Sample records for variable temperature magnetic

  1. Development of a temperature-variable magnetic resonance imaging system using a 1.0T yokeless permanent magnet.

    PubMed

    Terada, Y; Tamada, D; Kose, K

    2011-10-01

    A temperature variable magnetic resonance imaging (MRI) system has been developed using a 1.0 T permanent magnet. A permanent magnet, gradient coils, radiofrequency coil, and shim coil were installed in a temperature variable thermostatic bath. First, the variation in the magnetic field inhomogeneity with temperature was measured. The inhomogeneity has a specific spatial symmetry, which scales linearly with temperature, and a single-channel shim coil was designed to compensate for the inhomogeneity. The inhomogeneity was drastically reduced by shimming over a wide range of temperature from -5°C to 45°C. MR images of an okra pod acquired at different temperatures demonstrated the high potential of the system for visualizing thermally sensitive properties. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Variable Temperature Equipment for a Commercial Magnetic Susceptibility Balance

    ERIC Educational Resources Information Center

    Lotz, Albert

    2008-01-01

    Variable temperature equipment for the magnetic susceptibility balance MSB-MK1 of Sherwood Scientific, Ltd., is described. The sample temperature is controlled with streaming air heated by water in a heat exchanger. Whereas the balance as sold commercially can be used only for room temperature measurements, the setup we designed extends the…

  3. Therapeutic Magnets Do Not Affect Tissue Temperatures

    PubMed Central

    Sweeney, Kathleen B.; Ingersoll, Christopher D.; Swez, John A.

    2001-01-01

    Objective: Manufacturers of commercially available “therapeutic” magnets claim that these magnets cause physiologic thermal effects that promote tissue healing. We conducted this study to determine if skin or intramuscular temperatures differed among magnet, sham, and control treatments during 60 minutes of application to the quadriceps muscle. Design and Setting: A 3 × 3 mixed-model, factorial design with repeated measures on both independent variables was used. The first independent variable, application duration, had 3 random levels (20, 40, and 60 minutes). The second independent variable, treatment, had 3 fixed levels (magnet, sham, and control). The dependent variable was tissue temperature (°C). Measurement depth served as a control variable, with 2 levels: skin and 1 cm below the fat layer. Data were collected in a thermoneutral laboratory setting and analyzed using a repeated-measures analysis of variance. Subjects: The study included 13 healthy student volunteers (8 men, 5 women; age, 20.5 ± 0.9 years; height, 176.8 ± 10.4 cm; weight, 73.8 ± 11.8 kg; anterior thigh skinfold thickness, 16.9 ± 6.5 mm). Measurements: Temperatures were measured at 30-second intervals using surface and implantable thermocouples. Temperature data at 20, 40, and 60 minutes were used for analysis. Each subject received all 3 treatments on different days. Results: Neither skin nor intramuscular temperatures were different across the 3 treatments at any time. For both skin and intramuscular temperatures, a statistically significant but not clinically meaningful temperature increase (less than 1°C), was observed over time within treatments, but this increase was similar in all treatment groups. Conclusions: No meaningful thermal effect was observed with any treatment over time, and treatments did not differ from each other. We conclude that flexible therapeutic magnets were not effective for increasing skin or deep temperatures, contradicting one of the fundamental claims made by magnet distributors. PMID:12937511

  4. Transport critical current measurement apparatus using liquid nitrogen cooled high-Tc superconducting magnet with variable temperature insert

    NASA Astrophysics Data System (ADS)

    Nishijima, G.; Kitaguchi, H.; Tshuchiya, Y.; Nishimura, T.; Kato, T.

    2013-01-01

    We have developed an apparatus to investigate transport critical current (Ic) as a function of magnetic field and temperature using only liquid nitrogen. The apparatus consists of a (Bi,Pb)2Sr2Ca2Cu3O10 (Bi-2223) superconducting magnet, an outer dewar, and a variable temperature insert (VTI). The magnet, which is operated in depressurized liquid nitrogen, generates magnetic field up to 1.26 T. The sample is also immersed in liquid nitrogen. The pressure in the VTI is controlled from 0.02 to 0.3 MPa, which corresponds to temperature ranging from 66 to 88 K. We have confirmed the long-term stable operation of the Bi-2223 magnet at 1 T. The temperature stability of the sample at high transport current was also demonstrated. The apparatus provides easy-operating Ic measurement environment for a high-Tc superconductor up to 500 A in magnetic fields up to 1 T and in temperatures ranging from 66 to 88 K.

  5. Transport critical current measurement apparatus using liquid nitrogen cooled high-T(c) superconducting magnet with variable temperature insert.

    PubMed

    Nishijima, G; Kitaguchi, H; Tshuchiya, Y; Nishimura, T; Kato, T

    2013-01-01

    We have developed an apparatus to investigate transport critical current (I(c)) as a function of magnetic field and temperature using only liquid nitrogen. The apparatus consists of a (Bi,Pb)(2)Sr(2)Ca(2)Cu(3)O(10) (Bi-2223) superconducting magnet, an outer dewar, and a variable temperature insert (VTI). The magnet, which is operated in depressurized liquid nitrogen, generates magnetic field up to 1.26 T. The sample is also immersed in liquid nitrogen. The pressure in the VTI is controlled from 0.02 to 0.3 MPa, which corresponds to temperature ranging from 66 to 88 K. We have confirmed the long-term stable operation of the Bi-2223 magnet at 1 T. The temperature stability of the sample at high transport current was also demonstrated. The apparatus provides easy-operating I(c) measurement environment for a high-T(c) superconductor up to 500 A in magnetic fields up to 1 T and in temperatures ranging from 66 to 88 K.

  6. Novel Integration of a 6t Cryogen-Free Magneto-Optical System with a Variable Temperature Sample Using a Single Cryocooler

    NASA Astrophysics Data System (ADS)

    Berryhill, A. B.; Coffey, D. M.; McGhee, R. W.; Burkhardt, E. E.

    2008-03-01

    Cryomagnetics' new "C-Mag Optical" Magneto-Optic Property Measurement System is a versatile materials and device characterization system that allows the researcher to simultaneously control the applied magnetic field and temperature of a sample while studying its electrical and optic properties. The system integrates a totally liquid cryogen-free 6T superconducting split-pair magnet with a variable temperature sample space, both cooled using a single 4.2K pulse tube refrigerator. To avoid warming the magnet when operating a sample at elevated temperatures, a novel heat switch was developed. The heat switch allows the sample temperature to be varied from 10K to 300K while maintaining the magnet at 4.2K or below. In this paper, the design and performance of the overall magnet system and the heat switch will be presented. New concepts for the next generation system will also be discussed.

  7. Relationship between temperature variability and brain injury on magnetic resonance imaging in cooled newborn infants after perinatal asphyxia.

    PubMed

    Brotschi, B; Gunny, R; Rethmann, C; Held, U; Latal, B; Hagmann, C

    2017-09-01

    The objective of the study was whether temperature management during therapeutic hypothermia correlates with the severity of brain injury assessed on magnetic resonance imaging in term infants with hypoxic-ischemic encephalopathy. Prospectively collected register data from the National Asphyxia and Cooling Register of Switzerland were analyzed. Fifty-five newborn infants were cooled for 72 h with a target temperature range of 33 to 34 °C. Individual temperature variability (odds ratio (OR) 40.17 (95% confidence interval (CI) 1.37 to 1037.67)) and percentage of temperatures within the target range (OR 0.95 (95% CI 0.90 to 0.98)) were associated with the severity of brain injury seen on magnetic resonance imaging (MRI). Neither the percentage of measured temperatures above (OR 1.08 (95% CI 0.96 to 1.21)) nor below (OR 0.99 (95% CI 0.92 to 1.07) the target range was associated with the severity of brain injury seen on MRI. In a national perinatal asphyxia cohort, temperature variability and percentage of temperatures within the target temperature range were associated with the severity of brain injury.

  8. Magnetic hard gap due to bound magnetic polarons in the localized regime.

    PubMed

    Rimal, Gaurab; Tang, Jinke

    2017-02-08

    We investigate the low temperature electron transport properties of manganese doped lead sulfide films. The system shows variable range hopping at low temperatures that crosses over into an activation regime at even lower temperatures. This crossover is destroyed by an applied magnetic field which suggests a magnetic origin of the hard gap, associated with bound magnetic polarons. Even though the gap forms around the superconducting transition temperature of lead, we do not find evidence of this being due to insulator-superconductor transition. Comparison with undoped PbS films, which do not show the activated transport behavior, suggests that bound magnetic polarons create the hard gap in the system that can be closed by magnetic fields.

  9. Compact variable-temperature scanning force microscope.

    PubMed

    Chuang, Tien-Ming; de Lozanne, Alex

    2007-05-01

    A compact design for a cryogenic variable-temperature scanning force microscope using a fiber-optic interferometer to measure cantilever deflection is presented. The tip-sample coarse approach and the lateral tip positioning are performed by piezoelectric positioners in situ. The microscope has been operated at temperatures between 6 and 300 K. It is designed to fit into an 8 T superconducting magnet with the field applied in the out-of-plane direction. The results of scanning in various modes are demonstrated, showing contrast based on magnetic field gradients or surface potentials.

  10. Theoretical analysis and experimental study on breakaway torque of large-diameter magnetic liquid seal at low temperature

    NASA Astrophysics Data System (ADS)

    Zhang, Haina; Li, Decai; Wang, Qinglei; Zhang, Zhili

    2013-07-01

    The existing researches of the magnetic liquid rotation seal have been mainly oriented to the seal at normal temperature and the seal with the smaller shaft diameter less than 100 mm. However, the large-diameter magnetic liquid rotation seal at low temperature has not been reported both in theory and in application up to now. A key factor restricting the application of the large-diameter magnetic liquid rotation seal at low temperature is the high breakaway torque. In this paper, the factors that influence the breakaway torque including the number of seal stages, the injected quantity of magnetic liquid and the standing time at normal temperature are studied. Two kinds of magnetic liquid with variable content of large particles are prepared first, and a seal feedthrough with 140 mm shaft diameter is used in the experiments. All experiments are carried out in a low temperature chamber with a temperature range from 200°C to -100°C. Different numbers of seal stages are tested under the same condition to study the relation between the breakaway torque and the number of seal stages. Variable quantity of magnetic liquid is injected in the seal gap to get the relation curve of the breakaway torque and the injecting quantity of magnetic liquid. In the experiment for studying the relation between the breakaway torque and the standing time at the normal temperature, the seal feedtrough is laid at normal temperature for different period of time before it is put in the low temperature chamber. The experimental results show that the breakaway torque is proportional to the number of seal stages, the injected quantity of magnetic liquid and the standing time at the normal temperature. Meanwhile, the experimental results are analyzed and the torque formula of magnetic liquid rotation seal at low temperature is deduced from the Navier-Stokes equation on the base of the model of magnetic liquid rotation seal. The presented research can make wider application of the magnetic liquid seal in general. And the large-diameter magnetic liquid rotation seal at low temperature designed by using present research results are to be used in some special fields, such as the military field, etc.

  11. Vortex variable range hopping in a conventional superconducting film

    NASA Astrophysics Data System (ADS)

    Percher, Ilana M.; Volotsenko, Irina; Frydman, Aviad; Shklovskii, Boris I.; Goldman, Allen M.

    2017-12-01

    The behavior of a disordered amorphous thin film of superconducting indium oxide has been studied as a function of temperature and magnetic field applied perpendicular to its plane. A superconductor-insulator transition has been observed, though the isotherms do not cross at a single point. The curves of resistance versus temperature on the putative superconducting side of this transition, where the resistance decreases with decreasing temperature, obey two-dimensional Mott variable-range hopping of vortices over wide ranges of temperature and resistance. To estimate the parameters of hopping, the film is modeled as a granular system and the hopping of vortices is treated in a manner analogous to hopping of charges. The reason the long-range interaction between vortices over the range of magnetic fields investigated does not lead to a stronger variation of resistance with temperature than that of two-dimensional Mott variable-range hopping remains unresolved.

  12. Fulgurites: a rock magnetic study of mineralogical changes caused by lightning

    NASA Astrophysics Data System (ADS)

    Begnini, G. S.; Tohver, E.; Schmieder, M.

    2013-05-01

    Fulgurites are natural glass samples produced by lightning strikes on rock or soil substrates. Instantaneous electrical discharges of 10-200 kA are typical, and the temperatures produced by lightning strikes exceed 1700C, the melting temperature of quartz. Paleomagnetic observations of lightning strikes typically include high intensity remanent magnetizations with highly-variable to random magnetic directions. Alternating field demagnetization is commonly used to remove the overprinting effects of Lightning Induced Remanent Magnetization (LIRM), indicating low coercivities of the magnetic carriers. We conducted a rock magnetic analysis of 15 specimens of natural fulgurite from South Africa including hysteresis and thermoremanent heating and cooling experiments using a Variable Field Translational Balance. The analysed specimens demonstrate two distinct ranges of Curie temperature: 440-600C and 770-778C, suggesting the presence of both iron oxides (likely Fe-rich magnetite) and a reduced iron alloy, likely kamacite. High temperature, highly reduced assemblages have been reported from petrological observations of fulgurites. Our rock magnetic observations of a metallic iron phase in the fulgurite samples from a terrestrial, surficial environment demonstrates a mineralogical resemblance to differentiated, iron-rich meteorites. We suggest that LIRMs in lightning-struck localities may include a chemical remagnetization associated with lightning-induced electrolysis or reduction of iron oxides.

  13. Magnetic susceptibility of Inconel alloys 718, 625, and 600 at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Goldberg, Ira B.; Mitchell, Michael R.; Murphy, Allan R.; Goldfarb, Ronald B.; Loughran, Robert J.

    1990-01-01

    After a hydrogen fuel bleed valve problem on the Discovery Space Shuttle was traced to the strong magnetization of Inconel 718 in the armature of the linear variable differential transformer near liquid hydrogen temperatures, the ac magnetic susceptibility of three samples of Inconel 718 of slightly different compositions, one sample of Inconel 625, and on sample of Inconel 600 were measured as a function of temperature. Inconel 718 alloys are found to exhibit a spin glass state below 16 K. Inconel 600 exhibits three different magnetic phases, the lowest-temperature state (below 6 K) being somewhat similar to that of Inconel 718. The magnetic states of the Inconel alloys and their magnetic susceptibilities appear to be strongly dependent on the exact composition of the alloy.

  14. Ultrafast demagnetization at high temperatures

    NASA Astrophysics Data System (ADS)

    Hoveyda, F.; Hohenstein, E.; Judge, R.; Smadici, S.

    2018-05-01

    Time-resolved pump-probe measurements were made at variable heat accumulation in Co/Pd superlattices. Heat accumulation increases the baseline temperature and decreases the equilibrium magnetization. Transient ultrafast demagnetization first develops with higher fluence in parallel with strong equilibrium thermal spin fluctuations. The ultrafast demagnetization is then gradually removed as the equilibrium temperature approaches the Curie temperature. The transient magnetization time-dependence is well fit with the spin-flip scattering model.

  15. Characterization of Plasma Discharges in a High-Field Magnetic Tandem Mirror

    NASA Technical Reports Server (NTRS)

    Chang-Diaz, Franklin R.

    1998-01-01

    High density magnetized plasma discharges in open-ended geometries, like Tandem Mirrors, have a variety of space applications. Chief among them is the production of variable Specific Impulse (I(sub sp)) and variable thrust in a magnetic nozzle. Our research group is pursuing the experimental characterization of such discharges in our high-field facility located at the Advanced Space Propulsion Laboratory (ASPL). These studies focus on identifying plasma stability criteria as functions of density, temperature and magnetic field strength. Plasma heating is accomplished by both Electron and Ion Cyclotron Resonance (ECR and ICR) at frequencies of 2-3 Ghz and 1-30 Mhz respectively, for both Hydrogen and Helium. Electron density and temperature has measured by movable Langmuir probes. Macroscopic plasma stability is being investigated in ongoing research.

  16. Stagnation point flow of viscoelastic nanomaterial over a stretched surface

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Kiyani, M. Z.; Ahmad, I.; Khan, M. Ijaz; Alsaedi, A.

    2018-06-01

    Present communication aims to discuss magnetohydrodynamic (MHD) stagnation point flow of Jeffrey nanofluid by a stretching cylinder. Modeling is based upon Brownian motion, thermophoresis, thermal radiation and heat generation. Problem is attempted by using (HAM). Residual errors for h-curves are plotted. Convergent solutions for velocity, temperature and concentration are obtained. Skin friction coefficient, local Nusselt number and Sherwood number are studied. It is examined that velocity field decays in the presence of higher estimation of magnetic variable. Furthermore temperature and concentration fields are enhanced for larger magnetic variable.

  17. Direct observation of local magnetic properties in strain engineered lanthanum cobaltate thin films

    NASA Astrophysics Data System (ADS)

    Park, S.; Wu, Weida; Freeland, J. W.; Ma, J. X.; Shi, J.

    2009-03-01

    Strain engineered thin film devices with emergent properties have significant impacts on both technical application and material science. We studied strain-induced modification of magnetic properties (Co spin state) in epitaxially grown lanthanum cobaltate (LaCoO3) thin films with a variable temperature magnetic force microscopy (VT-MFM). The real space observation confirms long range magnetic ordering on a tensile-strained film and non-magnetic low-spin configuration on a low-strained film at low temperature. Detailed study of local magnetic properties of these films under various external magnetic fields will be discussed. Our results also demonstrate that VT-MFM is a very sensitive tool to detect the nanoscale strain induced magnetic defects.

  18. Generalized Scaling and the Master Variable for Brownian Magnetic Nanoparticle Dynamics

    PubMed Central

    Reeves, Daniel B.; Shi, Yipeng; Weaver, John B.

    2016-01-01

    Understanding the dynamics of magnetic particles can help to advance several biomedical nanotechnologies. Previously, scaling relationships have been used in magnetic spectroscopy of nanoparticle Brownian motion (MSB) to measure biologically relevant properties (e.g., temperature, viscosity, bound state) surrounding nanoparticles in vivo. Those scaling relationships can be generalized with the introduction of a master variable found from non-dimensionalizing the dynamical Langevin equation. The variable encapsulates the dynamical variables of the surroundings and additionally includes the particles’ size distribution and moment and the applied field’s amplitude and frequency. From an applied perspective, the master variable allows tuning to an optimal MSB biosensing sensitivity range by manipulating both frequency and field amplitude. Calculation of magnetization harmonics in an oscillating applied field is also possible with an approximate closed-form solution in terms of the master variable and a single free parameter. PMID:26959493

  19. Experimental insight into the magnetic and electrical properties of amorphous Ge1-xMnx

    NASA Astrophysics Data System (ADS)

    Conta, Gianluca; Amato, Giampiero; Coïsson, Marco; Tiberto, Paola

    2017-12-01

    We present a study of the electrical and magnetic properties of the amorphous Ge1-xMnx.DMS, with 2% ≤ x ≤ 17%, by means of SQUID magnetometry and low temperature DC measurements. The thin films were grown by physical vapour deposition at 50°C in ultrahigh vacuum. The DC electrical characterizations show that variable range hopping is the main mechanism of charge transport below room temperature. Magnetic characterization reveals that a unique and smooth magnetic transition is present in our samples, which can be attributed to ferromagnetic percolation of bound magnetic polarons.

  20. Makeup and uses of a basic magnet laboratory for characterizing high-temperature permanent magnets

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.; Schwarze, Gene E.

    1991-01-01

    A set of instrumentation for making basic magnetic measurements was assembled in order to characterize high intrinsic coercivity, rare earth permanent magnets with respect to short term demagnetization resistance and long term aging at temperatures up to 300 C. The major specialized components of this set consist of a 13 T peak field, capacitor discharge pulse magnetizer; a 10 in. pole size, variable gap electromagnet; a temperature controlled oven equipped with iron cobalt pole piece extensions and a removable paddle that carries the magnetization and field sensing coils; associated electronic integrators; and sensor standards for field intensity H and magnetic moment M calibration. A 1 cm cubic magnet sample, carried by the paddle, fits snugly between the pole piece extensions within the electrically heated aluminum oven, where fields up to 3.2 T can be applied by the electromagnet at temperatures up to 300 C. A sample set of demagnetization data for the high energy Sm2Co17 type of magnet is given for temperatures up to 300 C. These data are reduced to the temperature dependence of the M-H knee field and of the field for a given magnetic induction swing, and they are interpreted to show the limits of safe operation.

  1. A YBCO RF-squid variable temperature susceptometer and its applications

    NASA Technical Reports Server (NTRS)

    Zhou, Luwei; Qiu, Jinwu; Zhang, Xianfeng; Tang, Zhimin; Cai, Yimin; Qian, Yongjia

    1991-01-01

    The Superconducting QUantum Interference Device (SQUID) susceptibility using a high-temperature radio-frequency (rf) SQUID and a normal metal pick-up coil is employed in testing weak magnetization of the sample. The magnetic moment resolution of the device is 1 x 10(exp -6) emu, and that of the susceptibility is 5 x 10(exp -6) emu/cu cm.

  2. White Dwarfs in Cataclysmic Variables: An Update

    PubMed Central

    Sion, Edward M.; Godon, Patrick

    2018-01-01

    In this review, we summarize what is currently known about the surface temperatures of accreting white dwarfs in non-magnetic and magnetic cataclysmic variables (CVs) based upon synthetic spectral analyses of far ultraviolet data. We focus only on white dwarf surface temperatures, since in the area of chemical abundances, rotation rates, WD masses and accretion rates, relatively little has changed since our last review, pending the results of a large HST GO program involving 48 CVs of different CV types. The surface temperature of the white dwarf in SS Cygni is re-examined in the light of its revised distance. We also discuss new HST spectra of the recurrent nova T Pyxidis as it transitioned into quiescence following its April 2011 nova outburst. PMID:29505036

  3. Temperature and magnetic-field driven dynamics in artificial magnetic square ice

    DOE PAGES

    Drouhin, Henri-Jean; Wegrowe, Jean-Eric; Razeghi, Manijeh; ...

    2015-09-08

    Artificial spin ices are often spoken of as being realisations of some of the celebrated vertex models of statistical mechanics, where the exact microstate of the system can be imaged using advanced magnetic microscopy methods. The fact that a stable image can be formed means that the system is in fact athermal and not undergoing the usual finite-temperature fluctuations of a statistical mechanical system. In this paper we report on the preparation of artificial spin ices with islands that are thermally fluctuating due to their very small size. The relaxation rate of these islands was determined using variable frequency focusedmore » magneto-optic Kerr measurements. We performed magnetic imaging of artificial spin ice under varied temperature and magnetic field using X-ray transmission microscopy which uses X-ray magnetic circular dichroism to generate magnetic contrast. Furthermore, we have developed an on-membrane heater in order to apply temperatures in excess of 700 K and have shown increased dynamics due to higher temperature. Due to the ‘photon-in, photon-out' method employed here, it is the first report where it is possible to image the microstates of an ASI system under the simultaneous application of temperature and magnetic field, enabling the determination of relaxation rates, coercivties, and the analysis of vertex population during reversal.« less

  4. Temperature and magnetic-field driven dynamics in artificial magnetic square ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drouhin, Henri-Jean; Wegrowe, Jean-Eric; Razeghi, Manijeh

    Artificial spin ices are often spoken of as being realisations of some of the celebrated vertex models of statistical mechanics, where the exact microstate of the system can be imaged using advanced magnetic microscopy methods. The fact that a stable image can be formed means that the system is in fact athermal and not undergoing the usual finite-temperature fluctuations of a statistical mechanical system. In this paper we report on the preparation of artificial spin ices with islands that are thermally fluctuating due to their very small size. The relaxation rate of these islands was determined using variable frequency focusedmore » magneto-optic Kerr measurements. We performed magnetic imaging of artificial spin ice under varied temperature and magnetic field using X-ray transmission microscopy which uses X-ray magnetic circular dichroism to generate magnetic contrast. Furthermore, we have developed an on-membrane heater in order to apply temperatures in excess of 700 K and have shown increased dynamics due to higher temperature. Due to the ‘photon-in, photon-out' method employed here, it is the first report where it is possible to image the microstates of an ASI system under the simultaneous application of temperature and magnetic field, enabling the determination of relaxation rates, coercivties, and the analysis of vertex population during reversal.« less

  5. Texturing by cooling a metallic melt in a magnetic field.

    PubMed

    Tournier, Robert F; Beaugnon, Eric

    2009-02-01

    Processing in a magnetic field leads to the texturing of materials along an easy-magnetization axis when a minimum anisotropy energy exists at the processing temperature; the magnetic field can be applied to a particle assembly embedded into a liquid, or to a solid at a high diffusion temperature close to the melting temperature or between the liquidus and the solidus temperatures in a region of partial melting. It has been shown in many experiments that texturing is easy to achieve in congruent and noncongruent compounds by applying the field above the melting temperature T m or above the liquidus temperature of alloys. Texturing from a melt is successful when the overheating temperature is just a few degrees above T m and fails when the processing time above T m is too long or when the overheating temperature is too high; these observations indicate the presence of unmelted crystals above T m with a size depending on these two variables that act as growth nuclei. A recent model that predicts the existence of unmelted crystals above the melting temperature is used to calculate their radius in a bismuth melt.

  6. Large entropy change accompanying two successive magnetic phase transitions in TbMn{sub 2}Si{sub 2} for magnetic refrigeration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Guoxing; Cheng, Zhenxiang, E-mail: jianli@uow.edu.au, E-mail: cheng@uow.edu.au; Fang, Chunsheng

    Structural and magnetic properties in TbMn{sub 2}Si{sub 2} are studied by variable temperature X-ray diffraction, magnetization, electrical resistivity, and heat capacity measurements. TbMn{sub 2}Si{sub 2} undergoes two successive magnetic transitions at around T{sub c1} = 50 K and T{sub c2} = 64 K. T{sub c1} remains almost constant with increasing magnetic field, but T{sub c2} shifts significantly to higher temperature. Thus, there are two partially overlapping peaks in the temperature dependence of magnetic entropy change, i.e., −ΔS{sub M} (T). The different responses of T{sub c1} and T{sub c2} to external magnetic field, and the overlapping of −ΔS{sub M} (T) around T{sub c1} and T{sub c2} inducemore » a large refrigerant capacity (RC) within a large temperature range. The large reversible magnetocaloric effect (−ΔS{sub M}{sup peak} ∼ 16 J/kg K for a field change of 0–5 T) and RC (=396 J/kg) indicate that TbMn{sub 2}Si{sub 2} could be a promising candidate for low temperature magnetic refrigeration.« less

  7. Structure, magnetic behavior, and anisotropy of homoleptic trinuclear lanthanoid 8-quinolinolate complexes.

    PubMed

    Chilton, Nicholas F; Deacon, Glen B; Gazukin, Olga; Junk, Peter C; Kersting, Berthold; Langley, Stuart K; Moubaraki, Boujemaa; Murray, Keith S; Schleife, Frederik; Shome, Mahasish; Turner, David R; Walker, Julia A

    2014-03-03

    Three complexes of the form [Ln(III)3(OQ)9] (Ln = Gd, Tb, Dy; OQ = 8-quinolinolate) have been synthesized and their magnetic properties studied. The trinuclear complexes adopt V-shaped geometries with three bridging 8-quinolinolate oxygen atoms between the central and peripheral eight-coordinate metal atoms. The magnetic properties of these three complexes differ greatly. Variable-temperature direct-current (dc) magnetic susceptibility measurements reveal that the gadolinium and terbium complexes display weak antiferromagnetic nearest-neighbor magnetic exchange interactions. This was quantified in the isotropic gadolinium case with an exchangecoupling parameter of J = -0.068(2) cm(-1). The dysprosium compound displays weak ferromagnetic exchange. Variable-frequency and -temperature alternating-current magnetic susceptibility measurements on the anisotropic cases reveal that the dysprosium complex displays single-molecule-magnet behavior, in zero dc field, with two distinct relaxation modes of differing time scales within the same molecule. Analysis of the data revealed anisotropy barriers of Ueff = 92 and 48 K for the two processes. The terbium complex, on the other hand, displays no such behavior in zero dc field, but upon application of a static dc field, slow magnetic relaxation can be observed. Ab initio and electrostatic calculations were used in an attempt to explain the origin of the experimentally observed slow relaxation of the magnetization for the dysprosium complex.

  8. High-field magnets using high-critical-temperature superconducting thin films

    DOEpatents

    Mitlitsky, F.; Hoard, R.W.

    1994-05-10

    High-field magnets fabricated from high-critical-temperature superconducting ceramic (HTSC) thin films which can generate fields greater than 4 Tesla are disclosed. The high-field magnets are made of stackable disk-shaped substrates coated with HTSC thin films, and involves maximizing the critical current density, superconducting film thickness, number of superconducting layers per substrate, substrate diameter, and number of substrates while minimizing substrate thickness. The HTSC thin films are deposited on one or both sides of the substrates in a spiral configuration with variable line widths to increase the field. 4 figures.

  9. High-field magnets using high-critical-temperature superconducting thin films

    DOEpatents

    Mitlitsky, Fred; Hoard, Ronald W.

    1994-01-01

    High-field magnets fabricated from high-critical-temperature superconducting ceramic (HTSC) thin films which can generate fields greater than 4 Tesla. The high-field magnets are made of stackable disk-shaped substrates coated with HTSC thin films, and involves maximizing the critical current density, superconducting film thickness, number of superconducting layers per substrate, substrate diameter, and number of substrates while minimizing substrate thickness. The HTSC thin films are deposited on one or both sides of the substrates in a spiral configuration with variable line widths to increase the field.

  10. Variable Temperature Nuclear Magnetic Resonance and Magnetic Resonance Imaging System as a Novel Technique for In Situ Monitoring of Food Phase Transition.

