Synthesis, Characterization, and Modeling of Nanotube Materials with Variable Stiffness Tethers
NASA Technical Reports Server (NTRS)
Frankland, S. J. V.; Herzog, M. N.; Odegard, G. M.; Gates, T. S.; Fay, C. C.
2004-01-01
Synthesis, mechanical testing, and modeling have been performed for carbon nanotube based materials. Tests using nanoindentation indicated a six-fold enhancement in the storage modulus when comparing the base material (no nanotubes) to the composite that contained 5.3 wt% of nanotubes. To understand how crosslinking the nanotubes may further alter the stiffness, a model of the system was constructed using nanotubes crosslinked with a variable stiffness tether (VST). The model predicted that for a composite with 5 wt% nanotubes at random orientations, crosslinked with the VST, the bulk Young's modulus was reduced by 30% compared to the noncrosslinked equivalent.
Modeling and Control of a Tethered Rotorcraft
2010-07-30
viscous damper with damping coefficient Cv. Visco-elastic line force is written in terms of components Δx, Δy, and Δz, of the difference vector formed...tether drag coefficient CS = tether damping coefficient Cv = viscous damping coefficient d = diameter of the tether En = n x n identity matrix FA...matrix consisting of Iyy and Izz k = rotor head stiffness KLAT, KLON = steady state flapping gains Ks, Kv = static and viscous stiffness Lj
The stochastic dynamics of tethered microcantilevers in a viscous fluid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robbins, Brian A.; Paul, Mark R.; Radiom, Milad
2014-10-28
We explore and quantify the coupled dynamics of a pair of micron scale cantilevers immersed in a viscous fluid that are also directly tethered to one another at their tips by a spring force. The spring force, for example, could represent the molecular stiffness or elasticity of a biomolecule or material tethered between the cantilevers. We use deterministic numerical simulations with the fluctuation-dissipation theorem to compute the stochastic dynamics of the cantilever pair for the conditions of experiment when driven only by Brownian motion. We validate our approach by comparing directly with experimental measurements in the absence of the tethermore » which shows excellent agreement. Using numerical simulations, we quantify the correlated dynamics of the cantilever pair over a range of tether stiffness. Our results quantify the sensitivity of the auto- and cross-correlations of equilibrium fluctuations in cantilever displacement to the stiffness of the tether. We show that the tether affects the magnitude of the correlations which can be used in a measurement to probe the properties of an attached tethering substance. For the configurations of current interest using micron scale cantilevers in water, we show that the magnitude of the fluid coupling between the cantilevers is sufficiently small such that the influence of the tether can be significant. Our results show that the cross-correlation is more sensitive to tether stiffness than the auto-correlation indicating that a two-cantilever measurement has improved sensitivity when compared with a measurement using a single cantilever.« less
Flexural Stiffness of Myosin Va Subdomains as Measured from Tethered Particle Motion
Michalek, Arthur J.; Kennedy, Guy G.; Warshaw, David M.; Ali, M. Yusuf
2015-01-01
Myosin Va (MyoVa) is a processive molecular motor involved in intracellular cargo transport on the actin cytoskeleton. The motor's processivity and ability to navigate actin intersections are believed to be governed by the stiffness of various parts of the motor's structure. Specifically, changes in calcium may regulate motor processivity by altering the motor's lever arm stiffness and thus its interhead communication. In order to measure the flexural stiffness of MyoVa subdomains, we use tethered particle microscopy, which relates the Brownian motion of fluorescent quantum dots, which are attached to various single- and double-headed MyoVa constructs bound to actin in rigor, to the motor's flexural stiffness. Based on these measurements, the MyoVa lever arm and coiled-coil rod domain have comparable flexural stiffness (0.034 pN/nm). Upon addition of calcium, the lever arm stiffness is reduced 40% as a result of calmodulins potentially dissociating from the lever arm. In addition, the flexural stiffness of the full-length MyoVa construct is an order of magnitude less stiff than both a single lever arm and the coiled-coil rod. This suggests that the MyoVa lever arm-rod junction provides a flexible hinge that would allow the motor to maneuver cargo through the complex intracellular actin network. PMID:26770194
Cross-Linked Nanotube Materials with Variable Stiffness Tethers
NASA Technical Reports Server (NTRS)
Frankland, Sarah-Jane V.; Odegard, Gregory M.; Herzog, Matthew N.; Gates, Thomas S.; Fay, Catherine C.
2004-01-01
The constitutive properties of a cross-linked single-walled carbon nanotube material are predicted with a multi-scale model. The material is modeled as a transversely isotropic solid using concepts from equivalent-continuum modeling. The elastic constants are determined using molecular dynamics simulation. Some parameters of the molecular force field are determined specifically for the cross-linker from ab initio calculations. A demonstration of how the cross-linked nanotubes may affect the properties of a nanotube/polyimide composite is included using a micromechanical analysis.
Rant, Ulrich; Arinaga, Kenji; Tornow, Marc; Kim, Yong Woon; Netz, Roland R.; Fujita, Shozo; Yokoyama, Naoki; Abstreiter, Gerhard
2006-01-01
We report on the electrical manipulation of single- and double-stranded oligodeoxynucleotides that are end tethered to gold surfaces in electrolyte solution. The response to alternating repulsive and attractive electric surface fields is studied by time-resolved fluorescence measurements, revealing markedly distinct dynamics for the flexible single-stranded and stiff double-stranded DNA, respectively. Hydrodynamic simulations rationalize this finding and disclose two different kinetic mechanisms: stiff polymers undergo rotation around the anchoring pivot point; flexible polymers, on the other hand, are pulled onto the attracting surface segment by segment. PMID:16473909
Rant, Ulrich; Arinaga, Kenji; Tornow, Marc; Kim, Yong Woon; Netz, Roland R; Fujita, Shozo; Yokoyama, Naoki; Abstreiter, Gerhard
2006-05-15
We report on the electrical manipulation of single- and double-stranded oligodeoxynucleotides that are end tethered to gold surfaces in electrolyte solution. The response to alternating repulsive and attractive electric surface fields is studied by time-resolved fluorescence measurements, revealing markedly distinct dynamics for the flexible single-stranded and stiff double-stranded DNA, respectively. Hydrodynamic simulations rationalize this finding and disclose two different kinetic mechanisms: stiff polymers undergo rotation around the anchoring pivot point; flexible polymers, on the other hand, are pulled onto the attracting surface segment by segment.
Summary presentation of the technology and test panel
NASA Technical Reports Server (NTRS)
Siemers, P.
1985-01-01
Tether related technology issues were investigated along with potential applications. Several of the applications do not derive necessarily from nor are they related to a technology issue. Tether designs must concern itself with length requirements (whether the tether is to be flexible or stiff) and what the environmental impact is on the particular material that is proposed for the tether. As far as tether manufacturing techniques, a lot of technology related work is required to develop cost effective manfacturing capabilities for the future tether. There are techniques that are used on the ground now. However, after some of the proposed applications are determined to be feasible, it may be that the best way to manufacture the tether is to pretend the satellite is a spider and allow it to spin its own web in space. The technology required to developed tapered tethers was considered. Definition of the taper, where the center of that taper should be, and the taper's relation to the end masses are all of concern.
Askarova, Sholpan; Sun, Zhe; Sun, Grace Y; Meininger, Gerald A; Lee, James C-M
2013-01-01
Increased deposition of amyloid-β peptide (Aβ) at the cerebral endothelial cell (CEC) surface has been implicated in enhancement of transmigration of monocytes across the brain blood barrier (BBB) in Alzheimer's disease (AD). In this study, quantitative immunofluorescence microscopy (QIM) and atomic force microscopy (AFM) with cantilevers biofunctionalized by sialyl-Lewis(x) (sLe(x)) were employed to investigate Aβ-altered mechanics of membrane tethers formed by bonding between sLe(x) and p-selectin at the CEC surface, the initial mechanical step governing the transmigration of monocytes. QIM results indicated the ability for Aβ to increase p-selectin expression at the cell surface and promote actin polymerization in both bEND3 cells (immortalized mouse CECs) and human primary CECs. AFM data also showed the ability for Aβ to increase cell stiffness and adhesion probability in bEND3 cells. On the contrary, Aβ lowered the overall force of membrane tether formation (Fmtf ), and produced a bimodal population of Fmtf , suggesting subcellular mechanical alterations in membrane tethering. The lower Fmtf population was similar to the results obtained from cells treated with an F-actin-disrupting drug, latrunculin A. Indeed, AFM results also showed that both Aβ and latrunculin A decreased membrane stiffness, suggesting a lower membrane-cytoskeleton adhesion, a factor resulting in lower Fmtf . In addition, these cerebral endothelial alterations induced by Aβ were abrogated by lovastatin, consistent with its anti-inflammatory effects. In sum, these results demonstrated the ability for Aβ to enhance p-selectin expression at the CEC surface and induce cytoskeleton reorganization, which in turn, resulted in changes in membrane-cytoskeleton adhesion and membrane tethering, mechanical factors important in transmigration of monocytes through the BBB.
Askarova, Sholpan; Sun, Zhe; Sun, Grace Y.; Meininger, Gerald A.; Lee, James C-M.
2013-01-01
Increased deposition of amyloid-β peptide (Aβ) at the cerebral endothelial cell (CEC) surface has been implicated in enhancement of transmigration of monocytes across the brain blood barrier (BBB) in Alzheimer's disease (AD). In this study, quantitative immunofluorescence microscopy (QIM) and atomic force microscopy (AFM) with cantilevers biofunctionalized by sialyl-Lewisx (sLex) were employed to investigate Aβ-altered mechanics of membrane tethers formed by bonding between sLex and p-selectin at the CEC surface, the initial mechanical step governing the transmigration of monocytes. QIM results indicated the ability for Aβ to increase p-selectin expression at the cell surface and promote actin polymerization in both bEND3 cells (immortalized mouse CECs) and human primary CECs. AFM data also showed the ability for Aβ to increase cell stiffness and adhesion probability in bEND3 cells. On the contrary, Aβ lowered the overall force of membrane tether formation (Fmtf), and produced a bimodal population of Fmtf, suggesting subcellular mechanical alterations in membrane tethering. The lower Fmtf population was similar to the results obtained from cells treated with an F-actin-disrupting drug, latrunculin A. Indeed, AFM results also showed that both Aβ and latrunculin A decreased membrane stiffness, suggesting a lower membrane-cytoskeleton adhesion, a factor resulting in lower Fmtf. In addition, these cerebral endothelial alterations induced by Aβ were abrogated by lovastatin, consistent with its anti-inflammatory effects. In sum, these results demonstrated the ability for Aβ to enhance p-selectin expression at the CEC surface and induce cytoskeleton reorganization, which in turn, resulted in changes in membrane-cytoskeleton adhesion and membrane tethering, mechanical factors important in transmigration of monocytes through the BBB. PMID:23593361
Nanoscale stiffness of individual dendritic molecules and their aggregates
NASA Astrophysics Data System (ADS)
Tsukruk, Vladimir V.; Shulha, Hennady; Zhai, Xiaowen
2003-02-01
We demonstrate that carefully designed micromapping of the surface stiffness with nanoscale resolution could reveal quantitative data on the elastic properties of compliant, dendritic organic molecules with nanoparticulate dimensions below 3 nm. Much higher elastic modulus was observed for individual, fourth generation dendritic molecules due to their more shape persistent conformation. Large, reversible, elastic deformation is a distinct characteristic of the nanomechanical response observed for individual dendritic molecules. Such a "rubbery" response could be an indication of spatial constraints imposed on vitrification of dendritic molecules tethered to the functionalized interface. Surprisingly, an increased stiffness was also found for the third generation dendritic molecules within long aggregates.
Tethered gravity laboratories study
NASA Technical Reports Server (NTRS)
Lucchetti, F.
1990-01-01
The scope of the study is to investigate ways of controlling the microgravity environment of the International Space Station by means of a tethered system. Four main study tasks were performed. First, researchers analyzed the utilization of the tether systems to improve the lowest possible steady gravity level on the Space Station and the tether capability to actively control the center of gravity position in order to compensate for activities that would upset the mass distribution of the Station. The purpose of the second task was to evaluate the whole of the experiments performable in a variable gravity environment and the related beneficial residual accelerations, both for pure and applied research in the fields of fluid, materials, and life science, so as to assess the relevance of a variable g-level laboratory. The third task involves the Tethered Variable Gravity Laboratory. The use of the facility that would crawl along a deployed tether and expose experiments to varying intensities of reduced gravity is discussed. Last, a study performed on the Attitude Tether Stabilizer concept is discussed. The stabilization effect of ballast masses tethered to the Space Station was investigated as a means of assisting the attitude control system of the Station.
Energy dissipation/transfer and stable attitude of spatial on-orbit tethered system
NASA Astrophysics Data System (ADS)
Hu, Weipeng; Song, Mingzhe; Deng, Zichen
2018-01-01
For the Tethered Satellite System, the coupling between the platform system and the solar panel is a challenge in the dynamic analysis. In this paper, the coupling dynamic behaviors of the Tethered Satellite System that is idealized as a planar flexible damping beam-spring-mass composite system are investigated via a structure-preserving method. Considering the coupling between the plane motion of the system, the oscillation of the spring and the transverse vibration of the beam, the dynamic model of the composite system is established based on the Hamiltonian variational principle. A symplectic dimensionality reduction method is proposed to decouple the dynamic system into two subsystems approximately. Employing the complex structure-preserving approach presented in our previous work, numerical iterations are performed between the two subsystems with weak damping to study the energy dissipation/transfer in the composite system, the effect of the spring stiffness on the energy distribution and the effect of the particle mass on the stability of the composite system. The numerical results show that: the energy transfer approach is uniquely determined by the initial attitude angle, while the energy dissipation speed is mainly depending on the initial attitude angle and the spring stiffness besides the weak damping. In addition, the mass ratio between the platform system and the solar panel determines the stable state as well as the time needed to reach the stable state of the composite system. The numerical approach presented in this paper provides a new way to deal with the coupling dynamic system and the conclusions obtained give some useful advices on the overall design of the Tethered Satellite System.
Dynamics of single-stranded DNA tethered to a solid
NASA Astrophysics Data System (ADS)
Radiom, Milad; Paul, Mark R.; Ducker, William A.
2016-06-01
Tethering is used to deliver specific biological and industrial functions. For example, single-stranded DNA (ssDNA) is tethered to polymerases and long sequences of double-stranded DNA (dsDNA) during replication, and to solids in DNA microarrays. However, tethering ssDNA to a large object limits not only the available ssDNA conformations, but also the range of time-scales over which the mechanical responses of ssDNA are important. In this work we examine the effect of tethering by measurement of the mechanical response of ssDNA that is tethered at each end to two separate atomic force microscope cantilevers in aqueous solution. Thermal motion of the cantilevers drives the ends of the ssDNA chain at frequencies near 2 kHz. The presence of a tethered molecule makes a large difference to the asymmetric cross-correlation of two cantilevers, which enables resolution of the mechanical properties in our experiments. By analysis of the correlated motion of the cantilevers we extract the friction and stiffness of the ssDNA. We find that the measured friction is much larger than the friction that is usually associated with the unencumbered motion of ssDNA. We also find that the measured relaxation time, ∼30 μs, is much greater than prior measurements of the free-molecule relaxation time. We attribute the difference to the loss of conformational possibilities as a result of constraining the ends of the ssDNA.
Dynamics and control of tethered antennas/reflectors in orbit
NASA Astrophysics Data System (ADS)
Liu, Liangdong; Bainum, Peter M.
The system linear equations for the motion of a tethered shallow spherical shell in orbit with its symmetry axis nominally following the local vertical are developed. The shell roll, yaw, tether out-of-plane swing motion and elastic vibrations are decoupled from the shell and tether in-plane pitch motions and elastic vibrations. The neutral gravity stability conditions for the special case of a constant length rigid tether are given for in-plane motion and out-of-plant motion. It is proved that the in-plane motion of the system could be asymptotically stable based on Rupp's tension control law, for a variable length tether. However, the system simulation results indicate that the transient responses can be improved significantly, especially for the damping of the tether and shell pitch motion, by an optimal feedback control law for the rigid variable length tether model. It is also seen that the system could be unstable when the effect of tether flexibility is included if the control gains are not chosen carefully. The transient responses for three different tension control laws are compared during typical station keeping operations.
Single molecular force across single integrins dictates cell spreading.
Chowdhury, Farhan; Li, Isaac T S; Leslie, Benjamin J; Doğanay, Sultan; Singh, Rishi; Wang, Xuefeng; Seong, Jihye; Lee, Sang-Hak; Park, Seongjin; Wang, Ning; Ha, Taekjip
2015-10-01
Cells' ability to sense and interpret mechanical signals from the extracellular milieu modulates the degree of cell spreading. Yet how cells detect such signals and activate downstream signaling at the molecular level remain elusive. Herein, we utilize tension gauge tether (TGT) platform to investigate the underlying molecular mechanism of cell spreading. Our data from both differentiated cells of cancerous and non-cancerous origin show that for the same stiff underlying glass substrates and for same ligand density it is the molecular forces across single integrins that ultimately determine cell spreading responses. Furthermore, by decoupling molecular stiffness and molecular tension we demonstrate that molecular stiffness has little influence on cell spreading. Our data provide strong evidence that links molecular forces at the cell-substrate interface to the degree of cell spreading.
Analytical investigation of the dynamics of tethered constellations in Earth orbit, phase 2
NASA Technical Reports Server (NTRS)
Lorenzini, E.; Arnold, D. A.; Grossi, M. D.; Gullahorn, G. E.
1986-01-01
The development of a two dimensional analytical model that describes the dynamics of an n-mass vertical tethered system is reported. Two different approaches are described: in the first one the control quantities are the independent variables while in the second one the Cartesian coordinates of each mass expressed in the orbiting reference frame are the independent variables. The latter model was used in the 3-mass version to simulate the dynamics of the tethered system in applications involving the displacement of the middle mass along the tether. In particular, issues related to reproducing predetermined acceleration profiles and g-tuning are reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ribezzi-Crivellari, M.; Huguet, J. M.; Ritort, F.
We present a dual-trap optical tweezers setup which directly measures forces using linear momentum conservation. The setup uses a counter-propagating geometry, which allows momentum measurement on each beam separately. The experimental advantages of this setup include low drift due to all-optical manipulation, and a robust calibration (independent of the features of the trapped object or buffer medium) due to the force measurement method. Although this design does not attain the high-resolution of some co-propagating setups, we show that it can be used to perform different single molecule measurements: fluctuation-based molecular stiffness characterization at different forces and hopping experiments on molecularmore » hairpins. Remarkably, in our setup it is possible to manipulate very short tethers (such as molecular hairpins with short handles) down to the limit where beads are almost in contact. The setup is used to illustrate a novel method for measuring the stiffness of optical traps and tethers on the basis of equilibrium force fluctuations, i.e., without the need of measuring the force vs molecular extension curve. This method is of general interest for dual trap optical tweezers setups and can be extended to setups which do not directly measure forces.« less
Variable gravity research facility
NASA Technical Reports Server (NTRS)
Allan, Sean; Ancheta, Stan; Beine, Donna; Cink, Brian; Eagon, Mark; Eckstein, Brett; Luhman, Dan; Mccowan, Daniel; Nations, James; Nordtvedt, Todd
1988-01-01
Spin and despin requirements; sequence of activities required to assemble the Variable Gravity Research Facility (VGRF); power systems technology; life support; thermal control systems; emergencies; communication systems; space station applications; experimental activities; computer modeling and simulation of tether vibration; cost analysis; configuration of the crew compartments; and tether lengths and rotation speeds are discussed.
Tethered balloon-based measurements of meteorological variables and aerosols
NASA Technical Reports Server (NTRS)
Sentell, R. J.; Storey, R. W.; Chang, J. J. C.; Jacobsen, S. J.
1976-01-01
Tethered balloon based measurements of the vertical distributions of temperature, humidity, wind speed, and aerosol concentrations were taken over a 4-hour period beginning at sunrise on June 29, 1976, at Wallops Island, Virginia. Twelve consecutive profiles of each variable were obtained from ground to about 500 meters. These measurements were in conjuction with a noise propagation study on remotely arrayed acoustic range (ROMAAR) at Wallops Flight Center. An organized listing of these vertical soundings is presented. The tethered balloon system configuration utilized for these measurements is described.
Analytical investigation of the dynamics of tethered constellations in Earth orbit, phase 2
NASA Technical Reports Server (NTRS)
Lorenzini, Enrico C.; Gullahorn, Gordon E.; Cosmo, Mario L.; Estes, Robert D.; Grossi, Mario D.
1994-01-01
This final report covers nine years of research on future tether applications and on the actual flights of the Small Expendable Deployment System (SEDS). Topics covered include: (1) a description of numerical codes used to simulate the orbital and attitude dynamics of tethered systems during station keeping and deployment maneuvers; (2) a comparison of various tethered system simulators; (3) dynamics analysis, conceptual design, potential applications and propagation of disturbances and isolation from noise of a variable gravity/microgravity laboratory tethered to the Space Station; (4) stability of a tethered space centrifuge; (5) various proposed two-dimensional tethered structures for low Earth orbit for use as planar array antennas; (6) tethered high gain antennas; (7) numerical calculation of the electromagnetic wave field on the Earth's surface on an electrodynamically tethered satellite; (8) reentry of tethered capsules; (9) deployment dynamics of SEDS-1; (10) analysis of SEDS-1 flight data; and (11) dynamics and control of SEDS-2.
Dynamics and stability of spinning flexible space tether systems
NASA Astrophysics Data System (ADS)
Tyc, George
This dissertation focuses on a detailed dynamical investigation of a previously unexplored tether configuration that involves a spinning two-body tethered system with flexible appendages on each end-body where the spin axis is nominally aligned along the tether. The original motivation for this work came after the flight of the first Canadian sub-orbital tether mission OEDIPUS-A in 1989 which employed this spinning tethered configuration. To everyone's surprise, one of the end-bodies was observed to exhibit a rapid divergence of its nutation angle. It was clear after this flight that there were some fundamental mechanisms associated with the interaction between the tether and the end-body that were not fully understood at that time. Hence, a Tether Dynamics Experiment (TDE) was formed and became a formal part of the scientific agenda for the follow-on mission OEDIPUS-C which flew in 1995. This dissertation describes the work that was conducted as part of the TDE and involves: theoretical investigations into the dynamics of this spinning tethered flexible body system; ground testing to validate the models and establish the tether properties; application of the models to develop a stabilization approach for OEDIPUS-C, and comparisons between theory and flight data from both OEDIPUS-A and OEDIPUS-C. Nonlinear equations of motion are developed for a spinning tethered system where the tether could be either spinning with the end-bodies or attached to small de-spun platforms on the end-bodies. Since the tether used for the OEDIPUS missions is not a string, as is often assumed, but rather a wire that has some bending stiffness, albeit small, the tether bending was also taken into account in the formulation. Two sets of ground tests are described that were used to validate the stability conditions and gain confidence in the mathematical models. One set involved hanging a body by a tether and spinning at different speeds to investigate the end-body stability. The other set used a tethered spinning end-body suspended on a set of gimbals and had a means to measure the end-body attitude in real-time. The mathematical models were then applied to investigate suitable stabilization approaches for OEDIPUS-C. In general, very good agreement was found between the theory and both the ground experiments and flight data. One of the surprising results from this work is the significance of the tether root bending effects. It is shown that it is this subtle effect that caused the rapid divergence in one of the end-bodies in the OEDIPUS-A mission which was unstable. For OEDIPUS-C, the situation was rectified by adding the booms to ensure "short term" stability and also by not spinning as rapidly. The OEDIPUS-C was very successful as all systems worked as planned and hence a superb set of flight dynamics data was collected. (Abstract shortened by UMI.)
NASA Technical Reports Server (NTRS)
Lorenzini, E. C.; Cosmo, M.; Vetrella, S.; Moccia, A.
1988-01-01
This paper investigates the dynamics and acceleration levels of a new tethered system for micro and variable-gravity applications. The system consists of two platforms tethered on opposite sides to the Space Station. A fourth platform, the elevator, is placed in between the Space Station and the upper platform. Variable-g levels on board the elevator are obtained by moving this facility along the upper tether, while micro-g experiments are carried out on board the Space Station. By controlling the length of the lower tether the position of the system CM can be maintained on board the Space Station despite variations of the station's distribution of mass. The paper illustrates the mathematical model, the environmental perturbations and the control techniques which have been adopted for the simulation and control of the system dynamics. Two sets of results from two different simulation runs are shown. The first set shows the system dynamics and the acceleration spectra on board the Space Station and the elevator during station-keeping. The second set of results demonstrates the capability of the elevator to attain a preselected g-level.
B-cell acquisition of antigen: Sensing the surface.
Knight, Andrew M
2015-06-01
B-cell antigen receptor (BCR) recognition and acquisition of antigen by B cells is the essential first step in the generation of effective antibody responses. As B-cell-mediated antigen presentation is also believed to play a significant role in the activation of CD4(+) Th-cell responses, considerable effort has focused on clarifying the nature of antigen/BCR interactions. Following earlier descriptions of interactions of soluble antigens with the BCR, it is now clear that B cells also recognize, physically extract and present antigens that are tethered to, or integral components of, the surfaces or extracellular matrix of other cells. In this issue of the European Journal of Immunology, Zeng et al. [Eur. J. Immunol. 2015. 45: XXXX-XXXX] examine how the physical property or "stiffness" of the surface displaying antigens to B cells influences the B-cell response. This commentary reports that antigen tethered on "less stiff" surfaces induces increased B-cell activation and antibody responses. I then infer how "sensing the surface" by B cells may represent a new component of the immune system's ability to detect "damage," and how this understanding may influence approaches to clinical therapies where immune activity is either unwanted or desired. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zheng, Y.; Chen, J.
2018-06-01
Variable stiffness composite structures take full advantages of composite’s design ability. An enlarged design space will make the structure’s performance more excellent. Through an optimal design of a variable stiffness cylinder, the buckling capacity of the cylinder will be increased as compared with its constant stiffness counterpart. In this paper, variable stiffness composite cylinders sustaining combined loadings are considered, and the optimization is conducted based on the multi-objective optimization method. The results indicate that variable stiffness cylinder’s loading capacity is increased significantly as compared with the constant stiffness, especially when an inhomogeneous loading is considered.
NASA Astrophysics Data System (ADS)
Houmat, A.
2018-02-01
The optimal lay-up design for the maximum fundamental frequency of variable stiffness laminated composite plates is investigated using a layer-wise optimization technique. The design variables are two fibre orientation angles per ply. Thin plate theory is used in conjunction with a p-element to calculate the fundamental frequencies of symmetrically and antisymmetrically laminated composite plates. Comparisons with existing optimal solutions for constant stiffness symmetrically laminated composite plates show excellent agreement. It is observed that the maximum fundamental frequency can be increased considerably using variable stiffness design as compared to constant stiffness design. In addition, optimal lay-ups for the maximum fundamental frequency of variable stiffness symmetrically and antisymmetrically laminated composite plates with different aspect ratios and various combinations of free, simply supported and clamped edge conditions are presented. These should prove a useful benchmark for optimal lay-ups of variable stiffness laminated composite plates.
The tethering of chromatin to the nuclear envelope supports nuclear mechanics
Schreiner, Sarah M.; Koo, Peter K.; Zhao, Yao; Mochrie, Simon G. J.; King, Megan C.
2015-01-01
The nuclear lamina is thought to be the primary mechanical defence of the nucleus. However, the lamina is integrated within a network of lipids, proteins and chromatin; the interdependence of this network poses a challenge to defining the individual mechanical contributions of these components. Here, we isolate the role of chromatin in nuclear mechanics by using a system lacking lamins. Using novel imaging analyses, we observe that untethering chromatin from the inner nuclear membrane results in highly deformable nuclei in vivo, particularly in response to cytoskeletal forces. Using optical tweezers, we find that isolated nuclei lacking inner nuclear membrane tethers are less stiff than wild-type nuclei and exhibit increased chromatin flow, particularly in frequency ranges that recapitulate the kinetics of cytoskeletal dynamics. We suggest that modulating chromatin flow can define both transient and long-lived changes in nuclear shape that are biologically important and may be altered in disease. PMID:26074052
Heinrich, Volkmar; Leung, Andrew; Evans, Evan
2005-03-01
We have used a biomembrane force probe decorated with P-selectin to form point attachments with PSGL-1 receptors on a human neutrophil (PMN) in a calcium-containing medium and then to quantify the forces experienced by the attachment during retraction of the PMN at fixed speed. From first touch to final detachment, the typical force history exhibited the following sequence of events: i), an initial linear-elastic displacement of the PMN surface, ii), an abrupt crossover to viscoplastic flow that signaled membrane separation from the interior cytoskeleton and the beginning of a membrane tether, and iii), the final detachment from the probe tip most often by one precipitous step of P-selectin:PSGL-1 dissociation. Analyzing the initial elastic response and membrane unbinding from the cytoskeleton in our companion article I, we focus in this article on the regime of tether extrusion that nearly always occurred before release of the extracellular adhesion bond at pulling speeds > or =1 microm/s. The force during tether growth appeared to approach a plateau at long times. Examined over a large range of pulling speeds up to 150 microm/s, the plateau force exhibited a significant shear thinning as indicated by a weak power-law dependence on pulling speed, f(infinity) = 60 pN(nu(pull)/microm/s)(0.25). Using this shear-thinning response to describe the viscous element in a nonlinear Maxwell-like fluid model, we show that a weak serial-elastic component with a stiffness of approximately 0.07 pN/nm provides good agreement with the time course of the tether force approach to the plateau under constant pulling speed.
A novel variable stiffness mechanism for dielectric elastomer actuators
NASA Astrophysics Data System (ADS)
Li, Wen-Bo; Zhang, Wen-Ming; Zou, Hong-Xiang; Peng, Zhi-Ke; Meng, Guang
2017-08-01
In this paper, a novel variable stiffness mechanism is proposed for the design of a variable stiffness dielectric elastomer actuator (VSDEA) which combines a flexible strip with a DEA in a dielectric elastomer minimum energy structure. The DEA induces an analog tuning of the transverse curvature of the strip, thus conveniently providing a voltage-controllable flexural rigidity. The VSDEA tends to be a fully flexible and compact structure with the advantages of simplicity and fast response. Both experimental and theoretical investigations are carried out to reveal the variable stiffness performances of the VSDEA. The effect of the clamped location on the bending stiffness of the VSDEA is analyzed, and then effects of the lengths, the loading points and the applied voltages on the bending stiffness are experimentally investigated. An analytical model is developed to verify the availability of this variable stiffness mechanism, and the theoretical results demonstrate that the bending stiffness of the VSDEA decreases as the applied voltage increases, which agree well with the experimental data. Moreover, the experimental results show that the maximum change of the relative stiffness can reach about 88.80%. It can be useful for the design and optimization of active variable stiffness structures and DEAs for soft robots, vibration control, and morphing applications.
Variable stiffness mechanisms with SMA actuators
NASA Astrophysics Data System (ADS)
Siler, Damin J.; Demoret, Kimberly B. J.
1996-05-01
Variable stiffness is a new branch of smart structures development with several applications related to aircraft. Previous research indicates that temporarily reducing the stiffness of an airplane wing can decrease control actuator sizing and improve aeroelastic roll performance. Some smart materials like shape memory alloys (SMA) can change their material stiffness properties, but they tend to gain stiffness in their `power on' state. An alternative is to integrate mechanisms into a structure and change stiffness by altering boundary conditions and structural load paths. An innovative concept for an axial strut mechanism was discovered as part of research into variable stiffness. It employs SMA springs (specifically Ni-Ti) in a way that reduces overall stiffness when the SMA springs gain stiffness. A simplified mathematical model for static analysis was developed, and a 70% reduction in stiffness was obtained for a particular selection of springs. The small force capacity of commercially available SMA springs limits the practicality of this concept for large load applications. However, smart material technology is still immature, and future advances may permit development of a heavy-duty, variable stiffness strut that is small and light enough for use in aircraft structures.
NASA Astrophysics Data System (ADS)
Gong, Xiaobo; Liu, Liwu; Scarpa, Fabrizio; Leng, Jinsong; Liu, Yanju
2017-03-01
This work presents a variable stiffness corrugated structure based on a shape memory polymer (SMP) composite with corrugated laminates as reinforcement that shows smooth aerodynamic surface, extreme mechanical anisotropy and variable stiffness for potential morphing skin applications. The smart composite corrugated structure shows a low in-plane stiffness to minimize the actuation energy, but also possess high out-of-plane stiffness to transfer the aerodynamic pressure load. The skin provides an external smooth aerodynamic surface because of the one-sided filling with the SMP. Due to variable stiffness of the shape memory polymer the morphing skin exhibits a variable stiffness with a change of temperature, which can help the skin adjust its stiffness according different service environments and also lock the temporary shape without external force. Analytical models related to the transverse and bending stiffness are derived and validated using finite element techniques. The stiffness of the morphing skin is further investigated by performing a parametric analysis against the geometry of the corrugation and various sets of SMP fillers. The theoretical and numerical models show a good agreement and demonstrate the potential of this morphing skin concept for morphing aircraft applications. We also perform a feasibility study of the use of this morphing skin in a variable camber morphing wing baseline. The results show that the morphing skin concept exhibits sufficient bending stiffness to withstand the aerodynamic load at low speed (less than 0.3 Ma), while demonstrating a large transverse stiffness variation (up to 191 times) that helps to create a maximum mechanical efficiency of the structure under varying external conditions.
Transapical endovascular implantation of neochordae using a suction and suture device.
Maisano, Francesco; Michev, Iassen; Rowe, Stanton; Addis, Alessandro; Campagnol, Marino; Guidotti, Andrea; Colombo, Antonio; Alfieri, Ottavio
2009-07-01
Neochordae implantation is a standard method for treatment of mitral valve prolapse. We describe a transcatheter technology enabling transapical endovascular chordal implantation. Six adult pigs were anesthetized. Two 10F sheaths were introduced in the femoral vessels for monitoring and intracardiac echo. After midline sternotomy, the pericardium was opened, the apex was punctured inside two 2-0 polypropylene purse strings. A 0.035 in J tipped guidewire was introduced in the left ventricle and an ultra stiff 14F sheath (guide catheter) inserted through the apex. A suction-and-suture device was introduced in the left ventricle. The mitral valve was crossed under echo guidance. Using suction, either the anterior (two cases) or posterior (four cases) leaflet was captured and a loop of 4-0 polypropylene was thrown at the edge of the leaflet. The loop, with a pledget, was exteriorized through the introducer. The introducer was removed and the purse-string tied. Under echo guidance, the neochordae suture was pulled and tied over a pledget to evoke leaflet tethering. The animals were sacrificed and gross anatomy reviewed. Leaflet capture was feasible in the intended location in all cases. Following suture tethering, variable degrees of MR were obtained. At gross anatomy, the neochordae were positioned at 1-4mm from the leaflet free edge, and were firmly attached to the leaflets. Transcatheter endovascular neochordae implantation is feasible. A prolapse model is needed to further demonstrate feasibility under pathologic conditions. The apical approach allows easy and direct route to transcatheter beating heart minimally invasive mitral repair.
Tethered satellite system control using electromagnetic forces and reaction wheels
NASA Astrophysics Data System (ADS)
Alandi Hallaj, Mohammad Amin; Assadian, Nima
2015-12-01
In this paper a novel non-rotating space tethered configuration is introduced which its relative positions controlled using electromagnetic forces. The attitude dynamics is controlled by three reaction wheels in the body axes. The nonlinear coupled orbital dynamics of a dumbbell tethered satellite formation flight are derived through a constrained Lagrangian approach. These equations are presented in the leader satellite orbital frame. The tether is assumed to be mass-less and straight, and the J2 perturbation is included to the analysis. The forces and the moments of the electromagnetic coils are modeled based on the far-filed model of the magnetic dipoles. A guidance scheme for generating the desired positions as a function of time in Cartesian form is presented. The satellite tethered formation with variable length is controlled utilizing a linear controller. This approach is applied to a specified scenario and it is shown that the nonlinear guidance method and the linear controller can control the nonlinear system of the tethered formation and the results are compared with optimal control approach.
Kim, Taegyo; Branner, Almut; Gulati, Tanuj
2013-01-01
Objective To test a novel braided multi-electrode probe design with compliance exceeding that of a 50-micron microwire, thus reducing micromotion and macromotion induced tissue stress. Approach We use up to 24 ultra-fine wires interwoven into a tubular braid to obtain a highly flexible multi-electrode probe. The tether-portion wires are simply non-braided extensions of the braid structure, allowing the microprobe to follow gross neural tissue movements. Mechanical calculation and direct measurements evaluated bending stiffness and axial compression forces in the probe and tether system. These were compared to 50μm Nichrome microwire standards. Recording tests were performed in decerebrate animals. Main results Mechanical bending tests on braids comprising 9.6μm or 12.7μm Nichrome wires showed that implants (braided portions) had 4 to 21 times better mechanical compliance than a single 50μm wire and non-braided tethers were 6 to 96 times better. Braided microprobes yielded robust neural recordings from animals’ spinal cords throughout cord motions. Significance Microwire electrode arrays that can record and withstand tissue micro- and macromotion of spinal cord tissues are demonstrated. This technology may provide a stable chronic neural interface into spinal cords of freely moving animals, is extensible to various applications, and may reduce mechanical tissue stress. PMID:23723128
NASA Astrophysics Data System (ADS)
Kim, Taegyo; Branner, Almut; Gulati, Tanuj; Giszter, Simon F.
2013-08-01
Objective. To test a novel braided multi-electrode probe design with compliance exceeding that of a 50 µm microwire, thus reducing micromotion- and macromotion-induced tissue stress. Approach. We use up to 24 ultra-fine wires interwoven into a tubular braid to obtain a highly flexible multi-electrode probe. The tether-portion wires are simply non-braided extensions of the braid structure, allowing the microprobe to follow gross neural tissue movements. Mechanical calculation and direct measurements evaluated bending stiffness and axial compression forces in the probe and tether system. These were compared to 50 µm nichrome microwire standards. Recording tests were performed in decerebrate animals. Main results. Mechanical bending tests on braids comprising 9.6 or 12.7 µm nichrome wires showed that implants (braided portions) had 4 to 21 times better mechanical compliance than a single 50 µm wire and non-braided tethers were 6 to 96 times better. Braided microprobes yielded robust neural recordings from animals' spinal cords throughout cord motions. Significance. Microwire electrode arrays that can record and withstand tissue micro- and macromotion of spinal cord tissues are demonstrated. This technology may provide a stable chronic neural interface into spinal cords of freely moving animals, is extensible to various applications, and may reduce mechanical tissue stress.
A Tether-Based Variable-Gravity Research Facility Concept
NASA Technical Reports Server (NTRS)
Sorensen, Kirk
2006-01-01
The recent announcement of a return to the Moon and a mission to Mars has made the question of human response to lower levels of gravity more important. Recent advances in tether technology spurred by NASA s research in MXER tethers has led to a re-examination of the concept of a variable-gravity research facility (xGRF) for human research in low Earth orbit. Breakthroughs in simplified inertial tracking have made it possible to consider eliminating the despun section of previous designs. This, in turn, improves the prospect of a facility based entirely around a tether, with the human module on one end and a countermass on the other. With such a configuration, propellantless spinup and spindown is also possible based on the conservation of angular momentum from a gravity-gradient configuration to a spinning configuration. This not only saves large amounts of propellant but vastly simplifies crew and consumable resupply operations, since these can now be done in a microgravity configuration. The importance of the science to be obtained and the performance improvements in this new design argue strongly for further investigation.
NASA Astrophysics Data System (ADS)
Hokamoto, Shinji
This study deals with orbital transfer of a satellite using a tether extension / retrieval mechanism. Instead of using propellant for the orbital transfer, the present concept uses electrical energy. By controlling the pitch motion of the tether system, we can achieve a prescribed velocity of the satellite at a prescribed position. By cutting the tether at that instant, we can inject the satellite into a designed new orbit. This paper considers co-planar motion and proposes a technique to achieve the desired tether length, pitch angle, and pitch angular rate at a designated position in orbit by using only tether length control. These three state variables are adjusted to their target values in three consecutive sections in the orbit; 1) control for the angular momentum of the pitching motion, which implies to adjust the tether length, 2) control for the pitch angle, and 3) control for the pitch angular rate. In each section, a pitch acceleration profile can be formed by using Fourier series as an alternative input for tether length profile. Their coefficients can be obtained without numerical iterations by using the simple initial / final relationships for the pitch angle and pitch angular rate. Therefore, this proposed procedure requires less computational cost than a numerical search, is easily applicable for different models and orbits, and can cope with physical restrictions of the system, such as tether tension or maximum tether length. Furthermore, the resulting final states precisely coincide with the target values. To demonstrate that the proposed procedure can successfully generate proper input profiles, this paper presents an orbital transfer problem as an example, and verifies its effectiveness. The simulation results show that the maximum tether length is less than 5km, and that the tether tension is kept positive during the mission.
Flight mechanics applications for tethers in space: Cooperative Italian-US programs
NASA Technical Reports Server (NTRS)
Bevilacqua, Franco; Merlina, Pietro; Anderson, John L.
1990-01-01
Since the 1974 proposal by Giuseppe Colombo to fly a tethered subsatellite from the Shuttle Orbiter, the creative thinking of many scientists and engineers from Italy and U.S. has generated a broad range of potential tether applications in space. Many of these applications have promise for enabling innovative research and operational activities relating to flight mechanics in earth orbit and at suborbital altitudes. From a flight mechanics standpoint the most interesting of the currently proposed flight demonstrations are: the second Tethered Satellite System experiment which offers both the potential for aerothermodynamics and hypersonics research and for atmospheric science research; the Tethered Initiated Space Recovery System which would enable orbital deboost and recovery of a re-entry vehicle and waste removal from a space station; and the Tether Elevator/Crawler System which would provide a variable microgravity environment and space station center of mass management. The outer atmospheric and orbital flight mechanics characteristics of these proposed tether flight demonstrations are described. The second Tethered Satellite System mission will deploy the tethered satellite earthward and will bring it as low as 130 km from ground and thus into the transition region between the atmosphere (non-ionized) and the partially ionized ionosphere. The atmospheric flight mechanics of the tethered satellite is discussed and simulation results are presented. The Tether Initiated Space Recovery System experiment will demonstrate the ability of a simple tether system to deboost and recover a reentry vehicle. The main feature of this demonstration is the utilization of a Small Expendable Deployment System (SEDS) and the low-tension deployment assumed to separate the reentry vehicle from the Shuttle. This low-tension deployment maneuver is discussed and its criticalities are outlined. The Tether Elevator/Crawler System is a new space element able to move in a controlled way between the ends of a deployed tethered system. A Shuttle test of an Elevator model is planned to demonstrate the unique capability of this element as a microgravity facility and to test the transfer motion control. The basic dynamical features of the Elevator system are presented and a preliminary assessment of the Elevator-induced tether vibrations is discussed.
The role of infarct transmural extent in infarct extension: A computational study.
Leong, Chin-Neng; Lim, Einly; Andriyana, Andri; Al Abed, Amr; Lovell, Nigel Hamilton; Hayward, Christopher; Hamilton-Craig, Christian; Dokos, Socrates
2017-02-01
Infarct extension, a process involving progressive extension of the infarct zone (IZ) into the normally perfused border zone (BZ), leads to continuous degradation of the myocardial function and adverse remodelling. Despite carrying a high risk of mortality, detailed understanding of the mechanisms leading to BZ hypoxia and infarct extension remains unexplored. In the present study, we developed a 3D truncated ellipsoidal left ventricular model incorporating realistic electromechanical properties and fibre orientation to examine the mechanical interaction among the remote, infarct and BZs in the presence of varying infarct transmural extent (TME). Localized highly abnormal systolic fibre stress was observed at the BZ, owing to the simultaneous presence of moderately increased stiffness and fibre strain at this region, caused by the mechanical tethering effect imposed by the overstretched IZ. Our simulations also demonstrated the greatest tethering effect and stress in BZ regions with fibre direction tangential to the BZ-remote zone boundary. This can be explained by the lower stiffness in the cross-fibre direction, which gave rise to a greater stretching of the IZ in this direction. The average fibre strain of the IZ, as well as the maximum stress in the sub-endocardial layer, increased steeply from 10% to 50% infarct TME, and slower thereafter. Based on our stress-strain loop analysis, we found impairment in the myocardial energy efficiency and elevated energy expenditure with increasing infarct TME, which we believe to place the BZ at further risk of hypoxia. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Dynamically variable negative stiffness structures.
Churchill, Christopher B; Shahan, David W; Smith, Sloan P; Keefe, Andrew C; McKnight, Geoffrey P
2016-02-01
Variable stiffness structures that enable a wide range of efficient load-bearing and dexterous activity are ubiquitous in mammalian musculoskeletal systems but are rare in engineered systems because of their complexity, power, and cost. We present a new negative stiffness-based load-bearing structure with dynamically tunable stiffness. Negative stiffness, traditionally used to achieve novel response from passive structures, is a powerful tool to achieve dynamic stiffness changes when configured with an active component. Using relatively simple hardware and low-power, low-frequency actuation, we show an assembly capable of fast (<10 ms) and useful (>100×) dynamic stiffness control. This approach mitigates limitations of conventional tunable stiffness structures that exhibit either small (<30%) stiffness change, high friction, poor load/torque transmission at low stiffness, or high power active control at the frequencies of interest. We experimentally demonstrate actively tunable vibration isolation and stiffness tuning independent of supported loads, enhancing applications such as humanoid robotic limbs and lightweight adaptive vibration isolators.
NASA Astrophysics Data System (ADS)
Takabayashi, Sadao; Klein, William P.; Onodera, Craig; Rapp, Blake; Flores-Estrada, Juan; Lindau, Elias; Snowball, Lejmarc; Sam, Joseph T.; Padilla, Jennifer E.; Lee, Jeunghoon; Knowlton, William B.; Graugnard, Elton; Yurke, Bernard; Kuang, Wan; Hughes, William L.
2014-10-01
High precision, high yield, and high density self-assembly of nanoparticles into arrays is essential for nanophotonics. Spatial deviations as small as a few nanometers can alter the properties of near-field coupled optical nanostructures. Several studies have reported assemblies of few nanoparticle structures with controlled spacing using DNA nanostructures with variable yield. Here, we report multi-tether design strategies and attachment yields for homo- and hetero-nanoparticle arrays templated by DNA origami nanotubes. Nanoparticle attachment yield via DNA hybridization is comparable with streptavidin-biotin binding. Independent of the number of binding sites, >97% site-occupation was achieved with four tethers and 99.2% site-occupation is theoretically possible with five tethers. The interparticle distance was within 2 nm of all design specifications and the nanoparticle spatial deviations decreased with interparticle spacing. Modified geometric, binomial, and trinomial distributions indicate that site-bridging, steric hindrance, and electrostatic repulsion were not dominant barriers to self-assembly and both tethers and binding sites were statistically independent at high particle densities.High precision, high yield, and high density self-assembly of nanoparticles into arrays is essential for nanophotonics. Spatial deviations as small as a few nanometers can alter the properties of near-field coupled optical nanostructures. Several studies have reported assemblies of few nanoparticle structures with controlled spacing using DNA nanostructures with variable yield. Here, we report multi-tether design strategies and attachment yields for homo- and hetero-nanoparticle arrays templated by DNA origami nanotubes. Nanoparticle attachment yield via DNA hybridization is comparable with streptavidin-biotin binding. Independent of the number of binding sites, >97% site-occupation was achieved with four tethers and 99.2% site-occupation is theoretically possible with five tethers. The interparticle distance was within 2 nm of all design specifications and the nanoparticle spatial deviations decreased with interparticle spacing. Modified geometric, binomial, and trinomial distributions indicate that site-bridging, steric hindrance, and electrostatic repulsion were not dominant barriers to self-assembly and both tethers and binding sites were statistically independent at high particle densities. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03069a
Application of shape memory alloy (SMA) spars for aircraft maneuver enhancement
NASA Astrophysics Data System (ADS)
Nam, Changho; Chattopadhyay, Aditi; Kim, Youdan
2002-07-01
Modern combat aircraft are required to achieve aggressive maneuverability and high agility performance, while maintaining handling qualities over a wide range of flight conditions. Recently, a new adaptive-structural concept called variable stiffness spar is proposed in order to increase the maneuverability of the flexible aircraft. The variable stiffness spar controls wing torsional stiffness to enhance roll performance in the complete flight envelope. However, variable stiffness spar requires the mechanical actuation system in order to rotate the Variable stiffness spar during flight. The mechanical actuation system to rotate variable stiffness spar may cause an additional weight increase. In this paper, we will apply Shape Memory Alloy (SMA) spars for aeroelastic performance enhancement. In order to explore the potential of SMA spar design, roll performance of the composite smart wings will be investigated using ASTROS. Parametric study will be conducted to investigate the SMA spar effects by changing the spar locations and geometry. The results show that with activation of the SMA spar, the roll effectiveness can be increased up to 61% compared with the baseline model.
Flexible flapping wings with self-organized microwrinkles.
Tanaka, Hiroto; Okada, Hiroyuki; Shimasue, Yosuke; Liu, Hao
2015-06-29
Bio-inspired flapping wings with a wrinkled wing membrane were designed and fabricated. The wings consist of carbon fibre-reinforced plastic frames and a polymer film with microscale wrinkles inspired by bird feathers and the corrugations of insect wings. The flexural and tensile stiffness of the wrinkled film can be controlled by modifying the orientations and waveforms of the wrinkles, thereby expanding the design space of flexible wings for micro flapping-wing aerial robots. A self-organization phenomenon was exploited in the fabrication of the microwrinkles such that microscale wrinkles spanning a broad wing area were spontaneously created. The wavy shape of these self-organized wrinkles was used as a mould, and a Parylene film was deposited onto the mould to form a wrinkled wing film. The effect of the waveforms of the wrinkles on the film stiffness was investigated theoretically, computationally and experimentally. Compared with a flat film, the flexural stiffness was increased by two orders of magnitude, and the tensile stiffness was reduced by two orders of magnitude. To demonstrate the effect of the wrinkles on the actual deformation of the flapping wings and the resulting aerodynamic forces, the fabricated wrinkled wings were tested using a tethered electric flapping mechanism. Chordwise unidirectional wrinkles were found to prevent fluttering near the trailing edge and to produce a greater aerodynamic lift compared with a flat wing or a wing with spanwise wrinkles. Our results suggest that the fine stiffness control of the wing film that can be achieved by tuning the microwrinkles can improve the aerodynamic performance of future flapping-wing aerial robots.
Aubin, Carl-Éric; Clin, Julien; Rawlinson, Jeremy
2018-01-01
Compression-based fusionless tethers are an alternative to conventional surgical treatments of pediatric scoliosis. Anterior approaches place an anterior (ANT) tether on the anterolateral convexity of the deformed spine to modify growth. Posterior, or costo-vertebral (CV), approaches have not been assessed for biomechanical and corrective effectiveness. The objective was to biomechanically assess CV and ANT tethers using six patient-specific, finite element models of adolescent scoliotic patients (11.9 ± 0.7 years, Cobb 34° ± 10°). A validated algorithm simulated the growth and Hueter-Volkmann growth modulation over a period of 2 years with the CV and ANT tethers at two initial tensions (100, 200 N). The models without tethering also simulated deformity progression with Cobb angle increasing from 34° to 56°, axial rotation 11° to 13°, and kyphosis 28° to 32° (mean values). With the CV tether, the Cobb angle was reduced to 27° and 20° for tensions of 100 and 200 N, respectively, kyphosis to 21° and 19°, and no change in axial rotation. With the ANT tether, Cobb was reduced to 32° and 9° for 100 and 200 N, respectively, kyphosis unchanged, and axial rotation to 3° and 0°. While the CV tether mildly corrected the coronal curve over a 2-year growth period, it had sagittal lordosing effect, particularly with increasing initial axial rotation (>15°). The ANT tether achieved coronal correction, maintained kyphosis, and reduced the axial rotation, but over-correction was simulated at higher initial tensions. This biomechanical study captured the differences between a CV and ANT tether and indicated the variability arising from the patient-specific characteristics. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:254-264, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Variable Stiffness Panel Structural Analyses With Material Nonlinearity and Correlation With Tests
NASA Technical Reports Server (NTRS)
Wu, K. Chauncey; Gurdal, Zafer
2006-01-01
Results from structural analyses of three tow-placed AS4/977-3 composite panels with both geometric and material nonlinearities are presented. Two of the panels have variable stiffness layups where the fiber orientation angle varies as a continuous function of location on the panel planform. One variable stiffness panel has overlapping tow bands of varying thickness, while the other has a theoretically uniform thickness. The third panel has a conventional uniform-thickness [plus or minus 45](sub 5s) layup with straight fibers, providing a baseline for comparing the performance of the variable stiffness panels. Parametric finite element analyses including nonlinear material shear are first compared with material characterization test results for two orthotropic layups. This nonlinear material model is incorporated into structural analysis models of the variable stiffness and baseline panels with applied end shortenings. Measured geometric imperfections and mechanical prestresses, generated by forcing the variable stiffness panels from their cured anticlastic shapes into their flatter test configurations, are also modeled. Results of these structural analyses are then compared to the measured panel structural response. Good correlation is observed between the analysis results and displacement test data throughout deep postbuckling up to global failure, suggesting that nonlinear material behavior is an important component of the actual panel structural response.
Facchinello, Yann; Brailovski, Vladimir; Petit, Yvan; Mac-Thiong, Jean-Marc
2014-11-01
The concept of a monolithic Ti-Ni spinal rod with variable flexural stiffness is proposed to reduce the risks associated with spinal fusion. The variable stiffness is conferred to the rod using the Joule-heating local annealing technique. The annealing temperature and the mechanical properties' distributions resulted from this thermal treatment are numerically modeled and experimentally measured. To illustrate the possible applications of such a modeling approach, two case studies are presented: (a) optimization of the Joule-heating strategy to reduce annealing time, and (b) modulation of the rod's overall flexural stiffness using partial annealing. A numerical model of a human spine coupled with the model of the variable flexural stiffness spinal rod developed in this work can ultimately be used to maximize the stabilization capability of spinal instrumentation, while simultaneously decreasing the risks associated with spinal fusion. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
Mechanochemical regulations of RPA's binding to ssDNA
NASA Astrophysics Data System (ADS)
Chen, Jin; Le, Shimin; Basu, Anindita; Chazin, Walter J.; Yan, Jie
2015-03-01
Replication protein A (RPA) is a ubiquitous eukaryotic single-stranded DNA (ssDNA) binding protein that serves to protect ssDNA from degradation and annealing, and as a template for recruitment of many downstream factors in virtually all DNA transactions in cell. During many of these transactions, DNA is tethered and is likely subject to force. Previous studies of RPA's binding behavior on ssDNA were conducted in the absence of force; therefore the RPA-ssDNA conformations regulated by force remain unclear. Here, using a combination of atomic force microscopy imaging and mechanical manipulation of single ssDNA tethers, we show that force mediates a switch of the RPA bound ssDNA from amorphous aggregation to a much more regular extended conformation. Further, we found an interesting non-monotonic dependence of the binding affinity on monovalent salt concentration in the presence of force. In addition, we discovered that zinc in micromolar concentrations drives ssDNA to a unique, highly stiff and more compact state. These results provide new mechanochemical insights into the influences and the mechanisms of action of RPA on large single ssDNA.
Dynamically variable negative stiffness structures
Churchill, Christopher B.; Shahan, David W.; Smith, Sloan P.; Keefe, Andrew C.; McKnight, Geoffrey P.
2016-01-01
Variable stiffness structures that enable a wide range of efficient load-bearing and dexterous activity are ubiquitous in mammalian musculoskeletal systems but are rare in engineered systems because of their complexity, power, and cost. We present a new negative stiffness–based load-bearing structure with dynamically tunable stiffness. Negative stiffness, traditionally used to achieve novel response from passive structures, is a powerful tool to achieve dynamic stiffness changes when configured with an active component. Using relatively simple hardware and low-power, low-frequency actuation, we show an assembly capable of fast (<10 ms) and useful (>100×) dynamic stiffness control. This approach mitigates limitations of conventional tunable stiffness structures that exhibit either small (<30%) stiffness change, high friction, poor load/torque transmission at low stiffness, or high power active control at the frequencies of interest. We experimentally demonstrate actively tunable vibration isolation and stiffness tuning independent of supported loads, enhancing applications such as humanoid robotic limbs and lightweight adaptive vibration isolators. PMID:26989771
NASA Astrophysics Data System (ADS)
Li, G. Q.; Zhu, Z. H.
2015-12-01
Dynamic modeling of tethered spacecraft with the consideration of elasticity of tether is prone to the numerical instability and error accumulation over long-term numerical integration. This paper addresses the challenges by proposing a globally stable numerical approach with the nodal position finite element method (NPFEM) and the implicit, symplectic, 2-stage and 4th order Gaussian-Legendre Runge-Kutta time integration. The NPFEM eliminates the numerical error accumulation by using the position instead of displacement of tether as the state variable, while the symplectic integration enforces the energy and momentum conservation of the discretized finite element model to ensure the global stability of numerical solution. The effectiveness and robustness of the proposed approach is assessed by an elastic pendulum problem, whose dynamic response resembles that of tethered spacecraft, in comparison with the commonly used time integrators such as the classical 4th order Runge-Kutta schemes and other families of non-symplectic Runge-Kutta schemes. Numerical results show that the proposed approach is accurate and the energy of the corresponding numerical model is conservative over the long-term numerical integration. Finally, the proposed approach is applied to the dynamic modeling of deorbiting process of tethered spacecraft over a long period.
Tethered Ozonesonde Measurements During FRAPPE July-August 2014
NASA Astrophysics Data System (ADS)
Oltmans, S. J.; Johnson, B.; Sterling, C. W.; Cullis, P.; Hall, E. G.; Jordan, A. F.; Wendell, J.; Schnell, R. C.; McClure-Begley, A.; Thompson, A. M.
2015-12-01
O3 and temperature profiles were measured from tethered ozonesondes from surface to 400 m above ground level on 9 days during the summer of 2014 Colorado Front Range Air Pollution and Photochemistry Experiment (FRAPPE). The portable tethered ozonesonde system was set up at one of 3 sites located next to a Colorado Department of Public Health and Environment surface monitoring station. The day and site chosen were based on the previous day O3 and weather forecast. Measurements typically began at 8:30 AM and ended at 4:30 PM, averaging 40 profiles in one day. The ozonesonde when sampling at the surface consistently read within 0-3 ppbv of the surface monitor at each of the sites with a typical daytime range of 20-90 ppbv. The hourly values were averaged at 50 meter intervals showing O3 production rates were consistently around 8 ppbv per hour from 50 to 300 meters above ground level. On sunny, light wind days the O3 mixing ratio reached a maximum of 80-90 ppbv between 14:00 and 15:00 local time. The generally constant mixing ratio with height and highest mixing ratios above the surface indicate that photochemical O3 production was taking place throughout the profile. Continuous O3 profiles from a tall tower (5 and 300 m) and daily ozonesondes tracked O3 variability through the experiment. High O3 at each site was associated with different local wind directions. At Ft. Collins winds were generally out of the southeast, at Chatfield from the northeast, and at City Park Golf Course more variable. The tether system was developed at NOAA/ESRL to provide a cost effective method to measure O3 profiles on a continuous basis. The tether system consisted of a deep sea fishing pole, electric motor driving the reel with light-weight fishing line attached to the balloon ozonesonde, a tether control box, and laptop. The in house software package monitored data and controlled the tether speed and turn-around point based on real time GPS altitude from the transmitting radiosonde.
Li, Zhi-Yong; Xu, Tian-Ying; Zhang, Sai-Long; Zhou, Xiao-Ming; Xu, Xue-Wen; Guan, Yun-Feng; Lo, Ming; Miao, Chao-Yu
2013-09-01
Ambulatory arterial stiffness index (AASI) has been proposed as a new measure of arterial stiffness for predicting cardio-cerebro-vascular morbidity and mortality. However, there has been no research on the direct relationships between AASI and arterial stiffness-determining factors. We utilized beat-to-beat intra-aortic blood pressure (BP) telemetry to characterize AASI in Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). By determination of aortic structural components and analysis of their correlations with AASI, we provided the first direct evidence for the associations between AASI and arterial stiffness-determining factors including the collagen content and collagen/elastin. Ambulatory arterial stiffness index was positively correlated with pulse pressure in both WKY and SHR, less dependent on BP and BP variability than pulse pressure, and relatively stable, especially the number of BP readings not less than ~36. The correlations between AASI and aortic components were comparable for various AASI values derived from BP readings not less than ~36. Not only AASI but also BP variability and pulse pressure demonstrated a direct relationship with arterial stiffness. These findings indicate AASI may become a routine measure in human arterial stiffness assessment. It is recommended to use a cluster of parameters such as AASI, BP variability, and pulse pressure for evaluating arterial stiffness. © 2013 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Abolfathi, Ali; O'Boy, Dan J.; Walsh, Stephen J.; Dowsett, Amy; Fisher, Stephen A.
2016-09-01
Small plastic clips are used in large numbers in automotive vehicles to connect interior trims to vehicle structures. The variability in their properties can contribute to the overall variability in noise and vibration response of the vehicle. The variability arises due to their material and manufacturing tolerances and more importantly due to the boundary condition. To measure their stiffness and damping, a simple experimental rig is used where a mass is supported by the clip which is modelled as a single degree of freedom system. The rig is designed in a way that it simulates the boundary condition as those of the real vehicle. The variability in clip and also due to the boundary condition at the structure side is first examined which is 7% for stiffness and 8% for damping. To simulate the connection of the trim side, a mount is built using a 3D printer. Rattling occurs in the response of the clips with loose connections, however by preloading the mount the effective stiffness increases and the rattling is eliminated. The variability due to the boundary condition at the trim side was as large as 40% for stiffness and 52% for damping.
A variable stiffness mechanism for steerable percutaneous instruments: integration in a needle.
De Falco, Iris; Culmone, Costanza; Menciassi, Arianna; Dankelman, Jenny; van den Dobbelsteen, John J
2018-06-04
Needles are advanced tools commonly used in minimally invasive medical procedures. The accurate manoeuvrability of flexible needles through soft tissues is strongly determined by variations in tissue stiffness, which affects the needle-tissue interaction and thus causes needle deflection. This work presents a variable stiffness mechanism for percutaneous needles capable of compensating for variations in tissue stiffness and undesirable trajectory changes. It is composed of compliant segments and rigid plates alternately connected in series and longitudinally crossed by four cables. The tensioning of the cables allows the omnidirectional steering of the tip and the stiffness tuning of the needle. The mechanism was tested separately under different working conditions, demonstrating a capability to exert up to 3.6 N. Afterwards, the mechanism was integrated into a needle, and the overall device was tested in gelatine phantoms simulating the stiffness of biological tissues. The needle demonstrated the capability to vary deflection (from 11.6 to 4.4 mm) and adapt to the inhomogeneity of the phantoms (from 21 to 80 kPa) depending on the activation of the variable stiffness mechanism. Graphical abstract ᅟ.
Fuzzy variable impedance control based on stiffness identification for human-robot cooperation
NASA Astrophysics Data System (ADS)
Mao, Dachao; Yang, Wenlong; Du, Zhijiang
2017-06-01
This paper presents a dynamic fuzzy variable impedance control algorithm for human-robot cooperation. In order to estimate the intention of human for co-manipulation, a fuzzy inference system is set up to adjust the impedance parameter. Aiming at regulating the output fuzzy universe based on the human arm’s stiffness, an online stiffness identification method is developed. A drag interaction task is conducted on a 5-DOF robot with variable impedance control. Experimental results demonstrate that the proposed algorithm is superior.
A variable stiffness dielectric elastomer actuator based on electrostatic chucking.
Imamura, Hiroya; Kadooka, Kevin; Taya, Minoru
2017-05-14
Dielectric elastomer actuators (DEA) are one type of promising artificial muscle; however, applications of bending-type DEA for robotic end-effectors may be limited by their low stiffness and ability to resist external loads without buckling. Unimorph DEA can produce large out-of-plane deformation suitable for use as robotic end effectors; however, design of such actuators for large displacement comes at the cost of low stiffness and blocking force. This work proposes and demonstrates a variable stiffness dielectric elastomer actuator (VSDEA) consisting of a plurality of unimorph DEA units operating in parallel, which can exhibit variable electrostatic chucking to modulate the structure's bending stiffness. The unimorph DEA units are additively manufactured using a high-resolution pneumatic dispenser, and VSDEA comprising various numbers of units are assembled. The performance of the DEA units and VSDEA are compared to model predictions, exhibiting a maximum stiffness change of 39.2×. A claw actuator comprising two VSDEA and weighing 0.6 grams is demonstrated grasping and lifting a 10 gram object.
Variable stiffness sandwich panels using electrostatic interlocking core
NASA Astrophysics Data System (ADS)
Heath, Callum J. C.; Bond, Ian P.; Potter, Kevin D.
2016-04-01
Structural topology has a large impact on the flexural stiffness of a beam structure. Reversible attachment between discrete substructures allows for control of shear stress transfer between structural elements, thus stiffness modulation. Electrostatic adhesion has shown promise for providing a reversible latching mechanism for controllable internal connectivity. Building on previous research, a thin film copper polyimide laminate has been used to incorporate high voltage electrodes to Fibre Reinforced Polymer (FRP) sandwich structures. The level of electrostatic holding force across the electrode interface is key to the achievable level of stiffness modulation. The use of non-flat interlocking core structures can allow for a significant increase in electrode contact area for a given core geometry, thus a greater electrostatic holding force. Interlocking core geometries based on cosine waves can be Computer Numerical Control (CNC) machined from Rohacell IGF 110 Foam core. These Interlocking Core structures could allow for enhanced variable stiffness functionality compared to basic planar electrodes. This novel concept could open up potential new applications for electrostatically induced variable stiffness structures.
NASA Technical Reports Server (NTRS)
Duda, David P.; Stephens, Graeme L.; Cox, Stephen K.
1990-01-01
Measurements of longwave and shortwave radiation were made using an instrument package on the NASA tethered balloon during the FIRE Marine Stratocumulus experiment. Radiation data from two pairs of pyranometers were used to obtain vertical profiles of the near-infrared and total solar fluxes through the boundary layer, while a pair of pyrgeometers supplied measurements of the longwave fluxes in the cloud layer. The radiation observations were analyzed to determine heating rates and to measure the radiative energy budget inside the stratocumulus clouds during several tethered balloon flights. The radiation fields in the cloud layer were also simulated by a two-stream radiative transfer model, which used cloud optical properties derived from microphysical measurements and Mie scattering theory.
Comparison of technologies for deorbiting spacecraft from low-earth-orbit at end of mission
NASA Astrophysics Data System (ADS)
Sánchez-Arriaga, G.; Sanmartín, J. R.; Lorenzini, E. C.
2017-09-01
An analytical comparison of four technologies for deorbiting spacecraft from Low-Earth-Orbit at end of mission is presented. Basic formulas based on simple physical models of key figures of merit for each device are found. Active devices - rockets and electrical thrusters - and passive technologies - drag augmentation devices and electrodynamic tethers - are considered. A basic figure of merit is the deorbit device-to-spacecraft mass ratio, which is, in general, a function of environmental variables, technology development parameters and deorbit time. For typical state-of-the-art values, equal deorbit time, middle inclination and initial altitude of 850 km, the analysis indicates that tethers are about one and two orders of magnitude lighter than active technologies and drag augmentation devices, respectively; a tether needs a few percent mass-ratio for a deorbit time of a couple of weeks. For high inclination, the performance drop of the tether system is moderate: mass ratio and deorbit time increase by factors of 2 and 4, respectively. Besides collision risk with other spacecraft and system mass considerations, such as main driving factors for deorbit space technologies, the analysis addresses other important constraints, like deorbit time, system scalability, manoeuver capability, reliability, simplicity, attitude control requirement, and re-entry and multi-mission capability (deorbit and re-boost) issues. The requirements and constraints are used to make a critical assessment of the four technologies as functions of spacecraft mass and initial orbit (altitude and inclination). Emphasis is placed on electrodynamic tethers, including the latest advances attained in the FP7/Space project BETs. The superiority of tape tethers as compared to round and multi-line tethers in terms of deorbit mission performance is highlighted, as well as the importance of an optimal geometry selection, i.e. tape length, width, and thickness, as function of spacecraft mass and initial orbit. Tether system configuration, deployment and dynamical issues, including a simple passive way to mitigate the well-known dynamical instability of electrodynamic tethers, are also discussed.
Formations of Tethered Spacecraft as Stable Platforms for Far IR and Sub-mm Astronomy
NASA Technical Reports Server (NTRS)
Quadrelli, Marco B.; Hadaegh, Fred Y.; Shao, Michael; Lorenzini, Enrico C.
2004-01-01
In this paper we describe current research in tethered formations for interferometry, and a roadmap to demonstrating the required key technologies via on-ground and in-orbit testing. We propose an integrated kilometer-size tethered spacecraft formation flying concept which enables Far IR and Sub-mm astronomy observations from space. A rather general model is used to predict the dynamics, control, and estimation performance of formations of spacecraft connected by tethers in LEO and deep space. These models include the orbital and tethered formation dynamics, environmental models, and models of the formation estimator/controller/commander. Both centralized and decentralized control/sensing/estimation schemes are possible, and dynamic ranges of interest for sensing/control are described. Key component/subsystem technologies are described which need both ground-based and in-orbit demonstration prior to their utilization in precision space interferometry missions using tethered formations. Defining an orbiting formation as an ensemble of orbiting spacecraft performing a cooperative task, recent work has demonstrated the validity of the tethering the spacecraft to provide both the required formation rigidity and satisfy the formation reconfiguration needs such as interferometer baseline control. In our concept, several vehicles are connected and move along the tether, so that to reposition them the connecting tether links must vary in length. This feature enables variable and precise baseline control while the system spins around the boresight. The control architecture features an interferometer configuration composed of one central combiner spacecraft and two aligned collector spacecraft. The combiner spacecraft acts as the formation leader and is also where the centralized sensing and estimation functions reside. Some of the issues analyzed with the model are: dynamic modes of deformation of the distributed structure, architecture of the formation sensor, and sources of dynamical perturbation that need to be mitigated for precision operation in space. Examples from numerical simulation of an envisioned scenario in heliocentric orbit demonstrate the potential of the concept for space interferometry.
Tuned mass damping system for a pendulum in gravity and microgravity fields
NASA Astrophysics Data System (ADS)
Atour, Farah
2016-07-01
An electrodynamic tether is a simple idea, but one with an amazing number of uses. Electrodynamic tether is a long conductor wire that is attached to the satellite, which can act as a generator or motor, from its motion through the earth's magnetic field. And it has the potential to make space travel significantly cheaper. The lack of electrodynamic tether's widespread in common applications can be attributed to the variable Lorentz forces occuring on the tethers, which will cause them to oscillate and may go out of control, de-orbit the satellite and fall to Earth. A tuned mass damper system, for short refered as tilger, is suggested as damper of oscillations of tethers. A system composed of a tuned mass damper and a simple pendulum simulating the tether was therefore constructed. 350 sets of experimental trials were done on the system, while it was installed inside a drop tower capsule resting on the ground, in order to pick four optimum setup experiments that will undergo a series of microgravity experiments at the Bremen Drop Tower in Bremen, Germany. The GJU Bachelor Research students found that the oscillations of the simple pendulum will not be affected by the tilger during the free fall experiment, except if a feedback mechanism is installed between the simple pendulum and the tilger. In this case, the tilger will dampen the simple pendulum oscillations during free fall.
