 10 variable stars and 3 comparison stars were obtained. All of the images were observed in the high dispersion mode through a small aperture. The development of image processing methods is also briefly discussed.
Beyond the Kepler/K2 bright limit: variability in the seven brightest members of the Pleiades
NASA Astrophysics Data System (ADS)
White, T. R.; Pope, B. J. S.; Antoci, V.; Pápics, P. I.; Aerts, C.; Gies, D. R.; Gordon, K.; Huber, D.; Schaefer, G. H.; Aigrain, S.; Albrecht, S.; Barclay, T.; Barentsen, G.; Beck, P. G.; Bedding, T. R.; Fredslund Andersen, M.; Grundahl, F.; Howell, S. B.; Ireland, M. J.; Murphy, S. J.; Nielsen, M. B.; Silva Aguirre, V.; Tuthill, P. G.
2017-11-01
The most powerful tests of stellar models come from the brightest stars in the sky, for which complementary techniques, such as astrometry, asteroseismology, spectroscopy and interferometry, can be combined. The K2 mission is providing a unique opportunity to obtain high-precision photometric time series for bright stars along the ecliptic. However, bright targets require a large number of pixels to capture the entirety of the stellar flux, and CCD saturation, as well as restrictions on data storage and bandwidth, limit the number and brightness of stars that can be observed. To overcome this, we have developed a new photometric technique, which we call halo photometry, to observe very bright stars using a limited number of pixels. Halo photometry is simple, fast and does not require extensive pixel allocation, and will allow us to use K2 and other photometric missions, such as TESS, to observe very bright stars for asteroseismology and to search for transiting exoplanets. We apply this method to the seven brightest stars in the Pleiades open cluster. Each star exhibits variability; six of the stars show what are most likely slowly pulsating B-star pulsations, with amplitudes ranging from 20 to 2000 ppm. For the star Maia, we demonstrate the utility of combining K2 photometry with spectroscopy and interferometry to show that it is not a `Maia variable', and to establish that its variability is caused by rotational modulation of a large chemical spot on a 10 d time-scale.
Construction of the Database for Pulsating Variable Stars
NASA Astrophysics Data System (ADS)
Chen, Bing-Qiu; Yang, Ming; Jiang, Bi-Wei
2012-01-01
A database for pulsating variable stars is constructed to favor the study of variable stars in China. The database includes about 230,000 variable stars in the Galactic bulge, LMC and SMC observed in an about 10 yr period by the MACHO(MAssive Compact Halo Objects) and OGLE(Optical Gravitational Lensing Experiment) projects. The software used for the construction is LAMP, i.e., Linux+Apache+MySQL+PHP. A web page is provided for searching the photometric data and light curves in the database through the right ascension and declination of an object. Because of the flexibility of this database, more up-to-date data of variable stars can be incorporated into the database conveniently.
A Catalog of Eclipsing Binaries and Variable Stars Observed with ASTEP 400 from Dome C, Antarctica
NASA Astrophysics Data System (ADS)
Chapellier, E.; Mékarnia, D.; Abe, L.; Guillot, T.; Agabi, K.; Rivet, J.-P.; Schmider, F.-X.; Crouzet, N.; Aristidi, E.
2016-10-01
We used the large photometric database of the ASTEP program, whose primary goal was to detect exoplanets in the southern hemisphere from Antarctica, to search for eclipsing binaries (EcBs) and variable stars. 673 EcBs and 1166 variable stars were detected, including 31 previously known stars. The resulting online catalogs give the identification, the classification, the period, and the depth or semi-amplitude of each star. Data and light curves for each object are available at http://astep-vo.oca.eu.
Cataclysmic variables and related objects
NASA Technical Reports Server (NTRS)
Hack, Margherita; Ladous, Constanze; Jordan, Stuart D. (Editor); Thomas, Richard N. (Editor); Goldberg, Leo; Pecker, Jean-Claude
1993-01-01
This volume begins with an introductory chapter on general properties of cataclysmic variables. Chapters 2 through 5 of Part 1 are devoted to observations and interpretation of dwarf novae and nova-like stars. Chapters 6 through 10, Part 2, discuss the general observational properties of classical and recurrent novae, the theoretical models, and the characteristics and models for some well observed classical novae and recurrent novae. Chapters 11 through 14 of Part 3 are devoted to an overview of the observations of symbiotic stars, to a description of the various models proposed for explaining the symbiotic phenomenon, and to a discussion of a few selected objects, respectively. Chapter 15 briefly examines the many unsolved problems posed by the observations of the different classes of cataclysmic variables and symbiotic stars.
Spectral and Photometric Data of Be Star, EM Cep
NASA Astrophysics Data System (ADS)
Kochiashvili, Nino; Natsvilishvili, Rezo; Kochiashvili, Ia; Vardosanidze, Manana; Beradze, Sopia; Pannicke, Anna
The subject of investigation in this project is a Be spectral type giant variable star EM Cep. It was established that the star has a double nature: 1. when emission lines are seen in its spectrum and 2. when only absorption lines are observable and emission lines are not seen. This means that the star is not always in Be state. Be state continues existing during a few months. EM Cep shows flare activity too. The causes of photometric and spectral variability are to be established. The existence of different mechanisms, which provokes Be phenomenon, is possible. The character of light curves' variability gives us possibility to propose that it is not excluded that the star could be a short-period Cepheid of λ Eri type. However, we do not have sufficient data to exclude its binarity. On the basis of the observations carried out at Abastumani observatory, the light curve with two minima and two maxima were revealed, but these data, too accord with the half-period - we can also consider a light curve with one minimum and one maximum. Both cases suggest a good agreement with the characters of variability. For the case of binarity in Abastumani observatory, a set of orbital elements by using the Wilson-Devinney code is already obtained. The elements correspond to the model of acceptable, real close binary star. However, notwithstanding this situation, the true nature of the star is not established for the moment. To solve this problem, we need to get high-resolution spectral data, when by using radial velocity curves, it would be possible to answer the question of binarity of the star. It is not excluded to reveal spectral lines of the second component in case of binarity of the star. Since 2014, we have renewed UBVRI photometric observations of EM Cep in Abastumani using a 48-cm telescope with CCD device. Spectral observations are made in Azerbaijan, Shamakhy Observatory. Our German Colleagues have been observing the star since March of 2017 at the Observatory of the Jena University. We plan to carry out a joint analysis of the observations of the three observatories to explain the observational peculiarities of the star.
A survey for pulsations in A-type stars using SuperWASP
NASA Astrophysics Data System (ADS)
Holdsworth, Daniel L.
2015-12-01
"It is sound judgement to hope that in the not too distant future we shall be competent to understand so simple a thing as a star." - Sir Arthur Stanley Eddington, The Internal Constitution of Stars, 1926 A survey of A-type stars is conducted with the SuperWASP archive in the search for pulsationally variable stars. Over 1.5 million stars are selected based on their (J-H) colour. Periodograms are calculated for light curves which have been extracted from the archive and cleaned of spurious points. Peaks which have amplitudes greater than 0.5 millimagnitude are identified in the periodograms. In total, 202 656 stars are identified to show variability in the range 5-300 c/d. Spectroscopic follow-up was obtained for 38 stars which showed high-frequency pulsations between 60 and 235 c/d, and a further object with variability at 636 c/d. In this sample, 13 were identified to be normal A-type δ Sct stars, 14 to be pulsating metallic-lined Am stars, 11 to be rapidly oscillating Ap (roAp) stars, and one to be a subdwarf B variable star. The spectra were used not only to classify the stars, but to determine an effective temperature through Balmer line fitting. Hybrid stars have been identified in this study, which show pulsations in both the high- and low-overtone domains; an observation not predicted by theory. These stars are prime targets to perform follow-up observations, as a confirmed detection of this phenomenon will have significant impact on the theory of pulsations in A-type stars. The detected number of roAp stars has expanded the known number of this pulsator class by 22 per cent. Within these results both the hottest and coolest roAp star have been identified. Further to this, one object, KIC 7582608, was observed by the Kepler telescope for 4 yr, enabling a detailed frequency analysis. This analysis has identified significant frequency variations in this star, leading to the hypothesis that this is the first close binary star of its type. The observational results presented in this thesis are able to present new challenges to the theory of pulsations in A-type stars, with potentially having the effect of further delaying the full understanding of 'so simple a thing as a star'.
Time-Series Photometry of Variable Stars in the Globular Cluster NGC 288
NASA Astrophysics Data System (ADS)
Lee, Dong-Joo; Koo, Jae-Rim; Hong, Kyeongsoo; Kim, Seung-Lee; Lee, Jae Woo; Lee, Chung-Uk; Jeon, Young-Beom; Kim, Yun-Hak; Lim, Beomdu; Ryu, Yoon-Hyun; Cha, Sang-Mok; Lee, Yongseok; Kim, Dong-Jin; Park, Byeong-Gon; Kim, Chun-Hwey
2016-12-01
We present the results of BV time-series photometry of the globular cluster NGC 288. Observations were carried out to search for variable stars using the Korea Microlensing Telescope Network (KMTNet) 1.6-m telescopes and a 4k pre-science CCD camera during a test observation from August to December, 2014. We found a new SX Phe star and confirmed twelve previously known variable stars in NGC 288. For the semi-regular variable star V1, we newly determined a period of 37.3 days from light curves spanning 137 days. The light-curve solution of the eclipsing binary V10 indicates that the system is probably a detached system. The pulsation properties of nine SX Phe stars were examined by applying multiple frequency analysis to their light curves. We derived a new Period-Luminosity (P-L) relation, < M_{V} rangle = -2.476(±0.300) log P - 0.354(±0.385), from six SX Phe stars showing the fundamental mode. Additionally, the period ratios of three SX Phe stars that probably have a double-radial mode were investigated; P_{FO}/P_{F} = 0.779 for V5, P_{TO}/P_{FO} = 0.685 for V9, P_{SO}/P_{FO} = 0.811 for V11. This paper is the first contribution in a series assessing the detections and properties of variable stars in six southern globular clusters with the KMTNet system.
Observations of V420 Aur (HD 34921) needed to support spectroscopy
NASA Astrophysics Data System (ADS)
Waagen, Elizabeth O.
2016-10-01
Marcella Wijngaarden and Kelly Gourdji (graduate students at the University of Amsterdam/Anton Pannekoek Institute for Astronomy) have requested AAVSO observers' assistance in providing optical photometry of V420 Aur in support of their high-resolution spectroscopy with the Mercator telescope + Hermes spectrograph in La Palma 2016 October 7 through 17. They write: "[V420 Aur (HD 34921) is] the optical Be star that is part of a peculiar High Mass X-ray Binary...[that exhibits highly] complex and variable spectra...it is difficult to construct a physical model of this HMXB system, though based on these observations, the system is thought to contain a B[e] star with a dense plasma region, an accretion disk around a neutron star, a shell and circumstellar regions of cold dust. It has been over a decade since the last spectra were taken, and, given the highly variable nature of this star, we expect new observations to yield new information that will contribute to a better understanding of this system." Observations in BVRI (preferred over other bands) are requested beginning immediately and continuing through October 24. In all cases, timeseries in a few bands (i.e. BVRI) are preferred over single/a few observations in the other bands as it is the variability on relatively short timescales that is most important. "The target is bright so exposures should be long enough to reach good signal to noise in order to see the small variability amplitude but without saturating the target/comparison stars. We will study the variability on several timescales, so observations starting from a few per night to high cadence timeseries are useful." Finder charts with sequence may be created using the AAVSO Variable Star Plotter (https://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details.
A Search for Circumstellar Gas-Disk Variability in F-type Stars
NASA Astrophysics Data System (ADS)
Adkins, Ally; Montgomery, Sharon Lynn; Welsh, Barry
2018-01-01
Over the past six years, short-term (night-to-night) variability in the CaII K-line (3933Å) absorption has been detected towards 22 rapidly-rotating A-type stars, all but four of them discovered by us. Most of these stars are young (age < 100 million years) and possess dusty debris disks as evidenced by their infrared excesses. The variability is thought to be due to kilometer-sized planetesimals (i.e., exocomets) that release gas during their catastrophic in-falls towards their central star. To expand the relatively small number of systems showing this type of variability, we conducted a search amongst nearby, rapidly-rotating, F-type stars. Here, we present high signal-to-noise, medium-resolution spectral observations of the CaII K-line absorption (R≈60,000) recorded towards seven F-type stars. Six of these stars were observed multiple times over the course of our seven-night run on the 2.1-meter Otto Struve Telescope (McDonald Observatory) during June 2017. The appearance or absence of similar short-lived, Doppler-shifted absorption in F-type stars serves as a test of our understanding of the underlying phenomena.
The Beginning of Variable star astronomy in Hungary
NASA Astrophysics Data System (ADS)
Zsoldos, Endre
Variable star astronomy began in Hungary as elsewhere: new objects have been recognized in the sky. Comets appeared in 16th - 17th century chronicles. The first mention of the new star of 1572 seems to be the "Prognosticon" of Wilhelm Misocacus, printed in 1578. New stars were discussed in the 17th century by Jesuits as well as Protestants. The work of Jacob Schnitzler is especially interesting from this point. The Cartesians dealt with new stars with less enthusiasm, they hardly mentioned them. The beginning of the 19th century saw the development of science in Hungarian, variable stars, however, were left out. The birth of variable star astronomy might be linked to the Ógyalla Observatory, originally a private observatory of Miklós Konkoly Thege. The 1885 supernova in the Andromeda Nebula were observed there, as well as the spectra of a few interesting variable stars. Theoretical astrophysics also has its beginnings in Ógyalla through the work of Radó Kövesligethy. Professional variable star astronomy started here in the early 20th century through the work of Antal Tass
Variability survey of brightest stars in selected OB associations
NASA Astrophysics Data System (ADS)
Laur, Jaan; Kolka, Indrek; Eenmäe, Tõnis; Tuvikene, Taavi; Leedjärv, Laurits
2017-02-01
Context. The stellar evolution theory of massive stars remains uncalibrated with high-precision photometric observational data mainly due to a small number of luminous stars that are monitored from space. Automated all-sky surveys have revealed numerous variable stars but most of the luminous stars are often overexposed. Targeted campaigns can improve the time base of photometric data for those objects. Aims: The aim of this investigation is to study the variability of luminous stars at different timescales in young open clusters and OB associations. Methods: We monitored 22 open clusters and associations from 2011 to 2013 using a 0.25-m telescope. Variable stars were detected by comparing the overall light-curve scatter with measurement uncertainties. Variability was analysed by the light curve feature extraction tool FATS. Periods of pulsating stars were determined using the discrete Fourier transform code SigSpec. We then classified the variable stars based on their pulsation periods and available spectral information. Results: We obtained light curves for more than 20 000 sources of which 354 were found to be variable. Amongst them we find 80 eclipsing binaries, 31 α Cyg, 13 β Cep, 62 Be, 16 slowly pulsating B, 7 Cepheid, 1 γ Doradus, 3 Wolf-Rayet and 63 late-type variable stars. Up to 55% of these stars are potential new discoveries as they are not present in the Variable Star Index (VSX) database. We find the cluster membership fraction for variable stars to be 13% with an upper limit of 35%. Variable star catalogue (Tables A.1-A.10) and light curves are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A108
NASA Technical Reports Server (NTRS)
Abbott, David C.; Conti, Peter S.
1987-01-01
The properties and evolutionary status of WR stars are examined, reviewing the results of recent observational and theoretical investigations. Topics discussed include spectral types and line strengths, magnitudes and colors, intrinsic variability, IR and radio observations, X-ray observations, the Galactic distribution of WR stars, WR stars in other galaxies, and WR binaries. Consideration is given to the inferred masses, composition, and stellar winds of WR stars; model atmospheres; WR stars and the Galactic environment; and WR stars as a phase of stellar evolution. Diagrams, graphs, and tables of numerical data are provided.
Utilizing the AAVSO's Variable Star Index (VSX) in Undergraduate Research Projects (Poster abstract)
NASA Astrophysics Data System (ADS)
Larsen, K.
2016-12-01
(Abstract only) Among the many important services that the American Association of Variable Star Observers (AAVSO) provides to the astronomical community is the Variable Star Index (VSX; https://www.aavso.org/vsx/). This online catalog of variable stars is the repository of data on over 334,000 variable stars, including information on spectral type, range of magnitude, period, and type of variable, among other properties. A number of these stars were identified as being variable through automated telescope surveys, such as ASAS (All Sky Automated Survey). The computer code of this survey classified newly discovered variables as best it could, but a significant number of false classifications have been noted. The reclassification of ASAS variables in the VSX data, as well as a closer look at variables identified as miscellaneous type in VSX, are two of many projects that can be undertaken by interested undergraduates. In doing so, students learn about the physical properties of various types of variable stars as well as statistical analysis and computer software, especially the vstar variable star data visualization and analysis tool that is available to the astronomical community free of charge on the AAVSO website (https://www.aavso.org/vstar-overview). Three such projects are described in this presentation, to identify BY Draconis variables misidentified as Cepheids or "miscellaneous", and SRD semiregular variables and ELL (rotating ellipsoidal) variables misidentified as "miscellaneous", in ASAS data and VSX.
Discovering new variable stars at Key Stage 3
NASA Astrophysics Data System (ADS)
Chubb, Katy; Hood, Rosie; Wilson, Thomas; Holdship, Jonathan; Hutton, Sarah
2017-05-01
Details of the London pilot of the ‘Discovery Project’ are presented, where university-based astronomers were given the chance to pass on some real and applied knowledge of astronomy to a group of selected secondary school pupils. It was aimed at students in Key Stage 3 of their education, allowing them to be involved in real astronomical research at an early stage of their education, the chance to become the official discoverer of a new variable star, and to be listed in the International Variable Star Index database (The International Variable Star Index, Version 1.1, American Association of Variable Star Observers (AAVSO), 2016, http://aavso.org/vsx), all while learning and practising research-level skills. Future plans are discussed.
New Variable Stars found in the NSVS Database
NASA Astrophysics Data System (ADS)
Nicholson, Martin; Sutherland, Jane; Sutherland, Charles
2005-12-01
A search for previously unreported variable stars was conducted by members of the Remote Astronomical Society in the publicly available data of the Northern Sky Variability Survey (NSVS, Wozniak et al., 2004). NSVS fields were searched for candidates with both a sufficient number of observations to allow valid analysis and also with a significantly higher magnitude scatter than normal for stars of their magnitude.
VizieR Online Data Catalog: Abundances of 8 RR Lyrae subclass C variable stars (Govea+, 2014)
NASA Astrophysics Data System (ADS)
Govea, J.; Gomez, T.; Preston, G. W.; Sneden, C.
2016-02-01
We chose 10 candidate RR Lyrae variable stars of subclass c (RRc) stars for spectroscopic observation. Many of these stars were first identified as RRc variables by the All Sky Automated Survey (ASAS) of Pojmanski 2003 (cat. II/264). The target star list included ASAS 144154-0324.7 and ASAS 204440-2402.7. But our spectroscopic study suggest that these two stars are probably W UMa binaries instead of RR Lyrae stars Our spectra were obtained with the echelle spectrograph of the du Pont 2.5m telescope at the Las Campanas Observatory. Four observing runs during 2009-2010 were partly devoted to this project. The spectrograph was used with the 1.5*4'' entrance slit, which translates to a resolving power of R=λ/Δλ~27000 at the MgI b lines near 5180Å. The total continuous wavelength coverage of the spectra was 3500-9000Å. (6 data files).
The IUE Mega Campaign: Wind Variability and Rotation in Early-Type Stars
NASA Technical Reports Server (NTRS)
Massa, D.; Fullerton, A. W.; Nichols, J. S.; Owocki, S. P.; Prinja, R. K.; St-Louis, N.; Willis, A. J.; Altner, B.; Bolton, C. T.; Cassinelli, J. P.;
1995-01-01
Wind variability in OB stars may be ubiquitous and a connection between projected stellar rotation velocity and wind activity is well established. However, the origin of this connection is unknown. To probe the nature of the rotation connection, several of the attendees at the workshop on Instability and Variability of Hot-Star Winds drafted an IUE observing proposal. The goal of this program was to follow three stars for several rotations to determine whether the rotation connection is correlative or causal. The stars selected for monitoring all have rotation periods less than or equal to 5 days. They were HD 50896 (WN5), HD 64760 (BO.5 Ib), and HD 66811 (zeta Pup; 04 If(n)). During 16 days of nearly continuous observations in 1995 January (dubbed the 'MEGA' campaign), 444 high-dispersion IUE spectra of these stars were obtained. This Letter presents an overview of the results of the MEGA campaign and provides an introduction to the three following Letters, which discuss the results for each star.
Early-20th-century visual observations of M13 variable stars
NASA Astrophysics Data System (ADS)
Osborn, W.; Barnard, E. E.
2016-08-01
In 1900 E. E. Barnard published 37 visual observations of Variable 2 (V2) in the globular clustter M13 made in 1899 and 1900. A review of Barnard's notebooks revealed he made many additional brightness estimates up to 1911, and he had also recorded the variations of V1 starting in 1904. These data provide the earliest-epoch light curves for these stars and thus are useful for studying their period changes. This paper presents Barnard's observations of the M13 variables along with their derived heliocentric Julian Dates and approximate V magnitudes. These include 231 unpublished observations of V2 and 94 of V1. How these data will be of value for determing period changes by these stars is described.
Utilizing the AAVSO's Variable Star Index (VSX) In Undergraduate Research Projects
NASA Astrophysics Data System (ADS)
Larsen, Kristine
2016-01-01
Among the many important services that the American Association of Variable Star Observers (AAVSO) provides to the astronomical community is the Variable Star Index (VSX - https://www.aavso.org/vsx/). This online catalog of variable stars is the repository of data on over 334,000 variable stars, including information on spectral type, range of magnitude, period, and type of variable, among other properties. A number of these stars were identified as being variable through automated telescope surveys, such as ASAS (All Sky Automated Survey). The computer code of this survey classified newly discovered variables as best it could, but a significant number of false classifications have been noted. The reclassification of ASAS variables in the VSX data, as well as a closer look at variables identified as miscellaneous type in VSX, are two of many projects that can be undertaken by interested undergraduates. In doing so, students learn about the physical properties of various types of variable stars as well as statistical analysis and computer software, especially the VStar variable star data visualization and analysis tool that is available to the astronomical community free of charge on the AAVSO website (https://www.aavso.org/vstar-overview). Two such projects are described in this presentation, the first to identify BY Draconis variables erroneously classified as Cepheids in ASAS data, and the second to identify SRD semiregular variables misidentified as "miscellaneous" in VSX.
FFT Deconvultion of Be Star Hα Line Profiles
NASA Astrophysics Data System (ADS)
Austin, S. J.
2005-12-01
We have been monitoring the spectroscopic variability of Be stars using the UCA Fiber Fed Spectrograph. The spectra are 0.8 Angstrom/pixel resolution of the Hα line. The observed line profiles are a convolution of the actual profile and the instrumental profile. A Fast Fourier Transform (FFT) method has been used to deconvolve the observed profiles, given the instrument profile obtained by observing the narrow lines from the HgNe wavelength calibration lamp. The long-term monitoring of the spectroscopic variability of Be stars is crucial for testing the various Be star models. Deconvolved H-α line profiles, velocities, and variability are shown for gamma Cas, delta Sco, chi Oph, eta PsA, 48 Lib, and upsilon Sgr (HD181615). Funding has been provided by the UCA University Research Council and the Arkansas Space Grant Consortium.
The impact of large-scale, long-term optical surveys on pulsating star research
NASA Astrophysics Data System (ADS)
Soszyński, Igor
2017-09-01
The era of large-scale photometric variability surveys began a quarter of a century ago, when three microlensing projects - EROS, MACHO, and OGLE - started their operation. These surveys initiated a revolution in the field of variable stars and in the next years they inspired many new observational projects. Large-scale optical surveys multiplied the number of variable stars known in the Universe. The huge, homogeneous and complete catalogs of pulsating stars, such as Cepheids, RR Lyrae stars, or long-period variables, offer an unprecedented opportunity to calibrate and test the accuracy of various distance indicators, to trace the three-dimensional structure of the Milky Way and other galaxies, to discover exotic types of intrinsically variable stars, or to study previously unknown features and behaviors of pulsators. We present historical and recent findings on various types of pulsating stars obtained from the optical large-scale surveys, with particular emphasis on the OGLE project which currently offers the largest photometric database among surveys for stellar variability.
X ray emission from Wolf-Rayet stars with recurrent dust formation
NASA Technical Reports Server (NTRS)
Rawley, Gayle L.
1993-01-01
We were granted a ROSAT observation of the Wolf-Rayet star WR 137 (equals HD 192641) to test a proposed mechanism for producing the infrared variability reported by Williams et al. (1987). These studies showed one clear infrared outburst preceded by what may be the dimming of a previous outburst. The recurrent dust formation model was put forward by Williams et al. (1990) to account for similar variability seen in WR 140, which varies in both the infrared and X-ray bands. The detected X-ray flux from WR 140 was observed to decrease from its normally high (for Wolf-Rayet stars) level as the infrared flux increased. Observation of two apparently-periodic infrared outbursts led to the hypothesis that WR 140 had an O star companion in an eccentric orbit, and that the increase in infrared flux came from a dust formation episode triggered by the compression of the O star and Wolf-Rayet star winds. The absorption of the X-rays by the increased material explained the decrease in flux at those wavelengths. If the infrared variability in WR 137 were caused by a similar interaction of the Wolf-Rayet star with a companion, we might expect that WR 137 would show corresponding X-ray variability and an X-ray luminosity somewhat higher than typical WC stars, as well as a phase-dependent non-thermal X-ray spectrum. Our goals in this study were to obtain luminosity estimates from our counting rates for comparison with previous observations of WR 137 and other WC class stars, especially WR 140; to compare the luminosity with the IR lightcurve; and to characterize the spectral shape of the X-ray emission, including the column density.
Construction of Database for Pulsating Variable Stars
NASA Astrophysics Data System (ADS)
Chen, B. Q.; Yang, M.; Jiang, B. W.
2011-07-01
A database for the pulsating variable stars is constructed for Chinese astronomers to study the variable stars conveniently. The database includes about 230000 variable stars in the Galactic bulge, LMC and SMC observed by the MACHO (MAssive Compact Halo Objects) and OGLE (Optical Gravitational Lensing Experiment) projects at present. The software used for the construction is LAMP, i.e., Linux+Apache+MySQL+PHP. A web page is provided to search the photometric data and the light curve in the database through the right ascension and declination of the object. More data will be incorporated into the database.
NASA Technical Reports Server (NTRS)
Friedjung, Michael
1993-01-01
One of the most important features of symbiotic stars is the coexistence of a cool spectral component that is apparently very similar to the spectrum of a cool giant, with at least one hot continuum, and emission lines from very different stages of ionization. The cool component dominates the infrared spectrum of S-type symbiotics; it tends to be veiled in this wavelength range by what appears to be excess emission in D-type symbiotics, this excess usually being attributed to circumstellar dust. The hot continuum (or continua) dominates the ultraviolet. X-rays have sometimes also been observed. Another important feature of symbiotic stars that needs to be explained is the variability. Different forms occur, some variability being periodic. This type of variability can, in a few cases, strongly suggest the presence of eclipses of a binary system. One of the most characteristic forms of variability is that characterizing the active phases. This basic form of variation is traditionally associated in the optical with the veiling of the cool spectrum and the disappearance of high-ionization emission lines, the latter progressively appearing (in classical cases, reappearing) later. Such spectral changes recall those of novae, but spectroscopic signatures of the high-ejection velocities observed for novae are not usually detected in symbiotic stars. However, the light curves of the 'symbiotic nova' subclass recall those of novae. We may also mention in this connection that radio observations (or, in a few cases, optical observations) of nebulae indicate ejection from symbiotic stars, with deviations from spherical symmetry. We shall give a historical overview of the proposed models for symbiotic stars and make a critical analysis in the light of the observations of symbiotic stars. We describe the empirical approach to models and use the observational data to diagnose the physical conditions in the symbiotics stars. Finally, we compare the results of this empirical approach with existing models and discuss unresolved problems requiring new observational and theoretical work.
NASA Astrophysics Data System (ADS)
Kumar, Tarun; Lal, Arvind Kumar; Pathania, Ankush
2018-06-01
Anharmonic oscillations of rotating stars have been studied by various authors in literature to explain the observed features of certain variable stars. However, there is no study available in literature that has discussed the combined effect of rotation and tidal distortions on the anharmonic oscillations of stars. In this paper, we have created a model to determine the effect of rotation and tidal distortions on the anharmonic radial oscillations associated with various polytropic models of pulsating variable stars. For this study we have used the theory of Rosseland to obtain the anharmonic pulsation equation for rotationally and tidally distorted polytropicmodels of pulsating variable stars. The main objective of this study is to investigate the effect of rotation and tidal distortions on the shapes of the radial velocity curves for rotationally and tidally distorted polytropic models of pulsating variable stars. The results of the present study show that the rotational effects cause more deviations in the shapes of radial velocity curves of pulsating variable stars as compared to tidal effects.
CCD Times of Minima of Selected Eclipsing Binaries
NASA Astrophysics Data System (ADS)
Zejda, Miloslav
2004-12-01
682 CCD minima observations of 259 eclipsing binaries made mainly by author are presented. The observed stars were chosen mainly from catalogue BRKA of observing programme of BRNO-Variable Star Section of CAS.
The Optical Gravitational Lensing Experiment. Catalog of RR Lyr Stars in the Large Magellanic Cloud
NASA Astrophysics Data System (ADS)
Soszynski, I.; Udalski, A.; Szymanski, M.; Kubiak, M.; Pietrzynski, G.; Wozniak, P.; Zebrun, K.; Szewczyk, O.; Wyrzykowski, L.
2003-06-01
We present the catalog of RR Lyr stars discovered in a 4.5 square degrees area in the central parts of the Large Magellanic Cloud (LMC). Presented sample contains 7612 objects, including 5455 fundamental mode pulsators (RRab), 1655 first-overtone (RRc), 272 second-overtone (RRe) and 230 double-mode RR Lyr stars (RRd). Additionally we attach alist of several dozen other short-period pulsating variables. The catalog data include astrometry, periods, BVI photometry, amplitudes, and parameters of the Fourier decomposition of the I-band light curve of each object. We present density map of RR Lyr stars in the observed fields which shows that the variables are strongly concentrated toward the LMC center. The modal values of the period distribution for RRab, RRc and RRe stars are 0.573, 0.339 and 0.276 days, respectively. The period-luminosity diagrams for BVI magnitudes and for extinction insensitive index W_I are constructed. We provide the log P-I, log P-V and log P-W_I relations for RRab, RRc and RRe stars. The mean observed V-band magnitudes of RR Lyr stars in the LMC are 19.36 mag and 19.31 mag for ab and c types, respectively, while the extinction free values are 18.91 mag and 18.89 mag. We found a large number of RR Lyr stars pulsating in two modes closely spaced in the power spectrum. These stars are believed to exhibit non-radial pulsating modes. We discovered three stars which simultaneously reveal RR Lyr-type and eclipsing-type variability. If any of these objects were an eclipsing binary system containing RR Lyr star, then for the first time the direct determination of the mass of RR Lyr variable would be possible. We provide a list of six LMC star clusters which contain RR Lyr stars. The richest cluster, NGC 1835, hosts 84 RR Lyr variables. The period distribution of these stars suggests that NGC1835 shares features of Oosterhoff type I and type II groups. All presented data, including individual BVI observations and finding charts are available from the OGLE Internet archive.
NASA Astrophysics Data System (ADS)
Williams, Thomas R.; Saladyga, Michael
2011-05-01
Preface; Part I. Pioneers in Variable Star Astronomy Prior to 1909: 1. The emergence of variable star astronomy - a need for observations; 2. A need for observers; Part II. The Founding of the AAVSO - The William Tyler Olcott Era: 3. The amateur's amateur; 4. Amateurs in the service of science; Part III. The Leon Campbell Era: 5. Leon Campbell to the rescue; 6. Formalizing relationships; 7. The Pickering Memorial Endowment; 8. Fading of the Old Guard; 9. Growing pains and distractions; Part IV. The Service Bureau - The Margaret Mayall Era: 10. Learning about independence; 11. Eviction from Harvard College Observatory; 12. Actions and reactions; 13. In search of a home; 14. Survival on Brattle Street; 15. AAVSO achievements; 16. Breathing room on Concord Avenue; Part V. Analysis and Science: The Janet Mattei Era: 17. The growth of a director; 18. Learning the ropes the hard way; 19. Managing with renewed confidence; 20. Expanding the scientific charter; Part VI. Accelerating Observational Science - The Arne Henden Era: 21. Bridging the gap; 22. Accelerating the science - the Henden era begins; Epilogue; Appendices; Index.
Time-dependent Models of Magnetospheric Accretion onto Young Stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, C. E.; Espaillat, C. C.; Owen, J. E.
Accretion onto Classical T Tauri stars is thought to take place through the action of magnetospheric processes, with gas in the inner disk being channeled onto the star’s surface by the stellar magnetic field lines. Young stars are known to accrete material in a time-variable manner, and the source of this variability remains an open problem, particularly on the shortest (∼day) timescales. Using one-dimensional time-dependent numerical simulations that follow the field line geometry, we find that for plausibly realistic young stars, steady-state transonic accretion occurs naturally in the absence of any other source of variability. However, we show that ifmore » the density in the inner disk varies smoothly in time with ∼day-long timescales (e.g., due to turbulence), this complication can lead to the development of shocks in the accretion column. These shocks propagate along the accretion column and ultimately hit the star, leading to rapid, large amplitude changes in the accretion rate. We argue that when these shocks hit the star, the observed time dependence will be a rapid increase in accretion luminosity, followed by a slower decline, and could be an explanation for some of the short-period variability observed in accreting young stars. Our one-dimensional approach bridges previous analytic work to more complicated multi-dimensional simulations and observations.« less
Observing Globular Cluster RR Lyrae Variables with the BYU West Mountain Observatory
NASA Astrophysics Data System (ADS)
Jeffery, E. J.; Joner, M. D.
2016-06-01
We have utilized the 0.9-meter telescope of the Brigham Young University West Mountain Observatory to secure data on six northern hemisphere globular clusters. Here we present representative observations of RR Lyrae stars located in these clusters, including light curves. We compare light curves produced using both DAOPHOT and ISIS software packages. Light curve fitting is done with FITLC. We find that for well-separated stars, DAOPHOT and ISIS provide comparable results. However, for stars within the cluster core, ISIS provides superior results. These improved techniques will allow us to better measure the properties of cluster variable stars.
Photometric Studies of Stars in the Vicinity of Cyg OB7
NASA Astrophysics Data System (ADS)
Melikian, N. D.; Gomez, J.
2017-12-01
Results of BVRI photometric studies of 131 stars in the stellar association Cyg OB7 are presented. Observational data were obtained with the 2.6-m telescope at the Byurakan Observatory during 2000, 2002, 2004, and 2011 using the ByuFOSC-2 and SCORPIO spectral cameras. Observations made in 2007 on the 182-cm telescope (Asiago, Italy) at the Padova Astronomical Observatory with the AFOSC (Asiago Faint Object Spectrograph and Camera) detector system are also used. Variations with amplitudes ranging from 0m.2 to 2m.16 are detected in 42 of the stars. Variability is observed for the first time in 31 of the 42 stars. The brightness of 32 of the stars was essentially unchanged during the time of our measurements. All of the 42 variables lie very close to the T Tau type stars on a two-color diagram.
VSOP: the variable star one-shot project. I. Project presentation and first data release
NASA Astrophysics Data System (ADS)
Dall, T. H.; Foellmi, C.; Pritchard, J.; Lo Curto, G.; Allende Prieto, C.; Bruntt, H.; Amado, P. J.; Arentoft, T.; Baes, M.; Depagne, E.; Fernandez, M.; Ivanov, V.; Koesterke, L.; Monaco, L.; O'Brien, K.; Sarro, L. M.; Saviane, I.; Scharwächter, J.; Schmidtobreick, L.; Schütz, O.; Seifahrt, A.; Selman, F.; Stefanon, M.; Sterzik, M.
2007-08-01
Context: About 500 new variable stars enter the General Catalogue of Variable Stars (GCVS) every year. Most of them however lack spectroscopic observations, which remains critical for a correct assignement of the variability type and for the understanding of the object. Aims: The Variable Star One-shot Project (VSOP) is aimed at (1) providing the variability type and spectral type of all unstudied variable stars, (2) process, publish, and make the data available as automatically as possible, and (3) generate serendipitous discoveries. This first paper describes the project itself, the acquisition of the data, the dataflow, the spectroscopic analysis and the on-line availability of the fully calibrated and reduced data. We also present the results on the 221 stars observed during the first semester of the project. Methods: We used the high-resolution echelle spectrographs HARPS and FEROS in the ESO La Silla Observatory (Chile) to survey known variable stars. Once reduced by the dedicated pipelines, the radial velocities are determined from cross correlation with synthetic template spectra, and the spectral types are determined by an automatic minimum distance matching to synthetic spectra, with traditional manual spectral typing cross-checks. The variability types are determined by manually evaluating the available light curves and the spectroscopy. In the future, a new automatic classifier, currently being developed by members of the VSOP team, based on these spectroscopic data and on the photometric classifier developed for the COROT and Gaia space missions, will be used. Results: We confirm or revise spectral types of 221 variable stars from the GCVS. We identify 26 previously unknown multiple systems, among them several visual binaries with spectroscopic binary individual components. We present new individual results for the multiple systems V349 Vel and BC Gru, for the composite spectrum star V4385 Sgr, for the T Tauri star V1045 Sco, and for DM Boo which we re-classify as a BY Draconis variable. The complete data release can be accessed via the VSOP web site. Based on data obtained at the La Silla Observatory, European Southern Observatory, under program ID 077.D-0085.
NASA Technical Reports Server (NTRS)
Bohm-Vitense, Erika; Querci, Monique
1987-01-01
The characteristics of intrinsically variable stars are examined, reviewing the results of observations obtained with the IUE satellite since its launch in 1978. Selected data on both medium-spectral-class pulsating stars (Delta Cep stars, W Vir stars, and related groups) and late-type variables (M, S, and C giants and supergiants) are presented in spectra, graphs, and tables and described in detail. Topics addressed include the calibration of the the period-luminosity relation, Cepheid distance determination, checking stellar evolution theory by the giant companions of Cepheids, Cepheid masses, the importance of the hydrogen convection zone in Cepheids, temperature and abundance estimates for Population II pulsating stars, mass loss in Population II Cepheids, SWP and LWP images of cold giants and supergiants, temporal variations in the UV lines of cold stars, C-rich cold stars, and cold stars with highly ionized emission lines.
Variable Stars in M13. II.The Red Variables and the Globular Cluster Period-Luminosity Relation
NASA Astrophysics Data System (ADS)
Osborn, W.; Layden, A.; Kopacki, G.; Smith, H.; Anderson, M.; Kelly, A.; McBride, K.; Pritzl, B.
2017-06-01
New CCD observations have been combined with archival data to investigate the nature of the red variables in the globular cluster M13. Mean magnitudes, colors and variation ranges on the UBVIC system have been determined for the 17 cataloged red variables. 15 of the stars are irregular or semi-regular variables that lie at the top of the red giant branch in the color-magnitude diagram. Two stars are not, including one with a well-defined period and a light curve shape indicating it is an ellipsoidal or eclipsing variable. All stars redder than (V-IC)0=1.38 mag vary, with the amplitudes being larger with increased stellar luminosity and with bluer filter passband. Searches of the data for periodicities yielded typical variability cycle times ranging from 30 d up to 92 d for the most luminous star. Several stars have evidence of multiple periods. The stars' period-luminosity diagram compared to those from microlensing survey data shows that most M13 red variables are overtone pulsators. Comparison with the diagrams for other globular clusters shows a correlation between red variable luminosity and cluster metallicity.
Trajectories of Cepheid variable stars in the Galactic nuclear bulge
NASA Astrophysics Data System (ADS)
Matsunaga, Noriyuki
2012-06-01
The central region of our Galaxy provides us with a good opportunity to study the evolution of galactic nuclei and bulges because we can observe various phenomena in detail at the proximity of 8 kpc. There is a hierarchical alignment of stellar systems with different sizes; from the extended bulge, the nuclear bulge, down to the compact cluster around the central supermassive blackhole. The nuclear bulge contains stars as young as a few Myr, and even hosts the ongoing star formation. These are in contrast to the more extended bulge which are dominated by old stars, 10Gyr. It is considered that the star formation in the nuclear bulge is caused by fresh gas provided from the inner disk. In this picture, the nuclear bulge plays an important role as the interface between the gas supplier, the inner disk, and the galactic nucleus. Kinematics of young stars in the nuclear bulge is important to discuss the star forming process and the gas circulation in the Galactic Center. We here propose spectroscopic observations of Cepheid variable stars, 25 Myr, which we recently discovered in the nuclear bulge. The spectra taken in this proposal will allow timely estimates of the systemic velocities of the variable stars.
Line profile variation in delta-Orionis A, l-Orionis A, and 15 Monocerotis
NASA Technical Reports Server (NTRS)
Grady, C. A.; Snow, T. P.; Cash, W. C.
1984-01-01
The results of a monitoring program with IUE and Einstein are presented for three stars, delta-Ori A, l-Ori A, and 15 Mon. Line profile variability is observed in the UV profiles accessible to IUE and the relation between the variation in the different ions suggests that the ionization level is varying in the winds of these stars. This is consistent with Einstein observations of soft X-ray variability for two of the stars.
Pulsating stars in ω Centauri. Near-IR properties and period-luminosity relations
NASA Astrophysics Data System (ADS)
Navarrete, Camila; Catelan, Márcio; Contreras Ramos, Rodrigo; Alonso-García, Javier; Gran, Felipe; Dékány, István; Minniti, Dante
2017-09-01
ω Centauri (NGC 5139) contains many variable stars of different types, including the pulsating type II Cepheids, RR Lyrae and SX Phoenicis stars. We carried out a deep, wide-field, near-infrared (IR) variability survey of ω Cen, using the VISTA telescope. We assembled an unprecedented homogeneous and complete J and KS near-IR catalog of variable stars in the field of ω Cen. In this paper we compare optical and near-IR light curves of RR Lyrae stars, emphasizing the main differences. Moreover, we discuss the ability of near-IR observations to detect SX Phoenicis stars given the fact that the amplitudes are much smaller in these bands compared to the optical. Finally, we consider the case in which all the pulsating stars in the three different variability types follow a single period-luminosity relation in the near-IR bands.
Variable stars in Local Group Galaxies - II. Sculptor dSph
NASA Astrophysics Data System (ADS)
Martínez-Vázquez, C. E.; Stetson, P. B.; Monelli, M.; Bernard, E. J.; Fiorentino, G.; Gallart, C.; Bono, G.; Cassisi, S.; Dall'Ora, M.; Ferraro, I.; Iannicola, G.; Walker, A. R.
2016-11-01
We present the identification of 634 variable stars in the Milky Way dwarf spheroidal (dSph) satellite Sculptor based on archival ground-based optical observations spanning ˜24 yr and covering ˜2.5 deg2. We employed the same methodologies as the `Homogeneous Photometry' series published by Stetson. In particular, we have identified and characterized one of the largest (536) RR Lyrae samples so far in a Milky Way dSph satellite. We have also detected four Anomalous Cepheids, 23 SX Phoenicis stars, five eclipsing binaries, three field variable stars, three peculiar variable stars located above the horizontal branch - near to the locus of BL Herculis - that we are unable to classify properly. Additionally, we identify 37 long period variables plus 23 probable variable stars, for which the current data do not allow us to determine the period. We report positions and finding charts for all the variable stars, and basic properties (period, amplitude, mean magnitude) and light curves for 574 of them. We discuss the properties of the RR Lyrae stars in the Bailey diagram, which supports the coexistence of subpopulations with different chemical compositions. We estimate the mean mass of Anomalous Cepheids (˜1.5 M⊙) and SX Phoenicis stars (˜1 M⊙). We discuss in detail the nature of the former. The connections between the properties of the different families of variable stars are discussed in the context of the star formation history of the Sculptor dSph galaxy.
Multifrequency observations of symbiotic stars
NASA Technical Reports Server (NTRS)
Kenyon, Scott J.
1988-01-01
The discovery of symbiotic stars is described, and the results of multifrequency observations made during the past two decades are presented. Observational data identify symbiotic stars as long-period binary systems that can be divided into two basic physical classes: detached symbiotics containing a red giant (or a Mira variable), and semidetached symbiotics containing a lobe-filling red giant and a solar-type main sequence star. Three components are typically observed: (1) the cool giant component with an effective temperature of 2500-4000 K, which can be divided by the IR spectral classification into normal M giants (S-types) and heavily reddened Mira variables (D-types); (2) the hot companion displaying a bright blue continuum at UV wavelengths, which is sometimes also an X-ray source; and (3) a gaseous nebula enveloping the binary.
The First Pan-Starrs Medium Deep Field Variable Star Catalog
NASA Astrophysics Data System (ADS)
Flewelling, Heather
2013-01-01
We present the first Pan-Starrs 1 Medium Deep Field Variable Star Catalog (PS1-MDF-VSC). The Pan-Starrs 1 (PS1) telescope is a 1.8 meter survey telescope with a 1.4 Gigapixel camera, and is located in Haleakala, Hawaii. The Medium Deep survey, which consists of 10 fields located uniformly across the sky, totalling 70 square degrees, is observed each night, in 2-3 filters per field, with 8 exposures per filter. We have located and classified several hundred periodic variable stars within the Medium Deep fields, and we present the first catalog listing the properties of these variable stars.
CCD Times of Minima of Faint Eclipsing Binaries in 2000
NASA Astrophysics Data System (ADS)
Zejda, Miloslav
2002-06-01
196 CCD minima observations of 122 eclipsing binaries made by the author in 2000 are presented. The observed stars were chosen from the catalogue BRKA of observing programme of BRNO-Variable Star Section of CAS.
Asteroseismology of hybrid δ Scuti-γ Doradus pulsating stars
NASA Astrophysics Data System (ADS)
Sánchez Arias, J. P.; Córsico, A. H.; Althaus, L. G.
2017-01-01
Context. Hybrid δ Scuti-γ Doradus pulsating stars show acoustic (p) oscillation modes typical of δ Scuti variable stars, and gravity (g) pulsation modes characteristic of γ Doradus variable stars simultaneously excited. Observations from space missions such as MOST, CoRoT, and Kepler have revealed a large number of hybrid δ Scuti-γ Doradus pulsators, thus paving the way for an exciting new channel of asteroseismic studies. Aims: We perform detailed asteroseismological modelling of five hybrid δ Scuti-γ Doradus stars. Methods: A grid-based modeling approach was employed to sound the internal structure of the target stars using stellar models ranging from the zero-age main sequence to the terminal-age main sequence, varying parameters such as stellar mass, effective temperature, metallicity and core overshooting. Their adiabatic radial (ℓ = 0) and non-radial (ℓ = 1,2,3) p and g mode periods were computed. Two model-fitting procedures were used to search for asteroseismological models that best reproduce the observed pulsation spectra of each target star. Results: We derive the fundamental parameters and the evolutionary status of five hybrid δ Scuti-γ Doradus variable stars recently observed by the CoRoT and Kepler space missions: CoRoT 105733033, CoRoT 100866999, KIC 11145123, KIC 9244992, and HD 49434. The asteroseismological model for each star results from different criteria of model selection, in which we take full advantage of the richness of periods that characterises the pulsation spectra for this kind of star.
Spectral Properties and Variability of BIS objects
NASA Astrophysics Data System (ADS)
Gaudenzi, S.; Nesci, R.; Rossi, C.; Sclavi, S.; Gigoyan, K. S.; Mickaelian, A. M.
2017-10-01
Through the analysis and interpretation of newly obtained and of literature data we have clarified the nature of poorly investigated IRAS point sources classified as late type stars, belonging to the Byurakan IRAS Stars catalog. From medium resolution spectroscopy of 95 stars we have strongly revised 47 spectral types and newly classified 31 sources. Nine stars are of G or K types, four are N carbon stars in the Asymptotic Giant Branch, the others being M-type stars. From literature and new photometric observations we have studied their variability behaviour. For the regular variables we determined distances, absolute magnitudes and mass loss rates. For the other stars we estimated the distances, ranging between 1.3 and 10 kpc with a median of 2.8 kpc from the galactic plane, indicating that BIS stars mostly belong to the halo population.
Variable Circumstellar Disks of “Classical” Be Stars
NASA Astrophysics Data System (ADS)
Gerhartz, Cody; Bjorkman, K. S.; Wisniewski, J. P.
2013-06-01
Circumstellar disks are common among many stars, all spectral types, and at different stages of their lifetimes. Among the near-main sequence “Classical” Be stars, there is growing evidence that these disks can form, dissipate, and reform, on timescales that are differ from case to case. We present data for a subset of cases where observations have been obtained throughout the different phases of the disk cycle. Using data obtained with the SpeX instrument at the NASA IRTF, we examine the IR spectral line variability of these stars to better understand the timescales and the physical mechanisms involved. The primary focus in this study are the V/R variations that are observed in the sample. The second stage of our project is to examine a sample of star clusters known to contain Be stars, with the goal to develop a more statistically significant sample of variable circumstellar disk systems. With a robust multi-epoch study we can determine whether these Be stars exhibit disk-loss or disk-renewal phases. The larger sample will enable a better understanding of the prevalence of these disk events.
Type II Cepheids: evidence for Na-O anticorrelation for BL Her type stars?
NASA Astrophysics Data System (ADS)
Kovtyukh, V.; Yegorova, I.; Andrievsky, S.; Korotin, S.; Saviane, I.; Lemasle, B.; Chekhonadskikh, F.; Belik, S.
2018-06-01
The chemical composition of 28 Population II Cepheids and one RR Lyrae variable has been studied using high-resolution spectra. The chemical composition of W Vir variable stars (with periods longer than 8 d) is typical for the halo and thick disc stars. However, the chemical composition of BL Her variables (with periods of 0.8-4 d) is drastically different, although it does not differ essentially from that of the stars belonging to globular clusters. In particular, the sodium overabundance ([Na/Fe] ≈ 0.4) is reported for most of these stars, and the Na-O anticorrelation is also possible. The evolutionary tracks for BL Her variables (with a progenitor mass value of 0.8 solar masses) indicate that mostly helium-overabundant stars (Y = 0.30-0.35) can fall into the instability strip region. We suppose that it is the helium overabundance that accounts not only for the existence of BL Her variable stars but also for the observed abnormalities in the chemical composition of this small group of pulsating variables.
British variable star associations, 1848-1908
NASA Astrophysics Data System (ADS)
Toone, J.
2010-06-01
The study of variable stars lagged some distance behind solar system, positional (double star) and deep sky research until the middle part of the 19th century. Then, following F. W. A. Argelander's pioneering work in the 1840s, there was a striking increase in variable star research, particularly in Europe. The transformation was to such an extent that in the second half of the 19th century there were three attempts at forming variable star associations within Great Britain. The first in 1863 was the ASOVS, which never got off the ground. The second in 1883 was the LAS VSS, which was successfully launched but had somewhat limited achievements. The third launched in 1890 was the BAA VSS which was eventually both a resounding and lasting success. This paper is an outline history of these three associations up to a position of one hundred years ago (1908). [A summary version of this paper was presented at the joint meeting of the American Association of Variable Star Observers (AAVSO) and British Astronomical Association Variable Star Section (BAA VSS) held at Cambridge, UK, on 2008 April 11.
The ASAS-SN Catalog of Variable Stars I: The Serendipitous Survey
NASA Astrophysics Data System (ADS)
Jayasinghe, T.; Kochanek, C. S.; Stanek, K. Z.; Shappee, B. J.; Holoien, T. W.-S.; Thompson, Todd A.; Prieto, J. L.; Dong, Subo; Pawlak, M.; Shields, J. V.; Pojmanski, G.; Otero, S.; Britt, C. A.; Will, D.
2018-04-01
The All-Sky Automated Survey for Supernovae (ASAS-SN) is the first optical survey to routinely monitor the whole sky with a cadence of ˜2 - 3 days down to V≲ 17 mag. ASAS-SN has monitored the whole sky since 2014, collecting ˜100 - 500 epochs of observations per field. The V-band light curves for candidate variables identified during the search for supernovae are classified using a random forest classifier and visually verified. We present a catalog of 66,533 bright, new variable stars discovered during our search for supernovae, including 27,753 periodic variables and 38,780 irregular variables. V-band light curves for the ASAS-SN variables are available through the ASAS-SN variable stars database (https://asas-sn.osu.edu/variables). The database will begin to include the light curves of known variable stars in the near future along with the results for a systematic, all-sky variability survey.
Variability of Massive Young Stellar Objects in Cygnus-X
NASA Astrophysics Data System (ADS)
Thomas, Nancy H.; Hora, J. L.; Smith, H. A.
2013-01-01
Young stellar objects (YSOs) are stars in the process of formation. Several recent investigations have shown a high rate of photometric variability in YSOs at near- and mid-infrared wavelengths. Theoretical models for the formation of massive stars (1-10 solar masses) remain highly idealized, and little is known about the mechanisms that produce the variability. An ongoing Spitzer Space Telescope program is studying massive star formation in the Cygnus-X region. In conjunction with the Spitzer observations, we have conducted a ground-based near-infrared observing program of the Cygnus-X DR21 field using PAIRITEL, the automated infrared telescope at Whipple Observatory. Using the Stetson index for variability, we identified variable objects and a number of variable YSOs in our time-series PAIRITEL data of DR21. We have searched for periodicity among our variable objects using the Lomb-Scargle algorithm, and identified periodic variable objects with an average period of 8.07 days. Characterization of these variable and periodic objects will help constrain models of star formation present. This work is supported in part by the NSF REU and DOD ASSURE programs under NSF grant no. 0754568 and by the Smithsonian Institution.
A census of variability in globular cluster M 68 (NGC 4590)
NASA Astrophysics Data System (ADS)
Kains, N.; Arellano Ferro, A.; Figuera Jaimes, R.; Bramich, D. M.; Skottfelt, J.; Jørgensen, U. G.; Tsapras, Y.; Street, R. A.; Browne, P.; Dominik, M.; Horne, K.; Hundertmark, M.; Ipatov, S.; Snodgrass, C.; Steele, I. A.; Lcogt/Robonet Consortium; Alsubai, K. A.; Bozza, V.; Calchi Novati, S.; Ciceri, S.; D'Ago, G.; Galianni, P.; Gu, S.-H.; Harpsøe, K.; Hinse, T. C.; Juncher, D.; Korhonen, H.; Mancini, L.; Popovas, A.; Rabus, M.; Rahvar, S.; Southworth, J.; Surdej, J.; Vilela, C.; Wang, X.-B.; Wertz, O.; Mindstep Consortium
2015-06-01
Aims: We analyse 20 nights of CCD observations in the V and I bands of the globular cluster M 68 (NGC 4590) and use them to detect variable objects. We also obtained electron-multiplying CCD (EMCCD) observations for this cluster in order to explore its core with unprecedented spatial resolution from the ground. Methods: We reduced our data using difference image analysis to achieve the best possible photometry in the crowded field of the cluster. In doing so, we show that when dealing with identical networked telescopes, a reference image from any telescope may be used to reduce data from any other telescope, which facilitates the analysis significantly. We then used our light curves to estimate the properties of the RR Lyrae (RRL) stars in M 68 through Fourier decomposition and empirical relations. The variable star properties then allowed us to derive the cluster's metallicity and distance. Results: M 68 had 45 previously confirmed variables, including 42 RRL and 2 SX Phoenicis (SX Phe) stars. In this paper we determine new periods and search for new variables, especially in the core of the cluster where our method performs particularly well. We detect 4 additional SX Phe stars and confirm the variability of another star, bringing the total number of confirmed variable stars in this cluster to 50. We also used archival data stretching back to 1951 to derive period changes for some of the single-mode RRL stars, and analyse the significant number of double-mode RRL stars in M 68. Furthermore, we find evidence for double-mode pulsation in one of the SX Phe stars in this cluster. Using the different classes of variables, we derived values for the metallicity of the cluster of [Fe/H] = -2.07 ± 0.06 on the ZW scale, or -2.20 ± 0.10 on the UVES scale, and found true distance moduli μ0 = 15.00 ± 0.11 mag (using RR0 stars), 15.00 ± 0.05 mag (using RR1 stars), 14.97 ± 0.11 mag (using SX Phe stars), and 15.00 ± 0.07 mag (using the MV -[Fe/H] relation for RRL stars), corresponding to physical distances of 10.00 ± 0.49, 9.99 ± 0.21, 9.84 ± 0.50, and 10.00 ± 0.30 kpc, respectively. Thanks to the first use of difference image analysis on time-series observations of M 68, we are now confident that we have a complete census of the RRL stars in this cluster. The full Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/578/A128
Hands-On Astrophysics: Variable Stars in Math, Science, and Computer Education
NASA Astrophysics Data System (ADS)
Mattei, J. A.; Percy, J. R.
1999-12-01
Hands-On Astrophysics (HOA): Variable Stars in Math, Science, and Computer Education, is a project recently developed by the American Association of Variable Star Observers (AAVSO) with funds from the National Science Foundation. HOA uses the unique methods and the international database of the AAVSO to develop and integrate students' math and science skills through variable star observation and analysis. It can provide an understanding of basic astronomy concepts, as well as interdisciplinary connections. Most of all, it motivates the user by exposing them to the excitement of doing real science with real data. Project materials include: a database of 600,000 variable star observations; VSTAR (a data plotting and analysis program), and other user friendly software; 31 slides and 14 prints of five constellations; 45 variable star finder charts; an instructional videotape in three 15-minute segments; and a 560-page student's and teacher's manual. These materials support the National Standards for Science and Math education by directly involving the students in the scientific process. Hands-On Astrophysics is designed to be flexible. It is organized so that it can be used at many levels, in many contexts: for classroom use from high school to college level, or for individual projects. In addition, communication and support can be found through the AAVSO home page on the World Wide Web: http://www.aavso.org. The HOA materials can be ordered through this web site or from the AAVSO, 25 Birch Street Cambridge, MA 02138, USA. We gratefully acknowledge the education grant ESI-9154091 from the National Science Foundation which funded the development of this project.
Skysurvey Results of RotseIIID Data
NASA Astrophysics Data System (ADS)
Bilir, Cansu; Varol Keskin, MR..
2016-07-01
The aim of this thesis is to find variable stars from the ROTSEIIID fields data files. In order to determine the variable stars, a simple but effective software, that works seamlessly, has been developed. Robotic Optical Transient Search Experiment (ROTSE) is a worldwide project with four robotic telescopes, established in order to follow the optical afterglow radiation of the Gamma-Ray Bursts (GRB). In this study, the observations of the fields obtained from the ROTSEIIID Telescope located in the TÜBİTAK (Scientific and Technological Research Council of Turkey) National Observatory were used. ROTSEIIID creates a calibrated object list (cobj) from the observations gathered automatically. The different values of each star (RA, DEC, Pixel Coordinates, M, MERR, Flags etc.) can be found in this generated list. In this thesis these values are extracted from data files. A php programme was developed in order to extract time series data of every star in a field. It also searches period, and if found, calculates phases for this data. The goal of this study is to determine the variable stars, especially unknown variables. Ds9 and fv programs are used for dealing with FITS files. Also flowchart of program is given in this thesis. In addition Debil (for finding some parameters of detached eclipsing binary stars) and Gnuplot (for drawing graphics) are used by php program. Using gnuplot, magnitude-time and period-time graphics of each star are plotted. The searching program is used for some different fields of RotseIIID data files. On the basis of the results of this research, 42 variable stars found and 14 of them are listed end of the thesis with their light curves. The data used in this thesis will be studied more detailed and research results of new/unknown variable stars will be published along the Msc thesis. We are still studying on the data of new variable stars which were discovered by this research and the results will be published in near future...
NASA Astrophysics Data System (ADS)
Koeltzsch, A.; Mugrauer, M.; Raetz, St.; Schmidt, T. O. B.; Roell, T.; Eisenbeiss, T.; Hohle, M. M.; Vaňko, M.; Ginski, Ch.; Marka, C.; Moualla, M.; Schreyer, K.; Broeg, Ch.; Neuhäuser, R.
2009-05-01
We report on observation and determination of rotational periods of ten weak-line T Tauri stars in the Cepheus-Cassiopeia star-forming region. Observations were carried out with the Cassegrain-Teleskop-Kamera (CTK) at University Observatory Jena between 2007 June and 2008 May. The periods obtained range between 0.49 d and 5.7 d, typical for weak-line and post T Tauri stars. Based on observations obtained with telescopes of the University Observatory Jena, which is operated by the Astrophysical Institute of the Friedrich-Schiller-University.
Visual Spectroscopy of R Scuti (Poster abstract)
NASA Astrophysics Data System (ADS)
Undreiu, L.; Chapman, A.
2015-06-01
(Abstract only) We are currently conducting a visual spectral analysis of the brightest known RV Tauri variable star, R Scuti. The goal of our undergraduate research project is to investigate this variable star's erratic nature by collecting spectra at different times in its cycle. Starting in late June of 2014 and proceeding into the following four months, we have monitored the alterations in the spectral characteristics that accompany the progression of R Sct's irregular cycle. During this time, we were given the opportunity to document the star's most recent descent from maximum brightness V~5 to a relatively deep minimum of V~7.5. Analysis of the data taken during the star's period of declining magnitude has provided us with several interesting findings that concur with the observations of more technically sophisticated studies. Following their collection, we compared our observations and findings with archived material in the hopes of facilitating a better understanding of the physical state of RV Tauri stars and the perplexing nature of their evolution. Although identification of the elements in the star's bright phase proved to be challenging, documenting clear absorption features in its fainter stage was far less difficult. As previously reported in similar studies, we identified prominent TiO molecular absorption bands near R Sct's faintest state, typical of mid-M spectral type stars. In addition to these TiO absorption lines, we report the presence of many more metallic lines in the spectral profiles obtained near star's minimum. Supportive of previously published hypotheses regarding the causation of its variability, we observed significant variation in the star's spectral characteristics throughout different phases of its cycle. We are hopeful that our observations will make a meaningful contribution to existing databases and help advance our collective understanding of RV Tauri stars and their evolutionary significance.
NASA Astrophysics Data System (ADS)
Krtičková, I.; Krtička, J.
2018-06-01
Stars that exhibit a B[e] phenomenon comprise a very diverse group of objects in a different evolutionary status. These objects show common spectral characteristics, including the presence of Balmer lines in emission, forbidden lines and strong infrared excess due to dust. Observations of emission lines indicate illumination by an ultraviolet ionizing source, which is key to understanding the elusive nature of these objects. We study the ultraviolet variability of many B[e] stars to specify the geometry of the circumstellar environment and its variability. We analyse massive hot B[e] stars from our Galaxy and from the Magellanic Clouds. We study the ultraviolet broad-band variability derived from the flux-calibrated data. We determine variations of individual lines and the correlation with the total flux variability. We detected variability of the spectral energy distribution and of the line profiles. The variability has several sources of origin, including light absorption by the disc, pulsations, luminous blue variable type variations, and eclipses in the case of binaries. The stellar radiation of most of B[e] stars is heavily obscured by circumstellar material. This suggests that the circumstellar material is present not only in the disc but also above its plane. The flux and line variability is consistent with a two-component model of a circumstellar environment composed of a dense disc and an ionized envelope. Observations of B[e] supergiants show that many of these stars have nearly the same luminosity, about 1.9 × 105 L⊙, and similar effective temperatures.
ZZ Canis Minoris as a symbiotic star
NASA Technical Reports Server (NTRS)
Bopp, B. W.
1984-01-01
The H-aplha and Na I D-line regions of the M6 giant star ZZ Canis Minoris (ZZ CMi) were observed with the Kitt Peak coude feed telescope and a CCD detector. It is shown that ZZ CMi has similar spectroscopic and photoproperties to the symbiotic star EG And. The data are used to argue for the classification of ZZ CMi as a symbiotic star despite its current listing in the General Catalog of Variable Stars (GCVS) as a semi-regular variable. The infrared magnitudes of ZZ CMi and the known symbiotic stars are compared in a table.
Image-Subtraction Photometry of Variable Stars in the Field of the Globular Cluster NGC 6934
NASA Astrophysics Data System (ADS)
Kaluzny, J.; Olech, A.; Stanek, K. Z.
2001-03-01
We present CCD BVI photometry of 85 variable stars from the field of the globular cluster NGC 6934. The photometry was obtained with the image subtraction package ISIS. 35 variables are new identifications: 24 RRab stars, five RRc stars, two eclipsing binaries of W UMa-type, one SX Phe star, and three variables of other types. Both detected contact binaries are foreground stars. The SX Phe variable belongs most likely to the group of cluster blue stragglers. Large number of newly found RR Lyr variables in this cluster, as well as in other clusters recently observed by us, indicates that total RR Lyr population identified up to date in nearby galactic globular clusters is significantly (>30%) incomplete. Fourier decomposition of the light curves of RR Lyr variables was used to estimate the basic properties of these stars. From the analysis of RRc variables we obtain a mean mass of M=0.63 Msolar, luminosity logL/Lsolar=1.72, effective temperature Teff=7300 and helium abundance Y=0.27. The mean values of the absolute magnitude, metallicity (on Zinn's scale) and effective temperature for RRab variables are MV=0.81, [Fe/H]=-1.53 and Teff=6450, respectively. From the B-V color at minimum light of the RRab variables we obtained the color excess to NGC 6934 equal to E(B-V)=0.09+/-0.01. Different calibrations of absolute magnitudes of RRab and RRc available in literature were used to estimate apparent distance modulus of the cluster: (m-M)V=16.09+/-0.06. We note a likely error in the zero point of the HST-based V-band photometry of NGC 6934 recently presented by Piotto et al. Among analyzed sample of RR Lyr stars we have detected a short period and low amplitude variable which possibly belongs to the group of second overtone pulsators (RRe subtype variables). The BVI photometry of all variables is available electronically via anonymous ftp. The complete set of the CCD frames is available upon request. Based on observations obtained with the 1.2 m Telescope at the F. L. Whipple Observatory of the Harvard-Smithsonian Center for Astrophysics.
Variable stars in the dwarf galaxy GR 8 (DDO 155)
NASA Technical Reports Server (NTRS)
Tolstoy, Eline; Saha, A.; Hoessel, John G.; Danielson, G. Edward
1995-01-01
Observations of the resolved stars in dwarf galaxy GR 8, obtained over the period 1980 February to 1994 March, are presented. Thirty-four separate epochs were searched for variable stars, and a total of six were found, of which one has Cepheid characteristics. After correction for Galactic extinction this single Cepheid yields a distance modulus of m - M = 26.75 +/- 0.35. This corresponds to a distance of 2.24 Mpc, placing GR 8 near the Local Group (LG) zero-velocity surface. The other five variable stars are very red, and possibly have long periods of order 100 days or more.
VizieR Online Data Catalog: Mira stars discovered in LAMOST DR4 (Yao+, 2017)
NASA Astrophysics Data System (ADS)
Yao, Y.; Liu, C.; Deng, L.; de Grijs, R.; Matsunaga, N.
2017-10-01
By the end of 2016 March, the wide-field Large sky Area Multi-Object fiber Spectroscopic Telescope (LAMOST) DR4 catalog had accumulated 7681185 spectra (R=1800), of which 6898298 were of stars. We compiled a photometrically confirmed sample of Mira variables from the Kiso Wide-Field Camera (KWFC) Intensive Survey of the Galactic Plane (KISOGP; Matsunaga 2017, arXiv:1705.08567), the American Association of Variable Star Observers (AAVSO) International Database Variable Star Index (VSX; Watson 2006, B/vsx, version 2017-05-02; we selected stars of variability type "M"), and the SIMBAD Astronomical Database. We first cross-matched the KISOGP and VSX Miras with the LAMOST DR4 catalog. Finally, we cross-matched the DR4 catalog with the SIMBAD database. See section 2. (1 data file).
Identification of Young Stellar Variables with KELT for K2 . I. Taurus Dippers and Rotators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, Joseph E.; Cargile, Phillip A.; Ansdell, Megan
One of the most well-studied young stellar associations, Taurus–Auriga, was observed by the extended Kepler mission, K2 , in the spring of 2017. K2 Campaign 13 (C13) is a unique opportunity to study many stars in this young association at high photometric precision and cadence. Using observations from the Kilodegree Extremely Little Telescope (KELT) survey, we identify “dippers,” aperiodic and periodic variables among K2 C13 target stars. This release of the KELT data (light curve data in e-tables) provides the community with long-time baseline observations to assist in the understanding of the more exotic variables in the association. Transient-like phenomenamore » on timescales of months to years are known characteristics in the light curves of young stellar objects, making contextual pre- and post- K2 observations critical to understanding their underlying processes. We are providing a comprehensive set of the KELT light curves for known Taurus–Auriga stars in K2 C13. The combined data sets from K2 and KELT should permit a broad array of investigations related to star formation, stellar variability, and protoplanetary environments.« less
Massive stars: flare activity due to infalls of comet-like bodies
NASA Astrophysics Data System (ADS)
Ibadov, Subhon; Ibodov, Firuz S.
2015-01-01
Passages of comet-like bodies through the atmosphere/chromosphere of massive stars at velocities more than 600 km/s will be accompanied, due to aerodynamic effects as crushing and flattening, by impulse generation of hot plasma within a relatively very thin layer near the stellar surface/photosphere as well as ``blast'' shock wave, i.e., impact-generated photospheric stellar/solar flares. Observational manifestations of such high-temperature phenomena will be eruption of the explosive layer's hot plasma, on materials of the star and ``exploding'' comet nuclei, into the circumstellar environment and variable anomalies in chemical abundances of metal atoms/ions like Fe, Si etc. Interferometric and spectroscopic observations/monitoring of young massive stars with dense protoplanetary discs are of interest for massive stars physics/evolution, including identification of mechanisms for massive stars variability.
Periodic and Aperiodic Variability in the Molecular Cloud ρ Ophiuchus
NASA Astrophysics Data System (ADS)
Parks, J. Robert; Plavchan, Peter; White, Russel J.; Gee, Alan H.
2014-03-01
Presented are the results of a near-IR photometric survey of 1678 stars in the direction of the ρ Ophiuchus (ρ Oph) star forming region using data from the 2MASS Calibration Database. For each target in this sample, up to 1584 individual J-, H-, and Ks -band photometric measurements with a cadence of ~1 day are obtained over three observing seasons spanning ~2.5 yr it is the most intensive survey of stars in this region to date. This survey identifies 101 variable stars with ΔKs -band amplitudes from 0.044 to 2.31 mag and Δ(J - Ks ) color amplitudes ranging from 0.053 to 1.47 mag. Of the 72 young ρ Oph star cluster members included in this survey, 79% are variable; in addition, 22 variable stars are identified as candidate members. Based on the temporal behavior of the Ks time-series, the variability is distinguished as either periodic, long time-scale or irregular. This temporal behavior coupled with the behavior of stellar colors is used to assign a dominant variability mechanism. A new period-searching algorithm finds periodic signals in 32 variable stars with periods between 0.49 to 92 days. The chief mechanism driving the periodic variability for 18 stars is rotational modulation of cool starspots while 3 periodically vary due to accretion-induced hot spots. The time-series for six variable stars contains discrete periodic "eclipse-like" features with periods ranging from 3 to 8 days. These features may be asymmetries in the circumstellar disk, potentially sustained or driven by a proto-planet at or near the co-rotation radius. Aperiodic, long time-scale variations in stellar flux are identified in the time-series for 31 variable stars with time-scales ranging from 64 to 790 days. The chief mechanism driving long time-scale variability is variable extinction or mass accretion rates. The majority of the variable stars (40) exhibit sporadic, aperiodic variability over no discernable time-scale. No chief variability mechanism could be identified for these variable stars.