    PubMed

    Song, Yukun; Cheng, Shasha; Wang, Huihui; Zhu, Bei-Wei; Zhou, Dayong; Yang, Peiqiang; Tan, Mingqian

    2018-01-24

    A nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) system with a 45 mm variable temperature (VT) sample probe (VT-NMR-MRI) was developed as an innovative technique for in situ monitoring of food phase transition. The system was designed to allow for dual deployment in either a freezing (-37 °C) or high temperature (150 °C) environment. The major breakthrough of the developed VT-NMR-MRI system is that it is able to measure the water states simultaneously in situ during food processing. The performance of the VT-NMR-MRI system was evaluated by measuring the phase transition for salmon flesh and hen egg samples. The NMR relaxometry results demonstrated that the freezing point of salmon flesh was -8.08 °C, and the salmon flesh denaturation temperature was 42.16 °C. The protein denaturation of egg was 70.61 °C, and the protein denaturation occurred at 24.12 min. Meanwhile, the use of MRI in phase transition of food was also investigated to gain internal structural information. All these results showed that the VT-NMR-MRI system provided an effective means for in situ monitoring of phase transition in food processing.

  11. Magnetic and Structural Phase Transitions in Thulium under High Pressures and Low Temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vohra, Yogesh K.; Tsoi, Georgiy M.; Samudrala, Gopi K.

    2017-10-01

    The nature of 4f electrons in many rare earth metals and compounds may be broadly characterized as being either "localized" or "itinerant", and is held responsible for a wide range of physical and chemical properties. The pressure variable has a very dramatic effect on the electronic structure of rare earth metals which in turn drives a sequence of structural and magnetic transitions. We have carried out four-probe electrical resistance measurements on rare earth metal Thulium (Tm) under high pressures to 33 GPa and low temperatures to 10 K to monitor the magnetic ordering transition. These studies are complemented by anglemore » dispersive x-ray diffraction studies to monitor crystallographic phase transitions at high pressures and low temperatures. We observe an abrupt increase in magnetic ordering temperature in Tm at a pressure of 17 GPa on phase transition from ambient pressure hcp-phase to α-Sm phase transition. In addition, measured equation of state (EOS) at low temperatures show anomalously low thermal expansion coefficients likely linked to magnetic transitions.« less

  12. Characteristics of temperature rise in variable inductor employing magnetorheological fluid driven by a high-frequency pulsed voltage source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ho-Young; Kang, In Man, E-mail: imkang@ee.knu.ac.kr; Shon, Chae-Hwa

    2015-05-07

    A variable inductor with magnetorheological (MR) fluid has been successfully applied to power electronics applications; however, its thermal characteristics have not been investigated. To evaluate the performance of the variable inductor with respect to temperature, we measured the characteristics of temperature rise and developed a numerical analysis technique. The characteristics of temperature rise were determined experimentally and verified numerically by adopting a multiphysics analysis technique. In order to accurately estimate the temperature distribution in a variable inductor with an MR fluid-gap, the thermal solver should import the heat source from the electromagnetic solver to solve the eddy current problem. Tomore » improve accuracy, the B–H curves of the MR fluid under operating temperature were obtained using the magnetic property measurement system. In addition, the Steinmetz equation was applied to evaluate the core loss in a ferrite core. The predicted temperature rise for a variable inductor showed good agreement with the experimental data and the developed numerical technique can be employed to design a variable inductor with a high-frequency pulsed voltage source.« less

  13. Magnetic, Electrical and Dielectric Properties of LaMnO3+η Perovskite Manganite.

    NASA Astrophysics Data System (ADS)

    v, Punith Kumar; Dayal, Vijaylakshmi

    The high pure polycrystalline LaMnO3+η perovskite manganite has been synthesized using conventional solid state reaction method. The studied sample crystallizes into orthorhombic O', phase indexed with Pbnm space group. The magnetization measurement exhibits that the studied sample shows paramagnetic (PM) to ferromagnetic (FM) phase transition at TC = 191.6K followed with a frustration due to antiferromagnetic (AFM) kind of spin ordering at low temperature, Tf = 85.8K. The electrical resistivity measurements carried out at 0 tesla and 8 tesla magnetic field exhibits insulating kind of behavior throughout the measured temperature range. The resistivity at 0 tesla exhibits low temperature FM insulator to high temperature PM insulator type phase transition at TC = 191.6K similarly as observed from magnetization measurement. The application of the magnetic field (8 tesla) shifts TC to higher temperature side and the charge transport follows Shklovskii Efros variable range hopping (SE VRH) mechanism. The temperature and frequency dependent dielectric permittivity studied for the sample exhibits relaxation process explained based on Debye +Maxwell-Wagner relaxation mechanism. Department of Atomic Energy-Board of Research in Nuclear Sciences, Government of INDIA.

  14. Implications of solar irradiance variability upon long-term changes in the Earth's atmospheric temperatures

    NASA Technical Reports Server (NTRS)

    Lee, Robert B., III

    1992-01-01

    From 1979 through 1987, it is believed that variability in the incoming solar energy played a significant role in changing the Earth's climate. Using high-precision spacecraft radiometric measurements, the incoming total solar irradiance (total amount of solar power per unit area) and the Earth's mean, global atmospheric temperatures were found to vary in phase with each other. The observed irradiance and temperature changes appeared to be correlated with the 11-year cycle of solar magnetic activity. During the period from 1979 through 1985, both the irradiance and temperature decreased. From 1985 to 1987, they increased. The irradiance changed approximately 0.1 percent, while the temperature varied as much as 0.6 C. During the 1979-1987 period, the temperatures were forecasted to rise linearly because of the anthropogenic build-up of carbon dioxide and the hypothesized 'global warming', 'greenhouse effect', scenarios. Contrary to these scenarios, the temperatures were found to vary in a periodic manner in phase with the solar irradiance changes. The observed correlations between irradiance and temperature variabilily suggest that the mean, global temperature of the Earth may decline between 1990 and 1997 as solar magnetic activity decreases.

  15. Numerical investigation of MHD flow with Soret and Dufour effect

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Nasir, Tehreem; Khan, Muhammad Ijaz; Alsaedi, Ahmed

    2018-03-01

    This paper describes the flow due to an exponentially curved surface subject to Soret and Dufour effects. Nonlinear velocity is considered. Exponentially curved stretchable sheet induced the flow. Fluid is electrical conducting through constant applied magnetic field. The governing flow expressions are reduced to ordinary ones and then tackled by numerical technique (Built-in-Shooting). Impacts of various flow variables on the dimensionless velocity, concentration and temperature fields are graphically presented and discussed in detail. Skin friction coefficient and Sherwood and Nusselt numbers are studied through graphs. Furthermore it is observed that Soret and Dufour variables regulate heat and mass transfer rates. It is also noteworthy that velocity decays for higher magnetic variable. Skin friction magnitude decays via curvature and magnetic variables. Also mass transfer gradient or rate of mass transport enhances for higher estimations of curvature parameter and Schmidt number.

  16. Global conditions in the solar corona from 2010 to 2017

    PubMed Central

    Morgan, Huw; Taroyan, Youra

    2017-01-01

    Through reduction of a huge data set spanning 2010–2017, we compare mean global changes in temperature, emission measure (EM), and underlying photospheric magnetic field of the solar corona over most of the last activity cycle. The quiet coronal mean temperature rises from 1.4 to 1.8 MK, whereas EM increases by almost a factor of 50% from solar minimum to maximum. An increased high-temperature component near 3 MK at solar maximum drives the increase in quiet coronal mean temperature, whereas the bulk of the plasma remains near 1.6 MK throughout the cycle. The mean, spatially smoothed magnitude of the quiet Sun magnetic field rises from 1.6 G in 2011 to peak at 2.0 G in 2015. Active region conditions are highly variable, but their mean remains approximately constant over the cycle, although there is a consistent decrease in active region high-temperature emission (near 3 MK) between the peak of solar maximum and present. Active region mean temperature, EM, and magnetic field magnitude are highly correlated. Correlation between sunspot/active region area and quiet coronal conditions shows the important influence of decaying sunspots in driving global changes, although we find no appreciable delay between changes in active region area and quiet Sun magnetic field strength. The hot coronal contribution to extreme ultraviolet (EUV) irradiance is dominated by the quiet corona throughout most of the cycle, whereas the high variability is driven by active regions. Solar EUV irradiance cannot be predicted accurately by sunspot index alone, highlighting the need for continued measurements. PMID:28740861

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orange, N. Brice; Chesny, David L.; Gendre, Bruce

    Solar variability investigations that include magnetic energy coupling are paramount to solving many key solar/stellar physics problems, particularly for understanding the temporal variability of magnetic energy redistribution and heating processes. Using three years of observations from the Solar Dynamics Observatory ’ s Atmospheric Imaging Assembly and Heliosemic Magnetic Imager, we measured radiative and magnetic fluxes from gross features and at full-disk scales, respectively. Magnetic energy coupling analyses support radiative flux descriptions via the plasma heating connectivity of dominant (magnetic) and diffuse components, specifically of the predominantly closed-field corona. Our work shows that this relationship favors an energetic redistribution efficiency acrossmore » large temperature gradients, and potentially sheds light on the long-standing issue of diffuse unresolved low corona emission. The close connection between magnetic energy redistribution and plasma conditions revealed by this work lends significant insight into the field of stellar physics, as we have provided possible means for probing distant sources in currently limited and/or undetectable radiation distributions.« less

  18. Numerical investigation for entropy generation in hydromagnetic flow of fluid with variable properties and slip

    NASA Astrophysics Data System (ADS)

    Khan, M. Ijaz; Hayat, Tasawar; Alsaedi, Ahmed

    2018-02-01

    This modeling and computations present the study of viscous fluid flow with variable properties by a rotating stretchable disk. Rotating flow is generated through nonlinear rotating stretching surface. Nonlinear thermal radiation and heat generation/absorption are studied. Flow is conducting for a constant applied magnetic field. No polarization is taken. Induced magnetic field is not taken into account. Attention is focused on the entropy generation rate and Bejan number. The entropy generation rate and Bejan number clearly depend on velocity and thermal fields. The von Kármán approach is utilized to convert the partial differential expressions into ordinary ones. These expressions are non-dimensionalized, and numerical results are obtained for flow variables. The effects of the magnetic parameter, Prandtl number, radiative parameter, heat generation/absorption parameter, and slip parameter on velocity and temperature fields as well as the entropy generation rate and Bejan number are discussed. Drag forces (radial and tangential) and heat transfer rates are calculated and discussed. Furthermore the entropy generation rate is a decreasing function of magnetic variable and Reynolds number. The Bejan number effect on the entropy generation rate is reverse to that of the magnetic variable. Also opposite behavior of heat transfers is observed for varying estimations of radiative and slip variables.

  19. Hydrothermal synthesis, crystal structure, luminescent and magnetic properties of a new mononuclear GdIII coordination complex

    NASA Astrophysics Data System (ADS)

    Coban, Mustafa Burak

    2018-06-01

    A new GdIII coordination complex, {[Gd(2-stp)2(H2O)6].2(4,4'-bipy).4(H2O)}, complex 1, (2-stp = 2-sulfoterephthalate anion and 4,4'-bipy = 4,4'-bipyridine), has been synthesized by hydrothermal method and characterized by elemental analysis, solid state UV-Vis and FT-IR spectroscopy, single-crystal X-ray diffraction, solid state photoluminescence and variable-temperature magnetic measurements. The crystal structure determination shows that GdIII ions are eight coordinated and adopt a distorted square-antiprismatic geometry. Molecules interacting through intra- and intermolecular (O-H⋯O, O-H⋯N) hydrogen bonds in complex 1, give rise to 3D hydrogen bonded structure and the discrete lattice 4,4'-bipy molecules occupy the channel of the 3D structure. π-π stacking interactions also exist 4,4'-bipy-4,4'-bipy and 4,4'-bipy-2-stp molecule rings in 3D structures. Additionally, solid state photoluminescence properties of complex 1 at room temperature have been investigated. Under the excitation of UV light (at 349 nm), the complex 1 exhibited green emissions (at 505 nm) of GdIII ion in the visible region. Furthermore, Variable-temperature magnetic susceptibility and isothermal magnetization as function of external magnetic field studies reveal that complex 1 displays possible antiferromagnetic interaction.

  20. Structural, magnetic and magnetocaloric properties of Co-doped nanocrystalline La0.7Te0.3Mn0.7Co0.3O3

    NASA Astrophysics Data System (ADS)

    Meenakshi; Kumar, Amit; Mahato, Rabindra Nath

    2018-02-01

    Structural, magnetic and magnetocaloric properties of the nanocrystalline La0.7Te0.3Mn0.7Co0.3O3 perovskite manganite were investigated. X-ray diffraction pattern indicated that the nanocrystalline sample crystallized in orthorhombic crystal structure with Pbnm space group. The average particle size was calculated using scanning electron microscope and it was found to be ∼150 nm. Temperature dependence magnetization measurements revealed ferromagnetic-paramagnetic phase transition and the Curie temperature (TC) was found to be ∼201 K. Field dependence magnetization showed the hysteresis at low temperature with a coercive field of ∼0.34 T and linear dependence at high temperature corresponds to paramagnetic region. Based on the magnetic field dependence magnetization data, the maximum entropy change and relative cooling power (RCP) were estimated and the values were 1.002 J kg-1 K-1 and 90 J kg-1 for a field change of 5 T respectively. Temperature dependent resistivity ρ(T) data exhibited semiconducting-like behavior at high temperature and the electrical transport was well explained by Mott's variable-range hopping (VRH) conduction mechanism in the temperature range of 250 K-300 K. Using the VRH fit, the calculated hoping distance (Rh) at 300 K was 54.4 Å and density of states N(EF) at room temperature was 7.04 × 1018 eV-1 cm-3. These values were comparable to other semiconducting oxides.

  1. Iron oxide nanoparticles in NaA zeolite cages

    NASA Astrophysics Data System (ADS)

    Kulshreshtha, S. K.; Vijayalakshmi, R.; Sudarsan, V.; Salunke, H. G.; Bhargava, S. C.

    2013-07-01

    Zeolite NaA samples with varying concentration of Fe3+ ions have been prepared by wet chemical method. Based on powder X-ray diffraction, 29Si and 27Al MAS NMR and Fe3+ EPR investigations, the formation of nano-sized ferric oxide particles inside the larger α-cages of zeolite NaA has been established. Both Mössbauer effect and magnetization measurements carried out down to 4.5 K established the superparamagnetic behaviour of these Fe2O3 particles with a blocking temperature of ≈20 K, where the magnetization values showed deviation for the zero field cooled and field cooled samples and the appearance of a very narrow magnetic hysteresis loop below this temperature. For all Fe3+ containing samples the room temperature Mössbauer spectrum is a broad quadrupole doublet with chemical shift, δ ≈ 0.33 mm/s and quadrupole splitting, ΔEq ≈ 0.68 mm/s. Variable temperature 57Fe Mössbauer effect measurements exhibited magnetic features below the blocking temperature and at 4.5 K, the observed spectrum is a broad magnetic sextet characterized by an internal hyperfine field value of ≈504 kOe along with a very weak central superparamagnetic quadrupole doublet.

  2. Room temperature magnetism and metal to semiconducting transition in dilute Fe doped Sb1-xSex semiconducting alloy thin films

    NASA Astrophysics Data System (ADS)

    Agrawal, Naveen; Sarkar, Mitesh; Chawda, Mukesh; Ganesan, V.; Bodas, Dhananjay

    2015-02-01

    The magnetism was observed in very dilute Fe doped alloy thin film Fe0.008Sb1-xSex, for x = 0.01 to 0.10. These thin films were grown on silicon substrate using thermal evaporation technique. Structural, electrical, optical, charge carrier concentration measurement, surface morphology and magnetic properties were observed using glancing incidence x-ray diffraction (GIXRD), four probe resistivity, photoluminescence, Hall measurement, atomic force microscopy (AFM) and magnetic force microscopy (MFM) techniques, respectively. No peaks of iron were seen in GIXRD. The resistivity results show that activation energy increases with increase in selenium (Se) concentration. The Arrhenius plot reveals metallic behavior below room temperature. The low temperature conduction is explained by variable range-hopping mechanism, which fits very well in the temperature range 150-300 K. The decrease in density of states has been observed with increasing selenium concentration (x = 0.01 to 0.10). There is a metal-to-semiconductor phase transition observed above room temperature. This transition temperature is Se concentration dependent. The particle size distribution ˜47-61 nm is evaluated using AFM images. These thin films exhibit ferromagnetic interactions at room temperature.

  3. Role of antimony in the charge transport mechanisms for La0.67Ca0.33Mn1-xSbxO3 manganites

    NASA Astrophysics Data System (ADS)

    Kataria, B. R.; Solanki, Pankaj; Pandya, D. D.; Solanki, P. S.; Shah, N. A.

    2018-07-01

    Single phasic La0.67Ca0.33Mn1-xSbxO3 (LCMSO; x = 0.00, 0.02, 0.04, 0.06, 0.08 and 0.10) samples were characterized by performing temperature and magnetic field dependent resistance measurements. Present study, mainly, aims for the better understanding of possible charge conduction mechanisms responsible for the low temperature resistivity and high temperature [well above metal to insulator transition temperature (TP)] semiconducting regions. Variation in resistivity and TP with Sb5+ content (x) and applied magnetic field has been discussed in the light of the modifications in structural and magnetic lattices of smaller diamagnetic Sb5+ doped LCMSO system. Various models and mechanisms have been theoretical employed to fit obtained experimental resistivity data for the low temperature resistivity and semiconducting regions of all LCMSO manganites. It is found that low temperature resistivity minima follows the coulomb blockade model while charge conduction in the semiconducting region obeys the variable range hopping (VRH) mechanism. Variation in low temperature blocking energy, activation energy in semiconducting region and magnetoresistance (MR) with Sb5+ content (x) and applied magnetic field has been discussed in detail.

  4. Versatile variable temperature and magnetic field scanning probe microscope for advanced material research

    NASA Astrophysics Data System (ADS)

    Jung, Jin-Oh; Choi, Seokhwan; Lee, Yeonghoon; Kim, Jinwoo; Son, Donghyeon; Lee, Jhinhwan

    2017-10-01

    We have built a variable temperature scanning probe microscope (SPM) that covers 4.6 K-180 K and up to 7 T whose SPM head fits in a 52 mm bore magnet. It features a temperature-controlled sample stage thermally well isolated from the SPM body in good thermal contact with the liquid helium bath. It has a 7-sample-holder storage carousel at liquid helium temperature for systematic studies using multiple samples and field emission targets intended for spin-polarized spectroscopic-imaging scanning tunneling microscopy (STM) study on samples with various compositions and doping conditions. The system is equipped with a UHV sample preparation chamber and mounted on a two-stage vibration isolation system made of a heavy concrete block and a granite table on pneumatic vibration isolators. A quartz resonator (qPlus)-based non-contact atomic force microscope (AFM) sensor is used for simultaneous STM/AFM operation for research on samples with highly insulating properties such as strongly underdoped cuprates and strongly correlated electron systems.

  5. Control and materials characterization System for 6T Superconducting Cryogen Free Magnet Facility at IUAC, New Delhi

    NASA Astrophysics Data System (ADS)

    Dutt, R. N.; Meena, D. K.; Kar, S.; Soni, V.; Nadaf, A.; Das, A.; Singh, F.; Datta, T. S.

    2017-02-01

    A system for carrying out automatic experimental measurements of various electrical transport characteristics and their relation to magnetic fields for samples mounted on the sample holder on a Variable Temperature Insert (VTI) of the Cryogen Free Superconducting Magnet System (CFMS) has been developed. The control and characterization system is capable of monitoring, online plotting and history logging in real-time of cryogenic temperatures with the Silicon (Si) Diode and Zirconium Oxy-Nitride sensors installed inside the magnet facility. Electrical transport property measurements have been automated with implementation of current reversal resistance measurements and automatic temperature set-point ramping with the parameters of interest available in real-time as well as for later analysis. The Graphical User Interface (GUI) based system is user friendly to facilitate operations. An ingenious electronics for reading Zirconium Oxy-Nitride temperature sensors has been used. Price to performance ratio has been optimized by using in house developed measurement techniques mixed with specialized commercial cryogenic measurement / control equipment.

  6. Study the effect of chemical reaction and variable viscosity on free convection MHD radiating flow over an inclined plate bounded by porous medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, M., E-mail: ali.mehidi93@gmail.com; Department of Mathematics, Chittagong University of Engineering and Technology, Chittagong-4349; Alim, M. A., E-mail: maalim@math.buet.ac.bd

    An analysis is performed to study the free convection heat and mass transfer flow of an electrically conducting incompressible viscous fluid about a semi-infinite inclined porous plate under the action of radiation, chemical reaction in presence of magnetic field with variable viscosity. The dimensionless governing equations are steady, two-dimensional coupled and non-linear ordinary differential equation. Nachtsgeim-Swigert shooting iteration technique along with Runge-Kutta integration scheme is used to solve the non-dimensional governing equations. The effects of magnetic parameter, viscosity parameter and chemical reaction parameter on velocity, temperature and concentration profiles are discussed numerically and shown graphically. Therefore, the results of velocitymore » profile decreases for increasing values of magnetic parameter and viscosity parameter but there is no effect for reaction parameter. The temperature profile decreases in presence of magnetic parameter, viscosity parameter and Prandtl number but increases for radiation parameter. Also, concentration profile decreases for the increasing values of magnetic parameter, viscosity parameter and reaction parameter. All numerical calculations are done with respect to salt water and fixed angle of inclination of the plate.« less

  7. Novel Applications of Magnetic Fields for Fluid Flow Control and for Simulating Variable Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.

    2005-01-01

    Static and dynamic magnetic fields have been used to control convection in many materials processing applications. In most of the applications, convection control (damping or enhancement) is achieved through the Lorentz force that can be tailored to counteract/assist dominant system flows. This technique has been successfully applied to liquids that are electrically conducting, such as high temperature melts of semiconductors, metals and alloys, etc. In liquids with low electrical conductivity such as ionic solutions of salts in water, the Lorentz force is weak and hence not very effective and alternate ways of flow control are necessary. If the salt in solution is paramagnetic then the variation of magnetic susceptibility with temperature and/or concentration can be used for flow control. For thermal buoyancy driven flows this can be accomplished in a temperature range below the Curie point of the salt. The magnetic force is proportional to the magnetic susceptibility and the product of the magnetic field and its gradient. By suitably positioning the experiment cell in the magnet, system flows can be assisted or countered, as desired. A similar approach can be extended to diamagnetic substances and fluids but the required magnetic force is considerably larger than that required for paramagnetic substances. The presentation will provide an overview of work to date on a NASA fluid physics sponsored project that aims to test the hypothesis of convective flow control using strong magnetic fields in protein crystal growth. The objective is to understand the nature of the various forces that come into play, delineate causative factors for fluid flow and to quantify them through experiments, analysis, and numerical modeling. The seminar will report specifically on the experimental results using paramagnetic salts and solutions in magnetic fields and compare them to analytical predictions. Applications of the concept to protein crystallization studies will be discussed. The use of strong magnetic fields for terrestrially simulating variable gravity environments and applications supporting the NASA Exploration Initiative will also be briefly discussed.

  8. Visualization and manipulation of magnetic domains in the quasi-two-dimensional material F e3GeT e2

    NASA Astrophysics Data System (ADS)

    Nguyen, Giang D.; Lee, Jinhwan; Berlijn, Tom; Zou, Qiang; Hus, Saban M.; Park, Jewook; Gai, Zheng; Lee, Changgu; Li, An-Ping

    2018-01-01

    The magnetic domains in two-dimensional layered material F e3GeT e2 are studied by using a variable-temperature scanning tunneling microscope with a magnetic tip after in situ cleaving of single crystals. A stripy domain structure is revealed in a zero-field-cooled sample below the ferromagnetic transition temperature of 205 K, which is replaced by separate double-walled domains and bubble domains when cooling the sample under a magnetic field of a ferromagnetic Ni tip. The Ni tip can further convert the double-walled domain to a bubble domain pattern as well as move the Neel-type chiral bubble in submicrometer distance. The temperature-dependent evolutions of both zero-field-cooled and field-cooled domain structures correlate well with the bulk magnetization from magnetometry measurements. Atomic resolution scanning tunneling images and spectroscopy are acquired to understand the atomic and electronic structures of the material, which are further corroborated by first-principles calculations.

  9. Transport and magnetic properties of disordered Li xV yO 2 ( x=0.8 and y=0.8)

    NASA Astrophysics Data System (ADS)

    Du, Fei; Li, Ang; Liu, Daliang; Zhan, Shiying; Hu, Fang; Wang, Chunzhong; Chen, Yan; Feng, Shouhua; Chen, Gang

    2009-07-01

    The magnetic and electron transport properties of rhombohedral Li xV yO 2 ( x=0.8 and y=0.8) are studied. The dc susceptibility of Li xV yO 2 can be well fitted to the modified Curie-Weiss law, which verified the paramagnetic ground state. The magnetic hysteresis and ac susceptibility also confirm this paramagnetism. The Li xV yO 2 exhibits semiconducting behavior, which is explained by thermal activated process at high temperature and variable-range hopping mechanism at low temperature. Anderson localization plays an important role in both the electron transport behavior and the magnetic behavior due to the site disorder between the Li + ion and V 4+ ion.

  10. High-coercivity, thermally stable and low unblocking temperature magnetic phase: Implications for Archeomagnetic studies

    NASA Astrophysics Data System (ADS)

    Hartmann, G. A.; Gallet, Y.; Trindade, R. I.; Genevey, A.; Berquo, T. S.; Neumann, R.; Le Goff, M.

    2013-05-01

    The thermoremanent magnetization in baked clay archeological materials provide very useful information on the time evolution of the Earth's magnetic field over the past few millennia. In these materials, a thermally stable magnetic phase characterized by high coercivities (>400 mT) and low unblocking temperatures (~200 degrees Celsius) has recently been recognized in European bricks, tiles, kilns and hearth samples. Both the identification and the origin of this phase remain, however, poorly constrained. The very same high-coercivity, thermally stable, low unblocking temperature (HCSLT) magnetic phase has been identified in Brazilian bricks fragments dated of the past five centuries. We report here a large set of measurements on a selected collection of samples showing variable contributions of the HCSLT phase. These measurements include low-field magnetic susceptibility vs. temperature curves, hysteresis loops, isothermal remanent magnetization (IRM) acquisition, thermal demagnetization of the three-axis IRM, first order reversal curves (FORC), low-temperature magnetization experiments (remanent magnetization curves and alternating current susceptibility), Mössbauer spectroscopy and X-ray diffraction. Results show the coexistence of low-coercivity magnetic minerals (magnetite and titanomagnetite) and high-coercivity minerals (hematite, HCSLT phase and, in some cases, goethite). We note that the HCSLT magnetic phase is always found in association with hematite. We further observe that the Mössbauer spectroscopy, X-ray diffraction spectra, and the FORC diagrams are also very similar to results previously obtained from annealed clays in which nontronite or iron-rich montmorillonite was transformed into Al-substituted hematite by heating. The HCSLT magnetic phase is thus confidently identified as being hematite with Al substitution. Moreover, considering the abundance of montmorillonite in clay mining settings, we suggest that the widespread occurrence of HCSLT in archeological materials predominantly originates from the transformation of iron-rich montmorillonite during the manufacturing (heating) process.

  11. A novel Ni(4) complex exhibiting microsecond quantum tunneling of the magnetization.

    PubMed

    Aromí, Guillem; Bouwman, Elisabeth; Burzurí, Enrique; Carbonera, Chiara; Krzystek, J; Luis, Fernando; Schlegel, Christoph; van Slageren, Joris; Tanase, Stefania; Teat, Simon J

    2008-01-01

    A highly asymmetric Ni(II) cluster [Ni(4)(OH)(OMe)(3)(Hphpz)(4)(MeOH)(3)](MeOH) (1) (H(2)phpz=3-methyl-5-(2-hydroxyphenyl)pyrazole) has been prepared and its structure determined by means of single-crystal X-ray diffraction by using synchrotron radiation. Variable-temperature bulk-magnetization measurements show that the complex exhibits intramolecular-ferromagnetic interactions leading to a spin ground state S=4 with close-lying excited states. Magnetization and high-frequency EPR measurements suggest the presence of sizable Ising-type magnetic anisotropy, with zero-field splitting parameters D=-0.263 cm(-1) and E=0.04 cm(-1) for the spin ground state, and an isotropic g value of 2.25. The presence of both axial and transverse anisotropy was confirmed through low-temperature specific heat determinations down to 300 mK, but no slow relaxation of the magnetization was observed by AC measurements down to 1.8 K. Interestingly, AC susceptibility measurements down to temperatures as low as 23 mK showed no indication of slow relaxation of the magnetization in 1. Thus, despite the presence of an anisotropy barrier (U approximately 4.21 cm(-1) for the purely axial limit), the magnetization relaxation remains extremely fast down to the lowest temperatures. The estimated quantum tunneling rate, Gamma>0.667 MHz, makes this complex a prime candidate for observation of coherent tunneling of the magnetization.

  12. A new multi-line cusp magnetic field plasma device (MPD) with variable magnetic field

    NASA Astrophysics Data System (ADS)

    Patel, A. D.; Sharma, M.; Ramasubramanian, N.; Ganesh, R.; Chattopadhyay, P. K.

    2018-04-01

    A new multi-line cusp magnetic field plasma device consisting of electromagnets with core material has been constructed with a capability to experimentally control the relative volume fractions of magnetized to unmagnetized plasma volume as well as accurate control on the gradient length scales of mean density and temperature profiles. Argon plasma has been produced using a hot tungsten cathode over a wide range of pressures 5 × 10-5 -1 × 10-3 mbar, achieving plasma densities ranging from 109 to 1011 cm-3 and the electron temperature in the range 1-8 eV. The radial profiles of plasma parameters measured along the non-cusp region (in between two consecutive magnets) show a finite region with uniform and quiescent plasma, where the magnetic field is very low such that the ions are unmagnetized. Beyond that region, both plasma species are magnetized and the profiles show gradients both in temperature and density. The electrostatic fluctuation measured using a Langmuir probe radially along the non-cusp region shows less than 1% (δIisat/Iisat < 1%). The plasma thus produced will be used to study new and hitherto unexplored physics parameter space relevant to both laboratory multi-scale plasmas and astrophysical plasmas.