Two-Stage Winch for Kites and Tethered Balloons or Blimps
NASA Technical Reports Server (NTRS)
Miles, Ted; Bland, Geoff
2011-01-01
A winch system provides a method for launch and recovery capabilities for kites and tethered blimps or balloons. Low power consumption is a key objective, as well as low weight for portability. This is accomplished by decoupling the tether-line storage and wind ing/ unwinding functions, and providing tailored and efficient mechanisms for each. The components of this system include rotational power input devices such as electric motors or other apparatus, line winding/unwinding reel(s), line storage reel(s), and independent drive trains. Power is applied to the wind/unwind reels to transport the tether line. Power is also applied to a line storage reel, from either the wind/unwind power source, the wind/unwind reel itself, or separate power source. The speeds of the two reels are synchronized, but not dependent on each other. This is accomplished via clutch mechanisms, variable transmissions, or independent motor controls. The speed of the storage reel is modulated as the effective diameter of the reel changes with line accumulation.
Dynamics of Multibody Systems Near Lagrangian Points
NASA Astrophysics Data System (ADS)
Wong, Brian
This thesis examines the dynamics of a physically connected multi-spacecraft system in the vicinity of the Lagrangian points of a Circular Restricted Three-Body System. The spacecraft system is arranged in a wheel-spoke configuration with smaller and less massive satellites connected to a central hub using truss/beams or tether connectors. The kinematics of the system is first defined, and the kinetic, gravitational potential energy and elastic potential energy of the system are derived. The Assumed Modes Method is used to discretize the continuous variables of the system, and a general set of ordinary differential equations describing the dynamics of the connectors and the central hub are obtained using the Lagrangian method. The flexible body dynamics of the tethered and truss connected systems are examined using numerical simulations. The results show that these systems experienced only small elastic deflections when they are naturally librating or rotating at moderate angular velocities, and these deflections have relatively small effect on the attitude dynamics of the systems. Based on these results, it is determined that the connectors can be modeled as rigid when only the attitude dynamics of the system is of interest. The equations of motion of rigid satellites stationed at the Lagrangian points are linearized, and the stability conditions of the satellite are obtained from the linear equations. The required conditions are shown to be similar to those of geocentric satellites. Study of the linear equations also revealed the resonant conditions of rigid Lagrangian point satellites, when a librational natural frequency of the satellite matches the frequency of its station-keeping orbit leading to large attitude motions. For tethered satellites, the linear analysis shows that the tethers are in stable equilibrium when they lie along a line joining the two primary celestial bodies of the Three-Body System. Numerical simulations are used to study the long term dynamics of two sample rigid bodies when they are in different periodic orbits around a collinear point, and the tether librations of a two-tether system in the same orbits. The results show that the rigid satellites and the tethered system experience greater attitude motions when they are in larger periodic orbits. The dynamics of variable length systems are also studied in order to determine the control cost associated with moving the end bodies in a gapless spiral to cover the area spanned by the system. The control cost is relatively low during tether deployment, and negligible effort is required to maintain the angular velocity of the tethered system after deployment. A set of recommendations for the applications of Lagrangian-point physically-connected systems are presented as well as some future research directions are suggested.
Research on damping properties optimization of variable-stiffness plate
NASA Astrophysics Data System (ADS)
Wen-kai, QI; Xian-tao, YIN; Cheng, SHEN
2016-09-01
This paper investigates damping optimization design of variable-stiffness composite laminated plate, which means fibre paths can be continuously curved and fibre angles are distinct for different regions. First, damping prediction model is developed based on modal dissipative energy principle and verified by comparing with modal testing results. Then, instead of fibre angles, the element stiffness and damping matrixes are translated to be design variables on the basis of novel Discrete Material Optimization (DMO) formulation, thus reducing the computation time greatly. Finally, the modal damping capacity of arbitrary order is optimized using MMA (Method of Moving Asymptotes) method. Meanwhile, mode tracking technique is employed to investigate the variation of modal shape. The convergent performance of interpolation function, first order specific damping capacity (SDC) optimization results and variation of modal shape in different penalty factor are discussed. The results show that the damping properties of the variable-stiffness plate can be increased by 50%-70% after optimization.
Longitudinal relaxation of initially straight flexible and stiff polymers
NASA Astrophysics Data System (ADS)
Dimitrakopoulos, Panagiotis; Dissanayake, Inuka
2004-11-01
The present talk considers the relaxation of a single flexible or stiff polymer chain from an initial straight configuration in a viscous solvent. This problem commonly arises when strong flows are turned off in both industrial and biological applications. The problem is also motivated by recent experiments with single biopolymer molecules relaxing after being fully extended by applied forces as well as by the recent development of micro-devices involving stretched tethered biopolymers. Our results are applicable to a wide array of synthetic polymers such as polyacrylamides, Kevlar and polyesters as well as biopolymers such as DNA, actin filaments, microtubules and MTV. In this talk we discuss the mechanism of the polymer relaxation as was revealed through Brownian Dynamics simulations covering a broad range of time scales and chain stiffness. After the short-time free diffusion, the chain's longitudinal reduction at early intermediate times is shown to constitute a universal behavior for any chain stiffness caused by a quasi-steady relaxation of tensions associated with the deforming action of the Brownian forces. Stiff chains are shown to exhibit a late intermediate-time longitudinal reduction associated with a relaxation of tensions affected by the deforming Brownian and the restoring bending forces. The longitudinal and transverse relaxations are shown to obey different laws, i.e. the chain relaxation is anisotropic at all times. In the talk, we show how from the knowledge of the relaxation mechanism, we can predict and explain the polymer properties including the polymer stress and the solution birefringence. In addition, a generalized stress-optic law is derived valid for any time and chain stiffness. All polymer properties which depend on the polymer length are shown to exhibit two intermediate-time behaviors with the early one to constitute a universal behavior for any chain stiffness. This work was supported in part by the Minta Martin Research Fund. The computations were performed on multiprocessor computers provided by the National Center for Supercomputing Applications (NCSA) in Illinois (grant DMR000003), and by an Academic Equipment Grant from Sun Microsystems Inc.
JUBA (Joint UAS-Balloon Activities) Final Campaign Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dexheimer, Darielle; Apple, Monty; Callow, Diane Schafer
Using internal investment funds within Sandia National Laboratories’ (SNL) Division 6000, JUBA was a collaborative exercise between SNL Orgs. 6533 & 6913 (later 8863) to demonstrate simultaneous flights of tethered balloons and UAS on the North Slope of Alaska. JUBA UAS and tethered balloon flights were conducted within the Restricted Airspace associated with the ARM AMF3 site at Oliktok Point, Alaska. The Restricted Airspace occupies a 2 nautical mile radius around Oliktok Point. JUBA was conducted at the Sandia Arctic Site, which is approximately 2 km east-southeast of the AMF3. JUBA activities occurred from 08/08/17 – 08/10/17. Atmospheric measurements frommore » tethered balloons can occur for a long duration, but offer limited spatial variation. Measurements from UAS could offer increased spatial variability.« less
A linear stepping endovascular intervention robot with variable stiffness and force sensing.
He, Chengbin; Wang, Shuxin; Zuo, Siyang
2018-05-01
Robotic-assisted endovascular intervention surgery has attracted significant attention and interest in recent years. However, limited designs have focused on the variable stiffness mechanism of the catheter shaft. Flexible catheter needs to be partially switched to a rigid state that can hold its shape against external force to achieve a stable and effective insertion procedure. Furthermore, driving catheter in a similar way with manual procedures has the potential to make full use of the extensive experience from conventional catheter navigation. Besides driving method, force sensing is another significant factor for endovascular intervention. This paper presents a variable stiffness catheterization system that can provide stable and accurate endovascular intervention procedure with a linear stepping mechanism that has a similar operation mode to the conventional catheter navigation. A specially designed shape-memory polymer tube with water cooling structure is used to achieve variable stiffness of the catheter. Hence, four FBG sensors are attached to the catheter tip in order to monitor the tip contact force situation with temperature compensation. Experimental results show that the actuation unit is able to deliver linear and rotational motions. We have shown the feasibility of FBG force sensing to reduce the effect of temperature and detect the tip contact force. The designed catheter can change its stiffness partially, and the stiffness of the catheter can be remarkably increased in rigid state. Hence, in the rigid state, the catheter can hold its shape against a [Formula: see text] load. The prototype has also been validated with a vascular phantom, demonstrating the potential clinical value of the system. The proposed system provides important insights into the design of compact robotic-assisted catheter incorporating effective variable stiffness mechanism and real-time force sensing for intraoperative endovascular intervention.
Quantifying Effects of Voids in Woven Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Goldsmith, Marlana B.; Sankar, Bhavani V.; Haftka, Raphael T.; Goldberg, Robert K.
2013-01-01
Randomness in woven ceramic matrix composite architecture has been found to cause large variability in stiffness and strength. The inherent voids are an aspect of the architecture that may cause a significant portion of the variability. A study is undertaken to investigate the effects of many voids of random sizes and distributions. Response surface approximations were formulated based on void parameters such as area and length fractions to provide an estimate of the effective stiffness. Obtaining quantitative relationships between the properties of the voids and their effects on stiffness of ceramic matrix composites are of ultimate interest, but the exploratory study presented here starts by first modeling the effects of voids on an isotropic material. Several cases with varying void parameters were modeled which resulted in a large amount of variability of the transverse stiffness and out-of-plane shear stiffness. An investigation into a physical explanation for the stiffness degradation led to the observation that the voids need to be treated as an entity that reduces load bearing capabilities in a space larger than what the void directly occupies through a corrected length fraction or area fraction. This provides explanation as to why void volume fraction is not the only important factor to consider when computing loss of stiffness.
Chagas, Mauro H.; Magalhães, Fabrício A.; Peixoto, Gustavo H. C.; Pereira, Beatriz M.; Andrade, André G. P.; Menzel, Hans-Joachim K.
2016-01-01
ABSTRACT Background Stretching exercises are able to promote adaptations in the muscle-tendon unit (MTU), which can be tested through physiological and biomechanical variables. Identifying the key variables in MTU adaptations is crucial to improvements in training. Objective To perform an exploratory factor analysis (EFA) involving the variables often used to evaluate the response of the MTU to stretching exercises. Method Maximum joint range of motion (ROMMAX), ROM at first sensation of stretching (FSTROM), peak torque (torqueMAX), passive stiffness, normalized stiffness, passive energy, and normalized energy were investigated in 36 participants during passive knee extension on an isokinetic dynamometer. Stiffness and energy values were normalized by the muscle cross-sectional area and their passive mode assured by monitoring the EMG activity. Results EFA revealed two major factors that explained 89.68% of the total variance: 53.13% was explained by the variables torqueMAX, passive stiffness, normalized stiffness, passive energy, and normalized energy, whereas the remaining 36.55% was explained by the variables ROMMAX and FSTROM. Conclusion This result supports the literature wherein two main hypotheses (mechanical and sensory theories) have been suggested to describe the adaptations of the MTU to stretching exercises. Contrary to some studies, in the present investigation torqueMAX was significantly correlated with the variables of the mechanical theory rather than those of the sensory theory. Therefore, a new approach was proposed to explain the behavior of the torqueMAX during stretching exercises. PMID:27437715
Tethered variable gravity laboratory study: Low gravity process identification report
NASA Technical Reports Server (NTRS)
Briccarello, M.
1989-01-01
Experiments are described performable in the variable gravity environment, and the related compatible/beneficial residual accelerations, both for pure and applied research in the fields of Fluid Mechanics (static and dynamic), Materials Sciences (Crystal Growth, Metal and Alloy Solidification, Glasses, etc.), and Life Sciences, so as to assess the relevance of a variable G-level laboratory.
Christian R. Mora; Laurence R. Schimleck; Fikret Isik; Jerry M. Mahon Jr.; Alexander Clark III; Richard F. Daniels
2009-01-01
Acoustic tools are increasingly used to estimate standing-tree (dynamic) stiffness; however, such techniques overestimate static stiffness, the standard measurement for determining modulus of elasticity (MOE) of wood. This study aimed to identify correction methods for standing-tree estimates making dynamic and static stiffness comparable. Sixty Pinus taeda L...
Höppner, Hannes; Große-Dunker, Maximilian; Stillfried, Georg; Bayer, Justin; van der Smagt, Patrick
2017-01-01
We investigate the relation between grip force and grip stiffness for the human hand with and without voluntary cocontraction. Apart from gaining biomechanical insight, this issue is particularly relevant for variable-stiffness robotic systems, which can independently control the two parameters, but for which no clear methods exist to design or efficiently exploit them. Subjects were asked in one task to produce different levels of force, and stiffness was measured. As expected, this task reveals a linear coupling between force and stiffness. In a second task, subjects were then asked to additionally decouple stiffness from force at these force levels by using cocontraction. We measured the electromyogram from relevant groups of muscles and analyzed the possibility to predict stiffness and force. Optical tracking was used for avoiding wrist movements. We found that subjects were able to decouple grip stiffness from force when using cocontraction on average by about 20% of the maximum measured stiffness over all force levels, while this ability increased with the applied force. This result contradicts the force–stiffness behavior of most variable-stiffness actuators. Moreover, we found the thumb to be on average twice as stiff as the index finger and discovered that intrinsic hand muscles predominate our prediction of stiffness, but not of force. EMG activity and grip force allowed to explain 72 ± 12% of the measured variance in stiffness by simple linear regression, while only 33 ± 18% variance in force. Conclusively the high signal-to-noise ratio and the high correlation to stiffness of these muscles allow for a robust and reliable regression of stiffness, which can be used to continuously teleoperate compliance of modern robotic hands. PMID:28588472
Analysis and Modeling of Chromosome Congression During Mitosis in the Chemotherapy Drug Cisplatin.
Chacón, Jeremy M; Gardner, Melissa K
2013-12-01
The chemotherapy drug Cisplatin (cis-diamminedichloroplatinum(II)) induces crosslinks within and between DNA strands, and between DNA and nearby proteins. Therefore, Cisplatin-treated cells which progress into cell division may do so with altered chromosome mechanical properties. This could have important consequences for the successful completion of mitosis. Using Total Internal Reflection Fluorescence (TIRF) microscopy of live Cisplatin-treated Saccharomyces cerevisiae cells, we found that metaphase mitotic spindles have disorganized kinetochores relative to untreated cells, and also that there is increased variability in the chromosome stretching distance between sister centromeres. This suggests that chromosome stiffness may become more variable after Cisplatin treatment. We explored the effect of variable chromosome stiffness during mitosis using a stochastic model in which kinetochore microtubule dynamics were regulated by tension imparted by stretched sister chromosomes. Consistent with experimental results, increased variability of chromosome stiffness in the model led to disorganization of kinetochores in simulated metaphase mitotic spindles. Furthermore, the variability in simulated chromosome stretching tension was increased as chromosome stiffness became more variable. Because proper chromosome stretching tension may serve as a signal that is required for proper progression through mitosis, tension variability could act to impair this signal and thus prevent proper mitotic progression. Our results suggest a possible mitotic mode of action for the anti-cancer drug Cisplatin.
He, Xin; Du, Yu-Fan; Lan, Ning
2013-07-01
The purpose of this study is to validate a neuromechanical model of the virtual arm (VA) by comparing emerging behaviors of the model to those of experimental observations. Hand stiffness of the VA model was obtained by either theoretical computation or simulated perturbations. Variability in hand position of the VA was generated by adding signal dependent noise (SDN) to the motoneuron pools of muscles. Reflex circuits of Ia, Ib and Renshaw cells were included to regulate the motoneuron pool outputs. Evaluation of hand stiffness and variability was conducted in simulations with and without afferent feedback under different patterns of muscle activations during postural maintenance. The simulated hand stiffness and variability ellipses captured the experimentally observed features in shape, magnitude and orientation. Steady state afferent feedback contributed significantly to the increase in hand stiffness by 35.75±16.99% in area, 18.37±7.80% and 16.15±7.15% in major and minor axes; and to the reduction of hand variability by 49.41±21.19% in area, 36.89±12.78% and 18.87±23.32% in major and minor axes. The VA model reproduced the neuromechanical behaviors that were consistent with experimental data, and it could be a useful tool for study of neural control of posture and movement, as well as for application to rehabilitation.
A torsional MRE joint for a C-shaped robotic leg
NASA Astrophysics Data System (ADS)
Christie, M. D.; Sun, S. S.; Ning, D. H.; Du, H.; Zhang, S. W.; Li, W. H.
2017-01-01
Serving to improve stability and energy efficiency during locomotion, in nature, animals modulate their leg stiffness to adapt to their terrain. Now incorporated into many locomotive robot designs, such compliance control can enable disturbance rejection and improved transition between changing ground conditions. This paper presents a novel design of a variable stiffness leg utilizing a magnetorheological elastomer joint in a literal rolling spring loaded inverted pendulum (R-SLIP) morphology. Through the semi-active control of this hybrid permanent-magnet and coil design, variable stiffness is realized, offering a design which is capable of both softening and stiffening in an adaptive sort of way, with a maximum stiffness change of 48.0%. Experimental characterization first serves to assess the stiffness variation capacity of the torsional joint, and through later comparison with force testing of the leg, the linear stiffness is characterized with the R-SLIP-like behavior of the leg being demonstrated. Through the force relationships applied, a generalized relationship for determining linear stiffness based on joint rotation angle is also proposed, further aiding experimental validation.
The Relationship Between Propulsive Force in Tethered Swimming and 200-m Front Crawl Performance.
Santos, Karini B; Bento, Paulo C B; Pereira, Gleber; Rodacki, André L F
2016-09-01
Santos, KB, Bento, PCB, Pereira, G, and Rodacki, ALF. The relationship between propulsive force in tethered swimming and 200-m front crawl performance. J Strength Cond Res 30(9): 2500-2507, 2016-The aims of this study were to determine whether propulsive force (peak force, mean force, impulse, and rate of force development) and stroke rate change during 2 minutes of front crawl tethered swimming and to correlate them with the stroke rate and swimming velocity in 200-m front crawl swimming. Twenty-one swimmers (21.6 ± 4.8 years, 1.78 ± 0.06 m, 71.7 ± 8.1 kg), with 200-m front crawl swimming performance equivalent to 78% of the world record (140.4 ± 10.1 seconds), were assessed during 2 minutes of maximal front crawl tethered swimming (propulsive forces and stroke rate) and 200-m front crawl swimming (stroke rate and clean velocity). Propulsive forces decreased between the beginning and the middle instants (∼20%; p ≤ 0.05) but remained stable between the middle and the end instants (∼6%; p > 0.05). The peak force was positively correlated with the clean velocity in the 200-m front crawl swimming (mean r = 0.61; p < 0.02). The stroke rates of the tethered swimming and 200-m front crawl swimming were positively correlated (r = 45; p≤ 0.01) at the middle instant. Therefore, the propulsive force and stroke rate changed throughout the 2 minutes of tethered swimming, and the peak force is the best propulsive force variable tested that correlated with 200-m front crawl swimming performance.
Analysis and Design of Variable Stiffness Composite Cylinders
NASA Technical Reports Server (NTRS)
Tatting, Brian F.; Guerdal, Zafer
1998-01-01
An investigation of the possible performance improvements of thin circular cylindrical shells through the use of the variable stiffness concept is presented. The variable stiffness concept implies that the stiffness parameters change spatially throughout the structure. This situation is achieved mainly through the use of curvilinear fibers within a fiber-reinforced composite laminate, though the possibility of thickness variations and discrete stiffening elements is also allowed. These three mechanisms are incorporated into the constitutive laws for thin shells through the use of Classical Lamination Theory. The existence of stiffness variation within the structure warrants a formulation of the static equilibrium equations from the most basic principles. The governing equations include sufficient detail to correctly model several types of nonlinearity, including the formation of a nonlinear shell boundary layer as well as the Brazier effect due to nonlinear bending of long cylinders. Stress analysis and initial buckling estimates are formulated for a general variable stiffness cylinder. Results and comparisons for several simplifications of these highly complex governing equations are presented so that the ensuing numerical solutions are considered reliable and efficient enough for in-depth optimization studies. Four distinct cases of loading and stiffness variation are chosen to investigate possible areas of improvement that the variable stiffness concept may offer over traditional constant stiffness and/or stiffened structures. The initial investigation deals with the simplest solution for cylindrical shells in which all quantities are constant around the circumference of the cylinder. This axisymmetric case includes a stiffness variation exclusively in the axial direction, and the only pertinent loading scenarios include constant loads of axial compression, pressure, and torsion. The results for these cases indicate that little improvement over traditional laminates exists through the use of curvilinear fibers, mainly due to the presence of a weak link area within the stiffness variation that limits the ultimate load that the structure can withstand. Rigorous optimization studies reveal that even though slight increases in the critical loads can be produced for designs with an arbitrary variation of the fiber orientation angle, the improvements are not significant when compared to traditional design techniques that utilize ring stiffeners and frames. The second problem that is studied involves arbitrary loading of a cylinder with a stiffness variation that changes only in the circumferential direction. The end effects of the cylinder are ignored, so that the problem takes the form of an analysis of a cross-section for a short cylinder segment. Various load cases including axial compression, pressure, torsion, bending, and transverse shear forces are investigated. It is found that the most significant improvements in load-carrying capability exist for cases which involve loads that also vary around the circumference of the shell, namely bending and shear forces. The stiffness variation of the optimal designs contribute to the increased performance in two ways: lowering the stresses in the critical areas through redistribution of the stresses; and providing a relatively stiff region that alters the buckling behavior of the structure. These results lead to an in-depth optimization study involving weight optimization of a fuselage structure subjected to typical design constraints. Comparisons of the curvilinear fiber format to traditional stiffened structures constructed of isotropic and composite materials are included. It is found that standard variable stiffness designs are quite comparable in terms of weight and load-carrying capability yet offer the added advantage of tailorability of distinct regions of the structure that experience drastically different loading conditions. The last two problems presented in this work involve the nonlinear phenomenon of long tubes under bending. Though this scenario is not as applicable to fuselage structures as the previous problems, the mechanisms that produce the nonlinear effect are ideally suited to be controlled by the variable stiffness concept. This is due to the fact that the dominating influence for long cylinders under bending is the ovalization of the cross-section, which is governed mainly by the stiffness parameters of the cylindrical shell. Possible improvement of the critical buckling moments for these structures is investigated using either a circumferential or axial stiffness variation. For the circumferential case involving infinite length cylinders, it is found that slight improvements can be observed by designing structures that resist the cross-sectional deformation yet do not detract from the buckling resistance at the critical location. The results also indicate that buckling behavior is extremely dependent on cylinder length. This effect is most easily seen in the solution of finite length cylinders under bending that contain an axial stiffness variation. For these structures, the only mechanism that exhibits improved response are those that effectively shorten the length of the cylinder, thus reducing the cross-sectional deformation due to the forced restraint at the ends. It was found that the use of curvilinear fibers was not able to achieve this effect in sufficient degree to resist the deformation, but that ring stiffeners produced the desired response admirably. Thus, it is shown that the variable stiffness concept is most effective at improving the bending response of long cylinders through the use of a circumferential stiffness variation.
A method to track rotational motion for use in single-molecule biophysics.
Lipfert, Jan; Kerssemakers, Jacob J W; Rojer, Maylon; Dekker, Nynke H
2011-10-01
The double helical nature of DNA links many cellular processes such as DNA replication, transcription, and repair to rotational motion and the accumulation of torsional strain. Magnetic tweezers (MTs) are a single-molecule technique that enables the application of precisely calibrated stretching forces to nucleic acid tethers and to control their rotational motion. However, conventional magnetic tweezers do not directly monitor rotation or measure torque. Here, we describe a method to directly measure rotational motion of particles in MT. The method relies on attaching small, non-magnetic beads to the magnetic beads to act as fiducial markers for rotational tracking. CCD images of the beads are analyzed with a tracking algorithm specifically designed to minimize crosstalk between translational and rotational motion: first, the in-plane center position of the magnetic bead is determined with a kernel-based tracker, while subsequently the height and rotation angle of the bead are determined via correlation-based algorithms. Evaluation of the tracking algorithm using both simulated images and recorded images of surface-immobilized beads demonstrates a rotational resolution of 0.1°, while maintaining a translational resolution of 1-2 nm. Example traces of the rotational fluctuations exhibited by DNA-tethered beads confined in magnetic potentials of varying stiffness demonstrate the robustness of the method and the potential for simultaneous tracking of multiple beads. Our rotation tracking algorithm enables the extension of MTs to magnetic torque tweezers (MTT) to directly measure the torque in single molecules. In addition, we envision uses of the algorithm in a range of biophysical measurements, including further extensions of MT, tethered particle motion, and optical trapping measurements.
Sorting of amphiphile membrane components in curvature and composition gradients
NASA Astrophysics Data System (ADS)
Tian, Aiwei
Phase and shape heterogeneities in biomembranes are of functional importance. However, it is difficult to elucidate the roles membrane heterogeneities play in maintaining cellular function due to the complexity of biomembranes. Therefore, investigations of phase behavior and composition/curvature coupling in lipid and polymer model membranes offer some advantages. In this thesis, phase properties in lipid and polymer giant vesicles were studied. Line tension at the fluid/fluid phase boundary of giant lipid unilamellar vesicles was determined directly by micropipette aspiration, and found to be composition-dependent. Dynamics of calcium-induced domains within polyanionic vesicles subject to chemical stimuli were investigated, which revealed the strength of molecular interaction and suggested applications in triggered delivery. In addition, curvature sorting of lipids and proteins was examined. Lipid membrane tethers were pulled from giant unilamellar vesicles using two micropipettes and a bead. Tether radius can be controlled and measured in this system. By examining fluorescence intensity of labeled molecules as a function of curvature, we found that DiI dyes (lipid analogues with spontaneous curvatures) had no curvature preference down to radii of 10 nm. Theoretical calculation predicted that the distribution of small lipids was dominated by entropy instead of bending energy. However protein Cholera toxin subunit B was efficiently sorted away from the high positive curvature due to its negative spontaneous curvature. Bending stiffness was determined to decrease as curvature increased in homogeneous membranes with ternary lipid mixtures near a critical consulate point, revealing the strong preferential intermolecular interactions of such mixtures. In addition, diffusion controlled domain growth was observed in tethers pulled from phase-separated vesicles, which provides a new dynamic sorting principle for lipids and proteins in curvature gradients.
NASA Astrophysics Data System (ADS)
Sun, S. S.; Yildirim, T.; Wu, Jichu; Yang, J.; Du, H.; Zhang, S. W.; Li, W. H.
2017-09-01
In this work, a hybrid nonlinear magnetorheological elastomer (MRE) vibration absorber has been designed, theoretically investigated and experimentally verified. The proposed nonlinear MRE absorber has the dual advantages of a nonlinear force-displacement relationship and variable stiffness technology; the purpose for coupling these two technologies is to achieve a large broadband vibration absorber with controllable capability. To achieve a nonlinear stiffness in the device, two pairs of magnets move at a rotary angle against each other, and the theoretical nonlinear force-displacement relationship has been theoretically calculated. For the experimental investigation, the effects of base excitation, variable currents applied to the device (i.e. variable stiffness of the MRE) and semi-active control have been conducted to determine the enhanced broadband performance of the designed device. It was observed the device was able to change resonance frequency with the applied current; moreover, the hybrid nonlinear MRE absorber displayed a softening-type nonlinear response with clear discontinuous bifurcations observed. Furthermore, the performance of the device under a semi-active control algorithm displayed the optimal performance in attenuating the vibration from a primary system to the absorber over a large frequency bandwidth from 4 to 12 Hz. By coupling nonlinear stiffness attributes with variable stiffness MRE technology, the performance of a vibration absorber is substantially improved.
Collar height and heel counter-stiffness for ankle stability and athletic performance in basketball.
Liu, Hui; Wu, Zitian; Lam, Wing-Kai
2017-01-01
This study examined the effects of collar height and heel counter-stiffness of basketball shoes on ankle stability during sidestep cutting and athletic performance. 15 university basketball players wore customized shoes with different collar heights (high and low) and heel counter-stiffness (regular, stiffer and stiffest) for this study. Ankle stability was evaluated in sidestep cutting while athletic performance evaluated in jumping and agility tasks. All variables were analysed using two-way repeated ANOVA. Results showed shorter time to peak ankle inversion for both high collar and stiff heel counter conditions (P < 0.05), while smaller initial ankle inversion angle, peak inversion velocity and total range of inversion for wearing high collar shoes (P < 0.05). No shoe differences were found for performance variables. These findings imply that the collar height might play a larger role in lateral stability than heel counter-stiffness, while both collar height and counter-stiffness have no effect on athletic performance.
Pneumatic Variable Series Elastic Actuator.
Zheng, Hao; Wu, Molei; Shen, Xiangrong
2016-08-01
Inspired by human motor control theory, stiffness control is highly effective in manipulation and human-interactive tasks. The implementation of stiffness control in robotic systems, however, has largely been limited to closed-loop control, and suffers from multiple issues such as limited frequency range, potential instability, and lack of contribution to energy efficiency. Variable-stiffness actuator represents a better solution, but the current designs are complex, heavy, and bulky. The approach in this paper seeks to address these issues by using pneumatic actuator as a variable series elastic actuator (VSEA), leveraging the compressibility of the working fluid. In this work, a pneumatic actuator is modeled as an elastic element with controllable stiffness and equilibrium point, both of which are functions of air masses in the two chambers. As such, for the implementation of stiffness control in a robotic system, the desired stiffness/equilibrium point can be converted to the desired chamber air masses, and a predictive pressure control approach is developed to control the timing of valve switching to obtain the desired air mass while minimizing control action. Experimental results showed that the new approach in this paper requires less expensive hardware (on-off valve instead of proportional valve), causes less control action in implementation, and provides good control performance by leveraging the inherent dynamics of the actuator.
Pneumatic Variable Series Elastic Actuator
Zheng, Hao; Wu, Molei; Shen, Xiangrong
2016-01-01
Inspired by human motor control theory, stiffness control is highly effective in manipulation and human-interactive tasks. The implementation of stiffness control in robotic systems, however, has largely been limited to closed-loop control, and suffers from multiple issues such as limited frequency range, potential instability, and lack of contribution to energy efficiency. Variable-stiffness actuator represents a better solution, but the current designs are complex, heavy, and bulky. The approach in this paper seeks to address these issues by using pneumatic actuator as a variable series elastic actuator (VSEA), leveraging the compressibility of the working fluid. In this work, a pneumatic actuator is modeled as an elastic element with controllable stiffness and equilibrium point, both of which are functions of air masses in the two chambers. As such, for the implementation of stiffness control in a robotic system, the desired stiffness/equilibrium point can be converted to the desired chamber air masses, and a predictive pressure control approach is developed to control the timing of valve switching to obtain the desired air mass while minimizing control action. Experimental results showed that the new approach in this paper requires less expensive hardware (on–off valve instead of proportional valve), causes less control action in implementation, and provides good control performance by leveraging the inherent dynamics of the actuator. PMID:27354755
NASA Astrophysics Data System (ADS)
Harris, B. J.; Sun, S. S.; Li, W. H.
2017-03-01
With the growing need for effective intercity transport, the need for more advanced rail vehicle technology has never been greater. The conflicting primary longitudinal suspension requirements of high speed stability and curving performance limit the development of rail vehicle technology. This paper presents a novel magnetorheological fluid based joint with variable stiffness characteristics for the purpose of overcoming this parameter conflict. Firstly, the joint design and working principle is developed. Following this, a prototype is tested by MTS to characterize its variable stiffness properties under a range of conditions. Lastly, the performance of the proposed MRF rubber joint with regard to improving train stability and curving performance is numerically evaluated.
Fixed-axis electric sail deployment dynamics analysis using hub-mounted momentum control
NASA Astrophysics Data System (ADS)
Fulton, JoAnna; Schaub, Hanspeter
2018-03-01
The deployment dynamics of a spin stabilized electric sail (E-sail) with a hub-mounted control actuator are investigated. Both radial and tangential deployment mechanisms are considered to take the electric sail from a post-launch stowed configuration to a fully deployed configuration. The tangential configuration assumes the multi-kilometer tethers are wound up on the exterior of the spacecraft hub, similar to yo-yo despinner configurations. The deployment speed is controlled through the hub rate. The radial deployment configuration assumes each tether is on its own spool. Here both the hub and spool rate are control variables. The sensitivity of the deployment behavior to E-sail length, maximum rate and tension parameters is investigated. A constant hub rate deployment is compared to a time varying hub rate that maintains a constant tether tension condition. The deployment time can be reduced by a factor of 2 or more by using a tension controlled deployment configuration.
Tethered gravity laboratories study
NASA Technical Reports Server (NTRS)
Lucchetti, F.
1989-01-01
Variable Gravity Laboratory studies are discussed. The following subject areas are covered: (1) conceptual design and engineering analysis; (2) control strategies (fast crawling maneuvers, main perturbations and their effect upon the acceleration level); and (3) technology requirements.
Estimation of Quasi-Stiffness of the Human Knee in the Stance Phase of Walking
Shamaei, Kamran; Sawicki, Gregory S.; Dollar, Aaron M.
2013-01-01
Biomechanical data characterizing the quasi-stiffness of lower-limb joints during human locomotion is limited. Understanding joint stiffness is critical for evaluating gait function and designing devices such as prostheses and orthoses intended to emulate biological properties of human legs. The knee joint moment-angle relationship is approximately linear in the flexion and extension stages of stance, exhibiting nearly constant stiffnesses, known as the quasi-stiffnesses of each stage. Using a generalized inverse dynamics analysis approach, we identify the key independent variables needed to predict knee quasi-stiffness during walking, including gait speed, knee excursion, and subject height and weight. Then, based on the identified key variables, we used experimental walking data for 136 conditions (speeds of 0.75–2.63 m/s) across 14 subjects to obtain best fit linear regressions for a set of general models, which were further simplified for the optimal gait speed. We found R2 > 86% for the most general models of knee quasi-stiffnesses for the flexion and extension stages of stance. With only subject height and weight, we could predict knee quasi-stiffness for preferred walking speed with average error of 9% with only one outlier. These results provide a useful framework and foundation for selecting subject-specific stiffness for prosthetic and exoskeletal devices designed to emulate biological knee function during walking. PMID:23533662
A fast collocation method for a variable-coefficient nonlocal diffusion model
NASA Astrophysics Data System (ADS)
Wang, Che; Wang, Hong
2017-02-01
We develop a fast collocation scheme for a variable-coefficient nonlocal diffusion model, for which a numerical discretization would yield a dense stiffness matrix. The development of the fast method is achieved by carefully handling the variable coefficients appearing inside the singular integral operator and exploiting the structure of the dense stiffness matrix. The resulting fast method reduces the computational work from O (N3) required by a commonly used direct solver to O (Nlog N) per iteration and the memory requirement from O (N2) to O (N). Furthermore, the fast method reduces the computational work of assembling the stiffness matrix from O (N2) to O (N). Numerical results are presented to show the utility of the fast method.
Measurement of macrophage adhesion using optical tweezers with backward-scattered detection
NASA Astrophysics Data System (ADS)
Wei, Sung-Yang; Su, Yi-Jr; Shih, Po-Chen; Yang, Shih-Mo; Hsu, Long
2010-08-01
Macrophages are members of the leukocyte family. Tissue damage causes inflammation and release of vasoactive and chemotactic factors, which trigger a local increase in blood flow and capillary permeability. Then, leukocytes accumulate quickly to the infection site. The leukocyte extravasation process takes place according to a sequence of events that involve tethering, activation by a chemoattractant stimulus, adhesion by integrin binding, and migrating to the infection site. The leukocyte extravasation process reveals that adhesion is an important part of the immune system. Optical tweezers have become a useful tool with broad applications in biology and physics. In force measurement, the trapped bead as a probe usually uses a polystyrene bead of 1 μm diameter to measure adhesive force between the trapped beads and cell by optical tweezers. In this paper, using the ray-optics model calculated trapping stiffness and defined the linear displacement ranges. By the theoretical values of stiffness and linear displacement ranges, this study attempted to obtain a proper trapped particle size in measuring adhesive force. Finally, this work investigates real-time adhesion force measurements between human macrophages and trapped beads coated with lipopolysaccharides using optical tweezers with backscattered detection.
The VSPA Foot: A Quasi-Passive Ankle-Foot Prosthesis With Continuously Variable Stiffness.
Shepherd, Max K; Rouse, Elliott J
2017-12-01
Most commercially available prosthetic feet do not exhibit a biomimetic torque-angle relationship, and are unable to modulate their mechanics to assist with other mobility tasks, such as stairs and ramps. In this paper, we present a quasi-passive ankle-foot prosthesis with a customizable torque-angle curve and an ability to quickly modulate ankle stiffness between tasks. The customizable torque-angle curve is obtained with a cam-based transmission and a fiberglass leaf spring. To achieve variable stiffness, the leaf spring's support conditions can be actively modulated by a small motor, shifting the torque-angle curve to be more or less stiff. We introduce the design, characterize the available torque-angle curves, and present kinematics from a transtibial amputee subject performing level-ground walking, stair ascent/descent, and ramp ascent/descent. The subject exhibited a more normative range of motion on stairs and ramps at lower stiffness levels, and preferred different stiffness levels for each task. Paired with an appropriate intent recognition system, our novel ankle prosthesis could improve gait biomechanics during walking and many other mobility tasks.
Loturco, I; Barbosa, A C; Nocentini, R K; Pereira, L A; Kobal, R; Kitamura, K; Abad, C C C; Figueiredo, P; Nakamura, F Y
2016-03-01
Swimmers are often tested on both dry-land and in swimming exercises. The aim of this study was to test the relationships between dry-land, tethered force-time curve parameters and swimming performances in distances up to 200 m. 10 young male high-level swimmers were assessed using the maximal isometric bench-press and quarter-squat, mean propulsive power in jump-squat, squat and countermovement jumps (dry-land assessments), peak force, average force, rate of force development (RFD) and impulse (tethered swimming) and swimming times. Pearson product-moment correlations were calculated among the variables. Peak force and average force were very largely correlated with the 50- and 100-m swimming performances (r=- 0.82 and -0.74, respectively). Average force was very-largely/largely correlated with the 50- and 100-m performances (r=- 0.85 and -0.67, respectively). RFD and impulse were very-largely correlated with the 50-m time (r=- 0.72 and -0.76, respectively). Tethered swimming parameters were largely correlated (r=0.65 to 0.72) with mean propulsive power in jump-squat, squat-jump and countermovement jumps. Finally, mean propulsive power in jump-squat was largely correlated (r=- 0.70) with 50-m performance. Due to the significant correlations between dry-land assessments and tethered/actual swimming, coaches are encouraged to implement strategies able to increase leg power in sprint swimmers. © Georg Thieme Verlag KG Stuttgart · New York.
Stiffness control of magnetorheological gels for adaptive tunable vibration absorber
NASA Astrophysics Data System (ADS)
Kim, Hyun Kee; Kim, Hye Shin; Kim, Young-Keun
2017-01-01
In this study, a stiffness feedback control system for magnetorheological (MR) gel—a smart material of variable stiffness—is proposed, toward the design of a tunable vibration absorber that can adaptively tune to a time varying disturbance in real time. A PID controller was designed to track the required stiffness of the MR gel by controlling the magnitude of the target external magnetic field pervading the MR gel. This paper proposes a novel magnetic field generator that could produce a variable magnetic field with low energy consumption. The performance of the MR gel stiffness control was validated through experiments that showed the MR gel absorber system could be automatically tuned from 56 Hz to 67 Hz under a field of 100 mT to minimize the vibration of the primary system.
Shape Memory Alloy-Based Soft Gripper with Variable Stiffness for Compliant and Effective Grasping.
Wang, Wei; Ahn, Sung-Hoon
2017-12-01
Soft pneumatic actuators and motor-based mechanisms being concomitant with the cumbersome appendages have many challenges to making the independent robotic system with compact and lightweight configuration. Meanwhile, shape memory actuators have shown a promising alternative solution in many engineering applications ranging from artificial muscle to aerospace industry. However, one of the main limitations of such systems is their inherent softness resulting in a small actuation force, which prevents them from more effective applications. This issue can be solved by combining shape memory actuators and the mechanism of stiffness modulation. As a first, this study describes a shape memory alloy-based soft gripper composed of three identical fingers with variable stiffness for adaptive grasping in low stiffness state and effective holding in high stiffness state. Each finger with two hinges is fabricated through integrating soft composite actuator with stiffness changeable material where each hinge can approximately achieve a 55-fold changeable stiffness independently. Besides, each finger with two hinges can actively achieve multiple postures by both selectively changing the stiffness of hinges and actuating the relevant SMA wire. Based on these principles, the gripper is applicable for grasping objects with deformable shapes and varying shapes with a large range of weight where its maximum grasping force is increased to ∼10 times through integrating with the stiffness changeable mechanism. The final demonstration shows that the finger with desired shape-retained configurations enables the gripper to successfully pick up a frustum-shaped object.
Lower limb joint kinetics and ankle joint stiffness in the sprint start push-off.
Charalambous, Laura; Irwin, Gareth; Bezodis, Ian N; Kerwin, David
2012-01-01
Sprint push-off technique is fundamental to sprint performance and joint stiffness has been identified as a performance-related variable during dynamic movements. However, joint stiffness for the push-off and its relationship with performance (times and velocities) has not been reported. The aim of this study was to quantify and explain lower limb net joint moments and mechanical powers, and ankle stiffness during the first stance phase of the push-off. One elite sprinter performed 10 maximal sprint starts. An automatic motion analysis system (CODA, 200 Hz) with synchronized force plates (Kistler, 1000 Hz) collected kinematic profiles at the hip, knee, and ankle and ground reaction forces, providing input for inverse dynamics analyses. The lower-limb joints predominately extended and revealed a proximal-to-distal sequential pattern of maximal extensor angular velocity and positive power production. Pearson correlations revealed relationships (P < 0.05) between ankle stiffness (5.93 ± 0.75 N x m x deg(-1)) and selected performance variables. Relationships between negative power phase ankle stiffness and horizontal (r = -0.79) and vertical (r = 0.74) centre of mass velocities were opposite in direction to the positive power phase ankle stiffness (horizontal: r = 0.85; vertical: r = -0.54). Thus ankle stiffness may affect the goals of the sprint push-off in different ways, depending on the phase of stance considered.
Martial arts training attenuates arterial stiffness in middle aged adults.
Douris, Peter C; Ingenito, Teresa; Piccirillo, Barbara; Herbst, Meredith; Petrizzo, John; Cherian, Vincen; McCutchan, Christopher; Burke, Caitlin; Stamatinos, George; Jung, Min-Kyung
2013-09-01
Arterial stiffness increases with age and is related to an increased risk of coronary artery disease. Poor trunk flexibility has been shown to be associated with arterial stiffness in middle-aged subjects. The purpose of our research study was to measure arterial stiffness and flexibility in healthy middle-aged martial artists compared to age and gender matched healthy sedentary controls. Ten martial artists (54.0 ± 2.0 years), who practice Soo Bahk Do (SBD), a Korean martial art, and ten sedentary subjects (54.7 ± 1.8 years) for a total of twenty subjects took part in this cross-sectional study. Arterial stiffness was assessed in all subjects using pulse wave velocity (PWV), a recognized index of arterial stiffness. Flexibility of the trunk and hamstring were also measured. The independent variables were the martial artists and matched sedentary controls. The dependent variables were PWV and flexibility. There were significant differences, between the SBD practitioners and sedentary controls, in PWV (P = 0.004), in trunk flexibility (P= 0.002), and in hamstring length (P= 0.003). The middle-aged martial artists were more flexible in their trunk and hamstrings and had less arterial stiffness compared to the healthy sedentary controls. The flexibility component of martial art training or flexibility exercises in general may be considered as a possible intervention to reduce the effects of aging on arterial stiffness.
Martial Arts Training Attenuates Arterial Stiffness in Middle Aged Adults
Douris, Peter C.; Ingenito, Teresa; Piccirillo, Barbara; Herbst, Meredith; Petrizzo, John; Cherian, Vincen; McCutchan, Christopher; Burke, Caitlin; Stamatinos, George; Jung, Min-Kyung
2013-01-01
Purpose Arterial stiffness increases with age and is related to an increased risk of coronary artery disease. Poor trunk flexibility has been shown to be associated with arterial stiffness in middle-aged subjects. The purpose of our research study was to measure arterial stiffness and flexibility in healthy middle-aged martial artists compared to age and gender matched healthy sedentary controls. Methods Ten martial artists (54.0 ± 2.0 years), who practice Soo Bahk Do (SBD), a Korean martial art, and ten sedentary subjects (54.7 ± 1.8 years) for a total of twenty subjects took part in this cross-sectional study. Arterial stiffness was assessed in all subjects using pulse wave velocity (PWV), a recognized index of arterial stiffness. Flexibility of the trunk and hamstring were also measured. The independent variables were the martial artists and matched sedentary controls. The dependent variables were PWV and flexibility. Results There were significant differences, between the SBD practitioners and sedentary controls, in PWV (P = 0.004), in trunk flexibility (P= 0.002), and in hamstring length (P= 0.003). Conclusion The middle-aged martial artists were more flexible in their trunk and hamstrings and had less arterial stiffness compared to the healthy sedentary controls. The flexibility component of martial art training or flexibility exercises in general may be considered as a possible intervention to reduce the effects of aging on arterial stiffness. PMID:24427479
Response kinetics of tethered bacteria to stepwise changes in nutrient concentration.
Chernova, Anna A; Armitage, Judith P; Packer, Helen L; Maini, Philip K
2003-09-01
We examined the changes in swimming behaviour of the bacterium Rhodobacter sphaeroides in response to stepwise changes in a nutrient (propionate), following the pre-stimulus motion, the initial response and the adaptation to the sustained concentration of the chemical. This was carried out by tethering motile cells by their flagella to glass slides and following the rotational behaviour of their cell bodies in response to the nutrient change. Computerised motion analysis was used to analyse the behaviour. Distributions of run and stop times were obtained from rotation data for tethered cells. Exponential and Weibull fits for these distributions, and variability in individual responses are discussed. In terms of parameters derived from the run and stop time distributions, we compare the responses to stepwise changes in the nutrient concentration and the long-term behaviour of 84 cells under 12 propionate concentration levels from 1 nM to 25 mM. We discuss traditional assumptions for the random walk approximation to bacterial swimming and compare them with the observed R. sphaeroides motile behaviour.
Elastic properties of protein functionalized nanoporous polymer films
Charles T. Black; Wang, Haoyu; Akcora, Pinar
2015-12-16
Retaining the conformational structure and bioactivity of immobilized proteins is important for biosensor designs and drug delivery systems. Confined environments often lead to changes in conformation and functions of proteins. In this study, lysozyme is chemically tethered into nanopores of polystyrene thin films, and submicron pores in poly(methyl methacrylate) films are functionalized with streptavidin. Nanoindentation experiments show that stiffness of streptavidin increases with decreasing submicron pore sizes. Lysozymes in polystyrene nanopores are found to behave stiffer than the submicron pore sizes and still retain their specific bioactivity relative to the proteins on flat surfaces. Lastly, our results show that proteinmore » functionalized ordered nanoporous polystyrene/poly(methyl methacrylate) films present heterogeneous elasticity and can be used to study interactions between free proteins and designed surfaces.« less
In-Space Transportation with Tethers
NASA Technical Reports Server (NTRS)
Lorenzini, Enrico; Estes, Robert D.; Cosmo, Mario L.
1998-01-01
The annual report covers the research conducted on the following topics related to the use of spaceborne tethers for in-space transportation: ProSEDS tether modeling (current collection analyses, influence of a varying tether temperature); proSEDS mission analysis and system dynamics (tether thermal model, thermo-electro-dynamics integrated simulations); proSEDS-tether development and testing (tether requirements, deployment test plan, tether properties testing, deployment tests); and tethers for reboosting the space-based laser (mission analysis, tether system preliminary design, evaluation of attitude constraints).
NASA Technical Reports Server (NTRS)
Kibler, K. S.; Mcdaniel, G. A.
1981-01-01
A digital local linearization technique was used to solve a system of stiff differential equations which simulate a magnetic bearing assembly. The results prove the technique to be accurate, stable, and efficient when compared to a general purpose variable order Adams method with a stiff option.
Exposure to wood smoke increases arterial stiffness and decreases heart rate variability in humans
2013-01-01
Background Emissions from biomass combustion are a major source of indoor and outdoor air pollution, and are estimated to cause millions of premature deaths worldwide annually. Whilst adverse respiratory health effects of biomass exposure are well established, less is known about its effects on the cardiovascular system. In this study we assessed the effect of exposure to wood smoke on heart rate, blood pressure, central arterial stiffness and heart rate variability in otherwise healthy persons. Methods Fourteen healthy non-smoking subjects participated in a randomized, double-blind crossover study. Subjects were exposed to dilute wood smoke (mean particle concentration of 314±38 μg/m3) or filtered air for three hours during intermittent exercise. Heart rate, blood pressure, central arterial stiffness and heart rate variability were measured at baseline and for one hour post-exposure. Results Central arterial stiffness, measured as augmentation index, augmentation pressure and pulse wave velocity, was higher after wood smoke exposure as compared to filtered air (p < 0.01 for all), and heart rate was increased (p < 0.01) although there was no effect on blood pressure. Heart rate variability (SDNN, RMSSD and pNN50; p = 0.003, p < 0.001 and p < 0.001 respectively) was decreased one hour following exposure to wood smoke compared to filtered air. Conclusions Acute exposure to wood smoke as a model of exposure to biomass combustion is associated with an immediate increase in central arterial stiffness and a simultaneous reduction in heart rate variability. As biomass is used for cooking and heating by a large fraction of the global population and is currently advocated as a sustainable alternative energy source, further studies are required to establish its likely impact on cardiovascular disease. Trial registration ClinicalTrials.gov, NCT01488500 PMID:23742058
Aiello, Brett R; Hardy, Adam R; Cherian, Chery; Olsen, Aaron M; Orsbon, Courtney P; Hale, Melina E; Westneat, Mark W
2018-04-25
The organization of tissues in appendages often affects their mechanical properties and function. In the fish family Labridae, swimming behavior is associated with pectoral fin flexural stiffness and morphology, where fins range on a continuum from stiff to relatively flexible fins. Across this diversity, pectoral fin flexural stiffness decreases exponentially along the length of any given fin ray, and ray stiffness decreases along the chord of the fin from the leading to trailing edge. In this study, we examine the morphological properties of fin rays, including the effective modulus in bending (E), second moment of area (I), segmentation, and branching patterns, and their impact on fin ray stiffness. We quantify intrinsic pectoral fin ray stiffness in similarly sized fins of two closely related species that employ fins of divergent mechanics, the flapping Gomphosus varius and the rowing Halichoeres bivittatus. While segmentation patterns and E were similar between species, measurements of I and the number of fin ray branch nodes were greater in G. varius than in H. bivittatus. A multiple regression model found that of these variables, I was always significantly correlated with fin ray flexural stiffness and that variation in I always explained the majority of the variation in flexural stiffness. Thus, while most of the morphological variables quantified in this study correlate with fin ray flexural stiffness, second moment of area is the greatest factor contributing to variation in flexural stiffness. Further, interspecific variation in fin ray branching pattern could be used as a means of tuning the effective stiffness of the fin webbing to differences in swimming behavior and hydrodynamics. The comparison of these results to other systems begins to unveil fundamental morphological features of biological beams and yields insight into the role of mechanical properties in fin deformation for aquatic locomotion. © 2018 Wiley Periodicals, Inc.
An Engineered Membrane to Measure Electroporation: Effect of Tethers and Bioelectronic Interface
Hoiles, William; Krishnamurthy, Vikram; Cranfield, Charles G.; Cornell, Bruce
2014-01-01
This article reports on the construction and predictive models for a platform comprised of an engineered tethered membrane. The platform provides a controllable and physiologically relevant environment for the study of the electroporation process. The mixed self-assembled membrane is formed via a rapid solvent exchange technique. The membrane is tethered to the gold electrode and includes an ionic reservoir separating the membrane and gold surface. Above the membrane, there is an electrolyte solution, and a gold counterelectrode. A voltage is applied between the gold electrodes and the current measured. The current is dependent on the energy required to form aqueous pores and the conductance of each pore. A two-level predictive model, consisting of a macroscopic and a continuum model, is developed to relate the pore dynamics to the measured current. The macroscopic model consists of an equivalent circuit model of the tethered membrane, and asymptotic approximations to the Smoluchowski-Einstein equation of electroporation that is dependent on the pore conductance and the energy required to form aqueous pores. The continuum model is a generalized Poisson-Nernst-Planck (GPNP) system where an activity coefficient to account for steric effects of ions is added to the standard PNP system. The GPNP is used to evaluate the conductance of aqueous pores, and the electrical energy required to form the pores. As an outcome of the setup of the device and the two-level model, biologically important variables can be estimated from experimental measurements. To validate the accuracy of the two-level model, the predicted current is compared with experimentally measured current for different tethering densities. PMID:25229142
Space station operations enhancement using tethers
NASA Astrophysics Data System (ADS)
Bekey, I.
1984-10-01
Space tethers represent a tool of unusual versatility for applications to operations involving space stations. The present investigation is concerned with a number of applications which exploit the dynamic, static, and electrodynamic properties of tethers. One of the simplest applications of a tethered system on the Space Station might be that of a remote docking port, allowing the Shuttle to dock with no contamination or disturbance effects. Attention is also given to tethered platforms, a tethered microgravity facility, a tethered space station propellant facility, electrodynamic tether principles, a tether power generator, a tether thrust generator (motor), and an electrodynamic tether for drag makeup and energy storage.
Substrate-dependent cell elasticity measured by optical tweezers indentation
NASA Astrophysics Data System (ADS)
Yousafzai, Muhammad S.; Ndoye, Fatou; Coceano, Giovanna; Niemela, Joseph; Bonin, Serena; Scoles, Giacinto; Cojoc, Dan
2016-01-01
In the last decade, cell elasticity has been widely investigated as a potential label free indicator for cellular alteration in different diseases, cancer included. Cell elasticity can be locally measured by pulling membrane tethers, stretching or indenting the cell using optical tweezers. In this paper, we propose a simple approach to perform cell indentation at pN forces by axially moving the cell against a trapped microbead. The elastic modulus is calculated using the Hertz-model. Besides the axial component, the setup also allows us to examine the lateral cell-bead interaction. This technique has been applied to measure the local elasticity of HBL-100 cells, an immortalized human cell line, originally derived from the milk of a woman with no evidence of breast cancer lesions. In addition, we have studied the influence of substrate stiffness on cell elasticity by performing experiments on cells cultured on two substrates, bare and collagen-coated, having different stiffness. The mean value of the cell elastic modulus measured during indentation was 26±9 Pa for the bare substrate, while for the collagen-coated substrate it diminished to 19±7 Pa. The same trend was obtained for the elastic modulus measured during the retraction of the cell: 23±10 Pa and 13±7 Pa, respectively. These results show the cells adapt their stiffness to that of the substrate and demonstrate the potential of this setup for low-force probing of modifications to cell mechanics induced by the surrounding environment (e.g. extracellular matrix or other cells).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ratto, T V; Rudd, R E; Langry, K C
We present evidence of multivalent interactions between a single protein molecule and multiple carbohydrates at a pH where the protein can bind four ligands. The evidence is based not only on measurements of the force required to rupture the bonds formed between ConcanavalinA (ConA) and {alpha}-D-mannose, but also on an analysis of the polymer-extension force curves to infer the polymer architecture that binds the protein to the cantilever and the ligands to the substrate. We find that although the rupture forces for multiple carbohydrate connections to a single protein are larger than the rupture force for a single connection, theymore » do not scale additively with increasing number. Specifically, the most common rupture forces are approximately 46, 66, and 85 pN, which we argue corresponds to 1, 2, and 3 ligands being pulled simultaneously from a single protein as corroborated by an analysis of the linkage architecture. As in our previous work polymer tethers allow us to discriminate between specific and non-specific binding. We analyze the binding configuration (i.e. serial versus parallel connections) through fitting the polymer stretching data with modified Worm-Like Chain (WLC) models that predict how the effective stiffness of the tethers is affected by multiple connections. This analysis establishes that the forces we measure are due to single proteins interacting with multiple ligands, the first force spectroscopy study that establishes single-molecule multivalent binding unambiguously.« less
Probabilistic micromechanics of woven ceramic matrix composites
NASA Astrophysics Data System (ADS)
Goldsmith, Marlana
Woven ceramic matrix composites are a special class of composite materials that are of current interest for harsh thermo-structural conditions such as those encountered by hypersonic vehicle systems and turbine engine components. Testing of the materials is expensive, especially as materials are constantly redesigned. Randomness in the tow architecture, as well as the randomly shaped and spaced voids that are produced as a result of the manufacturing process, are features that contribute to variability in stiffness and strength. The goal of the research is to lay a foundation in which characteristics of the geometry can be translated into material properties. The research first includes quantifying the architectural variability based on 2D micrographs of a 5 harness satin CVI (Chemical Vapor Infiltration) SiC/SiC composite. The architectural variability is applied to a 2D representative volume element (RVE) in order to evaluate which aspects of the architecture are important to model in order to capture the variability found in the cross sections. Tow width, tow spacing, and tow volume fraction were found to have some effect on the variability, but voids were found to have a large influence on transverse stiffness, and a separate study was conducted to determine which characteristics of the voids are most critical to model. It was found that the projected area of the void perpendicular to the transverse direction and the number of voids modeled had a significant influence on the stiffness. The effect of varying architecture on the variability of in-plane tensile strength was also studied using the Brittle Cracking Model for Concrete in the commercial finite element software, Abaqus. A maximum stress criterion is used to evaluate failure, and the stiffness of failed elements is gradually degraded such that the energy required to open a crack (fracture energy) is dissipated during this degradation process. While the varying architecture did not create variability in the in-plane stiffness, it does contribute significantly to the variability of in-plane strength as measured by a 0.02% offset method. Applying spatially random strengths for the constituents did not contribute to variability in strength as measured by the 0.02% offset. The results of this research may be of interest to those designing materials, as well as those using the material in their design. Having an idea about which characteristics of the architecture affect variability in stiffness may provide guidance to the material designer with respect to which aspects of the architecture can be controlled or improved to decrease the variability of the material properties. The work will also be useful to those desiring to use the complex materials by determining how to link the architectural properties to the mechanical properties with the ultimate goal of reducing the required number of tests.
Seismic Response Control Of Structures Using Semi-Active and Passive Variable Stiffness Devices
NASA Astrophysics Data System (ADS)
Salem, Mohamed M. A.
Controllable devices such as Magneto-Rheological Fluid Dampers, Electro-Rheological Dampers, and controllable friction devices have been studied extensively with limited implementation in real structures. Such devices have shown great potential in reducing seismic demands, either as smart base isolation systems, or as smart devices for multistory structures. Although variable stiffness devices can be used for seismic control of structures, the vast majority of research effort has been given to the control of damping. The primary focus of this dissertation is to evaluate the seismic control of structures using semi-active and passive variable stiffness characteristics. Smart base isolation systems employing variable stiffness devices have been studied, and two semi-active control strategies are proposed. The control algorithms were designed to reduce the superstructure and base accelerations of seismically isolated structures subject to near-fault and far-field ground motions. Computational simulations of the proposed control algorithms on the benchmark structure have shown that excessive base displacements associated with the near-fault ground motions may be better mitigated with the use of variable stiffness devices. However, the device properties must be controllable to produce a wide range of stiffness changes for an effective control of the base displacements. The potential of controllable stiffness devices in limiting the base displacement due to near-fault excitation without compromising the performance of conventionally isolated structures, is illustrated. The application of passive variable stiffness devices for seismic response mitigation of multistory structures is also investigated. A stiffening bracing system (SBS) is proposed to replace the conventional bracing systems of braced frames. An optimization process for the SBS parameters has been developed. The main objective of the design process is to maintain a uniform inter-story drift angle over the building's height, which in turn would evenly distribute the seismic demand over the building. This behavior is particularly essential so that any possible damage is not concentrated in a single story. Furthermore, the proposed design ensures that additional damping devices distributed over the building's height work efficiently with their maximum design capacity, leading to a cost efficient design. An integrated and comprehensive design procedure that can be readily adopted by the current seismic design codes is proposed. An equivalent lateral force distribution is developed that shows a good agreement with the response history analyses in terms of seismic performance and demand prediction. This lateral force pattern explicitly accounts for the higher mode effect, the dynamic characteristics of the structure, the supplemental damping, and the site specific seismic hazard. Therefore, the proposed design procedure is considered as a standalone method for the design of SBS equipped buildings.
NASA Technical Reports Server (NTRS)
Radovcich, N. A.; Gentile, D. P.
1989-01-01
A NASTRAN bulk dataset preprocessor was developed to facilitate the integration of filamentary composite laminate properties into composite structural resizing for stiffness requirements. The NASCOMP system generates delta stiffness and delta mass matrices for input to the flutter derivative program. The flutter baseline analysis, derivative calculations, and stiffness and mass matrix updates are controlled by engineer defined processes under an operating system called CBUS. A multi-layered design variable grid system permits high fidelity resizing without excessive computer cost. The NASCOMP system uses ply layup drawings for basic input. The aeroelastic resizing for stiffness capability was used during an actual design exercise.
Morphological Computation of Haptic Perception of a Controllable Stiffness Probe.
Sornkarn, Nantachai; Dasgupta, Prokar; Nanayakkara, Thrishantha
2016-01-01
When people are asked to palpate a novel soft object to discern its physical properties such as texture, elasticity, and even non-homogeneity, they not only regulate probing behaviors, but also the co-contraction level of antagonistic muscles to control the mechanical impedance of fingers. It is suspected that such behavior tries to enhance haptic perception by regulating the function of mechanoreceptors at different depths of the fingertips and proprioceptive sensors such as tendon and spindle sensors located in muscles. In this paper, we designed and fabricated a novel two-degree of freedom variable stiffness indentation probe to investigate whether the regulation of internal stiffness, indentation, and probe sweeping velocity (PSV) variables affect the accuracy of the depth estimation of stiff inclusions in an artificial silicon phantom using information gain metrics. Our experimental results provide new insights into not only the biological phenomena of haptic perception but also new opportunities to design and control soft robotic probes.
Design and Optimization of Nanomaterials for Sensing Applications
NASA Astrophysics Data System (ADS)
Sanderson, Robert Noboru
Nanomaterials, materials with one or more of their dimensions on the nanoscale, have emerged as an important field in the development of next-generation sensing systems. Their high surface-to-volume ratio makes them useful for sensing, but also makes them sensitive to processing defects and inherent material defects. To develop and optimize these systems, it is thus necessary to characterize these defects to understand their origin and how to work around them. Scanning probe microscopy (SPM) techniques like atomic force microscopy (AFM) and scanning tunneling microscopy (STM) are important characterization methods which can measure nanoscale topography and electronic structure. These methods are appealing in nanomaterial systems because they are non-damaging and provide local, high-resolution data, and so are capable of detecting nanoscale features such as single defect sites. There are difficulties, however, in the interpretation of SPM data. For instance, AFM-based methods are prone to experimental artifacts due to long-range interactions, such as capacitive crosstalk in Kelvin probe force microscopy (KPFM), and artifacts due to the finite size of the probe tip, such as incorrect surface tracking at steep topographical features. Mechanical characterization (via force spectroscopy) of nanomaterials with significant nanoscale variations, such as tethered lipid bilayer membranes (tLBMs), is also difficult since variations in the bulk system's mechanical behavior must be distinguished from local fluctuations. Additionally, interpretation of STM data is non-trivial due to local variations in electron density in addition to topographical variations. In this thesis we overcome some limitations of SPM methods by supplementing them with additional surface analytical methods as well as computational methods, and we characterize several nanomaterial systems. Current-carrying vapor-liquid-solid Si nanowires (useful for interdigitated-electrode-based sensors) are characterized using finite-element-method (FEM)-supplemented KPFM to retrieve useful information about processing defects, contact resistance, and the primary charge carriers. Next, a tLBM system's stiffness and the stiffness' dependence on tethering molecule concentration is measured using statistical analysis of thousands of AFM force spectra, demonstrating a biosensor-compatible system with a controllable bulk rigidity. Finally, we utilize surface analytical techniques to inform the development of a novel three-dimensional graphene system for sensing applications.
Jones, Hayley B C; Lim, Ka S; Bell, James R; Hill, Jane K; Chapman, Jason W
2016-01-01
Dispersal plays a crucial role in many aspects of species' life histories, yet is often difficult to measure directly. This is particularly true for many insects, especially nocturnal species (e.g. moths) that cannot be easily observed under natural field conditions. Consequently, over the past five decades, laboratory tethered flight techniques have been developed as a means of measuring insect flight duration and speed. However, these previous designs have tended to focus on single species (typically migrant pests), and here we describe an improved apparatus that allows the study of flight ability in a wide range of insect body sizes and types. Obtaining dispersal information from a range of species is crucial for understanding insect population dynamics and range shifts. Our new laboratory tethered flight apparatus automatically records flight duration, speed, and distance of individual insects. The rotational tethered flight mill has very low friction and the arm to which flying insects are attached is extremely lightweight while remaining rigid and strong, permitting both small and large insects to be studied. The apparatus is compact and thus allows many individuals to be studied simultaneously under controlled laboratory conditions. We demonstrate the performance of the apparatus by using the mills to assess the flight capability of 24 species of British noctuid moths, ranging in size from 12-27 mm forewing length (~40-660 mg body mass). We validate the new technique by comparing our tethered flight data with existing information on dispersal ability of noctuids from the published literature and expert opinion. Values for tethered flight variables were in agreement with existing knowledge of dispersal ability in these species, supporting the use of this method to quantify dispersal in insects. Importantly, this new technology opens up the potential to investigate genetic and environmental factors affecting insect dispersal among a wide range of species.
Magnetic Actuation of Biological Systems
NASA Astrophysics Data System (ADS)
Lauback, Stephanie D.
Central to the advancement of many biomedical and nanotechnology capabilities is the capacity to precisely control the motion of micro and nanostructures. These applications range from single molecule experiments to cell isolation and separation, to drug delivery and nanomachine manipulation. This dissertation focuses on actuation of biological micro- and nano-entities through the use of weak external magnetic fields, superparamagnetic beads, and ferromagnetic thin films. The magnetic platform presents an excellent method for actuation of biological systems due to its ability to directly control the motion of an array of micro and nanostructures in real-time with calibrated picoNewton forces. The energy landscape of two ferromagnetic thin film patterns (disks and zigzag wires) is experimentally explored and compared to corresponding theoretical models to quantify the applied forces and trajectories of superparamagnetic beads due to the magnetic traps. A magnetic method to directly actuate DNA nanomachines in real-time with nanometer resolution and sub-second response times using micromagnetic control was implemented through the use of stiff DNA micro-levers which bridged the large length scale mismatch between the micro-actuator and the nanomachine. Compared to current alternative methods which are limited in the actuation speeds and the number of reconfiguration states of DNA constructs, this magnetic approach enables fast actuation (˜ milliseconds) and reconfigurable conformations achieved through a continuous range of finely tuned steps. The system was initially tested through actuation of the stiff arm tethered to the surface, and two prototype DNA nanomachines (rotor and hinge) were successfully actuated using the stiff mechanical lever. These results open new possibilities in the development of functional robotic systems at the molecular scale. In exploiting the use of DNA stiff levers, a new technique was also developed to investigate the emergence of the magnetization of individual superparamagnetic beads as a function of the applied field. Last, since proteins are frequently used for surface adhesion in assembling biomedical devices, preliminary tests were implemented to dynamically pattern proteins on a substrate using transformed E. coli that are magnetically labeled.
Design of a Variable Stiffness Soft Dexterous Gripper
Nefti-Meziani, Samia; Davis, Steve
2017-01-01
Abstract This article presents the design of a variable stiffness, soft, three-fingered dexterous gripper. The gripper uses two designs of McKibben muscles. Extensor muscles that increase in length when pressurized are used to form the fingers of the gripper. Contractor muscles that decrease in length when pressurized are then used to apply forces to the fingers through tendons, which cause flexion and extension of the fingers. The two types of muscles are arranged to act antagonistically and this means that by raising the pressure in all of the pneumatic muscles, the stiffness of the system can be increased without a resulting change in finger position. The article presents the design of the gripper, some basic kinematics to describe its function, and then experimental results demonstrating the ability to adjust the bending stiffness of the gripper's fingers. It has been demonstrated that the fingers' bending stiffness can be increased by more than 150%. The article concludes by demonstrating that the fingers can be closed loop position controlled and are able to track step and sinusoidal inputs. PMID:29062630
Development of the Flight Tether for ProSEDS
NASA Technical Reports Server (NTRS)
Curtis, Leslie; Vaughn, Jason; Welzyn, Ken; Carroll, Joe; Brown, Norman S. (Technical Monitor)
2002-01-01
The Propulsive Small Expendable Deployer System (ProSEDS) space experiment will demonstrate the use of an electrodynamic tether propulsion system to generate thrust in space by decreasing the orbital altitude of a Delta 11 Expendable Launch Vehicle second stage. ProSEDS will use the flight-proven Small Expendable Deployer System to deploy a newly designed and developed tether which will provide tether generated drag thrust of approx. 0.4 N. The development and production of very long tethers with specific properties for performance and survivability will be required to enable future tether missions. The ProSEDS tether design and the development process may provide some lessons learned for these future missions. The ProSEDS system requirements drove the design of the tether to have three different sections of tether each serving a specialized purpose. The tether is a total of 15 kilometers long: 10 kilometers of a non-conductive Dyneema lead tether; 5 km of CCOR conductive coated wire; and 220 meters of insulated wire with a protective Kevlar overbraid. Production and joining of long tether lengths involved many development efforts. Extensive testing of tether materials including ground deployment of the full-length ProSEDS tether was conducted to validate the tether design and performance before flight.
Multi-stability and variable stiffness of cellular solids designed based on origami patterns
NASA Astrophysics Data System (ADS)
Sengupta, Sattam; Li, Suyi
2017-04-01
The application of origami-inspired designs to engineered structures and materials has been a subject of much research efforts. These structures and materials, whose mechanical properties are directly related to the geometry of folding, are capable of achieving a host of unique adaptive functions. In this study, we investigate a three-dimensional multistability and variable stiffness function of a cellular solid based on the Miura-Ori folding pattern. The unit cell of such a solid, consisting of two stacked Miura-Ori sheets, can be elastically bistable due to the nonlinear relationship between rigid-folding deformation and crease material bending. Such a bistability possesses an unorthodox property: the critical, unstable configuration lies on the same side of two stable ones, so that two different force-deformation curves co-exist within the same range of deformation. By exploiting such unique stability properties, we can achieve a programmable stiffness change between the two elastically stable states, and the stiffness differences can be prescribed by tailoring the crease patterns of the cell. This paper presents a comprehensive parametric study revealing the correlations between such variable stiffness and various design parameters. The unique properties stemming from the bistability and design of such a unit cell can be advanced further by assembling them into a solid which can be capable of shape morphing and programmable mechanical properties.
Space Tethers: Design Criteria
NASA Technical Reports Server (NTRS)
Tomlin, D. D.; Faile, G. C.; Hayashida, K. B.; Frost, C. L.; Wagner, C. Y.; Mitchell, M. L.; Vaughn, J. A.; Galuska, M. J.
1997-01-01
This document is prepared to provide a systematic process for the selection of tethers for space applications. Criteria arc provided for determining the strength requirement for tether missions and for mission success from tether severing due to micrometeoroids and orbital debris particle impacts. Background information of materials for use in space tethers is provided, including electricity-conducting tethers. Dynamic considerations for tether selection is also provided. Safety, quality, and reliability considerations are provided for a tether project.
Variable stiffness torsion springs
NASA Astrophysics Data System (ADS)
Alhorn, Dean C.; Polites, Michael E.
1994-05-01
In a torsion spring the spring action is a result of the relationships between the torque applied in twisting the spring, the angle through which the torsion spring twists, and the modulus of elasticity of the spring material in shear. Torsion springs employed industrially have been strips, rods, or bars, generally termed shafts, capabable of being flexed by twisting their axes. They rely on the variations in shearing forces to furnish an internal restoring torque. In the torsion springs herein the restoring torque is external and therefore independent of the shearing modulus of elasticity of the torsion spring shaft. Also provided herein is a variable stiffness torsion spring. This torsion spring can be so adjusted as to have a given spring constant. Such variable stiffness torsion springs are extremely useful in gimballed payloads such as sensors, telescopes, and electronic devices on such platforms as a space shuttle or a space station.