More Unusual Light Curves from Kepler
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-03-01
Twenty-three new objects have been added to the growing collection of stars observed to have unusual dips in their light curves. A recent study examines these stars and the potential causes of their strange behavior.An Influx of DataThe primary Kepler mission provided light curves for over 100,000 stars, and its continuation K2 is observing another 20,000 stars every three months. As we enter an era where these enormous photometric data sets become commonplace Gaia will obtain photometry for millions of stars, and LSST billions its crucial that we understand the different categories of variability observed in these stars.The authors find three different types of light curves among their 23 unusual stars. Scallop-shell curves (top) show many undulations; persistent flux-dip class curves (middle) have discrete triangularly shaped flux dips; transient, narrow dip class curves (bottom) have only one dip that is variable in depth. The authors speculate a common cause for the scallop-shell and persistent flux-dip stars, and a different cause for the transient flux-dip stars. [Stauffer et al. 2017]After filtering out the stars with planets, those in binary systems, those with circumstellar disks, and those with starspots, a number of oddities remain: a menagerie of stars with periodic variability that cant be accounted for in these categories. Some of these stars are now famous (for instance, Boyajians star); some are lesser known. But by continuing to build up this sample of stars with unusual light curves, we have a better chance of understanding the sources of variability.Building the MenagerieTo this end, a team of scientists led by John Stauffer (Spitzer Science Center at Caltech) has recently hunted for more additions to this sample in the K2 data set. In particular, they searched through the light curves from stars in the Oph and Upper Scorpius star-forming region a data set that makes up the largest collection of high-quality light curves for low-mass, pre-main-sequence stars ever obtained.In these light curves, Stauffer and collaborators found a set of 23 very low-mass, mid-to-late-type M dwarfs with unusual variability in their light curves. The variability is consistent with the stars rotation period where measured which suggests that whatever causes the dips in the light curve, its orbiting at the same rate as the star spins.Causes of Variability?These plots show how the properties of these 23 stars compare to those of the rest of the stars in their cluster (click for a closer look!). For all but the rotation rate, they are typical. But the stars with scallop-shaped light curves have among the shortest periods in Upper Sco, with somenear the theoretical break-up for stars of their age. [Stauffer et al. 2017]The authors categorize the 23 stars into two main groups.The first group consists of 19 stars with short periods; more than half of them rotate within a factor of two of their predicted breakup period! Many of these show sudden changes in their light-curve morphology, often after a stellar flare. The authors propose that the variability in these light curves might be caused by warm coronal gas clouds that are organized into a structured toroidal shape around the star.The second group consists of the remaining four stars, which have slightly longer periods. The light curves show a single short-duration flux dip with highly variable depth and shape superposed on normal, spotted-star light curves. The authors best guess for these four stars is that there are clouds of dusty debris circling the star, possibly orbiting a close-in planet or resulting from a recent collisional event.Stauffer and collaborators are currently developing more detailed models for these stars based on the possible variability scenarios. The next step, they state, is to determine if the gas in these structures have properties necessary to generate the light-curve features we see.CitationJohn Stauffer et al 2017 AJ 153 152. doi:10.3847/1538-3881/aa5eb9
NASA Technical Reports Server (NTRS)
Stauffer, John R.; Schild, Rudolph A.; Baliunas, Sallie L.; Africano, John L.
1987-01-01
Light curves and period estimates were obtained for several Pleiades and Alpha Persei cluster K dwarfs which were identified as rapid rotators in earlier spectroscopic studies. A few of the stars have previously-published light curves, making it possible to study the long-term variability of the light-curve shapes. The general cause of the photometric variability observed for these stars is an asymmetric distribution of photospheric inhomogeneities (starspots). The presence of these inhomogeneities combined with the rotation of the star lead to the light curves observed. The photometric periods derived are thus identified with the rotation period of the star, making it possible to estimate equatorial rotational velocities for these K dwarfs. These data are of particular importance because the clusters are sufficiently young that stars of this mass should have just arrived on the main sequence. These data could be used to estimate the temperatures and sizes of the spot groups necessary to produce the observed light curves for these stars.
Kepler Planet Detection Mission: Introduction and First Results
NASA Technical Reports Server (NTRS)
Borucki, William; Koch, David; Basri, Gibor; Batalha, Natalie; Brown, Timothy; Lissauer, Jack J.; Morrison, David; Rowe, Jason; Bryson, Stephen T.; Dotson, Jessie;
2010-01-01
The Kepler Mission is designed to determine the frequency of Earth-size and rocky planets in and near the habitable zone (HZ) of solar-like stars. The HZ is defined to be the region of space where a rocky planet could maintain liquid water on its surface. Kepler is the 10th competitively-selected Discovery Mission and was launched on March 6, 2009. Since completing its commissioning, Kepler has observed over 156,000 stars simultaneously and near continuously to search for planets that periodically pass in front of their host star (transit). The photometric precision is approximately 23 ppm for 50% of the 12th magnitude dwarf stars for an integration period of 6.5 hours. During the first 3 months of operation the photometer detected transit-like signatures from more than 200 stars. Careful examination shows that many of these events are false-positives such as small stars orbiting large stars or blends of target stars with eclipsing binary stars. Ground-based follow-up observations confirm the discovery of five new exoplanets with sizes between 0.37 andl.6 Jupiter radii (R(sub J)) and orbital periods ranging from 3.2 to 4.9 days. Ground-based observations with the Keck 1, Hobby-Ebberly, Hale, WIYN, MMT, Tillinghast, Shane, and Nordic Optical Telescopes are used to vet the planetary candidates and measure the masses of the putative planets. Observations of occultations and phase variations of hot, short-period planets such as HT-P-7b provide a probe of atmospheric properties. Asteroseismic analysis already shows the presence of p-mode oscillations in several stars. Such observations will be used to measure the mean stellar density and infer the stellar size and age. For stars too dim to permit asteroseismology, observations of the centroid motion of target stars will be used to measure the parallax and be combined with photometric measurements to estimate stellar sizes. Four open clusters are being observed to determine stellar rotation rates as a function of age and spectral type. Many different types of stellar variability are observed with unprecedented precision and over a wide range of time scales. Solar-like photometric variability of thousands of field stars is being studied to determine how photometric variability and the stellar rotation rates change with stellar age and metallicity. A wide variety of other astrophysical phenomena have also been observed. The data are being analyzed at the Ames Research Center and archived at the MAST at STScI. The Kepler Mission also supports a vigorous Guest Observer Program.
Southern Clusters for Standardizing CCD Photometry
NASA Astrophysics Data System (ADS)
Moon, T. T.
2017-06-01
Standardizing photometric measurements typically involves undertaking all-sky photometry. This can be laborious and time-consuming and, for CCD photometry, particularly challenging. Transforming photometry to a standard system is, however, a crucial step when routinely measuring variable stars, as it allows photoelectric measurements from different observers to be combined. For observers in the northern hemisphere, standardized UBVRI values of stars in open clusters such as M67 and NGC 7790 have been established, greatly facilitating quick and accurate transformation of CCD measurements. Recently the AAVSO added the cluster NGC 3532 for southern hemisphere observers to similarly standardize their photometry. The availability of NGC 3532 standards was announced on the AAVSO Variable Star Observing, Photometry forum on 27 October 2016. Published photometry, along with some new measurements by the author, provide a means of checking these NGC 3532 standards which were determined through the AAVSO's Bright Star Monitor (BSM) program (see: https://www.aavso.org/aavsonet-epoch-photometry-database). New measurements of selected stars in the open clusters M25 and NGC 6067 are also included.
Simultaneous UV and optical study of O star winds and UV and optical covariability of O star winds
NASA Technical Reports Server (NTRS)
Nichols, Joy S.
1995-01-01
Simultaneous ultraviolet and optical observations of 10 bright O stars were organized in several observing campaigns lasting 3-6 days each. The observing campaigns included 12 observatories in the Northern hemisphere obtaining high resolution spectroscopy, photometry, and polarimetry, as well as 24-hour coverage with the IUE (International Ultraviolet Explorer) observatory. Over 600 high dispersion SWP spectra were acquired with IUE at both NASA and VILSPA for the completion of this work. The massive amount of data from these observing campaigns, both from IUE and the ground-based instruments, has been reduced and analyzed. The accompanying paper describes the data acquisition, analysis, and conclusions of the study performed. The most important results of this study are the strong confirmation of the ubiquitous variability of winds of O stars, and the critical correlation between rotation of the star and the wind variability as seen in the ultraviolet and optical spectral lines.
Observing variable stars at the University of Athens Observatory
NASA Astrophysics Data System (ADS)
Gazeas, K.; Manimanis, V. N.; Niarchos, P. G.
In 1999 the University of Athens installed a 0.4-m Cassegrain telescope (CCT-16, by DFM Engineering) on the roof of the Department of Astrophysics, Astronomy and Mechanics, equipped with a ST-8 CCD camera and Bessel UBVRI filters. Although the telescope was built for educational purposes, we found it can be a perfect research instrument, as we can obtain fine quality light curves of bright variable stars, even from a place close to the city center. Light curves of the δ Scuti star V1162 Ori and of the sdB star PG 1336-018 are presented, showing the ability of a 40-cm telescope to detect negligible luminosity fluctuations of relatively bright variable stars. To date, we succeed in making photometry of stars down to 15th magnitude with satisfactory results. We expect to achieve even better results in the future, as our methods still improve, and as the large number of relatively bright stars gives us the chance to study various fields of CCD photometry of variables.
Detection of a weak maser emission pedestal associated with the SiO maser. [in variable late stars
NASA Technical Reports Server (NTRS)
Snyder, L. E.; Dickinson, D. F.; Brown, L. W.; Buhl, D.
1978-01-01
Results are reported for high-spectral-resolution observations of the v = 1, J = 1-0 SiO maser sources at 43,122.027 MHz (6.95 mm wavelength) associated with the variable stars Omega Cet, NML Tau, VY CMa, R Leo, W Hya, VX Sgr, NML Cyg, and R Cas. A weak underlying maser emission pedestal is clearly observed in the spectra of all but NML Cyg and R Cas. The data indicate that the underlying pedestal of SiO emission appears to originate in a shell-like region around the star, has a thermal appearance even though it must be due to weak maser emission, and appears to be part of the spectral signature of SiO maser emission from late-type stars. It is found that the center velocities of the pedestals may be used to determine stellar radial velocities. Observations of large-scale time variations in the intensity of the Ori A SiO maser and the detection of weak maser pedestals associated with each of the two strong emission-feature groups in Orion are also discussed. It is suggested that the Orion molecular cloud might contain two late-type long-period variable stars that may be semiregular variables.
The Pan-STARRS 1 Medium Deep Field Variable Star Catalog
NASA Astrophysics Data System (ADS)
Flewelling, Heather
2015-01-01
We present the first Pan-STARRS 1 Medium Deep Field Variable Star Catalog (PS1-MDF-VSC). The Pan-STARRS 1 (PS1) telescope is a 1.8 meter survey telescope with a 1.4 Gigapixel camera, located in Haleakala, Hawaii. The Medium Deep survey, which consists of 10 fields located uniformly across the sky, totalling 70 square degrees, is observed each night, in 2-3 filters per field, with 8 exposures per filter, resulting in 3000-4000 data points per star over a time span of 3.5 years. To find the variables, we select the stars with > 200 detections, between 16th and 21st magnitude. There are approximately 500k stars that fit this criteria, they then go through a lomb-scargle fitting routine to determine periodicity. After a periodicity cut, the ~400 candidates are classified by eye into different types of variable stars. We have identified several hundred variable stars, with periods ranging between a few minutes to a few days, and about half are not previously identified in the literature. We compare our results to the stripe 82 variable catalog, which overlaps part of the sky with the PS1 catalog.
The Pan-STARRS 1 Medium Deep Field Variable Star Catalog
NASA Astrophysics Data System (ADS)
Flewelling, Heather
2015-08-01
We present the first Pan-STARRS 1 Medium Deep Field Variable Star Catalog (PS1-MDF-VSC). The Pan-STARRS 1 (PS1) telescope is a 1.8 meter survey telescope with a 1.4 Gigapixel camera, located in Haleakala, Hawaii. The Medium Deep survey, which consists of 10 fields located uniformly across the sky, totalling 70 square degrees, is observed each night, in 2-3 filters per field, with 8 exposures per filter, resulting in 3000-4000 data points per star over a time span of 3.5 years. To find the variables, we select the stars with > 200 detections, between 16th and 21st magnitude. There are approximately 500k stars that fit this criteria, they then go through a lomb-scargle fitting routine to determine periodicity. After a periodicity cut, the ~400 candidates are classified by eye into different types of variable stars. We have identified several hundred variable stars, with periods ranging between a few minutes to a few days, and about half are not previously identified in the literature. We compare our results to the stripe 82 variable catalog, which overlaps part of the sky with the PS1 catalog.
Frequency Analysis of the RRc Variables of the MACHO Database for the LMC
NASA Astrophysics Data System (ADS)
Kovács, G.; Alcock, C.; Allsman, R.; Alves, D.; Axelrod, T.; Becker, A.; Bennett, D.; Clement, C.; Cook, K. H.; Drake, A.; Freeman, K.; Geha, M.; Griest, K.; Kurtz, D. W.; Lehner, M.; Marshall, S.; Minniti, D.; Nelson, C.; Peterson, B.; Popowski, P.; Pratt, M.; Quinn, P.; Rodgers, A.; Rowe, J.; Stubbs, C.; Sutherland, W.; Tomaney, A.; Vandehei, T.; Welch, D. L.; MACHO Collaboration
We present the first massive frequency analysis of the 1200 first overtone RR Lyrae stars in the Large Magellanic Cloud observed in the first 4.3 yr of the MACHO project. Besides the many new double-mode variables, we also discovered stars with closely spaced frequencies. These variables are most probably nonradial pulsators.
Polarimetric measures of selected variable stars
NASA Astrophysics Data System (ADS)
Elias, N. M., II; Koch, R. H.; Pfeiffer, R. J.
2008-10-01
Aims: The purpose of this paper is to summarize and interpret unpublished optical polarimetry for numerous program stars that were observed over the past decades at the Flower and Cook Observatory (FCO), University of Pennsylvania. We also make the individual calibrated measures available for long-term comparisons with new data. Methods: We employ three techniques to search for intrinsic variability within each dataset. First, when the observations for a given star and filter are numerous enough and when a period has been determined previously via photometry or spectroscopy, the polarimetric measures are plotted versus phase. If a statistically significant pattern appears, we attribute it to intrinsic variability. Second, we compare means of the FCO data to means from other workers. If they are statistically different, we conclude that the object exhibits long-term intrinsic variability. Third, we calculate the standard deviation for each program star and filter and compare it to the standard deviation estimated from comparable polarimetric standards. If the standard deviation of the program star is at least three times the value estimated from the polarimetric standards, the former is considered intrinsically variable. All of these statements are strengthened when variability appears in multiple filters. Results: We confirm the existence of an electron-scattering cloud at L1 in the β Per system, and find that LY Aur and HR 8281 possess scattering envelopes. Intrinsic polarization was detected for Nova Cas 1993 as early as day +3. We detected polarization variability near the primary eclipse of 32 Cyg. There is marginal evidence for polarization variability of the β Cepheid type star γ Peg. The other objects of this class exhibited no variability. All but one of the β Cepheid objects (ES Vul) fall on a tight linear relationship between linear polarization and E(B-V), in spite of the fact that the stars lay along different lines of sight. This dependence falls slightly below the classical upper limit of Serkowski, Mathewson, and Ford. The table, which contains the polarization observations of the program stars discussed in this paper, is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/489/911
Variable Circumstellar Disks of “Classical” Be Stars, Part 2
NASA Astrophysics Data System (ADS)
Gerhartz, Cody; Davidson, J. W.; Bjorkman, K. S.; Wisniewski, J. P.
2014-01-01
Circumstellar disks are common among many stars, all spectral types, and at different stages of their lifetimes. Among the near-main sequence “Classical” Be stars, there is growing evidence that these disks can form, dissipate, and reform, on timescales that are differ from case to case. We present data for a subset of cases where observations have been obtained throughout the different phases of the disk cycle. Using data obtained with the SpeX instrument at the NASA IRTF, we examine the IR spectral line variability of these stars to better understand the timescales and the physical mechanisms involved. The primary focus in this study are the V/R variations that are observed in the sample. A complete run of all double-peaked velocity profiles in the sample is now complete. The second stage of our project is to examine a sample of star clusters known to contain Be stars, with the goal to develop a more statistically significant sample of variable circumstellar disk systems. With a robust multi-epoch study we can determine whether these Be stars exhibit disk-loss or disk-renewal phases. The larger sample will enable an understanding of the prevalence of these disk events.
Planetary and Stellar Data Products Expected From The Kepler Mission
NASA Technical Reports Server (NTRS)
Borucki, W. J.; Koch, David G.; Basri, Gibor; Cochran, William; Dunham, Edward W.; Gilliland, Ronald; Jenkins, Jon M.; Caldwell, Douglas; Kondo, Yoji; Latham, David;
2002-01-01
The Kepler Mission is a Discovery-class mission scheduled to be launched in the 2006-2007 time frame. It is a wide field of view photometer with a 95 m aperture designed to attain a photometric precision of 2 parts in 10^5 for the 12th magnitude stars. It will continually observe 100,000 main-sequence stars from 9th to 14th magnitude for a period of four years with a cadence of 4/hour. This database should be unique in its photometric precision, cadence, and duration of observations. Several hundred terrestrial-size planets will be detected if they are common around solar-like stars. Based on the current results of Doppler-velocity searches, over a thousand giant planets will also be found. A guest investigator program is planned that would provide the opportunity to observe thousands of other objects in the 105 square degree FOV. Such objects could include stars with micro-variability, other intrinsic variables, cataclysmic variables, eclipsing binaries (including x-ray binaries), and possibly AGN. A ground-based program to classify all 225,000 stars in the FOV and to do a detailed examination of a subset of the stars that show planetary companions is planned. Doppler-velocity observations will be made to find the presence of giant planets not seen in transit. The data will be rapidly released to the community for follow up observations and for changes to the guest investigator program.
NASA Astrophysics Data System (ADS)
Dong, Hui; Schödel, Rainer; Williams, Benjamin F.; Nogueras-Lara, Francisco; Gallego-Cano, Eulalia; Gallego-Calvente, Teresa; Wang, Q. Daniel; Morris, Mark R.; Do, Tuan; Ghez, Andrea
2017-09-01
We used 4-yr baseline Hubble Space Telescope/Wide Field Camera 3 IR observations of the Galactic Centre in the F153M band (1.53 μm) to identify variable stars in the central ∼2.3 arcmin × 2.3 arcmin field. We classified 3845 long-term (periods from months to years) and 76 short-term (periods of a few days or less) variables among a total sample of 33 070 stars. For 36 of the latter ones, we also derived their periods (<3 d). Our catalogue not only confirms bright long period variables and massive eclipsing binaries identified in previous works but also contains many newly recognized dim variable stars. For example, we found δ Scuti and RR Lyrae stars towards the Galactic Centre for the first time, as well as one BL Her star (period < 1.3 d). We cross-correlated our catalogue with previous spectroscopic studies and found that 319 variables have well-defined stellar types, such as Wolf-Rayet, OB main sequence, supergiants and asymptotic giant branch stars. We used colours and magnitudes to infer the probable variable types for those stars without accurately measured periods or spectroscopic information. We conclude that the majority of unclassified variables could potentially be eclipsing/ellipsoidal binaries and Type II Cepheids. Our source catalogue will be valuable for future studies aimed at constraining the distance, star formation history and massive binary fraction of the Milky Way nuclear star cluster.
PHOTOMETRY OF VARIABLE STARS FROM DOME A, ANTARCTICA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Lingzhi; Macri, Lucas M.; Krisciunas, Kevin
Dome A on the Antarctic plateau is likely one of the best observing sites on Earth thanks to the excellent atmospheric conditions present at the site during the long polar winter night. We present high-cadence time-series aperture photometry of 10,000 stars with i < 14.5 mag located in a 23 deg{sup 2} region centered on the south celestial pole. The photometry was obtained with one of the CSTAR telescopes during 128 days of the 2008 Antarctic winter. We used this photometric data set to derive site statistics for Dome A and to search for variable stars. Thanks to the nearlymore » uninterrupted synoptic coverage, we found six times as many variables as previous surveys with similar magnitude limits. We detected 157 variable stars, of which 55% were unclassified, 27% were likely binaries, and 17% were likely pulsating stars. The latter category includes {delta} Scuti, {gamma} Doradus, and RR Lyrae variables. One variable may be a transiting exoplanet.« less
The ASAS-SN catalogue of variable stars I: The Serendipitous Survey
NASA Astrophysics Data System (ADS)
Jayasinghe, T.; Kochanek, C. S.; Stanek, K. Z.; Shappee, B. J.; Holoien, T. W.-S.; Thompson, Toda A.; Prieto, J. L.; Dong, Subo; Pawlak, M.; Shields, J. V.; Pojmanski, G.; Otero, S.; Britt, C. A.; Will, D.
2018-07-01
The All-Sky Automated Survey for Supernovae (ASAS-SN) is the first optical survey to routinely monitor the whole sky with a cadence of ˜2-3 d down to V ≲ 17 mag. ASAS-SN has monitored the whole sky since 2014, collecting ˜100-500 epochs of observations per field. The V-band light curves for candidate variables identified during the search for supernovae are classified using a random forest classifier and visually verified. We present a catalogue of 66 179 bright, new variable stars discovered during our search for supernovae, including 27 479 periodic variables and 38 700 irregular variables. V-band light curves for the ASAS-SN variables are available through the ASAS-SN variable stars data base (https://asas-sn.osu.edu/variables). The data base will begin to include the light curves of known variable stars in the near future along with the results for a systematic, all-sky variability survey.
NASA Astrophysics Data System (ADS)
Liakos, A.; Niarchos, P.
2009-03-01
CCD observations of 24 eclipsing binary systems with spectral types ranging between A0-F0, candidate for containing pulsating components, were obtained. Appropriate exposure times in one or more photometric filters were used so that short-periodic pulsations could be detected. Their light curves were analyzed using the Period04 software in order to search for pulsational behaviour. Two new variable stars, namely GSC 2673-1583 and GSC 3641-0359, were discov- ered as by-product during the observations of eclipsing variables. The Fourier analysis of the observations of each star, the dominant pulsation frequencies and the derived frequency spectra are also presented.
NASA Astrophysics Data System (ADS)
Papini, R.; Marchini, A.; Salvaggio, F.; Agnetti, D.; Bacci, P.; Banfi, M.; Bianciardi, G.; Collina, M.; Franco, L.; Galli, G.; Milani, M. G. A.; Lopresti, C.; Marino, G.; Rizzuti, L.; Ruocco, N.; Quadri, U.
2017-12-01
This paper follows the previous publication of new variables discovered at Astronomical Observatory, DSFTA, University of Siena, while observing asteroids in order to determine their rotational periods. Usually, this task requires time series images acquisition on a single field for as long as possible on a few nights not necessarily consecutive. Checking continually this "goldmine" allowed us to discover 57 variable stars not yet listed in catalogues or databases. While most of the new variables are eclipsing binaries, a few belong to the RR Lyrae or delta Scuti class. Since asteroid work is definitely a time-consuming activity, coordinated campaigns of follow-up with other observatories have been fundamental in order to determine the elements of the ephemeris and sometimes the right subclass of variability. Further observations of these new variables are therefore strongly encouraged in order to better characterize these stars, especially pulsating ones whose data combined with those taken during professional surveys seem to suggest the presence of light curve amplitude and period variations.
NASA Technical Reports Server (NTRS)
Koornneed, J.; Meade, M. R.; Wesselius, P. R.; Code, A. D.; Vanduinen, R.
1981-01-01
Stellar fluxes for 531 stars in the wavelength range lambda 5500-1330A lambda are presented in the form of graphs. The stars are divided into 52 different categories on the basis of their spectral types and objects within one category are shown together. The agreement between the various ultraviolet photometric systems for early type stars is generally better than 0.10 mag. Stars with known and/or observed variability have been grouped separately. A list of stars with observed photometric properties which are indicative of stellar or interstellar anomalies is also provided.
RR Lyrae in the UMi dSph Galaxy
NASA Astrophysics Data System (ADS)
Kuehn, Charles; Kinemuchi, Karen; Jeffery, Elizabeth; Grabowski, Kathleen; Nemec, James; Herrera, Daniel
2018-01-01
Over the past two years we have obtained observations of the Ursa Minor dwarf spheroidal galaxy with the goal of completing an updated catalog of the variable stars in the dwarf galaxy. In addition to finding new variable stars, this updated catalog will allow us to look at period changes in the variables and to determine stellar characteristic for the RR Lyrae stars in the dSph. We will compare the RR Lyrae stellar characteristics to other RR Lyrae stars found in the Local Group dSph galaxies; these comparisons can give us insights to the near-field cosmology of the Local Group. In this poster we present our updated catalog of RR Lyrae stars in the UMi dSph; the updated catalog includes Fourier decomposition parameters, metallicities, and other physical properties for the RR Lyrae stars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salinas, R.; Pajkos, M. A.; Strader, J.
Intermediate-age star clusters in the Large Magellanic Cloud show extended main sequence turnoffs (MSTOs) that are not consistent with a canonical single stellar population. These broad turnoffs have been interpreted as evidence for extended star formation and/or stellar rotation. Since most of these studies use single frames per filter to do the photometry, the presence of variable stars near the MSTO in these clusters has remained unnoticed and their impact has been totally ignored. We model the influence of Delta Scuti using synthetic CMDs, adding variable stars following different levels of incidence and amplitude distributions. We show that Delta Scutimore » observed at a single phase will produce a broadening of the MSTO without affecting other areas of a CMD such as the upper MS or the red clump; furthermore, the amount of spread introduced correlates with cluster age, as observed. This broadening is constrained to ages ∼1–3 Gyr when the MSTO area crosses the instability strip, which is also consistent with observations. Variable stars cannot explain bifurcarted MSTOs or the extended MSTOs seen in some young clusters, but they can make an important contribution to the extended MSTOs in intermediate-age clusters.« less
SIM PlanetQuest Key Project Precursor Observations to Detect Gas Giant Planets Around Young Stars
NASA Technical Reports Server (NTRS)
Tanner, Angelle; Beichman, Charles; Akeson, Rachel; Ghez, Andrea; Grankin, Konstantin N.; Herbst, William; Hillenbrand, Lynne; Huerta, Marcos; Konopacky, Quinn; Metchev, Stanimir;
2008-01-01
We present a review of precursor observing programs for the SIM PlanetQuest Key project devoted to detecting Jupiter mass planets around young stars. In order to ensure that the stars in the sample are free of various sources of astrometric noise that might impede the detection of planets, we have initiated programs to collect photometry, high contrast images, interferometric data and radial velocities for stars in both the Northern and Southern hemispheres. We have completed a high contrast imaging survey of target stars in Taurus and the Pleiades and found no definitive common proper motion companions within one arcsecond (140 AU) of the SIM targets. Our radial velocity surveys have shown that many of the target stars in Sco-Cen are fast rotators and a few stars in Taurus and the Pleiades may have sub-stellar companions. Interferometric data of a few stars in Taurus show no signs of stellar or sub-stellar companions with separations of <5 mas. The photometric survey suggests that approximately half of the stars initially selected for this program are variable to a degree (1(sigma) >0.1 mag) that would degrade the astrometric accuracy achievable for that star. While the precursor programs are still a work in progress, we provide a comprehensive list of all targets ranked according to their viability as a result of the observations taken to date. By far, the observable that removes the most targets from the SIM-YSO program is photometric variability.
MHD Simulations of Magnetized Stars in the Propeller Regime of Accretion
NASA Astrophysics Data System (ADS)
Lii, Patrick; Romanova, Marina; Lovelace, Richard
2014-01-01
Accreting magnetized stars may be in the propeller regime of disc accretion in which the angular velocity of the stellar magnetosphere exceeds that of the inner disc. In these systems, the stellar magnetosphere acts as a centrifugal barrier and inhibits matter accretion onto the rapidly rotating star. Instead, the matter accreting through the disc accumulates at the disc-magnetosphere interface where it picks up angular momentum and is ejected from the system as a wide-angled outflow which gradually collimates at larger distances from the star. If the ejection rate is lower than the accretion rate, the matter will accumulate at the boundary faster than it can be ejected; in this case, accretion onto the star proceeds through an episodic accretion instability in which the episodes of matter accumulation are followed by a brief episode of simultaneous ejection and accretion of matter onto the star. In addition to the matter dominated wind component, the propeller outflow also exhibits a well-collimated, magnetically-dominated Poynting jet which transports energy and angular momentum away from the star. The propeller mechanism may explain some of the weakly-collimated jets and winds observed around some T Tauri stars as well as the episodic variability present in their light curves. It may also explain some of the quasi-periodic variability observed in cataclysmic variables, millisecond pulsars and other magnetized stars.
In Search of Stellar Music: Finding Pulsators for the TESS Mission
NASA Astrophysics Data System (ADS)
Richey-Yowell, Tyler; Pepper, Joshua; KELT Collaboration
2017-01-01
The Transiting Exoplanet Survey Satellite (TESS) will search for small transiting exoplanets orbiting bright stars. One of the additional mission objectives is to observe oscillating variable stars to precisely measure these stars’ masses, radii, and internal structures. Since TESS can observe only a limited number of stars with high enough cadence to detect these oscillations, it is necessary to identify candidates that will yield the most valuable results. Using data from the Kilodegree Extremely Little Telescope (KELT), we searched for bright stars showing oscillations to be included as TESS targets. We found 2,108 variable stars with B-V < 0.5 and P < 5 days. Further analysis will be carried out to establish final candidates. This project was funded by the National Science Foundation grant PHY-1359195 to the Lehigh University REU program.
Digital Archiving: Where the Past Lives Again
NASA Astrophysics Data System (ADS)
Paxson, K. B.
2012-06-01
The process of digital archiving for variable star data by manual entry with an Excel spreadsheet is described. Excel-based tools including a Step Magnitude Calculator and a Julian Date Calculator for variable star observations where magnitudes and Julian dates have not been reduced are presented. Variable star data in the literature and the AAVSO International Database prior to 1911 are presented and reviewed, with recent archiving work being highlighted. Digitization using optical character recognition software conversion is also demonstrated, with editing and formatting suggestions for the OCR-converted text.
An Undergraduate Research Experience on Studying Variable Stars
NASA Astrophysics Data System (ADS)
Amaral, A.; Percy, J. R.
2016-06-01
We describe and evaluate a summer undergraduate research project and experience by one of us (AA), under the supervision of the other (JP). The aim of the project was to sample current approaches to analyzing variable star data, and topics related to the study of Mira variable stars and their astrophysical importance. This project was done through the Summer Undergraduate Research Program (SURP) in astronomy at the University of Toronto. SURP allowed undergraduate students to explore and learn about many topics within astronomy and astrophysics, from instrumentation to cosmology. SURP introduced students to key skills which are essential for students hoping to pursue graduate studies in any scientific field. Variable stars proved to be an excellent topic for a research project. For beginners to independent research, it introduces key concepts in research such as critical thinking and problem solving, while illuminating previously learned topics in stellar physics. The focus of this summer project was to compare observations with structural and evolutionary models, including modelling the random walk behavior exhibited in the (O-C) diagrams of most Mira stars. We found that the random walk could be modelled by using random fluctuations of the period. This explanation agreed well with observations.
VizieR Online Data Catalog: Variable Stars in the Galactic Center (Dong+, 2017)
NASA Astrophysics Data System (ADS)
Dong, H.; Schodel, R.; William, B. F.; Nogueras-Lara, F.; Gallego-Cano, E.; Gallego-Calvente, T.; Wang, Q. D.; Morris, R. M.; Do, T.; Ghez, A.
2017-06-01
We use the 'DOLPHOT' to detect sources and extract photometry from the HST WFC3/IR observations at the F127M and F135M bands of the Galactic Centre from 2010 to 2014. The F153M observations, which are used to identify variable stars, include 290 dithered exposures from six HST programs. The detailed description of the HST dataset are given in Table 1 of the paper. We identified 33070 sources. Their F127M and F153M magnitudes, as well as their uncertainties, are given in Table 3. For each star, we used the least chi square method to identify whether it is variable or not. The output from the least chi square method are chi2y and chi2d, which are calculated from all the 290 dithered exposures and the exposures in March and April, 2014, respectively, to examine whether the star varies among years and/or days. In order to reduce the potential variation among dithered exposures, which could be potentially introduced by instrument effects, we also bin the dithered exposures and use the least chi square method to calculate chi2y,b and chi2{d,b}. We classify stars with chi2y>3 and chi2y,b>2 are variables among years and stars with chi2d>3 and chi2d,b>2 are variables among days. The detailed description about the data analysis is given in the paper. In Table 4, we gives the magnitudes of sources in individual dithered exposures, as well as the photometric uncertainties and the quality control parameters provided by 'DOLPHOT', such as signal-to-noise ratio, sharpness^2, crowd and flag. We also cross-correlated our variables with previous variable studies taken by ground-based telescopes in Table 8 and spectroscopic observations in Table 9. (4 data files).
The Globular Cluster NGC 6402 (M14). II. Variable Stars
NASA Astrophysics Data System (ADS)
Contreras Peña, C.; Catelan, M.; Grundahl, F.; Stephens, A. W.; Smith, H. A.
2018-03-01
We present time-series BVI photometry for the Galactic globular cluster NGC 6402 (M14). The data consist of ∼137 images per filter, obtained using the 0.9 and 1.0 m SMARTS telescopes at the Cerro Tololo Inter-American Observatory. The images were obtained during two observing runs in 2006–2007. The image-subtraction package ISIS, along with DAOPHOT II/ALLFRAME, was used to perform crowded-field photometry and search for variable stars. We identified 130 variables, eight of which are new discoveries. The variable star population is comprised of 56 ab-type RR Lyrae stars, 54 c-type RR Lyrae, 6 type II Cepheids, 1 W UMa star, 1 detached eclipsing binary, and 12 long-period variables. We provide Fourier decomposition parameters for the RR Lyrae, and discuss the physical parameters and photometric metallicity derived therefrom. The M14 distance modulus is also discussed, based on different approaches for the calibration of the absolute magnitudes of RR Lyrae stars. The possible presence of second-overtone RR Lyrae in M14 is critically addressed, with our results arguing against this possibility. By considering all of the RR Lyrae stars as members of the cluster, we derive < {P}ab > =0.589 {{d}}{{a}}{{y}}{{s}}. This, together with the position of the RR Lyrae stars of both Bailey types in the period–amplitude diagram, suggests an Oosterhoff-intermediate classification for the cluster. Such an intermediate Oosterhoff type is much more commonly found in nearby extragalactic systems, and we critically discuss several other possible indications that may point to an extragalactic origin for this cluster. Based on observations obtained with the 0.9 m and 1 m telescopes at the Cerro Tololo Inter-American Observatory, Chile, operated by the SMARTS consortium.
Engaging Generation Now, Inspiring Generation Next
NASA Astrophysics Data System (ADS)
Simonsen, Mike; Gay, P.
2008-05-01
In 2008, the Education and Public Outreach Committee of the American Association of Variable Star Observers (AAVSO) initiated several new strategies for disseminating accurate, stimulating, engaging information on general astronomy and variable star science to thousands of students, parents, and amateur astronomers each year through astronomy clubs, societies, and star party events. We are initiating contact with astronomy clubs and organizations to offer qualified speakers from the AAVSO Speakers Bureau for their meetings and activities. The current roster of speakers include, professional astronomers, doctors, engineers, teachers and some of the world's leading variable star observers. Request information is available on the AAVSO website. For organizations and individuals unable to engage one of our speakers due to time, distance or financial constraints, we have made PowerPoint presentations used in previous talks available free for download from the same web pages. Thousands of amateur astronomers and their children attend star parties each year. As an extension of our speakers’ bureau, our goal is to have an AAVSO representative at each of the major star parties each year giving an enthusiastic talk on variable stars or related astronomical subject and supplying inspirational printed materials on astronomy and amateur contributions to science. The nation's largest astronomy clubs have monthly newsletters they distribute to their membership. Newsletter editors are constantly in need of quality, interesting content to fill out their issues each month. We are offering a `writers’ bureau’ service to newsletter editors, similar to the news wire services used by newspapers. We will supply up to a half dozen articles on astronomy and variable star science each month for editors to use at their discretion in their publications. Our goal is to provide information, inspiration and encourage participation among amateur astronomers and their kids, our next generation of astronomers.
Determining Hβ Color Indices for 23 δ Scuti Variable Stars
NASA Astrophysics Data System (ADS)
Bush, Tabitha C.; Hintz, E. G.; Shreeve, D. K.; Jorgenson, K.
2010-01-01
Color index is a fundamental characteristic in the study of δ Scuti variable stars. The then comprehensive catalog of δ Scutis compiled by Rodriguez et al. (Rodriguez, E. Lopez Gonzalez, M. J., & Lopez de Coca, P. 2000, A&AS, 144, 469) contains 636 δ Scuti stars and several characteristics of these stars, including Hβ color index. Of the 417 stars in this catalog brighter than 13th magnitude, about 20% of them are missing Hβ color index values. We present 23 of these previously unpublished values, calculated from a calibration relation using spectroscopic observations obtained at the Dominion Astrophysical Observatory of 167 δ Scuti stars north of -01 degrees declination and brighter than 13th magnitude.
The RR Lyrae variables in the globular cluster M68
NASA Technical Reports Server (NTRS)
Clement, Christine M.; Ferance, Stephen; Simon, Norman R.
1993-01-01
New observations, made with the Helen Sawyer Hogg telescope at Las Campanas, have been analyzed in a search for double-mode pulsators (RRd stars) in the metal-poor globular cluster, Messier 68. Of the 30 stars studied, nine have been identified as RRd stars; V33, which exhibited the characteristics of an RRd star in 1950, now appears to be an RRc star. Reliable periods and period ratios have been determined for six of the RRd stars. Masses for these RRd stars, calculated from fitting formulas given by Kovacs et al. (1991), range from 0.75 to 0.90 solar mass, depending on the assumed luminosity and metal abundance. These masses are in the same range as those for the RRd stars in M 15, whose RRd sample resembles that of M68 very closely. Fourier parameters determined for the light curves of the M68 variables show that the RRc stars in the two clusters are also very similar. In particular, on the plot of phase parameter phi sub 31 with period, the M15 and M68 RRc samples are virtually indistinguishable. A comparison of the new M68 observations with observations made 40 yr ago shows that the periods of some of the stars have changed, but the 40 yr interval is too short for detecting period changes caused by evolutionary effects.
Nearby Hot Stars May Change Our View of Distant Sources
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-07-01
As if it werent enough that quasars distant and bright nuclei of galaxies twinkle of their own accord due to internal processes, nature also provides another complication: these distant radio sources can also appear to twinkle because of intervening material between them and us. A new study has identified a possible source for the material getting in the way.Unexplained VariabilityA Spitzer infrared view of the Helix nebula, which contains ionized streamers of gas extending radially outward from the central star. [NASA/JPL-Caltech/Univ. of Ariz.]Distant quasars occasionally display extreme scintillation, twinkling with variability timescales shorter than a day. This intra-day variability is much greater than we can account for with standard models of the interstellar medium lying between the quasar and us. So what could cause this extreme scattering instead?The first clue to this mystery came from the discovery of strong variability in the radio source PKS 1322110. In setting up follow-up observations of this object, Mark Walker (Manly Astrophysics, Australia) and collaborators noticed that, in the plane of the sky, PKS 1322110 lies very near the bright star Spica. Could this be coincidence, or might this bright foreground star have something to do with the extreme scattering observed?Diagram explaining the source of the intra-day radio source variability as intervening filaments surrounding a hot star. [M. Walker/CSIRO/Manly Astrophysics]Swarms of ClumpsWalker and collaborators put forward a hypothesis: perhaps the ultraviolet photons of nearby hot stars ionize plasma around them, which in turn causes the extreme scattering of the distant background sources.As a model, the authors consider the Helix Nebula, in which a hot, evolved star is surrounded by cool globules of molecular hydrogen gas. The radiation from the star hits these molecular clumps, dragging them into long radial streamers and ionizing their outer skins.Though the molecular clumps in the Helix Nebula were thought to have formed only as the star evolved late into its lifetime, Walker and collaborators are now suggesting that all stars regardless of spectral type or evolutionary stage may be surrounded by swarms of tiny molecular clumps. Aroundstars that are hot enough, these clumps become the ionized plasma streamers that can cause interference with the light traveling to us from distant sources.Significant MassTo test this theory, Walker and collaborators explore observations of two distant radio quasars that have both exhibited intra-day variability over many years of observations. The team identified a hot A-type star near each of these two sources: J1819+3845 has Vega nearby, and PKS 1257326 has Alhakim.Locations of stars along the line of site to two distant quasars, J1819+3845 (top panel) and PKS 1257326 (bottom panel). Both have a nearby, hot star (blue markers) radially within 2 pc: Vega (z = 7.7 pc) and Alhakim (z = 18 pc), respectively. [Walker et al. 2017]By modeling the systems of the sources and stars, the authors show that the size, location, orientation, and numbers of plasma concentrations necessary to explain observations are all consistent with an environment similar to that of the Helix Nebula. Walker and collaborators find that the total mass in the molecular clumps surrounding the two stars would need to be comparable to the mass of the stars themselves.If this picture is correct, and if all stars are indeed surrounded by molecular clumps like these, then a substantial fraction of the mass of ourgalaxy could be contained in these clumps. Besides explaining distant quasar scintillation, this idea would therefore have a significant impact on our overall understanding of how mass in galaxies is distributed. More observations of twinkling quasars are the next step toward confirming this picture.CitationMark A. Walker et al 2017 ApJ 843 15. doi:10.3847/1538-4357/aa705c
Variable Stars in Large Magellanic Cloud Globular Clusters. II. NGC 1786
NASA Astrophysics Data System (ADS)
Kuehn, Charles A.; Smith, Horace A.; Catelan, Márcio; Pritzl, Barton J.; De Lee, Nathan; Borissova, Jura
2012-12-01
This is the second in a series of papers studying the variable stars in Large Magellanic Cloud globular clusters. The primary goal of this series is to study how RR Lyrae stars in Oosterhoff-intermediate systems compare to their counterparts in Oosterhoff I/II systems. In this paper, we present the results of our new time-series B-V photometric study of the globular cluster NGC 1786. A total of 65 variable stars were identified in our field of view. These variables include 53 RR Lyraes (27 RRab, 18 RRc, and 8 RRd), 3 classical Cepheids, 1 Type II Cepheid, 1 Anomalous Cepheid, 2 eclipsing binaries, 3 Delta Scuti/SX Phoenicis variables, and 2 variables of undetermined type. Photometric parameters for these variables are presented. We present physical properties for some of the RR Lyrae stars, derived from Fourier analysis of their light curves. We discuss several different indicators of Oosterhoff type which indicate that the Oosterhoff classification of NGC 1786 is not as clear cut as what is seen in most globular clusters. Based on observations taken with the SMARTS 1.3 m telescope operated by the SMARTS Consortium and observations taken at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).
Two Cepheid variables in the Fornax dwarf galaxy
NASA Technical Reports Server (NTRS)
Light, R. M.; Armandroff, T. E.; Zinn, R.
1986-01-01
Two fields surrounding globular clusters 2 and 3 in the Fornax dwarf spheroidal galaxy have been searched for short-period variable stars that are brighter than the horizontal branch. This survey confirmed as variable the two suspected suprahorizontal-branch variables discovered by Buonanno et al. (1985) in their photometry of the clusters. The observations show that the star in cluster 2 is a W Virginis variable of 14.4 day period. It is the first W Vir variable to be found in a dwarf spheroidal galaxy, and its proximity to the center of cluster 2 suggests that it is a cluster member. The other star appears to be an anomalous Cephpeid of 0.78 day period. It lies outside or very near the boundary of cluster 3, and is therefore probably a member of the field population of Fornax. Although no other suprahorizontal-branch variables were discovered in the survey, it did confirm as variable two of the RR Lyrae candidates of Buonanno et al., which appeared at the survey limit. The implications of these observations for the understanding of the stellar content at Fornax are discussed.
The discovery of nonthermal radio emission from magnetic Bp-Ap stars
NASA Technical Reports Server (NTRS)
Drake, Stephen A.; Abbott, David C.; Bastian, T. S.; Bieging, J. H.; Churchwell, E.
1987-01-01
In a VLA survey of chemically peculiar B- and A-type stars with strong magnetic fields, five of the 34 stars observed have been identified as 6 cm continuum sources. Three of the detections are helium-strong early Bp stars (Sigma Ori E, HR 1890, and Delta Ori C), and two are helium weak, silicon-strong stars with spectral types near A0p (IQ Aur = HD 34452, Babcock's star = HD 215441). The 6 cm luminosities L6 (ergs/s Hz) range from log L6 = 16.2 to 17.9, somewhat less than the OB supergiants and W-R stars. Three-frequency observations indicate that the helium-strong Bp stars are variable nonthermal sources.
The 3.5 micron light curves of long period variable stars. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Strecker, D. W.
1973-01-01
Infrared observations at an effective wavelength of 3.5 microns of a selected group of long period variable (LPV) stars are presented. Mira type and semiregular stars of M, S, and C spectral classifications were monitored throughout the full cycle of variability. Although the variable infrared radiation does not exactly repeat in intensity or time, the regularity is sufficient to produce mean 3.5 micron light curves. The 3.5 micron maximum radiation lags the visual maximum by about one-seventh of a cycle, while the minimum 3.5 micron intensity occurs nearly one-half cycle after infrared maximum. In some stars, there are inflections or humps on the ascending portion of the 3.5 micron light curve which may also be seen in the visual variations.
Two-Decade Monitoring of MWC349 in Optical and Radio: New Results
NASA Astrophysics Data System (ADS)
Thomashow, Eydon; Jorgenson, Regina A.; Strelnitski, Vladimir; Walker, Gary; Maria Mitchell Observatory (MMO) Research Experiences for Undergraduate (REU) Interns, 2017
2018-01-01
Maria Mitchell Observatory (MMO) has completed the two-decade long monitoring of MWC 349 in the optical and radio domains. This poster presentation will be primarily devoted to the new results obtained by optical photometry with broad and narrow band filters and observations of the variability in the masing H30 radio line during the observational season of 2017. The H30 emission arises in the circumstellar disk of the MWC 349A component of the visual double star (with 2.4 arcsec separation between the A and B components). Variable optical emission is also believed to be due to star A. By combining our optical observations with earlier MMO observations, we not only confirmed the previously known quasi-period of ~230 days, but confirmed a second period of ~700 days. One of the most interesting results of radio monitoring is the long-term variability of the systemic radial velocity of star A, as determined through averaging the radial velocities of the two masing peaks arising in the circumstellar disk. This may be the first case where a possible hidden close companion of a star (a lower mass star or a massive protoplanet) is detected by monitoring the radial velocity of the star via the spectral line radiation from its disk. E.T. completed this project as a 2017 MMO NSF REU intern and would like to thank the other interns for their help in conducting the optical observations. This project was supported in part by the NSF REU grant AST-1358980 and by the Nantucket Maria Mitchell Association.
NSV 1907 - A new eclipsing, nova-like cataclysmic variable
NASA Astrophysics Data System (ADS)
Hümmerich, Stefan; Gröbel, Rainer; Hambsch, Franz-Josef; Dubois, Franky; Ashley, Richard; Gänsicke, Boris T.; Vanaverbeke, Siegfried; Bernhard, Klaus; Wils, Patrick
2017-01-01
NSV 1907, formerly listed as an irregular variable in variability catalogues, was classified as an Algol-type eclipsing binary in the Catalina Surveys Periodic Variable Star Catalogue. We have identified NSV 1907 as an ultraviolet (UV) bright source using measurements from the GALEX space telescope and detected obvious out-of-eclipse variability in archival photometric data from the Catalina Sky Survey, which instigated a closer examination of the object. A spectrum and extensive multicolour photometric observations were acquired, from which we deduce that NSV 1907 is a deeply eclipsing, nova-like cataclysmic variable. Apart from the orbital variations (deep eclipses with a period of P ≈ 6.63 hours), changes in mean brightness and irregular short-term variability (flickering) were observed. The presence of a secondary minimum at phase φ ≈ 0.5 was established, which indicates a significant contribution of the companion star to the optical flux of the system. We find possible evidence for sinusoidal variations with a period of P ≈ 4.2 d, which we interpret as the nodal precession period of the accretion disc. No outbursts or VY Scl-like drops in brightness were detected either by the CSS or during our photometric monitoring. Because of its spectral characteristics and the observed variability pattern, we propose NSV 1907 as a new moderately bright long-period SW Sextantis star. Further photometric and spectroscopic observations are encouraged.
Pulsational mode-typing in line profile variables. I - Four Beta Cephei stars
NASA Technical Reports Server (NTRS)
Campos, A. J.; Smith, M. A.
1980-01-01
The detailed variations of line profiles in the Beta Cephei-type variable stars Gamma Pegasi, Beta Cephei, Delta Ceti and Sigma Scorpii are modeled throughout their pulsation cycles in order to classify the dominant pulsation mode as radial or nonradial. High-dispersion Reticon observations of the variables were obtained for the Si III line at 4567 A, and line profiles broadened by radial or nonradial pulsations, rotation and radial-tangential macroturbulence were calculated based on a model atmosphere. It is found that only a radial pulsation mode can reproduce the radial velocity amplitude, changes in line asymmetry and uniform line width observed in all four stars. Results are in agreement with the color-to-light arguments of Stamford and Watson (1978), and suggest that radial pulsation plays the dominant role in the observed variations in most Beta Cephei stars. Evidence for shocks or moving shells is also found in visual line data for Sigma Scorpii and an ultraviolet line of Beta Cephei, together with evidence of smooth, secular period changes in Beta Cephei and Delta Ceti.
Gaia luminosities of pulsating A-F stars in the Kepler field
NASA Astrophysics Data System (ADS)
Balona, L. A.
2018-06-01
All stars in the Kepler field brighter than 12.5 magnitude have been classified according to variability type. A catalogue of δ Scuti and γ Doradus stars is presented. The problem of low frequencies in δ Sct stars, which occurs in over 98 percent of these stars, is discussed. Gaia DR2 parallaxes were used to obtain precise luminosities, enabling the instability strips of the two classes of variable to be precisely defined. Surprisingly, it turns out that the instability region of the γ Dor stars is entirely within the δ Sct instability strip. Thus γDor stars should not be considered a separate class of variable. The observed red and blue edges of the instability strip do not agree with recent model calculations. Stellar pulsation occurs in less than half of the stars in the instability region and arguments are presented to show that this cannot be explained by assuming pulsation at a level too low to be detected. Precise Gaia DR2 luminosities of high-amplitude δ Sct stars (HADS) show that most of these are normal δ Sct stars and not transition objects. It is argued that current ideas on A star envelopes need to be revised.
Probing the Circumstellar Disks of Be Stars with Contemporaneous Optical and IR Spectroscopy
NASA Astrophysics Data System (ADS)
Bjorkman, Karen S.; Hesselbach, E. N.; Wisniewski, J. P.; Bjorkman, J. E.
2006-12-01
Asymmetric double-peaked hydrogen emission line profiles in classical Be stars have been interpreted as evidence of one-armed density waves in the circumstellar disks. Contemporaneous optical and IR spectroscopy can aid in mapping the density structure of these one-armed waves as a function of radius. Furthermore, variability has been detected in these stars over both short (days to weeks) and longer (months) time-scales. We present preliminary results from contemporaneous Ritter Observatory (Hα) and IRTF SpeX (0.8-5.4 μm) spectroscopy of 16 classical Be stars observed in September 2005 and January 2006. The data illustrate a range of line profiles common in Be stars and show significant variability. These observations are the first of a larger project to utilize combined optical and IR data to investigate the physical details of these circumstellar disks. This research has been supported in part by a NASA GSRP fellowship to JPW, a NASA LTSA grant to KSB, and an NSF grant to JEB. We thank the NASA IRTF for observing time allocations and support. We thank the Ritter observing team, and especially Nancy Morrison, for crucial assistance with the supporting optical observations.
The Pan-STARRS 1 Medium Deep Field Variable Star Catalog
NASA Astrophysics Data System (ADS)
Flewelling, Heather
2016-01-01
We present the first Pan-STARRS 1 Medium Deep Field Variable Star Catalog (PS1-MDF-VSC). The Pan-STARRS 1 (PS1) telescope is a 1.8 meter survey telescope with a 1.4 Gigapixel camera, located in Haleakala, Hawaii. The Medium Deep survey, which consists of 10 fields located uniformly across the sky, totaling 70 square degrees, is observed each night, in 2-3 filters per field, with 8 exposures per filter, resulting in 3000-4000 data points per star over a time span of 3.5 years. To find the variables, we select objects with > 200 detections, and remove those flagged as saturated. No other cuts are used. There are approximately 2.4 million objects that fit this criteria, with magnitudes between 13th and 24th. These objects are then passed through a lomb-scargle fitting routine to determine periodicity. After a periodicity cut, the candidates are classified by eye into different types of variable stars. We have identified several thousand periodic variable stars, with periods ranging between a few minutes to a few days. We compare our findings to the variable star catalogs within Vizier and AAVSO. In particular, for field MD02, we recover all the variables that are faint in Vizier, and we find good agreement with the periods reported in Vizier.
The Next Possible Outburst of P Cygni
NASA Astrophysics Data System (ADS)
Kochiashvili, Nino; Beradze, Sopia; Kochiashvili, Ia; Natsvlishvili, Rezo; Vardosanidze, Manana
2017-11-01
On the basis of long-term UBV observations of P Cygni, which were made by Eugene Kharadze and Nino Magalashvili between 1951-1983, is evident that P Cygni undergone reddening during those observations. P cygni is a LBV and a supernova impostor. Corrected on the reddening B-V color has values between about -0.4 (at the beginning of 1950-ies) and -0.1 (for the 1980-ies). It means that the star probably had earlier spectral type at the beginning of 20-th century and accordingly, we are witnesses of its evolutionary changes. It means also that on the HR diagram the star moves gradually to the instability strip of LBVs in Outburst. So, if the rate of the reddening of the P Cygni will the same in near future then the star will have the next eruption (or even supernova explosion) after approximately 80-120 years. The long (approximately 1500 d, 1160 d, 760 d, 580 d) quasi-periods and the shorter ones (approximatelly 130 d, 68 d and 15-18 days) were revealed using the above observations. We observed P Cygni on July 23 - October 20, 2014 with the 48 cm Cassegrain telescope and standard B,V,R,I filters. HD 228793 has been used as a comparison star. We revealed that during our observations the star underwent light variations with the mean amplitude of approximately 0.1 magnitudes in all pass-bands and the period of this change was approximately 68 days. There is also a relation between brightness and the Hα EW variability. Therefore, we think that the cause of this behavior may be a variability of rate of the stellar wind that is very strong in this star. Changes in the rate of the stellar wind, on the other hand, maybe due to the pulsation of the star. It seems that quasi-periods of the brightness variability are almost the exact multiples of each other which probably also indicates on pulsation of the star. According to the new photometric observations of 2014 the star continues reddening.
The AAVSO as a Resource for Variable Star Research
NASA Astrophysics Data System (ADS)
Kafka, Stella
2016-07-01
The AAVSO was formed in 1911 as a group of US-based amateur observers obtaining data in support of professional astronomy projects. Now, it has evolved into an International Organization with members and observers from both the professional and non-professional astronomical community, contributing photometry to a public photometric database of about 22,000 variable objects, and using it for research projects. As such, the AAVSO's main claim to fame is that it successfully engages backyard Astronomers, educators, students and professional astronomers in astronomical research. I will present the main aspects of the association and how it has evolved with time to become a premium resource for variable star researchers. I will also discuss the various means that the AAVSO is using to support cutting-edge variable star science, and how it engages its members in projects building a stronger international astronomical community.
Photometric Variability of the Be Star Population
DOE Office of Scientific and Technical Information (OSTI.GOV)
Labadie-Bartz, Jonathan; Pepper, Joshua; McSwain, M. Virginia
2017-06-01
Be stars have generally been characterized by the emission lines in their spectra, and especially the time variability of those spectroscopic features. They are known to also exhibit photometric variability at multiple timescales, but have not been broadly compared and analyzed by that behavior. We have taken advantage of the advent of wide-field, long-baseline, and high-cadence photometric surveys that search for transiting exoplanets to perform a comprehensive analysis of brightness variations among a large number of known Be stars. The photometric data comes from the KELT transit survey, with a typical cadence of 30 minutes, a baseline of up to 10more » years, photometric precision of about 1%, and coverage of about 60% of the sky. We analyze KELT light curves of 610 known Be stars in both the northern and southern hemispheres in an effort to study their variability. Consistent with other studies of Be star variability, we find most of the stars to be photometrically variable. We derive lower limits on the fraction of stars in our sample that exhibit features consistent with non-radial pulsations (25%), outbursts (36%), and long-term trends in the circumstellar disk (37%), and show how these are correlated with spectral sub-types. Other types of variability, such as those owing to binarity, are also explored. Simultaneous spectroscopy for some of these systems from the Be Star Spectra database allow us to better understand the physical causes for the observed variability, especially in cases of outbursts and changes in the disk.« less
Time-scales of stellar rotational variability and starspot diagnostics
NASA Astrophysics Data System (ADS)
Arkhypov, Oleksiy V.; Khodachenko, Maxim L.; Lammer, Helmut; Güdel, Manuel; Lüftinger, Teresa; Johnstone, Colin P.
2018-01-01
The difference in stability of starspot distribution on the global and hemispherical scales is studied in the rotational spot variability of 1998 main-sequence stars observed by Kepler mission. It is found that the largest patterns are much more stable than smaller ones for cool, slow rotators, whereas the difference is less pronounced for hotter stars and/or faster rotators. This distinction is interpreted in terms of two mechanisms: (1) the diffusive decay of long-living spots in activity complexes of stars with saturated magnetic dynamos, and (2) the spot emergence, which is modulated by gigantic turbulent flows in convection zones of stars with a weaker magnetism. This opens a way for investigation of stellar deep convection, which is yet inaccessible for asteroseismology. Moreover, a subdiffusion in stellar photospheres was revealed from observations for the first time. A diagnostic diagram was proposed that allows differentiation and selection of stars for more detailed studies of these phenomena.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karoff, C.; Campante, T. L.; Ballot, J.
2013-04-10
Sun-like stars show intensity fluctuations on a number of timescales due to various physical phenomena on their surfaces. These phenomena can convincingly be studied in the frequency spectra of these stars-while the strongest signatures usually originate from spots, granulation, and p-mode oscillations, it has also been suggested that the frequency spectrum of the Sun contains a signature of faculae. We have analyzed three stars observed for 13 months in short cadence (58.84 s sampling) by the Kepler mission. The frequency spectra of all three stars, as for the Sun, contain signatures that we can attribute to granulation, faculae, and p-modemore » oscillations. The temporal variability of the signatures attributed to granulation, faculae, and p-mode oscillations was analyzed and the analysis indicates a periodic variability in the granulation and faculae signatures-comparable to what is seen in the Sun.« less
NASA Astrophysics Data System (ADS)
Rainer, M.; Poretti, E.; Mistò, A.; Panzera, M. R.; Molinaro, M.; Cepparo, F.; Roth, M.; Michel, E.; Monteiro, M. J. P. F. G.
2016-12-01
We created a large database of physical parameters and variability indicators by fully reducing and analyzing the large number of spectra taken to complement the asteroseismic observations of the COnvection, ROtation and planetary Transits (CoRoT) satellite. 7103 spectra of 261 stars obtained with the ESO echelle spectrograph HARPS have been stored in the VO-compliant database Spectroscopic Indicators in a SeisMic Archive (SISMA), along with the CoRoT photometric data of the 72 CoRoT asteroseismic targets. The remaining stars belong to the same variable classes of the CoRoT targets and were observed to better characterize the properties of such classes. Several useful variability indicators (mean line profiles, indices of differential rotation, activity and emission lines) together with v\\sin I and radial-velocity measurements have been extracted from the spectra. The atmospheric parameters {T}{eff},{log}g, and [Fe/H] have been computed following a homogeneous procedure. As a result, we fully characterize a sample of new and known variable stars by computing several spectroscopic indicators, also providing some cases of simultaneous photometry and spectroscopy.
Cepheid variables in the flared outer disk of our galaxy.
Feast, Michael W; Menzies, John W; Matsunaga, Noriyuki; Whitelock, Patricia A
2014-05-15
Flaring and warping of the disk of the Milky Way have been inferred from observations of atomic hydrogen but stars associated with flaring have not hitherto been reported. In the area beyond the Galactic centre the stars are largely hidden from view by dust, and the kinematic distances of the gas cannot be estimated. Thirty-two possible Cepheid stars (young pulsating variable stars) in the direction of the Galactic bulge were recently identified. With their well-calibrated period-luminosity relationships, Cepheid stars are useful distance indicators. When observations of these stars are made in two colours, so that their distance and reddening can be determined simultaneously, the problems of dust obscuration are minimized. Here we report that five of the candidates are classical Cepheid stars. These five stars are distributed from approximately one to two kiloparsecs above and below the plane of the Galaxy, at radial distances of about 13 to 22 kiloparsecs from the centre. The presence of these relatively young (less than 130 million years old) stars so far from the Galactic plane is puzzling, unless they are in the flared outer disk. If so, they may be associated with the outer molecular arm.
NASA Technical Reports Server (NTRS)
1983-01-01
Phenomena observed in actual stellar atmospheres which contradict the speculative, standard thermal atmospheric model are discussed. Examples of stellar variability, emission line peculiarity, symbiotic stars and phenomena, extended atmosphere stars, superionization, and superthermic velocity are examined.
Variable stars in the Leo A dwarf galaxy (DDO 69)
NASA Technical Reports Server (NTRS)
Hoessel, John G.; Saha, A.; Krist, John; Danielson, G. Edward
1994-01-01
Observations of the Leo A dwarf galaxy, obtained over the period from 1980 to 1991 are reported. Forty two separate Charge Coupled Devices (CCD) frames were searched for variable stars. A total of 14 suspected variables were found, 9 had sufficient coverage for period determination, and 5 had Cepheid light curves. Four of these stars fit well on a P-L relation and yield a distance modulus, after correction for Galactic foreground extinction, of m-M = 26.74. This corresponds to a distance of 2.2 Mpc, placing Leo A near the Local Group zero-velocity surface.
NASA Astrophysics Data System (ADS)
Kuehn, Charles A.; Moskalik, Pawel; Drury, Jason A.
2017-10-01
Observations by Kepler/K2 have revolutionized the study of RR Lyrae stars by allowing the detection of new phenomna, such as low amplitude additional modes and period doubling, which had not previously been seen from the ground. During campaign 2, K2 observed the globular cluster M4, providiing the first opportunity to study a sizeable group of RR Lyrae stars that belong to a single population; the other RR Lyrae stars that have been observed from space are field stars in the galactic halo and thus belong to an assortment of populations. In this poster we present the results of our study of the RR Lyrae variables in M4 from K2 photometry. We have identified additional, low amplitude pulsation modes in both observed RRc stars. In 3 RRab stars we have found the Blazhko effect with periods of 16.6d, 22.4d, and 44.5d.
Studying RR Lyrae Stars in M4 with K2
NASA Astrophysics Data System (ADS)
Kuehn, Charles A.; Drury, Jason; Moskalik, Pawel
2017-01-01
Observations by Kepler/K2 have revolutionized the study of RR Lyrae stars by allowing the detection of new phenomena, such as low amplitude additional modes and period doubling, which had not previously been seen from the ground. During its campaign 2, K2 observed the globular cluster M4, providing the first opportunity to study a sizeable group of RR Lyrae stars that belong to a single population; the other RR Lyrae stars that have been observed from space are field stars in the galactic halo and thus belong to an assortment of populations. We present the results of our study of the RR Lyrae variables in M4 from K2 photometry. We have identified additional, low amplitude pulsation modes in the two observed RRc stars. In three RRab stars we have found the Blazhko effect with periods of 16.6 days, 22.4 days, and 44.5 days.
VizieR Online Data Catalog: Photometric observations of PMS objects (Fernandez, 1995)
NASA Astrophysics Data System (ADS)
Fernandez, M.
1995-05-01
We present the observational data of a photometric monitoring of 24 pre-main sequence objects: T Tauri stars, Ae/Be Herbig stars and some unclassified objects. Observations were carried out from July 1988 to August 1992, using the UBV(RI)_c system. Variability with time scales from days to years and amplitudes in the V band larger than 0.1 mag is found for a part of this sample. The analysis of the possible causes of this variability are discussed in separate papers (Fernandez & Eiroa 1995a,b). (24 data files).
NASA Technical Reports Server (NTRS)
Sitko, Michael L.; Carpenter, William J.; Kimes, Robin L.; Lynch, David K.; Russell, Ray W.; Rudy, Richard J.; Mazuk, Stephan M.; Venturini, Catherine C.; Puetter, Richard C.; Grady, Carol A.;
2007-01-01
Infrared photometry and spectroscopy covering a time span of a quarter century are presented for HD 31648 (MWC 480) and HD 163296 (MWC 275). Both are isolated Herbig Ae stars that exhibit signs of active accretion, including driving bipolar flows with embedded Herbig-Haro (HH) objects. HD 163296 was found to be relatively quiescent photometrically in its inner disk region, with the exception of a major increase in emitted flux in a broad wavelength region centered near 3 pm in 2002. In contrast, HD 31648 has exhibited sporadic changes in the entire 3-13 pm region throughout this span of time. In both stars the changes in the 1-5 pm flux indicate structural changes in the region of the disk near the dust sublimation zone, possibly causing its distance from the star to vary with time. Repeated thermal cycling through this region will result in the preferential survival of large grains, and an increase in the degree of crystallinity. The variability observed in these objects has important consequences for the interpretation of other types of observations. For example, source variability will compromise models based on interferometry measurements unless the interferometry observations are accompanied by nearly-simultaneous photometric data.
NASA Astrophysics Data System (ADS)
Sitko, Michael L.; Carpenter, William J.; Kimes, Robin L.; Wilde, J. Leon; Lynch, David K.; Russell, Ray W.; Rudy, Richard J.; Mazuk, Stephan M.; Venturini, Catherine C.; Puetter, Richard C.; Grady, Carol A.; Polomski, Elisha F.; Wisnewski, John P.; Brafford, Suellen M.; Hammel, H. B.; Perry, R. Brad
2008-05-01
Infrared photometry and spectroscopy covering a time span of a quarter-century are presented for HD 31648 (MWC 480) and HD 163296 (MWC 275). Both are isolated Herbig Ae stars that exhibit signs of active accretion, including driving bipolar flows with embedded Herbig-Haro (HH) objects. HD 163296 was found to be relatively quiescent photometrically in its inner disk region, with the exception of a major increase in emitted flux in a broad wavelength region centered near 3 μm in 2002. In contrast, HD 31648 has exhibited sporadic changes in the entire 3-13 μm region throughout this span of time. In both stars, the changes in the 1-5 μm flux indicate structural changes in the region of the disk near the dust sublimation zone, possibly causing its distance from the star to vary with time. Repeated thermal cycling through this region will result in the preferential survival of large grains, and an increase in the degree of crystallinity. The variability observed in these objects has important consequences for the interpretation of other types of observations. For example, source variability will compromise models based on interferometry measurements unless the interferometry observations are accompanied by nearly simultaneous photometric data.
The Soft State of Cygnus X-1 Observed with NuSTAR: A Variable Corona and a Stable Inner Disk
NASA Technical Reports Server (NTRS)
Walton, D. J.; Tomsick, J. A.; Madsen, K. K.; Grinberg, V.; Barret, D.; Boggs, S. E.; Christensen, F. E.; Clavel, M.; Craig, W. W.; Fabian, A. C.;
2016-01-01
We present a multi-epoch hard X-ray analysis of Cygnus X-1 in its soft state based on four observations with the Nuclear Spectroscopic Telescope Array (NuSTAR). Despite the basic similarity of the observed spectra, there is clear spectral variability between epochs. To investigate this variability, we construct a model incorporating both the standard disk-corona continuum and relativistic reflection from the accretion disk, based on prior work on Cygnus X-1, and apply this model to each epoch independently. We find excellent consistency for the black hole spin and the iron abundance of the accretion disk, which are expected to remain constant on observational timescales. In particular, we confirm that Cygnus X-1 hosts a rapidly rotating black hole, 0.93 < approx. a* < approx. 0.96, in broad agreement with the majority of prior studies of the relativistic disk reflection and constraints on the spin obtained through studies of the thermal accretion disk continuum. Our work also confirms the apparent misalignment between the inner disk and the orbital plane of the binary system reported previously, finding the magnitude of this warp to be approx.10deg-15deg. This level of misalignment does not significantly change (and may even improve) the agreement between our reflection results and the thermal continuum results regarding the black hole spin. The spectral variability observed by NuSTAR is dominated by the primary continuum, implying variability in the temperature of the scattering electron plasma. Finally, we consistently observe absorption from ionized iron at approx. 6.7 keV, which varies in strength as a function of orbital phase in a manner consistent with the absorbing material being an ionized phase of the focused stellar wind from the supergiant companion star.
The Soft State of Cygnus X-1 Observed with NuSTAR: A Variable Corona and a Stable Inner Disk
NASA Astrophysics Data System (ADS)
Walton, D. J.; Tomsick, J. A.; Madsen, K. K.; Grinberg, V.; Barret, D.; Boggs, S. E.; Christensen, F. E.; Clavel, M.; Craig, W. W.; Fabian, A. C.; Fuerst, F.; Hailey, C. J.; Harrison, F. A.; Miller, J. M.; Parker, M. L.; Rahoui, F.; Stern, D.; Tao, L.; Wilms, J.; Zhang, W.
2016-07-01
We present a multi-epoch hard X-ray analysis of Cygnus X-1 in its soft state based on four observations with the Nuclear Spectroscopic Telescope Array (NuSTAR). Despite the basic similarity of the observed spectra, there is clear spectral variability between epochs. To investigate this variability, we construct a model incorporating both the standard disk-corona continuum and relativistic reflection from the accretion disk, based on prior work on Cygnus X-1, and apply this model to each epoch independently. We find excellent consistency for the black hole spin and the iron abundance of the accretion disk, which are expected to remain constant on observational timescales. In particular, we confirm that Cygnus X-1 hosts a rapidly rotating black hole, 0.93≲ {a}* ≲ 0.96, in broad agreement with the majority of prior studies of the relativistic disk reflection and constraints on the spin obtained through studies of the thermal accretion disk continuum. Our work also confirms the apparent misalignment between the inner disk and the orbital plane of the binary system reported previously, finding the magnitude of this warp to be ˜10°-15°. This level of misalignment does not significantly change (and may even improve) the agreement between our reflection results and the thermal continuum results regarding the black hole spin. The spectral variability observed by NuSTAR is dominated by the primary continuum, implying variability in the temperature of the scattering electron plasma. Finally, we consistently observe absorption from ionized iron at ˜6.7 keV, which varies in strength as a function of orbital phase in a manner consistent with the absorbing material being an ionized phase of the focused stellar wind from the supergiant companion star.
MASSIVE STARS IN THE LOCAL GROUP: Implications for Stellar Evolution and Star Formation
NASA Astrophysics Data System (ADS)
Massey, Philip
The galaxies of the Local Group serve as important laboratories for understanding the physics of massive stars. Here I discuss what is involved in identifying various kinds of massive stars in nearby galaxies: the hydrogen-burning O-type stars and their evolved He-burning evolutionary descendants, the luminous blue variables, red supergiants, and Wolf-Rayet stars. Primarily I review what our knowledge of the massive star population in nearby galaxies has taught us about stellar evolution and star formation. I show that the current generation of stellar evolutionary models do well at matching some of the observed features and provide a look at the sort of new observational data that will provide a benchmark against which new models can be evaluated.
Chandra Observations of Magnetic White Dwarfs and Their Theoretical Implications
NASA Technical Reports Server (NTRS)
Musielak, Z. E.; Noble, M.; Porter, J. G.; Winget, D. E.; Six, N. Frank (Technical Monitor)
2002-01-01
Observations of cool DA and DB white dwarfs have not yet been successful in detecting coronal X-ray emission but observations of late-type dwarfs and giants show that coronae are common for these stars. To produce coronal X-rays, a star must have dynamo-generated surface magnetic fields and a well-developed convection zone. There is strong observational evidence that the DA star LHS 1038 and the DB star GD 358 have weak and variable surface magnetic fields. Since these fields are likely to be generated by dynamo action and since both stars have well-developed convection zones, theory predicts detectable levels of coronal X-rays from these white dwarfs. However, we present analysis of Chandra observations of both stars showing no detectable X-ray emission. The derived upper limits for the X-ray fluxes provide strong constraints on theories of formation of coronae around magnetic white dwarfs.