  13. Synthesis, structure, optical, photoluminescence and magnetic properties of K2[Co(C2O4)2(H2O)2]·4H2O

    NASA Astrophysics Data System (ADS)

    Narsimhulu, M.; Hussain, K. A.

    2018-06-01

    The synthesis, crystal structure, optical, photoluminescence and magnetic behaviour of potassium bis(oxalato)cobaltate(II)tertrahydrate{K2[Co(C2O4)2(H2O)2]·4H2O} are described. The compound was grown at room temperature from mixture of aqueous solutions by slow evaporation method. The X-ray crystallographic data showed that the compound belongs to the monoclinic crystal system with P21/n space group and Z = 4. The UV-visible diffuse absorbance spectra exhibited bands at 253, 285 and 541 nm in the visible and ultraviolet regions. The optical band gap of the compound was estimated as 3.4 eV. At room temperature, an intense photoluminescence was observed from this material around 392 nm when it excited at 254 nm. The variable temperature dc magnetic susceptibility measurements exposed paramagnetic behaviour at high temperatures and antiferromagnetic ordering at low temperatures.

  14. Latitudinal variability of large-scale coronal temperature and its association with the density and the global magnetic field

    NASA Technical Reports Server (NTRS)

    Guhathakurta, M.; Fisher, R. R.

    1994-01-01

    In this paper we utilize the latitiude distribution of the coronal temperature during the period 1984-1992 that was derived in a paper by Guhathakurta et al, 1993, utilizing ground-based intensity observations of the green (5303 A Fe XIV) and red (6374 A Fe X) coronal forbidden lines from the National Solar Observatory at Sacramento Peak, and establish it association with the global magnetic field and the density distributions in the corona. A determination of plasma temperature, T, was estimated from the intensity ratio Fe X/Fe XIV (where T is inversely proportional to the ratio), since both emission lines come from ionized states of Fe, and the ratio is only weakly dependent on density. We observe that there is a large-scale organization of the inferred coronal temperature distribution that is associated with the large-scale, weak magnetic field structures and bright coronal features; this organization tends to persist through most of the magnetic activity cycle. These high-temperature structures exhibit time-space characteristics which are similar to those of the polar crown filaments. This distribution differs in spatial and temporal characterization from the traditional picture of sunspot and active region evolution over the range of the sunspot cycle, which are manifestations of the small-scale, strong magnetic field regions.

  15. The impact of chemical doping on the magnetic state of the Sr{sub 2}YRuO{sub 6} double perovskite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kayser, Paula; Ranjbar, Ben; Kennedy, Brendan J.

    The impact of chemical doping of the type Sr{sub 2−x}A{sub x}YRuO{sub 6} (A=Ca, Ba) on the low temperature magnetic properties of Sr{sub 2}YRuO{sub 6}, probed using variable temperature magnetic susceptibility, neutron diffraction and heat capacity measurements, are described. Specific-heat measurements of un-doped Sr{sub 2}YRuO{sub 6} reveal two features at ∼26 and ∼30 K. Neutron scattering measurements at these temperatures are consistent with a change from a 2D ordered state to the 3D type 1 AFM state. Magnetic and structural studies of a number of doped oxides are described that highlight the unique low temperature behavior of Sr{sub 2}YRuO{sub 6} andmore » demonstrate that doping destabilizes the intermediate 2D ordered state. - Graphical abstract: Neutron diffraction measurements of the ordered double perovskite Sr{sub 2}YRuO{sub 6}reveal a with a change from a 2D ordered state to the 3D type 1 AFM state upon cooling. The impact of chemical doping Sr{sub 2−x}A{sub x}YRuO{sub 6} (A=Ca, Ba) on the low temperature magnetic properties have also been investigated and these highlight the unique low temperature behavior of Sr{sub 2}YRuO{sub 6} with doping destabilizing the intermediate 2D ordered state. - Highlights: • Crystal and Magnetic Structure of Sr{sub 2}YRuO{sub 3} was studied using Neutron Diffraction. • Effect of doping on the magnetic ground state established. • Origin of two low temperature transitions discussed.« less

  16. Magneto Transport of CVD Carbon in Artificial Opals

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Yin, Ming; Arammash, Fauzi; Datta, Timir

    2014-03-01

    Magneto-transport of carbon inverse opal structures were investigated in the 2.5 to 300 K temperatures and magnetic fields in the 0-10T regime. Qualitatively, our observations lie between those reported by previous researchers. Over this temperature range, transport (in zero magnetic field) is non-metallic; the resistance decreased with rising temperature however the temperature dependent behavior is not activated, as observed with variable range hopping. In three-dimensions, such behavior can also be the result of weak localization and electron-electron interactions; in particular the change in conductivity is a polynomial in fractional powers of absolute temperature. At sub-helium temperature regimes the relative magneto resistance is measured to be ~ 0.1 percent per Tesla. Results of data analysis for several different scenarios will be reported. DOD award #60177-RT-H from the ARO.

  17. New experimental perspectives for soft x-ray absorption spectroscopies at ultra-low temperatures below 50 mK and in high magnetic fields up to 7 T

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beeck, T., E-mail: torben.beeck@desy.de; Baev, I.; Gieschen, S.

    2016-04-15

    A new ultra-low temperature experiment including a superconducting vector magnet has been developed for soft x-ray absorption spectroscopy experiments at third generation synchrotron light sources. The sample is cooled below 50 mK by a cryogen free {sup 3}He-{sup 4}He dilution refrigerator. At the same time, magnetic fields of up to ±7 T in the horizontal direction and ±0.5 T in the vertical direction can be applied by a superconducting vector magnet. The setup allows to study ex situ and in situ prepared samples, offered by an attached UHV preparation chamber with load lock. The transfer of the prepared samples betweenmore » the preparation section and the dilution refrigerator is carried out under cryogenic temperatures. First commissioning studies have been carried out at the Variable Polarization XUV Beamline P04 at PETRA III and the influence of the incident photon beam to the sample temperature has been studied.« less

  18. Magnetic properties of checkerboard lattice: a Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Jabar, A.; Masrour, R.; Hamedoun, M.; Benyoussef, A.

    2017-12-01

    The magnetic properties of ferrimagnetic mixed-spin Ising model in the checkerboard lattice are studied using Monte Carlo simulations. The variation of total magnetization and magnetic susceptibility with the crystal field has been established. We have obtained a transition from an order to a disordered phase in some critical value of the physical variables. The reduced transition temperature is obtained for different exchange interactions. The magnetic hysteresis cycles have been established. The multiples hysteresis cycle in checkerboard lattice are obtained. The multiples hysteresis cycle have been established. The ferrimagnetic mixed-spin Ising model in checkerboard lattice is very interesting from the experimental point of view. The mixed spins system have many technological applications such as in domain opto-electronics, memory, nanomedicine and nano-biological systems. The obtained results show that that crystal field induce long-range spin-spin correlations even bellow the reduced transition temperature.

  19. Coronal energy distribution and X-ray activity in the small scale magnetic field of the quiet sun

    NASA Technical Reports Server (NTRS)

    Habbal, S. R.

    1992-01-01

    The energy distribution in the small-scale magnetic field that pervades the solar surface, and its relationship to X-ray/coronal activity are discussed. The observed emission from the small scale structures, at temperatures characteristic of the chromosphere, transition region and corona, emanates from the boundaries of supergranular cells, within coronal bright points. This emission is characterized by a strong temporal and spatial variability with no definite pattern. The analysis of simultaneous, multiwavelength EUV observations shows that the spatial density of the enhanced as well as variable emission from the small scale structures exhibits a pronounced temperature dependence with significant maxima at 100,000 and 1,000,000 K. Within the limits of the spatial (1-5 arcsec) and temporal (1-5 min) resolution of data available at present, the observed variability in the small scale structure cannot account for the coroal heating of the quiet sun. The characteristics of their emission are more likely to be an indicator of the coronal heating mechanisms.

  20. Evolving Nonthermal Electron Distributions in Simulations of Sgr A*

    NASA Astrophysics Data System (ADS)

    Chael, Andrew; Narayan, Ramesh

    2018-01-01

    The accretion flow around Sagittarius A* (Sgr A*), the black hole at the Galactic Center, produces strong variability from the radio to X-rays on timescales of minutes to hours. This rapid, powerful variability is thought to be powered by energetic particle acceleration by plasma processes like magnetic reconnection and shocks. These processes can accelerate particles into non-thermal distributions which do not quickly isothermal in the low densities found around hot accretion flows. Current state-of-the-art simulations of accretion flows around black holes assume either a single-temperature gas or, at best, a two-temperature gas with thermal ions and electrons. We present results from incorporating the self-consistent evolution of a non-thermal electron population in a GRRMHD simulation of Sgr A*. The electron distribution is evolved across space, time, and Lorentz factor in parallel with background thermal ion, electron, and radiation fluids. Energy injection into the non-thermal distribution is modeled with a sub-grid prescription based on results from particle-in-cell simulations of magnetic reconnection. The energy distribution of the non-thermal electrons shows strong variability, and the spectral shape traces the complex interplay between the local viscous heating rate, magnetic field strength, and fluid velocity. Results from these simulations will be used in interpreting forthcoming data from the Event Horizon Telescope that resolves Sgr A*'s sub-mm variability in both time and space.

  1. Origin of anomalies and phase competitions around magnetic transition temperature in Pr0.7Ca0.3MnO3

    NASA Astrophysics Data System (ADS)

    Shah, Matiullah; Nadeem, M.; Atif, M.

    2013-03-01

    A polycrystalline sample of Pr0.7Ca0.3MnO3 is synthesized by the conventional solid-state reaction method and the phase formation is confirmed by x-ray diffraction. In this work, we addressed the phase competition issues in the vicinity of magnetic transition temperature and also established its correlation with oxygen contents of domains, disorder effects and heterogeneity in the material. The appearance and disappearance of anomaly in the vicinity of TC (128 K) with magnetic field is discussed in terms of establishment of short- and long-range networks between Mn3+ and Mn4+. Switching behaviour of two competing phases is analysed qualitatively and quantitatively, using an equivalent circuit model and magnetization analysis. The issue of coexisting phases is further substantiated using a simple depression angle approach of impedance plane plots. variable range hopping is found to be a better model than polaronic for explaining the transport properties of both competing phases below the magnetic transition temperature, 128 K.

  2. A Mononuclear Fe(III) Single Molecule Magnet with a 3/2↔5/2 Spin Crossover

    PubMed Central

    Tran, Ba L.; Adhikari, Debashis; Pink, Maren; Heinemann, Frank W.; Sutter, Jörg; Szilagyi, Robert K.

    2012-01-01

    The air stable complex [(PNP)FeCl2] (1) (PNP = N[2-P(CHMe2)2-4-methylphenyl]2−), prepared from one-electron oxidation of [(PNP)FeCl] with ClCPh3, displays an unusual S = 3/2 to S = 5/2 transition above 80 K as inferred by the dc SQUID magnetic susceptibility measurement. The ac SQUID magnetization data, at zero field and between frequencies 10 and 1042 Hz, clearly reveals complex 1 to undergo a frequency dependent of the out-of-phase signal and thus be a single molecular magnet with a thermally activated barrier of Ueff = 32-36 cm−1 (47 - 52 K). Variable temperature Mössbauer data also corroborate a significant temperature dependence in δ and ΔEQ values for 1, which is in agreement with the system undergoing a change in spin state. Likewise, variable temperature X-band EPR spectra of 1 reveals the S = 3/2 to be likely the ground state with the S = 5/2 being close in energy. Multi-edge XAS absorption spectra suggest the electronic structure of 1 to be highly covalent with an effective iron oxidation state that is more reduced than the typical ferric complexes due to the significant interaction of the phosphine groups in PNP and Cl ligands with iron. A variable temperature single crystal X-ray diffraction study of 1 collected between 30-300 K also reveals elongation of the Fe–P bond lengths and increment in the Cl–Fe–Cl angle as the S = 5/2 state is populated. Theoretical studies show overall similar orbital pictures except for the d(z2) orbital which is the most sensitivity to change in the geometry and bonding where the quartet (4B) and the sextet (6A) states are close in energy. PMID:22817325

  3. Siphon flows in isolated magnetic flux tubes. V - Radiative flows with variable ionization

    NASA Technical Reports Server (NTRS)

    Montesinos, Benjamin; Thomas, John H.

    1993-01-01

    Steady siphon flows in arched isolated magnetic flux tubes in the solar atmosphere are calculated here including radiative transfer between the flux tube and its surrounding and variable ionization of the flowing gas. It is shown that the behavior of a siphon flow is strongly determined by the degree of radiative coupling between the flux tube and its surroundings in the superadiabatic layer just below the solar surface. Critical siphon flows with adiabatic tube shocks in the downstream leg are calculated, illustrating the radiative relaxation of the temperature jump downstream of the shock. For flows in arched flux tubes reaching up to the temperature minimum, where the opacity is low, the gas inside the flux tube is much cooler than the surrounding atmosphere at the top of the arch. It is suggested that gas cooled by siphon flows contribute to the cool component of the solar atmosphere at the height of the temperature minimum implied by observations of the infrared CO bands at 4.6 and 2.3 microns.

  4. A high field and cryogenic test facility for neutron irradiated superconducting wire

    NASA Astrophysics Data System (ADS)

    Nishimura, A.; Miyata, H.; Yoshida, M.; Iio, M.; Suzuki, K.; Nakamoto, T.; Yamazaki, M.; Toyama, T.

    2017-12-01

    A 15.5 T superconducting magnet and a variable temperature insert (VTI) system were installed at a radiation control area in Oarai center in Tohoku University to investigate the superconducting properties of activated superconducting materials by fast neutron. The superconductivity was measured at cryogenic temperature and high magnetic field. During these tests, some inconvenient problems were observed and the additional investigation was carried out. The variable temperature insert was designed and assembled to perform the superconducting property tests. without the liquid helium. To remove the heat induced by radiation and joule heating, high purity aluminum rod was used in VTI. The thermal contact was checked by FEM analysis and an additional support was added to confirm the decreasing the stress concentration and the good thermal contact. After the work for improvement, it was affirmed that the test system works well and all troubles were resolved. In this report, the improved technical solution is described and the first data set on the irradiation effect on Nb3Sn wire is presented.

  5. A 4 Tesla Superconducting Magnet Developed for a 6 Circle Huber Diffractometer at the XMaS Beamline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, P. B. J.; Brown, S. D.; Bouchenoire, L.

    2007-01-19

    We report here on the development and testing of a 4 Tesla cryogen free superconducting magnet designed to fit within the Euler cradle of a 6 circle Huber diffractometer, allowing scattering in both the vertical and horizontal planes. The geometry of this magnet allows the field to be applied in three orientations. The first being along the beam direction, the second with the field transverse to the beam direction a horizontal plane and finally the field can be applied vertically with respect to the beam. The magnet has a warm bore and an open geometry of 180 deg. , allowingmore » large access to reciprocal space. A variable temperature insert has been developed, which is capable of working down to a temperature of 1.7 K and operating over a wide range of angles whilst maintaining a temperature stability of a few mK. Initial ferromagnetic diffraction measurements have been carried out on single crystal Tb and Dy samples.« less

  6. Growth, Structural, Electronic, and Magnetic Characterization of GaN, CrN, Fe Islands on CrN, and Fe/CrN Bilayer Thin Films

    NASA Astrophysics Data System (ADS)

    Alam, Khan

    As a part of my Ph.D research, initially I was involved in construction and calibration of an ultra-high vacuum thin film facility, and later on I studied structural, electronic, and magnetic properties of GaN, CrN, Fe/CrN bilayers, and Fe islands on CrN thin films. All of these films were grown by molecular beam epitaxy and characterized with a variety of state-of-the-art techniques including variable temperature reflection high energy electron diffraction, low temperature scanning tunneling microscopy and spectroscopy, variable temperature vibrating sample magnetometry, variable temperature neutron diffraction and reflectometry, variable temperature x-ray diffraction, x-ray reflectometry, Rutherford backscattering, Auger electron spectroscopy, and cross-sectional tunneling electron microscopy. The experimental results are furthermore understood by comparing with numerical calculations using generalized gradient approximation, local density approximation with Hubbard correction, Refl1D, and data analysis and visual environment program. In my first research project, I studied Ga gas adatoms on GaN surfaces. We discovered frozen-out gallium gas adatoms on atomically smooth c(6x12) GaN(0001¯) surface using low temperature scanning tunneling microscopy. We identified adsorption sites of the Ga adatoms on c(6x12) reconstructed surface. Their bonding is determined by measuring low unoccupied molecular orbital level. Absorption sites of the Ga gas adatoms on centered 6x12 are identified, and their asymmetric absorption on the chiral domains is investigated. In second project, I investigated magneto-structural phase transition in chromium nitride (CrN) thin films. The CrN thin films are grown by molecular beam epitaxy. Structural and magnetic transition are studied using variable temperature reflection high energy electron diffraction and variable temperature neutron diffraction. We observed a structural phase transition at the surface at 277+/-2 K, and a sharp, first-order magnetic phase transition from paramagnetic (room temperature) to antiferromagnetic (low temperature) at 280+/-3 K. Our experiments suggest that the structural transition in CrN thin films occur in out-of-plane direction, and epitaxial constraints suppress the in-plane transition; therefore, the low temperature crystal structure of CrN is tetragonal. This new model explains our structural and magnetic data at low temperatures, but it is different than the previously published orthorhombic model. In third project, I studied exchange bias and exchange spring effect in MBE grown Fe/CrN bilayer thin films. We grew Fe/CrN bilayer thin films on MgO(001) substrate by molecular beam epitaxy, and studied them using variable temperature vibrating sample magnetometry, polarized neutron reflectometry, x-ray reflectivity, and cross-sectional transmission electron microscopy. We observed exchange bias and exchange spring effect in all bilayer thin films. We studied the relationship of exchange bias, blocking temperature, and coercivity with Fe and CrN layers thicknesses. We used polarized neutron beam reflectometry to see if spins at Fe/CrN interface are pinned. We found a thin ferromagnetically ordered CrN layer at the interface. In my final project, I studied growth of submonolayer Fe islands on CrN thin films. These films are prepared in two stages: first, a CrN layer is grown by MBE and then a submonolayer Fe is deposited at room temperature from a carefully degassed e-beam evaporator. The films are studied at liquid helium temperature using low temperature scanning tunneling microscopy and spectroscopy. Islands are seen in STM images, after the Fe deposition, at the edges as well as at the center of atomically flat CrN terraces. However, numerical calculations performed by our collaborator Ponce-P'erez from Benem'erita Universidad Aut'onoma de Puebla show that the Fe islands are energetically unstable on the surface. The Fe atoms substitute Cr atoms in the surface layer and the Cr atoms comes out and form islands. In order to find out elemental composition of the islands, we attempted to map local density of state by measuring differential conductance spectra as a function of bias voltage using LT-STS. We observed three characteristically different spectra; one in the CrN substrate and two in the islands. The CrN substrate curve has a "U" shape near Fermi level and a peak at ≈ 105 mV. The islands spectra show Kondo-like resonances at Fermi level; some islands produce a peak whereas others produce a dip the dI/dV curves near Fermi level. Further investigations are needed to determine the origin of the peak and dip in the island curves, as well as to find the composition of the islands.

  7. ESR spectrometer with a loop-gap resonator for cw and time resolved studies in a superconducting magnet.

    PubMed

    Simon, Ferenc; Murányi, Ferenc

    2005-04-01

    The design and performance of an electron spin resonance spectrometer operating at 3 and 9 GHz microwave frequencies combined with a 9-T superconducting magnet are described. The probehead contains a compact two-loop, one gap resonator, and is inside the variable temperature insert of the magnet enabling measurements in the 0-9T magnetic field and 1.5-400 K temperature range. The spectrometer allows studies on systems where resonance occurs at fields far above the g approximately 2 paramagnetic condition such as in antiferromagnets. The low quality factor of the resonator allows time resolved experiments such as, e.g., longitudinally detected ESR. We demonstrate the performance of the spectrometer on the NaNiO2 antiferromagnet, the MgB2 superconductor, and the RbC60 conducting alkaline fulleride polymer.

  8. A new multi-line cusp magnetic field plasma device (MPD) with variable magnetic field.

    PubMed

    Patel, A D; Sharma, M; Ramasubramanian, N; Ganesh, R; Chattopadhyay, P K

    2018-04-01

    A new multi-line cusp magnetic field plasma device consisting of electromagnets with core material has been constructed with a capability to experimentally control the relative volume fractions of magnetized to unmagnetized plasma volume as well as accurate control on the gradient length scales of mean density and temperature profiles. Argon plasma has been produced using a hot tungsten cathode over a wide range of pressures 5 × 10 -5 -1 × 10 -3 mbar, achieving plasma densities ranging from 10 9 to 10 11 cm -3 and the electron temperature in the range 1-8 eV. The radial profiles of plasma parameters measured along the non-cusp region (in between two consecutive magnets) show a finite region with uniform and quiescent plasma, where the magnetic field is very low such that the ions are unmagnetized. Beyond that region, both plasma species are magnetized and the profiles show gradients both in temperature and density. The electrostatic fluctuation measured using a Langmuir probe radially along the non-cusp region shows less than 1% (δI isat /I isat < 1%). The plasma thus produced will be used to study new and hitherto unexplored physics parameter space relevant to both laboratory multi-scale plasmas and astrophysical plasmas.

  9. Parametric dependence of ion temperature and electron density in the SUMMA hot-ion plasma using laser light scattering and emission spectroscopy

    NASA Technical Reports Server (NTRS)

    Snyder, A.; Patch, R. W.; Lauver, M. R.

    1980-01-01

    Hot-ion plasma experiments were conducted in the NASA Lewis SUMMA facility. A steady-state modified Penning discharge was formed by applying a radially inward dc electric field of several kilovolts near the magnetic mirror maxima. Results are reported for a hydrogen plasma covering a wide range in midplane magnetic flux densities from 0.5 to 3.37 T. Input power greater than 45 kW was obtained with water-cooled cathodes. Steady-state plasmas with ion kinetic temperatures from 18 to 830 eV were produced and measured spectroscopically. These ion temperatures were correlated with current, voltage, and magnetic flux density as the independent variables. Electron density measurements were made using an unusually sensitive Thomson scattering apparatus. The measured electron densities range from 2.1 x 10 to the 11th to 6.8 x 10 to the 12th per cu cm.

  10. Variable substrate temperature deposition of CoFeB film on Ta for manipulating the perpendicular coercive forces

    NASA Astrophysics Data System (ADS)

    Lakshmanan, Saravanan; Rao, Subha Krishna; Muthuvel, Manivel Raja; Chandrasekaran, Gopalakrishnan; Therese, Helen Annal

    2017-08-01

    Magnetization of Ta/CoFeB/Ta trilayer films with thick layer of CoFeB deposited under different substrate temperatures (Ts) via ultra-high vacuum DC sputtering technique has been measured with the applied magnetic field parallel and perpendicular to the plane of the film respectively to study the perpendicular coercive forces of the film. The samples were further analyzed for its structural, topological, morphological, and electrical transport properties. The core chemical states for the elements present in the CoFeB thin film were analyzed by XPS studies. Magnetization studies reveal the existence of perpendicular coercive forces in CoFeB films deposited only at certain temperatures such as RT, 450 °C, 475 °C and 500 °C. CoFeB film deposited at 475 °C exhibited a maximum coercivity of 315 Oe and a very low saturation magnetization (Ms) of 169 emu/cc in perpendicular direction. This pronounced effect in perpendicular coercive forces observed for CoFeB475 could be attributed to the effect of temperature in enhancing the crystallization of the film at the Ta/CoFeB interfaces. However at temperatures higher than 475 °C the destruction of the Ta/CoFeB interface due to intermixing of Ta and CoFeB results in the disappearance of magnetic anisotropy.

  11. A fast field-cycling device for high-resolution NMR: Design and application to spin relaxation and hyperpolarization experiments

    NASA Astrophysics Data System (ADS)

    Kiryutin, Alexey S.; Pravdivtsev, Andrey N.; Ivanov, Konstantin L.; Grishin, Yuri A.; Vieth, Hans-Martin; Yurkovskaya, Alexandra V.

    2016-02-01

    A device for performing fast magnetic field-cycling NMR experiments is described. A key feature of this setup is that it combines fast switching of the external magnetic field and high-resolution NMR detection. The field-cycling method is based on precise mechanical positioning of the NMR probe with the mounted sample in the inhomogeneous fringe field of the spectrometer magnet. The device enables field variation over several decades (from 100 μT up to 7 T) within less than 0.3 s; progress in NMR probe design provides NMR linewidths of about 10-3 ppm. The experimental method is very versatile and enables site-specific studies of spin relaxation (NMRD, LLSs) and spin hyperpolarization (DNP, CIDNP, and SABRE) at variable magnetic field and at variable temperature. Experimental examples of such studies are demonstrated; advantages of the experimental method are described and existing challenges in the field are outlined.

  12. The different climatic response of pedogenic hematite and ferrimagnetic minerals: Evidence from particle-sized modern soils over the Chinese Loess Plateau

    NASA Astrophysics Data System (ADS)

    Gao, Xinbo; Hao, Qingzhen; Wang, Luo; Oldfield, Frank; Bloemendal, Jan; Deng, Chenglong; Song, Yang; Ge, Junyi; Wu, Haibin; Xu, Bing; Li, Fengjiang; Han, Long; Fu, Yu; Guo, Zhengtang

    2018-01-01

    In recent years, increasing interest in loess studies has focused on qualitative and quantitative paleoclimatic reconstruction using the imperfect antiferromagnetic mineral hematite. However, the linkage between the hematite formation and climatic variables remains controversial. Here we present the results of a comprehensive investigation of the magnetic properties and statistical analysis of a suite of clay and silt fractions of modern soil samples from 179 sites across the Chinese Loess Plateau (CLP) and adjacent regions. Our objective was to clarify the relationships between modern climatic variables and pedogenic hematite, as well as pedogenic ferrimagnetic minerals. First-order reversal curve measurements were also conducted on representative particle-sized subsamples from a N-S transect to understand the differences in magnetic mineralogy between the two fractions. Our results show that pipette extraction separates the fine-grained superparamagnetic (SP) and most of the single-domain (SD) magnetic grains into the clay fraction, and that the remaining silt fraction displays the magnetic properties of coarse pseudo-single domain (PSD) or a mixture of multidomain (MD)/PSD and a few SD particles. Only the pedogenic clay fraction shows a strong correlation with climatic variables. The application of redundancy analysis helps to distinguish the climate variables controlling the formation of ferrimagnetic minerals and hematite during pedogenesis. On the CLP, pedogenic ferrimagnetic minerals are sensitive to mean annual precipitation, while pedogenic hematite formation is preferentially dependent on mean annual temperature. The confirmation of the temperature-dependent nature of hematite on the CLP provides a new possibility for quantitatively reconstructing the paleotemperature history of Chinese loess/paleosol sequences.

  13. The Different Climatic Response of Pedogenic Hematite and Ferrimagnetic Minerals: Evidence from Particle-Sized Modern Soils over the Chinese Loess Plateau

    NASA Astrophysics Data System (ADS)

    Gao, X.; Hao, Q.; Luo, W.; Oldfield, F.; Bloemendal, J.; Deng, C.; Song, Y.; Ge, J.; Wu, H.; Xu, B.; Li, F.; Han, L.; Fu, Y.; Guo, Z.

    2017-12-01

    In recent years, increasing interest in loess studies has focused on qualitative and quantitative paleoclimatic reconstruction using the imperfect antiferromagnetic mineral hematite. However, the linkage between the hematite formation and climatic variables remains controversial. Here we present the results of a comprehensive investigation of the magnetic properties and statistical analysis of a suite of clay and silt fractions of modern soil samples from 179 sites across the Chinese Loess Plateau (CLP) and adjacent regions. Our objective was to clarify the relationships between modern climatic variables and pedogenic hematite, as well as pedogenic ferrimagnetic minerals. First-order reversal curve measurements were also conducted on representative particle-sized subsamples from a N-S transect to understand the differences in magnetic mineralogy between the two fractions. Our results show that pipette extraction separates the fine-grained superparamagnetic (SP) and most of the single-domain (SD) magnetic grains into the clay fraction, and that the remaining silt fraction displays the magnetic properties of coarse pseudo-single domain (PSD) or a mixture of multidomain (MD)/PSD and a few SD particles. Only the pedogenic clay fraction shows a strong correlation with climatic variables. The application of redundancy analysis helps to distinguish the climate variables controlling the formation of ferrimagnetic minerals and hematite during pedogenesis. On the CLP, pedogenic ferrimagnetic minerals are sensitive to mean annual precipitation, while pedogenic hematite formation is preferentially dependent on mean annual temperature. The confirmation of the temperature-dependent nature of hematite on the CLP provides a new possibility for quantitatively reconstructing the paleotemperature history of Chinese loess/paleosol sequences.

  14. Gas gap heat switch for a cryogen-free magnet system

    NASA Astrophysics Data System (ADS)

    Barreto, J.; Borges de Sousa, P.; Martins, D.; Kar, S.; Bonfait, G.; Catarino, I.

    2015-12-01

    Cryogen-free superconducting magnet systems (CFMS) have become popular over the last two decades for the simple reason that the use of liquid helium is rather cumbersome and that helium is a scarce resource. Some available CFMS use a mechanical cryocooler as the magnet's cold source. However, the variable temperature insert (VTI) for some existing CFMS are not strictly cryogen-free as they are still based on helium gas circulation through the sample space. We designed a prototype of a gas gap heat switch (GGHS) that allows a thermal management of a completely cryogen-free magnet system, with no helium losses. The idea relies on a parallel cooling path to a variable temperature insert (VTI) of a magnetic properties measurement system under development at Inter-University Accelerator Centre. A Gifford-McMahon cryocooler (1.5 W @ 4.2 K) would serve primarily as the cold source of the superconducting magnet, dedicating 1 W to this cooling, under quite conservative safety factors. The remaining cooling power (0.5 W) is to be diverted towards a VTI through a controlled GGHS that was designed and built with a 80 μm gap width. The built GGHS thermal performance was measured at 4 K, using helium as the exchange gas, and its conductance is compared both with a previously developed analytical model and a finite element method. Lessons learned lead to a new and more functional prototype yet to be reported.