Variable stiffness torsion springs
NASA Technical Reports Server (NTRS)
Alhorn, Dean C. (Inventor); Polites, Michael E. (Inventor)
1995-01-01
In a torsion spring the spring action is a result of the relationships between the torque applied in twisting the spring, the angle through which the torsion spring twists, and the modulus of elasticity of the spring material in shear. Torsion springs employed industrially have been strips, rods, or bars, generally termed shafts, capabable of being flexed by twisting their axes. They rely on the variations in shearing forces to furnish an internal restoring torque. In the torsion springs herein the restoring torque is external and therefore independent of the shearing modulus of elasticity of the torsion spring shaft. Also provided herein is a variable stiffness torsion spring. This torsion spring can be so adjusted as to have a given spring constant. Such variable stiffness torsion springs are extremely useful in gimballed payloads such as sensors, telescopes, and electronic devices on such platforms as a space shuttle or a space station.
Variable stiffness torsion springs
NASA Astrophysics Data System (ADS)
Alhorn, Dean C.; Polites, Michael E.
1995-08-01
In a torsion spring the spring action is a result of the relationships between the torque applied in twisting the spring, the angle through which the torsion spring twists, and the modulus of elasticity of the spring material in shear. Torsion springs employed industrially have been strips, rods, or bars, generally termed shafts, capabable of being flexed by twisting their axes. They rely on the variations in shearing forces to furnish an internal restoring torque. In the torsion springs herein the restoring torque is external and therefore independent of the shearing modulus of elasticity of the torsion spring shaft. Also provided herein is a variable stiffness torsion spring. This torsion spring can be so adjusted as to have a given spring constant. Such variable stiffness torsion springs are extremely useful in gimballed payloads such as sensors, telescopes, and electronic devices on such platforms as a space shuttle or a space station.
Variable stiffness torsion springs
NASA Technical Reports Server (NTRS)
Alhorn, Dean C. (Inventor); Polites, Michael E. (Inventor)
1994-01-01
In a torsion spring the spring action is a result of the relationships between the torque applied in twisting the spring, the angle through which the torsion spring twists, and the modulus of elasticity of the spring material in shear. Torsion springs employed industrially have been strips, rods, or bars, generally termed shafts, capabable of being flexed by twisting their axes. They rely on the variations in shearing forces to furnish an internal restoring torque. In the torsion springs herein the restoring torque is external and therefore independent of the shearing modulus of elasticity of the torsion spring shaft. Also provided herein is a variable stiffness torsion spring. This torsion spring can be so adjusted as to have a given spring constant. Such variable stiffness torsion springs are extremely useful in gimballed payloads such as sensors, telescopes, and electronic devices on such platforms as a space shuttle or a space station.
Schrade, Stefan O; Nager, Yannik; Wu, Amy R; Gassert, Roger; Ijspeert, Auke
2017-07-01
Robotic lower limb exoskeletons are becoming increasingly popular in therapy and recreational use. However, most exoskeletons are still rather limited in their locomotion speed and the activities of daily live they can perform. Furthermore, they typically do not allow for a dynamic adaptation to the environment, as they are often controlled with predefined reference trajectories. Inspired by human leg stiffness modulation during walking, variable stiffness actuators increase flexibility without the need for more complex controllers. Actuation with adaptable stiffness is inspired by the human leg stiffness modulation during walking. However, this actuation principle also introduces the stiffness setpoint as an additional degree of freedom that needs to be coordinated with the joint trajectories. As a potential solution to this issue a bio-inspired controller based on a central pattern generator (CPG) is presented in this work. It generates coordinated joint torques and knee stiffness modulations to produce flexible and dynamic gait patterns for an exoskeleton with variable knee stiffness actuation. The CPG controller is evaluated and optimized in simulation using a model of the exoskeleton. The CPG controller produced stable and smooth gait for walking speeds from 0.4 m/s up to 1.57 m/s with a torso stabilizing force that simulated the use of crutches, which are commonly needed by exoskeleton users. Through the CPG, the knee stiffness intrinsically adapted to the frequency and phase of the gait, when the speed was changed. Additionally, it adjusted to changes in the environment in the form of uneven terrain by reacting to ground contact forces. This could allow future exoskeletons to be more adaptive to various environments, thus making ambulation more robust.
Killewald, Alexandra; García-Manglano, Javier
2016-11-01
Prior research on parenthood effects has typically used single-sex models and estimated average effects. By contrast, we estimate population-level variability in partners' changes in housework hours, paid work hours, occupation traits, and wages after becoming parents, and we explore whether one partner's adjustment offsets or supplements the other's. We find tradeoffs between spouses on paid work adjustments to parenthood, but complementarity in adjustments to housework hours, occupation traits, and wages. The effect of parenthood on wives' behaviors is larger and more variable than on husbands' behaviors in every domain. The modest variation between husbands in work responses to parenthood explains little of the variation in the motherhood penalty, while variation in wives' own behaviors plays a larger role. We refer to this pattern as tethered autonomy: variation across American couples in work responses to parenthood is shaped primarily by variation in wives' adjustments, while husbands' work acts largely as a fixed point. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
McKnight, G. P.; Henry, C. P.
2008-03-01
Morphing or reconfigurable structures potentially allow for previously unattainable vehicle performance by permitting several optimized structures to be achieved using a single platform. The key to enabling this technology in applications such as aircraft wings, nozzles, and control surfaces, are new engineered materials which can achieve the necessary deformations but limit losses in parasitic actuation mass and structural efficiency (stiffness/weight). These materials should exhibit precise control of deformation properties and provide high stiffness when exercised through large deformations. In this work, we build upon previous efforts in segmented reinforcement variable stiffness composites employing shape memory polymers to create prototype hybrid composite materials that combine the benefits of cellular materials with those of discontinuous reinforcement composites. These composites help overcome two key challenges for shearing wing skins: the resistance to out of plane buckling from actuation induced shear deformation, and resistance to membrane deflections resulting from distributed aerodynamic pressure loading. We designed, fabricated, and tested composite materials intended for shear deformation and address out of plane deflections in variable area wing skins. Our designs are based on the kinematic engineering of reinforcement platelets such that desired microstructural kinematics is achieved through prescribed boundary conditions. We achieve this kinematic control by etching sheets of metallic reinforcement into regular patterns of platelets and connecting ligaments. This kinematic engineering allows optimization of materials properties for a known deformation pathway. We use mechanical analysis and full field photogrammetry to relate local scale kinematics and strains to global deformations for both axial tension loading and shear loading with a pinned-diamond type fixture. The Poisson ratio of the kinematically engineered composite is ~3x higher than prototypical orthotropic variable stiffness composites. This design allows us to create composite materials that have high stiffness in the cold state below SMP T g (4-14GPa) and yet achieve large composite shear strains (5-20%) in the hot state (above SMP T g).
Effect of mass variation on dynamics of tethered system in orbital maneuvering
NASA Astrophysics Data System (ADS)
Sun, Liang; Zhao, Guowei; Huang, Hai
2018-05-01
In orbital maneuvering, the mass variation due to fuel consumption has an obvious impact on the dynamics of tethered system, which cannot be neglected. The contributions of the work are mainly shown in two aspects: 1) the improvement of the model; 2) the analysis of dynamics characteristics. As the mass is variable, and the derivative of the mass is directly considered in the traditional Lagrange equation, the expression of generalized force is complicated. To solve this problem, the coagulated derivative is adopted in the paper; besides, the attitude dynamics equations derived in this paper take into account the effect of mass variation and the drift of orbital trajectory at the same time. The bifurcation phenomenon, the pendular motion angular frequency, and amplitudes of tether vibration revealed in this paper can provide a reference for the parameters and controller design in practical engineering. In the article, a dumbbell model is adopted to analyze the dynamics of tethered system, in which the mass variation of base satellite is fully considered. Considering the practical application, the case of orbital transfer under a transversal thrust is mainly studied. Besides, compared with the analytical solutions of librational angles, the effects of mass variation on stability and librational characteristic are studied. Finally, in order to make an analysis of the effect on vibrational characteristic, a lumped model is introduced, which reveals a strong coupling of librational and vibrational characteristics.
Applications of Tethers in Space
NASA Technical Reports Server (NTRS)
Cron, A. C.
1985-01-01
The proceedings of the first workshop on applications of tethers in space are summarized. The workshop gathered personalities from industry, academic institutions and government to discuss the relatively new area of applied technology of very long tethers in space to a broad spectrum of future space missions. A large number of tethered concepts and configurations was presented covering electrodynamic interaction tethers, tethered transportation through angular momentum exchange, tethered constellations, low gravity utilization, applicable technology, and tethered test facilities. Specific recommendations were made to NASA in each area.
Tether dynamics and control results for tethered satellite system's initial flight
NASA Astrophysics Data System (ADS)
Chapel, Jim D.; Flanders, Howard
The recent Tethered Satellite System-1 (TSS-1) mission has provided a wealth of data concerning the dynamics of tethered systems in space and has demonstrated the effectiveness of operational techniques designed to control these dynamics. In this paper, we review control techniques developed for managing tether dynamics, and discuss the results of using these techniques for the Tethered Satellite System's maiden flight on STS-46. In particular, the flight results of controlling libration dynamics, string dynamics, and slack tether are presented. These results show that tether dynamics can be safely managed. The overall stability of the system was found to be surprisingly good even at relatively short tether lengths. In fact, the system operated in passive mode at a tether length of 256 meters for over 9 hours. Only monitoring of the system was required during this time. Although flight anomalies prevented the planned deployment to 20 km, the extended operations at shorter tether lengths have proven the viability of using tethers in space. These results should prove invaluable in preparing for future missions with tethered objects in space.
Tether dynamics and control results for tethered satellite system's initial flight
NASA Technical Reports Server (NTRS)
Chapel, Jim D.; Flanders, Howard
1993-01-01
The recent Tethered Satellite System-1 (TSS-1) mission has provided a wealth of data concerning the dynamics of tethered systems in space and has demonstrated the effectiveness of operational techniques designed to control these dynamics. In this paper, we review control techniques developed for managing tether dynamics, and discuss the results of using these techniques for the Tethered Satellite System's maiden flight on STS-46. In particular, the flight results of controlling libration dynamics, string dynamics, and slack tether are presented. These results show that tether dynamics can be safely managed. The overall stability of the system was found to be surprisingly good even at relatively short tether lengths. In fact, the system operated in passive mode at a tether length of 256 meters for over 9 hours. Only monitoring of the system was required during this time. Although flight anomalies prevented the planned deployment to 20 km, the extended operations at shorter tether lengths have proven the viability of using tethers in space. These results should prove invaluable in preparing for future missions with tethered objects in space.
Bennett, Robert; Russell, I Jon; Choy, Ernest; Spaeth, Michael; Mease, Philip; Kajdasz, Daniel; Walker, Daniel; Wang, Fujun; Chappell, Amy
2012-04-01
Patients with fibromyalgia (FM) rate stiffness as one of the most troublesome symptoms of the disorder. However, there are few published studies that have focused on better understanding the nature of stiffness in FM. The primary objectives of these analyses were to characterize the distribution of stiffness severity in patients at baseline, evaluate changes in stiffness after 12 weeks of treatment with duloxetine, and determine which outcomes were correlated with stiffness. These were post-hoc analyses of 3-month data from 4 randomized, double-blind, placebo-controlled studies that assessed efficacy of duloxetine in adults with FM. Severity of stiffness was assessed by using the Fibromyalgia Impact Questionnaire (FIQ) on a scale from 0 (no stiffness) to 10 (most severe stiffness). The association between changes in stiffness and other measures was evaluated by using Pearson's correlation coefficient. The FIQ total score and items, the Brief Pain Inventory (BPI-modified short form), the Clinical Global Impression-Severity scale, the Multidimensional Fatigue Inventory, the 17-item Hamilton Depression Rating Scale, the Sheehan Disability Scale, the 36-item Short-Form Health Survey, and the EuroQoL Questionnaire-5 Dimensions were evaluated in the correlation analyses. Stepwise linear regression was used to identify the variables that were most highly predictive of the changes in FIQ stiffness. The analysis included 1332 patients (mean age, 50.2 years; 94.7% female; and 87.8% white). The mean (SD) baseline FIQ stiffness score was 7.7 (2.0), and this score correlated with baseline BPI pain score and FIQ function. Duloxetine significantly improved the FIQ stiffness score compared with placebo (P < 0.001) and provided a moderate effect size (0.23 for the 60-mg dose and 0.38 for the 120-mg dose). Changes in stiffness were best correlated (range, 0.52-0.75; all, P < 0.001) with changes in BPI/FIQ pain and interference scores, FIQ nonrefreshing sleep, FIQ anxiety, 36-item Short-Form Health Survey bodily pain, and Sheehan Disability Scale total score. Variables related to severity of pain, pain interfering with daily activities, and physical functioning were predictors of change in stiffness. Stiffness scores were high in this population with FM and best correlated at baseline with BPI pain score and FIQ function. Not unexpectedly, improvement in stiffness with duloxetine correlated with many of the other markers of FM severity, presumably a result of amelioration in FM comorbidities. Copyright © 2012. Published by EM Inc USA.
Atmospheric Electricity and Tethered Aerostats, Volume 2
1976-05-11
vs Altitude (Non- conducting or Conducting Tethers...Effect of Corona Charge Plume 15 3.1 Tether Current vs Balloon Altitude , BJ+3 - 25 Sep 73 20 3.2 Tether Current vs Balloon Altitude , Baldy - 17 Oct 73 21...3.3 Tether Current vs Balloon Altitude , Baldy - 31 Oct 73 22 3.4 Tether Current vs Balloon Altitude , Baldy - 2 Nov 73 23 3.5 Tether Current vs
Different TCR-induced T lymphocyte responses are potentiated by stiffness with variable sensitivity
Saitakis, Michael; Dogniaux, Stéphanie; Goudot, Christel; Bufi, Nathalie; Asnacios, Sophie; Maurin, Mathieu; Randriamampita, Clotilde; Asnacios, Atef; Hivroz, Claire
2017-01-01
T cells are mechanosensitive but the effect of stiffness on their functions is still debated. We characterize herein how human primary CD4+ T cell functions are affected by stiffness within the physiological Young’s modulus range of 0.5 kPa to 100 kPa. Stiffness modulates T lymphocyte migration and morphological changes induced by TCR/CD3 triggering. Stiffness also increases TCR-induced immune system, metabolism and cell-cycle-related genes. Yet, upon TCR/CD3 stimulation, while cytokine production increases within a wide range of stiffness, from hundreds of Pa to hundreds of kPa, T cell metabolic properties and cell cycle progression are only increased by the highest stiffness tested (100 kPa). Finally, mechanical properties of adherent antigen-presenting cells modulate cytokine production by T cells. Together, these results reveal that T cells discriminate between the wide range of stiffness values found in the body and adapt their responses accordingly. DOI: http://dx.doi.org/10.7554/eLife.23190.001 PMID:28594327
The conical pendulum: the tethered aeroplane
NASA Astrophysics Data System (ADS)
Mazza, Anthony P.; Metcalf, William E.; Cinson, Anthony D.; Lynch, John J.
2007-01-01
The introductory physics lab curriculum usually has one experiment on uniform circular motion (UCM). Physics departments typically have several variable-speed rotators in storage that, if they work, no longer work well. Replacing these rotators with new ones is costly, especially when they are only used once a year. This article describes how an inexpensive (ap10) tethered aeroplane, powered by a small electric motor, can be used to study UCM. The aeroplane is easy to see and entertaining to watch. For a given string length and air speed, a tethered aeroplane quickly finds a stable, horizontal, circular orbit. Using a digital video (DV) camcorder, VideoPoint Capture, QuickTime player, metre sticks and a stopwatch, data on the aeroplane's motion were obtained. The length of the string was varied from 120 to 340 cm while the air speed ranged from 200 to 480 cm s-1. For each string length and air speed, the period of the orbit and the diameter of the path were carefully measured. Theoretical values of path radii were then calculated using Newton's second law. The agreement between experiment and theory was usually better than 2%.
Analysis of tethered balloon data from San Nicolas Island on 8 July 1987
NASA Technical Reports Server (NTRS)
Cox, Stephen K.; Duda, David P.; Guinn, Thomas A.; Johnson-Pasqua, Christopher M.; Schubert, Wayne H.; Snider, Jack B.
1990-01-01
Analysis of the 8 July 1987 (Julian Day 189) tethered balloon flight from San Nicolas Island is summarized. The flight commenced at about 14:30 UTC (7:30 Pacific Daylight Time) and lasted six and one-half hours. The position of the Colorado State University (CSU) instrument package as a function of time is shown. For the purpose of presentation of results, researchers divided the flight into 13 legs. These legs consist of 20 minute constant level runs, with the exception of leg 1, which is a sounding from the surface to just above 930 mb. The laser ceilometer record of cloud base is also shown. The cloud base averaged around 970 mb during much of the flight but was more variable near the end. Before the tethered balloon flight commenced, a Communications Link Analysis and Simulation System (CLASS) sounding was released at 12:11 UTC (5:11 PDT). Temperature and moisture data below 927 mb for this sounding is shown. The sounding indicates a cloud top around 955 mb at this time.
Ramsey, Jason Allan
2011-03-01
A non-articulated plantarflexion resist ankle foot orthosis (AFO), commonly known as a posterior leaf spring AFO, is indicated for patients with motor impairment to the dorsiflexors. The AFO is often custom molded to a patient's lower limb anatomy and fabricated from polypropylene. There are no established guidelines for fabricating this type of AFO with predetermined stiffness of the ankle region for normal walking speeds. Therefore an AFO may not meet the biomechanical needs of the patient. Quantify the biomechanical ankle stiffness requirement for an individual with complete dorsiflexor impairment and develop a method for fabricating an AFO with ankle stiffness to meet that requirement. Experimental, bench research. The literature on sagittal biomechanics of non-pathological adults was reviewed to derive the stiffness of the ankle during loading response. Computer models of 144 AFOs were created with geometric variations to account for differences in human anthropometrics. Computer-based finite element analysis was employed to determine the stiffness and safety factor of the models. Stiffness of the AFOs ranged from 0.04 to 1.8 Nm/deg. This ample range is expected to account for the stiffness required for most adults with complete dorsiflexor impairment. At 5° deflection the factor of safety (ratio of strength to stress) ranged from 2.8 to 9.1. A computer program was generated that computes AFO stiffness from user-input variables of AFO geometry. The stiffness is compared to a theoretically appropriate stiffness based on the patient mass. The geometric variables can be modified until there is a close match, resulting in AFO design specification that is appropriate for the patient. Through validation on human subjects, this method may benefit patient outcomes in clinical practice by avoiding the current uncertainty surrounding AFO performance and reducing the labor and time involved in rectifying a custom AFO post-fabrication. This method provides an avenue for improving patient outcomes by avoiding the current uncertainty surrounding non-articulated plantarflexion resist ankle foot orthosis performance. The ability to quantify the biomechanical ankle stiffness requirement for an individual with complete dorsiflexor impairment provides insight into how other AFO types should be designed as well.
Use of top tethers with forward-facing child restraints: observations and driver interviews.
Eichelberger, Angela H; Decina, Lawrence E; Jermakian, Jessica S; McCartt, Anne T
2014-02-01
Despite the safety benefits, many parents do not use top tethers with forward-facing child restraints. Detailed information was collected about why parents are not using tethers. The sample included 479 drivers who had forward-facing child restraints installed in passenger vehicles equipped with tether anchors. The survey was conducted primarily at shopping centers, recreation facilities, child care facilities, car seat check events, and health care facilities in mostly suburban areas surrounding Philadelphia, Washington, DC, Fredericksburg (VA), and Seattle. Drivers were surveyed about their knowledge and use of tethers and experience with child restraints. Tether use was observed to verify whether tethers were being used correctly. Fifty-six percent of forward-facing child restraints were installed with the tether; 39% were installed with the tether used correctly. The tether was used with 71% of LATCH lower anchor installations and 33% of seat belt installations. Drivers who installed child restraints without tethers most often said they did not know about the tether or how to use it. Although the tether use rate was slightly higher in the current research than in previous studies, many parents and caregivers still use forward-facing child restraints without attaching the tether. Because the main problem is lack of awareness of the tether or how to use it, public education should focus specifically on the safety benefits of tethers and how to use them. Information about why caregivers fail to use top tethers is potentially useful to child restraint manufacturers, child passenger safety technicians, and others who work with parents to improve motor vehicle safety. Copyright © 2013 Elsevier Ltd and National Safety Council. All rights reserved.
NASA Technical Reports Server (NTRS)
Cutler, Andrew Hall; Carroll, Joseph A.
1992-01-01
A tether of sufficient strength, capable of being lengthened or shortened and having appropriate apparatuses for capturing and releasing bodies at its ends, may be useful in propulsion applications. For example, a tether could allow rendezvous between spacecraft in substantially different orbits without using propellant. A tether could also allow co-orbiting spacecraft to exchange momentum and separate. Thus, a reentering spacecraft (such as the Shuttle) could give its momentum to one remaining on orbit (such as the space station). Similarly, a tether facility could gain momentum from a high I(sub sp)/low thrust mechanism (which could be an electrodynamics tether) and transfer than momentum by means of a tether to payloads headed for many different orbits. Such a facility would, in effect, combine high I(sub sp) with high thrust, although only briefly. An electrodynamic tether could propel a satellite from its launch inclination to a higher or lower inclination. Tethers could also allow samples to be taken from bodies such as the Moon. Three types of tether operations are illustrated. The following topics are discussed: (1) tether characteristics; (2) tether propulsion methods--basics, via momentum transfer, and electrodynamic tether propulsion; and (3) their use in planetary exploration.
Acute changes in arterial stiffness following exercise in people with metabolic syndrome.
Radhakrishnan, Jeyasundar; Swaminathan, Narasimman; Pereira, Natasha M; Henderson, Keiran; Brodie, David A
This study aims to examine the changes in arterial stiffness immediately following sub-maximal exercise in people with metabolic syndrome. Ninety-four adult participants (19-80 years) with metabolic syndrome gave written consent and were measured for arterial stiffness using a SphygmoCor (SCOR-PVx, Version 8.0, Atcor Medical Private Ltd, USA) immediately before and within 5-10min after an incremental shuttle walk test. The arterial stiffness measures used were pulse wave velocity (PWV), aortic pulse pressure (PP), augmentation pressure, augmentation index (AI), subendocardial viability ratio (SEVR) and ejection duration (ED). There was a significant increase (p<0.05) in most of the arterial stiffness variables following exercise. Exercise capacity had a strong inverse correlation with arterial stiffness and age (p<0.01). Age influences arterial stiffness. Exercise capacity is inversely related to arterial stiffness and age in people with metabolic syndrome. Exercise induced changes in arterial stiffness measured using pulse wave analysis is an important tool that provides further evidence in studying cardiovascular risk in metabolic syndrome. Copyright © 2016 Diabetes India. Published by Elsevier Ltd. All rights reserved.
Applications of Tethers in Space: Workshop Proceedings, Volume 2
NASA Technical Reports Server (NTRS)
Baracat, W. A. (Compiler)
1986-01-01
Topics addressed include: tethered orbital transfer vehicle operations, Centaur and Shuttle tether technology; tethered constellations, gravitational effects; Shuttle continuous open wind tunnel; optimal control laws, electrodynamic tether technology; and space station facilities.
Plasma Interactions With a Negative Biased Electrodynamic Tether
NASA Technical Reports Server (NTRS)
Vaughn, Jason A.; Curtis, Leslie; Welzyn, Ken J.
2004-01-01
The ProSEDS conductive tether design incorporates two distinct types of tethers from a plasma interaction viewpoint. The 200 m closest to the Delta II spacecraft is insulated from the plasma, and the remaining 4800 m is semi-bare. This latter portion is considered semi-bare because a conductive coating, which is designed to collect electrons from the plasma, was applied to the wires to regulate the overall tether temperature. Because the tether has both insulating and conductive tether sections, a transition point exists between the two that forms a triple point with the space plasma. Also, insulated tethers can arc to the space plasma if the insulation is weakened or breached by pinholes caused by either improper handling or small meteoroid and orbital debris strikes. Because electrodynamic tethers are typically long, they have a high probability of these impacts. The particles, which strike the tether, may not have sufficient size to severe the tether, but they can easily penetrate the tether insulation producing a plasma discharge to the ambient plasma. Samples of both the ProSEDS tether transition region and the insulated tether section with various size of pinholes were placed into the MSFC plasma chamber and biased to typical ProSEDS open circuit tether potentials (-500 V to -1600 V). The results of the testing showed that the transition region of the tether (i.e. the triple point) arced to the ambient plasma at -900 V, and the tethers damaged by a pinhole or simulated debris strike arced to the plasma between -700 V and -900 V. Specific design steps were taken to eliminate the triple point issue in the ProSEDS tether design and make it ready for flight. To reduce the pinhole arcing risk, ProSEDS mission operations were changed to eliminate the high negative potential on the insulated tether. The results of the testing campaign and the design changes implemented to ensure a successful flight are described.
Giannaccini, Maria Elena; Xiang, Chaoqun; Atyabi, Adham; Theodoridis, Theo; Nefti-Meziani, Samia; Davis, Steve
2018-02-01
Soft robot arms possess unique capabilities when it comes to adaptability, flexibility, and dexterity. In addition, soft systems that are pneumatically actuated can claim high power-to-weight ratio. One of the main drawbacks of pneumatically actuated soft arms is that their stiffness cannot be varied independently from their end-effector position in space. The novel robot arm physical design presented in this article successfully decouples its end-effector positioning from its stiffness. An experimental characterization of this ability is coupled with a mathematical analysis. The arm combines the light weight, high payload to weight ratio and robustness of pneumatic actuation with the adaptability and versatility of variable stiffness. Light weight is a vital component of the inherent safety approach to physical human-robot interaction. To characterize the arm, a neural network analysis of the curvature of the arm for different input pressures is performed. The curvature-pressure relationship is also characterized experimentally.
Buckling and Post-Buckling Behaviors of a Variable Stiffness Composite Laminated Wing Box Structure
NASA Astrophysics Data System (ADS)
Wang, Peiyan; Huang, Xinting; Wang, Zhongnan; Geng, Xiaoliang; Wang, Yuansheng
2018-04-01
The buckling and post-buckling behaviors of variable stiffness composite laminates (VSCL) with curvilinear fibers were investigated and compared with constant stiffness composite laminates (CSCL) with straight fibers. A VSCL box structure was evaluated under a pure bending moment. The results of the comparative test showed that the critical buckling load of the VSCL box was approximately 3% higher than that of the CSCL box. However, the post-buckling load-bearing capacity was similar due to the layup angle and the immature status of the material processing technology. The properties of the VSCL and CSCL boxes under a pure bending moment were simulated using the Hashin criterion and cohesive interface elements. The simulation results are consistent with the experimental results in stiffness, critical buckling load and failure modes but not in post-buckling load capacity. The results of the experiment, the simulation and laminated plate theory show that VSCL greatly improves the critical buckling load but has little influence on the post-buckling load-bearing capacity.
Morphological Computation of Haptic Perception of a Controllable Stiffness Probe
Sornkarn, Nantachai; Dasgupta, Prokar; Nanayakkara, Thrishantha
2016-01-01
When people are asked to palpate a novel soft object to discern its physical properties such as texture, elasticity, and even non-homogeneity, they not only regulate probing behaviors, but also the co-contraction level of antagonistic muscles to control the mechanical impedance of fingers. It is suspected that such behavior tries to enhance haptic perception by regulating the function of mechanoreceptors at different depths of the fingertips and proprioceptive sensors such as tendon and spindle sensors located in muscles. In this paper, we designed and fabricated a novel two-degree of freedom variable stiffness indentation probe to investigate whether the regulation of internal stiffness, indentation, and probe sweeping velocity (PSV) variables affect the accuracy of the depth estimation of stiff inclusions in an artificial silicon phantom using information gain metrics. Our experimental results provide new insights into not only the biological phenomena of haptic perception but also new opportunities to design and control soft robotic probes. PMID:27257814
Xiang, Chaoqun; Atyabi, Adham; Theodoridis, Theo; Nefti-Meziani, Samia; Davis, Steve
2018-01-01
Abstract Soft robot arms possess unique capabilities when it comes to adaptability, flexibility, and dexterity. In addition, soft systems that are pneumatically actuated can claim high power-to-weight ratio. One of the main drawbacks of pneumatically actuated soft arms is that their stiffness cannot be varied independently from their end-effector position in space. The novel robot arm physical design presented in this article successfully decouples its end-effector positioning from its stiffness. An experimental characterization of this ability is coupled with a mathematical analysis. The arm combines the light weight, high payload to weight ratio and robustness of pneumatic actuation with the adaptability and versatility of variable stiffness. Light weight is a vital component of the inherent safety approach to physical human-robot interaction. To characterize the arm, a neural network analysis of the curvature of the arm for different input pressures is performed. The curvature-pressure relationship is also characterized experimentally. PMID:29412080
Influence of Passive Stiffness of Hamstrings on Postural Stability
Kuszewski, Michał; Gnat, Rafał; Sobota, Grzegorz; Myśliwiec, Andrzej
2015-01-01
The aim of the study was to explore whether passive stiffness of the hamstrings influences the strategy of maintaining postural stability. A sample of 50 subjects was selected; the final analyses were based on data of 41 individuals (33 men, 8 women) aged 21 to 29 (mean = 23.3, SD = 1.1) years. A quasi- experimental ex post facto design with repeated measures was used. Categories of independent variables were obtained directly prior to the measurement of the dependent variables. In stage one of the study, passive knee extension was measured in the supine position to assess hamstring stiffness. In stage two, the magnitude of postural sway in antero-posterior direction was measured, while varying the body position on a stabilometric platform, both with and without visual control. The margin of safety was used as a measure of postural control. The magnitude of the margin of safety increased significantly between the open-eye and closed-eye trials. However, although we registered a visible tendency for a larger increase of the margin of safety associated with lower levels of passive hamstrings stiffness, no significant differences were found. Therefore, this study demonstrated that hamstring stiffness did not influence the strategy used to maintain postural stability. PMID:25964809
Influence of passive stiffness of hamstrings on postural stability.
Kuszewski, Michał; Gnat, Rafał; Sobota, Grzegorz; Myśliwiec, Andrzej
2015-03-29
The aim of the study was to explore whether passive stiffness of the hamstrings influences the strategy of maintaining postural stability. A sample of 50 subjects was selected; the final analyses were based on data of 41 individuals (33 men, 8 women) aged 21 to 29 (mean = 23.3, SD = 1.1) years. A quasi- experimental ex post facto design with repeated measures was used. Categories of independent variables were obtained directly prior to the measurement of the dependent variables. In stage one of the study, passive knee extension was measured in the supine position to assess hamstring stiffness. In stage two, the magnitude of postural sway in antero-posterior direction was measured, while varying the body position on a stabilometric platform, both with and without visual control. The margin of safety was used as a measure of postural control. The magnitude of the margin of safety increased significantly between the open-eye and closed-eye trials. However, although we registered a visible tendency for a larger increase of the margin of safety associated with lower levels of passive hamstrings stiffness, no significant differences were found. Therefore, this study demonstrated that hamstring stiffness did not influence the strategy used to maintain postural stability.
NASA Astrophysics Data System (ADS)
Li, Gangqiang; Zhu, Zheng H.; Ruel, Stephane; Meguid, S. A.
2017-08-01
This paper developed a new multiphysics finite element method for the elastodynamic analysis of space debris deorbit by a bare flexible electrodynamic tether. Orbital motion limited theory and dynamics of flexible electrodynamic tethers are discretized by the finite element method, where the motional electric field is variant along the tether and coupled with tether deflection and motion. Accordingly, the electrical current and potential bias profiles of tether are solved together with the tether dynamics by the nodal position finite element method. The newly proposed multiphysics finite element method is applied to analyze the deorbit dynamics of space debris by electrodynamic tethers with a two-stage energy control strategy to ensure an efficient and stable deorbit process. Numerical simulations are conducted to study the coupled effect between the motional electric field and the tether dynamics. The results reveal that the coupling effect has a significant influence on the tether stability and the deorbit performance. It cannot be ignored when the libration and deflection of the tether are significant.
Guidebook for analysis of tether applications
NASA Technical Reports Server (NTRS)
Carroll, J. A.
1985-01-01
This guidebook is intended as a tool to facilitate initial analyses of proposed tether applications in space. Topics disscussed include: orbit and orbit transfer equations; orbital perturbations; aerodynamic drag; thermal balance; micrometeoroids; gravity gradient effects; tether control strategies; momentum transfer; orbit transfer by tethered release/rendezvous; impact hazards for tethers; electrodynamic tether principles; and electrodynamic libration control issues.
Selected tether applications in space: Phase 2. Executive summary
NASA Technical Reports Server (NTRS)
Thorson, M. H.; Lippy, L. J.
1985-01-01
The application of tether technology has the potential to increase the overall performance efficiency and capability of the integrated space operations and transportation systems through the decade of the 90s. The primary concepts for which significant economic benefits were identified are dependent on the space station as a storage device for angular momentum and as an operating base for the tether system. Concepts examined include: (1) tether deorbit of shuttle from space station; (2) tethered orbit insertion of a spacecraft from shuttle; (3) tethered platform deployed from space station; (4) tether-effected rendezvous of an OMV with a returning OTV; (5) electrodynamic tether as an auxiliary power source for space station; and (6) tether assisted launch of an OTV mission from space station.
Multisubunit tethering complexes in higher plants.
Ravikumar, Raksha; Steiner, Alexander; Assaad, Farhah F
2017-12-01
Tethering complexes mediate the initial, specific contact between donor and acceptor membranes. This review focuses on the modularity and function of multisubunit tethering complexes (MTCs) in higher plants. One emphasis is on molecular interactions of plant MTCs. Here, a number of insights have been gained concerning interactions between different tethering complexes, and between tethers and microtubule-associated proteins. The roles of tethering complexes in abiotic stress responses appear indirect, but in the context of biotic stress responses it has been suggested that some tethers are direct targets of pathogen effectors or virulence factors. In light of the central roles tethering complexes play in plant development, an emerging concept is that tethers may be co-opted for plant adaptive responses. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tethers as Debris: Hydrocode Simulation of Impacts of Polymer Tether Fragments on Aluminum Plates
NASA Technical Reports Server (NTRS)
Evans, Steven W.
2003-01-01
Tethers promise to find use in a variety of space applications. Despite being narrow objects, their great lengths result in them having large total areas. Consequently, tethers are very susceptible to being severed by orbital debris. Extensive work has been done designing tethers that resist severs by small debris objects, in order to lengthen their working lives. It is from this perspective that most recent work has considered the tether - debris question. The potential of intact tethers, or severed tether fragments, as debris, to pose a significant collision risk to other spacecraft has been less well studied. Understanding the consequences of such collisions is important in assessing the risks tethers pose to other spacecraft. This paper discusses the damage that polymer tethers may produce on aluminum plates, as revealed by hypervelocity impact simulations using the SPHC hydrodynamic code.
Tether Technology Interchange Meeting
NASA Technical Reports Server (NTRS)
Harrison, James K. (Compiler)
1998-01-01
This is a compilation of 25 papers presented at a tether technical interchange meeting in Huntsville, AL, on September 9-10, 1997. After each presentation, a technical discussion was held to clarify and expand the salient points. A wide range of subjects was covered including tether dynamics, electrodynamics, space power generation, plasma physics, ionospheric physics, towing tethers, tethered reentry schemes, and future tether missions.
Tethered satellite control mechanism
NASA Technical Reports Server (NTRS)
Kyrias, G. M.
1983-01-01
The tethered satellite control mechanisms consist of four major subsystems. The reel drive mechanism stores the tether. It is motor driven and includes a level wind to uniformly feed the tether to the reel. The lower boom mechanism serves two primary functions: (1) it measures tether length and velocity as the tether runs through the mechanism, and (2) it reads the tether tension at the reel. It also provides change the direction for the tether from the reel to the upper boom mechanism. The deployment boom positions the upper boom mechanism with satellite out of the cargo bay. The deployment function places the 500-kg satellite 20 m away from the Space Shuttle (producing a small natural gravity gradient force), impacts an initial velocity to the satellite for deployment, and allows for satellite docking at a safe distance from the body of the Space Shuttle. The upper boom mechanism (UBM) services three functions: (1) it provides tether control to the satellite as the satellite swings in and out of plane; (2) it reads tether tension in the low range during the early deployment and final retrieval parts of the mission; and (3) it produces additional tether tension at the reel when tether tension to the satellite is in the low range.
Brughelli, Matt; Cronin, John
2008-01-01
Human running can be modelled as either a spring-mass model or multiple springs in series. A force is required to stretch or compress the spring, and thus stiffness, the variable of interest in this paper, can be calculated from the ratio of this force to the change in spring length. Given the link between force and length change, muscle stiffness and mechanical stiffness have been areas of interest to researchers, clinicians, and strength and conditioning practitioners for many years. This review focuses on mechanical stiffness, and in particular, vertical, leg and joint stiffness, since these are the only stiffness types that have been directly calculated during human running. It has been established that as running velocity increases from slow-to-moderate values, leg stiffness remains constant while both vertical stiffness and joint stiffness increase. However, no studies have calculated vertical, leg or joint stiffness over a range of slow-to-moderate values to maximum values in an athletic population. Therefore, the effects of faster running velocities on stiffness are relatively unexplored. Furthermore, no experimental research has examined the effects of training on vertical, leg or joint stiffness and the subsequent effects on running performance. Various methods of training (Olympic style weightlifting, heavy resistance training, plyometrics, eccentric strength training) have shown to be effective at improving running performance. However, the effects of these training methods on vertical, leg and joint stiffness are unknown. As a result, the true importance of stiffness to running performance remains unexplored, and the best practice for changing stiffness to optimize running performance is speculative at best. It is our hope that a better understanding of stiffness, and the influence of running speed on stiffness, will lead to greater interest and an increase in experimental research in this area.
A new active variable stiffness suspension system using a nonlinear energy sink-based controller
NASA Astrophysics Data System (ADS)
Anubi, Olugbenga Moses; Crane, Carl D.
2013-10-01
This paper presents the active case of a variable stiffness suspension system. The central concept is based on a recently designed variable stiffness mechanism which consists of a horizontal control strut and a vertical strut. The horizontal strut is used to vary the load transfer ratio by actively controlling the location of the point of attachment of the vertical strut to the car body. The control algorithm, effected by a hydraulic actuator, uses the concept of nonlinear energy sink (NES) to effectively transfer the vibrational energy in the sprung mass to a control mass, thereby reducing the transfer of energy from road disturbance to the car body at a relatively lower cost compared to the traditional active suspension using the skyhook concept. The analyses and simulation results show that a better performance can be achieved by subjecting the point of attachment of a suspension system, to the chassis, to the influence of a horizontal NES system.
NASA Technical Reports Server (NTRS)
Tomlin, Donald D.; Faile, Gwyn C.; Hayashida, Kazuo B.; Frost, Cynthia L.; Wagner, Carole Y.; Mitchell, Michael L.; Vaughn, Jason A.; Galuska, Michael J.
1998-01-01
The small expendable deployable system and tether satellite system programs did not have a uniform written criteria for tethers. The JSC safety panel asked what criteria was used to design the tethers. Since none existed, a criteria was written based on past experience for future tether programs.
Souza, Thales R.; Araújo, Vanessa L.; Silva, Paula L.; Carvalhais, Viviane O. C.; Resende, Renan A.; Fonseca, Sérgio T.
2016-01-01
ABSTRACT Background Reducing rearfoot eversion is a commonly desired effect in clinical practice to prevent or treat musculoskeletal dysfunction. Interventions that pull the lower limb into external rotation may reduce rearfoot eversion. Objective This study investigated whether the use of external rotation elastic bands, of different levels of stiffness, will decrease rearfoot eversion during walking. We hypothesized that the use of elastic bands would decrease rearfoot eversion and that the greater the band stiffness, the greater the eversion reduction. Method Seventeen healthy participants underwent three-dimensional kinematic analysis of the rearfoot and shank. The participants walked on a treadmill with and without high- and low-stiffness bands. Frontal-plane kinematics of the rearfoot-shank joint complex was obtained during the stance phase of walking. Repeated-measures ANOVAs were used to compare discrete variables that described rearfoot eversion-inversion: mean eversion-inversion; eversion peak; and eversion-inversion range of motion. Results The low-stiffness and high-stiffness bands significantly decreased eversion and increased mean eversion-inversion (p≤0.037) and eversion peak (p≤0.006) compared with the control condition. Both bands also decreased eversion-inversion range of motion (p≤0.047) compared with control by reducing eversion. The high-stiffness band condition was not significantly different from the low-stiffness band condition for any variables (p≥0.479). Conclusion The results indicated that the external rotation bands decreased rearfoot eversion during walking. This constitutes preliminary experimental evidence suggesting that increasing external rotation moments at the lower limb may reduce rearfoot eversion, which needs further testing. PMID:27849289
Effects of Nanoparticle Size on Multilayer Formation and Kinetics of Tethered Enzymes.
Lata, James P; Gao, Lizeng; Mukai, Chinatsu; Cohen, Roy; Nelson, Jacquelyn L; Anguish, Lynne; Coonrod, Scott; Travis, Alexander J
2015-09-16
Despite numerous applications, we lack fundamental understanding of how variables such as nanoparticle (NP) size influence the activity of tethered enzymes. Previously, we showed that biomimetic oriented immobilization yielded higher specific activities versus nonoriented adsorption or carboxyl-amine binding. Here, we standardize NP attachment strategy (oriented immobilization via hexahistidine tags) and composition (Ni-NTA coated gold NPs), to test the impact of NP size (⌀5, 10, 20, and 50 nm) on multilayer formation, activity, and kinetic parameters (kcat, KM, kcat/KM) of enzymes representing three different classes: glucose-6-phosphate isomerase (GPI), an isomerase; Glyceraldehyde-3-phosphate dehydrogenase S (GAPDHS), an oxidoreductase; and pyruvate kinase (PK), a transferase. Contrary to other reports, we observed no trend in kinetic parameters for individual enzymes when found in monolayers (<100% enzyme coverage), suggesting an advantage for oriented immobilization versus other attachment strategies. Saturating the NPs to maximize activity per NP resulted in enzyme multilayer formation. Under these conditions, total activity per NP increased with increasing NP size. Conversely, specific activity for all three enzymes was highest when tethered to the smallest NPs, retaining a remarkable 73-94% of the activity of free/untethered enzymes. Multilayer formations caused a clear trend of kcat decreasing with increasing NP size, yet negligible change in KM. Understanding the fundamental relationships between NP size and tethered enzyme activity enables optimized design of various applications, maximizing activity per NP or activity per enzyme molecule.
Selected tether applications in space: An analysis of five selected concepts
NASA Technical Reports Server (NTRS)
1984-01-01
Ground rules and assumptions; operations; orbit considerations/dynamics; tether system design and dynamics; functional requirements; hardware concepts; and safety factors are examined for five scenarios: tethered effected separation of an Earth bound shuttle from the space station; tether effected orbit boost of a spacecraft (AXAF) into its operational orbit from the shuttle; an operational science/technology platform tether deployed from space station; a tether mediated rendezvous involving an OMV tether deployed from space station to rendezvous with an aerobraked OTV returning to geosynchronous orbit from a payload delivery mission; and an electrodynamic tether used in a dual motor/generator mode to serve as the primary energy storage facility for space station.
Balance disorders caused by running and jumping occurring in young basketball players.
Struzik, Artur; Zawadzki, Jerzy; Pietraszewski, Bogdan
2015-01-01
Body balance, as one of the coordination abilities,is a desirable variable for basketball players as regards the necessity of efficient responses in constantly changing situations on a basketball court. The aim of this study was to check whether physical activity in the form of running and jumping influences variables characterizing the process of keeping body balance of a basketball player in the standing position. The research was conducted on 11 young basketball players. The measurements were taken with a Kistler force plate. Apart from commonly registered COP displacements, an additional variable describing the process of keeping body balance by a basketball player was ankle joint stiffness on the basis of which an "Index of Balance-Stiffness" (IB-S) was created. Statistically significant differences were obtained for the maximum COP displacements and ankle joint stiffness between measurements of balance in the standing position before and after the employed movement tasks whereas there were no statistically significant differences for the aforementioned variables describing the process of keeping balance between measurements after running and after jumping. The research results indicate that the employed movement activities brought about significant changes in the process of keeping balance of basketball player in the standing position which, after the run performed, remain on a similar level to the series of jumps being performed. The authors attempted to establish an index based on the stiffness which yields a possibility to perceive each basketball player as an individual person in the process of keeping balance.
Erhart, Jennifer C.; Dyrby, Chris O.; D'Lima, Darryl D.; Colwell, Clifford W.; Andriacchi, Thomas P.
2010-01-01
External knee adduction moment can be reduced using footwear interventions, but the exact changes in in vivo medial joint loading remain unknown. An instrumented knee replacement was used to assess changes in in vivo medial joint loading in a single patient walking with a variable-stiffness intervention shoe. We hypothesized that during walking with a load modifying variable-stiffness shoe intervention: (1) the first peak knee adduction moment will be reduced compared to a subject's personal shoes; (2) the first peak in vivo medial contact force will be reduced compared to personal shoes; and (3) the reduction in knee adduction moment will be correlated with the reduction in medial contact force. The instrumentation included a motion capture system, force plate, and the instrumented knee prosthesis. The intervention shoe reduced the first peak knee adduction moment (13.3%, p=0.011) and medial compartment joint contact force (22%; p=0.008) compared to the personal shoe. The change in first peak knee adduction moment was significantly correlated with the change in first peak medial contact force (R2=0.67, p=0.007). Thus, for a single subject with a total knee prosthesis the variable-stiffness shoe reduces loading on the affected compartment of the joint. The reductions in the external knee adduction moment are indicative of reductions in in vivo medial compressive force with this intervention. PMID:20973058
“An Impediment to Living Life”: Why and How Should We Measure Stiffness in Polymyalgia Rheumatica?
Mackie, Sarah Louise; Hughes, Rodney; Walsh, Margaret; Day, John; Newton, Marion; Pease, Colin; Kirwan, John; Morris, Marianne
2015-01-01
Objectives To explore patients’ concepts of stiffness in polymyalgia rheumatica (PMR), and how they think stiffness should be measured. Methods Eight focus groups were held at three centres involving 50 patients with current/previous PMR. Each group had at least one facilitator and one rapporteur making field notes. An interview schedule was used to stimulate discussion. Interviews were recorded, transcribed and analysed using an inductive thematic approach. Results Major themes identified were: symptoms: pain, stiffness and fatigue; functional impact; impact on daily schedule; and approaches to measurement. The common subtheme for the experience of stiffness was “difficulty in moving”, and usually considered as distinct from the experience of pain, albeit with a variable overlap. Some participants felt stiffness was the “overwhelming” symptom, in that it prevented them carrying out “fundamental activities” and “generally living life”. Diurnal variation in stiffness was generally described in relation to the daily schedule but was not the same as stiffness severity. Some participants suggested measuring stiffness using a numeric rating scale or a Likert scale, while others felt that it was more relevant and straightforward to measure difficulty in performing everyday activities rather than about stiffness itself. Conclusions A conceptual model of stiffness in PMR is presented where stiffness is an important part of the patient experience and impacts on their ability to live their lives. Stiffness is closely related to function and often regarded as interchangeable with pain. From the patients’ perspective, visual analogue scales measuring pain and stiffness were not the most useful method for reporting stiffness; participants preferred numerical rating scales, or assessments of function to reflect how stiffness impacts on their daily lives. Assessing function may be a pragmatic solution to difficulties in quantifying stiffness. PMID:25955770
Visco-Elastic Membrane Tethers Extracted from Escherichia coli by Optical Tweezers
Jauffred, Liselotte; Callisen, Thomas Hønger; Oddershede, Lene Broeng
2007-01-01
Tethers were created between a living Escherichia coli bacterium and a bead by unspecifically attaching the bead to the outer membrane and pulling it away using optical tweezers. Upon release, the bead returned to the bacterium, thus showing the existence of an elastic tether between the bead and the bacterium. These tethers can be tens of microns long, several times the bacterial length. Using mutants expressing different parts of the outer membrane structure, we have shown that an intact core lipopolysaccharide is a necessary condition for tether formation, regardless of whether the beads were uncoated polystyrene or beads coated with lectin. A physical characterization of the tethers has been performed yielding visco-elastic tether force-extension relationships: for first pull tethers, a spring constant of 10–12 pN/μm describes the tether visco-elasticity, for subsequent pulls the spring constant decreases to 6–7 pN/μm, and typical relaxation timescales of hundreds of seconds are observed. Studies of tether stability in the presence of proteases, lipases, and amylases lead us to propose that the extracted tether is primarily composed of the asymmetric lipopolysaccharide containing bilayer of the outer membrane. This unspecific tethered attachment mechanism could be important in the initiation of bacterial adhesion. PMID:17704145
The dynamic phenomena of a tethered satellite: NASA's first Tethered Satellite Mission, TSS-1
NASA Technical Reports Server (NTRS)
Ryan, R. S.; Mowery, D. K.; Tomlin, D. D.
1993-01-01
The tethered satellite system (TSS) was envisioned as a means of extending a satellite from its base (space shuttle, space station, space platform) into a lower or higher altitude in order to more efficiently acquire data and perform science experiments. This is accomplished by attaching the satellite to a tether, deploying it, then reeling it in. When its mission is completed, the satellite can be returned to its base for reuse. If the tether contains a conductor, it can also be used as a means to generate and flow current to and from the satellite to the base. When current is flowed, the tether interacts with the Earth's magnetic field, deflecting the tether. When the current flows in one direction, the system becomes a propulsive system that can be used to boost the orbiting system. In the other direction, it is a power generating system. Pulsing the current sets up a dynamic oscillation in the tether, which can upset the satellite attitude and preclude docking. A basic problem occurs around 400-m tether length, during satellite retrieval when the satellite's pendulous (rotational) mode gets in resonance with the first lateral tether string mode. The problem's magnitude is determined by the amount of skiprope present coming into this resonance condition. This paper deals with the tethered satellite, its dynamic phenomena, and how the resulting problems were solved for the first tethered satellite mission (TSS-1). Proposals for improvements for future tethered satellite missions are included. Results from the first tethered satellite flight are summarized.
Maquer, Ghislain; Laurent, Marc; Brandejsky, Vaclav; Pretterklieber, Michael L; Zysset, Philippe K
2014-06-01
Disc degeneration, usually associated with low back pain and changes of intervertebral stiffness, represents a major health issue. As the intervertebral disc (IVD) morphology influences its stiffness, the link between mechanical properties and degenerative grade is partially lost without an efficient normalization of the stiffness with respect to the morphology. Moreover, although the behavior of soft tissues is highly nonlinear, only linear normalization protocols have been defined so far for the disc stiffness. Thus, the aim of this work is to propose a nonlinear normalization based on finite elements (FE) simulations and evaluate its impact on the stiffness of human anatomical specimens of lumbar IVD. First, a parameter study involving simulations of biomechanical tests (compression, flexion/extension, bilateral torsion and bending) on 20 FE models of IVDs with various dimensions was carried out to evaluate the effect of the disc's geometry on its compliance and establish stiffness/morphology relations necessary to the nonlinear normalization. The computed stiffness was then normalized by height (H), cross-sectional area (CSA), polar moment of inertia (J) or moments of inertia (Ixx, Iyy) to quantify the effect of both linear and nonlinear normalizations. In the second part of the study, T1-weighted MRI images were acquired to determine H, CSA, J, Ixx and Iyy of 14 human lumbar IVDs. Based on the measured morphology and pre-established relation with stiffness, linear and nonlinear normalization routines were then applied to the compliance of the specimens for each quasi-static biomechanical test. The variability of the stiffness prior to and after normalization was assessed via coefficient of variation (CV). The FE study confirmed that larger and thinner IVDs were stiffer while the normalization strongly attenuated the effect of the disc geometry on its stiffness. Yet, notwithstanding the results of the FE study, the experimental stiffness showed consistently higher CV after normalization. Assuming that geometry and material properties affect the mechanical response, they can also compensate for one another. Therefore, the larger CV after normalization can be interpreted as a strong variability of the material properties, previously hidden by the geometry's own influence. In conclusion, a new normalization protocol for the intervertebral disc stiffness in compression, flexion, extension, bilateral torsion and bending was proposed, with the possible use of MRI and FE to acquire the discs' anatomy and determine the nonlinear relations between stiffness and morphology. Such protocol may be useful to relate the disc's mechanical properties to its degree of degeneration.
NASA Technical Reports Server (NTRS)
Carroll, J. A.
1986-01-01
Some fundamental aspects of tethers are presented and briefly discussed. The effects of gravity gradients, dumbbell libration in circular orbits, tether control strategies and impact hazards for tethers are among those fundamentals. Also considered are aerodynamic drag, constraints in momentum transfer applications and constraints with permanently deployed tethers. The theoretical feasibility of these concepts are reviewed.
Atmospheric tether mission analyses
NASA Technical Reports Server (NTRS)
1996-01-01
NASA is considering the use of tethered satellites to explore regions of the atmosphere inaccessible to spacecraft or high altitude research balloons. This report summarizes the Lockheed Martin Astronautics (LMA) effort for the engineering study team assessment of an Orbiter-based atmospheric tether mission. Lockheed Martin responsibilities included design recommendations for the deployer and tether, as well as tether dynamic analyses for the mission. Three tether configurations were studied including single line, multistrand (Hoytether) and tape designs.
Tethered body problems and relative motion orbit determination
NASA Technical Reports Server (NTRS)
Eades, J. B., Jr.; Wolf, H.
1972-01-01
Selected problems dealing with orbiting tethered body systems have been studied. In addition, a relative motion orbit determination program was developed. Results from these tasks are described and discussed. The expected tethered body motions were examined, analytically, to ascertain what influence would be played by the physical parameters of the tether, the gravity gradient and orbit eccentricity. After separating the motion modes these influences were determined; and, subsequently, the effects of oscillations and/or rotations, on tether force, were described. A study was undertaken, by examining tether motions, to see what type of control actions would be needed to accurately place a mass particle at a prescribed position relative to a main vehicle. Other applications for tethers were studied. Principally these were concerned with the producing of low-level gee forces by means of stabilized tether configurations; and, the initiation of free transfer trajectories from tether supported vehicle relative positions.
Precision tethered satellite attitude control. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Kline-Schoder, Robert J.
1990-01-01
Tethered spacecraft possess unique dynamic characteristics which make them advantageous for certain classes of experiments. One use for which tethers are particularly well suited is to provide an isolated platform for spaceborne observatories. The advantages of tethering a pointing platform 1 or 2 km from a space shuttle or space station are that, compared to placing the observatory on the parent spacecraft, vibrational disturbances are attenuated and contamination is eliminated. In practice, all satellites have some requirement on the attitude control of the spacecraft, and tethered satellites are no exception. It has previously been shown that conventional means of performing attitude control for tethered satellites are insufficient for any mission with pointing requirements more stringent than about 1 deg. This is due mainly to the relatively large force applied by the tether to the spacecraft. A particularly effective method of implementing attitude control for tethered satellites is to use this tether tension force to generate control torques by moving the tether attach point relative to the subsatellite center of mass. A demonstration of this attitude control technique on an astrophysical pointing platform has been proposed for a space shuttle flight test project and is referred to as the Kinetic Isolation Tether Experiment (KITE).
Dynamics and offset control of tethered space-tug system
NASA Astrophysics Data System (ADS)
Zhang, Jingrui; Yang, Keying; Qi, Rui
2018-01-01
Tethered space-tug system is regarded as one of the most promising active debris removal technologies to effectively decrease the steep increasing population of space debris. In order to suppress the spin of space debris, single-tethered space-tug system is employed by regulating the tether. Unfortunately, this system is underactuated as tether length is the only input, and there are two control objectives: the spinning debris and the vibration of tether. Thus, it may suffer great oscillations and result in failure in space debris removal. This paper presents the study of attitude stabilization of the single-tethered space-tug system using not only tether length but also the offset of tether attachment point to suppress the spin of debris, so as to accomplish the space debris removal mission. Firstly, a precise 3D mathematical model in which the debris and tug are both treated as rigid bodies is developed to study the dynamical evolution of the tethered space-tug system. The relative motion equation of the system is described using Lagrange method. Secondly, the dynamic characteristic of the system is analyzed and an offset control law is designed to stabilize the spin of debris by exploiting the variation of tether offset and the regulation of tether length. Besides, an estimation formula is proposed to evaluate the capability of tether for suppressing spinning debris. Finally, the effectiveness of attitude stabilization by the utilization of the proposed scheme is demonstrated via numerical case studies.
Running Economy: Neuromuscular and Joint Stiffness Contributions in Trained Runners.
Tam, Nicholas; Tucker, Ross; Santos-Concejero, Jordan; Prins, Danielle; Lamberts, Robert P
2018-05-29
It is debated whether running biomechanics make good predictors of running economy, with little known information about the neuromuscular and joint stiffness contributions to economical running gait. The aim of this study was to understand the relationship between certain neuromuscular and spatiotemporal biomechanical factors associated with running economy. Thirty trained runners performed a 6-minute constant-speed running set at 3.3 m∙s -1 , where oxygen consumption was assessed. Overground running trials were also performed at 3.3 m∙s -1 to assess kinematics, kinetics and muscle activity. Spatiotemporal gait variables, joint stiffness, pre-activation and stance phase muscle activity (gluteus medius; rectus femoris (RF); biceps femoris(BF); peroneus longus (PL); tibialis anterior (TA); gastrocnemius lateralis and medius (LG and MG) were variables of specific interest and thus determined. Additionally, pre-activation and ground contact of agonist:antagonist co-activation were calculated. More economical runners presented with short ground contact times (r=0.639, p<0.001) and greater strides frequencies (r=-0.630, p<0.001). Lower ankle and greater knee stiffness were associated with lower oxygen consumption (r=0.527, p=0.007 & r=0.384, p=0.043, respectively). Only LG:TA co-activation during stance were associated with lower oxygen cost of transport (r=0.672, p<0.0001). Greater muscle pre-activation and bi-articular muscle activity during stance were associated with more economical runners. Consequently, trained runners who exhibit greater neuromuscular activation prior to and during ground contact, in turn optimise spatiotemporal variables and joint stiffness, will be the most economical runners.
Rufin, M. A.; Gruetzner, J. A.; Hurley, M. J.; Hawkins, M. L.; Raymond, E. S.; Raymond, J. E.
2015-01-01
Silicones with superior protein resistance were produced by bulk-modification with poly(ethylene oxide) (PEO)-silane amphiphiles that demonstrated a higher capacity to restructure to the surface-water interface versus conventional non-amphiphilic PEO-silanes. The PEO-silane amphiphiles were prepared with a single siloxane tether length but variable PEO segment lengths: α-(EtO)3Si(CH2)2-oligodimethylsiloxane13-block-poly(ethylene oxide)n-OCH3 (n = 3, 8, and 16). Conventional PEO-silane analogues (n = 3, 8 and 16) as well as a siloxane tether-silane (i.e. no PEO segment) were prepared as controls. When surface-grafted onto silicon wafer, PEO-silane amphiphiles produced surfaces that were more hydrophobic and thus more adherent towards fibrinogen versus the corresponding PEO-silane. However, when blended into a silicone, PEO-silane amphiphiles exhibited rapid restructuring to the surface-water interface and excellent protein resistance whereas the PEO-silanes did not. Silicones modified with PEO-silane amphiphiles of PEO segment lengths n = 8 and 16 achieved the highest protein resistance. PMID:26339488
Flow around a tethered cylinder, the effect of tether length at high layover angles
NASA Astrophysics Data System (ADS)
Ryan, Kris
2011-07-01
Tethered cylinder systems constitute a natural extension of the lightly damped, hydro-elastically mounted cylinder. In this case, the cylinder is constrained to travel along an arc prescribed by the tether length. The analysis of the tethered cylinder system is hampered by the dependence of the natural frequency of the system on both the fluid forces acting on the system and the curved motion (which in turn alters the added mass coefficient away from unity). These difficulties have precluded prior studies considering the natural frequency or reduced velocity as a controlling parameter, making direct comparison with the hydro-elastically mounted cylinder system difficult.This investigation considers the case of a tethered cylinder at low Reynolds number (Re=200) for a mass ratio m*=0.2. It notes a local maximum in the amplitude of oscillation when the normalized tether length L*≃2.0, in agreement with prior studies. By instead considering the amplitude of oscillation in a rotational framework, we are able to explain the existence of this peak, and identify two regions of amplitude response, the first region exists for very small tether lengths (L*≲0.3), while the second exists for larger tether lengths. The transition from small tether lengths to large tether lengths exhibits the highest amplitude angular oscillations.Several wake states are also considered for a tethered cylinder which is oscillating about a horizontal mean layover angle. By considering these wake states, coupled with the definition of the natural frequency, an estimate of the added mass coefficient is made. Here we predict that CA≃0.5 for a tether length of L*=1.5. This prediction is based not only on the tether length, but also on the amplitude of oscillation, and hence is Reynolds number dependent.
Park, Sang-Kyoon; Lam, Wing-Kai; Yoon, Sukhoon; Lee, Ki-Kwang; Ryu, Jiseon
2017-09-01
This study investigated whether an increase in the forefoot bending stiffness of a badminton shoe would positively affect agility, comfort and biomechanical variables during badminton-specific movements. Three shoe conditions with identical shoe upper and sole designs with different bending stiffness (Flexible, Regular and Stiff) were used. Elite male badminton players completed an agility test on a standard badminton court involving consecutive lunges in six directions, a comfort test performed by a pair of participants conducting a game-like practice trial and a biomechanics test involving a random assignment of consecutive right forward lunges. No significant differences were found in agility time and biomechanical variables among the three shoes. The players wearing the shoe with a flexible forefoot outsole demonstrated a decreased perception of comfort in the forefoot cushion compared to regular and stiffer conditions during the comfort test (p < 0.05). The results suggested that the modification of forefoot bending stiffness would influence individual perception of comfort but would not influence performance and lower extremity kinematics during the tested badminton-specific tasks. It was concluded that an optimisation of forefoot structure and materials in badminton shoes should consider the individual's perception to maximise footwear comfort in performance.
Reliability of Leg and Vertical Stiffness During High Speed Treadmill Running.
Pappas, Panagiotis; Dallas, Giorgos; Paradisis, Giorgos
2017-04-01
In research, the accurate and reliable measurement of leg and vertical stiffness could contribute to valid interpretations. The current study aimed at determining the intraparticipant variability (ie, intraday and interday reliabilities) of leg and vertical stiffness, as well as related parameters, during high speed treadmill running, using the "sine-wave" method. Thirty-one males ran on a treadmill at 6.67 m∙s -1 , and the contact and flight times were measured. To determine the intraday reliability, three 10-s running bouts with 10-min recovery were performed. In addition, to examine the interday reliability, three 10-s running bouts on 3 separate days with 48-h interbout intervals were performed. The reliability statistics included repeated-measure analysis of variance, average intertrial correlations, intraclass correlation coefficients (ICCs), Cronbach's α reliability coefficient, and the coefficient of variation (CV%). Both intraday and interday reliabilities were high for leg and vertical stiffness (ICC > 0.939 and CV < 4.3%), as well as related variables (ICC > 0.934 and CV < 3.9%). It was thus inferred that the measurements of leg and vertical stiffness, as well as the related parameters obtained using the "sine-wave" method during treadmill running at 6.67 m∙s -1 , were highly reliable, both within and across days.
Morning pressor surge, blood pressure variability, and arterial stiffness in essential hypertension.
Pucci, Giacomo; Battista, Francesca; Anastasio, Fabio; Schillaci, Giuseppe
2017-02-01
An excess morning blood pressure surge (MBPS) may portend an increased cardiovascular risk, but the mechanisms thereof have been little investigated. The link between MBPS, short-term blood pressure (BP) variability, and arterial stiffness has not been entirely defined. In 602 consecutive untreated hypertensive patients (48 ± 12 years, 61% men, office BP 149/93 ± 17/10 mmHg), we measured carotid-femoral pulse wave velocity (cf-PWV, SphygmoCor) and 24-h ambulatory BP. Using self-reported sleep and wake times, MBPS was defined as sleep-trough (ST-MBPS), prewaking, rising. Short-term BP variability was calculated as weighted 24-h SBP SD and average real variability of 24-h SBP (ARV), that is, average of absolute differences between consecutive SBP readings. ST-MBPS (r = 0.16, P < 0.001) and rising MBPS (r = 0.12, P = 0.003) showed a direct correlation with cf-PWV, whereas prewaking MBPS had no such relation (r = 0.06, P = 0.14). Only ST-MBPS was independently associated with cf-PWV (t = 1.96, P = 0.04) after adjustment for age, sex, height, office mean arterial pressure, heart rate, and renal function. This association was lost after further adjustment for weighted 24-h SBP SD (P = 0.13) or ARV (P = 0.24). ARV was a significant mediator of the relationship between ST-MBPS and cf-PWV (P = 0.003). In untreated hypertension, ST-MBPS has a direct relation with aortic stiffness, which is mediated by an increased ARV. The adverse effects of MBPS may be partly explained by its link with arterial stiffness, mediated by short-term SBP variability.
Configuration maintaining control of three-body ring tethered system based on thrust compensation
NASA Astrophysics Data System (ADS)
Huang, Panfeng; Liu, Binbin; Zhang, Fan
2016-06-01
Space multi-tethered systems have shown broad prospects in remote observation missions. This paper mainly focuses on the dynamics and configuration maintaining control of space spinning three-body ring tethered system for such mission. Firstly, we establish the spinning dynamic model of the three-body ring tethered system considering the elasticity of the tether using Newton-Euler method, and then validate the suitability of this model by numerical simulation. Subsequently, LP (Likins-Pringle) initial equilibrium conditions for the tethered system are derived based on rigid body's equilibrium theory. Simulation results show that tether slack, snapping and interaction between the tethers exist in the three-body ring system, and its' configuration can not be maintained without control. Finally, a control strategy based on thrust compensation, namely thrust to simulate tether compression under LP initial equilibrium conditions is designed to solve the configuration maintaining control problem. Control effects are verified by numerical simulation compared with uncontrolled situation. Simulation results show that the configuration of the three-body ring tethered system could maintain under this active control strategy.
System protection from atmospheric electricity for aerostats with conducting tethers
NASA Astrophysics Data System (ADS)
Wheeler, M. S.; Beach, G. R.; Jakubowski, P. R.; Fisher, F. A.
1988-04-01
Aerostat power tethers have demonstrated survival of lightning strikes, but they usually have to be reterminated or replaced afterward. Two requirements are given for the prevention of lightning damage to the tether to about 100 kA: installation of a metal-to-metal contact on the outer tether surface to ground the tether at the base flying sheave at typical flying positions; and installation of a shielding band within the outer tether jacket with a weight of about 0.05 lb/ft for a half-inch tether. This determination was made in part by high current tests and in part by electrical modeling.
Shuttle/tethered satellite system conceptual design study
NASA Technical Reports Server (NTRS)
1976-01-01
A closed-loop control system was added to the tether reel which improves control over the tethered satellite. In addition to increasing the stability of the tethered satellite along local vertical, this control system is used for deployment and retrieval of tethered satellites. This conceptual design study describes a tether system for suspending a science payload at an altitude of 120 km from space shuttle orbiter flying at an altitude of 200 km. In addition to the hardware conceptual designs, various aspects concerning Orbiter accommodations are discussed.
Proceedings of a Workshop on Applications of Tethers in Space, Executive Summary
NASA Technical Reports Server (NTRS)
1983-01-01
The objectives were to identify potential applications for tethers in space; develop a first order assessment of the feasibility and benefits of tether applications; recommend future actions necessary to enable tether applications, including required technology advancements; and stimulate industry and government planners to consider the unique properties of tethers in designs for future missions.
Temporary ipsilateral stiff shoulder after operative fixation of distal radial fractures.
Cha, Soo Min; Shin, Hyun Dae; Hwang, Sung Jin
2017-06-01
This study was conducted to identify variables affecting the development of temporary stiff shoulder after operative fixation for distal radial fractures (DRF). The study retrospectively analyzed 167 patients who had undergone internal fixation using volar locking plate for DRF between 2010 and 2013. Group 1 was denoted as the "normal group," and group 2 was denoted as the "stiff shoulder group." Basic demographic factors evaluated included age, sex, bone mineral density (BMD), and the dominancy. Also investigated were radiologic variables, including concurrent fractures of the styloid process, positive ulnar variances, classification of DRF, and morphologic type of the distal radioulnar joint. Finally, the type of plate, methods used for postoperative protection, and time of union were analyzed. Group 1 consisted of 114 patients, and group 2 consisted of 53 patients. On overall univariate analysis, BMD, hand dominancy, and the protective methods after plating were significantly different between the 2 groups. On multivariate analysis, a lower BMD and injury on the nondominant side were significant factors for shoulder stiffness. Stiffness was significantly higher in patients with a mean BMD < -2.6 than in patients with a mean BMD ≥ -2.6. At the final follow-up, all of the 53 patients in group 2 were relieved of the symptoms of a stiff shoulder. A lower BMD and injury on the nondominant distal radius were distinct factors for the development of a stiff shoulder after operative fixation in DRF. Fortunately, nonoperative treatments, such as stretching exercises/injections, were useful for the relief of these symptoms in the short-term follow-up. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Investigation of electrodynamic stabilization and control of long orbiting tethers
NASA Technical Reports Server (NTRS)
Colombo, G.; Arnold, D.
1984-01-01
The state-of-the-art in tether modelling among participants in the Tethered Satellite System (TSS) Program, the slack tether and its behavior, and certain advanced applications of the tether to problems in orbital mechanics are identified. The features and applications of the TSS software set are reviewed. Modelling the slack tether analytically with as many as 50 mass points and the application of this new model to a study of the behavior of a broken tether near the Shuttle are described. A reel control algorithm developed by SAO and examples of its use are described, including an example which also demonstrates the use of the tether in transferring a heavy payload from a low-orbiting Shuttle to a high circular orbit. Capture of a low-orbiting payload by a Space Station in high circular orbit is described. Energy transfer within a dumbbell-type spacecraft by cyclical reeling operations or gravitational effects on the natural elasticity of the connecting tether, it is shown, can circularize the orbit of the spacecraft.
Padala, Muralidhar; Gyoneva, Lazarina I; Thourani, Vinod H; Yoganathan, Ajit P
2014-01-01
Mitral valve geometry is significantly altered secondary to left ventricular remodeling in non-ischemic and ischemic dilated cardiomyopathies. Since the extent of remodeling and asymmetry of dilatation of the ventricle differ significantly between individual patients, the valve geometry and tethering also differ. The study aim was to determine if mitral valve geometry has an impact on the efficacy of surgical repairs to eliminate regurgitation and restore valve closure in a validated experimental model. Porcine mitral valves (n = 8) were studied in a pulsatile heart simulator, in which the mitral valve geometry can be precisely altered and controlled throughout the experiment. Baseline hemodynamics for each valve were measured (Control), and the valves were tethered in two distinct ways: annular dilatation with 7 mm apical papillary muscle (PM) displacement (Tether 1, symmetric), and annular dilatation with 7 mm apical, 7 mm posterior and 7 mm lateral PM displacement (Tether 2, asymmetric). Mitral annuloplasty was performed on each valve (Annular Repair), succeeded by anterior leaflet secondary chordal cutting (Sub-annular Repair). The efficacy of each repair in the setting of a given valve geometry was quantified by measuring the changes in mitral regurgitation (MR), leaflet coaptation length, tethering height and area. At baseline, none of the valves was regurgitant. Significant leaflet tethering was measured in Tether 2 over Tether 1, but both groups were significantly higher compared to baseline (60.9 +/- 31 mm2 for Control versus 129.7 +/- 28.4 mm2 for Tether 1 versus 186.4 +/- 36.3 mm2 for Tether 2). Consequently, the MR fraction was higher in Tether 2 group (23.0 +/- 5.7%) than in Tether 1 (10.5 +/- 5.5%). Mitral annuloplasty reduced MR in both groups, but remnant regurgitation after the repair was higher in Tether 2. After chordal cutting a similar trend was observed with trace regurgitation in Tether 1 group at 3.6 +/- 2.8%, in comparison to 18.6 +/- 4.2% in the Tether 2 group. In this experimental model, the tethering geometry of the mitral valve impacts the valve hemodynamics after annuloplasty and chordal cutting. The quantitative assessment of valve geometry may help in tailoring a repair to the specific tethering pattern.