Extreme Variables in Star Forming Regions
NASA Astrophysics Data System (ADS)
Contreras Peña, Carlos Eduardo
2015-01-01
The notion that low- to intermediate-mass young stellar objects (YSOs) gain mass at a constant rate during the early stages of their evolution appears to be challenged by observations of YSOs suffering sudden increases of the rate at which they gain mass from their circumstellar discs. Also, this idea that stars spend most of their lifetime with a low accretion rate and gain most of their final mass during short-lived episodes of high accretion bursts, helps to solve some long-standing problems in stellar evolution. The original classification of eruptive variables divides them in two separate subclasses known as FU Orionis stars (FUors) and EX Lupi stars (EXors). In this classical view FUors are at an early evolutionary stage and are still gaining mass from their parent envelopes, whilst EXors are thought to be older objects only surrounded by an accretion disc. The problem with this classical view is that it excludes younger protostars which have higher accretion rates but are too deeply embedded in circumstellar matter to be observed at optical wavelengths. Optically invisible protostars have been observed to display large variability in the near-infrared. These and some recent discoveries of new eruptive variables, show characteristics that can be attributed to both of the optically-defined subclasses of eruptive variables. The new objects have been proposed to be part of a new class of eruptive variables. However, a more accepted scenario is that in fact the original classes only represent two extremes of the same phenomena. In this sense eruptive variability could be explained as arising from one physical mechanism, i.e. unsteady accretion, where a variation in the parameters of such mechanism can cause the different characteristics observed in the members of this class. With the aim of studying the incidence of episodic accretion among young stellar objects, and to characterize the nature of these eruptive variables we searched for high amplitude variability in two multi-epoch infrared surveys: the UKIDSS Galactic Plane Survey (GPS) and the Vista Variables in the Via Lactea (VVV). In order to further investigate the nature of the selected variable stars, we use photometric information arising from public surveys at near- to far-infrared wavelengths. In addition we have performed spectroscopic and photometric follow-up for a large subset of the samples arising from GPS and VVV. We analyse the widely separated two-epoch K-band photometry in the 5th, 7th and 8th data releases of the UKIDSS Galactic Plane Survey. We find 71 stars with ΔK > 1 mag, including 2 previously known OH/IR stars and a Nova. Even though the mid-plane is mostly excluded from the dataset, we find the majority (66%) of our sample to be within known star forming regions (SFRs), with two large concentrations in the Serpens OB2 association (11 stars) and the Cygnus-X complex (27 stars). The analysis of the multi-epoch K-band photometry of 2010-2012 data from VVV covering the Galactic disc at |b| < 1° yields 816 high amplitude variables, which include known variables of different classes such as high mass X-ray binaries, Novae and eclipsing binaries among others. Remarkably, 65% of the sample are found concentrated towards areas of star formation, similar to the results from GPS. In both surveys, sources in SFRs show spectral energy distributions (SEDs) that support classification as YSOs. This indicates that YSOs dominate the Galactic population of high amplitude infrared variable stars at low luminosities and therefore likely dominate the total high amplitude population. Spectroscopic follow-up allows us to confirm the pre-main sequence nature of several GPS and VVV Objects. Most objects in both samples show spectroscopic signatures that can be attributed to YSOs undergoing high states of accretion, such as veiling of photospheric features and CO emission, or show FUor-like spectra. We also find a large fraction of objects with 2.12 μm H2 emission that can be explained as arising from shock-excited emission caused by molecular outflows. Whether these molecular outflows are related to outbursts events cannot be confirmed from our data. Adding the GPS and VVV spectroscopic results, we find that between 6 and 14 objects are new additions to the FUor class from their close resemblance to the near-infrared spectra of FUors, and at least 23 more objects are new additions to the eruptive variable class. For most of these we are unable to classify them into any of the original definitions for this variable class. In any case, we are adding up to 37 new stars to the eruptive variable class which would double the current number of known objects. We note that most objects are found to be deeply embedded optically invisible stars, thus increasing the number of objects belonging to this subclass by a much larger factor. In general, objects in our samples which are found to be likely eruptive variable stars show a mixture of characteristics that can be attributed to both of the optically-defined classes. This agrees well with the recent discoveries in the literature. Finally, we are able to derive a first rough estimate on the incidence of episodic accretion among class I YSOs in the star-forming complex G305. We find that ~9% of such objects are in a state of high accretion. This number is in agreement with previous theoretical and observational estimates among class I YSOs.
Aperture Fever and the Quality of AAVSO Visual Estimates: mu Cephei as an Example
NASA Astrophysics Data System (ADS)
Turner, D. G.
2014-06-01
(Abstract only) At the limits of human vision the eye can reach precisions of 10% or better in brightness estimates for stars. So why did the quality of AAVSO visual estimates suddenly drop to 50% or worse for many stars following World War II? Possibly it is a consequence of viewing variable stars through ever-larger aperture instruments than was the case previously, a time when many variables were observed without optical aid. An example is provided by the bright red supergiant variable mu Cephei, a star that has the potential to be a calibrating object for the extragalactic distance scale if its low-amplitude brightness variations are better defined. It appears to be a member of the open cluster Trumpler 37, so its distance and luminosity can be established provided one can pinpoint the amount of interstellar extinction between us and it. mu Cep appears to be a double-mode pulsator, as suggested previously in the literature, but with periods of roughly 700 and 1,000 days it is unexciting to observe and its red color presents a variety of calibration problems. Improving quality control for such variable stars is an issue important not only to the AAVSO, but also to science in general.
2011-01-01
VLTI/ MIDI Instrument I. Karovicova,1,3 M. Wittkowski,1 D. A. Boboltz,2 E. Fossat,3 K. Ohnaka,4 and M. Scholz5,6 1European Southern Observatory...the oxygen-rich Mira variable RR Aql at 13 epochs covering 4 pulsation cycles with the MIDI instrument at the VLTI. We modeled the observed data...Variable Star RR Aql with the VLTI/ MIDI Instrument 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e
PHOTOMETRY OF VARIABLE STARS FROM DOME A, ANTARCTICA: RESULTS FROM THE 2010 OBSERVING SEASON
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lingzhi; Zhu, Zonghong; Macri, Lucas M.
We present results from a season of observations with the Chinese Small Telescope ARray, obtained over 183 days of the 2010 Antarctic winter. We carried out high-cadence time-series aperture photometry of 9125 stars with i ∼< 15.3 mag located in a 23 deg{sup 2} region centered on the south celestial pole. We identified 188 variable stars, including 67 new objects relative to our 2008 observations, thanks to broader synoptic coverage, a deeper magnitude limit, and a larger field of view. We used the photometric data set to derive site statistics from Dome A. Based on two years of observations, wemore » find that extinction due to clouds at this site is less than 0.1 and 0.4 mag during 45% and 75% of the dark time, respectively.« less
Observing campaign on 5 variables in Cygnus
NASA Astrophysics Data System (ADS)
Waagen, Elizabeth O.
2015-10-01
Dr. George Wallerstein (University of Washington) has requested AAVSO assistance in monitoring 5 variable stars in Cygnus now through December 2015. He is working to complete the radial velocity curves for these stars, and needs optical light curves for correlation with the spectra he will be obtaining. Wallerstein writes: "I need to know the time of max or min so I can assign a phase to each spectrum. Most classical Cepheids are quite regular so once a time of max or min can be established I can derive the phase of each observation even if my obs are several cycles away from the established max or min. MZ Cyg is a type II Cepheid and they are less regular than their type I cousins." SZ Cyg, X Cyg, VX Cyg, and TX Cyg are all classical Cepheids. V and visual observations are requested. These are long-period Cepheids, so nightly observations are sufficient. Finder charts with sequence may be created using the AAVSO Variable Star Plotter (https://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details.
Variability of FUV Emission Line in Classical T Tauri Stars as a Diagnostic for Disc Accretion
NASA Astrophysics Data System (ADS)
Ramkumar, B.; Johns-Krull, C. M.
2005-12-01
We present our results of FUV emission line variability studies done on four classical T Tauri stars. We have used the IUE Final Archive spectra of pre-main sequence stars to analyze the sample of four stars BP Tau, DR Tau, RU Lup and RY Tau where each of these low-resolution (R ˜6 Å) spectra was observed in the IUE short-wavelength band pass (1150--1980Å). Given a broad time line of multiple observations being available from the IUE Final archive, an intrinsic variability study has been possible with this sample. Our results indicate that the transition region lines \\ion{Si}{4} and \\ion{C}{4}, produced near the accretion shocks at ˜105 K, have a strong correlation between them in all four stars except DR Tau. We also observe a strong correlation between \\ion{C}{4} & \\ion{He}{2} on our entire sample with a correlation coefficient of 0.549 (false alarm probability = 7.9 x 10-2) or higher. In addition, \\ion{He}{2} correlates with the molecular hydrogen (1503Å) line in all but RU Lup. If the \\ion{He}{2} lines are produced because of X-ray ionization then the observed molecular hydrogen emission is indeed controlled by X-ray ionization and therefore \\ion{He}{2} could serve as an X-ray proxy for future studies. Also, our correlation results strengthen the fact that \\ion{C}{4} is a good predictor of \\ion{Si}{4} and have a common origin i.e. in accretion shocks in the star formation process.
ROTSE All-Sky Surveys for Variable Stars. I. Test Fields
NASA Astrophysics Data System (ADS)
Akerlof, C.; Amrose, S.; Balsano, R.; Bloch, J.; Casperson, D.; Fletcher, S.; Gisler, G.; Hills, J.; Kehoe, R.; Lee, B.; Marshall, S.; McKay, T.; Pawl, A.; Schaefer, J.; Szymanski, J.; Wren, J.
2000-04-01
The Robotic Optical Transient Search Experiment I (ROTSE-I) experiment has generated CCD photometry for the entire northern sky in two epochs nightly since 1998 March. These sky patrol data are a powerful resource for studies of astrophysical transients. As a demonstration project, we present first results of a search for periodic variable stars derived from ROTSE-I observations. Variable identification, period determination, and type classification are conducted via automatic algorithms. In a set of nine ROTSE-I sky patrol fields covering roughly 2000 deg2, we identify 1781 periodic variable stars with mean magnitudes between mv=10.0 and mv=15.5. About 90% of these objects are newly identified as variable. Examples of many familiar types are presented. All classifications for this study have been manually confirmed. The selection criteria for this analysis have been conservatively defined and are known to be biased against some variable classes. This preliminary study includes only 5.6% of the total ROTSE-I sky coverage, suggesting that the full ROTSE-I variable catalog will include more than 32,000 periodic variable stars.
X-Ray Variability and the Secondary Star
NASA Technical Reports Server (NTRS)
Corcoran, M. F.; Ishibashi, K.
2012-01-01
We discuss the history of X-ray observations of the 11 Car system, concentrating on the periodic variability discovered in the 1990s. We discuss the interpretation of these variations, concentrating on a model of the system as a "collidingwind" binary. This interpretation allows the physical and orbital parameters of eta Car and its companion star to be constrained.
Asteroseismology of White Dwarf Stars
NASA Technical Reports Server (NTRS)
Hansen, Carl J.
1997-01-01
The primary purpose of this investigation has been to study various aspects of multimode pulsations in variable white dwarfs. In particular, nonlinear interactions among pulsation modes in white dwarfs (and, to some extent, in other variable stars), analysis of recent observations where such interactions are important, and preliminary work on the effects of crystallization in cool white dwarfs are reported.
Radio emission of cataclysmic variable stars
NASA Technical Reports Server (NTRS)
Fuerst, E.; Benz, A.; Hirth, W.; Geffert, M.; Kiplinger, A.
1986-01-01
Eight cataclysmic variable stars were observed at 6 cm wavelength using the Very Large Array (VLA). The objects were: CN-Ori, SS-Aur, YZ-Cnc, SU-Uma, Z-Cam, V603-Aql, EM-Cyg, and RZ-Sge. Most of these objects were in optical high stage, but none were detected beyond flux limits between 0.1 and 0.3 mJy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banzatti, A.; Meyer, M. R.; Manara, C. F.
2014-01-01
Young stars are known to show variability due to non-steady mass accretion rate from their circumstellar disks. Accretion flares can produce strong energetic irradiation and heating that may affect the disk in the planet formation region, close to the central star. During an extreme accretion outburst in the young star EX Lupi, the prototype of EXor variables, remarkable changes in molecular gas emission from ∼1 AU in the disk have recently been observed. Here, we focus on water vapor and explore how it is affected by variable accretion luminosity in T Tauri stars. We monitored a young highly variable solar-massmore » star, DR Tau, using simultaneously two high/medium-resolution spectrographs at the European Southern Observatory Very Large Telescope: VISIR at 12.4 μm to observe water lines from the disk and X-shooter covering from 0.3 to 2.5 μm to constrain the stellar accretion. Three epochs spanning timescales from several days to several weeks were obtained. The accretion luminosity was estimated to change within a factor of ∼2 and no change in water emission was detected at a significant level. In comparison with EX Lupi and EXor outbursts, DR Tau suggests that the less long-lived and weaker variability phenomena typical of T Tauri stars may leave water at planet-forming radii in the disk mostly unaffected. We propose that these systems may provide evidence for two processes that act over different timescales: ultraviolet photochemistry in the disk atmosphere (faster) and heating of the deeper disk layers (slower).« less
On the structure of the outer layers of cool carbon stars
NASA Technical Reports Server (NTRS)
Querci, F.; Querci, M.; Wing, R. F.; Cassatella, A.; Heck, A.
1982-01-01
Exposures on the spectra of four late C-type stars have been made with the IUE satellite in the wavelength range of the LWR camera (1900-3200 A). Two Mira variables near maximum light and two semiregular variables were observed. Although the exposure times used, which range up to 240 min in the low-resolution mode, were more than sufficient to record the continuum and emission lines of Mg II, Fe II, and Al II in normal M stars of similar magnitude and temperature, no light was recorded. It is concluded that the far-ultraviolet continuum is strongly depressed in these cool carbon stars. The absence of UV emission lines implies either that the chromospheric lines observed in M stars require an ultraviolet flux for their excitation, or that cool carbon stars have no chromosphere at all or that the opacity source is located above even the emission-line-forming region. This opacity source, which is probably some carbon condensate since it is weak or absent in M stars while absorbing strongly in C stars, is discussed both in terms of the chromospheric interpretation of the emission lines and in terms of their shock-wave interpretation.
NASA Astrophysics Data System (ADS)
Smith, Alexander; De Marco, O.
2007-12-01
Recent observational evidence and theoretical models are challenging the classical paradigm of single star planetary nebula (PN) evolution, suggesting instead that binary stars play a significant role in the process of PN formation. In order to shape the 90% of PN that are non-spherical, the central star must be rotating and have a magnetic field; the most-likely source of the angular momentum needed to sustain magnetic fields is a binary companion. More observational evidence is needed to confirm that the fraction of PN with close binary central stars is indeed higher than the currently known value of 10-15%. As part of an international effort to detect binary central stars (PLAN-B - Panetary Nebula Binaries), we are carrying out a new photometric survey to look for close binary central stars of PN. Here we present the findings for 4 objects: A 43, A 74, NGC 6720, and NGC 6853. NGC 6720 and NGC 6853 show evidence of periodic variability, the former of which might even show one eclipse. Once completed, the survey will assess the binarity of about 100 central stars of PN.
Magnetic B stars observed with BRITE: Spots, magnetospheres, binarity, and pulsations
NASA Astrophysics Data System (ADS)
Wade, G. A.; Cohen, D. H.; Fletcher, C.; Handler, G.; Huang, L.; Krticka, J.; Neiner, C.; Niemczura, E.; Pablo, H.; Paunzen, E.; Petit, V.; Pigulski, A.; Rivinius, Th.; Rowe, J.; Rybicka, M.; Townsend, R.; Shultz, M.; Silvester, J.; Sikora, J.
2017-09-01
Magnetic B-type stars exhibit photometric variability due to diverse causes, and consequently on a variety of timescales. In this paper we describe interpretation of BRITE photometry and related ground-based observations of four magnetic B-type systems: ɛ Lupi, τ Sco, a Cen and ɛ CMa.
Variable Stars in Large Magellanic Cloud Globular Clusters. III. Reticulum
NASA Astrophysics Data System (ADS)
Kuehn, Charles A.; Dame, Kyra; Smith, Horace A.; Catelan, Márcio; Jeon, Young-Beom; Nemec, James M.; Walker, Alistair R.; Kunder, Andrea; Pritzl, Barton J.; De Lee, Nathan; Borissova, Jura
2013-06-01
This is the third in a series of papers studying the variable stars in old globular clusters in the Large Magellanic Cloud. The primary goal of this series is to look at how the characteristics and behavior of RR Lyrae stars in Oosterhoff-intermediate systems compare to those of their counterparts in Oosterhoff-I/II systems. In this paper we present the results of our new time-series BVI photometric study of the globular cluster Reticulum. We found a total of 32 variables stars (22 RRab, 4 RRc, and 6 RRd stars) in our field of view. We present photometric parameters and light curves for these stars. We also present physical properties, derived from Fourier analysis of light curves, for some of the RR Lyrae stars. We discuss the Oosterhoff classification of Reticulum and use our results to re-derive the distance modulus and age of the cluster. Based on observations taken with the SMARTS 1.3 m telescope operated by the SMARTS Consortium and observations taken at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).
New Observations of Candidate Herbig Ae/Be Stars in the LMC and SMC
NASA Astrophysics Data System (ADS)
Bjorkman, K. S.; Wisniewski, J. P.; Bjorkman, J. E.; Hesselbach, E. N.
2005-12-01
Based on analysis of the EROS microlensing data set, Lamers, Beaulieu, & de Wit (1999) and de Wit, Beaulieu, & Lamers (2002) identified 21 candidate Herbig Ae/Be (HAeBe) stars in the Large Magellanic Cloud (LMC). They based the selection of candidates on the irregular photometric variability exhibited by these stars, which bore some resemblance to the variability exhibited by known Galactic HAeBe stars. The candidate stars identified were designated as EROS LMC HAeBe Candidates, or ELHCs. A smaller number (7) of candidate stars identified in the SMC (Beaulieu et al. 2001; de Wit et al. 2003) were similarly designated ESHCs. Using the CTIO 0.9m telescope and imaging camera, we obtained B, V, R, and Hα photometry of 2 fields in the LMC encompassing 12 of the ELHCs. We used the CTIO 4m Blanco telescope with the Hydra multi-object spectrograph to obtain optical spectroscopy of all the ELHC stars as well as the ESHC stars. Further observations included JHK photometry of both the ELHC and ESHC fields using the CTIO 4m plus the ISPI infrared imager. We will discuss the results from our observations, and comment on the implications for the tentative identification of these stars as candidate HAeBe stars. We will also compare our results with the recent findings of de Wit et al. (2005). This work has been supported in part by NASA LTSA grant (KSB) NAG5-8054 and NASA GSRP Fellowship (JPW) NGT5-5069 to the University of Toledo. We thank the NOAO TAC for providing observing time for this project, and for providing travel support for JPW.
Detection of 1612 MHz OH emission in the semiregular variable stars RT Vir, R Crt and W Hya
NASA Astrophysics Data System (ADS)
Etoka, S.; Le Squeren, A. M.; Gerard, E.
2003-05-01
We present evidence of 1612 MHz emission in SR variable stars. The two SRb, RT Vir and R Crt, as well as the SRa W Hya have been monitored with the upgraded Nançay radio telescope since February 2001. All three objects have shown a weak 1612 MHz emission occuring in the velocity range of the strongest emission observed in the main-lines. Such a detection is the second observational evidence for emission in the 1612 MHz OH maser satellite line from SRb stars. It also confirms the presence of 1612 MHz emission in the SRa W Hya discovered by Etoka et al. (\\cite{etoka01}). Such a finding strongly suggests that the shell properties of those three objects are quite similar to those of the Mira stars with similar IR characteristics.
A photometric study of Be stars located in the seismology fields of COROT
NASA Astrophysics Data System (ADS)
Gutiérrez-Soto, J.; Fabregat, J.; Suso, J.; Lanzara, M.; Garrido, R.; Hubert, A.-M.; Floquet, M.
2007-12-01
Context: In preparation for the COROT mission, an exhaustive photometric study of Be stars located in the seismology fields of the mission has been performed. The very precise and long-time-spanned photometric observations gathered by the COROT satellite will give important clues on the origin of the Be phenomenon. Aims: The aim of this work is to find short-period variable Be stars located in the seismology fields of COROT, and to study and characterise their pulsational properties. Methods: Light curves obtained at the Observatorio de Sierra Nevada, together with data from Hipparcos and ASAS-3 for a total of 84 Be stars, were analysed in order to search for short-term variations. We applied standard Fourier techniques and non-linear least-square fitting to the time series. Results: We found 7 multiperiodic, 21 mono-periodic and 26 non-variable Be stars. Short-term variability was detected in 74% of early-type Be stars and in 31% of mid- to late-type Be stars. We show that non-radial pulsations are more frequent among Be stars than in slow-rotating B stars of the same spectral range. Appendix A is only available in electronic form at http://www.aanda.org
Guzik, J. A.; Bradley, P. A.; Jackiewicz, J.; ...
2015-04-21
In this study, the high precision long time-series photometry of the NASA Kepler spacecraft provides an excellent means to discover and characterize variability in main-sequence stars, and to make progress in interpreting the pulsations to derive stellar interior structure and test stellar models. For stars of spectral types A–F, the Kepler data revealed a number of surprises, such as more hybrid pulsating Sct and Dor pulsators than expected, pulsators lying outside of the instability regions predicted by theory, and stars that were expected to pulsate, but showed no variability. In our 2013 Astronomical Review article, we discussed the statistics ofmore » variability for 633 faint (Kepler magnitude 14–16) spectral type A–F stars observed by Kepler during Quarters 6–13 (June 2010–June 2012).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guzik, J. A.; Bradley, P. A.; Jackiewicz, J.
In this study, the high precision long time-series photometry of the NASA Kepler spacecraft provides an excellent means to discover and characterize variability in main-sequence stars, and to make progress in interpreting the pulsations to derive stellar interior structure and test stellar models. For stars of spectral types A–F, the Kepler data revealed a number of surprises, such as more hybrid pulsating Sct and Dor pulsators than expected, pulsators lying outside of the instability regions predicted by theory, and stars that were expected to pulsate, but showed no variability. In our 2013 Astronomical Review article, we discussed the statistics ofmore » variability for 633 faint (Kepler magnitude 14–16) spectral type A–F stars observed by Kepler during Quarters 6–13 (June 2010–June 2012).« less
A Search for Variable Stars in Ruprecht 134 (Abstract)
NASA Astrophysics Data System (ADS)
El Hamri, R.; Blake, M.
2018-06-01
(Abstract only) Contact binary stars have been found in many old open clusters. These stars are useful for obtaining the distances to these star clusters and for understanding the stellar populations and evolution of the old clusters. Ruprecht 134 is a relatively neglected, old open cluster with an age of about 1 Gyr. We have obtained observations of Ruprecht 134 using the 1-meter telescope at Cerro Tololo Interamerican Observatory for the purpose of identifying candidate contact binaries. We present the preliminary results of this search and discuss future observations.
Central Stars of Mid-Infrared Nebulae Discovered with Spitzer and WISE
NASA Astrophysics Data System (ADS)
Gvaramadze, V. V.; Kniazev, A. Y.
2017-02-01
Searches for compact mid-IR nebulae with the Spitzer Space Telescope and the Wide-field Infrared Survey Explorer (WISE), accompanied by spectroscopic observations of central stars of these nebulae led to the discovery of many dozens of massive stars at different evolutionary stages, of which the most numerous are candidate luminous blue variables (LBVs). In this paper, we give a census of candidate and confirmed Galactic LBVs revealed with Spitzer and WISE, and present some new results of spectroscopic observations of central stars of mid-IR nebulae.
VizieR Online Data Catalog: Solar neighborhood. XXXVI. VRI variability of M dwarfs (Hosey+, 2015)
NASA Astrophysics Data System (ADS)
Hosey, A. D.; Henry, T. J.; Jao, W.-C.; Dieterich, S. B.; Winters, J. G.; Lurie, J. C.; Riedel, A. R.; Subasavage, J. P.
2015-07-01
We present an analysis of long-term photometric variability for nearby red dwarf stars at optical wavelengths (Table1). The sample consists of 264 M dwarfs south of decl.=+30 with V-K=3.96-9.16 and MV~~10-20, corresponding to spectral types M2V-M8V, most of which are within 25pc. Our 264 dwarf stars have been observed in the VRI filters over the past 14yr (with a median duration in the coverage of 7.9yr). The REsearch Consortium On Nearby Stars (RECONS; www.recons.org) has been using the Cerro Tololo Inter-American Observatory/Small & Moderate Aperture Research Telescope System (CTIO/SMARTS) 0.9m telescope for astrometric and photometric observations since 1999, first as an National Optical Astronomy Observatory (NOAO) Surveys Program, and since 2003 under the auspices of the SMARTS Consortium. The telescope is equipped with a 2048*2048 Tektronix CCD camera. Images taken during the program are used here to investigate the photometric variability of the nearby M dwarfs that have been targeted for parallax and proper motion measurements. Observations are made using the central quarter of the chip, which provides a 6.8' square field of view and pixels 401mas in size. Parallax frames are taken in the VJ, RKC, and IKC filters with magnitudes ranging from 9 to 20. The central wavelengths for the VJ, RKC, and IKC filters used in this study are 5438/5475, 6425, and 8075Å, respectively. The subscript "J" indicates Johnson, "KC" indicates Kron-Cousins (usually known as Cousins). VRI photometry from our program is given for the sample stars in Table1. Details of the photometry observations and reductions can be found in Jao et al. (2005AJ....129.1954J) and Winters et al. 2011 (cat. J/AJ/141/21). For astrometry, five images of each star are typically taken per night, usually within 30 minutes of transit. The target star is positioned in the field so that 5-10 reference stars, normally fainter by 1-4mag, surround the target. These stars constitute a reference grid for the astrometric reductions, and are also used for the photometric variability study described here. Additional details of the observations can be found in Jao et al. (2005AJ....129.1954J). (2 data files).
B.R.N.O. Contributions #40 Times of minima
NASA Astrophysics Data System (ADS)
Juryšek, J.; Hoňková, K.; Šmelcer, L.; Mašek, M.; Lehký, M.; Bílek, F.; Mazanec, J.; Hanžl, D.; Magris, M.; Nosál, P.; Bragagnolo, U.; Medulka, T.; Vraš&tacute; ák, M.; Urbaník, M.; Auer, R. F.; Sergey, I.; Jacobsen, J.; Alessandroni, M. R.; Andreatta, C.; Antonio, Ch. F.; Artola, R.; Audejean, M.; Balanzino, L.; Banfi, M.; Bazán, R. S.; Borgonovo, M.; Cagaš, P.; Čaloud, J.; Campos, F.; Čapková, H.; Černíková, V.; Červinka, L.; Chiavassa, A.; Dřevěný, R.; Durantini, L. H.; Ferraro, M. E.; Ferrero, G.; Girardini, C.; Gudmundsson, S.; Guzzo, P.; Guevara, N.; Hladík, B.; Horník, M.; Jakš, S.; Janoštiak, L.; Jelínek, M.; Kalášek, J.; Kalmbach, R.; Kubica, T.; Kučáková, H.; Liška, J.; Lomoz, F.; López, O. Ch.; Lovato, B. M.; Morero, S.; Mrllák, R.; Mrňák, P.; Persha, G.; Pignata, R.; Pintr, P.; Popov, A.; Portillo, L. F. T.; Quiñones, C.; Rodriguez, E.; Ruocco, N.; Scaggiante, F.; Scavuzzo, A.; Šebela, P.; Šimkovič, S.; Školník, V.; Skubák, P.; Smolka, M.; Špecián, M.; Šuchaň, J.; Tornatore, M.; Trnka, J.; Tylšar, M.; Walter, F.; Zardin, D.; Zejda, M.; Zíbar, M.; Ziková, A.
2017-03-01
This paper presents 3394 times of minima for 1096 objects acquired by 82 members and cooperating observers of the Variable Star and Exoplanet Section of the Czech Astronomical Society (B.R.N.O. Observing project). Observations were carried out between October 2014 and November 2016. Some newly discovered stars by the observers of project B.R.N.O. are included in the list.
NASA Technical Reports Server (NTRS)
Ladous, Constanze
1993-01-01
On grounds of different observable characteristics five classes of nova-like objects are distinguished: the UX Ursae Majoris stars, the antidwarf novae, the DQ Herculis stars, the AM Herculis stars, and the AM Canum Venaticorum stars. Some objects have not been classified specifically. Nova-like stars share most observable features with dwarf novae, except for the outburst behavior. The understanding is that dwarf novae, UX Ursae Majoris stars, and anti-dwarf novae are basically the same sort of objects. The difference between them is that in UX Ursae Majoris stars the mass transfer through the accretion disc always is high so the disc is stationary all the time; in anti-dwarf novae for some reason the mass transfer occasionally drops considerably for some time, and in dwarf novae it is low enough for the disc to undergo semiperiodic changes between high and low accretion events. DQ Herculis stars are believed to possess weakly magnetic white dwarfs which disrupt the inner disc at some distance from the central star; the rotation of the white dwarf can be seen as an additional photometric period. In AM Herculis stars, a strongly magnetic white dwarf entirely prevents the formation of an accretion disk and at the same time locks the rotation of the white dwarf to the binary orbit. Finally, AM Canum Venaticorum stars are believed to be cataclysmic variables that consist of two white dwarf components.
The Winds of Main Sequence B Stars in NGC 6231, Evidence for Shocks in Weak Winds.
NASA Astrophysics Data System (ADS)
Massa, Derck
1996-07-01
Because the main sequence B stars in NGC 6231 have abnormallystrong C iv wind lines, they are the only main sequence Bstars with distinct edge velocities. Although the underlyingcause for the strong lines remains unknown, these stars doprovide an opportunity to test two important ideas concerningB star winds: 1) that the driving ions in the winds of starswith low mass loss rates decouple from the general flow, and;2) that shocks deep in the winds of main sequence B stars areresponsible for their observed X-rays. In both of thesemodels, the wind accelerates toward a terminal velocity,v_infty, far greater than the observed value, shocking ordecoupling well before it can attain the high v_infty. As aresult, the observable wind accelerates very rapidly, leadingto wind flushing times less than 30 minutes. If theseconjectures are correct, then the winds of main sequence Bstars should be highly variable on time scales of minutes.Model fitting of available IUE data are consistant with thegeneral notion of a rapidly accelerating wind, shocking wellbefore its actual v_infty. However, these are 5 hourexposures, so the fits are to ill-defined mean wind flows.The new GHRS observations will provide adequate spectral andtemporal resolution to observe the expected variability and,thereby, verify the existance of two important astrophysicalprocesses.
Interrogation of duplicitous stars with an APT
NASA Technical Reports Server (NTRS)
Bopp, Bernard W.
1992-01-01
Preliminary results from intensive spectroscopic and APT monitoring of two interacting binary systems are presented. Both V644 Mon (Be + K:) and HD 37453 (F5 II + B) show complex, composite, and variable spectral. APT observations extending over three years show both stars to vary by 0.1-0.2 mag in V. The photometric variability of V644 Mon appears to be irregular, though there is some evidence for periodic behavior in the 50-60 day range. HD 37453 has an orbital period of 66.75 days; the best-fit photometric period is not quite half this value, indicating the star is an ellipsoidal variable.
The detection of X-ray variability in O stars
NASA Technical Reports Server (NTRS)
Snow, T. P., Jr.; Cash, W.; Grady, C. A.
1981-01-01
Seven O stars known to have strong, and sometimes variable, stellar winds have been observed repeatedly with the Imaging Proportional Counter on the Einstein Observatory, in a program designed to determine whether the X-ray fluxes from these stars are variable. In three cases, definite changes were seen, either on a time scale of a year (Iota Ori and Delta Ori) or five days (15 Mon). In two of these cases, the X-ray spectrum was harder when the overall flux was higher, indicating that some of the fluctuations may take place in a hot (approximately 10 to the 7th K) emitting region at the bottom of the winds.
NASA Technical Reports Server (NTRS)
Linsky, J. L.
1983-01-01
Progress in understanding active dwarf stars based on recent IUE, Einstein, and ground-based observations is reviewed. The extent of magnetic field control over nonflare phenomena in active dwarf stars is considered, and the spatial homogeneity and time variability of active dwarf atmospheres is discussed. The possibility that solar like flux tubes can explain enhanced heating in active dwarf stars in examined, and the roles of systematic flows in active dwarf star atmospheres are considered. The relation between heating rates in different layers of active dwarf stars is summarized, and the mechanism of chromosphere and transition region heating in these stars are discussed. The results of one-component and two-component models of active dwarf stars are addressed.
NASA Astrophysics Data System (ADS)
Li, Lin-Jia; Qian, Sheng-Bang; Voloshina, Irina; Metlov, Vladimir G.; Zhu, Li-Ying; Liao, Wen-Ping
2018-06-01
We present photometric measurements of the short period variable star UY Cam, which has been classified as a δ Scuti or c-type RR Lyrae (RRc) variable in different catalogs. Based on the analyses on Fourier coefficients and (NUV - V)0, we find that UY Cam is probably an RRc star. We obtain 58 new times of light maximum for UY Cam based on several sky surveys and our observations. Combining these with the times of light maximum in literature, a total of 154 times of light maximum are used to analyze the O - C diagram of UY Cam. The results show that the O - C pattern can be described by a downward parabolic component with a rate of -6.86 ± 0.47 × 10-11 d d-1, and a cyclic variation with a period of 65.7 ± 2.4 yr. We suppose these components are caused by the stellar evolution and the light travel time effect (LiTE) of a companion in elliptical orbit, respectively. By calculation, the minimum mass of the potential companion is about 0.17 M⊙, and its mass should be less than or equal to the pulsation primary star when the inclination i > 22.5°D. Therefore, the companion should be a low-mass star, like a late-type main-sequence star or a white dwarf. Due to the unique property of UY Cam, we suggest that more observations and studies on UY Cam and other RRc stars are needed to check the nature of these stars, including the pulsations and binarities.
The Sproul 24-Inch Refractor: Entering A New Century of Research
NASA Astrophysics Data System (ADS)
Augensen, H. J.; Heintz, W. D.; Schultz, M. R.; Hassel, G. E., Jr.; Inoue, S.; Howanski, R.; Fanning, T.
1999-05-01
The Sproul Observatory, located in Swarthmore, Pennsylvania, has been in operation since 1912. Its major research instrument is a 24-inch, f/18 refracting telescope with lenses made by Brashear. The research conducted during the 20th century concentrated on obtaining parallaxes of nearby stars and also on the exploration of visual double and multiple star systems. The Sproul plate vault contains some 90,000 plates, from which 1500 stellar parallaxes, or about 10% of the current parallax database, have been extracted. Heintz made 54,000 observations (including those made with other telescopes) of double stars over 43 years (47,500 by micrometer, 6500 by photography), resulting in the calculation of 500 orbits and 900 newly discovered double stars. Photographic observations ceased in 1994. In 1998 the refractor was fitted with an Apogee AP-6 CCD camera, which contains a Kodak KAF 1000 chip with 1024 x 1024 pixel array, and gives a 0.45 arcseconds per pixel image scale and 8 x 8 arcminute field of view at the focal plane. The camera is operated using PMIS software. A filter wheel constructed by ISI Systems and attached to the camera contains 5-mm thick B, V, and R filters. The Sproul telescope has now been given a new task: the study of variable stars. Currently under investigation are RV Tauri and semiregular variables, SX Phoenicis stars, and also stars which are suspected of being variable, taken from the New Catalogue of Stars Suspected of Variability of Light, Nauka Publishing, Moscow 1982. Thus far, the most convincing cases for variability are NSV 656 (irregular?), 1098 (large amplitude, probably Mira type), 1470 (short P, eclipsing?), and 13514 (P 105d?). This work has been supported by a Provost Grant from Swarthmore College and by the Howard Hughes Medical Institute-Supported Summer Research in Science Program.
Extremes of the jet–accretion power relation of blazars, as explored by NuSTAR
Sbarrato, T.; Ghisellini, G.; Tagliaferri, G.; ...
2016-07-18
Hard X-ray observations are crucial to study the non-thermal jet emission from high-redshift, powerful blazars. We observed two bright z > 2 flat spectrum radio quasars (FSRQs) in hard X-rays to explore the details of their relativistic jets and their possible variability. S5 0014+81 (at z = 3.366) and B0222+185 (at z=2.690) have been observed twice by the Nuclear Spectroscopic Telescope Array (NuSTAR) simultaneously with Swift/XRT, showing different variability behaviors. We found that NuSTAR is instrumental to explore the variability of powerful high-redshift blazars, even when no gamma-ray emission is detected. The two sources have proven to have respectively themore » most luminous accretion disk and the most powerful jet among known blazars. Furthermore, thanks to these properties, they are located at the extreme end of the jet-accretion disk relation previously found for gamma-ray detected blazars, to which they are consistent.« less
Extremes of the jet–accretion power relation of blazars, as explored by NuSTAR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sbarrato, T.; Ghisellini, G.; Tagliaferri, G.
Hard X-ray observations are crucial to study the non-thermal jet emission from high-redshift, powerful blazars. We observed two bright z > 2 flat spectrum radio quasars (FSRQs) in hard X-rays to explore the details of their relativistic jets and their possible variability. S5 0014+81 (at z = 3.366) and B0222+185 (at z=2.690) have been observed twice by the Nuclear Spectroscopic Telescope Array (NuSTAR) simultaneously with Swift/XRT, showing different variability behaviors. We found that NuSTAR is instrumental to explore the variability of powerful high-redshift blazars, even when no gamma-ray emission is detected. The two sources have proven to have respectively themore » most luminous accretion disk and the most powerful jet among known blazars. Furthermore, thanks to these properties, they are located at the extreme end of the jet-accretion disk relation previously found for gamma-ray detected blazars, to which they are consistent.« less
NASA Astrophysics Data System (ADS)
Kiss, L. L.; Bódi, A.
2017-12-01
Context. RV Tauri-type variables are pulsating post-asymptotic giant branch (AGB) stars that evolve rapidly through the instability strip after leaving the AGB. Their light variability is dominated by radial pulsations. Members of the RVb subclass show an additional variability in the form of a long-term modulation of the mean brightness, for which the most popular theories all assume binarity and some kind of circumstellar dust. Here we assess whether or not the amplitude modulations are consistent with the dust obscuration model. Aims: We measure and interpret the overall changes of the mean amplitude of the pulsations along the RVb variability. Methods: We compiled long-term photometric data for RVb-type stars, including visual observations of the American Association of Variable Star Observers, ground-based CCD photometry from the OGLE and ASAS projects, and ultra-precise space photometry of one star, DF Cygni, from theKepler space telescope. After converting all the observations to flux units, we measure the cycle-to-cycle variations of the pulsation amplitude and correlate them to the actual mean fluxes. Results: We find a surprisingly uniform correlation between the pulsation amplitude and the mean flux; they scale linearly with each other for a wide range of fluxes and amplitudes. This means that the pulsation amplitude actually remains constant when measured relative to the system flux level. The apparent amplitude decrease in the faint states has long been noted in the literature but it was always claimed to be difficult to explain with the actual models of the RVb phenomenon. Here we show that when fluxes are used instead of magnitudes, the amplitude attenuation is naturally explained by periodic obscuration from a large opaque screen, one most likely corresponding to a circumbinary dusty disk that surrounds the whole system.
Monitoring solar-type stars for luminosity variations
NASA Technical Reports Server (NTRS)
Lockwood, G. W.; Skiff, B. A.
1988-01-01
Since 1984, researchers have made more than 1500 differential photometric b (471 nm) and y (551 nm) measurements of three dozen solar-like lower main sequence stars whose chromospheric activity was previosly studied by O. C. Wilson. Here, researchers describe their methodology and the statistical tests used to distinguish intrinsic stellar variability from observational and instrument errors. The incidence of detected variability among the program and comparison stars is summarized. Among the 100 plus pairs of stars measured differentially, only a dozen were found that were unusually constant, with peak-to-peak amplitudes of seasonal mean brightness smaller than 0.3 percent (0.003 mag) over a two-to-three-year interval.
A spectroscopic and photometric investigation of the mercury-manganese star KIC 6128830
NASA Astrophysics Data System (ADS)
Hümmerich, Stefan; Niemczura, Ewa; Walczak, Przemysław; Paunzen, Ernst; Bernhard, Klaus; Murphy, Simon J.; Drobek, Dominik
2018-02-01
The advent of space-based photometry provides the opportunity for the first precise characterizations of variability in mercury-manganese (HgMn/CP3) stars, which might advance our understanding of their internal structure. We have carried out a spectroscopic and photometric investigation of the candidate CP3 star KIC 6128830. A detailed abundance analysis based on newly acquired high-resolution spectra was performed, which confirms that the star's abundance pattern is fully consistent with its proposed classification. Photometric variability was investigated using 4 yr of archival Kepler data. In agreement with results from the literature, we have identified a single significant and independent frequency f1 = 0.2065424 d-1 with a peak-to-peak amplitude of ˜3.4 mmag and harmonic frequencies up to 5f1. Drawing on the predictions of state-of-the-art pulsation models and information on evolutionary status, we discuss the origin of the observed light changes. Our calculations predict the occurrence of g-mode pulsations at the observed variability frequency. On the other hand, the strictly mono-periodic nature of the variability strongly suggests a rotational origin. While we prefer the rotational explanation, the present data leave some uncertainty.
Potential Line Structure Variability in DIB Features Observed in Pathfinder tres Survey
NASA Astrophysics Data System (ADS)
Law, Charles; Milisavljevic, Dan; Crabtree, Kyle N.; Johansen, Sommer Lynn
2017-06-01
The Diffuse Interstellar Bands (DIBs) are hundreds of spectral lines observed in sightlines towards many stars in the optical and near-infrared. Although most of these transitions remain unassigned, four of them have recently been assigned to C_{60}^{+} and C_{70}^{+}. In earlier observations of the visible spectrum of the extragalactic supernova SN 2012ap, we observed changes in the equivalent widths of DIBs on the timescale of its light curve, which indicated that some DIB carriers might exist closer to massive stars then previously believed. Motivated by these findings, we undertook a pathfinder survey of 17 massive stars with the Tillinghast Reflector Echelle Spectrograph at Fred L. Whipple Observatory in search of temporal variability in DIBs. In 3 of the 17 stars, we found possible evidence for variation in line substructure of DIBs λ5797 and λ6614. In this talk, we will discuss our efforts to model λ5797 toward MT-59 using contour simulations based on previously published spectral models from higher resolution observations. Although the SNR of this spectrum was only 5-15, our preliminary results suggest that the variations in molecular spectra over time might arise from changes in carrier temperature. These early results demonstrate the need for higher SNR spectra taken at multiple epochs to further explore potential temporal variability. If successful, time-variation could provide additional evidence to assist in identifying DIB carriers.
Fabricius, David (1564-1617) and Fabricius, Johannes (1587-1616)
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
Lutheran pastor and astronomer in Osteel, East Frisia (northwest Germany), discoverer (1596) of the first known variable star, mira stella (`wonderful star'), now simply Mira (Omicron Ceti). Fabricius observed the star at its brightest and thought it was a nova, after which Holwarda noticed that a star in Cetus cataloged by PTOLEMY and TYCHO was missing but then it reappeared. Eventually the long...
NASA Astrophysics Data System (ADS)
Samus, N. N.
Basic observational data on RR Lyrae type stars are reviewed. It is noted that these stars are used widely to investigate the structure and kinematics of the spherical and intermediate components of the Galaxy, with correct data on the absolute magnitude of these variables being decisive. Attention is given to the relationship between the orbit eccentricity and inclination of osculating RR Lyrae type stars in the Galaxy and their metallicity index.
VizieR Online Data Catalog: Early observations of M13 variables (Osborn,+, 2016)
NASA Astrophysics Data System (ADS)
Osborn, W.; Barnard, E. E.
2018-05-01
In 1900 E.E. Barnard published 37 visual observations of Variable 2 (V2) in the globular cluster M13 made in 1899 and 1900. A review of Barnard's notebooks revealed he made many additional brightness estimates up to 1911, and he had also recorded the variations of V1 starting in 1904. These data provide the earliest-epoch light curves for these stars and thus are useful for studying their period changes. This paper presents Barnard's observations of the M13 variables along with their derived heliocentric Julian dates and approximate V magnitudes. These include 231 unpublished observations of V2 and 94 of V1. How these data will be of value for determining period changes by these stars is described. (5 data files).
NASA Astrophysics Data System (ADS)
Zhang, Liyun; Lu, Hongpeng; Han, Xianming L.; Jiang, Linyan; Li, Zhongmu; Zhang, Yong; Hou, Yonghui; Wang, Yuefei; Cao, Zihuang
2018-05-01
The LAMOST spectral survey provides a rich databases for studying stellar spectroscopic properties and chromospheric activity. We cross-matched a total of 105,287 periodic variable stars from several photometric surveys and databases (CSS, LINEAR, Kepler, a recently updated eclipsing star catalogue, ASAS, NSVS, some part of SuperWASP survey, variable stars from the Tsinghua University-NAOC Transient Survey, and other objects from some new references) with four million stellar spectra published in the LAMOST data release 2 (DR2). We found 15,955 spectra for 11,469 stars (including 5398 eclipsing binaries). We calculated their equivalent widths (EWs) of their Hα, Hβ, Hγ, Hδ and Caii H lines. Using the Hα line EW, we found 447 spectra with emission above continuum for a total of 316 stars (178 eclipsing binaries). We identified 86 active stars (including 44 eclipsing binaries) with repeated LAMOST spectra. A total of 68 stars (including 34 eclipsing binaries) show chromospheric activity variability. We also found LAMOST spectra of 12 cataclysmic variables, five of which show chromospheric activity variability. We also made photometric follow-up studies of three short period targets (DY CVn, HAT-192-0001481, and LAMOST J164933.24+141255.0) using the Xinglong 60-cm telescope and the SARA 90-cm and 1-m telescopes, and obtained new BVRI CCD light curves. We analyzed these light curves and obtained orbital and starspot parameters. We detected the first flare event with a huge brightness increase of more than about 1.5 magnitudes in R filter in LAMOST J164933.24+141255.0.
INTEGRAL and XMM-Newton observations of the puzzling binary system LSI +61 303
NASA Astrophysics Data System (ADS)
Chernyakova, Masha; Neronov, A.; Walter, R.
LSI +61° 303 is one of the few X-ray binaries with Be star companion from which both radio and high-energy gamma-ray emission have been observed. We present XMM-Newton and INTE- GRAL observations which reveal variability of the X-ray spectral index of the system. The X-ray spectrum is hard (photon index Γ ≃ 1.5) during the orbital phases of both high and low X-ray flux. However, the spectrum softens at the moment of transition from high to low X-ray state. The spectrum of the system in the hard X-ray band does not reveal the presence of a cut-off (or, at least a spectral break) at 10-60 keV energies, expected if the compact object is an accreting neu- tron star. The observed spectrum and spectral variability can be explained if the compact object in the system is a rotation powered pulsar. In this case the recently found X-ray spectral variability of the system on the several kiloseconds time scale can be explained by the clumpy structure of the Be star disk.
The Search for RR Lyrae Variables in the Dark Energy Survey
NASA Astrophysics Data System (ADS)
Nielsen, Chandler; Marshall, Jennifer L.; Long, James
2017-01-01
RR Lyrae variables are stars with a characteristic relationship between magnitude and phase and whose distances can be easily determined, making them extremely valuable in mapping and analyzing galactic substructure. We present our method of searching for RR Lyrae variable stars using data extracted from the Dark Energy Survey (DES). The DES probes for stars as faint as i = 24.3. Finding such distant RR Lyrae allows for the discovery of objects such as dwarf spheroidal tidal streams and dwarf galaxies; in fact, at least one RR Lyrae has been discovered in each of the probed dwarf spheroidal galaxies orbiting the Milky Way (Baker & Willman 2015). In turn, these discoveries may ultimately resolve the well-known missing satellite problem, in which theoretical simulations predict many more dwarf satellites than are observed in the local Universe. Using the Lomb-Scargle periodogram to determine the period of the star being analyzed, we could display the relationship between magnitude and phase and visually determine if the star being analyzed was an RR Lyrae. We began the search in frequently observed regions of the DES footprint, known as the supernova fields. We then moved our search to known dwarf galaxies found during the second year of the DES. Unfortunately, we did not discover RR Lyrae in the probed dwarf galaxies; this method should be tried again once more observations are taken in the DES.
Imaging the Disk and Jet of the Classical T Tauri Star AA Tau
NASA Technical Reports Server (NTRS)
Cox, Andrew W.; Grady, Carol A.; Hammel, Heidi B.; Hornbeck, Jeremy; Russell, Ray W.; Sitko, Michael L.; Woodgate, Bruce E.
2013-01-01
Previous studies of the classical T Tauri star AA Tau have interpreted the UX-Orionis-like photo-polarimetric variability as being due to a warp in the inner disk caused by an inclined stellar magnetic dipole field. We test that these effects are macroscopically observable in the inclination and alignment of the disk. We use Hubble Space Telescope (HST)/STIS coronagraphic imagery to measure the V magnitude of the star for both STIS coronagraphic observations, compare these data with optical photometry in the literature, and find that, unlike other classical T Tauri stars observed in the same HST program, the disk is most robustly detected in scattered light at stellar optical minimum light.We measure the outer disk radius, 1 inch.15 plus-minus 0 inch.10, major-axis position angle, and disk inclination and find that the inner disk, as reported in the literature, is both misinclined and misaligned with respect to the outer disk. AA Tau drives a faint jet, detected in both STIS observations and in follow-on Goddard Fabry-Perot imagery, which is also misaligned with respect to the projection of the outer disk minor axis and is poorly collimated near the star, but which can be traced 21 inches from the star in data from 2005. The measured outer disk inclination, 71deg plus-minus 1deg, is out of the range of inclinations suggested for stars with UX-Orionis-like variability when no grain growth has occurred in the disk. The faintness of the disk, small disk size, and detection of the star despite the high inclination all indicate that the dust disk must have experienced grain growth and settling toward the disk midplane, which we verify by comparing the observed disk with model imagery from the literature.
IMAGING THE DISK AND JET OF THE CLASSICAL T TAURI STAR AA TAU
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, Andrew W.; Grady, Carol A.; Hammel, Heidi B.
2013-01-01
Previous studies of the classical T Tauri star AA Tau have interpreted the UX-Orionis-like photo-polarimetric variability as being due to a warp in the inner disk caused by an inclined stellar magnetic dipole field. We test that these effects are macroscopically observable in the inclination and alignment of the disk. We use Hubble Space Telescope (HST)/STIS coronagraphic imagery to measure the V magnitude of the star for both STIS coronagraphic observations, compare these data with optical photometry in the literature, and find that, unlike other classical T Tauri stars observed in the same HST program, the disk is most robustlymore » detected in scattered light at stellar optical minimum light. We measure the outer disk radius, 1.''15 {+-} 0.''10, major-axis position angle, and disk inclination and find that the inner disk, as reported in the literature, is both misinclined and misaligned with respect to the outer disk. AA Tau drives a faint jet, detected in both STIS observations and in follow-on Goddard Fabry-Perot imagery, which is also misaligned with respect to the projection of the outer disk minor axis and is poorly collimated near the star, but which can be traced 21'' from the star in data from 2005. The measured outer disk inclination, 71 Degree-Sign {+-} 1 Degree-Sign , is out of the range of inclinations suggested for stars with UX-Orionis-like variability when no grain growth has occurred in the disk. The faintness of the disk, small disk size, and detection of the star despite the high inclination all indicate that the dust disk must have experienced grain growth and settling toward the disk midplane, which we verify by comparing the observed disk with model imagery from the literature.« less
Hour-Scale Variability in NGC 663 and NGC 1960
NASA Astrophysics Data System (ADS)
Souza, Steven P.; Garcia Soto, Aylin; Wong, Hallee
2016-06-01
Since 2010 we have been monitoring massive emission-line (mainly Be) stars in young open clusters using narrowband imaging at Hα (656nm) and the nearby continuum (645nm) (Souza, Davis, and Teich 2013, BAAS. 45, PM354.22; Souza, Beltz-Mohrmann, and Sami 2014. JAAVSO, 42, 154). To supplement longer-timescale data taken at Williams College we obtained high-cadence observations, in both filters, of NGC 663 on the night of 12/10/15, and of NGC 1960 on the nights of 12/10/14, 1/23/15, 1/25/15, 11/11/15, and 12/13/15 at the 0.5m ARCSAT at Apache Point Observatory. After raw magnitude extraction using Aperture Photometry Tool (Laher et al. 2012, PASP, 124, 737), we used inhomogeneous ensemble photometry (Bhatti et al., 2010, ApJ Supp., 186, 233) to correct for transparency and seeing variations. The NGC 663 field is crowded; of 29 known Be stars in the observed field, 10 have nearby interferers. None of the remaining 19 Be stars showed significant variation during ~5.5 hours of observation. 1σ uncertainty estimates range from 0.02mag at R~10 to 0.15mag at R~14. To verify the observing and reduction procedure, we recovered hour-scale variability in known variables BY Cas (δ Cephei type, ~0.05mag decline) and V1155 Cas (β Cephei type, ~0.04mag amplitude). In NGC 1960, of 5 known and suspect Be stars observed, two not previously reported as variable (BD+34 1110 and USNOB1.0 1241-0103450) showed irregular variation on timescales of hours. In NGC 1960 we also report the incidental discovery of two non-Be suspect variables: a likely eclipsing binary (0.07mag), and a possible δ Scuti star (maximum amplitude ~0.02mag). We gratefully acknowledge support for student research from NSF grant AST-1005024 to the Keck Northeast Astronomy Consortium, and the Office of the Dean of Faculty and the DIII Research Funding Committee of Williams College. Based on observations obtained with Apache Point Observatory's 0.5-m Astrophysical Research Consortium Small Aperture Telescope.
XO-2b: A HOT JUPITER WITH A VARIABLE HOST STAR THAT POTENTIALLY AFFECTS ITS MEASURED TRANSIT DEPTH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zellem, Robert T.; Griffith, Caitlin A.; Pearson, Kyle A.
The transiting hot Jupiter XO-2b is an ideal target for multi-object photometry and spectroscopy as it has a relatively bright (V-mag = 11.25) K0V host star (XO-2N) and a large planet-to-star contrast ratio (R{sub p}/R{sub s} ≈ 0.015). It also has a nearby (31.″21) binary stellar companion (XO-2S) of nearly the same brightness (V-mag = 11.20) and spectral type (G9V), allowing for the characterization and removal of shared systematic errors (e.g., airmass brightness variations). We have therefore conducted a multiyear (2012–2015) study of XO-2b with the University of Arizona’s 61″ (1.55 m) Kuiper Telescope and Mont4k CCD in the Besselmore » U and Harris B photometric passbands to measure its Rayleigh scattering slope to place upper limits on the pressure-dependent radius at, e.g., 10 bar. Such measurements are needed to constrain its derived molecular abundances from primary transit observations. We have also been monitoring XO-2N since the 2013–2014 winter season with Tennessee State University’s Celestron-14 (0.36 m) automated imaging telescope to investigate stellar variability, which could affect XO-2b’s transit depth. Our observations indicate that XO-2N is variable, potentially due to cool star spots, with a peak-to-peak amplitude of 0.0049 ± 0.0007 R-mag and a period of 29.89 ± 0.16 days for the 2013–2014 observing season and a peak-to-peak amplitude of 0.0035 ± 0.0007 R-mag and 27.34 ± 0.21 day period for the 2014–2015 observing season. Because of the likely influence of XO-2N’s variability on the derivation of XO-2b’s transit depth, we cannot bin multiple nights of data to decrease our uncertainties, preventing us from constraining its gas abundances. This study demonstrates that long-term monitoring programs of exoplanet host stars are crucial for understanding host star variability.« less
Hard X-ray emission of the luminous infrared galaxy NGC 6240 as observed by NuSTAR
NASA Astrophysics Data System (ADS)
Puccetti, S.; Comastri, A.; Bauer, F. E.; Brandt, W. N.; Fiore, F.; Harrison, F. A.; Luo, B.; Stern, D.; Urry, C. M.; Alexander, D. M.; Annuar, A.; Arévalo, P.; Baloković, M.; Boggs, S. E.; Brightman, M.; Christensen, F. E.; Craig, W. W.; Gandhi, P.; Hailey, C. J.; Koss, M. J.; La Massa, S.; Marinucci, A.; Ricci, C.; Walton, D. J.; Zappacosta, L.; Zhang, W.
2016-01-01
We present a broadband (~0.3-70 keV) spectral and temporal analysis of NuSTAR observations of the luminous infrared galaxy NGC 6240 combined with archival Chandra, XMM-Newton, and BeppoSAX data. NGC 6240 is a galaxy in a relatively early merger state with two distinct nuclei separated by ~1.̋5. Previous Chandra observations resolved the two nuclei and showed that they are both active and obscured by Compton-thick material. Although they cannot be resolved by NuSTAR, we were able to clearly detect, for the first time, both the primary and the reflection continuum components thanks to the unprecedented quality of the NuSTAR data at energies >10 keV. The NuSTAR hard X-ray spectrum is dominated by the primary continuum piercing through an absorbing column density which is mildly optically thick to Compton scattering (τ ≃ 1.2, NH ~ 1.5 × 1024 cm-2). We detect moderately hard X-ray (>10 keV) flux variability up to 20% on short (15-20 ks) timescales. The amplitude of the variability is largest at ~30 keV and is likely to originate from the primary continuum of the southern nucleus. Nevertheless, the mean hard X-ray flux on longer timescales (years) is relatively constant. Moreover, the two nuclei remain Compton-thick, although we find evidence of variability in the material along the line of sight with column densities NH ≤ 2 × 1023 cm-2 over long (~3-15 yr) timescales. The observed X-ray emission in the NuSTAR energy range is fully consistent with the sum of the best-fit models of the spatially resolved Chandra spectra of the two nuclei.
VLT/SINFONI time-resolved spectroscopy of the central, luminous, H-rich WN stars of R136
NASA Astrophysics Data System (ADS)
Schnurr, O.; Chené, A.-N.; Casoli, J.; Moffat, A. F. J.; St-Louis, N.
2009-08-01
Using the Very Large Telescope's Spectrograph for INtegral Field Observation in the Near-Infrared, we have obtained repeated adaptive-optics-assisted, near-infrared spectroscopy of the six central luminous, Wolf-Rayet (WR) stars in the core of the very young (~1 Myr), massive and dense cluster R136, in the Large Magellanic Cloud (LMC). We also de-archived available images that were obtained with the Hubble Space Telescope's Space Telescope Imaging Spectrograph, and extracted high-quality, differential photometry of our target stars to check for any variability related to binary motion. Previous studies, relying on spatially unresolved, integrated, optical spectroscopy, had reported that one of these stars was likely to be a 4.377-d binary. Our study set out to identify the culprit and any other short-period system among our targets. However, none displays significant photometric variability, and only one star, BAT99-112 (R136c), located on the outer fringe of R136, displays a marginal variability in its radial velocities; we tentatively report an 8.2-d period. The binary status of BAT99-112 is supported by the fact that it is one of the brightest X-ray sources among all known WR stars in the LMC, consistent with it being a colliding wind system. Followup observations have been proposed to confirm the orbital period of this potentially very massive system. Based on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere, Chile, under programme ID 076.D-0563, and on observations made with the Hubble Space Telescope (HST) obtained from the European Southern Observatory (ESO)/Space Telescope-European Coordinating Facility (ST-ECF) Science Archive. E-mail: o.schnurr@sheffield.ac.uk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kabath, P.; Fruth, T.; Rauer, H.
2009-04-15
We report on photometric observations of the CoRoT LRc2 field with the new robotic Berlin Exoplanet Search Telescope II (BEST II). The telescope system was installed and commissioned at the Observatorio Cerro Armazones, Chile, in 2007. BEST II is a small aperture telescope with a wide field of view dedicated to the characterization of the stellar variability primarily in CoRoT target fields with high stellar densities. The CoRoT stellar field LRc2 was observed with BEST II up to 20 nights in 2007 July and August. From the acquired data containing about 100,000 stars, 426 new periodic variable stars were identifiedmore » and 90% of them are located within the CoRoT exoplanetary CCD segments and may be of further interest for CoRoT additional science programs.« less
NASA Technical Reports Server (NTRS)
Zirin, H.
1975-01-01
Measurements of the lambda 1030 He line in 198 stars are given along with data on other features in that spectral range. Nearly 80% of all G and K stars show some lambda 10830; of these, half are variable and 1/4 show emission. It was confirmed that lambda 10830 is not found in M stars, is weak in F stars, and is particularly strong in close binaries. The line is found in emission in extremely late M and S stars, along with P gamma, but P gamma is not in emission in G and K stars with lambda 10830 emissions. Variable He emission and Ti I emission are found in the RV Tauri variables R Scuti and U Mon. In R Aqr the Fe XIII coronal line lambda 10747 and a line at lambda 11012 which may be singlet He or La II are found, as well as lambda 10830 and P gamma. The nature of coronas or hot chromospheres in the various stars is discussed. It was concluded that the lambda 10830 intensity must be more or less proportional to the energy deposited in the chromosphere corona by non-thermal processes.
Cool carbon stars in the halo and in dwarf galaxies: Hα, colours, and variability
NASA Astrophysics Data System (ADS)
Mauron, N.; Gigoyan, K. S.; Berlioz-Arthaud, P.; Klotz, A.
2014-02-01
The population of cool carbon (C) stars located far from the galactic plane is probably made of debris of small galaxies such as the Sagittarius dwarf spheroidal galaxy (Sgr), which are disrupted by the gravitational field of the Galaxy. We aim to know this population better through spectroscopy, 2MASS photometric colours, and variability data. When possible, we compared the halo results to C star populations in the Fornax dwarf spheroidal galaxy, Sgr, and the solar neighbourhood. We first present a few new discoveries of C stars in the halo and in Fornax. The number of spectra of halo C stars is now 125. Forty percent show Hα in emission. The narrow location in the JHK diagram of the halo C stars is found to differ from that of similar C stars in the above galaxies. The light curves of the Catalina and LINEAR variability databases were exploited to derive the pulsation periods of 66 halo C stars. A few supplementary periods were obtained with the TAROT telescopes. We confirm that the period distribution of the halo strongly resembles that of Fornax, and we found that it is very different from the C stars in the solar neighbourhood. There is a larger proportion of short-period Mira/SRa variables in the halo than in Sgr, but the survey for C stars in this dwarf galaxy is not complete, and the study of their variability needs to be continued to investigate the link between Sgr and the cool halo C stars. Based on observations made with the NTT and 3.6 m telescope at the European Southern Observatory (La Silla, Chile; programs 084.D-0302 and 070.D-0203), with the TAROT telescopes at La Silla and at Observatoire de la Côte d'Azur (France), and on the exploitation of the Catalina Sky Survey and the LINEAR variability databases.Appendix A is available in electronic form at http://www.aanda.org
OBSERVATIONAL SIGNATURES OF CONVECTIVELY DRIVEN WAVES IN MASSIVE STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aerts, C.; Rogers, T. M.
We demonstrate observational evidence for the occurrence of convectively driven internal gravity waves (IGWs) in young massive O-type stars observed with high-precision CoRoT space photometry. This evidence results from a comparison between velocity spectra based on two-dimensional hydrodynamical simulations of IGWs in a differentially rotating massive star and the observed spectra. We also show that the velocity spectra caused by IGWs may lead to detectable line-profile variability and explain the occurrence of macroturbulence in the observed line profiles of OB stars. Our findings provide predictions that can readily be tested by including a sample of bright, slowly and rapidly rotatingmore » OB-type stars in the scientific program of the K2 mission accompanied by high-precision spectroscopy and their confrontation with multi-dimensional hydrodynamic simulations of IGWs for various masses and ages.« less
NASA Astrophysics Data System (ADS)
Jaque Arancibia, M.; Barbá, R. H.; Collado, A.; Gamen, R.; Arias, J. I.
2016-08-01
Large astronomical surveys allow us to do systematic studies of stellar populations with significant statistical weight. In this study, we have cross-correlated the Henize's (1976) catalog of stellar sources with H emission-line with “The All Sky Automated Survey'' database. After the positional cross-matching we have found that 1402 of 1926 H sources have ASAS light-curves. From that number, more than 50 (723 sources) are periodic variables with amplitude larger than 0.05 magnitudes, while 276 sources show photometric variations without a clear periodicity. Variable stars that we have found are of many different types, among them Miras, eclipsing binaries, bursting stars, etc. Also, only 133 stars are known previously as variable sources in ASAS catalogue, and 93 of them were studied previously in detail. In order to characterize the nature of the sources, we have started a medium-resolution spectroscopic survey of the unstudied variable emission-line objects using the 2.15-m Jorge Sahade Telescope at Complejo Astronómico El Leoncito (Argentina). At the moment, we have observed a set of 67 blue stars selected using 2MASS colors, being almost all of them Be-type stars. This set of bright new variable Be-type stars is ideal for follow-up monitoring for the study of the Be-phenomenon.
A disk asymmetry in motion around the B[e] star MWC158
NASA Astrophysics Data System (ADS)
Kluska, J.; Benisty, M.; Soulez, F.; Berger, J.-P.; Le Bouquin, J.-B.; Malbet, F.; Lazareff, B.; Thiébaut, E.
2016-06-01
Context. MWC158 is a star with the B[e] phenomenon that shows strong spectrophotometric variability (in lines and in UV and visible continuum) attributed to phases of shell ejection. The evolutionary stage of this star was never clearly determined. Previous interferometric, spectropolarimetric and spectro-interferometric studies suggest a disk morphology for its environment. Aims: We investigate the origin of the variability within the inner astronomical unit of the central star using near-infrared interferometric observations with PIONIER at the VLTI over a two-year period. Methods: We performed an image reconstruction of the circumstellar environment using the SPARCO method. We discovered that the morphology of the circumstellar environment could vary on timescales of weeks or days. We carried out a parametric fit of the data with a model consisting of a star, a disk and a bright spot that represents a brighter emission in the disk. Results: We detect strong morphological changes in the first astronomical unit around the star, that happen on a timescale of few months. We cannot account for such variability well with a binary model. Our parametric model fits the data well and allows us to extract the location of the asymmetry for different epochs. Conclusions: For the first time, we detect a morphological variability in the environment of MWC158. This variability is reproduced by a model of a disk and a bright spot. The locations of the bright spot suggest that it is located in the disk, but its precise motion is not determined. The origin of the asymmetry in the disk is complex and may be related to asymmetric shell ejections. Based on observations performed with PIONIER mounted on the ESO Very Large Telescope interferometer (programmes: 089.C-0211, 190.C-0963).
β Cephei and SPB stars in the Large Magellanic Cloud
NASA Astrophysics Data System (ADS)
Kołaczkowski, Z.; Pigulski, A.; Soszyński, I.; Udalski, A.; Szymański, M.; Kubiak, M.; Żebruń, K.; Pietrzyński, G.; Woźniak, P. R.; Szewczyk, O.; Wyrzykowski, L.; Ogle Team
2004-05-01
This is a progress report of the study of pulsating main-sequence stars in the LMC. Using the OGLE-II photometry supplemented by the MACHO photometry, we find 64 β Cephei stars in the LMC. Their periods are generally much longer than observed in the stars of this type in the Galaxy (the median value is 0.27 d compared with the 0.17 d in the Galaxy). In 20 stars with short periods attributable to the β Cephei-type instability, we also find modes with periods longer than ~0.4d. They are likely low-order g modes, which means that in these stars both kinds of variability, β Cephei and SPB, are observed. We also show examples of the multiperiodic SPB stars in the LMC, the first beyond our Galaxy.
The DARWIN target list: observational properties of the G-type stars
NASA Astrophysics Data System (ADS)
Eiroa, C.; Fridlund, M.; Kaltenegger, L.
2003-10-01
DARWIN is aimed to search for terrestrial extrasolar planets and to detect biosignatures in the planet atmospheres, which will largely be influenced by the parent stars. This contribution presents a first approach to the knowledge of the observational properties of the DARWIN star candidates of G spectral type: variability, X-ray emission, stellar or planetary companions, photometric properties in the Johnson and Strömgren systems, metallicity, IR emission and rotational velocities. The information has been retrieved from different databases and catalogues. We find that some of the nearby Sun-like targets present activity in the form of variability or X-ray emission. Few of them show far-IR excesses suggesting dusty debris disks around the stars. Further, the metallicity and rotational velocity distributions agree well with the expectations for 'normal' Sun-like stars, with the exception of few stars. This kind of work - which will be refined and extended to other spectral types in the near future - and similar ones, in addition to the expected observational and theoretical progress in the exoplanetary field, will help to ellaborate more sophisticated criteria in order to optimize the final DARWIN target list. In addition, this activity provides useful information for the GENIE scientific goal of detecting and studying exo-zodiacal light.
VizieR Online Data Catalog: CoRoT observation log (N2-4.4) (CoRoT, 2009-2016)
NASA Astrophysics Data System (ADS)
COROT Team
2014-03-01
CoRoT is a space astronomy mission devoted to the study of the variability with time of stars brightness, with an extremely high accuracy (100 times better than from the ground), on very long durations (up to 150 days) and a very high duty cycle (more than 90%). The mission was led by CNES in association with four french laboratories, and 7 participating countries and agencies (Austria, Belgium, Brazil, Germany, Spain, and the ESA Science Programme). The satellite is composed of a PROTEUS platform (the 3rd in the serie), and a unique instrument: a stellar photometer. It has been launched on December 27th 2006 by a Soyuz Rocket, from Baikonour. The mission has lasted almost 6 years (the nominal 3 years duration and a 3 years extension) and has observed more than 160 000 stars. It stopped to send data suddenly on November 2nd 2012. CoRoT is performing Ultra High Precision Photomery of Stars to detect and characterise the variability of their luminosity with two main directions: - variability of the object itself: oscillations, rotation, magnetic activity - variability due to external causes as bodies in orbit around the star: planets and stars The original scientific objectives were focussed on the study of stellar pulsations (asteroseismology) to probe the internal structure of stars, and the detection of small exoplanets through their "transit in front of their host star, and the measurement of their size. This lead to introduce two modes of observations, working simultaneously: - The bright star mode dedicated to very precise seismology of a small sample of bright and closeby stars (data presented in file momentarily named "astero.dat", but should change in the near future to to "bright star.dat") - The faint star mode, observing a very large number of stars at the same time, to detect transits, which are rare events, as they imply the alignment of the star, the planet and the observer (data presented in momentarily named "exo.dat" but should change in the near future to "faint star.dat"). The large amount of data gathered in this mode mode turned out to be extremely fruitful for many topics of stellar physics. Due to project constraints, two regions of the sky were accessible (circles of 10 degrees centered on the equator around alpha=06:50 and alpha=18:50). They are called the CoRoT eyes: the fisrt one is called the "anticenter" eye, whereas the second one is called the "center eye". Each pointing covers 1.4x2.8 square degrees The CoRoT project is still processing the data, aiming at at removing instrumental artifacts and defects. Therefore the format and content of the catalog is still somehow evolving. More details on the data can be found in the "CoRoTN2versions_30sept2014.pdf" document available on the vizier ftp as well as project websites listed in the "See also" field below. (3 data files).
Determining the atmospheric structure and dynamics of the FK Comae Star HD32918
NASA Technical Reports Server (NTRS)
Robinson, R. D.
1995-01-01
The results of UV observations taken with the International Ultraviolet Explorer (IUE) satellite and microwave observations obtained with the Australia Telescope during an observing campaign of the rapidly rotating K0 dwarf star HD 197890, nicknamed 'Speedy Mic' are presented. This star was recently recognized as a powerful, transient EUV source by the ROSAT WFC, and subsequent investigation showed it to be a ZAMS or possibly a PMS dwarf which may be a member of the Local Association. Our observations show it to have strong, variable UV emission lines near the 'saturation' levels. The radio observations show a level of 'quiescent' emission consistent with other rapidly rotating stars, but there is no evidence for the large flux variations that normally characterize the time history of such objects.
Serendipitous discovery of an irregular and a semi-regular type variable in the field of BY Draconis
NASA Astrophysics Data System (ADS)
Messina, S.; Marino, G.; Rodonò, M.; Cutispoto, G.
2000-12-01
We present new evidence of the optical variability of two red giant stars: HD 172468 and HK Dra, based on photometric and spectroscopic observations. These stars had been included as check stars in our photometric monitoring program of BY Dra and turned out to be variable. HD 172468, whereas almost constant for most of the time, suddenly started to drop in brightness to such a low level to become undetectable. We suspect that such an abrupt event may be an ``obscurational'' minimum, that is typical of eruptive RCB stars, or may be due to the variable extinction by circumstellar dust in a young Orion type object. HK Dra, already known as an irregular variable, is characterised by periodic flux modulation with season-to-season changes of the photometric period, as inferred from a periodogram analysis. It also shows changes of the light curve peak-to-peak amplitude and shape. Such a behaviour in giant stars is commonly found among semi-regular giants (SR) at the Asymptotic Giant Branch (AGB). Our radial velocity measurements rule out that HK Dra may be a close binary system.
NASA Astrophysics Data System (ADS)
Wijnands, R.; Parikh, A. S.; Altamirano, D.; Homan, J.; Degenaar, N.