  15. Multi-species hybrid modeling of plasma interactions at Io and Europa

    NASA Astrophysics Data System (ADS)

    Sebek, O.; Travnicek, P. M.; Walker, R. J.; Hellinger, P.

    2017-12-01

    We study the plasma interactions of Galilean satellites, Io and Europa, by means of multi-species global hybrid simulations. For both satellites we consider multi-species background plasma composed of oxygen and sulphur ions and multi-component neutral atmospheres. We consider ionization processes of the neutral atmosphere which is then a source of dense population of pick-up ions. We apply variable background plasma conditions (density, temperature, magnetic field magnitude and orientation) in order to cover the variability in conditions experienced by the satellites when located in different regions of the Jovian plasma torus. We examine global structure of the interactions, formation of Alfvén wings, development of temperature anisotropies and corresponding instabilities, and the fine phenomena caused by the multi-specie nature of the plasma. The results are in good agreement with in situ measurements of magnetic field and plasma density made by the Galileo spacecraft.

  16. Study of electrical and magnetic properties of RE doped layered cobaltite thin films

    NASA Astrophysics Data System (ADS)

    Bapna, K.; Choudhary, R. J.; Phase, D. M.; Rawat, R.; Ahuja, B. L.

    2018-05-01

    Thin films of layered perovskites Sr1.5RE0.5CoO4 (RE = La, Gd) were grown on MgO (0 0 1) substrate using pulsed laser ablation method. Structural, electrical and magnetic properties of single phase oriented films were studied. Films reveal semiconducting behavior in the entire measured temperature range. The films show thermally activated behavior at high temperature regime, with a higher value of activation energy for SGCO than that for SLCO. The low temperature behavior is well fitted with 3D-variable range hopping mechanism. Both films showed negative magneto-resistance measured in temperature range of 10-200 K. The value of MR is large for SGCO film as compared to its bulk counterpart as well as SLCO film, suggesting its high potential in the spintronics applications. A pinch-shaped M-H behaviour as observed in both the films, suggests the presence of two-magnetic phases. Occurrence of pinch-shape behaviour is although in line with that of SLCO bulk counterpart, interestingly, it was absent in SGCO polycrystalline powder. It suggests major role of film growth kinetics in modifying the magnetic properties in cobaltites.

  17. Linear Chains of Magnetic Ions Stacked with Variable Distance: Ferromagnetic Ordering with a Curie Temperature above 20 K.

    PubMed

    Friedländer, Stefan; Liu, Jinxuan; Addicoat, Matt; Petkov, Petko; Vankova, Nina; Rüger, Robert; Kuc, Agnieszka; Guo, Wei; Zhou, Wencai; Lukose, Binit; Wang, Zhengbang; Weidler, Peter G; Pöppl, Andreas; Ziese, Michael; Heine, Thomas; Wöll, Christof

    2016-10-04

    We have studied the magnetic properties of the SURMOF-2 series of metal-organic frameworks (MOFs). Contrary to bulk MOF-2 crystals, where Cu(2+) ions form paddlewheels and are antiferromagnetically coupled, in this case the Cu(2+) ions are connected via carboxylate groups in a zipper-like fashion. This unusual coupling of the spin 1/2 ions within the resulting one-dimensional chains is found to stabilize a low-temperature, ferromagnetic (FM) phase. In contrast to other ordered 1D systems, no strong magnetic fields are needed to induce the ferromagnetism. The magnetic coupling constants describing the interaction between the individual metal ions have been determined in SQUID experiments. They are fully consistent with the results of ab initio DFT electronic structure calculations. The theoretical results allow the unusual magnetic behavior of this exotic, yet easy-to-fabricate, material to be described in a detailed fashion. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Perspectives for high-performance permanent magnets: applications, coercivity, and new materials

    NASA Astrophysics Data System (ADS)

    Hirosawa, Satoshi; Nishino, Masamichi; Miyashita, Seiji

    2017-03-01

    High-performance permanent magnets are indispensable in the production of high-efficiency motors and generators and ultimately for sustaining the green earth. The central issue of modern permanent magnetism is to realize high coercivity near and above room temperature on marginally hard magnetic materials without relying upon the critical elements such as heavy rare earths by means of nanostructure engineering. Recent investigations based on advanced nanostructure analysis and large-scale first principles calculations have led to significant paradigm shifts in the understandings of coercivity mechanism in Nd-Fe-B permanent magnets, which includes the discovery of the ferromagnetism of the thin (2 nm) intergranular phase surrounding the Nd2Fe14B grains, the occurrence of negative (in-plane) magnetocrystalline anisotropy of Nd ions and some Fe atoms at the interface which degrades coercivity, and visualization of the stochastic behaviors of magnetization in the magnetization reversal process at high temperatures. A major change may occur also in the motor topologies, which is currently overwhelmed by the magnetic flux weakening interior permanent magnet motor type, to other types with variable flux permanent magnet type in some applications to open up a niche for new permanent magnet materials. Keynote talk at 8th International Workshop on Advanced Materials Science and Nanotechnology (IWAMSN2016), 8-12 November 2016, Ha Long City, Vietnam.

  19. Crystal growth and magnetic anisotropy in the spin-chain ruthenate Na2RuO4

    NASA Astrophysics Data System (ADS)

    Balodhi, Ashiwini; Singh, Yogesh

    2018-02-01

    We report single-crystal growth, electrical resistivity ρ , anisotropic magnetic susceptibility χ , and heat capacity Cp measurements on the one-dimensional spin-chain ruthenate Na2RuO4 . We observe variable range hopping (VRH) behavior in ρ (T ) . The magnetic susceptibility with magnetic field perpendicular (χ⊥) and parallel (χ∥) to the spin chains is reported. The magnetic properties are anisotropic with χ⊥>χ∥ in the temperature range of measurements T ≈2 -305 K with χ⊥/χ∥≈1.4 at 305 K. From an analysis of the χ (T ) data we attempt to estimate the anisotropy in the g factor and Van Vleck paramagnetic contribution. An anomaly in χ (T ) and a corresponding step-like anomaly in Cp at TN=37 K confirms long-range antiferromagnetic ordering. This temperature is an order of magnitude smaller than the Weiss temperature θ ≈-250 K and points to suppression of long-range magnetic order due to low dimensionality. A fit of the experimental χ (T ) by a one-dimensional spin-chain model gave an estimate of the intrachain exchange interaction 2 J ≈-85 K and the magnitude of the interchain coupling |2 J⊥|≈3 K.

  20. Cryogenic test facility instrumentation with fiber optic and fiber optic sensors for testing superconducting accelerator magnets

    NASA Astrophysics Data System (ADS)

    Chiuchiolo, A.; Bajas, H.; Bajko, M.; Castaldo, B.; Consales, M.; Cusano, A.; Giordano, M.; Giloux, C.; Perez, J. C.; Sansone, L.; Viret, P.

    2017-12-01

    The magnets for the next steps in accelerator physics, such as the High Luminosity upgrade of the LHC (HL- LHC) and the Future Circular Collider (FCC), require the development of new technologies for manufacturing and monitoring. To meet the HL-LHC new requirements, a large upgrade of the CERN SM18 cryogenic test facilities is ongoing with the implementation of new cryostats and cryogenic instrumentation. The paper deals with the advances in the development and the calibration of fiber optic sensors in the range 300 - 4 K using a dedicated closed-cycle refrigerator system composed of a pulse tube and a cryogen-free cryostat. The calibrated fiber optic sensors (FOS) have been installed in three vertical cryostats used for testing superconducting magnets down to 1.9 K or 4.2 K and in the variable temperature test bench (100 - 4.2 K). Some examples of FOS measurements of cryostat temperature evolution are presented as well as measurements of strain performed on a subscale of High Temperature Superconducting magnet during its powering tests.

  1. Magnetization Reversal of Nanoscale Islands: How Size and Shape Affect the Arrhenius Prefactor

    NASA Astrophysics Data System (ADS)

    Krause, S.; Herzog, G.; Stapelfeldt, T.; Berbil-Bautista, L.; Bode, M.; Vedmedenko, E. Y.; Wiesendanger, R.

    2009-09-01

    The thermal switching behavior of individual in-plane magnetized Fe/W(110) nanoislands is investigated by a combined study of variable-temperature spin-polarized scanning tunneling microscopy and Monte Carlo simulations. Even for islands consisting of less than 100 atoms the magnetization reversal takes place via nucleation and propagation. The Arrhenius prefactor is found to strongly depend on the individual island size and shape, and based on the experimental results a simple model is developed to describe the magnetization reversal in terms of metastable states. Complementary Monte Carlo simulations confirm the model and provide new insight into the microscopic processes involved in magnetization reversal of smallest nanomagnets.

  2. Nanoscale magneto-structural coupling in as-deposited and freestanding single-crystalline Fe7Pd3 ferromagnetic shape memory alloy thin films

    PubMed Central

    Landgraf, Anja; Jakob, Alexander M; Ma, Yanhong; Mayr, Stefan G

    2013-01-01

    Ferromagnetic shape memory alloys are characterized by strong magneto-mechanical coupling occurring at the atomic scale causing large magnetically inducible strains at the macroscopic level. Employing combined atomic and magnetic force microscopy studies at variable temperature, we systematically explore the relation between the magnetic domain pattern and the underlying structure for as-deposited and freestanding single-crystalline Fe7Pd3 thin films across the martensite–austenite transition. We find experimental evidence that magnetic domain appearance is strongly affected by the presence and absence of nanotwinning. While the martensite–austenite transition upon temperature variation of as-deposited films is clearly reflected in topography by the presence and absence of a characteristic surface corrugation pattern, the magnetic domain pattern is hardly affected. These findings are discussed considering the impact of significant thermal stresses arising in the austenite phase. Freestanding martensitic films reveal a hierarchical structure of micro- and nanotwinning. The associated domain organization appears more complex, since the dominance of magnetic energy contributors alters within this length scale regime. PMID:27877596

  3. Phase and vortex correlations in superconducting Josephson-junction arrays at irrational magnetic frustration.

    PubMed

    Granato, Enzo

    2008-07-11

    Phase coherence and vortex order in a Josephson-junction array at irrational frustration are studied by extensive Monte Carlo simulations using the parallel-tempering method. A scaling analysis of the correlation length of phase variables in the full equilibrated system shows that the critical temperature vanishes with a power-law divergent correlation length and critical exponent nuph, in agreement with recent results from resistivity scaling analysis. A similar scaling analysis for vortex variables reveals a different critical exponent nuv, suggesting that there are two distinct correlation lengths associated with a decoupled zero-temperature phase transition.

  4. A Normal Incidence X-ray Telescope (NIXT) Sounding Rocket Payload

    NASA Technical Reports Server (NTRS)

    Golub, Leon

    1998-01-01

    The solar corona, and the coronae of solar-type stars, consist of a low-density magnetized plasma at temperatures exceeding 10(exp 6) K. The primary coronal emission is therefore in the UV and soft X-ray range. The observed close connection between solar magnetic fields and the physical parameters of the corona implies a fundamental role for the magnetic field in coronal structuring and dynamics. Variability of the corona occurs on all temporal and spatial scales - at one extreme, as the result of plasma instabilities, and at the other extreme driven by the global magnetic flux emergence patterns of the solar cycle.

  5. Probing the Quiet Solar Atmosphere from the Photosphere to the Corona

    NASA Astrophysics Data System (ADS)

    Kontogiannis, Ioannis; Gontikakis, Costis; Tsiropoula, Georgia; Tziotziou, Kostas

    2018-04-01

    We investigate the morphology and temporal variability of a quiet-Sun network region in different solar layers. The emission in several extreme ultraviolet (EUV) spectral lines through both raster and slot time-series, recorded by the EUV Imaging Spectrometer (EIS) on board the Hinode spacecraft is studied along with Hα observations and high-resolution spectropolarimetric observations of the photospheric magnetic field. The photospheric magnetic field is extrapolated up to the corona, showing a multitude of large- and small-scale structures. We show for the first time that the smallest magnetic structures at both the network and internetwork contribute significantly to the emission in EUV lines, with temperatures ranging from 8× 104 K to 6× 105 K. Two components of transition region emission are present, one associated with small-scale loops that do not reach coronal temperatures, and another component that acts as an interface between coronal and chromospheric plasma. Both components are associated with persistent chromospheric structures. The temporal variability of the EUV intensity at the network region is also associated with chromospheric motions, pointing to a connection between transition region and chromospheric features. Intensity enhancements in the EUV transition region lines are preferentially produced by Hα upflows. Examination of two individual chromospheric jets shows that their evolution is associated with intensity variations in transition region and coronal temperatures.

  6. Superparamagnetic iron oxide nanoparticles with variable size and an iron oxidation state as prospective imaging agents.

    PubMed

    Kucheryavy, Pavel; He, Jibao; John, Vijay T; Maharjan, Pawan; Spinu, Leonard; Goloverda, Galina Z; Kolesnichenko, Vladimir L

    2013-01-15

    Magnetite nanoparticles in the size range of 3.2-7.5 nm were synthesized in high yields under variable reaction conditions using high-temperature hydrolysis of the precursor iron(II) and iron(III) alkoxides in diethylene glycol solution. The average sizes of the particles were adjusted by changing the reaction temperature and time and by using a sequential growth technique. To obtain γ-iron(III) oxide particles in the same range of sizes, magnetite particles were oxidized with dry oxygen in diethylene glycol at room temperature. The products were characterized by DLS, TEM, X-ray powder diffractometry, TGA, chemical analysis, and magnetic measurements. NMR r(1) and r(2) relaxivity measurements in water and diethylene glycol (for OH and CH(2) protons) have shown a decrease in the r(2)/r(1) ratio with the particle size reduction, which correlates with the results of magnetic measurements on magnetite nanoparticles. Saturation magnetization of the oxidized particles was found to be 20% lower than that for Fe(3)O(4) with the same particle size, but their r(1) relaxivities are similar. Because the oxidation of magnetite is spontaneous under ambient conditions, it was important to learn that the oxidation product has no disadvantages as compared to its precursor and therefore may be a better prospective imaging agent because of its chemical stability.

  7. Investigation of Factors Affecting Body Temperature Changes During Routine Clinical Head Magnetic Resonance Imaging

    PubMed Central

    Kim, Myeong Seong

    2016-01-01

    Background Pulsed radiofrequency (RF) magnetic fields, required to produce magnetic resonance imaging (MRI) signals from tissue during the MRI procedure have been shown to heat tissues. Objectives To investigate the relationship between body temperature rise and the RF power deposited during routine clinical MRI procedures, and to determine the correlation between this effect and the body’s physiological response. Patients and Methods We investigated 69 patients from the Korean national cancer center to identify the main factors that contribute to an increase in body temperature (external factors and the body’s response) during a clinical brain MRI. A routine protocol sequence of MRI scans (1.5 T and 3.0 T) was performed. The patient’s tympanic temperature was recorded before and immediately after the MRI procedure and compared with changes in variables related to the body’s physiological response to heat. Results Our investigation of the physiological response to RF heating indicated a link between increasing age and body temperature. A higher increase in body temperature was observed in older patients after a 3.0-T MRI (r = 0.07, P = 0.29 for 1.5-T MRI; r = 0.45, P = 0.002 for 3.0-T MRI). The relationship between age and body heat was related to the heart rate (HR) and changes in HR during the MRI procedure; a higher RF power combined with a reduction in HR resulted in an increase in body temperature. Conclusion A higher magnetic field strength and a decrease in the HR resulted in an increase in body temperature during the MRI procedure. PMID:27895872

  8. Specific features of spin-variable properties of [Fe(acen)pic2]BPh4 · nH2O

    NASA Astrophysics Data System (ADS)

    Ivanova, T. A.; Ovchinnikov, I. V.; Gil'mutdinov, I. F.; Mingalieva, L. V.; Turanova, O. A.; Ivanova, G. I.

    2016-02-01

    The [Fe(acen)pic2]BPh4 · nH2O compound has been synthesized and studied in the temperature interval of 5-300 K by the methods of EPR and magnetic susceptibility. The existence of ferromagnetic interactions between Fe(III) complexes in this compound has been revealed, in contrast to unhydrated [Fe(acen)pic2]BPh4. The reduction in the integrated intensity of the magnetic resonance signal as the temperature decreases below 80 K has been explained by the transition of high-spin ions to the low-spin state. It has been shown that the phase transition temperature in the presence of intermolecular (ferromagnetic) interactions is lower than that in the case of noninteracting centers.

  9. Modern aspects of nonlinear convection and magnetic field in flow of thixotropic nanofluid over a nonlinear stretching sheet with variable thickness

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Qayyum, Sajid; Alsaedi, Ahmed; Ahmad, Bashir

    2018-05-01

    Main objective of present analysis is to study the magnetohydrodynamic (MHD) nonlinear convective flow of thixotropic nanofluid. Flow is due to nonlinear stretching surface with variable thickness. Nonlinear thermal radiation and heat generation/absorption are utilized in the energy expression. Convective conditions and zero mass flux at sheet are considered. Intention in present analysis is to develop a model for nanomaterial comprising Brownian motion and thermophoresis phenomena. Appropriate transformations are implemented for the conversion of partial differential systems into a sets of ordinary differential equations. The transformed expressions have been scrutinized through homotopic algorithm. Behavior of various sundry variables on velocity, temperature, nanoparticle concentration, skin friction coefficient and local Nusselt number are displayed through graphs. It is concluded that qualitative behaviors of temperature and thermal layer thickness are similar for radiation and temperature ratio variables. Moreover an enhancement in heat generation/absorption show rise to thermal field.

  10. John H. Dillon Medal Lecture: Magnetic Field Directed Self-Assembly of Block Copolymers and Surfactant Mesophases

    NASA Astrophysics Data System (ADS)

    Osuji, Chinedum

    2015-03-01

    Molecular self-assembly of block copolymers and small molecule surfactants gives rise to a rich phase behavior as a function of temperature, composition, and other variables. We consider the directed self-assembly of such soft mesophases using magnetic fields, principally through the use of in situ x-ray scattering studies. Field alignment is predicated on a sufficiently large product of magnetic anisotropy and grain size to produce magnetostatic interactions which are substantive relative to thermal forces. We examine the role of field strength on the phase behavior and alignment dynamics of a series of soft mesophases, outlining the possibility to readily create highly ordered functional materials over macroscopic length scales. We show that magnetic fields as large as 10 T have little discernable impact on the stability of block copolymer systems considered, with shifts in order-disorder transition temperatures of roughly 5 mK or smaller. Consequently, directed self-assembly in these systems proceeds by nucleation of randomly aligned grains which thereafter rotate into registry with the field. We highlight the tradeoff between decreasing mobility and increasing anisotropic field interaction that dictates alignment kinetics while transiting from a high temperature disordered state to an ordered system at lower temperatures. NSF support through DMR-0847534 is gratefully acknowledged.

  11. Anomalous negative magnetoresistance of two-dimensional electrons

    NASA Astrophysics Data System (ADS)

    Kanter, Jesse; Vitkalov, Sergey; Bykov, A. A.

    2018-05-01

    Effects of temperature T (6-18 K) and variable in situ static disorder on dissipative resistance of two-dimensional electrons are investigated in GaAs quantum wells placed in a perpendicular magnetic-field B⊥. Quantum contributions to the magnetoresistance, leading to quantum positive magnetoresistance (QPMR), are separated by application of an in-plane magnetic field. QPMR decreases considerably with both the temperature and the static disorder and is in good quantitative agreement with theory. The remaining resistance R decreases with the magnetic field exhibiting an anomalous polynomial dependence on B⊥:[R (B⊥) -R (0 ) ] =A (T ,τq) B⊥η where the power is η ≈1.5 ±0.1 in a broad range of temperatures and disorder. The disorder is characterized by electron quantum lifetime τq. The scaling factor A (T ,τq) ˜[κ(τq) +β (τq) T2] -1 depends significantly on both τq and T where the first term κ ˜τq-1/2 decreases with τq. The second term is proportional to the square of the temperature and diverges with increasing static disorder. Above a critical disorder the anomalous magnetoresistance is absent, and only a positive magnetoresistance, exhibiting no distinct polynomial behavior with the magnetic field, is observed. The presented model accounts memory effects and yields η = 3/2.

  12. Design and properties of a cryogenic dip-stick scanning tunneling microscope with capacitive coarse approach control.

    PubMed

    Schlegel, R; Hänke, T; Baumann, D; Kaiser, M; Nag, P K; Voigtländer, R; Lindackers, D; Büchner, B; Hess, C

    2014-01-01

    We present the design, setup, and operation of a new dip-stick scanning tunneling microscope. Its special design allows measurements in the temperature range from 4.7 K up to room temperature, where cryogenic vacuum conditions are maintained during the measurement. The system fits into every (4)He vessel with a bore of 50 mm, e.g., a transport dewar or a magnet bath cryostat. The microscope is equipped with a cleaving mechanism for cleaving single crystals in the whole temperature range and under cryogenic vacuum conditions. For the tip approach, a capacitive automated coarse approach is implemented. We present test measurements on the charge density wave system 2H-NbSe2 and the superconductor LiFeAs which demonstrate scanning tunneling microscopy and spectroscopy data acquisition with high stability, high spatial resolution at variable temperatures and in high magnetic fields.

  13. Mechanisms of double stratification and magnetic field in flow of third grade fluid over a slendering stretching surface with variable thermal conductivity

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Qayyum, Sajid; Alsaedi, Ahmed; Ahmad, Bashir

    2018-03-01

    This article addresses the magnetohydrodynamic (MHD) stagnation point flow of third grade fluid towards a nonlinear stretching sheet. Energy expression is based through involvement of variable thermal conductivity. Heat and mass transfer aspects are described within the frame of double stratification effects. Boundary layer partial differential systems are deduced. Governing systems are then converted into ordinary differential systems by invoking appropriate variables. The transformed expressions are solved through homotopic technique. Impact of embedded variables on velocity, thermal and concentration fields are displayed and argued. Numerical computations are presented to obtain the results of skin friction coefficient and local Nusselt and Sherwood numbers. It is revealed that larger values of magnetic parameter reduces the velocity field while reverse situation is noticed due to wall thickness variable. Temperature field and local Nusselt number are quite reverse for heat generation/absorption parameter. Moreover qualitative behaviors of concentration field and local Sherwood number are similar for solutal stratification parameter.

  14. Electron magnetic resonance and magnetooptical studies of nanoparticle-containing borate glasses

    NASA Astrophysics Data System (ADS)

    Kliava, Janis; Edelman, Irina; Ivanova, Oxana; Ivantsov, Ruslan; Petrakovskaja, Eleonora; Hennet, Louis; Thiaudière, Dominique; Saboungi, Marie-Louise

    2011-03-01

    We report electron magnetic resonance (EMR) and magnetooptical studies of borate glasses of molar composition 22.5K 2O-22.5Al 2O 3-55B 2O 3 co-doped with low concentrations of Fe 2O 3 and MnO. In as-prepared samples the paramagnetic ions, as a rule, are in diluted state. However, in the case where the ratio of the iron and manganese oxides in the charge is 3/2, magnetic nanoparticles with characteristics close to those of manganese ferrite are formed already at the first stage of the glass preparation, as evidenced by both magnetic circular dichroism (MCD) and EMR. After thermal treatment all glasses show characteristic MCD and EMR spectra, attesting to the presence of magnetic nanoparticles, predominantly including iron ions. Preliminary EXAFS measurements at the Fe K-absorption edge show an emergence of nanoparticles with a structure close to MnFe 2O 4 after annealing the glasses at 560 °C. By computer simulating the EMR spectra at variable temperatures, a superparamagnetic nature of relatively broad size and shape distribution with the average diameter of ca. 3-4 nm. The characteristic temperature-dependent shift of the apparent resonance field is explained by a strong temperature dependence of the magnetic anisotropy in the nanoparticles. The formation of magnetic nanoparticles confers to the potassium-alumina-borate glasses magnetic and magneto-optical properties typical of magnetically ordered substances. At the same time, they remain transparent in a part of the visible and near infrared spectral range and display a high Faraday rotation value.

  15. Evaluation of System Architectures for the Army Aviation Ground Power Unit

    DTIC Science & Technology

    2014-12-01

    this state of operation induces wear that reduces pump life. Variable capacity control methods using a constant displacement pump are drive speed...options for use with constant displacement pumps, the fluid or magnetic coupling devices are the most attractive. Variable frequency control cannot...compressor prior to the combustor. The cmTent system turbine exhaust temperature controls to 1250°F, much higher than the compressor exit

  16. Stimuli-responsive hybrid materials: breathing in magnetic layered double hydroxides induced by a thermoresponsive molecule

    DOE PAGES

    Abellán, Gonzalo; Jordá, Jose Luis; Atienzar, Pedro; ...

    2014-12-04

    In this study, a hybrid magnetic multilayer material of micrometric size, with highly crystalline hexagonal crystals consisting of CoAl–LDH ferromagnetic layers intercalated with thermoresponsive 4-(4 anilinophenylazo)benzenesulfonate (AO5) molecules diluted (ratio 9 : 1) with a flexible sodium dodecylsulphate (SDS) surfactant has been obtained. The resulting material exhibits thermochromism attributable to the isomerization between the azo (prevalent at room temperature) and the hydrazone (favoured at higher temperatures) tautomers, leading to a thermomechanical response. In fact, these crystals exhibited thermally induced motion triggering remarkable changes in the crystal morphology and volume. In situ variable temperature XRD of these thin hybrids shows thatmore » the reversible change into the two tautomers is reflected in a shift of the position of the diffraction peaks at high temperatures towards lower interlayer spacing for the hydrazone form, as well as a broadening of the peaks reflecting lower crystallinity and ordering due to non-uniform spacing between the layers. These structural variations between room temperature (basal spacing (BS) = 25.91 Å) and 100 °C (BS = 25.05 Å) are also reflected in the magnetic properties of the layered double hydroxide (LDH) due to the variation of the magnetic coupling between the layers. Finally and in conclusion, our study constitutes one of the few examples showing fully reversible thermo-responsive breathing in a 2D hybrid material. In addition, the magnetic response of the hybrid can be modulated due to the thermotropism of the organic component that, by influencing the distance and in-plane correlation of the inorganic LDH, modulates the magnetism of the CoAl–LDH sheets in a certain range.« less

  17. Steady MHD free convection heat and mass transfer flow about a vertical porous surface with thermal diffusion and induced magnetic field

    NASA Astrophysics Data System (ADS)

    Touhid Hossain, M. M.; Afruz-Zaman, Md.; Rahman, Fouzia; Hossain, M. Arif

    2013-09-01

    In this study the thermal diffusion effect on the steady laminar free convection flow and heat transfer of viscous incompressible MHD electrically conducting fluid above a vertical porous surface is considered under the influence of an induced magnetic field. The governing non-dimensional equations relevant to the problem, containing the partial differential equations, are transformed by usual similarity transformations into a system of coupled non-linear ordinary differential equations and will be solved analytically by using the perturbation technique. On introducing the non-dimensional concept and applying Boussinesq's approximation, the solutions for velocity field, temperature distribution and induced magnetic field to the second order approximations are obtained for large suction with different selected values of the established dimensionless parameters. The influences of these various establish parameters on the velocity and temperature fields and on the induced magnetic fields are exhibited under certain assumptions and are studied graphically in the present analysis. It is observed that the effects of thermal-diffusion and large suction have great importance on the velocity, temperature and induced magnetic fields and mass concentration for several fluids considered, so that their effects should be taken into account with other useful parameters associated. It is also found that the dimensionless Prandtl number, Grashof number, Modified Grashof number and magnetic parameter have an appreciable influence on the concerned independent variables.

  18. Structure and magnetic properties of ScFe 10Si 2

    NASA Astrophysics Data System (ADS)

    Bodak, O. I.; Stȩpień-Damm, J.; Drulis, H.; Kotur, B.; Suski, W.; Vagizov, F. G.; Wochowski, K.; Mydlarz, T.

    1995-02-01

    ScFe 10Si 2 crystallizes in the ThMn 12-type tetragonal structure with the space group I4/mmm and the lattice parameters: a = 0.8280 (1) nm, c = 0.4706 (1) nm and c/ a = 0.57. In the refinement performed for 317 independent reflections and 10 variable parameters, a final discrepancy factor R = 4.69% has been reached. The compound is ferromagnetic below 506 K ( 57Fe ME) and 560 K (magnetic). The distribution of the Fe atoms in the 8( i), 8( j) and 8( f) positions corresponds to 40, 31 and 29%, respectively. The Debye temperature determined from the temperature dependence of the isomer shift is 340 K.

  19. Soft ferromagnetism in mixed valence Sr(1-x)La(x)Ti(0.5)Mn(0.5)O₃ perovskites.

    PubMed

    Qasim, Ilyas; Blanchard, Peter E R; Kennedy, Brendan J; Ling, Chris D; Jang, Ling-Yun; Kamiyama, Takashi; Miao, Ping; Torii, Shuki

    2014-05-14

    The structural, magnetic and electrical properties of the mixed Ti-Mn oxides Sr(1-x)La(x)Ti(0.5)Mn(0.5)O3 (0 ≤ x ≤ 0.5) are reported. At room temperature the oxides have a cubic structure in space group Pm3m for x ≤ 0.25 and rhombohedral in R3c for 0.3 ≤ x ≤ 0.50. X-ray absorption spectroscopic measurements demonstrate the addition of La(3+) is compensated by the partial reduction of Mn(4+) to Mn(3+). Variable temperature neutron diffraction measurements show that cooling Sr(0.6)La(0.4)Ti(0.5)Mn(0.5)O3 results in a first order transition from rhombohedra to an orthorhombic structure in Imma. Complex magnetic behaviour is observed. The magnetic behaviour of the mixed valent (Mn(3+/4+)) examples is dominated by ferromagnetic interactions, although cation disorder frustrates long range magnetic ordering.