Study of tethered satellite active attitude control
NASA Technical Reports Server (NTRS)
Colombo, G.
1982-01-01
Existing software was adapted for the study of tethered subsatellite rotational dynamics, an analytic solution for a stable configuration of a tethered subsatellite was developed, the analytic and numerical integrator (computer) solutions for this "test case' was compared in a two mass tether model program (DUMBEL), the existing multiple mass tether model (SKYHOOK) was modified to include subsatellite rotational dynamics, the analytic "test case,' was verified, and the use of the SKYHOOK rotational dynamics capability with a computer run showing the effect of a single off axis thruster on the behavior of the subsatellite was demonstrated. Subroutines for specific attitude control systems are developed and applied to the study of the behavior of the tethered subsatellite under realistic on orbit conditions. The effect of all tether "inputs,' including pendular oscillations, air drag, and electrodynamic interactions, on the dynamic behavior of the tether are included.
Space experiments on basic technologies for a space elevator using microsatellites
NASA Astrophysics Data System (ADS)
Yamagiwa, Yoshiki; Nohmi, Masahiro; Aoki, Yoshio; Momonoi, Yu; Nanba, Hirotaka; Aiga, Masanori; Kumao, Takeru; Watahiki, Masahito
2017-09-01
We attempt to verify two basic technologies required for a space elevator using microsatellites; the tether (cable) deployment technology and the climber operation along the tether in space. Tether deployment is performed by a CubeSat called STARS-C (Space Tethered Autonomous Robotic Satellite - Cube) which will be released from the Japanese experimental module Kibo on ISS early in 2017. STARS-C consists of a mother satellite (MS) and daughter satellite (DS) connected by a 100-m tether. Its mission is focused on the tether deployment for studying the tether dynamics during the deployment with the goal of improving the smoothness of such deployment in future tether missions including space elevator. The MS and DS have common subsystems, including power, communication, and command and data handling systems. They also have a tether unit with spool and reel mechanisms as a mission system. In addition, we have been designing the next-step microsatellite called STARS-E (Space Tethered Autonomous Robotic Satellite - Elevator) under a Grant-in-Aid for Scientific Research. STARS-E is a 500-mm size satellite intended to verify the climber operation in space. It consists of a MS and DS jointed by a 2-km tether, and a climber that moves along the tether. STARS-C was launched on December 9 in 2016 and will be performed its mission early in 2017. STARS-E is in the BBM phase, and some designs are currently being fixed.
Fantin, Francesco; Comellato, Gabriele; Rossi, Andrea P; Grison, Elisa; Zoico, Elena; Mazzali, Gloria; Zamboni, Mauro
2017-09-01
Background Only a few studies have investigated the relationship between neck circumference and cardiometabolic risk. The aim of this study was to assess the relationships between neck circumference, waist circumference, metabolic variables and arterial stiffness in a group of overweight and obese subjects evaluating a possible independent role of neck circumference in determining arterial stiffness. Methods and results We studied 95 subjects (53 women) with an age range of 20-77 years and body mass index range from 25.69 to 47.04 kg/m 2 . In each subject we evaluated body mass index, waist, hip and neck circumference, systolic and diastolic blood pressure, insulin, fasting glucose, cholesterol, low-density lipoprotein and high-density lipoprotein cholesterol and triglycerides. Arterial stiffness was assessed by carotid-femoral pulse wave velocity (PWVcf) and carotid-radial pulse wave velocity (PWVcr). Both PWVcf and PWVcr were higher in subjects with high values of neck circumference compared with subjects with normal values of neck circumference. Subjects with high values of neck circumference and abdominal obesity presented higher values of mean arterial pressure, PWVcr and homeostasis model assessment (HOMA) index and lower values of high-density lipoprotein than subjects with only abdominal obesity. Two models of stepwise multiple regression were performed in order to evaluate the combined effect of independent variables on arterial stiffness. In the first model PWVcf was considered a dependent variable, and age, gender, systolic blood pressure, triglycerides, high-density lipoprotein cholesterol, waist circumference, neck circumference, HOMA index and the use of anti-hypertensive medications were considered independent variables. Age, systolic blood pressure, triglycerides and waist circumference were significant predictors of PWVcf, explaining 65% of its variance. In the second model, in which PWVcr was considered a dependent variable, neck circumference and gender were significant predictors of PWVcr, explaining 24% of its variance. Conclusions These findings emphasise the need to measure not only waist but even neck circumference to better stratify and identify individuals at increased cardiometabolic risk, as upper-body subcutaneous fat is a novel, easily measured fat depot.
NASA Technical Reports Server (NTRS)
Estes, R. D.; Grossi, M. D.; Lorenzini, E. C.
1986-01-01
The transmission and generation by orbiting tethered satellite systems of information carrying electromagnetic waves in the ULF/ELF frequency band to the Earth at suitably high signal intensities was examined and the system maintaining these intensities in their orbits for long periods of time without excessive onboard power requirements was investigated. The injection quantity power into electromagnetic waves as a function of system parameters such as tether length and orbital height was estimated. The basic equations needed to evaluate alternataing current tethered systems for external energy requirements are presented. The energy equations to tethered systems with various lengths, tether resistances, and radiation resistances, operating at different current values are applied. Radiation resistance as a function of tether length and orbital height is discussed. It is found that ULF/ELF continuously radiating systems could be maintained in orbit with moderate power requirements. The effect of tether length on the power going into electromagnetic waves and whether a single or dual tether system is preferable for the self-driven mode is discussed. It is concluded that the single tether system is preferable over the dual system.
Learning characteristics of a space-time neural network as a tether skiprope observer
NASA Technical Reports Server (NTRS)
Lea, Robert N.; Villarreal, James A.; Jani, Yashvant; Copeland, Charles
1993-01-01
The Software Technology Laboratory at the Johnson Space Center is testing a Space Time Neural Network (STNN) for observing tether oscillations present during retrieval of a tethered satellite. Proper identification of tether oscillations, known as 'skiprope' motion, is vital to safe retrieval of the tethered satellite. Our studies indicate that STNN has certain learning characteristics that must be understood properly to utilize this type of neural network for the tethered satellite problem. We present our findings on the learning characteristics including a learning rate versus momentum performance table.
Learning characteristics of a space-time neural network as a tether skiprope observer
NASA Technical Reports Server (NTRS)
Lea, Robert N.; Villarreal, James A.; Jani, Yashvant; Copeland, Charles
1992-01-01
The Software Technology Laboratory at JSC is testing a Space Time Neural Network (STNN) for observing tether oscillations present during retrieval of a tethered satellite. Proper identification of tether oscillations, known as 'skiprope' motion, is vital to safe retrieval of the tethered satellite. Our studies indicate that STNN has certain learning characteristics that must be understood properly to utilize this type of neural network for the tethered satellite problem. We present our findings on the learning characteristics including a learning rate versus momentum performance table.
Markley, Jana L; Hanson, Paul R
2017-05-19
The development of a P-tether-mediated, iterative S N 2'-cuprate alkylation protocol for the formation of 1,3-skipped polyol stereotetrads is reported. This two-directional synthetic strategy builds molecular complexity from simple, readily prepared C 2 -symmetric dienediols and unites the chemistry of both temporary phosphite-borane tethers and temporary phosphate tethers-through an oxidative "function switch" of the P-tether itself-to generate intermediates that were previously inaccessible via either method alone.
Spinal Stiffness in Prone and Upright Postures During 0-1.8 g Induced by Parabolic Flight.
Swanenburg, Jaap; Meier, Michael L; Langenfeld, Anke; Schweinhardt, Petra; Humphreys, B Kim
2018-06-01
The purpose of this study was to analyze posterior-to-anterior spinal stiffness in Earth, hyper-, and microgravity conditions during both prone and upright postures. During parabolic flight, the spinal stiffness of the L3 vertebra of a healthy 37-yr-old man was measured in normal Earth gravity (1.0 g), hypergravity (1.8 g), and microgravity (0.0 g) conditions induced in the prone and upright positions. Differences in spinal stiffness were significant across all three gravity conditions in the prone and upright positions. Most effect sizes were large; however, in the upright posture, the effect size between Earth gravity and microgravity was medium. Significant differences in spinal stiffness between the prone and upright positions were found during Earth gravity and hypergravity conditions. No difference was found between the two postures during microgravity conditions. Based on repeated measurements of a single individual, our results showed detectable changes in posterior-to-anterior spinal stiffness. Spinal stiffness increased during microgravity and decreased during hypergravity conditions. In microgravity conditions, posture did not impact spinal stiffness. More data on spinal stiffness in variable gravitational conditions is needed to confirm these results.Swanenburg J, Meier ML, Langenfeld A, Schweinhardt P, Humphreys BK. Spinal stiffness in prone and upright postures during 0-1.8 g induced by parabolic flight. Aerosp Med Hum Perform. 2018; 89(6):563-567.
Pamukoff, Derek N; Blackburn, J Troy
2015-02-01
Greater lower extremity joint stiffness may be related to the development of tibial stress fractures in runners. Musculotendinous stiffness is the largest contributor to joint stiffness, but it is unclear what factors contribute to musculotendinous stiffness. The purpose of this study was to compare plantar flexor musculotendinous stiffness, architecture, geometry, and Achilles tendon stiffness between male runners with and without a history of tibial stress fracture. Nineteen healthy runners (age = 21 ± 2.7 years; mass = 68.2 ± 9.3 kg; height = 177.3 ± 6.0 cm) and 19 runners with a history of tibial stress fracture (age = 21 ± 2.9 years; mass = 65.3 ± 6.0 kg; height = 177.2 ± 5.2 cm) were recruited from community running groups and the university's varsity and club cross-country teams. Plantar flexor musculotendinous stiffness was estimated from the damped frequency of oscillatory motion about the ankle follow perturbation. Ultrasound imaging was used to measure architecture and geometry of the medial gastrocnemius. Dependent variables were compared between groups via one-way ANOVAs. Previously injured runners had greater plantar flexor musculotendinous stiffness (P < .001), greater Achilles tendon stiffness (P = .004), and lesser Achilles tendon elongation (P = .003) during maximal isometric contraction compared with healthy runners. No differences were found in muscle thickness, pennation angle, or fascicle length.
Propulsive performance of pitching foils with variable chordwise flexibility
NASA Astrophysics Data System (ADS)
Zeyghami, Samane; Moored, Keith; Lehigh University Team
2017-11-01
Many swimming and flying animals propel themselves efficiently through water by oscillating flexible fins. These fins are not homogeneously flexible, but instead their flexural stiffness varies along their chord and span. Here we seek to evaluate the effect stiffness profile on the propulsive performance of pitching foils. Stiffness profile characterizes the variation in the local fin stiffness along the chord. To this aim, we developed a low order model of a functionally-graded material where the chordwise flexibility is modeled by two torsional springs along the chordline and the stiffness and location of the springs can be varied arbitrarily. The torsional spring structural model is then strongly coupled to a boundary element fluid model to simulate the fluid-structure interactions. Keeping the leading edge kinematics unchanged, we alter the stiffness profile of the foil and allow it to swim freely in response to the resulting hydrodynamic forces. We then detail the dependency of the hydrodynamic performance and the wake structure to the variations in the local structural properties of the foil.
Tethered Satellite System Contingency Investigation Board
NASA Technical Reports Server (NTRS)
1992-01-01
The Tethered Satellite System (TSS-1) was launched aboard the Space Shuttle Atlantis (STS-46) on July 31, 1992. During the attempted on-orbit operations, the Tethered Satellite System failed to deploy successfully beyond 256 meters. The satellite was retrieved successfully and was returned on August 6, 1992. The National Aeronautics and Space Administration (NASA) Associate Administrator for Space Flight formed the Tethered Satellite System (TSS-1) Contingency Investigation Board on August 12, 1992. The TSS-1 Contingency Investigation Board was asked to review the anomalies which occurred, to determine the probable cause, and to recommend corrective measures to prevent recurrence. The board was supported by the TSS Systems Working group as identified in MSFC-TSS-11-90, 'Tethered Satellite System (TSS) Contingency Plan'. The board identified five anomalies for investigation: initial failure to retract the U2 umbilical; initial failure to flyaway; unplanned tether deployment stop at 179 meters; unplanned tether deployment stop at 256 meters; and failure to move tether in either direction at 224 meters. Initial observations of the returned flight hardware revealed evidence of mechanical interference by a bolt with the level wind mechanism travel as well as a helical shaped wrap of tether which indicated that the tether had been unwound from the reel beyond the travel by the level wind mechanism. Examination of the detailed mission events from flight data and mission logs related to the initial failure to flyaway and the failure to move in either direction at 224 meters, together with known preflight concerns regarding slack tether, focused the assessment of these anomalies on the upper tether control mechanism. After the second meeting, the board requested the working group to complete and validate a detailed integrated mission sequence to focus the fault tree analysis on a stuck U2 umbilical, level wind mechanical interference, and slack tether in upper tether control mechanism and to prepare a detailed plan for hardware inspection, test, and analysis including any appropriate hardware disassembly.
Tethered Satellite System Contingency Investigation Board
NASA Astrophysics Data System (ADS)
1992-11-01
The Tethered Satellite System (TSS-1) was launched aboard the Space Shuttle Atlantis (STS-46) on July 31, 1992. During the attempted on-orbit operations, the Tethered Satellite System failed to deploy successfully beyond 256 meters. The satellite was retrieved successfully and was returned on August 6, 1992. The National Aeronautics and Space Administration (NASA) Associate Administrator for Space Flight formed the Tethered Satellite System (TSS-1) Contingency Investigation Board on August 12, 1992. The TSS-1 Contingency Investigation Board was asked to review the anomalies which occurred, to determine the probable cause, and to recommend corrective measures to prevent recurrence. The board was supported by the TSS Systems Working group as identified in MSFC-TSS-11-90, 'Tethered Satellite System (TSS) Contingency Plan'. The board identified five anomalies for investigation: initial failure to retract the U2 umbilical; initial failure to flyaway; unplanned tether deployment stop at 179 meters; unplanned tether deployment stop at 256 meters; and failure to move tether in either direction at 224 meters. Initial observations of the returned flight hardware revealed evidence of mechanical interference by a bolt with the level wind mechanism travel as well as a helical shaped wrap of tether which indicated that the tether had been unwound from the reel beyond the travel by the level wind mechanism. Examination of the detailed mission events from flight data and mission logs related to the initial failure to flyaway and the failure to move in either direction at 224 meters, together with known preflight concerns regarding slack tether, focused the assessment of these anomalies on the upper tether control mechanism. After the second meeting, the board requested the working group to complete and validate a detailed integrated mission sequence to focus the fault tree analysis on a stuck U2 umbilical, level wind mechanical interference, and slack tether in upper tether control mechanism and to prepare a detailed plan for hardware inspection, test, and analysis including any appropriate hardware disassembly.
Tethered Balloon Operations at ARM AMF3 Site at Oliktok Point, AK
NASA Astrophysics Data System (ADS)
Dexheimer, D.; Lucero, D. A.; Helsel, F.; Hardesty, J.; Ivey, M.
2015-12-01
Oliktok Point has been the home of the Atmospheric Radiation Measurement Program's (ARM) third ARM Mobile Facility, or AMF3, since October 2013. The AMF3 is operated through Sandia National Laboratories and hosts instrumentation collecting continuous measurements of clouds, aerosols, precipitation, energy, and other meteorological variables. The Arctic region is warming more quickly than any other region due to climate change and Arctic sea ice is declining to record lows. Sparsity of atmospheric data from the Arctic leads to uncertainty in process comprehension, and atmospheric general circulation models (AGCM) are understood to underestimate low cloud presence in the Arctic. Increased vertical resolution of meteorological properties and cloud measurements will improve process understanding and help AGCMs better characterize Arctic clouds. SNL is developing a tethered balloon system capable of regular operation at AMF3 in order to provide increased vertical resolution atmospheric data. The tethered balloon can be operated within clouds at altitudes up to 7,000' AGL within DOE's R-2204 restricted area. Pressure, relative humidity, temperature, wind speed, and wind direction are recorded at multiple altitudes along the tether. These data were validated against stationary met tower data in Albuquerque, NM. The altitudes of the sensors were determined by GPS and calculated using a line counter and clinometer and compared. Wireless wetness sensors and supercooled liquid water content sensors have also been deployed and their data has been compared with other sensors. This presentation will provide an overview of the balloons, sensors, and test flights flown, and will provide a preliminary look at data from sensor validation campaigns and test flights.
On equilibrium positions and stabilization of electrodynamic tether system in the orbital frame
NASA Astrophysics Data System (ADS)
Tikhonov, A. A.; Shcherbakova, L. F.
2018-05-01
An electrodynamic tether system (EDTS) in a near-Earth circular orbit is considered. EDTS contains conductive tether with lumped masses attached to it at the ends. Possible equilibrium positions of the stretched tether under the influence of gravity gradient, Ampere and Lorentz forces in orbital frame are investigated. It is shown that in addition to the vertical equilibrium position, the "inclined" equilibrium positions of the tensioned tether are also possible. Conditions are obtained for the EDTS parameters, under which there is only one vertical position of the tether equilibrium. On the basis of nonlinear differential equations of motion, using the Lyapunov functions method, sufficient conditions for the stability of the vertical position of the tether equi-librium are obtained. It is shown that stabilization of the tether in this position is possible in the presence of damping in the EDTS system. The results of numerical simulation are presented.
NASA Astrophysics Data System (ADS)
Xia, Guangqing; Han, Yajie; Chen, Liuwei; Wei, Yanming; Yu, Yang; Chen, Maolin
2018-06-01
The interaction between the solar wind plasma and the bias voltage of long tethers is the basic mechanism of the electric sail thruster. The momentum transfer process between the solar wind plasma and electric tethers was investigated using a 2D full particle PIC method. The coupled electric field distribution and deflected ion trajectory under different bias voltages were compared, and the influence of bias voltage on momentum transfer process was analyzed. The results show that the high potential of the bias voltage of long tethers will slow down, stagnate, reflect and deflect a large number of ions, so that ion cavities are formed in the vicinity of the tether, and the ions will transmit the axial momentum to the sail tethers to produce the thrust. Compared to the singe tether, double tethers show a better thrust performance.
Altering surface fluctuations by blending tethered and untethered chains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, J. K.; Akgun, B.; Jiang, Z.
"Partially tethering" a thin film of a polymer melt by covalently attaching to the substrate a fraction of the chains in an unentangled melt dramatically increases the relaxation time of the surface height fluctuations. This phenomenon is observed even when the film thickness, h, is 20 times the unperturbed chain radius, R g,tethered, of the tethered chains, indicating that partial tethering is more influential than any physical attraction with the substrate. Furthermore, a partially tethered layer of a low average molecular weight of 5k showed much slower surface fluctuations than did a reference layer of pure untethered chains of muchmore » greater molecular weight (48k), so the partial tethering effect is stronger than the effects of entanglement and increase in glass transition temperature, Tg, with molecular weight. Partial tethering offers a means of tailoring these fluctuations which influence wetting, adhesion, and tribology of the surface.« less
Altering surface fluctuations by blending tethered and untethered chains
Lee, J. K.; Akgun, B.; Jiang, Z.; ...
2017-10-16
"Partially tethering" a thin film of a polymer melt by covalently attaching to the substrate a fraction of the chains in an unentangled melt dramatically increases the relaxation time of the surface height fluctuations. This phenomenon is observed even when the film thickness, h, is 20 times the unperturbed chain radius, R g,tethered, of the tethered chains, indicating that partial tethering is more influential than any physical attraction with the substrate. Furthermore, a partially tethered layer of a low average molecular weight of 5k showed much slower surface fluctuations than did a reference layer of pure untethered chains of muchmore » greater molecular weight (48k), so the partial tethering effect is stronger than the effects of entanglement and increase in glass transition temperature, Tg, with molecular weight. Partial tethering offers a means of tailoring these fluctuations which influence wetting, adhesion, and tribology of the surface.« less
SPHERES tethered formation flight testbed: advancements in enabling NASA's SPECS mission
NASA Astrophysics Data System (ADS)
Chung, Soon-Jo; Adams, Danielle; Saenz-Otero, Alvar; Kong, Edmund; Miller, David W.; Leisawitz, David; Lorenzini, Enrico; Sell, Steve
2006-06-01
This paper reports on efforts to control a tethered formation flight spacecraft array for NASA's SPECS mission using the SPHERES test-bed developed by the MIT Space Systems Laboratory. Specifically, advances in methodology and experimental results realized since the 2005 SPIE paper are emphasized. These include a new test-bed setup with a reaction wheel assembly, a novel relative attitude measurement system using force torque sensors, and modeling of non-ideal tethers to account for tether vibration modes. The nonlinear equations of motion of multi-vehicle tethered spacecraft with elastic flexible tethers are derived from Lagrange's equations. The controllability analysis indicates that both array resizing and spin-up are fully controllable by the reaction wheels and the tether motor, thereby saving thruster fuel consumption. Based upon this analysis, linear and nonlinear controllers have been successfully implemented on the tethered SPHERES testbed, and tested at the NASA MSFC's flat floor facility using two and three SPHERES configurations.
Maps and models of density and stiffness within individual Douglas-fir trees
Christine L. Todoroki; Eini C. Lowell; Dennis P. Dykstra; David G. Briggs
2012-01-01
Spatial maps of density and stiffness patterns within individual trees were developed using two methods: (1) measured wood properties of veneer sheets; and (2) mixed effects models, to test the hypothesis that within-tree patterns could be predicted from easily measurable tree variables (height, taper, breast-height diameter, and acoustic velocity). Sample trees...
Nonmonotonic fluctuation spectra of membranes pinned or tethered discretely to a substrate.
Merath, Rolf-Jürgen; Seifert, Udo
2006-01-01
The thermal fluctuation spectrum of a fluid membrane coupled harmonically to a solid support by an array of tethers is calculated. For strong tethers, this spectrum exhibits nonmonotonic, anisotropic behavior with a relative maximum at a wavelength about twice the tether distance. The root-mean-square displacement is evaluated to estimate typical membrane displacements. Possible applications cover pillar-supported or polymer-tethered membranes.
van der Krogt, Marjolein M.; de Graaf, Wendy W.; Farley, Claire T.; Moritz, Chet T.; Richard Casius, L. J.; Bobbert, Maarten F.
2009-01-01
When human hoppers are surprised by a change in surface stiffness, they adapt almost instantly by changing leg stiffness, implying that neural feedback is not necessary. The goal of this simulation study was first to investigate whether leg stiffness can change without neural control adjustment when landing on an unexpected hard or unexpected compliant (soft) surface, and second to determine what underlying mechanisms are responsible for this change in leg stiffness. The muscle stimulation pattern of a forward dynamic musculoskeletal model was optimized to make the model match experimental hopping kinematics on hard and soft surfaces. Next, only surface stiffness was changed to determine how the mechanical interaction of the musculoskeletal model with the unexpected surface affected leg stiffness. It was found that leg stiffness adapted passively to both unexpected surfaces. On the unexpected hard surface, leg stiffness was lower than on the soft surface, resulting in close-to-normal center of mass displacement. This reduction in leg stiffness was a result of reduced joint stiffness caused by lower effective muscle stiffness. Faster flexion of the joints due to the interaction with the hard surface led to larger changes in muscle length, while the prescribed increase in active state and resulting muscle force remained nearly constant in time. Opposite effects were found on the unexpected soft surface, demonstrating the bidirectional stabilizing properties of passive dynamics. These passive adaptations to unexpected surfaces may be critical when negotiating disturbances during locomotion across variable terrain. PMID:19589956
Controlled tether extends satellite's orbital range
NASA Astrophysics Data System (ADS)
Wigotsky, V.
1984-06-01
A low orbit satellite tethered to the Space Shuttle Orbiter's cargo bay would be able to conduct upper atmosphere experiments without fear of orbit deterioration. NASA has in light of this initiated a Tethered Satellite System program aimed at the 1987 deployment of a 1,100-lb, 5 ft-diameter satellite to a distance of 6-12 miles from the Space Shuttle on a Kevlar tether. The distance of the fully developed system will be 62 miles, representing an altitude of 80 miles above the earth. Tether diameters under consideration are in the 0.065-0.1 inch range. The satellite control system will consist of a reel drive, a deployment boom, and a boom-mounted tether control, in order to vary tether tension during gravity gradient changes.
Propulsive Small Expendable Deployer System (ProSEDS)
NASA Technical Reports Server (NTRS)
1999-01-01
This Quick Time movie is of NASA's Propulsive Small Expendable Deployer System experiment (ProSEDS). ProSEDS will demonstrate the use of an electrodynamic tether, basically a long, thin wire, for propulsion. An electrodynamic tether uses the same principles as electric motors in toys, appliances and computer disk drives, and generators in automobiles and power plants. When electrical current is flowing through the tether, a magnetic field is produced that pushes against the magnetic field of the Earth. For ProSEDS, the current in the tether results by virtue of the voltage generated when the tether moves through the Earth's magnetic field at more than 17,000 mph. This approach can produce drag thrust generating useable power. Since electrodynamic tethers require no propellant, they could substantially reduce the weight of the spacecraft and provide a cost-effective method of reboosting spacecraft. The tether would be a 3.1-mile (5 kilometer) long, ultrathin base-wire tether connected with a 6.2-mile (10 kilometer) long nonconducting tether. The ProSEDS experiment is managed by the Space Transportation Directorate at the Marshall Space Flight Center.
Dynamics of tether-assisted reentry vehicle systems
NASA Astrophysics Data System (ADS)
Zhu, Renzhang; Misra, A. K.; Lin, Huabao
The dynamics of tether-assisted reentry of a capsule is considered in this paper. A major advantage in tethered-assisted reentry is the ability to replace a retro-rocket by a tether. In this reentry procedure, a capsule is deployed down to a design altitude near the local vertical, and at an appropriate time the capsule is disconnected from the tether and enters into a reentry trajectory. In addition to static release, swing release is also considered in this paper. Three deployment schemes appropriate for swing release are considered. A two-stage accelerated-exponential/decelerated-exponential deployment appears to be the best of the three. In comparison with static release, for the same duration of return, this swing release can lead to about 22 percent reduction in tether length at the cost of an increase in tension in the tether by only 8 to 12 percent, and thus, it could decrease the tether mass launched into space. The paper analyzes the detailed dynamics of the tethered system before release as well as the reentry dynamics of the capsule after release along with the heat generated during reentry.
NASA Technical Reports Server (NTRS)
Colombo, G.; Martinez-Sanchez, M.; Arnold, D.
1982-01-01
The SKYHOOK program was used to do simulations of two cases of the use of the tether for payload orbital transfer. The transport of a payload along the tether from a heavy lower platform to an upper launching platform is considered. A numerical example of the Shuttle launching a payload using an orbital tether facility is described.
The investigation of tethered satellite system dynamics
NASA Technical Reports Server (NTRS)
Lorenzini, E.
1984-01-01
Tethered satellite system (TSS) dynamics were studied. The dynamic response of the TSS during the entire stationkeeping phase for the first electrodynamic mission was investigated. An out of plane swing amplitude and the tether's bowing were observed. The dynamics of the slack tether was studied and computer code, SLACK2, was improved both in capabilities and computational speed. Speed hazard related to tether breakage or plasma contactor failure was examined. Preliminary values of the potential difference after the failure and of the drop of the electric field along the tether axis have been computed. The update of the satellite rotational dynamics model is initiated.
One kilometer (1 km) electric solar wind sail tether produced automatically.
Seppänen, Henri; Rauhala, Timo; Kiprich, Sergiy; Ukkonen, Jukka; Simonsson, Martin; Kurppa, Risto; Janhunen, Pekka; Hæggström, Edward
2013-09-01
We produced a 1 km continuous piece of multifilament electric solar wind sail tether of μm-diameter aluminum wires using a custom made automatic tether factory. The tether comprising 90,704 bonds between 25 and 50 μm diameter wires is reeled onto a metal reel. The total mass of 1 km tether is 10 g. We reached a production rate of 70 m/24 h and a quality level of 1‰ loose bonds and 2‰ rebonded ones. We thus demonstrated that production of long electric solar wind sail tethers is possible and practical.
Filla, Nicholas; Ramasamy, Ramaraja; Wang, Xianqiao
2018-04-25
The strength and nature of the interactions between carbon nanotubes (CNTs) and molecular tethers plays a vital role in technology such as CNT-enzyme sensors. Tethers that attach noncovalently to CNTs are ideal for retaining the electrical properties of the CNTs since they do not degrade the CNT surface and effect its electrical conductivity. However, leaching due to weak CNT-tether attachment is very common when using noncovalent tethers, and this has limited their use in commercial products including biosensors. Thus, understanding the fundamental mechanics governing the strength of CNT-tether adhesion is crucial for the design of highly sensitive, viable sensors. Here, we computationally investigate the adhesion strength of CNT-tether complexes with 8 different tethering molecules designed to adhere noncovalently to the CNT surface. We study the effects of CNT diameter, CNT chirality, and the size/geometry of the tethering molecule on the adhesion energy and force. Our results show an asymptotic relationship between adhesion strength and CNT diameter. Calculations show that noncovalent tethers tested here can reach adhesion forces and energies that are up to 21% and 54% of the strength of the carbon-carbon single bond force and bond energy respectively. We anticipate our results will help guide CNT-enzyme sensor design to produce sensors with high sensitivity and minimal leaching.
Analysis of ProSEDS Test of Bare-Tether Collection
NASA Technical Reports Server (NTRS)
Sanmartin, J. R.; Lorenzini, E. C.; Estes, R. D.; Charro, M.; Cosmo, M. L.
2003-01-01
NASA's tether experiment ProSEDS will be placed in orbit on board a Delta-II rocket to test bare-tether electron collection, deorbiting of the rocket second stage, and the system dynamic stability. ProSEDS performance will vary because ambient conditions change along the orbit and tether-circuit bulk elements at the cathodic end follow the step-by-step sequence for the current cycles of operating modes (open-circuit, shunt and resistor modes for primary cycles; shunt and battery modes for secondary cycles). In this work we discuss expected ProSEDS values of the ratio L,/L*, which jointly with cathodic bulk elements determines bias and current tether profiles; L, is tether length, and L* (changing with tether temperature and ionospheric plasma density and magnetic field) is a characteristic length gauging ohmic versus baretether collection impedances. We discuss how to test bare-tether electron collection during primary cycles, using probe measurements of plasma density, measurements of cathodic current in resistor and shunt modes, and an estimate of tether temperature based on ProSEDS orbital position at the particular cycle concerned. We discuss how a temperature misestimate might occasionally affect the test of bare-tether collection, and how introducing the battery mode in some primary cycles, for an additional current measurement, could obviate the need of a temperature estimate. We also show how to test bare-tether collection by estimating orbit-decay rate from measurements of cathodic current for the shunt and battery modes of secondary cycles.
Small expendable deployer system measurement analysis
NASA Technical Reports Server (NTRS)
Carrington, Connie K.
1988-01-01
The first on-orbit experiment of the Small Expendable Deployer System (SEDS) for tethered satellites will collect telemetry data for tether length, rate of deployment, and tether tension. The post-flight analysis will use this data to reconstruct the deployment history and determine dynamic characteristics such as tether shape and payload position. Linearized observability analysis has determined that these measurements are adequate to define states for a two-mass tether model, and two state estimators were written.
Applications of Tethers in Space, Volume 1
NASA Technical Reports Server (NTRS)
Cron, A. C. (Compiler)
1985-01-01
The tethered satellite system is described including tether fundamentals. Applications of very long tethers in space to a broad spectrum of future space missions are explored. Topics covered include: science, transportation, constellations, artificial gravity, technology and test, and electrodynamic interactions. Recommendations to NASA are included.
Tethers in space: Birth and growth of a new avenue to space utilization
NASA Technical Reports Server (NTRS)
Vontiesenhausen, G.
1984-01-01
The evolution of the ideas of tether applications in space are traced from its origin in the last century past a dormant period of sixty-five years to the mid-seventies. At that time as a consequence of major revival efforts, NASA entered into serious investigations of the theoretical and practical feasibility of a large number of tethered concepts in space. These efforts culminated in the establishment of the Tethered Satellite System Project now at NASA in the advanced development phase. Extensive planning efforts are described, first, through a Tether Applications in Space Workshop which generated additional concepts and provided overall assessments and recommendations to NASA, and then through a NASA inter-center Tether Applications in Space Task Group which generated a four year program plan in the areas of further studies, technology, work and science and applications of tethers in space. An outlook into the future of tether applications that approaches some of the goals of the early visionaries is offered.
Assessing tether anchor labeling and usability in pickup trucks.
Klinich, Kathleen D; Manary, Miriam A; Malik, Laura A; Flannagan, Carol A; Jermakian, Jessica S
2018-04-03
The objective of this study was to investigate vehicle factors associated with child restraint tether use and misuse in pickup trucks and evaluate 4 labeling interventions designed to educate consumers on proper tether use. Volunteer testing was performed with 24 subjects and 4 different pickup trucks. Each subject performed 8 child restraint installations among the 4 pickups using 2 forward-facing restraints: a Britax Marathon G4.1 and an Evenflo Triumph. Vehicles were selected to represent 4 different implementations of tether anchors among pickups: plastic loop routers (Chevrolet Silverado), webbing routers (Ram), back wall anchors (Nissan Frontier), and webbing routers plus metal anchors (Toyota Tundra). Interventions included a diagram label, Quick Response (QR) Code linked to video instruction, coordinating text label, and contrasting text tag. Subjects used the child restraint tether in 93% of trials. However, tether use was completely correct in only 9% of trials. An installation was considered functional if the subject attached the tether to a tether anchor and had a tight installation (ignoring routing and head restraint position); 28% of subjects achieved a functional installation. The most common installation error was attaching the tether hook to the anchor/router directly behind the child restraint (near the top of the seatback) rather than placing the tether through the router and attaching it to the anchor in the adjacent seating position. The Nissan Frontier, with the anchor located on the back wall of the cab, had the highest rate of correct installations but also had the highest rate of attaching the tether to components other than the tether anchor (seat adjustor, child restraint storage hook, around head restraint). None of the labeling interventions had a significant effect on correct installation; not a single subject scanned the QR Code to access the video instruction. Subjects with the most successful installations spent extensive time reviewing the vehicle manuals. Current implementations of tether anchors among pickup trucks are not intuitive for child restraint installations, and alternate designs should be explored. Several different labeling interventions were ineffective at achieving correct tether use in pickup trucks.
B. Lachenbruch; G.R. Johnson; G.M. Downes; R. Evans
2010-01-01
The relative importance of density, acoustic velocity, and microfibril angle (MFA) for the prediction of stiffness (MOE) and strength (MOR) has not been well established for Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco). MOE and MOR of small clear specimens of mature wood were better predicted by density and velocity than by either variable...
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Krivorutsky, E. N.; Gallagher, D. L.
2006-01-01
The concept of electrodynamic tether propulsion has a number of attractive features and has been widely discussed for different applications. Different system designs have been proposed and compared during the last 10 years. In spite of this, the choice of proper design for any particular mission is a unique problem. Such characteristics of tether performance as system acceleration, efficiency, etc., should be calculated and compared on the basis of the known capability of a tether to collect electrical current. We discuss the choice of parameters for circular and tape tethers with regard to the Momentum-Exchange/Electrodynamic Reboost (MXER) tether project.
The role of tethers on space station
NASA Technical Reports Server (NTRS)
Vontiesenhausen, G. (Editor)
1985-01-01
The results of research and development that addressed the usefulness of tether applications in space, particularly for space station are described. A well organized and structured effort of considerable magnitude involving NASA, industry and academia have defined the engineering and technological requirements of space tethers and their broad range of economic and operational benefits. The work directed by seven NASA Field Centers is consolidated and structured to cover the general and specific roles of tethers in space as they apply to NASA's planned space station. This is followed by a description of tether systems and operations. A summary of NASA's plans for tether applications in space for years to come is given.
Modeling and Simulation of a Tethered Harpoon for Comet Sampling
NASA Technical Reports Server (NTRS)
Quadrelli, Marco B.
2014-01-01
This paper describes the development of a dynamic model and simulation results of a tethered harpoon for comet sampling. This model and simulation was done in order to carry out an initial sensitivity analysis for key design parameters of the tethered system. The harpoon would contain a canister which would collect a sample of soil from a cometary surface. Both a spring ejected canister and a tethered canister are considered. To arrive in close proximity of the spacecraft at the end of its trajectory so it could be captured, the free-flying canister would need to be ejected at the right time and with the proper impulse, while the tethered canister must be recovered by properly retrieving the tether at a rate that would avoid an excessive amplitude of oscillatory behavior during the retrieval. The paper describes the model of the tether dynamics and harpoon penetration physics. The simulations indicate that, without the tether, the canister would still reach the spacecraft for collection, that the tether retrieval of the canister would be achievable with reasonable fuel consumption, and that the canister amplitude upon retrieval would be insensitive to variations in vertical velocity dispersion.
Space Station Reboost with Electrodynamic Tethers
NASA Technical Reports Server (NTRS)
Vas, Irwin E.; Kelly, Thomas J.; Scarl, Ethan A.
1999-01-01
This paper presents the results of a study of an electrodynamic tether system to reboost the International Space Station (ISS). One recommendation is to use a partially bare tether for electron collection. Locations are suggested as to where the tether system is to be attached at the space station. The effects of the tether system on the microgravity environment may actually be beneficial, because the system can neutralize aerodrag during quiescent periods and, if deployed from a movable boom, can permit optimization of laboratory positioning with respect to acceleration contours. Alternative approaches to tether deployment and retrieval are discussed. It is shown that a relatively short tether system, 7 km long, operating at a power level of 5 kW could provide cumulative savings or over a billion dollars during a 10-year period ending in 2012. This savings is the direct result of a reduction in the number or nights that would otherwise be required to deliver propellant for reboost, with larger cost savings for higher tether usage. In addition to economic considerations, an electrodynamic tether promises a practical backup system that could ensure ISS survival in the event of an (otherwise) catastrophic delay in propellant delivery.
NASA Astrophysics Data System (ADS)
Chu, Zhongyi; Di, Jingnan; Cui, Jing
2017-10-01
Space debris occupies a valuable orbital resource and is an inevitable and urgent problem, especially for large space debris because of its high risk and the possible crippling effects of a collision. Space debris has attracted much attention in recent years. A tethered system used in an active debris removal scenario is a promising method to de-orbit large debris in a safe manner. In a tethered system, the flexibility of the tether used in debris removal can possibly induce tangling, which is dangerous and should be avoided. In particular, attachment point bias due to capture error can significantly affect the motion of debris relative to the tether and increase the tangling risk. Hence, in this paper, the effect of attachment point bias on the tethered system is studied based on a dynamic model established based on a Newtonian approach. Next, a safety metric of avoiding a tangle when a tether is tensioned with attachment point bias is designed to analyse the tangling risk of the tethered system. Finally, several numerical cases are established and simulated to validate the effects of attachment point bias on a space tethered system.
Practicality of Using a Tether for Electrodynamic Reboost of the International Space Station
NASA Technical Reports Server (NTRS)
Blumer, J. H.; Donahue, Benjamin B.; Bangham, Michal E.; Roth, A. (Technical Monitor)
2001-01-01
ElectroDynamic (ED) Tethers can generate continuous low thrust in a low Earth orbit. An induced current running through the length of the tether reacts with the geomagnetic field to produce thrust. The amount of thrust scales with tether lens!th and current. The International Space Station (ISS) requires periodic reboost to maintain an approximately circular orbit t above the Earth. The baseline reboost method is a traditional bi-propellant rocket thruster and tankage system which must to be refueled via Soyuz / Progress or other launch vehicle. The estimated propellant costs associated with keeping ISS in the designated orbit over a 10-year life have been extremely high. The ED Tether would draw energy from the renewable ISS Solar Array electrical power system. Propulsion requirements for ISS vary depending on solar wind and other conditions. It is projected that a ED Tether could provide the majority of the required reboost thrust for ISS for a nominal solar year. For above nominal solar wind years the ISS would have to use the rocket reboost system, but at a greatly reduced level. Thus resulting in substantial cost savings, via the reduction in the number of Earth-to-orbit launch vehicle flights to the ISS that must bring reboost propellant. However, the purposes of this paper is to further Previous research on an ISS ED Tether and examine the operational and technical issues working against using a ED Tether on ISS. Issues such as Shuttle rendezvous and flight path concerns raise serious safety concerns and restrictions on tether use. Tether issues such as tether librations and off angle thrust raise concerns about impacts to microgravity payloads and the long-term effect on ISS orbital path and inclination. Operational issues such as peak power available to an ED Tether and allowable duty cycle may impose severe restrictions on tether design and ultimately limit the practicality of an ED Tether on ISS. Thus while at first glance the cost numbers appear to be strongly in favor of an ED Tether the limitations imposed by safety, operations and technical concerns may severely undermine the economic model. Possible Solutions to these problems have been investigated and proposed, however some items like off angle thrust are still being actively investigated for an adequate solution.
An Overview of Electrodynamic Tether Performance in the Jovian System
NASA Technical Reports Server (NTRS)
Gallagher, Dennis; Johnson, Les; Bagenal, Fran; Moore, James
1998-01-01
The Jovian magnetosphere with its strong magnetic field and rapid planetary rotation present new opportunities and challenges for the use of electrodynamic tethers. An overview of the basic plasma physics properties of an electrodynamic tether moving through the Jovian magnetosphere is examined. Tether use for both propulsion and power generation are considered. Close to the planet, tether propulsive forces are found to be as high as 50 Newtons and power levels as high as 1 million Watts.
The tethered galaxy problem: a possible window to explore cosmological models
NASA Astrophysics Data System (ADS)
Tangmatitham, Matipon; Nemiroff, Robert J.
2017-01-01
In the tethered galaxy problem, a hypothetical galaxy is being held at a fixed proper distance. Contrary to Newtonian intuition, it has been shown that this tethered galaxy can have a nonzero redshift. However, constant proper distance has been suggested as unphysical in a cosmological setting and therefore other definitions have been suggested. The tethered galaxy problem is therefore reviewed in Friedmann cosmology. In this work, different tethers are considered as possible local cosmological discriminators.
Milazzo, Valeria; Maule, Simona; Di Stefano, Cristina; Tosello, Francesco; Totaro, Silvia; Veglio, Franco; Milan, Alberto
2015-12-01
Autonomic failure (AF) is characterized by orthostatic hypotension, supine hypertension, and increased blood pressure (BP) variability. AF patients develop cardiac organ damage, similarly to essential hypertension (EH), and have higher arterial stiffness than healthy controls. Determinants of cardiovascular organ damage in AF are not well known: both BP variability and mean BP values may be involved. The aim of the study was to evaluate cardiac organ damage, arterial stiffness, and central hemodynamics in AF, compared with EH subjects with similar 24-hour BP and a group of healthy controls, and to evaluate determinants of target organ damage in patients with AF. Twenty-seven patients with primary AF were studied (mean age, 65.7±11.2 years) using transthoracic echocardiography, carotid-femoral pulse wave velocity, central hemodynamics, and 24-hour ambulatory BP monitoring. They were compared with 27 EH subjects matched for age, sex, and 24-hour mean BP and with 27 healthy controls. AF and EH had similar left ventricular mass (101.6±33.3 versus 97.7±28.1 g/m(2), P=0.59) and carotid-femoral pulse wave velocity (9.3±1.8 versus 9.2±3.0 m/s, P=0.93); both parameters were significantly lower in healthy controls (P<0.01). Compared with EH, AF patients had higher augmentation index (31.0±7.6% versus 26.1±9.2%, P=0.04) and central BP values. Nighttime systolic BP and 24-hour systolic BP predicted organ damage, independent of BP variability. AF patients develop hypertensive heart disease and increased arterial stiffness, similar to EH with comparable mean BP values. Twenty-four-hour and nighttime systolic BP were determinants of cardiovascular damage, independent of BP variability. © 2015 American Heart Association, Inc.
NASA Technical Reports Server (NTRS)
Colombo, G.; Grossi, M. D.; Arnold, D.
1983-01-01
The effect of reeling operations on the orbital altitude of the tether system and the development of control laws to minimize tether rebound upon payload release were studied. The use of the tether for LEO/GEO payload orbital transfer was also investigated. It was concluded that (1) reeling operations can contribute a significant amount of energy to the orbit of the system and should be considered in orbit calculations and predictions, (2) deployment of payloads, even very large payloads, using tethers is a practical and fully stable operation, (3) tether augmented LEO/GEO transfer operations yield useful payload gains under the practical constraint of fixed size OTV's, and (4) orbit to orbit satellite retrieval is limited by useful revisit times to orbital inclinations of less than forty-five degrees.
Review of deployment technology for tethered satellite systems
NASA Astrophysics Data System (ADS)
Yu, B. S.; Wen, H.; Jin, D. P.
2018-03-01
Tethered satellite systems (TSSs) have attracted significant attention due to their potential and valuable applications for scientific research. With the development of various launched on-orbit missions, the deployment of tethers is considered a crucial technology for operation of a TSS. Both past orbiting experiments and numerical results have shown that oscillations of the deployed tether due to the Coriolis force and environmental perturbations are inevitable and that the impact between the space tether and end-body at the end of the deployment process leads to complicated nonlinear phenomena. Hence, a set of suitable control methods plays a fundamental role in tether deployment. This review article summarizes previous work on aspects of the dynamics, control, and ground-based experiments of tether deployment. The relevant basic principles, analytical expressions, simulation cases, and experimental results are presented as well.
Contributions to Leg Stiffness in High- Compared with Low-Arched Athletes.
Powell, Douglas W; Paquette, Max R; Williams, D S Blaise
2017-08-01
High-arched (HA) athletes exhibit greater lower extremity stiffness during functional tasks than low-arched (LA) athletes. The contributions of skeletal and muscular structures to stiffness may underlie the distinct injury patterns observed in these athletes. The purpose of this study was to compare skeletal and muscular contributions to leg stiffness in HA and LA athletes during running and landing tasks. Ten HA and 10 LA female athletes performed five overground running trials at a self-selected pace and five step off bilateral landing trials from a height of 30 cm. Three-dimensional kinematics and kinetics were collected using a motion capture system and a force platform. Leg stiffness and its skeletal and muscular contributions were calculated. Independent t-tests were used to compare variable means between arch type groups and Cohen's d were computed to assess effect sizes of mean differences. In running, HA athletes had greater leg stiffness (P = 0.010, d = 1.03) and skeletal stiffness (P = 0.016, d = 0.81), although there are no differences in muscular stiffness (P = 0.134). During landing, HA had greater leg stiffness (P = 0.015, d = 1.06) and skeletal stiffness (P < 0.001, d = 1.84), whereas LA athletes had greater muscular stiffness (P = 0.025, d = 0.96). These findings demonstrate that HA athletes place a greater reliance on skeletal structures for load attenuation during running and landing, whereas LA athletes rely more greatly on muscle contributions during landing only. These findings may provide insight into the distinct injury patterns observed in HA and LA athletes.
Effects of vehicle front-end stiffness on rear seat dummies in NCAP and FMVSS208 tests.
Sahraei, Elham; Digges, Kennerly; Marzougui, Dhafer
2013-01-01
This study is devoted to quantifying changes in mass and stiffness of vehicles tested by the National Highway Traffic Safety Administration (NHTSA) over the past 3 decades (model years 1982 to 2010) and understanding the effect of those changes on protection of rear seat occupants. A total of 1179 tests were used, and the changes in their mass and stiffness versus their model year was quantified. Additionally, data from 439 dummies tested in rear seats of NHTSA's full frontal crashes were analyzed. Dummies were divided into 3 groups based on their reference injury criteria. Multiple regressions were performed with speed, stiffness, and mass as predicting variables for head, neck, and chest injury criteria. A significant increase in mass and stiffness over model year of vehicles was observed, for passenger cars as well as large platform vehicles. The result showed a significant correlation (P-value < .05) between the increase in stiffness of the vehicles and increase in head and chest injury criteria for all dummy sizes. These results explain that stiffness is a significant contributor to previously reported decreases in protection of rear seat occupants over model years of vehicles.
Conceptualization and design of a variable-gravity research facility
NASA Technical Reports Server (NTRS)
1987-01-01
The goal is to provide facilities for the study of the effects of variable-gravity levels in reducing the physiological stresses upon the humans of long-term stay time in zero-g. The designs studied include: twin-tethered two module system with a central despun module with docking port and winch gear; and rigid arm tube facility using shuttle external tanks. Topics examined included: despun central capsule configuration, docking clearances, EVA requirements, crew selection, crew scheduling, food supply and preparation, waste handling, leisure use, biomedical issues, and psycho-social issues.
Tethered Satellite System (TSS-1R)-Post Flight (STS-75) Engineering Performance Report
NASA Technical Reports Server (NTRS)
Lavoie, Anthony R.
1996-01-01
The first mission of the Tethered Satellite deployer was flown onboard Atlantis in 1992 during the Space Transportation System (STS) flight STS-46. Due to a mechanical interference with the level wind mechanism the satellite was only Deployed to 256 m rather than the planned 20,000 m. Other problems were also experienced during the STS-46 flight and several modifications were made to the Deployer and Satellite. STS-75 was a reflight of the Tethered Satellite System 1 (TSS-1) designated as Tethered Satellite System 1 Reflight (TSS-1 R) onboard Columbia. As on STS-46, the TSS payload consisted of the Deployer, the Satellite, 3 cargo bay mounted experiments: Shuttle Electrodynamic Tether System (SETS), Shuttle Potential and Return Electron Experiment (SPREE), Deployer Core Equipment (DCORE) 4 Satellite mounted experiments: Research on Electrodynamics Tether Effects (RETE), Research on Orbital Plasma Electrodynamics (ROPE), Satellite Core Instruments (SCORE), Tether Magnetic Field Experiment (TEMAG) and an aft flight deck camera: Tether Optical Phenomena Experiment (TOP). Following successful pre-launch, launch and pre-deployment orbital operations, the Deployer deployed the Tethered Satellite to 19,695 m at which point the tether broke within the Satellite Deployment Boom (SDB). The planned length for On-Station I (OST1) was 20,700 m The Satellite flew away from the Orbiter with the tether attached. The satellite was "safed" and placed in a limited power mode via the RF link. The Satellite was contacted periodically during overflights of ground stations. Cargo bay science activities continued for the period of time allocated to TSS-1 R operations.
Eukaryotic membrane tethers revisited using magnetic tweezers.
Hosu, Basarab G; Sun, Mingzhai; Marga, Françoise; Grandbois, Michel; Forgacs, Gabor
2007-04-19
Membrane nanotubes, under physiological conditions, typically form en masse. We employed magnetic tweezers (MTW) to extract tethers from human brain tumor cells and compared their biophysical properties with tethers extracted after disruption of the cytoskeleton and from a strongly differing cell type, Chinese hamster ovary cells. In this method, the constant force produced with the MTW is transduced to cells through super-paramagnetic beads attached to the cell membrane. Multiple sudden jumps in bead velocity were manifest in the recorded bead displacement-time profiles. These discrete events were interpreted as successive ruptures of individual tethers. Observation with scanning electron microscopy supported the simultaneous existence of multiple tethers. The physical characteristics, in particular, the number and viscoelastic properties of the extracted tethers were determined from the analytic fit to bead trajectories, provided by a standard model of viscoelasticity. Comparison of tethers formed with MTW and atomic force microscopy (AFM), a technique where the cantilever-force transducer is moved at constant velocity, revealed significant differences in the two methods of tether formation. Our findings imply that extreme care must be used to interpret the outcome of tether pulling experiments performed with single molecular techniques (MTW, AFM, optical tweezers, etc). First, the different methods may be testing distinct membrane structures with distinct properties. Second, as soon as a true cell membrane (as opposed to that of a vesicle) can attach to a substrate, upon pulling on it, multiple nonspecific membrane tethers may be generated. Therefore, under physiological conditions, distinguishing between tethers formed through specific and nonspecific interactions is highly nontrivial if at all possible.
Eukaryotic membrane tethers revisited using magnetic tweezers
NASA Astrophysics Data System (ADS)
Hosu, Basarab G.; Sun, Mingzhai; Marga, Françoise; Grandbois, Michel; Forgacs, Gabor
2007-06-01
Membrane nanotubes, under physiological conditions, typically form en masse. We employed magnetic tweezers (MTW) to extract tethers from human brain tumor cells and compared their biophysical properties with tethers extracted after disruption of the cytoskeleton and from a strongly differing cell type, Chinese hamster ovary cells. In this method, the constant force produced with the MTW is transduced to cells through super-paramagnetic beads attached to the cell membrane. Multiple sudden jumps in bead velocity were manifest in the recorded bead displacement-time profiles. These discrete events were interpreted as successive ruptures of individual tethers. Observation with scanning electron microscopy supported the simultaneous existence of multiple tethers. The physical characteristics, in particular, the number and viscoelastic properties of the extracted tethers were determined from the analytic fit to bead trajectories, provided by a standard model of viscoelasticity. Comparison of tethers formed with MTW and atomic force microscopy (AFM), a technique where the cantilever-force transducer is moved at constant velocity, revealed significant differences in the two methods of tether formation. Our findings imply that extreme care must be used to interpret the outcome of tether pulling experiments performed with single molecular techniques (MTW, AFM, optical tweezers, etc). First, the different methods may be testing distinct membrane structures with distinct properties. Second, as soon as a true cell membrane (as opposed to that of a vesicle) can attach to a substrate, upon pulling on it, multiple nonspecific membrane tethers may be generated. Therefore, under physiological conditions, distinguishing between tethers formed through specific and nonspecific interactions is highly nontrivial if at all possible.
Hage, Ilige S; Hamade, Ramsey F
2017-09-01
Microscale lacunar-canalicular (L-C) porosity is a major contributor to intracortical bone stiffness variability. In this work, such variability is investigated experimentally using micro hardness indentation tests and numerically using a homogenization scheme. Cross sectional rings of cortical bones are cut from the middle tubular part of bovine femur long bone at mid-diaphysis. A series of light microscopy images are taken along a line emanating from the cross-section center starting from the ring's interior (endosteum) ring surface toward the ring's exterior (periosteum) ring surface. For each image in the line, computer vision analysis of porosity is conducted employing an image segmentation methodology based on pulse coupled neural networks (PCNN) recently developed by the authors. Determined are size and shape of each of the lacunar-canalicular (L-C) cortical micro constituents: lacunae, canaliculi, and Haversian canals. Consequently, it was possible to segment and quantify the geometrical attributes of all individual segmented pores leading to accurate determination of derived geometrical measures such as L-C cortical pores' total porosity (pore volume fraction), (elliptical) aspect ratio, orientation, location, and number of pores in secondary and primary osteons. Porosity was found to be unevenly (but linearly) distributed along the interior and exterior regions of the intracortical bone. The segmented L-C porosity data is passed to a numerical microscale-based homogenization scheme, also recently developed by the authors, that analyses a composite made up of lamella matrix punctuated by multi-inclusions and returns corresponding values for longitudinal and transverse Young's modulus (matrix stiffness) for these micro-sized spatial locations. Hence, intracortical stiffness variability is numerically quantified using a combination of computer vision program and numerical homogenization code. These numerically found stiffness values of the homogenization solution are corroborated experimentally using microhardness indentation measurements taken at the same points that the digital images were taken along a radial distance emanating from the interior (endosteum) surface toward the bone's exterior (periosteum) surface. Good agreement was found between numerically calculated and indentation measured stiffness of Intracortical lamellae. Both indentation measurements and numerical solutions of matrix stiffness showed increasing linear trend of compressive longitudinal modulus (E11) values vs. radial position for both interior and exterior regions. In the interior (exterior) region of cortical bone, stiffness modulus values were found to range from 18.5 to 23.4 GPa (23 to 26.0 GPa) with the aggregate stiffness of the cortical lamella in the exterior region being 12% stiffer than that in the interior region. In order to further validate these findings, experimental and FEM simulation of a mid-diaphysis bone ring under compression is employed. The FEM numerical deflections employed nine concentric regions across the thickness with graded stiffness values based on the digital segmentation and homogenization scheme. Bone ring deflections are found to agree well with measured deformations of the compression bone ring.
The first mission of the Tethered Satellite System
NASA Technical Reports Server (NTRS)
Powers, C. Blake (Editor); Shea, Charlotte; Mcmahan, Tracy
1992-01-01
The era of space-age tethered operations moves toward reality with the launch of Tethered Satellite System-1 (TSS-1). The primary objective of this mission is to demonstrate the technology of long tethered systems in space and to demonstrate, through scientific investigations, that such systems are useful for research.
Tethered acoustic doppler current profiler platforms for measuring streamflow
Rehmel, Michael S.; Stewart, James A.; Morlock, Scott E.
2003-01-01
A tethered-platform design with a trimaran hull and 900-megahertz radio modems is now commercially available. Continued field use has resulted in U.S. Geological Survey procedures for making tethered-platform discharge measurements, including methods for tethered-boat deployment, moving-bed tests, and measurement of edge distances.
Tethered gravity laboratories study
NASA Technical Reports Server (NTRS)
Lucchetti, F.
1989-01-01
The use is studied of tether systems to improve the lowest possible steady gravity level on the Space Station. Particular emphasis is placed by the microgravity community on the achievement of high quality microgravity conditions. The tether capability is explored for active control of the center of gravity and the analysis of possible tethered configurations.
Schmidt, Ulf; Penzkofer, Rainer; Bachmaier, Samuel; Augat, Peter
2013-09-01
Construct stiffness affects healing of bones fixed with locking plates. However, variable construct stiffness reported in the literature may be attributable to differing test configurations and direct comparisons may clarify these differences. We therefore asked whether different distal femur locking plate systems and constructs will lead to different (1) axial and rotational stiffness and (2) fatigue under cyclic loading. We investigated four plate systems for distal femur fixation (AxSOS, LCP, PERI-LOC, POLYAX) of differing designs and materials using bone substitutes in a distal femur fracture model (OTA/AO 33-A3). We created six constructs of each of the four plating systems. Stiffness under static and cyclic loading and fatigue under cyclic loading were measured. Mean construct stiffness under axial loading was highest for AxSOS (100.8 N/mm) followed by PERI-LOC (80.8 N/mm) and LCP (62.6 N/mm). POLYAX construct stiffness testing showed the lowest stiffness (51.7 N/mm) with 50% stiffness of AxSOS construct testing. Mean construct stiffness under torsional loading was similar in the group of AxSOS and PERI-LOC (3.40 Nm/degree versus 3.15 Nm/degree) and in the group of LCP and POLYAX (2.63 Nm/degree versus 2.56 Nm/degree). The fourth load level of > 75,000 cycles was reached by three of six AxSOS, three of six POLYAX, and two of six PERI-LOC constructs. All others including all LCP constructs failed earlier. Implant design and material of new-generation distal femur locking plate systems leads to a wide range of differences in construct stiffness. Assuming construct stiffness affects fracture healing, these data may influence surgical decision-making in choosing an implant system.
Is stiffness related to athletic groin pain?
Gore, S J; Franklyn-Miller, A; Richter, C; Falvey, E C; King, E; Moran, K
2018-06-01
Athletic groin pain (AGP) is a common injury prevalent in field sports. One biomechanical measure that may be of importance for injury risk is stiffness. To date however, stiffness has not been examined in AGP. The primary aim was to determine whether AGP affects vertical and joint stiffness and if so, whether successful rehabilitation is associated with a change in stiffness. Sixty-five male patients with AGP and fifty male controls were recruited to this study. Assessment included a biomechanical examination of stiffness during a lateral hurdle hop test. Subjects with AGP were tested pre- and post-rehabilitation, while controls were tested once. AGP subjects were cleared for return to play in a median time of 9.14 weeks (5.14-29.0). Stiffness was significantly different at pre-rehabilitation in comparison with controls for four of the ten stiffness values examined: ankle plantar flexor, knee extensor, hip abductor, and vertical stiffness (P < .05, D = 0.36-0.79). Despite clearance for return to play, of these four variables, only hip abductor stiffness changed significantly from pre- to post-rehabilitation (P = .05, D = 0.35) to become non-significantly different to the uninjured group (P = .18, D = 0.26). These findings suggest that hip abductor stiffness may represent a target for AGP rehabilitation. Conversely, given the clearance for return to play, the lower sagittal plane and vertical stiffness in the AGP group in comparison with the uninjured controls likely represents either a compensatory mechanism to reduce the risk of further injury or a consequence of neuromuscular detraining. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
A Two-moment Radiation Hydrodynamics Module in ATHENA Using a Godunov Method
NASA Astrophysics Data System (ADS)
Skinner, M. A.; Ostriker, E. C.
2013-04-01
We describe a module for the Athena code that solves the grey equations of radiation hydrodynamics (RHD) using a local variable Eddington tensor (VET) based on the M1 closure of the two-moment hierarchy of the transfer equation. The variables are updated via a combination of explicit Godunov methods to advance the gas and radiation variables including the non-stiff source terms, and a local implicit method to integrate the stiff source terms. We employ the reduced speed of light approximation (RSLA) with subcycling of the radiation variables in order to reduce computational costs. The streaming and diffusion limits are well-described by the M1 closure model, and our implementation shows excellent behavior for problems containing both regimes simultaneously. Our operator-split method is ideally suited for problems with a slowly-varying radiation field and dynamical gas flows, in which the effect of the RSLA is minimal.
NASA Technical Reports Server (NTRS)
Johnson, Charles L. (Inventor); Ballance, Judy L. (Inventor); Welzyn, Kenneth J. (Inventor); Vaughn, Jason A. (Inventor); Lorenzini, Enrico (Inventor); Schuler, Peter S. (Inventor)
2006-01-01
A tether system for providing thrust to or power subsystems of an artificial satellite in a low earth orbit. The tether has three main sections, an insulated section connected to the satellite, a conducting section connected to the insulating section for drawing in and releasing electrons from the space plasma and a non-conducting section for providing a tension to the other sections of the tether. An oxygen resistant coating is applied to the bare wire of the conducting section as well as the insulated wires of the insulated section that prevents breakdown during tether operations in the space plasma. The insulated and bare wire sections also surround a high tensile flexible polymer core to prevent any debris from breaking the tether during use.
The tether inspection and repair experiment (TIRE)
NASA Technical Reports Server (NTRS)
Wood, George M.; Loria, Alberto; Harrison, James K.
1988-01-01
The successful development and deployment of reusable tethers for space applications will require methods for detecting, locating, and repairing damage to the tether. This requirement becomes especially important whenever the safety of the STS or the Space Station may be diminished or when critical supplies or systems would be lost in the event of a tether failure. A joint NASA/PSN study endeavor has recently been initiated to evaluate and address the problems to be solved for such an undertaking. The objectives of the Tether Inspection and Repair Experiment (TIRE) are to develop instrumentation and repair technology for specific classes of tethers defined as standards, and to demonstrate the technologies in ground-based and in-flight testing on the STS.
Edema and elasticity of a fronto-temporal decompressive craniectomy
Takada, Daikei; Nagai, Hidemasa; Moritake, Kouzo; Akiyama, Yasuhiko
2012-01-01
Background: Decompressive craniectomy is undertaken for relief of brain herniation caused by acute brain swelling. Brain stiffness can be estimated by palpating the decompressive cranial defect and can provide some relatively subjective information to the neurosurgeon to help guide care. The goal of the present study was to objectively evaluate transcutaneous stiffness of the cranial defect using a tactile resonance sensor and to describe the values in patients with a decompressive window in order to characterize the clinical association between brain edema and stiffness. Methods: Data were prospectively collected from 13 of 37 patients who underwent a decompressive craniectomy in our hospital during a 5-year period. Transcutaneous stiffness was measured as change in frequency and as elastic modulus. Results: Stiffness variables of the decompressive site were measured without any adverse effect and subsequent calculations revealed change in frequency = 101.71 ± 36.42 Hz, and shear elastic modulus = 1.99 ± 1.11 kPa. Conclusions: The elasticity of stiffness of a decompressive site correlated with brain edema, cisternal cerebrospinal fluid pressure, and brain shift, all of which are related to acute brain edema. PMID:22347679
Space Environmental Effects on Coated Tether Materials
NASA Technical Reports Server (NTRS)
Gittemeier, Keith A.; Hawk, Clark W.; Finckenor, Miria M.; Watts, Ed
2005-01-01
The University of Alabama in Huntsville s Propulsion Research Center has teamed with NASA's Marshall Space Flight Center (MSFC) to research the effects of atomic oxygen (AO) bombardment on coated tether materials. Tethers Unlimited Inc. has provided several candidate tether materials with various coatings for AO exposure in MSFC s Atomic Oxygen Beam Facility. Additional samples were exposed to ultraviolet (UV) radiation at MSFC. AO erodes most organic materials, and ultraviolet radiation embrittles polymers. This test series was performed to determine the effect of AO and UV on the mechanical integrity of tether materials that were treated with AO-protective coatings, such as polyhedral oligomeric silsesquioxane (POSS) or metallization. Both TUI's Multi-Application Survivable Tether (MAST) Experiment and Marshall Space Flight Center s Momentum Exchange Electrodynamic Reboost (MXER) programs will benefit from this research by helping to determine tether materials and coatings that give the longest life with the lowest mass penalty.
Rigorous approaches to tether dynamics in deployment and retrieval
NASA Technical Reports Server (NTRS)
Antona, Ettore
1987-01-01
Dynamics of tethers in a linearized analysis can be considered as the superposition of propagating waves. This approach permits a new way for the analysis of tether behavior during deployment and retrieval, where a tether is composed by a part at rest and a part subjected to propagation phenomena, with the separating section depending on time. The dependence on time of the separating section requires the analysis of the reflection of the waves travelling toward the part at rest. Such a reflection generates a reflected wave, whose characteristics are determined. The propagation phenomena of major interest in a tether are transverse waves and longitudinal waves, all mathematically modelled by the vibrating chord equations, if the tension is considered constant along the tether. An interesting problem also considered is concerned with the dependence of the tether tension from the longitudinal position, due to microgravity, and the influence of this dependence on the propagation waves.
Atomic Oxygen Effects on Coated Tether Materials
NASA Technical Reports Server (NTRS)
Gittemeier, Keith A.; Hawk, Clark W.; Finckenor, Miria M.; Watts, Ed
2005-01-01
The University of Alabama in Huntsville s Propulsion Research Center has teamed with NASA's Marshall Space Flight Center (MSFC) to research the effects of atomic oxygen (AO) bombardment on coated tether materials. Tethers Unlimited Inc. has provided several candidate tether materials with various coatings for (AO) exposure in MSFC's Atomic Oxygen Beam Facility. Additional samples were exposed to ultraviolet (UV) radiation at MSFC. AO erodes most organic materials, and ultraviolet radiation embrittles polymers. This test series was performed to determine the effect of AO and UV on the mechanical integrity of tether materials that were treated with AO-protective coatings, such as Photosil or metallization. Both TUI's Multi-Application Survivable Tether (MAST) Experiment and Marshall Space Flight Center's Momentum Exchange Electrodynamic Reboost (MXER) programs will benefit from this research by helping to determine tether materials and coatings that give the longest life with the lowest mass penalty.
The development of optimal control laws for orbiting tethered platform systems
NASA Technical Reports Server (NTRS)
Bainum, P. M.; Woodard, S.; Juang, J.-N.
1986-01-01
A mathematical model of the open and closed loop in-orbit plane dynamics of a space platform-tethered-subsatellite system is developed. The system consists of a rigid platform from which an (assumed massless) tether is deploying (retrieving) a subsatellite from an attachment point which is, in general, offset from the platform's mass center. A Lagrangian formulation yields equations describing platform pitch, subsatellite tether-line swing, and varying tether length motions. These equations are linearized about the nominal station keeping motion. Control can be provided by both modulation of the tether tension level and by a momentum type platform-mounted device; system controllability depends on the presence of both control inputs. Stability criteria are developed in terms of the control law gains, the platform inertia ratio, and tether offset parameter. Control law gains are obtained based on linear quadratic regulator techniques. Typical transient responses of both the state and required control effort are presented.
Models of dynamic extraction of lipid tethers from cell membranes.
Nowak, Sarah A; Chou, Tom
2010-05-07
When a ligand that is bound to an integral membrane receptor is pulled, the membrane and the underlying cytoskeleton can deform before either the membrane delaminates from the cytoskeleton or the ligand detaches from the receptor. If the membrane delaminates from the cytoskeleton, it may be further extruded and form a membrane tether. We develop a phenomenological model for this process by assuming that deformations obey Hooke's law up to a critical force at which the cell membrane locally detaches from the cytoskeleton and a membrane tether forms. We compute the probability of tether formation and show that tethers can be extruded only within an intermediate range of force loading rates and pulling velocities. The mean tether length that arises at the moment of ligand detachment is computed as are the force loading rates and pulling velocities that yield the longest tethers.
Applications of Tethers in Space, Volume 2
NASA Technical Reports Server (NTRS)
Cron, A. C. (Compiler)
1985-01-01
Topics discussed include tethered satellites, tether deployment, satellite systems, science applications, electrodynamic interactions, transportation applications, artificial gravity, constellations, and technology and testing.
Tether System for Exchanging Payloads Between the International Space Station and the Lunar Surface
NASA Technical Reports Server (NTRS)
Hoyt, Robert P.
1998-01-01
Systems composed of several rotating and/or hanging tethers may provide a means of exchanging supplies between low Earth orbit facilities and lunar bases without requiring the use of propellant. This work develops methods for designing a tether system capable of repeatedly exchanging payloads between a LEO facility such as the International Space Station or a Space Business Park and a base on the lunar surface. In this system, a hanging tether extended upwards from the LEO facility, places a payload into a slightly elliptical orbit, where it is caught by a rotating tether in a higher elliptical orbit. This rotating tether then tosses the payload to the moon. At the moon, a long rotating "Lunavator" tether catches the payload and deposits it on the surface of the moon. By transporting an equal mass of lunar materials such as oxygen back down to the LEO facility through the tether transport system, the momentum and energy of the system is conserved, allowing frequent traffic between LEO and the lunar surface with minimal propellant requirements.
A new class of tunable hypersonic phononic crystals based on polymer-tethered colloids.
Alonso-Redondo, E; Schmitt, M; Urbach, Z; Hui, C M; Sainidou, R; Rembert, P; Matyjaszewski, K; Bockstaller, M R; Fytas, G
2015-09-22
The design and engineering of hybrid materials exhibiting tailored phononic band gaps are fundamentally relevant to innovative material technologies in areas ranging from acoustics to thermo-optic devices. Phononic hybridization gaps, originating from the anti-crossing between local resonant and propagating modes, have attracted particular interest because of their relative robustness to structural disorder and the associated benefit to 'manufacturability'. Although hybridization gap materials are well known, their economic fabrication and efficient control of the gap frequency have remained elusive because of the limited property variability and expensive fabrication methodologies. Here we report a new strategy to realize hybridization gap materials by harnessing the 'anisotropic elasticity' across the particle-polymer interface in densely polymer-tethered colloidal particles. Theoretical and Brillouin scattering analysis confirm both the robustness to disorder and the tunability of the resulting hybridization gap and provide guidelines for the economic synthesis of new materials with deliberately controlled gap position and width frequencies.