2017-11-01
Here, we study the rapid X-ray variability (using XMM-Newton observations) of three neutron-star low-mass X-ray binaries (1RXS J180408.9-342058, EXO 1745-248 and IGR J18245-2452) during their recently proposed very hard spectral state. All our systems exhibit a strong to very strong noise component in their power density spectra (rms amplitudes ranging from 34 per cent to 102 per cent) with very low characteristic frequencies (as low as 0.01 Hz). These properties are more extreme than what is commonly observed in the canonical hard state of neutron-star low-mass X-ray binaries observed at X-ray luminosities similar to those we observe from our sources. This suggests that indeed the very hard state is a spectral-timing state distinct from the hard state, although we argue that the variability behaviour of IGR J18245-2452 is very extreme and possibly this source was in a very unusual state. We also compare our results with the rapid X-ray variability of the accreting millisecond X-ray pulsars IGR J00291+5934 and Swift J0911.9-6452 (also using XMM-Newton data) for which previously similar variability phenomena were observed. Although their energy spectra (as observed using the Swift X-ray telescope) were not necessarily as hard (i.e. for Swift J0911.9-6452) as for our other three sources, we conclude that likely both sources were also in very similar state during their XMM-Newton observations. This suggests that different sources that are found in this new state might exhibit different spectral hardness and one has to study both the spectral and the rapid variability to identify this unusual state.
A multi-wavelength study of pre-main sequence stars in the Taurus-Auriga star-forming region
NASA Astrophysics Data System (ADS)
Guenther, E. W.; Stelzer, B.; Neuhäuser, R.; Hillwig, T. C.; Durisen, R. H.; Menten, K. M.; Greimel, R.; Barwig, H.; Englhauser, J.; Robb, R. M.
2000-05-01
Although many lowmass pre-main sequence stars are strong X-ray sources, the origin of the X-ray emission is not well known. Since these objects are variable at all frequencies, simultaneous observations in X-rays and in other wavelengths are able to constrain the properties of the X-ray emitting regions. In this paper, we report quasi-simultaneous observations in X-rays, the optical, and the radio regime for classical and weak-line T Tauri stars from the Taurus-Auriga star-forming region. We find that all detected T Tauri stars show significant night-to-night variations of the X-ray emission. For three of the stars, FM Tau and CW Tau, both classical T Tauri stars, and V773 Tau, a weak-line T Tauri star, the variations are especially large. From observations taken simultaneously, we also find that there is some correspondence between the strength of Hα and the X-ray brightness in V773 Tau. The lack of a strong correlation leads us to conclude that the X-ray emission of V773 Tau is not a superposition of flares. However, we suggest that a weak correlation occurs because chromospherically active regions and regions of strong X-ray emission are generally related. V773 Tau was detected at 8.46 GHz as a weakly circularly polarised but highly variable source. We also find that the X-ray emission and the equivalent width of Hα remained unchanged, while large variations of the flux density in the radio regime were observed. This clearly indicates that the emitting regions are different. Using optical spectroscopy we detected a flare in Hα and event which showed a flare-like light-curve of the continuum brightness in FM Tau. However, ROSAT did not observe the field at the times of these flares. Nevertheless, an interesting X-ray event was observed in V773 Tau, during which the flux increased for about 8 hours and then decreased back to the same level in 5 hours. We interpret this as a long-duration event similar to those seen on the sun and other active stars. In the course of the observations, we discovered a new weak-line T Tauri star, GSC-1839-5674. Results are also presented for several other stars in the ROSAT field.
Millisecond Oscillations in X-ray Binaries
NASA Astrophysics Data System (ADS)
van der Klis, M.
The first millisecond X-ray variability phenomena from accreting compact objects have recently been discovered with the Rossi X-ray Timing Explorer. Three new phenomena are observed from low-mass X-ray binaries containing low-magnetic-field neutron stars: millisecond pulsations, burst oscillations, and kilohertz quasi-periodic oscillations. Models for these new phenomena involve the neutron star spin and orbital motion close around the neutron star, and rely explicitly on our understanding of strong gravity and dense matter. I review the observations of these new neutron-star phenomena and some possibly related phenomena in black-hole candidates, and describe the attempts to use these observations to perform measurements of fundamental physical interest in these systems.
NASA Technical Reports Server (NTRS)
Balokovic, M.; Paneque, D.; Madejski, G.; Chiang, J.; Furniss, A.; Ajello, M.; Alexander, D. M.; Barret, D.; Blandford, R. D.; Boggs, S. E.;
2016-01-01
We present coordinated multiwavelength observations of the bright, nearby BL Lacertae object Markarian 421 (Mrk 421) taken in 2013 January-March, involving GASP-WEBT, Swift, NuSTAR, Fermi-LAT, MAGIC, VERITAS, and other collaborations and instruments, providing data from radio to very high energy„ (VHE) gamma-ray bands. NuSTAR yielded previously unattainable sensitivity in the 3-79 kiloelectronvolt range, revealing that the spectrum softens when the source is dimmer until the X-ray spectral shape saturates into a steep Gamma approximating 3 power law, with no evidence for an exponential cutoff or additional hard components up to 80 kiloelectronvolts. For the first time, we observed both the synchrotron and the inverse-Compton peaks of the spectral energy distribution (SED) simultaneously shifted to frequencies below the typical quiescent state by an order of magnitude. The fractional variability as a function of photon energy shows a double-bump structure that relates to the two bumps of the broadband SED. In each bump, the variability increases with energy, which, in the framework of the synchrotron self-Compton model, implies that the electrons with higher energies are more variable. The measured multi band variability, the significant X-ray-to-VHE correlation down to some of the lowest fluxes ever observed in both bands, the lack of correlation between optical/UV and X-ray flux, the low degree of polarization and its significant (random) variations, the short estimated electron cooling time, and the significantly longer variability timescale observed in the NuSTAR light curves point toward in situ electron acceleration and suggest that there are multiple compact regions contributing to the broadband emission of Mrk 421 during low-activity states.
Long-term Photometric Variability in Kepler Full-frame Images: Magnetic Cycles of Sun–like Stars
NASA Astrophysics Data System (ADS)
Montet, Benjamin T.; Tovar, Guadalupe; Foreman-Mackey, Daniel
2017-12-01
Photometry from the Kepler mission is optimized to detect small, short-duration signals like planet transits at the expense of long-term trends. This long-term variability can be recovered in photometry from the full-frame images (FFIs), a set of calibration data collected approximately monthly during the Kepler mission. Here we present f3, an open-source package to perform photometry on the Kepler FFIs in order to detect changes in the brightness of stars in the Kepler field of view over long time baselines. We apply this package to a sample of 4000 Sun–like stars with measured rotation periods. We find that ≈10% of these targets have long-term variability in their observed flux. For the majority of targets, we find that the luminosity variations are either correlated or anticorrelated with the short-term variability due to starspots on the stellar surface. We find a transition between anticorrelated (starspot-dominated) variability and correlated (facula-dominated) variability between rotation periods of 15 and 25 days, suggesting the transition between the two modes is complete for stars at the age of the Sun. We also identify a sample of stars with apparently complete cycles, as well as a collection of short-period binaries with extreme photometric variation over the Kepler mission.
Pulsating stars in the VMC survey
NASA Astrophysics Data System (ADS)
Cioni, Maria-Rosa L.; Ripepi, Vincenzo; Clementini, Gisella; Groenewegen, Martin A. T.; Moretti, Maria I.; Muraveva, Tatiana; Subramanian, Smitha
2017-09-01
The VISTA survey of the Magellanic Clouds system (VMC) began observations in 2009 and since then, it has collected multi-epoch data at Ks and in addition multi-band data in Y and J for a wide range of stellar populations across the Magellanic system. Among them are pulsating variable stars: Cepheids, RR Lyrae, and asymptotic giant branch stars that represent useful tracers of the host system geometry. Based on observations made with VISTA at ESO under programme ID 179.B-2003.
NASA Astrophysics Data System (ADS)
Papini, R.; Franco, L.; Marchini, A.; Salvaggio, F.
2015-12-01
During the past year the authors observed several asteroids for the purpose of determining the rotational period. Typically, this task requires a time series images acquisition on a single field for all the night, weather permitting, for a few nights although not consecutive. Routinely checking this "goldmine," allowed us to discover 14 variable stars not yet listed in catalogs or databases. While the most of the new variables are eclipsing binaries (GSC 01394-01889, GSC 00853-00371, CSS_J171124.7-004042, GSC05065-00218, UCAC4-386-142199, UCAC4 398-127457, UCAC4 384-148138, UCAC4 398-127590, UCAC4-383-155837, GSC-05752-01113, GSC 05765-01271), a few belong to RR Lyrae class (UCAC4 388-136835, 2MASS J20060657-1230376, UCAC4 386-142583). Since asteroid work is definitely time-consuming, follow-up is quite a difficult task for a small group. Further observations of these new variables are therefore strongly encouraged in order to better characterize these stars, especially RR Lyrae ones whose data combined with those taken during professional surveys seem to suggest the presence of a Blazhko effect.
The effective temperature of the white-dwarf star and ZZ Ceti candidate Wolf 485A
NASA Technical Reports Server (NTRS)
Digel, S. W.; Shipman, H. L.
1984-01-01
Previous multichannel observations of W485A (WD 1327-08) have placed it in the instability strip, the effective temperature range 11,000-13,000 K. In the instability strip, most of the stars (the ZZ Ceti stars) are variable, but W485A has not been detected to be variable. In this paper, high-resolution spectra of W485A and improved hydrogen-line broadening routines are used in the ATLAS model-atmospheres program to find the temperature of W485A; the estimate of effective temperature most consistent with the other data on the star is 14,600 K, outside the instability strip.
Rotation periods of open-cluster stars, 2
NASA Technical Reports Server (NTRS)
Prosser, Charles F.; Shetrone, Matthew D.; Marilli, Ettore; Catalano, Santo; Williams, Scott D.; Backman, Dana E.; Laaksonen, Bentley D.; Adige, Vikram; Marschall, Laurence A.; Stauffer, John R.
1993-01-01
We present the results from a photometric monitoring program of 21 stars observed during 1992 in the Pleiades and Alpha Persei open clusters. Period determinations for 16 stars are given, 13 of which are the first periods reported for these stars. Brightness variations for an additional five cluster stars are also given. One K dwarf member of the alpha Per cluster is observed to have a period of rotation of only 4.39 hr. perhaps the shortest period currently known among BY Draconis variables. The individual photometric measurements have been deposited with the NSSDC. Combining current X-ray flux determinations with known photometric periods, we illustrate the X-ray activity/rotation relation among Pleiades K dwarfs based on available data.
The sn stars - Magnetically controlled stellar winds among the helium-weak stars
NASA Technical Reports Server (NTRS)
Shore, Steven N.; Brown, Douglas N.; Sonneborn, George
1987-01-01
The paper reports observations of magnetically controlled stellar mass outflows in three helium-weak sn stars: HD 21699 = HR 1063; HD 5737 = Alpha Scl; and HD 79158 = 36 Lyn. IUE observations show that the C IV resonance doublet is variable on the rotational timescale but that there are no other strong-spectrum variations in the UV. Magnetic fields, which reverse sign on the rotational timescale, are present in all three stars. This phenomenology is interpreted in terms of jetlike mass loss above the magnetic poles, and these objects are discussed in the context of a general survey of the C IV and Si IV profiles of other more typical helium-weak stars.
NASA Technical Reports Server (NTRS)
Micela, G.; Sciortino, S.; Vaiana, G. S.; Harnden, F. R., Jr.; Rosner, R.
1990-01-01
Coronal X-ray emission of the Pleiades stars is investigated, and maximum likelihood, integral X-ray luminosity functions are computed for Pleiades members in selected color-index ranges. A detailed search is conducted for long-term variability in the X-ray emission of those stars observed more than once. An overall comparison of the survey results with those of previous surveys confirms the ubiquity of X-ray emission in the Pleiades cluster stars and its higher rate of emission with respect to older stars. It is found that the X-ray emission from dA and early dF stars cannot be proven to be dissimilar to that of Hyades and field stars of the same spectral type. The Pleiades cluster members show a real rise of the X-ray luminosity from dA stars to early dF stars. X-ray emission for the young, solarlike Pleiades stars is about two orders of magnitude more intense than for the nearby solarlike stars.
Chandra Observations of Magnetic White Dwarfs and their Theoretical Implications
NASA Technical Reports Server (NTRS)
Musielak, Z. E.; Noble, M.; Porter, J. G.; Winget, D. E.
2003-01-01
Observations of cool DA and DB white dwarfs have not yet been successful in detecting coronal X-ray emission, but observations of late-type dwarfs and giants show that coronae are common for these stars. To produce coronal X-rays, a star must have dynamo-generated surface magnetic fields and a well-developed convection zone. There is some observational evidence that the DA star LHS 1038 and the DB star GD 358 have weak and variable surface magnetic fields. It has been suggested that such fields can be generated by dynamo action, and since both stars have well-developed convection zones, theory predicts detectable levels of coronal X-rays from these white dwarfs. However, we present analysis of Chandra observations of both stars showing no detectable X-ray emission. The derived upper limits for the X-ray fluxes provide strong constraints on theories of formation of coronae around magnetic white dwarfs. Another important implication of our negative Chandra observations is the possibility that the magnetic fields of LHS 1038 and GD 358 are fossil fields.
NASA Astrophysics Data System (ADS)
Ramsay, Gavin; Napiwotzki, Ralf; Hakala, Pasi; Lehto, Harry
2006-09-01
The Rapid Temporal Survey (RATS) is a survey to detect objects whose optical intensity varies on time-scales of less than ~70 min. In our pilot data set taken with the Isaac Newton Telescope and the Wide Field Camera in 2003 November, we discovered nearly 50 new variable objects. Many of these varied on time-scales much longer than 1 h. However, only four objects showed a modulation on a time-scale of 1 h or less. This paper presents followup optical photometry and spectroscopy of these four objects. We find that RATJ0455 + 1305 is a pulsating (on a period of 374 s) subdwarf B star of the EC14026 type. We have modelled its spectrum and determine Teff = 29200 +/- 1900K and logg = 5.2 +/- 0.3 which locates it on the cool edge of the EC14026 instability strip. It has a modulation amplitude which is one of the highest of any known EC14026 star. Based on their spectra, photometric variability and their infrared colours, we find that RATJ0449 + 1756, J0455 + 1254 and J0807 + 1510 are likely to be SX Phe stars - dwarf δ Sct stars. Our results show that our observing strategy is a good method for finding rare pulsating stars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masci, Frank J.; Grillmair, Carl J.; Cutri, Roc M.
2014-07-01
We describe a methodology to classify periodic variable stars identified using photometric time-series measurements constructed from the Wide-field Infrared Survey Explorer (WISE) full-mission single-exposure Source Databases. This will assist in the future construction of a WISE Variable Source Database that assigns variables to specific science classes as constrained by the WISE observing cadence with statistically meaningful classification probabilities. We have analyzed the WISE light curves of 8273 variable stars identified in previous optical variability surveys (MACHO, GCVS, and ASAS) and show that Fourier decomposition techniques can be extended into the mid-IR to assist with their classification. Combined with other periodicmore » light-curve features, this sample is then used to train a machine-learned classifier based on the random forest (RF) method. Consistent with previous classification studies of variable stars in general, the RF machine-learned classifier is superior to other methods in terms of accuracy, robustness against outliers, and relative immunity to features that carry little or redundant class information. For the three most common classes identified by WISE: Algols, RR Lyrae, and W Ursae Majoris type variables, we obtain classification efficiencies of 80.7%, 82.7%, and 84.5% respectively using cross-validation analyses, with 95% confidence intervals of approximately ±2%. These accuracies are achieved at purity (or reliability) levels of 88.5%, 96.2%, and 87.8% respectively, similar to that achieved in previous automated classification studies of periodic variable stars.« less
MONET, HET and SALT and asteroseismological observations and theory in Göttingen
NASA Astrophysics Data System (ADS)
Schuh, S.; Hessman, F. V.; Dreizler, S.; Kollatschny, W.; Glatzel, W.
2007-06-01
The Göttingen stellar astrophysics group, headed by Stefan Dreizler, conducts research on extrasolar planets and their host stars, on lower-main sequence stars, and on evolved compact objects, in particular hot white dwarfs (including PG 1159 objects, magnetic WDs and cataclysmic variables), and subdwarf B stars. In addition to sophisticated NLTE spectral analyses of these stars, which draw on the extensive stellar atmosphere modelling experience of the group, we actively develop and apply a variety of photometric monitoring and time-resolved spectroscopic techniques to address time-dependent phenomena. With the new instrumentational developments described below, we plan to continue the study of variable white dwarfs (GW Vir, DB and ZZ Ceti variables) and in particular sdB EC 14026 and PG 1617 pulsators which already constitute a main focus, partly within the Whole Earth Telescope (WET/DARC), http://www.physics.udel.edu/~jlp/darc/) collaboration, on a new level. Additional interest is directed towards strange mode instabilities in Wolf Rayet stars.
NASA Astrophysics Data System (ADS)
Handler, Gerald
2009-09-01
We review recent research on Delta Scuti stars from an observer's viewpoint. First, some signposts helping to find the way through the Delta Scuti jungle are placed. Then, some problems in studying individual pulsators in the framework of asteroseismology are given before a view on how the study of these variables has benefited (or not) from past and present high-precision asteroseismic space missions is presented. Some possible pitfalls in the analysis of data with a large dynamical range in pulsational amplitudes are pointed out, and a strategy to optimize the outcome of asteroseismic studies of Delta Scuti stars is suggested. We continue with some views on ``hybrid'' pulsators and interesting individual High Amplitude Delta Scuti stars, and then take a look on Delta Scuti stars in stellar systems of several different kinds. Recent results on pre-main sequence Delta Scuti stars are discussed as are questions related to the instability strip of these variables. Finally, some remarkable new theoretical results are highlighted before, instead of a set of classical conclusions, questions to be solved in the future, are raised.
Identification of young stellar variables with KELT for K2 - II. The Upper Scorpius association
NASA Astrophysics Data System (ADS)
Ansdell, Megan; Oelkers, Ryan J.; Rodriguez, Joseph E.; Gaidos, Eric; Somers, Garrett; Mamajek, Eric; Cargile, Phillip A.; Stassun, Keivan G.; Pepper, Joshua; Stevens, Daniel J.; Beatty, Thomas G.; Siverd, Robert J.; Lund, Michael B.; Kuhn, Rudolf B.; James, David; Gaudi, B. Scott
2018-01-01
High-precision photometry from space-based missions such as K2 and Transiting Exoplanet Survey Satellite enables detailed studies of young star variability. However, because space-based observing campaigns are often short (e.g. 80 d for K2), complementary long-baseline photometric surveys are critical for obtaining a complete understanding of young star variability, which can change on time-scales of minutes to years. We therefore present and analyse light curves of members of the Upper Scorpius association made over 5.5 yr by the ground-based Kilodegree Extremely Little Telescope (KELT), which complement the high-precision observations of this region taken by K2 during its Campaigns 2 and 15. We show that KELT data accurately identify the periodic signals found with high-precision K2 photometry, demonstrating the power of ground-based surveys in deriving stellar rotation periods of young stars. We also use KELT data to identify sources exhibiting variability that is likely related to circumstellar material and/or stellar activity cycles; these signatures are often unseen in the short-term K2 data, illustrating the importance of long-term monitoring surveys for studying the full range of young star variability. We provide the KELT light curves as electronic tables in an ongoing effort to establish legacy time series data sets for young stellar clusters.
NASA Astrophysics Data System (ADS)
Sandoval, L. E. Rivera; Wijnands, R.; Degenaar, N.; Cavecchi, Y.; Heinke, C. O.; Cackett, E. M.; Homan, J.; Altamirano, D.; Bahramian, A.; Sivakoff, G. R.; Miller, J. M.; Parikh, A. S.
2018-06-01
EXO 1745-248 is a transient neutron-star low-mass X-ray binary that resides in the globular cluster Terzan 5. We studied the transient during its quiescent state using 18 Chandra observations of the cluster acquired between 2003 and 2016. We found an extremely variable source, with a luminosity variation in the 0.5-10 keV energy range of ˜3 orders of magnitude (between 3 × 1031 erg s-1 and 2 × 1034 erg s-1) on time scales from years down to only a few days. Using an absorbed power-law model to fit its quiescent spectra, we obtained a typical photon index of ˜1.4, indicating that the source is even harder than during outburst and much harder than typical quiescent neutron stars if their quiescent X-ray spectra are also described by a single power-law model. This indicates that EXO 1745-248 is very hard throughout the entire observed X-ray luminosity range. At the highest luminosity, the spectrum fits better when an additional (soft) component is added to the model. All these quiescent properties are likely related to strong variability in the low-level accretion rate in the system. However, its extreme variable behavior is strikingly different from the one observed for other neutron star transients that are thought to still accrete in quiescence. We compare our results to these systems. We also discuss similarities and differences between our target and the transitional millisecond pulsar IGR J18245-2452, which also has hard spectra and strong variability during quiescence.
Observing the Fast X-ray Spectral Variability of NLS1 1H1934-063 with XMM-Newton and NuSTAR
NASA Astrophysics Data System (ADS)
Frederick, Sara; Kara, Erin; Reynolds, Christopher S.
2017-08-01
The most variable active galactic nuclei (AGN), taken together, are a compelling wellspring of interesting accretion-related phenomena. They can exhibit dramatic variability in the X-ray band on a range of timescales down to a few minutes. We present the exemplifying case study of 1H1934-063 (z = 0.0102), a narrow-line Seyfert I (NLS1) that is among the most variable AGN ever observed with XMM-Newton. We present spectral and temporal analyses of a concurrent XMM-Newton and NuSTAR observation taken in 2015 and lasting 120 ks, during which the source exhibited a steep (factor of 1.5) plummet and subsequent full recovery of flux that we explore in detail here. Combined spectral and timing results point to a dramatic change in the continuum on timescales as short as a few ks. Similar to other highly variable Seyfert 1s, this AGN is quite X-ray bright and displays strong reflection spectral features. We find agreement with a change in the continuum, and we rule out absorption as the cause for this dramatic variability observed even at NuSTAR energies. We compare detailed time-resolved spectral fitting with Fourier-based timing analysis in order to constrain coronal geometry, dynamics, and emission/absorption processes dictating the nature of this variability. We also announce the discovery of a Fe-K time lag between the hard X-ray continuum emission (1 - 4 keV) and its relativistically-blurred reflection off the inner accretion flow (0.3 - 1 keV).
VizieR Online Data Catalog: JHK photometry of 1203 variables in ONC (Rice+, 2015)
NASA Astrophysics Data System (ADS)
Rice, T. S.; Reipurth, B.; Wolk, S. J.; Vaz, L. P.; Cross, N. J. G.
2016-04-01
Our data comprise J, H, K observations of a 0.9°*0.9° field toward the Orion Nebula Cluster (ONC) that were taken with the Wide Field Camera (WFCAM) instrument on the 3.8m UKIRT, which sits atop Mauna Kea, HI at 4194m elevation. Observations have been taken on 120 nights between 2006 October and 2009 April over three observing seasons: 2006 October 26-2007 April 21, 2007 November 21-2007 December 2, and 2008 November 8-2009 April 7. We monitored ~15000 stars down to J~20 using the WFCAM instrument, and have extracted 1203 significantly variable stars from our data. The observations came from UKIRT/WFCAM programmes U/06B/H54, U/07B/H60B, and U/09A/H33 and were combined into a single WFCAM Science Archive (WSA) combined programme WSERV5. The data in this paper come from the data release WSERV5v20120208, and can be accessed at http://surveys.roe.ac.uk/wsa. The coordinates, SIMBAD cross-matched names, median WFCAM photometry, Spitzer photometry, and evolutionary classes of all 1203 variables are listed in Table2. In Tables 4 and 5, we show the variability statistics, including derived color slopes, for all periodic and nonperiodic stars in our data set, respectively. We identify long-term periodic stars in Table6. In Table7 we list the four newly discovered eclipsing binaries and their basic data, together with nine other eclipsing binaries that fall within our WFCAM field. (5 data files).
On ɛ-mechanism driven pulsations in VV 47
NASA Astrophysics Data System (ADS)
Sowicka, Paulina; Handler, Gerald; Jones, David
2018-06-01
We report new observations of the central star of the planetary nebula VV 47 carried out to verify earlier assertions that the short-period pulsation modes detected in the star are driven by the ɛ mechanism. In our data, VV 47 was not variable up to a limit of 0.52 mmag in the Fourier amplitude spectrum up to the Nyquist frequency of 21.7 mHz. Given this null result we re-analyzed the data set in which oscillations were claimed. After careful data reduction, photometry, extinction correction, and analysis with a conservative criterion of S/N ≥ 4 in the Fourier amplitude spectrum, we found that the star was not variable during the original observations. The oscillations reported earlier were due to an over-optimistic detection criterion. We conclude that VV 47 did not pulsate during any measurements at hand; the observational detection of ɛ-driven pulsations remains arduous.
Imaging the Disk and Jet of the Classical T Tauri Star AA Tau
NASA Astrophysics Data System (ADS)
Cox, Andrew; Grady, C.; Hammel, H. B.; Hornbeck, J.; Russell, R. W.; Sitko, M. L.; Woodgate, B. E.
2013-01-01
Previous studies of the classical T Tauri star AA Tau have interpreted the UX Orionis-like photo-polarimetric variability as being due to a warp in the inner disk caused by an inclined stellar magnetic dipole field. We test that these effects are macroscopically observable in the inclination and alignment of the disk. We use HST/STIS coronagraphic imagery to measure the V magnitude of the star for both STIS corona graphic observations, compare these data with optical photometry in the literature and find that unlike other classical T Tauri stars observed on the same HST program, the disk is most robustly detected at optical minimum light. We measure the outer disk radius, major axis position angle, and disk inclination, and find that the inner disk, as reported in the literature, is both mis-inclined and misaligned with respect to the outer disk. AA Tau drives a faint jet which is also misaligned with respect to the projection of the outer disk minor axis and which is poorly collimated near the star. The measured outer disk inclination, 71±1 degrees, is out of the inclination band suggested for stars with UX Orionis-like variability where no grain growth has occurred in the disk. The faintness of the disk, the small disk size, and visibility of the star and despite the high inclination, all indicate that the disk must have experienced grain growth and settling toward the disk midplane, which we verify by comparing the observed disk with model imagery from the literature.
Spectral Identification of New Galactic cLBV and WR Stars
NASA Astrophysics Data System (ADS)
Stringfellow, G. S.; Gvaramadze, V. V.; Beletsky, Y.; Kniazev, A. Y.
2012-12-01
We have undertaken a near-IR spectral survey of stars associated with compact nebulae recently revealed by the Spitzer and WISE imaging surveys. These circumstellar nebulae, produced by massive evolved stars, display a variety of symmetries and shapes and are often only evident at mid-IR wavelengths. Stars associated with ˜50 of these nebulae have been observed. We also obtained recent spectra of previously confirmed (known) luminous blue variables (LBVs) and candidate LBVs (cLBVs). The spectral similarity of the stars observed when compared directly to known LBVs and Wolf-Rayet (WR) stars indicate many are newly identified cLBVs, with a few being newly discovered WR stars, mostly of WN8-9h spectral type. These results suggest that a large population of previously unidentified cLBVs and related transitional stars reside in the Galaxy and confirm that circumstellar nebulae are inherent to most (c)LBVs.
NASA Astrophysics Data System (ADS)
Walton, D. J.; Fuerst, F.; Harrison, F.; Stern, D.; Bachetti, M.; Barret, D.; Bauer, F.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Fabian, A. C.; Grefenstette, B. W.; Hailey, C. J.; Madsen, K. K.; Miller, J. M.; Ptak, A.; Rana, V.; Webb, N. A.; Zhang, W. W.
2013-12-01
Following a serendipitous detection with the Nuclear Spectroscopic Telescope Array (NuSTAR), we present a multi-epoch spectral and temporal analysis of an extreme ultraluminous X-ray source (ULX) located in the outskirts of the Circinus galaxy, hereafter Circinus ULX5, including coordinated XMM-Newton+NuSTAR follow-up observations. The NuSTAR data presented here represent one of the first instances of a ULX reliably detected at hard (E > 10 keV) X-rays. Circinus ULX5 is variable on long time scales by at least a factor of ~5 in flux, and was caught in a historically bright state during our 2013 observations (0.3-30.0 keV luminosity of 1.6 × 1040 erg s-1). During this epoch, the source displayed a curved 3-10 keV spectrum, broadly similar to other bright ULXs. Although pure thermal models result in a high energy excess in the NuSTAR data, this excess is too weak to be modeled with the disk reflection interpretation previously proposed to explain the 3-10 keV curvature in other ULXs. In addition to flux variability, clear spectral variability is also observed. While in many cases the interpretation of spectral components in ULXs is uncertain, the spectral and temporal properties of all the high quality data sets currently available strongly support a simple disk-corona model reminiscent of that invoked for Galactic binaries, with the accretion disk becoming more prominent as the luminosity increases. However, although the disk temperature and luminosity are well correlated across all time scales currently probed, the observed luminosity follows LvpropT 1.70 ± 0.17, flatter than expected for simple blackbody radiation. The spectral variability displayed here is highly reminiscent of that observed from known Galactic black hole binaries (BHBs) at high luminosities. This comparison implies a black hole mass of ~90 M ⊙ for Circinus ULX5. However, given the diverse behavior observed from Galactic BHB accretion disks, this mass estimate is still uncertain. Finally, the limits placed on any undetected iron absorption features with the 2013 data set imply that we are not viewing the central regions of Circinus ULX5 through any extreme super-Eddington outflow.
Differential rotation in magnetic chemically peculiar stars
NASA Astrophysics Data System (ADS)
Mikulášek, Z.; Krtička, J.; Paunzen, E.; Švanda, M.; Hummerich, S.; Bernhard, K.; Jagelka, M.; Janík, J.; Henry, G. W.; Shultz, M. E.
2018-01-01
Magnetic chemically peculiar (mCP) stars constitute about 10% of upper-main-sequence stars and are characterized by strong magnetic fields and abnormal photospheric abundances of some chemical elements. Most of them exhibit strictly periodic light, magnetic, radio, and spectral variations that can be fully explained by a rigidly rotating main-sequence star with persistent surface structures and a stable global magnetic field. Long-term observations of the phase curves of these variations enable us to investigate possible surface differential rotation with unprecedented accuracy and reliability. The analysis of the phase curves in the best-observed mCP stars indicates that the location and the contrast of photometric and spectroscopic spots as well as the geometry of the magnetic field remain constant for at least many decades. The strict periodicity of mCP variables supports the concept that the outer layers of upper-main-sequence stars do not rotate differentially. However, there is a small, inhomogeneous group consisting of a few mCP stars whose rotation periods vary on timescales of decades. The period oscillations may reflect real changes in the angular velocity of outer layers of the stars which are anchored by their global magnetic fields. In CU Vir, V901 Ori, and perhaps BS Cir, the rotational period variation indicates the presence of vertical differential rotation; however, its exact nature has remained elusive until now. The incidence of mCP stars with variable rotational periods is currently investigated using a sample of fifty newly identified Kepler mCP stars.
Mass transfer cycles in cataclysmic variables
NASA Technical Reports Server (NTRS)
King, A. R.; Frank, J.; Kolb, U.; Ritter, H.
1995-01-01
It is well known that in cataclysmic variables the mass transfer rate must fluctuate about the evolutionary mean on timescales too long to be directly observable. We show that limit-cycle behavior can occur if the radius change of the secondary star is sensitive to the instantaneous mass transfer rate. The only reasonable way in which such a dependence can arise is through irradiation of this star by the accreting component. The system oscillates between high states, in which irradiation causes slow expansion of the secondary and drives an elevated transfer rate, and low states, in which this star contracts.
RR Lyrae variables in M33: two new fields and an analysis of the galaxy's population
NASA Astrophysics Data System (ADS)
Tanakul, Nahathai; Yang, Soung-Chul; Sarajedini, Ata
2017-06-01
We present a re-analysis of M33 RR Lyrae variables in four different fields: two inner disc fields and two outer disc fields. These are located at 8.5, 8.7, 36 and 46 arcmin from the centre of M33, respectively. We identify 48 new RR Lyrae variable stars and refine the light-curve properties of 51 previously identified variables. From the light curves, we calculate reddenings and metallicities for each star. Using data in this paper and previously published material, we are able to construct a radial density profile for the RR Lyrae stars in M33. This profile, when plotted in log space, has a slope of ˜-2.0 ± 0.15 which agrees with the radial distribution of halo stars in the Milky Way and M31. This suggests that the majority of M33 RR Lyrae variables observed so far belong to the halo. We also examine the RR Lyrae specific frequency and absolute magnitude relation in M33 and find good agreement with previous studies.
NASA Technical Reports Server (NTRS)
Giampapa, Mark S. (Editor); Bookbinder, Jay A. (Editor)
1992-01-01
Consideration is given to HST observations of late-type stars, molecular absorption in the UV spectrum of Alpha Ori, EUV emission from late-type stars, Rosat observations of the Pleiades cluster, a deep ROSAT observation of the Hyades cluster, optical spectroscopy detected by EXOSAT, stellar photospheric convection, a structure of the solar X-ray corona, magnetic surface images of the BY Dra Star HD 82558, a Zebra interpretatin of BY Dra stars, optical flares on II Peg, a low-resolution spectroscopic survey of post-T tauri candidates, millimeter and sub-millimeter emission from flare stars, and activity in tidally interacting binaries. Attention is also given to modeling stellar angular momentum evolution, extended 60-micron emission from nearby Mira variables, the PANDORA atmosphere program, the global properties of active regions, oscillations in a stratified atmosphere, lithium abundances in northern RS CVn binaries, a new catalog of cool dwarf stars, the Far UV Spectrograph Explorer, and development of reflecting coronagraphs.
Stellar Variability at the Main-sequence Turnoff of the Intermediate-age LMC Cluster NGC 1846
NASA Astrophysics Data System (ADS)
Salinas, R.; Pajkos, M. A.; Vivas, A. K.; Strader, J.; Contreras Ramos, R.
2018-04-01
Intermediate-age (IA) star clusters in the Large Magellanic Cloud (LMC) present extended main-sequence turn-offs (MSTO) that have been attributed to either multiple stellar populations or an effect of stellar rotation. Recently it has been proposed that these extended main sequences can also be produced by ill-characterized stellar variability. Here we present Gemini-S/Gemini Multi-Object Spectrometer (GMOS) time series observations of the IA cluster NGC 1846. Using differential image analysis, we identified 73 new variable stars, with 55 of those being of the Delta Scuti type, that is, pulsating variables close the MSTO for the cluster age. Considering completeness and background contamination effects, we estimate the number of δ Sct belonging to the cluster between 40 and 60 members, although this number is based on the detection of a single δ Sct within the cluster half-light radius. This amount of variable stars at the MSTO level will not produce significant broadening of the MSTO, albeit higher-resolution imaging will be needed to rule out variable stars as a major contributor to the extended MSTO phenomenon. Though modest, this amount of δ Sct makes NGC 1846 the star cluster with the highest number of these variables ever discovered. Lastly, our results present a cautionary tale about the adequacy of shallow variability surveys in the LMC (like OGLE) to derive properties of its δ Sct population. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groh, J. H.; Damineli, A.; Moises, A. P.
2009-11-01
We report optical observations of the luminous blue variable (LBV) HR Carinae which show that the star has reached a visual minimum phase in 2009. More importantly, we detected absorptions due to Si IV lambdalambda4088-4116. To match their observed line profiles from 2009 May, a high rotational velocity of v{sub rot} approx = 150 +- 20 km s{sup -1} is needed (assuming an inclination angle of 30 deg.), implying that HR Car rotates at approx =0.88 +- 0.2 of its critical velocity for breakup (v{sub crit}). Our results suggest that fast rotation is typical in all strong-variable, bona fide galacticmore » LBVs, which present S-Dor-type variability. Strong-variable LBVs are located in a well-defined region of the HR diagram during visual minimum (the 'LBV minimum instability strip'). We suggest this region corresponds to where v{sub crit} is reached. To the left of this strip, a forbidden zone with v{sub rot}/v{sub crit}>1 is present, explaining why no LBVs are detected in this zone. Since dormant/ex LBVs like P Cygni and HD 168625 have low v{sub rot}, we propose that LBVs can be separated into two groups: fast-rotating, strong-variable stars showing S-Dor cycles (such as AG Car and HR Car) and slow-rotating stars with much less variability (such as P Cygni and HD 168625). We speculate that supernova (SN) progenitors which had S-Dor cycles before exploding (such as in SN 2001ig, SN 2003bg, and SN 2005gj) could have been fast rotators. We suggest that the potential difficulty of fast-rotating Galactic LBVs to lose angular momentum is additional evidence that such stars could explode during the LBV phase.« less
HST Snapshot Study of Variable Stars in Globular Clusters: Inner Region of NGC 6441
NASA Technical Reports Server (NTRS)
Pritzl, Barton J.; Smith, Horace A.; Stetson, Peter B.; Catelan, Marcio; Sweigart, Allen V.; Layden, Andrew C.; Rich, R. Michael
2003-01-01
We present the results of a Hubble Space Telescope snapshot program to survey the inner region of the metal-rich globular cluster NGC 6441 for its variable stars. A total of 57 variable stars was found including 38 RR Lyrae stars, 6 Population II Cepheids, and 12 long period variables. Twenty-four of the RR Lyrae stars and all of the Population II Cepheids were previously undiscovered in ground-based surveys. Of the RR Lyrae stars observed in h s survey, 26 are pulsating in the fundamental mode with a mean period of 0.753 d and 12 are first-overtone mode pulsators with a mean period of 0.365 d. These values match up very well with those found in ground-based surveys. Combining all the available data for NGC 6441, we find mean periods of 0.759 d and 0.375 d for the RRab and RRc stars, respectively. We also find that the RR Lyrae in this survey are located in the same regions of a period-amplitude diagram as those found in ground-based surveys. The overall ratio of RRc to total RR Lyrae is 0.33. Although NGC 6441 is a metal-rich globular cluster and would, on that ground, be expected either to have few RR Lyrae stars, or to be an Oosterhoff type I system, its RR Lyrae more closely resemble those in Oosterhoff type II globular clusters. However, even compared to typical Oosterhoff type II systems, the mean period of its RRab stars is unusually long. We also derived I-band period-luminosity relations for the RR Lyrae stars. Of the six Population II Cepheids, five are of W Virginis type and one is a BL Herculis variable star. This makes NGC 6441, along with NGC 6388, the most metal-rich globular cluster known to contain these types of variable stars. Another variable, V118, may also be a Population II Cepheid given its long period and its separation in magnitude from the RR Lyrae stars. We examine the period-luminosity relation for these Population II Cepheids and compare it to those in other globular clusters and in the Large Magellanic Cloud. We argue that there does not appear to be a change in the period-luminosity relation slope between the BL Herculis and W Virginis stars, but that a change of slope does occur when the RV Tauri stars are added to the period-luminosity relation.
NASA Astrophysics Data System (ADS)
Pojmanski, G.; Maciejewski, G.
2005-03-01
In this paper we present the fourth part of the photometric data from the 9 arcdeg x 9 arcdeg ASAS camera monitoring the whole southern hemisphere in V-band. Preliminary list (based on observations obtained since January 2001) of variable stars located between RA 18^h and 24^h is released. 10311 stars brighter than V=15 mag were found to be variable (1641 eclipsing, 1116 regularly pulsating, 938 Mira-type and 6616 other stars). Light curves have been classified using the automated algorithm taking into account periods, amplitudes, Fourier coefficients of the light curves, 2MASS colors and IRAS infrared fluxes. Basic photometric properties are presented in the tables and some examples of thumbnail light curves are printed for reference. All photometric data are available over the Internet at http://www.astrouw.edu.pl/~gp/asas/asas.html or http://archive.princeton.edu/~asas
NASA Astrophysics Data System (ADS)
Pojmanski, G.
2003-12-01
This paper describes the second part of the photometric data from the 9 arcdeg times 9 arcdeg ASAS camera monitoring the whole southern hemisphere in the V-band. Preliminary list of variable stars based on observations obtained since January 2001 is presented. Over 2800000 stars brighter than V=15 mag on 18000 frames were analyzed and 11357 were found to be variable (2685 eclipsing, 907 regularly pulsating, 521 Mira and 7244 other, mostly SR, IRR and LPV stars). Periodic light curves have been classified using the automated algorithm, which now takes into account IRAS infrared fluxes. Basic photometric properties are presented in the tables and some examples of thumbnail light curves are printed for reference. All photometric data are available over the INTERNET at http://www.astrouw.edu.pl/~gp/asas/asas.html or http://archive.princeton.edu/~asas.
NASA Astrophysics Data System (ADS)
Pojmanski, G.; Maciejewski, G.
2004-06-01
This paper describes the third part of the photometric data from the 9 arcdeg x 9arcdeg ASAS camera monitoring the whole southern hemisphere in V-band. Preliminary list of variable stars based on observations obtained since January 2001 is presented. Over 3200000 stars brighter than V=15 mag on 18000 frames were analyzed and 10453 were found to be variable (1718 eclipsing, 731 regularly pulsating, 849 Mira and 7155 other stars). Light curves have been classified using the improved automated algorithm, which now takes into account 2MASS colors and IRAS infrared fluxes. Basic photometric properties are presented in the tables and some examples of thumbnail light curves are printed for reference. All photometric data are available over the INTERNET at http://www.astrouw.edu.pl/\\gp/asas/asas.html or http://archive.princeton.edu/\\asas.
NASA Astrophysics Data System (ADS)
O'Keeffe, Brendon; Johnson, Michael; Murphy Williams, Rosa Nina
2018-06-01
The WestRock observatory at Columbus State University provides laboratory and research opportunities to earth and space science students specializing in astrophysics and planetary geology. Through continuing improvements, the observatory has been expanding the types of research carried out by undergraduates. Photometric measurements are an essential tool for observational research, especially for objects of variable brightness.Using the American Association of Variable Star Observers (AAVSO) database, students choose variable star targets for observation. Students then perform observations to develop the ability to properly record, calibrate, and interpret the data. Results are then submitted to a large database of observations through the AAVSO.Standardized observation procedures will be developed in the form of manuals and instructional videos specific to the equipment housed in the WestRock Observatory. This procedure will be used by students conducting laboratory exercises and undergraduate research projects that utilize photometry. Such hands-on, direct observational experience will help to familiarize the students with observational techniques and contribute to an active dataset, which in turn will prepare them for future research in their field.In addition, this set of procedures and the data resulting from them will be used in the wider outreach programs of the WestRock Observatory, so that students and interested public nationwide can learn about both the process and importance of photometry in astronomical research.
Infrared Space Observatory (ISO) Key Project: the Birth and Death of Planets
NASA Technical Reports Server (NTRS)
Stencel, Robert E.; Creech-Eakman, Michelle; Fajardo-Acosta, Sergio; Backman, Dana
1999-01-01
This program was designed to continue to analyze observations of stars thought to be forming protoplanets, using the European Space Agency's Infrared Space Observatory, ISO, as one of NASA Key Projects with ISO. A particular class of Infrared Astronomy Satellite (IRAS) discovered stars, known after the prototype, Vega, are principal targets for these observations aimed at examining the evidence for processes involved in forming, or failing to form, planetary systems around other stars. In addition, this program continued to provide partial support for related science in the WIRE, SOFIA and Space Infrared Telescope Facility (SIRTF) projects, plus approved ISO supplementary time observations under programs MCREE1 29 and VEGADMAP. Their goals include time dependent changes in SWS spectra of Long Period Variable stars and PHOT P32 mapping experiments of recognized protoplanetary disk candidate stars.
Searching for new white dwarf pulsators for TESS observations at Konkoly Observatory
NASA Astrophysics Data System (ADS)
Bognár, Zs; Kalup, Cs; Sódor, Á.; Charpinet, S.; Hermes, J. J.
2018-07-01
We present the results of our survey searching for new white dwarf pulsators for observations by the TESS space telescope. We collected photometric time-series data on 14 white dwarf variable candidates at Konkoly Observatory, and found two new bright ZZ Ceti stars, namely EGGR 120 and WD 1310+583. We performed a Fourier analysis of the datasets. In the case of EGGR 120, which was observed on one night only, we found one significant frequency at 1332μHz with 2.3 mmag amplitude. We successfully observed WD 1310+583 on eight nights, and determined 17 significant frequencies in the whole dataset. Seven of them seem to be independent pulsation modes between 634 and 2740μHz, and we performed preliminary asteroseismic investigations of the star utilizing six of these periods. We also identified three new light variables on the fields of white dwarf candidates: an eclipsing binary, a candidate delta Scuti/beta Cephei and a candidate W UMa-type star.
NASA Astrophysics Data System (ADS)
Gezari, S.; Martin, D. C.; Forster, K.; Neill, J. D.; Huber, M.; Heckman, T.; Bianchi, L.; Morrissey, P.; Neff, S. G.; Seibert, M.; Schiminovich, D.; Wyder, T. K.; Burgett, W. S.; Chambers, K. C.; Kaiser, N.; Magnier, E. A.; Price, P. A.; Tonry, J. L.
2013-03-01
We present the selection and classification of over a thousand ultraviolet (UV) variable sources discovered in ~40 deg2 of GALEX Time Domain Survey (TDS) NUV images observed with a cadence of 2 days and a baseline of observations of ~3 years. The GALEX TDS fields were designed to be in spatial and temporal coordination with the Pan-STARRS1 Medium Deep Survey, which provides deep optical imaging and simultaneous optical transient detections via image differencing. We characterize the GALEX photometric errors empirically as a function of mean magnitude, and select sources that vary at the 5σ level in at least one epoch. We measure the statistical properties of the UV variability, including the structure function on timescales of days and years. We report classifications for the GALEX TDS sample using a combination of optical host colors and morphology, UV light curve characteristics, and matches to archival X-ray, and spectroscopy catalogs. We classify 62% of the sources as active galaxies (358 quasars and 305 active galactic nuclei), and 10% as variable stars (including 37 RR Lyrae, 53 M dwarf flare stars, and 2 cataclysmic variables). We detect a large-amplitude tail in the UV variability distribution for M-dwarf flare stars and RR Lyrae, reaching up to |Δm| = 4.6 mag and 2.9 mag, respectively. The mean amplitude of the structure function for quasars on year timescales is five times larger than observed at optical wavelengths. The remaining unclassified sources include UV-bright extragalactic transients, two of which have been spectroscopically confirmed to be a young core-collapse supernova and a flare from the tidal disruption of a star by dormant supermassive black hole. We calculate a surface density for variable sources in the UV with NUV < 23 mag and |Δm| > 0.2 mag of ~8.0, 7.7, and 1.8 deg-2 for quasars, active galactic nuclei, and RR Lyrae stars, respectively. We also calculate a surface density rate in the UV for transient sources, using the effective survey time at the cadence appropriate to each class, of ~15 and 52 deg-2 yr-1 for M dwarfs and extragalactic transients, respectively.
Estrellas variables en campos de cúmulos abiertos galácticos detectadas en el relevamiento VVV
NASA Astrophysics Data System (ADS)
Palma, T.; Dékany, I.; Clariá, J. J.; Minniti, D.; Alonso-García, J. A.; Ramírez Alegría, S.; Bonatto, C.
2016-08-01
The present project constitutes a massive search for variable stars in the field of open clusters projected on highly reddened regions of the galactic disk and bulge. This search is being performed using -, - and -band observations of the near-infrared variability Survey Vista variables in the Via Lactea. We present the first results obtained in four open clusters projected on the Galactic bulge. The new variables discovered in the current work, 182 in total, are classified on the basis of their light curves and their locations in the corresponding color-magnitude diagrams. Among the newly discovered variable stars, Cepheids, RR Lyrae, Scuti, eclipsing binaries and other types have been found.
IUE and ground-based observations of the Hubble-Sandage variables in M31 and M33
NASA Technical Reports Server (NTRS)
Blaha, C.; Dodorico, S.; Gull, T. R.; Benvenuti, P.; Humphreys, R. M.
1984-01-01
Ultraviolet spectra were obtained from the International Ultraviolet Explorer for the brightest Hubble-Sandage (H-S) variables in M31 and M33. The ultraviolet fluxes were then used in combination with ground-based visual and infrared photometry to determine the energy distributions, luminosities, and temperatures of these stars. When corrected for interstellar extinction, the integrated energy distributions yield the total luminosities and blackbody temperatures of the H-S variables. The resulting bolometric magnitudes and temperatures confirm that these peculiar stars are indeed very luminous, hot stars. They occupy the same regions of the bolometric magnitude vs temperature diagram as Eta Car and P Cyg in the Galaxy and S Dor in the LMC.
Stellar parameters and H α line profile variability of Be stars in the BeSOS survey
NASA Astrophysics Data System (ADS)
Arcos, C.; Kanaan, S.; Chávez, J.; Vanzi, L.; Araya, I.; Curé, M.
2018-03-01
The Be phenomenon is present in about 20 per cent of B-type stars. Be stars show variability on a broad range of time-scales, which in most cases is related to the presence of a circumstellar disc of variable size and structure. For this reason, a time-resolved survey is highly desirable in order to understand the mechanisms of disc formation, which are still poorly understood. In addition, a complete observational sample would improve the statistical significance of the study of stellar and disc parameters. The `Be Stars Observation Survey' (BeSOS) is a survey containing reduced spectra obtained using the Pontifica Universidad Católica High Echelle Resolution Optical Spectrograph (PUCHEROS) with a spectral resolution of 17 000 in the range 4260-7300 Å. BeSOS's main objective is to offer consistent spectroscopic and time-resolved data obtained with one instrument. The user can download or plot the data and obtain stellar parameters directly from the website. We also provide a star-by-star analysis based on photometric, spectroscopic and interferometric data, as well as general information about the whole BeSOS sample. Recently, BeSOS led to the discovery of a new Be star HD 42167 and facilitated study of the V/R variation of HD 35165 and HD 120324, the steady disc of HD 110335 and the Be shell status of HD 127972. Optical spectra used in this work, as well as the stellar parameters derived, are available online at http://besos.ifa.uv.cl.
IUE observations of magnetically controlled stellar winds in the helium peculiar stars
NASA Technical Reports Server (NTRS)
Shore, Steven N.; Brown, Douglas N.
1986-01-01
Dramatic periodic variations in the C IV resonance lines of magnetic helium-weak sn stars HD 5737 = alpha Scl, HD 21699 = HR 1063, and HD 79158 = 36 Lyn are discussed. In all three cases, the 1548,50 doublet is the only non-negligibly variable UV spectral feature. The line profiles are consistent with outflow in a jet-like structure. In HD 21699 this outflow arises from one of the magnetic polar regions. Observations of two additional He-wk sn stars do not reveal strong C IV absorption, implying that the UV characteristics of these stars are less uniform than the optical phenomenology.
A model for the spectroscopic variations of the peculiar symbiotic star MWC 560
NASA Technical Reports Server (NTRS)
Shore, Steven N.; Aufdenberg, Jason P.; Michalitsianos, A. G.
1994-01-01
In this note, we show that the ultraviolet and optical spectroscopic variability of this unique symbiotic star can be understood in terms of a time variable collimated stellar wind with a rapid acceleration near the source. Using the radial velocities observed during the ultraviolet bright phase, we find that a variation in the mass loss rate of a factor of ten can explain the ultraviolet spectral changes. The acceleration is far faster than normally observed in radiatively driven stellar winds and may be due to mechanical driving of the outflow from the disk.
Uncertain Classification of Variable Stars: Handling Observational GAPS and Noise
NASA Astrophysics Data System (ADS)
Castro, Nicolás; Protopapas, Pavlos; Pichara, Karim
2018-01-01
Automatic classification methods applied to sky surveys have revolutionized the astronomical target selection process. Most surveys generate a vast amount of time series, or “lightcurves,” that represent the brightness variability of stellar objects in time. Unfortunately, lightcurves’ observations take several years to be completed, producing truncated time series that generally remain without the application of automatic classifiers until they are finished. This happens because state-of-the-art methods rely on a variety of statistical descriptors or features that present an increasing degree of dispersion when the number of observations decreases, which reduces their precision. In this paper, we propose a novel method that increases the performance of automatic classifiers of variable stars by incorporating the deviations that scarcity of observations produces. Our method uses Gaussian process regression to form a probabilistic model of each lightcurve’s observations. Then, based on this model, bootstrapped samples of the time series features are generated. Finally, a bagging approach is used to improve the overall performance of the classification. We perform tests on the MAssive Compact Halo Object (MACHO) and Optical Gravitational Lensing Experiment (OGLE) catalogs, results show that our method effectively classifies some variability classes using a small fraction of the original observations. For example, we found that RR Lyrae stars can be classified with ~80% accuracy just by observing the first 5% of the whole lightcurves’ observations in the MACHO and OGLE catalogs. We believe these results prove that, when studying lightcurves, it is important to consider the features’ error and how the measurement process impacts it.
NASA Astrophysics Data System (ADS)
Wallace, D. J.; Rajagopal, J.; Barry, R.; Richardson, L. J.; Lopez, B.; Chesneau, O.; Danchi, W. C.
The mechanism driving dust production in massive stars remains somewhat mysterious. However, recent aperture-masking and interferometric observations of late-type WC Wolf-Rayet (WR) stars strongly support the theory that dust formation in these objects is a result of colliding winds in binaries. Consistent with this theory, there is also evidence that suggests the prototypical Luminous Blue Variable (LBV) star, Eta Carinae, is a binary. To explore and quantify this possible explanation, we have conducted a high resolution interferometric survey of late-type massive stars utilizing the VLTI, Keck, and IOTA interferometers. We present here the motivation for this study as well as the first results from the MIDI instrument on the VLTI. (Details of the Keck Interferometer and IOTA interferometer observations are discussed in this workshop by Rajagopal et al.). Our VLTI study is aimed primarily at resolving and characterizing the dust around the WC9 star WR 85a and the LBV WR 122, both dust-producing but at different phases of massive star evolution. The pectrally-dispersed visibilities obtained with the MIDI observations will provide the first steps towards answering many outstanding issues in our understanding of this critical phase of massive star evolution
Radio variability and structure of T Tauri stars
NASA Technical Reports Server (NTRS)
Cohen, Martin; Bieging, John H.
1986-01-01
Observations of radio variability in V410 Tau and in HP Tau/G2 and /G3, and striking variations in the radio structure of DG Tau, are reported. The position of the radio peak of DG Tau has shown apparent motion between 1982 and 1985 along the flow axis from this star, while its morphology has varied from point-like to bipolar. These changes and the spectral index of 0.6 at high frequencies are interpreted as indicative of a variable, freely expanding radio jet in DG Tau.
Searching for New Variable Stars: an Educational Project to Mine Archival Data
NASA Astrophysics Data System (ADS)
Walls, B. D.; Redmond, C. E.; Murdick, L. J.; Caton, D. B.
1998-12-01
As a Senior Seminar project,. three students were each assigned a night of images of a field containing a variable star observed under our eclipsing binary photometry program. Each field was eight arc-minutes square, with the images coming from the DFM 32-inch telescope at our Dark Sky Observatory. The exposures used a Photometrics CH250 camera with a Tektronix 1024(2) CCD and V-filter. Darks were obtained throughout the night, as well as sky flats at dusk or dawn. The fields were around the systems V442 Cas, WW Cyg, and V345 Lac. The students used Axiom Research's MIRA AP software for doing the aperture photometry, using one initial coordinates file for all of the reasonably bright stars in the field. This number varied from about 60 to almost 200 stars. The MIRA software is easy to use, with auto-centroiding and calibration built in, so it was just a matter of loading images and applying the calibration. One of the student/authors (BDW) wrote an application in Microsoft Visual BASIC to scan the output data files and produce new files, per star. These data sets were examined using PSI-Plot, to look for variability. Errors due to occasional drift led to centroiding problems, a lesson in itself! There were still some residual variations in a few stars that may be real. Follow-up observations will be made to verify these suspicions.
NASA Astrophysics Data System (ADS)
Catelan, M.; Smith, H. A.
2015-03-01
This book surveys our understanding of stars which change in brightness because they pulsate. Pulsating variable stars are keys to distance scales inside and beyond the Milky Way galaxy. They test our understanding not only of stellar pulsation theory but also of stellar structure and evolution theory. Moreover, pulsating stars are important probes of the formation and evolution of our own and neighboring galaxies. Our understanding of pulsating stars has greatly increased in recent years as large-scale surveys of pulsating stars in the Milky Way and other Local Group galaxies have provided a wealth of new observations and as space-based instruments have studied particular pulsating stars in unprecedented detail.
NASA Astrophysics Data System (ADS)
Rood, R. T.; Renzini, A.
1997-01-01
The present volume on stellar evolution discusses fundamentals of stellar evolution and star clusters, variable stars, AGB stars and planetary nebulae, white dwarfs, binary star evolution, and stars in galaxies. Attention is given to the stellar population in the Galactic bulge, a photometric study of NGC 458, and HST observations of high-density globular clusters. Other topics addressed include the Cepheid instability strip in external galaxies, Hyades cluster white dwarfs and the initial-final mass relation, element diffusion in novae, mass function of the stars in the solar neighborhood, synthetic spectral indices for elliptical galaxies, and stars at the Galactic center.
NASA Astrophysics Data System (ADS)
Bradstreet, David H.; Sanders, S. J.; Volpert, C. G.
2013-01-01
New precision V & Rc light curves of the eclipsing binaries V546 And and V566 And have been obtained using the 41-cm telescopes at the Eastern University Observatory equipped with SBIG ST-10XME CCD’s. V546 And (GSC 2828:18, P = 0.3831 days, m = 11.2) has only one published discovery light curve with significant scatter in the data. The system was observed on seven nights from 30 Aug - 20 Sep 2012, accumulating approximately 900 observations in both V and Rc. The light curves show distinctly that the system is totally eclipsing and preliminary analysis indicates that the binary is W-type (the larger, more massive star is the cooler component), has a mass ratio of 0.34, small temperature difference between the stars of 300 K, and a fillout of 0.30. There is also strong evidence of the presence of starspots influencing the slopes of both eclipses. V566 And (GSC 2321:257, P = 0.3897 days, m = 10.9) is a totally eclipsing overcontact system likewise showing obvious O’Connell effects likely due to starspots. V566 And was observed on seven nights from 30 Aug - 25 Sep 2012, accumulating more than 900 observations in both V and Rc. Preliminary light curve models indicate a W-type system with a small temperature difference between the stars of 200 K and a mass ratio of only 0.20. The original comparison star for V566 And, GSC 2321:911 (m = 12.0), turned out to be a previously unknown variable star with a period of approximately 0.466 days and a light amplitude in Rc of 0.15 mag. This new variable has no information concerning it in the online archives and initial analysis seems to indicate that this may be an ellipsoidal variable. The complete light curve analyses will be presented for both systems and the new variable’s light curves will also be discussed.
Stellar variability and its implications for photometric planet detection with Kepler
NASA Astrophysics Data System (ADS)
Batalha, N. M.; Jenkins, J.; Basri, G. S.; Borucki, W. J.; Koch, D. G.
2002-01-01
Kepler is one of three candidates for the next NASA Discovery Mission and will survey the extended solar neighborhood to detect and characterize hundreds of terrestrial (and larger) planets in or near the habitable zone. Its strength lies in its ability to detect large numbers of Earth-sized planets - planets which produced a 10-4 change in relative stellar brightness during a transit across the disk of a sun-like parent star. Such a detection requires high instrumental relative precision and is facilitated by observing stars which are photometrically quiet on hourly timescales. Probing stellar variability across the HR diagram, one finds that many of the photometrically quietest stars are the F and G dwarfs. The Hipparcos photometric database shows the lowest photometric variances among stars of this spectral class. Our own Sun is a prime example with RMS variations over a few rotational cycles of typically (3 - 4)×10-4 (computed from VIRGO/DIARAD data taken Jan-Mar 2001). And variability on the hourly time scales crucial for planet detection is significantly smaller: just (2 - 5)×10-5. This bodes well for planet detection programs such as Kepler and Eddington. With significant numbers of photometrically quiet solar-type stars, Earth-sized planets should be readily identified provided they are abundant in the solar neighborhood. In support of the Kepler science objectives, we have initiated a study of stellar variability and its implications for planet detection. Herein, we summarize existing observational and theoretrical work with the objective of determining the percentage of stars in the Kepler field of view expected to be photometrically stable at a level which allows for Earth-sized planet detection.
Spurious One-Month and One-Year Periods in Visual Observations of Variable Stars
NASA Astrophysics Data System (ADS)
Percy, J. R.
2015-12-01
Visual observations of variable stars, when time-series analyzed with some algorithms such as DC-DFT in vstar, show spurious periods at or close to one synodic month (29.5306 days), and also at about a year, with an amplitude of typically a few hundredths of a magnitude. The one-year periods have been attributed to the Ceraski effect, which was believed to be a physiological effect of the visual observing process. This paper reports on time-series analysis, using DC-DFT in vstar, of visual observations (and in some cases, V observations) of a large number of stars in the AAVSO International Database, initially to investigate the one-month periods. The results suggest that both the one-month and one-year periods are actually due to aliasing of the stars' very low-frequency variations, though they do not rule out very low-amplitude signals (typically 0.01 to 0.02 magnitude) which may be due to a different process, such as a physiological one. Most or all of these aliasing effects may be avoided by using a different algorithm, which takes explicit account of the window function of the data, and/or by being fully aware of the possible presence of and aliasing by very low-frequency variations.
HIGHLY VARIABLE YOUNG MASSIVE STARS IN ATLASGAL CLUMPS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, M. S. N.; Contreras Peña, C.; Lucas, P. W.
High-amplitude variability in young stellar objects (YSOs) is usually associated with episodic accretion events. It has not been observed so far in massive YSOs. Here, the high-amplitude variable star sample of Contreras Peña et al. has been used to search for highly variable (Δ K ≥ 1 mag) sources coinciding with dense clumps mapped using the 850 μ m continuum emission by the ATLASGAL survey. A total of 18 variable sources are centered on the submillimeter clump peaks and coincide (<1″) with a 24 μ m point or compact (<10″) source. Of these 18 sources, 13 can be fit by YSOmore » models. The 13 variable YSOs (VYSOs) have luminosities of ∼10{sup 3} L {sub ⊙}, an average mass of 8 M {sub ⊙}, and a range of ages up to 10{sup 6} yr. A total of 11 of these 13 VYSOs are located in the midst of infrared dark clouds. Nine of the 13 sources have Δ K > 2 mag, significantly higher compared to the mean variability of the entire VVV sample. The light curves of these objects sampled between 2010 and 2015 display rising, declining, or quasi-periodic behavior but no clear periodicity. Light-curve analysis using the Plavchan method shows that the most prominent phased signals have periods of a few hundred days. The nature and timescale of variations found in 6.7 Ghz methanol maser emission in massive stars are similar to that of the VYSO light curves. We argue that the origin of the observed variability is episodic accretion. We suggest that the timescale of a few hundred days may represent the frequency at which a spiraling disk feeds dense gas to the young massive star.« less
NASA Astrophysics Data System (ADS)
Buysschaert, B.; Aerts, C.; Bloemen, S.; Debosscher, J.; Neiner, C.; Briquet, M.; Vos, J.; Pápics, P. I.; Manick, R.; Schmid, V. S.; Van Winckel, H.; Tkachenko, A.
2015-10-01
We present high-precision photometric light curves of five O-type stars observed with the refurbished Kepler satellite during its Campaign 0. For one of the stars, we also assembled high-resolution ground-based spectroscopy with the HERMES spectrograph attached to the 1.2 m Mercator telescope. The stars EPIC 202060097 (O9.5V) and EPIC 202060098 (O7V) exhibit monoperiodic variability due to rotational modulation with an amplitude of 5.6 and 9.3 mmag and a rotation period of 2.63 and 5.03 d, respectively. EPIC 202060091 (O9V) and EPIC 202060093 (O9V:pe) reveal variability at low frequency but the cause is unclear. EPIC 202060092 (O9V:p) is discovered to be a spectroscopic binary with at least one multiperiodic β Cep-type pulsator whose detected mode frequencies occur in the range [0.11, 6.99] d-1 and have amplitudes between 0.8 and 2.0 mmag. Its pulsation spectrum is shown to be fully compatible with the ones predicted by core-hydrogen burning O-star models. Despite the short duration of some 33 d and the limited data quality with a precision near 100 μmag of these first K2 data, the diversity of possible causes for O-star variability already revealed from campaigns of similar duration by the MOST and CoRoT satellites is confirmed with Kepler. We provide an overview of O-star space photometry and give arguments why future K2 monitoring during Campaigns 11 and 13 at short cadence, accompanied by time-resolved high-precision high-resolution spectroscopy, opens up the possibility of in-depth O-star seismology.
A NEW CENSUS OF THE VARIABLE STAR POPULATION IN THE GLOBULAR CLUSTER NGC 2419
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Criscienzo, M.; Greco, C.; Ripepi, V.
We present B, V, and I CCD light curves for 101 variable stars belonging to the globular cluster NGC 2419, 60 of which are new discoveries, based on data sets obtained at the Telescopio Nazionale Galileo, the Subaru telescope, and the Hubble Space Telescope. The sample includes 75 RR Lyrae stars (38 RRab, 36 RRc, and one RRd), one Population II Cepheid, 12 SX Phoenicis variables, two {delta} Scuti stars, three binary systems, five long-period variables, and three variables of uncertain classification. The pulsation properties of the RR Lyrae variables are close to those of Oosterhoff type II clusters, consistentmore » with the low metal abundance and the cluster horizontal branch morphology, disfavoring (but not totally ruling out) an extragalactic hypothesis for the origin of NGC 2419. The observed properties of RR Lyrae and SX Phoenicis stars are used to estimate the cluster reddening and distance, using a number of different methods. Our final value is {mu}{sub 0} (NGC 2419) = 19.71 {+-} 0.08 mag (D = 87.5 {+-} 3.3 kpc), with E(B - V) = 0.08 {+-} 0.01 mag, [Fe/H] = -2.1 dex on the Zinn and West metallicity scale, and a value of M{sub V} that sets {mu}{sub 0} (LMC) = 18.52 mag. This value is in good agreement with the most recent literature estimates of the distance to NGC 2419.« less
Predicting the nature of supernova progenitors
NASA Astrophysics Data System (ADS)
Groh, Jose H.
2017-09-01
Stars more massive than about 8 solar masses end their lives as a supernova (SN), an event of fundamental importance Universe-wide. The physical properties of massive stars before the SN event are very uncertain, both from theoretical and observational perspectives. In this article, I briefly review recent efforts to predict the nature of stars before death, in particular, by performing coupled stellar evolution and atmosphere modelling of single stars in the pre-SN stage. These models are able to predict the high-resolution spectrum and broadband photometry, which can then be directly compared with the observations of core-collapse SN progenitors. The predictions for the spectral types of massive stars before death can be surprising. Depending on the initial mass and rotation, single star models indicate that massive stars die as red supergiants, yellow hypergiants, luminous blue variables and Wolf-Rayet stars of the WN and WO subtypes. I finish by assessing the detectability of SN Ibc progenitors. This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'.
NASA Astrophysics Data System (ADS)
Adelman, S. J.
1983-03-01
Optical region spectrophotometry of six relatively hot Ap stars is presented. Additional scans of 56 Ari extend the results of an earlier paper in this series. The data for 41 Tau, 25 Sex, HD 170973, and HD 215441 are studied as a function of phase. The observations of HD 205087 are inconclusive about its variability although they show spectrophotometrically that it is a definite Ap star. The observations of HD 215441 show a prominent λ5200 broad, continuum feature with an unusual shape. However, when the data are corrected for interstellar reddening, the energy distribution resembles those of other silicon stars. The λ5200 feature is found to be variable in phase with the U-B and B-V colors and with the magnetic field strength. This feature is strongest when the Balmer jump is smallest, the Paschen continuum the bluest according to B-V, and the surface magnetic field strength the largest.
X-ray diagnostics of massive star winds
NASA Astrophysics Data System (ADS)
Oskinova, L. M.; Ignace, R.; Huenemoerder, D. P.
2017-11-01
Observations with powerful X-ray telescopes, such as XMM-Newton and Chandra, significantly advance our understanding of massive stars. Nearly all early-type stars are X-ray sources. Studies of their X-ray emission provide important diagnostics of stellar winds. High-resolution X-ray spectra of O-type stars are well explained when stellar wind clumping is taking into account, providing further support to a modern picture of stellar winds as non-stationary, inhomogeneous outflows. X-ray variability is detected from such winds, on time scales likely associated with stellar rotation. High-resolution X-ray spectroscopy indicates that the winds of late O-type stars are predominantly in a hot phase. Consequently, X-rays provide the best observational window to study these winds. X-ray spectroscopy of evolved, Wolf-Rayet type, stars allows to probe their powerful metal enhanced winds, while the mechanisms responsible for the X-ray emission of these stars are not yet understood.
Analysis of surface structures of chemically peculiar stars with modern and future interferometers
NASA Astrophysics Data System (ADS)
Shulyak, D.; Perraut, K.; Paladini, Claudia; Li Causi, G.; Sacuto, Stephane; Kochukhov, O.
2014-07-01
Interferometry is a very powerful observational technique known in astronomy for many decades. Its application to main-sequence stars, however, is still limited to only brightest objects. In this work we aim to explore the application of interferometry to a special class of main-sequence stars known as chemically peculiar (CP) stars. These stars demonstrate surface chemical abundance inhomogeneities (spots) that usually cover a considerable part of the stellar surface and induce a pronounced spectral and photometric variability. Interferometry thus has a potential to naturally resolve such spots in single stars, providing unique complementary information about spots sizes and contrasts. By means of numerical experiments we derive the actual interferometric requirements essential for the CP stars research that can be addressed in future instrument development. The first comparison between theoretical predictions and already available observations will also be discussed.
Hard X-Ray Emission of the Luminous Infrared Galaxy NGC 6240 as Observed by Nustar
NASA Technical Reports Server (NTRS)
Puccetti, S.; Comastri, A.; Bauer, F. E.; Brandt, W. N.; Fiore, F.; Harrison, F. A.; Luo, B.; Stern, D.; Urry, C. M.; Alexander, D. M.;
2016-01-01
We present a broadband (approx.0.3-70 keV) spectral and temporal analysis of NuSTAR observations of the luminous infrared galaxy NGC 6240 combined with archival Chandra, XMM-Newton, and BeppoSAX data. NGC 6240 is a galaxy in a relatively early merger state with two distinct nuclei separated by approx.1.5. Previous Chandra observations resolved the two nuclei and showed that they are both active and obscured by Compton-thick material. Although they cannot be resolved by NuSTAR, we were able to clearly detect, for the first time, both the primary and the reflection continuum components thanks to the unprecedented quality of the NuSTAR data at energies >10 keV. The NuSTAR hard X-ray spectrum is dominated by the primary continuum piercing through an absorbing column density which is mildly optically thick to Compton scattering (tau approx. = 1.2, NH approx. 1.5×10(exp 24)/sq cm. We detect moderately hard X-ray (>10 keV) flux variability up to 20% on short (15-20 ks) timescales. The amplitude of the variability is largest at approx..30 keV and is likely to originate from the primary continuum of the southern nucleus. Nevertheless, the mean hard X-ray flux on longer timescales (years) is relatively constant. Moreover, the two nuclei remain Compton-thick, although we find evidence of variability in the material along the line of sight with column densities NH < or = 2×10(exp 23)/sq cm over long (approx.3-15 yr) timescales. The observed X-ray emission in the NuSTAR energy range is fully consistent with the sum of the best-fit models of the spatially resolved Chandra spectra of the two nuclei.
Investigating the Spectroscopic Variability of Magentically Active M Dwarfs In SDSS.