  20. Magnetic Nanoparticles Embedded in a Silicon Matrix

    PubMed Central

    Granitzer, Petra; Rumpf, Klemens

    2011-01-01

    This paper represents a short overview of nanocomposites consisting of magnetic nanoparticles incorporated into the pores of a porous silicon matrix by two different methods. On the one hand, nickel is electrochemically deposited whereas the nanoparticles are precipitated on the pore walls. The size of these particles is between 2 and 6 nm. These particles cover the pore walls and form a tube-like arrangement. On the other hand, rather well monodispersed iron oxide nanoparticles, of 5 and 8 nm respectively, are infiltrated into the pores. From their size the particles would be superparamagnetic if isolated but due to magnetic interactions between them, ordering of magnetic moments occurs below a blocking temperature and thus the composite system displays a ferromagnetic behavior. This transition temperature of the nanocomposite can be varied by changing the filling factor of the particles within the pores. Thus samples with magnetic properties which are variable in a broad range can be achieved, which renders this composite system interesting not only for basic research but also for applications, especially because of the silicon base material which makes it possible for today’s process technology. PMID:28879957

  1. Small-scale plasma, magnetic, and neutral density fluctuations in the nightside Venus ionosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoegy, W.R.; Brace, L.H.; Kasprazak, W.T.

    1990-04-01

    Pioneer Venus orbiter measurements have shown that coherent small-scale waves exist in the electron density, the electron temperature, and the magnetic field in the lower ionosphere of Venus just downstream of the solar terminator (Brace et al., 1983). The waves become less regular and less coherent at larger solar zenith angles, and Brace et al. suggested that these structures may have evolved from the terminator waves as they are convected into the nightside ionosphere, driven by the day-to-night plasma pressure gradient. In this paper the authors describe the changes in wave characteristics with solar zenith angle and show that themore » neutral gas also has related wave characteristics, probably because of atmospheric gravity waves. The plasma pressure exceeds the magnetic pressure in the nightside ionosphere at these altitudes, and thus the magnetic field is carried along and controlled by the turbulent motion of the plasma, but the wavelike nature of the thermosphere may also be coupled to the plasma and magnetic structure. They show that there is a significant coherence between the ionosphere, thermosphere, and magnetic parameters at altitudes below about 185 km, a coherence which weakens in the antisolar region. The electron temperature and density are approximately 180{degree} out of phase and consistently exhibit the highest correlation of any pair of variables. Waves in the electron and neutral densities are moderately correlated on most orbits, but with a phase difference that varies within each orbit. The average electron temperature is higher when the average magnetic field is more horizontal; however, the correlation between temperature and dip angle does not extend to individual wave structures observed within a satellite pass, particularly in the antisolar region.« less

  2. Magnetic nanoparticles formed in glasses co-doped with iron and larger radius elements

    NASA Astrophysics Data System (ADS)

    Edelman, I.; Ivanova, O.; Ivantsov, R.; Velikanov, D.; Zabluda, V.; Zubavichus, Y.; Veligzhanin, A.; Zaikovskiy, V.; Stepanov, S.; Artemenko, A.; Curély, J.; Kliava, J.

    2012-10-01

    A new type of nanoparticle-containing glasses based on borate glasses co-doped with low contents of iron and larger radius elements, Dy, Tb, Gd, Ho, Er, Y, and Bi, is studied. Heat treatment of these glasses results in formation of magnetic nanoparticles, radically changing their physical properties. Transmission electron microscopy and synchrotron radiation-based techniques: x-ray diffraction, extended x-ray absorption fine structure, x-ray absorption near-edge structure, and small-angle x-ray scattering, show a broad distribution of nanoparticle sizes with characteristics depending on the treatment regime; a crystalline structure of these nanoparticles is detected in heat treated samples. Magnetic circular dichroism (MCD) studies of samples subjected to heat treatment as well as of maghemite, magnetite, and iron garnet allow to unambiguously assign the nanoparticle structure to maghemite, independently of co-dopant nature and of heat treatment regime used. Different features observed in the MCD spectra are related to different electron transitions in Fe3+ ions gathered in the nanoparticles. The static magnetization in heat treated samples has non-linear dependence on the magnetizing field with hysteresis. Zero-field cooled magnetization curves show that at higher temperatures the nanoparticles occur in superparamagnetic state with blocking temperatures above 100 K. Below ca. 20 K, a considerable contribution to both zero field-cooled and field-cooled magnetizations occurs from diluted paramagnetic ions. Variable-temperature electron magnetic resonance (EMR) studies unambiguously show that in as-prepared glasses paramagnetic ions are in diluted state and confirm the formation of magnetic nanoparticles already at earlier stages of heat treatment. Computer simulations of the EMR spectra corroborate the broad distribution of nanoparticle sizes found by "direct" techniques as well as superparamagnetic nanoparticle behaviour demonstrated in the magnetization studies.

  3. Enhanced annealing stability and perpendicular magnetic anisotropy in perpendicular magnetic tunnel junctions using W layer

    NASA Astrophysics Data System (ADS)

    Chatterjee, Jyotirmoy; Sousa, Ricardo C.; Perrissin, Nicolas; Auffret, Stéphane; Ducruet, Clarisse; Dieny, Bernard

    2017-05-01

    The magnetic properties of the perpendicular storage electrode (buffer/MgO/FeCoB/Cap) were studied as a function of annealing temperature by replacing Ta with W and W/Ta cap layers with variable thicknesses. W in the cap boosts up the annealing stability and increases the effective perpendicular anisotropy by 30% compared to the Ta cap. Correspondingly, an increase in the FeCoB critical thickness characterizing the transition from perpendicular to in-plane anisotropy was observed. Thicker W layer in the W(t)/Ta 1 nm cap layer makes the storage electrode highly robust against annealing up to 570 °C. The stiffening of the overall stack resulting from the W insertion due to its very high melting temperature seems to be the key mechanism behind the extremely high thermal robustness. The Gilbert damping constant of FeCoB with the W/Ta cap was found to be lower when compared with the Ta cap and stable with annealing. The evolution of the magnetic properties of bottom pinned perpendicular magnetic tunnel junctions (p-MTJ) stack with the W2/Ta1 nm cap layer shows back-end-of-line compatibility with increasing tunnel magnetoresistance up to the annealing temperature of 425 °C. The pMTJ thermal budget is limited by the synthetic antiferromagnetic hard layer which is stable up to 425 °C annealing temperature while the storage layer is stable up to 455 °C.

  4. Dielectric response to the low-temperature magnetic defect structure and spin state transition in polycrystalline LaCoO3

    NASA Astrophysics Data System (ADS)

    Schmidt, Rainer; Wu, J.; Leighton, C.; Terry, I.

    2009-03-01

    The dielectric and magnetic properties and their correlations were investigated in polycrystalline perovskite LaCoO3-δ . The intrinsic bulk and grain-boundary (GB) dielectric relaxation processes were deconvoluted using impedance spectroscopy between 20 and 120 K, and resistivity and capacitance were analyzed separately. A thermally induced magnetic transition from a Co3+ low-spin (LS) (S=0;t2g6eg0) to a higher spin state occurs at Ts1≈80K , which is controversial in nature and has been suggested to be an intermediate-spin (IS) state (S=1;t2g5eg1) or a high-spin (HS) state (S=2;t2g4eg2) transition. This spin state transition was confirmed by magnetic-susceptibility measurements and was reflected in the impedance by a split of the single GB relaxation process into two coexisting contributions. This apparent electronic phase coexistence at T>80K was interpreted as a reflection of the coexistence of magnetic LS and IS/HS states. At lower temperatures (T≤40K) perceptible variation in bulk dielectric permittivity with temperature appeared to be correlated with the magnetic susceptibility associated with a magnetic defect structure. At 40K

  5. A new high pressure sapphire nuclear magnetic resonance cell

    NASA Astrophysics Data System (ADS)

    Bai, Shi; Taylor, Craig M.; Mayne, Charles L.; Pugmire, Ronald J.; Grant, David M.

    1996-01-01

    A new version of a single-crystal sapphire high pressure nuclear magnetic resonance (NMR) cell is described that is capable of controlling the sample pressure independent of the temperature. A movable piston inside the cell adjusts and controls the sample pressure from ambient conditions to 200 atm within ±0.3 atm. The linewidth at half-height for a 13C spectrum of carbon dioxide at 15 °C and 57.8 atm is found to be 0.5 Hz. The carbon dioxide gas/liquid phase transition is clearly observed by measuring 13C chemical shifts as the sample pressure approaches equilibrium. The time required for this NMR cell to reach equilibrium with its surroundings is relatively short, usually 15-30 min. The cell body has the same outer dimensions of a standard spinning turbine and fits into a standard 10 mm commercial probehead capable of controlling the sample temperature using the spectrometer's variable temperature unit. The flexibility of the device and the increased speed in making the measurement is demonstrated. Such control of important thermodynamic variables facilitates the NMR study of important biochemical and chemical reactions in gas, liquid, and supercritical fluid environments.

  6. Magnetic hydroxyapatite nanoparticles: an efficient adsorbent for the separation and removal of nitrate and nitrite ions from environmental samples.

    PubMed

    Ghasemi, Ensieh; Sillanpää, Mika

    2015-01-01

    A novel type of magnetic nanosorbent, hydroxyapatite-coated Fe2O3 nanoparticles was synthesized and used for the adsorption and removal of nitrite and nitrate ions from environmental samples. The properties of synthesized magnetic nanoparticles were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray powder diffraction. After the adsorption process, the separation of γ-Fe2O3@hydroxyapatite nanoparticles from the aqueous solution was simply achieved by applying an external magnetic field. The effects of different variables on the adsorption efficiency were studied simultaneously using an experimental design. The variables of interest were amount of magnetic hydroxyapatite nanoparticles, sample volume, pH, stirring rate, adsorption time, and temperature. The experimental parameters were optimized using a Box-Behnken design and response surface methodology after a Plackett-Burman screening design. Under the optimum conditions, the adsorption efficiencies of magnetic hydroxyapatite nanoparticles adsorbents toward NO3(-) and NO2(-) ions (100 mg/L) were in the range of 93-101%. The results revealed that the magnetic hydroxyapatite nanoparticles adsorbent could be used as a simple, efficient, and cost-effective material for the removal of nitrate and nitrite ions from environmental water and soil samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Solar Physics at Evergreen: Solar Dynamo and Chromospheric MHD

    NASA Astrophysics Data System (ADS)

    Zita, E. J.; Maxwell, J.; Song, N.; Dikpati, M.

    2006-12-01

    We describe our five year old solar physics research program at The Evergreen State College. Famed for its cloudy skies, the Pacific Northwest is an ideal location for theoretical and remote solar physics research activities. Why does the Sun's magnetic field flip polarity every 11 years or so? How does this contribute to the magnetic storms Earth experiences when the Sun's field reverses? Why is the temperature in the Sun's upper atmosphere millions of degrees higher than the Sun's surface temperature? How do magnetic waves transport energy in the Sun’s chromosphere and the Earth’s atmosphere? How does solar variability affect climate change? Faculty and undergraduates investigate questions such as these in collaboration with the High Altitude Observatory (HAO) at the National Center for Atmospheric Research (NCAR) in Boulder. We will describe successful student research projects, logistics of remote computing, and our current physics investigations into (1) the solar dynamo and (2) chromospheric magnetohydrodynamics.

  8. Magnetization reversal mechanism for Co nanoparticles revealed by a magnetic hysteresis scaling technique

    NASA Astrophysics Data System (ADS)

    Kobayashi, Satoru; Sato, Takuma; Li, Zhang; Dong, Xing-Long; Murakami, Takeshi

    2018-05-01

    We report results of magnetic hysteresis scaling of minor loops for cobalt nanoparticles with variable mean particle size of 53 and 95 nm. A power-law scaling with an exponent of 1.40±0.05 was found to hold true between minor-loop remanence and hysteresis loss in the wide temperature range of 10 - 300 K, irrespective of particle size and cooling field. A coefficient deduced from the scaling law steeply increases with decreasing temperature and exhibits a cooling field dependence below T ˜ 150 K. The value obtained after field cooling at 5 T was lower than that after zero-field cooling, being opposite to a behavior of major-loop coercivity. These observations were explained from the viewpoint of the exchange coupling between ferromagnetic Co core and antiferromagnetic CoO shell, which becomes effective below T ˜ 150 K.

  9. Spatially-resolved study of the Meissner effect in superconductors using NV-centers-in-diamond optical magnetometry

    NASA Astrophysics Data System (ADS)

    Nusran, N. M.; Joshi, K. R.; Cho, K.; Tanatar, M. A.; Meier, W. R.; Bud’ko, S. L.; Canfield, P. C.; Liu, Y.; Lograsso, T. A.; Prozorov, R.

    2018-04-01

    Non-invasive magnetic field sensing using optically-detected magnetic resonance of nitrogen-vacancy centers in diamond was used to study spatial distribution of the magnetic induction upon penetration and expulsion of weak magnetic fields in several representative superconductors. Vector magnetic fields were measured on the surface of conventional, elemental Pb and Nb, and compound LuNi2B2C and unconventional iron-based superconductors Ba1‑x K x Fe2As2 (x = 0.34 optimal hole doping), Ba(Fe1‑x Co x )2As2 (x = 0.07 optimal electron doping), and stoichiometric CaKFe4As4, using variable-temperature confocal system with diffraction-limited spatial resolution. Magnetic induction profiles across the crystal edges were measured in zero-field-cooled and field-cooled conditions. While all superconductors show nearly perfect screening of magnetic fields applied after cooling to temperatures well below the superconducting transition, T c, a range of very different behaviors was observed for Meissner expulsion upon cooling in static magnetic field from above T c. Substantial conventional Meissner expulsion is found in LuNi2B2C, paramagnetic Meissner effect is found in Nb, and virtually no expulsion is observed in iron-based superconductors. In all cases, good correlation with macroscopic measurements of total magnetic moment is found.

  10. Spatially-resolved study of the Meissner effect in superconductors using NV-centers-in-diamond optical magnetometry

    DOE PAGES

    Nusran, N. M.; Joshi, K. R.; Cho, K.; ...

    2018-04-12

    Non-invasive magnetic field sensing using optically-detected magnetic resonance of nitrogen-vacancy centers in diamond was used to study spatial distribution of the magnetic induction upon penetration and expulsion of weak magnetic fields in several representative superconductors. Vector magnetic fields were measured on the surface of conventional, elemental Pb and Nb, and compound LuNi 2B 2C and unconventional iron-based superconductors Ba 1-xK xFe 2As 2 (x = 0.34 optimal hole doping), Ba(Fe 1-xCo x)2As2 (x = 0.07 optimal electron doping), and stoichiometric CaKFe 4As 4, using variable-temperature confocal system with diffraction-limited spatial resolution. Magnetic induction profiles across the crystal edges were measuredmore » in zero-field-cooled and field-cooled conditions. While all superconductors show nearly perfect screening of magnetic fields applied after cooling to temperatures well below the superconducting transition, T c, a range of very different behaviors was observed for Meissner expulsion upon cooling in static magnetic field from above T c. Substantial conventional Meissner expulsion is found in LuNi 2B 2C, paramagnetic Meissner effect is found in Nb, and virtually no expulsion is observed in iron-based superconductors. In all cases, good correlation with macroscopic measurements of total magnetic moment is found.« less

  11. Spatially-resolved study of the Meissner effect in superconductors using NV-centers-in-diamond optical magnetometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nusran, N. M.; Joshi, K. R.; Cho, K.

    Non-invasive magnetic field sensing using optically-detected magnetic resonance of nitrogen-vacancy centers in diamond was used to study spatial distribution of the magnetic induction upon penetration and expulsion of weak magnetic fields in several representative superconductors. Vector magnetic fields were measured on the surface of conventional, elemental Pb and Nb, and compound LuNi 2B 2C and unconventional iron-based superconductors Ba 1-xK xFe 2As 2 (x = 0.34 optimal hole doping), Ba(Fe 1-xCo x)2As2 (x = 0.07 optimal electron doping), and stoichiometric CaKFe 4As 4, using variable-temperature confocal system with diffraction-limited spatial resolution. Magnetic induction profiles across the crystal edges were measuredmore » in zero-field-cooled and field-cooled conditions. While all superconductors show nearly perfect screening of magnetic fields applied after cooling to temperatures well below the superconducting transition, T c, a range of very different behaviors was observed for Meissner expulsion upon cooling in static magnetic field from above T c. Substantial conventional Meissner expulsion is found in LuNi 2B 2C, paramagnetic Meissner effect is found in Nb, and virtually no expulsion is observed in iron-based superconductors. In all cases, good correlation with macroscopic measurements of total magnetic moment is found.« less

  12. Lessons from accretion disks in cataclysmic variables

    NASA Astrophysics Data System (ADS)

    Horne, Keith

    1998-04-01

    We survey recent progress in the interpretation of observations of cataclysmic variables, whose accretion disks are heated by viscous dissipation rather than irradiation. Many features of standard viscous accretion disk models are confirmed by tomographic imaging studies of dwarf novae. Eclipse maps indicate that steady disk temperature structures are established during outbursts. Doppler maps of double-peaked emission lines suggest disk chromospheres heated by magnetic activity. Gas streams impacting on the disk rim leave expected signatures both in the eclipses and emission lines. Doppler maps of dwarf nova IP Peg at the beginning of an outburst show evidence for tidally-induced spiral shocks. While enjoying these successes, we must still face up to the dreaded ``SW Sex syndrome'' which afflicts most if not all cataclysmic variables in high accretion states. The anomalies include single-peaked emission lines with skewed kinematics, flat temperature-radius profiles, shallow offset line eclipses, and narrow low-ionization absorption lines at phase 0.5. The enigmatic behavior of AE Aqr is now largely understood in terms of a magnetic propeller model in which the rapidly spinning white dwarf magnetosphere expels the gas stream out of the system before an accretion disk can form. A final piece in this puzzle is the realization that an internal shock zone occurs in the exit stream at just the right place to explain the anomalous kinematics and violent flaring of the single-peaked emission lines. Encouraged by this success, we propose that disk-anchored magnetic propellers operate in the high accretion rate systems afflicted by the SW Sex syndrome. Magnetic fields anchored in the Keplerian disk sweep forward and apply a boost that expels gas stream material flowing above the disk plane. This working hypothesis offers a framework on which we can hang all the SW Sex anomalies. The lesson for theorists is that magnetic links appear to be transporting energy and angular momentum from the inner disk to distant parts of the flow without associated viscous heating in the disk.

  13. Temperature dependence of electron magnetic resonance spectra of iron oxide nanoparticles mineralized in Listeria innocua protein cages

    NASA Astrophysics Data System (ADS)

    Usselman, Robert J.; Russek, Stephen E.; Klem, Michael T.; Allen, Mark A.; Douglas, Trevor; Young, Mark; Idzerda, Yves U.; Singel, David J.

    2012-10-01

    Electron magnetic resonance (EMR) spectroscopy was used to determine the magnetic properties of maghemite (γ-Fe2O3) nanoparticles formed within size-constraining Listeria innocua (LDps)-(DNA-binding protein from starved cells) protein cages that have an inner diameter of 5 nm. Variable-temperature X-band EMR spectra exhibited broad asymmetric resonances with a superimposed narrow peak at a gyromagnetic factor of g ≈ 2. The resonance structure, which depends on both superparamagnetic fluctuations and inhomogeneous broadening, changes dramatically as a function of temperature, and the overall linewidth becomes narrower with increasing temperature. Here, we compare two different models to simulate temperature-dependent lineshape trends. The temperature dependence for both models is derived from a Langevin behavior of the linewidth resulting from "anisotropy melting." The first uses either a truncated log-normal distribution of particle sizes or a bi-modal distribution and then a Landau-Liftshitz lineshape to describe the nanoparticle resonances. The essential feature of this model is that small particles have narrow linewidths and account for the g ≈ 2 feature with a constant resonance field, whereas larger particles have broad linewidths and undergo a shift in resonance field. The second model assumes uniform particles with a diameter around 4 nm and a random distribution of uniaxial anisotropy axes. This model uses a more precise calculation of the linewidth due to superparamagnetic fluctuations and a random distribution of anisotropies. Sharp features in the spectrum near g ≈ 2 are qualitatively predicted at high temperatures. Both models can account for many features of the observed spectra, although each has deficiencies. The first model leads to a nonphysical increase in magnetic moment as the temperature is increased if a log normal distribution of particles sizes is used. Introducing a bi-modal distribution of particle sizes resolves the unphysical increase in moment with temperature. The second model predicts low-temperature spectra that differ significantly from the observed spectra. The anisotropy energy density K1, determined by fitting the temperature-dependent linewidths, was ˜50 kJ/m3, which is considerably larger than that of bulk maghemite. The work presented here indicates that the magnetic properties of these size-constrained nanoparticles and more generally metal oxide nanoparticles with diameters d < 5 nm are complex and that currently existing models are not sufficient for determining their magnetic resonance signatures.

  14. Level crossings and zero-field splitting in the {Cr8}-cubane spin cluster studied using inelastic neutron scattering and magnetization

    NASA Astrophysics Data System (ADS)

    Vaknin, D.; Garlea, V. O.; Demmel, F.; Mamontov, E.; Nojiri, H.; Martin, C.; Chiorescu, I.; Qiu, Y.; Kögerler, P.; Fielden, J.; Engelhardt, L.; Rainey, C.; Luban, M.

    2010-11-01

    Inelastic neutron scattering (INS) in variable magnetic field and high-field magnetization measurements in the millikelvin temperature range were performed to gain insight into the low-energy magnetic excitation spectrum and the field-induced level crossings in the molecular spin cluster {Cr8}-cubane. These complementary techniques provide consistent estimates of the lowest level-crossing field. The overall features of the experimental data are explained using an isotropic Heisenberg model, based on three distinct exchange interactions linking the eight CrIII paramagnetic centers (spins s = 3/2), that is supplemented with a relatively large molecular magnetic anisotropy term for the lowest S = 1 multiplet. It is noted that the existence of the anisotropy is clearly evident from the magnetic field dependence of the excitations in the INS measurements, while the magnetization measurements are not sensitive to its effects.

  15. Level crossings and zero-field splitting in the {Cr8}-cubane spin-cluster studied using inelastic neutron scattering and magnetization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaknin, D.; Garlea, Vasile O; Demmel, F.

    Inelastic neutron scattering (INS) in variable magnetic field and high-field magnetization measurements in the millikelvin temperature range were performed to gain insight into the low-energy magnetic excitation spectrum and the field-induced level crossings in the molecular spin cluster {Cr8}-cubane. These complementary techniques provide consistent estimates of the lowest level-crossing field. The overall features of the experimental data are explained using an isotropic Heisenberg model, based on three distinct exchange interactions linking the eight CrIII paramagnetic centers (spins s = 3/2), that is supplemented with a relatively large molecular magnetic anisotropy term for the lowest S = 1 multiplet. It ismore » noted that the existence of the anisotropy is clearly evident from the magnetic field dependence of the excitations in the INS measurements, while the magnetization measurements are not sensitive to its effects.« less

  16. Magnetic structure of the crust

    NASA Technical Reports Server (NTRS)

    Wasilewski, P.

    1985-01-01

    The bibuniqueness aspect of geophysical interpretation must be constrained by geological insight to limit the range of theoretically possible models. An additional step in depth understanding of the relationship between rock magnetization and geological circumstances on a grand scale is required. Views about crustal structure and the distribution of lithologies suggests a complex situation with lateral and vertical variability at all levels in the crust. Volcanic, plutonic, and metamorphic processes together with each of the observed anomalies. Important questions are addressed: (1) the location of the magnetic bottom; (2) whether the source is a discrete one or are certain parts of the crust cumulatively contributing to the overall magnetization; (3) if the anomaly to some recognizable surface expression is localized, how to arrive at a geologically realistic model incorporating magnetization contrasts which are realistic; (3) in the way the primary mineralogies are altered by metamorphism and the resulting magnetic contracts; (4) the effects of temperature and pressure on magnetization.

  17. Electrical Switching of Perovskite Thin-Film Resistors

    NASA Technical Reports Server (NTRS)

    Liu, Shangqing; Wu, Juan; Ignatiev, Alex

    2010-01-01

    Electronic devices that exploit electrical switching of physical properties of thin films of perovskite materials (especially colossal magnetoresistive materials) have been invented. Unlike some related prior devices, these devices function at room temperature and do not depend on externally applied magnetic fields. Devices of this type can be designed to function as sensors (exhibiting varying electrical resistance in response to varying temperature, magnetic field, electric field, and/or mechanical pressure) and as elements of electronic memories. The underlying principle is that the application of one or more short electrical pulse(s) can induce a reversible, irreversible, or partly reversible change in the electrical, thermal, mechanical, and magnetic properties of a thin perovskite film. The energy in the pulse must be large enough to induce the desired change but not so large as to destroy the film. Depending on the requirements of a specific application, the pulse(s) can have any of a large variety of waveforms (e.g., square, triangular, or sine) and be of positive, negative, or alternating polarity. In some applications, it could be necessary to use multiple pulses to induce successive incremental physical changes. In one class of applications, electrical pulses of suitable shapes, sizes, and polarities are applied to vary the detection sensitivities of sensors. Another class of applications arises in electronic circuits in which certain resistance values are required to be variable: Incorporating the affected resistors into devices of the present type makes it possible to control their resistances electrically over wide ranges, and the lifetimes of electrically variable resistors exceed those of conventional mechanically variable resistors. Another and potentially the most important class of applications is that of resistance-based nonvolatile-memory devices, such as a resistance random access memory (RRAM) described in the immediately following article, Electrically Variable Resistive Memory Devices (MFS-32511-1).

  18. TRUMP. Transient & S-State Temperature Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elrod, D.C.; Turner, W.D.

    1992-03-03

    TRUMP solves a general nonlinear parabolic partial differential equation describing flow in various kinds of potential fields, such as fields of temperature, pressure, or electricity and magnetism; simultaneously, it will solve two additional equations representing, in thermal problems, heat production by decomposition of two reactants having rate constants with a general Arrhenius temperature dependence. Steady-state and transient flow in one, two, or three dimensions are considered in geometrical configurations having simple or complex shapes and structures. Problem parameters may vary with spatial position, time, or primary dependent variables, temperature, pressure, or field strength. Initial conditions may vary with spatial position,more » and among the criteria that may be specified for ending a problem are upper and lower limits on the size of the primary dependent variable, upper limits on the problem time or on the number of time-steps or on the computer time, and attainment of steady state.« less

  19. TEMPERATURE EFFECTS ON THE SYNTHESIS OF SI-FERRIHYDRITE NANOPARTICLES OF VARIABLE SIZES IDENTIFIED BY MAGNETIC MEASUREMENTS

    EPA Science Inventory

    Ferrihydrite is an antiferromagnetic iron oxyhydroxide formed as an ubiquitous product of natural iron diagenesis, and found in iron-containing water, soil, river sediment and oceanic crust. As such, it is a sensitive indicator or proxy of environmental change. This iron phase ha...

  20. Trispyrazolylborate Complexes: An Advanced Synthesis Experiment Using Paramagnetic NMR, Variable-Temperature NMR, and EPR Spectroscopies

    ERIC Educational Resources Information Center

    Abell, Timothy N.; McCarrick, Robert M.; Bretz, Stacey Lowery; Tierney, David L.

    2017-01-01

    A structured inquiry experiment for inorganic synthesis has been developed to introduce undergraduate students to advanced spectroscopic techniques including paramagnetic nuclear magnetic resonance and electron paramagnetic resonance. Students synthesize multiple complexes with unknown first row transition metals and identify the unknown metals by…

  1. Towed-grid system for production and calorimetric study of homogenous quantum turbulence

    NASA Astrophysics Data System (ADS)

    Ciapurin, Roman; Thompson, Kyle; Ihas, Gary G.

    2011-10-01

    The decay of quantum turbulence is not fully understood in superfluid helium at milikelvin temperatures where the viscous normal component is absent. Vibrating grid experiments performed periously produced inhomogeneous turbulence, making the results hard to interpret. We have developed experimental methods to produce homogeneous isotropic turbulence by pulling a grid at a variable constant velocity through superfluid 4He. While using calorimetric technique to measure the energy dissipation, the Meissner effect was employed to eliminate all heat sources except from turbulent decay. A controlled divergent magnetic field provides the lift to a hollow cylindrical superconducting actuator to which the grid is attached. Position sensing is performed by measuring the inductance change of a coil when a superconductor, similar to that of the actuator, is moved inside it. This position sensing technique proved to be reliable under varying temperatures and magnetic fields, making it perfect for use in the towed-grid experiment where a rise in temperature emerges from turbulent decay. Additionally, the reproducible dependency of the grid's position on the applied magnetic field enables complete control of the actuator's motion.

  2. Immense Magnetic Response of Exciplex Light Emission due to Correlated Spin-Charge Dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Yifei; Sahin-Tiras, Kevser; Harmon, Nicholas J.; Wohlgenannt, Markus; Flatté, Michael E.

    2016-01-01

    As carriers slowly move through a disordered energy landscape in organic semiconductors, tiny spatial variations in spin dynamics relieve spin blocking at transport bottlenecks or in the electron-hole recombination process that produces light. Large room-temperature magnetic-field effects (MFEs) ensue in the conductivity and luminescence. Sources of variable spin dynamics generate much larger MFEs if their spatial structure is correlated on the nanoscale with the energetic sites governing conductivity or luminescence such as in coevaporated organic blends within which the electron resides on one molecule and the hole on the other (an exciplex). Here, we show that exciplex recombination in blends exhibiting thermally activated delayed fluorescence produces MFEs in excess of 60% at room temperature. In addition, effects greater than 4000% can be achieved by tuning the device's current-voltage response curve by device conditioning. Both of these immense MFEs are the largest reported values for their device type at room temperature. Our theory traces this MFE and its unusual temperature dependence to changes in spin mixing between triplet exciplexes and light-emitting singlet exciplexes. In contrast, spin mixing of excitons is energetically suppressed, and thus spin mixing produces comparatively weaker MFEs in materials emitting light from excitons by affecting the precursor pairs. Demonstration of immense MFEs in common organic blends provides a flexible and inexpensive pathway towards magnetic functionality and field sensitivity in current organic devices without patterning the constituent materials on the nanoscale. Magnetic fields increase the power efficiency of unconditioned devices by 30% at room temperature, also showing that magnetic fields may increase the efficiency of the thermally activated delayed fluorescence process.