Dynamic modeling and Super-Twisting Sliding Mode Control for Tethered Space Robot
NASA Astrophysics Data System (ADS)
Zhao, Yakun; Huang, Panfeng; Zhang, Fan
2018-02-01
Recent years, tethered space capturing systems have been considered as one of the most promising solutions for active space debris removal due to the increasing threat of space debris to spacecraft and astronauts. In this paper, one of the tethered space capturing systems, Tethered Space Robot (TSR), is investigated. TSR includes a space platform, a space tether, and a gripper as the terminal device. Based on the assumptions that the platform and the gripper are point masses and the tether is rigid, inextensible and remaining straight, the dynamic model of TSR is presented, in which the disturbances from space environment is considered. According to the previous study, the in-plane and out-of-plane angles of the tether oscillate periodically although the tether is released to the desired length. A super-twisting adaptive sliding mode control scheme is designed for TSR to eliminate the vibration of the tether to assure a successful capture in station-keeping phase. Both uncontrolled and controlled situations are simulated. The simulation results show that the proposed controller is effective. Additionally, after comparing with normal sliding mode control algorithm, it is verified that the proposed control scheme can avoid the chattering of normal sliding mode control and is robust for unknown boundary perturbations.
2001-07-01
This photograph shows two Marshall Space Flight Center (MSFC) engineers, Mark Vaccaro (left) and Ken Welzyn, testing electrodynamic tethers in the MSFC Tether Winding and Spark Testing Facility. For 4 years, MSFC and industry partners have been developing the Propulsive Small Expendable Deployer System experiment, called ProSEDS. ProSEDS will test electrodynamic tether propulsion technology. Electrodynamic tethers are long, thin wires that collect electrical current when passing through a magnetic field. The tether works as a thruster as a magnetic field exerts a force on a current-carrying wire. Since electrodynamic tethers require no propellant, they could substantially reduce the weight of the spacecraft and provide a cost-effective method of reboosting spacecraft. The initial flight of ProSEDS is scheduled to fly aboard an Air Force Delta II rocket in the summer of 2002. In orbit, ProSEDS will deploy from a Delta II second stage. It will be a 3.1-mile (5 kilometer) long, ultrathin base-wire tether cornected with a 6.2-mile (10 kilometer) long non-conducting tether. This photograph shows Less Johnson, a scientist at MSFC, inspecting the nonconducting part of a tether as it exits a deployer similar to the one to be used in the ProSEDS experiment. The ProSEDS experiment is managed by the Space Transportation Directorate at MSFC.
Analytical investigation of the dynamics of tethered constellations in earth orbit
NASA Technical Reports Server (NTRS)
Lorenzini, Enrico C.; Gullahorn, Gordon E.; Estes, Robert D.
1988-01-01
This Quarterly Report on Tethering in Earth Orbit deals with three topics: (1) Investigation of the propagation of longitudinal and transverse waves along the upper tether. Specifically, the upper tether is modeled as three massive platforms connected by two perfectly elastic continua (tether segments). The tether attachment point to the station is assumed to vibrate both longitudinally and transversely at a given frequency. Longitudinal and transverse waves propagate along the tethers affecting the acceleration levels at the elevator and at the upper platform. The displacement and acceleration frequency-response functions at the elevator and at the upper platform are computed for both longitudinal and transverse waves. An analysis to optimize the damping time of the longitudinal dampers is also carried out in order to select optimal parameters. The analytical evaluation of the performance of tuned vs. detuned longitudinal dampers is also part of this analysis. (2) The use of the Shuttle primary Reaction Control System (RCS) thrusters for blowing away a recoiling broken tether is discussed. A microcomputer system was set up to support this operation. (3) Most of the effort in the tether plasma physics study was devoted to software development. A particle simulation code has been integrated into the Macintosh II computer system and will be utilized for studying the physics of hollow cathodes.
Grgurevic, Ivica; Bokun, Tomislav; Salkic, Nermin N; Brkljacic, Boris; Vukelić-Markovic, Mirjana; Stoos-Veic, Tajana; Aralica, Gorana; Rakic, Mislav; Filipec-Kanizaj, Tajana; Berzigotti, Annalisa
2018-06-01
To analyse elastographic characteristics of focal liver lesions (FLL)s and diagnostic performance of real-time two-dimensional shear-wave elastography (RT-2D-SWE) in order to differentiate benign and malignant FLLs. Consecutive patients diagnosed with FLL by abdominal ultrasound (US) underwent RT-2D-SWE of FLL and non-infiltrated liver by intercostal approach over the right liver lobe. The nature of FLL was determined by diagnostic work-up, including at least one contrast-enhanced imaging modality (MDCT/MRI), check-up of target organs when metastatic disease was suspected and FLL biopsy in inconclusive cases. We analysed 196 patients (median age 60 [range 50-68], 50.5% males) with 259 FLLs (57 hepatocellular carcinomas, 17 cholangiocarcinomas, 94 metastases, 71 haemangiomas, 20 focal nodular hyperplasia) of which 70 (27%) were in cirrhotic liver. Malignant lesions were stiffer (P < .001) with higher variability in intralesional stiffness (P = .001). The best performing cut-off of lesion stiffness was 22.3 kPa (sensitivity 83%; specificity 86%; positive predictive value [PPV] 91.5%; negative predictive value [NPV] 73%) for malignancy. Lesion stiffness <14 kPa had NPV of 96%, while values >32.5 kPa had PPV of 96% for malignancy. Lesion stiffness, lesion/liver stiffness ratio and lesion stiffness variability significantly predicted malignancy in stepwise logistic regression (P < .05), and were used to construct a new Liver Elastography Malignancy Prediction (LEMP) score with accuracy of 96.1% in validation cohort (online calculator available at http://bit.do/lemps). The comprehensive approach demonstrated in this study enables correct differentiation of benign and malignant FLL in 96% of patients by using RT-2D-SWE. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Lee, Jong-Won; Allen, D. H.; Harris, C. E.
1989-01-01
A mathematical model utilizing the internal state variable concept is proposed for predicting the upper bound of the reduced axial stiffnesses in cross-ply laminates with matrix cracks. The axial crack opening displacement is explicitly expressed in terms of the observable axial strain and the undamaged material properties. A crack parameter representing the effect of matrix cracks on the observable axial Young's modulus is calculated for glass/epoxy and graphite/epoxy material systems. The results show that the matrix crack opening displacement and the effective Young's modulus depend not on the crack length, but on its ratio to the crack spacing.
Introducing a new semi-active engine mount using force controlled variable stiffness
NASA Astrophysics Data System (ADS)
Azadi, Mojtaba; Behzadipour, Saeed; Faulkner, Gary
2013-05-01
This work introduces a new concept in designing semi-active engine mounts. Engine mounts are under continuous development to provide better and more cost-effective engine vibration control. Passive engine mounts do not provide satisfactory solution. Available semi-active and active mounts provide better solutions but they are more complex and expensive. The variable stiffness engine mount (VSEM) is a semi-active engine mount with a simple ON-OFF control strategy. However, unlike available semi-active engine mounts that work based on damping change, the VSEM works based on the static stiffness change by using a new fast response force controlled variable spring. The VSEM is an improved version of the vibration mount introduced by the authors in their previous work. The results showed significant performance improvements over a passive rubber mount. The VSEM also provides better vibration control than a hydromount at idle speed. Low hysteresis and the ability to be modelled by a linear model in low-frequency are the advantages of the VSEM over the vibration isolator introduced earlier and available hydromounts. These specifications facilitate the use of VSEM in the automotive industry, however, further evaluation and developments are needed for this purpose.
Controlling Two-dimensional Tethered Vesicle Motion Using an Electric Field
Yoshina-Ishii, Chiaki; Boxer, Steven G.
2008-01-01
We recently introduced methods to tether phospholipid vesicles or proteoliposomes onto a fluid supported lipid bilayer using DNA hybridization. These intact tethered vesicles diffuse in two dimensions parallel to the supporting membrane surface. In this paper, we report the dynamic response of individual tethered vesicles to an electric field applied parallel to the bilayer surface. Vesicles respond to the field by moving in the direction of electro-osmotic flow, and this can be used to reversibly concentrate tethered vesicles against a barrier. By adding increasing amounts of negatively charged phosphatidylserine to the supporting bilayer to increase electro-osmosis, the electrophoretic mobility of the tethered vesicles can be increased. The electro-osmotic contribution can be modeled well by a sphere connected to a cylindrical anchor in a viscous membrane with charged head groups. The electrophoretic force on the negatively charged tethered vesicles opposes the electro-osmotic force. By increasing the amount of negative charge on the tethered vesicle, drift in the direction of electro-osmotic flow can be slowed; at high negative charge on the tethered vesicle, motion can be forced in the direction of electrophoresis. The balance between these forces can be visualized on a patterned supporting bilayer containing negatively charged lipids which themselves reorganize in an externally applied electric field to create a gradient of charge within a corralled region. The charge gradient at the surface creates a gradient of electro-osmotic flow, and vesicles carrying similar amounts of negative charge can be focused to a region perpendicular to the applied field where electrophoresis is balanced by electro-osmosis, away from the corral boundary. Electric fields are effective tools to direct tethered vesicles, concentrate them and to measure the tethered vesicle’s electrostatic properties. PMID:16489833
Command Generation and Control of Momentum Exchange Electrodynamic Reboost Tethered Satellite
NASA Technical Reports Server (NTRS)
Robertson, Michael J.
2005-01-01
The research completed for this NASA Graduate Student Research Program Fellowship sought to enhance the current state-of-the-art dynamic models and control laws for Momentum Exchange Electrodynamic Reboost satellite systems by utilizing command generation, specifically Input Shaping. The precise control of tethered spacecraft with flexible appendages is extremely difficult. The complexity is magnified many times when the satellite must interact with other satellites as in a momentum exchange via a tether. The Momentum Exchange Electronic Reboost Tether (MXER) concept encapsulates all of these challenging tasks [l]. Input Shaping is a command generation technique that allows flexible spacecraft to move without inducing residual vibration [2], limit transient deflection [3] and utilize fuel-efficient actuation [4]. Input shaping is implemented by convolving a sequence of impulses, known as the input shaper, with a desired system command to produce a shaped input that is then used to drive the system. This process is demonstrated in Figure 1. The shaped command is then use to drive the system without residual vibration while meeting many other performance specifications. The completed work developed tether control algorithms for retrieval. A simple model of the tether response has been developed and command shaping was implemented to minimize unwanted dynamics. A model of a flexible electrodynamic tether has been developed to investigate the tether s response during reboost. Command shaping techniques have been developed to eliminate the tether oscillations and reduce the tether s deflection to pre-specified levels during reboost. Additionally, a model for the spin-up of a tethered system was developed. This model was used in determining the parameters for optimization the resulting angular velocity.
Investigation of dynamic noise affecting geodynamics information in a tethered subsatellite
NASA Technical Reports Server (NTRS)
Gullahorn, G. E.
1985-01-01
Work performed as part of an investigation of noise affecting instrumentation in a tethered subsatellite, was studied. The following specific topics were addressed during the reporting period: a method for stabilizing the subsatellite against the rotational effects of atmospheric perturbation was developed; a variety of analytic studies of tether dynamics aimed at elucidating dynamic noise processes were performed; a novel mechanism for coupling longitudinal and latitudinal oscillations of the tether was discovered, and random vibration analysis for modeling the tethered subsatellite under atmospheric perturbation were studied.
Effects of tether attachments on the Shuttle/Tethered Satellite System dynamics
NASA Technical Reports Server (NTRS)
Gresham, L. L.; Rupp, C. C.
1979-01-01
The dynamics of the Shuttle Tethered Satellite System are influenced by attaching the tether at some point other than the center-of-masses of the Shuttle and the subsatellite. At the Shuttle, the tether attachment is made at the end of a boom deployed out of the payload bay. This attachment noticeably affects retrieval dynamics of the satellite pendulous motion. At the satellite, the tether attachment is assumed to be made on the circumference of the satellite. This attachment greatly affects the attitude motion of the satellite about its own center-of-mass. Computer simulation results are presented showing the effects of the Shuttle boom in a three-dimensional model and the effects of satellite attachment in a planar model.
Space Station tethered elevator system
NASA Technical Reports Server (NTRS)
Haddock, Michael H.; Anderson, Loren A.; Hosterman, K.; Decresie, E.; Miranda, P.; Hamilton, R.
1989-01-01
The optimized conceptual engineering design of a space station tethered elevator is presented. The tethered elevator is an unmanned, mobile structure which operates on a ten-kilometer tether spanning the distance between Space Station Freedom and a platform. Its capabilities include providing access to residual gravity levels, remote servicing, and transportation to any point along a tether. The report discusses the potential uses, parameters, and evolution of the spacecraft design. Emphasis is placed on the elevator's structural configuration and three major subsystem designs. First, the design of elevator robotics used to aid in elevator operations and tethered experimentation is presented. Second, the design of drive mechanisms used to propel the vehicle is discussed. Third, the design of an onboard self-sufficient power generation and transmission system is addressed.
Atmospheric verification mission for the TSS/STARFAC tethered satellite
NASA Technical Reports Server (NTRS)
Wood, George M., Jr.; Stuart, Thomas D.; Crouch, Donald S.; Deloach, Richard; Brown, Kenneth G.
1991-01-01
Two types of a tethered satellite system (TSS) - a basic 1.8-m-diameter spherical spacecraft and the Shuttle Tethered Aerothermodynamic Research Facility (STARFAC) are considered. Issues related to the deployment and retrieval of a large satellite with exceedingly long tethers are discussed, and the objectives of an Atmospheric Verification Mission (ATM) are outlined. Focus is concentrated on the ATM satellite which will fly after TSS-1 and before the fully instrumented and costlier TSS-2. The differences between the AVM and TSS-2, including the configuration of the aerodynamic stabilizers, instrumentation, and the materials of construction are outlined. The basic Kevlar tether defined for the TSS-2 is being considered for use with the AVM, however, a complex tether is under consideration as well.
Development of a stiffness-angle law for simplifying the measurement of human hair stiffness.
Jung, I K; Park, S C; Lee, Y R; Bin, S A; Hong, Y D; Eun, D; Lee, J H; Roh, Y S; Kim, B M
2018-04-01
This research examines the benefits of caffeine absorption on hair stiffness. To test hair stiffness, we have developed an evaluation method that is not only accurate, but also inexpensive. Our evaluation method for measuring hair stiffness culminated in a model, called the Stiffness-Angle Law, which describes the elastic properties of hair and can be widely applied to the development of hair care products. Small molecules (≤500 g mol -1 ) such as caffeine can be absorbed into hair. A common shampoo containing 4% caffeine was formulated and applied to hair 10 times, after which the hair stiffness was measured. The caffeine absorption of the treated hair was observed using Fourier-transform infrared spectroscopy (FTIR) with a focal plane array (FPA) detector. Our evaluation method for measuring hair stiffness consists of a regular camera and a support for single strands of hair. After attaching the hair to the support, the bending angle of the hair was observed with a camera and measured. Then, the hair strand was weighed. The stiffness of the hair was calculated based on our proposed Stiffness-Angle Law using three variables: angle, weight of hair and the distance the hair was pulled across the support. The caffeine absorption was confirmed by FTIR analysis. The concentration of amide bond in the hair certainly increased due to caffeine absorption. After caffeine was absorbed into the hair, the bending angle and weight of the hair changed. Applying these measured changes to the Stiffness-Angle Law, it was confirmed that the hair stiffness increased by 13.2% due to caffeine absorption. The theoretical results using the Stiffness-Angle Law agree with the visual examinations of hair exposed to caffeine and also the known results of hair stiffness from a previous report. Our evaluation method combined with our proposed Stiffness-Angle Law effectively provides an accurate and inexpensive evaluation technique for measuring bending stiffness of human hair. © 2018 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Dures, Emma; Kirwan, John; Pollock, Jon; Baker, Gill; Edmunds, Avis; Hewlett, Sarah
2015-01-01
Objective. Stiffness is internationally recognized as an important indicator of inflammatory activity in RA but is poorly understood and difficult to measure. The aim of this study was to explore the experience of stiffness from the patient perspective. Methods. Semi-structured interviews conducted with 16 RA patients were analysed independently by researchers and pat.ient partners using inductive thematic analysis. Results. Six themes were identified. Part of having RA identified stiffness as a normal consequence of RA, perceived as associated with disease-related aspects such as fluctuating disease activity, other RA symptoms and disease duration. Local and widespread highlighted stiffness occurring not only in joints, but also over the whole body, being more widespread during the morning or flare. Linked to behaviour and environment illustrated factors that influence stiffness, including movement, medications and weather. Highly variable captured the fluctuating nature of stiffness within and between patients and in relation to temporality, duration and intensity. Impacts on daily life emphasized the effect of stiffness on a range of domains, including physical function, quality of life, psychological well-being, activities of daily living and participation in work and leisure activities. Requires self-management detailed self-management strategies targeting both the symptom and its consequences. Conclusion. Patients’ experiences of stiffness were varied, complex and not exclusive to the morning period. Importantly, stiffness was reported in terms of impact rather than the traditional measurement concepts of severity or duration. Based on these findings, further research is needed to develop a patient-centred measure that adequately reflects inflammatory activity. PMID:25231178
Chen, Jianfeng; Liu, Guangli; Ma, Chengfu; Zhao, Gang; Du, Wenqiang; Zhu, Wulin; Chu, Jiaru
2017-06-01
Recently, interactions between one-dimensional structural stiffness of physical micro environments and cell biological process have been widely studied. However in previous studies, the influence of structural stiffness on biological process was coupled with the influence of micro fiber curvature. Therefore decoupling the influences of fiber curvature and structural stiffness on cell biological process is of prime importance. In this study, we proposed a novel cell culture substrate comprised of silicon nitride bridges whose structure stiffness can be regulated by altering the axial residual stress without changing material and geometry properties. Both theoretical calculations and finite element simulations were performed to study the influence of residual stress on structure stiffness of bridges. Then multi-positions AFM bending tests were implemented to measure local stiffness of a single micro bridge so as to verify our predictions. NIH/3T3 mouse fibroblast cells were cultured on our substrates to examine the feasibility of the substrate application for investigating cellular response to microenvironment with variable stiffness. The results showed that cells on the edge region near bridge ends were more spread, elongated and better aligned along the bridge axial direction than those on the bridge center region. The results suggest that cells can sense and respond to the differences of stiffness and stiffness gradient between the edge and the center region of the bridges, which makes this kind of substrates can be applied in some biomedical fields, such as cell migration and wound healing. Copyright © 2017 Elsevier B.V. All rights reserved.
Oatis, Carol A; Wolff, Edward F; Lockard, Margery A; Michener, Lori A; Robbins, Steven J
2013-03-01
Stiffness is a common complaint in individuals with knee osteoarthritis and is a component of the osteoarthritis diagnosis. Yet the relationship between stiffness and function is poorly understood and methods to quantify stiffness are limited. Using a cross-sectional observational design with 66 subjects with knee osteoarthritis, stiffness and damping coefficients were calculated from a relaxed knee oscillation procedure. Gait parameters were measured using an electronic walkway. Self-reported pain, stiffness, and function were measured with the Western Ontario and McMaster Osteoarthritis Index. Correlation and Alexander's normalized-t approximation analyses were used to assess associations among the variables. Subset analysis was performed on subjects with and without tibiofemoral joint crepitus. Slight to moderate correlations existed between stiffness and damping coefficients and most gait parameters ((| r |=0.30-0.56; P<.05) and between Western Ontario and McMaster Osteoarthritis Index scores and all gait parameters (| r |=0.35-0.62; P<.05). The damping coefficient was only slightly associated with patient-rated Western Ontario and McMaster Osteoarthritis Index stiffness subscale scores. Subset analysis revealed significant correlations that differed between those with and without crepitus. These findings suggest that laboratory measured stiffness and damping coefficients, Western Ontario and McMaster Osteoarthritis Index scores and gait-related measurements assess different aspects related to movement in individuals with knee osteoarthritis. Stiffness and damping coefficients may offer the ability to explain gait changes in the knee that are independent of a person's perceptions particularly in the early stages of the disease. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kovaleski, John E; Heitman, Robert J; Gurchiek, Larry R; Hollis, J M; Liu, Wei; Pearsall, Albert W
2014-01-01
The mechanical property of stiffness may be important to investigating how lateral ankle ligament injury affects the behavior of the viscoelastic properties of the ankle complex. A better understanding of injury effects on tissue elastic characteristics in relation to joint laxity could be obtained from cadaveric study. To biomechanically determine the laxity and stiffness characteristics of the cadaver ankle complex before and after simulated injury to the anterior talofibular ligament (ATFL) and calcaneofibular ligament (CFL) during anterior drawer and inversion loading. Cross-sectional study. University research laboratory. Seven fresh-frozen cadaver ankle specimens. All ankles underwent loading before and after simulated lateral ankle injury using an ankle arthrometer. The dependent variables were anterior displacement, anterior end-range stiffness, inversion rotation, and inversion end-range stiffness. Isolated ATFL and combined ATFL and CFL sectioning resulted in increased anterior displacement but not end-range stiffness when compared with the intact ankle. With inversion loading, combined ATFL and CFL sectioning resulted in increased range of motion and decreased end-range stiffness when compared with the intact and ATFL-sectioned ankles. The absence of change in anterior end-range stiffness between the intact and ligament-deficient ankles indicated bony and other soft tissues functioned to maintain stiffness after pathologic joint displacement, whereas inversion loading of the CFL-deficient ankle after pathologic joint displacement indicated the ankle complex was less stiff when supported only by the secondary joint structures.
Schroeder, Elizabeth C; Rosenberg, Alexander J; Hilgenkamp, Thessa I M; White, Daniel W; Baynard, Tracy; Fernhall, Bo
2017-12-01
To evaluate changes in arterial stiffness with positional change and whether the stiffness changes are due to hydrostatic pressure alone or if physiological changes in vasoconstriction of the conduit arteries play a role in the modulation of arterial stiffness. Thirty participants' (male = 15, 24 ± 4 years) upper bodies were positioned at 0, 45, and 72° angles. Pulse wave velocity (PWV), cardio-ankle vascular index, carotid beta-stiffness index, carotid blood pressure (cBP), and carotid diameters were measured at each position. A gravitational height correction was determined using the vertical fluid column distance (mmHg) between the heart and carotid artery. Carotid beta-stiffness was calibrated using three methods: nonheight corrected cBP of each position, height corrected cBP of each position, and height corrected cBP of the supine position (theoretical model). Low frequency systolic blood pressure variability (LFSAP) was analyzed as a marker of sympathetic activity. PWV and cardio-ankle vascular index increased with position (P < 0.05). Carotid beta-stiffness did not increase if not corrected for hydrostatic pressure. Arterial stiffness indices based on Method 2 were not different from Method 3 (P = 0.65). LFSAP increased in more upright positions (P < 0.05) but diastolic diameter relative to diastolic pressure did not (P > 0.05). Arterial stiffness increases with a more upright body position. Carotid beta-stiffness needs to be calibrated accounting for hydrostatic effects of gravity if measured in a seated position. It is unclear why PWV increased as this increase was independent of blood pressure. No difference between Methods 2 and 3 presumably indicates that the beta-stiffness increases are only pressure dependent, despite the increase in vascular sympathetic modulation.
Proceedings of a Workshop on the Applications of Tethers in Space, Volume 1
NASA Technical Reports Server (NTRS)
1983-01-01
Project overview; tether deployment; satellite system description; tether fundamentals; science applications; electrodynamic interactions; transportation; artificial gravity; and constellations; were described.
Rannelli, Luke Anthony; MacRae, Jennifer M; Mann, Michelle C; Ramesh, Sharanya; Hemmelgarn, Brenda R; Rabi, Doreen; Sola, Darlene Y; Ahmed, Sofia B
2017-04-01
Diabetes confers greater cardiovascular risk to women than to men. Whether insulin-resistance-mediated risk extends to the healthy population is unknown. Measures of insulin resistance (fasting insulin, homeostatic model assessment, hemoglobin A1c, quantitative insulin sensitivity check index, glucose) were determined in 48 (56% female) healthy subjects. Heart rate variability (HRV) was calculated by spectral power analysis and arterial stiffness was determined using noninvasive applanation tonometry. Both were measured at baseline and in response to angiotensin II infusion. In women, there was a non-statistically significant trend towards increasing insulin resistance being associated with an overall unfavourable HRV response and increased arterial stiffness to the stressor, while men demonstrated the opposite response. Significant differences in the associations between insulin resistance and cardiovascular physiological profile exist between healthy women and men. Further studies investigating the sex differences in the pathophysiology of insulin resistance in cardiovascular disease are warranted.
Driven translocation of Polymer through a nanopore: effect of heterogeneous flexibility
NASA Astrophysics Data System (ADS)
Adhikari, Ramesh; Bhattacharya, Aniket
2014-03-01
We have studied translocation of a model bead-spring polymer through a nanopore whose building blocks consist of alternate stiff and flexible segments and variable elastic bond potentials. For the case of uniform spring potential translocation of a symmetric periodic stiff-flexible chain of contour length N and segment length m (mod(N,2m)=0), we find that the end-to-end distance and the mean first passage time (MFPT) have weak dependence on the length m. The characteristic periodic pattern of the waiting time distribution captures the stiff and flexible segments of the chain with stiff segments taking longer time to translocate. But when we vary both the elastic bond energy, and the bending energy, as well as the length of stiff/flexible segments, we discover novel patterns in the waiting time distribution which brings out structural information of the building blocks of the translocating chain. Partially supported by UCF Office of Research and Commercialization & College of Science SEED grant.
Ding, Xiaohan; Ye, Ping; Wang, Xiaona; Cao, Ruihua; Yang, Xu; Xiao, Wenkai; Zhang, Yun; Bai, Yongyi; Wu, Hongmei
2017-03-01
This prospective cohort study aimed at identifying association between uric acid (UA) and peripheral arterial stiffness. A prospective cohort longitudinal study was performed according to an average of 4.8 years' follow-up. The demographic data, anthropometric parameters, peripheral arterial stiffness (carotid-radial pulse-wave velocity, cr-PWV) and biomarker variables including UA were examined at both baseline and follow-up. Pearson's correlations were used to identify the associations between UA and peripheral arterial stiffness. Further logistic regressions were employed to determine the associations between UA and arterial stiffness. At the end of follow-up, 1447 subjects were included in the analyses. At baseline, cr-PWV ( r = 0.200, p < 0.001) was closely associated with UA. Furthermore, the follow-up cr-PWV ( r = 0.145, p < 0.001) was also strongly correlated to baseline UA in Pearson's correlation analysis. Multiple regressions also indicated the association between follow-up cr-PWV ( β = 0.493, p = 0.013) and baseline UA level. Logistic regressions revealed that higher baseline UA level was an independent predictor of arterial stiffness severity assessed by cr-PWV at follow-up cross-section. Peripheral arterial stiffness is closely associated with higher baseline UA level. Furthermore, a higher baseline UA level is an independent risk factor and predictor for peripheral arterial stiffness.
Four dimensional imaging of E. coli nucleoid organization and dynamics in living cells
Fisher, J. K.; Bourniquel, A.; Witz, G.; Weiner, B.; Prentiss, M.; Kleckner, N.
2013-01-01
Visualization of living E. coli nucleoids, defined by HupA-mCherry, reveals a discrete, dynamic helical ellipsoid. Three basic features emerge. (i) Nucleoid density efficiently coalesces into longitudinal bundles, giving a stiff, low DNA density ellipsoid. (ii) This ellipsoid is radially confined within the cell cylinder. Radial confinement gives helical shape and drives and directs global nucleoid dynamics, including sister segregation. (iii) Longitudinal density waves flux back and forth along the nucleoid, with 5–10% of density shifting within 5s, enhancing internal nucleoid mobility. Furthermore, sisters separate end-to-end in sequential discontinuous pulses, each elongating the nucleoid by 5–15%. Pulses occur at 20min intervals, at defined cell cycle times. This progression is mediated by sequential installation and release of programmed tethers, implying cyclic accumulation and relief of intra-nucleoid mechanical stress. These effects could comprise a chromosome-based cell cycle engine. Overall, the presented results suggest a general conceptual framework for bacterial nucleoid morphogenesis and dynamics. PMID:23623305
Viscoelastic propellant effects on Space Shuttle Dynamics
NASA Technical Reports Server (NTRS)
Bugg, F.
1981-01-01
The program of solid propellant research performed in support of the space shuttle dynamics modeling effort is described. Stiffness, damping, and compressibility of the propellant and the effects of many variables on these properties are discussed. The relationship between the propellant and solid rocket booster dynamics during liftoff and boost flight conditions and the effects of booster vibration and propellant stiffness on free free solid rocket booster modes are described. Coupled modes of the shuttle system and the effect of propellant stiffness on the interfaces of the booster and the external tank are described. A finite shell model of the solid rocket booster was developed.
NASA Astrophysics Data System (ADS)
Gurova, E. G.
2016-08-01
During the researches the mathematical description of the traction characteristics of the stiffness compensators of the vibration isolation devices, relatively of the each axis, has been done. Representation of the compensators properties considers the variable load, thereby provide the wide enough spectrum of the action of the suggested vibration isolators. The derived expressions are valid for all three axes of space at the different stiffnesses, i.e. basic basic and two compensating. The research was supported by the scholarships of Russian Federation President for young scientists №184 from 10th of March 2015.
Orbital Winch for High-Strength, Space-Survivable Tethers
NASA Technical Reports Server (NTRS)
Hoyt, Robert; Barnes, Ian; Slostad, Jeffrey; Frank, Scott
2010-01-01
An Orbital Winch mechanism enables high-load, multi-line tethers to be deployed and retracted without rotating the spool on which the tether is wound. To minimize damage to the tether and the wound package during retraction or deployment under load, it can incorporate a Tension Management Module that reduces the infeed tension by a factor of 15 through the use of a powered capstan with guide rollers. This design eliminates the need for rotating high-voltage electrical connections in tether systems that use propellantless electro-dynamic propulsion. It can also eliminate the need for rotating optical connections in applications where the tether contains optical fibers. This winch design was developed to deploy a 15-km-long, 15-kg high-strength Hoytether structure incorporating conductive wires as part of the MXER-1 demonstration mission concept. Two slewing rings that orbit around the tether spool, combined with translation of one of the slewing rings back and forth along the spool axis to traverse the wind point, enables the winch to wind the tether. Variations of the traverse motion of the slewing ring can accomplish level winds and conical pirn winds. By removing the non-traversing slewing ring, and adding an actuated guide arm, the winch can manage rapid, low-drag deployment of a tether off the end of a pirn-wound spool, followed by controlled retraction and rewinding, in a manner very similar to a spin-casting reel. The winch requires at least two motor driver controller units to coordinate the action of two stepper motors to accomplish tether deployment or retraction.
Attitude control analysis of tethered de-orbiting
NASA Astrophysics Data System (ADS)
Peters, T. V.; Briz Valero, José Francisco; Escorial Olmos, Diego; Lappas, V.; Jakowski, P.; Gray, I.; Tsourdos, A.; Schaub, H.; Biesbroek, R.
2018-05-01
The increase of satellites and rocket upper stages in low earth orbit (LEO) has also increased substantially the danger of collisions in space. Studies have shown that the problem will continue to grow unless a number of debris are removed every year. A typical active debris removal (ADR) mission scenario includes launching an active spacecraft (chaser) which will rendezvous with the inactive target (debris), capture the debris and eventually deorbit both satellites. Many concepts for the capture of the debris while keeping a connection via a tether, between the target and chaser have been investigated, including harpoons, nets, grapples and robotic arms. The paper provides an analysis on the attitude control behaviour for a tethered de-orbiting mission based on the ESA e.Deorbit reference mission, where Envisat is the debris target to be captured by a chaser using a net which is connected to the chaser with a tether. The paper provides novel insight on the feasibility of tethered de-orbiting for the various mission phases such as stabilization after capture, de-orbit burn (plus stabilization), stabilization during atmospheric pass, highlighting the importance of various critical mission parameters such as the tether material. It is shown that the selection of the appropriate tether material while using simple controllers can reduce the effort needed for tethered deorbiting and can safely control the attitude of the debris/chaser connected with a tether, without the danger of a collision.
Flowing Plasma Interaction with an Electric Sail Tether Element
NASA Technical Reports Server (NTRS)
Schneider, Todd; Vaughn, Jason; Wright, Kenneth; Anderson, Allen; Stone, Nobie
2017-01-01
Harnessing the power of the solar wind, an Electric Sail, or E-sail, is a relatively new concept that promises to deliver high speed propellant-less propulsion. The electric sail is an invention made in 2006 at the Kumpula Space Centre in Finland by Pekka Janhunen [Janhunen and Sandroos, 2007]. At its core, an electric sail utilizes multiple positively biased tethers which exchange momentum with solar wind protons via the repelling electric field established around each tether, in other words, by reflecting the solar wind protons. Recognizing the solar wind is a plasma, the effective repelling area of each tether is increased significantly by the formation a plasma sheath around each tether. Fig. 1 shows schematically a spacecraft employing an electric sail. The positive voltage bias (greater than10kV) applied to each tether naturally results in electron collection. Therefore, the electric sail concept necessarily includes an electron source (electron gun) to return collected electrons to space and maintain the positive bias of the tether system.
Tethered Satellite System Project Overview
NASA Technical Reports Server (NTRS)
Laue, J. H.
1985-01-01
The Skyhook concept is reviewed and the use of a tethered satellite system (TSS) to enable scientific investigations from the shuttle using a closed loop control system is examined. The tethered satellite system has capabilities for deployment toward or away from Earth, for multiple round trip missions, and for deployment at distances up to 100 KN from the orbiter. The deployer, which consists of an entendable boom, a reel for the tether, and the tether itself, permits deployment and retrieval at a safe distance, allows alignment of the force vector of the tether through the center of gravity of the shuttle, and gives some initial gravity gradient separation to aid in deployment and ultimate retrieval of the tethered satellite. Charts show TSS activities in terms of systems studies, key guidelines, Italian and U.S. responsibilities, user activities, and major science and applications accommodation features. Scientific objectives for TSS-1 and TSS-2 verification missions and the current status of the project are also given.
SPHERES tethered formation flight testbed: application to NASA's SPECS mission
NASA Astrophysics Data System (ADS)
Chung, Soon-Jo; Kong, Edmund M.; Miller, David W.
2005-08-01
This paper elaborates on theory and experiment of the formation flight control for the future space-borne tethered interferometers. The nonlinear equations of multi-vehicle tethered spacecraft system are derived by Lagrange equations and decoupling method. The preliminary analysis predicts unstable dynamics depending on the direction of the tether motor. The controllability analysis indicates that both array resizing and spin-up are fully controllable only by the reaction wheels and the tether motor, thereby eliminating the need for thrusters. Linear and nonlinear decentralized control techniques have been implemented into the tethered SPHERES testbed, and tested at the NASA MSFC's flat floor facility using two and three SPHERES configurations. The nonlinear control using feedback linearization technique performed successfully in both two SPHERES in-line configuration and three triangular configuration while varying the tether length. The relative metrology system, using the ultra sound metrology system and the inertial sensors as well as the decentralized nonlinear estimator, is developed to provide necessary state information.
Dynamic analysis of the tether transportation system using absolute nodal coordinate formulation
NASA Astrophysics Data System (ADS)
Sun, Xin; Xu, Ming; Zhong, Rui
2017-10-01
Long space tethers are becoming a rising concern as an alternate way for transportation in space. It benefits from fuel economizing. This paper focuses on the dynamics of the tether transportation system, which consists of two end satellites connected by a flexible tether, and a movable vehicle driven by the actuator carried by itself. The Absolute Nodal Coordinate Formulation is applied to the establishment of the equation of motion, so that the influence caused by the distributed mass and elasticity of the tether is introduced. Moreover, an approximated method for accelerating the calculation of the generalized gravitational forces on the tether is proposed by substituting the volume integral every step into summation of finite terms. Afterwards, dynamic evolutions of such a system in different configurations are illustrated using numerical simulations. The deflection of the tether and the trajectory of the crawler during the transportation is investigated. Finally, the effect on the orbit of the system due to the crawler is revealed.
Meyer, Timothy E; Karamanoglu, Mustafa; Ehsani, Ali A; Kovács, Sándor J
2004-11-01
Impaired exercise tolerance, determined by peak oxygen consumption (VO2 peak), is predictive of mortality and the necessity for cardiac transplantation in patients with chronic heart failure (HF). However, the role of left ventricular (LV) diastolic function at rest, reflected by chamber stiffness assessed echocardiographically, as a determinant of exercise tolerance is unknown. Increased LV chamber stiffness and limitation of VO2 peak are known correlates of HF. Yet, the relationship between chamber stiffness and VO2 peak in subjects with HF has not been fully determined. Forty-one patients with HF New York Heart Association [(NYHA) class 2.4 +/- 0.8, mean +/- SD] had echocardiographic studies and VO2 peak measurements. Transmitral Doppler E waves were analyzed using a previously validated method to determine k, the LV chamber stiffness parameter. Multiple linear regression analysis of VO(2 peak) variance indicated that LV chamber stiffness k (r2 = 0.55) and NYHA classification (r2 = 0.43) were its best independent predictors and when taken together account for 59% of the variability in VO2 peak. We conclude that diastolic function at rest, as manifested by chamber stiffness, is a major determinant of maximal exercise capacity in HF.
Shoe midsole longitudinal bending stiffness and running economy, joint energy, and EMG.
Roy, Jean-Pierre R; Stefanyshyn, Darren J
2006-03-01
It has been shown that mechanical energy is dissipated at the metatarsophalangeal (MTP) joint during running and jumping. Furthermore, increasing the longitudinal bending stiffness of the midsole significantly reduced the energy dissipated at the MTP joint and increased jump performance. It was hypothesized that increasing midsole longitudinal bending stiffness would also lead to improvements in running economy. This study investigated the influence of midsole longitudinal bending stiffness on running economy (performance variable) and evaluated the local effects on joint energetics and muscular activity. Carbon fiber plates were inserted into running shoe midsoles and running economy, joint energy, and electromyographic (EMG) data were collected on 13 subjects. Approximately a 1% metabolic energy savings was observed when subjects ran in a stiff midsole relative to the control midsole. Subjects with a greater body mass had a greater decrease in oxygen consumption rates in the stiff midsole relative to the control midsole condition. The stiffer midsoles showed no significant differences in energy absorption at the MTP joint compared with the control shoe. Finally, no significant changes were observed in muscular activation. Increasing midsole longitudinal bending stiffness led to improvements in running economy, yet the underlying mechanisms that can be attributed to this improvement are still not fully understood.
The investigation of tethered satellite system dynamics
NASA Technical Reports Server (NTRS)
Lorenzini, E.
1985-01-01
Progress in tethered satellite system dynamics research is reported. A retrieval rate control law with no angular feedback to investigate the system's dynamic response was studied. The initial conditions for the computer code which simulates the satellite's rotational dynamics were extended to a generic orbit. The model of the satellite thrusters was modified to simulate a pulsed thrust, by making the SKYHOOK integrator suitable for dealing with delta functions without loosing computational efficiency. Tether breaks were simulated with the high resolution computer code SLACK3. Shuttle's maneuvers were tested. The electric potential around a severed conductive tether with insulator, in the case of a tether breakage at 20 km from the Shuttle, was computed. The electrodynamic hazards due to the breakage of the TSS electrodynamic tether in a plasma are evaluated.
NASA Technical Reports Server (NTRS)
Borthwick, Dawn E.; Cronch, Daniel F.; Nixon, Glen R.
1991-01-01
The goal of this project is to design a reusable safety device for a waist tether which will absorb the kinetic energy of an astronaut drifting away from the Space Station. The safety device must limit the tension of the tether line in order to prevent damage to the astronaut's space suit or to the structure of the spacecraft. The tether currently used on shuttle missions must be replaced after the safety feature has been developed. A reusable tether for the Space Station would eliminate the need for replacement tethers, conserving space and mass. This report presents background information, scope and limitations, methods of research and development, alternative designs, a final design solution and its evaluation, and recommendations for further work.
The radiation impedance of an electrodynamic tether with end connectors
NASA Technical Reports Server (NTRS)
Hastings, Daniel E.; Wang, J.
1987-01-01
Electrodynamic tethers are wires deployed across the earth's geomagnetic field through which a current is flowing. The radiation impedance of a tether with end connectors carrying an ac current is computed from classical antenna theory. This simulates the use of a tether on a space structure. It is shown that the current flow pattern at the tether connector is critical to determining the overall radiation impedance. If the tether makes direct electrical contact with the ionosphere then radiation impedances of the order of several thousand Ohms can be expected. If the only electrical contact is through the end connectors then the impedance is only a few Ohms for a dc current rising to several tens of Ohms for an ac current with frequencies in the whistler range.
Method and apparatus for advancing tethers
Zollinger, W. Thor
1998-01-01
A tether puller for advancing a tether through a channel may include a bellows assembly having a leading end fixedly attached to the tether at a first position and a trailing end fixedly attached to the tether at a second position so that the leading and trailing ends of the bellows assembly are located a substantially fixed distance apart. The bellows assembly includes a plurality of independently inflatable elements each of which may be separately inflated to an extended position and deflated to a retracted position. Each of the independently inflatable elements expands radially and axially upon inflation. An inflation system connected to the independently inflatable elements inflates and deflates selected ones of the independently inflatable elements to cause the bellows assembly to apply a tractive force to the tether and advance it in the channel.
Investigation of dynamic noise affecting geodynamics information in a tethered subsatellite
NASA Technical Reports Server (NTRS)
Gullahorn, G. E.
1984-01-01
The effects of a tethered satellite system's internal dynamics on the subsatellite were calculated including both overall motions (libration and attitude oscillations) and internal tether oscillations. The SKYHOOK tether simulation program was modified to operate with atmospheric density variations and to output quantities of interest. Techniques and software for analyzing the results were developed including noise spectral analysis. A program was begun for computing a stable configuration of a tether system subject to air drag. These configurations will be of use as initial conditions for SKYHOOK and, through linearized analysis, directly for stability and dynamical studies. A case study in which the subsatellite traverses an atmospheric density enhancement confirmed some theoretical calculations, and pointed out some aspects of the interaction with the tether system dynamics.
NASA Technical Reports Server (NTRS)
Majda, G.
1985-01-01
A large set of variable coefficient linear systems of ordinary differential equations which possess two different time scales, a slow one and a fast one is considered. A small parameter epsilon characterizes the stiffness of these systems. A system of o.d.e.s. in this set is approximated by a general class of multistep discretizations which includes both one-leg and linear multistep methods. Sufficient conditions are determined under which each solution of a multistep method is uniformly bounded, with a bound which is independent of the stiffness of the system of o.d.e.s., when the step size resolves the slow time scale, but not the fast one. This property is called stability with large step sizes. The theory presented lets one compare properties of one-leg methods and linear multistep methods when they approximate variable coefficient systems of stiff o.d.e.s. In particular, it is shown that one-leg methods have better stability properties with large step sizes than their linear multistep counter parts. The theory also allows one to relate the concept of D-stability to the usual notions of stability and stability domains and to the propagation of errors for multistep methods which use large step sizes.
Terrain stiffness and ankle biomechanics during simulated half-squat parachute landing.
Niu, Wenxin; Fan, Yubo
2013-12-01
A hard surface is potentially one of the risk factors for ankle injuries during parachute landing, but this has never been experimentally validated. This study was designed to evaluate the effects of terrain stiffness on ankle biomechanics during half-squat parachute landing (HSPL). Eight male and eight female healthy participants landed on three surfaces with standard HSPL technique. The three surfaces were cushioned mats with different thicknesses (0 mm, 4 mm, and 8 mm). The effects of terrain hardness and gender and their interaction with ground reaction forces, ankle kinematics, and electromyograms of selected lower-extremity muscles were statistically analyzed with multivariate analysis of variance. The effects of terrain stiffness and the interaction between factors on all variables were not statistically significant. The effects of gender were not statistically significant on most variables. The peak angular velocity of the ankle dorsiflexion was significantly lower in men (mean 1345 degree x s(-1)) than in women (mean 1965 degree x s(-1)). A spongy surface even eliminated the differences between men compared to women in the activity of their tibialis anterior during simulated HSPL. Terrain stiffness, in the ranges tested, did not appear to influence ankle biomechanics among individuals performing HSPL. Additional studies are required to know whether this finding is applicable to realistic parachuting.
Tethering sockets and wrenches
NASA Technical Reports Server (NTRS)
Johnson, E. P.
1990-01-01
The tethering of sockets and wrenches was accomplished to improve the safety of working over motor segments. To accomplish the tethering of the sockets to the ratchets, a special design was implemented in which a groove was machined into each socket. Each socket was then fitted with a snap ring that can spin around the machined groove. The snap ring is tethered to the handle of the ratchet. All open end wrenches are also tethered to the ratchet or to the operator, depending upon the type. Tests were run to ensure that the modified tools meet torque requirements. The design was subsequently approved by Space Safety.
Selected tether applications in space: Phase 2
NASA Technical Reports Server (NTRS)
Thorsen, M. H.; Lippy, L. J.
1985-01-01
System characteristics and design requirements are assessed for tether deployment. Criteria are established for comparing alternate concepts for: (1) deployment of 220 klb space shuttle from the space station; (2) tether assisted launch of a 20,000 lb payload to geosynchronous orbit; (3) placement of the 20,000 lb AXAF into 320 nmi orbit via orbiter; (4) retrieval of 20,000 lb AXAF from 205 nmi circular orbit for maintenance and reboost to 320 nmi; and (5) tethered OMV rendezvous and retrieval of OTV returning from a geosynchronous mission. Tether deployment systems and technical issues are discussed.
Lyapunov Orbits in the Jupiter System Using Electrodynamic Tethers
NASA Technical Reports Server (NTRS)
Bokelmann, Kevin; Russell, Ryan P.; Lantoine, Gregory
2013-01-01
Various researchers have proposed the use of electrodynamic tethers for power generation and capture from interplanetary transfers. The effect of tether forces on periodic orbits in Jupiter-satellite systems are investigated. A perturbation force is added to the restricted three-body problem model and a series of simplifications allows development of a conservative system that retains the Jacobi integral. Expressions are developed to find modified locations of equilibrium positions. Modified families of Lyapunov orbits are generated as functions of tether size and Jacobi integral. Zero velocity curves and stability analyses are used to evaluate the dynamical properties of tether-modified orbits.
Hauschild, Hans W; Humm, John R; Pintar, Frank A; Yoganandan, Narayan; Kaufman, Bruce; Kim, Jinyong; Maltese, Matthew R; Arbogast, Kristy B
2016-09-01
Testing was conducted to quantify the kinematics, potential for head impact, and influence on head injury metrics for a center-seated Q3s in a forward-facing child restraint system (FFCRS) in oblique impacts. The influences of a tether and intruded door on these measures were explored. Nine lateral oblique sled tests were conducted on a convertible forward-facing child restraint seat (FFCRS). The FFCRSs were secured to a bench seat from a popular production small SUV at the center seating position utilizing the lower anchor and tether for children (LATCH). The vehicle seat was fixed on the sled carriage at 60° and 80° from full frontal (30° and 10° forward rotation from pure lateral) providing an oblique lateral acceleration to the Q3s and FFCRS. A structure simulating an intruded door was mounted to the near (left) side of vehicle seat. The sled input acceleration was the proposed FMVSS 213 lateral pulse scaled to a 35 km/h delta-V. Tests were conducted with and without the tether attached to the FFCRS. Results indicate the influence of the tether on kinematics and injury measures in oblique side impact crashes for a center- or far-side-seated child occupant. All tests without a tether resulted in head contact with the simulated door, and 2 tests at the less oblique angle (80°) with a tether also resulted in head contact. No head-to-door contact was observed in 2 tests utilizing a tether. High-speed video analysis showed that the head moved beyond the CRS head side wings and made contact with the simulated intruded door. Head injury criterion (HIC) 15 median values were 589 without the tether vs. 332 with the tether attached. Tests utilizing a tether had less lateral head excursion than tests without a tether (median 400 vs. 442 mm). These tests demonstrate the important role of the tether in controlling head excursion for center- or far-side-seated child occupants in oblique side impact crashes and limiting the head injury potential with an intruded door. The tether may not influence the kinematics of a near-side-seated occupant as strongly where the vehicle door or side structure interacts with the CRS and influences its motion. The results indicate that there may be an opportunity to improve child head kinematics and head protection in oblique side impacts through different CRS attachment methods and/or alternative vehicle side structure protection or padding.
NASA Technical Reports Server (NTRS)
Baker, W. P.; Dunkin, J. A.; Galaboff, Z. J.; Johnston, K. D.; Kissel, R. R.; Rheinfurth, M. H.; Siebel, M. P. L.
1976-01-01
The results are presented of studies performed relating to the feasibility of deploying a subsatellite from the shuttle by means of a tether. The dynamics, the control laws, the aerodynamics, the heating, and some communication considerations of the tethered subsatellite system are considered. Nothing was found that prohibits the use of a subsatellite joined to the shuttle by a long (100 km) tether. More detailed studies directed at specific applications are recommended.
Tethers in space handbook, second edition
NASA Technical Reports Server (NTRS)
Penzo, Paul A. (Editor); Ammann, Paul W. (Editor)
1989-01-01
The Tethers in Space Handbook, Second Edition represents an update to the initial volume issued in September 1986. As originally intended, this handbook is designed to serve as a reference manual for policy makers, program managers, educators, engineers, and scientists alike. It contains information for the uninitiated, providing insight into the fundamental behavior of tethers in space. For those familiar with space tethers, it includes a summary of past and ongoing studies and programs, a complete bibliography of tether publications, and names, addresses, and phone numbers of workers in the field. Perhaps its most valuable asset is the brief description of nearly 50 tether applications which have been proposed and analyzed over the past 10 years. The great variety of these applications, from energy generation to boosting satellites to gravity wave detection is an indication that tethers will play a significant part in the future of space development. This edition of the handbook preserves the major characteristics of the original; however, some significant rearrangements and additions have been made. The first section on Tether Programs has been brought up to date, and now includes a description of TSS-2, the aerodynamic NASA/Italian Space Agency (ASI) mission. Tether Applications follows, and this section has been substantially rearranged. First, the index and cross-reference for the applications have been simplified. Also, the categories have changed slightly, with Technology and Test changed to Aerodynamics, and the Constellations category removed. In reality, tether constellations may be applicable to many of the other categories, since it is simply a different way of using tethers. Finally, to separate out those applications which are obviously in the future, a Concepts category has been added. A new section included here on Conference Summaries recognizes the fact that the tether community is growing internationally, and that meetings provide a means of rapid communication and interaction. Finally, the Bibliography section has been considerably updated to include all known references. These are listed by author and by subject and include the papers to be presented at the Third International Conference in May 1989.
Top tether effectiveness during side impacts.
Majstorovic, Jordan; Bing, Julie; Dahle, Eric; Bolte, John; Kang, Yun-Seok
2018-02-28
Few studies have looked at the effectiveness of the top tether during side impacts. In these studies, limited anthropomorphic test device (ATD) data were collected and/or few side impact scenarios were observed. The goal of this study was to further understand the effects of the top tether on ATD responses and child restraint system (CRS) kinematics during various side impact conditions. A series of high-speed near-side and far-side sled tests were performed using the FMVSS213 side impact sled buck and Q3s ATD. Tests were performed at both 10° and 30° impacts with respect to the pure lateral direction. Two child restraints, CRS A and CRS B, were attached to the bench using flexible lower anchors. Each test scenario was performed with the presence and absence of a top tether. Instrumentation recorded Q3s responses and CRS kinematics, and the identical test scenarios with and without a top tether attachment were compared. For the far-side lateral (10°) and oblique (30°) impacts, top tether attachment increased resultant head accelerations by 8-38% and head injury criterion (HIC 15 ) values by 20-140%. However, the top tether was effective in reducing lateral head excursion by 5-25%. For near-side impacts, the top tether resulted in less than 10% increases in both resultant head acceleration and HIC 15 in the lateral impact direction. For near-side oblique impacts, the top tether increased HIC 15 by 17.3% for CRS A and decreased it by 19.5% for CRS B. However, the injury values determined from both impact conditions were below current injury assessment reference values (IARVs). Additionally, the top tether proved beneficial in preventing forward and lateral CRS rotations. The results show that the effects of the top tether on Q3s responses were dependent on impact type, impact angle, and CRS. Tether attachments that increased head accelerations and HIC 15 values were generally counterbalanced by a reduction in head excursion and CRS rotation compared to nontethered scenarios.
NASA Technical Reports Server (NTRS)
Stone, Noble H.
2007-01-01
The Tethered Satellite System Space Shuttle missions, TSS-1 in 1993 and TSS-1R in 1996, were the height of space tether technology development. Since NASA's investment of some $200M and two Shuttle missions in those two pioneering missions, there have been several smaller tether flight experiments, but interest in this promising technology has waned within NASA as well as the DOD agencies. This is curious in view of the unique capabilities of space tether systems and the fact that they have been flight validated and shown to perform as, or better than, expected in earth orbit. While it is true that the TSS-1, TSS-1R and SEDS-2 missions experienced technical difficulties, the causes of these early developmental problems are now known to be design or materials flaws that are (1) unrelated to the basic viability of space tether technology, and (2) they are readily corrected. The purpose of this paper is to review the dynamic and electrodynamic fundamentals of space tethers and the unique capabilities they afford (that are enabling to certain types of space missions); to elucidate the nature, cause, and solution of the early developmental problems; and to provide an update on progress made in development of the technology. Finally, it is shown that (1) all problems experienced during early development of the technology now have solutions; and (2) the technology has been matured by advances made in strength and robustness of tether materials, high voltage engineering in the space environment, tether health and status monitoring, and the elimination of the broken tether hazard. In view of this, it is inexplicable why this flight-validated technology has not been utilized in the past decade, considering the powerful and unique capabilities that space tethers can afford that are, not only required to carryout, otherwise, unobtainable missions, but can also greatly reduce the cost of certain on-going space operations.
Longobardo, G S; Evangelisti, C J; Cherniack, N S
2008-02-01
Increased loop gain (a function of both controller gain and plant gain), which results in instability in feedback control, is of major importance in producing recurrent central apnoeas during sleep but its role in causing obstructive apnoeas is not clear. The purpose of this study was to investigate the role of loop gain in producing obstructive sleep apnoeas. Owing to the complexity of factors that may operate to produce obstruction during sleep, we used a mathematical model to sort them out. The model used was based on our previous model of neurochemical control of breathing, which included the effects of chemical stimuli and changes in alertness on respiratory pattern generator activity. To this we added a model of the upper airways that contained a narrowed section which behaved as a compressible elastic tube and was tethered during inspiration by the contraction of the upper airway dilator muscles. These muscles in the model, as in life, responded to changes in hypoxia, hypercapnia and alertness in a manner similar to the action of the chest wall muscles, opposing the compressive action caused by the negative intraluminal pressure generated during inspiration which was magnified by the Bernoulli Effect. As the velocity of inspiratory airflow increased, with sufficiently large increase in airflow velocity, obstruction occurred. Changes in breathing after sleep onset were simulated. The simulations showed that increases in controller gain caused the more rapid onset of obstructive apnoeas. Apnoea episodes were terminated by arousal. With a constant controller gain, as stiffness decreased, obstructed breaths appeared and periods of obstruction recurred longer after sleep onset before disappearing. Decreased controller gain produced, for example, by breathing oxygen eliminated the obstructive apnoeas resulting from moderate reductions in constricted segment stiffness. This became less effective as stiffness was reduced more. Contraction of the upper airway muscles with hypercapnia and hypoxia could prevent obstructed apnoeas with moderate but not with severe reductions in stiffness. Increases in controller gain, as might occur with hypoxia, converted obstructive to central apnoeas. Breathing CO2 eliminated apnoeas when the activity of the upper airway muscles was considered to change as a function of CO2 to some exponent. Low arousal thresholds and increased upper airway resistance are two factors that promoted the occurrence and persistence of obstructive sleep apnoeas.
The space station tethered elevator system
NASA Technical Reports Server (NTRS)
Anderson, Loren A.
1989-01-01
The optimized conceptual engineering design of a space station tethered elevator is presented. The elevator is an unmanned mobile structure which operates on a ten kilometer tether spanning the distance between the Space Station and a tethered platform. Elevator capabilities include providing access to residual gravity levels, remote servicing, and transportation to any point along a tether. The potential uses, parameters, and evolution of the spacecraft design are discussed. Engineering development of the tethered elevator is the result of work conducted in the following areas: structural configurations; robotics, drive mechanisms; and power generation and transmission systems. The structural configuration of the elevator is presented. The structure supports, houses, and protects all systems on board the elevator. The implementation of robotics on board the elevator is discussed. Elevator robotics allow for the deployment, retrieval, and manipulation of tethered objects. Robotic manipulators also aid in hooking the elevator on a tether. Critical to the operation of the tethered elevator is the design of its drive mechanisms, which are discussed. Two drivers, located internal to the elevator, propel the vehicle along a tether. These modular components consist of endless toothed belts, shunt-wound motors, regenerative power braking, and computer controlled linear actuators. The designs of self-sufficient power generation and transmission systems are reviewed. Thorough research indicates all components of the elevator will operate under power provided by fuel cells. The fuel cell systems will power the vehicle at seven kilowatts continuously and twelve kilowatts maximally. A set of secondary fuel cells provides redundancy in the unlikely event of a primary system failure. Power storage exists in the form of Nickel-Hydrogen batteries capable of powering the elevator under maximum loads.
NASA Astrophysics Data System (ADS)
Ou, Zhijing; Lin, Jianmao; Chen, Shengfu; Lin, Wen
2017-10-01
A total of 7 experimental tests were conducted to investigate seismic performance of four element variable cross-sectional Concrete Filled Steel Tubular (CFST) laced columns. The experimental parameters are longitudinal slope and arrangement type of lacing tubes. The rules on hysteresis loop, ductility, energy expenditure, and stiffness degradation of specimens are researched. Test results indicate that all specimens have good seismic performance; their hysteresis loops are full without obvious shrinkage. With the increase of longitudinal slope, the horizontal carrying capacity increases, energy dissipation capacity improve, and there is slightly increase in stiffness degradation. The influence of arrangement type of lacing tubes on displacement ductility of specimens is big.
Sornkarn, Nantachai; Nanayakkara, Thrishantha
2017-01-01
When humans are asked to palpate a soft tissue to locate a hard nodule, they regulate the stiffness, speed, and force of the finger during examination. If we understand the relationship between these behavioral variables and haptic information gain (transfer entropy) during manual probing, we can improve the efficacy of soft robotic probes for soft tissue palpation, such as in tumor localization in minimally invasive surgery. Here, we recorded the muscle co-contraction activity of the finger using EMG sensors to address the question as to whether joint stiffness control during manual palpation plays an important role in the haptic information gain. To address this question, we used a soft robotic probe with a controllable stiffness joint and a force sensor mounted at the base to represent the function of the tendon in a biological finger. Then, we trained a Markov chain using muscle co-contraction patterns of human subjects, and used it to control the stiffness of the soft robotic probe in the same soft tissue palpation task. The soft robotic experiments showed that haptic information gain about the depth of the hard nodule can be maximized by varying the internal stiffness of the soft probe.
Comparative study on stiffness properties of WOODCAST and conventional casting materials.
Pirhonen, Eija; Pärssinen, Antti; Pelto, Mika
2013-08-01
Plaster-of-Paris and synthetic materials (e.g. fibreglass) have been in clinical use as casting materials for decades. An innovative casting material, WOODCAST, brings interesting alternatives to the traditional materials. The aim of this study was to compare the stiffness properties of the WOODCAST material to traditional casting materials. In immobilization by casting, materials with variable stiffness properties are required. Ring stiffness of cylindrical samples correlates well with cast rigidity. For load-bearing structures, the use of the WOODCAST Splint is recommended as equally high stiffness was obtained with the WOODCAST Splint as was with fibreglass. The WOODCAST 2 mm product is optimal for structures where some elasticity is required, and WOODCAST Ribbon can be used in any WOODCAST structure where further reinforcement is needed. The results show that WOODCAST material can be used in replacing traditional casting materials used in extremity immobilization. The mechanical properties of casting material play an important role in safe and effective fracture immobilization. Stiffness properties of the WOODCAST casting material and conventional materials - fibreglass and plaster-of-Paris - were analysed in this study. The WOODCAST Splint appears to compare favorably with traditional materials such as Scotchcast.
Electric Sail (E-Sail) Tether Team
2017-08-03
Electric Sail (E-Sail) Tether Team Discusses 6U CubeSat Test Article and Tether Deployment System (Right to left: Tom Bryan, Davis Hunter (student intern), Jonathan MacArthur (student intern), Charles Cowen, Mike Tinker)
Dynamics and stability of a tethered centrifuge in low earth orbit
NASA Technical Reports Server (NTRS)
Quadrelli, B. M.; Lorenzini, E. C.
1992-01-01
The three-dimensional attitude dynamics of a spaceborne tethered centrifuge for artificial gravity experiments in low earth orbit is analyzed using two different methods. First, the tethered centrifuge is modeled as a dumbbell with a straight viscoelastic tether, point tip-masses, and sophisticated environmental models such as nonspherical gravity, thermal perturbations, and a dynamic atmospheric model. The motion of the centrifuge during spin-up, de-spin, and steady-rotation is then simulated. Second, a continuum model of the tether is developed for analyzing the stability of lateral tether oscillations. Results indicate that the maximum fluctuation about the 1-g radial acceleration level is less than 0.001 g; the time required for spin-up and de-spin is less than one orbit; and lateral oscillations are stable for any practical values of the system parameters.
Method and apparatus for advancing tethers
Zollinger, W.T.
1998-06-02
A tether puller for advancing a tether through a channel may include a bellows assembly having a leading end fixedly attached to the tether at a first position and a trailing end fixedly attached to the tether at a second position so that the leading and trailing ends of the bellows assembly are located a substantially fixed distance apart. The bellows assembly includes a plurality of independently inflatable elements each of which may be separately inflated to an extended position and deflated to a retracted position. Each of the independently inflatable elements expands radially and axially upon inflation. An inflation system connected to the independently inflatable elements inflates and deflates selected ones of the independently inflatable elements to cause the bellows assembly to apply a tractive force to the tether and advance it in the channel. 9 figs.
Flowing Plasma Interaction with an Electric Sail Tether Element
NASA Technical Reports Server (NTRS)
Schneider, Todd; Vaughn, Jason; Wright, Kenneth; Andersen, Allen; Stone, Nobie
2017-01-01
Electric sails are a relatively new concept for providing high speed propellant-less propulsion. Employing multiple tethers biased to high positive voltage levels (kV), electric sails are designed to gain momentum from the solar wind by repelling solar wind protons. To maximize the area of the sail that interacts with the solar wind, electric sails rely on the formation of a large plasma sheath around each small diameter tether. Motivated by interest in advancing the development of electric sails, a set of laboratory tests has been conducted to study the interaction of a drifting plasma with a sheath formed around a small diameter tether element biased at positive voltages. The laboratory test setup was created with Debye length scaling in mind to offer a path to extrapolate (via modeling) to full scale electric sail missions. Using an instrument known as a Differential Ion Flux Probe (DIFP) the interaction between a positively biased tether element and a drifting plasma has been measured for several scenarios. Clear evidence of the tether element sheath deflecting ions has been obtained. Maps of the flow angle downstream from the tether element have been made and they show the influence of the plasma sheath. Finally, electron current collection measurements have been made for a wide range of plasma conditions and tether element bias voltages. The electron collection data will have an impact on electric sail power requirements, as high voltage power supplies and electron guns will have to be sized to accommodate the electron currents collected by each tether.
GEMINI-TITAN (GT)-11 - MISC. - EXPERIMENT D-16 - KNEE TETHER - MSC
1966-01-28
S66-00933 (28 Jan. 1966) --- Gemini-11 Experiment D-16 Knee Tether, sponsored by the Department of Defense and the United States Air Force. The astronaut tightens and loosens bolts in a prescribed pattern during his extravehicular activity, once with his body held to the spacecraft by a nine-inch tether looped around his knee and through the handrail, and once without the tether. Photo credit: NASA
Space tether dynamics: an introduction
NASA Astrophysics Data System (ADS)
Denny, Mark
2018-05-01
The dynamics of orbiting tethers (space elevators and skyhooks) is developed from an unusual direction: Lagrangian rather than Newtonian mechanics. These basic results are derived among others: space elevator required length with and without counterweight, location and magnitude of maximum tether tension, skyhook orbital parameters and tether tension. These conceptual devices are being increasingly discussed as technologically feasible; here they make an interesting pedagogical application of Lagrangian mechanics suitable for undergraduate physics students.
NASA Technical Reports Server (NTRS)
Scala, E.; Bentley, D. P.; Marshall, L. S.
1986-01-01
The development of a 20-km electromechanical tether for the tethered satellite system (TSS) is described. The basic design requirements for electromagnetic cables and for conductors in cables subject to stresses and cyclic loading are discussed. The tether fabricatioon procedures involve: (1) conductor twisting around the core, (2) insulation extrusion, (3) strength member braiding, and (4) protective jacket braiding.
Artist's Concept of Propulsive Small Expendable Deployer System (ProSEDS)
NASA Technical Reports Server (NTRS)
1999-01-01
Pictured is an artist's concept of NASA's Propulsive Small Expendable Deployer System experiment (ProSEDS). ProSEDS will demonstrate the use of an electrodynamic tether, basically a long, thin wire, for propulsion. An electrodynamic tether uses the same principles as electric motors in toys, appliances and computer disk drives, and generators in automobiles and power plants. When electrical current is flowing through the tether, a magnetic field is produced that pushes against the magnetic field of the Earth. For ProSEDS, the current in the tether results by virtue of the voltage generated when the tether moves through the Earth's magnetic field at more than 17,000 mph. This approach can produce drag thrust generating useable power. Since electrodynamic tethers require no propellant, they could substantially reduce the weight of the spacecraft and provide a cost-effective method of reboosting spacecraft. The initial flight of ProSEDS is scheduled to fly aboard an Air Force Delta II rocket in summer of 2002. In orbit, ProSEDS will deploy from a Delta II second stage. It will be a 3.1-mile (5 kilometer) long, ultrathin base-wire tether cornected with a 6.2-mile (10 kilometer) long nonconducting tether. The ProSEDS experiment is managed by the Space Transportation Directorate at the Marshall Space Flight Center.
1999-03-25
Pictured is an artist's concept of NASA's Propulsive Small Expendable Deployer System experiment (ProSEDS). ProSEDS will demonstrate the use of an electrodynamic tether, basically a long, thin wire, for propulsion. An electrodynamic tether uses the same principles as electric motors in toys, appliances and computer disk drives, and generators in automobiles and power plants. When electrical current is flowing through the tether, a magnetic field is produced that pushes against the magnetic field of the Earth. For ProSEDS, the current in the tether results by virtue of the voltage generated when the tether moves through the Earth's magnetic field at more than 17,000 mph. This approach can produce drag thrust generating useable power. Since electrodynamic tethers require no propellant, they could substantially reduce the weight of the spacecraft and provide a cost-effective method of reboosting spacecraft. The initial flight of ProSEDS is scheduled to fly aboard an Air Force Delta II rocket in summer of 2002. In orbit, ProSEDS will deploy from a Delta II second stage. It will be a 3.1-mile (5 kilometer) long, ultrathin base-wire tether cornected with a 6.2-mile (10 kilometer) long nonconducting tether. The ProSEDS experiment is managed by the Space Transportation Directorate at the Marshall Space Flight Center.
NASA Technical Reports Server (NTRS)
Scheidler, Justin; Asnani, Vivake M.; Dapino, Marcelo J.
2015-01-01
This paper details the development of an electrically-controlled, variable-stiffness spring based on magnetostrictive materials. The device, termed a magnetostrictive Varispring, can be applied as a semi-active vibration isolator or switched stiffness vibration controller for reducing transmitted vibrations. The Varispring is designed using 1D linear models that consider the coupled electrical response, mechanically-induced magnetic diffusion, and the effect of internal mass on dynamic stiffness. Modeling results illustrate that a Terfenol-D-based Varispring has a rise time almost an order of magnitude smaller and a magnetic diffusion cut-off frequency over two orders of magnitude greater than a Galfenol-based Varispring. The results motivate the use of laminated Terfenol-D rods for a greater stiffness tuning range and increased bandwidth. The behavior of a prototype Varispring is examined under vibratory excitation up to 6 MPa and 25 Hz using a dynamic load frame. For this prototype, stiffness is indirectly varied by controlling the excitation current. Preliminary measurements of continuous stiffness tuning via sinusoidal currents up to 1 kHz are presented. The measurements demonstrate that the Young's modulus of the Terfenol-D rod inside the Varispring can be continuously varied by up to 21.9 GPa. The observed stiffness tuning range is relatively constant up to 500 Hz, but significantly decreases thereafter. The stiffness tuning range can be greatly increased by improving the current and force control such that a more consistent current can be applied and the Varispring can be accurately tested at a more optimal bias stress.
Implementation Options for the PROPEL Electrodynamic Tether Demonstration Mission
NASA Technical Reports Server (NTRS)
Bilen, Sven G.; Johnson, Les; Gilchrist, Brian E.; Hoyt, Robert P.; Elder, Craig H.; Fuhrhop, Keith P.; Scadera, Michael P.; Stone, Nobie H.
2014-01-01
The PROPEL flight mission concept will demonstrate the safe use of an electrodynamic tether for generating thrust. PROPEL is being designed to be a versatile electrodynamic-tether system for multiple end users and to be flexible with respect to platform. As such, several implementation options are being explored, including a comprehensive mission design for PROPEL with a mission duration of six months; a space demonstration mission concept design with configuration of a pair of tethered satellites, one of which is the Japanese H-II Transfer Vehicle; and an ESPA-based system. We report here on these possible implementation options for PROPEL. electrodynamic tether; PROPEL demonstration mission; propellantless propulsion
The investigation of tethered satellite system dynamics
NASA Technical Reports Server (NTRS)
Lorenzini, E.
1985-01-01
The tether control law to retrieve the satellite was modified in order to have a smooth retrieval trajectory of the satellite that minimizes the thruster activation. The satellite thrusters were added to the rotational dynamics computer code and a preliminary control logic was implemented to simulate them during the retrieval maneuver. The high resolution computer code for modelling the three dimensional dynamics of untensioned tether, SLACK3, was made fully operative and a set of computer simulations of possible tether breakages was run. The distribution of the electric field around an electrodynamic tether in vacuo severed at some length from the shuttle was computed with a three dimensional electrodynamic computer code.
Near Space Environments: Tethering Systems
NASA Technical Reports Server (NTRS)
Lucht, Nolan R.
2013-01-01
Near Space Environments, the Rocket University (Rocket U) program dealing with high altitude balloons carrying payloads into the upper earth atmosphere is the field of my project. The tethering from balloon to payload is the specific system I am responsible for. The tethering system includes, the lines that tie the payload to the balloon, as well as, lines that connect payloads together, if they are needed, as well as how to sever the tether to release payloads from the balloon. My objective is to design a tethering system that will carry a payload to any desired altitude and then sever by command at any given point during flight.
Vesicle Fusion Observed by Content Transfer across a Tethered Lipid Bilayer
Rawle, Robert J.; van Lengerich, Bettina; Chung, Minsub; Bendix, Poul Martin; Boxer, Steven G.
2011-01-01
Synaptic transmission is achieved by exocytosis of small, synaptic vesicles containing neurotransmitters across the plasma membrane. Here, we use a DNA-tethered freestanding bilayer as a target architecture that allows observation of content transfer of individual vesicles across the tethered planar bilayer. Tethering and fusion are mediated by hybridization of complementary DNA-lipid conjugates inserted into the two membranes, and content transfer is monitored by the dequenching of an aqueous content dye. By analyzing the diffusion profile of the aqueous dye after vesicle fusion, we are able to distinguish content transfer across the tethered bilayer patch from vesicle leakage above the patch. PMID:22004762
NASA Technical Reports Server (NTRS)
Blumberg, Seth; Gajraj, Arivalagan; Pennington, Matthew W.; Meiners, Jens-Christian
2005-01-01
Tethered particle microscopy is a powerful tool to study the dynamics of DNA molecules and DNA-protein complexes in single-molecule experiments. We demonstrate that stroboscopic total internal reflection microscopy can be used to characterize the three-dimensional spatiotemporal motion of DNA-tethered particles. By calculating characteristic measures such as symmetry and time constants of the motion, well-formed tethers can be distinguished from defective ones for which the motion is dominated by aberrant surface effects. This improves the reliability of measurements on tether dynamics. For instance, in observations of protein-mediated DNA looping, loop formation is distinguished from adsorption and other nonspecific events.