NASA Astrophysics Data System (ADS)
Ventura, Jean-Paul; Schmidt, Sarah J.; Cruz, Kelle; Rice, Emily; Cid, Aurora
2018-01-01
Magnetic activity, a wide range of observable phenomena produced in the outer atmospheres of stars is, currently, not well understood for M dwarfs. In higher mass stars, magnetic activity is powered by a dynamo process involving the differential rotation of a star’s inner regions. This process generates a magnetic field, heats up regions in the chromosphere and produces Hα emission line radiation from collisional excitation. Using spectroscopic data from the Sloan Digital Sky Survey (SDSS), I compare Hα emission line strengths for a subsample of 12,000 photometric variability selected M dwarfs from Pan-STARRS1 with those of a known non-variable sample. Presumably, the photometric variability originates from the occurrence of star spots at the stellar surface, which are the result of an intense magnetic field and associated chromospheric heating. We proceed with this work in order to test whether the photometric variability of the sample correlates with chromospheric Hα emission features. If not, we explore alternate reasons for that photometric variability (e.g. binarity or transiting planetary companions)
Ultraviolet and X-ray Activity and Flaring on Low-Mass Exoplanet Host Stars
NASA Astrophysics Data System (ADS)
France, Kevin; Loyd, R. O. Parke; Brown, Alexander
2015-08-01
The spectral and temporal behavior of exoplanet host stars is a critical input to models of the chemistry and evolution of planetary atmospheres. High-energy photons (X-ray to NUV) from these stars regulate the atmospheric temperature profiles and photochemistry on orbiting planets, influencing the production of potential “biomarker” gases. We present results from the MUSCLES Treasury Survey, an ongoing study of time-resolved UV and X-ray spectroscopy of nearby M and K dwarf exoplanet host stars. This program uses contemporaneous Hubble Space Telescope and Chandra (or XMM) observations to characterize the time variability of the energetic radiation field incident on the habitable zones planetary systems at d < 15 pc. We find that all exoplanet host stars observed to date exhibit significant levels of chromospheric and transition region UV emission. M dwarf exoplanet host stars display 30 - 2000% UV emission line amplitude variations on timescales of minutes-to-hours. The relative flare/quiescent UV flux amplitudes on old (age > 1 Gyr) planet-hosting M dwarfs are comparable to active flare stars (e.g., AD Leo), despite their lack of flare activity at visible wavelengths. We also detect similar UV flare behavior on a subset of our K dwarf exoplanet host stars. We conclude that strong flares and stochastic variability are common, even on “optically inactive” M dwarfs hosting planetary systems. These results argue that the traditional assumption of weak UV fields and low flare rates on older low-mass stars needs to be revised.
Ultraviolet and X-ray irradiance and flares from low-mass exoplanet host stars
NASA Astrophysics Data System (ADS)
France, Kevin; Loyd, R. O. Parke; Brown, Alex
The spectral and temporal behavior of exoplanet host stars is a critical input to models of the chemistry and evolution of planetary atmospheres. High-energy photons (X-ray to NUV) from these stars regulate the atmospheric temperature profiles and photochemistry on orbiting planets, influencing the production of potential ``biomarker'' gases. We report first results from the MUSCLES Treasury Survey, a study of time-resolved UV and X-ray spectroscopy of nearby M and K dwarf exoplanet host stars. This program uses contemporaneous Hubble Space Telescope and Chandra (or XMM) observations to characterize the time variability of the energetic radiation field incident on the habitable zones planetary systems at d <~ 20 pc. We find that all exoplanet host stars observed to date exhibit significant levels of chromospheric and transition region UV emission. M dwarf exoplanet host stars display 30-7000% UV emission line amplitude variations on timescales of minutes-to-hours. The relative flare/quiescent UV flux amplitudes on weakly active planet-hosting M dwarfs are comparable to active flare stars (e.g., AD Leo), despite their weak optical activity indices (e.g., Ca II H and K equivalent widths). We also detect similar UV flare behavior on a subset of our K dwarf exoplanet host stars. We conclude that strong flares and stochastic variability are common, even on ``optically inactive'' M dwarfs hosting planetary systems. These results argue that the traditional assumption of weak UV fields and low flare rates on older low-mass stars needs to be revised.
CMOS Active Pixel Sensor Star Tracker with Regional Electronic Shutter
NASA Technical Reports Server (NTRS)
Yadid-Pecht, Orly; Pain, Bedabrata; Staller, Craig; Clark, Christopher; Fossum, Eric
1996-01-01
The guidance system in a spacecraft determines spacecraft attitude by matching an observed star field to a star catalog....An APS(active pixel sensor)-based system can reduce mass and power consumption and radiation effects compared to a CCD(charge-coupled device)-based system...This paper reports an APS (active pixel sensor) with locally variable times, achieved through individual pixel reset (IPR).
NASA Astrophysics Data System (ADS)
Simón-Díaz, S.; Godart, M.; Castro, N.; Herrero, A.; Aerts, C.; Puls, J.; Telting, J.; Grassitelli, L.
2017-01-01
Context. The term macroturbulent broadening is commonly used to refer to a certain type of non-rotational broadening affecting the spectral line profiles of O- and B-type stars. It has been proposed to be a spectroscopic signature of the presence of stellar oscillations; however, we still lack a definitive confirmation of this hypothesis. Aims: We aim to provide new empirical clues about macroturbulent spectral line broadening in O- and B-type stars to evaluate its physical origin. Methods: We used high-resolution spectra of 430 stars with spectral types in the range O4 - B9 (all luminosity classes) compiled in the framework of the IACOB project. We characterized the line broadening of adequate diagnostic metal lines using a combined Fourier transform and goodness-of-fit technique. We performed a quantitative spectroscopic analysis of the whole sample using automatic tools coupled with a huge grid of fastwind models to determine their effective temperatures and gravities. We also incorporated quantitative information about line asymmetries into our observational description of the characteristics of the line profiles, and performed a comparison of the shape and type of line-profile variability found in a small sample of O stars and B supergiants with still undefined pulsational properties and B main-sequence stars with variable line profiles owing to a well-identified type of stellar oscillations or to the presence of spots in the stellar surface. Results: We present a homogeneous and statistically significant overview of the (single snapshot) line-broadening properties of stars in the whole O and B star domain. We find empirical evidence of the existence of various types of non-rotational broadening agents acting in the realm of massive stars. Even though all these additional sources of line-broadening could be quoted and quantified as a macroturbulent broadening from a practical point of view, their physical origin can be different. Contrarily to the early- to late-B dwarfs and giants, which present a mixture of cases in terms of line-profile shape and variability, the whole O-type and B supergiant domain (or, roughly speaking, stars with MZAMS ≳ 15 M⊙) is fully dominated by stars with a remarkable non-rotational broadening component and very similar profiles (including type of variability). We provide some examples illustrating how this observational dataset can be used to evaluate scenarios aimed at explaining the existence of sources of non-rotational broadening in massive stars. Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/597/A22
Long-term changes in ultraviolet P Cygni profiles observed with Copernicus
NASA Technical Reports Server (NTRS)
Snow, T. P., Jr.
1977-01-01
The incidence and nature of variability occurring on time scales of years in the ultraviolet P Cygni profiles of 15 O and B stars are investigated using spectrophotometric data obtained with the Copernicus satellite. It is found that some change in at least a few details of the P Cygni profiles is evident in almost every case, that the changes in a few stars appear to represent substantial variations in the column densities of the particular ions observed, and that the changes in other stars are minor in nature and do not result from significant alterations in the quantity of material in the stellar winds. Most of the narrow absorption features are shown to be invariant in velocity, although their strengths have apparently changed in certain cases. The nature of the changes observed in each of the program stars is briefly described, the time scale for variability in the stellar winds is considered, and two stars (Zeta Pup and Delta Ori A) are identified for which some alteration in the total amount of material in the stellar wind has taken place. It is suggested that the narrow absorption features probably represent temperature gradients or plateaus in the stellar-wind velocity fields or may be caused by flat regions in the height dependence of the wind velocity.
NASA Astrophysics Data System (ADS)
Stringfellow, Guy; Gvaramadze, Vasilii
2010-02-01
Luminous Blue Variable (LBV) stars represent an extremely rare class of very luminous and massive stars. Only about a dozen confirmed Galactic LBV stars are known to date, which precludes us from determining a solid evolutionary connection between LBV and other intermediate (e.g. Ofpe/WN9, WNL) phases in the life of very massive stars. The known LBV stars each have their own unique properties, so new discoveries add insight into the properties and evolutionary status of LBVs and massive stars; even one new discovery of objects of this type could provide break-through results in the understanding of the intermediate stages of massive star evolution. We have culled a prime sample of possible LBV candidates from the Spitzer 24 (micron) archival data. All have circumstellar nebulae, rings, and shells (typical of LBVs and related stars) surrounding reddened central stars. Spectroscopic followup of about two dozen optically visible central stars associated with the shells from this sample showed that they are either candidate LBVs, late WN-type Wolf-Rayet stars or blue supergiants. We propose infrared spectroscopic observations of the central stars for a large fraction (23 stars) of our northern sample to determine their nature and discover additional LBV candidates. These stars have no plausible optical counterparts, so infrared spectra are needed. This program requires two nights of Hale time using TripleSpec.
Searching for I-band variability in stars in the M/L spectral transition region
NASA Astrophysics Data System (ADS)
Ramsay, Gavin; Hakala, Pasi; Doyle, J. Gerry
2015-10-01
We report on I-band photometric observations of 21 stars with spectral types between M8 and L4 made using the Isaac Newton Telescope. The total amount of time for observations which had a cadence of <2.3 min was 58.5 h, with additional data with lower cadence. We test for photometric variability using the Kruskal-Wallis H-test and find that four sources (2MASS J10224821+5825453, 2MASS J07464256+2000321, 2MASS J16262034+3925190 and 2MASS J12464678+4027150) were found to be significantly variable at least on one epoch. Three of these sources are reported as photometrically variable for the first time. If we include sources which were deemed marginally variable, the number of variable sources is 6 (29 per cent). No flares were detected from any source. The percentage of sources which we found were variable is similar to previous studies. We summarize the mechanisms which have been put forward to explain the light curves of brown dwarfs.
VizieR Online Data Catalog: BI light curves of DDO210 pulsating variables (Ordonez+, 2016)
NASA Astrophysics Data System (ADS)
Ordonez, A. J.; Sarajedini, A.
2016-07-01
The data set used by Cole et al. (2014ApJ...794...64M) is very deep and covers a time baseline conducive to identifying short-period variable stars. These observations of DDO210 were originally intended for use in a detailed SFH analysis for this dwarf, and thus cover a significant portion of the galaxy while reaching photometric depths to the main-sequence turnoff. The observations consisting of 22920s in F475W and 33480s in F814W were taken with a cadence well suited for identifying short-period variable stars. We retrieved these images from the Mikulski Archive for Space Telescopes (MAST) for use in our study. (2 data files).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Downes, R.A.
Galactic plane ultraviolet-excess (uv-excess) objects covering about 1000 square degrees of sky were surveyed. Photographic plates were obtained with both uv and blue filters, to select the uv-excess candidates, which were then observed spectroscopically to determine their classification. Most of the objects selected were nearby early-type stars with low interstellar reddening; however, a collection of hot white dwarfs, subdwarf O (sdO) stars, subdwarf B (sdB) stars, and cataclysmic variables was also found. Photoelectric photometry was obtained for these stars and a statistical analysis was performed to determine the space densities and scale heights for the four classes of objects. Severalmore » interesting objects (or class of objects) were discovered, and data for some of these stars are presented. Among the peculiar objects found are an emission-line white dwarf similar to the pulsating PG 1159 stars, a Population II Wolf-Rayet star, a previously catalogued object with a strong Fe II emission-line spectrum, and a new class of object, resembling the sdB stars, that shows variable strength H..cap alpha.. absorption, with the H..cap alpha.. line sometimes completely filled in.« less
Variable Star Observing with the Bradford Robotic Telescope
NASA Astrophysics Data System (ADS)
Kinne, Richard C. S.
2011-05-01
With the recent addition of Johnson BVRI filters on the Bradford Robotic Telescope's 24 sq. arc minute camera, this scope has become a possibility to be considered when monitoring certain stars such as LPVs. This presentation will examine the mechanics of observing with the BRT and show examples of work that has been done by the author and how that data has been reduced using VPhot.
NASA Astrophysics Data System (ADS)
Knapp, Wilfried
2018-01-01
Visual observation of double stars is an anachronistic passion especially attractive for amateurs looking for sky objects suitable for visual observation even in light polluted areas. Session planning then requires a basic idea which objects might be suitable for a given equipmentâthis question is a long term issue for visual double star observers and obviously not easy to answer, especially for unequal bright components. Based on a reasonably large database with limited aperture observations (done with variable aperture equipment iris diaphragm or aperture masks) a heuristic approach is used to derive a statistically well founded Rule of Thumb formula.
A polarimetric survey of symbiotic stars
NASA Technical Reports Server (NTRS)
Schulte-Ladbeck, R. E.; Aspin, C.; Magalhaes, A. M.; Schwarz, H. E.
1990-01-01
Optical and near-infrared polarization observations of 24 symbiotic stars, 14 observed with polarimetry for the first time are presented. In combination with published data, it is found that about 50 percent of the symbiotics observed polarimetrically show evidence for intrinsic polarization. The results are discussed in the light of previous observations, and comments are made on the temporal variability and wavelength dependence of the polarization. Dust scattering is identified as the dominant mechanism producing polarization in symbiotic stars. While it cannot be excluded that some symbiotic systems are completely engulfed in their dust shells, the data indicate that the H-alpha emission line may originate from outside of the dust-scattering envelopes in some systems.
A near-infrared interferometric survey of debris-disc stars. V. PIONIER search for variability
NASA Astrophysics Data System (ADS)
Ertel, S.; Defrère, D.; Absil, O.; Le Bouquin, J.-B.; Augereau, J.-C.; Berger, J.-P.; Blind, N.; Bonsor, A.; Lagrange, A.-M.; Lebreton, J.; Marion, L.; Milli, J.; Olofsson, J.
2016-10-01
Context. Extended circumstellar emission has been detected within a few 100 milli-arcsec around ≳10% of nearby main sequence stars using near-infrared interferometry. Follow-up observations using other techniques, should they yield similar results or non-detections, can provide strong constraints on the origin of the emission. They can also reveal the variability of the phenomenon. Aims: We aim to demonstrate the persistence of the phenomenon over the timescale of a few years and to search for variability of our previously detected excesses. Methods: Using Very Large Telescope Interferometer (VLTI)/Precision Integrated Optics Near Infrared ExpeRiment (PIONIER) in H band we have carried out multi-epoch observations of the stars for which a near-infrared excess was previously detected using the same observation technique and instrument. The detection rates and distribution of the excesses from our original survey and the follow-up observations are compared statistically. A search for variability of the excesses in our time series is carried out based on the level of the broadband excesses. Results: In 12 of 16 follow-up observations, an excess is re-detected with a significance of > 2σ, and in 7 of 16 follow-up observations significant excess (> 3σ) is re-detected. We statistically demonstrate with very high confidence that the phenomenon persists for the majority of the systems. We also present the first detection of potential variability in two sources. Conclusions: We conclude that the phenomenon responsible for the excesses persists over the timescale of a few years for the majority of the systems. However, we also find that variability intrinsic to a target can cause it to have no significant excess at the time of a specific observation. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under program IDs 088.C-0266, 089.C-0365, 090.C-0526, 091.C-0576, 091.C-0597, 094.C-0232, and commissioning data.
Minimum-Light Spectral Classifications for M-Type Mira Variables
NASA Astrophysics Data System (ADS)
Wing, Robert F.
2015-08-01
Many bright, well-known Mira variables, including most of the 378 stars for which the AAVSO publishes predicted dates of maximum and minimum in its annual Bulletins, have never been spectroscopically observed close to the time of minimum light, and consequently their catalogued ranges in spectral type are often grossly and misleadingly under-represented. In an effort to improve this situation, for the past 12 years I have been using my 6-color system of narrow-band classification photometry to observe Miras predicted to be near minimum light at the times of my biannual observing runs with the CTIO 0.9-m telescope (operated by the SMARTS consortium). The 6-color system measures the 7100 A band of TiO, which serves to classify stars in the interval K4 to M8, and the 1.06 micron band of VO, which is effective for stars of type M8 and later. To date I have made 431 observations of approximately 220 different (and mostly southern) Miras. Examples are shown of the observed 6-color spectra, and the classifications derived from them.
Photometric and Polarimetric Activity of the Herbig Ae Star VX Cas
NASA Astrophysics Data System (ADS)
Shakhovskoi, D. N.; Rostopchina, A. N.; Grinin, V. P.; Minikulov, N. Kh.
2003-04-01
We present the results of our simultaneous photometric and polarimetric observations of the Herbig Ae/Be star VX Cas acquired in 1987 2001. The star belongs to the UX Ori subtype of young variable stars and exhibits a rather low level of photometric activity: only six Algol-like minima with amplitudes ΔV>1m were recorded in 15 years of observations. Two of these minima, in 1998 and 2001, were the deepest in the history of the star’s photometric studies, with V amplitudes of about 2m. In each case, the dimming was accompanied by an increase in the linear polarization in agreement with the law expected for variable circumstellar extinction. The highest V polarization was about 5%. Observations of VX Cas in the deep minima revealed a turnover of the color tracks, typical of stars of this type and due to an increased contribution from radiation scattered in the circumstellar disk. We separated the observed polarization of VX Cas into interstellar (P is) and intrinsic (P in) components. Their position angles differ by approximately 60°, with P is dominating in the bright state and P in dominating during the deep minima. The competition of these two polarization components leads to changes in both the degree and position angle of the polarization during the star’s brightness variations. Generally speaking, in terms of the behavior of the brightness, color indices, and linear polarization, VX Cas is similar to other UX Ori stars studied by us earlier. A number of episodes of photometric and polarimetric activity suggest that, in their motion along highly eccentric orbits, circumstellar gas and dust clouds can enter the close vicinity of the star (and be disrupted there).
Ubiquitous time variability of integrated stellar populations.
Conroy, Charlie; van Dokkum, Pieter G; Choi, Jieun
2015-11-26
Long-period variable stars arise in the final stages of the asymptotic giant branch phase of stellar evolution. They have periods of up to about 1,000 days and amplitudes that can exceed a factor of three in the I-band flux. These stars pulsate predominantly in their fundamental mode, which is a function of mass and radius, and so the pulsation periods are sensitive to the age of the underlying stellar population. The overall number of long-period variables in a population is directly related to their lifetimes, which is difficult to predict from first principles because of uncertainties associated with stellar mass-loss and convective mixing. The time variability of these stars has not previously been taken into account when modelling the spectral energy distributions of galaxies. Here we construct time-dependent stellar population models that include the effects of long-period variable stars, and report the ubiquitous detection of this expected 'pixel shimmer' in the massive metal-rich galaxy M87. The pixel light curves display a variety of behaviours. The observed variation of 0.1 to 1 per cent is very well matched to the predictions of our models. The data provide a strong constraint on the properties of variable stars in an old and metal-rich stellar population, and we infer that the lifetime of long-period variables in M87 is shorter by approximately 30 per cent compared to predictions from the latest stellar evolution models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Micela, G.; Sciortino, S.; Vaiana, G.S.
1990-01-01
Coronal X-ray emission of the Pleiades stars is investigated, and maximum likelihood, integral X-ray luminosity functions are computed for Pleiades members in selected color-index ranges. A detailed search is conducted for long-term variability in the X-ray emission of those stars observed more than once. An overall comparison of the survey results with those of previous surveys confirms the ubiquity of X-ray emission in the Pleiades cluster stars and its higher rate of emission with respect to older stars. It is found that the X-ray emission from dA and early dF stars cannot be proven to be dissimilar to that ofmore » Hyades and field stars of the same spectral type. The Pleiades cluster members show a real rise of the X-ray luminosity from dA stars to early dF stars. X-ray emission for the young, solarlike Pleiades stars is about two orders of magnitude more intense than for the nearby solarlike stars. 77 refs.« less
H-beta line variability in magnetic Ap stars. I
NASA Technical Reports Server (NTRS)
Madej, J.; Jahn, K.; Stepien, K.
1984-01-01
Preliminary results of photometric measurements of H-beta in several Ap stars are presented. Periodic variations are found certainly in Theta Aur and Alpha (2) CVn, and possibly in Phi Dra. For the other stars upper limits for variations of H-beta are determined. Observed amplitudes are transformed into variations of equivalent width assuming specific profile variations. The results show that variations of equivalent width of H-beta in the stars investigated are of the order of 10 percent or less.
Extreme AGN Captured in a Low State by XMM-Newton and NuSTAR
NASA Astrophysics Data System (ADS)
Frederick, Sara; Kara, Erin; Reynolds, Christopher S.
2018-01-01
The most variable active galactic nuclei (AGN), taken together, are a compelling wellspring of interesting accretion-related phenomena and can exhibit dramatic variability in the X-ray band down to timescales of a few minutes. We present the exemplifying case study of 1H 1934-063 (z = 0.0102), a narrow-line Seyfert I (NLS1) that is among the most variable AGN ever observed with XMM-Newton. We present spectroscopic and temporal analyses of a concurrent XMM-Newton and NuSTAR 120 ks observation, during which the source exhibited a steep (factor of 1.5) plummet and subsequent full recovery of flux that we explore in detail. Combined spectral and timing results point to a dramatic change in the continuum on timescales as short as a few ks. Similar to other highly variable Seyfert 1s, this AGN is X-ray bright and displays strong reflection spectral features. We find agreement with a change in the continuum, and we rule out absorption as the cause for this dramatic variability that is observed even at NuSTAR energies. We compare measurements from detailed time-resolved spectral fitting with Fourier-based timing results to constrain coronal geometry, dynamics, and emission/absorption processes dictating the nature of this variability. We also announce the discovery of a Fe-K time lag between the hard X-ray continuum emission (1-4 keV) and relativistically-blurred reprocessing by the inner accretion flow (0.3-1 keV).
Classification of Hot Stars by Disk Variability using Hα Line Emission Characteristics
NASA Astrophysics Data System (ADS)
Hoyt Hannah, Christian; Glennon Fagan, W.; Tycner, Christopher
2018-06-01
The variability associated with circumstellar disks around hot and massive stars has been observed on time scales ranging from less than a day to decades. Variations detected in line emission from circumstellar disks on long time scales are typically attributed to disk-growth and disk-loss events. However, in order to fully describe and model such phenomena, adequate spectroscopic observations over long time scales are needed. In this project, we conduct a comprehensive study that is based on spectra recorded over a 14-year period (2005 to 2018) of roughly 100 B-type stars. Using results from a representative sample of over 20 targets, we illustrate how the Hα emission line, one of the most prominent emission features from circumstellar disks, can be used to monitor the variability associated with these systems. Using high-resolution spectra, we utilize line emission characteristics such as equivalent width, peak strength(s), and line-width to setup a classification scheme that describes different types of variabilities. This in turn can be used to divide the systems in disk-growth, disk-loss, variable and stable categories. With additional numerical disk modeling, the recorded variations based on emission line characteristics can also be used to describe changes in disk temperature and density structure. The aim is to develop a tool to help further our understanding of the processes behind the production and eventual dissipation of the circumstellar disks found in hot stars. This work has been supported by NSF grant AST-1614983.
Models for various aspects of dwarf novae and nova-like stars
NASA Technical Reports Server (NTRS)
Ladous, Constanze
1993-01-01
The first attempts to explain the nature of dwarf novae were based on the assumption of single-star phenomena, in which emission lines were assumed to be caused by circumstellar gas shells. The outburst behavior was tentatively ascribed to the kind of (also not understood) mechanism leading to nova outbursts. The realization that some, and possibly all, dwarf novae and nova-like stars (and novae) are binaries eventually led to models which bore more and more similarities to the modern interpretation on the basis of the Roche model. Not all cataclysmic variables are known binaries. In fact, with respect to the entire number of known objects, the proven binaries are still the minority, but all the brightest variables are in fact known to binaries. Not a single system is known which exhibits the usual characteristics of a cataclysmic variable and at the same time can be declared with certainty to be a single star. Two systems are known, the dwarf nova EY Cyg and the recurrent nova V1017 Sgr, in which, in spite of intensive search, no radial velocity variations have been found; but they still exhibit composite spectra consisting of a bright continuum, an emission spectrum, and a cool absorption spectrum. If the Roche model is correct, it is to be expected that a small percentage of objects is viewed pole-on, so orbital motions do not make themselves felt as Doppler shifts of spectral lines. So even these two systems support the hypothesis that all cataclysmic variables (with the possible exception of symbiotic stars) are binaries. In cataclysmic variables, it seems that the brightness changes observed in dwarf novae and nova-like stars in the optical and the UV are due directly to changes in the accretion disks. The study and understanding of accretion disks in these systems can bear potentially valuable consequences for many other fields in astronomy. The observed spectra of dwarf novae and nova-like stars comprise a fairly large range: pure emission spectra, pure absorption spectra, a mixture of both, asymmetric line profiles, very different slopes of the continuous flux distribution -- and one single system may exhibit all of these features at different times. Agreement and disagreement between computed and observed spectra should show whether or not the Roche model is applicable and where it probably will have to be modified and improved. Except for their outburst behavior and its immediate consequences, novae, dwarf novae, and nova-like stars cannot be physically distinguished from each other.
Testing Intermittence of the Galactic Star Formation History along with the Infall Model
NASA Astrophysics Data System (ADS)
Takeuchi, Tsutomu T.; Hirashita, Hiroyuki
2000-09-01
We analyze the star formation history (SFH) of the Galactic disk by using an infall model. Based on the observed SFH of the Galactic disk, we first determine the timescale of the gas infall into the Galactic disk (tin) and that of the gas consumption to form stars (tsf). Since each of the two timescales does not prove to be determined independently from the SFH, we first fix tsf. Then, tin is determined so that we minimize χ2. Consequently, we choose three parameter sets: [tsf (Gyr),tin (Gyr)]=(6.0, 23), (11, 12), and (15, 9.0), where we set the Galactic age as 15 Gyr. All of the three cases predict almost identical star formation history. Next, we test the intermittence (or variability) of the star formation rate (SFR) along with the smooth SFH suggested from the infall model. The large value of the χ2 statistic supports the violent time variation of the SFH. If we interpret the observed SFH with smooth and variable components, the amplitude of the variable component is comparable to the smooth component. Thus, intermittent SFH of the Galactic disk is strongly suggested. We also examined the metallicity distribution of G dwarfs. We found that the true parameter set lies between [tsf (Gyr),tin (Gyr)]=(6, 23) and (11, 12), though we need a more sophisticated model including the process of metal enrichment within the Galactic halo.
28SiO v = 0 J = 1-0 emission from evolved stars
NASA Astrophysics Data System (ADS)
de Vicente, P.; Bujarrabal, V.; Díaz-Pulido, A.; Albo, C.; Alcolea, J.; Barcia, A.; Barbas, L.; Bolaño, R.; Colomer, F.; Diez, M. C.; Gallego, J. D.; Gómez-González, J.; López-Fernández, I.; López-Fernández, J. A.; López-Pérez, J. A.; Malo, I.; Moreno, A.; Patino, M.; Serna, J. M.; Tercero, F.; Vaquero, B.
2016-05-01
Aims: Observations of 28SiO v = 0J = 1-0 line emission (7-mm wavelength) from asymptotic giant branch (AGB) stars show in some cases peculiar profiles, composed of a central intense component plus a wider plateau. Very similar profiles have been observed in CO lines from some AGB stars and most post-AGB nebulae and, in these cases, they are clearly associated with the presence of conspicuous axial symmetry and bipolar dynamics. We aim to systematically study the profile shape of 28SiO v = 0J = 1-0 lines in evolved stars and to discuss the origin of the composite profile structure. Methods: We present observations of 28SiO v = 0J = 1-0 emission in 28 evolved stars, including O-rich, C-rich, and S-type Mira-type variables, OH/IR stars, semiregular long-period variables, red supergiants and one yellow hypergiant. Most objects were observed in several epochs, over a total period of time of one and a half years. The observations were performed with the 40 m radio telescope of the Instituto Geográfico Nacional (IGN) in Yebes, Spain. Results: We find that the composite core plus plateau profiles are systematically present in O-rich Miras, OH/IR stars, and red supergiants. They are also found in one S-type Mira (χ Cyg) and in two semiregular variables (X Her and RS Cnc) that are known to show axial symmetry. In the other objects, the profiles are simpler and similar to those observed in other molecular lines. The composite structure appears in the objects in which SiO emission is thought to come from the very inner circumstellar layers, prior to dust formation. The central spectral feature is found to be systematically composed of a number of narrow spikes, except for X Her and RS Cnc, in which it shows a smooth shape that is very similar to that observed in CO emission. These spikes show a significant (and mostly chaotic) time variation, while in all cases the smooth components remain constant within the uncertainties. The profile shape could come from the superposition of standard wide profiles and a group of weak maser spikes confined to the central spectral regions because of tangential amplification. Alternatively, we speculate that the very similar profiles detected in objects that are known to be conspicuously axisymmetric, such as X Her and RS Cnc, and in O-rich Mira-type stars, such as IK Tau and TX Cam, may be indicative of the systematic presence of a significant axial symmetry in the very inner circumstellar shells around AGB stars; such symmetry would be independent of the presence of weak maser effects in the central spikes.
Binarity and Variable Stars in the Open Cluster NGC 2126
NASA Astrophysics Data System (ADS)
Chehlaeh, Nareemas; Mkrtichian, David; Kim, Seung-Lee; Lampens, Patricia; Komonjinda, Siramas; Kusakin, Anatoly; Glazunova, Ljudmila
2018-04-01
We present the results of an analysis of photometric time-series observations for NGC 2126 acquired at the Thai National Observatory (TNO) in Thailand and the Mount Lemmon Optical Astronomy Observatory (LOAO) in USA during the years 2004, 2013 and 2015. The main purpose is to search for new variable stars and to study the light curves of binary systems as well as the oscillation spectra of pulsating stars. NGC 2126 is an intermediate-age open cluster which has a population of stars inside the δ Scuti instability strip. Several variable stars are reported including three eclipsing binary stars, one of which is an eclipsing binary star with a pulsating component (V551 Aur). The Wilson-Devinney technique was used to analyze its light curves and to determine a new set of the system’s parameters. A frequency analysis of the eclipse-subtracted light curve was also performed. Eclipsing binaries which are members of open clusters are capable of delivering strong constraints on the cluster’s properties which are in turn useful for a pulsational analysis of their pulsating components. Therefore, high-resolution, high-quality spectra will be needed to derive accurate component radial velocities of the faint eclipsing binaries which are located in the field of NGC 2126. The new Devasthal Optical Telescope, suitably equipped, could in principle do this.
Photometric and Spectroscopic Analysis of CP Stars Under Indo-Russian Collaboration
NASA Astrophysics Data System (ADS)
Joshi, S.; Semenko, E.; Moiseeva, A.; Joshi, G. C.; Joshi, Y. C.; Sachkov, M.
2015-04-01
The Indo-Russian collaboration is a joint venture between the astronomers of India (ARIES) and Russia (SAO and INASAN) to develop scientific and technical interactions by making use of observational facilities. Here we present the results obtained after the “Magnetic Conference” that was held in the Special Astrophysical Observatory, Russia in 2010. The analysis of time-series photometric CCD observations of HD 98851 shows a pulsation period of 1fh55, which is consistent with the period reported previously. We have also found a signature of short-term periodic variability in HD 207561. The analysis of high-resolution spectroscopic and spectropolarimetric observations of the sample stars revealed characteristics similar to Am stars, hence the excitation of the low-overtone pulsations are expected in these stars.
VizieR Online Data Catalog: JHK lightcurves of red giants in the SMC (Takayama+, 2015)
NASA Astrophysics Data System (ADS)
Takayama, M.; Wood, P. R.; Ita, Y.
2017-11-01
This is JHK light curves of 7 oxygen rich stars and 14 carbon stars which show the variability of prominent long secondary periods (LSPs). Those stars are cross-identified with OGLE LSP variables in the Small Magellanic Cloud (Soszynski et al. 2011, J/AcA/61/217). A long-term multiband near-IR photometric survey for variable stars in the Large and Small Magellanic Clouds has been carried out at the South African Astronomical Observatory at Sutherland (Ita et al., in preparation). The SIRIUS camera attached to the IRSF 1.4 m telescope was used for this survey and more than 10 yr of observations in the near-IR bands J(1.25 μm), H(1.63 μm) and KS(2.14 μm) band were obtained. In this work, we select the SMC stars from the SIRIUS data base. We obtained the V- and I-band time series of SMC red giants from the OGLE project (Soszynski et al. 2011, J/AcA/61/217). (2 data files).
VizieR Online Data Catalog: uvby photometry of 4 CP stars (Adelman, 1997)
NASA Astrophysics Data System (ADS)
Adelman, S. J.
1996-07-01
Differential Stroemgren uvby photometric observations from the Four College Automated Photoelectric Telescope refine the rotational periods and define the shapes of the light curves of four magnetic Chemically Peculiar stars. HD 32633 (P=6.43000d) exhibits an in-phase variability with asymmetrically shaped light curves. 25 Sex (P=4.37900d) has a complex variability with the v, b, and y light variability crudely in phase, but quite different from that of u. HR 7224 (P=1.123095d) shows in-phase variability with two nearly equal secondary minima. HD 200311 (P=26.0042d), which was previous thought to be a long period variable, is found to be a modest photometric variable. (5 data files).
A PSF-based approach to Kepler/K2 data - II. Exoplanet candidates in Praesepe (M 44)
NASA Astrophysics Data System (ADS)
Libralato, M.; Nardiello, D.; Bedin, L. R.; Borsato, L.; Granata, V.; Malavolta, L.; Piotto, G.; Ochner, P.; Cunial, A.; Nascimbeni, V.
2016-12-01
In this work, we keep pushing K2 data to a high photometric precision, close to that of the Kepler main mission, using a point-spread function (PSF)-based, neighbour-subtraction technique, which also overcome the dilution effects in crowded environments. We analyse the open cluster M 44 (NGC 2632), observed during the K2 Campaign 5, and extract light curves of stars imaged on module 14, where most of the cluster lies. We present two candidate exoplanets hosted by cluster members and five by field stars. As a by-product of our investigation, we find 1680 eclipsing binaries and variable stars, 1071 of which are new discoveries. Among them, we report the presence of a heartbeat binary star. Together with this work, we release to the community a catalogue with the variable stars and the candidate exoplanets found, as well as all our raw and detrended light curves.
Interacting supernovae and supernova impostors
NASA Astrophysics Data System (ADS)
Tartaglia, Leonardo
2016-02-01
Massive stars are thought to end their lives with spectacular explosions triggered by the gravitational collapse of their cores. Interacting supernovae are generally attributed to supernova explosions occurring in dense circumstellar media, generated through mass-loss which characterisie the late phases of the life of their progenitors. In the last two decades, several observational evidences revealed that mass-loss in massive stars may be related to violent eruptions involving their outer layers, such as the luminous blue variables. Giant eruptions of extragalactic luminous blue variables, similar to that observed in Eta Car in the 19th century, are usually labelled 'SN impostors', since they mimic the behaviour of genuine SNe, but are not the final act of the life of the progenitor stars. The mechanisms producing these outbursts are still not understood, although the increasing number of observed cases triggered the efforts of the astronomical community to find possible theoretical interpretations. More recently, a number of observational evidences suggested that also lower-mass stars can experience pre-supernova outbursts, hence becoming supernova impostors. Even more interestingly, there is growing evidence of a connection among massive stars, their outbursts and interacting supernovae. All of this inspired this research, which has been focused in particular on the characterisation of supernova impostors and the observational criteria that may allow us to safely discriminate them from interacting supernovae. Moreover, the discovery of peculiar transients, motivated us to explore the lowest range of stellar masses that may experience violent outbursts. Finally, the quest for the link among massive stars, their giant eruptions and interacting supernovae, led us to study the interacting supernova LSQ13zm, which possibly exploded a very short time after an LBV-like major outburst.
Investigating an SPI and Measuring Baseline FUV Variability in the GJ 436 Hot-Neptune System
NASA Astrophysics Data System (ADS)
Loyd, R. O.
2017-08-01
Closely-orbiting, massive planets can measurably affect the activity of their host star through tides, magnetic disturbances, or even mass transfer. Observations of these star planet interactions (SPIs) provide a window into stellar and planetary physics that may eventually lead to constraints on planetary magnetic fields. Recently, the MUSCLES Treasury Survey of 11 exoplanet host stars revealed correlations providing the first-ever evidence of SPIs in M dwarf systems. This evidence additionally suggests that N V 1238,1242 Angstrom emission best traces SPIs, a feature that merits further investigation. To this end, we propose an experiment using the M dwarf + hot Neptune system GJ 436 that will also benefit upcoming transit observations. GJ 436 is ideal for an SPI experiment because (1) escaped gas from its known rapidly evaporating hot Neptune could be funneled onto the star and (2) it displays a tentative SPI signal in existing, incomplete N V observations. The proposed experiment will complete these N V observations to constrain a model of modulation in N V flux resulting from a stellar hot spot induced by the planet. The results will provide evidence for or against hot spot SPIs producing the correlations observed in the MUSCLES Survey. Furthemore, the acquired data will establish a broader FUV baseline to constrain day-timescale variability and facular emission in FUV lines, needed for the interpretation of upcoming transit observations of GJ 436b. For this reason, we waive our proprietary rights to the data. Establishing GJ 436's baseline FUV variability and testing the hot spot hypothesis are only possible through the FUV capabilities of HST.
NASA Astrophysics Data System (ADS)
Ahumada, J. A.; Arellano Ferro, A.; Calderón, J. H.; Kains, N.
2015-08-01
We present CCD time-series observations of the central region of the globular cluster NGC 3201, collected from CASLEO in March 2013, with the aim of performing the Fourier decomposition of the light curves of the RR Lyrae variables. This procedure, applied to the RRab-type stars, gave a mean value [Fe/H], for the cluster metallicity, and 5.00 0.22 kpc, for the cluster distance. The values found from two RRc stars are consistent with those derived previously. Because of differential reddening across the cluster field, individual reddenings for the RRab stars were estimated from their curves, resulting in an average value . An investigation of the light curves of stars in the blue straggler region led to the discovery of three new SX Phoenicis variables. The period-luminosity relation of the SX Phoenicis was used for an independent determination of the distance to the cluster and of the individual reddenings of these variables.
Ultraviolet spectroscopy of the brightest supergiants in M31 and M33
NASA Technical Reports Server (NTRS)
Humphreys, R. M.; Blaha, C.; Dodorico, S.; Gull, T. R.; Benevenuti, P.
1983-01-01
Ultraviolet spectroscopy from the IUE, in combination with groundbased visual and infrared photometry, are to determine the energy distributions of the luminous blue variables, the Hubble-Sandage variables, in M31 and M33. The observed energy distributions, especially in the ultraviolet, show that these stars are suffering interstellar reddening. When corrected for interstellar extinction, the integrated energy distributions yield the total luminosities and black body temperatures of the stars. The resulting bolometric magnitudes and temperatures confirm that these peculiar stars are indeed very luminous, hot stars. They occupy the same regions of the sub B01 vs. log T sub e diagram as do eta Car, P Cyg and S Dor in our galaxy and the LMC. Many of the Hubble-Sandage variables have excess infrared radiation which is attributed to free-free emission from their extended atmospheres. Rough mass loss estimates from the infrared excess yield rates of 0.00001 M sub annual/yr. The ultraviolet spectra of the H-S variables are also compared with similar spectra of eta Car, P Cyg and S For.
NASA Astrophysics Data System (ADS)
Rodríguez Díaz, L. F.; Oostra, B.
2017-07-01
The Astronomical Observatory of the Universidad de los Andes in Bogotá, Colombia, did a spectral monitoring during 2014 and 2015 to AB Aurigae, the brightest Herbig Ae/be star in the northern hemisphere. The aim of this project is applying spectral techniques, in order to identify specific features that could help us not only to understand how this star is forming, but also to establish a pattern to explain general star formation processes. We have recorded 19 legible spectra with a resolving power of R = 11,0000, using a 40 cm Meade telescope with an eShel spectrograph, coupled by a 50-micron optical fiber. We looked for the prominent absorption lines, the Sodium doublet at 5890Å and 5896Å, respectively and Magnesium II at 4481Å; to measure radial velocities of the star, but, we did not find a constant value. Instead, it ranges from 15 km/s to 32 km/s. This variability could be explained by means of an oscillation or pulsation of the external layers of the star. Other variabilities are observed in some emission lines: Hα, Hβ, He I at 5876Å and Fe II at 5018Å. It seems this phenomenon could be typical in stars that are forming and have a circumstellar disk around themselves. This variability is associated with the nonhomogeneous surface of the star and the interaction that it has with its disk. Results of this interaction could be seen also in the stellar wind ejected by the star. More data are required in order to look for a possible period in the changes of radial velocity of the star, the same for the variability of He I and Fe II, and phenomena present in Hα. We plan to take new data in January of 2017.
Asteroseismology of OB stars with CoRoT
NASA Astrophysics Data System (ADS)
Degroote, P.; Aerts, C.; Samadi, R.; Miglio, A.; Briquet, M.; Auvergne, M.; Baglin, A.; Baudin, F.; Catala, C.; Michel, E.
2010-12-01
The CoRoT satellite is revolutionizing the photometric study of massive O-type and B-type stars. During its long runs, CoRoT observed the entire main sequence B star domain, from typical hot β Cep stars, via cooler hybrid p- and g-mode pulsators to the SPB stars near the edge of the instability strip. CoRoT lowers the sensitivity barrier from the typical mmag-precision reached from the ground, to the μmag-level reached from space. Within the wealth of detected and identified pulsation modes, relations have been found in the form of multiplets, combination of frequencies, and frequency- and period spacings. This wealth of observational evidence is finally providing strong constraints to test current models of the internal structure and pulsations of hot stars. Aside from the expected opacity driven modes with infinite lifetime, other unexpected types of variability are detected in massive stars, such as modes of stochastic nature. The simultaneous observation of all these light curve characteristics implies a challenge for both observational asteroseismology and stellar modelling. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain.
VizieR Online Data Catalog: OGLE RR Lyrae in LMC (Soszynski+, 2003)
NASA Astrophysics Data System (ADS)
Soszynski, I.; Udalski, A.; Szymanski, M.; Kubiak, M.; Pietrzynski, G.; Wozniak, P.; Zebrun, K.; Szewczyk, O.; Wyrzykowski, L.
2003-11-01
We present the catalog of RR Lyr stars discovered in a 4.5 square degrees area in the central parts of the Large Magellanic Cloud (LMC). Presented sample contains 7612 objects, including 5455 fundamental mode pulsators (RRab), 1655 first-overtone (RRc), 272 second-overtone (RRe) and 230 double-mode RR Lyr stars (RRd). Additionally we attach alist of several dozen other short-period pulsating variables. The catalog data include astrometry, periods, BVI photometry, amplitudes, and parameters of the Fourier decomposition of the I-band light curve of each object. We provide a list of six LMC star clusters which contain RR Lyr stars. The richest cluster, NGC 1835, hosts 84 RR Lyr variables. The period distribution of these stars suggests that NGC1835 shares features of Oosterhoff type I and type II groups. All presented data, including individual BVI observations and finding charts are available from the OGLE Internet archive at ftp://sirius.astrouw.edu.pl/ogle/ogle2/var_stars/lmc/rrlyr (6 data files).
On the period determination of ASAS eclipsing binaries
NASA Astrophysics Data System (ADS)
Mayangsari, L.; Priyatikanto, R.; Putra, M.
2014-03-01
Variable stars, or particularly eclipsing binaries, are very essential astronomical occurrence. Surveys are the backbone of astronomy, and many discoveries of variable stars are the results of surveys. All-Sky Automated Survey (ASAS) is one of the observing projects whose ultimate goal is photometric monitoring of variable stars. Since its first light in 1997, ASAS has collected 50,099 variable stars, with 11,076 eclipsing binaries among them. In the present work we focus on the period determination of the eclipsing binaries. Since the number of data points in each ASAS eclipsing binary light curve is sparse, period determination of any system is a not straightforward process. For 30 samples of such systems we compare the implementation of Lomb-Scargle algorithm which is an Fast Fourier Transform (FFT) basis and Phase Dispersion Minimization (PDM) method which is non-FFT basis to determine their period. It is demonstrated that PDM gives better performance at handling eclipsing detached (ED) systems whose variability are non-sinusoidal. More over, using semi-automatic recipes, we get better period solution and satisfactorily improve 53% of the selected object's light curves, but failed against another 7% of selected objects. In addition, we also highlight 4 interesting objects for further investigation.
Long-Term Spectral Variability of the Spotted Star IN Com
NASA Astrophysics Data System (ADS)
Alekseev, I. Yu.; Kozlova, O. V.; Gorda, S. Yu.; Avvakumova, E. A.; Kozhevnikova, A. V.
2017-06-01
We present long-term (2004-2016) spectral observations (R = 20000) of IN Com in the regions of Hα, Hβ and He I 5876 Å lines. The unique feature of the stellar spectrum is the presence of the extended two-component emission with limits up to ± 400 km s-1 in the Hα line. Emission parameters show the rotation modulation with the stellar rotation period and a significant variability on the long-term scale. Similar emission is also observed in Hβ and He I 5876 Å lines. Our results allow us to conclude that observational emission profiles are formed in optically thin hot gas. It is a result of presence of a circumstellar gas disk around IN Com. Its size is not exceed several stellar radii. The matter for the disk is supported by stellar wind. Detected variability of Hα emission parameters shows evident relation with UBVRI photometric activity of the star. This fact allowed us to link the long-term spectral variability with cycles of stellar activity of IN Com.
NASA Astrophysics Data System (ADS)
Pagano, Isabella
2010-02-01
Stars with significant subsurface convection zones develop magnetic loop structures that, arising from the surface upward to the external atmospheres, cause flux variability detectable throughout the whole electromagnetic spectrum. In fact, diagnostics of magnetic activity are in radio wavelengths, where gyrosincrotron radiation arises from the quiescent and flaring corona; in the optical region, where important signatures are the Balmer lines, the Ca ii IRT and H&K lines; in the UV and X ray domains, the latter mainly due to coronal thermal plasma. The zoo of different magnetic features observed for the Sun - spots, faculae, flares, CMEs - are characterized by different temporal evolution and energetics, both in quantity and quality. As a consequence, the time scale of variability, the amount of involved energy and the quality of the involved photons are used as fingerprints in interpreting the observed stellar variability in the framework of the solar-stellar analogy. Here I review main results from long-term multiwavelength observations of cool star atmospheres, with emphasis to similarities and differences with the solar case.
On the possibility of detecting weak magnetic fields in variable white dwarfs
NASA Technical Reports Server (NTRS)
Jones, Philip W.; Hansen, Carl J.; Pesnell, W. Dean; Kawaler, Steven D.
1989-01-01
It is suggested that 'weak' magnetic fields of strengths less than 10 to the 6th G may be detectable in some variable white dwarfs. Weak fields can cause subtle changes in the Fourier power spectra of these stars in the form of 'splitting' in frequency of otherwise degenerate signals. Present-day observational and analysis techniques are capable of detecting these changes. It is suggested suggested, by listing some well-studied candidate stars, that perhaps the magnetic signature of splitting has already been observed in at least one object and that the difficult task of intensive measurements of weak fields should now be undertaken of those candidates.
Image-Subtraction Photometry of Variable Stars in the Globular Clusters NGC 6388 and NGC 6441
NASA Technical Reports Server (NTRS)
Corwin, Michael T.; Sumerel, Andrew N.; Pritzl, Barton J.; Smith, Horace A.; Catelan, M.; Sweigart, Allen V.; Stetson, Peter B.
2006-01-01
We have applied Alard's image subtraction method (ISIS v2.1) to the observations of the globular clusters NGC 6388 and NGC 6441 previously analyzed using standard photometric techniques (DAOPHOT, ALLFRAME). In this reanalysis of observations obtained at CTIO, besides recovering the variables previously detected on the basis of our ground-based images, we have also been able to recover most of the RR Lyrae variables previously detected only in the analysis of Hubble Space Telescope WFPC2 observations of the inner region of NGC 6441. In addition, we report five possible new variables not found in the analysis of the EST observations of NGC 6441. This dramatically illustrates the capabilities of image subtraction techniques applied to ground-based data to recover variables in extremely crowded fields. We have also detected twelve new variables and six possible variables in NGC 6388 not found in our previous groundbased studies. Revised mean periods for RRab stars in NGC 6388 and NGC 6441 are 0.676 day and 0.756 day, respectively. These values are among the largest known for any galactic globular cluster. Additional probable type II Cepheids were identified in NGC 6388, confirming its status as a metal-rich globular cluster rich in Cepheids.
Visual photometry: accuracy and precision
NASA Astrophysics Data System (ADS)
Whiting, Alan
2018-01-01
Visual photometry, estimation by eye of the brightness of stars, remains an important source of data even in the age of widespread precision instruments. However, the eye-brain system differs from electronic detectors and its results may be expected to differ in several respects. I examine a selection of well-observed variables from the AAVSO database to determine several internal characteristics of this data set. Visual estimates scatter around the fitted curves with a standard deviation of 0.14 to 0.34 magnitudes, most clustered in the 0.21-0.25 range. The variation of the scatter does not seem to correlate with color, type of variable, or depth or speed of variation of the star’s brightness. The scatter of an individual observer’s observations changes from star to star, in step with the overall scatter. The shape of the deviations from the fitted curve is non-Gaussian, with positive excess kurtosis (more outlying observations). These results have implications for use of visual data, as well as other citizen science efforts.
Extended 60 μm Emission from Nearby Mira Variables
NASA Astrophysics Data System (ADS)
Bauer, W. H.; Stencel, R. E.
1993-01-01
Circumstellar dust envelopes around some optically visible late-type stars are so extensive that they are detectable as extended at an arc-minute scale by the IRAS survey observations (Stencel, Pesce and Bauer 1988, Astron. J 95, 141; Hawkins 1990, Astron. Ap. 229, L8). The width of the IRAS scan profiles at 10% of peak intensity is an indicator of source extension. Wyatt and Cahn (1983, Ap. J. 275, 225) presented a sample of 124 Mira variables in the solar neighborhood. Of this sample, 11 Miras which show silicate emission are bright enough at 60 microns for a significant determination of the width of a scan at 10% of peak flux. Individual scans and maps were examined in order to determine whether any observed extension was associated with the central star. Five stars showed significant extension apparently due to mass loss from the central star: R Leo, o Cet, U Ori, R Cas and R Hor. IRAS LRS spectra, point source fluxes and observed extensions of these sources are compared to the predictions of model dust shells which assume steady mass loss. This work was supported in part by NASA grant NAG 5-1213 to Wellesley College.
Oscillations of Accretion Disks in Cataclysmic Variable Stars
NASA Astrophysics Data System (ADS)
Osaki, Y.
2013-12-01
The disk instability model for the outbursts of dwarf novae is reviewed, with particular attention given to the superoutburst of SU UMa stars. Two intrinsic instabilities in accretion disks of dwarf novae are known; the thermal instability and the tidal instability. The thermal-tidal instability model (abbreviated the TTI model), which combines these two instabilities, was first proposed in 1989 by Osaki (1989) to explain the superoutburst phenomenon of SU UMa stars. Recent Kepler observations of one SU UMa star, V1504 Cyg, have dramatically demonstrated that the superoutburst phenomenon of the SU UMa stars is explained by the thermal-tidal instability model.
NASA Astrophysics Data System (ADS)
Alcock, C.; Allsman, R.; Alves, D. R.; Axelrod, T.; Becker, A.; Bennett, D.; Clement, C.; Cook, K. H.; Drake, A.; Freeman, K.; Geha, M.; Griest, K.; Kovács, G.; Kurtz, D. W.; Lehner, M.; Marshall, S.; Minniti, D.; Nelson, C.; Peterson, B.; Popowski, P.; Pratt, M.; Quinn, P.; Rodgers, A.; Rowe, J.; Stubbs, C.; Sutherland, W.; Tomaney, A.; Vandehei, T.; Welch, D. L.
2000-10-01
More than 1300 variables classified provisionally as first-overtone RR Lyrae pulsators in the MACHO variable-star database of the Large Magellanic Cloud (LMC) have been subjected to standard frequency analysis. Based on the remnant power in the prewhitened spectra, we found 70% of the total population to be monoperiodic. The remaining 30% (411 stars) are classified as one of nine types according to their frequency spectra. Several types of RR Lyrae pulsational behavior are clearly identified here for the first time. Together with the earlier discovered double-mode (fundamental and first-overtone) variables, this study increased the number of known double-mode stars in the LMC to 181. During the total 6.5 yr time span of the data, 10% of the stars showed strong period changes. The size, and in general also the patterns of the period changes, exclude a simple evolutionary explanation. We also discovered two additional types of multifrequency pulsators with low occurrence rates of 2% for each. In the first type, there remains one closely spaced component after prewhitening by the main pulsation frequency. In the second type, the number of remnant components is two; they are also closely spaced, and are symmetric in their frequency spacing relative to the central component. This latter type of variables are associated with their relatives among the fundamental pulsators, known as Blazhko variables. Their high frequency (~20%) among the fundamental-mode variables versus the low occurrence rate of their first-overtone counterparts makes it more difficult to explain the Blazhko phenomenon by any theory depending mainly on the role of aspect angle or magnetic field. None of the current theoretical models are able to explain the observed close frequency components without invoking nonradial pulsation components in these stars.
Understanding of variability properties in very low mass stars and brown dwarfs
NASA Astrophysics Data System (ADS)
Mondal, Soumen; Ghosh, Samrat; Khata, Dhrimadri; Joshi, Santosh; Das, Ramkrishna
2018-04-01
We report on photometric variability studies of a L3.5 brown dwarf 2MASS J00361617+1821104 (2M0036+18) in the field and of four young brown dwarfs in the star-forming region IC 348. From muti-epoch observations, we found significant periodic variability in 2M0036+18 with a period of 2.66 ± 0.55 hours on one occasion while it seemed to be non-variable on three other occasions. An evolving dust cloud might cause such a scenario. Among four young brown dwarfs of IC 348 in the spectral range M7.25 - M8, one brown dwarf 2MASS J03443921+3208138 shows significant variability. The K-band spectra (2.0-2.4 μm) of nine very low mass stars (M1 - M9 V) are used to characterize the water band index (H20-K2). We found that it is strongly correlated with the surface temperature of M dwarfs.
IUE observations of two late-type stars Bx Mon (M + pec) and TV Gem (M1 Iab)
NASA Technical Reports Server (NTRS)
Michalitsianos, A. G.; Hobbs, R. W.; Kafatos, M.
1981-01-01
The IUE observations of two late type stars BX Mon and TV Gem that reveal the emission properties in the ultraviolet of subluminous companions are discussed. Analysis of the continuum emission observed from BX Mon suggests the companion, is a middle A III star. High excitation emission lines observed between 1200 A and 2000 A that generally do not typify emission observed in either late M type variables or A type stars are also detected. It is suggested that these strong high excitation lines arise in a large volume of gas heated by nonradiation processes that could be the result of tidal interaction and mass exchange in the binary system. In contrast to stars such as BX Mon, the luminous M1 supergiant TV Gem shows unexpected intense UV continuum throughout the sensitivity range of IUE. The UV spectrum of TV Gem is characterized by intense continuum with broad absorption features detected in the short wavelength range. The analysis shows that the companion could be a B9 or A1 III-IV star. Alternate suggestions are presented for explaining the UV continuum in terms of an accretion disk in association with TV Gem.
NASA Astrophysics Data System (ADS)
Guinan, E. F.
2014-06-01
(Abstract only) The BRIght Target Explorer (BRITE) is a joint Austrian-Canadian-Polish Astronomy mission to carry out high precision photometry of bright (mv < 4 mag.) variable stars. BRITE consists of a "Constellation" of 20 × 20 × 20-cm nano-satellite cubes equipped with wide field (20 × 24 deg.) CCD cameras, control systems, solar panels, onboard computers, and so on. The first two (of up to six) satellites were successfully launched during February 2013. After post-launch commissioning, science operations commenced during October 2013. The primary goals are to carry out continuous multi-color (currently blue and red filters) high-precision millimag (mmag) photometry in particular locations in the sky. Typically these pointings will last for two to four months and secure simultaneous blue/red photometry of bright variable stars within the field. The first science pointing is centered on the Orion region. Since most bright stars are intrinsically luminous, hot O/B stars, giants, and supergiants will be the most common targets. However, some bright eclipsing binaries (such as Algol, b Lyr, e Aur) and a few chromospherically-active RS CVn stars (such as Capella) may be eventually be monitored. The BRITE-Constellation program of high precision, two color photometry of bright stars offers a great opportunity to study a wide range of stellar astrophysical problems. Bright stars offer convenient laboratories to study many current and important problems in stellar astrophysics. These include probing stellar interiors and pulsation in pulsating stars, tests of stellar evolution and structure for Cepheids and other luminous stars. To scientifically enhance the BRITE science returns, the BRITE investigators are very interested in securing contemporaneous ground-based spectroscopy and standardized photometry of target stars. The BRITE Ground Based Observations Team is coordinating ground-based observing efforts for BRITE targets. The team helps coordinate collaborations with amateur and professional astronomer. The ground-based coordinators are: Thomas Eversberg (thomas.eversberg@dlr.de) and, for spectroscopy, Contanze Zwintz (konstanze@ster.kuleuven.be). Detailed information about the BRITE Mission is provided at: www.brite-contellation.at.
NASA Astrophysics Data System (ADS)
Aerts, C.; Símon-Díaz, S.; Bloemen, S.; Debosscher, J.; Pápics, P. I.; Bryson, S.; Still, M.; Moravveji, E.; Williamson, M. H.; Grundahl, F.; Fredslund Andersen, M.; Antoci, V.; Pallé, P. L.; Christensen-Dalsgaard, J.; Rogers, T. M.
2017-06-01
Stellar evolution models are most uncertain for evolved massive stars. Asteroseismology based on high-precision uninterrupted space photometry has become a new way to test the outcome of stellar evolution theory and was recently applied to a multitude of stars, but not yet to massive evolved supergiants.Our aim is to detect, analyse and interpret the photospheric and wind variability of the O9.5 Iab star HD 188209 from Kepler space photometry and long-term high-resolution spectroscopy. We used Kepler scattered-light photometry obtained by the nominal mission during 1460 d to deduce the photometric variability of this O-type supergiant. In addition, we assembled and analysed high-resolution high signal-to-noise spectroscopy taken with four spectrographs during some 1800 d to interpret the temporal spectroscopic variability of the star. The variability of this blue supergiant derived from the scattered-light space photometry is in full in agreement with the one found in the ground-based spectroscopy. We find significant low-frequency variability that is consistently detected in all spectral lines of HD 188209. The photospheric variability propagates into the wind, where it has similar frequencies but slightly higher amplitudes. The morphology of the frequency spectra derived from the long-term photometry and spectroscopy points towards a spectrum of travelling waves with frequency values in the range expected for an evolved O-type star. Convectively-driven internal gravity waves excited in the stellar interior offer the most plausible explanation of the detected variability. Based on photometric observations made with the NASA Kepler satellite and on spectroscopic observations made with four telescopes: the Nordic Optical Telescope operated by NOTSA and the Mercator Telescope operated by the Flemish Community, both at the Observatorio del Roque de los Muchachos (La Palma, Spain) of the Instituto de Astrofísica de Canarias, the T13 2.0 m Automatic Spectroscopic Telescope (AST) operated by Tennessee State University at the Fairborn Observatory, and the Hertzsprung SONG telescope operated on the Spanish Observatorio del Teide on the island of Tenerife by the Aarhus and Copenhagen Universities and by the Instituto de Astrofísica de Canarias, Spain.
Bulge RR Lyrae stars in the VVV tile b201
NASA Astrophysics Data System (ADS)
Gran, F.; Minniti, D.; Saito, R. K.; Navarrete, C.; Dékány, I.; McDonald, I.; Contreras Ramos, R.; Catelan, M.
2015-03-01
Context. The VISTA Variables in the Vía Láctea (VVV) Survey is one of the six ESO public surveys currently ongoing at the VISTA telescope on Cerro Paranal, Chile. VVV uses near-IR (ZYJHKs) filters that at present provide photometry to a depth of Ks ~ 17.0 mag in up to 36 epochs spanning over four years, and aim at discovering more than 106 variable sources as well as trace the structure of the Galactic bulge and part of the southern disk. Aims: A variability search was performed to find RR Lyrae variable stars. The low stellar density of the VVV tile b201, which is centered at (ℓ,b) ~ (-9°, -9°), makes it suitable to search for variable stars. Previous studies have identified some RR Lyrae stars using optical bands that served to test our search procedure. The main goal is to measure the reddening, interstellar extinction, and distances of the RR Lyrae stars and to study their distribution on the Milky Way bulge. Methods: For each star in the tile with more than 25 epochs (~90% of the objects down to Ks ~ 17.0 mag), the standard deviation and χ2 test were calculated to identify variable candidates. Periods were determined using the analysis of variance. Objects with periods in the RR Lyrae range of 0.2 ≤ P ≤ 1.2 days were selected as candidate RR Lyrae. They were individually examined to exclude false positives. Results: A total of 1.5 sq deg were analyzed, and we found 39 RR Lyr stars, 27 of which belong to the ab-type and 12 to the c-type. Our analysis recovers all the previously identified RR Lyrae variables in the field and discovers 29 new RR Lyr stars. The reddening and extinction toward all the RRab stars in this tile were derived, and distance estimations were obtained through the period-luminosity relation. Despite the limited amount of RR Lyrae stars studied, our results are consistent with a spheroidal or central distribution around ~8.1 and ~8.5 kpc. for either the Cardelli or Nishiyama extinction law. Our analysis does not reveal a stream-like structure. Nevertheless, a larger area must be analyzed to definitively rule out streams. Based on observations taken within the ESO VISTA Public Survey VVV, Programme ID 179.B-2002.
Research of Precataclysmic Variables with Radius Excesses
NASA Astrophysics Data System (ADS)
Deminova, N. R.; Shimansky, V. V.; Borisov, N. V.; Gabdeev, M. M.; Shimanskaya, N. N.
2017-06-01
The results of spectroscopic observations of the pre-cataclysmic variable NSVS 14256825, which is a HW Vir binary system, were analyzed. The chemical composition is determined, the radial velocities and equivalent widths of a given star are measured. The fundamental parameters of the components were determined (R1 = 0.166 R⊙ , M2 = 0.100 M⊙ , R2 = 0.122 R⊙). It is shown that the secondary component has a mass close to the mass of brown dwarfs. A comparison of two close binary systems is made: HS 2333 + 3927 and NSVS 14256825. A radius-to-mass relationship for the secondary components of the studied pre-cataclysmic variables is constructed. It is concluded that an excess of radii relative to model predictions for MS stars is observed in virtually all systems.
Far-infrared data for symbiotic stars. I - The IRAS pointed observations
NASA Technical Reports Server (NTRS)
Kenyon, Scott J.; Fernandez-Castro, Telmo; Stencel, Robert E.
1986-01-01
In the present IRAS-pointed observations of eight symbiotic stars, five S-type ones have IR energy distributions that are similar to those of normal M giants, and free-free emission may furnish a fraction of the observed 12- and 25-micron flux in three of them. Three D-type symbiotics have IR energy distributions consistent with those of Mira variables only if the giants are heavily reddened. The binaries' hot components appear to lie outside the dust shell enshrouding the Mira companions.
NASA Astrophysics Data System (ADS)
Howell, Steve B.; Brinkworth, Carolyn; Hoard, D. W.; Wachter, Stefanie; Harrison, Thomas; Chun, Howard; Thomas, Beth; Stefaniak, Linda; Ciardi, David R.; Szkody, Paula; van Belle, Gerard
2006-07-01
We present the first observations of magnetic cataclysmic variables using the Spitzer Space Telescope. We used the Infrared Array Camera to obtain photometry of the Polars EF Eri, GG Leo, V347 Pav, and RX J0154.0-5947 at 3.6, 4.5, 5.8, and 8.0 μm, respectively. In all of our targets, we detect excess mid-infrared emission over that expected from the component stars alone. We explore the origin of this IR excess by examining bremsstrahlung, cyclotron emission, circumbinary dust, and L/T brown dwarf secondary stars. Bremsstrahlung and cyclotron emission appear unlikely to be significant contributors to the observed fluxes. At present, the most likely candidate for the excess emission is dust that is probably located in a circumbinary disk with an inner temperature near 800 K. However, a simple dust disk plus any reasonable low-mass or brown dwarf-like secondary star is unable to fully explain the observed flux densities in the 3-8 μm region.
NASA Astrophysics Data System (ADS)
Dong, Hui; Schödel, Rainer; Williams, Benjamin F.; Nogueras-Lara, Francisco; Gallego-Cano, Eulalia; Gallego-Calvente, Teresa; Wang, Q. Daniel; Rich, R. Michael; Morris, Mark R.; Do, Tuan; Ghez, Andrea
2017-11-01
Because of strong and spatially highly variable interstellar extinction and extreme source crowding, the faint (K ≥ 15) stellar population in the Milky Way's nuclear star cluster is still poorly studied. RR Lyrae stars provide us with a tool to estimate the mass of the oldest, relative dim stellar population. Recently, we analysed
Investigation of the new cataclysmic variable 1RXS J180834.7+101041
NASA Astrophysics Data System (ADS)
Yakin, D. G.; Suleimanov, V. F.; Borisov, N. V.; Shimanskii, V. V.; Bikmaev, I. F.
2011-12-01
We present the results of our photometric and spectroscopic studies of the new eclipsing cataclysmic variable star 1RXS J180834.7+101041. Its spectrum exhibits double-peaked hydrogen and helium emission lines. The Doppler maps constructed from hydrogen lines show a nonuniform distribution of emission in the disk similar to that observed in IP Peg. This suggests that the object can be a cataclysmic variable with tidal density waves in the disk. We have determined the component masses ( M WD = 0.8 ± 0.22 M ⊙ and M RD = 0.14 ± 0.02 M ⊙) and the binary inclination ( i = 78° ± 1.5°) based on well-known relations between parameters for cataclysmic variable stars. We have modeled the binary light curves and showed that the model of a disk with two spots is capable of explaining the main observed features of the light curves.
The effect of tides on self-driven stellar pulsations
NASA Astrophysics Data System (ADS)
Balona, L. A.
2018-06-01
In addition to rotation, a tidal force in a binary introduces another axis of symmetry joining the two centres of mass. If the stars are in circular orbit and synchronous rotation, a pulsation with spherical harmonic degree l is split into l + 1 frequencies. In the observer's frame of reference, these in turn are further split into equidistant frequencies spaced by multiples of the orbital frequency. In the periodogram of a pulsating star, tidal action can be seen as low-amplitude equidistant splitting of each oscillation mode which are not harmonics of the orbital frequency. This effect is illustrated using Kepler observations of the heartbeat variable, KIC 4142768, which is also a δ Scuti star. Even though the theory is only applicable to circular orbits, the expected equidistant splitting is clearly seen in all four of the highest amplitude modes. This results in amplitude variability of each pulsation mode with a period equal to the orbital period.
A Search for Debris Disks Around Variable Pulsars
NASA Astrophysics Data System (ADS)
Shannon, Ryan; Cordes, J.; Lazio, J.; Kramer, M.; Lyne, A.
2009-01-01
After a supernova explosion, a modest amount of material will fall back and form a disk surrounding the resultant neutron star. This material can aggregate into rocky debris and the disk can be stable for the entire 10 million year lifetime of a canonical (non-recycled) radio pulsar. Previously, we developed a model that unifies the different classes of radio variability observed in many older pulsars. In this model, rocky material migrates inwards towards the neutron star and is ablated inside the pulsar magnetosphere. This material alters the electrodynamics in the magnetosphere which can cause the observed quiescent and bursting states observed in nulling pulsars, intermittent pulsars, and rotating radio transients. With this model in mind, we observed three nulling pulsars and one intermittent pulsar that are good candidates to host debris disks detectable by the Spitzer IRAC. Here we report how our IRAC observations constrain disk geometry, with particular emphasis on configurations that can provide the in-fall rate to cause the observed radio variability. We place these observations in the context of other searches for debris disks around neutron stars, which had studied either very young or very old (recycled) pulsars. By observing older canonical pulsars, all major classes of radio pulsars have been observed, and we can assess the presence of debris disks as a function of pulsar type. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech.
The central star candidate of the planetary nebula Sh2-71: photometric and spectroscopic variability
NASA Astrophysics Data System (ADS)
Močnik, T.; Lloyd, M.; Pollacco, D.; Street, R. A.
2015-07-01
We present the analysis of several newly obtained and archived photometric and spectroscopic data sets of the intriguing and yet poorly understood 13.5 mag central star candidate of the bipolar planetary nebula Sh2-71. Photometric observations confirmed the previously determined quasi-sinusoidal light curve with a period of 68 d and also indicated periodic sharp brightness dips, possibly eclipses, with a period of 17.2 d. In addition, the comparison between U and V light curves revealed that the 68 d brightness variations are accompanied by a variable reddening effect of ΔE(U - V) = 0.38. Spectroscopic data sets demonstrated pronounced variations in spectral profiles of Balmer, helium and singly ionized metal lines and indicated that these variations occur on a time-scale of a few days. The most accurate verification to date revealed that spectral variability is not correlated with the 68 d brightness variations. The mean radial velocity of the observed star was measured to be ˜26 km s-1 with an amplitude of ±40 km s-1. The spectral type was determined to be B8V through spectral comparison with synthetic and standard spectra. The newly proposed model for the central star candidate is a Be binary with a misaligned precessing disc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richardson, N. D.; Morrison, N. D.; Kryukova, E. E.
2011-01-15
Deneb is often considered the prototypical A-type supergiant and is one of the visually most luminous stars in the Galaxy. A-type supergiants are potential extragalactic distance indicators, but the variability of these stars needs to be better characterized before this technique can be considered reliable. We analyzed 339 high-resolution echelle spectra of Deneb obtained over the five-year span of 1997 through 2001 as well as 370 Stroemgren photometric measurements obtained during the same time frame. Our spectroscopic analysis included dynamical spectra of the H{alpha} profile, H{alpha} equivalent widths, and radial velocities measured from Si II {lambda}{lambda} 6347, 6371. Time-series analysismore » reveals no obvious cyclic behavior that proceeds through multiple observing seasons, although we found a suspected 40 day period in two, non-consecutive observing seasons. Some correlations are found between photometric and radial velocity data sets and suggest radial pulsations at two epochs. No correlation is found between the variability of the H{alpha} profiles and that of the radial velocities or the photometry. Lucy found evidence that Deneb was a long-period single-lined spectroscopic binary star, but our data set shows no evidence for radial velocity variations caused by a binary companion.« less
Stellar granulation as the source of high-frequency flicker in Kepler light curves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cranmer, Steven R.; Saar, Steven H.; Bastien, Fabienne A.
2014-02-01
A large fraction of cool, low-mass stars exhibit brightness fluctuations that arise from a combination of convective granulation, acoustic oscillations, magnetic activity, and stellar rotation. Much of the short-timescale variability takes the form of stochastic noise, whose presence may limit the progress of extrasolar planet detection and characterization. In order to lay the groundwork for extracting useful information from these quasi-random signals, we focus on the origin of the granulation-driven component of the variability. We apply existing theoretical scaling relations to predict the star-integrated variability amplitudes for 508 stars with photometric light curves measured by the Kepler mission. We alsomore » derive an empirical correction factor that aims to account for the suppression of convection in F-dwarf stars with magnetic activity and shallow convection zones. So that we can make predictions of specific observational quantities, we performed Monte Carlo simulations of granulation light curves using a Lorentzian power spectrum. These simulations allowed us to reproduce the so-called flicker floor (i.e., a lower bound in the relationship between the full light-curve range and power in short-timescale fluctuations) that was found in the Kepler data. The Monte Carlo model also enabled us to convert the modeled fluctuation variance into a flicker amplitude directly comparable with observations. When the magnetic suppression factor described above is applied, the model reproduces the observed correlation between stellar surface gravity and flicker amplitude. Observationally validated models like these provide new and complementary evidence for a possible impact of magnetic activity on the properties of near-surface convection.« less
NASA Astrophysics Data System (ADS)
de Jong, J. A.; Henrichs, H. F.; Kaper, L.; Nichols, J. S.; Bjorkman, K.; Bohlender, D. A.; Cao, H.; Gordon, K.; Hill, G.; Jiang, Y.; Kolka, I.; Morrison, N.; Neff, J.; O'Neal, D.; Scheers, B.; Telting, J. H.