  3. Immense Magnetic Response of Exciplex Light Emission due to Correlated Spin-Charge Dynamics

    DOE PAGES

    Wang, Yifei; Sahin-Tiras, Kevser; Harmon, Nicholas J.; ...

    2016-02-05

    As carriers slowly move through a disordered energy landscape in organic semiconductors, tiny spatial variations in spin dynamics relieve spin blocking at transport bottlenecks or in the electron-hole recombination process that produces light. Large room-temperature magnetic-field effects (MFEs) ensue in the conductivity and luminescence. Sources of variable spin dynamics generate much larger MFEs if their spatial structure is correlated on the nanoscale with the energetic sites governing conductivity or luminescence such as in coevaporated organic blends within which the electron resides on one molecule and the hole on the other (an exciplex). Here, we show that exciplex recombination in blendsmore » exhibiting thermally activated delayed fluorescence produces MFEs in excess of 60% at room temperature. In addition, effects greater than 4000% can be achieved by tuning the device’s current-voltage response curve by device conditioning. Both of these immense MFEs are the largest reported values for their device type at room temperature. Our theory traces this MFE and its unusual temperature dependence to changes in spin mixing between triplet exciplexes and light-emitting singlet exciplexes. In contrast, spin mixing of excitons is energetically suppressed, and thus spin mixing produces comparatively weaker MFEs in materials emitting light from excitons by affecting the precursor pairs. Demonstration of immense MFEs in common organic blends provides a flexible and inexpensive pathway towards magnetic functionality and field sensitivity in current organic devices without patterning the constituent materials on the nanoscale. In conclusion, magnetic fields increase the power efficiency of unconditioned devices by 30% at room temperature, also showing that magnetic fields may increase the efficiency of the thermally activated delayed fluorescence process.« less

  4. Temperature-and field dependent characterization of a twisted stacked-tape cable

    NASA Astrophysics Data System (ADS)

    Barth, C.; Takayasu, M.; Bagrets, N.; Bayer, C. M.; Weiss, K.-P.; Lange, C.

    2015-04-01

    The twisted stacked-tape cable (TSTC) is one of the major high temperature superconductor cable concepts combining scalability, ease of fabrication and high current density making it a possible candidate as conductor for large scale magnets. To simulate the boundary conditions of such a magnets as well as the temperature dependence of TSTCs a 1.16 m long sample consisting of 40, 4 mm wide SuperPower REBCO tapes is characterized using the ‘FBI’ (force-field-current) superconductor test facility of the Institute for Technical Physics of the Karlsruhe Institute of Technology. In a first step, the magnetic background field is cycled while measuring the current carrying capabilities to determine the impact of Lorentz forces on the TSTC sample performance. In the first field cycle, the critical current of the TSTC sample is tested up to 12 T. A significant Lorentz force of up to 65.6 kN m-1 at the maximal magnetic background field of 12 T result in a 11.8% irreversible degradation of the current carrying capabilities. The degradation saturates (critical cable current of 5.46 kA at 4.2 K and 12 T background field) and does not increase in following field cycles. In a second step, the sample is characterized at different background fields (4-12 T) and surface temperatures (4.2-37.8 K) utilizing the variable temperature insert of the ‘FBI’ test facility. In a third step, the performance along the length of the sample is determined at 77 K, self-field. A 15% degradation is obtained for the central part of the sample which was within the high field region of the magnet during the in-field measurements.

  5. Effect of orthodontic brackets and different wires on radiofrequency heating and magnetic field interactions during 3-T MRI

    PubMed Central

    Görgülü, S; Ayyıldız, S; Gökçe, S; Ozen, T

    2014-01-01

    Objectives: To evaluate the heating and magnetic field interactions of fixed orthodontic appliances with different wires and ligaments in a 3-T MRI environment and to estimate the safety of these orthodontic materials. Methods: 40 non-carious extracted human maxillary teeth were embedded in polyvinyl chloride boxes, and orthodontic brackets were bonded. Nickel–titanium and stainless steel arch wires, and elastic and stainless steel ligaments were used to obtain four experimental groups in total. Specimens were evaluated at 3 T for radiofrequency heating and magnetic field interactions. Radiofrequency heating was evaluated by placing specimens in a cylindrical plastic container filled with isotonic solution and measuring changes in temperature after T1 weighted axial sequencing and after completion of all sequences. Translational attraction and torque values of specimens were also evaluated. One-way ANOVA test was used to compare continuous variables of temperature change. Significance was set at p < 0.05. Results: None of the groups exhibited excessive heating (highest temperature change: <3.04 °C), with the maximum increase in temperature observed at the end of the T1 weighted axial sequence. Magnetic field interactions changed depending on the material used. Although the brackets presented minor interactions that would not cause movement in situ, nickel–titanium and stainless steel wires presented great interactions that may pose a risk for the patient. Conclusions: The temperature changes of the specimens were considered to be within acceptable ranges. With regard to magnetic field interactions, brackets can be considered “MR safe”; however, it would be safe to replace the wires before MRI. PMID:24257741

  6. A Ring-‘Rain’ influence for Saturn’s Cloud Albedo and Temperatures? Evidence Pro or Con from Voyager, HST, and Cassini

    NASA Astrophysics Data System (ADS)

    West, Robert A.; Li, Liming

    2015-11-01

    J. E. P. Connerney [Geophys. Res. Lett, 13, 773-776, 1986] pointed out that ‘latitudinal variations in images of Saturn’s disk, upper atmospheric temperatures, and ionospheric electron densities are found in magnetic conjugacy with features in Saturn’s ring plane’, and proposed ‘that these latitudinal variations are the result of a variable influx of water, transported along magnetic field lines from sources in Saturn’s ring plane’. Observations of H3+ support a ring-ionosphere connection [O'Donoghue et al., Nature 496, 7444, 2013]. What about cloud albedo and temperature? Connerney attributed a hemispheric asymmetry in haze and temperature to an asymmetry in water flux and predicted that ‘the presently-observed north-south asymmetry (upper tropospheric temperatures, aerosols) will persist throughout the Saturn year’. We can now test these ideas with data from the Cassini mission, from the Hubble Space Telescope, and from ground-based observations. Analyses of ground-based images and especially Hubble data established that the hemispheric asymmetry of the aerosol population does change, and seasonal effects are dominant, although non-seasonal variations are also observed [Karkoschka and Tomasko, Icarus 179, 195-221, 2005]. Upper tropospheric temperatures also vary as expected in response to seasonal forcing [Fletcher et al., Icarus 208, 337-352, 2009]. Connerney also identified dark bands in Voyager Green-filter images on magnetic conjugacy with the E ring and edges of the A and B rings. In Cassini Green-filter images there is some correspondence between dark bands and ring features in magnetic conjugacy, but collectively the correlation is not strong. Cassini 727-nm methane band images do not suggest depletion of aerosols in the upper troposphere at ring edge magnetic conjugacy latitudes as proposed by Connerney. We conclude that ring rain does not have a significant influence on upper tropospheric aerosols and temperatures on Saturn. Part of this work was performed by the Jet Propulsion Lab, Calif. Institute of Technology.

  7. Probing magnetic bottom and crustal temperature variations along the Red Sea margin of Egypt

    USGS Publications Warehouse

    Ravat, D.; Salem, A.; Abdelaziz, A.M.S.; Elawadi, E.; Morgan, P.

    2011-01-01

    Over 50 magnetic bottom depths derived from spectra of magnetic anomalies in Eastern Egypt along the Red Sea margin show variable magnetic bottoms ranging from 10 to 34. km. The deep magnetic bottoms correspond more closely to the Moho depth in the region, and not the depth of 580??C, which lies significantly deeper on the steady state geotherms. These results support the idea of Wasilewski and coworkers that the Moho is a magnetic boundary in continental regions. Reduced-to-pole magnetic highs correspond to areas of Younger Granites that were emplaced toward the end of the Precambrian. Other crystalline Precambrian units formed earlier during the closure of ocean basins are not strongly magnetic. In the north, magnetic bottoms are shallow (10-15. km) in regions with a high proportion of these Younger Granites. In the south, the shoaling of the magnetic bottom associated with the Younger Granites appears to be restricted to the Aswan and Ras Banas regions. Complexity in the variation of magnetic bottom depths may arise due to a combination of factors: i) regions of Younger (Precambrian) Granites with high magnetite content in the upper crust, leaving behind low Curie temperature titanomagnetite components in the middle and lower crust, ii) rise in the depth of 580??C isotherm where the crust may have been heated due to initiation of intense magmatism at the time of the Red Sea rifting (~. 20. Ma), and iii) the contrast of the above two factors with respect to the neighboring regions where the Moho and/or Curie temperature truncates lithospheric ferromagnetism. Estimates of fractal and centroid magnetic bottoms in the oceanic regions of the Red Sea are significantly below the Moho in places suggesting that oceanic uppermost mantle may be serpentinized to the depth of 15-30 km in those regions. ?? 2011 Elsevier B.V.

  8. Numerical study for heat generation/absorption in flow of nanofluid by a rotating disk

    NASA Astrophysics Data System (ADS)

    Aziz, Arsalan; Alsaedi, Ahmed; Muhammad, Taseer; Hayat, Tasawar

    2018-03-01

    Here MHD three-dimensional flow of viscous nanoliquid by a rotating disk with heat generation/absorption and slip effects is addressed. Thermophoresis and random motion features are also incorporated. Velocity, temperature and concentration slip conditions are imposed at boundary. Applied magnetic field is utilized. Low magnetic Reynolds number and boundary layer approximations have been employed in the problem formulation. Suitable transformations lead to strong nonlinear ordinary differential system. The obtained nonlinear system is solved numerically through NDSolve technique. Graphs have been sketched in order to analyze that how the velocity, temperature and concentration fields are affected by various pertinent variables. Moreover the numerical values for rates of heat and mass transfer have been tabulated and discussed.

  9. A similarity solution of time dependent MHD liquid film flow over stretching sheet with variable physical properties

    NASA Astrophysics Data System (ADS)

    Idrees, M.; Rehman, Sajid; Shah, Rehan Ali; Ullah, M.; Abbas, Tariq

    2018-03-01

    An analysis is performed for the fluid dynamics incorporating the variation of viscosity and thermal conductivity on an unsteady two-dimensional free surface flow of a viscous incompressible conducting fluid taking into account the effect of a magnetic field. Surface tension quadratically vary with temperature while fluid viscosity and thermal conductivity are assumed to vary as a linear function of temperature. The boundary layer partial differential equations in cartesian coordinates are transformed into a system of nonlinear ordinary differential equations (ODEs) by similarity transformation. The developed nonlinear equations are solved analytically by Homotopy Analysis Method (HAM) while numerically by using the shooting method. The Effects of natural parameters such as the variable viscosity parameter A, variable thermal conductivity parameter N, Hartmann number Ma, film Thickness, unsteadiness parameter S, Thermocapillary number M and Prandtl number Pr on the velocity and temperature profiles are investigated. The results for the surface skin friction coefficient f″ (0) , Nusselt number (heat flux) -θ‧ (0) and free surface temperature θ (1) are presented graphically and in tabular form.

  10. Microscopic evidence of a strain-enhanced ferromagnetic state in LaCoO3 thin films

    NASA Astrophysics Data System (ADS)

    Park, S.; Ryan, P.; Karapetrova, E.; Kim, J. W.; Ma, J. X.; Shi, J.; Freeland, J. W.; Wu, Weida

    2009-08-01

    Strain-induced modification of magnetic properties of lightly hole doped epitaxial LaCoO3 thin films on different substrates were studied with variable temperature magnetic force microscopy (MFM). Real space observation at 10 K reveals the formation of the local magnetic clusters on a relaxed film grown on LaAlO3 (001). In contrast, a ferromagnetic ground state has been confirmed for tensile-strained film on SrTiO3 (001), indicating that strain is an important factor in creating the ferromagnetic state. Simultaneous atomic force microscopy and MFM measurements reveal nanoscale defect lines for the tensile-strained films, where the structural defects have a large impact on the local magnetic properties.

  11. Kiloampere, Variable-Temperature, Critical-Current Measurements of High-Field Superconductors

    PubMed Central

    Goodrich, LF; Cheggour, N; Stauffer, TC; Filla, BJ; Lu, XF

    2013-01-01

    We review variable-temperature, transport critical-current (Ic) measurements made on commercial superconductors over a range of critical currents from less than 0.1 A to about 1 kA. We have developed and used a number of systems to make these measurements over the last 15 years. Two exemplary variable-temperature systems with coil sample geometries will be described: a probe that is only variable-temperature and a probe that is variable-temperature and variable-strain. The most significant challenge for these measurements is temperature stability, since large amounts of heat can be generated by the flow of high current through the resistive sample fixture. Therefore, a significant portion of this review is focused on the reduction of temperature errors to less than ±0.05 K in such measurements. A key feature of our system is a pre-regulator that converts a flow of liquid helium to gas and heats the gas to a temperature close to the target sample temperature. The pre-regulator is not in close proximity to the sample and it is controlled independently of the sample temperature. This allows us to independently control the total cooling power, and thereby fine tune the sample cooling power at any sample temperature. The same general temperature-control philosophy is used in all of our variable-temperature systems, but the addition of another variable, such as strain, forces compromises in design and results in some differences in operation and protocol. These aspects are analyzed to assess the extent to which the protocols for our systems might be generalized to other systems at other laboratories. Our approach to variable-temperature measurements is also placed in the general context of measurement-system design, and the perceived advantages and disadvantages of design choices are presented. To verify the accuracy of the variable-temperature measurements, we compared critical-current values obtained on a specimen immersed in liquid helium (“liquid” or Ic liq) at 5 K to those measured on the same specimen in flowing helium gas (“gas” or Ic gas) at the same temperature. These comparisons indicate the temperature control is effective over the superconducting wire length between the voltage taps, and this condition is valid for all types of sample investigated, including Nb-Ti, Nb3Sn, and MgB2 wires. The liquid/gas comparisons are used to study the variable-temperature measurement protocol that was necessary to obtain the “correct” critical current, which was assumed to be the Ic liq. We also calibrated the magnetoresistance effect of resistive thermometers for temperatures from 4 K to 35 K and magnetic fields from 0 T to 16 T. This calibration reduces systematic errors in the variable-temperature data, but it does not affect the liquid/gas comparison since the same thermometers are used in both cases. PMID:26401435

  12. Magnetic fields and chiral asymmetry in the early hot universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sydorenko, Maksym; Shtanov, Yuri; Tomalak, Oleksandr, E-mail: maxsydorenko@gmail.com, E-mail: tomalak@uni-mainz.de, E-mail: shtanov@bitp.kiev.ua

    In this paper, we study analytically the process of external generation and subsequent free evolution of the lepton chiral asymmetry and helical magnetic fields in the early hot universe. This process is known to be affected by the Abelian anomaly of the electroweak gauge interactions. As a consequence, chiral asymmetry in the fermion distribution generates magnetic fields of non-zero helicity, and vice versa. We take into account the presence of thermal bath, which serves as a seed for the development of instability in magnetic field in the presence of externally generated lepton chiral asymmetry. The developed helical magnetic field andmore » lepton chiral asymmetry support each other, considerably prolonging their mutual existence, in the process of 'inverse cascade' transferring magnetic-field power from small to large spatial scales. For cosmologically interesting initial conditions, the chiral asymmetry and the energy density of helical magnetic field are shown to evolve by scaling laws, effectively depending on a single combined variable. In this case, the late-time asymptotics of the conformal chiral chemical potential reproduces the universal scaling law previously found in the literature for the system under consideration. This regime is terminated at lower temperatures because of scattering of electrons with chirality change, which exponentially washes out chiral asymmetry. We derive an expression for the termination temperature as a function of the chiral asymmetry and energy density of helical magnetic field.« less

  13. Magnetic fields and chiral asymmetry in the early hot universe

    NASA Astrophysics Data System (ADS)

    Sydorenko, Maksym; Tomalak, Oleksandr; Shtanov, Yuri

    2016-10-01

    In this paper, we study analytically the process of external generation and subsequent free evolution of the lepton chiral asymmetry and helical magnetic fields in the early hot universe. This process is known to be affected by the Abelian anomaly of the electroweak gauge interactions. As a consequence, chiral asymmetry in the fermion distribution generates magnetic fields of non-zero helicity, and vice versa. We take into account the presence of thermal bath, which serves as a seed for the development of instability in magnetic field in the presence of externally generated lepton chiral asymmetry. The developed helical magnetic field and lepton chiral asymmetry support each other, considerably prolonging their mutual existence, in the process of `inverse cascade' transferring magnetic-field power from small to large spatial scales. For cosmologically interesting initial conditions, the chiral asymmetry and the energy density of helical magnetic field are shown to evolve by scaling laws, effectively depending on a single combined variable. In this case, the late-time asymptotics of the conformal chiral chemical potential reproduces the universal scaling law previously found in the literature for the system under consideration. This regime is terminated at lower temperatures because of scattering of electrons with chirality change, which exponentially washes out chiral asymmetry. We derive an expression for the termination temperature as a function of the chiral asymmetry and energy density of helical magnetic field.

  14. Multiplicities and thermal runaway of current leads for superconducting magnets

    NASA Astrophysics Data System (ADS)

    Krikkis, Rizos N.

    2017-04-01

    The multiple solutions of conduction and vapor cooled copper leads modeling current delivery to a superconducting magnet have been numerically calculated. Both ideal convection and convection with a finite heat transfer coefficient for an imposed coolant mass flow rate have been considered. Because of the nonlinearities introduced by the temperature dependent material properties, two solutions exist, one stable and one unstable regardless of the cooling method. The limit points separating the stable form the unstable steady states form the blow-up threshold beyond which, any further increase in the operating current results in a thermal runway. An interesting finding is that the multiplicity persists even when the cold end temperature is raised above the liquid nitrogen temperature. The effect of various parameters such as the residual resistivity ratio, the overcurrent and the variable conductor cross section on the bifurcation structure and their stabilization effect on the blow-up threshold is also evaluated.

  15. Variable solar irradiance as a plausible agent for multidecadal variations in the Arctic-wide surface air temperature record of the past 130 years

    NASA Astrophysics Data System (ADS)

    Soon, Willie W.-H.

    2005-08-01

    This letter offers new evidence motivating a more serious consideration of the potential Arctic temperature responses as a consequence of the decadal, multidecadal and longer-term persistent forcing by the ever-changing solar irradiance both in terms of total solar irradiance (TSI, i.e., integrated over all wavelengths) and the related UV irradiance. The support for such a solar modulator can be minimally derived from the large (>75%) explained variance for the decadally-smoothed Arctic surface air temperatures (SATs) by TSI and from the time-frequency structures of the TSI and Arctic SAT variability as examined by wavelet analyses. The reconstructed Arctic SAT time series based on the inverse wavelet transform, which includes decadal (5-15 years) and multidecadal (40-80 years) variations and a longer-term trend, contains nonstationary but persistent features that are highly correlated with the Sun's intrinsic magnetic variability especially on multidecadal time scales.

  16. Rock Magnetic Studies and Absolute Paleointensity Determination of the Dacite of the Duffer Formation of the Pilbara Craton, Australia

    NASA Astrophysics Data System (ADS)

    Herrero-Bervera, E.; Mojzsis, S. J.

    2009-12-01

    We have conducted a rock magnetic and absolute paleointensity determination of the red dacite of the Duffer Formation of the Pilbara craton, Australia. The age of the dated rock unit is 3452 Ma +/-16 Ma. Vector analyses of step-wise alternating field (NRM up to 100 mT) and thermal demagnetization (from NRM up to 650 o C) results yield three components of magnetization. Curie point determinations indicate three characteristic temperatures, one at 280 o C, a second one at 358 o C and a third one at 630 o C. Magnetic grain-size experiments were performed on small specimens with a variable field translation balance (VFTB). The coercivity of remanence (Hcr) suggests that the NRM is carried by high-coercivity grains that is more likely carried from a hematite fraction as is also shown by the high-temperature component with blocking temperatures above 450{o}C and up to at least 640 o C. The ratios of the hysteresis parameters plotted as a Day diagram show that most grain sizes are scattered within the PSD and MD domain ranges. In addition to the rock magnetic experiments we have performed absolute paleointensity experiments on the samples using the modified Thellier-Coe double heating method to determine the paleointensities. pTRM checks were performed systematically to document magnetomineralogical changes during heating. The temperature was incremented by steps of 50 o C between room temperature and 590 o^ C. The paleointensity determinations were obtained from the slope of Arai diagrams. Special care was taken to interpret the Arai diagrams within the same range lower than 300 o C unless a clear and unique slope was present. Our paleointensity results indicate that the paleofield obtained was 6.5 micro-Teslas from a high temperature component ranging from 450 to 590 o^ C that has been interpreted to be the oldest magnetization yet recorded in paleomagnetic studies of the Duffer Formation. This primary high temperature component establishes the existence of the geomagnetic field at least 3.5 Ga ago with a relatively low absolute paleointensity during Archean times.

  17. Single molecule magnet behavior of a pentanuclear Mn-based metallacrown complex: solid state and solution magnetic studies.

    PubMed

    Zaleski, Curtis M; Tricard, Simon; Depperman, Ezra C; Wernsdorfer, Wolfgang; Mallah, Talal; Kirk, Martin L; Pecoraro, Vincent L

    2011-11-21

    The magnetic behavior of the pentanuclear complex of formula Mn(II)(O(2)CCH(3))(2)[12-MC(Mn(III)(N)shi)-4](DMF)(6), 1, was investigated using magnetization and magnetic susceptibility measurements both in the solid state and in solution. Complex 1 has a nearly planar structure, made of a central Mn(II) ion surrounded by four peripheral Mn(III) ions. Solid state variable-field dc magnetic susceptibility experiments demonstrate that 1 possesses a low value for the total spin in the ground state; fitting appropriate expressions to the data results in antiferromangetic coupling both between the peripheral Mn(III) ions (J = -6.3 cm(-1)) and between the central Mn(II) ion and the Mn(III) ones (J' = -4.2 cm(-1)). In order to obtain a reasonable fit, a relatively large single ion magnetic anisotropy (D) value of 1 cm(-1) was necessary for the central Mn(II) ion. The single crystal magnetization measurements using a microsquid array display a very slight opening of the hysteresis loop but only at a very low temperature (0.04 K), which is in line with the ac susceptibility data where a slow relaxation of the magnetization occurs just around 2 K. In frozen solution, complex 1 displays a frequency dependent ac magnetic susceptibility signal with an energy barrier to magnetization reorientation (E) and relaxation time at an infinite temperature (τ(o)) of 14.7 cm(-1) and 1.4 × 10(-7) s, respectively, demonstrating the single molecule magnetic behavior in solution.

  18. The effect of magnetohydrodynamic nano fluid flow through porous cylinder

    NASA Astrophysics Data System (ADS)

    Widodo, Basuki; Arif, Didik Khusnul; Aryany, Deviana; Asiyah, Nur; Widjajati, Farida Agustini; Kamiran

    2017-08-01

    This paper concerns about the analysis of the effect of magnetohydrodynamic nano fluid flow through horizontal porous cylinder on steady and incompressible condition. Fluid flow is assumed opposite gravity and induced by magnet field. Porous cylinder is assumed had the same depth of porous and was not absorptive. The First thing to do in this research is to build the model of fluid flow to obtain dimentional governing equations. The dimentional governing equations are consist of continuity equation, momentum equation, and energy equation. Furthermore, the dimensional governing equations are converted to non-dimensional governing equation by using non-dimensional parameters and variables. Then, the non-dimensional governing equations are transformed into similarity equations using stream function and solved using Keller-Box method. The result of numerical solution further is obtained by taking variation of magnetic parameter, Prandtl number, porosity parameter, and volume fraction. The numerical results show that velocity profiles increase and temperature profiles decrease when both of the magnetic and the porosity parameter increase. However, the velocity profiles decrease and the temperature profiles increase when both of the magnetic and the porosity parameter increase.

  19. Tracking the Magnetization Evolution in γ-Fe2O3 / Metallic Fe Core-Shell Nanoparticle Variants

    NASA Astrophysics Data System (ADS)

    Kons, C.; Nemati, Z.; Srikanth, H.; Phan, M.-H.; Krycka, K.; Borchers, J.; Keavney, D.; Arena, D. A.

    Iron-core magnetic nanoparticles (MNPs) with oxide shells exhibit varying magnetic properties due to the different ordering temperatures of the core and shell spins, as well as the coupling across the metal/oxide interface. While spin coupling across two dimensional interfaces has been well explored, less is known about three dimensional interfaces such as those presented in the MNPs. In this work, MNPs were synthesized with a bcc Fe core and γ-Fe2O3 shell and placed in an oxygen rich environment to encourage the transition from cores shell (CS) to core void shell (CVS) to hollow (H) structures. Static magnetic measurements (MvT) and AC magnetometry were performed to explore the magnetic behavior of the various synthesized structures. To further understand the nature of the spin coupling in the MNPs, TEM and conventional magnetometry as well as variable-temperature small angle neutron scattering (SANS), x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) spectroscopy were performed. Modeling of the x-ray spectra and SANS data will enable us to develop a cohesive picture of spin coupling, freezing and frustration along the three-dimensional metal / oxide interface. Supported by Department of Energy award #DE-FG02-07ER46438; NSF Award #DMR-1508249.

  20. Modelling of subsonic COIL with an arbitrary magnetic modulation

    NASA Astrophysics Data System (ADS)

    Beránek, Jaroslav; Rohlena, Karel

    2007-05-01

    The concept of 1D subsonic COIL model with a mixing length was generalized to include the influence of a variable magnetic field on the stimulated emission cross-section. Equations describing the chemical kinetics were solved taking into account together with the gas temperature also a simplified mixing model of oxygen and iodine molecules. With the external time variable magnetic field the model is no longer stationary. A transformation in the system moving with the mixture reduces partial differential equations to ordinary equations in time with initial conditions given either by the stationary flow at the moment when the magnetic field is switched on combined with the boundary conditions at the injector. Advantage of this procedure is a possibility to consider an arbitrary temporal dependence of the imposed magnetic field and to calculate directly the response of the laser output. The method was applied to model the experimental data measured with the subsonic version of the COIL device in the Institute of Physics, Prague, where the applied magnetic field had a saw-tooth dependence. We found that various values characterizing the laser performance, such as the power density distribution over the active zone cross-section, may have a fairly complicated structure given by combined effects of the delayed reaction to the magnetic switching and the flow velocity. This is necessarily translated in a time dependent spatial inhomogeneity of output beam intensity profile.

  1. Variability of ethane on Jupiter

    NASA Technical Reports Server (NTRS)

    Kostiuk, Theodor; Espenak, Fred; Mumma, Michael J.; Deming, Drake; Zipoy, David

    1987-01-01

    Varying stratospheric temperature profiles and C2H6 altitude distributions furnish contexts for the evaluation of ethane abundances and distributions in the Jupiter stratosphere. Substantial ethane line emission and retrieved mole fraction variability is noted near the footprint of Io's flux tube, as well as within the auroral regions. It is suggested that this and other observed phenomena are due to the modification of local stratospheric chemistry by higher-order effects, which are in turn speculated to be due to the precipitation of charged particles along magnetic field lines.

  2. Structural and magnetic characterization of three tetranuclear Cu(II) complexes with face-sharing-dicubane/double-open-cubane like core framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Aparup; Bertolasi, Valerio; Figuerola, Albert

    Three novel tetranuclear copper(II) complexes namely [Cu{sub 4}(L{sup 1}){sub 4}]∙2(dmf) (1), [Cu{sub 4}(L{sup 1}){sub 4}] (2) and [Cu{sub 4}(L{sup 2}){sub 2}(HL{sup 2}){sub 2}(H{sub 2}O){sub 2}]∙2(ClO{sub 4})·6(H{sub 2}O) (3) (H{sub 2}L{sup 1}, (E)−2-((1-hydroxybutan-2-ylimino)methyl)phenol; H{sub 2}L{sup 2}, (E)−2-((1-hydroxybutan-2-ylimino)methyl)−6-methoxyphenol)) were synthesized from the self-assembly of copper(II) perchlorate and the tridentate Schiff base ligands. The structural determination reveals that crystallizes in the monoclinic system with space group C2/c, whereas both the and crystallize in the triclinic system with space group P-1. and possess face-sharing dicubane core, on the other hand complex 3 has double open cubane core structure. The copper(II) ions in the cubanemore » core are in distorted square planar geometries, and weak π…π and C–H…π interactions lead to formation of a 2D supramolecular architecture for and . At room temperature and , exhibit fluorescence with a quantum yield (Φ{sub s}) of 0.47, 0.49 and 0.38, respectively. Variable temperature magnetic susceptibility measurements in the range 2–300 K indicate an overall weak antiferromagnetic exchange coupling in all complexes. The PHI program was used to study their magnetic behaviour. In agreement with their face-sharing dicubane structure, a Hamiltonian of the type H =– J{sub 1}(S{sub 1}S{sub 2}+S{sub 1}S{sub 2’}+S{sub 1'}S{sub 2}+S{sub 1'}S{sub 2’}) – J{sub 2}S{sub 1}S{sub 1’}, where S{sub 1} = S{sub 1’} = S{sub 2} = S{sub 2’} = S{sub Cu} =1/2, was used for studying and . Simulations performed suggest magnetic exchange constants with values close to J{sub 1} =−20 cm{sup −1} and J{sub 2} =0 cm{sup -1} for these complexes. On the other hand, the spin Hamiltonian H =– J{sub 1}(S{sub 1}S{sub 4}+S{sub 2}S{sub 3}) – J{sub 2}(S{sub 1}S{sub 3}+S{sub 2}S{sub 4}) – J{sub 3}S{sub 1}S{sub 2}, where S{sub 1} = S{sub 2} = S{sub 3} = S{sub 4} = S{sub Cu} =1/2, was used to study the magnetic behaviour of the double open cubane core of and a good agreement between the experimental and simulated results was found by using the parameters g{sub 1} = g{sub 2} =2.20, g{sub 3} = g{sub 4} =2.18, J{sub 1} =−36 cm{sup -1}, J{sub 2} =−44 cm{sup -1} and J{sub 3} =0 cm{sup -1}. - Graphical abstract: Tetranuclear Cu(II) complexes with face-sharing-dicubane / double-open-cubane like core frameworks were synthesized and characterized by crystal structure and magnetic analysis. Variable temperature magnetic properties corroborate with their structural arrangement. - Highlights: • Novel tetranuclear copper(II) complexes have been structurally characterized. • Complexes possess face-sharing dicubane/double open cubane core structures. • Variable temperature magnetic measurements reveal antiferromagnetic coupling. • PHI program was used to explain the observed magnetic properties.« less

  3. Probes for investigating the effect of magnetic field, field orientation, temperature and strain on the critical current density of anisotropic high-temperature superconducting tapes in a split-pair 15 T horizontal magnet.