Development and validation of a canine radius replica for mechanical testing of orthopedic implants.
Little, Jeffrey P; Horn, Timothy J; Marcellin-Little, Denis J; Harrysson, Ola L A; West, Harvey A
2012-01-01
To design and fabricate fiberglass-reinforced composite (FRC) replicas of a canine radius and compare their mechanical properties with those of radii from dog cadavers. Replicas based on 3 FRC formulations with 33%, 50%, or 60% short-length discontinuous fiberglass by weight (7 replicas/group) and 5 radii from large (> 30-kg) dog cadavers. Bones and FRC replicas underwent nondestructive mechanical testing including 4-point bending, axial loading, and torsion and destructive testing to failure during 4-point bending. Axial, internal and external torsional, and bending stiffnesses were calculated. Axial pullout loads for bone screws placed in the replicas and cadaveric radii were also assessed. Axial, internal and external torsional, and 4-point bending stiffnesses of FRC replicas increased significantly with increasing fiberglass content. The 4-point bending stiffness of 33% and 50% FRC replicas and axial and internal torsional stiffnesses of 33% FRC replicas were equivalent to the cadaveric bone stiffnesses. Ultimate 4-point bending loads did not differ significantly between FRC replicas and bones. Ultimate screw pullout loads did not differ significantly between 33% or 50% FRC replicas and bones. Mechanical property variability (coefficient of variation) of cadaveric radii was approximately 2 to 19 times that of FRC replicas, depending on loading protocols. Within the range of properties tested, FRC replicas had mechanical properties equivalent to and mechanical property variability less than those of radii from dog cadavers. Results indicated that FRC replicas may be a useful alternative to cadaveric bones for biomechanical testing of canine bone constructs.
NASA Technical Reports Server (NTRS)
Majda, George
1986-01-01
One-leg and multistep discretizations of variable-coefficient linear systems of ODEs having both slow and fast time scales are investigated analytically. The stability properties of these discretizations are obtained independent of ODE stiffness and compared. The results of numerical computations are presented in tables, and it is shown that for large step sizes the stability of one-leg methods is better than that of the corresponding linear multistep methods.
Avrocar Test in Ames 40x80 Foot Wind Tunnel.
1961-04-03
Rear view of the Avrocar with tail, mounted on variable height struts. Overhead doors of the wind tunnel test section open. The first Avrocar, S/N 58-7055 (marked AV-7055), after tethered testing, became the "wind tunnel" test model at NASA Ames, where it remained in storage from 1961 until 1966, when it was donated to the National Air and Space Museum, in Suitland, Maryland.
The effects of tether placement on antibody stability on surfaces
NASA Astrophysics Data System (ADS)
Grawe, Rebecca W.; Knotts, Thomas A.
2017-06-01
Despite their potential benefits, antibody microarrays have fallen short of performing reliably and have not found widespread use outside of the research setting. Experimental techniques have been unable to determine what is occurring on the surface of an atomic level, so molecular simulation has emerged as the primary method of investigating protein/surface interactions. Simulations of small proteins have indicated that the stability of the protein is a function of the residue on the protein where a tether is placed. The purpose of this research is to see whether these findings also apply to antibodies, with their greater size and complexity. To determine this, 24 tethering locations were selected on the antibody Protein Data Bank (PDB) ID: 1IGT. Replica exchange simulations were run on two different surfaces, one hydrophobic and one hydrophilic, to determine the degree to which these tethering sites stabilize or destabilize the antibody. Results showed that antibodies tethered to hydrophobic surfaces were in general less stable than antibodies tethered to hydrophilic surfaces. Moreover, the stability of the antibody was a function of the tether location on hydrophobic surfaces but not hydrophilic surfaces.
Study of selected tether applications in space, phase 3, volume 2
NASA Technical Reports Server (NTRS)
1986-01-01
The results of a Phase 3 study of two Selected Tether Applications in Space (STAIS); deorbit of a Shuttle and launch of an Orbital Transfer Vehicle (OTV), both from the space station using a tether were examined. The study objectives were to: perform a preliminary engineering design, define operational scenarios, develop a common cost model, perform cost benefits analyses, and develop a Work Breakdown Structure (WBS). Key features of the performance analysis were to identify the net increases in effective Shuttle cargo capability if tethers are used to assist in the deorbit of Shuttles and the launching of the OTVs from the space station and to define deployer system designs required to accomplish these tasks. Deployer concepts were designed and discussed. Operational scenarios, including timelines, for both tethered and nontethered Shuttle and OTV operations at the space station were evaluated. A summary discussion of the Selected Tether Applications Cost Model (STACOM) and the results of the cost benefits analysis are presented. Several critical technologies needed to implement tether assisted deployment of payloads are also discussed. Conclusions and recommendations are presented.
Magnetobraking: Use of tether electrodynamic drag for Earth return from Mars
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.
1994-01-01
It has often been proposed that a vehicle returning from Mars will use aerobraking in the Earth's atmosphere to dissipate hyperbolic excess velocity to capture into Earth orbit. Here a different system for dissipating excess velocity without expenditure of reaction mass, magnetobraking, is proposed. Magnetobraking uses the force on an electrodynamic tether in the Earth's magnetic field to produce thrust. An electrodynamic tether is deployed from the spacecraft as it approaches the Earth. The Earth's magnetic field produces a force on electrical current in the tether. If the tether is oriented perpendicularly to the Earth's magnetic field and to the direction of motion of the spacecraft, force produced by the Earth's magnetic field can be used to either brake or accelerate the spacecraft without expenditure of reaction mass. The peak acceleration on the Mars return is 0.007 m/sq sec, and the amount of braking possible is dependent on the density and current-carrying capacity of the tether, but is independent of length. A superconducting tether is required. The required critical current is shown to be within the range of superconducting technology now available in the laboratory.
Is repair of the protruded meninges sufficient for treatment of meningocele?
Yun-Hai, Song; Nan, Bao; Ping-Ping, Gao; Bo, Yang; Cheng, Chen
2015-11-01
The present study aimed to investigate the relationship between meningocele and tethered cord syndrome, diagnosis of meningocele associated with tethered cord syndrome, and when to perform surgery and the best surgical procedure. Sixty-nine children with meningocele who were admitted to Shanghai Children's Medical Center were analyzed. The relationship between meningocele and other lesions causing tethered cord syndrome was studied by combining magnetic resonance imaging (MRI) and intraoperative findings. The MRI results and intraoperative findings showed that 67 children (97%) had associated lesions such as tight filum terminale, fibrous band tethering, spinal cord or cauda equina adhesion, diastematomyelia, arachnoid cyst, and epidermoid cyst. The protruded meninges were repaired, and the intraspinal lesions were treated at the same time. Also, the tethered spinal cord was released. No neurological injuries were observed after surgery. The rate of meningocele associated with tethered cord syndrome is very high. MRI is necessary for the diagnosis of meningocele. Active surgical treatment is recommended immediately after definite diagnosis. During surgery, the surgeon should not only repair the protruded meninges but also explore the spinal canal and release the tethered cord.
Uses of tethered atmospheric research probes
NASA Technical Reports Server (NTRS)
Deloach, Richard
1991-01-01
In situ measurements in the lower thermosphere are rare because of the difficulty of reaching these altitudes with conventional instrument platforms. The emerging technology of tethered satellites as a means to probe these altitudes from above has matured to the point that a flight program is planned to verify the operational performance of a low-cost deployer mechanism for tethered satellites, and to demonstrate a basic understanding of the dynamics of tethered satellite deployment. With such operational developments at hand, it is appropriate to review some of the potential applications of tethered measurement platforms for acquiring in situ data in the upper atmosphere. This paper focuses on downward-deployed tethered satellite measurements of interest to atmospheric scientists and to hypersonic aerodynamicists, and discusses ways in which this technology may be able to support selected long-range research programs currently in progress or in various stages of pre-flight development. The intent is to illustrate for the potential user community some of the unique advantages of tethered measurement platform technology now under development, and to stimulate creative thinking about ways in which this new capability may be used in support of future research programs.
Kozel, Beth A; Danback, Joshua R; Waxler, Jessica L; Knutsen, Russell H; de Las Fuentes, Lisa; Reusz, Gyorgy S; Kis, Eva; Bhatt, Ami B; Pober, Barbara R
2014-01-01
Williams syndrome is caused by the deletion of 26 to 28 genes, including elastin, on human chromosome 7. Elastin insufficiency leads to the cardiovascular hallmarks of this condition, namely focal stenosis and hypertension. Extrapolation from the Eln(+/-) mouse suggests that affected people may also have stiff vasculature, a risk factor for stroke, myocardial infarction, and cardiac death. NCF1, one of the variably deleted Williams genes, is a component of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex and is involved in the generation of oxidative stress, making it an interesting candidate modifier for vascular stiffness. Using a case-control design, vascular stiffness was evaluated by pulse wave velocity in 77 Williams cases and matched controls. Cases had stiffer conducting vessels than controls (P<0.001), with increased stiffness observed in even the youngest children with Williams syndrome. Pulse wave velocity increased with age at comparable rates in cases and controls, and although the degree of vascular stiffness varied, it was seen in both hypertensive and normotensive Williams participants. Use of antihypertensive medication and extension of the Williams deletion to include NCF1 were associated with protection from vascular stiffness. These findings demonstrate that vascular stiffness is a primary vascular phenotype in Williams syndrome and that treatment with antihypertensives or agents inhibiting oxidative stress may be important in managing patients with this condition, potentially even those who are not overtly hypertensive.
Electric Sail (E-Sail) Tether Team
2017-08-03
Electric Sail (E-Sail) Tether Team with 6U CubeSat Prototypes and Current Version of Tether Deployer Test Article, (Right to left: Tom Bryan, Davis Hunter (student intern), Jonathan MacArthur (student intern), Charles Cowen, Mike Tinker)
The investigation of tethered satellite system dynamics
NASA Technical Reports Server (NTRS)
Lorenzini, E.
1985-01-01
A progress report is presented that deals with three major topics related to Tethered Satellite System Dynamics. The SAO rotational dynamics computer code was updated. The program is now suitable to deal with inclined orbits. The output has been also modified in order to show the satellite Euler angles referred to the rotating orbital frame. The three-dimensional high resolution computer program SLACK3 was developed. The code simulates the three-dimensional dynamics of a tether going slack taking into account the effect produced by boom rotations. Preliminary simulations on the three-dimensional dynamics of a recoiling slack tether are shown in this report. A program to evaluate the electric potential around a severed tether is immersed in a plasma. The potential is computed on a three-dimensional grid axially symmetric with respect to the tether longitudinal axis. The electric potential variations due to the plasma are presently under investigation.
The development of optimal control laws for orbiting tethered platform systems
NASA Technical Reports Server (NTRS)
Bainum, P. M.
1986-01-01
A mathematical model of the open and closed loop in orbit plane dynamics of a space platform-tethered-subsatellite system is developed. The system consists of a rigid platform from which an (assumed massless) tether is deploying (retrieving) a subsatellite from an attachment point which is, in general, offset from the platform's mass center. A Langrangian formulation yields equations describing platform pitch, subsatellite tetherline swing, and varying tether length motions. These equations are linearized about the nominal station keeping motion. Control can be provided by both modulation of the tether tension level and by a momentum type platform-mounted device; system controllability depends on the presence of both control inputs. Stability criteria are developed in terms of the control law gains, the platform inertia ratio, and tether offset parameter. Control law gains are obtained based on linear quadratic regulator techniques. Typical transient responses of both the state and required control effort are presented.
NASA Technical Reports Server (NTRS)
Doyle, G. R., Jr.; Burbick, J. W.
1974-01-01
The equations of motion and a computer program for the dynamics of a six degree of freedom body joined to a five degree of freedom body by a quasilinear elastic tether are presented. The forebody is assumed to be a completely general rigid body with six degrees of freedom; the decelerator is also assumed to be rigid, but with only five degrees of freedom (symmetric about its longitudinal axis). The tether is represented by a spring and dashpot in parallel, where the spring constant is a function of tether elongation. Lagrange's equation is used to derive the equations of motion with the Lagrange multiplier technique used to express the constraint provided by the tether. A computer program is included which provides a time history of the dynamics of both bodies and the tension in the tether.
Synthesis and Characterization of Novel Anchorlipids for Tethered Bilayer Lipid Membranes.
Andersson, Jakob; Knobloch, Jacqueline J; Perkins, Michael V; Holt, Stephen A; Köper, Ingo
2017-05-09
Tethered bilayer lipid membranes are versatile solid-supported model membrane systems. Core to these systems is an anchorlipid that covalently links a lipid bilayer to a support. The molecular structure of these lipids can have a significant impact on the properties of the resulting bilayer. Here, the synthesis of anchorlipids containing ester groups in the tethering part is described. The lipids are used to form bilayer membranes, and the resulting structures are compared with membranes formed using conventional anchorlipids or sparsely tethered membranes. All membranes showed good electrical sealing properties; the disulphide-terminated anchorlipids could be used in a sparsely tethered system without significantly reducing the sealing properties of the lipid bilayers. The sparsely tethered systems also allowed for higher ion transport across the membrane, which is in good correlation with higher hydration of the spacer region as seen by neutron scattering.
Repression of the Chromatin-Tethering Domain of Murine Leukemia Virus p12.
Brzezinski, Jonathon D; Modi, Apexa; Liu, Mengdan; Roth, Monica J
2016-12-15
Murine leukemia virus (MLV) p12, encoded within Gag, binds the viral preintegration complex (PIC) to the mitotic chromatin. This acts to anchor the viral PIC in the nucleus as the nuclear envelope re-forms postmitosis. Mutations within the p12 C terminus (p12 PM13 to PM15) block early stages in viral replication. Within the p12 PM13 region (p12 60 PSPMA 65 ), our studies indicated that chromatin tethering was not detected when the wild-type (WT) p12 protein (M63) was expressed as a green fluorescent protein (GFP) fusion; however, constructs bearing p12-I63 were tethered. N-terminal truncations of the activated p12-I63-GFP indicated that tethering increased further upon deletion of p12 25 DLLTEDPPPY 34 , which includes the late domain required for viral assembly. The p12 PM15 sequence (p12 70 RREPP 74 ) is critical for wild-type viral viability; however, virions bearing the PM15 mutation (p12 70 AAAAA 74 ) with a second M63I mutant were viable, with a titer 18-fold lower than that of the WT. The p12 M63I mutation amplified chromatin tethering and compensated for the loss of chromatin binding of p12 PM15. Rescue of the p12-M63-PM15 nonviable mutant with prototype foamy virus (PFV) and Kaposi's sarcoma herpesvirus (KSHV) tethering sequences confirmed the function of p12 70-74 in chromatin binding. Minimally, full-strength tethering was seen with only p12 61 SPIASRLRGRR 71 fused to GFP. These results indicate that the p12 C terminus alone is sufficient for chromatin binding and that the presence of the p12 25 DLLTEDPPPY 34 motif in the N terminus suppresses the ability to tether. This study defines a regulatory mechanism controlling the differential roles of the MLV p12 protein in early and late replication. During viral assembly and egress, the late domain within the p12 N terminus functions to bind host vesicle release factors. During viral entry, the C terminus of p12 is required for tethering to host mitotic chromosomes. Our studies indicate that the p12 domain including the PPPY late sequence temporally represses the p12 chromatin tethering motif. Maximal p12 tethering was identified with only an 11-amino-acid minimal chromatin tethering motif encoded at p12 61-71 Within this region, the p12-M63I substitution switches p12 into a tethering-competent state, partially rescuing the p12-PM15 tethering mutant. A model for how this conformational change regulates early versus late functions is presented. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Östling, Gerd; Nilsson, Peter M.
2015-01-01
Introduction Arterial stiffness is an independent risk factor for cardiovascular morbidity and can be assessed by applanation tonometry by measuring pulse wave velocity (PWV) and augmentation index (AIX) by pressure pulse wave analysis (PWA). As an inexpensive and operator independent alternative, photoelectric plethysmography (PPG) has been introduced with analysis of the digital volume pulse wave (DPA) and its second derivatives of wave reflections. Objective The objective was to investigate the repeatability of arterial stiffness parameters measured by digital pulse wave analysis (DPA) and the associations to applanation tonometry parameters. Methods and Results 112 pregnant and non-pregnant individuals of different ages and genders were examined with SphygmoCor arterial wall tonometry and Meridian DPA finger photoplethysmography. Coefficients of repeatability, Bland-Altman plots, intraclass correlation coefficients and correlations to heart rate (HR) and body height were calculated for DPA variables, and the DPA variables were compared to tonometry variables left ventricular ejection time (LVET), PWV and AIX. No DPA variable showed any systematic measurement error or excellent repeatability, but dicrotic index (DI), dicrotic dilatation index (DDI), cardiac ejection elasticity index (EEI), aging index (AI) and second derivatives of the crude pulse wave curve, b/a and e/a, showed good repeatability. Overall, the correlations to AIX were better than to PWV, with correlations coefficients >0.70 for EEI, AI and b/a. Considering the level of repeatability and the correlations to tonometry, the overall best DPA parameters were EEI, AI and b/a. The two pansystolic time parameters, ejection time compensated (ETc) by DPA and LVET by tonometry, showed a significant but weak correlation. Conclusion For estimation of the LV function, ETc, EEI and b/a are suitable, for large artery stiffness EEI, and for small arteries DI and DDI. The only global parameter, AI, showed a high repeatability and the overall best correlations with AIX and PWV. PMID:26291079
Ho, Ruoya; Stroupe, Christopher
2016-10-01
Membrane tethering is a physical association of two membranes before their fusion. Many membrane tethering factors have been identified, but the interactions that mediate inter-membrane associations remain largely a matter of conjecture. Previously, we reported that the homotypic fusion and protein sorting/Class C vacuolar protein sorting (HOPS/Class C Vps) complex, which has two binding sites for the yeast vacuolar Rab GTPase Ypt7p, can tether two low-curvature liposomes when both membranes bear Ypt7p. Here, we show that HOPS tethers highly curved liposomes to Ypt7p-bearing low-curvature liposomes even when the high-curvature liposomes are protein-free. Phosphorylation of the curvature-sensing amphipathic lipid-packing sensor (ALPS) motif from the Vps41p HOPS subunit abrogates tethering of high-curvature liposomes. A HOPS complex without its Vps39p subunit, which contains one of the Ypt7p binding sites in HOPS, lacks tethering activity, though it binds high-curvature liposomes and Ypt7p-bearing low-curvature liposomes. Thus, HOPS tethers highly curved membranes via a direct protein-membrane interaction. Such high-curvature membranes are found at the sites of vacuole tethering and fusion. There, vacuole membranes bend sharply, generating large areas of vacuole-vacuole contact. We propose that HOPS localizes via the Vps41p ALPS motif to these high-curvature regions. There, HOPS binds via Vps39p to Ypt7p in an apposed vacuole membrane. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Simulation of a tethered microgravity robot pair and validation on a planar air bearing
NASA Astrophysics Data System (ADS)
Mantellato, R.; Lorenzini, E. C.; Sternberg, D.; Roascio, D.; Saenz-Otero, A.; Zachrau, H. J.
2017-09-01
A software model has been developed to simulate the on-orbit dynamics of a dual-mass tethered system where one or both of the tethered spacecraft are able to produce propulsive thrust. The software simulates translations and rotations of both spacecraft, with the visco-elastic tether being simulated as a lumped-mass model. Thanks to this last feature, tether longitudinal and lateral modes of vibration and tether tension can be accurately assessed. Also, the way the spacecraft motion responds to sudden tether tension spikes can be studied in detail. The code enables the simulation of different scenarios, including space tug missions for deorbit maneuvers in a debris mitigation context and general-purpose tethered formation flight missions. This study aims to validate the software through a representative test campaign performed with the MIT Synchronized Position Hold Engage and Reorient Experimental Satellites (SPHERES) planar air bearing system. Results obtained with the numerical simulator are compared with data from direct measurements in different testing setups. The studied cases take into account different initial conditions of the spacecraft velocities and relative attitudes, and thrust forces. Data analysis is presented comparing the results of the simulations with direct measurements of acceleration and Azimuth rate of the two bodies in the planar air bearing test facility using a Nylon tether. Plans for conducting a microgravity test campaign using the SPHERES satellites aboard the International Space Station are also being scheduled in the near future in order to further validate the simulation using data from the relevant operational environment of extended microgravity with full six degree of freedom (per body) motion.
Reducing stem bending increases the height growth of tall pines.
Meng, Shawn X; Lieffers, Victor J; Reid, Douglas E B; Rudnicki, Mark; Silins, Uldis; Jin, Ming
2006-01-01
The hypothesis was tested that upper limits to height growth in trees are the result of the increasing bending moment of trees as they grow in height. The increasing bending moment of tall trees demands increased radial growth at the expense of height growth to maintain mechanical stability. In this study, the bending moment of large lodgepole pine (Pinus contorta Dougl. Ex Loud. var. latifolia Engelm.) was reduced by tethering trees at 10 m height to counter the wind load. Average bending moment of tethered trees was reduced to 38% of control trees. Six years of tethering resulted in a 40% increase in height growth relative to the period before tethering. By contrast, control trees showed decreased height growth in the period after tethering treatment. Average radial growth along the bole, relative to height growth, was reduced in tethered trees. This strongly suggests that mechanical constraints play a crucial role in limiting the height growth of tall trees. Analysis of bending moment and basal area increment at both 10 m and 1.3 m showed that the amount of wood added to the stem was closely related to the bending moment produced at these heights, in both control and tethered trees. The tethering treatment also resulted in an increase in the proportion of latewood at the tethering height, relative to 1.3 m height. For untethered control trees, the ratio of bending stresses at 10 m versus 1.3 m height was close to 1 in both 1998 and 2003, suggesting a uniform stress distribution along the outer surface of the bole.
Grant, Margaret J; Loftus, Matthew S; Stoja, Aiola P; Kedes, Dean H; Smith, M Mitchell
2018-05-08
By tethering their circular genomes (episomes) to host chromatin, DNA tumor viruses ensure retention and segregation of their genetic material during cell divisions. Despite functional genetic and crystallographic studies, there is little information addressing the 3D structure of these tethers in cells, issues critical for understanding persistent infection by these viruses. Here, we have applied direct stochastic optical reconstruction microscopy (dSTORM) to establish the nanoarchitecture of tethers within cells latently infected with the oncogenic human pathogen, Kaposi's sarcoma-associated herpesvirus (KSHV). Each KSHV tether comprises a series of homodimers of the latency-associated nuclear antigen (LANA) that bind with their C termini to the tandem array of episomal terminal repeats (TRs) and with their N termini to host chromatin. Superresolution imaging revealed that individual KSHV tethers possess similar overall dimensions and, in aggregate, fold to occupy the volume of a prolate ellipsoid. Using plasmids with increasing numbers of TRs, we found that tethers display polymer power law scaling behavior with a scaling exponent characteristic of active chromatin. For plasmids containing a two-TR tether, we determined the size, separation, and relative orientation of two distinct clusters of bound LANA, each corresponding to a single TR. From these data, we have generated a 3D model of the episomal half of the tether that integrates and extends previously established findings from epifluorescent, crystallographic, and epigenetic approaches. Our findings also validate the use of dSTORM in establishing novel structural insights into the physical basis of molecular connections linking host and pathogen genomes.
Floating and Tether-Coupled Adhesion of Bacteria to Hydrophobic and Hydrophilic Surfaces
2018-01-01
Models for bacterial adhesion to substratum surfaces all include uncertainty with respect to the (ir)reversibility of adhesion. In a model, based on vibrations exhibited by adhering bacteria parallel to a surface, adhesion was described as a result of reversible binding of multiple bacterial tethers that detach from and successively reattach to a surface, eventually making bacterial adhesion irreversible. Here, we use total internal reflection microscopy to determine whether adhering bacteria also exhibit variations over time in their perpendicular distance above surfaces. Streptococci with fibrillar surface tethers showed perpendicular vibrations with amplitudes of around 5 nm, regardless of surface hydrophobicity. Adhering, nonfibrillated streptococci vibrated with amplitudes around 20 nm above a hydrophobic surface. Amplitudes did not depend on ionic strength for either strain. Calculations of bacterial energies from their distances above the surfaces using the Boltzman equation showed that bacteria with fibrillar tethers vibrated as a harmonic oscillator. The energy of bacteria without fibrillar tethers varied with distance in a comparable fashion as the DLVO (Derjaguin, Landau, Verwey, and Overbeek)-interaction energy. Distance variations above the surface over time of bacteria with fibrillar tethers are suggested to be governed by the harmonic oscillations, allowed by elasticity of the tethers, piercing through the potential energy barrier. Bacteria without fibrillar tethers “float” above a surface in the secondary energy minimum, with their perpendicular displacement restricted by their thermal energy and the width of the secondary minimum. The distinction between “tether-coupled” and “floating” adhesion is new, and may have implications for bacterial detachment strategies. PMID:29649869
Cruise, Denise R; Chagdes, James R; Liddy, Joshua J; Rietdyk, Shirley; Haddad, Jeffrey M; Zelaznik, Howard N; Raman, Arvind
2017-07-26
Increased time-delay in the neuromuscular system caused by neurological disorders, concussions, or advancing age is an important factor contributing to balance loss (Chagdes et al., 2013, 2016a,b). We present the design and fabrication of an active balance board system that allows for a systematic study of stiffness and time-delay induced instabilities in standing posture. Although current commercial balance boards allow for variable stiffness, they do not allow for manipulation of time-delay. Having two controllable parameters can more accurately determine the cause of balance deficiencies, and allows us to induce instabilities even in healthy populations. An inverted pendulum model of human posture on such an active balance board predicts that reduced board rotational stiffness destabilizes upright posture through board tipping, and limit cycle oscillations about the upright position emerge as feedback time-delay is increased. We validate these two mechanisms of instability on the designed balance board, showing that rotational stiffness and board time-delay induced the predicted postural instabilities in healthy, young adults. Although current commercial balance boards utilize control of rotational stiffness, real-time control of both stiffness and time-delay on an active balance board is a novel and innovative manipulation to reveal balance deficiencies and potentially improve individualized balance training by targeting multiple dimensions contributing to standing balance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Study of Plasma Motor Generator (PMG) tether system for orbit reboost
NASA Technical Reports Server (NTRS)
1987-01-01
Detailed designs were produced for a 2 kW plasma motor generator tether system based largely on existing hardware and hardware designs. Specifically, the hollow cathode design and electronics are derived from ion propulsion equipment. A prototype tether was constructed and will be tested for deployment, strength, resistance to breakage and abrasion and electrical properties. In addition, laboratory development models of the electronics will be used to operate two plasma motor generator hollow cathode assemblies with this tether to verify electrical performance parameters for the complete system. Results show that a low cost demonstration of a plasma motor generator tether system appears to be feasible by the middle of the 1990s.
Plasma Motor Generator (PMG) electrodynamic tether experiment
NASA Technical Reports Server (NTRS)
Grossi, Mario D.
1995-01-01
The Plasma Motor Generator (PMG) flight of June 26, 1993 has been the most sophisticated and most successful mission that has been carried out thus far with an electrodynamic tether. Three papers from the Smithsonian Astrophysical Observatory, Washington, DC concerned with the PMG, submitted at the Fourth International Space Conference on Tethers in Space, in Washington, DC, in April 1995, are contained in this document. The three papers are (1) Electromagnetic interactions between the PMG tether and the magneto-ionic medium of the Ionosphere; (2) Tether-current-voltage characteristics, as determined by the Hollow Cathode Operation Modes; and (3) Hawaii-Hilo ground observations on the occasion for the PMG flight of June 23, 1993.
Space Station tethered waste disposal
NASA Technical Reports Server (NTRS)
Rupp, Charles C.
1988-01-01
The Shuttle Transportation System (STS) launches more payload to the Space Station than can be returned creating an accumulation of waste. Several methods of deorbiting the waste are compared including an OMV, solid rocket motors, and a tether system. The use of tethers is shown to offer the unique potential of having a net savings in STS launch requirement. Tether technology is being developed which can satisfy the deorbit requirements but additional effort is required in waste processing, packaging, and container design. The first step in developing this capability is already underway in the Small Expendable Deployer System program. A developmental flight test of a tether initiated recovery system is seen as the second step in the evolution of this capability.
Vesicle fusion observed by content transfer across a tethered lipid bilayer.
Rawle, Robert J; van Lengerich, Bettina; Chung, Minsub; Bendix, Poul Martin; Boxer, Steven G
2011-10-19
Synaptic transmission is achieved by exocytosis of small, synaptic vesicles containing neurotransmitters across the plasma membrane. Here, we use a DNA-tethered freestanding bilayer as a target architecture that allows observation of content transfer of individual vesicles across the tethered planar bilayer. Tethering and fusion are mediated by hybridization of complementary DNA-lipid conjugates inserted into the two membranes, and content transfer is monitored by the dequenching of an aqueous content dye. By analyzing the diffusion profile of the aqueous dye after vesicle fusion, we are able to distinguish content transfer across the tethered bilayer patch from vesicle leakage above the patch. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Parameter identification and optimization of slide guide joint of CNC machine tools
NASA Astrophysics Data System (ADS)
Zhou, S.; Sun, B. B.
2017-11-01
The joint surface has an important influence on the performance of CNC machine tools. In order to identify the dynamic parameters of slide guide joint, the parametric finite element model of the joint is established and optimum design method is used based on the finite element simulation and modal test. Then the mode that has the most influence on the dynamics of slip joint is found through harmonic response analysis. Take the frequency of this mode as objective, the sensitivity analysis of the stiffness of each joint surface is carried out using Latin Hypercube Sampling and Monte Carlo Simulation. The result shows that the vertical stiffness of slip joint surface constituted by the bed and the slide plate has the most obvious influence on the structure. Therefore, this stiffness is taken as the optimization variable and the optimal value is obtained through studying the relationship between structural dynamic performance and stiffness. Take the stiffness values before and after optimization into the FEM of machine tool, and it is found that the dynamic performance of the machine tool is improved.
Propulsive Small Expendable Deployer System (ProSEDS)
NASA Technical Reports Server (NTRS)
1999-01-01
NASA's Propulsive Small Expendable Deployer System experiment (ProSEDS) will demonstrate the use of an electrodynamic tether, basically a long, thin wire, for propulsion. An electrodynamic tether uses the same principles as electric motors in toys, appliances and computer disk drives, and generators in automobiles and power plants. When electrical current is flowing through the tether, a magnetic field is produced that pushes against the magnetic field of the Earth. For ProSEDS, the current in the tether results by virtue of the voltage generated when the tether moves through the Earth's magnetic field at more than 17,000 mph. This approach can produce drag thrust generating useable power. Since electrodynamic tethers require no propellant, they could substantially reduce the weight of the spacecraft and provide a cost-effective method of reboosting spacecraft. The initial flight of ProSEDS is scheduled to fly aboard an Air Force Delta II rocket in the summer of 2002. In orbit, ProSEDS will deploy from a Delta II second stage. It will be a 3.1-mile (5 kilometer) long, ultrathin base-wire cornected with a 6.2-mile (10 kilometer) long nonconducting tether. This photograph shows Less Johnson, a scientist at MSFC inspecting the nonconducting part of a tether as it exits a deployer similar to the one to be used in the ProSEDS experiment. The ProSEDS experiment is managed by the Space Transportation Directorate at MSFC.
Elastic-Tether Suits for Artificial Gravity and Exercise
NASA Technical Reports Server (NTRS)
Torrance, Paul; Biesinger, Paul; Rybicki, Daniel D.
2005-01-01
Body suits harnessed to systems of elastic tethers have been proposed as means of approximating the effects of normal Earth gravitation on crewmembers of spacecraft in flight to help preserve the crewmembers physical fitness. The suits could also be used on Earth to increase effective gravitational loads for purposes of athletic training. The suit according to the proposal would include numerous small tether-attachment fixtures distributed over its outer surface so as to distribute the artificial gravitational force as nearly evenly as possible over the wearer s body. Elastic tethers would be connected between these fixtures and a single attachment fixture on a main elastic tether that would be anchored to a fixture on or under a floor. This fixture might include multiple pulleys to make the effective length of the main tether great enough that normal motions of the wearer cause no more than acceptably small variations in the total artificial gravitational force. Among the problems in designing the suit would be equalizing the load in the shoulder area and keeping tethers out of the way below the knees to prevent tripping. The solution would likely include running tethers through rings on the sides. Body suits with a weight or water ballast system are also proposed for very slight spinning space-station scenarios, in which cases the proposed body suits will easily be able to provide the equivalency of a 1-G or even greater load.
Design Concept for a Reusable/Propellantless MXER Tether Space Transportation System
NASA Technical Reports Server (NTRS)
McCandless, B., II; Kustas, F. m.; Marshall, L. S.; Lytle, W. B.; Hansen, N. P.
2005-01-01
The Momentum Exchange/Electrodynamic Reboost (MXER) tether facility is a transformational concept that significantly reduces the fuel requirements (and associated costs) in transferring payloads above low earth orbit (LEO). Facility reboost is accomplished without propellant by driving current against a voltage created by a conducting tether's interaction with the Earth's magnetic field (electrodynamic reboost). This system can be used for transferring a variety of payloads (scientific, cargo, and human space vehicles) to multiple destinations including geosynchronous transfer orbit, the Moon or Mars. MXER technology advancement requires development in two key areas: survivable, high tensile strength non-conducting tethers and reliable, lightweight payload catch/release mechanisms. Fundamental requirements associated with the MXER non-conducting strength tether and catch mechanism designs will be presented. Key requirements for the tether design include high specific-strength (tensile strength/material density), material survivability to the space environment (atomic oxygen and ultraviolet radiation), and structural survivability to micrometeoroid/orbital debris (MM/OD) impacts. The driving mechanism key,gequirements include low mass-to-capture-volume ratio, positional and velocity error tolerance, and operational reliability. Preliminary tether and catch mechanism design criteria are presented, which have been used as guidelines to "screen" and down-select initial concepts. Candidate tether materials and protective coatings are summarized along with their performance in simulated space environments (e.g., oxygen plasma, thermal cycling). A candidate catch mechanism design concept is presented along with examples of demonstration hardware.
Utility of an allograft tendon for scoliosis correction via the costo-transverse foreman.
Sun, Dong; McCarthy, Michael; Dooley, Adam C; Ramakrishnaiah, Raghu H; Shelton, R Shane; McLaren, Sandra G; Skinner, Robert A; Suva, Larry J; McCarthy, Richard E
2017-01-01
Current convex tethering techniques for treatment of scoliosis have centered on anterior convex staples or polypropylene tethers. We hypothesized that an allograft tendon tether inserted via the costo-transverse foramen would correct an established spinal deformity. In the pilot study, six 8-week-old pigs underwent allograft tendon tethering via the costo-transverse foreman or sham to test the strength of the transplanted tendon to retard spine growth. After 4 months, spinal deformity in three planes was induced in all animals with allograft tendons. In the treatment study, the allograft tendon tether was used to treat established scoliosis in 11 8-week-old pigs (spinal deformity > 50°). Once the deformity was observed (4 months) animals were assigned to either no treatment group or allograft tendon tether group and progression assessed by monthly radiographs. At final follow-up, coronal Cobb angle and maximum vertebral axial rotation of the treatment group was significantly smaller than the non-treatment group, whereas sagittal kyphosis of the treatment group was significantly larger than the non-treatment group. In sum, a significant correction was achieved using a unilateral allograft tendon spinal tether, suggesting that an allograft tendon tethering approach may represent a novel fusion-less procedure to correct idiopathic scoliosis. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:183-192, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
1999-03-01
NASA's Propulsive Small Expendable Deployer System experiment (ProSEDS) will demonstrate the use of an electrodynamic tether, basically a long, thin wire, for propulsion. An electrodynamic tether uses the same principles as electric motors in toys, appliances and computer disk drives, and generators in automobiles and power plants. When electrical current is flowing through the tether, a magnetic field is produced that pushes against the magnetic field of the Earth. For ProSEDS, the current in the tether results by virtue of the voltage generated when the tether moves through the Earth's magnetic field at more than 17,000 mph. This approach can produce drag thrust generating useable power. Since electrodynamic tethers require no propellant, they could substantially reduce the weight of the spacecraft and provide a cost-effective method of reboosting spacecraft. The initial flight of ProSEDS is scheduled to fly aboard an Air Force Delta II rocket in the summer of 2002. In orbit, ProSEDS will deploy from a Delta II second stage. It will be a 3.1-mile (5 kilometer) long, ultrathin base-wire cornected with a 6.2-mile (10 kilometer) long nonconducting tether. This photograph shows Less Johnson, a scientist at MSFC inspecting the nonconducting part of a tether as it exits a deployer similar to the one to be used in the ProSEDS experiment. The ProSEDS experiment is managed by the Space Transportation Directorate at MSFC.
Ma, Youlong; Teng, Feiyue; Libera, Matthew
2018-06-05
Solid-phase oligonucleotide amplification is of interest because of possible applications to next-generation sequencing, multiplexed microarray-based detection, and cell-free synthetic biology. Its efficiency is, however, less than that of traditional liquid-phase amplification involving unconstrained primers and enzymes, and understanding how to optimize the solid-phase amplification process remains challenging. Here, we demonstrate the concept of solid-phase nucleic acid sequence-based amplification (SP-NASBA) and use it to study the effect of tethering density on amplification efficiency. SP-NASBA involves two enzymes, avian myeloblastosis virus reverse transcriptase (AMV-RT) and RNase H, to convert tethered forward and reverse primers into tethered double-stranded DNA (ds-DNA) bridges from which RNA - amplicons can be generated by a third enzyme, T7 RNA polymerase. We create microgels on silicon surfaces using electron-beam patterning of thin-film blends of hydroxyl-terminated and biotin-terminated poly(ethylene glycol) (PEG-OH, PEG-B). The tethering density is linearly related to the PEG-B concentration, and biotinylated primers and molecular beacon detection probes are tethered to streptavidin-activated microgels. While SP-NASBA is very efficient at low tethering densities, the efficiency decreases dramatically with increasing tethering density due to three effects: (a) a reduced hybridization efficiency of tethered molecular beacon detection probes; (b) a decrease in T7 RNA polymerase efficiency; (c) inhibition of T7 RNA polymerase activity by AMV-RT.
2006 Status of the Momentum eXchange Electrodynamic Re-Boost (MXER) Tether Development
NASA Technical Reports Server (NTRS)
Bonometti, Joseph A.; Sorensen, Kirk F.; Dankanich, John W.; Frame, Kyle L.
2006-01-01
The MXER Tether technology development is a high-payoff/high-risk investment area within the NASA In-Space Propulsion Technology (ISPT) Program. The ISPT program is managed by the NASA Headquarters Science Mission Directorate and implemented by the Marshall Space Flight Center in Huntsville, Alabama. The MXER concept was identified and competitively ranked within NASA's comprehensive Integrated In-Space Transportation Plan (IISTP); an agency-wide technology assessment activity. The objective of the MXER tether project within ISPT is to advance the technological maturation level for the MXER system, and its subsystems, as well as other space and terrestrial tether applications. Recent hardware efforts have focused on the manufacturability of space-survivable high-strength tether material and coatings, high-current electrodynamic tether, lightweight catch mechanism, high-accuracy propagator/predictor code, and efficient electron collection/current generation. Significant technical progress has been achieved with modest ISPT funding to the extent that MXER has evolved to a well-characterized system with greater capability as the design has been matured. Synergistic efforts in high-current electrodynamic tethers and efficient electron collection/current generation have been made possible through SBIR and STTR support. The entire development endeavor was orchestrated as a collaborative team effort across multiple individual contracts and has established a solid technology resource base, which permits a wide variety of future space cable/tether applications to be realized.
Gervasi, Marco; Sisti, Davide; Benelli, Piero; Fernández-Peña, Eneko; Calcabrini, Cinzia; Rocchi, Marco B L; Lanata, Luigi; Bagnasco, Michela; Tonti, Andrea; Vilberto, Stocchi; Sestili, Piero
2017-07-01
In professional road cyclists, the majority of overuse injuries affect the lower limbs and are mostly represented by contractures or muscle shortening, characterized by an increase of tone and stiffness and a variation of elasticity. Treatment and prevention of these specific conditions may include physical, supplementary, and pharmacologic support. The aim of this real-life study was to determine: first, the alterations of tone, stiffness, elasticity, and soreness of rectus femoris (RF) and biceps femoris (BF) in top class cyclists engaged in 3 multistage races, and second, whether any variable in the management of the athletes may affect the prevention and/or reduction of such alterations.Twenty-three professional cyclists competing in 3 international, cycling stage races were assessed. Athletes could receive, upon the approval of the medical staff, physical, dietary, and/or pharmacological management which could include treatments with topical over-the-counter myorelaxants to prevent and/or reduce muscle contractures. MyotonPro was used to daily measure tone, stiffness, and elasticity in RF and BF in relaxed and contracted state after every stage. In parallel, BF and RF soreness was also assessed with a Likert scale.All athletes received the same general massage management; none of them received dietary supplements; some of the athletes were treated with a topical myorelaxant thiocolchicoside (TCC 0.25%) foam 3 times daily. TCC was identified as the only variable able to affect these muscle parameters in the cyclists. Tone, stiffness (regardless of the state), and soreness significantly increased over time either in BF or RF in all athletes. In the group of athletes that used TCC (n = 11; TCC+) the increase in tone, stiffness, and soreness was significantly lower than in the group not receiving TCC (n = 12; No-TCC). Elasticity varied coherently with tone and stiffness.A very intense and protracted sport activity increases muscular tone, stiffness, and soreness over time. Topical TCC foam significantly attenuates these alterations and might represent an efficient strategy both to prevent and manage contractures and their consequences in professional cyclists as well in athletes from other disciplines involving similar workloads.
Hamstrings Stiffness and Landing Biomechanics Linked to Anterior Cruciate Ligament Loading
Blackburn, J. Troy; Norcross, Marc F.; Cannon, Lindsey N.; Zinder, Steven M.
2013-01-01
Context: Greater hamstrings stiffness is associated with less anterior tibial translation during controlled perturbations. However, it is unclear how hamstrings stiffness influences anterior cruciate ligament (ACL) loading mechanisms during dynamic tasks. Objective: To evaluate the influence of hamstrings stiffness on landing biomechanics related to ACL injury. Design: Cross-sectional study. Setting: Research laboratory. Patients or Other Participants: A total of 36 healthy, physically active volunteers (18 men, 18 women; age = 23 ± 3 years, height = 1.8 ± 0.1 m, mass = 73.1 ± 16.6 kg). Intervention(s): Hamstrings stiffness was quantified via the damped oscillatory technique. Three-dimensional lower extremity kinematics and kinetics were captured during a double-legged jump-landing task via a 3-dimensional motion-capture system interfaced with a force plate. Landing biomechanics were compared between groups displaying high and low hamstrings stiffness via independent-samples t tests. Main Outcome Measure(s): Hamstrings stiffness was normalized to body mass (N/m·kg−1). Peak knee-flexion and -valgus angles, vertical and posterior ground reaction forces, anterior tibial shear force, internal knee-extension and -varus moments, and knee-flexion angles at the instants of each peak kinetic variable were identified during the landing task. Forces were normalized to body weight, whereas moments were normalized to the product of weight and height. Results: Internal knee-varus moment was 3.6 times smaller in the high-stiffness group (t22 = 2.221, P = .02). A trend in the data also indicated that peak anterior tibial shear force was 1.1 times smaller in the high-stiffness group (t22 = 1.537, P = .07). The high-stiffness group also demonstrated greater knee flexion at the instants of peak anterior tibial shear force and internal knee-extension and -varus moments (t22 range = 1.729–2.224, P < .05). Conclusions: Greater hamstrings stiffness was associated with landing biomechanics consistent with less ACL loading and injury risk. Musculotendinous stiffness is a modifiable characteristic; thus exercises that enhance hamstrings stiffness may be important additions to ACL injury-prevention programs. PMID:24303987
Spoon, Corrie; Moravec, W J; Rowe, M H; Grant, J W; Peterson, E H
2011-12-01
Spatial and temporal properties of head movement are encoded by vestibular hair cells in the inner ear. One of the most striking features of these receptors is the orderly structural variation in their mechanoreceptive hair bundles, but the functional significance of this diversity is poorly understood. We tested the hypothesis that hair bundle structure is a significant contributor to hair bundle mechanics by comparing structure and steady-state stiffness of 73 hair bundles at varying locations on the utricular macula. Our first major finding is that stiffness of utricular hair bundles varies systematically with macular locus. Stiffness values are highest in the striola, near the line of hair bundle polarity reversal, and decline exponentially toward the medial extrastriola. Striolar bundles are significantly more stiff than those in medial (median: 8.9 μN/m) and lateral (2.0 μN/m) extrastriolae. Within the striola, bundle stiffness is greatest in zone 2 (106.4 μN/m), a band of type II hair cells, and significantly less in zone 3 (30.6 μN/m), which contains the only type I hair cells in the macula. Bathing bundles in media that break interciliary links produced changes in bundle stiffness with predictable time course and magnitude, suggesting that links were intact in our standard media and contributed normally to bundle stiffness during measurements. Our second major finding is that bundle structure is a significant predictor of steady-state stiffness: the heights of kinocilia and the tallest stereocilia are the most important determinants of bundle stiffness. Our results suggest 1) a functional interpretation of bundle height variability in vertebrate vestibular organs, 2) a role for the striola in detecting onset of head movement, and 3) the hypothesis that differences in bundle stiffness contribute to diversity in afferent response dynamics.
Steady-state stiffness of utricular hair cells depends on macular location and hair bundle structure
Spoon, Corrie; Moravec, W. J.; Rowe, M. H.; Grant, J. W.
2011-01-01
Spatial and temporal properties of head movement are encoded by vestibular hair cells in the inner ear. One of the most striking features of these receptors is the orderly structural variation in their mechanoreceptive hair bundles, but the functional significance of this diversity is poorly understood. We tested the hypothesis that hair bundle structure is a significant contributor to hair bundle mechanics by comparing structure and steady-state stiffness of 73 hair bundles at varying locations on the utricular macula. Our first major finding is that stiffness of utricular hair bundles varies systematically with macular locus. Stiffness values are highest in the striola, near the line of hair bundle polarity reversal, and decline exponentially toward the medial extrastriola. Striolar bundles are significantly more stiff than those in medial (median: 8.9 μN/m) and lateral (2.0 μN/m) extrastriolae. Within the striola, bundle stiffness is greatest in zone 2 (106.4 μN/m), a band of type II hair cells, and significantly less in zone 3 (30.6 μN/m), which contains the only type I hair cells in the macula. Bathing bundles in media that break interciliary links produced changes in bundle stiffness with predictable time course and magnitude, suggesting that links were intact in our standard media and contributed normally to bundle stiffness during measurements. Our second major finding is that bundle structure is a significant predictor of steady-state stiffness: the heights of kinocilia and the tallest stereocilia are the most important determinants of bundle stiffness. Our results suggest 1) a functional interpretation of bundle height variability in vertebrate vestibular organs, 2) a role for the striola in detecting onset of head movement, and 3) the hypothesis that differences in bundle stiffness contribute to diversity in afferent response dynamics. PMID:21918003
Phase 3 study of selected tether applications in space, mid-term review
NASA Technical Reports Server (NTRS)
1986-01-01
Topics addressed include: guidelines for the Space Transportation System (STS) payload deployer design; mini-orbital maneuvering vehicle (MOMV) design: shuttle tether deployer systems (STEDS); cost modeling; tethered platform analysis; fuel savings analysis; and STEDS control simulation.
Secomb, Josh L.; Nimphius, Sophia; Farley, Oliver R.L.; Lundgren, Lina E.; Tran, Tai T.; Sheppard, Jeremy M.
2015-01-01
The purpose of the present study was to determine whether any relationships were present between lower-body muscle structure and, lower-body strength, variables measured during a countermovement jump (CMJ) and squat jump (SJ), and eccentric leg stiffness, in adolescent athletes. Thirty junior male (n = 23) and female (n = 7) surfing athletes (14.8 ± 1.7 y; 1.63 ± 0.09 m; 54.8 ± 12.1 kg) undertook lower-body muscle structure assessment with ultrasonography and performed a; CMJ, SJ and an isometric mid-thigh pull (IMTP). In addition, eccentric leg stiffness was calculated from variables of the CMJ and IMTP. Moderate to very large relationships (r = 0.46-0.73) were identified between the thickness of the vastus lateralis (VL) and lateral gastrocnemius (LG) muscles, and VL pennation angle and; peak force (PF) in the CMJ, SJ and IMTP. Additionally, moderate to large relationships (r = 0.37-0.59) were found between eccentric leg stiffness and; VL and LG thickness, VL pennation angle, and LG fascicle length, with a large relationship (r = 0.59) also present with IMTP PF. These results suggest that greater thickness of the VL and LG were related to improved maximal dynamic and isometric strength, likely due to increased hypertrophy of the extensor muscles. Furthermore, this increased thickness was related to greater eccentric leg stiffness, as the associated enhanced lower-body strength likely allowed for greater neuromuscular activation, and hence less compliance, during a stretch-shortening cycle. Key points Greater thickness of the VL and LG muscles were significantly related to an enhanced ability to express higher levels of isometric and dynamic strength, and explosiveness in adolescent athletes. Isometric strength underpinned performance in the CMJ and SJ in these athletes. Greater lower-body isometric strength was significantly related to eccentric leg stiffness, which is potentially the result of greater neuromuscular activation in the muscle-tendon unit. PMID:26664263
Electrodynamic Tether Operations beyond the Ionosphere in the Low-Density Magnetosphere
NASA Technical Reports Server (NTRS)
Stone, Nobie H.
2007-01-01
In the classical concept for the operation of electrodynamic tethers in space, a voltage is generated across the tether, either by the tether's orbital motion through the earth's planetary magnetic field or by a power supply; electrons are then collected from the ionospheric plasma at the positive pole; actively emitted back into space at the negative pole; and the circuit is closed by currents driven through the ambient conducting ionosphere. This concept has been proven to work in space by the Tethered Satellite System TSS-1 and TSS-1R Space Shuttle missions; and the Plasma Motor-Generator (PMG) tether flight experiment. However, it limits electrodynamic tether operations to the F-region of the ionosphere where the plasma density is sufficient to conduct the required currents--in other words, between altitudes of approximately 200 to 1000 km in sunlight. In the earth's shadow, the ionospheric density drops precipitously and tether operations, using the above approach, are not effective--even within this altitude range. There are numerous missions that require in-space propulsion in the Earth's shadow and/or outside of the above altitude range. This paper will, therefore, present the fundamentals of a concept that would allow electrodynamic tethers to operate almost anywhere within the magnetosphere, the region of space containing the earth's planetary magnetic field. In other words, because operations would be virtually independent of any ambient plasma, the range of electrodynamic operations would be extended into the earth's shadow and out to synchronous orbit--forty times the present operational range. The key to this concept is the active generation of plasma at each pole of the tether so that current generation ,does not depend on the conductivity of the ambient ionosphere. Arguments will be presented, based on ,existing flight data, which shed light on the behavior of charge emissions in space and show the plausibility of the concept.
Okullo, Alfin; Yuminaga, Yuigi; Ziaziaris, William; Ende, David; Lau, Howard; Brooks, Andrew; Patel, Manish I; Bariol, Simon
2017-06-01
Many surgeons use a stent after ureteroscopic lithotripsy (URSL). For short-term stenting purposes, a surgeon has the choice of either a tethered or a non-tethered stent. Stents may be associated with complications that entail an additional cost to their use. There is a paucity of data on the direct healthcare cost of using stent type after either primary or secondary URSL. We retrospectively reviewed medical records for patients who underwent URSL for uncomplicated urolithiasis between January 2013 and December 2013 at two tertiary referral hospitals. Costs data was sourced from the costing department with complete data available for 134 patients. The overall medical care cost was estimated by computing the cost of surgery, stent-related emergency department presentations, re-admissions and stent removal. A total of 113 patients had tethered stents and 21 had non-tethered stents, with similar age and gender composition between the two groups and complications rates. The mean cost of URSL and stent placement was A$3071.7 ± A$906.8 versus A$3423.8 ± A$808.4 (P = 0.049), mean cost of managing complications was A$309.4 ± A$1744.8 versus A$31.3 ± A$98.9 (P = 0.096), mean cost of out-patient clinic stent removal was A$222.5 ± A$60 versus A$1013.6 ± A$75.4 (P < 0.001) for endoscopic stent removal, overall mean cost of care was A$3603.6 ± A$1896.7 versus A$4468.1 ± A$820.8 (P = 0.042) for tethered and non-tethered stents, respectively. It is cheaper to use a tethered ureteric stent compared with non-tethered stents for short-term stenting after uncomplicated URSL, with a mean cost saving of A$864.5. © 2017 Royal Australasian College of Surgeons.
Experiments and simulation of a net closing mechanism for tether-net capture of space debris
NASA Astrophysics Data System (ADS)
Sharf, Inna; Thomsen, Benjamin; Botta, Eleonora M.; Misra, Arun K.
2017-10-01
This research addresses the design and testing of a debris containment system for use in a tether-net approach to space debris removal. The tether-net active debris removal involves the ejection of a net from a spacecraft by applying impulses to masses on the net, subsequent expansion of the net, the envelopment and capture of the debris target, and the de-orbiting of the debris via a tether to the chaser spacecraft. To ensure a debris removal mission's success, it is important that the debris be successfully captured and then, secured within the net. To this end, we present a concept for a net closing mechanism, which we believe will permit consistently successful debris capture via a simple and unobtrusive design. This net closing system functions by extending the main tether connecting the chaser spacecraft and the net vertex to the perimeter and around the perimeter of the net, allowing the tether to actuate closure of the net in a manner similar to a cinch cord. A particular embodiment of the design in a laboratory test-bed is described: the test-bed itself is comprised of a scaled-down tether-net, a supporting frame and a mock-up debris. Experiments conducted with the facility demonstrate the practicality of the net closing system. A model of the net closure concept has been integrated into the previously developed dynamics simulator of the chaser/tether-net/debris system. Simulations under tether tensioning conditions demonstrate the effectiveness of the closure concept for debris containment, in the gravity-free environment of space, for a realistic debris target. The on-ground experimental test-bed is also used to showcase its utility for validating the dynamics simulation of the net deployment, and a full-scale automated setup would make possible a range of validation studies of other aspects of a tether-net debris capture mission.
Elastic issues and vibration reduction in a tethered deorbiting mission
NASA Astrophysics Data System (ADS)
Sabatini, Marco; Gasbarri, Paolo; Palmerini, Giovanni B.
2016-05-01
Recently proposed mission concepts involving harpoons or nets to capture and de-orbit debris represent an interesting application of the tethered systems, where the orbiting bodies are connected by a flexible link. These systems present a complex behavior, as flexible characteristics combine with orbital dynamics. The focus of the paper is on the dynamic behavior of the tethered system in the final phase of the de-orbiting mission, when a powerful apogee motor is used to change the debris orbit. The thrust action introduces significant issues, as elastic waves propagate along the tether, and the relevant oscillations couple with the orbital dynamics. Input shaping techniques are proposed to limit or cancel these oscillations. However, the performance of these techniques drops when non-ideal scenarios are considered. In particular, an initially slack tether is a serious issue that must be solved if acceptably low oscillations of the tether are to be obtained. Three strategies are proposed and discussed in this paper to remove the slack condition: a natural drift of the chaser by means of a single impulse, a controlled maneuver for precisely adjusting the relative distance between chaser spacecraft and debris, and a retrieval mechanism for changing the tether length.
A new class of tunable hypersonic phononic crystals based on polymer-tethered colloids
Alonso-Redondo, E.; Schmitt, M.; Urbach, Z.; Hui, C. M.; Sainidou, R.; Rembert, P.; Matyjaszewski, K.; Bockstaller, M. R.; Fytas, G.
2015-01-01
The design and engineering of hybrid materials exhibiting tailored phononic band gaps are fundamentally relevant to innovative material technologies in areas ranging from acoustics to thermo-optic devices. Phononic hybridization gaps, originating from the anti-crossing between local resonant and propagating modes, have attracted particular interest because of their relative robustness to structural disorder and the associated benefit to ‘manufacturability'. Although hybridization gap materials are well known, their economic fabrication and efficient control of the gap frequency have remained elusive because of the limited property variability and expensive fabrication methodologies. Here we report a new strategy to realize hybridization gap materials by harnessing the ‘anisotropic elasticity' across the particle–polymer interface in densely polymer-tethered colloidal particles. Theoretical and Brillouin scattering analysis confirm both the robustness to disorder and the tunability of the resulting hybridization gap and provide guidelines for the economic synthesis of new materials with deliberately controlled gap position and width frequencies. PMID:26390851
Performance variation due to stiffness in a tuna-inspired flexible foil model.
Rosic, Mariel-Luisa N; Thornycroft, Patrick J M; Feilich, Kara L; Lucas, Kelsey N; Lauder, George V
2017-01-17
Tuna are fast, economical swimmers in part due to their stiff, high aspect ratio caudal fins and streamlined bodies. Previous studies using passive caudal fin models have suggested that while high aspect ratio tail shapes such as a tuna's generally perform well, tail performance cannot be determined from shape alone. In this study, we analyzed the swimming performance of tuna-tail-shaped hydrofoils of a wide range of stiffnesses, heave amplitudes, and frequencies to determine how stiffness and kinematics affect multiple swimming performance parameters for a single foil shape. We then compared the foil models' kinematics with published data from a live swimming tuna to determine how well the hydrofoil models could mimic fish kinematics. Foil kinematics over a wide range of motion programs generally showed a minimum lateral displacement at the narrowest part of the foil, and, immediately anterior to that, a local area of large lateral body displacement. These two kinematic patterns may enhance thrust in foils of intermediate stiffness. Stiffness and kinematics exhibited subtle interacting effects on hydrodynamic efficiency, with no one stiffness maximizing both thrust and efficiency. Foils of intermediate stiffnesses typically had the greatest coefficients of thrust at the highest heave amplitudes and frequencies. The comparison of foil kinematics with tuna kinematics showed that tuna motion is better approximated by a zero angle of attack foil motion program than by programs that do not incorporate pitch. These results indicate that open questions in biomechanics may be well served by foil models, given appropriate choice of model characteristics and control programs. Accurate replication of biological movements will require refinement of motion control programs and physical models, including the creation of models of variable stiffness.
Golkar, Mahsa A.; Sobhani Tehrani, Ehsan; Kearney, Robert E.
2017-01-01
Dynamic joint stiffness is a dynamic, nonlinear relationship between the position of a joint and the torque acting about it, which can be used to describe the biomechanics of the joint and associated limb(s). This paper models and quantifies changes in ankle dynamic stiffness and its individual elements, intrinsic and reflex stiffness, in healthy human subjects during isometric, time-varying (TV) contractions of the ankle plantarflexor muscles. A subspace, linear parameter varying, parallel-cascade (LPV-PC) algorithm was used to identify the model from measured input position perturbations and output torque data using voluntary torque as the LPV scheduling variable (SV). Monte-Carlo simulations demonstrated that the algorithm is accurate, precise, and robust to colored measurement noise. The algorithm was then used to examine stiffness changes associated with TV isometric contractions. The SV was estimated from the Soleus EMG using a Hammerstein model of EMG-torque dynamics identified from unperturbed trials. The LPV-PC algorithm identified (i) a non-parametric LPV impulse response function (LPV IRF) for intrinsic stiffness and (ii) a LPV-Hammerstein model for reflex stiffness consisting of a LPV static nonlinearity followed by a time-invariant state-space model of reflex dynamics. The results demonstrated that: (a) intrinsic stiffness, in particular ankle elasticity, increased significantly and monotonically with activation level; (b) the gain of the reflex pathway increased from rest to around 10–20% of subject's MVC and then declined; and (c) the reflex dynamics were second order. These findings suggest that in healthy human ankle, reflex stiffness contributes most at low muscle contraction levels, whereas, intrinsic contributions monotonically increase with activation level. PMID:28579954
Tethered float liquid level sensor
Daily, III, William Dean
2016-09-06
An apparatus for sensing the level of a liquid includes a float, a tether attached to the float, a pulley attached to the tether, a rotation sensor connected to the pulley that senses vertical movement of said float and senses the level of the liquid.
NASA Technical Reports Server (NTRS)
Reese, T. G.; Baracat, W. A.; Butner, C. L.
1986-01-01
The handbook provides a list and description of ongoing tether programs. This includes the joint U.S.-Italy demonstration project, and individual U.S. and Italian studies and demonstration programs. An overview of the current activity level and areas of emphasis in this emerging field is provided. The fundamental physical principles behind the proposed tether applications are addressed. Four basic concepts of gravity gradient, rotation, momentum exchange, and electrodynamics are discussed. Information extracted from literature, which supplements and enhances the tether applications is also presented. A bibliography is appended.
Tether Elevator Crawler Systems (TECS)
NASA Technical Reports Server (NTRS)
Swenson, Frank R.
1987-01-01
One of the needs of the experimenters on the space station is access to steady and controlled-variation microgravity environments. A method of providing these environments is to place the experiment on a tether attached to the space station. This provides a high degree of isolation from structural oscillations and vibrations. Crawlers can move these experiments along the tethers to preferred locations, much like an elevator. This report describes the motion control laws developed for these crawlers and the testing of laboratory models of these tether elevator crawlers.
High voltage characteristics of the electrodynamic tether and the generation of power and propulsion
NASA Technical Reports Server (NTRS)
Williamson, P. R.
1986-01-01
The Tethered Satellite System (TSS) will deploy and retrieve a satellite from the Space Shuttle orbiter with a tether of up to 100 km in length attached between the satellite and the orbiter. The characteristics of the TSS which are related to high voltages, electrical currents, energy storage, power, and the generation of plasma waves are described. A number of specific features of the tether system of importance in assessing the operational characteristics of the electrodynamic TSS are identified.
Preliminary studies of a spinning tether-connected TRIO concept
NASA Astrophysics Data System (ADS)
Crellin, E. B.
1985-04-01
Use of a slowly spinning interferometer configuration with the telescopes attached to the central station using tethers of equal length, including tether configuration, mass and storage is discussed. Slow rotation allows measurements of each source at different baseline angles. When the maximum baseline length is reached, the tethers can be retracted (stopping at intermediate lengths for further measurements, if required) and the telescopes recaptured by the central station. The attitude change to another source can be performed with the rigid configuration.
Transportation using spinning tethers with emphasis on phasing and plane change
NASA Technical Reports Server (NTRS)
Henderson, David G.
1989-01-01
This paper studies the potential uses of spinning tethers as components in a transportation system. Additional degrees of freedom in the selection of transfer orbits as well as phasing control are introduced by allowing both the spin rate of the tethers to be controllable and by allowing the ejection and capture points to be anywhere along the tether length. Equations are derived for the phasing of the planar transfer problem. A construction algorithm for nonplanar transfers is developed and nonplanar phasing conditions are examined.
NASA Astrophysics Data System (ADS)
Kong, Xiangdong; Ba, Kaixian; Yu, Bin; Cao, Yuan; Zhu, Qixin; Zhao, Hualong
2016-05-01
Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit (HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation, i.e., this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters, thereby, the online PID parameters tuning control method which is complex needs not be adopted. All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness.
NASA Astrophysics Data System (ADS)
Ermilov, Sergey A.; Brownell, William E.; Anvari, Bahman
2004-06-01
The plasma membrane (PM) of mammalian outer hair cells (OHCs) generates mechanical forces in response to changes in the transmembrane electrical potential. The resulting change in the cell length is known as electromotility. Salicylate (Sal), the anionic, amphipathic derivative of aspirin induces reversible hearing loss and decreases electromotile response of the OHCs. Sal may change the local curvature and mechanical properties of the PM, eventually resulting in reduced electromotility or it may compete with intracellular monovalent anions, particularly Cl-, which are essential for electromotility. In this work we have used optical tweezers to study the effects of Sal on viscoelastic properties of the OHC PM when separated from the underlying composite structures of the cell wall. In this procedure, an optically trapped microsphere is brought in contact with PM and subsequently pulled away to form a tether. We measured the force exerted on the tether as a function of time during the process of tether growth at different pulling rates. Effective tether viscosity, steady-state tethering force extrapolated to zero pulling rate, and the time constant for tether growth were estimated from the measurements of the instantaneous tethering force. The time constant for the tether growth measured for the OHC basal end decreased 1.65 times after addition of 10 mM Sal, which may result from an interaction between Sal and cholesterol, which is more prevalent in the PM of OHC basal end. The time constants for the tether growth calculated for the OHC lateral wall and control human embryonic kidney cells as well as the other calculated viscoelastic parameters remained the same after Sal perfusion, favoring the hypothesis of competitive inhibition of electromotility by salicylate.
Miyamoto, Naokazu; Hirata, Kosuke; Miyamoto-Mikami, Eri; Yasuda, Osamu; Kanehisa, Hiroaki
2018-05-29
Joint range of motion (ROM) is an important parameter for athletic performance and muscular injury risk. Nonetheless, a complete description of muscular factors influencing ROM among individuals and between men and women is lacking. We examined whether passive muscle stiffness (evaluated by angle-specific muscle shear modulus), tolerance to muscle stretch (evaluated by muscle shear modulus at end-ROM), and muscle slack angle of the triceps surae are associated with the individual variability and sex difference in dorsiflexion ROM, using ultrasound shear wave elastography. For men, ROM was negatively correlated to passive muscle stiffness of the medial and lateral gastrocnemius in a tensioned state and positively to tolerance to muscle stretch in the medial gastrocnemius. For women, ROM was only positively correlated to tolerance to muscle stretch in all muscles but not correlated to passive muscle stiffness. Muscle slack angle was not correlated to ROM in men and women. Significant sex differences were observed only for dorsiflexion ROM and passive muscle stiffness in a tensioned state. These findings suggest that muscular factors associated with ROM are different between men and women. Furthermore, the sex difference in dorsiflexion ROM might be attributed partly to that in passive muscle stiffness of plantar flexors.
NASA Technical Reports Server (NTRS)
Arnold, D. A.; Dobrowolny, M.
1981-01-01
An algorithm for using electric currents to control pendular oscillations induced by various perturbing forces on the Skyhook wire is considered. Transverse and vertical forces on the tether; tether instability modes and causes during retrieval by space shuttle; simple and spherical pendulum motion and vector damping; and current generation and control are discussed. A computer program for numerical integration of the in-plane and out-of-plane displacements of the tether vs time was developed for heuristic study. Some techniques for controlling instabilities during payload retrieval and methods for employing the tether for launching satellites from the space shuttle are considered. Derivations and analyses of a general nature used in all of the areas studied are included.
The Propulsive Small Expendable Deployer System (ProSEDS)
NASA Technical Reports Server (NTRS)
Lorenzini, Enrico C.; Cosmo, Mario L.; Estes, Robert D.; Sanmartin, Juan; Pelaez, Jesus; Ruiz, Manuel
2003-01-01
This Final Report covers the following main topics: 1) Brief Description of ProSEDS; 2) Mission Analysis; 3) Dynamics Reference Mission; 4) Dynamics Stability; 5) Deployment Control; 6) Updated System Performance; 7) Updated Mission Analysis; 8) Updated Dynamics Reference Mission; 9) Updated Deployment Control Profiles and Simulations; 10) Updated Reference Mission; 11) Evaluation of Power Delivered by the Tether; 12) Deployment Control Profile Ref. #78 and Simulations; 13) Kalman Filters for Mission Estimation; 14) Analysis/Estimation of Deployment Flight Data; 15) Comparison of ED Tethers and Electrical Thrusters; 16) Dynamics Analysis for Mission Starting at a Lower Altitude; 17) Deployment Performance at a Lower Altitude; 18) Satellite Orbit after a Tether Cut; 19) Deployment with Shorter Dyneema Tether Length; 20) Interactive Software for ED Tethers.
Scientific and technical applications of a tethered satellite system
NASA Technical Reports Server (NTRS)
Snoddy, W. C.
1979-01-01
A Shuttle-borne tether system capable of deploying a tether to radial distances as great as 100 km was described by Rupp and Laue (1978). The system as discussed by Rupp and Laue would have a total mass of 700 kg and would be mounted on one Shuttle pallet. It would consist of a tether reel mechanism complete with a servo drive motor and control sensors, a boom with docking probe used for initial deployment and subsequent retrieval, some type of satellite weighing 175 kg, up to 100 km of synthetic or metallic tether approximately 1 mm in diameter, a digital control computer, and a control and display panel on the Orbiter aft flight deck for crew operation. The primary use of a tether system for geological applications would be in the measurement of those magnetic and gravitational fields associated with geological structures. The major appeal in connection with atmospheric applications is the system's ability to extend instrumentation down into the lower thermosphere and possibly the mesosphere.
A Model for Dynamic Simulation and Analysis of Tether Momentum Exchange
NASA Technical Reports Server (NTRS)
Canfield, Stephen; Johnson, David; Sorensen, Kirk; Welzyn, Ken; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
Momentum-exchange/electrodynamic reboost (MXER) tether systems may enable high-energy missions to the Moon, Mars, and beyond by serving as an 'upper stage in space'. Existing rockets that use an MXER tether station could double their capability to launch communications satellites and help improve US competitiveness. A MXER tether station would boost spacecraft from low Earth orbit to a high-energy orbit quickly, like a high-thrust rocket. Then, using the same principles that make an electric motor work, it would slowly rebuild its orbital momentum by pushing against the Earth's magnetic field-without using any propellant. One of the significant challenges in developing a momentum-exchange/electrodynamic reboost tether systems is in the analysis and design of the capture mechanism and its effects on the overall dynamics of the system. This paper will present a model for a momentum-exchange tether system that can simulate and evaluate the performance and requirements of such a system.
An ER-peroxisome tether exerts peroxisome population control in yeast
Knoblach, Barbara; Sun, Xuejun; Coquelle, Nicolas; Fagarasanu, Andrei; Poirier, Richard L; Rachubinski, Richard A
2013-01-01
Eukaryotic cells compartmentalize biochemical reactions into membrane-enclosed organelles that must be faithfully propagated from one cell generation to the next. Transport and retention processes balance the partitioning of organelles between mother and daughter cells. Here we report the identification of an ER-peroxisome tether that links peroxisomes to the ER and ensures peroxisome population control in the yeast Saccharomyces cerevisiae. The tether consists of the peroxisome biogenic protein, Pex3p, and the peroxisome inheritance factor, Inp1p. Inp1p bridges the two compartments by acting as a molecular hinge between ER-bound Pex3p and peroxisomal Pex3p. Asymmetric peroxisome division leads to the formation of Inp1p-containing anchored peroxisomes and Inp1p-deficient mobile peroxisomes that segregate to the bud. While peroxisomes in mother cells are not released from tethering, de novo formation of tethers in the bud assists in the directionality of peroxisome transfer. Peroxisomes are thus stably maintained over generations of cells through their continued interaction with tethers. PMID:23900285
Developing Capture Mechanisms and High-Fidelity Dynamic Models for the MXER Tether System
NASA Technical Reports Server (NTRS)
Canfield, Steven L.
2007-01-01
A team consisting of collaborators from Tennessee Technological University (TTU), Marshall Space Flight Center, BD Systems, and the University of Delaware (herein called the TTU team) conducted specific research and development activities in MXER tether systems during the base period of May 15, 2004 through September 30, 2006 under contract number NNM04AB13C. The team addressed two primary topics related to the MXER tether system: 1) Development of validated high-fidelity dynamic models of an elastic rotating tether and 2) development of feasible mechanisms to enable reliable rendezvous and capture. This contractor report will describe in detail the activities that were performed during the base period of this cycle-2 MXER tether activity and will summarize the results of this funded activity. The primary deliverables of this project were the quad trap, a robust capture mechanism proposed, developed, tested, and demonstrated with a high degree of feasibility and the detailed development of a validated high-fidelity elastic tether dynamic model provided through multiple formulations.