2001-03-01
We present the results of an extensive observing campaign on the O7.5 III star xi Persei. The UV observations were obtained with the International Ultraviolet Explorer. xi Per was monitored continuously in October 1994 during 10 days at ultraviolet and visual wavelengths. The ground-based optical observations include magnetic field measurements, Hα and He I lambda 6678 spectra, and were partially covered by photometry and polarimetry. We describe a method to automatically remove the variable contamination of telluric lines in the groundbased spectra. The aim of this campaign was to search for the origin of the cyclical wind variability in this star. We determined a very accurate period of 2.086(2) d in the resonance lines of Si Iv and in the subordinate N Iv and Hα line profiles. The epochs of maximum absorption in the UV resonance lines due to discrete absorption components (DACs) coincide in phase with the maxima in blue-shifted Hα absorption. This implies that the periodic variability originates close to the stellar surface. The phase-velocity relation shows a maximum at -1400 km s-1. The general trend of these observations can be well explained by the corotating interaction region (CIR) model. In this model the wind is perturbed by one or more fixed patches on the stellar surface, which are most probably due to small magnetic field structures. Our magnetic field measurements gave, however, only a null-detection with a 1sigma errorbar of 70 G in the longitudinal component. Some observations are more difficult to fit into this picture. The 2-day period is not detected in the photospheric/transition region line He I lambda 6678. The dynamic spectrum of this line shows a pattern indicating the presence of non-radial pulsation, consistent with the previously reported period of 3.5 h. The edge variability around -2300 km s-1 in the saturated wind lines of C Iv and N V is nearly identical to the edge variability in the unsaturated Si Iv line, supporting the view that this type of variability is also due to the moving DACs. A detailed analysis using Fourier reconstructions reveals that each DAC actually consists of 2 different components: a ``fast'' and a ``slow'' one which merge at higher velocities. Based on observations obtained using the International Ultraviolet Explorer, collected at NASA Goddard Space Flight Center and Villafranca Satellite Tracking Station of the European Space Agency.
Predicting the nature of supernova progenitors.
Groh, Jose H
2017-10-28
Stars more massive than about 8 solar masses end their lives as a supernova (SN), an event of fundamental importance Universe-wide. The physical properties of massive stars before the SN event are very uncertain, both from theoretical and observational perspectives. In this article, I briefly review recent efforts to predict the nature of stars before death, in particular, by performing coupled stellar evolution and atmosphere modelling of single stars in the pre-SN stage. These models are able to predict the high-resolution spectrum and broadband photometry, which can then be directly compared with the observations of core-collapse SN progenitors. The predictions for the spectral types of massive stars before death can be surprising. Depending on the initial mass and rotation, single star models indicate that massive stars die as red supergiants, yellow hypergiants, luminous blue variables and Wolf-Rayet stars of the WN and WO subtypes. I finish by assessing the detectability of SN Ibc progenitors.This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'. © 2017 The Author(s).
NASA Technical Reports Server (NTRS)
Gezari, S.; Martin, D. C.; Forster, K.; Neill, J. D.; Huber, M.; Heckman, T.; Bianchi, L.; Morrissey, P.; Neff, S. G.; Seibert, M.;
2013-01-01
We present the selection and classification of over a thousand ultraviolet (UV) variable sources discovered in approximately 40 deg(exp 2) of GALEX Time Domain Survey (TDS) NUV images observed with a cadence of 2 days and a baseline of observations of approximately 3 years. The GALEX TDS fields were designed to be in spatial and temporal coordination with the Pan-STARRS1 Medium Deep Survey, which provides deep optical imaging and simultaneous optical transient detections via image differencing. We characterize the GALEX photometric errors empirically as a function of mean magnitude, and select sources that vary at the 5 sigma level in at least one epoch. We measure the statistical properties of the UV variability, including the structure function on timescales of days and years. We report classifications for the GALEX TDS sample using a combination of optical host colors and morphology, UV light curve characteristics, and matches to archival X-ray, and spectroscopy catalogs. We classify 62% of the sources as active galaxies (358 quasars and 305 active galactic nuclei), and 10% as variable stars (including 37 RR Lyrae, 53 M dwarf flare stars, and 2 cataclysmic variables). We detect a large-amplitude tail in the UV variability distribution for M-dwarf flare stars and RR Lyrae, reaching up to absolute value(?m) = 4.6 mag and 2.9 mag, respectively. The mean amplitude of the structure function for quasars on year timescales is five times larger than observed at optical wavelengths. The remaining unclassified sources include UV-bright extragalactic transients, two of which have been spectroscopically confirmed to be a young core-collapse supernova and a flare from the tidal disruption of a star by dormant supermassive black hole. We calculate a surface density for variable sources in the UV with NUV less than 23 mag and absolute value(?m) greater than 0.2 mag of approximately 8.0, 7.7, and 1.8 deg(exp -2) for quasars, active galactic nuclei, and RR Lyrae stars, respectively. We also calculate a surface density rate in the UV for transient sources, using the effective survey time at the cadence appropriate to each class, of approximately 15 and 52 deg(exp -2 yr-1 for M dwarfs and extragalactic transients, respectively.
Request to monitor the CV SDSS161033 (1605-00) for HST observations AND TU Cas comparison stars
NASA Astrophysics Data System (ADS)
Price, Aaron
2005-06-01
AAVSO Alert Notice 319 contains two topics. First: Dr. Paula Szkody (University of Washington) has requested AAVSO assistance in monitoring the suspected UGWZ dwarf nova SDSS J161033 [V386 Ser] for upcoming HST observations. This campaign is similar to the one recently run on SDSS J2205 and SDSS J013132 (AAVSO Alert Notice 318). HST mission planners need to be absolutely sure that SDSS J161033 is not in outburst immediately prior to the scheduled observation; AAVSO observations will be crucial to carrying out the HST program. Nightly V observations are requested June 24-July 1 UT. We are making an unusual request in that we are asking for the FITS images themselves to be uploaded to the AAVSO's FTP site. Second: AAVSO Alert Notice 318 did not specify which stars on the TU Cas PEP chart should be used as comparison and check stars. Also, there was an error on the chart regarding the location of the "83" comparison star [the chart that is available online reflects a corrected location]. Please use the "89" and the "74" stars as your comparison and check stars, respectively. Finder charts with sequence may be created using the AAVSO Variable Star Plotter (https://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details.
NASA Astrophysics Data System (ADS)
Roquette, J.; Bouvier, J.; Alencar, S. H. P.; Vaz, L. P. R.; Guarcello, M. G.
2017-07-01
Context. In recent decades, the picture of early pre-main sequence stellar rotational evolution has been constrained by studies targeting different regions at a variety of ages with respect to young star formation. Observational studies suggest a dependence of rotation with mass, and for some mass ranges a connection between rotation and the presence of a circumstellar disk. The role of environmental conditions on the rotational regulation, however, has still not been fully explored. Aims: We investigate the rotational properties of candidate members of the young massive association Cygnus OB2. By evaluating their rotational properties, we address questions regarding the effect of environment properties on PMS rotational evolution. Methods: We studied JHK-band variability in 5083 candidate members (24% of them are disk-bearing stars). We selected variable stars with the Stetson variability index and performed the period search with the Lomb-Scargle periodogram for periods between 0.83-45 days. Period detections were verified using false alarm probability levels, Saunders statistics, the string and rope length method, and visual verification of folded light curves. Results: We identified 1224 periodic variable stars (24% of the candidate member sample, 8% of the disk-bearing sample, and 28% of the non-disk-bearing sample). Monte Carlo simulations were performed in order to evaluate completeness and contamination of the periodic sample, out of which 894 measured periods were considered reliable. Our study was considered reasonably complete for periods between 2 and 30 days. Conclusions: The general scenario for the rotational evolution of young stars seen in other regions is confirmed by Cygnus OB2 period distributions with disc-bearing stars rotating on average more slowly than non-disk-bearing stars. A mass-rotation dependence was also verified, but as in NGC 6530, very low mass stars (M ≤ 0.4 M⊙) are rotating on average slower than higher mass stars (0.4M⊙
VizieR Online Data Catalog: BVI photometry of LMC bar variables (Di Fabrizio+, 2005)
NASA Astrophysics Data System (ADS)
di Fabrizio, L.; Clementini, G.; Maio, M.; Bragaglia, A.; Carretta, E.; Gratton, R.; Montegriffo, P.; Zoccali, M.
2005-01-01
We present the Johnson-Cousins B,V and I time series data obtained for 162 variable stars (135 RR Lyrae, 4 candidate Anomalous Cepheids, 11 Classical Cepheids, 11 eclipsing binaries and 1 delta Scuti star) in two 13x13 square arcmin areas close to the bar of the Large Magellanic Cloud. The photometric observations presented in this paper were carried out at the 1.54m Danish telescope located in La Silla, Chile, on the nights 4-7 January 1999, UT, and 23-24 January 2001, UT, respectively. In the paper we give coordinates, finding charts, periods, epochs, amplitudes, and mean quantities (intensity- and magnitude-averaged luminosities) of the variables with full coverage of the light variations, along with a discussion of the pulsation properties of the RR Lyrae stars in the sample. (8 data files).
First-Ever Census of Variable Mira-Type Stars in Galaxy Outside the Local Group
NASA Astrophysics Data System (ADS)
2003-05-01
First-Ever Census of Variable Mira-Type Stars in Galaxy Outsidethe Local Group Summary An international team led by ESO astronomer Marina Rejkuba [1] has discovered more than 1000 luminous red variable stars in the nearby elliptical galaxy Centaurus A (NGC 5128) . Brightness changes and periods of these stars were measured accurately and reveal that they are mostly cool long-period variable stars of the so-called "Mira-type" . The observed variability is caused by stellar pulsation. This is the first time a detailed census of variable stars has been accomplished for a galaxy outside the Local Group of Galaxies (of which the Milky Way galaxy in which we live is a member). It also opens an entirely new window towards the detailed study of stellar content and evolution of giant elliptical galaxies . These massive objects are presumed to play a major role in the gravitational assembly of galaxy clusters in the Universe (especially during the early phases). This unprecedented research project is based on near-infrared observations obtained over more than three years with the ISAAC multi-mode instrument at the 8.2-m VLT ANTU telescope at the ESO Paranal Observatory . PR Photo 14a/03 : Colour image of the peculiar galaxy Centaurus A . PR Photo 14b/03 : Location of the fields in Centaurus A, now studied. PR Photo 14c/03 : "Field 1" in Centaurus A (visual light; FORS1). PR Photo 14d/03 : "Field 2" in Centaurus A (visual light; FORS1). PR Photo 14e/03 : "Field 1" in Centaurus A (near-infrared; ISAAC). PR Photo 14f/03 : "Field 2" in Centaurus A (near-infrared; ISAAC). PR Photo 14g/03 : Light variation of six variable stars in Centaurus A PR Photo 14h/03 : Light variation of stars in Centaurus A (Animated GIF) PR Photo 14i/03 : Light curves of four variable stars in Centaurus A. Mira-type variable stars Among the stars that are visible in the sky to the unaided eye, roughly one out of three hundred (0.3%) displays brightness variations and is referred to by astronomers as a "variable star". The percentage is much higher among large, cool stars ("red giants") - in fact, almost all luminous stars of that type are variable. Such stars are known as Mira-variables ; the name comes from the most prominent member of this class, Omicron Ceti in the constellation Cetus (The Whale), also known as "Stella Mira" (The Wonderful Star). Its brightness changes with a period of 332 days and it is about 1500 times brighter at maximum (visible magnitude 2 and one of the fifty brightest stars in the sky) than at minimum (magnitude 10 and only visible in small telescopes) [2]. Stars like Omicron Ceti are nearing the end of their life. They are very large and have sizes from a few hundred to about a thousand times that of the Sun. The brightness variation is due to pulsations during which the star's temperature and size change dramatically. In the following evolutionary phase, Mira-variables will shed their outer layers into surrounding space and become visible as planetary nebulae with a hot and compact star (a "white dwarf") at the middle of a nebula of gas and dust (cf. the "Dumbbell Nebula" - ESO PR Photo 38a-b/98 ). Several thousand Mira-type stars are currently known in the Milky Way galaxy and a few hundred have been found in other nearby galaxies, including the Magellanic Clouds. The peculiar galaxy Centaurus A ESO PR Photo 14a/03 ESO PR Photo 14a/03 [Preview - JPEG: 400 x 451 pix - 53k [Normal - JPEG: 800 x 903 pix - 528k] [Hi-Res - JPEG: 3612 x 4075 pix - 8.4M] ESO PR Photo 14b/03 ESO PR Photo 14b/03 [Preview - JPEG: 570 x 400 pix - 52k [Normal - JPEG: 1140 x 800 pix - 392k] ESO PR Photo 14c/03 ESO PR Photo 14c/03 [Preview - JPEG: 400 x 451 pix - 61k [Normal - JPEG: 800 x 903 pix - 768k] ESO PR Photo 14d/03 ESO PR Photo 14d/03 [Preview - JPEG: 400 x 451 pix - 56k [Normal - JPEG: 800 x 903 pix - 760k] Captions : PR Photo 14a/03 is a colour composite photo of the peculiar galaxy Centaurus A (NGC 5128) , obtained with the Wide-Field Imager (WFI) camera at the ESO/MPG 2.2-m telescope on La Silla. It is based on a total of nine 3-min exposures made on March 25, 1999, through different broad-band optical filters (B(lue) - total exposure time 9 min - central wavelength 456 nm - here rendered as blue; V(isual) - 540 nm - 9 min - green; I(nfrared) - 784 nm - 9 min - red); it was prepared from files in the ESO Science Data Archive by ESO-astronomer Benoît Vandame . The elliptical shape and the central dust band, the imprint of a galaxy collision, are well visible. PR Photo 14b/03 identifies the two regions of Centaurus A (the rectangles in the upper left and lower right inserts) in which a search for variable stars was made during the present research project: "Field 1" is located in an area north-east of the center in which many young stars are present. This is also the direction in which an outflow ("jet") is seen on deep optical and radio images. "Field 2" is positioned in the galaxy's halo, south of the centre. High-resolution, very deep colour photos of these two fields and their immediate surroundings are shown in PR Photos 14c-d/03 . They were produced by means of CCD-frames obtained in July 1999 through U- and V-band optical filters with the VLT FORS1 multi-mode instrument at the 8.2-m VLT ANTU telescope on Paranal. Note the great variety of object types and colours, including many background galaxies which are seen through these less dense regions of Centaurus A . The total exposure time was 30 min in each filter and the seeing was excellent, 0.5 arcsec. The original pixel size is 0.196 arcsec and the fields measure 6.7 x 6.7 arcmin 2 (2048 x 2048 pix 2 ). North is up and East is left on all photos. Centaurus A (NGC 5128) is the nearest giant galaxy, at a distance of about 13 million light-years. It is located outside the Local Group of Galaxies to which our own galaxy, the Milky Way, and its satellite galaxies, the Magellanic Clouds, belong. Centaurus A is seen in the direction of the southern constellation Centaurus. It is of elliptical shape and is currently merging with a companion galaxy, making it one of the most spectacular objects in the sky, cf. PR Photo 14a/03 . It possesses a very heavy black hole at its centre (see ESO PR 04/01 ) and is a source of strong radio and X-ray emission. During the present research programme, two regions in Centaurus A were searched for stars of variable brightness; they are located in the periphery of this peculiar galaxy, cf. PR Photos 14b-d/03 . An outer field ("Field 1") coincides with a stellar shell with many blue and luminous stars produced by the on-going galaxy merger; it lies at a distance of 57,000 light-years from the centre. The inner field ("Field 2") is more crowded and is situated at a projected distance of about 30,000 light-years from the centre.. Three years of VLT observations ESO PR Photo 14e/03 ESO PR Photo 14e/03 [Preview - JPEG: 400 x 447 pix - 120k [Normal - JPEG: 800 x 894 pix - 992k] ESO PR Photo 14f/03 ESO PR Photo 14f/03 [Preview - JPEG: 400 x 450 pix - 96k [Normal - JPEG: 800 x 899 pix - 912k] Caption : PR Photos 14e-f/03 are colour composites of two small fields ("Field 1" and "Field 2") in the peculiar galaxy Centaurus A (NGC 5128) , based on exposures through three near-infrared filters (the J-, H- and K-bands at wavelengths 1.2, 1.6 and 2.2 µm, respectively) with the ISAAC multi-mode instrument at the 8.2-m VLT ANTU telescope at the ESO Paranal observatory. The corresponding areas are outlined within the two inserts in PR Photo 14b/03 and may be compared with the visual images from FORS1 ( PR Photos 14c-d/03 ). These ISAAC photos are the deepest near-infrared images ever obtained in this galaxy and show thousands of its stars of different colours. In the present colour-coding, the redder an image, the cooler is the star. The original pixel size is 0.15 arcsec and both fields measure 2.5 x 2.5 arcmin 2. North is up and East is left. Under normal circumstances, any team of professional astronomers will have access to the largest telescopes in the world for only a very limited number of consecutive nights each year. However, extensive searches for variable stars like the present require repeated observations lasting minutes-to-hours over periods of months-to-years. It is thus not feasible to perform such observations in the classical way in which the astronomers travel to the telescope each time. Fortunately, the operational system of the VLT at the ESO Paranal Observatory (Chile) is also geared to encompass this kind of long-term programme. Between April 1999 and July 2002, the 8.2-m VLT ANTU telescope on Cerro Paranal in Chile) was operated in service mode on many occasions to obtain K-band images of the two fields in Centaurus A by means of the near-infrared ISAAC multi-mode instrument. Each field was observed over 20 times in the course of this three-year period ; some of the images were obtained during exceptional seeing conditions of 0.30 arcsec. One set of complementary optical images was obtained with the FORS1 multi-mode instrument (also on VLT ANTU) in July 1999. Each image from the ISAAC instrument covers a sky field measuring 2.5 x 2.5 arcmin 2. The combined images, encompassing a total exposure of 20 hours are indeed the deepest infrared images ever made of the halo of any galaxy as distant as Centaurus A , about 13 million light-years. Discovering one thousand Mira variables ESO PR Photo 14g/03 ESO PR Photo 14g/03 [Preview - JPEG: 400 x 480 pix - 61k [Normal - JPEG: 800 x 961 pix - 808k] ESO PR Photo 14h/03 ESO PR Photo 14h/03 [Animated GIF: 263 x 267 pix - 56k ESO PR Photo 14i/03 ESO PR Photo 14i/03 [Preview - JPEG: 480 x 400 pix - 33k [Normal - JPEG: 959 x 800 pix - 152k] Captions : PR Photo 14g/03 shows a zoomed-in area within "Field 2" in Centaurus A , from the ISAAC colour image shown in PR Photo 14e/03 . Nearly all red stars in this area are of the variable Mira-type. The brightness variation of some stars (labelled A-D) is demonstrated in the animated-GIF image PR Photo 14h/03 . The corresponding light curves (brightness over the pulsation period) are shown in PR Photo 14i/03 . Here the abscissa indicates the pulsation phase (one full period corresponds to the interval from 0 to 1) and the ordinate unit is near-infrared K s -magnitude. One magnitude corresponds to a difference in brightness of a factor 2.5. Once the lengthy observations were completed, two further steps were needed to identify the variable stars in Centaurus A . First, each ISAAC frame was individually processed to identify the thousands and thousands of faint point-like images (stars) visible in these fields. Next, all images were compared using a special software package ("DAOPHOT") to measure the brightness of all these stars in the different frames, i.e., as a function of time. While most stars in these fields as expected were found to have constant brightness, more than 1000 stars displayed variations in brightness with time; this is by far the largest number of variable stars ever discovered in a galaxy outside the Local Group of Galaxies. The detailed analysis of this enormous dataset took more than a year. Most of the variable stars were found to be of the Mira-type and their light curves (brightness over the pulsation period) were measured, cf. PR Photo 14i/03 . For each of them, values of the characterising parameters, the period (days) and brightness amplitude (magnitudes) were determined. A catalogue of the newly discovered variable stars in Centaurus A has now been made available to the astronomical community via the European research journal Astronomy & Astrophysics. Marina Rejkuba is pleased and thankful: "We are really very fortunate to have carried out this ambitious project so successfully. It all depended critically on different factors: the repeated granting of crucial observing time by the ESO Observing Programmes Committee over different observing periods in the face of rigorous international competition, the stability and reliability of the telescope and the ISAAC instrument over a period of more than three years and, not least, the excellent quality of the service mode observations, so efficiently performed by the staff at the Paranal Observatory." What have we learned about Centaurus A? The present study of variable stars in this giant elliptical galaxy is the first-ever of its kind. Although the evaluation of the very large observational data material is still not finished, it has already led to a number of very useful scientific results. Confirmation of the presence of an intermediate-age population Based on earlier research (optical and near-IR colour-magnitude diagrams of the stars in the fields), the present team of astronomers had previously detected the presence of intermediate-age and young stellar populations in the halo of this galaxy. The youngest stars appear to be aligned with the powerful jet produced by the massive black hole at the centre. Some of the very luminous red variable stars now discovered confirm the presence of a population of intermediate-age stars in the halo of this galaxy. It also contributes to our understanding of how giant elliptical galaxies form. New measurement of the distance to Centaurus A The pulsation of Mira-type variable stars obeys a period-luminosity relation. The longer its period, the more luminous is a Mira-type star. This fact makes it possible to use Mira-type stars as "standard candles" (objects of known intrinsic luminosity) for distance determinations. They have in fact often been used in this way to measure accurate distances to more nearby objects, e.g., to individual clusters of stars and to the center in our Milky Way galaxy, and also to galaxies in the Local Group, in particular the Magellanic Clouds. This method works particularly well with infrared measurements and the astronomers were now able to measure the distance to Centaurus A in this new way. They found 13.7 ± 1.9 million light-years , in general agreement with and thus confirming other methods. Study of stellar population gradients in the halo of a giant elliptical galaxy The two fields here studied contain different populations of stars. A clear dependence on the location (a "gradient") within the galaxy is observed, which can be due to differences in chemical composition or age, or to a combination of both. Understanding the cause of this gradient will provide additional clues to how Centaurus A - and indeed all giant elliptical galaxies - was formed and has since evolved. Comparison with other well-known nearby galaxies Past searches have discovered Mira-type variable stars thoughout the Milky Way, our home galaxy, and in other nearby galaxies in the Local Group. However, there are no giant elliptical galaxies like Centaurus A in the Local Group and this is the first time it has been possible to identify this kind of stars in that type of galaxy. The present investigation now opens a new window towards studies of the stellar constituents of such galaxies .
A survey for variable young stars with small telescopes: First results from HOYS-CAPS
NASA Astrophysics Data System (ADS)
Froebrich, D.; Campbell-White, J.; Scholz, A.; Eislöffel, J.; Zegmott, T.; Billington, S. J.; Donohoe, J.; Makin, S. V.; Hibbert, R.; Newport, R. J.; Pickard, R.; Quinn, N.; Rodda, T.; Piehler, G.; Shelley, M.; Parkinson, S.; Wiersema, K.; Walton, I.
2018-05-01
Variability in Young Stellar Objects (YSOs) is one of their primary characteristics. Long-term, multi-filter, high-cadence monitoring of large YSO samples is the key to understand the partly unusual light-curves that many of these objects show. Here we introduce and present the first results of the HOYS-CAPScitizen science project which aims to perform such monitoring for nearby (d < 1 kpc) and young (age < 10 Myr) clusters and star forming regions, visible from the northern hemisphere, with small telescopes. We have identified and characterised 466 variable (413 confirmed young) stars in 8 young, nearby clusters. All sources vary by at least 0.2 mag in V, have been observed at least 15 times in V, R and I in the same night over a period of about 2 yrs and have a Stetson index of larger than 1. This is one of the largest samples of variable YSOs observed over such a time-span and cadence in multiple filters. About two thirds of our sample are classical T-Tauri stars, while the rest are objects with depleted or transition disks. Objects characterised as bursters show by far the highest variability. Dippers and objects whose variability is dominated by occultations from normal interstellar dust or dust with larger grains (or opaque material) have smaller amplitudes. We have established a hierarchical clustering algorithm based on the light-curve properties which allows the identification of the YSOs with the most unusual behaviour, and to group sources with similar properties. We discuss in detail the light-curves of the unusual objects V2492 Cyg, V350 Cep and 2MASS J21383981+5708470.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mondal, S.; Lin, C. C.; Chen, W. P.
2010-05-15
The Taiwanese-American Occultation Survey (TAOS) project has collected more than a billion photometric measurements since 2005 January. These sky survey data-covering timescales from a fraction of a second to a few hundred days-are a useful source to study stellar variability. A total of 167 star fields, mostly along the ecliptic plane, have been selected for photometric monitoring with the TAOS telescopes. This paper presents our initial analysis of a search for periodic variable stars from the time-series TAOS data on one particular TAOS field, No. 151 (R.A. = 17{sup h}30{sup m}6.{sup s}7, decl. = 27{sup 0}17'30'', J2000), which had beenmore » observed over 47 epochs in 2005. A total of 81 candidate variables are identified in the 3 deg{sup 2} field, with magnitudes in the range 8 < R < 16. On the basis of the periodicity and shape of the light curves, 29 variables, 15 of which were previously unknown, are classified as RR Lyrae, Cepheid, {delta} Scuti, SX Phonencis, semi-regular, and eclipsing binaries.« less
The frequency of stellar X-ray flares from a large-scale XMM-Newton sample
NASA Astrophysics Data System (ADS)
Pye, John P.; Rosen, Simon
2015-08-01
We present a uniform, large-scale survey of X-ray flare emission, with emphasis on the corrections needed to arrive at estimates of flare occurrence rates. The XMM-Newton Serendipitous Source Catalogue has been used as the basis for a survey of X-ray flares from late-type (i.e. spectral type F-M) stars in the Hipparcos Tycho catalogue. The XMM catalogue and its associated data products provide an excellent basis for a comprehensive and sensitive survey of stellar flares - both from targeted active stars and from those observed serendipitously in the half-degree diameter field-of-view of each observation. Our sample contains ~130 flares with well-observed profiles; they range in duration from ~103 to ~104s, have peak X-ray fluxes from ~10-13 to ~10-11 erg cm-2 s-1, peak X-ray luminosities from ~1029 to ~1032 erg s-1 and X-ray energy output from ~1032 to ~1035 erg. Most of the serendipitously-observed stars have little previously reported information. We present flare frequency distributions from both target and serendipitous observations. The latter provide an unbiased (with respect to stellar activity) study of flare energetics. The serendipitous sample demonstrates the need for care when calculating flaring rates, especially when normalising the number of flares to a total exposure time, where it is important to consider both the stars seen to flare and those measured as non-variable, since in our survey, the latter outnumber the former by more than a factor ten. The serendipitous variable and non-variable stars appear very similar in terms of the distributions of general properties such as quiescent X-ray luminosity; from the available data, it is unclear whether the distinction by flaring is due to an additional, intrinsic property such as intra-system interactions in a close binary system, or is simply the result of limited observations of a random flaring process, with no real difference between the two samples. We discuss future observations and analyses aimed at resolving this issue.
The Outer Halo of the Milky Way as Probed by RR Lyr Variables from the Palomar Transient Facility
NASA Astrophysics Data System (ADS)
Cohen, Judith G.; Sesar, Branimir; Bahnolzer, Sophianna; He, Kevin; Kulkarni, Shrinivas R.; Prince, Thomas A.; Bellm, Eric; Laher, Russ R.
2017-11-01
RR Lyrae stars are ideal massless tracers that can be used to study the total mass and dark matter content of the outer halo of the Milky Way (MW). This is because they are easy to find in the light-curve databases of large stellar surveys and their distances can be determined with only knowledge of the light curve. We present here a sample of 112 RR Lyr stars beyond 50 kpc in the outer halo of the MW, excluding the Sgr streams, for which we have obtained moderate-resolution spectra with Deimos on the Keck II Telescope. Four of these have distances exceeding 100 kpc. These were selected from a much larger set of 447 candidate RR Lyr stars that were data-mined using machine-learning techniques applied to the light curves of variable stars in the Palomar Transient Facility database. The observed radial velocities taken at the phase of the variable corresponding to the time of observation were converted to systemic radial velocities in the Galactic standard of rest. From our sample of 112 RR Lyr stars we determine the radial velocity dispersion in the outer halo of the MW to be ˜90 km s-1 at 50 kpc, falling to about 65 km s-1 near 100 kpc once a small number of major outliers are removed. With reasonable estimates of the completeness of our sample of 447 candidates and assuming a spherical halo, we find that the stellar density in the outer halo declines as {r}-4. Based in part on observations obtained at the W. M. Keck Observatory, which is operated jointly by the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration.
The Subaru/XMM-Newton Deep Survey (SXDS). V. Optically Faint Variable Object Survey
NASA Astrophysics Data System (ADS)
Morokuma, Tomoki; Doi, Mamoru; Yasuda, Naoki; Akiyama, Masayuki; Sekiguchi, Kazuhiro; Furusawa, Hisanori; Ueda, Yoshihiro; Totani, Tomonori; Oda, Takeshi; Nagao, Tohru; Kashikawa, Nobunari; Murayama, Takashi; Ouchi, Masami; Watson, Mike G.; Richmond, Michael W.; Lidman, Christopher; Perlmutter, Saul; Spadafora, Anthony L.; Aldering, Greg; Wang, Lifan; Hook, Isobel M.; Knop, Rob A.
2008-03-01
We present our survey for optically faint variable objects using multiepoch (8-10 epochs over 2-4 years) i'-band imaging data obtained with Subaru Suprime-Cam over 0.918 deg2 in the Subaru/XMM-Newton Deep Field (SXDF). We found 1040 optically variable objects by image subtraction for all the combinations of images at different epochs. This is the first statistical sample of variable objects at depths achieved with 8-10 m class telescopes or the Hubble Space Telescope. The detection limit for variable components is i'vari ~ 25.5 mag. These variable objects were classified into variable stars, supernovae (SNe), and active galactic nuclei (AGNs), based on the optical morphologies, magnitudes, colors, and optical-mid-infrared colors of the host objects, spatial offsets of variable components from the host objects, and light curves. Detection completeness was examined by simulating light curves for periodic and irregular variability. We detected optical variability for 36% +/- 2% (51% +/- 3% for a bright sample with i' < 24.4 mag) of X-ray sources in the field. Number densities of variable objects as functions of time intervals Δ t and variable component magnitudes i'vari are obtained. Number densities of variable stars, SNe, and AGNs are 120, 489, and 579 objects deg-2, respectively. Bimodal distributions of variable stars in the color-magnitude diagrams indicate that the variable star sample consists of bright (V ~ 22 mag) blue variable stars of the halo population and faint (V ~ 23.5 mag) red variable stars of the disk population. There are a few candidates of RR Lyrae providing a possible number density of ~10-2 kpc-3 at a distance of >150 kpc from the Galactic center. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. Based on observations (program GN-2002B-Q-30) obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (US), the Particle Physics and Astronomy Research Council (UK), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil), and CONICET (Argentina).
Combined ultraviolet studies of astronomical source
NASA Technical Reports Server (NTRS)
Dupress, A. K.; Baliunas, S. L.; Blair, W. P.; Hartmann, L. W.; Huchra, J. P.; Raymond, J. C.; Smith, G. H.; Soderblom, D. R.
1985-01-01
As part of its Ultraviolet Studies of Astronomical Sources the Smithsonian Astrophysical Observatory for the period 1 Feb. 1985 to 31 July 1985 observed the following: the Cygnus Loop; oxygen-rich supernova remnants in 1E0102-72; the Large Magellanic Cloud supernova remnants; P Cygni profiles in dwarf novae; soft X-ray photoionization of interstellar gas; spectral variations in AM Her stars; the mass of Feige 24; atmospheric inhomogeneities in Lambda Andromedae and FF Aquarii; photometric and spectroscopic observation of Capella; Alpha Orionis; metal deficient giant stars; M 67 giants; high-velocity winds from giant stars; accretion disk parameters in cataclysmic variables; chromospheric emission of late-type dwarfs in visual binaries; chromospheres and transient regions of stars in the Ursa Major group; and low-metallicity blue galaxies.
Variable Stars in the M31 Dwarf Spheroidal Companion Cassiopeia
NASA Astrophysics Data System (ADS)
Pritzl, Barton J.; Armandroff, T. E.; Jacoby, G. H.; Da Costa, G. S.
2007-12-01
Dwarf spheroidal galaxies show very diverse star formation histories. For the Galactic dwarf spheroidal galaxies, a correlation exists between Galactocentric distance and the prominence of intermediate-age ( 2 - 10 Gyr) populations. To test whether this correlation exists for the M31 dwarf spheroidal galaxies, we observed the Cassiopeia (And VII) dwarf galaxy, which is one of the most distant M31 dwarf spheroidal galaxies. We will present the results of a variable star search using HST/ACS data, along with a preliminary color-magnitude diagram. From the RR Lyrae stars we can obtain an independent distance and metallicity estimate for the dwarf galaxy. These results will be compared to those found for the other M31 dwarf spheroidal galaxies.This research is supported in part by NASA through grant number GO-11081.11 from the Space Telescope Science Institute.
Instabilities in Interacting Binary Stars
NASA Astrophysics Data System (ADS)
Andronov, I. L.; Andrych, K. D.; Antoniuk, K. A.; Baklanov, A. V.; Beringer, P.; Breus, V. V.; Burwitz, V.; Chinarova, L. L.; Chochol, D.; Cook, L. M.; Cook, M.; Dubovský, P.; Godlowski, W.; Hegedüs, T.; Hoňková, K.; Hric, L.; Jeon, Y.-B.; Juryšek, J.; Kim, C.-H.; Kim, Y.; Kim, Y.-H.; Kolesnikov, S. V.; Kudashkina, L. S.; Kusakin, A. V.; Marsakova, V. I.; Mason, P. A.; Mašek, M.; Mishevskiy, N.; Nelson, R. H.; Oksanen, A.; Parimucha, S.; Park, J.-W.; Petrík, K.; Quiñones, C.; Reinsch, K.; Robertson, J. W.; Sergey, I. M.; Szpanko, M.; Tkachenko, M. G.; Tkachuk, L. G.; Traulsen, I.; Tremko, J.; Tsehmeystrenko, V. S.; Yoon, J.-N.; Zola, S.; Shakhovskoy, N. M.
2017-07-01
The types of instability in the interacting binary stars are briefly reviewed. The project “Inter-Longitude Astronomy” is a series of smaller projects on concrete stars or groups of stars. It has no special funds, and is supported from resources and grants of participating organizations, when informal working groups are created. This “ILA” project is in some kind similar and complementary to other projects like WET, CBA, UkrVO, VSOLJ, BRNO, MEDUZA, AstroStatistics, where many of us collaborate. Totally we studied 1900+ variable stars of different types, including newly discovered variables. The characteristic timescale is from seconds to decades and (extrapolating) even more. The monitoring of the first star of our sample AM Her was initiated by Prof. V.P. Tsesevich (1907-1983). Since more than 358 ADS papers were published. In this short review, we present some highlights of our photometric and photo-polarimetric monitoring and mathematical modeling of interacting binary stars of different types: classical (AM Her, QQ Vul, V808 Aur = CSS 081231:071126+440405, FL Cet), asynchronous (BY Cam, V1432 Aql), intermediate (V405 Aql, BG CMi, MU Cam, V1343 Her, FO Aqr, AO Psc, RXJ 2123, 2133, 0636, 0704) polars and magnetic dwarf novae (DO Dra) with 25 timescales corresponding to different physical mechanisms and their combinations (part “Polar”); negative and positive superhumpers in nova-like (TT Ari, MV Lyr, V603 Aql, V795 Her) and many dwarf novae stars (“Superhumper”); eclipsing “non-magnetic” cataclysmic variables(BH Lyn, DW UMa, EM Cyg; PX And); symbiotic systems (“Symbiosis”); super-soft sources (SSS, QR And); spotted (and not spotted) eclipsing variables with (and without) evidence for a current mass transfer (“Eclipser”) with a special emphasis on systems with a direct impact of the stream into the gainer star's atmosphere, which we propose to call “Impactor” (short from “Extreme Direct Impactor”), or V361 Lyr-type stars. Other parts of the ILA project are “Stellar Bell” (interesting pulsating variables of different types and periods - M, SR, RV Tau, RR Lyr, Delta Sct with changes of characteristics) and “Novice”(=“New Variable”) discoveries and classification based on special own observations and data mining with a subsequent monitoring for searching and studying possible multiple components of variability. Special mathematical methods have been developed to create a set of complementary software for statistically optimal modeling of variable stars of different types.
VizieR Online Data Catalog: AAVSO International Variable Star Index VSX (Watson+, 2006-2014)
NASA Astrophysics Data System (ADS)
Watson, C.; Henden, A. A.; Price, A.
2017-05-01
This file contains Galactic stars known or suspected to be variable. It lists all stars that have an entry in the AAVSO International Variable Star Index (VSX; http://www.aavso.org/vsx). The database consisted initially of the General Catalogue of Variable Stars (GCVS) and the New Catalogue of Suspected Variables (NSV) and was then supplemented with a large number of variable star catalogues, as well as individual variable star discoveries or variables found in the literature. Effort has also been invested to update the entries with the latest information regarding position, type and period and to remove duplicates. The VSX database is being continually updated and maintained. For historical reasons some objects outside of the Galaxy have been included. (3 data files).
VizieR Online Data Catalog: AAVSO International Variable Star Index VSX (Watson+, 2006-2014)
NASA Astrophysics Data System (ADS)
Watson, C.; Henden, A. A.; Price, A.
2018-05-01
This file contains Galactic stars known or suspected to be variable. It lists all stars that have an entry in the AAVSO International Variable Star Index (VSX; http://www.aavso.org/vsx). The database consisted initially of the General Catalogue of Variable Stars (GCVS) and the New Catalogue of Suspected Variables (NSV) and was then supplemented with a large number of variable star catalogues, as well as individual variable star discoveries or variables found in the literature. Effort has also been invested to update the entries with the latest information regarding position, type and period and to remove duplicates. The VSX database is being continually updated and maintained. For historical reasons some objects outside of the Galaxy have been included. (3 data files).
Identification of stars in a J1744.0 star catalogue Yixiangkaocheng
NASA Astrophysics Data System (ADS)
Ahn, S.-H.
2012-05-01
The stars in the Chinese star catalogue, Yixiangkaocheng, which were edited by the Jesuit astronomer Kögler in AD 1744 and published in AD 1756, are identified with their counterparts in the Hipparcos catalogue. The equinox of the catalogue is confirmed to be J1744.0. By considering the precession of equinox, proper motions and nutation, the star closest to the location of each star in Yixiangkaocheng, having a proper magnitude, is selected as the corresponding identified star. I identified 2848 stars and 13 nebulosities out of 3083 objects in Yixiangkaocheng, and so the identification rate reached 92.80 per cent. I find that the magnitude classification system in Yixiangkaocheng agrees with the modern magnitude system. The catalogue includes dim stars, whose visual magnitudes are larger than 7, but most of these stars have Flamsteed designations. I find that the stars whose declination is lower than -30° have relatively larger offsets and different systematic behaviour from other stars. This indicates that there might be two different sources of stars in Yixiangkaocheng. In particular, I find that μ1 Sco and γ1 Sgr approximately mark the boundary between two different source catalogues. The observer's location, as estimated from these facts, agrees with the latitude of Greenwich where Flamsteed made his observations. The positional offsets between the Yixiangkaocheng stars and the Hipparcos stars are 0.6 arcmin, which implies that the source catalogue of stars with δ > -30° must have come from telescopic observations. Nebulosities in Yixiangkaocheng are identified with a few double stars, o Cet (the variable star, Mira), the Andromeda galaxy, ω Cen and NGC6231. These entities are associated with listings in Halley's Catalogue of the Southern Stars of AD 1679 as well as Flamsteed's catalogue of AD 1690.
NASA Astrophysics Data System (ADS)
David-Uraz, A.; Owocki, S. P.; Wade, G. A.; Sundqvist, J. O.; Kee, N. D.
2017-09-01
OB stars exhibit various types of spectral variability historically associated with wind structures, including the apparently ubiquitous discrete absorption components (DACs). These features have been proposed to be caused either by magnetic fields or non-radial pulsations. In this second paper of this series, we revisit the canonical phenomenological hydrodynamical modelling used to explain the formation of DACs by taking into account modern observations and more realistic theoretical predictions. Using constraints on putative bright spots located on the surface of the O giant ξ Persei derived from high precision space-based broad-band optical photometry obtained with the Microvariability and Oscillations of Stars (MOST) space telescope, we generate 2D hydrodynamical simulations of corotating interaction regions in its wind. We then compute synthetic ultraviolet (UV) resonance line profiles using Sobolev Exact Integration and compare them with historical timeseries obtained by the International Ultraviolet Explorer (IUE) to evaluate if the observed behaviour of ξ Persei's DACs is reproduced. Testing three different models of spot size and strength, we find that the classical pattern of variability can be successfully reproduced for two of them: the model with the smallest spots yields absorption features that are incompatible with observations. Furthermore, we test the effect of the radial dependence of ionization levels on line driving, but cannot conclusively assess the importance of this factor. In conclusion, this study self-consistently links optical photometry and UV spectroscopy, paving the way to a better understanding of cyclical wind variability in massive stars in the context of the bright spot paradigm.
The Resolved Stellar Populations Early Release Science Program
NASA Astrophysics Data System (ADS)
Gilbert, Karoline; Weisz, Daniel; Resolved Stellar Populations ERS Program Team
2018-06-01
The Resolved Stellar Populations Early Release Science Program (PI D. Weisz) will observe Local Group targets covering a range of stellar density and star formation histories, including a globular cluster, and ultra-faint dwarf galaxy, and a star-forming dwarf galaxy. Using observations of these diverse targets we will explore a broad science program: we will measure star formation histories, the sub-solar stellar initial mass function, and proper motions, perform studies of evolved stars, and map extinction in the target fields. Our observations will be of high archival value for other science such as calibrating stellar evolution models, studying variable stars, and searching for metal-poor stars. We will determine optimal observational setups and develop data reduction techniques that will be common to JWST studies of resolved stellar populations. We will also design, test, and release point spread function (PSF) fitting software specific to NIRCam and NIRISS, required for the crowded stellar regime. Prior to the Cycle 2 Call for Proposals, we will release PSF fitting software, matched HST and JWST catalogs, and clear documentation and step-by-step tutorials (such as Jupyter notebooks) for reducing crowded stellar field data and producing resolved stellar photometry catalogs, as well as for specific resolved stellar photometry science applications.
Modelling Solar and Stellar Brightness Variabilities
NASA Astrophysics Data System (ADS)
Yeo, K. L.; Shapiro, A. I.; Krivova, N. A.; Solanki, S. K.
2016-04-01
Total and spectral solar irradiance, TSI and SSI, have been measured from space since 1978. This is accompanied by the development of models aimed at replicating the observed variability by relating it to solar surface magnetism. Despite significant progress, there remains persisting controversy over the secular change and the wavelength-dependence of the variation with impact on our understanding of the Sun's influence on the Earth's climate. We highlight the recent progress in TSI and SSI modelling with SATIRE. Brightness variations have also been observed for Sun-like stars. Their analysis can profit from knowledge of the solar case and provide additional constraints for solar modelling. We discuss the recent effort to extend SATIRE to Sun-like stars.
Highlights of the LINEAR survey
NASA Astrophysics Data System (ADS)
Palaversa, L.
2014-07-01
Lincoln Near-Earth Asteroid Research asteroid survey (LINEAR) observed proximately 10,000 deg2 of the northern sky in period roughly from 1998 to 2013. Long baseline of observations combined with good cadence and depth (14.5 < rSDSS < 17.5) provides excellent basis for investigation of variable and transient objects in this relatively faint and underexplored part of the sky. Details covering the repurposing of this survey for use in time domain astronomy, creation of a highly reliable catalogue of approximately 7,200 periodically variable stars (RR Lyrae, eclipsing binaries, SX Phe stars and LPVs) as well as search for optical signatures of exotic transient events (such as tidal disruption event candidates), are presented.
Non-radial pulsations in Be stars. Preparation of the COROT space mission.
NASA Astrophysics Data System (ADS)
Gutierrez-Soto, J.
2006-12-01
The space mission COROT scheduled to be launched in December 2006, will provide ultra high precision, relative stellar photometry for very long continuous observing runs. Up to ten stars will be observed in the seismology fields with a photometric accuracy of 1 ppm, and several thousands in the exoplanet fields with an accuracy of a few 10-4 and colour information. The observations of Be stars with COROT will provide photometric time series with unprecedented quality. Their analysis will allow us to qualitatively improve our knowledge and understanding of the pulsational characteristics of Be stars. In consequence, we have started a research project aimed at observing Be stars both in the seismology and exoplanet fields of COROT. In this thesis we present the first step of this project, which is the preparation and study of the sample of Be stars that will be observed by COROT. We have performed photometric analysis of all Be stars located in the seismology fields. Special emphasis has been given to two Be stars (NW Ser and V1446 Aql) in which we have detected multiperiodic variability and which we have modelled in terms of stellar pulsations. We have also performed an in-depth spectroscopic study of NW Ser and modelled the non-radial pulsations taking into account the rotational effects. A technique to search for faint Be stars based on CCD photometry has also been developed. We present here a list of faint Be stars located in the exoplanet fields of COROT detected with this technique and which we propose as targets for COROT. In addition, we have proven that our period-analysis techniques are suitable to detect multiperiodicity in large temporal baseline data. In particular, we have detected non-radial pulsations in some Be stars in the low-metallicity galaxy SMC.
NASA Astrophysics Data System (ADS)
Pye, J. P.; Rosen, S.; Fyfe, D.; Schröder, A. C.
2015-09-01
Context. The X-ray emission from flares on cool (i.e. spectral-type F-M) stars is indicative of very energetic, transient phenomena, associated with energy release via magnetic reconnection. Aims: We present a uniform, large-scale survey of X-ray flare emission. The XMM-Newton Serendipitous Source Catalogue and its associated data products provide an excellent basis for a comprehensive and sensitive survey of stellar flares - both from targeted active stars and from those observed serendipitously in the half-degree diameter field-of-view of each observation. Methods: The 2XMM Catalogue and the associated time-series ("light-curve") data products have been used as the basis for a survey of X-ray flares from cool stars in the Hipparcos-Tycho-2 catalogue. In addition, we have generated and analysed spectrally-resolved (i.e. hardness-ratio), X-ray light-curves. Where available, we have compared XMM OM UV/optical data with the X-ray light-curves. Results: Our sample contains ~130 flares with well-observed profiles; they originate from ~70 stars. The flares range in duration from ~103 to ~104 s, have peak X-ray fluxes from ~10-13 to ~10-11erg cm-2 s-1, peak X-ray luminosities from ~1029 to ~1032erg s-1, and X-ray energy output from ~1032 to ~1035 erg. Most of the ~30 serendipitously-observed stars have little previously reported information. The hardness-ratio plots clearly illustrate the spectral (and hence inferred temperature) variations characteristic of many flares, and provide an easily accessible overview of the data. We present flare frequency distributions from both target and serendipitous observations. The latter provide an unbiased (with respect to stellar activity) study of flare energetics; in addition, they allow us to predict numbers of stellar flares that may be detected in future X-ray wide-field surveys. The serendipitous sample demonstrates the need for care when calculating flaring rates, especially when normalising the number of flares to a total exposure time, where it is important to consider both the stars seen to flare and those from which variability was not detected (i.e. measured as non-variable), since in our survey, the latter outnumber the former by more than a factor ten. The serendipitous variable and "non-variable" stars appear very similar in terms of the distributions of general properties such as quiescent X-ray luminosity; from the available data, it is unclear whether the distinction by flaring is due to an additional, intrinsic property such as intra-system interactions in a close binary system, or is simply the result of limited observations and detection thresholds on a random flaring process, with no real difference between the two samples, or may be a combination of these effects. However, the number of detected flares compared with the number of stars not seen to vary is broadly consistent with estimates based on Poisson statistics. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA.Appendices are available in electronic form at http://www.aanda.orgTables C.1 and C.2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/581/A28
K2 Variable Catalogue: Variable stars and eclipsing binaries in K2 campaigns 1 and 0
NASA Astrophysics Data System (ADS)
Armstrong, D. J.; Kirk, J.; Lam, K. W. F.; McCormac, J.; Walker, S. R.; Brown, D. J. A.; Osborn, H. P.; Pollacco, D. L.; Spake, J.
2015-07-01
Aims: We have created a catalogue of variable stars found from a search of the publicly available K2 mission data from Campaigns 1 and 0. This catalogue provides the identifiers of 8395 variable stars, including 199 candidate eclipsing binaries with periods up to 60 d and 3871 periodic or quasi-periodic objects, with periods up to 20 d for Campaign 1 and 15 d for Campaign 0. Methods: Lightcurves are extracted and detrended from the available data. These are searched using a combination of algorithmic and human classification, leading to a classifier for each object as an eclipsing binary, sinusoidal periodic, quasi periodic, or aperiodic variable. The source of the variability is not identified, but could arise in the non-eclipsing binary cases from pulsation or stellar activity. Each object is cross-matched against variable star related guest observer proposals to the K2 mission, which specifies the variable type in some cases. The detrended lightcurves are also compared to lightcurves currently publicly available. Results: The resulting catalogue gives the ID, type, period, semi-amplitude, and range of the variation seen. We also make available the detrended lightcurves for each object. The catalogue is available at http://deneb.astro.warwick.ac.uk/phrlbj/k2varcat/ and at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/579/A19
HAZMAT. II. Ultraviolet Variability of Low-mass Stars in the GALEX Archive
NASA Astrophysics Data System (ADS)
Miles, Brittany E.; Shkolnik, Evgenya L.
2017-08-01
The ultraviolet (UV) light from a host star influences a planet’s atmospheric photochemistry and will affect interpretations of exoplanetary spectra from future missions like the James Webb Space Telescope. These effects will be particularly critical in the study of planetary atmospheres around M dwarfs, including Earth-sized planets in the habitable zone. Given the higher activity levels of M dwarfs compared to Sun-like stars, time-resolved UV data are needed for more accurate input conditions for exoplanet atmospheric modeling. The Galaxy Evolution Explorer (GALEX) provides multi-epoch photometric observations in two UV bands: near-ultraviolet (NUV; 1771-2831 Å) and far-ultraviolet (FUV; 1344-1786 Å). Within 30 pc of Earth, there are 357 and 303 M dwarfs in the NUV and FUV bands, respectively, with multiple GALEX observations. Simultaneous NUV and FUV detections exist for 145 stars in both GALEX bands. Our analyses of these data show that low-mass stars are typically more variable in the FUV than the NUV. Median variability increases with later spectral types in the NUV with no clear trend in the FUV. We find evidence that flares increase the FUV flux density far more than the NUV flux density, leading to variable FUV to NUV flux density ratios in the GALEX bandpasses.The ratio of FUV to NUV flux is important for interpreting the presence of atmospheric molecules in planetary atmospheres such as oxygen and methane as a high FUV to NUV ratio may cause false-positive biosignature detections. This ratio of flux density in the GALEX bands spans three orders of magnitude in our sample, from 0.008 to 4.6, and is 1 to 2 orders of magnitude higher than for G dwarfs like the Sun. These results characterize the UV behavior for the largest set of low-mass stars to date.
HAZMAT. II. Ultraviolet Variability of Low-mass Stars in the GALEX Archive
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miles, Brittany E.; Shkolnik, Evgenya L., E-mail: bmiles@ucsc.edu
The ultraviolet (UV) light from a host star influences a planet’s atmospheric photochemistry and will affect interpretations of exoplanetary spectra from future missions like the James Webb Space Telescope . These effects will be particularly critical in the study of planetary atmospheres around M dwarfs, including Earth-sized planets in the habitable zone. Given the higher activity levels of M dwarfs compared to Sun-like stars, time-resolved UV data are needed for more accurate input conditions for exoplanet atmospheric modeling. The Galaxy Evolution Explorer ( GALEX ) provides multi-epoch photometric observations in two UV bands: near-ultraviolet (NUV; 1771–2831 Å) and far-ultraviolet (FUV;more » 1344–1786 Å). Within 30 pc of Earth, there are 357 and 303 M dwarfs in the NUV and FUV bands, respectively, with multiple GALEX observations. Simultaneous NUV and FUV detections exist for 145 stars in both GALEX bands. Our analyses of these data show that low-mass stars are typically more variable in the FUV than the NUV. Median variability increases with later spectral types in the NUV with no clear trend in the FUV. We find evidence that flares increase the FUV flux density far more than the NUV flux density, leading to variable FUV to NUV flux density ratios in the GALEX bandpasses.The ratio of FUV to NUV flux is important for interpreting the presence of atmospheric molecules in planetary atmospheres such as oxygen and methane as a high FUV to NUV ratio may cause false-positive biosignature detections. This ratio of flux density in the GALEX bands spans three orders of magnitude in our sample, from 0.008 to 4.6, and is 1 to 2 orders of magnitude higher than for G dwarfs like the Sun. These results characterize the UV behavior for the largest set of low-mass stars to date.« less
NASA Technical Reports Server (NTRS)
Walton, D. J.; Fuerst, F.; Harrison, F.; Stern, D.; Bachetti, M.; Barret, D.; Bauer, F.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.;
2013-01-01
Following a serendipitous detection with the Nuclear Spectroscopic Telescope Array (NuSTAR), we present a multiepoch spectral and temporal analysis of an extreme ultraluminous X-ray source (ULX) located in the outskirts of the Circinus galaxy, hereafter Circinus ULX5, including coordinated XMM-Newton+NuSTAR follow-up observations. The NuSTAR data presented here represent one of the first instances of a ULX reliably detected at hard (E greater than 10 keV) X-rays. CircinusULX5is variable on long time scales by at least a factor of approx. 5 in flux, and was caught in a historically bright state during our 2013 observations (0.3-30.0 keV luminosity of 1.6 × 10(exp 40) erg s(exp-1)). During this epoch, the source displayed a curved 3-10 keV spectrum, broadly similar to other bright ULXs. Although pure thermal models result in a high energy excess in the NuSTAR data, this excess is too weak to be modeled with the disk reflection interpretation previously proposed to explain the 3-10 keV curvature in other ULXs. In addition to flux variability, clear spectral variability is also observed. While in many cases the interpretation of spectral components in ULXs is uncertain, the spectral and temporal properties of all the high quality data sets currently available strongly support a simple disk-corona model reminiscent of that invoked for Galactic binaries, with the accretion disk becoming more prominent as the luminosity increases. However, although the disk temperature and luminosity are well correlated across all time scales currently probed, the observed luminosity follows L alpha T (exp 1.70+/-0.17), flatter than expected for simple blackbody radiation. The spectral variability displayed here is highly reminiscent of that observed from known Galactic black hole binaries (BHBs) at high luminosities. This comparison implies a black hole mass of approx. 90M for Circinus ULX5. However, given the diverse behavior observed from Galactic BHB accretion disks, this mass estimate is still uncertain. Finally, the limits placed on any undetected iron absorption features with the 2013 data set imply that we are not viewing the central regions of Circinus ULX5 through any extreme super-Eddington outflow.
NASA Astrophysics Data System (ADS)
Borges, B. W.; Baptista, R.
2005-09-01
Cataclymic variables (CVs) are semi-detached binary systems in which a main sequence late-type star (the secondary) fills its Roche lobe and transfers matter to a white dwarf (the primary) through the inner Lagragian point L1. Evolutive models of CVs predicts that the orbital periods Porb of these systems would decrease on time scales of 108 - 109 years due to angular momentum losses either by magnetic braking via the secondary star's wind (Porb > 3 hr) or by emission of gravitational radiation (Porb > 3 hr). These models try to explain the observed gap of systems with Porb in the range of ~ 2 to 3 hr as the consequence of a sharp reduction of magnetic field open lines when the secondary star become fully convective (at Porb ~ 3 hr). However, up to now no well-studied CVs show evidence of period decrease. Instead, most well-observed eclipsing CVs show cyclical period changes probably associated to solar-type (quasi-periodic and/or multiperiodic) magnetic activity cycles in the secondary star. The fast spinning secondaries of CVs, covering a range of masses and rotation periods, are an important laboratory to understand magnetic activities cycles in late type stars. In the present work, we report the investigation of cyclical period changes in IP Peg: CV with orbital periods of 3.8 hr.
Recent X-ray Variability of Eta Car Approaching The X-ray Eclipse
NASA Technical Reports Server (NTRS)
Corcoran, M.; Swank, J. H.; Ishibashi, K.; Gull, T.; Humphreys, R.; Damineli, A.; Walborn, N.; Hillier, D. J.; Davidson, K.; White, S. M.
2002-01-01
We discuss recent X-ray spectral variability of the supermassive star Eta Car in the interval since the last X-ray eclipse in 1998. We concentrate on the interval just prior to the next X-ray eclipse which is expected to occur in June 2003. We compare the X-ray behavior during the 2001-2003 cycle with the previous cycle (1996-1998) and note similarities and differences in the temporal X-ray behavior. We also compare a recent X-ray observation of Eta Car obtained with the Chandra high energy transmission grating in October 2002 with an earlier observation from Nov 2002, and interpret these results in terms of the proposed colliding wind binary model for the star. In addition we discuss planned observations for the upcoming X-ray eclipse.
OPTICAL SPECTROSCOPY OF X-RAY-SELECTED YOUNG STARS IN THE CARINA NEBULA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaidya, Kaushar; Chen, Wen-Ping; Lee, Hsu-Tai
We present low-resolution optical spectra for 29 X-ray sources identified as either massive star candidates or low-mass pre-main-sequence (PMS) star candidates in the clusters Trumpler 16 and Trumpler 14 of the Carina Nebula. Spectra of two more objects (one with an X-ray counterpart, and one with no X-ray counterpart), not originally our targets, but found close (∼3″) to two of our targets, are presented as well. Twenty early-type stars, including an O8 star, seven B1–B2 stars, two B3 stars, a B5 star, and nine emission-line stars, are identified. Eleven T Tauri stars, including eight classical T Tauri stars (CTTSs) and threemore » weak-lined T Tauri stars, are identified. The early-type stars in our sample are more reddened compared to the previously known OB stars of the region. The Chandra hardness ratios of our T Tauri stars are found to be consistent with the Chandra hardness ratios of T Tauri stars of the Orion Nebula Cluster. Most early-type stars are found to be nonvariable in X-ray emission, except the B2 star J104518.81–594217.9, the B3 star J104507.84–594134.0, and the Ae star J104424.76–594555.0, which are possible X-ray variables. J104452.20–594155.1, a CTTS, is among the brightest and the hardest X-ray sources in our sample, appears to be a variable, and shows a strong X-ray flare. The mean optical and near-infrared photometric variability in the V and K{sub s} bands, of all sources, is found to be ∼0.04 and 0.05 mag, respectively. The T Tauri stars show significantly larger mean variation, ∼0.1 mag, in the K{sub s} band. The addition of one O star and seven B1–B2 stars reported here contributes to an 11% increase of the known OB population in the observed field. The 11 T Tauri stars are the first ever confirmed low-mass PMS stars in the Carina Nebula region.« less
NASA Technical Reports Server (NTRS)
Stothers, Richard B.; Chin, Chao-wen
1999-01-01
Interior layers of stars that have been exposed by surface mass loss reveal aspects of their chemical and convective histories that are otherwise inaccessible to observation. It must be significant that the surface hydrogen abundances of luminous blue variables (LBVs) show a remarkable uniformity, specifically X(sub surf) = 0.3 - 0.4, while those of hydrogen-poor Wolf-Rayet (WN) stars fall, almost without exception, below these values, ranging down to X(sub surf) = 0. According to our stellar model calculations, most LBVs are post-red-supergiant objects in a late blue phase of dynamical instability, and most hydrogen-poor WN stars are their immediate descendants. If this is so, stellar models constructed with the Schwarzschild (temperature-gradient) criterion for convection account well for the observed hydrogen abundances, whereas models built with the Ledoux (density-gradient) criterion fail. At the brightest luminosities, the observed hydrogen abundances of LBVs are too large to be explained by any of our highly evolved stellar models, but these LBVs may occupy transient blue loops that exist during an earlier phase of dynamical instability when the star first becomes a yellow supergiant. Independent evidence concerning the criterion for convection, which is based mostly on traditional color distributions of less massive supergiants on the Hertzsprung-Russell diagram, tends to favor the Ledoux criterion. It is quite possible that the true criterion for convection changes over from something like the Ledoux criterion to something like the Schwarzschild criterion as the stellar mass increases.
NASA Astrophysics Data System (ADS)
Cotton, W. D.; Ragland, S.; Pluzhnik, E. A.; Danchi, W. C.; Traub, W. A.; Willson, L. A.; Lacasse, M. G.
2010-06-01
This is the fourth paper in a series of multi-epoch observations at 7 mm wavelength of the SiO masers in several asymptotic giant branch stars from a sample of Mira variable stars showing evidence of asymmetric structure in the infrared. These stars have been observed interferometrically in the infrared by IOTA and with VLBA measurements of the SiO masers. In this paper, we present the observations of χ Cygni (χ Cyg), R Aquilae (R Aql), R Leo Minoris (R LMi), RU Herculis (RU Her), U Herculis (U Her), and U Orionis (U Ori). Several radial features with velocity gradients were observed, all with velocities close to systemic furthest from the star and redshifted closer to the stellar surface. Systemic velocities are estimated for several of the stars. No compelling evidence of asymmetry is seen in the maser distributions. All maser rings are approximately twice the near-IR uniform disk diameter and are comparable in size to the extended molecular envelope when such measurements are available.
Local anticorrelation between star formation rate and gas-phase metallicity in disc galaxies
NASA Astrophysics Data System (ADS)
Sánchez Almeida, J.; Caon, N.; Muñoz-Tuñón, C.; Filho, M.; Cerviño, M.
2018-06-01
Using a representative sample of 14 star-forming dwarf galaxies in the local Universe, we show the existence of a spaxel-to-spaxel anticorrelation between the index N2 ≡ log ([N II]λ 6583/H α ) and the H α flux. These two quantities are commonly employed as proxies for gas-phase metallicity and star formation rate (SFR), respectively. Thus, the observed N2 to H α relation may reflect the existence of an anticorrelation between the metallicity of the gas forming stars and the SFR it induces. Such an anticorrelation is to be expected if variable external metal-poor gas fuels the star-formation process. Alternatively, it can result from the contamination of the star-forming gas by stellar winds and SNe, provided that intense outflows drive most of the metals out of the star-forming regions. We also explore the possibility that the observed anticorrelation is due to variations in the physical conditions of the emitting gas, other than metallicity. Using alternative methods to compute metallicity, as well as previous observations of H II regions and photoionization models, we conclude that this possibility is unlikely. The radial gradient of metallicity characterizing disc galaxies does not produce the correlation either.
VizieR Online Data Catalog: NuSTAR hard X-ray survey of the Galactic Center. II. (Hong+, 2016)
NASA Astrophysics Data System (ADS)
Hong, J.; Mori, K.; Hailey, C. J.; Nynka, M.; Zhang, S.; Gotthelf, E.; Fornasini, F. M.; Krivonos, R.; Bauer, F.; Perez, K.; Tomsick, J. A.; Bodaghee, A.; Chiu, J.-L.; Clavel, M.; Stern, D.; Grindlay, J. E.; Alexander, D. M.; Aramaki, T.; Baganoff, F. K.; Barret, D.; Barriere, N.; Boggs, S. E.; Canipe, A. M.; Christensen, F. E.; Craig, W. W.; Desai, M. A.; Forster, K.; Giommi, P.; Grefenstette, B. W.; Harrison, F. A.; Hong, D.; Hornstrup, A.; Kitaguchi, T.; Koglin, J. E.; Madsen, K. K.; Mao, P. H.; Miyasaka, H.; Perri, M.; Pivovaroff, M. J.; Puccetti, S.; Rana, V.; Westergaard, N. J.; Zhang, W. W.; Zoglauer, A.
2018-02-01
Observations of the GC region with NuSTAR began in 2012 July, shortly after launch. The original survey strategy for the GC region was to match the central 2°x0.7° region covered by the Chandra X-ray Observatory (Wang et al. 2002Natur.415..148W; Muno et al. 2009, J/ApJS/181/110). The field of views (FOVs) of neighboring NuSTAR observations in the survey were designed to overlap with each other by ~40%. Multiple observations of the same region with relatively large FOV offsets tend to average out the vignetting effects of each observation, enabling a more uniform coverage of the region. Multiple observations are also suitable for monitoring long term X-ray variability of sources in the region. Even when observing a single target, the NuSTAR observation is often broken up into two or more segments with relatively large pointing offsets to allow an efficient subtraction of a detector coordinate-dependent background component (e.g., Mori et al. 2013ApJ...770L..23M). (4 data files).
IRAS variables as galactic structure tracers - Classification of the bright variables
NASA Technical Reports Server (NTRS)
Allen, L. E.; Kleinmann, S. G.; Weinberg, M. D.
1993-01-01
The characteristics of the 'bright infrared variables' (BIRVs), a sample consisting of the 300 brightest stars in the IRAS Point Source Catalog with IRAS variability index VAR of 98 or greater, are investigated with the purpose of establishing which of IRAS variables are AGB stars (e.g., oxygen-rich Miras and carbon stars, as was assumed by Weinberg (1992)). Results of the analysis of optical, infrared, and microwave spectroscopy of these stars indicate that, out of 88 stars in the BIRV sample identified with cataloged variables, 86 can be classified as Miras. Results of a similar analysis performed for a color-selected sample of stars, using the color limits employed by Habing (1988) to select AGB stars, showed that, out of 52 percent of classified stars, 38 percent are non-AGB stars, including H II regions, planetary nebulae, supergiants, and young stellar objects, indicating that studies using color-selected samples are subject to misinterpretation.
Backyard Telescopes Watch an Expanding Binary
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2018-01-01
What can you do with a team of people armed with backyard telescopes and a decade of patience? Test how binary star systems evolve under Einsteins general theory of relativity!Unusual VariablesCataclysmic variables irregularly brightening binary stars consisting of an accreting white dwarf and a donor star are a favorite target among amateur astronomers: theyre detectable even with small telescopes, and theres a lot we can learn about stellar astrophysics by observing them, if were patient.Diagram of a cataclysmic variable. In an AM CVn, the donor is most likely a white dwarf as well, or a low-mass helium star. [Philip D. Hall]Among the large family of cataclysmic variables is one unusual type: the extremely short-period AM Canum Venaticorum (AM CVn) stars. These rare variables (only 40 are known) are unique in having spectra dominated by helium, suggesting that they contain little or no hydrogen. Because of this, scientists have speculated that the donor stars in these systems are either white dwarfs themselves or very low-mass helium stars.Why study AM CVn stars? Because their unusual configuration allows us to predict the behavior of their orbital evolution. According to the general theory of relativity, the two components of an AM CVn will spiral closer and closer as the system loses angular momentum to gravitational-wave emission. Eventually they will get so close that the low-mass companion star overflows its Roche lobe, beginning mass transfer to the white dwarf. At this point, the orbital evolution will reverse and the binary orbit will expand, increasing its period.CBA member Enrique de Miguel, lead author on the study, with his backyard telescope in Huelva, Spain. [Enrique de Miguel]Backyard Astronomy Hard at WorkMeasuring the evolution of an AM CVns orbital period is the best way to confirm this model, but this is no simple task! To observe this evolution, we first need a system with a period that can be very precisely measured best achieved with an eclipsing binary system. Then the system must be observed regularly over a very long period of time.Though such a feat is challenging, a team of astronomers has done precisely this. The Center for Backyard Astrophysics (CBA) a group of primarily amateur astronomers located around the world has collectively observed the AM CVn star system ES Ceti using seven different telescopes over more than a decade. In total, they now have measurements of ES Cetis period spanning 20012017. Now, in a publication led by Enrique de Miguel (CBA-Huelva and University of Huelva, Spain), the group details the outcomes of their patience.Testing the ModelThis OC diagram of the timings of minimum light relative to a test ephemeris demonstrates that ES Cetis orbital period is steadily increasing over time. [de Miguel et al. 2017]De Miguel and collaborators find that ES Cetis 10.3-minute orbital period has indeed increased over time as predicted by the model at a relatively rapid rate: the timescale for change, described by P/(dP/dt), is 10 million years. This outcome is consistent with the hypothesis that the mass transfer and binary evolution of such systems is driven by gravitational radiation marking one of the first such demonstrations with a cataclysmic variable.Whats next for ES Ceti? Systems such as this one will make for interesting targets for the Laser Interferometer Space Antenna (LISA; planned for a 2034 launch). The gravitational radiation emitted by AM CVns like ES Ceti should be strong enough and in the right frequency range to be detected by LISA, providing another test of our models for how these star systems evolve.CitationEnrique de Miguel et al 2018 ApJ 852 19. doi:10.3847/1538-4357/aa9ed6
Wareing, Christopher John
2008-12-13
Since being named 'wonderful' in the seventeenth century for its peculiar brightness variability, Mira A has been the subject of extensive research and become the prototype for a whole class of 'Mira' variable stars. The primary star in a binary system, Mira A is reaching the end of its life and currently undergoing an extended period of enhanced mass loss. Recent observations have revealed a surrounding arc-like structure and a stream of material stretching 12 light years away in opposition to the arc. In this article, I review recent modelling of this cometary appearance as a bow shock with an accompanying tail of material ram pressure stripped from the head of the bow shock, place Mira in an evolutionary context, predict its future with reference to the similar star R Hya and planetary nebula Sh 2-188, and speculate some avenues of research both on Mira itself and on other 'Mira-like' stars with bow shocks and tails. I also discuss the implications of this discovery for our own star, the Sun.
The ISLAnds Project. III. Variable Stars in Six Andromeda Dwarf Spheroidal Galaxies
NASA Astrophysics Data System (ADS)
Martínez-Vázquez, Clara E.; Monelli, Matteo; Bernard, Edouard J.; Gallart, Carme; Stetson, Peter B.; Skillman, Evan D.; Bono, Giuseppe; Cassisi, Santi; Fiorentino, Giuliana; McQuinn, Kristen B. W.; Cole, Andrew A.; McConnachie, Alan W.; Martin, Nicolas F.; Dolphin, Andrew E.; Boylan-Kolchin, Michael; Aparicio, Antonio; Hidalgo, Sebastian L.; Weisz, Daniel R.
2017-12-01
We present a census of variable stars in six M31 dwarf spheroidal satellites observed with the Hubble Space Telescope. We detect 870 RR Lyrae (RRL) stars in the fields of And I (296), II (251), III (111), XV (117), XVI (8), and XXVIII (87). We also detect a total of 15 Anomalous Cepheids, three eclipsing binaries, and seven field RRL stars compatible with being members of the M31 halo or the Giant Stellar Stream. We derive robust and homogeneous distances to the six galaxies using different methods based on the properties of the RRL stars. Working with the up-to-date set of Period-Wesenheit (I, B-I) relations published by Marconi et al., we obtain distance moduli of μ 0 = [24.49, 24.16, 24.36, 24.42, 23.70, 24.43] mag (respectively), with systematic uncertainties of 0.08 mag and statistical uncertainties <0.11 mag. We have considered an enlarged sample of 16 M31 satellites with published variability studies, and compared their pulsational observables (e.g., periods and amplitudes) with those of 15 Milky Way satellites for which similar data are available. The properties of the (strictly old) RRL in both satellite systems do not show any significant difference. In particular, we found a strikingly similar correlation between the mean period distribution of the fundamental RRL pulsators (RRab) and the mean metallicities of the galaxies. This indicates that the old RRL progenitors were similar at the early stage in the two environments, suggesting very similar characteristics for the earliest stages of evolution of both satellite systems. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs 13028 and 13739.
HST/ACS Observations of RR Lyrae Stars in Six Ultra-Deep Fields of M31
NASA Technical Reports Server (NTRS)
Jeffery, E. J.; Smith, E.; Brown, T. M.; Sweigart, A. V.; Kalirai, J. S.; Ferguson, H. C.; Guhathakurta, P.; Renzini, A.; Rich, R. M.
2010-01-01
We present HST/ACS observations of RR Lyrae variable stars in six ultra deep fields of the Andromeda galaxy (M31), including parts of the halo, disk, and giant stellar stream. Past work on the RR Lyrae stars in M31 has focused on various aspects of the stellar populations that make up the galaxy s halo, including their distances and metallicities. This study builds upon this previous work by increasing the spatial coverage (something that has been lacking in previous studies) and by searching for these variable stars in constituents of the galaxy not yet explored. Besides the 55 RR Lyrae stars we found in our initial field located 11kpc from the galactic nucleus, we find additional RR Lyrae stars in four of the remaining five ultra deep fields as follows: 21 in the disk, 24 in the giant stellar stream, 3 in the halo field 21kpc from the galactic nucleus, and 5 in one of the halo fields at 35kpc. No RR Lyrae were found in the second halo field at 35kpc. The RR Lyrae populations of these fields appear to mostly be of Oosterhoff I type, although the 11kpc field appears to be intermediate or mixed. We will discuss the properties of these stars including period and reddening distributions. We calculate metallicities and distances for the stars in each of these fields using different methods and compare the results, to an extent that has not yet been done. We compare these methods not just on RR Lyrae in our M31 fields, but also on a data set of Milky Way field RR Lyrae stars.
Variability Analysis: Detection and Classification
NASA Astrophysics Data System (ADS)
Eyer, L.