    PubMed

    Sunwong, P; Higgins, J S; Hampshire, D P

    2014-06-01

    We present the designs of probes for making critical current density (Jc) measurements on anisotropic high-temperature superconducting tapes as a function of field, field orientation, temperature and strain in our 40 mm bore, split-pair 15 T horizontal magnet. Emphasis is placed on the design of three components: the vapour-cooled current leads, the variable temperature enclosure, and the springboard-shaped bending beam sample holder. The vapour-cooled brass critical-current leads used superconducting tapes and in operation ran hot with a duty cycle (D) of ~0.2. This work provides formulae for optimising cryogenic consumption and calculating cryogenic boil-off, associated with current leads used to make J(c) measurements, made by uniformly ramping the current up to a maximum current (I(max)) and then reducing the current very quickly to zero. They include consideration of the effects of duty cycle, static helium boil-off from the magnet and Dewar (b'), and the maximum safe temperature for the critical-current leads (T(max)). Our optimized critical-current leads have a boil-off that is about 30% less than leads optimized for magnet operation at the same maximum current. Numerical calculations show that the optimum cross-sectional area (A) for each current lead can be parameterized by LI(max)/A = [1.46D(-0.18)L(0.4)(T(max) - 300)(0.25D(-0.09)) + 750(b'/I(max))D(10(-3)I(max)-2.87b') × 10⁶ A m⁻¹ where L is the current lead's length and the current lead is operated in liquid helium. An optimum A of 132 mm(2) is obtained when I(max) = 1000 A, T(max) = 400 K, D = 0.2, b' = 0.3 l h(-1) and L = 1.0 m. The optimized helium consumption was found to be 0.7 l h(-1). When the static boil-off is small, optimized leads have a boil-off that can be roughly parameterized by: b/I(max)  ≈ (1.35 × 10(-3))D(0.41) l h(‑1) A(-1). A split-current-lead design is employed to minimize the rotation of the probes during the high current measurements in our high-field horizontal magnet. The variable-temperature system is based on the use of an inverted insulating cup that operates above 4.2 K in liquid helium and above 77.4 K in liquid nitrogen, with a stability of ±80 mK to ±150 mK. Uniaxial strains of -1.4% to 1.0% can be applied to the sample, with a total uncertainty of better than ±0.02%, using a modified bending beam apparatus which includes a copper beryllium springboard-shaped sample holder.

  4. A series of tetraazalene radical-bridged M2 (M = CrIII, MnII, FeII, CoII) complexes with strong magnetic exchange coupling.

    PubMed

    DeGayner, Jordan A; Jeon, Ie-Rang; Harris, T David

    2015-11-13

    The ability of tetraazalene radical bridging ligands to mediate exceptionally strong magnetic exchange coupling across a range of transition metal complexes is demonstrated. The redox-active bridging ligand N , N ', N '', N '''-tetra(2-methylphenyl)-2,5-diamino-1,4-diiminobenzoquinone ( NMePh LH 2 ) was metalated to give the series of dinuclear complexes [(TPyA) 2 M 2 ( NMePh L 2- )] 2+ (TPyA = tris(2-pyridylmethyl)amine, M = Mn II , Fe II , Co II ). Variable-temperature dc magnetic susceptibility data for these complexes reveal the presence of weak superexchange interactions between metal centers, and fits to the data provide coupling constants of J = -1.64(1) and -2.16(2) cm -1 for M = Mn II and Fe II , respectively. One-electron reduction of the complexes affords the reduced analogues [(TPyA) 2 M 2 ( NMePh L 3- ˙)] + . Following a slightly different synthetic procedure, the related complex [(TPyA) 2 CrIII2( NMePh L 3- ˙)] 3+ was obtained. X-ray diffraction, cyclic voltammetry, and Mössbauer spectroscopy indicate the presence of radical NMePh L 3- ˙ bridging ligands in these complexes. Variable-temperature dc magnetic susceptibility data of the radical-bridged species reveal the presence of strong magnetic interactions between metal centers and ligand radicals, with simulations to data providing exchange constants of J = -626(7), -157(7), -307(9), and -396(16) cm -1 for M = Cr III , Mn II , Fe II , and Co II , respectively. Moreover, the strength of magnetic exchange in the radical-bridged complexes increases linearly with decreasing M-L bond distance in the oxidized analogues. Finally, ac magnetic susceptibility measurements reveal that [(TPyA) 2 Fe 2 ( NMePh L 3- ˙)] + behaves as a single-molecule magnet with a relaxation barrier of U eff = 52(1) cm -1 . These results highlight the ability of redox-active tetraazalene bridging ligands to enable dramatic enhancement of magnetic exchange coupling upon redox chemistry and provide a rare opportunity to examine metal-radical coupling trends across a transmetallic series of complexes.

  5. Axially adjustable magnetic properties in arrays of multilayered Ni/Cu nanowires with variable segment sizes

    NASA Astrophysics Data System (ADS)

    Shirazi Tehrani, A.; Almasi Kashi, M.; Ramazani, A.; Montazer, A. H.

    2016-07-01

    Arrays of multilayered Ni/Cu nanowires (NWs) with variable segment sizes were fabricated into anodic aluminum oxide templates using a pulsed electrodeposition method in a single bath for designated potential pulse times. Increasing the pulse time between 0.125 and 2 s in the electrodeposition of Ni enabled the formation of segments with thicknesses ranging from 25 to 280 nm and 10-110 nm in 42 and 65 nm diameter NWs, respectively, leading to disk-shaped, rod-shaped and/or near wire-shaped geometries. Using hysteresis loop measurements at room temperature, the axial and perpendicular magnetic properties were investigated. Regardless of the segment geometry, the axial coercivity and squareness significantly increased with increasing Ni segment thickness, in agreement with a decrease in calculated demagnetizing factors along the NW length. On the contrary, the perpendicular magnetic properties were found to be independent of the pulse times, indicating a competition between the intrawire interactions and the shape demagnetizing field.

  6. Electrical and Magnetic Measurements from microHertz to teraHertz (Invited)

    NASA Astrophysics Data System (ADS)

    Olhoeft, G. R.

    2009-12-01

    In making electrical and magnetic measurements, half the problem is the measurement of the properties of the rocks, soils and fluids, and half the problem is duplicating the environment. Equally important with applying a field stimulus and measuring the response are fluid content and chemistry, temperature, pressure, time and other factors. The magnetic properties of Martian soils are not interesting under terrestrial ambient lab temperatures (298 K), but exhibit a very interesting relaxation at Mars ambient temperatures (213 K) which is important in radar sounding. The electrical properties of granite are nearly identical at 523 K vacuum dry and 263 K water saturated which is important in geothermal exploration. The most common zeolite, clinoptilolite, can behave like kaolinite or montmorillonite depending upon salinity and temperature in many of its properties. Making measurements at very high frequencies can make frozen water look like a clear ice cube or a white opaque snowball depending upon grain size scattering and thermal history. Low frequency measurements are more sensitive to chemistry as reactions can't keep up at high frequencies. In situ measurements are more complicated (including effects of heterogeneity and scale), but laboratory measurements allow investigation of more variables to understand process and property controlling factors, including effects of removing the sample from its environment.

  7. A revised model for Jeffrey nanofluid subject to convective condition and heat generation/absorption

    PubMed Central

    Hayat, Tasawar; Aziz, Arsalan; Muhammad, Taseer; Alsaedi, Ahmed

    2017-01-01

    Here magnetohydrodynamic (MHD) boundary layer flow of Jeffrey nanofluid by a nonlinear stretching surface is addressed. Heat generation/absorption and convective surface condition effects are considered. Novel features of Brownian motion and thermophoresis are present. A non-uniform applied magnetic field is employed. Boundary layer and small magnetic Reynolds number assumptions are employed in the formulation. A newly developed condition with zero nanoparticles mass flux is imposed. The resulting nonlinear systems are solved. Convergence domains are explicitly identified. Graphs are analyzed for the outcome of sundry variables. Further local Nusselt number is computed and discussed. It is observed that the effects of Hartman number on the temperature and concentration distributions are qualitatively similar. Both temperature and concentration distributions are enhanced for larger Hartman number. PMID:28231298

  8. Anisotropic magnetism and spin-dependent transport in Co nanoparticle embedded ZnO thin films

    NASA Astrophysics Data System (ADS)

    Li, D. Y.; Zeng, Y. J.; Pereira, L. M. C.; Batuk, D.; Hadermann, J.; Zhang, Y. Z.; Ye, Z. Z.; Temst, K.; Vantomme, A.; Van Bael, M. J.; Van Haesendonck, C.

    2013-07-01

    Oriented Co nanoparticles were obtained by Co ion implantation in crystalline ZnO thin films grown by pulsed laser deposition. Transmission electron microscopy revealed the presence of elliptically shaped Co precipitates with nanometer size, which are embedded in the ZnO thin films, resulting in anisotropic magnetic behavior. The low-temperature resistance of the Co-implanted ZnO thin films follows the Efros-Shklovskii type variable-range-hopping. Large negative magnetoresistance (MR) exceeding 10% is observed in a magnetic field of 1 T at 2.5 K and the negative MR survives up to 250 K (0.3%). The negative MR reveals hysteresis as well as anisotropy that correlate well with the magnetic properties, clearly demonstrating the presence of spin-dependent transport.

  9. Monte Carlo modeling the phase diagram of magnets with the Dzyaloshinskii - Moriya interaction

    NASA Astrophysics Data System (ADS)

    Belemuk, A. M.; Stishov, S. M.

    2017-11-01

    We use classical Monte Carlo calculations to model the high-pressure behavior of the phase transition in the helical magnets. We vary values of the exchange interaction constant J and the Dzyaloshinskii-Moriya interaction constant D, which is equivalent to changing spin-spin distances, as occurs in real systems under pressure. The system under study is self-similar at D / J = constant , and its properties are defined by the single variable J / T , where T is temperature. The existence of the first order phase transition critically depends on the ratio D / J . A variation of J strongly affects the phase transition temperature and width of the fluctuation region (the ;hump;) as follows from the system self-similarity. The high-pressure behavior of the spin system depends on the evolution of the interaction constants J and D on compression. Our calculations are relevant to the high pressure phase diagrams of helical magnets MnSi and Cu2OSeO3.

  10. Transformation of Structure, Electrical Conductivity, and Magnetism in AA'Fe 2O 6-δ, A = Sr, Ca and A' = Sr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hona, Ram Krishna; Huq, Ashfia; Mulmi, Suresh

    The ability to control electrical properties and magnetism by varying the crystal structure using the effect of the A-site cation in oxygen-deficient perovskites has been studied in AA’Fe 2O 6-δ, where A=Sr, Ca and A’= Sr. The structure of Sr 2Fe 2O 6-δ, synthesized at 1250 °C in air, contains dimeric units of FeO 5 square-pyramids separated by FeO 6 octahedra. Here we show that this ordering scheme can be transformed by changing the A-site cations from Sr to Ca. This leads to a structure where layers of corner-sharing FeO 6 octahedra are separated by chains of FeO 4 tetrahedra.more » Through systematic variation of the A-site cations, we have determined the average ionic radius required for this conversion to be ~1.41 Å. We have demonstrated that the magnetic structure is also transformed. The Sr 2 compound has an incommensurate magnetic structure, where magnetic moments are in spin-density wave state, aligning perpendicular to the body diagonal of the unit cell. With the aid of neutron diffraction experiments at 10 K and 300 K, we have shown that the magnetic structure is converted into a long-range G-type antiferromagnetic system when one Sr is replaced by Ca. In this G-type ordering scheme, the magnetic moments align in the 001 direction, antiparallel to their nearest neighbors. We have also performed variable-temperature electrical conductivity studies on these materials in the temperature range 298 – 1073 K. These studies have revealed the transformation of charge transport properties, where the metallic behavior of the Sr 2-compound is converted into semiconductivity in the CaSr-material. The trend of conductivity as a function of temperature is reversed upon changing the A-site cation. The conductivity of the Sr 2 compound shows a downturn, while the conductivity of the CaSr material increases as a function of temperature. We have also shown that the CaSr-compound exhibits temperature-dependent behavior typical of a mixed ionic-electronic conducting system.« less

  11. Transformation of Structure, Electrical Conductivity, and Magnetism in AA'Fe 2O 6-δ, A = Sr, Ca and A' = Sr

    DOE PAGES

    Hona, Ram Krishna; Huq, Ashfia; Mulmi, Suresh; ...

    2017-08-09

    The ability to control electrical properties and magnetism by varying the crystal structure using the effect of the A-site cation in oxygen-deficient perovskites has been studied in AA’Fe 2O 6-δ, where A=Sr, Ca and A’= Sr. The structure of Sr 2Fe 2O 6-δ, synthesized at 1250 °C in air, contains dimeric units of FeO 5 square-pyramids separated by FeO 6 octahedra. Here we show that this ordering scheme can be transformed by changing the A-site cations from Sr to Ca. This leads to a structure where layers of corner-sharing FeO 6 octahedra are separated by chains of FeO 4 tetrahedra.more » Through systematic variation of the A-site cations, we have determined the average ionic radius required for this conversion to be ~1.41 Å. We have demonstrated that the magnetic structure is also transformed. The Sr 2 compound has an incommensurate magnetic structure, where magnetic moments are in spin-density wave state, aligning perpendicular to the body diagonal of the unit cell. With the aid of neutron diffraction experiments at 10 K and 300 K, we have shown that the magnetic structure is converted into a long-range G-type antiferromagnetic system when one Sr is replaced by Ca. In this G-type ordering scheme, the magnetic moments align in the 001 direction, antiparallel to their nearest neighbors. We have also performed variable-temperature electrical conductivity studies on these materials in the temperature range 298 – 1073 K. These studies have revealed the transformation of charge transport properties, where the metallic behavior of the Sr 2-compound is converted into semiconductivity in the CaSr-material. The trend of conductivity as a function of temperature is reversed upon changing the A-site cation. The conductivity of the Sr 2 compound shows a downturn, while the conductivity of the CaSr material increases as a function of temperature. We have also shown that the CaSr-compound exhibits temperature-dependent behavior typical of a mixed ionic-electronic conducting system.« less

  12. Electron transport and noise spectroscopy in organic magnetic tunnel junctions with PTCDA and Alq3 barriers

    NASA Astrophysics Data System (ADS)

    Martinez, Isidoro; Cascales, Juan Pedro; Hong, Jhen-Yong; Lin, Minn-Tsong; Prezioso, Mirko; Riminucci, Alberto; Dediu, Valentin A.; Aliev, Farkhad G.

    2016-10-01

    The possible influence of internal barrier dynamics on spin, charge transport and their fluctuations in organic spintronics remains poorly understood. Here we present investigation of the electron transport and low frequency noise at temperatures down to 0.3K in magnetic tunnel junctions with an organic PTCDA barriers with thickness up to 5 nm in the tunneling regime and with 200 nm thick Alq3 barrier in the hopping regime. We observed high tunneling magneto-resistance at low temperatures (15-40%) and spin dependent super-poissonian shot noise in organic magnetic tunnel junctions (OMTJs) with PTCDA. The Fano factor exceeds 1.5-2 values which could be caused by interfacial states controlled by spin dependent bunching in the tunneling events through the molecules.1 The bias dependence of the low frequency noise in OMTJs with PTCDA barriers which includes both 1/f and random telegraph noise activated at specific biases will also be discussed. On the other hand, the organic junctions with ferromagnetic electrodes and thick Alq3 barriers present sub-poissonian shot noise which depends on the temperature, indicative of variable range hopping.

  13. Electrophysical Properties of Onion-Like Carbon

    NASA Astrophysics Data System (ADS)

    Tkachev, E. N.; Romanenko, A. I.; Zhdanov, K. R.; Anikeeva, O. B.; Buryakov, T. I.; Kuznetsov, V. L.; Moseenkov, S. I.

    2016-06-01

    The paper examines electrophysical properties of onion-like carbon (OLC) samples, where particles have the average size of 4-8 nm and are formed by 5-10 nested fullerene-like spheres connected by 1-3 common curved graphene shells into aggregates with a size of 50-300 nm. We measured the temperature dependence of electrical resistance from 4.2 to 300 K and dependence of magnetoresistance in magnetic fields up to 6 T at the temperature of 4.2 K. Temperature dependences of electrical resistance of samples can be described within the framework of the Mott law with variable hop length for the one-dimensional case or within the framework of the Efros-Shklovskii Coulomb gap. We observed the quadratically increasing positive magnetoresistance up to 6 T associated with compression of wave functions of conduction electrons. Negative magnetoresistance was observed in the range of magnetic fields up to 1-2 T in the case of some samples. This is due to the fact that magnetic field suppresses the contributions to magnetoresistance made by interference effects in the area of hopping conductivity. The measurements were used to estimate the localization radius that is comparable to the diameter of OLC particles (nano-onions).

  14. Intrinsic and spatially nonuniform ferromagnetism in Co-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Tseng, L. T.; Suter, A.; Wang, Y. R.; Xiang, F. X.; Bian, P.; Ding, X.; Tseng, A.; Hu, H. L.; Fan, H. M.; Zheng, R. K.; Wang, X. L.; Salman, Z.; Prokscha, T.; Suzuki, K.; Liu, R.; Li, S.; Morenzoni, E.; Yi, J. B.

    2017-09-01

    Co doped ZnO films have been deposited by a laser-molecular beam epitaxy system. X-ray diffraction and UV spectra analysis show that Co effectively substitutes the Zn site. Transmission electron microscopy (TEM) and secondary ion mass spectroscopy analysis indicate that there are no clusters. Co dopants are uniformly distributed in ZnO film. Ferromagnetic ordering is observed in all samples deposited under an oxygen partial pressure, PO2=10-3 , 10-5, and 10-7 torr, respectively. However, the magnetization of PO2=10-3 and 10-5 is very small at room temperature. At low temperature, the ferromagnetic ordering is enhanced. Muon spin relaxation (μ SR ) measurements confirm the ferromagnetism in all samples, and the results are consistent with magnetization measurements. From μ SR and TEM analysis, the film deposited under PO2=10-7 torr shows intrinsic ferromagnetism. However, the volume fraction of the ferromagnetism phase is approximately 70%, suggesting that the ferromagnetism is not carrier mediated. Resistivity versus temperature measurements indicate Efros variable range hopping dominates the conductivity. From the above results, we can confirm that a bound magnetic polaron is the origin of the ferromagnetism.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elrod, D.C.; Turner, W.D.

    TRUMP solves a general nonlinear parabolic partial differential equation describing flow in various kinds of potential fields, such as fields of temperature, pressure, or electricity and magnetism; simultaneously, it will solve two additional equations representing, in thermal problems, heat production by decomposition of two reactants having rate constants with a general Arrhenius temperature dependence. Steady-state and transient flow in one, two, or three dimensions are considered in geometrical configurations having simple or complex shapes and structures. Problem parameters may vary with spatial position, time, or primary dependent variables, temperature, pressure, or field strength. Initial conditions may vary with spatial position,more » and among the criteria that may be specified for ending a problem are upper and lower limits on the size of the primary dependent variable, upper limits on the problem time or on the number of time-steps or on the computer time, and attainment of steady state.« less

  16. MAVEN observations of dayside peak electron densities in the ionosphere of Mars

    NASA Astrophysics Data System (ADS)

    Vogt, Marissa F.; Withers, Paul; Fallows, Kathryn; Andersson, Laila; Girazian, Zachary; Mahaffy, Paul R.; Benna, Mehdi; Elrod, Meredith K.; Connerney, John E. P.; Espley, Jared R.; Eparvier, Frank G.; Jakosky, Bruce M.

    2017-01-01

    The peak electron density in the dayside Martian ionosphere is a valuable diagnostic of the state of the ionosphere. Its dependence on factors like the solar zenith angle, ionizing solar irradiance, neutral scale height, and electron temperature has been well studied. The Mars Atmosphere and Volatile EvolutioN spacecraft's September 2015 "deep dip" orbits, in which the orbital periapsis was lowered to 125 km, provided the first opportunity since Viking to sample in situ a complete dayside electron density profile including the main peak. Here we present peak electron density measurements from 37 deep dip orbits and describe conditions at the altitude of the main peak, including the electron temperature and composition of the ionosphere and neutral atmosphere. We find that the dependence of the peak electron density and the altitude of the main peak on solar zenith angle are well described by analytical photochemical theory. Additionally, we find that the electron temperatures at the main peak display a dependence on solar zenith angle that is consistent with the observed variability in the peak electron density. Several peak density measurements were made in regions of large crustal magnetic field, but there is no clear evidence that the crustal magnetic field strength influences the peak electron density, peak altitude, or electron temperature. Finally, we find that the fractional abundance of O2+ and CO2+ at the peak altitude is variable but that the two species together consistently represent 95% of the total ion density.

  17. Simulation of ferromagnetic nanomaterial flow of Maxwell fluid

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Ahmad, Salman; Khan, M. Ijaz; Alsaedi, A.

    2018-03-01

    Ferromagnetic flow of rate type liquid over a stretched surface is addressed in this article. Heat and mass transport are investigated with Brownian movement and thermophoresis effects. Magnetic dipole is also taken into consideration. Procedure of similarity transformation is employed. The obtained nonlinear expressions have been tackled numerically by means of Shooting method. Graphical results are shown and analyzed for the impact of different variables. Temperature and concentration gradients are numerically computed in Tables 1 and 2. The results described here demonstrate that ferromagnetic variable boosts the thermal field. It is noticed that velocity and concentration profiles are higher when elastic and thermophoresis variables are enhanced.

  18. Temperature compensation for miniaturized magnetic sector

    NASA Technical Reports Server (NTRS)

    Sinha, Mahadeva P. (Inventor)

    2002-01-01

    Temperature compensation for a magnetic sector used in mass spectrometry. A high temperature dependant magnetic sector is used. This magnetic sector is compensated by a magnetic shunt that has opposite temperature characteristics to those of the magnet.

  19. On the Nature of the Hard X-ray Sources SWIFT J1907.3-2050, IGR J12123-5802 and IGR J19552+0044

    NASA Technical Reports Server (NTRS)

    Bernardini, F.; De Martino, D.; Mukai, K.; Falanga, M.; Andruchow, I.; Bonnet-Bidaud, J.-M.; Masetti, N.; Gonzalez Buitrago, D. H.; Mouchet, M.; Tovmassian, G.

    2013-01-01

    The INTEGRAL and Swift hard X-ray surveys have identified a large number of new sources, among which many are proposed as Cataclysmic Variables (CVs). Here we present the first detailed study of three X-ray selected CVs, Swift J1907.3-2050, IGRJ12123-5802, and IGRJ19552+0044 based on XMM-Newton, Suzaku, Swift observations and ground based optical and archival near-infrared/infrared data. Swift J1907.3-2050 is highly variable from hours to months-years at all wavelengths. No coherent X-ray pulses are detected but rather transient features. The X-ray spectrum reveals a multi-temperature optically thin plasma absorbed by complex neutral material and a soft black body component arising from a small area. These characteristics are remarkably similar to those observed in magnetic CVs. A supra-solar abundance of nitrogen could arise from nuclear processed material from the donor star. Swift J1907.3-2050 could be a peculiar magnetic CV with the second longest (20.82 hours) binary period. IGRJ12123-5802 is variable in the X-rays on a timescale of greater than or approximately 7.6 hours. No coherent pulsations are detected, but its spectral characteristics suggest that it could be a magnetic CV of the Intermediate Polar (IP) type. IGRJ19552+0044 shows two X-ray periods, approximately 1.38 hours and approximately 1.69 hours and a X-ray spectrum characterized by a multi-temperature plasma with little absorption. We derive a low accretion rate, consistent with a CV below the orbital period gap. Its peculiar near-infrared/infrared spectrum suggests a contribution from cyclotron emission. It could either be a pre-polar or an IP with the lowest degree of asynchronism.

  20. On the Nature of the Hard X-Ray Sources SWIFT J1907.3-2050, IGR J12123-5802 and IGR J19552+0044

    NASA Technical Reports Server (NTRS)

    Bernardini, F.; deMartino, D; Mukai, K.; Falanga, M.; Andruchow, I.; Bonnet-Bidaud, J.-M.; Masetti, N.; GonzalezBuitrago, D. H.; Mouchet, M.; Tovmassian, G.

    2014-01-01

    The INTEGRAL and Swift hard X-ray surveys have identified a large number of new sources, among which many are proposed as Cataclysmic Variables (CVs). Here we present the first detailed study of three X-ray selected CVs, Swift J1907.3-2050, IGRJ12123-5802, and IGRJ19552+0044 based on XMM-Newton, Suzaku, Swift observations and ground based optical and archival nIR/IR data. Swift J1907.3-2050 is highly variable from hours to monthsyears at all wavelengths. No coherent X-ray pulses are detected but rather transient features. The X-ray spectrum reveals a multi-temperature optically thin plasma absorbed by complex neutral material and a soft black body component arising from a small area. These characteristics are remarkably similar to those observed in magnetic CVs. A supra-solar abundance of nitrogen could arise from nuclear processed material from the donor star. Swift J1907.3-2050 could be a peculiar magnetic CV with the second longest (20.82 h) binary period. IGRJ12123-5802 is variable in the X-rays on a timescale of approximately or greater than 7.6 h. No coherent pulsations are detected, but its spectral characteristics suggest that it could be a magnetic CV of the Intermediate Polar (IP) type. IGRJ19552+0044 shows two X-ray periods, approximately 1.38 h and approximately 1.69 h and a X-ray spectrum characterized by a multi-temperature plasma with little absorption.We derive a low accretion rate, consistent with a CV below the orbital period gap. Its peculiar nIR/IR spectrum suggests a contribution from cyclotron emission. It could either be a pre-polar or an IP with the lowest degree of asynchronism.

  1. The effects of the one-step replica symmetry breaking on the Sherrington-Kirkpatrick spin glass model in the presence of random field with a joint Gaussian probability density function for the exchange interactions and random fields

    NASA Astrophysics Data System (ADS)

    Hadjiagapiou, Ioannis A.; Velonakis, Ioannis N.

    2018-07-01

    The Sherrington-Kirkpatrick Ising spin glass model, in the presence of a random magnetic field, is investigated within the framework of the one-step replica symmetry breaking. The two random variables (exchange integral interaction Jij and random magnetic field hi) are drawn from a joint Gaussian probability density function characterized by a correlation coefficient ρ, assuming positive and negative values. The thermodynamic properties, the three different phase diagrams and system's parameters are computed with respect to the natural parameters of the joint Gaussian probability density function at non-zero and zero temperatures. The low temperature negative entropy controversy, a result of the replica symmetry approach, has been partly remedied in the current study, leading to a less negative result. In addition, the present system possesses two successive spin glass phase transitions with characteristic temperatures.

  2. XAFS Study of the Ferro- and Antiferromagnetic Binuclear Copper(II) Complexes of Azomethine Based Tridentate Ligands

    NASA Astrophysics Data System (ADS)

    Vlasenko, Valery G.; Vasilchenko, Igor S.; Pirog, Irina V.; Shestakova, Tatiana E.; Uraev, Ali I.; Burlov, Anatolii S.; Garnovskii, Alexander D.

    2007-02-01

    Binuclear copper complexes are known to be models for metalloenzymes containing copper active sites, and some of them are of considerable interest due to their magnetic and charge transfer properties. The reactions of the complex formation of bibasic tridentate heterocyclic imines with copper acetate leads to two types of chelates with mono deprotonated ligands and with totally deprotonated ligands. Cu K-edge EXAFS has been applied to determine the local structure around the metal center in copper(II) azomethine complexes with five tridentate ligands: 1-(salycilideneimino)- or 1-(2-tosylaminobenzilideneimino)-2-amino(oxo, thio)benzimidazoles. It has been found that some of the chelates studied are bridged binuclear copper complexes, and others are mononuclear complexes. The copper-copper interatomic distances in the bridged binuclear copper complexes were found to be 2.85-3.01 Å. Variable temperature magnetic susceptibility data indicate the presence of both ferromagnetic and antiferromagnetic interactions within the dimer, the former is dominating at low temperatures and the latter at high temperatures.

  3. Superconducting and magnetic properties of Bi 2Sr 2Ca 1- xY xCu 2O y (0≦ x≦1)

    NASA Astrophysics Data System (ADS)

    Yoshizaki, R.; Saito, Y.; Abe, Y.; Ikeda, H.

    1988-07-01

    The effect of substitution of Y atoms for Ca atoms has been studied in the Bi 2Sr 2Ca 1- xY xCu 2O y compound system. For x<0.5, superconductivity is observed and its fractional volume is reduced with increasing x, though the transition temperature of about 85 K is maintained. For x≧0.5 samples, the electrical resistivity behavior can be well described by the three-dimensional variable range hopping conduction, indicating that the system is essentially insulating. In this range of x, magnetic susceptibility shows spin-glass-type cusp at 13 K in the heating process after zero-field cooling and an enhanced cusp at 11 K in the field-cooling process. In the temperature range above about 150 K the Curie-Weiss dependence holds well with a positive paramagnetic Curie temperature, which increases to 40 K with increasing x in the insulating region.