NASA Astrophysics Data System (ADS)
Johnson, Les; Bilén, Sven G.; Gilchrist, Brian E.; Krause, Linda Habash
2017-09-01
This Special Section of Acta Astronautica contains several peer-reviewed papers selected from among those presented at the Fifth International Conference on Tethers in Space (TiS2016). After a hiatus of 21 years since the last Conference on Tethers in Space, TiS2016 brought together experts, practitioners, and other interested in space tethers and related fields. TiS2016 was held May 24-26, 2016 at The University of Michigan in Ann Arbor, Michigan, U.S.A. Leveraging the hard work of a great many volunteers, the conference co-chairs Prof. Brian Gilchrist and Prof. Sven Bilén welcomed an international contingent with authors from the U.S., Canada, Japan, Spain, China, Finland, Estonia, and Italy. The community provided updates on what has transpired since their last gathering by providing lessons learned; describing new technologies and subsystems; and proposing new tether missions and applications. Papers overviewed de-orbit systems, power generation, orbital maneuvering, momentum capture, debris removal, space tugs, space elevators, collision avoidance, and tether dynamics, among others.
Kümmel, D; Heinemann, U
2008-04-01
The term 'tethering factor' has been coined for a heterogeneous group of proteins that all are required for protein trafficking prior to vesicle docking and SNARE-mediated membrane fusion. Two groups of tethering factors can be distinguished, long coiled-coil proteins and multi-subunit complexes. To date, eight such protein complexes have been identified in yeast, and they are required for different trafficking steps. Homologous complexes are found in all eukaryotic organisms, but conservation seems to be less strict than for other components of the trafficking machinery. In fact, for most proposed multi-subunit tethers their ability to actually bridge two membranes remains to be shown. Here we discuss recent progress in the structural and functional characterization of tethering complexes and present the emerging view that the different complexes are quite diverse in their structure and the molecular mechanisms underlying their function. TRAPP and the exocyst are the structurally best characterized tethering complexes. Their comparison fails to reveal any similarity on a struc nottural level. Furthermore, the interactions with regulatory Rab GTPases vary, with TRAPP acting as a nucleotide exchange factor and the exocyst being an effector. Considering these differences among the tethering complexes as well as between their yeast and mammalian orthologs which is apparent from recent studies, we suggest that tethering complexes do not mediate a strictly conserved process in vesicular transport but are diverse regulators acting after vesicle budding and prior to membrane fusion.
Correas, Jean-Michel; Anglicheau, Dany; Gennisson, Jean-Luc; Tanter, Mickael
2016-04-01
Renal elastography has become available with the development of noninvasive quantitative techniques (including shear-wave elastography), following the rapidly growing field of diagnosis and quantification of liver fibrosis, which has a demonstrated major clinical impact. Ultrasound or even magnetic resonance techniques are leaving the pure research area to reach the routine clinical use. With the increased incidence of chronic kidney disease and its specific morbidity and mortality, the noninvasive diagnosis of renal fibrosis can be of critical value. However, it is difficult to simply extend the application from one organ to the other due to a large number of anatomical and technical issues. Indeed, the kidney exhibits various features that make stiffness assessment more complex, such as the presence of various tissue types (cortex, medulla), high spatial orientation (anisotropy), local blood flow, fatty sinus with variable volume and echotexture, perirenal space with variable fatty content, and the variable depth of the organ. Furthermore, the stiffness changes of the renal parenchyma are not exclusively related to fibrosis, as renal perfusion or hydronephrosis will impact the local elasticity. Renal elastography might be able to diagnose acute or chronic obstruction, or to renal tumor or pseudotumor characterization. Today, renal elastography appears as a promising application that still requires optimization and validation, which is the contrary for liver stiffness assessment. Copyright © 2016 Association Société de néphrologie. Published by Elsevier SAS. All rights reserved.
49 CFR 571.225 - Standard No. 225; Child restraint anchorage systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... strength steel tether hook for attachment to the tether anchorage. The tether hook meets the specifications... systems to ensure their proper location and strength for the effective securing of child restraints, to... manufactured on or after September 1, 1999, shall comply with the configuration, location, marking and strength...
49 CFR 571.225 - Standard No. 225; Child restraint anchorage systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... strength steel tether hook for attachment to the tether anchorage. The tether hook meets the specifications... systems to ensure their proper location and strength for the effective securing of child restraints, to... manufactured on or after September 1, 1999, shall comply with the configuration, location, marking and strength...
49 CFR 571.225 - Standard No. 225; Child restraint anchorage systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... strength steel tether hook for attachment to the tether anchorage. The tether hook meets the specifications... systems to ensure their proper location and strength for the effective securing of child restraints, to... manufactured on or after September 1, 1999, shall comply with the configuration, location, marking and strength...
Electrodynamics panel presentation
NASA Technical Reports Server (NTRS)
Mccoy, J.
1986-01-01
The Plasma Motor Generator (PMG) concept is explained in detail. The PMG tether systems being used to calculate the estimated performance data is described. The voltage drops and current contact geometries involved in the operation of an electrodynamic tether are displayed illustrating the comparative behavior of hollow cathodes, electron guns, and passive collectors for current coupling into the ionosphere. The basic PMG design involving the massive tether cable with little or no satellite mass at the far end(s) are also described. The Jupiter mission and its use of electrodynamic tethers are given. The need for demonstration experiments is stressed.
Fluid-membrane tethers: minimal surfaces and elastic boundary layers.
Powers, Thomas R; Huber, Greg; Goldstein, Raymond E
2002-04-01
Thin cylindrical tethers are common lipid bilayer membrane structures, arising in situations ranging from micromanipulation experiments on artificial vesicles to the dynamic structure of the Golgi apparatus. We study the shape and formation of a tether in terms of the classical soap-film problem, which is applied to the case of a membrane disk under tension subject to a point force. A tether forms from the elastic boundary layer near the point of application of the force, for sufficiently large displacement. Analytic results for various aspects of the membrane shape are given.
NASA Technical Reports Server (NTRS)
Youngbluth, Otto; Owens, Thomas L.; Storey, Richard W.
1990-01-01
Systems take meteorological measurements for variety of research projects. Report describes work done by NASA Langley Research Center in atmospheric research using tethered balloon systems composed of commercially available equipment. Two separate tethered balloon systems described in report have payloads and configurations tailored to requirements of specific projects. Each system capable of measuring atmospheric parameter or species in situ and then telemetering this data in real time to ground station. Meteorological data and concentration of ozone typically measured. Indicates instrumented tethered balloon systems have distinct advantages over other systems for gathering data on troposphere.
Failsafe multistrand tether structures for space propulsion
NASA Astrophysics Data System (ADS)
Forward, Robert L.
1992-07-01
The development of a circularly symmetric singly crosslinked multistrand space tether, named Hoytether, is reported. The Hoytether consists of a number of primary strands running the full length of the structure, with nearest neighbor primary strands crosslinked at intervals by secondary strands that are put under load only if a section of primary strand is cut by space debris. It has been demonstrated that a multistrand tether of the singly crosslinked Hoytether design can provide a long-lived failsafe multistrand replacement for a single-strand tether while imposing a minimal mass ratio penalty.
NASA Technical Reports Server (NTRS)
Sisson, J.
1986-01-01
A reusable system is to be developed to enable a variety of scientific investigations to be accomplished from the shuttle, considering the use of a tethered system with manual or automated control, deployment of a satellite toward or away from the Earth, up to 100 km, and conducting or nonconducting tether. Experiments and scientific investigations are to be performed using the tether system for applications such as magnetometry, electrodynamics, atmospheric science, and chemical release. A program is being implemented as a cooperative U.S./Italian activity. The proposed systems, investigations, and the program are charted and briefly discussed.
Tethers as Debris: Simulating Impacts of Tether Fragments on Shuttle Tiles
NASA Technical Reports Server (NTRS)
Evans, Steven W.
2004-01-01
The SPHC hydrodynamic code was used to simulate impacts of Kevlar and aluminum projectiles on a model of the LI-900 type insulating tiles used on Space Shuffle Orbiters The intent was to examine likely damage that such tiles might experience if impacted by orbital debris consisting of tether fragments. Projectile speeds ranged from 300 meters per second to 10 kilometers per second. Damage is characterized by penetration depth, tile surface-hole diameter, tile body-cavity diameter, coating fracture diameter, tether and cavity wall material phases, and deformation of the aluminum backwall.
Precession and circularization of elliptical space-tether motion
NASA Technical Reports Server (NTRS)
Chapel, Jim D.; Grosserode, Patrick
1993-01-01
In this paper, we present a simplified analytic model for predicting motion of long space tethers. The perturbation model developed here addresses skip rope motion, where each end of the tether is held in place and the middle of the tether swings with a motion similar to that of a child's skip rope. If the motion of the tether midpoint is elliptical rather than circular, precession of the ellipse complicates the procedures required to damp this motion. The simplified analytic model developed in this paper parametrically predicts the precession of elliptical skip rope motion. Furthermore, the model shows that elliptic skip rope motion will circularize when damping is present in the longitudinal direction. Compared with high-fidelity simulation results, this simplified model provides excellent predictions of these phenomena.
Anti-sway control of tethered satellite systems using attitude control of the main satellite
NASA Astrophysics Data System (ADS)
Yousefian, Peyman; Salarieh, Hassan
2015-06-01
In this study a new method is introduced to suppress libration of a tethered satellite system (TSS). It benefits from coupling between satellites and tether libration dynamics. The control concept uses the main satellite attitude maneuvers to suppress librational motion of the tether, and the main satellite's actuators for attitude control are used as the only actuation in the system. The study considers planar motion of a two body TSS system in a circular orbit and it is assumed that the tether's motion will not change it. Governing dynamic equations of motion are derived using the extended Lagrange method. Controllability of the system around the equilibrium state is studied and a linear LQG controller is designed to regulate libration of the system. Tether tension and satellite attitude are assumed as only measurable outputs of the system. The Extended Kalman Filter (EKF) is used to estimate states of the system to be used as feedback to the controller. The designed controller and observer are implemented to the nonlinear plant and simulations demonstrate that the controller lead to reduction of the tether libration propoerly. By the way, because the controller is linear, it is applicable only at low amplitudes in the vicinity of equilibrium point. To reach global stability, a nonlinear controller is demanded.
Space Test of Bare-Wire Anode Tethers
NASA Technical Reports Server (NTRS)
Johnson, L.; Fujii, H. A.; Sanmartin, J. R.
2007-01-01
An international team, lead by Tokyo Metropolitan University, is developing a mission concept for a suborbital test of orbital-motion-limited (OML) bare-wire anode current collection for application to electrodynamic tether propulsion. The tether is a tape with a 50-mm width, 0.05-mm thickness, and 1-km length. This will be the first space test of the OML theory. In addition, by being an engineering demonstration (of space tethers), the mission will demonstrate electric beam generation for "sounding" determination of the neutral density profile in the ionospheric "E-layer." If selected by the Institute of Space and Astronautical Science/Japanese Aerospace Exploration Agency (JAXA), the mission will launch in early 2009 using an $520 Sounding Rocket. During ascent, and above =100 km in attitude, the 1-km tape tether will be deployed at a rate of 8 m/s. Once deployed, the tape tether will serve as an anode, collecting ionospheric electrons. The electrons will be expelled into space by a hollow cathode device, thereby completing the circuit and allowing current to flow.This paper will describe the objectives of the proposed mission, the technologies to be employed, and the application of the results to future space missions using electrodynamic tethers for propulsion or power generation.
The mechanics of motorised momentum exchange tethers when applied to active debris removal from LEO
NASA Astrophysics Data System (ADS)
Caldecott, Ralph; Kamarulzaman, Dayangku N. S.; Kirrane, James P.; Cartmell, Matthew P.; Ganilova, Olga A.
2014-12-01
The concept of momentum exchange when applied to space tethers for propulsion is well established, and a considerable body of literature now exists on the on-orbit modelling, the dynamics, and also the control of a large range of tether system applications. The authors consider here a new application for the Motorised Momentum Exchange Tether by highlighting three key stages of development leading to a conceptualisation that can subsequently be developed into a technology for Active Debris Removal. The paper starts with a study of the on-orbit mechanics of a full sized motorised tether in which it is shown that a laden and therefore highly massasymmetrical tether can still be forced to spin, and certainly to librate, thereby confirming its possible usefulness for active debris removal (ADR). The second part of the paper concentrates on the modelling of the centripetal deployment of a symmetrical MMET in order to get it initialized for debris removal operations, and the third and final part of the paper provides an entry into scale modelling for low cost mission design and testing. It is shown that the motorised momentum exchange tether offers a potential solution to the removal of large pieces of orbital debris, and that dynamic methodologies can be implemented to in order to optimise the emergent design.
NASA Technical Reports Server (NTRS)
Cosmo, M. L. (Editor); Lorenzini, E. C. (Editor)
1997-01-01
A new edition of the Tethers in Space Handbook was needed after the last edition published in 1989. Tether-related activities have been quite busy in the 90's. We have had the flights of TSSI and TSSI-R, SEDS-1 and -2, PMG, TIPS and OEDIPUS. In less than three years there have been one international Conference on Tethers in Space, held in Washington DC, and three workshops, held at ESA/Estec in the Netherlands, at ISAS in Japan and at the University of Michigan, Ann Harbor. The community has grown and we finally have real flight data to compare our models with. The life of spaceborne tethers has not been always easy and we got our dose of setbacks, but we feel pretty optimistic for the future. We are just stepping out of the pioneering stage to start to use tethers for space science and technological applications. As we are writing this handbook TiPs, a NRL tether project is flying above our heads. There is no emphasis in affirming that as of today spacebome tethers are a reality and their potential is far from being fully appreciated. Consequently, a large amount of new information had to be incorporated into this new edition. The general structure of the handbook has been left mostly unchanged. The past editors have set a style which we have not felt needed change. The section on the flights has been enriched with information on the scientific results. The categories of the applications have not been modified, and in some cases we have mentioned the existence of related flight data. We felt that the section contributed by Joe Carroll, called Tether Data, should be maintained as it was, being a "classic" and still very accurate and not at all obsolete. We have introduced a new chapter entitled Space Science and Tethers since flight experience has shown that tethers can complement other space-based investigations. The bibliography has been updated. Due to the great production in the last few years %e had to restrict our search to works published in refereed journal. The production, however, is much more extensive. In addition, we have included the summary of the papers presented at the last International Conference which was a forum for first-hand information on all the flights.
Three-Dimensional Structural Characterization of HIV-1 Tethered to Human Cells
Strauss, Joshua D.; Hammonds, Jason E.; Yi, Hong; Ding, Lingmei
2015-01-01
ABSTRACT Tetherin (BST2, CD317, or HM1.24) is a host cellular restriction factor that prevents the release of enveloped viruses by mechanically linking virions to the plasma membrane. The precise arrangement of tetherin molecules at the plasma membrane site of HIV-1 assembly, budding, and restriction is not well understood. To gain insight into the biophysical mechanism underlying tetherin-mediated restriction of HIV-1, we utilized cryo-electron tomography (cryo-ET) to directly visualize HIV-1 virus-like particles (VLPs) and virions tethered to human cells in three dimensions (3D). Rod-like densities that we refer to as tethers were seen connecting HIV-1 virions to each other and to the plasma membrane. Native immunogold labeling showed tetherin molecules located on HIV-1 VLPs and virions in positions similar to those of the densities observed by cryo-ET. The location of the tethers with respect to the ordered immature Gag lattice or mature conical core was random. However, tethers were not uniformly distributed on the viral membrane but rather formed clusters at sites of contact with the cell or other virions. Chains of tethered HIV-1 virions often were arranged in a linear fashion, primarily as single chains and, to a lesser degree, as branched chains. Distance measurements support the extended tetherin model, in which the coiled-coil ectodomains are oriented perpendicular with respect to the viral and plasma membranes. IMPORTANCE Tetherin is a cellular factor that restricts HIV-1 release by directly cross-linking the virus to the host cell plasma membrane. We used cryo-electron tomography to visualize HIV-1 tethered to human cells in 3D. We determined that tetherin-restricted HIV-1 virions were physically connected to each other or to the plasma membrane by filamentous tethers that resembled rods ∼15 nm in length, which is consistent with the extended tetherin model. In addition, we found the position of the tethers to be arbitrary relative to the ordered immature Gag lattice or the mature conical cores. However, when present as multiple copies, the tethers clustered at the interface between virions. Tethered HIV-1 virions were arranged in a linear fashion, with the majority as single chains. This study advances our understanding of tetherin-mediated HIV-1 restriction by defining the spatial arrangement and orientation of tetherin molecules at sites of HIV-1 restriction. PMID:26582000
Endoplasmic reticulum-plasma membrane contact sites integrate sterol and phospholipid regulation.
Quon, Evan; Sere, Yves Y; Chauhan, Neha; Johansen, Jesper; Sullivan, David P; Dittman, Jeremy S; Rice, William J; Chan, Robin B; Di Paolo, Gilbert; Beh, Christopher T; Menon, Anant K
2018-05-01
Tether proteins attach the endoplasmic reticulum (ER) to other cellular membranes, thereby creating contact sites that are proposed to form platforms for regulating lipid homeostasis and facilitating non-vesicular lipid exchange. Sterols are synthesized in the ER and transported by non-vesicular mechanisms to the plasma membrane (PM), where they represent almost half of all PM lipids and contribute critically to the barrier function of the PM. To determine whether contact sites are important for both sterol exchange between the ER and PM and intermembrane regulation of lipid metabolism, we generated Δ-super-tether (Δ-s-tether) yeast cells that lack six previously identified tethering proteins (yeast extended synatotagmin [E-Syt], vesicle-associated membrane protein [VAMP]-associated protein [VAP], and TMEM16-anoctamin homologues) as well as the presumptive tether Ice2. Despite the lack of ER-PM contacts in these cells, ER-PM sterol exchange is robust, indicating that the sterol transport machinery is either absent from or not uniquely located at contact sites. Unexpectedly, we found that the transport of exogenously supplied sterol to the ER occurs more slowly in Δ-s-tether cells than in wild-type (WT) cells. We pinpointed this defect to changes in sterol organization and transbilayer movement within the PM bilayer caused by phospholipid dysregulation, evinced by changes in the abundance and organization of PM lipids. Indeed, deletion of either OSH4, which encodes a sterol/phosphatidylinositol-4-phosphate (PI4P) exchange protein, or SAC1, which encodes a PI4P phosphatase, caused synthetic lethality in Δ-s-tether cells due to disruptions in redundant PI4P and phospholipid regulatory pathways. The growth defect of Δ-s-tether cells was rescued with an artificial "ER-PM staple," a tether assembled from unrelated non-yeast protein domains, indicating that endogenous tether proteins have nonspecific bridging functions. Finally, we discovered that sterols play a role in regulating ER-PM contact site formation. In sterol-depleted cells, levels of the yeast E-Syt tether Tcb3 were induced and ER-PM contact increased dramatically. These results support a model in which ER-PM contact sites provide a nexus for coordinating the complex interrelationship between sterols, sphingolipids, and phospholipids that maintain PM composition and integrity.
Omer, Gedikli; Gokhan, Aksan; Adem, Uzun; Sabri, Demircan; Korhan, Soylu
2014-01-01
Background: Current guidelines recommend clinical risk scoring systems for the patients diagnosed and determinated treatment strategy with in Non-ST-elevation elevation myocardial infarction (NSTEMI). Previous studies demonstrated association between aortic elasticity properties, stiffness and severity CAD. However, the associations between Aortic stiffness, elasticity properties and clinical risk scores have not been investigated. In the present study we have evaluated the relation between the Global Registry of Acute Coronary Events (GRACE) risk score and aortic stiffness in patients with NSTEMI. Method: We prospectively analyzed 87 consecutive patients with NSTEMI. Aortic elastic parameter and stiffness parameter were calculated from the echocardiographically derived thoracic aortic diameters (mm/m2), and the measurement of pulse pressure obtained by cuff sphygmomanometry. We have categorized the patients in to two groups as low ((n = 45) (GRACE risk score ≤ 140)) and high ((n = 42) (GRACE risk score > 140)) risk group according to GRACE risk score and compare the both groups. Results: Table 1 shows baseline characteristics of patients. Our study showed that Aortic strain was significantly low (3.5 ± 1.4, 7.9 ± 2.3 respectively, p < 0.001) and aortic stiffness index was significantly high (3.9 ± 0.38; 3 ± 0.35, respectively, p < 0.001) in the high risk group values compared to those with low risk group. The aortic stiffness index was the only independent predictor of GRACE risk score (OR: 119.390; 95% CI: 2.925-4872.8; p = 0.011) in multivariate analysis. Conclusion: We found a significant correlation between aortic stiffness, impaired elasticity and GRACE risk score. Aortic stiffness index was the only independent variable of the high GRACE risk score. The inclusion of aortic stiffness into the GRACE risk score could allow improved risk classification of patients with ACS at admission and this may be important in the diagnosis, follow up and treatment of the patients. PMID:25356178
Omer, Gedikli; Gokhan, Aksan; Adem, Uzun; Sabri, Demircan; Korhan, Soylu
2014-01-01
Current guidelines recommend clinical risk scoring systems for the patients diagnosed and determinated treatment strategy with in Non-ST-elevation elevation myocardial infarction (NSTEMI). Previous studies demonstrated association between aortic elasticity properties, stiffness and severity CAD. However, the associations between Aortic stiffness, elasticity properties and clinical risk scores have not been investigated. In the present study we have evaluated the relation between the Global Registry of Acute Coronary Events (GRACE) risk score and aortic stiffness in patients with NSTEMI. We prospectively analyzed 87 consecutive patients with NSTEMI. Aortic elastic parameter and stiffness parameter were calculated from the echocardiographically derived thoracic aortic diameters (mm/m(2)), and the measurement of pulse pressure obtained by cuff sphygmomanometry. We have categorized the patients in to two groups as low ((n = 45) (GRACE risk score ≤ 140)) and high ((n = 42) (GRACE risk score > 140)) risk group according to GRACE risk score and compare the both groups. Table 1 shows baseline characteristics of patients. Our study showed that Aortic strain was significantly low (3.5 ± 1.4, 7.9 ± 2.3 respectively, p < 0.001) and aortic stiffness index was significantly high (3.9 ± 0.38; 3 ± 0.35, respectively, p < 0.001) in the high risk group values compared to those with low risk group. The aortic stiffness index was the only independent predictor of GRACE risk score (OR: 119.390; 95% CI: 2.925-4872.8; p = 0.011) in multivariate analysis. We found a significant correlation between aortic stiffness, impaired elasticity and GRACE risk score. Aortic stiffness index was the only independent variable of the high GRACE risk score. The inclusion of aortic stiffness into the GRACE risk score could allow improved risk classification of patients with ACS at admission and this may be important in the diagnosis, follow up and treatment of the patients.
Investigation of In Vivo skin stiffness anisotropy in breast cancer related lymphoedema.
Coutts, L V; Miller, N R; Mortimer, P S; Bamber, J C
2016-01-04
There is a limited range of suitable measurement techniques for detecting and assessing breast cancer related lymphoedema (BCRL). This study investigated the suitability of using skin stiffness measurements, with a particular focus on the variation in stiffness with measurement direction (known as anisotropy). In addition to comparing affected tissue with the unaffected tissue on the corresponding site on the opposite limb, volunteers without BCRL were tested to establish the normal variability in stiffness anisotropy between these two corresponding regions of skin on each opposite limb. Multi-directional stiffness was measured with an Extensometer, within the higher stiffness region that skin typically displays at high applied strains, using a previously established protocol developed by the authors. Healthy volunteers showed no significant difference in anisotropy between regions of skin on opposite limbs (mean decrease of 4.7 +/-2.5% between non-dominant and dominant arms), whereas BCRL sufferers showed a significant difference between limbs (mean decrease of 51.0+/-16.3% between unaffected and affected arms). A large difference in anisotropy was apparent even for those with recent onset of the condition, indicating that the technique may have potential to be useful for early detection. This difference also appeared to increase with duration since onset. Therefore, measurement of stiffness anisotropy has potential value for the clinical assessment and diagnosis of skin conditions such as BCRL. The promising results justify a larger study with a larger number of participants. Copyright © 2015 Elsevier Ltd. All rights reserved.
Musculoskeletal stiffness changes linearly in response to increasing load during walking gait.
Caron, Robert R; Lewis, Cara L; Saltzman, Elliot; Wagenaar, Robert C; Holt, Kenneth G
2015-04-13
Development of biologically inspired exoskeletons to assist soldiers in carrying load is a rapidly expanding field. Understanding how the body modulates stiffness in response to changing loads may inform the development of these exoskeletons and is the purpose of the present study. Seventeen subjects walked on a treadmill at a constant preferred walking velocity while nine different backpack loading conditions ranging from 12.5% to 40% bodyweight (BW) were introduced in an ascending and then descending order. Kinematic data were collected using Optotrak, a 3D motion analysis system, and used to estimate the position of the center of mass (COM). Two different estimates of stiffness were computed for the stance phase of gait. Both measures of stiffness were positively and linearly related to load magnitudes, with the slopes of the relationships being larger for the descending than the ascending conditions. These results indicate that changes in mechanical stiffness brought about in the musculoskeletal system vary systematically during increases in load to ensure that critical kinematic variables measured in a previous publication remain invariant (Caron et al., 2013). Changes in stiffness and other kinematics measured at the 40% BW condition suggest a boundary in which gait stiffness control limit is reached and a new gait pattern is required. Since soldiers are now carrying up to 96% of body weight, the need for research with even heavier loads is warranted. These findings have implications on the development of exoskeletons to assist in carrying loads. Copyright © 2015 Elsevier Ltd. All rights reserved.
Betel nut chewing associated with increased risk of arterial stiffness.
Wei, Yu-Ting; Chou, Yu-Tsung; Yang, Yi-Ching; Chou, Chieh-Ying; Lu, Feng-Hwa; Chang, Chih-Jen; Wu, Jin-Shang
2017-11-01
Betel nut chewing is associated with certain cardiovascular outcomes. Subclinical atherosclerosis may be one link between betel nut chewing and cardiovascular risk. Few studies have examined the association between chewing betel nut and arterial stiffness. The aim of this study was thus to determine the relationship between betel nut chewing and arterial stiffness in a Taiwanese population. We enrolled 7540 eligible subjects in National Cheng Kung University Hospital from October 2006 to August 2009. The exclusion criteria included history of cerebrovascular events, coronary artery disease, and taking lipid-lowering drugs, antihypertensives, and hypoglycemic agents. Increased arterial stiffness was defined as brachial-ankle pulse wave velocity (baPWV) ≥1400cm/s. According to their habit of betel nut use, the subjects were categorized into non-, ex-, and current chewers. The prevalence of increased arterial stiffness was 32.7, 43.3, and 43.2% in non-, ex- and current chewers, respectively (p=0.011). Multiple logistic regression analysis revealed that ex-chewers (odds ratio [OR] 1.69, 95% confidence interval (CI)=1.08-2.65) and current chewers (OR 2.29, 95% CI=1.05-4.99) had elevated risks of increased arterial stiffness after adjustment for co-variables. Both ex- and current betel nut chewing were associated with a higher risk of increased arterial stiffness. Stopping betel nut chewing may thus potentially be beneficial to reduce cardiovascular risk, based on the principals of preventive medicine. Copyright © 2017 Elsevier B.V. All rights reserved.
Kim, Bo-Hyun; Larson, Mark K.; Lawson, Heather E.
2018-01-01
Bumps and other types of dynamic failure have been a persistent, worldwide problem in the underground coal mining industry, spanning decades. For example, in just five states in the U.S. from 1983 to 2014, there were 388 reportable bumps. Despite significant advances in mine design tools and mining practices, these events continue to occur. Many conditions have been associated with bump potential, such as the presence of stiff units in the local geology. The effect of a stiff sandstone unit on the potential for coal bumps depends on the location of the stiff unit in the stratigraphic column, the relative stiffness and strength of other structural members, and stress concentrations caused by mining. This study describes the results of a robust design to consider the impact of different lithologic risk factors impacting dynamic failure risk. Because the inherent variability of stratigraphic characteristics in sedimentary formations, such as thickness, engineering material properties, and location, is significant and the number of influential parameters in determining a parametric study is large, it is impractical to consider every simulation case by varying each parameter individually. Therefore, to save time and honor the statistical distributions of the parameters, it is necessary to develop a robust design to collect sufficient sample data and develop a statistical analysis method to draw accurate conclusions from the collected data. In this study, orthogonal arrays, which were developed using the robust design, are used to define the combination of the (a) thickness of a stiff sandstone inserted on the top and bottom of a coal seam in a massive shale mine roof and floor, (b) location of the stiff sandstone inserted on the top and bottom of the coal seam, and (c) material properties of the stiff sandstone and contacts as interfaces using the 3-dimensional numerical model, FLAC3D. After completion of the numerical experiments, statistical and multivariate analysis are performed using the calculated results from the orthogonal arrays to analyze the effect of these variables. As a consequence, the impact of each of the parameters on the potential for bumps is quantitatively classified in terms of a normalized intensity of plastic dissipated energy. By multiple regression, the intensity of plastic dissipated energy and migration of the risk from the roof to the floor via the pillars is predicted based on the value of the variables. The results demonstrate and suggest a possible capability to predict the bump potential in a given rock mass adjacent to the underground excavations and pillars. Assessing the risk of bumps is important to preventing fatalities and injuries resulting from bumps. PMID:29416902
Fukui, Michiaki; Ushigome, Emi; Tanaka, Muhei; Hamaguchi, Masahide; Tanaka, Toru; Atsuta, Haruhiko; Ohnishi, Masayoshi; Oda, Yohei; Hasegawa, Goji; Nakamura, Naoto
2013-03-01
Recent studies have suggested that not only mean blood pressure but also variability in blood pressure might be related to cardiovascular disease. The aim of this study was to investigate the association between home blood pressure variability on one occasion and markers of arterial stiffness in patients with type 2 diabetes. We investigated the relationship between the s.d. of clinic- or home-measured systolic blood pressure on one occasion and pulse wave velocity (PWV) in 332 patients with type 2 diabetes, and we evaluated whether the SD of clinic- or home-measured systolic blood pressure on one occasion was an independent determinant of PWV by multivariate linear regression analysis, after adjustment for known risk factors for arterial stiffness, including sex, age, duration of diabetes, body mass index, hemoglobin A1c, serum total cholesterol, triglycerides, smoking status, drinking alcohol, presence of antihypertensive medication, average systolic blood pressure and heart rate. Age, average morning home-measured systolic blood pressure, heart rate and PWV (r=0.259, P<0.0001) were positively correlated with the s.d. of morning home blood pressure on one occasion. Multiple regression analysis demonstrated that age, average morning home-measured systolic blood pressure (P=0.0019), heart rate and the s.d. of morning home-measured systolic blood pressure on one occasion (P=0.0159) were independently associated with PWV. In conclusion, home blood pressure variability on one occasion was correlated with PWV, independent of other known risk factors, in Japanese patients with type 2 diabetes.
Wu, Bitao; Lu, Huaxi; Chen, Bo; Gao, Zhicheng
2017-01-01
A finite model updating method that combines dynamic-static long-gauge strain responses is proposed for highway bridge static loading tests. For this method, the objective function consisting of static long-gauge stains and the first order modal macro-strain parameter (frequency) is established, wherein the local bending stiffness, density and boundary conditions of the structures are selected as the design variables. The relationship between the macro-strain and local element stiffness was studied first. It is revealed that the macro-strain is inversely proportional to the local stiffness covered by the long-gauge strain sensor. This corresponding relation is important for the modification of the local stiffness based on the macro-strain. The local and global parameters can be simultaneously updated. Then, a series of numerical simulation and experiments were conducted to verify the effectiveness of the proposed method. The results show that the static deformation, macro-strain and macro-strain modal can be predicted well by using the proposed updating model. PMID:28753912
Wu, Bitao; Lu, Huaxi; Chen, Bo; Gao, Zhicheng
2017-07-19
A finite model updating method that combines dynamic-static long-gauge strain responses is proposed for highway bridge static loading tests. For this method, the objective function consisting of static long-gauge stains and the first order modal macro-strain parameter (frequency) is established, wherein the local bending stiffness, density and boundary conditions of the structures are selected as the design variables. The relationship between the macro-strain and local element stiffness was studied first. It is revealed that the macro-strain is inversely proportional to the local stiffness covered by the long-gauge strain sensor. This corresponding relation is important for the modification of the local stiffness based on the macro-strain. The local and global parameters can be simultaneously updated. Then, a series of numerical simulation and experiments were conducted to verify the effectiveness of the proposed method. The results show that the static deformation, macro-strain and macro-strain modal can be predicted well by using the proposed updating model.
Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells
NASA Astrophysics Data System (ADS)
Xu, Wenwei; Mezencev, Roman; Kim, Byungkyu; Wang, Lijuan; McDonald, John; Sulchek, Todd; Sulchek Team; McDonald Team
2013-03-01
The metastatic potential of cells is an important parameter in the design of optimal strategies for the personalized treatment of cancer. Using atomic force microscopy (AFM), we show that ovarian cancer cells are generally softer and display lower intrinsic variability in cell stiffness than non-malignant ovarian epithelial cells. A detailed study of highly invasive ovarian cancer cells (HEY A8) and their less invasive parental cells (HEY), demonstrates that deformability can serve as an accurate biomarker of metastatic potential. Comparative gene expression profiling indicate that the reduced stiffness of highly metastatic HEY A8 cells is associated with actin cytoskeleton remodeling, microscopic examination of actin fiber structure in these cell lines is consistent with this prediction. Our results indicate that cell stiffness not only distinguishes ovarian cancer cells from non-malignant cells, but may also be a useful biomarker to evaluate the relative metastatic potential of ovarian and perhaps other types of cancer cells.
NASA Astrophysics Data System (ADS)
Koltsov, A. G.; Shamutdinov, A. H.; Blokhin, D. A.; Krivonos, E. V.
2018-01-01
A new classification of parallel kinematics mechanisms on symmetry coefficient, being proportional to mechanism stiffness and accuracy of the processing product using the technological equipment under study, is proposed. A new version of the Stewart platform with a high symmetry coefficient is presented for analysis. The workspace of the mechanism under study is described, this space being a complex solid figure. The workspace end points are reached by the center of the mobile platform which moves in parallel related to the base plate. Parameters affecting the processing accuracy, namely the static and dynamic stiffness, natural vibration frequencies are determined. The capability assessment of the mechanism operation under various loads, taking into account resonance phenomena at different points of the workspace, was conducted. The study proved that stiffness and therefore, processing accuracy with the use of the above mentioned mechanisms are comparable with the stiffness and accuracy of medium-sized series-produced machines.
Considerations in the weathering of wood-plastic composites
Nicole M. Stark
2007-01-01
During weathering, wood-plastic composites (WPCs) can fade and lose stiffness and strength. Weathering variables that induce these changes include exposure to UV light and water. Each variable degrades WPCs independently, but can also act synergistically. Recent efforts have highlighted the need to understand how WPCs weather, and to develop schemes for protection. The...
Wave mixing in coupled phononic crystals via a variable stiffness mechanism
NASA Astrophysics Data System (ADS)
Lee, Gil-Yong; Chong, Christopher; Kevrekidis, Panayotis G.; Yang, Jinkyu
2016-10-01
We investigate wave mixing effects in a phononic crystal that couples the wave dynamics of two channels - primary and control ones - via a variable stiffness mechanism. We demonstrate analytically and numerically that the wave transmission in the primary channel can be manipulated by the control channel's signal. We show that the application of control waves allows the selection of a specific mode through the primary channel. We also demonstrate that the mixing of two wave modes is possible whereby a modulation effect is observed. A detailed study of the design parameters is also carried out to optimize the switching capabilities of the proposed system. Finally, we verify that the system can fulfill both switching and amplification functionalities, potentially enabling the realization of an acoustic transistor.
Morouço, Pedro G; Marinho, Daniel A; Keskinen, Kari L; Badillo, Juan J; Marques, Mário C
2014-11-01
The purpose of this study was two-fold: (a) to compare stroke and the physiological responses between maximal tethered and free front crawl swimming and (b) to evaluate the contribution of force exertion for swimming performance over short distances. A total of 34 male swimmers, representing various levels of competitive performance, participated in this study. Each participant was tested in both a 30-second maximal tethered swimming test and a 50-m free swimming test. The tethered force parameters, the swimming speed, stroke (stroke rate [SR]), and the physiological responses (increase in blood lactate concentration [ΔBLa], heart rate, and rate of perceived exertion) were recorded and calculated. The results showed no differences in stroke and the physiological responses between tethered and free swimming, with a high level of agreement for the SR and ΔBLa. A strong correlation was obtained between the maximum impulse of force per stroke and the speed (r = 0.91; p < 0.001). Multiple regression analysis revealed that the maximum impulse and SR in the tethered condition explained 84% of the free swimming performance. The relationship between the swimming speed and maximum force tended to be nonlinear, whereas linear relationships were observed with the maximum impulse. This study demonstrates that tethered swimming does not significantly alter stroke and the physiological responses compared with free swimming, and that the maximum impulse per stroke should be used to evaluate the balance between force and the ability to effectively apply force during sprint swimming. Consequently, coaches can rely on tethered forces to identify strength deficits and improve swimming performance over short distances.
On safe configurations of a natural-artificial space tether system
NASA Astrophysics Data System (ADS)
Rodnikov, A. V.
2018-05-01
We study the dynamics of a particle moving under gravitation of precessing dynamically symmetric rigid body if the particle motion is restricted by two unilateral (flexible) constraints realized by two weightless unstretchable tethers with ends fixed at body poles, formed as the intersection of the body surface with the axis of its dynamical symmetry. The system under consideration is a simple model of an original natural-artificial space construction consisting of an asteroid and a space station tethered to each other via two cables. We note that the problem is integrable for the system safe configurations, i.e. for motions along the constraints common boundary (both tethers are tensed) if the body gravitational potential is invariant with respect to rotation about the axis of dynamical symmetry. We study these motions depicting phase portraits for possible values of system parameters. We also deduce conditions for the particle coming off the boundary of constraint(s) (if the tether(s) are slackened) and analyze these conditions, eliminating corresponding areas from phase portraits. We also formulate some statements, concerning the particle safety.
NASA Technical Reports Server (NTRS)
English, R. E.; Finnegan, P. M.
1985-01-01
The concept of generating power in space by means of a conducting tether deployed from a spacecraft was studied. Using hydrogen and oxygen as the rocket propellant to overcome the drag of such a power-generating tether would yield more benefit than if used in a fuel cell. The mass consumption would be 25 percent less than the reactant consumption of fuel cells. Residual hydrogen and oxygen in the external tank and in the orbiter could be used very effectively for this purpose. Many other materials (such as waste from life support) could be used as the propellant. Electrical propulsion using tether generated power can compensate for the drag of a power-generating tether, half the power going to the useful load and the rest for electric propulsion. In addition, the spacecraft's orbital energy is a large energy reservoir that permits load leveling and a ratio of peak to average power equal to 2. Critical technologies to be explored before a power-generating tether can be used in space are delineated.
Spacecraft Solar Sails Containing Electrodynamic Tethers
NASA Technical Reports Server (NTRS)
Johnson, Les; Matloff, Greg
2005-01-01
A report discusses a proposal to use large, lightweight solar sails embedded with electrodynamic tethers (essentially, networks of wires) to (1) propel robotic spacecraft to distant planets, then (2) exploit the planetary magnetic fields to capture the spacecraft into orbits around the planets. The purpose of the proposal is, of course, to make it possible to undertake long interplanetary missions without incurring the large cost and weight penalties of conventional rocket-type propulsion systems. Through transfer of momentum from reflected solar photons, a sail would generate thrust outward from the Sun. Upon arrival in the vicinity of a planet, the electrodynamic tethers would be put to use: Motion of the spacecraft across the planetary magnetic field would induce electric currents in the tether wires, giving rise to an electromagnetic drag force that would be exploited to brake the spacecraft for capture into orbit. The sail with embedded tethers would be made to spin to provide stability during capture. Depending upon the requirements of a particular application, it could be necessary to extend the tether to a diameter greater than that of the sail.
Janssen, Xander J A; Lipfert, Jan; Jager, Tessa; Daudey, Renier; Beekman, Jaap; Dekker, Nynke H
2012-07-11
The well-established single-molecule force-spectroscopy techniques have recently been complemented by methods that can measure torque and twist directly, notably magnetic torque tweezers and the optical torque wrench. A limitation of the current torque measurement schemes is the intrinsic coupling between the force and torque degrees of freedom. Here we present electromagnetic torque tweezers (eMTT) that combine permanent and electromagnets to enable independent control of the force and torsional trap stiffness for sensitive measurements of single molecule torque and twist. Using the eMTT, we demonstrate sensitive torque measurements on tethered DNA molecules from simple tracking of the beads' (x,y)-position, obviating the need for any angular tracking algorithms or markers. Employing the eMTT for high-resolution torque measurements, we experimentally confirm the theoretically predicted torque overshoot at the DNA buckling transition in high salt conditions. We envision that the flexibility and control afforded by the eMTT will enable a range of new torque and twist measurement schemes from single-molecules to living cells.
Endpoint Accuracy in Manual Control of a Steerable Needle.
van de Berg, Nick J; Dankelman, Jenny; van den Dobbelsteen, John J
2017-02-01
To study the ability of a human operator to manually correct for errors in the needle insertion path without partial withdrawal of the needle by means of an active, tip-articulated steerable needle. The needle is composed of a 1.32-mm outer-diameter cannula, with a flexure joint near the tip, and a retractable stylet. The bending stiffness of the needle resembles that of a 20-gauge hypodermic needle. The needle functionality was evaluated in manual insertions by steering to predefined targets and a lateral displacement of 20 mm from the straight insertion line. Steering tasks were conducted in 5 directions and 2 tissue simulants under image guidance from a camera. The repeatability in instrument actuations was assessed during 100 mm deep automated insertions with a linear motor. In addition to tip position, tip angles were tracked during the insertions. The targeting error (mean absolute error ± standard deviation) during manual steering to 5 different targets in stiff tissue was 0.5 mm ± 1.1. This variability in manual tip placement (1.1 mm) was less than the variability among automated insertions (1.4 mm) in the same tissue type. An increased tissue stiffness resulted in an increased lateral tip displacement. The tip angle was directly controlled by the user interface, and remained unaffected by the tissue stiffness. This study demonstrates the ability to manually steer needles to predefined target locations under image guidance. Copyright © 2016 SIR. Published by Elsevier Inc. All rights reserved.
Sequential Reactions of Surface-Tethered Glycolytic Enzymes
Mukai, Chinatsu; Bergkvist, Magnus; Nelson, Jacquelyn L.; Travis, Alexander J.
2014-01-01
SUMMARY The development of complex hybrid organic-inorganic devices faces several challenges, including how they can generate energy. Cells face similar challenges regarding local energy production. Mammalian sperm solve this problem by generating ATP down the flagellar principal piece by means of glycolytic enzymes, several of which are tethered to a cytoskeletal support via germ cell-specific targeting domains. Inspired by this design, we have produced recombinant hexokinase type 1 and glucose-6-phosphate isomerase capable of oriented immobilization on a nickel-nitrilotriacetic acid modified surface. Specific activities of enzymes tethered via this strategy were substantially higher than when randomly adsorbed. Furthermore, these enzymes showed sequential activities when tethered onto the same surface. This is the first demonstration of surface-tethered pathway components showing sequential enzymatic activities, and it provides a first step toward reconstitution of glycolysis on engineered hybrid devices. PMID:19778729
Transport governs flow-enhanced cell tethering through L-selectin at threshold shear.
Yago, Tadayuki; Zarnitsyna, Veronika I; Klopocki, Arkadiusz G; McEver, Rodger P; Zhu, Cheng
2007-01-01
Flow-enhanced cell adhesion is a counterintuitive phenomenon that has been observed in several biological systems. Flow augments L-selectin-dependent adhesion by increasing the initial tethering of leukocytes to vascular surfaces and by strengthening their subsequent rolling interactions. Tethering or rolling might be influenced by physical factors that affect the formation or dissociation of selectin-ligand bonds. We recently demonstrated that flow enhanced rolling of L-selectin-bearing microspheres or neutrophils on P-selectin glycoprotein ligand-1 by force decreased bond dissociation. Here, we show that flow augmented tethering of these microspheres or cells to P-selectin glycoprotein ligand-1 by three transport mechanisms that increased bond formation: sliding of the sphere bottom on the surface, Brownian motion, and molecular diffusion. These results elucidate the mechanisms for flow-enhanced tethering through L-selectin.
Computational study of small molecule binding for both tethered and free conditions
2010-01-01
Using a calix[4]arene-benzene complex as a test system we compare the potential of mean force for when the calix[4]arene is tethered versus free. When the complex is in vacuum our results show that the difference between tethered and free is primarily due to the entropic contribution to the potential of mean force resulting in a significant binding free energy difference of 6.6 kJ/mol. By contrast, when the complex is in water our results suggest that there is no appreciable difference between tethered and free. This study elucidates the roles of entropy and enthalpy for this small molecule system and emphasizes the point that tethering the receptor has the potential to dramatically impact the binding properties. These findings should be taken into consideration when using calixarene molecules in nanosensor design. PMID:20369865
A linear circuit analysis program with stiff systems capability
NASA Technical Reports Server (NTRS)
Cook, C. H.; Bavuso, S. J.
1973-01-01
Several existing network analysis programs have been modified and combined to employ a variable topological approach to circuit translation. Efficient numerical integration techniques are used for transient analysis.
NASA Astrophysics Data System (ADS)
Abolfathi, Ali; O'Boy, Dan J.; Walsh, Stephen J.; Fisher, Stephen A.
2017-01-01
It is well established that the dynamic response of a number of nominally identical built-up structures are often different and the variability increases with increasing complexity of the structure. Furthermore, the effects of the different parameters, for example the variation in joint locations or the range of the Young's modulus, on the dynamic response of the system are not the same. In this paper, the effects of different material and geometric parameters on the variability of a vibration transfer function are compared using an analytical model of a simple linear built-up structure that consist of two plates connected by a single mount. Similar results can be obtained if multiple mounts are used. The scope of this paper is limited to a low and medium frequency range where usually deterministic models are used for vibrational analysis. The effect of the mount position and also the global variation in the properties of the plate, such as modulus of elasticity or thickness, is higher on the variability of vibration transfer function than the effect of the mount properties. It is shown that the vibration transfer function between the plates is independent of the mount property if a stiff enough mount with a small mass is implemented. For a soft mount, there is a direct relationship between the mount impedance and the variation in the vibration transfer function. Furthermore, there are a range of mount stiffnesses between these two extreme cases at which the vibration transfer function is more sensitive to changes in the stiffness of the mount than when compared to a soft mount. It is found that the effect of variation in the mount damping and the mount mass on the variability is negligible. Similarly, the effect of the plate damping on the variability is not significant.
Masaki, Mitsuhiro; Aoyama, Tomoki; Murakami, Takashi; Yanase, Ko; Ji, Xiang; Tateuchi, Hiroshige; Ichihashi, Noriaki
2017-11-01
Muscle stiffness of the lumbar back muscles in low back pain (LBP) patients has not been clearly elucidated because quantitative assessment of the stiffness of individual muscles was conventionally difficult. This study aimed to examine the association of LBP with muscle stiffness assessed using ultrasonic shear wave elastography (SWE) and muscle mass of the lumbar back muscle, and spinal alignment in young and middle-aged medical workers. The study comprised 23 asymptomatic medical workers [control (CTR) group] and 9 medical workers with LBP (LBP group). Muscle stiffness and mass of the lumbar back muscles (lumbar erector spinae, multifidus, and quadratus lumborum) in the prone position were measured using ultrasonic SWE. Sagittal spinal alignment in the standing and prone positions was measured using a Spinal Mouse. The association with LBP was investigated by multiple logistic regression analysis with a forward selection method. The analysis was conducted using the shear elastic modulus and muscle thickness of the lumbar back muscles, and spinal alignment, age, body height, body weight, and sex as independent variables. Multiple logistic regression analysis showed that muscle stiffness of the lumbar multifidus muscle and body height were significant and independent determinants of LBP, but that muscle mass and spinal alignment were not. Muscle stiffness of the lumbar multifidus muscle in the LBP group was significantly higher than that in the CTR group. The results of this study suggest that LBP is associated with muscle stiffness of the lumbar multifidus muscle in young and middle-aged medical workers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Estimation of Quasi-Stiffness and Propulsive Work of the Human Ankle in the Stance Phase of Walking
Shamaei, Kamran; Sawicki, Gregory S.; Dollar, Aaron M.
2013-01-01
Characterizing the quasi-stiffness and work of lower extremity joints is critical for evaluating human locomotion and designing assistive devices such as prostheses and orthoses intended to emulate the biological behavior of human legs. This work aims to establish statistical models that allow us to predict the ankle quasi-stiffness and net mechanical work for adults walking on level ground. During the stance phase of walking, the ankle joint propels the body through three distinctive phases of nearly constant stiffness known as the quasi-stiffness of each phase. Using a generic equation for the ankle moment obtained through an inverse dynamics analysis, we identify key independent parameters needed to predict ankle quasi-stiffness and propulsive work and also the functional form of each correlation. These parameters include gait speed, ankle excursion, and subject height and weight. Based on the identified form of the correlation and key variables, we applied linear regression on experimental walking data for 216 gait trials across 26 subjects (speeds from 0.75–2.63 m/s) to obtain statistical models of varying complexity. The most general forms of the statistical models include all the key parameters and have an R2 of 75% to 81% in the prediction of the ankle quasi-stiffnesses and propulsive work. The most specific models include only subject height and weight and could predict the ankle quasi-stiffnesses and work for optimal walking speed with average error of 13% to 30%. We discuss how these models provide a useful framework and foundation for designing subject- and gait-specific prosthetic and exoskeletal devices designed to emulate biological ankle function during level ground walking. PMID:23555839
Stiffness control of a nylon twisted coiled actuator for use in mechatronic rehabilitation devices.
Edmonds, Brandon P R; Trejos, Ana Luisa
2017-07-01
Mechatronic rehabilitation devices, especially wearables, have been researched extensively and proven to be promising additions to physical therapy, but most designs utilize traditional actuators providing unnatural, robot-like movements. Therefore, many researchers have focused on the development of actuators that mimic biological properties to provide patients with improved results, safety, and comfort. Recently, a twisted-coiled actuator (TCA) made from nylon thread has been found to possess many of these important properties when heated, such as variable stiffness, flexibility, and high power density. So far, TCAs have been characterized in controlled environments to define their fundamental properties under simple loading configurations. However, for an actuator like this to be implemented in a biomimetic design such as an exoskeleton, it needs to be characterized and controlled as a biological muscle. One major control law that natural muscles exhibit is stiffness control, allowing humans to passively avoid injury from external forces, or move the limbs in a controlled or high impact motion. This type of control is created by the antagonistic muscle arrangement. In this paper, an antagonistic apparatus was developed to model the TCAs from a biological standpoint, the stiffness was characterized with respect to the TCA temperature, and a fully functional stiffness and position controller was implemented with an incorporated TCA thermal model. The stiffness was found to have a linear relationship to the TCA temperatures (R 2 =0.95). The controller performed with a stiffness accuracy of 98.95% and a position accuracy of 92.7%. A final trial with varying continuous position input and varying stepped stiffness input exhibited position control with R 2 =0.9638.
The PROPEL Electrodynamic Tether Mission and Connecting to the Ionosphere
NASA Technical Reports Server (NTRS)
Gilchrist, Brian; Bilen, Sven; Hoyt, Rob; Stone,Nobie; Vaughn, Jason; Fuhrhop, Keith; Krause, Linda; Khazanov, George; Johnson, Les
2012-01-01
The exponential increase of launch system size.and cost.with delta-V makes missions that require large total impulse cost prohibitive. Led by NASA's Marshall Space Flight Center, a team from government, industry, and academia has developed a flight demonstration mission concept of an integrated electrodynamic (ED) tethered satellite system called PROPEL: "Propulsion using Electrodynamics". The PROPEL Mission is focused on demonstrating a versatile configuration of an ED tether to overcome the limitations of the rocket equation, enable new classes of missions currently unaffordable or infeasible, and significantly advance the Technology Readiness Level (TRL) to an operational level. We are also focused on establishing a far deeper understanding of critical processes and technologies to be able to scale and improve tether systems in the future. Here, we provide an overview of the proposed PROPEL mission. One of the critical processes for efficient ED tether operation is the ability to inject current to and collect current from the ionosphere. Because the PROPEL mission is planned to have both boost and deboost capability using a single tether, the tether current must be capable of flowing in both directions and at levels well over 1 A. Given the greater mobility of electrons over that of ions, this generally requires that both ends of the ED tether system can both collect and emit electrons. For example, hollow cathode plasma contactors (HCPCs) generally are viewed as state-of-the-art and high TRL devices; however, for ED tether applications important questions remain of how efficiently they can operate as both electron collectors and emitters. Other technologies will be highlighted that are being investigated as possible alternatives to the HCPC such as Solex that generates a plasma cloud from a solid material (Teflon) and electron emission (only) technologies such as cold-cathode electron field emission or photo-electron beam generation (PEBG) techniques.
Ganesh, VK; Ramakrishna, K; Ghista, Dhanjoo N
2005-01-01
Background In the internal fixation of fractured bone by means of bone-plates fastened to the bone on its tensile surface, an on-going concern has been the excessive stress-shielding of the bone by the excessively-stiff stainless-steel plate. The compressive stress-shielding at the fracture-interface immediately after fracture-fixation delays callus formation and bone healing. Likewise, the tensile stress-shielding of the layer of the bone underneath the plate can cause osteoporosis and decrease in tensile strength of this layer. Method In order to address this problem, we propose to use stiffness-graded plates. Accordingly, we have computed (by finite-element analysis) the stress distribution in the fractured bone fixed by composite plates, whose stiffness is graded both longitudinally and transversely. Results It can be seen that the stiffness-graded composite-plates cause less stress-shielding (as an example: at 50% of the healing stage, stress at the fracture interface is compressive in nature i.e. 0.002 GPa for stainless steel plate whereas stiffness graded plates provides tensile stress of 0.002 GPa. This means that stiffness graded plate is allowing the 50% healed bone to participate in loadings). Stiffness-graded plates are more flexible, and hence permit more bending of the fractured bone. This results in higher compressive stresses induced at the fractured faces accelerate bone-healing. On the other hand, away from the fracture interface the reduced stiffness and elastic modulus of the plate causes the neutral axis of the composite structure to be lowered into the bone resulting in the higher tensile stress in the bone-layer underneath the plate, wherein is conducive to the bone preserving its tensile strength. Conclusion Stiffness graded plates (with in-built variable stiffness) are deemed to offer less stress-shielding to the bone, providing higher compressive stress at the fractured interface (to induce accelerated healing) as well as higher tensile stress in the intact portion of the bone (to prevent bone remodeling and osteoporosis). PMID:16045807
TSS-1R Failure Mode Evaluation
NASA Technical Reports Server (NTRS)
Vaughn, Jason A.; McCollum, Matthew B.; Kamenetzky, Rachel R.
1997-01-01
Soon after the break of the tether during the Tethered Satellite System (TSS-1R) mission in February, 1996, a Tiger Team was assembled at the George C. Marshall Space Flight Center to determine the tether failure mode. One possible failure scenario was the Kevlar' strength member of the tether failed because of degradation due to electrical discharge or electrical arcing. During the next several weeks, extensive electrical discharge testing in low vacuum and plasma environments was conducted in an attempt to reproduce the electrical activity recorded by on-board science instruments during the mission. The results of these tests are presented in this paper.
NASA Technical Reports Server (NTRS)
Darlow, M. S.; Smalley, A. J.
1977-01-01
A test rig designed to measure stiffness and damping of elastomer cartridges under a rotating load excitation is described. The test rig employs rotating unbalance in a rotor which runs to 60,000 RPM as the excitation mechanism. A variable resonant mass is supported on elastomer elements and the dynamic characteristics are determined from measurements of input and output acceleration. Five different cartridges are considered: three of these are buttons cartridges having buttons located in pairs, with 120 between each pair. Two of the cartridges consist of 360 elastomer rings with rectangular cross-sections. Dynamic stiffness and damping are measured for each cartridge and compared with predictions at different frequencies and different strains.
Effect of damage on elastically tailored composite laminates
NASA Technical Reports Server (NTRS)
Armanios, Erian; Badir, Ashraf; Berdichevsky, Victor
1991-01-01
A variationally consistent theory is derived in order to predict the response of anisotropic thin-walled closed sections subjected to axial load, torsion and bending. The theory is valid for arbitrary cross-sections made of laminated composite materials with variable thickness and stiffness. Closed form expressions for the stiffness coefficients are provided as integrals in terms of lay-ups parameters and cross-sectional geometry. A comparison of stiffness coefficients and response with finite element predictions and a closed form solution is performed. The theory is applied to the investigation of the effect of damage on the extension-twist coupling in a thin-walled closed section beam. The damage is simulated as a progressive ply-by-ply failure. Results show that damage can have a significant effect on the extension-twist coupling.
Floren, Michael; Bonani, Walter; Dharmarajan, Anirudh; Motta, Antonella; Migliaresi, Claudio; Tan, Wei
2016-02-01
Cell-matrix and cell-biomolecule interactions play critical roles in a diversity of biological events including cell adhesion, growth, differentiation, and apoptosis. Evidence suggests that a concise crosstalk of these environmental factors may be required to direct stem cell differentiation toward matured cell type and function. However, the culmination of these complex interactions to direct stem cells into highly specific phenotypes in vitro is still widely unknown, particularly in the context of implantable biomaterials. In this study, we utilized tunable hydrogels based on a simple high pressure CO2 method and silk fibroin (SF) the structural protein of Bombyx mori silk fibers. Modification of SF protein starting water solution concentration results in hydrogels of variable stiffness while retaining key structural parameters such as matrix pore size and β-sheet crystallinity. To further resolve the complex crosstalk of chemical signals with matrix properties, we chose to investigate the role of 3D hydrogel stiffness and transforming growth factor (TGF-β1), with the aim of correlating the effects on the vascular commitment of human mesenchymal stem cells. Our data revealed the potential to upregulate matured vascular smooth muscle cell phenotype (myosin heavy chain expression) of hMSCs by employing appropriate matrix stiffness and growth factor (within 72h). Overall, our observations suggest that chemical and physical stimuli within the cellular microenvironment are tightly coupled systems involved in the fate decisions of hMSCs. The production of tunable scaffold materials that are biocompatible and further specialized to mimic tissue-specific niche environments will be of considerable value to future tissue engineering platforms. This article investigates the role of silk fibroin hydrogel stiffness and transforming growth factor (TGF-β1), with the aim of correlating the effects on the vascular commitment of human mesenchymal stem cells. Specifically, we demonstrate the upregulation of mature vascular smooth muscle cell phenotype (myosin heavy chain expression) of hMSCs by employing appropriate matrix stiffness and growth factor (within 72h). Moreover, we demonstrate the potential to direct specialized hMSC differentiation by modulating stiffness and growth factor using silk fibroin, a well-tolerated and -defined biomaterial with an impressive portfolio of tissue engineering applications. Altogether, our study reinforce the fact that complex differentiation protocols may be simplified by engineering the cellular microenvironment on multiple scales, i.e. matrix stiffness with growth factor. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Podgórski, Michał; Grzelak, Piotr; Kaczmarska, Magdalena; Polguj, Michał; Łukaszewski, Maciej; Stefańczyk, Ludomir
2018-02-01
Objective Arterial stiffening is an early marker of atherosclerosis that has a prognostic value for cardiovascular morbidity and mortality. Although many markers of arterial hardening have been proposed, the search is on for newer, more user-friendly and reliable surrogates. One such potential candidate has emerged from cardiology, the speckle-tracking technique. The aim of this study was to evaluate the feasibility of the two-dimensional speckle tracking for the evaluation of arterial wall stiffness in comparison with standard stiffness parameters. Methods Carotid ultrasound and applanation tonometry were performed in 188 patients with no cardiovascular risk factors. The following parameters were then evaluated: the intima-media complex thickness, distensibility coefficient, β-stiffness index, circumferential strain/strain rate, and pulse wave velocity and augmentation index. These variables were compared with each other and with patient age, and their reliability was assessed with Bland-Altman plots. Results Strain parameters derived from two-dimensional speckle tracking and intima-media complex thickness correlated better with age and pulse wave velocity than standard makers of arterial stiffness. Moreover, the reliability of these measurements was significantly higher than conventional surrogates. Conclusions Two-dimensional speckle tracing is a reliable method for the evaluation of arterial stiffness. Therefore, together with intima-media complex thickness measurement, it offers great potential in clinical practice as an early marker of atherosclerosis.
Urbina, Elaine M; Khoury, Philip R; McCoy, Connie E; Dolan, Lawrence M; Daniels, Stephen R; Kimball, Thomas R
2013-04-01
Lipid levels are linked to early atherosclerosis. Risk stratification may be improved by using triglyceride to high-density lipoprotein cholesterol ratio (TG/HDL-C), which relates to arterial stiffness in adults. We tested whether TG/HDL-C was an independent predictor of arterial stiffness in youth. Subjects 10 to 26 years old (mean 18.9 years, 39% male, 56% non-Caucasian, n = 893) had laboratory, anthropometric, blood pressure, and arterial stiffness data collected (brachial distensibility, augmentation index, carotid-femoral pulse-wave velocity). Subjects were stratified into tertiles of TG/HDL-C (low, n = 227; mid, n = 288; high, n = 379). There was a progressive rise in cardiovascular (CV) risk factors and arterial stiffness across TG/HDL-C ratio. The high TG/HDL-C ratio group had the stiffest vessels (all P < .03 by analysis of variance). TG/HDL-C as a continuous variable was an independent determinant of brachial distensibility in CV risk factor adjusted model and for carotid-femoral pulse-wave velocity in obese subjects, with trend for higher augmentation index. TG/HDL-C, an estimate of small, dense low-density lipoprotein cholesterol, is an independent determinant of arterial stiffness in adolescents and young adults, especially in obese youth. These data suggest that use of TG/HDL-C may be helpful in identifying young adults requiring aggressive intervention to prevent atherosclerotic CV diseases.
Khoury, Philip R.; McCoy, Connie E.; Dolan, Lawrence M.; Daniels, Stephen R.; Kimball, Thomas R.
2013-01-01
BACKGROUND AND OBJECTIVE: Lipid levels are linked to early atherosclerosis. Risk stratification may be improved by using triglyceride to high-density lipoprotein cholesterol ratio (TG/HDL-C), which relates to arterial stiffness in adults. We tested whether TG/HDL-C was an independent predictor of arterial stiffness in youth. METHODS: Subjects 10 to 26 years old (mean 18.9 years, 39% male, 56% non-Caucasian, n = 893) had laboratory, anthropometric, blood pressure, and arterial stiffness data collected (brachial distensibility, augmentation index, carotid-femoral pulse-wave velocity). Subjects were stratified into tertiles of TG/HDL-C (low, n = 227; mid, n = 288; high, n = 379). RESULTS: There was a progressive rise in cardiovascular (CV) risk factors and arterial stiffness across TG/HDL-C ratio. The high TG/HDL-C ratio group had the stiffest vessels (all P < .03 by analysis of variance). TG/HDL-C as a continuous variable was an independent determinant of brachial distensibility in CV risk factor adjusted model and for carotid-femoral pulse-wave velocity in obese subjects, with trend for higher augmentation index. CONCLUSIONS: TG/HDL-C, an estimate of small, dense low-density lipoprotein cholesterol, is an independent determinant of arterial stiffness in adolescents and young adults, especially in obese youth. These data suggest that use of TG/HDL-C may be helpful in identifying young adults requiring aggressive intervention to prevent atherosclerotic CV diseases. PMID:23460684
Rate limit of protein elastic response is tether dependent.
Berkovich, Ronen; Hermans, Rodolfo I; Popa, Ionel; Stirnemann, Guillaume; Garcia-Manyes, Sergi; Berne, Bruce J; Fernandez, Julio M
2012-09-04
The elastic restoring force of tissues must be able to operate over the very wide range of loading rates experienced by living organisms. It is surprising that even the fastest events involving animal muscle tissues do not surpass a few hundred hertz. We propose that this limit is set in part by the elastic dynamics of tethered proteins extending and relaxing under a changing load. Here we study the elastic dynamics of tethered proteins using a fast force spectrometer with sub-millisecond time resolution, combined with Brownian and Molecular Dynamics simulations. We show that the act of tethering a polypeptide to an object, an inseparable part of protein elasticity in vivo and in experimental setups, greatly reduces the attempt frequency with which the protein samples its free energy. Indeed, our data shows that a tethered polypeptide can traverse its free-energy landscape with a surprisingly low effective diffusion coefficient D(eff) ~ 1,200 nm(2)/s. By contrast, our Molecular Dynamics simulations show that diffusion of an isolated protein under force occurs at D(eff) ~ 10(8) nm(2)/s. This discrepancy is attributed to the drag force caused by the tethering object. From the physiological time scales of tissue elasticity, we calculate that tethered elastic proteins equilibrate in vivo with D(eff) ~ 10(4)-10(6) nm(2)/s which is two to four orders magnitude smaller than the values measured for untethered proteins in bulk.
Tether deployment monitoring system, phase 2
NASA Technical Reports Server (NTRS)
1989-01-01
An operational Tether Deployment Monitoring System (TEDEMS) was constructed that would show system functionality in a terrestrial environment. The principle function of the TEDEMS system is the launching and attachment of reflective targets onto the tether during its deployment. These targets would be tracked with a radar antenna that was pointed towards the targets by a positioning system. A spring powered launcher for the targets was designed and fabricated. An instrumentation platform and launcher were also developed. These modules are relatively heavy and will influence tether deployment scenarios, unless they are released with a velocity and trajectory closely matching that of the tether. Owing to the tracking range limitations encountered during field trails of the Radar system, final TEDEMS system integration was not completed. The major module not finished was the system control computer. The lack of this device prevented any subsystem testing or field trials to be conducted. Other items only partially complete were the instrumentation platform launcher and modules and the radar target launcher. The work completed and the tests performed suggest that the proposed system continues to be a feasible approach to tether monitoring, although additional effort is still necessary to increase the range at which modules can be detected. The equipment completed and tested, to the extent stated, is available to NASA for use on any future program that requires tether tracking capability.
Biomimicry enhances sequential reactions of tethered glycolytic enzymes, TPI and GAPDHS.
Mukai, Chinatsu; Gao, Lizeng; Bergkvist, Magnus; Nelson, Jacquelyn L; Hinchman, Meleana M; Travis, Alexander J
2013-01-01
Maintaining activity of enzymes tethered to solid interfaces remains a major challenge in developing hybrid organic-inorganic devices. In nature, mammalian spermatozoa have overcome this design challenge by having glycolytic enzymes with specialized targeting domains that enable them to function while tethered to a cytoskeletal element. As a step toward designing a hybrid organic-inorganic ATP-generating system, we implemented a biomimetic site-specific immobilization strategy to tether two glycolytic enzymes representing different functional enzyme families: triose phosphoisomerase (TPI; an isomerase) and glyceraldehyde 3-phosphate dehydrogenase (GAPDHS; an oxidoreductase). We then evaluated the activities of these enzymes in comparison to when they were tethered via classical carboxyl-amine crosslinking. Both enzymes show similar surface binding regardless of immobilization method. Remarkably, specific activities for both enzymes were significantly higher when tethered using the biomimetic, site-specific immobilization approach. Using this biomimetic approach, we tethered both enzymes to a single surface and demonstrated their function in series in both forward and reverse directions. Again, the activities in series were significantly higher in both directions when the enzymes were coupled using this biomimetic approach versus carboxyl-amine binding. Our results suggest that biomimetic, site-specific immobilization can provide important functional advantages over chemically specific, but non-oriented attachment, an important strategic insight given the growing interest in recapitulating entire biological pathways on hybrid organic-inorganic devices.
Biomimicry Enhances Sequential Reactions of Tethered Glycolytic Enzymes, TPI and GAPDHS
Mukai, Chinatsu; Gao, Lizeng; Bergkvist, Magnus; Nelson, Jacquelyn L.; Hinchman, Meleana M.; Travis, Alexander J.
2013-01-01
Maintaining activity of enzymes tethered to solid interfaces remains a major challenge in developing hybrid organic-inorganic devices. In nature, mammalian spermatozoa have overcome this design challenge by having glycolytic enzymes with specialized targeting domains that enable them to function while tethered to a cytoskeletal element. As a step toward designing a hybrid organic-inorganic ATP-generating system, we implemented a biomimetic site-specific immobilization strategy to tether two glycolytic enzymes representing different functional enzyme families: triose phosphoisomerase (TPI; an isomerase) and glyceraldehyde 3-phosphate dehydrogenase (GAPDHS; an oxidoreductase). We then evaluated the activities of these enzymes in comparison to when they were tethered via classical carboxyl-amine crosslinking. Both enzymes show similar surface binding regardless of immobilization method. Remarkably, specific activities for both enzymes were significantly higher when tethered using the biomimetic, site-specific immobilization approach. Using this biomimetic approach, we tethered both enzymes to a single surface and demonstrated their function in series in both forward and reverse directions. Again, the activities in series were significantly higher in both directions when the enzymes were coupled using this biomimetic approach versus carboxyl-amine binding. Our results suggest that biomimetic, site-specific immobilization can provide important functional advantages over chemically specific, but non-oriented attachment, an important strategic insight given the growing interest in recapitulating entire biological pathways on hybrid organic-inorganic devices. PMID:23626684
Effect of squeeze film damper land geometry on damper performance
NASA Astrophysics Data System (ADS)
Wang, Y. H.; Hahn, E. J.
1994-04-01
Variable axial land geometry dampers can significantly alter the unbalance response, and in particular, the likelihood of undesirable jump behavior, or circular orbit-type squeeze film dampers. Assuming end feed, the pressure distribution, the fluid film forces, and the stiffness and damping coefficients are obtained for such variable axial and geometry dampers, as well as the jump-up propensity for vertical squeeze film damped rigid rotors. It is shown that variable land geometry dampers can reduce the variation of stiffness and damping coefficients, thereby reducing the degree of damper force non-linearity, and presumably reducing the likelihood of undesirable bistable operation. However, it is also found that regardless of unbalance and regardless of the depth, width or shape of the profile, parallel land dampers are least likely to experience jump-up to undesirable operation modes. These conflicting conclusions may be accounted for by the reduction in damping. They will need to be qualified for practical dampers which normally have oil hole feed rather than end feed.
Design and testing of a novel multi-stroke micropositioning system with variable resolutions.
Xu, Qingsong
2014-02-01
Multi-stroke stages are demanded in micro-/nanopositioning applications which require smaller and larger motion strokes with fine and coarse resolutions, respectively. This paper presents the conceptual design of a novel multi-stroke, multi-resolution micropositioning stage driven by a single actuator for each working axis. It eliminates the issue of the interference among different drives, which resides in conventional multi-actuation stages. The stage is devised based on a fully compliant variable stiffness mechanism, which exhibits unequal stiffnesses in different strokes. Resistive strain sensors are employed to offer variable position resolutions in the different strokes. To quantify the design of the motion strokes and coarse/fine resolution ratio, analytical models are established. These models are verified through finite-element analysis simulations. A proof-of-concept prototype XY stage is designed, fabricated, and tested to demonstrate the feasibility of the presented ideas. Experimental results of static and dynamic testing validate the effectiveness of the proposed design.