2005-01-01
The Gaia mission will offer an exceptional opportunity to perform variability studies. The data homogeneity, its optimised photometric systems, composed of 11 medium and 4-5 broad bands, the high photometric precision in G band of one milli-mag for V = 13-15, the radial velocity measurements and the exquisite astrometric precision for one billion stars will permit a detailed description of variable objects like stars, quasars and asteroids. However the time sampling and the total number of measurements change from one object to another because of the satellite scanning law. The data analysis is a challenge because of the huge amount of data, the complexity of the observed objects and the peculiarities of the satellite, and needs thorough preparation. Experience can be gained by the study of past and present survey analyses and results, and Gaia should be put in perspective with the future large scale surveys, like PanSTARRS or LSST. We present the activities of the Variable Star Working Group and a general plan to digest this unprecedented data set, focusing here on the photometry.
Radio monitoring of protoplanetary discs
NASA Astrophysics Data System (ADS)
Ubach, C.; Maddison, S. T.; Wright, C. M.; Wilner, D. J.; Lommen, D. J. P.; Koribalski, B.
2017-04-01
Protoplanetary disc systems observed at radio wavelengths often show excess emission above that expected from a simple extrapolation of thermal dust emission observed at short millimetre wavelengths. Monitoring the emission at radio wavelengths can be used to help disentangle the physical mechanisms responsible for this excess, including free-free emission from a wind or jet, and chromospheric emission associated with stellar activity. We present new results from a radio monitoring survey conducted with Australia Telescope Compact Array over the course of several years with observation intervals spanning days, months and years, where the flux variability of 11 T Tauri stars in the Chamaeleon and Lupus star-forming regions was measured at 7 and 15 mm, and 3 and 6 cm. Results show that most sources are variable to some degree at 7 mm, indicating the presence of emission mechanisms other than thermal dust in some sources. Additionally, evidence of grain growth to centimetre-sized pebbles was found for some sources that also have signs of variable flux at 7 mm. We conclude that multiple processes contributing to the emission are common in T Tauri stars at 7 mm and beyond, and that a detection at a single epoch at radio wavelengths should not be used to determine all processes contributing to the emission.
NASA Astrophysics Data System (ADS)
Kunder, Andrea; Walker, Alistair; Stetson, Peter B.; Bono, Giuseppe; Nemec, James M.; de Propris, Roberto; Monelli, Matteo; Cassisi, Santi; Andreuzzi, Gloria; Dall'Ora, Massimo; Di Cecco, Alessandra; Zoccali, Manuela
2011-01-01
We present period change rates (dP/dt) for 42 RR Lyrae variables in the globular cluster IC 4499. Despite clear evidence of these period increases or decreases, the observed period change rates are an order of magnitude larger than predicted from theoretical models of this cluster. We find that there is a preference for increasing periods, a phenomenon observed in most RR Lyrae stars in Milky Way globular clusters. The period change rates as a function of position in the period-amplitude plane are used to examine possible evolutionary effects in OoI clusters, OoII clusters, field RR Lyrae stars, and the mixed-population cluster ω Centauri. It is found that there is no correlation between the period change rate and the typical definition of Oosterhoff groups. If the RR Lyrae period changes correspond with evolutionary effects, this would be in contrast to the hypothesis that RR Lyrae variables in OoII systems are evolved horizontal-branch stars that spent their zero-age horizontal-branch phase on the blue side of the instability strip. This may suggest that age may not be the primary explanation for the Oosterhoff types. Based in part on observations made with the European Southern Observatory telescopes obtained from the ESO/ST-ECF Science Archive Facility.
Probing Stellar Dynamics With Space Photometry
NASA Astrophysics Data System (ADS)
García, Rafael A.; Salabert, D.; Ballot, J.; Beck, P. G.; Bigot, L.; Corsaro, E.; Creevey, O.; Egeland, R.; Jiménez, A.; Mathur, S.; Metcalfe, T.; do Nascimento, J.; Pallé, P. L.; Pérez Hernández, F.; Regulo, C.
2016-08-01
The surface magnetic field has substantial influence on various stellar properties that can be probed through various techniques. With the advent of new space-borne facilities such as CoRoT and Kepler, uninterrupted long high-precision photometry is available for hundred of thousand of stars. This number will substantially grow through the forthcoming TESS and PLATO missions. The unique Kepler observations -covering up to 4 years with a 30-min cadence- allows studying stellar variability with different origins such as pulsations, convection, surface rotation, or magnetism at several time scales from hours to years. We study the photospheric magnetic activity of solar-like stars by means of the variability induced in the observed signal by starspots crossing the visible disk. We constructed a solar photometric magnetic activity proxy, Sph from SPM/VIRGO/SoHO, as if the Sun was a distant star and we compare it with several solar well-known magnetic proxies. The results validate this approach. Thus, we compute the Sph proxy for a set of CoRoT and Kepler solar-like stars for which pulsations were already detected. After characterizing the rotation and the magnetic properties of 300 solar-like stars, we use their seismic properties to characterize 18 solar analogs for which we study their magnetism. This allows us to put the Sun into context of its siblings.
A search for spectroscopic binaries among the runaway O type stars
NASA Technical Reports Server (NTRS)
Stone, R. C.
1982-01-01
Numerous radial velocity measurements of medium dispersion were made for the 10 brighter stars given in Stone's list of very probable O type runaways. All plates were measured with the KPNO PDS microdensitometer, and a new iterative reductional analysis was used to derive plate velocities, which are estimated to be 1.6 times more accurate internally than those found by using the traditional method. Of thse stars, psi Per, alpha Cam, HD 188209, and 26 Cep are identified as probable velocity variables, while 9 Sge, lambda Cep, and HD 218915 are classed as possible variables. If the source of this variability is Keplerian rather than atmospheric, which cannot be established unequivocally from the observations of this paper, psi Per could be a spectroscopic binary with a black hole companion, and at least 1.2 solar mass. The detection of runaway binary systems from radial velocity measurements is discussed.
Did the ancient egyptians discover Algol?
NASA Astrophysics Data System (ADS)
Jetsu, L.; Porceddu, S.; Porceddu, S.; Lyytinen, J.; Kajatkari, P.; Markkanen, T.; Toivari-Viitala, J.
2013-02-01
Fabritius discovered the first variable star, Mira, in 1596. Holwarda determined the 11 months period of Mira in 1638. Montanari discovered the next variable star, Algol, in 1669. Its period, 2.867 days, was determined by Goodricke (178). Algol was associated with demon-like creatures, "Gorgon" in ancient Greek and "ghoul" in ancient Arab mythology. This indicates that its variability was discovered much before 1669 (Wilk 1996), but this mythological evidence is ambiguous (Davis 1975). For thousands of years, the Ancient Egyptian Scribes (AES) observed stars for timekeeping in a region, where there are nearly 300 clear nights a year. We discovered a significant periodicity of 2.850 days in their calendar for lucky and unlucky days dated to 1224 BC, "the Cairo Calendar". Several astrophysical and astronomical tests supported our conclusion that this was the period of Algol three millennia ago. The "ghoulish habits" of Algol could explain this 0.017 days period increase (Battersby 2012).
Yes, Aboriginal Australians can and did discover the variability of Betelgeuse
NASA Astrophysics Data System (ADS)
Schaefer, Bradley E.
2018-04-01
Recently, a widely publicized claim has been made that the Aboriginal Australians discovered the variability of the red star Betelgeuse in the modern Orion, plus the variability of two other prominent red stars: Aldebaran and Antares. This result has excited the usual healthy skepticism, with questions about whether any untrained peoples can discover the variability and whether such a discovery is likely to be placed into lore and transmitted for long periods of time. Here, I am offering an independent evaluation, based on broad experience with naked-eye sky viewing and astro-history. I find that it is easy for inexperienced observers to detect the variability of Betelgeuse over its range in brightness from V = 0.0 to V = 1.3, for example in noticing from season-to-season that the star varies from significantly brighter than Procyon to being greatly fainter than Procyon. Further, indigenous peoples in the Southern Hemisphere inevitably kept watch on the prominent red star, so it is inevitable that the variability of Betelgeuse was discovered many times over during the last 65 millennia. The processes of placing this discovery into a cultural context (in this case, put into morality stories) and the faithful transmission for many millennia is confidently known for the Aboriginal Australians in particular. So this shows that the whole claim for a changing Betelgeuse in the Aboriginal Australian lore is both plausible and likely. Given that the discovery and transmission is easily possible, the real proof is that the Aboriginal lore gives an unambiguous statement that these stars do indeed vary in brightness, as collected by many ethnographers over a century ago from many Aboriginal groups. So I strongly conclude that the Aboriginal Australians could and did discover the variability of Betelgeuse, Aldebaran, and Antares.
NASA Astrophysics Data System (ADS)
Smolec, Radoslaw; Dziembowski, Wojciech; Moskalik, Pawel; Netzel, Henryka; Prudil, Zdenek; Skarka, Marek; Soszynski, Igor
2017-09-01
Over the recent years, the Petersen diagram for classical pulsators, Cepheids and RR Lyr stars, populated with a few hundreds of new multiperiodic variables. We review our analyses of the OGLE data, which resulted in a significant extension of the known, and in the discovery of a few new and distinct forms of multiperiodic pulsation. The showcase includes not only radial mode pulsators, but also radial-non-radial pulsators and stars with significant modulation observed on top of the beat pulsation. First theoretical models explaining the new forms of stellar variability are briefly discussed.
Unravelling the role of SW Sextantis stars in the evolution of cataclysmic variables
NASA Astrophysics Data System (ADS)
Araujo-Betancor, Sofia; Gansicke, Boris; Long, Knox; Rodriguez-Gil, Pablo
2005-08-01
SW Sextantis stars are a relatively large group of cataclysmic variables whose properties contradict all predictions made by the current CV evolution theories. Very little is known about the properties of their accreting white dwarfs and their donor stars, as the stellar components are usually outshone by an extremely bright accretion flow. Consequently, a proper assessment of their evolutionary state is illusionary. There is one particular behavior of the SW Sex stars that can allow us to overcome this problem: SW Sex stars exhibit low states during which accretion onto the white dwarf decreases or shuts off completely. Only during this rare occasions we can directly observe the white dwarf and the donor star in these systems, and measurements of the white dwarf temperature, spectral type of the donor, mass and distance to the system can be carried out. With this aim in mind, we have set up a long-term monitoring of a group of five SW Sex stars using the 1.3 m telescope at CTIO. Here we propose to activate follow-up TOOs to obtain optical spectra of the low states to accurately determine the fundamental properties of these systems.
Spectrophotometry of emission-line stars in the magellanic clouds
NASA Technical Reports Server (NTRS)
Bohannan, Bruce
1990-01-01
The strong emission lines in the most luminous stars in the Magellanic Clouds indicate that these stars have such strong stellar winds that their photospheres are so masked that optical absorption lines do not provide an accurate measure of photospheric conditions. In the research funded by this grant, temperatures and gravities of emission-line stars both in the Large (LMC) and Small Magellanic Clouds (SMC) have been measured by fitting of continuum ultraviolet-optical fluxes observed with IUE with theoretical model atmospheres. Preliminary results from this work formed a major part of an invited review 'The Distribution of Types of Luminous Blue Variables'. Interpretation of the IUE observations obtained in this grant and archive data were also included in a talk at the First Boulder-Munich Hot Stars Workshop. Final results of these studies are now being completed for publication in refereed journals.
The Optical Gravitational Lensing Experiment. Catalog of RRLyr Stars from the Small Magellanic Cloud
NASA Astrophysics Data System (ADS)
Soszynski, I.; Udalski, A.; Szymanski, M.; Kubiak, M.; Pietrzynski, G.; Wozniak, P.; Zebrun, K.; Szewczyk, O.; Wyrzykowski, L.
2002-12-01
We present the catalog of RRLyrae stars from 2.4 square degrees of central parts of the Small Magellanic Cloud (SMC). The photometric data were collected during four years of the OGLE-II microlensing survey. Photometry of each star was obtained using the Difference Image Analysis (DIA) method. The catalog contains 571 objects, including 458RRab, 56RRc variables, and 57 double mode RRLyr stars (RRd). Additionally we attach a list of variables with periods between 0.18-0.26 days, which are probably delta Sct stars. Period, BVI photometry, astrometry, amplitude, and parameters of the Fourier decomposition of the I-band light curve are provided for each object. We also present the Petersen diagram for double mode pulsators. We found that the SMC RRLyr stars are fairly uniformly distributed over the studied area, with no clear correlation to any location. The most preferred periods for RRab and RRc stars are 0.589 and 0.357 days, respectively. We noticed significant excess of stars with periods of about 0.29 days, which might be second-overtone RRLyr stars (RRe). The mean extinction free magnitudes derived for RRab stars are 18.97, 19.45 and 19.73 mag for the I, V and B-band, respectively. All presented data, including individual BVI observations, are available from the OGLE Internet archive.
Sonification of Kepler Field SU UMa Cataclysmic Variable Stars V344 Lyr and V1504 Cyg
NASA Technical Reports Server (NTRS)
Tutchton, Roxanne M.; Wood, Matt A.; Still, Martin D.; Howell, Steve B.; Cannizzo, John K.; Smale, Alan P.
2012-01-01
Sonification is the conversion of quantitative data into sound. In this work we explain the methods used in the sonification of light curves provided by the Kepler instrument from Q2 through Q6 for the cataclysmic variable systems V344 Lyr and V1504 Cyg . Both systems are SU UMa stars showing dwarf nova outbursts and superoutbursts as well as positive and negative superhumps. Focused sonifications were done from average pulse shapes of each superhump, and separate sonifications of the full, residual light curves were done for both stars. The audio of these data reflected distinct patterns within the evolutions of supercycles and superhumps that matched pervious observations and proved to be effective aids in data analysis.
The Disk and Jet of the Classical T Tauri Star AA Tau
NASA Technical Reports Server (NTRS)
Cox, A. W.; Grady, C. A.; Hamel, H.; Hornbeck, Jeremy; Russell, R.; Sitko, M.; Woodgate, B.
2013-01-01
Previous studies of the classical T Tauri star AA Tau have interpreted the UX Orionis-like photopolarimetric variability as being due to a warp in the inner disk caused by an inclined stellar magnetic dipolefield. We test that these effects are macroscopically observable in the inclination and alignment of the disk. We use the HST/STIS coronagraphic detection of the disk to measure the outer disk radius and inclination, and find that the inner disk is both misinclined and misaligned with respect to the outer disk. AA Tau drives a faint jet which is also misaligned with respect to the projection of the outer disk minor axis. The jet is also poorly collimated near the star. The measured inclination, 71+/-1deg, is above the inclination range suggested for stars with UX Orionis-like variability, indicating that dust grains in the disk have grown and settled toward the disk midplane.
To be or not to be Asymmetric? VLTI/MIDI and the Mass-loss Geometry of AGB Stars
NASA Astrophysics Data System (ADS)
Paladini, C.; Klotz, D.; Sacuto, S.; Lagadec, E.; Wittkowski, M.; Richichi, A.; Hron, J.; Jorissen, A.; Groenewegen, M. A. T.; Kerschbaum, F.; Verhoelst, T.; Rau, G.; Olofsson, H.; Zhao-Geisler, R.; Matter, A.
2017-06-01
The Mid-infrared Interferometric instrument (MIDI) at the Very Large Telescope Interferometer (VLTI) has been used to spatially resolve the dust-forming region of 14 asymptotic giant branch (AGB) stars with different chemistry (O-rich and C-rich) and variability types (Miras, semi-regular, and irregular variables). The main goal of the programme was to detect deviations from spherical symmetry in the dust-forming region of these stars. All the stars of the sample are well resolved with the VLTI, and five are asymmetric and O-rich. This finding contrasts with observations in the near-infrared, where the C-rich objects are found to be more asymmetric than the O-rich ones. The nature of the asymmetric structures so far detected (dusty discs versus blobs)remains uncertain and will require imaging on milli-arcsecond scales.
VizieR Online Data Catalog: CTIO/DECam photometry of RR Lyrae stars in M5 (Vivas+, 2017)
NASA Astrophysics Data System (ADS)
Vivas, A. K.; Saha, A.; Olsen, K.; Blum, R.; Olszewski, E. W.; Claver, J.; Valdes, F.; Axelrod, T.; Kaleida, C.; Kunder, A.; Narayan, G.; Matheson, T.; Walker, A.
2017-11-01
Observations were obtained during 2013 (2013 Jun 7-9, and 2013 Jun 21) and 2014 (2014 Mar 7-9) with the Dark Energy Camera (DECam) imager on the 4m Blanco Telescope at Cerro Tololo Inter-American Observatory (CTIO), Chile. Repeated DECam images of a field centered on M5 (R.A.=15:18:33.2, decl.=+02:04:51.7, J2000.0) were obtained using the u,g,r,i, and z filters. The large field of view (FOV) of DECam (2.2°) easily covers the whole globular cluster with only the central CCDs of the camera. A total of 66 RR Lyrae stars and 1 SX Phe were recognized in the field of M5. The individual measurements for the periodic variable stars are provided in Table2. In Table3, we present the list of periodic variable stars. (3 data files).
Clumpy wind accretion in Supergiant X-ray Binaries
NASA Astrophysics Data System (ADS)
El Mellah, I.; Sundqvist, J. O.; Keppens, R.
2017-12-01
Supergiant X-ray binaries (\\sgx) contain a neutron star (NS) orbiting a Supergiant O/B star. The fraction of the dense and fast line-driven wind from the stellar companion which is accreted by the NS is responsible for most of the X-ray emission from those system. Classic \\sgx display photometric variability of their hard X-ray emission, typically from a few 10^{35} to a few 10^{37}erg\\cdots^{-1}. Inhomogeneities (\\aka clumps) in the wind from the star are expected to play a role in this time variability. We run 3D hydrodynamical (HD) finite volume simulations to follow the accretion of the inhomogeneous stellar wind by the NS over almost 3 orders of magnitude. To model the unperturbed wind far upstream the NS, we use recent simulations which managed to resolve its micro-structure. We observe the formation of a Bondi-Hoyle-Lyttleton (BHL) like bow shock around the accretor and follow the clumps as they cross it, down to the NS magnetosphere. Compared to previous estimations discarding the HD effects, we measure lower time variability due to both the damping effect of the shock and the necessity to evacuate angular momentum to enable accretion. We also compute the associated time-variable column density and compare it to recent observations in Vela X-1.
CzeV293 and CzeV581-Two new high-amplitude double-mode delta Scuti stars
NASA Astrophysics Data System (ADS)
Skarka, M.; Cagaš, P.
2016-07-01
We report on the discovery of two high-amplitude double-mode delta Scuti stars in constellations of Hercules and Auriga. The stars were observed photometrically in five and two seasons, respectively. Frequency analysis revealed that both stars show complex pulsation behaviour with two independent modes and several combination peaks. Placing the stars into the Petersen diagram allowed us to identify the pulsation modes as the fundamental and the first overtone. Both stars follow the general trend for F/1O pulsators in the short-period part of the Petersen diagram and turned out to be classical members of HADS group of variables. Using empirical formulae we roughly estimate visual absolute magnitude, intrinsic (B - V) 0 colour index and temperature of the target stars.
Variable Stars and Constant Commitments: The Stellar Career of Dorrit Hoffleit
NASA Astrophysics Data System (ADS)
Larsen, Kristine
2011-05-01
Astronomer, educator, and science historian Dorrit Hoffleit (1907-2007) was widely respected by the amateur and professional astronomical community as a mentor and an ardent supporter of independent research. Her more than 600 catalogues, books, articles, book reviews, and news columns cover myriad aspects of astronomy, from variable stars and stellar properties to meteor showers, quasars, and rocketry. She also made important contributions to the history of astronomy. Hoffleit worked at the Harvard College Observatory from 1927-1956, where she discovered over 1200 variable stars. When Director Harlow Shapley retired from Harvard, Hoffleit gave up her tenured position and moved to Yale University, where she was placed in charge of the Yale Catalog of Bright Stars. At the same time, she was offered a position as director of the Maria Mitchell Observatory on Nantucket Island in Massachusetts. Hoffleit split her dual positions into six-month stints and remained director at the Mitchell Observatory for 21 years, developing a summer research program that engaged more than 100 undergraduate students (all but three of them women) in variable star research. Up until shortly before her death, she continued to work tirelessly on selected projects, and she was in high demand as a collaborator with colleagues at Yale and elsewhere. She was especially devoted to the American Association of Variable Star Observers (AAVSO) in part because it brought together amateur and professional astronomers in collaboration. She served on the organization's council for 23 years and as its president from 1961-1963. In 2002, the AAVS0 published her autobiography, Misfortunes as Blessings in Disguise, in which Hoffleit explains how she always felt blessed by the opportunities in her life, even those which initially seemed misfortunes, and above all else valued creativity, flexibility, collegiality, and intellectual freedom in her professional life.
NASA Astrophysics Data System (ADS)
Richards, Joseph W.; Starr, Dan L.; Brink, Henrik; Miller, Adam A.; Bloom, Joshua S.; Butler, Nathaniel R.; James, J. Berian; Long, James P.; Rice, John
2012-01-01
Despite the great promise of machine-learning algorithms to classify and predict astrophysical parameters for the vast numbers of astrophysical sources and transients observed in large-scale surveys, the peculiarities of the training data often manifest as strongly biased predictions on the data of interest. Typically, training sets are derived from historical surveys of brighter, more nearby objects than those from more extensive, deeper surveys (testing data). This sample selection bias can cause catastrophic errors in predictions on the testing data because (1) standard assumptions for machine-learned model selection procedures break down and (2) dense regions of testing space might be completely devoid of training data. We explore possible remedies to sample selection bias, including importance weighting, co-training, and active learning (AL). We argue that AL—where the data whose inclusion in the training set would most improve predictions on the testing set are queried for manual follow-up—is an effective approach and is appropriate for many astronomical applications. For a variable star classification problem on a well-studied set of stars from Hipparcos and Optical Gravitational Lensing Experiment, AL is the optimal method in terms of error rate on the testing data, beating the off-the-shelf classifier by 3.4% and the other proposed methods by at least 3.0%. To aid with manual labeling of variable stars, we developed a Web interface which allows for easy light curve visualization and querying of external databases. Finally, we apply AL to classify variable stars in the All Sky Automated Survey, finding dramatic improvement in our agreement with the ASAS Catalog of Variable Stars, from 65.5% to 79.5%, and a significant increase in the classifier's average confidence for the testing set, from 14.6% to 42.9%, after a few AL iterations.
Wind properties of variable B supergiants. Evidence of pulsations connected with mass-loss episodes
NASA Astrophysics Data System (ADS)
Haucke, M.; Cidale, L. S.; Venero, R. O. J.; Curé, M.; Kraus, M.; Kanaan, S.; Arcos, C.
2018-06-01
Context. Variable B supergiants (BSGs) constitute a heterogeneous group of stars with complex photometric and spectroscopic behaviours. They exhibit mass-loss variations and experience different types of oscillation modes, and there is growing evidence that variable stellar winds and photospheric pulsations are closely related. Aims: To discuss the wind properties and variability of evolved B-type stars, we derive new stellar and wind parameters for a sample of 19 Galactic BSGs by fitting theoretical line profiles of H, He, and Si to the observed ones and compare them with previous determinations. Methods: The synthetic line profiles are computed with the non-local thermodynamic equilibrium (NLTE) atmosphere code FASTWIND, with a β-law for hydrodynamics. Results: The mass-loss rate of three stars has been obtained for the first time. The global properties of stellar winds of mid/late B supergiants are well represented by a β-law with β > 2. All stars follow the known empirical wind momentum-luminosity relationships, and the late BSGs show the trend of the mid BSGs. HD 75149 and HD 99953 display significant changes in the shape and intensity of the Hα line (from a pure absorption to a P Cygni profile, and vice versa). These stars have mass-loss variations of almost a factor of 2.8. A comparison among mass-loss rates from the literature reveals discrepancies of a factor of 1 to 7. This large variation is a consequence of the uncertainties in the determination of the stellar radius. Therefore, for a reliable comparison of these values we used the invariant parameter Qr. Based on this parameter, we find an empirical relationship that associates the amplitude of mass-loss variations with photometric/spectroscopic variability on timescales of tens of days. We find that stars located on the cool side of the bi-stability jump show a decrease in the ratio V∞/Vesc, while their corresponding mass-loss rates are similar to or lower than the values found for stars on the hot side. Particularly, for those variable stars a decrease in V∞/Vesc is accompanied by a decrease in Ṁ. Conclusions: Our results also suggest that radial pulsation modes with periods longer than 6 days might be responsible for the wind variability in the mid/late-type. These radial modes might be identified with strange modes, which are known to facilitate (enhanced) mass loss. On the other hand, we propose that the wind behaviour of stars on the cool side of the bi-stability jump could fit with predictions of the δ-slow hydrodynamics solution for radiation-driven winds with highly variable ionization. Based on observations taken with the J. Sahade Telescope at Complejo Astronómico El Leoncito (CASLEO), operated under an agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, the Secretaría de Ciencia y Tecnología de la Nación, and the National Universities of La Plata, Córdoba, and San Juan.
Testing our scenario of a failed wind for TW Hya
NASA Astrophysics Data System (ADS)
Guenther, Hans
2017-08-01
Young, accreting low-mass stars show strong, broad and asymmetric FUV emission lines. When multiple observations of the same wavelength region exist, we often see that the flux and profile of these lines change strongly between the observations. Observationally, this is poorly characterized, and theoretically, neither the lines profiles nor their variability can be explained. In 2011 we tried to remedy this situation by monitoring the classical Tauri star TW Hya for 10 orbits with HST/COS. At the time, the literature suggested that the variability could be due to a hot stellar wind and thus we distributed the observations over one month, which would have been the appropriate time scale. As it turns out, this assumption appears to have been wrong. The data we received clearly shows that no hot wind is present and that all variability happens on much shorter time scales. In this proposal, we show that we have done a thorough analysis of the existing data and we have a model to explain it. Now, we ask for additional monitoring of TW Hya to cover the time scale of a few hours - as we now know this is the relevant time scale to understand the variability.
Results of a search for γ Dor and δ SCT stars with the Kepler spacecraft
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, P. A.; Miles, L. F.; Guzik, J. A.
2015-02-01
The light curves of 2768 stars with effective temperatures and surface gravities placing them near the gamma Doradus (γ Dor)/delta Scuti (δ Sct) instability region were observed as part of the Kepler Guest Observer program from Cycles 1 through 5. The light curves were analyzed in a uniform manner to search for γ Dor, δ Sct, and hybrid star pulsations. The γ Dor, δ Sct, and hybrid star pulsations extend asteroseismology to stars slightly more massive (1.4–2.5 M{sub ⊙}) than our Sun. We find 207 γ Dor, 84 δ Sct, and 32 hybrid candidate stars. Many of these stars aremore » cooler than the red edge of the γ Dor instability strip as determined from ground-based observations made before Kepler. A few of our γ Dor candidate stars lie on the hot side of the ground-based γ Dor instability strip. The hybrid candidate stars cover the entire region between 6200 K and the blue edge of the ground-based δ Sct instability strip. None of our candidate stars are hotter than the hot edge of the ground-based δ Sct instability strip. Our discoveries, coupled with the work of others, show that Kepler has discovered over 2000 γ Dor, δ Sct, and hybrid star candidates in the 116 square degree Kepler field of view. We found relatively few variable stars fainter than magnitude 15, which may be because they are far enough away to lie between spiral arms in our Galaxy, where there would be fewer stars.« less
Fourier Decomposition and Properties of the Variable Stars in the Globular Cluster NGC 4833
NASA Astrophysics Data System (ADS)
Reed, Hunter M.; Pajkos, Michael A.; Murphy, Brian W.; Darragh, Andrew
2016-01-01
Globular clusters provide an ideal setting to study stellar evolution of stars of similar composition and age. RR Lyrae stars found in globular clusters have a variety of uses in probing the physical characteristics of the stellar population itself and its evolution. Building upon our previous study, we focus on the RR Lyrae stars in the globular cluster NGC 4833. From March through June 2014, we used the Southeastern Association for Research in Astronomy 0.6-meter telescope located at CTIO to collect nearly 1,500 images of NGC 4833 in the B, V, R, and I bands. Using difference image analysis we identified 40 variable stars. Of these, 20 were RR Lyrae stars with 10 being of type RR0, 7 of type RR1, and 3 of type RR2. Additionally, 6 SX Phe, 5 eclipsing binaries, and 9 long period variables were identified. The average period of the type RR0, RR1, and RR2 type variables were 0.69597 days, 0.39547 days, and 0.30654 days, respectively. The periods of the RR Lyrae stars and ratio of N1/(N0+N1) of 0.41 is indicative of an Oosterhoff Type II cluster. The observations of the RR Lyrae stars were of very high quality and phase coverage allowing us to perform Fourier decomposition of their light curves. From this Fourier decomposition we were able to determine the physical characteristics of the RR Lyrae stars. We found the mean iron abundance to be [Fe/H]JKZW = -1.87 ± 0.06, the mean apparent V-magnitude RR0 and RR1 type variables to be VRR = 15.51 ± 0.11, a mean absolute V-magnitude of MV = 0.636 ± 0.053; and an effective temperature for RR0's and RR1's of log10Teff = 3.797 and log10Teff = 3.855, respectively. The multi-band photometry allowed us to determine the reddening of the cluster, E(B-V) = 0.342 ± 0.021, which resulted in a distance of D(kpc) = 5.91 ± 0.31 to NGC 4833.
Rotation Periods and Photometric Amplitudes for Cool Stars with TESS
NASA Astrophysics Data System (ADS)
Andrews, Hannah; Dominguez, Zechariah; Johnson, Sara; Buzasi, Derek L.
2018-06-01
The original Kepler mission observed 200000 stars in the same field nearly continuously for over four years, generating an unparalleled set of stellar rotation curves and new insights into the correlation between rotation periods and photometric variability on the lower main sequence. The continuation of Kepler in the guise of K2 has allowed us to examine a stellar sample comparable in size to that observed with Kepler, but drawn from new stellar populations. However, K2 observed each field for at most three months, limiting the inferences that can be drawn, particularly for older, slower-rotating stars. The upcoming TESS spacecraft will provide light curves for perhaps two orders of magnitude more stars, but with time windows as short as 27 days. In this work, we resample Kepler light curves using the TESS observing window, and study what can be learned from high-precision light curves of such short lengths, and how to compare those results to what we have learned from Kepler.
Modeling the optical radiation of the precataclysmic variable SDSS J212531-010745
NASA Astrophysics Data System (ADS)
Shimansky, V. V.; Borisov, N. V.; Nurtdinova, D. N.; Solovyeva, Yu. N.; Sakhibullin, N. A.; Spiridonova, O. I.
2015-03-01
Optical observations are analyzed to derive a set of basic parameters for the precataclysmic variable star SDSS J212531-010745, whose primary is a PG1159-type star. Spectroscopic and multiband photometric observations of the star were performed in 2008-2011 with the 6-m telescope and the Zeiss-1000 telescope of the Special Astrophysical Observatory. The shape of the binary's orbital light curves is nearly sinusoidal, with the amplitude increasing with wavelength from Δ m = 0.40 m in the B band to Δ m = 0.73 m in the R band. The spectra contain absorption lines of HeII and neutral atoms, along with HI, HeI, CII, MgII, FeII emission lines, whose intensity increases synchronously with the brightness of the system. The optical radiation from SDSS J212531-010745 has a composite nature, corresponding to a model for a pre-cataclysmic variable with strong reflection effects. Cross-correlation techniques are used to measure the radial velocities and derive the component masses. Numerical modeling of the binary's light curves, radial velocities, and spectra is performed, and a complete set of parameters determined. Considerable abundance anomalies (to 1 dex) were detected for the secondary. The primary's characteristics correspond to the evolutionary predictions for DAO dwarfs with masses M ≈ 0.5 M ⊙, and the secondary's characteristics to low-mass, main-sequence stars with the solar metallicity.
On the nature of candidate luminous blue variables in M 33
NASA Astrophysics Data System (ADS)
Clark, J. S.; Castro, N.; Garcia, M.; Herrero, A.; Najarro, F.; Negueruela, I.; Ritchie, B. W.; Smith, K. T.
2012-05-01
Context. Luminous blue variables (LBVs) are a class of highly unstable stars that have been proposed to play a critical role in massive stellar evolution as well as being the progenitors of some of the most luminous supernovae known. However the physical processes underlying their characteristic instabilities are currently unknown. Aims: In order to provide observational constraints on this behaviour we have initiated a pilot study of the population of (candidate) LBVs in the Local Group galaxy M 33. Methods: To accomplish this we have obtained new spectra of 18 examples within M 33. These provide a baseline of ≥ 4 yr with respect to previous observations, which is well suited to identifying LBV outbursts. We also employed existing multi-epoch optical and mid-IR surveys of M 33 to further constrain the variability of the sample and search for the presence of dusty ejecta. Results: Combining the datasets reveals that spectroscopic and photometric variability appears common, although in the majority of cases further observations will be needed to distinguish between an origin for this behavour in short lived stochastic wind structure and low level photospheric pulsations or coherent long term LBV excursions. Of the known LBVs we report a hitherto unidentified excursion of M 33 Var C between 2001-5, while the transition of the WNLh star B517 to a cooler B supergiant phase between 1993-2010 implies an LBV classification. Proof-of-concept quantitative model atmosphere analysis is provided for Romano's star; the resultant stellar parameters being consistent with the finding that the LBV excursions of this star are accompanied by changes in bolometric luminosity. The combination of temperature and luminosity of two stars, the BHG [HS80] 110A and the cool hypergiant B324, appear to be in violation of the empirical Humphreys-Davidson limit. Mid-IR observations demonstrate that a number of candidates appear associated with hot circumstellar dust, although no objects as extreme as η Car are identified. The combined dataset suggests that the criteria employed to identify candidate LBVs results in a heterogeneous sample, also containing stars demonstrating the B[e] phenomenon. Of these, a subset of optically faint, low luminosity stars associated with hot dust are of particular interest since they appear similar to the likely progenitor of SN 2008S and the 2008 NGC 300 transient (albeit suffering less intrinsic extinction). Conclusions: The results of such a multiwavelength observational approach, employing multiplexing spectrographs and supplemented with quantitative model atmosphere analysis, appears to show considerable promise in both identifying and characterising the physical properties of LBVs as well as other short lived phases of massive stellar evolution. Based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.Appendix is available in electronic form at http://www.aanda.org
NASA Technical Reports Server (NTRS)
Marinucci, A.; Matt, G.; Bianchi, S.; Lu, T. N.; Arevalo, P.; Balokovic, M.; Ballantyne, D.; Bauer, F. E.; Boggs, S. E.; Stern, D.;
2014-01-01
We present NuSTAR observations of the bright Seyfert 2 galaxy NGC 2110 obtained in 2012, when the source was at the highest flux level ever observed, and in 2013, when the source was at a more typical flux level. We include archival observations from other X-ray satellites, namely XMM-Newton, Suzaku, BeppoSAX, Chandra and Swift. Simultaneous NuSTAR and Swift broad band spectra (in the 3-80 keV range) indicate a cutoff energy E(sub c) greater than 210 keV, with no detectable contribution from Compton reflection. NGC 2110 is one of the very few sources where no evidence for distant Compton thick scattering is found and, by using temporal information collected over more than a decade, we investigate variations of the iron K(alpha) line on time scales of years. The Fe K alpha line is likely the sum of two components: one constant (originating from distant Compton-thick material) and the other one variable and linearly correlated with the source flux (possibly arising from Compton-thin material much closer to the black hole).
Propeller-driven outflows from an MRI disc
NASA Astrophysics Data System (ADS)
Lii, Patrick S.; Romanova, Marina M.; Ustyugova, Galina V.; Koldoba, Alexander V.; Lovelace, Richard V. E.
2014-06-01
Accreting magnetized stars may be in the propeller regime of disc accretion in which the angular velocity of the stellar magnetosphere exceeds that of the inner disc. In these systems, the stellar magnetosphere acts as a centrifugal barrier and plays a dominant role in the inner disc dynamics by inhibiting matter accretion on to the star. In this work, we investigate the dynamics of the propeller regime using axisymmetric MHD simulations of MRI-driven accretion on to a rapidly rotating magnetized star. The disc matter is inhibited from accreting on to the star and instead accumulates at the disc-magnetosphere boundary, slowly building up a reservoir of matter. Some of this matter diffuses into the outer magnetosphere where it picks up angular momentum and is ejected as an outflow which gradually collimates at larger distances from the star. If the ejection rate is smaller than the disc's accretion rate, then the matter accumulates at the disc-magnetosphere boundary faster than it can be ejected. In this situation, accretion on to the propelling star proceeds through the episodic accretion cycle in which episodes of matter accumulation are followed by a brief episode of simultaneous ejection and accretion on to the star. In addition to the matter-dominated wind component, the propeller also drives a well-collimated, magnetically dominated Poynting jet which transports energy and angular momentum away from the star. The propelling stars undergo strong spin-down due to the outflow of angular momentum in the wind and jet. We measure spin-down time-scales of ˜1.2 Myr for a cTTs in the strong propeller regime of accretion. The propeller mechanism may explain some of the jets and winds observed around some T Tauri stars as well as the nature of their ejections. It may also explain some of the quasi-periodic variability observed in cataclysmic variables, millisecond pulsars and other magnetized stars.
A HIGH-VELOCITY BULGE RR LYRAE VARIABLE ON A HALO-LIKE ORBIT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunder, Andrea; Storm, J.; Rich, R. M.
2015-07-20
We report on the RR Lyrae variable star, MACHO 176.18833.411, located toward the Galactic bulge and observed within the data from the ongoing Bulge RR Lyrae Radial Velocity Assay, which has the unusual radial velocity of −372 ± 8 km s{sup −1} and true space velocity of −482 ± 22 km s{sup −1} relative to the Galactic rest frame. Located less than 1 kpc from the Galactic center and toward a field at (l, b) = (3, −2.5), this pulsating star has properties suggesting it belongs to the bulge RR Lyrae star population, yet a velocity indicating it is abnormal,more » at least with respect to bulge giants and red clump stars. We show that this star is most likely a halo interloper and therefore suggest that halo contamination is not insignificant when studying metal-poor stars found within the bulge area, even for stars within 1 kpc of the Galactic center. We discuss the possibility that MACHO 176.18833.411 is on the extreme edge of the bulge RR Lyrae radial velocity distribution, and also consider a more exotic scenario in which it is a runaway star moving through the Galaxy.« less
NASA Astrophysics Data System (ADS)
Holgado, G.; Simón-Díaz, S.; Barbá, R. H.; Puls, J.; Herrero, A.; Castro, N.; Garcia, M.; Maíz Apellániz, J.; Negueruela, I.; Sabín-Sanjulián, C.
2018-06-01
Context. The IACOB and OWN surveys are two ambitious, complementary observational projects which have made available a large multi-epoch spectroscopic database of optical high resolution spectra of Galactic massive O-type stars. Aims: Our aim is to study the full sample of (more than 350) O stars surveyed by the IACOB and OWN projects. As a first step towards this aim, we have performed the quantitative spectroscopic analysis of a subsample of 128 stars included in the modern grid of O-type standards for spectral classification. The sample comprises stars with spectral types in the range O3-O9.7 and covers all luminosity classes. Methods: We used the semi-automatized IACOB-BROAD and IACOB-GBAT/FASTWIND tools to determine the complete set of spectroscopic parameters that can be obtained from the optical spectrum of O-type stars. A quality flag was assigned to the outcome of the IACOB-GBAT/FASTWIND analysis for each star, based on a visual evaluation of how the synthetic spectrum of the best fitting FASTWIND model reproduces the observed spectrum. We also benefitted from the multi-epoch character of the IACOB and OWN surveys to perform a spectroscopic variability study of the complete sample, providing two different flags for each star accounting for spectroscopic binarity as well as variability of the main wind diagnostic lines. Results: We obtain - for the first time in a homogeneous and complete manner - the full set of spectroscopic parameters of the "anchors" of the spectral classification system in the O star domain. We provide a general overview of the stellar and wind parameters of this reference sample, as well as updated recipes for the SpT-Teff and SpT-log g calibrations for Galactic O-type stars. We also propose a distance-independent test for the wind-momentum luminosity relationship. We evaluate the reliability of our semi-automatized analysis strategy using a subsample of 40 stars extensively studied in the literature, and find a fairly good agreement between our derived effective temperatures and gravities and those obtained by means of more traditional "by-eye" techniques and different stellar atmosphere codes. The overall agreement between the synthetic spectra associated with the IACOB-GBAT/FASTWIND best fitting models and the observed spectra is good for most of the analyzed targets, but 46 stars out of the 128 present a particular behavior of the wind diagnostic lines that cannot be reproduced by our grid of spherically symmetric unclumped models. These are potential targets of interest for more detailed investigations of clumpy winds and/or the existence of additional circumstellar emitting components contaminating the wind diagnostic lines (e.g., disks, magnetospheres). Last, our spectroscopic variability study has led to the detection of clear or likely signatures of spectroscopic binarity in 27% of the stars and small amplitude radial velocity variations in the photospheric lines of another 30%. Additionally, 31% of the investigated stars show variability in the wind diagnostic lines. Tables D.1 and D.2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/613/A65
NASA Astrophysics Data System (ADS)
Murphy, Brian W.; Darragh, Andrew; Hettinger, Paul; Hibshman, Adam; Johnson, Elliott W.; Liu, Z. J.; Pajkos, Michael A.; Stephenson, Hunter R.; Vondersaar, John R.; Conroy, Kyle E.; McCombs, Thayne A.; Reinhardt, Erik D.; Toddy, Joseph
2015-08-01
We present the results of an extensive study intended to search for and properly classify the variable stars in five galactic globular clusters. Each of the five clusters was observed hundreds to thousands of times over a time span ranging from 2 to 4 years using the SARA 0.6m located at Cerro Tololo Interamerican Observatory. The images were analyzed using the image subtract method of Alard (2000) to identify and produce light curves of all variables found in each cluster. In total we identified 373 variables with 140 of these being newly discovered increasing the number of known variables stars in these clusters by 60%. Of the total we have identified 312 RR Lyrae variables (187 RR0, 18 RR01, 99 RR1, 8 RR2), 9 SX Phe stars, 6 Cepheid variables, 11 eclipsing variables, and 35 long period variables. For IC4499 we identified 64 RR0, 18 RR01, 14 RR1, 4 RR2, 1 SX Phe, 1 eclipsing binary, and 2 long period variables. For NGC4833 we identified 10 RR0, 7 RR1, 2 RR2, 6 SX Phe, 5 eclipsing binaries, and 9 long period variables. For NGC6171 (M107) we identified 13 RR0, 7 RR1, and 1 SX Phe. For NGC6402 (M14) we identified 52 RR0, 56 RR1, 1 RR2, 1 SX Phe, 6 Cepheids, 1 eclipsing binary, and 15 long period variables. For NGC6584 we identified 48 RR0, 15 RR1, 1 RR2, 5 eclipsing binaries, and 9 long period variables. Using the RR Lyrae variables we found the mean V magnitude of the horizontal branch to be VHB = ⟨V ⟩RR = 17.63, 15.51, 15.72, 17.13, and 16.37 magnitudes for IC4499, NGC4833, NGC6171 (M107), NGC6402 (M14), and NGC6584, respectively. From our extensive data set we were able to obtain sufficient temporal and complete phase coverage of the RR Lyrae variables. This has allowed us not only to properly classify each of the RR Lyrae variables but also to use Fourier decomposition of the light curves to further analyze the properties of the variable stars and hence physical properties of each clusters. In this poster we will give the temperature, radius, stellar mass, metallicity, and helium abundance of the set of RR Lyrae variable stars found in each of the five globular clusters.
A search variability in the UV spectrum of Pi Aquarii and Fe 3 shell lines of Be stars
NASA Technical Reports Server (NTRS)
1984-01-01
Several short U1 and U2 observations of Be stars are obtained with the Copernicus satellite. Pi Aquarii (B1 IV-Ve) is observed with the U1 and U2 spectrometers. These scans are compared with earlier observations. Variations in the strengths and profiles of selected shell and photospheric features are examined. In order to study possible changes in the temperature of the circumstellar envelope, features covering a wide range in ionization are observed. Included in the observing program are lines of O VI, N V, Si IV, Si III, S III, Fe III, and N I.
Mythical Maia, ultrashort and 53 PSC variables. Lecture 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, A.N.
1983-03-14
Moving down the main sequence from the ..beta.. Cephei variables, we come to later B-type stars. The suspicion of variability for these stars goes back to Vogel in 1891 who studied the radial velocities of Vega. Since that time there have been numerous studies of Vega (Wisniewski and Johnson 1979, Fernie 1981) and other B and early A stars which hint at variability in both radial velocity and light. Since Struve (1955) discussed these stars 28 years ago, they have been called the Maia stars after the Pleiades star that he thought was the prototype. The uncertainty in their actualmore » variability has led Breger (1980) to call them the mythical Maia variables.« less
2MASS J22560844+5954299: the newly discovered cataclysmic star with the deepest eclipse
NASA Astrophysics Data System (ADS)
Kjurkchieva, D.; Khruzina, T.; Dimitrov, D.; Groebel, R.; Ibryamov, S.; Nikolov, G.
2015-12-01
Context. The SW Sex stars are assumed to represent a distinguished stage in cataclysmic variable (CV) evolution, making it especially important to study them. Aims: We discovered a new cataclysmic star and carried out prolonged and precise photometric observations, as well as medium-resolution spectral observations. Modelling these data allowed us to determine the physical parameters and to establish its peculiarities. Methods: To obtain a light curve solution we used model whose emission sources are a white dwarf surrounded by an accretion disk with a hot spot, a gaseous stream near the disk's lateral side, and a secondary star filling its Roche lobe. The obtained physical parameters are compared with those of other SW Sex-subtype stars. Results: The newly discovered cataclysmic variable 2MASS J22560844+5954299 shows the deepest eclipse amongst the known nova-like stars. It was reproduced by totally covering a very luminous accretion disk by a red secondary component. The temperature distribution of the disk is flatter than that of steady-state disk. The target is unusual with the combination of a low mass ratio q ~ 1.0 (considerably below the limit q = 1.2 of stable mass transfer of CVs) and an M-star secondary. The intensity of the observed three emission lines, Hα, He 5875, and He 6678, sharply increases around phase 0.0, accompanied by a Doppler jump to the shorter wavelength. The absence of eclipses of the emission lines and their single-peaked profiles means that they originate mainly in a vertically extended hot-spot halo. The emission Hα line reveals S-wave wavelength shifts with semi-amplitude of around 210 km s-1 and phase lag of 0.03. Conclusions: The non-steady-state emission of the luminous accretion disk of 2MASS J22560844+5954299 was attributed to the low viscosity of the disk matter caused by its unusually high temperature. The star shows all spectral properties of an SW Sex variable apart from the 0.5 central absorption. Based on data collected with the telescopes at Rozhen National Astronomical Observatory.Spectra (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/584/A40
Observations of CI Cam needed to support spectroscopy
NASA Astrophysics Data System (ADS)
Waagen, Elizabeth O.
2016-10-01
Kelly Gourdji and Marcella Wijngaarden (graduate students at the University of Amsterdam/Anton Pannekoek Institute for Astronomy) have requested AAVSO observers' assistance in providing optical photometry of CI Cam in support of their high-resolution spectroscopy from now through January 2017. They write: "...We are currently observing the variable star CI Cam (the B[e] optical counterpart of a HMXB system) with the HERMES spectrograph at the Mercator Telescope in La Palma. Having observed the star for three nights now, the object appears to be in outburst. In particular, H alpha was measured to be 80 times the continuum flux, and increasing between Oct. 9 and 12. This is similar to the previous outburst in 2004/5. Photometric data obtained during the 2004/5 outburst suggested an outburst duration of about 3 months and a peak brightness of 11.2 in the V band." More information is available in ATel #9634 (Wijngaarden et al.). Multiple snapshot observations per night in BVRI are requested beginning immediately and continuing through January 2017. Time series are not necessary unless requested later via an AAVSO Special Notice. Observations made using other filters will be useful as well as long as there are multiple observations in these bands. Finder charts with sequence may be created using the AAVSO Variable Star Plotter (https://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details.
A Photometric Search for Planets in the Open Cluster NGC 7086
NASA Astrophysics Data System (ADS)
Rosvick, Joanne M.; Robb, Russell
2006-12-01
In an attempt to discover short-period, Jupiter-mass planets orbiting solar-type stars in open clusters, we searched for planetary transits in the populous and relatively unstudied open cluster NGC 7086. A color-magnitude diagram constructed from new B and V photometry is presented, along with revised estimates of the cluster's color excess, distance modulus, and age. Several turnoff stars were observed spectroscopically in order to determine a color excess of E(B-V)=0.83+/-0.02. Empirically fitting the main sequences of two young open clusters and the semiempirical zero-age main sequence of Vandenberg and Poll yielded a distance modulus of (V-MV)=13.4+/-0.3 mag. This corresponds to a true distance modulus of (m-M)0=10.8 mag or a distance of 1.5 kpc to NGC 7086. These values were used with isochrones from the Padova group to obtain a cluster age of 100 Myr. Eleven nights of R-band photometry were used to search for planetary transits. Differential magnitudes were constructed for each star in the cluster. Light curves for each star were produced on a night-to-night basis and inspected for variability. No planetary transits were apparent; however, some interesting variable stars were discovered: a pulsating variable that appears to be a member of the γ Dor class and four possible eclipsing binary stars, one of which actually may be a multiple system.
An AO-assisted Variability Study of Four Globular Clusters
NASA Astrophysics Data System (ADS)
Salinas, R.; Contreras Ramos, R.; Strader, J.; Hakala, P.; Catelan, M.; Peacock, M. B.; Simunovic, M.
2016-09-01
The image-subtraction technique applied to study variable stars in globular clusters represented a leap in the number of new detections, with the drawback that many of these new light curves could not be transformed to magnitudes due to severe crowding. In this paper, we present observations of four Galactic globular clusters, M 2 (NGC 7089), M 10 (NGC 6254), M 80 (NGC 6093), and NGC 1261, taken with the ground-layer adaptive optics module at the SOAR Telescope, SAM. We show that the higher image quality provided by SAM allows for the calibration of the light curves of the great majority of the variables near the cores of these clusters as well as the detection of new variables, even in clusters where image-subtraction searches were already conducted. We report the discovery of 15 new variables in M 2 (12 RR Lyrae stars and 3 SX Phe stars), 12 new variables in M 10 (11 SX Phe and 1 long-period variable), and 1 new W UMa-type variable in NGC 1261. No new detections are found in M 80, but previous uncertain detections are confirmed and the corresponding light curves are calibrated into magnitudes. Additionally, based on the number of detected variables and new Hubble Space Telescope/UVIS photometry, we revisit a previous suggestion that M 80 may be the globular cluster with the richest population of blue stragglers in our Galaxy. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).
Low-Frequency Temporal Variability in Mira and Semiregular Variables
NASA Astrophysics Data System (ADS)
Templeton, Matthew R.; Karovska, M.; Waagen, E. O.
2012-01-01
We investigate low-frequency variability in a large sample of Mira and semiregular variables with long-term visual light curves from the AAVSO International Database. Our aim is to determine whether we can detect and measure long-timescale variable phenomena in these stars, for example photometric variations that might be associated with supergranular convection. We analyzed the long-term light curves of 522 variable stars of the Mira and SRa, b, c, and d classes. We calculated their low-frequency time-series spectra to characterize rednoise with the power density spectrum index, and then correlate this index with other observable characteristics such as spectral type and primary pulsation period. In our initial analysis of the sample, we see that the semiregular variables have a much broader range of spectral index than the Mira types, with the SRb subtype having the broadest range. Among Mira variables we see that the M- and S-type Miras have similarly wide ranges of index, while the C-types have the narrowest with generally shallower slopes. There is also a trend of steeper slope with larger amplitude, but at a given amplitude, a wide range of slopes are seen. The ultimate goal of the project is to identify stars with strong intrinsic red noise components as possible targets for resolved surface imaging with interferometry.
Near-Simultaneous Spectroscopic and Broadband Polarimetric Observations of Be Stars
NASA Technical Reports Server (NTRS)
Ghosh, K.; Iyengar, K. V. K.; Ramsey, B. D.; Austin, R. A.
1999-01-01
Near simultaneous optical spectroscopic (on four nights) and broadband linear continuum (B, V, R, and I bands) polarimetric (on seven nights) observations of 29 Be stars were carried out during 1993 November-December. The program Be stars displayed wavelength dependence of intrinsic polarizations with no frequency dependence of polarimetric position angles. Some of the Be stars displayed long-term polarization variability. The Be and Be-shell stars could not be distinguished from one another solely on the basis of their polarization values. Full widths at half-maximum of the H.alpha profiles and the intrinsic linear continuum polarizations are closely correlated with the projected rotational velocities of the program stars. Photospheric-absorption-corrected equivalent widths of H.alpha profiles [W(alpha)] and the radii of H.alpha-emitting or -absorbing envelopes (R(sub e) or R(sub a)) are nonlinearly correlated with the intrinsic continuum polarizations of these stars. However, W(alpha) and R(sub e) are linearly correlated. With large uncertainties, there is a trend of spectral dependence of polarization. Detailed discussion of these results is presented in this paper.
NASA Astrophysics Data System (ADS)
Howell, Steve B.; Cash, Jennifer; Mason, Keith O.; Herzog, Adrienne E.
1999-02-01
We present the first UV spectral observations of six magnetic cataclysmic variables discovered by the ROSAT Wide Field Camera (WFC). Using the^ International Ultraviolet Explorer (IUE), 1200-3400 Å spectra were obtained of the AM Herculis stars RE 0531-46, RE 1149+28, RE 1844-74, QS Tel (RE 1938-46), and HU Aqr (RE 2107-05) and the DQ Herculis star PQ Gem (RE 0751+14). The high-state UV spectra are dominated by strong emission lines. Continuum flux distributions for these stars (from 100 to 5500 Å) reveal that over this entire range, none of the spectral energy distributions can be fitted by a single-valued blackbody. Our new UV observations and additional archival IUE spectra were used to discover a correlation between the strength of the high-state UV emission lines and the strength of the white dwarf magnetic field. Model spectral results are used to confirm the production of the UV emission lines by photoionization from X-ray and EUV photons.
NASA Astrophysics Data System (ADS)
Jeřábková, T.; Kroupa, P.; Dabringhausen, J.; Hilker, M.; Bekki, K.
2017-12-01
The stellar initial mass function (IMF) has been described as being invariant, bottom-heavy, or top-heavy in extremely dense star-burst conditions. To provide usable observable diagnostics, we calculate redshift dependent spectral energy distributions of stellar populations in extreme star-burst clusters, which are likely to have been the precursors of present day massive globular clusters (GCs) and of ultra compact dwarf galaxies (UCDs). The retention fraction of stellar remnants is taken into account to assess the mass to light ratios of the ageing star-burst. Their redshift dependent photometric properties are calculated as predictions for James Webb Space Telescope (JWST) observations. While the present day GCs and UCDs are largely degenerate concerning bottom-heavy or top-heavy IMFs, a metallicity- and density-dependent top-heavy IMF implies the most massive UCDs, at ages < 100 Myr, to appear as objects with quasar-like luminosities with a 0.1-10% variability on a monthly timescale due to core collapse supernovae.
CCD time-resolved photometry of faint cataclysmic variables. I
NASA Technical Reports Server (NTRS)
Howell, Steve; Szkody, Paula
1988-01-01
CCD time-resolved V and B differential light curves are presented for the dwarf novae AR And, FS Aur, TT Boo, UZ Boo, AF Cam, AL Com, AW Gem, X Leo, RZ Leo, CW Mon, SW UMa, and TW Vir. The time-series observations ranged from 2 to 6 hours and have accuracies of 0.025 mag or better for the majority of the runs. Except for AR And, X Leo, CW Mon, and TW Vir, the periods are below the cataclysmic-variable period gap (about 2 hours), and the systems are potential SU UMa stars. Photometric periods for five of the stars are the first such determinations, while those for the other seven generally confirm previous spectroscopic or photometric observations. In several cases, the photometric modulations are large amplitude (up to 0.5 mag). The results on AL Com and SW UMa indicate they may be magnetic variables.
Dynamic Young Stars and their Disks: A Temporal View of NGC 2264 with Spitzer and CoRoT
NASA Astrophysics Data System (ADS)
Cody, Ann Marie; Stauffer, John; Bouvier, Jèrôme
2014-01-01
Variability is a signature feature of young stars. Among the well known light curve phenomena are periodic variations attributed to surface spots and irregular changes associated with accretion or circumstellar disk material. While decades of photometric monitoring have provided a framework for classifying young star variability, we still know surprisingly little about its underlying mechanisms and connections to the surrounding disks. In the past few years, dedicated photometric monitoring campaigns from the ground and space have revolutionized our view of young stars in the time domain. We present a selection of optical and infrared time series from several recent campaigns, highlighting the Coordinated Synoptic Investigation of NGC 2264 ("CSI 2264")- a joint30-day effort with the Spitzer, CoRoT, and MOST telescopes. The extraordinary photometric precision, high cadence, and long time baseline of these observations is now enabling correlation of variability properties at very different wavelengths, corresponding to locations from the stellar surface to the inner 0.1 AU of the disk. We present some results of the CSI 2264 program, including new classes of optical/infrared behavior. Further efforts to tie observed variability features to physical models will provide insights into the inner disk environment at a time when planet formation may be underway. Based on data from the Spitzer and CoRoT missions. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA-s RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain.
An Hα-selected sample of cataclysmic variables - I. Observations of newly discovered systems
NASA Astrophysics Data System (ADS)
Pretorius, Magaretha L.; Knigge, Christian
2008-04-01
Strong selection effects are present in observational samples of cataclysmic variables (CVs), complicating comparisons to theoretical predictions. The selection criteria used to define most CV samples discriminate heavily against the discovery of short-period, intrinsically faint systems. The situation can be improved by selecting CVs for the presence of emission lines. For this reason, we have constructed a homogeneous sample of CVs selected on the basis of Hα emission. We present discovery observations of the 14 CVs and two additional CV candidates found in this search. The orbital periods of 11 of the new CVs were measured; all are above 3 h. There are two eclipsing systems in the sample, and one in which we observed a quasi-periodic modulation on a ~1000s time-scale. We also detect the secondary star in the spectrum of one system, and measure its spectral type. Several of the new CVs have the spectroscopic appearance of nova-like variables, and a few display what may be SW Sex star behaviour. In a companion paper, we discuss the implications of this new sample for CV evolution.
X-ray emitting T Tauri stars in the L1551 cloud
NASA Technical Reports Server (NTRS)
Koyama, Katsuji; Reid, I. Neill; Carkner, Lee; Feigelson, Eric D.; Montmerle, Thierry
1995-01-01
Low mass pre-main sequence stars in the nearby Lynds 1551 star forming cloud are studied with the ROSAT and ASCA X-ray satellites. An 8 ksec ROSAT image reveals 38 sources including 7 well-known T Tauri stars, 2 likely new weak-lined T Tauri stars, 5 potential new weak-lined T Tauri stars, one is a young B9 star, and the remaining sources are unrelated to the cloud or poorly identified. A 40 ksec ASCA image of the cloud detects seven of the ROSAT sources. Spectral fitting of the brighter X-ray emitting stars suggests the emission is produced in either a multi-temperature plasma, with temperatures near 0.2 and 1 keV, or a single-temperature plasma with low metal abundances. XZ Tau, a young classical T Tauri star, is much stronger in ASCA than ROSAT observations showing a harder (1.5-2.0 kev) component. Timing analysis reveals all but one of the T Tauri stars are variable on timescales ranging from one hour to a year. A powerful flare, emitting 3 x 10(exp 34) ergs within a 40 minute rise and fall, was observed by ASCA on the weak-lined T Tauri star V826 Tau. The event was preceded and followed by constant quiescent X-ray emission. The extreme classical T Tauri star XZ Tau was also caught during both high and low states, varying by a factor of 15 between the ASCA and ROSAT observations. Neither of the luminous infrared embedded protostars L1551-IRS 5 or L1551NE were detected by ROSAT or ASCA.
A recurrent neural network for classification of unevenly sampled variable stars
NASA Astrophysics Data System (ADS)
Naul, Brett; Bloom, Joshua S.; Pérez, Fernando; van der Walt, Stéfan
2018-02-01
Astronomical surveys of celestial sources produce streams of noisy time series measuring flux versus time (`light curves'). Unlike in many other physical domains, however, large (and source-specific) temporal gaps in data arise naturally due to intranight cadence choices as well as diurnal and seasonal constraints1-5. With nightly observations of millions of variable stars and transients from upcoming surveys4,6, efficient and accurate discovery and classification techniques on noisy, irregularly sampled data must be employed with minimal human-in-the-loop involvement. Machine learning for inference tasks on such data traditionally requires the laborious hand-coding of domain-specific numerical summaries of raw data (`features')7. Here, we present a novel unsupervised autoencoding recurrent neural network8 that makes explicit use of sampling times and known heteroskedastic noise properties. When trained on optical variable star catalogues, this network produces supervised classification models that rival other best-in-class approaches. We find that autoencoded features learned in one time-domain survey perform nearly as well when applied to another survey. These networks can continue to learn from new unlabelled observations and may be used in other unsupervised tasks, such as forecasting and anomaly detection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cacciari, C.; Clementini, G.
Attention is given to the folowing topics: population I and II variable stars; LP variables, the sun, and mass determination; and predegenerate and degenerate variables. Particular papers are presented on alternative evolutionary approaches to the absolute magnitude of the RR Lyrae variables; the evolution of the Cepheid stars; nonradial pulsations in rapidly rotating Delta Scuti stars; dynamical models of dust shells around Mira variables; and pulsations of central stars of planetary nebulae.
New variable stars discovered in the fields of three Galactic open clusters using the VVV survey
NASA Astrophysics Data System (ADS)
Palma, T.; Minniti, D.; Dékány, I.; Clariá, J. J.; Alonso-García, J.; Gramajo, L. V.; Ramírez Alegría, S.; Bonatto, C.
2016-11-01
This project is a massive near-infrared (NIR) search for variable stars in highly reddened and obscured open cluster (OC) fields projected on regions of the Galactic bulge and disk. The search is performed using photometric NIR data in the J-, H- and Ks- bands obtained from the Vista Variables in the Vía Láctea (VVV) Survey. We performed in each cluster field a variability search using Stetson's variability statistics to select the variable candidates. Later, those candidates were subjected to a frequency analysis using the Generalized Lomb-Scargle and the Phase Dispersion Minimization algorithms. The number of independent observations range between 63 and 73. The newly discovered variables in this study, 157 in total in three different known OCs, are classified based on their light curve shapes, periods, amplitudes and their location in the corresponding color-magnitude (J -Ks ,Ks) and color-color (H -Ks , J - H) diagrams. We found 5 possible Cepheid stars which, based on the period-luminosity relation, are very likely type II Cepheids located behind the bulge. Among the newly discovered variables, there are eclipsing binaries, δ Scuti, as well as background RR Lyrae stars. Using the new version of the Wilson & Devinney code as well as the "Physics Of Eclipsing Binaries" (PHOEBE) code, we analyzed some of the best eclipsing binaries we discovered. Our results show that these studied systems turn out to be ranging from detached to double-contact binaries, with low eccentricities and high inclinations of approximately 80°. Their surface temperatures range between 3500 K and 8000 K.
DISCOVERY OF BRIGHT GALACTIC R CORONAE BOREALIS AND DY PERSEI VARIABLES: RARE GEMS MINED FROM ACVS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, A. A.; Richards, J. W.; Bloom, J. S.
2012-08-20
We present the results of a machine-learning (ML)-based search for new R Coronae Borealis (RCB) stars and DY Persei-like stars (DYPers) in the Galaxy using cataloged light curves from the All-Sky Automated Survey (ASAS) Catalog of Variable Stars (ACVS). RCB stars-a rare class of hydrogen-deficient carbon-rich supergiants-are of great interest owing to the insights they can provide on the late stages of stellar evolution. DYPers are possibly the low-temperature, low-luminosity analogs to the RCB phenomenon, though additional examples are needed to fully establish this connection. While RCB stars and DYPers are traditionally identified by epochs of extreme dimming that occurmore » without regularity, the ML search framework more fully captures the richness and diversity of their photometric behavior. We demonstrate that our ML method can use newly discovered RCB stars to identify additional candidates within the same data set. Our search yields 15 candidates that we consider likely RCB stars/DYPers: new spectroscopic observations confirm that four of these candidates are RCB stars and four are DYPers. Our discovery of four new DYPers increases the number of known Galactic DYPers from two to six; noteworthy is that one of the new DYPers has a measured parallax and is m Almost-Equal-To 7 mag, making it the brightest known DYPer to date. Future observations of these new DYPers should prove instrumental in establishing the RCB connection. We consider these results, derived from a machine-learned probabilistic classification catalog, as an important proof-of-concept for the efficient discovery of rare sources with time-domain surveys.« less
NASA Astrophysics Data System (ADS)
Garcia Lopez, R. J.; Crivellari, L.; Beckman, J. E.; Rebolo, R.
1992-08-01
We have used high-resolution spectra of the Ca II H resonance line in late-type dwarfs, obtained with high S:N ratios, over a period of four years to widen our understanding of the dynamical behavior of the Ca II emission cores. All of the stars dealt with in this article, which are chromospherically active, show variability both in core emission flux and line width. They also show significant wavelength shifts with time of order hundreds of meters per second in the mean core wavelength, and with lower amplitude in the H3 self-absorption, compared to the photospheric rest wavelength of Ca II H. Comparing the emission core shifts with those observed in the H3 features, we find, for the first time, direct prima facie evidence for vertical chromospheric velocity fields, which show stability in sense over periods of years in a given star, with notable modulation in gradient, and which differ in gradient from star to star. We present evidence to show that the observed effects are almost certainly not due to projected rotational modulation, and offer new prospects, given spectral measurements closely sampled in time, for investigating the vertical velocity structures of chromospheres.
NASA Astrophysics Data System (ADS)
Lopes de Oliveira, Raimundo; Mukai, Koji; Luna, Gerardo Juan Manuel; Sokoloski, Jennifer; Nelson, Thomas; Lucy, Adrian B.
2018-01-01
The variable M giant SU Lyncis was recently identified as the optical counterpart of a hard, thermal X-ray source. Also considering the fact that the star displays weak high-excitation emission, it was classified as a symbiotic system purely powered by accretion without accompanying nuclear fusion. This discovery revealed the existence of a subclass of symbiotics which is "invisible" to optical surveys and thus underestimated since these surveys favour the identification of systems with more intense emission lines that arise when shell-burning is present. At the same time, this discovery opens up a new window to investigate accretion and evolution of symbiotic systems. Here we report on the X-ray and UV properties of SU Lyncis derived from simultaneous NuSTAR and Swift observations. The investigation is focused on the strong photometric variability in UV and on the X-ray spectral characterization, which is associated with a hot thermal plasma with sub-solar abundance and suffering the effects of a relatively dense local absorber. The results are discussed in the context of the accretion geometry and mass of the white dwarf, and the imposed limits to the reflection fraction.
Cataloging the Praesepe Cluster: Identifying Interlopers and Binary Systems
NASA Astrophysics Data System (ADS)
Lucey, Madeline R.; Gosnell, Natalie M.; Mann, Andrew; Douglas, Stephanie
2018-01-01
We present radial velocity measurements from an ongoing survey of the Praesepe open cluster using the WIYN 3.5m Telescope. Our target stars include 229 early-K to mid-M dwarfs with proper motion memberships that have been observed by the repurposed Kepler mission, K2. With this survey, we will provide a well-constrained membership list of the cluster. By removing interloping stars and determining the cluster binary frequency we can avoid systematic errors in our analysis of the K2 findings and more accurately determine exoplanet properties in the Praesepe cluster. Obtaining accurate exoplanet parameters in open clusters allows us to study the temporal dimension of exoplanet parameter space. We find Praesepe to have a mean radial velocity of 34.09 km/s and a velocity dispersion of 1.13 km/s, which is consistent with previous studies. We derive radial velocity membership probabilities for stars with ≥3 radial velocity measurements and compare against published membership probabilities. We also identify radial velocity variables and potential double-lined spectroscopic binaries. We plan to obtain more observations to determine the radial velocity membership of all the stars in our sample, as well as follow up on radial velocity variables to determine binary orbital solutions.
VizieR Online Data Catalog: Variable stars in globular clusters (Figuera Jaimes+, 2016)
NASA Astrophysics Data System (ADS)
Figuera Jaimes, R.; Bramich, D. M.; Skottfelt, J.; Kains, N.; Jorgensen, U. G.; Horne, K.; Dominik, M.; Alsubai, K. A.; Bozza, V.; Calchi Novati, S.; Ciceri, S.; D'Ago, G.; Galianni, P.; Gu, S.-H.; W Harpsoe, K. B.; Haugbolle, T.; Hinse, T. C.; Hundertmark, M.; Juncher, D.; Korhonen, H.; Mancini, L.; Popovas, A.; Rabus, M.; Rahvar, S.; Scarpetta, G.; Schmidt, R. W.; Snodgrass, C.; Southworth, J.; Starkey, D.; Street, R. A.; Surdej, J.; Wang, X.-B.; Wertz, O.
2016-02-01
Observations were taken during 2013 and 2014 as part of an ongoing program at the 1.54m Danish telescope at the ESO observatory at La Silla in Chile that was implemented from April to September each year. table1.dat file contains the time-series I photometry for all the variables in the globular clusters studied in this work. We list standard and instrumental magnitudes and their uncertainties corresponding to the variable star identification, filter, and epoch of mid-exposure. For completeness, we also list the reference flux, difference flux, and photometric scale factor, along with the uncertainties on the reference and difference fluxes. (2 data files).
VizieR Online Data Catalog: Variable stars in NGC 6715 (Figuera Jaimes+, 2016)
NASA Astrophysics Data System (ADS)
Figuera Jaimes, R.; Bramich, D. M.; Kains, N.; Skottfelt, J.; Jorgensen, U. G.; Horne, K.; Dominik, M.; Alsubai, K. A.; Bozza, V.; Burgdorf, M. J.; Calchi Novati, S.; Ciceri, S.; D'Ago, G.; Evans, D. F.; Galianni, P.; Gu, S. H.; Harpsoe, K. B. W.; Haugbolle, T.; Hinse, T. C.; Hundertmark, M.; Juncher, D.; Kerins, E.; Korhonen, H.; Kuffmeier, M.; Mancini, L.; Peixinho, N.; Popovas, A.; Rabus, M.; Rahvar, S.; Scarpetta, G.; Schmidt, R. W.; Snodgrass, C.; Southworth, J.; Starkey, D.; Street, R. A.; Surdej, J.; Tronsgaard, R.; Unda-Sanzana, E.; von Essen, C.; Wang, X. B.; Wertz, O.
2016-06-01
Observations were taken during 2013, 2014, and 2015 as part of an ongoing program at the 1.54m Danish telescope at the ESO observatory at La Silla in Chile that was implemented from April to September each year. table1.dat file contains the time-series I photometry for all the variables in NGC 6715 studied in this work. We list standard and instrumental magnitudes and their uncertainties corresponding to the variable star identification, filter, and epoch of mid-exposure. For completeness, we also list the reference flux, difference flux, and photometric scale factor, along with the uncertainties on the reference and difference fluxes. (3 data files).
Three Investigations of Low Mass Stars in the Milky Way Using New Technology Surveys
NASA Astrophysics Data System (ADS)
Lurie, John C.