Williams, Cylie M; Penkala, Stefania; Smith, Peter; Haines, Terry; Bowles, Kelly-Ann
2017-01-01
Workplace injury is an international costly burden. Health care workers are an essential component to managing musculoskeletal disorders, however in doing this, they may increase their own susceptibility. While there is substantial evidence about work-related musculoskeletal disorders across the health workforce, understanding risk factors in specific occupational groups, such as podiatry, is limited. The primary aim of this study was to determine the prevalence and intensity of work related low back pain in podiatrists. This was an international cross-sectional survey targeting podiatrists in Australia, New Zealand and the United Kingdom. The survey had two components; general demographic variables and variables relating to general musculoskeletal pain in general or podiatry work-related musculoskeletal pain. Multivariable regression analyses were used to identify factors associated with musculoskeletal stiffness and pain and low back pain intensity. Thematic analysis was used to group comments podiatrists made about their musculoskeletal health. There were 948 survey responses (5% of Australian, New Zealand and United Kingdom registered podiatrists). There were 719 (76%) podiatrists reporting musculoskeletal pain as a result of their work practices throughout their career. The majority of injuries reported were in the first five years of practice ( n = 320, 45%). The body area reported as being the location of the most significant injury was the low back (203 of 705 responses, 29%). Being female ( p < 0.001) and working in private practice ( p = 0.003) was associated with musculoskeletal pain or stiffness in the past 12 months. There were no variables associated with pain or stiffness in the past four weeks. Being female was the only variable associated with higher pain ( p = 0.018). There were four main themes to workplace musculoskeletal pain: 1. Organisational and procedural responses to injury, 2. Giving up work, taking time off, reducing hours, 3. Maintaining good musculoskeletal health and 4. Environmental change. The postures that podiatrists hold while treating patients appear to impact on musculoskeletal pain and stiffness. Recently graduated and female podiatrists are at higher risk of injury. There is a need for the profession to consider how they move and take care of their own musculoskeletal health.
Formation Flying of Tethered and Nontethered Spacecraft
NASA Technical Reports Server (NTRS)
Quadrelli, Marco B.
2005-01-01
A paper discusses the effect of the dynamic interaction taking place within a formation composed of a rigid and a deformable vehicle, and presents the concept of two or more tethered spacecraft flying in formation with one or more separated free-flying spacecraft. Although progress toward formation flight of nontethered spacecraft has already been achieved, the document cites potential advantages of tethering, including less consumption of fuel to maintain formation, very high dynamic stability of a rotating tethered formation, and intrinsically passive gravity-gradient stabilization. The document presents a theoretical analysis of the dynamics of a system comprising one free-flying spacecraft and two tethered spacecraft in orbit, as a prototype of more complex systems. The spacecraft are modeled as rigid bodies and the tether as a mass-less spring with structural viscous damping. Included in the analysis is a study of the feasibility of a centralized control system for maintaining a required formation in low Earth orbit. A numerical simulation of a retargeting maneuver is reported to show that even if the additional internal dynamics of the system caused by flexibility is considered, high pointing precision can be achieved if a fictitious rigid frame is used to track the tethered system, and it should be possible to position the spacecraft with centimeter accuracy and to orient the formation within arc seconds of the desired direction also in the presence of low Earth orbit environmental perturbations. The results of the study demonstrate that the concept is feasible in Earth orbit and point the way to further study of these hybrid tethered and free-flying systems for related applications in orbit around other Solar System bodies.
The Hitchhiker's Guide to the Outer Solar System
NASA Technical Reports Server (NTRS)
Ono, Masahiro; Quadrelli, Marco; Lantoine, Gregory; Backes, Paul; Lopez Ortega, Alejandro; Grip, Havard; Yen, Chen-Wan; Jewitt, David
2015-01-01
We propose a novel deep space propulsion method called the Comet Hitchhiker. The concept is to perform momentum exchange with small bodies (i.e., asteroid and comet) using an extendable/retrievable tether and a harpoon. Unlike previously proposed tethered fly-by, the use of extendable tether enables to change the relative speed with a target. Hence Hitchhiker would be a prospective means of providing orbit insertion deltaV, particularly for rendezvous missions to small bodies in the outer Solar System such as Kuiper belt objects and Centaurs, which are not easily manageable with chemical propulsion or solar electric propulsion. Furthermore, by applying regenerative brake during a hitchhike maneuver, a Hitchhiker can harvest energy. The stored energy can be used to make a departure from the target by quickly retrieving the tether, which we call a inverse hitchhike maneuver. By repeating hitchhike and inverse Hitchhike maneuvers, a Hitchhiker could perform a mission to rendezvous with multiple targets efficiently, which we call a multi-hitchhike mission. We derive the basic equation of Hitchhiker, namely the Space Hitchhike Equation, which relates the specific strength and mass fraction of tether to achievable ?V. We then perform detailed feasibility analysis through finite element simulations of tether as well as hypervelocity impact simulations of the harpoon using the Adaptive Mesh Refinement Objected-oriented C++ (AMROC) algorithm. The analysis results suggest that a hitchhike maneuver with deltaV = approximately 1.5km/s is feasible with flight proven materials such as Kevlar/Zylon tether and tungsten harpoon. A carbon nanotube tether, combined with diamond harpoon, would enable approximately 10 km/s hitchhike maneuver. Finally, we present two particular mission scenarios for Hitchhiker: Pluto rendezvous and a multi-hitchhike mission to the Themis family asteroids in the main belt.
NASA Technical Reports Server (NTRS)
Hoyt, Robert (Inventor); Slostad, Jeffrey T. (Inventor); Frank, Scott (Inventor); Barnes, Ian M. (Inventor)
2016-01-01
Orbital winch having: lower and upper frames; spool having upper and lower flanges with lower flange attached to lower frame; axial tether guide mounted to upper frame; secondary slewing ring coaxial with spool and rotatably mounted to upper frame, wherein secondary slewing ring's outer surface has gearing; upper tether guide mounted to inner surface of secondary slewing ring; linear translation means having upper end mounted to upper frame and lower end mounted on lower frame; primary slewing ring rotatably mounted within linear translation means allowing translation axially between flanges, wherein primary slewing ring's outer surface has gearing; lower tether guide mounted on primary slewing ring's inner surface; pinion rod having upper end mounted to upper frame and lower end mounted to lower frame, wherein pinion rod's teeth engage primary and secondary slewing rings' outer surface teeth; and tether passing through axial, upper, and lower tether guides and winding around spool.
A corrected tether-mission to Jupiter
NASA Astrophysics Data System (ADS)
Sanchez-Arriaga, G.; Charro, M.
2012-09-01
A spacecraft slowly descending in equatorial orbit through the inner magnetosphere of Jupiter over a period of months would provide a wealth of knowledge through space and time resolved observations. An electrodynamic (ED) bare-foil tether has been proposed as allowing a spacecraft to attain a circular orbit below Jovian radiation belts and Halo ring (so as to then carry out scientific observations) using Lorentz drag on the current induced in the tether for orbit insertion, followed by a series of perijove passes to progressively lower the apojove. Accumulated radiation dose was reasonable when using a 50 km long tether. It was recently shown, however, that electron collection by the tether would then be in a relativistic regime. This yields a penetration depth in aluminum exceeding foil thickness. Reducing the length to 10 km is here proposed, followed by a reconsideration of the scientific mission objectives.
Cosmic dust collection with a sub-satellite tethered to a space station
NASA Technical Reports Server (NTRS)
Corso, G. J.
1986-01-01
The number concentration and density of 1 micron and submicron sized grains in interplanetary space, as well as their relation to the larger zodical dust particles, and the importance of the Beta meteoroid phenomenon are currently being questioned. The best approach to collecting large numbers of intact micron and submicron sized cosmic dust particles in real time while avoiding terrestrial and man made contamination would be to employ a tethered subsatellite from a space station down into the Earth's atmosphere. Such a subsatellite tied to the space shuttle by a 100 km long tether is being developed. It is also possible that a permanent space station would allow the use of a tether even longer that 100 km. It should be noted that the same tethered collectors could also be employed to study the composition and flux of man made Earth orbiting debris in any direction within 100 km or so of the space station.
Cosmic dust collection with a sub satellite tethered to a Space Station
NASA Technical Reports Server (NTRS)
Corso, George J.
1987-01-01
The number concentration and density of 1 micron and submicron sized grains in interplanetary space, as well as their relation to the larger zodical dust particles, and the importance of the beta meteoroid phenomenon are currently being questioned. The best approach to collecting large numbers of intact micron and submicron sized cosmic dust particles in real time while avoiding terrestrial and man made contamination would be to employ a tethered subsatellite from a space station down into the earth's atmosphere. Such a subsatellite tied to the space shuttle by a 100 km long tether is being developed. It is also possible that a permanent space station would allow the use of a tether even longer than 100 km. It should be noted that the same tethered collectors could also be employed to study the composition and flux of man made earth orbiting debris in any direction within 100 km or so of the space station.
Applications of tethers in space: A review of workshop recommendations
NASA Technical Reports Server (NTRS)
Vontiesenhausen, G. (Editor)
1986-01-01
Well-organized and structured efforts of considerable magnitude involving NASA, industry, and academia have explored and defined the engineering and technological requirements of the use of tethers in space and have discovered their broad range of operational and economic benefits. The results of these efforts have produced a family of extremely promising candidate applications. The extensive efforts now in progress are gaining momentum and a series of flight demonstrations are being planned and can be expected to take place in a few years. This report provides an analysis and a review of NASA's second major workshop on Applications of Tethers in Space held in October 15 to 17, 1985, in Venice, Italy. It provides a summary of an up-to-date assessment and recommendations by the NASA Tether Applications in Space Program Planning Group, consisting of representatives of seven NASA Centers and responsible for tether applications program planning implementation as recommended by the workshop panels.
Avionics Tether Operations Control
NASA Technical Reports Server (NTRS)
Glaese, John R.
2001-01-01
The activities described in this Final Report were authorized and performed under Purchase Order Number H32835D, issued as part of NASA contract number NAS8-00114. The period of performance of this PO was from March 1 to September 30, 2001. The primary work activity was the continued development and updating of the tether dynamic simulation tools GTOSS (Generalized Tethered Object System Simulation) and TSSIM (Tethered Satellite System) and use of these and other tools in the analysis of various tether dynamics problems. Several updated versions of GTOSS were delivered during the period of performance by the author of the simulation, Lang Associates' David Lang. These updates had mainly to do with updated documentation and an updated coordinate system definition to the J2000 standards. This Final Report is organized by the months in which the activities described were performed. The following sections review the Statement of Work (SOW) and activities performed to satisfy it.
Space Tethers Programmatic Infusion Opportunities
NASA Technical Reports Server (NTRS)
Bonometti, J. A.; Frame, K. L.
2005-01-01
Programmatic opportunities abound for space Cables, Stringers and Tethers, justified by the tremendous performance advantages that these technologies offer and the rather wide gaps that must be filled by the NASA Exploration program, if the "sustainability goal" is to be met. A definition and characterization of the three categories are presented along with examples. A logical review of exploration requirements shows how each class can be infused throughout the program, from small experimental efforts to large system deployments. The economics of tethers in transportation is considered along with the impact of stringers for structural members. There is an array of synergistic methodologies that interlace their fabrication, implementation and operations. Cables, stringers and tethers can enhance a wide range of other space systems and technologies, including power storage, formation flying, instrumentation, docking mechanisms and long-life space components. The existing tether (i.e., MXER) program's accomplishments are considered consistent with NASA's new vision and can readily conform to requirements-driven technology development.
The motion and control of a complex three-body space tethered system
NASA Astrophysics Data System (ADS)
Shi, Gefei; Zhu, Zhanxia; Chen, Shiyu; Yuan, Jianping; Tang, Biwei
2017-11-01
This paper is mainly devoted to investigating the dynamics and stability control of a three body-tethered satellite system which contains a main satellite and two subsatellites connected by two straight, massless and inextensible tethers. Firstly, a detailed mathematical model is established in the central gravitational field. Then, the dynamic characteristics of the established system are investigated and analyzed. Based on the dynamic analysis, a novel sliding mode prediction model (SMPM) control strategy is proposed to suppress the motion of the built tethered system. The numerical results show that the proposed underactuated control law is highly effective in suppressing the attitude/libration motion of the underactuated three-body tethered system. Furthermore, cases of different target angles are also examined and analyzed. The simulation results reveal that even if the final equilibrium states differ from different selections of the target angles, the whole system can still be maintained in acceptable areas.
Axel Robotic Platform for Crater and Extreme Terrain Exploration
NASA Technical Reports Server (NTRS)
Nesnas, Issa A.; Matthews, Jaret B.; Edlund, Jeffrey A.; Burdick, Joel W.; Abad-Manterola, Pablo
2012-01-01
To be able to conduct science investigations on highly sloped and challenging terrains, it is necessary to deploy science payloads to such locations and collect and process in situ samples. A tethered robotic platform has been developed that is capable of exploring very challenging terrain. The Axel rover is a symmetrical rover that is minimally actuated, can traverse arbitrary paths, and operate upside-down or right-side up. It can be deployed from a larger platform (rover, lander, or aerobot) or from a dual Axel configuration. Axel carries and manages its own tether, reducing damage to the tether during operations. Fundamentally, Axel is a two-wheeled rover with a symmetric body and a trailing link. Because the primary goal is minimal complexity, this version of the Axel rover uses only four primary actuators to control its wheels, tether, and a trailing link. A fifth actuator is used for level winding of tether onto Axel s spool.
The effects of resistance exercise training on arterial stiffness in metabolic syndrome.
DeVallance, E; Fournier, S; Lemaster, K; Moore, C; Asano, S; Bonner, D; Donley, D; Olfert, I M; Chantler, P D
2016-05-01
Arterial stiffness is a strong independent risk factor for cardiovascular disease and is elevated in individuals with metabolic syndrome (MetS). Resistance training is a popular form of exercise that has beneficial effects on muscle mass, strength, balance and glucose control. However, it is unknown whether resistance exercise training (RT) can lower arterial stiffness in patients with MetS. Thus, the aim of this study was to examine whether a progressive RT program would improve arterial stiffness in MetS. A total of 57 subjects (28 healthy sedentary subjects; 29 MetS) were evaluated for arterial structure and function, including pulse wave velocity (cfPWV: arterial stiffness), before and after an 8-week period of RT or continuation of sedentary lifestyle. We found that 8 weeks of progressive RT increased skeletal muscle strength in both Con and MetS, but did not change arterial stiffness in either MetS (cfPWV; Pre 7.9 ± 0.4 m/s vs. Post 7.7 ± 0.4 m/s) or healthy controls (cfPWV; Pre 6.9 ± 0.3 m/s vs. Post 7.0 ± 0.3 m/s). However, when cfPWV is considered as a continuous variable, high baseline measures of cfPWV tended to show a decrease in cfPWV following RT. Eight weeks of progressive RT did not decrease the group mean values of arterial stiffness in individuals with MetS or healthy controls.
Kovaleski, John E; Heitman, Robert J; Gurchiek, Larry R; Hollis, J M; Liu, Wei; Pearsall, Albert W
2014-01-01
This is part II of a 2-part series discussing stability characteristics of the ankle complex. In part I, we used a cadaver model to examine the effects of sectioning the lateral ankle ligaments on anterior and inversion motion and stiffness of the ankle complex. In part II, we wanted to build on and apply these findings to the clinical assessment of ankle-complex motion and stiffness in a group of athletes with a history of unilateral ankle sprain. To examine ankle-complex motion and stiffness in a group of athletes with reported history of lateral ankle sprain. Cross-sectional study. University research laboratory. Twenty-five female college athletes (age = 19.4 ± 1.4 years, height = 170.2 ± 7.4 cm, mass = 67.3 ± 10.0 kg) with histories of unilateral ankle sprain. All ankles underwent loading with an ankle arthrometer. Ankles were tested bilaterally. The dependent variables were anterior displacement, anterior end-range stiffness, inversion rotation, and inversion end-range stiffness. Anterior displacement of the ankle complex did not differ between the uninjured and sprained ankles (P = .37), whereas ankle-complex rotation was greater for the sprained ankles (P = .03). The sprained ankles had less anterior and inversion end-range stiffness than the uninjured ankles (P < .01). Changes in ankle-complex laxity and end-range stiffness were detected in ankles with histories of sprain. These results indicate the presence of altered mechanical characteristics in the soft tissues of the sprained ankles.
NASA Technical Reports Server (NTRS)
Chao, H. C.; Cheng, H. S.
1987-01-01
A complete analysis of spiral bevel gear sets is presented. The gear profile is described by the movements of the cutting tools. The contact patterns of the rigid body gears are investigated. The tooth dynamic force is studied by combining the effects of variable teeth meshing stiffness, speed, damping, and bearing stiffness. The lubrication performance is also accomplished by including the effects of the lubricant viscosity, ambient temperature, and gear speed. A set of numerical results is also presented.
Palmer, Ty B; Agu-Udemba, Chinonye C; Palmer, Bailey M
2018-02-01
This study aimed to examine the acute effects of straight-leg raise (SLR) static stretching on passive stiffness and postural balance in healthy, elderly men. An additional aim of this study was to examine the relationships between stiffness and balance at baseline (prior to stretching) and the relationships between the stretch-induced changes in these variables. Eleven elderly men (age = 69 ± 6 years; height = 177 ± 7 cm; mass = 83 ± 13 kg) underwent postural balance and passive stiffness assessments before and after: 1) a stretching treatment consisting of four, 15-s SLR static stretches performed by the primary investigator and 2) a control treatment consisting of no static stretching. Passive stiffness was calculated from the slopes of the initial (phase 1) and final (phase 2) portions of the angle-torque curve. Unilateral postural balance was assessed on the right leg using a commercially designed balance testing device, which provides a measurement of static stability based on the overall stability index (OSI). The slope coefficients and OSI values decreased from pre- to post-treatment for the stretching intervention (P = 0.015 and 0.018, respectively); however, there were no changes for the control (P = 0.654 and 0.920). For the stretching intervention, a significant positive relationship was observed between OSI and the slope coefficient of phase 1 at baseline (r = 0.619; P = 0.042). A significant positive relationship was also observed between the stretched-induced changes in OSI and the slope coefficient of phase 1 (r = 0.731; P = 0.011). No relationship was observed between OSI and the slope coefficient of phase 2 at baseline (r = 0.262; P = 0.437) nor was there a relationship between the changes in these variables (r = 0.419; P = 0.200). A short, practical bout of SLR static stretching may be an effective intervention for reducing passive stiffness and improving postural balance in healthy, elderly men.
2004-04-15
This is an artist's concept of an orbiting space vehicle in the Jovian system using an electrodynamic tether propellantless propulsion system. Electrodynamic tethers offer the potential to greatly extend and enhance future scientific missions to Jupiter and the Jovian system. Like Earth, Jupiter posses a strong magnetic field and a significant magnetosphere. This may make it feasible to operate electrodynamic tethers for propulsion and power generation.
A control system for orbiting tethered-body operations
NASA Technical Reports Server (NTRS)
Eades, J. B., Jr.
1975-01-01
This paper shows that through proper control logic the transfer of men and cargo between spacecrafts, or the 'positioning of packages' adjacent to orbiters, can be accomodated safely and predictably using tethers. Also, these systems may be adapted to rescue and retrieval operations where 'controlled motions' must be maintained. Shown here is a method which illustrates how tethered-body motions are controlled for 'reel-in' and 'reel-out' operations, and for precise 'positioning' purposes. Three control modes are examined; from these are derived sets of universal control parameters capable of predescribing systems of similar types. In addition, these parameters form a basis for designing tethered-body systems and operations.
TESSX: A Mission for Space Exploration with Tethers
NASA Technical Reports Server (NTRS)
Cosmo, Mario L.; Lorenzini, Enrico C.; Gramer, Daniel J.; Hoffman, John H.; Mazzoleni, Andre P.
2005-01-01
Tethers offer significant potential for substantially increasing payload mass fraction, increasing spacecraft lifetime, enhancing long-term space travel, and enabling the understanding and development of gravity-dependent technologies required for Moon and Mars exploration. The development of the Tether Electrodynamic Spin-up and Survivability Experiment (TESSX) will support applications relevant to NASA's new exploration initiative, including: artificial gravity generation, formation flying, electrodynamic propulsion, momentum exchange, and multi-amp current collection and emission. Under the broad term TESSX, we are currently evaluating several different tether system configurations and operational modes. The initial results of this work are presented, including hardware development, orbital dynamics simulations, and electrodynamics design and analysis.
MS Peterson and MS Musgrave in payload bay (PLB) during EVA
NASA Technical Reports Server (NTRS)
1983-01-01
Extravehicular mobility unit (EMU) suited Mission Specialist (MS) Peterson, designated EV2, translates from forward payload bay (PLB) to aft bulkhead worksite along port side sill longeron using tether and slidewire system while MS Musgrave, designated EV1, floats on a tether in center of PLB. Inertial Upper Stage (IUS) Airborne Support Equipment (ASE) forward frame and aft frame tilt actuator (AFTA) table appear in front and behind Musgrave and vertical tail and Orbital Maneuvering System (OMS) pods appear in background highlighted against the cloudy surface of Earth. EMU mini workstation extravehicular activity (EVA) crewmember safety tether reel floats on Musgrave's waist tether.
Catalyst system comprising a first catalyst system tethered to a supported catalyst
Angelici, Robert J.; Gao, Hanrong
1998-08-04
The present invention provides new catalyst formats which comprise a supported catalyst tethered to a second and different catalyst by a suitable tethering ligand. A preferred system comprises a heterogeneous supported metal catalyst tethered to a homogeneous catalyst. This combination of homogeneous and heterogeneous catalysts has a sufficient lifetime and unusually high catalytic activity in arene hydrogenations, and potentially many other reactions as well, including, but not limited to hydroformylation, hydrosilation, olefin oxidation, isomerization, hydrocyanation, olefin metathesis, olefin polymerization, carbonylation, enantioselective catalysis and photoduplication. These catalysts are easily separated from the products, and can be reused repeatedly, making these systems very economical.
Catalyst system comprising a first catalyst system tethered to a supported catalyst
Angelici, R.J.; Gao, H.
1998-08-04
The present invention provides new catalyst formats which comprise a supported catalyst tethered to a second and different catalyst by a suitable tethering ligand. A preferred system comprises a heterogeneous supported metal catalyst tethered to a homogeneous catalyst. This combination of homogeneous and heterogeneous catalysts has a sufficient lifetime and unusually high catalytic activity in arene hydrogenations, and potentially many other reactions as well, including, but not limited to hydroformylation, hydrosilication, olefin oxidation, isomerization, hydrocyanidation, olefin metathesis, olefin polymerization, carbonylation, enantioselective catalysis and photoduplication. These catalysts are easily separated from the products, and can be reused repeatedly, making these systems very economical. 2 figs.
Effect of chromosome tethering on nuclear organization in yeast.
Avşaroğlu, Barış; Bronk, Gabriel; Gordon-Messer, Susannah; Ham, Jungoh; Bressan, Debra A; Haber, James E; Kondev, Jane
2014-01-01
Interphase chromosomes in Saccharomyces cerevisiae are tethered to the nuclear envelope at their telomeres and to the spindle pole body (SPB) at their centromeres. Using a polymer model of yeast chromosomes that includes these interactions, we show theoretically that telomere attachment to the nuclear envelope is a major determinant of gene positioning within the nucleus only for genes within 10 kb of the telomeres. We test this prediction by measuring the distance between the SPB and the silent mating locus (HML) on chromosome III in wild-type and mutant yeast strains that contain altered chromosome-tethering interactions. In wild-type yeast cells we find that disruption of the telomere tether does not dramatically change the position of HML with respect to the SPB, in agreement with theoretical predictions. Alternatively, using a mutant strain with a synthetic tether that localizes an HML-proximal site to the nuclear envelope, we find a significant change in the SPB-HML distance, again as predicted by theory. Our study quantifies the importance of tethering at telomeres on the organization of interphase chromosomes in yeast, which has been shown to play a significant role in determining chromosome function such as gene expression and recombination.
Suo, Tongchuan; Whitmore, Mark D
2014-11-28
We examine end-tethered polymers in good solvents, using one- and three-dimensional self-consistent field theory, and strong stretching theories. We also discuss different tethering scenarios, namely, mobile tethers, fixed but random ones, and fixed but ordered ones, and the effects and important limitations of including only binary interactions (excluded volume terms). We find that there is a "mushroom" regime in which the layer thickness is independent of the tethering density, σ, for systems with ordered tethers, but we argue that there is no such plateau for mobile or disordered anchors, nor is there one in the 1D theory. In the other limit of brushes, all approaches predict that the layer thickness scales linearly with N. However, the σ(1/3) scaling is a result of keeping only excluded volume interactions: when the full potential is included, the dependence is faster and more complicated than σ(1/3). In fact, there does not appear to be any regime in which the layer thickness scales in the combination Nσ(1/3). We also compare the results for two different solvents with each other, and with earlier Θ solvent results.
Heinrich, Frank; Nanda, Hirsh; Goh, Haw Zan; Bachert, Collin; Lösche, Mathias; Linstedt, Adam D.
2014-01-01
The mammalian Golgi reassembly stacking protein (GRASP) proteins are Golgi-localized homotypic membrane tethers that organize Golgi stacks into a long, contiguous ribbon-like structure. It is unknown how GRASPs undergo trans pairing given that cis interactions between the proteins in the plane of the membrane are intrinsically favored. To test the hypothesis that myristoylation of the self-interacting GRASP domain restricts its orientation on the membrane to favor trans pairing, we established an in vitro assay that recapitulates GRASP-dependent membrane tethering and used neutron reflection under similar conditions to determine the orientation of the GRASP domain. In vivo, the membrane association of GRASP proteins is conferred by the simultaneous insertion of an N-terminal myristic acid and binding to a Golgi-associated binding partner. In our assay, the latter contact was replaced using a C-terminal hexa-His moiety, which bound to Ni2+-conjugated lipids incorporated into a substrate-supported bilayer lipid membrane. Nonmyristoylated protein lacked a fixed orientation on the membrane and inefficiently tethered liposomes. In contrast, myristoylated GRASP promoted tethering and exhibited a unique membrane complex. Thus, myristoylation restricts the membrane orientation of the GRASP domain favoring interactions in trans for membrane tethering. PMID:24505136
Effect of Chromosome Tethering on Nuclear Organization in Yeast
Avşaroğlu, Barış; Bronk, Gabriel; Gordon-Messer, Susannah; Ham, Jungoh; Bressan, Debra A.; Haber, James E.; Kondev, Jane
2014-01-01
Interphase chromosomes in Saccharomyces cerevisiae are tethered to the nuclear envelope at their telomeres and to the spindle pole body (SPB) at their centromeres. Using a polymer model of yeast chromosomes that includes these interactions, we show theoretically that telomere attachment to the nuclear envelope is a major determinant of gene positioning within the nucleus only for genes within 10 kb of the telomeres. We test this prediction by measuring the distance between the SPB and the silent mating locus (HML) on chromosome III in wild–type and mutant yeast strains that contain altered chromosome-tethering interactions. In wild-type yeast cells we find that disruption of the telomere tether does not dramatically change the position of HML with respect to the SPB, in agreement with theoretical predictions. Alternatively, using a mutant strain with a synthetic tether that localizes an HML-proximal site to the nuclear envelope, we find a significant change in the SPB-HML distance, again as predicted by theory. Our study quantifies the importance of tethering at telomeres on the organization of interphase chromosomes in yeast, which has been shown to play a significant role in determining chromosome function such as gene expression and recombination. PMID:25020108
Soncin, Rafael; Mezêncio, Bruno; Ferreira, Jacielle Carolina; Rodrigues, Sara Andrade; Huebner, Rudolf; Serrão, Julio Cerca; Szmuchrowski, Leszek
2017-06-01
The aim of this study was to propose a new force parameter, associated with swimmers' technique and performance. Twelve swimmers performed five repetitions of 25 m sprint crawl and a tethered swimming test with maximal effort. The parameters calculated were: the mean swimming velocity for crawl sprint, the mean propulsive force of the tethered swimming test as well as an oscillation parameter calculated from force fluctuation. The oscillation parameter evaluates the force variation around the mean force during the tethered test as a measure of swimming technique. Two parameters showed significant correlations with swimming velocity: the mean force during the tethered swimming (r = 0.85) and the product of the mean force square root and the oscillation (r = 0.86). However, the intercept coefficient was significantly different from zero only for the mean force, suggesting that although the correlation coefficient of the parameters was similar, part of the mean velocity magnitude that was not associated with the mean force was associated with the product of the mean force square root and the oscillation. Thus, force fluctuation during tethered swimming can be used as a quantitative index of swimmers' technique.
1996-02-23
An STS-75 onboard photo of the Tethered Satellite System-1 Reflight (TSS-1R) atop its extended boom. The TSS-1R was a reflight of TSS-1, which was flown on the Space Shuttle in July/August, 1992. Building on the knowledge gained on the TSS-1 about tether dynamics, the TSS will circle the Earth at an altitude of 296 kilometers (184 miles), placing the tether system well within the rarefield, electrically charged layer of the atmosphere known as the ionosphere. The satellite was plarned to be deployed 20.7 kilometers (12.9 miles) above the Shuttle. The conducting tether, generating high voltage and electrical currents as it moves through the ionosphere cutting magnetic field lines, would allow scientists to examine the electrodynamics of a conducting tether system. In addition, the TSS would increase our understanding of physical processes in the near-Earth space environment, such as plasma waves and currents. The tether on the TSS broke as the Satellite was nearing the full extent of its 12.5 mile deployment from the Shuttle. The TSS was a cooperative development effort by the Italian Space Agency (ASI) and NASA, and was managed by scientists at the Marshall Space Flight Center.
CubeSat Measurement and Demonstration of Coulomb Drag Effect for Deorbiting
NASA Astrophysics Data System (ADS)
2013-08-01
Deorbiting satellites by passive or active electrodynamic tether Lorentz force effect is well known. Probably less well known is that a charged conducting tether also interacts with the streaming ionospheric plasma by electrostatic Coulomb drag. Especially for the case of small satellites deorbited by thin tethers, the Coulomb drag effect can be larger than the Lorentz force effect. When a tether is optimised for Coulomb drag, the goal is only to keep it charged. The fact that the charged tether gathers current is then a side effect which can be minimised by using negative voltage and by making the tether very thin. Using negative voltage in most cases implies that one can use the satellite's conducting surface as the other electrode so that no electron or ion emitter is needed on the spacecraft for closing the circuit. Thinness of the tether is a large benefit not only from the mass saving and power consumption minimisation points of view, but also because a sufficiently thin tether (made e.g. four 25-50 micrometre thin aluminium wires) poses nearly no threat to other space assets in the even of an unwanted collision. ESTCube-1 is an Estonian 1U CubeSat which is scheduled for Vega launch in May 2013 to 680 km polar orbit. The payload of ESTCube-1 is a 10 m long Heytether made of 25-50 aluminium wires which can be charged to plus orminus 500 V by onboard voltage sources and electron gun. The mission of ESTCube-1 is to demonstrate deployment of very thin multiline (and thus micrometeoroid tolerant) tether and to measure the Coulomb drag effect on the charged tether by ionospheric plasma ram flow. The Coulomb drag has not been measured before and besides useful for deorbiting the effect can also be used to propel interplanetary spacecraft by the fast moving solar wind plasma stream. The measurement of the micronewton scale force is carried out by turning the voltage on and off in a synchronous way with the satellite's rotation and by measuring the cumulative change in the rotation rate over many spin periods. In the presentation we will give the latest update of the ESTCube-1 project as well as its follow-up Aalto-1 satellite mission.
Skin-stiffener interface stresses in composite stiffened panels
NASA Technical Reports Server (NTRS)
Wang, J. T. S.; Biggers, S. B.
1984-01-01
A model and solution method for determining the normal and shear stresses in the interface between the skin and the stiffener attached flange were developed. An efficient, analytical solution procedure was developed and incorporated in a sizing code for stiffened panels. The analysis procedure described provides a means to study the effects of material and geometric design parameters on the interface stresses. These stresses include the normal stress, and the shear stresses in both the longitudinal and the transverse directions. The tendency toward skin/stiffener separation may therefore be minimized by choosing appropriate values for the design variables. The most important design variables include the relative bending stiffnesses of the skin and stiffener attached flange, the bending stiffness of the stiffener web, and the flange width. The longitudinal compressive loads in the flange and skin have significant effects on the interface stresses.
Bi-directional series-parallel elastic actuator and overlap of the actuation layers.
Furnémont, Raphaël; Mathijssen, Glenn; Verstraten, Tom; Lefeber, Dirk; Vanderborght, Bram
2016-01-27
Several robotics applications require high torque-to-weight ratio and energy efficient actuators. Progress in that direction was made by introducing compliant elements into the actuation. A large variety of actuators were developed such as series elastic actuators (SEAs), variable stiffness actuators and parallel elastic actuators (PEAs). SEAs can reduce the peak power while PEAs can reduce the torque requirement on the motor. Nonetheless, these actuators still cannot meet performances close to humans. To combine both advantages, the series parallel elastic actuator (SPEA) was developed. The principle is inspired from biological muscles. Muscles are composed of motor units, placed in parallel, which are variably recruited as the required effort increases. This biological principle is exploited in the SPEA, where springs (layers), placed in parallel, can be recruited one by one. This recruitment is performed by an intermittent mechanism. This paper presents the development of a SPEA using the MACCEPA principle with a self-closing mechanism. This actuator can deliver a bi-directional output torque, variable stiffness and reduced friction. The load on the motor can also be reduced, leading to a lower power consumption. The variable recruitment of the parallel springs can also be tuned in order to further decrease the consumption of the actuator for a given task. First, an explanation of the concept and a brief description of the prior work done will be given. Next, the design and the model of one of the layers will be presented. The working principle of the full actuator will then be given. At the end of this paper, experiments showing the electric consumption of the actuator will display the advantage of the SPEA over an equivalent stiff actuator.
Tethered Swimming for the Evaluation and Prescription of Resistance Training in Young Swimmers.
Papoti, Marcelo; da Silva, Adelino S R; Kalva-Filho, Carlos Augusto; Araujo, Gustavo Gomes; Santiago, Vanessa; Martins, LuizEduardo Barreto; Cunha, Sérgio Augusto; Gobatto, Claudio Alexandre
2017-02-01
The aims of the present study were 1) to evaluate the effects of 11 weeks of a typical free-swimming training program on aerobic and stroke parameters determined in tethered swimming (Study 1; n=13) and 2) to investigate the responses of tethered swimming efforts, in addition to free-swimming sessions, through 7 weeks of training (Study 2; n=21). In both studies, subjects performed a graded exercise test in tethered swimming (GET) to determine anaerobic threshold (AnT), stroke rate at AnT (SR AnT ), peak force at GET (PF GET ) and peak blood lactate ([La-] GET ). Participants also swam 100-, 200- and 400-m lengths to evaluate performance. In Study 2, swimmers were divided into control (i. e., only free-swimming; GC [n=11]) and tethered swimming group (i. e., 50% of the main session; G TS [n=10]). The results of Study 1 demonstrate that AnT, PF GET , [La - ] GET and 200-m performance were improved with free-swimming training. The SR AnT decreased with training. In Study 2, free-swimming performance and most of the graded exercise test parameters were not altered in either group. However, [La-] GET improved only for G TS . These results demonstrate that aerobic parameters obtained in tethered swimming can be used to evaluate free-swimming training responses, and the addition of tethered efforts during training routine improves the lactate production capacity of swimmers. © Georg Thieme Verlag KG Stuttgart · New York.
Huang, Kuan-Chun; White, Ryan J
2013-08-28
We develop a random walk model to simulate the Brownian motion and the electrochemical response of a single molecule confined to an electrode surface via a flexible molecular tether. We use our simple model, which requires no prior knowledge of the physics of the molecular tether, to predict and better understand the voltammetric response of surface-confined redox molecules when motion of the redox molecule becomes important. The single molecule is confined to a hemispherical volume with a maximum radius determined by the flexible molecular tether (5-20 nm) and is allowed to undergo true three-dimensional diffusion. Distance- and potential-dependent electron transfer probabilities are evaluated throughout the simulations to generate cyclic voltammograms of the model system. We find that at sufficiently slow cyclic voltammetric scan rates the electrochemical reaction behaves like an adsorbed redox molecule with no mass transfer limitation; thus, the peak current is proportional to the scan rate. Conversely, at faster scan rates the diffusional motion of the molecule limits the simulated peak current, which exhibits a linear dependence on the square root of the scan rate. The switch between these two limiting regimes occurs when the diffusion layer thickness, (2Dt)(1/2), is ~10 times the tether length. Finally, we find that our model predicts the voltammetric behavior of a redox-active methylene blue tethered to an electrode surface via short flexible single-stranded, polythymine DNAs, allowing the estimation of diffusion coefficients for the end-tethered molecule.
Rate limit of protein elastic response is tether dependent
Berkovich, Ronen; Hermans, Rodolfo I.; Popa, Ionel; Stirnemann, Guillaume; Garcia-Manyes, Sergi; Berne, Bruce J.; Fernandez, Julio M.
2012-01-01
The elastic restoring force of tissues must be able to operate over the very wide range of loading rates experienced by living organisms. It is surprising that even the fastest events involving animal muscle tissues do not surpass a few hundred hertz. We propose that this limit is set in part by the elastic dynamics of tethered proteins extending and relaxing under a changing load. Here we study the elastic dynamics of tethered proteins using a fast force spectrometer with sub-millisecond time resolution, combined with Brownian and Molecular Dynamics simulations. We show that the act of tethering a polypeptide to an object, an inseparable part of protein elasticity in vivo and in experimental setups, greatly reduces the attempt frequency with which the protein samples its free energy. Indeed, our data shows that a tethered polypeptide can traverse its free-energy landscape with a surprisingly low effective diffusion coefficient Deff ∼ 1,200 nm2/s. By contrast, our Molecular Dynamics simulations show that diffusion of an isolated protein under force occurs at Deff ∼ 108 nm2/s. This discrepancy is attributed to the drag force caused by the tethering object. From the physiological time scales of tissue elasticity, we calculate that tethered elastic proteins equilibrate in vivo with Deff ∼ 104–106 nm2/s which is two to four orders magnitude smaller than the values measured for untethered proteins in bulk. PMID:22895787
Boczek, Nicole J; Kruisselbrink, Teresa; Cousin, Margot A; Blackburn, Patrick R; Klee, Eric W; Gavrilova, Ralitza H; Lanpher, Brendan C
2017-05-01
STAR syndrome is a rare X-linked dominant disorder characterized by toe Syndactyly, Telecanthus, Anogenital malformations, and Renal malformations, and is caused by loss-of-function variants in FAM58A. Our proband presented with the hallmark features of STAR syndrome, as well as some additional less typical features including tethered cord and hearing loss. The proband's mother and maternal half-sister had similar clinical histories, but had variability in phenotypic severity. Clinical whole exome sequencing revealed a novel pathogenic nonsense variant, c.651G>A (p.Trp217X; NM_152274), in FAM58A in the proband, mother, and maternal half-sister. This pedigree represents the 11-13th patients described with STAR syndrome and the third instance of familial inheritance. To our knowledge, this is the first occurrence of a nonsense variant in FAM58A described in individuals with STAR syndrome and the phenotype in this pedigree suggests that tethered cord and hearing loss are features of STAR syndrome. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Urrutxua, H.; Sanjurjo-Rivo, M.; Peláez, J.
2013-12-01
In year 2000 a house-made orbital propagator was developed by the SDGUPM (former Grupo de Dinámica de Tethers) based in a set of redundant variables including Euler parameters. This propagator was called DROMO. and it was mainly used in numerical simulations of electrodynamic tethers. It was presented for the first time in the international meeting V Jornadas de Trabajo en Mecánica Celeste, held in Albarracín, Spain, in 2002 (see reference 1). The special perturbation method associated with DROMO can be consulted in the paper.2 In year 1975, Andre Deprit in reference 3 proposes a propagation scheme very similar to the one in which DROMO is based, by using the ideal frame concept of Hansen. The different approaches used in references 3 and 2 gave rise to a small controversy. In this paper we carried out a different deduction of the DROMO propagator, underlining its close relation with the Hansen ideal frame concept, and also the similarities and the differences with the theory carried out by Deprit in 3. Simultaneously we introduce some improvements in the formulation that leads to a more synthetic propagator.
Effect of varying recording cable weight and flexibility on activity and sleep in mice.
Tang, Xiangdong; Orchard, Stuart M; Liu, Xianling; Sanford, Larry D
2004-06-15
Sleep in mice has typically been determined from electroencephalograms and electromyograms recorded via cables in tethered animals. However, the relatively small physical size of mice can produce concerns in recording with cables that may not be seen in larger animals. To examine the influence of implantation and tethering on mice, we recorded activity and sleep in 2 strains while they were attached to 3 cable configurations that varied in weight and flexibility. Activity was recorded prior to surgery and after surgery without tethering. Afterward, the mice were habituated to 3 cable configurations (light [L]: 1.5 g; medium [M]: 2.2 g; heavy [H]: 3.0 g), and activity and sleep were recorded for 2 consecutive days under each configuration. N/A. Studies were conducted in 2 mouse strains that differ significantly in levels of spontaneous activity (more-active strain: BALB/cJ [C]; less-active strain: DBA/2J [D2]). N/A. Significant postsurgery reductions in activity in nontethered mice were found only in the more-active C strain. Activity in both strains was reduced in a graded manner as cable weight increased and flexibility decreased. In contrast, changes in sleep were not graded across cables, and changes in rapid eye movement sleep showed more variability. In addition, the effects of varying cables were not consistent across strains. The differential impact that variations in the weight and flexibility of recording cables can have on the amount and patterns of sleep is an important consideration in conducting and interpreting sleep studies in mice.
Tethered satellite system dynamics and control
NASA Technical Reports Server (NTRS)
Musetti, B.; Cibrario, B.; Bussolino, L.; Bodley, C. S.; Flanders, H. A.; Mowery, D. K.; Tomlin, D. D.
1990-01-01
The first tethered satellite system, scheduled for launch in May 1991, is reviewed. The system dynamics, dynamics control, and dynamics simulations are discussed. Particular attention is given to in-plane and out-of-plane librations; tether oscillation modes; orbiter and sub-satellite dynamics; deployer control system; the sub-satellite attitude measurement and control system; the Aeritalia Dynamics Model; the Martin-Marietta and NASA-MSFC Dynamics Model; and simulation results.
Solis, Jorge; Levine, Robert A.; Johnson, Benjamin; Guerrero, J. Luis; Handschumacher, Mark D.; Suzanne, Suzanne; Lam, Kaitlyn; Berlin, Jason; Braithwaite, Gavin J.C.; Muratoglu, Orhun K.; Vlahakes, Gus J.; Hung, Judy
2010-01-01
Ischemic mitral regurgitation (IMR) results from displacement of the papillary muscles due to ischemic ventricular distortion. Recurrent IMR is frequent after annuloplasty, particularly when left ventricular remodeling continues to progress. Our hypothesis is that repositioning of the papillary muscles can be achieved by injection of polyvinyl-alcohol (PVA) hydrogel polymer into the myocardium in chronic MR despite advanced left ventricular remodeling. Methods Nine sheep underwent ligation of circumflex branches to produce chronic ischemic MR over eight weeks. Once MR developed, PVA was injected into the myocardium underlying the infarcted PM. 2D and 3D echocardiograms and hemodynamic data were obtained pre infarct (baseline), pre PVA (Chronic MR) and post PVA. Results One animal died early, one did not develop MR, and the remaining 7 developed moderate MR. PVA injection significantly decreased the MR from moderate to trace. This was associated with a decrease in infarcted papillary muscle-to-mitral annulus tethering distance (32.6 ± 4.4 to 27.6 ± 4.2 mm, P<0.05), tenting volume (2.1±0.3 to 1.6 ± 0.3 mm2 P<0.05) and leaflet closure area (9.3 ± 0.8 to 8.2 ± 0.7 mm2, P<0.04). PVA was not associated with significant decreases in LVEF (42 ± 3 % vs 40 ± 2 %, p=ns) or end-systolic elastance. Measures of left ventricular diastolic function, tau (99 ± 55 ms to 87 ± 36;) and left ventricular stiffness coefficient (0.04 ± 0.03 to 0.05 ± 0.03) did not increase post PVA. Conclusions PVA hydrogel injections improve coaptation and reduce remodeling in chronic MR without impairing LV systolic and diastolic function. This new approach offers a potential alternative for relieving ischemic mitral regurgitation by correcting papillary muscle position, thus relieving tethering that causes ischemic mitral regurgitation. PMID:20736444
Solis, Jorge; Levine, Robert A; Johnson, Benjamin; Guerrero, J Luis; Handschumacher, Mark D; Sullivan, Suzanne; Lam, Kaitlyn; Berlin, Jason; Braithwaite, Gavin J C; Muratoglu, Orhun K; Vlahakes, Gus J; Hung, Judy
2010-10-01
Ischemic mitral regurgitation (MR) results from displacement of the papillary muscles caused by ischemic ventricular distortion. Progressive left ventricular (LV) remodeling has challenged therapy. Our hypothesis is that repositioning of the papillary muscles can be achieved by injection of polyvinyl-alcohol (PVA) hydrogel polymer into the myocardium in chronic MR despite advanced LV remodeling. Ten sheep underwent ligation of the circumflex branches to produce chronic ischemic MR over 8 weeks. PVA was injected into the myocardium underlying the infarcted papillary muscle. Two-dimensional and 3D echocardiograms and hemodynamic data were obtained before infarct (baseline), before PVA (chronic MR), and after PVA. PVA injection significantly decreased MR from moderate to severe to trace (MR vena contracta, 5.8±1.2 to1.8±1.3 mm; chronic MR to post-PVA stage; P=0.0003). This was associated with a decrease in infarcted papillary muscle-to-mitral annulus tethering distance (30.3±5.7 to 25.9±4.6 mm, P=0.02), tenting volume (1.8±0.7 to 1.4±0.5 mL, P=0.01), and leaflet closure area (8.8±1.3 cm(2)to 7.6±1.3 cm(2), P=0.004) from chronic MR to post-PVA stages. PVA was not associated with significant decreases in LV ejection fraction (41±3% versus 40±3%, P=NS), end-systolic elastance, τ (82±36 ms to 72±26, P=NS), or LV stiffness coefficient (0.05±0.04 to 0.03±0.01). PVA hydrogel injections improve coaptation and reduce remodeling in chronic MR without impairing LV systolic and diastolic function. This new approach offers a potential alternative for relieving tethering and ischemic MR by correcting papillary muscle position.
NASA Technical Reports Server (NTRS)
Anderson, C. M.; Noor, A. K.
1975-01-01
Computerized symbolic integration was used in conjunction with group-theoretic techniques to obtain analytic expressions for the stiffness, geometric stiffness, consistent mass, and consistent load matrices of composite shallow shell structural elements. The elements are shear flexible and have variable curvature. A stiffness (displacement) formulation was used with the fundamental unknowns consisting of both the displacement and rotation components of the reference surface of the shell. The triangular elements have six and ten nodes; the quadrilateral elements have four and eight nodes and can have internal degrees of freedom associated with displacement modes which vanish along the edges of the element (bubble modes). The stiffness, geometric stiffness, consistent mass, and consistent load coefficients are expressed as linear combinations of integrals (over the element domain) whose integrands are products of shape functions and their derivatives. The evaluation of the elemental matrices is divided into two separate problems - determination of the coefficients in the linear combination and evaluation of the integrals. The integrals are performed symbolically by using the symbolic-and-algebraic-manipulation language MACSYMA. The efficiency of using symbolic integration in the element development is demonstrated by comparing the number of floating-point arithmetic operations required in this approach with those required by a commonly used numerical quadrature technique.
Cardiovascular Health and Arterial Stiffness: The Maine Syracuse Longitudinal Study
Crichton, Georgina E; Elias, Merrill F; Robbins, Michael A
2014-01-01
Ideal cardiovascular health is a recently defined construct by the American Heart Association (AHA) to promote cardiovascular disease reduction. Arterial stiffness is a major risk factor for cardiovascular disease. The extent to which the presence of multiple prevalent cardiovascular risk factors and health behaviors is associated with arterial stiffness is unknown. The aim of this study was to examine the association between the AHA construct of cardiovascular health and arterial stiffness, as indexed by pulse wave velocity and pulse pressure. The AHA health metrics, comprising of four health behaviors (smoking, body mass index, physical activity, and diet) and three health factors (total cholesterol, blood pressure, and fasting plasma glucose) were evaluated among 505 participants in the Maine-Syracuse Longitudinal Study. Outcome measures were carotid-femoral pulse wave velocity (PWV) and pulse pressure measured at 4 to 5-year follow-up. Better cardiovascular health, comprising both health factors and behaviors, was associated with lower arterial stiffness, as indexed by pulse wave velocity and pulse pressure. Those with at least five health metrics at ideal levels had significantly lower PWV (9.8 m/s) than those with two or less ideal health metrics (11.7 m/s) (P<0.001). This finding remained with the addition of demographic and PWV-related variables (P=0.004). PMID:24384629
Cardiovascular health and arterial stiffness: the Maine-Syracuse Longitudinal Study.
Crichton, G E; Elias, M F; Robbins, M A
2014-07-01
Ideal cardiovascular health is a recently defined construct by the American Heart Association (AHA) to promote cardiovascular disease reduction. Arterial stiffness is a major risk factor for cardiovascular disease. The extent to which the presence of multiple prevalent cardiovascular risk factors and health behaviors is associated with arterial stiffness is unknown. The aim of this study was to examine the association between the AHA construct of cardiovascular health and arterial stiffness, as indexed by pulse wave velocity (PWV) and pulse pressure. The AHA health metrics, comprising of four health behaviors (smoking, body mass index, physical activity and diet) and three health factors (total cholesterol, blood pressure and fasting plasma glucose), were evaluated among 505 participants in the Maine-Syracuse Longitudinal Study. Outcome measures were carotid-femoral PWV and pulse pressure measured at 4- to 5-year follow-up. Better cardiovascular health, comprising both health factors and behaviors, was associated with lower arterial stiffness, as indexed by PWV and pulse pressure. Those with at least five health metrics at ideal levels had significantly lower PWV (9.8 m s(-1)) than those with two or less ideal health metrics (11.7 m s(-1)) (P < 0.001). This finding remained with the addition of demographic and PWV-related variables (P = 0.004).
The effects of oral contraceptive use on muscle stiffness across the menstrual cycle.
Bell, David R; Blackburn, J Troy; Ondrak, Kristin S; Hackney, Anthony C; Hudson, Jeffrey D; Norcross, Marc F; Padua, Darin A
2011-11-01
To determine the effect of oral contraceptives (OC) on hamstring neuromechanics and lower extremity stiffness across the menstrual cycle (MC). Causal comparative. Research laboratory. Thirty, healthy, normally menstruating female volunteers who were using OC (OC group, n = 15) or not (non-OC group, n = 15). Stiffness and hamstring neuromechanics were assessed at 2 points of the MC corresponding to low (menses) and high (ovulation) hormone concentrations. Menses testing took place 3 to 5 days after the onset of menses (or pills 3-5 for the OC group). Ovulation test session occurred 2 to 4 days after ovulation identified using a commercial ovulation kit (or pills 15-17 in the OC group). Lower extremity stiffness and hamstring neuromechanics [stiffness, electromechanical delay, rate of force production (RFP), time to 50% peak force (T50%)] and blood plasma concentrations of estradiol-β-17, free testosterone, and progesterone. Estradiol-β-17, free testosterone, and progesterone increased at ovulation in the non-OC group and remained constant in the OC group. No changes were observed across the MC or between the groups in other variables (P > 0.05). Although previous literature suggests a prophylactic effect of OC use with respect to musculoskeletal injury risk, our results indicate that OC use does not affect muscle properties in manners thought to reduce ACL injury risk.
Indentation stiffness does not discriminate between normal and degraded articular cartilage.
Brown, Cameron P; Crawford, Ross W; Oloyede, Adekunle
2007-08-01
Relative indentation characteristics are commonly used for distinguishing between normal healthy and degraded cartilage. The application of this parameter in surgical decision making and an appreciation of articular cartilage biomechanics has prompted us to hypothesise that it is difficult to define a reference stiffness to characterise normal articular cartilage. This hypothesis is tested for validity by carrying out biomechanical indentation of articular cartilage samples that are characterised as visually normal and degraded relative to proteoglycan depletion and collagen disruption. Compressive loading was applied at known strain rates to visually normal, artificially degraded and naturally osteoarthritic articular cartilage and observing the trends of their stress-strain and stiffness characteristics. While our results demonstrated a 25% depreciation in the stiffness of individual samples after proteoglycan depletion, they also showed that when compared to the stiffness of normal samples only 17% lie outside the range of the stress-strain behaviour of normal samples. We conclude that the extent of the variability in the properties of normal samples, and the degree of overlap (81%) of the biomechanical properties of normal and degraded matrices demonstrate that indentation data cannot form an accurate basis for distinguishing normal from abnormal articular cartilage samples with consequences for the application of this mechanical process in the clinical environment.
Sato, Eugene J.; Killian, Megan L.; Choi, Anthony J.; Lin, Evie; Esparza, Mary C.; Galatz, Leesa M.; Thomopoulos, Stavros; Ward, Samuel R.
2015-01-01
Rotator cuff tears can cause irreversible changes (e.g., fibrosis) to the structure and function of the injured muscle(s). Fibrosis leads to increased muscle stiffness resulting in increased tension at the rotator cuff repair site. This tension influences repairability and healing potential in the clinical setting. However, the micro- and meso-scale structural and molecular sources of these whole-muscle mechanical changes are poorly understood. Here, single muscle fiber and fiber bundle passive mechanical testing was performed on rat supraspinatus and infraspinatus muscles with experimentally induced massive rotator cuff tears (Tenotomy) as well as massive tears with chemical denervation (Tenotomy+BTX) at 8 and 16 weeks post-injury. Titin molecular weight, collagen content, and myosin heavy chain profiles were measured and correlated with mechanical variables. Single fiber stiffness was not different between controls and experimental groups. However, fiber bundle stiffness was significantly increased at 8 weeks in the Tenotomy+BTX group compared to Tenotomy or control groups. Many of the changes were resolved by 16 weeks. Only fiber bundle passive mechanics was weakly correlated with collagen content. These data suggest that tendon injury with concomitant neuromuscular compromise results in extracellular matrix production and increases in stiffness of the muscle, potentially complicating subsequent attempts for surgical repair. PMID:24838823
NASA Astrophysics Data System (ADS)
Hao, Yufei; Wang, Tianmiao; Xie, Zhexin; Sun, Wenguang; Liu, Zemin; Fang, Xi; Yang, Minxuan; Wen, Li
2018-02-01
This paper presents a soft actuator embedded with two types of eutectic alloys which enable sensing, tunable mechanical degrees of freedom (DOF), and variable stiffness properties. To modulate the stiffness of the actuator, we embedded a low melting point alloy (LMPA) in the bottom portion of the soft actuator. Different sections of the LMPA could be selectively melted by the Ni-Cr wires twined underneath. To acquire the curvature information, EGaIn (eutectic gallium indium) was infused into a microchannel surrounding the chambers of the soft actuator. Systematic experiments were performed to characterize the stiffness, tunable DOF, and sensing the bending curvature. We found that the average bending force and elasticity modulus could be increased about 35 and 4000 times, respectively, with the LMPA in a solid state. The entire LMPA could be melted from a solid to a liquid state within 12 s. In particular, up to six different motion patterns could be achieved under each pneumatic pressure of the soft actuator. Furthermore, the kinematics of the actuator under different motion patterns could be obtained by a mathematical model whose input was provided by the EGaIn sensor. For demonstration purposes, a two-fingered gripper was fabricated to grasp various objects by adjusting the DOF and mechanical stiffness.
Niederhäuser, Simone K; Tepic, Slobodan; Weber, Urs T
2015-05-01
To evaluate the effect of screw position on strength and stiffness of a combination locking plate-rod construct in a synthetic feline femoral gap model. 30 synthetic long-bone models derived from beechwood and balsa wood. 3 constructs (2 locking plate-rod constructs and 1 locking plate construct; 10 specimens/construct) were tested in a diaphyseal bridge plating configuration by use of 4-point bending and torsion. Variables included screw position (near the fracture gap and far from the fracture gap) and application of an intramedullary pin. Constructs were tested to failure in each loading mode to determine strength and stiffness. Failure was defined as plastic deformation of the plate or breakage of the bone model or plate. Strength, yield angle, and stiffness were compared by use of a Wilcoxon test. Placement of screws near the fracture gap did not increase bending or torsional stiffness in the locking plate-rod constructs, assuming the plate was placed on the tension side of the bone. Addition of an intramedullary pin resulted in a significant increase in bending strength of the construct. Screw positioning did not have a significant effect on any torsion variables. Results of this study suggested that, in the investigated plate-rod construct, screw insertion adjacent to the fracture lacked mechanical advantages over screw insertion at the plate ends. For surgeons attempting to minimize soft tissue dissection, the decision to make additional incisions for screw placement should be considered with even more caution.
Zhang, Xiao; Liu, Jian Jun; Fang Sum, Chee; Ying, Yeoh Lee; Tavintharan, Subramaniam; Ng, Xiao Wei; Su, Chang; Low, Serena; Lee, Simon Bm; Tang, Wern Ee; Lim, Su Chi
2016-07-01
To examine the relationship between inflammation and central arterial stiffness in a type 2 diabetes Asian cohort. Central arterial stiffness was estimated by carotid-femoral pulse wave velocity and augmentation index. Linear regression model was used to evaluate the association of high-sensitivity C-reactive protein and soluble receptor for advanced glycation end products with pulse wave velocity and augmentation index. High-sensitivity C-reactive protein was analysed as a continuous variable and categories (<1, 1-3, and >3 mg/L). There is no association between high-sensitivity C-reactive protein and pulse wave velocity. Augmentation index increased with high-sensitivity C-reactive protein as a continuous variable (β = 0.328, p = 0.049) and categories (β = 1.474, p = 0.008 for high-sensitivity C-reactive protein: 1-3 mg/L and β = 1.323, p = 0.019 for high-sensitivity C-reactive protein: >3 mg/L) after multivariable adjustment. No association was observed between augmentation index and soluble receptor for advanced glycation end products. Each unit increase in natural log-transformed soluble receptor for advanced glycation end products was associated with 0.328 m/s decrease in pulse wave velocity after multivariable adjustment (p = 0.007). Elevated high-sensitivity C-reactive protein and decreased soluble receptor for advanced glycation end products are associated with augmentation index and pulse wave velocity, respectively, suggesting the potential role of systemic inflammation in the pathogenesis of central arterial stiffness in type 2 diabetes. © The Author(s) 2016.
Plyometric vs. isometric training influences on tendon properties and muscle output.
Burgess, Katherine E; Connick, Mark J; Graham-Smith, Philip; Pearson, Stephen J
2007-08-01
The purpose of this study was to concurrently determine the effect that plyometric and isometric training has on tendon stiffness (K) and muscle output characteristics to compare any subsequent changes. Thirteen men trained the lower limbs either plyometrically or isometrically 2-3 times a week for a 6-week period. Medial gastrocnemius tendon stiffness was measured in vivo using ultrasonography during ramped isometric contractions before and after training. Mechanical output variables were measured using a force plate during concentric and isometric efforts. Significant (p < 0.05) training-induced increases in tendon K were seen for the plyometric (29.4%; 49.0 +/- 10.8 to 63.4 +/- 9.2 N x mm(-1)) and isometric groups (61.6%; 43.9 +/- 2.5 to 71.0 +/- 7.4 N x mm(-1)). Statistically similar increases in rate of force development and jump height were also seen for both training groups, with increases of 18.9 and 58.6% for the plyometric group and 16.7 and 64.3% for the isometric group, respectively. Jump height was found to be significantly correlated with tendon stiffness, such that stiffness could explain 21% of the variance in jump height. Plyometric training has been shown to place large stresses on the body, which can lead to a potential for injury, whereas explosive isometric training has been shown here to provide similar benefits to that of plyometric training with respect to the measured variables, but with reduced impact forces, and would therefore provide a useful adjunct for athletic training programs within a 6-week time frame.
Schrade, Stefan O; Dätwyler, Katrin; Stücheli, Marius; Studer, Kathrin; Türk, Daniel-Alexander; Meboldt, Mirko; Gassert, Roger; Lambercy, Olivier
2018-03-13
Powered exoskeletons are a promising approach to restore the ability to walk after spinal cord injury (SCI). However, current exoskeletons remain limited in their walking speed and ability to support tasks of daily living, such as stair climbing or overcoming ramps. Moreover, training progress for such advanced mobility tasks is rarely reported in literature. The work presented here aims to demonstrate the basic functionality of the VariLeg exoskeleton and its ability to enable people with motor complete SCI to perform mobility tasks of daily life. VariLeg is a novel powered lower limb exoskeleton that enables adjustments to the compliance in the leg, with the objective of improving the robustness of walking on uneven terrain. This is achieved by an actuation system with variable mechanical stiffness in the knee joint, which was validated through test bench experiments. The feasibility and usability of the exoskeleton was tested with two paraplegic users with motor complete thoracic lesions at Th4 and Th12. The users trained three times a week, in 60 min sessions over four months with the aim of participating in the CYBATHLON 2016 competition, which served as a field test for the usability of the exoskeleton. The progress on basic walking skills and on advanced mobility tasks such as incline walking and stair climbing is reported. Within this first study, the exoskeleton was used with a constant knee stiffness. Test bench evaluation of the variable stiffness actuation system demonstrate that the stiffness could be rendered with an error lower than 30 Nm/rad. During training with the exoskeleton, both users acquired proficient skills in basic balancing, walking and slalom walking. In advanced mobility tasks, such as climbing ramps and stairs, only basic (needing support) to intermediate (able to perform task independently in 25% of the attempts) skill levels were achieved. After 4 months of training, one user competed at the CYBATHLON 2016 and was able to perform 3 (stand-sit-stand, slalom and tilted path) out of 6 obstacles of the track. No adverse events occurred during the training or the competition. Demonstration of the applicability to restore ambulation for people with motor complete SCI was achieved. The CYBATHLON highlighted the importance of training and gaining experience in piloting an exoskeleton, which were just as important as the technical realization of the robot.
Novaković, Marko; Prokšelj, Katja; Starc, Vito; Jug, Borut
2017-06-01
Adults after surgical repair of tetralogy of Fallot (ToF) may have impaired vascular and cardiac autonomic function. Thus, we wanted to assess interrelations between heart rate variability (HRV) and heart rate recovery (HRR), as parameters of cardiac autonomic function, and arterial stiffness, as a parameter of vascular function, in adults with repaired ToF as compared to healthy controls. In a case-control study of adults with repaired ToF and healthy age-matched controls we measured: 5-min HRV variability (with time and frequency domain data collected), carotid artery stiffness (through pulse-wave analysis using echo-tracking ultrasound) and post-exercise HRR (cycle ergometer exercise testing). Twenty-five patients with repaired ToF (mean age 38 ± 10 years) and 10 healthy controls (mean age 39 ± 8 years) were included. Selected HRR and HRV (time-domain) parameters, but not arterial stiffness were significantly reduced in adults after ToF repair. Moreover, a strong association between late/slow HRR (after 2, 3 and 4 min) and carotid artery stiffness was detected in ToF patients (r = -0.404, p = 0.045; r = -0.545, p = 0.005 and r = -0.545, p = 0.005, respectively), with statistical significance retained even after adjusting for age, gender, resting heart rate and β-blockers use (r = -0.393, p = 0.024 for HRR after 3 min). Autonomic cardiac function is impaired in patients with repaired ToF, and independently associated with vascular function in adults after ToF repair, but not in age-matched healthy controls. These results might help in introducing new predictors of cardiovascular morbidity in a growing population of adults after surgical repair of ToF.
Jaroch, Joanna; Łoboz-Grudzień, Krystyna; Magda, Stefania; Florescu, Maria; Bociąga, Zbigniew; Ciobanu, Andrea O; Kruszyńska, Ewa; Dudek, Krzysztof; Vinereanu, Dragos
2016-01-01
Left ventricular hypertrophy (LVH) and geometry patterns vary in different hemodynamic profiles The concentric hypertrophy (CH) pattern has been proved to have the worst prognosis. The aim of the study was to test the hypothesis that carotid artery stiffness, as a marker of vascular damage, is associated with CH, independently of other potential determinants such as demographic factors (age, sex, BMI), clinical parameters (smoking, diabetes, creatinine level) and hemodynamic variables (blood pressure, pulse pressure [PP]). The study involved 262 subjects (89 men): 202 patients with hypertension (153 untreated, 49 on medication), aged 55.7 ± 10 years, and 60 age-matched normal controls. The subjects were examined by echocardiography and carotid ultrasound with a high-resolution echo-tracking system. Based on the left ventricular mass index (LVMI) and relative wall thickness (RWT), the patients with hypertension were divided into four patterns of LVH and geometry: normal geometry (N, n = 57), concentric remodeling (CR, n = 48), concentric hypertrophy CH (n = 62) and eccentric hypertrophy (EH, n = 35). Intima-media thickness (IMT) and the parameters of arterial stiffness were also assessed using the β stiffness index (β), Young elastic modulus (Ep), arterial compliance (AC), one-point pulse wave velocity (PWVβ) and the wave reflection augmentation index (AI). Univariate analysis showed that the following variables are significant in determining CH: β > 8.4, Ep > 136 kPa, PWVβ > 7.1 m/s, AI > 21.9%, systolic BP > 151 mm Hg, PP > 54, IMT > 0.56 and the presence of diabetes. However, by multivariate analysis only AI (OR 3.65, p = 0.003), PWVβ > 7.1 m/s (OR 2.86, p = 0.014), systolic BP (OR 3.12, p = 0037) and the presence of diabetes (OR 3.75, p = 0.007) were associated independently with the occurrence of CH. Concentric hypertrophy in hypertension is strongly associated with carotid arterial stiffness and wave reflection parameters, independently of the influence of systolic blood pressure and diabetes.
NASA Astrophysics Data System (ADS)
Bazaz Behbahani, Sanaz; Tan, Xiaobo
2017-08-01
Fish actively control their stiffness in different swimming conditions. Inspired by such an adaptive behavior, in this paper we study the design, prototyping, and dynamic modeling of compact, tunable-stiffness fins for robotic fish, where electrorheological (ER) fluid serves as the enabling element. A multi-layer composite fin with an ER fluid core is prototyped and utilized to investigate the influence of electrical field on its performance. Hamilton's principle is used to derive the dynamic equations of motion of the flexible fin, and Lighthill's large-amplitude elongated-body theory is adopted to estimate the hydrodynamic force when the fin undergoes base-actuated rotation. The dynamic equations are then discretized using the finite element method, to obtain an approximate numerical solution. Experiments are conducted on the prototyped flexible ER fluid-filled beam for parameter identification and validation of the proposed model, and for examining the effectiveness of electrically controlled stiffness tuning. In particular, it is found that the natural frequency is increased by almost 40% when the applied electric field changes from 0 to 1.5× {10}6 {{V}} {{{m}}}-1.
Chen, Jee-Wei Emily; Pedron, Sara; Harley, Brendan A C
2017-08-01
Glioblastoma (GBM) is the most common and lethal form of brain cancer. Its high mortality is associated with its aggressive invasion throughout the brain. The heterogeneity of stiffness and hyaluronic acid (HA) content within the brain makes it difficult to study invasion in vivo. A dextran-bead assay is employed to quantify GBM invasion within HA-functionalized gelatin hydrogels. Using a library of stiffness-matched hydrogels with variable levels of matrix-bound HA, it is reported that U251 GBM invasion is enhanced in softer hydrogels but reduced in the presence of matrix-bound HA. Inhibiting HA-CD44 interactions reduces invasion, even in hydrogels lacking matrix-bound HA. Analysis of HA biosynthesis suggests that GBM cells compensate for a lack of matrix-bound HA by producing soluble HA to stimulate invasion. Together, a robust method is showed to quantify GBM invasion over long culture times to reveal the coordinated effect of matrix stiffness, immobilized HA, and compensatory HA production on GBM invasion. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Zhuo; Luo, Runlan; Tan, Bijun; Qian, Jing; Duan, Yanfang; Wang, Nan; Li, Guangsen
2018-04-01
This study aims to assess carotid elasticity early in normal left ventricular function in post-radiotherapy patients with nasopharyngeal carcinoma (NPC) by wave intensity. Sixty-seven post-radiotherapy patients all with normal left ventricular function were classified into group NPC1 and group NPC2 based on their carotid intima-media thickness. Thirty age- and sex-matched NPC patients without any history of irradiation and chemotherapy were included as a control group. Carotid parameters, including stiffness constant (β), pressure-strain elastic modulus (Ep), arterial compliance (AC), stiffness constant pulse wave velocity (PWVβ), and wave intensity pulse wave velocity (PWVWI) were measured. There were no significant differences in conventional echocardiographic variables among the three groups. In comparison with the control group, β, Ep, PWVβ, and PWVWI were significantly increased, while AC was significantly decreased in the NPC1 and NPC2 groups, and there were differences between the NPC1 group and NPC2 group (all P < 0.05). This study suggested that carotid artery stiffness increased with reduced carotid compliance in post-RT with NPC.
Cañas, Teresa; Fontanilla, Teresa; Miralles, María; Maciá, Araceli; Malalana, Ana; Román, Enriqueta
2015-08-01
Portal hypertension, a major complication of hepatic fibrosis, can affect the stiffness of the spleen. To suggest normal values of spleen stiffness determined by acoustic radiation force impulse imaging in healthy children and to compare measurements using two different US probes. In a prospective study, 60 healthy children between 1 day and 14 years of age were assigned to four age groups with 15 children in each. Measurements were performed using two transducers (convex 4C1 and linear 9L4), and 10 measurements were obtained in each child, 5 with each probe. The mean splenic shear wave velocities were 2.17 m/s (SD 0.35, 95% CI 2.08-2.26) with the 4C1 probe and 2.15 m/s (SD 0.23, 95% CI 2.09-2.21) with the 9L4 probe (not significant). We found normal values for spleen stiffness with no difference in the mean values obtained using two types of US transducers, but with higher variability using a convex compared to a linear transducer.
NASA Technical Reports Server (NTRS)
Pineda, Evan J.; Waas, Anthony M.; Bednarcyk, Brett A.; Collier, Craig S.
2012-01-01
A continuum-level, dual internal state variable, thermodynamically based, work potential model, Schapery Theory, is used capture the effects of two matrix damage mechanisms in a fiber-reinforced laminated composite: microdamage and transverse cracking. Matrix microdamage accrues primarily in the form of shear microcracks between the fibers of the composite. Whereas, larger transverse matrix cracks typically span the thickness of a lamina and run parallel to the fibers. Schapery Theory uses the energy potential required to advance structural changes, associated with the damage mechanisms, to govern damage growth through a set of internal state variables. These state variables are used to quantify the stiffness degradation resulting from damage growth. The transverse and shear stiffness of the lamina are related to the internal state variables through a set of measurable damage functions. Additionally, the damage variables for a given strain state can be calculated from a set of evolution equations. These evolution equations and damage functions are implemented into the finite element method and used to govern the constitutive response of the material points in the model. Additionally, an axial failure criterion is included in the model. The response of a center-notched, buffer strip-stiffened panel subjected to uniaxial tension is investigated and results are compared to experiment.
NASA Technical Reports Server (NTRS)
Dobrowolny, M.
1981-01-01
Analysis of the various mechanisms of electromagnetic wave generation by the shuttle-borne orbiting tether of the T.S.S. Facility shows that significant electrodynamic power levels are available even when overestimating the loss mechanisms expected to intervene. This electrodynamic power is in part dissipated by Joule losses in the tether, in part goes to accelerate electrons through the sheath surrounding the balloon (when in a downward deployment), and in part goes into e.m. wave generation. A preliminary estimate shows that a 100 km tether in orbit would produce ULF/ELF signals that are detectable on the ground with state-of-the-art magnetometric instrumentation.