At least 80% of stars in the Milky Way have masses less than or equal to the Sun. These long lived stars are the most likely hosts of planets where complex life can develop. Although relatively stable on the timescale of billions of years, many low mass stars possess strong magnetic fields that are manifested in energetic surface activity, which may pose a hazard to both life and technology. Magnetic activity also influences the evolution of a low mass star through a feedback process that slows the rotation rate, which in turn tends to decrease the amount of activity. In this way, the rotation rate and activity level of a low mass star may provide an estimate of its age. Beyond their rotation-activity evolution as isolated objects, a small but important fraction of low mass stars have a close binary companion that influences the rotational and orbital properties of the system. Binary interaction can lead to phenomena such as supernovae, cataclysmic variables, and degenerate object mergers. From a larger perspective, low mass stars trace Galactic structure, and through their longevity serve as archives of the dynamical and chemical history of the Milky Way. Thus a full picture of low mass stars, and by extension the Milky Way, requires understanding their rotation and activity; their interaction in close binaries; and their spatial and kinematic distribution throughout the Galaxy. Historically, these topics have been approached from two separate but complementary modes of observation. Time series photometric surveys measure the stellar variability caused by rotation, activity, and binary interaction, while wide field surveys measure the brightnesses and colors of millions of stars to map their distribution in the Galaxy. The first generation of digital detectors and computing technology limited intensive time series surveys to a small number of stars, and limited wide field surveys to little if any variability information. Today those limitations are falling away. This thesis is composed of three investigations of low mass stars using two recent surveys at the cutting edge of detector technology. The Kepler space telescope carried the largest camera ever launched into space, and continuously monitored the brightnesses of hundreds of thousands of stars with unprecedented precision and cadence. The Pan-STARRS survey was equipped with the largest camera ever constructed, and imaged 75% percent of the sky to greater depth than any previous optical survey. The first investigation in this thesis used Kepler observations of a binary system containing two stars that are about one third the mass of the Sun. The convective motions in these stars extend to their centers, and so there is no interface with a radiative core to drive a solar-like dynamo that powers the magnetic activity of stars like the Sun. By virtue of being in a binary, the stars have the same age, providing a control for the interdependent effects of activity and rotation. The investigation found that the stars have nearly the same level of activity, despite one star rotating almost three times faster than the other. This suggests that in fully convective stars, there is a threshold rotation rate above which activity is no longer correlated with rotation. The second investigation also used Kepler observations, but in this case focused on low mass stars in close binaries, where tidal interactions are expected to circularize the orbit and synchronize the rotation rates to the orbital period. Prior to this investigation, there were few observational constraints on the tidal synchronization of stars with convective envelopes, and this investigation resulted in rotation period measurements for over 800 such stars. At orbital periods below approximately ten days, nearly all binaries are synchronized, while beyond ten days most binaries have eccentric orbits and rotation rates that are synchronized to the angular velocity at periastron. An unexpected result was that 15% of binaries with orbital periods below ten days are rotating about 13% slower than the synchronized rate. It was suggested that the equators of the stars are in fact synchronized, and that the subsynchronous signal originates from slower rotating high latitudes. The subsynchronous population presents a new test for theories of activity and differential rotation in tidally interacting binaries. The final investigation used Pan-STARRS observations to search for asymmetries in the disk of the Milky Way. In this case, low mass stars served as tracers of Galactic structure. Previous deep optical surveys avoided the Galactic plane, but Pan-STARRS enabled a comprehensive search. In particular, asymmetries in the stellar density distribution may be the result of interactions with satellite galaxies, and the frequency and nature of the interactions provide an observational test case for theories of galaxy formation. (Abstract shortened by ProQuest.).
Problems and programming for analysis of IUE high resolution data for variability
NASA Technical Reports Server (NTRS)
Grady, C. A.
1981-01-01
Observations of variability in stellar winds provide an important probe of their dynamics. It is crucial however to know that any variability seen in a data set can be clearly attributed to the star and not to instrumental or data processing effects. In the course of analysis of IUE high resolution data of alpha Cam and other O, B and Wolf-Rayet stars several effects were found which cause spurious variability or spurious spectral features in our data. Programming was developed to partially compensate for these effects using the Interactive Data language (IDL) on the LASP PDP 11/34. Use of an interactive language such as IDL is particularly suited to analysis of variability data as it permits use of efficient programs coupled with the judgement of the scientist at each stage of processing.
Studying the photometric and spectroscopic variability of the magnetic hot supergiant ζ Orionis Aa
NASA Astrophysics Data System (ADS)
Buysschaert, B.; Neiner, C.; Richardson, N. D.; Ramiaramanantsoa, T.; David-Uraz, A.; Pablo, H.; Oksala, M. E.; Moffat, A. F. J.; Mennickent, R. E.; Legeza, S.; Aerts, C.; Kuschnig, R.; Whittaker, G. N.; Popowicz, A.; Handler, G.; Wade, G. A.; Weiss, W. W.
2017-06-01
Massive stars play a significant role in the chemical and dynamical evolution of galaxies. However, much of their variability, particularly during their evolved supergiant stage, is poorly understood. To understand the variability of evolved massive stars in more detail, we present a study of the O9.2Ib supergiant ζ Ori Aa, the only currently confirmed supergiant to host a magnetic field. We have obtained two-color space-based BRIght Target Explorer photometry (BRITE) for ζ Ori Aa during two observing campaigns, as well as simultaneous ground-based, high-resolution optical CHIRON spectroscopy. We perform a detailed frequency analysis to detect and characterize the star's periodic variability. We detect two significant, independent frequencies, their higher harmonics, and combination frequencies: the stellar rotation period Prot = 6.82 ± 0.18 d, most likely related to the presence of the stable magnetic poles, and a variation with a period of 10.0 ± 0.3 d attributed to circumstellar environment, also detected in the Hα and several He I lines, yet absent in the purely photospheric lines. We confirm the variability with Prot/4, likely caused by surface inhomogeneities, being the possible photospheric drivers of the discrete absorption components. No stellar pulsations were detected in the data. The level of circumstellar activity clearlydiffers between the two BRITE observing campaigns. We demonstrate that ζ Ori Aa is a highly variable star with both periodic and non-periodic variations, as well as episodic events. The rotation period we determined agrees well with the spectropolarimetric value from the literature. The changing activity level observed with BRITE could explain why the rotational modulation of the magnetic measurements was not clearly detected at all epochs. Based on data collected by the BRITE Constellation satellite mission, designed, built, launched, operated and supported by the Austrian Research Promotion Agency (FFG), the University of Vienna, the Technical University of Graz, the Canadian Space Agency (CSA), the University of Toronto Institute for Aerospace Studies (UTIAS), the Foundation for Polish Science & Technology (FNiTP MNiSW), and National Science Centre (NCN).Based on CHIRON spectra collected under CNTAC proposal CN2015A-122.
The stars with H-alpha missing
NASA Technical Reports Server (NTRS)
Downes, Ronald A.
1987-01-01
During the course of a survey for ultraviolet-excess objects, a group of objects were found that spectroscopically resemble the subdwarf B stars, except for variable strength H-alpha absorption. The H-alpha line can have the nominal strength predicted from the other Balmer lines, or it can be completely absent. Observations reveal significant changes in the H-alpha profile on both a night-to-night and month-to-month basis. IUE observations of three stars reveal few features in the ultraviolet region and, when combined with optical data, allow a rough determination of photospheric temperatures. A binary model is proposed for these systems, and the ramifications of the objects found here and in the Palomar-Green survey are discussed.
High Resolution Spectroscopy of Vega-like Stars: Abundances and Circumstellar Gas
NASA Technical Reports Server (NTRS)
Dunkin, S. K.; Barlow, M. J.; Ryan, Sean G.
1996-01-01
Vega-like stars are main-sequence stars exhibiting excess infrared emission. In an effort to improve the information available on this class of star, 13 stars have been analyzed which have been classed as Vega-like, or have an infra-red excess attributable to dust in their circumstellar environment. In a separate paper stellar properties such as effective temperature and log g have been derived and in this poster we highlight the results of the photospheric abundance analysis also carried out during this work. King recently drew attention to the possible link between Vega-like stars and the photospheric metal-depleted class of A-stars, the Lambda Bootis stars. Since Vega-like stars are thought to have disks of dust, it might be expected that accretion of depleted gas onto the surface of these stars may cause this same phenomenon. In the 6 stars studied for depletions, none showed the extreme underabundance patterns observed in Lambda Bootis stars. However, depletions of silicon and magnesium were found in two of the sample, suggesting that these elements are in silicate dust grains in the circumstellar environment of these stars. Absorption lines attributed to circumstellar gas have been positively identified in three stars in our sample. Individual cases show evidence either of high-velocity outflowing gas, variability in the circumstellar lines observed, or evidence of circumstellar gas in excited lines of Fe II. No previous identification of circumstellar material has been made for two of the stars in question.
THE INFRARED SPECTRAL PROPERTIES OF MAGELLANIC CARBON STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sloan, G. C.; Kraemer, K. E.; McDonald, I.
2016-07-20
The Infrared Spectrograph on the Spitzer Space Telescope observed 184 carbon stars in the Magellanic Clouds. This sample reveals that the dust-production rate (DPR) from carbon stars generally increases with the pulsation period of the star. The composition of the dust grains follows two condensation sequences, with more SiC condensing before amorphous carbon in metal-rich stars, and the order reversed in metal-poor stars. MgS dust condenses in optically thicker dust shells, and its condensation is delayed in more metal-poor stars. Metal-poor carbon stars also tend to have stronger absorption from C{sub 2}H{sub 2} at 7.5 μ m. The relation betweenmore » DPR and pulsation period shows significant apparent scatter, which results from the initial mass of the star, with more massive stars occupying a sequence parallel to lower-mass stars, but shifted to longer periods. Accounting for differences in the mass distribution between the carbon stars observed in the Small and Large Magellanic Clouds reveals a hint of a subtle decrease in the DPR at lower metallicities, but it is not statistically significant. The most deeply embedded carbon stars have lower variability amplitudes and show SiC in absorption. In some cases they have bluer colors at shorter wavelengths, suggesting that the central star is becoming visible. These deeply embedded stars may be evolving off of the asymptotic giant branch and/or they may have non-spherical dust geometries.« less
Hoch, Matthew C; Gaven, Stacey L; Weinhandl, Joshua T
2016-06-01
The Star Excursion Balance Test has identified dynamic postural control deficits in individuals with chronic ankle instability. While kinematic predictors of Star Excursion Balance Test performance have been evaluated in healthy individuals, this has not been thoroughly examined in individuals with chronic ankle instability. Fifteen individuals with chronic ankle instability completed the anterior reach direction of the Star Excursion Balance Test and weight-bearing dorsiflexion assessments. Maximum reach distances on the Star Excursion Balance Test were measured in cm and normalized to leg length. Three-dimensional trunk, hip, knee, and ankle motion of the stance limb were recorded during each anterior reach trial using a motion capture system. Sagittal, frontal, and transverse plane displacement observed from trial initiation to the point of maximum reach was calculated for each joint or segment and averaged for analysis. Pearson product-moment correlations were performed to examine the relationships between kinematic variables, maximal reach, and weight-bearing dorsiflexion. A backward multiple linear regression model was developed with maximal reach as the criterion variable and kinematic variables as predictors. Frontal plane displacement of the trunk, hip, and ankle and sagittal plane knee displacement were entered into the analysis. The final model (p=0.004) included all three frontal plane variables and explained 81% of the variance in maximal reach. Maximal reach distance and several kinematic variables were significantly related to weight-bearing dorsiflexion. Individuals with chronic ankle instability who demonstrated greater lateral trunk displacement toward the stance limb, hip adduction, and ankle eversion achieved greater maximal reach. Copyright © 2016. Published by Elsevier Ltd.
NASA Technical Reports Server (NTRS)
Schutt, R. L.
1991-01-01
Four new Delta Scuti stars are reported. Power, modified into amplitude, spectra, and light curves are used to determine periodicities. A complete frequency analysis is not performed due to the lack of a sufficient time base in the data. These new variables help verify the many predictions that Delta Scuti stars probably exist in prolific numbers as small amplitude variables. Two of these stars, HR 4344 and HD 107513, are possibly Am stars. If so, they are among the minority of variable stars which are also Am stars.
Infrared Observations of FS CMa Stars
NASA Astrophysics Data System (ADS)
Sitko, Michael L.; Russell, R. W.; Lynch, D. K.; Grady, C. A.; Hammel, H. B.; Beerman, L. C.; Day, A. N.; Huelsman, D.; Rudy, R. J.; Brafford, S. M.; Halbedel, E. M.
2009-01-01
A subset of non-supergiant B[e] stars has recently been recognized as forming a fairly unique class of objects with very strong emission lines, infrared excesses, and locations not associated with star formation. The exact evolutionary state of these stars, named for the prototype FS CMa, is uncertain, and they have often been classified as isolated Herbig AeBe stars. We present infrared observations of two of these stars, HD 45677 (FS CMa), HD 50138 (MWC 158), and the candidate FS CMa star HD 190073 (V1295 Aql) that span over a decade in time. All three exhibit an emission band at 10 microns due to amorphous silicates, confirming that much (if not all) of the infrared excess is due to dust. HD 50138 is found to exhibit 20% variability between 3-13 microns that resembles that found in pre-main sequence systems (HD 163296 and HD 31648). HD 45677, despite large changes at visual wavelengths, has remained relatively stable in the infrared. To date, no significant changes have been observed in HD 190073. This work is supported in part by NASA Origins of Solar Systems grant NAG5-9475, NASA Astrophysics Data Program contract NNH05CD30C, and the Independent Research and Development program at The Aerospace Corporation.
Modeling and Observations of Massive Binaries with the B[e] Phenomenon
NASA Astrophysics Data System (ADS)
Lobel, A.; Martayan, C.; Mehner, A.; Groh, J. H.
2017-02-01
We report a long-term high-resolution spectroscopic monitoring program of LBVs and candidate LBVs with Mercator-HERMES. Based on 7 years of data, we recently showed that supergiant MWC 314 is a (Galactic) semi-detached eccentric binary with stationary permitted and forbidden emission lines in the optical and near-IR region. MWC 314 is a luminous and massive probable LBV star showing a strongly orbitally-modulated wind variability. We observe discrete absorption components in P Cyg He I lines signaling large-scale wind structures. In 2014 XMM observed X-rays indicating strong wind-wind collision in the close binary system (a ≃1 AU). A VLT-NACO imaging survey recently revealed that MWC 314 is a triple hierarchical system. We present a 3-D non-LTE radiative transfer model of the extended asymmetric wind structure around the primary B0 supergiant for modeling the orbital variability of P Cyg absorption (v∞˜1200 km s-1) in He I lines. An analysis of the HERMES monitoring spectra of the Galactic LBV star MWC 930 however does not show clear indications of a spectroscopic binary. The detailed long-term spectroscopic variability of this massive B[e] star is very similar to the spectroscopic variability of the prototypical blue hypergiant S Dor in the LMC. We observe prominent P Cyg line shapes in MWC 930 that temporarily transform into split absorption line cores during variability phases of its S Dor cycle over the past decade with a brightening in V of ˜ 1.2 mag. The line splitting phenomenon is very similar to the split metal line cores observed in pulsating Yellow Hypergiants ρ Cas (F-K Ia+) and HR 8752 (A-K Ia+) with [Ca II] and [N II] emission lines. We propose the line core splitting in MWC 930 is due to optically thick central line emission produced in the inner ionized wind region becoming mechanically shock-excited with the increase of R* and decrease of Teff of the LBV.
High Resolution Studies of Mass Loss from Massive Binary Stars
NASA Astrophysics Data System (ADS)
Corcoran, Michael F.; Gull, Theodore R.; Hamaguchi, Kenji; Richardson, Noel; Madura, Thomas; Post Russell, Christopher Michael; Teodoro, Mairan; Nichols, Joy S.; Moffat, Anthony F. J.; Shenar, Tomer; Pablo, Herbert
2017-01-01
Mass loss from hot luminous single and binary stars has a significant, perhaps decisive, effect on their evolution. The combination of X-ray observations of hot shocked gas embedded in the stellar winds and high-resolution optical/UV spectra of the cooler mass in the outflow provides unique ways to study the unstable process by which massive stars lose mass both through continuous stellar winds and rare, impulsive, large-scale mass ejections. The ability to obtain coordinated observations with the Hubble Space Telescope Imaging Spectrograph (HST/STIS) and the Chandra High-Energy Transmission Grating Spectrometer (HETGS) and other X-ray observatories has allowed, for the first time, studies of resolved line emisssion over the temperature range of 104- 108K, and has provided observations to confront numerical dynamical models in three dimensions. Such observations advance our knowledge of mass-loss asymmetries, spatial and temporal variabilities, and the fundamental underlying physics of the hot shocked outflow, providing more realistic constraints on the amount of mass lost by different luminous stars in a variety of evolutionary stages. We discuss the impact that these joint observational studies have had on our understanding of dynamical mass outflows from massive stars, with particular emphasis on two important massive binaries, Delta Ori Aa, a linchpin of the mass luminosity relation for upper HRD main sequence stars, and the supermassive colliding wind binary Eta Carinae.
First Hubble Space Telescope observations of the brightest stars in the Virgo galaxy M100 = NGC 4321
NASA Technical Reports Server (NTRS)
Freedman, Wendy L.; Madore, Barry F.; Stetson, Peter B.; Hughes, Shaun M. G.; Holtzman, Jon A.; Mould, Jeremy R.; Trauger, John T.; Gallagher, John S., III; Ballester, Gilda E.; Burrows, Christopher J.
1994-01-01
As part of both the Early Release Observations from the Hubble Space Telescope (HST) and the Key Project on the Extragalactic Distance Scale, we have obtained multiwavelength BVR Wide Field/Planetary Camera-2 (WFPC2) images for the face-on Virgo cluster spiral galaxy M100 = NGC 4321. We report here preliminary results from those observations, in the form of a color-magnitude diagram for approximately 11,500 stars down to V approximately 27 mag and a luminosity function for the brightest blue stars which is found to have a slope of 0.7, in excellent agreement with previous results obtained for significantly nearer galaxies. With the increased resolution now available using WFPC2, the number of galaxies in which we can directly measure Population I stars and thereby quantify the recent evolution, as well as test stellar evolution theory, has dramatically increased by at least a factor of 100. Finally, we find that the stars are present in M100 at the colors and luminosities expected for the brightest Cepheid variables in galaxies.
Probing the X-ray Emission from the Massive Star Cluster Westerlund 2
NASA Astrophysics Data System (ADS)
Lopez, Laura
2017-09-01
We propose a 300 ks Chandra ACIS-I observation of the massive star cluster Westerlund 2 (Wd2). This region is teeming with high-energy emission from a variety of sources: colliding wind binaries, OB and Wolf-Rayet stars, two young pulsars, and an unidentified source of very high-energy (VHE) gamma-rays. Our Chandra program is designed to achieve several goals: 1) to take a complete census of Wd2 X-ray point sources and monitor variability; 2) to probe the conditions of the colliding winds in the binary WR 20a; 3) to search for an X-ray counterpart of the VHE gamma-rays; 4) to identify diffuse X-ray emission; 5) to compare results to other massive star clusters observed by Chandra. Only Chandra has the spatial resolution and sensitivity necessary for our proposed analyses.
NASA Astrophysics Data System (ADS)
Stephens, R. D.; Warner, B. D.
2006-05-01
When observing asteroids we select from two to five comparison stars for differential photometry, taking the average value of the comparisons for the single value to be subtracted from the value for the asteroid. As a check, the raw data of each comparison star are plotted as is the difference between any single comparison and the average of the remaining stars in the set. On more than one occasion, we have found that at least one of the comparisons was variable. In two instances, we took time away from our asteroid lightcurve work to determine the period of the two binaries and attempted to model the system using David Bradstreet's Binary Maker 3. Unfortunately, neither binary showed a total eclipse. Therefore, our results are not conclusive and present only one of many possibilities.
Spectroscopic Study of the Variability of Three Northern Of+ Supergiants
NASA Astrophysics Data System (ADS)
De Becker, M.; Rauw, G.; Linder, N.
2009-10-01
The transition from early Of stars to WN-type objects is poorly understood. O-type supergiants with emission lines (OIf+) are considered to be intermediate between these two classes. The scope of this paper is to investigate the spectral variability of three Of+ supergiants. We constituted spectral time series of unprecedented quality for our targets (~200 spectra in total), essentially in the blue domain, covering timescales from a few hours up to a few years. Temporal Variance Spectrum and Fourier analyses were performed in order to characterize their spectral variability. We report on a correlated significant line profile variability in the prominent He II λ4686 and Hβ lines most likely related to the strong stellar winds. The variability pattern is similar for the three stars investigated (HD 14947, HD 15570, and HD 16691), and the main differences are more quantitative than qualitative. However, the reported timescales are somewhat different, and the most striking variability pattern is reported for HD 16691. We did not find any clear evidence for binarity, and we focus mainly on an interpretation based on a single-star scenario. We show that the behavior of the three stars investigated in this study present strong similarities, pointing to a putative common scenario, even though a few differences should be noted. Our preferred interpretation scheme is that of Large-Scale Corotating Structures modulating the profile of the lines that are produced in the strong stellar wind. Based on observations collected at the Observatoire de Haute-Provence (France).
Dedicated System for Observation of Polaris
NASA Astrophysics Data System (ADS)
Gavin, Andrew
2018-01-01
Polaris, the North Star, has been known to be a Cepheid variable star for over 150 years (Seidel, 1852). Special interest has been given to Polaris’ variations because of its changing period and periods of cessation (D. Turner et al, 2005). The continuous monitoring of Polaris’ brightness provides us with insights on the behaviors of Cepheid variable stars that are undergoing transformations. Since its inception in 2004, the Polaris project has been somewhat of a white whale for PARI and the numerous interns that have worked on the project. The primary goal of this project is the production of a continuous light curve of Polaris through an automated system. Along with providing a continuous light curve of Polaris, this system will be able to produce an archive of data on the seeing conditions of the PARI site.
Distributing Variable Star Data to the Virtual Observatory
NASA Astrophysics Data System (ADS)
Kinne, Richard C.; Templeton, M. R.; Henden, A. A.; Zografou, P.; Harbo, P.; Evans, J.; Rots, A. H.; LAZIO, J.
2013-01-01
Effective distribution of data is a core element of effective astronomy today. The AAVSO is the home of several different unique databases. The AAVSO International Database (AID) contains over a century of photometric and time-series data on thousands of individual variable stars comprising over 22 million observations. The AAVSO Photometric All-Sky Survey (APASS) is a new photometric catalog containing calibrated photometry in Johnson B, V and Sloan g', r' and i' filters for stars with magnitudes of 10 < V < 17. The AAVSO is partnering with researchers and technologists at the Virtual Astronomical Observatory (VAO) to solve the data distribution problem for these datasets by making them available via various VO tools. We give specific examples of how these data can be accessed through Virtual Observatory (VO) toolsets and utilized for astronomical research.
NASA Astrophysics Data System (ADS)
Weinschenk, Sedrick; Murphy, Brian; Villiger, Nathan J.
2018-01-01
We present a detailed study of the variable stars in the globular cluster NGC 6402 (M14). Approximately 1500 B and V band images were collected from July 2016 to August 2017 using the SARA Consortium Jacobus Kaptyen 1-meter telescope located in the Canary Islands. Using difference image analysis, we were able to identify 145 probable variable stars, confirming the 133 previously known variables and adding 12 new variables. The variables consisted of 117 RR Lyrae stars, 18 long period variables, 2 eclipsing variables, 6 Cepheid variables, and 2 SX Phoenix variables. Of the RR Lyrae variables 55 were of fundamental mode RR0 stars, of which 18 exhibited the Blazhko effect, 57 were of 1st overtone RR1, of which 7 appear to exhibit the Blazhko effect, 1 2nd overtone RR2, and 2 double mode variables. We found an average period of 0.59016 days for RR0 stars and 0.30294 days for RR1 stars. Using the multiband light curves of both the RR0 and RR1 variables we found an average E(B-V) of 0.604 with a scatter of 0.15 magnitudes. Using Fourier decomposition of the RR Lyrae light curves we also determined the metallicity and distance of the NGC 6402.
VARIABILITY IN HOT CARBON-DOMINATED ATMOSPHERE (HOT DQ) WHITE DWARFS: RAPID ROTATION?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Kurtis A.; Bierwagen, Michael; Montgomery, M. H.
2016-01-20
Hot white dwarfs (WDs) with carbon-dominated atmospheres (hot DQs) are a cryptic class of WDs. In addition to their deficiency of hydrogen and helium, most of these stars are highly magnetic, and a large fraction vary in luminosity. This variability has been ascribed to nonradial pulsations, but increasing data call this explanation into question. We present studies of short-term variability in seven hot DQ WDs. Three (SDSS J1426+5752, SDSS J2200−0741, and SDSS J2348−0942) were known to be variable. Their photometric modulations are coherent over at least two years, and we find no evidence for variability at frequencies that are notmore » harmonics. We present the first time-series photometry for three additional hot DQs (SDSS J0236−0734, SDSS J1402+3818, and SDSS J1615+4543); none are observed to vary, but the signal-to-noise is low. Finally, we present high speed photometry for SDSS J0005−1002, known to exhibit a 2.1-day photometric variation; we do not observe any short-term variability. Monoperiodicity is rare among pulsating WDs, so we contemplate whether the photometric variability is due to rotation rather than pulsations; similar hypotheses have been raised by other researchers. If the variability is due to rotation, then hot DQ WDs as a class contain many rapid rotators. Given the lack of companions to these stars, the origin of any fast rotation is unclear—both massive progenitor stars and double degenerate merger remnants are possibilities. We end with suggestions of future work that would best clarify the nature of these rare, intriguing objects.« less
NASA Technical Reports Server (NTRS)
Guhathakurta, Puragra; Yanny, Brian; Bahcall, John N.; Schneider, Donald P.
1994-01-01
This paper describes Hubble Space Telescope (HST)/Planetary Camera-I images of the core of the dense globular cluster M3 (NGC 5272). Stellar photometry in the F555W (V) and F785LP (I) bands, with a 1-sigma photometric accuracy of about 0.1 mag, has been used to construct color-magnitude diagrams of about 4700 stars above the main-sequence turnoff within r less than or approximately equal to 1 min of the cluster center. We have also analyzed archival HST F336W (U) images of M3 obtained by the Wide Field/Planetary Camera-I Instrument Definition Team. The UVI data are used to identify 28 blue straggler (BS) stars within the central 0.29 sq. arcmin. The specific frequency of BSs in this region of M3, N(sub BS)/N(sub V less than (V(HB)+2)) = 0.094 +/- 0.019, is about a factor of 2 - 3 higher than that found by Bolte et al. in a recent ground-based study of the same region, but comparable to that seen in the sparse outer parts of the same cluster and in HST observations of the core of the higher density cluster 47 Tuc. The BSs in M3 are slightly more centrally concentrated than red giant branch stars while horizontal branch stars are somewhat less concentrated red giants. The radial distribution of V-selected subgiant and turnoff stars is well fit by a King model with a core radius r(sub core) = 28 arcmin +/- 2 arcmin (90% confidence limits), which corresponds to 1.4 pc. Red giant and horizontal branch stars selected in the ultraviolet data (U less than 18) have a somewhat more compact distribution (r(sub core) = 22.5 arcmin). The HST U data consist of 17 exposures acquired over a span of three days. We have used these data to isolate 40 variable stars for which relative astrometry, brightnesses, colors, and light curves are presented. A Kolmogorov-Smirnov test indicates that, typically, the variability for each star is significant at the 95% level. We identify two variable BS candidates (probably of the SX Phe type), out of a sample of approximately 25 BSs in which variability could have been detected. Most of the variables are RR Lyrae stars on the horizontal branch. All of them have periods P greater than or approximately equal 8 h.
Dynamical Models for High-Energy Emission from Massive Stars
NASA Astrophysics Data System (ADS)
Owocki, Stanley %FAA(University of Delaware)
Massive stars are prominent sources of X-rays and gamma-rays detected by both targeted and survey observations from orbiting telescopes like Chandra, XMM/Newton, RXTE, and Fermi. Such high-energy emissions represent key probes of the dynamics of massive-star mass loss, and their penetration through many magnitudes of visible interstellar extinction makes them effective beacons of massive stars in distant reaches of the Galaxy, and in young, active star-forming regions. The project proposed here will develop a comprehensive theoretical framework for interpreting both surveys and targeted observations of high-energy emission from massive stars. It will build on our team's extensive experience in both theoretical models and observational analyses for three key types of emission mechanisms in the stellar wind outflows of these stars, namely: 1) Embedded Wind Shocks (EWS) arising from internal instabilities in the wind driving; 2) shocks in Colliding Wind Binary (CWB) systems; and 3) High-Mass X-ray Binaries (HMXB) systems with interaction between massive-star wind with a compact companion (neutron star or black hole). Taking advantage of commonalities in the treatment of radiative driving, hydrodynamics, shock heating and cooling, and radiation transport, we will develop radiation hydrodynamical models for the key observational signatures like energy distribution, emission line spectrum, and variability, with an emphasis on how these can be used in affiliated analyses of both surveys like the recent Chandra mapping of the Carina association, and targeted observations of galactic X-ray and gamma-ray sources associated with each of the above specific model types. The promises of new clumping-insensitive diagnostics of mass loss rates, and the connection to mass transfer and binarity, all have broad relevance for understanding the origin, evolution, and fate of massive stars, in concert with elements of NASA's Strategic Subgoal 3D. Building on our team's expertise, the project emphasizes training of a new generation of students and post-doctoral researchers to model and analyze observations by current and future NASA X-ray and gamma-ray observatories.
The Carina Project. I. Bright Variable Stars
NASA Astrophysics Data System (ADS)
Dall'Ora, M.; Ripepi, V.; Caputo, F.; Castellani, V.; Bono, G.; Smith, H. A.; Brocato, E.; Buonanno, R.; Castellani, M.; Corsi, C. E.; Marconi, M.; Monelli, M.; Nonino, M.; Pulone, L.; Walker, A. R.
2003-07-01
We present new BV time series data of the Carina dwarf spheroidal galaxy (dSph). Current data cover an area of ~0.3 deg2 around the center of the galaxy and allow us to identify 92 variables. Among them 75 are RR Lyrae stars, 15 are bona fide anomalous Cepheids, one might be a Galactic field RR Lyrae star, and one is located along the Carina red giant branch. Expanding upon the seminal photographic investigation by Saha, Monet, & Seitzer we supply, for the first time, accurate estimates of their pulsation parameters (periods, amplitudes, mean magnitudes, and colors) on the basis of CCD photometry. Approximately 50% of both RR Lyrae stars and anomalous Cepheids are new identifications. Among the RR Lyrae sample, six objects are new candidate double-mode (RRd) variables. On the basis of their pulsation properties we estimate that two variables (V158, V182) are about 50% more massive than typical RR Lyrae stars, while the bulk of the anomalous Cepheids are roughly a factor of 2 more massive than fundamental-mode (RRab) RR Lyrae stars. This finding supports the evidence that these objects are intermediate-mass stars during central He-burning phases. We adopted three different approaches to estimate the Carina distance modulus, namely, the first-overtone blue edge method, the period-luminosity-amplitude relation, and the period-luminosity-color relation. We found DM=20.19+/-0.12, a result that agrees quite well with similar estimates based on different distance indicators. The data for Carina, together with data available in the literature, strongly support the conclusion that dSph's can barely be classified into the classical Oosterhoff dichotomy. The mean period of RRab's in Carina resembles that found for Oosterhoff type II clusters, whereas the ratio between first-overtone (RRc) pulsators and the total number of RR Lyrae stars is quite similar to that found in Oosterhoff type I clusters. Based on observations collected at the European Southern Observatory, La Silla, Chile, on Osservatorio Astronomico di Capodimonte guaranteed time.
Calibrating the pixel-level Kepler imaging data with a causal data-driven model
NASA Astrophysics Data System (ADS)
Wang, Dun; Foreman-Mackey, Daniel; Hogg, David W.; Schölkopf, Bernhard
2015-01-01
In general, astronomical observations are affected by several kinds of noise, each with it's own causal source; there is photon noise, stochastic source variability, and residuals coming from imperfect calibration of the detector or telescope. In particular, the precision of NASA Kepler photometry for exoplanet science—the most precise photometric measurements of stars ever made—appears to be limited by unknown or untracked variations in spacecraft pointing and temperature, and unmodeled stellar variability. Here we present the Causal Pixel Model (CPM) for Kepler data, a data-driven model intended to capture variability but preserve transit signals. The CPM works at the pixel level (not the photometric measurement level); it can capture more fine-grained information about the variation of the spacecraft than is available in the pixel-summed aperture photometry. The basic idea is that CPM predicts each target pixel value from a large number of pixels of other stars sharing the instrument variabilities while not containing any information on possible transits at the target star. In addition, we use the target star's future and past (auto-regression). By appropriately separating the data into training and test sets, we ensure that information about any transit will be perfectly isolated from the fitting of the model. The method has four hyper-parameters (the number of predictor stars, the auto-regressive window size, and two L2-regularization amplitudes for model components), which we set by cross-validation. We determine a generic set of hyper-parameters that works well on most of the stars with 11≤V≤12 mag and apply the method to a corresponding set of target stars with known planet transits. We find that we can consistently outperform (for the purposes of exoplanet detection) the Kepler Pre-search Data Conditioning (PDC) method for exoplanet discovery, often improving the SNR by a factor of two. While we have not yet exhaustively tested the method at other magnitudes, we expect that it should be generally applicable, with positive consequences for subsequent exoplanet detection or stellar variability (in which case we must exclude the autoregressive part to preserve intrinsic variability).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polsdofer, Elizabeth; Marengo, M.; Seale, J.
2015-02-01
We present our study on the infrared variability of point sources in the Small Magellanic Cloud (SMC). We use the data from the Spitzer Space Telescope Legacy Program “Surveying the Agents of Galaxy Evolution in the Tidally Stripped, Low Metallicity Small Magellanic Cloud” (SAGE-SMC) and the “Spitzer Survey of the Small Magellanic Cloud” (S{sup 3}MC) survey, over three different epochs, separated by several months to 3 years. Variability in the thermal infrared is identified using a combination of Spitzer’s InfraRed Array Camera 3.6, 4.5, 5.8, and 8.0 μm bands, and the Multiband Imaging Photometer for Spitzer 24 μm band. Anmore » error-weighted flux difference between each pair of three epochs (“variability index”) is used to assess the variability of each source. A visual source inspection is used to validate the photometry and image quality. Out of ∼2 million sources in the SAGE-SMC catalog, 814 meet our variability criteria. We matched the list of variable star candidates to the catalogs of SMC sources classified with other methods, available in the literature. Carbon-rich Asymptotic Giant Branch (AGB) stars make up the majority (61%) of our variable sources, with about a third of all of our sources being classified as extreme AGB stars. We find a small, but significant population of oxygen-rich (O-rich) AGB (8.6%), Red Supergiant (2.8%), and Red Giant Branch (<1%) stars. Other matches to the literature include Cepheid variable stars (8.6%), early type stars (2.8%), Young-stellar objects (5.8%), and background galaxies (1.2%). We found a candidate OH maser star, SSTISAGE1C J005212.88-730852.8, which is a variable O-rich AGB star, and would be the first OH/IR star in the SMC, if confirmed. We measured the infrared variability of a rare RV Tau variable (a post-AGB star) that has recently left the AGB phase. 59 variable stars from our list remain unclassified.« less
Obituary -- Salvador González Bedolla
NASA Astrophysics Data System (ADS)
Peña, H. José
1997-04-01
It is with great sadness that I must communicate the passing of our colleague Salvador Félix González Bedolla. The observational astronomers of the Observatorio Astronómico Nacional owe much to his pioneering effort at San Pedro Mártir, work that formed him as an astronomer, and helped him become one of the best photometric observers in México and, at the Instituto de Astronomóa of the UNAM, the academic technician with the highest productivity of articles derived from observations at the OAN. Salvador was an excellent student. He obtained the highest achievement award (Gabino Barreda) in high school, studied physics at the Universidad Nacional Autónoma de México (UNAM) and also finished the credits for his Master's degree in Physics with only his thesis separating him from his degree, an act which was constantly put off until his death. He began his career in Astronomy in 1973 under Dr. Eugenio Mendoza. Later he worked with Josef Warman in the observation of short period stars in the Observatorio `José Arbol y Bonilla'' in Zacatecas, México. I then began working continuously with him in this field of research which, thanks to his great work capacity, produced very good results. He continued in these fields of research not only within the Institute of Astronomy, but also in other research facilities, especially two: With the variable group from the Observatory at Nice, France, beginning in 1985, specializing in the pulsation of early stars. His main interest was in the β Cep stars and in the possibility of relating these stars to the new types of variables (such as the OB stars, the `53 Per' variables, the `ultrashort' period and the ``slow'' and Be variables) discovered near this zone. Hence, in view of this, his efforts were aimed at monitoring the stars that belong to these new groups in order to discover if they are really different from the classical β Cep stars. Moreover, beginning in 1984, Salvador began working with a group of astronomers from the Instituto de Astronomóa de Andalucóa, Spain. His participation was active and indispensable in international campaigns which were carried out to study short period pulsators with very complex sets of frequencies using an analysis of light curves. Thanks to his observations, which were quite reliable, the pulsational and astrophysical characteristics of a great number of them have been resolved. Also, during these investigations, many new pulsators were discovered, especially Delta Scuti stars. Salvador also dedicated many years to teaching. Beginning in 1972, he taught physics and chemistry at the Colegio de Ciencias y Humanidades of the UNAM where he also developed programs, evaluated candidates for teaching posts and published books about his specialities. His loss, a product of the senseless violence of modern life in México City, is mourned by the Instituto de Astronomóa, UNAM, since he always tried to develop his activities with a high degree of professionalism and with great enthusiasm. Salvador, your colleagues and friends miss you and your memory will always remain with us.
New Quasar Surveys with WIRO: Data and Calibration for Studies of Variability
NASA Astrophysics Data System (ADS)
Lyke, Bradley; Bassett, Neil; Deam, Sophie; Dixon, Don; Griffith, Emily; Harvey, William; Lee, Daniel; Haze Nunez, Evan; Parziale, Ryan; Witherspoon, Catherine; Myers, Adam D.; Findlay, Joseph; Kobulnicky, Henry A.; Dale, Daniel A.
2017-01-01
Measurements of quasar variability offer the potential for understanding the physics of accretion processes around supermassive black holes. However, generating structure functions in order to characterize quasar variability can be observationally taxing as it requires imaging of quasars over a large variety of date ranges. To begin to address this problem, we have conducted an imaging survey of sections of Sloan Digital Sky Survey (SDSS) Stripe 82 at the Wyoming Infrared Observatory (WIRO). We used standard stars to calculate zero-point offsets between WIRO and SDSS observations in the urgiz magnitude system. After finding the zero-point offset, we accounted for further offsets by comparing standard star magnitudes in each WIRO frame to coadded magnitudes from Stripe 82 and applying a linear correction. Known (i.e. spectroscopically confirmed) quasars at the epoch we conducted WIRO observations (Summer, 2016) and at every epoch in SDSS Stripe 82 (~80 total dates) were hence calibrated to a similar magnitude system. The algorithm for this calibration compared 1500 randomly selected standard stars with an MJD within 0.07 of the MJD of each quasar of interest, for each of the five ugriz filters. Ultimately ~1000 known quasars in Stripe 82 were identified by WIRO and their SDSS-WIRO magnitudes were calibrated to a similar scale in order to generate ensemble structure functions.This work is supported by the National Science Foundation under REU grant AST 1560461.
The environment of the wind-wind collision region of η Carinae
NASA Astrophysics Data System (ADS)
Panagiotou, C.; Walter, R.
2018-02-01
Context. η Carinae is a colliding wind binary hosting two of the most massive stars and featuring the strongest wind collision mechanical luminosity. The wind collision region of this system is detected in X-rays and γ-rays and offers a unique laboratory for the study of particle acceleration and wind magneto-hydrodynamics. Aim. Our main goal is to use X-ray observations of η Carinae around periastron to constrain the wind collision zone geometry and understand the reasons for its variability. Methods: We analysed 10 Nuclear Spectroscopic Telescope Array (NuSTAR) observations, which were obtained around the 2014 periastron. The NuSTAR array monitored the source from 3 to 30 keV, which allowed us to grasp the continuum and absorption parameters with very good accuracy. We were able to identify several physical components and probe their variability. Results: The X-ray flux varied in a similar way as observed during previous periastrons and largely as expected if generated in the wind collision region. The flux detected within 10 days of periastron is lower than expected, suggesting a partial disruption of the central region of the wind collision zone. The Fe Kα line is likely broadened by the electrons heated along the complex shock fronts. The variability of its equivalent width indicates that the fluorescence region has a complex geometry and that the source obscuration varies quickly with the line of sight.
NASA Astrophysics Data System (ADS)
Driebe, T.; Riechers, D.; Balega, Y. Y.; Hofmann, K.-H.; Men'shchikov, A. B.; Weigelt, G.
We present near-infrared speckle interferometry of the OH/IR star OH 26.5+0.6 in the K' band obtained with the 6m telescope of the Special Astrophysical Observatory (SAO) in Oct. 2003. At a wavelength of λ = 2.13 μm the diffraction-limited resolution of 74 mas was attained. The reconstructed visibility reveals a spherically symmetric, circumstellar dust shell (CDS) surrounding the central star. In accordance with the deep silicate absorption feature in the spectral energy distribution (SED), the drop of the visibility function to a value of 0.36 at the cutoff frequency indicates a rather large optical depth of the CDS. To determine the structure and the properties of the CDS of OH 26.5+0.6, radiative transfer calculations using the code DUSTY[3] were performed to simultaneously model its visibility and the SED. Since OH 26.5+0.6 is highly variable, the observational data taken into consideration for the modeling correspond to different phases of the object's variability cycle. As in the case of another OH/IR star, OH 104.9+2.4 (see [5] and Riechers et al., this volume), we used these observational constraints at different epochs to derive several physical parameters of the central star and the CDS of OH 26.5+0.6 as a function of phase
The variable star population in the globular cluster NGC 6934
NASA Astrophysics Data System (ADS)
Yepez, M. A.; Arellano Ferro, A.; Muneer, S.; Giridhar, Sunetra
2018-04-01
We report an analysis of new V and I CCD time-series photometry of the globular cluster NGC 6934. Through the Fourier decomposition of the RR Lyrae light curves the mean values of [Fe/H] and the distance of the cluster were estimated; we found: [Fe/H]UVES = - 1.48 ± 0.14 and d = 16.03 ± 0.42 kpc, and [Fe/H]UVES = - 1.43 ± 0.11 and d = 15.91 ± 0.39 kpc, from the calibrations of RRab and RRc stars respectively. Independent distance estimations from SX Phe and SR stars are also discussed. Individual absolute magnitudes, radii and masses are also reported for RR Lyrae stars. We found 12 new variables: 4 RRab, 3 SX Phe, 2 W Virginis (CW) and 3 semi-regular (SR). The inter-mode or "either-or" region in the instability strip is shared by the RRab and RRc stars. This characteristic, observed only in some OoI clusters and never seen in an OoII, is discussed in terms of mass distribution in the ZAHB.
Implications of Galaxy Buildup for Putative IMF Variations in Massive Galaxies
NASA Astrophysics Data System (ADS)
Blancato, Kirsten; Genel, Shy; Bryan, Greg
2017-08-01
Recent observational evidence for initial mass function (IMF) variations in massive quiescent galaxies at z = 0 challenges the long-established paradigm of a universal IMF. While a few theoretical models relate the IMF to birth cloud conditions, the physical driver underlying these putative IMF variations is still largely unclear. Here we use post-processing analysis of the Illustris cosmological hydrodynamical simulation to investigate possible physical origins of IMF variability with galactic properties. We do so by tagging stellar particles in the simulation (each representing a stellar population of ≈ {10}6 {M}⊙ ) with individual IMFs that depend on various physical conditions, such as velocity dispersion, metallicity, or star formation rate, at the time and place in which the stars are formed. We then follow the assembly of these populations throughout cosmic time and reconstruct the overall IMF of each z = 0 galaxy from the many distinct IMFs it is composed of. Our main result is that applying the observed relations between IMF and galactic properties to the conditions at the star formation sites does not result in strong enough IMF variations between z = 0 galaxies. Steeper physical IMF relations are required for reproducing the observed IMF trends, and some stellar populations must form with more extreme IMFs than those observed. The origin of this result is the hierarchical nature of massive galaxy assembly, and it has implications for the reliability of the strong observed trends, for the ability of cosmological simulations to capture certain physical conditions in galaxies, and for theories of star formation aiming to explain the physical origin of a variable IMF.
MN48: a new Galactic bona fide luminous blue variable revealed by Spitzer and SALT
NASA Astrophysics Data System (ADS)
Kniazev, A. Y.; Gvaramadze, V. V.; Berdnikov, L. N.
2016-07-01
In this paper, we report the results of spectroscopic and photometric observations of the candidate evolved massive star MN48 disclosed via detection of a mid-infrared circular shell around it with the Spitzer Space Telescope. Follow-up optical spectroscopy of MN48 with the Southern African Large Telescope (SALT) carried out in 2011-2015 revealed significant changes in the spectrum of this star, which are typical of luminous blue variables (LBVs). The LBV status of MN48 was further supported by photometric monitoring which shows that in 2009-2011 this star has brightened by ≈0.9 and 1 mag in the V and Ic bands, respectively, then faded by ≈1.1 and 1.6 mag during the next four years, and apparently started to brighten again recently. The detected changes in the spectrum and brightness of MN48 make this star the 18th known Galactic bona fide LBV and increase the percentage of LBVs associated with circumstellar nebulae to more than 70 per cent. We discuss the possible birth place of MN48 and suggest that this star might have been ejected either from a putative star cluster embedded in the H II region IRAS 16455-4531 or the young massive star cluster Westerlund 1.
CSI 2264: CHARACTERIZING YOUNG STARS IN NGC 2264 WITH STOCHASTICALLY VARYING LIGHT CURVES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stauffer, John; Rebull, Luisa; Carey, Sean
2016-03-15
We provide CoRoT and Spitzer light curves and other supporting data for 17 classical T Tauri stars in NGC 2264 whose CoRoT light curves exemplify the “stochastic” light curve class as defined in 2014 by Cody et al. The most probable physical mechanism to explain the optical variability within this light curve class is time-dependent mass accretion onto the stellar photosphere, producing transient hot spots. Where we have appropriate spectral data, we show that the veiling variability in these stars is consistent in both amplitude and timescale with the optical light curve morphology. The veiling variability is also well-correlated with the strengthmore » of the He i 6678 Å emission line, predicted by models to arise in accretion shocks on or near the stellar photosphere. Stars with accretion burst light curve morphology also have variable mass accretion. The stochastic and accretion burst light curves can both be explained by a simple model of randomly occurring flux bursts, with the stochastic light curve class having a higher frequency of lower amplitude events. Members of the stochastic light curve class have only moderate mass accretion rates. Their Hα profiles usually have blueshifted absorption features, probably originating in a disk wind. The lack of periodic signatures in the light curves suggests that little of the variability is due to long-lived hot spots rotating into or out of our line of sight; instead, the primary driver of the observed photometric variability is likely to be instabilities in the inner disk that lead to variable mass accretion.« less
The Unusual Central Star of the Planetary Nebula Sh 2-71
NASA Astrophysics Data System (ADS)
Močnik, Teo
2013-08-01
This thesis presents new photometric and spectroscopic observational results for the unusual central star of bipolar planetary nebula Sh2-71. The combined lightcurve, composed from the photometric datasets of three different telescopes, was in agreement with the reported ephemeris of the sinusoidal brightness variations with a period of 68 days. The two sharp brightness dips, indicated by the preliminary automated data reduction process, were confirmed. The presence of three additional dips tentatively suggested that the dips, possibly eclipses, are occurring periodically with a period of 17.2 days. The comparison between U and V lightcurves revealed that the 68 day brightness variations are accompanied by a variable reddening effect. Spectroscopic observations revealed pronounced spectral variations, which were not correlated with the 68 days brightness phase. On the other hand, the high-cadence echelle spectra did not exhibit any variability on hourly timescales, which implied that the spectral variations must occur on timescales of a few days. Radial velocity measurements suggested an amplitude of ±40 km/s but were not correlated with the brightness phase. The measured average radial velocity of the observed star 26 km/s was in near agreement with the reported mean radial velocity of the planetary nebula. As some doubt has been raised recently that the central star could be another field star, this near agreement between the radial velocities provided supporting evidence that the observed star actually is the central star of the planetary nebula. The comparison between the measured and synthetic spectra yielded stellar atmospheric parameters T_eff 12000 K, log(g) 4.0 cm/s^2, vrot\\cdot sin(i) 200 km/s with an indicated high value of metallicity. Fitted stellar parameters and the comparison with standard spectra classified the star as B8V. The obtained spectrophotometric observations have been used to construct a model for the central star. A previously suggested cataclysmic binary model has been revisited. The required <1 day orbital period for the mass transfer to establish should be reflected in pronounced spectral profile and radial velocity variations on similarly short timescales. Instead, the high resolution 30 minutes cadence echelle spectra did not exhibit any variations in the timespan of 4.5 hours and thus rejected the cataclysmic model. From the various considered potential models, the spectrophotometric properties of the observed star were best reproduced with a precessing Be disc in a misaligned close binary model. This model could also provide the required collimation for the resulting bipolar shape of the planetary nebula. However, due to the lack of spectra with Hα and Hβ wavelength coverage with a daily cadence, the proposed model should be regarded as tentative.
Variability search in M 31 using principal component analysis and the Hubble Source Catalogue
NASA Astrophysics Data System (ADS)
Moretti, M. I.; Hatzidimitriou, D.; Karampelas, A.; Sokolovsky, K. V.; Bonanos, A. Z.; Gavras, P.; Yang, M.
2018-06-01
Principal component analysis (PCA) is being extensively used in Astronomy but not yet exhaustively exploited for variability search. The aim of this work is to investigate the effectiveness of using the PCA as a method to search for variable stars in large photometric data sets. We apply PCA to variability indices computed for light curves of 18 152 stars in three fields in M 31 extracted from the Hubble Source Catalogue. The projection of the data into the principal components is used as a stellar variability detection and classification tool, capable of distinguishing between RR Lyrae stars, long-period variables (LPVs) and non-variables. This projection recovered more than 90 per cent of the known variables and revealed 38 previously unknown variable stars (about 30 per cent more), all LPVs except for one object of uncertain variability type. We conclude that this methodology can indeed successfully identify candidate variable stars.
VizieR Online Data Catalog: Variable stars in Leo I dSph (Stetson+, 2014)
NASA Astrophysics Data System (ADS)
Stetson, P. B.; Fiorentino, G.; Bono, G.; Bernard, E. J.; Monelli, M.; Iannicola, G.; Gallart, C.; Ferraro, I.
2014-11-01
The observational material for this study consists of 1884 individual CCD images obtained on 48 nights during 32 observing runs. These data are contained within a much larger data collection (~400000 images, ~500 observing runs) compiled and maintained by the first author. (5 data files).
NASA Astrophysics Data System (ADS)
Battinelli, P.; Demers, S.
2014-08-01
Context. Carbon stars are among the brightest intermediate-age stars. They are seen in nearly all galaxies of the Local Group. In the Milky Way they are members of the thin disk but over a hundred have been identified in the Galactic halo. Since the halo consists essentially of an old stellar population, these carbon stars warrant special attention. We believe that such stars are trespassers and belong to streams left over by disrupted dwarf spheroidal galaxies. Aims: By performing photometric monitoring we intend to identify Miras among the halo carbon stars. Methods: We obtained, over several semesters, K and J images centered on the carbon stars in order to determine their variation and periodicity. Results: We establish the variability for a number of stars and identify the Miras among them. We collect data from the literature on the Miras among various carbon star populations and show that the fraction of Miras among carbon stars is fairly constant. We demonstrate that such fractions for the halo and Sagittarius are biased because of the way targets are selected. We finally investigate the near-infrared color distribution of Miras and carbon stars. Based on observations made with the REM Telescope, INAF Chile.The observed K and J magnitudes are available only at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/568/A100
Peculiar Abundances Observed in the Hot Subdwarf OB Star LB 3241
NASA Astrophysics Data System (ADS)
Chayer, Pierre; Dupuis, J.; Dixon, W. V.; Giguere, E.
2010-01-01
We present a spectral synthesis analysis of the hot subdwarf OB star LB 3241. The analysis is based on spectra obtained by the Far Ultraviolet Spectroscopic Explorer (FUSE). With an effective temperature of 41,000 K and a gravity of log g = 5.7, the position of LB 3241 in a Teff-log g diagram suggests that it has evolved from the extreme horizontal branch. Such stars evolve into white dwarfs without ascending the asymptotic giant branch after the helium core exhaustion. Arsenic (Z = 33), selenium (34), and tellurium (52) are observed in the atmosphere of LB 3241, and are a first for a hot subdwarf star. LB 3241 shows peculiar chemical abundances that exhibit trends observed in cooler sdB stars. The content of its atmosphere in light elements is about a factor ten lower than that of the Sun, except for nitrogen which has a solar abundance. The Fe abundance is consistent with a solar abundance, but abundances of elements beyond the iron peak (As, Se, Te, Pb) show enrichments over the solar values by factors ranging from 10 to 300. These observations suggest that competing mechanisms must counterbalance the effects of the downward diffusion. The FUSE observations also suggest that LB 3241 is a radial velocity variable.
NASA Technical Reports Server (NTRS)
Johnson, Hollis Ralph; Querci, Francois R.; Jordan, Stuart (Editor); Thomas, Richard (Editor); Goldberg, Leo; Pecker, Jean-Claude
1987-01-01
The papers in this volume cover the following topics: (1) basic properties and photometric variability of M and related stars; (2) spectroscopy and nonthermal processes; (3) circumstellar radio molecular lines; (4) circumstellar shells, the formation of grains, and radiation transfer; (5) mass loss; (6) circumstellar chemistry; (7) thermal atmospheric models; (8) quasi-thermal models; (9) observations on the atmospheres of M dwarfs; and (1) theoretical work on M dwarfs.
NASA Astrophysics Data System (ADS)
Vogt, N.; Contreras-Quijada, A.; Fuentes-Morales, I.; Vogt-Geisse, S.; Arcos, C.; Abarca, C.; Agurto-Gangas, C.; Caviedes, M.; DaSilva, H.; Flores, J.; Gotta, V.; Peñaloza, F.; Rojas, K.; Villaseñor, J. I.
2016-11-01
We have developed an interactive PYTHON code and derived crucial ephemeris data of 99.4% of all stars classified as “Mira” in the ASAS database, referring to pulsation periods, mean maximum magnitudes, and whenever possible, the amplitudes among others. We present a statistical comparison between our results and those given by the International Variable Star Index (VSX) of the American Association of Variable Star Observers, as well as those determined with the machine learning automatic procedure of Richards et al. Our periods are in good agreement with those of the VSX in more than 95% of the stars. However, when comparing our periods with those of Richards et al., the coincidence rate is only 76% and most of the remaining cases refer to aliases. We conclude that automatic codes still require more refinements in order to provide reliable period values. Period distributions of the target stars show three local maxima around 215, 275, and 330 days, apparently of universal validity; their relative strength seems to depend on galactic longitude. Our visual amplitude distribution turns out to be bimodal, however, 1/3 of the targets have rather small amplitudes (A < 2.5m) and could refer to semiregular variables (SR). We estimate that about 20% of our targets belong to the SR class. We also provide a list of 63 candidates for period variations and a sample of 35 multiperiodic stars that seem to confirm the universal validity of typical sequences in the double period and in the Petersen diagrams.
Photometric detection of a candidate low-mass giant binary system at the Milky Way Galactic Center
NASA Astrophysics Data System (ADS)
Krishna Gautam, Abhimat; Do, Tuan; Ghez, Andrea; Sakai, Shoko; Morris, Mark; Lu, Jessica; Witzel, Gunther; Jia, Siyao; Becklin, Eric Eric; Matthews, Keith
2018-01-01
We present the discovery of a new periodic variable star at the Milky Way Galactic Center (GC). This study uses laser guide-star adaptive optics data collected with the W. M. Keck 10 m telescope in the K‧-band (2.2 µm) over 35 nights spanning an 11 year time baseline, and 5 nights of additional H-band (1.6 µm) data. We implemented an iterative photometric calibration and local correction technique, resulting in a photometric uncertainty of Δm_K‧ ∼ 0.03 to a magnitude of m_K‧ ∼ 16.The periodically variable star has a 39.42 day period. We find that the star is not consistent with known periodically variable star classes in this period range with its observed color and luminosity, nor with an eclipsing binary system. The star's color and luminosity are however consistent with an ellipsoidal binary system at the GC, consisting of a K-giant and a dwarf component with an orbital period of 78.84 days. If a binary system, it represents the first detection of a low-mass giant binary system in the central half parsec of the GC. Such long-period binary systems can easily evaporate in the dense environment of the GC due to interactions with other stars. The existence and properties of a low-mass, long-period binary system can thus place valuable constraints on dynamical models of the GC environment and probe the density of the hypothesized dark cusp of stellar remnants at the GC.
He 2-104 - A link between symbiotic stars and planetary nebulae?
NASA Technical Reports Server (NTRS)
Lutz, Julie H.; Kaler, James B.; Shaw, Richard A.; Schwarz, Hugo E.; Aspin, Colin
1989-01-01
Ultraviolet, optical and infrared observations of He 2-104 are presented, and estimates for some of the physical properties of the nebular shell are made. It is argued that He 2-104 is in transition between the D-type symbiotic star and bipolar planetary nebula phases and, as such, represents a link between subclasses of these two types of objects. The model includes a binary system with a Mira variable and a hot, evolved star. Previous mass loss has resulted in the formation of a disk of gas and dust around the whole system, while the hot star has an accretion disk which produces the observed highly ionized emission line spectrum. Emission lines from cooler, lower density gas is also observed to come from the nebula. In addition, matter is flowing out of the system in a direction perpendicular to the disk with a high velocity and is impacting upon the previously-ejected red giant wind and/or the ambient interstellar medium.
He 2-104: A link between symbiotic stars and planetary nebulae
NASA Technical Reports Server (NTRS)
Lutz, Julie H.; Kaler, James B.; Shaw, Richard A.; Schwarz, Hugo E.; Aspin, Colin
1989-01-01
Ultraviolet, optical and infrared observations of He 2-104 are presented, and estimates for some of the physical properties of the nebular shell are made. It is argued that He 2-104 is in transition between the D-type symbiotic star and bipolar planetary nebula phases and, as such, represents a link between subclasses of these two types of objects. The model includes a binary system with a Mira variable and a hot, evolved star. Previous mass loss has resulted in the formation of a disk of gas and dust around the whole system, while the hot star has an accretion disk which produces the observed highly ionized emission line spectrum. Emission lines from cooler, lower density gas is also observed to come from the nebula. In addition, matter is flowing out of the system in a direction perpendicular to the disk with a high velocity and is impacting upon the previously-ejected red giant wind and/or the ambient interstellar medium.
On the wind geometry of the Wolf-Rayet star EZ Canis Majoris
NASA Technical Reports Server (NTRS)
Schulte-Ladbeck, R. E.; Nordsieck, K. H.; Taylor, M.; Nook, M. A.; Bjorkman, K. S.; Magalhaes, A. M.; Anderson, C. M.
1991-01-01
Recent models of Wolf-Rayet star winds have been tailored to EZ CMa, and make predictions of the envelope structure and location of line-emitting regions. It is discussed how the wind structure of EZ CMa can be probed observationally through electron distribution integrals as measured by spectropolarimetry, and then present, analyze, and interpret a time-dependent spectropolarimetric data set of EZ CMa. The observations further the view of an electron-scattering wind that is axisymmetric, rotating, and expanding, with a variable mass-loss rate being responsible for the quasi-periodic polarimetric variability. It is demonstrated that the emission lines of EZ CMa are partially polarized, indicating that line photons are electron-scattered in the wind. The polarization in N V lambda 4945 and N IV lambda 4058 is observed to be larger than that of He II lambda 4686 and He I lambda 5876, as expected from ionization stratification.
Understanding Space Weather: The Sun as a Variable Star
NASA Technical Reports Server (NTRS)
Strong, Keith; Saba, Julia; Kucera, Therese
2011-01-01
The Sun is a complex system of systems and until recently, less than half of its surface was observable at any given time and then only from afar. New observational techniques and modeling capabilities are giving us a fresh perspective of the solar interior and how our Sun works as a variable star. This revolution in solar observations and modeling provides us with the exciting prospect of being able to use a vastly increased stream of solar data taken simultaneously from several different vantage points to produce more reliable and prompt space weather forecasts. Solar variations that cause identifiable space weather effects do not happen only on solar-cycle timescales from decades to centuries; there are also many shorter-term events that have their own unique space weather effects and a different set of challenges to understand and predict, such as flares, coronal mass ejections, and solar wind variations
Understanding Space Weather: The Sun as a Variable Star
NASA Technical Reports Server (NTRS)
Strong, Keith; Saba, Julia; Kucera, Therese
2012-01-01
The Sun is a complex system of systems and until recently, less than half of its surface was observable at any given time and then only from afar. New observational techniques and modeling capabilities are giving us a fresh perspective of the solar interior and how our Sun works as a variable star. This revolution in solar observations and modeling provides us with the exciting prospect of being able to use a vastly increased stream of solar data taken simultaneously from several different vantage points to produce more reliable and prompt space weather forecasts. Solar variations that cause identifiable space weather effects do not happen only on solar-cycle timescales from decades to centuries; there are also many shorter-term events that have their own unique space weather effects and a different set of challenges to understand and predict, such as flares, coronal mass ejections, and solar wind variations.
Time-resolved multicolour photometry of bright B-type variable stars in Scorpius
NASA Astrophysics Data System (ADS)
Handler, G.; Schwarzenberg-Czerny, A.
2013-09-01
Context. The first two of a total of six nano-satellites that will constitute the BRITE-Constellation space photometry mission have recently been launched successfully. Aims: In preparation for this project, we carried out time-resolved colour photometry in a field that is an excellent candidate for BRITE measurements from space. Methods: We acquired 117 h of Strömgren uvy data during 19 nights. Our targets comprised the β Cephei stars κ and λ Sco, the eclipsing binary μ1 Sco, and the variable super/hypergiant ζ1 Sco. Results: For κ Sco, a photometric mode identification in combination with results from the spectroscopic literature suggests a dominant (l,m) = (1, -1) β Cephei-type pulsation mode of the primary star. The longer period of the star may be a rotational variation or a g-mode pulsation. For λ Sco, we recover the known dominant β Cephei pulsation, a longer-period variation, and observed part of an eclipse. Lack of ultraviolet data precludes mode identification for this star. We noticed that the spectroscopic orbital ephemeris of the closer pair in this triple system is inconsistent with eclipse timings and propose a refined value for the orbital period of the closer pair of 5.95189 ± 0.00003 d. We also argue that the components of the λ Sco system are some 30% more massive than previously thought. The binary light curve solution of μ1 Sco requires inclusion of the irradiation effect to explain the u light curve, and the system could show additional low amplitude variations on top of the orbital light changes. ζ1 Sco shows long-term variability on a time scale of at least two weeks that we prefer to interpret in terms of a variable wind or strange mode pulsations. Based on observations carried out at the South African Astronomical ObservatoryReduced time series for all stars are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/557/A1
Radio stars observed in the LAMOST spectral survey
NASA Astrophysics Data System (ADS)
Zhang, Li-Yun; Yue, Qiang; Lu, Hong-Peng; Han, Xian-Ming L.; Zhang, Yong; Shi, Jian-Rong; Wang, Yue-Fei; Hou, Yong-Hui; Zi-Huang, Cao
2017-09-01
Radio stars have attracted astronomers’ attention for several decades. To better understand the physics behind stellar radio emissions, it is important to study their optical behaviors. The LAMOST survey provides a large database for researching stellar spectroscopic properties of radio stars. In this work, we concentrate on their spectroscopic properties and infer physical properties from their spectra, such as stellar activity and variability. We mined big data from the LAMOST spectral survey Data Release 2 (DR2), published on 2016 June 30, by cross-matching them with radio stars from FIRST and other surveys. We obtained 783 good stellar spectra with high signal to noise ratio for 659 stars. The criteria for selection were positional coincidence within 1.5‧‧ and LAMOST objects classified as stars. We calculated the equivalent widths (EWs) of the Ca ii H&K, Hδ, Hγ, Hβ, Hα and Ca ii IRT lines by integrating the line profiles. Using the EWs of the Hα line, we detected 147 active stellar spectra of 89 objects having emissions above the Hα continuum. There were also 36 objects with repeated spectra, 28 of which showed chromospheric activity variability. Furthermore, we found 14 radio stars emitting noticeably in the Ca ii IRT lines. The low value of the EW8542/EW8498 ratio for these 14 radio stars possibly alludes to chromospheric plage regions.
High-Precision Studies of Compact Variable Stars
NASA Astrophysics Data System (ADS)
Bloemen, Steven
2014-10-01
This book, which is a reworked and updated version of Steven Bloemen's original PhD thesis, reports on several high-precision studies of compact variable stars. Its strength lies in the large variety of observational, theoretical and instrumentation techniques that are presented and used and paves the way towards new and detailed asteroseismic applications of single and binary subdwarf stars. Close binary stars are studied using high cadence spectroscopic datasets collected with state of the art electron multiplying CCDs and analysed using Doppler tomography visualization techniques. The work touches upon instrumentation, presenting the calibration of a new fast, multi-colour camera installed at the Mercator Telescope on La Palma. The thesis also includes theoretical work on the computation of the temperature range in which stellar oscillations can be driven in subdwarf B-stars. Finally, the highlight of the thesis is the measurement of velocities of stars using only photometric data from NASA's Kepler satellite. Doppler beaming causes stars to appear slightly brighter when they move towards us in their orbits, and this subtle effect can be seen in Kepler's brightness measurements. The thesis presents the first validation of such velocity measurements using independent spectroscopic measurements. Since the detection and validation of this Doppler beaming effect, it has been used in tens of studies to detect and characterize binary star systems, which are key calibrators in stellar astronomy.
X-ray stars observed in LAMOST spectral survey
NASA Astrophysics Data System (ADS)
Lu, Hong-peng; Zhang, Li-yun; Han, Xianming L.; Shi, Jianrong
2018-05-01
X-ray stars have been studied since the beginning of X-ray astronomy. Investigating and studying the chromospheric activity from X-ray stellar optical spectra is highly significant in providing insights into stellar magnetic activity. The big data of LAMOST survey provides an opportunity for researching stellar optical spectroscopic properties of X-ray stars. We inferred the physical properties of X-ray stellar sources from the analysis of LAMOST spectra. First, we cross-matched the X-ray stellar catalogue (12254 X-ray stars) from ARXA with LAMOST data release 3 (DR3), and obtained 984 good spectra from 713 X-ray sources. We then visually inspected and assigned spectral type to each spectrum and calculated the equivalent width (EW) of Hα line using the Hammer spectral typing facility. Based on the EW of Hα line, we found 203 spectra of 145 X-ray sources with Hα emission above the continuum. For these spectra we also measured the EWs of Hβ, Hγ, Hδ and Ca ii IRT lines of these spectra. After removing novae, planetary nebulae and OB-type stars, we found there are 127 X-ray late-type stars with Hα line emission. By using our spectra and results from the literature, we found 53 X-ray stars showing Hα variability; these objects are Classical T Tauri stars (CTTs), cataclysmic variables (CVs) or chromospheric activity stars. We also found 18 X-ray stars showing obvious emissions in the Ca ii IRT lines. Of the 18 X-ray stars, 16 are CTTs and 2 are CVs. Finally, we discussed the relationships between the EW of Hα line and X-ray flux.
A Look at the Milky Way's Outskirts
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-11-01
Studying the large-scale structure of the Milky Way is difficult given that were stuck in its interior which means we cant step back for a broad overview of our home. Instead, a recent study uses distant variable stars to map out a picture of whats happening in the outskirts of our galaxy.Mapping with TracersPhase-folded light curve for two of the RR Lyrae stars in the authors sample, each with hundreds of observations over 7 years. [Cohen et al. 2017]Since observing the Milky Way from the outside isnt an option, we have to take creative approaches to mapping its outer regions and measuring its total mass and dark matter content. One tool used by astronomers is tracers: easily identifiable stars that can be treated as massless markers moving only as a result of the galactic potential. Mapping the locations and motions of tracers allows us to measure the larger properties of the galaxy.RR Lyrae stars are low-mass, variable stars that make especially good tracers. They pulsate predictably on timescales of less than a day, creating distinctive light curves that can easily be distinguished and tracked in wide-field optical imaging surveys over long periods of time. Their brightness makes them detectable out to large distances, and their blue color helps to separate them from contaminating stars in the foreground.Best of all, RR Lyrae stars are very nearly standard candles: their distances can be determined precisely with only knowledge of their measured light curves.Locations on the sky of the several hundred outer-halo RR Lyrae stars in the authors original sample. The red curve shows the location of the Sagittarius stream, an ordered structure the authors avoided so as to only have unassociated stars in their sample. [Cohen et al. 2017]Distant VariablesIn a new study led by Judith Cohen (California Institute of Technology), the signals of hundreds of distant RR Lyrae stars were identified in observations of transient objects made with the Palomar Transient Factory (PTF) survey. Cohen and collaborators then followed up with the Keck II telescope in Hawaii to obtain spectra fora narrowersample of 122 RR Lyrae stars.The stars in the sample lie at whopping distances of 150,000350,000 light-years from us. For comparison, were about 25,000 light-years from the center of the galaxy, and the stellar disk of the galaxy is only thought to be perhaps 100,000 light-years across so these variable stars lie firmly in the Milky Ways outer halo. The spectra of the stars reveal their radial velocity, providing us with precise measurements of how objects in the outer halo move.More Space in the Suburbs?Histogram with distance for the 450 RR Lyrae stars in the authors broader sample. When the authors include their estimates for the completeness of their sample, the best fit scales with distance as r-4, shown by the red line. [Cohen et al. 2017]After reporting the velocity dispersions that they measure which can be used to make more precise estimates of the Milky Ways total mass Cohen and collaborators discuss the stellar density implied by their sample. They find that the density of stars in the outer halo of the Milky Way scales with their distance as r-4. This is similar to the drop-off in density weve measured in the inner halo, and it contradicts some studies that have predicted a much sharper drop in stellar density in the Milky Ways outermost regions.The work presented in this study goes a long way toward building our view of the galaxys outer halo. Future catalogs like the Pan-STARRS RR Lyrae catalog and upcoming surveys like LSST should also significantly increase the tracer sample size and measurement accuracy, further allowing us to map out the outskirtsof the Milky Way.CitationJudith G. Cohen et al 2017 ApJ 849 150. doi:10.3847/1538-4357/aa9120
A model for the infrared emission from an OB star cluster environment
NASA Technical Reports Server (NTRS)
Leisawitz, D.
1991-01-01
A model for the infrared emission from the neighborhood of an OB star cluster is described. The distribution of gas and dust around the stars, properties of the dust, and the cluster and interstellar radiation fields are variable. The model can be applied to regions around clusters embedded to various degrees in their parental molecular clouds (i.e., compact H II regions, blister-type H II regions, and the tenuous H II regions ionized by naked O stars). The model is used to simulate IRAS observations of a typical blister H II region. Infrared surface brightness and spectral energy distributions are predicted and the impact of limited spatial resolution is illustrated. The model results are shown to be consistent with observations of the exemplary outer Galaxy OB cluster NGC 7380. It is planned to use the model as a diagnostic tool to probe the physical conditions and dust properties in star-formation regions and, ultimately, in an interpretation of the spectral energy distributions of spiral galaxies.
NuSTAR view of the central region of M31
NASA Astrophysics Data System (ADS)
Stiele, H.; Kong, A. K. H.
2018-04-01
Our neighbouring large spiral galaxy, the Andromeda galaxy (M31 or NGC 224), is an ideal target to study the X-ray source population of a nearby galaxy. NuSTAR observed the central region of M31 in 2015 and allows studying the population of X-ray point sources at energies higher than 10 keV. Based on the source catalogue of the large XMM-Newton survey of M31, we identified counterparts to the XMM-Newton sources in the NuSTAR data. The NuSTAR data only contain sources of a brightness comparable (or even brighter) than the selected sources that have been detected in XMM-Newton data. We investigate hardness ratios, spectra, and long-term light curves of individual sources obtained from NuSTAR data. Based on our spectral studies, we suggest four sources as possible X-ray binary candidates. The long-term light curves of seven sources that have been observed more than once show low (but significant) variability.
NASA Astrophysics Data System (ADS)
Rose, S. C.
2017-06-01
(Abstract only) Magnetic cataclysmic variable stars have brightness variations that repeat with each revolution of the two stars about the center of mass of the system. However, in the case of QQ Vulpecula, this brightness variation pattern changes in the long term. This study makes use of two decades worth of data from the Roboscope Telescope as well as data from the American Association of Variable Star Observers (AAVSO) database to examine the long-term evolution of QQ Vul's phase curves. Nightly observations using the Maria Mitchell Association Vestal and Loines Observatory supplemented this analysis by clarifying short-term brightness variation. The long-term data was divided into four commonly observed behavioral types ranging from a double peaked curve of 15.5 magnitude to a 15.0 magnitude curve that had a primary minimum and a slow, linear rise in brightness in place of the secondary minimum. The nightly data kept within the confines of these categories, though the secondary minimum in the nightly data never vanished. No periodicity was found in the long-term variations. The model often invoked to explain the double peaked curve consists of single pole accretion in which a partial self-eclipse causes the secondary minimum and cyclotron beaming causes the primary minimum. However, the long-term variation may indicate a changing accretion rate, which may manifest itself in changes to the shape, size, or location of the accretion spot on the white dwarf such that it lessens or removes the secondary minimum. This project was supported by the NSF REU grant AST-1358980, the Massachusetts Space Grant, and the Nantucket Maria Mitchell Association.