  4. Sequential vortex hopping in an array of artificial pinning centers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keay, J. C.

    2010-02-24

    We use low-temperature magnetic force microscopy (MFM) to study the hopping motion of vortices in an array of artificial pinning centers (APCs). The array consists of nanoscale holes etched in a niobium thin film by Ar-ion sputtering through an anodic aluminum-oxide template. Variable-temperature magnetometry shows a transition temperature of 7.1 K and an enhancement of the magnetization up to the third matching field at 5 K. Using MFM with attractive and repulsive tip-vortex interaction, we measure the vortex-pinning strength and investigate the motion of individual vortices in the APC array. The depinning force for individual vortices at low field rangedmore » from 0.7 to 1.2 pN. The motion of individual vortices was found to be reproducible and consistent with movement between adjacent holes in the film. The movements are repeatable but the sequence of hops depends on the scan direction. This asymmetry in the motion indicates nonuniform local pinning, a consequence of array disorder and hole-size variation.« less

  5. 17O NMR Investigation of Water Structure and Dynamics

    PubMed Central

    Keeler, Eric G.; Michaelis, Vladimir K.; Griffin, Robert G.

    2017-01-01

    The structure and dynamics of the bound water in barium chlorate monohydrate were studied with 17O nuclear magnetic resonance (NMR) spectroscopy in samples that are stationary and spinning at the magic-angle in magnetic fields ranging from 14.1 to 21.1 T. 17O NMR parameters of the water were determined, and the effects of torsional oscillations of the water molecule on the 17O quadrupolar coupling constant (CQ) were delineated with variable temperature MAS NMR. With decreasing temperature and reduction of the librational motion, we observe an increase in the experimentally measured CQ explaining the discrepancy between experiments and predictions from density functional theory. In addition, at low temperatures and in the absence of 1H decoupling, we observe a well-resolved 1H–17O dipole splitting in the spectra, which provides information on the structure of the H2O molecule. The splitting arises because of the homogeneous nature of the coupling between the two 1H–17O dipoles and the 1H–1H dipole. PMID:27454747

  6. Positive magnetoresistance in Fe3Se4 nanowires

    NASA Astrophysics Data System (ADS)

    Li, D.; Jiang, J. J.; Liu, W.; Zhang, Z. D.

    2011-04-01

    We report the magnetotransport properties of Fe3Se4 nanowire arrays in anodic aluminum oxide (AAO) porous membrane. The temperature dependence of resistance of Fe3Se4 nanowires at a zero field shows thermal activated behavior below 295 K. The exponential relationship in resistance is consistent with the model of strong localization with variable-range hopping (VRH) for a finite one-dimensional wire. Resistance versus magnetic field curves below 100 K show small positive magnetoresistance (MR). The field dependencies of log[R(H)/R(0)] explain the positive MR as the effect of magnetic field on the VRH conduction.

  7. Dinuclear lanthanide complexes based on amino alcoholate ligands: Structure, magnetic and fluorescent properties

    NASA Astrophysics Data System (ADS)

    Sun, Gui-Fang; Zhang, Cong-Ming; Guo, Jian-Ni; Yang, Meng; Li, Li-Cun

    2017-05-01

    Two binuclear lanthanide complexes [Ln2(hfac)6(HL)2] (LnIII = Dy(1), Tb(2); hfac = hexafluoroacetylacetonate, HL = (R)-2-amino-2-phenylethanol) have been successfully obtained by using amino alcoholate ligand. In two complexes, the Ln(III) ions are bridged by two alkoxido groups from HL ligands, resulting in binuclear complexes. The variable-temperature magnetic susceptibility studies indicate that there exists ferromagnetic interaction between two Ln(III) ions. Frequency dependent out-of-phase signals are observed for complex 1, suggesting SMM type behavior. Complexes 1 and 2 display intensely characteristic luminescent properties.

  8. Quantum control of topological defects in magnetic systems

    NASA Astrophysics Data System (ADS)

    Takei, So; Mohseni, Masoud

    2018-02-01

    Energy-efficient classical information processing and storage based on topological defects in magnetic systems have been studied over the past decade. In this work, we introduce a class of macroscopic quantum devices in which a quantum state is stored in a topological defect of a magnetic insulator. We propose noninvasive methods to coherently control and read out the quantum state using ac magnetic fields and magnetic force microscopy, respectively. This macroscopic quantum spintronic device realizes the magnetic analog of the three-level rf-SQUID qubit and is built fully out of electrical insulators with no mobile electrons, thus eliminating decoherence due to the coupling of the quantum variable to an electronic continuum and energy dissipation due to Joule heating. For a domain wall size of 10-100 nm and reasonable material parameters, we estimate qubit operating temperatures in the range of 0.1-1 K, a decoherence time of about 0.01-1 μ s , and the number of Rabi flops within the coherence time scale in the range of 102-104 .

  9. Variable Viscosity Effects on Time Dependent Magnetic Nanofluid Flow past a Stretchable Rotating Plate

    NASA Astrophysics Data System (ADS)

    Ram, Paras; Joshi, Vimal Kumar; Sharma, Kushal; Walia, Mittu; Yadav, Nisha

    2016-01-01

    An attempt has been made to describe the effects of geothermal viscosity with viscous dissipation on the three dimensional time dependent boundary layer flow of magnetic nanofluids due to a stretchable rotating plate in the presence of a porous medium. The modelled governing time dependent equations are transformed a from boundary value problem to an initial value problem, and thereafter solved by a fourth order Runge-Kutta method in MATLAB with a shooting technique for the initial guess. The influences of mixed temperature, depth dependent viscosity, and the rotation strength parameter on the flow field and temperature field generated on the plate surface are investigated. The derived results show direct impact in the problems of heat transfer in high speed computer disks (Herrero et al. [1]) and turbine rotor systems (Owen and Rogers [2]).

  10. Transport and magnetic properties of Fe doped CaMnO3

    NASA Astrophysics Data System (ADS)

    Neetika; Das, A.; Dhiman, I.; Nigam, A. K.; Yadav, A. K.; Bhattacharyya, D.; Meena, S. S.

    2012-12-01

    The structural, transport, and magnetic properties of CaMn1-xFexO3-δ (0.0 ≤ x ≤ 0.3) have been studied by using resistivity, magnetization, and neutron powder diffraction techniques. The compounds are found to be isostructural and crystallize in GdFeO3-type orthorhombic structure (space group Pnma). With Fe doping, no structural change is observed. Mössbauer and paramagnetic susceptibility measurements show that Fe substitutes in 4+ valence state, and XANES measurements indicate the presence of mixed valence state of Mn. The compounds exhibit insulating behavior in the studied temperature range. The temperature dependence of resistivity is found to be described by small polaron model for x = 0 and variable range hopping model for x = 0.1. For higher x values, it follows a parallel combination resistance model. A small reduction in TN from 120 K to 100 K with increase in x is found. The magnetic structure changes from Gz-type collinear antiferromagnetic (AFM) structure for x = 0.0 to canted AFM structure GZFY-type for Fe doped compounds. The AFM component of the moment progressively decreases with x while FM component exhibits a maximum at x = 0.2.

  11. Spectral and Timing Investigations of Dwarf Novae Selected in Hard X-Rays

    NASA Technical Reports Server (NTRS)

    Thorstensen, John; Remillard, Ronald A.

    2000-01-01

    There are 9 dwarf novae (DN) among the 43 cataclysmic variables (accreting white dwarfs in close binary systems) that were detected during the HEAO-1 all-sky X-ray survey (1977-1979). On the other hand, there are roughly one hundred dwarf novae that are closer and/or optically brighter and yet they were not detected as hard X-ray sources. Two of the HEAO-1 DN show evidence for X-ray pulsations that imply strong magnetic fields on the white dwarf surface, and magnetic CVs are known to be strong X-ray sources. However, substantial flux in hard X-rays may be caused by non-magnetic effects, such as an optically thin boundary layer near a massive white dwarf. We proposed RXTE observations to measure plasma temperatures and to search for X-ray pulsations. The observations would distinguish whether these DN belong to one of (rare) magnetic subclasses. For those that do not show pulsations, the observations support efforts to define empirical relations between X-ray temperature, the accretion rate, and the mass of the white dwarf. The latter is determined via optical studies of the dynamics of the binary constituents.

  12. Structure, magnetism and electronic properties in 3d-5d based double perovskite ({Sr_{1-x}} Y x )2FeIrO6

    NASA Astrophysics Data System (ADS)

    Kharkwal, K. C.; Pramanik, A. K.

    2017-12-01

    The 3d-5d based double perovskites are of current interest as they provide model systems to study the interplay between electronic correlation (U) and spin-orbit coupling (SOC). Here, we report detailed structural, magnetic and transport properties of doped double perovskite material (Sr1-x Y x )2FeIrO6 with x ≤slant 0.2 . With substitution of Y, the system retains its original crystal structure but structural parameters change with x in nonmonotonic fashion. The magnetization data for Sr2FeIrO6 show antiferromagnetic type magnetic transition around 45 K however, a close inspection of the data indicates a weak magnetic phase transition around 120 K. No change of structural symmetry has been observed down to low temperature, although the lattice parameters show sudden changes around the magnetic transitions. Sr2FeIrO6 shows an insulating behavior over the whole temperature range, which nevertheless does not change with Y substitution. The nature of charge conduction is found to follow thermally activated Mott’s variable range hopping and power law behavior for parent and doped samples, respectively. Interestingly, evolution of structural, magnetic and transport behavior in (Sr1-x Y x )2FeIrO6 is observed to reverse with x > 0.1 , which is believed to arise due to a change in the transition metal ionic state.

  13. Structure, magnetism and electronic properties in 3d-5d based double perovskite ([Formula: see text]Y x )2FeIrO6.

    PubMed

    Kharkwal, K C; Pramanik, A K

    2017-11-13

    The 3d-5d based double perovskites are of current interest as they provide model systems to study the interplay between electronic correlation (U) and spin-orbit coupling (SOC). Here, we report detailed structural, magnetic and transport properties of doped double perovskite material ([Formula: see text]Y x ) 2 FeIrO 6 with [Formula: see text]. With substitution of Y, the system retains its original crystal structure but structural parameters change with x in nonmonotonic fashion. The magnetization data for Sr 2 FeIrO 6 show antiferromagnetic type magnetic transition around 45 K; however, a close inspection of the data indicates a weak magnetic phase transition around 120 K. No change of structural symmetry has been observed down to low temperature, although the lattice parameters show sudden changes around the magnetic transitions. Sr 2 FeIrO 6 shows an insulating behavior over the whole temperature range, which nevertheless does not change with Y substitution. The nature of charge conduction is found to follow thermally activated Mott's variable range hopping and power law behavior for parent and doped samples, respectively. Interestingly, evolution of structural, magnetic and transport behavior in ([Formula: see text]Y x ) 2 FeIrO 6 is observed to reverse with [Formula: see text], which is believed to arise due to a change in the transition metal ionic state.

  14. Development of a low loss magnetic composite utilizing amorphous metal flake. Second semi-annual progress report, March 19-September 18, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-10-01

    Composite specimens of amorphous metal flakes have been made using several different binders and several different compaction parameters. The binders have included epoxies, anaerobic adhesives, polyimides, polyamideimides, polyeherimides, and polyesterimides. Compaction variables included the time, temperature and pressure of compaction; flake size, and flake alignment. The best results were achieved using a polyetherimide and aligned flake. Packing factors of 87% were achieved in specimens which also exhibited high mechanical integrity and the ability to withstand a high temperature anneal.

  15. New thermodynamics of entropy generation minimization with nonlinear thermal radiation and nanomaterials

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Khan, M. Ijaz; Qayyum, Sumaira; Alsaedi, A.; Khan, M. Imran

    2018-03-01

    This research addressed entropy generation for MHD stagnation point flow of viscous nanofluid over a stretching surface. Characteristics of heat transport are analyzed through nonlinear radiation and heat generation/absorption. Nanoliquid features for Brownian moment and thermophoresis have been considered. Fluid in the presence of constant applied inclined magnetic field is considered. Flow problem is mathematically modeled and governing expressions are changed into nonlinear ordinary ones by utilizing appropriate transformations. The effects of pertinent variables on velocity, nanoparticle concentration and temperature are discussed graphically. Furthermore Brownian motion and thermophoresis effects on entropy generation and Bejan number have been examined. Total entropy generation is inspected through various flow variables. Consideration is mainly given to the convergence process. Velocity, temperature and mass gradients at the surface of sheet are calculated numerically.

  16. Simultaneous effects of coagulation and variable magnetic field on peristaltically induced motion of Jeffrey nanofluid containing gyrotactic microorganism.

    PubMed

    Bhatti, M M; Zeeshan, A; Ellahi, R

    2017-03-01

    In this article, simultaneous effects of coagulation (blood clot) and variable magnetic field on peristaltically induced motion of non-Newtonian Jeffrey nanofluid containing gyrotactic microorganism through an annulus have been studied. The effects of an endoscope also taken into consideration in our study as a special case. The governing flow problem is simplified by taking the approximation of long wavelength and creeping flow regime. The resulting highly coupled differential equations are solved analytically with the help of perturbation method and series solution have been presented up to second order approximation. The impact of all the sundry parameters is discussed for velocity profile, temperature profile, nanoparticle concentration profile, motile microorganism density profile, pressure rise and friction forces. Moreover, numerical integration is also used to evaluate the expressions for pressure rise and friction forces for outer tube and inner tube. It is found that velocity of a fluid diminishes near the walls due to the increment in the height of clot. However, the influence of magnetic field depicts opposite behavior near the walls. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. A high-resolution frequency variable experimental setup for studying ferrofluids used in magnetic hyperthermia.

    PubMed

    Mazon, E E; Villa-Martínez, E; Hernández-Sámano, A; Córdova-Fraga, T; Ibarra-Sánchez, J J; Calleja, H A; Leyva Cruz, J A; Barrera, A; Estrada, J C; Paz, J A; Quintero, L H; Cano, M E

    2017-08-01

    A scanning system for specific absorption rate of ferrofluids with superparamagnetic nanoparticles is presented in this study. The system contains an induction heating device designed and built with a resonant inverter in order to generate magnetic field amplitudes up to 38 mT, over the frequency band 180-525 kHz. Its resonant circuit involves a variable capacitor with 1 nF of capacitance steps to easily select the desired frequency, reaching from 0.3 kHz/nF up to 5 kHz/nF of resolution. The device performance is characterized in order to compare with the theoretical predictions of frequency and amplitude, showing a good agreement with the resonant inverters theory. Additionally, the setup is tested using a synthetic iron oxide with 10 ± 1 nm diameter suspended in liquid glycerol, with concentrations at 1%. Meanwhile, the temperature rise is measured to determine the specific absorption rate and calculate the dissipated power density for each f. This device is a suitable alternative to studying ferrofluids and analyzes the dependence of the power absorption density with the magnetic field intensity and frequency.

  18. Low-temperature magnetic properties of greigite (Fe3S4)

    NASA Astrophysics Data System (ADS)

    Chang, Liao; Roberts, Andrew P.; Rowan, Christopher J.; Tang, Yan; Pruner, Petr; Chen, Qianwang; Horng, Chorng-Shern

    2009-01-01

    We provide comprehensive low-temperature magnetic results for greigite (Fe3S4) across the spectrum from superparamagnetic (SP) to multidomain (MD) behavior. It is well known that greigite has no low-temperature magnetic transitions, but we also document that it has strong domain-state dependence of magnetic properties at low temperatures. Blocking of SP grains and increasing thermal stability with decreasing temperature is apparent in many magnetic measurements. Thermally stable single-domain greigite undergoes little change in magnetic properties below room temperature. For pseudo-single-domain (PSD)/MD greigite, hysteresis properties and first-order reversal curve diagrams exhibit minor changes at low temperatures, while remanence continuously demagnetizes because of progressive domain wall unpinning. The low-temperature demagnetization is grain size dependent for PSD/MD greigite, with coarser grains undergoing larger remanence loss. AC susceptibility measurements indicate consistent blocking temperatures (TB) for all synthetic and natural greigite samples, which are probably associated with surficial oxidation. Low-temperature magnetic analysis provides much more information about magnetic mineralogy and domain state than room temperature measurements and enables discrimination of individual components within mixed magnetic mineral assemblages. Low-temperature rock magnetometry is therefore a useful tool for studying magnetic mineralogy and granulometry of greigite-bearing sediments.

  19. Direct observation of the magnetic domain evolution stimulated by temperature and magnetic field in PrMnGeSi alloy

    NASA Astrophysics Data System (ADS)

    Zuo, S. L.; Zhang, B.; Qiao, K. M.; Peng, L. C.; Li, R.; Xiong, J. F.; Zhang, Y.; Zhao, X.; Liu, D.; Zhao, T. Y.; Sun, J. R.; Hu, F. X.; Zhang, Y.; Shen, B. G.

    2018-05-01

    The magnetic domain evolution behavior under external field stimuli of temperature and magnetic field in PrMn2Ge0.4Si1.6 compound is investigated using Lorentz transmission electron microscopy. A spontaneous 180° magnetic domain is observed at room temperature and it changes with temperature. Dynamic magnetization process is related to the rotation of magnetic moments, resulting in the transforming of magnetic domains from 180° type to a uniform ferromagnetic state with almost no pinning effects under the in-plane magnetic field at room temperature. X-ray powder diffraction is performed on PrMn2Ge0.4Si1.6 at different temperatures to study the temperature dependence of crystal structure and lattice parameter.

  20. Magnetic properties of serpentinized peridotites from the Zedong ophiolite, Yarlung-Zangbo suture zone, SE Tibet

    NASA Astrophysics Data System (ADS)

    Li, Z.; Zheng, J.; Moskowitz, B. M.; Xiong, Q.; Liu, Q.

    2017-12-01

    Serpentinized mantle peridotites are widely supposed to be significant sources of the magnetic, gravity and seismic anomalies in mid-oceanic ridges, forearcs and suture zones. However, the relationship between the magnetic properties of variably serpentinized peridotites and the serpentinization process is still under debate. Ophiolite outcrops commonly comprise peridotites in different stages of serpentinization and these ophiolitic peridotites are ideal to investigate the magnetic signatures of suture zones. The Zedong ophiolite locates in the eastern part of the Yarlung-Zangbo suture zone, SE Tibet (China), and the peridotite massif represents the remnants of the Neo-Tethyan lithospheric mantle. The harzburgite and lherzolite samples show densities between 3.316 and 2.593 g cm-3, and vary from the freshest to >90% serpentinized peridotites. The magnetic susceptibility curves from room temperature to 700ºC mainly show the Curie temperatures of 585ºC for pure magnetite. The low-temperature (20-300 K) demagnetization curves show the Verwey transitions at 115-125 K, suggesting that magnetite is also the dominant remanence-carrying phase. The hysteresis data of the peridotites fall in the region of pseudo-single-domain (PSD) and follow the theoretical trends for mixtures of single domain (SD) and multidomain (MD) magnetite. The first-order reversal curve (FORC) diagrams suggest that the magnetite is dominantly interacting SD + PSD particles for S < 40%, and SD + PSD + MD particles for the S > 40% serpentinized samples. The susceptibility and saturation magnetization of the Zedong peridotites range from 0.9 to 30.8 × 10‒3 (SI) and 14.1 to 1318 × 10‒3 Am2 kg‒1, respectively, and both show consistent trends with increasing degrees of serpentinization. The S < 40% samples are weakly to moderately magnetic with susceptibilities increasing from 0.001 to 0.02 (SI) and follow the low-temperature serpentinization of ophiolitic peridotites, whereas the S > 40% peridotites have higher susceptibilities of 0.02-0.03 (SI) and fall in the region of abyssal peridotites. Our results suggest that the Zedong ophiolitic peridotites probably experienced a rapid production of magnetite with little or no Fe-rich brucite during the serpentinization process.

  1. From nanoelectronics to nano-spintronics.

    PubMed

    Wang, Kang L; Ovchinnikov, Igor; Xiu, Faxian; Khitun, Alex; Bao, Ming

    2011-01-01

    Today's electronics uses electron charge as a state variable for logic and computing operation, which is often represented as voltage or current. In this representation of state variable, carriers in electronic devices behave independently even to a few and single electron cases. As the scaling continues to reduce the physical feature size and to increase the functional throughput, two most outstanding limitations and major challenges, among others, are power dissipation and variability as identified by ITRS. This paper presents the expose, in that collective phenomena, e.g., spintronics using appropriate order parameters of magnetic moment as a state variable may be considered favorably for a new room-temperature information processing paradigm. A comparison between electronics and spintronics in terms of variability, quantum and thermal fluctuations will be presented. It shows that the benefits of the scalability to smaller sizes in the case of spintronics (nanomagnetics) include a much reduced variability problem as compared with today's electronics. In addition, another advantage of using nanomagnets is the possibility of constructing nonvolatile logics, which allow for immense power savings during system standby. However, most of devices with magnetic moment usually use current to drive the devices and consequently, power dissipation is a major issue. We will discuss approaches of using electric-field control of ferromagnetism in dilute magnetic semiconductor (DMS) and metallic ferromagnetic materials. With the DMSs, carrier-mediated transition from paramagnetic to ferromagnetic phases make possible to have devices work very much like field effect transistor, plus the non-volatility afforded by ferromagnetism. Then we will describe new possibilities of the use of electric field for metallic materials and devices: Spin wave devices with multiferroics materials. We will also further describe a potential new method of electric field control of metallic ferromagnetism via field effect of the Thomas Fermi surface layer.

  2. A whole rock absolute paleointensity determination of dacites from the Duffer Formation (ca. 3.467 Ga) of the Pilbara Craton, Australia: An impossible task?

    NASA Astrophysics Data System (ADS)

    Herrero-Bervera, Emilio; Krasa, David; Van Kranendonk, Martin J.

    2016-09-01

    We have conducted a whole-rock type magnetic and absolute paleointensity determination of the red dacite of the Duffer Formation from the Pilbara Craton, Australia. The age of the dated rock unit is 3467 ± 5 Ma (95% confidence). Vector analyses results of the step-wise alternating field demagnetization (NRM up to 100 mT) and thermal demagnetization (from NRM up to 650 °C) yield three components of magnetization. Curie point determinations indicate three characteristic temperatures, one at 150-200 °C, a second one at ∼450 °C and a third one at ∼580 °C. Magnetic grain-size experiments were performed on small specimens with a variable field translation balance (VFTB). The coercivity of remanence (Hcr) suggests that the NRM is carried by low-coercivity grains that are associated with a magnetite fraction as is shown by the high-temperature component with blocking temperatures above 450 °C and up to at least 580 °C. The ratios of the hysteresis parameters plotted as a modified Day diagram show that most grain sizes are scattered within the Single Domain (SD) and the Superparamagnetic and Single Domain SP-SD domain ranges. In addition to the rock magnetic experiments we have performed absolute paleointensity experiments on the samples using the modified Thellier-Coe double heating method to determine the paleointensities. Partial-TRM (p-TRM) checks were performed systematically to document magnetomineralogical changes during heating. The temperature was incremented by steps of 50 °C between room temperature and 590 °C. The paleointensity determinations were obtained from the slope of Arai diagrams. Our paleointensity results indicate that the paleofield obtained was ∼6.4 ± 0.68 (N = 11) micro-Teslas with a Virtual Dipole Moment (VDM) of 1.51 ± 0.81 × 1022 Am2, from a medium-to high-temperature component ranging from 300 to 590 °C that has been interpreted to be the oldest magnetization yet recorded in paleomagnetic studies of the Duffer Formation. The absolute paleointensity is relatively low and we interpret this low-paleofield bias a result of a thermochemical remanent magnetization (TCRM) process that indicates a possible underestimate of the paleofield by a factor of four for the red dacite of the Duffer Fm.

  3. Flows, Fields, and Forces in the Mars-Solar Wind Interaction

    NASA Astrophysics Data System (ADS)

    Halekas, J. S.; Brain, D. A.; Luhmann, J. G.; DiBraccio, G. A.; Ruhunusiri, S.; Harada, Y.; Fowler, C. M.; Mitchell, D. L.; Connerney, J. E. P.; Espley, J. R.; Mazelle, C.; Jakosky, B. M.

    2017-11-01

    We utilize suprathermal ion and magnetic field measurements from the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, organized by the upstream magnetic field, to investigate the morphology and variability of flows, fields, and forces in the Mars-solar wind interaction. We employ a combination of case studies and statistical investigations to characterize the interaction in both quasi-parallel and quasi-perpendicular regions and under high and low solar wind Mach number conditions. For the first time, we include a detailed investigation of suprathermal ion temperature and anisotropy. We find that the observed magnetic fields and suprathermal ion moments in the magnetosheath, bow shock, and upstream regions have observable asymmetries controlled by the interplanetary magnetic field, with particularly large asymmetries found in the ion parallel temperature and anisotropy. The greatest temperature anisotropies occur in quasi-perpendicular regions of the magnetosheath and under low Mach number conditions. These results have implications for the growth and evolution of wave-particle instabilities and their role in energy transport and dissipation. We utilize the measured parameters to estimate the average ion pressure gradient, J × B, and v × B macroscopic force terms. The pressure gradient force maintains nearly cylindrical symmetry, while the J × B force has larger asymmetries and varies in magnitude in comparison to the pressure gradient force. The v × B force felt by newly produced planetary ions exceeds the other forces in magnitude in the magnetosheath and upstream regions for all solar wind conditions.

  4. Influence of longitudinal spin fluctuations on the phase transition features in chiral magnets

    NASA Astrophysics Data System (ADS)

    Belemuk, A. M.; Stishov, S. M.

    2018-04-01

    Using the classical Monte Carlo calculations, we investigate the effects of longitudinal spin fluctuations on the helimagnetic transition in a Heisenberg magnet with the Dzyaloshinskii-Moriya interaction. We use variable spin amplitudes in the framework of the spin-lattice Hamiltonian. It is this kind of fluctuations that naturally occur in an itinerant system. We show that the basic features of the helical phase transition are not changed much by the longitudinal spin fluctuations though the transition temperature Tc and the fluctuation hump seen in specific heat at T >Tc is significantly affected. We report thermodynamic and structural effects of these fluctuations. By increasing the system size in the Monte Carlo modeling, we are able to reproduce the ring shape scattering intensity above the helimagnetic transition temperature Tc, which transforms into the spiral spots seen below Tc in the neutron scattering experiments.

  5. Superparamagnetic properties of carbon nanotubes filled with NiFe{sub 2}O{sub 4} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stojak Repa, K.; Israel, D.; Phan, M. H., E-mail: phanm@usf.edu, E-mail: sharihar@usf.edu

    2015-05-07

    Multi walled carbon nanotubes (MWCNTs) were successfully synthesized using custom-made 80 nm pore-size alumina templates, and were uniformly filled with nickel ferrite (NFO) nanoparticles of 7.4 ± 1.7 nm diameter using a novel magnetically assisted capillary action method. X-ray diffraction confirmed the inverse spinel phase for the synthesized NFO. Transmission electron microscopy confirms spherical NFO nanoparticles with an average diameter of 7.4 nm inside MWCNTs. Magnetometry indicates that both NFO and NFO-filled MWCNTs present a blocking temperature around 52 K, with similar superparamagnetic-like behavior, and weak dipolar interactions, giving rise to a super-spin-glass-like behavior at low temperatures. These properties along with the uniformity of sub-100 nm structuresmore » and the possibility of tunable magnetic response in variable diameter carbon nanotubes make them ideal for advanced biomedical and microwave applications.« less

  6. MAVEN Observations of Dayside Peak Electron Densities in the Ionosphere of Mars

    NASA Astrophysics Data System (ADS)

    Vogt, M. F.; Withers, P.; Andersson, L.; Mahaffy, P. R.; Benna, M.; Elrod, M. K.; Connerney, J. E. P.; Espley, J. R.; Eparvier, F. G.; Jakosky, B. M.

    2016-12-01

    The peak electron density in the dayside Martian ionosphere is a valuable diagnostic of the state of the ionosphere. Its dependence on factors like the solar zenith angle, ionizing solar irradiance, neutral scale height, and electron temperature has been well studied. The MAVEN spacecraft's September 2015 "deep dip" orbits, in which the orbital periapsis is lowered to 120 km, provided our first opportunity since Viking to sample in situ a complete dayside electron density profiles including the main peak, and the first observations with contemporaneous comprehensive measurements of the local plasma and magnetic field properties. We have analyzed the peak electron density measurements from the MAVEN deep dip orbits and will discuss their variability with various ionospheric properties, including the proximity to regions of large crustal magnetic fields, and external drivers. We will also present observations of the electron temperature and atmospheric neutral and ion composition at the altitude of the peak electron density.

  7. Magnetoreresistance of carbon nanotube-polypyrrole composite yarns

    NASA Astrophysics Data System (ADS)

    Ghanbari, R.; Ghorbani, S. R.; Arabi, H.; Foroughi, J.

    2018-05-01

    Three types of samples, carbon nanotube yarn and carbon nanotube-polypyrrole composite yarns had been investigated by measurement of the electrical conductivity as a function of temperature and magnetic field. The conductivity was well explained by 3D Mott variable range hopping (VRH) law at T < 100 K. Both positive and negative magnetoresistance (MR) were observed by increasing magnetic field. The MR data were analyzed based a theoretical model. A quadratic positive and negative MR was observed for three samples. It was found that the localization length decreases with applied magnetic field while the density of states increases. The increasing of the density of states induces increasing the number of available energy states for hopping. Thus the electron hopping probability increases in between sites with the shorter distance that results to small the average hopping length.

  8. On the Origins of the Intercorrelations Between Solar Wind Variables

    NASA Astrophysics Data System (ADS)

    Borovsky, Joseph E.

    2018-01-01

    It is well known that the time variations of the diverse solar wind variables at 1 AU (e.g., solar wind speed, density, proton temperature, electron temperature, magnetic field strength, specific entropy, heavy-ion charge-state densities, and electron strahl intensity) are highly intercorrelated with each other. In correlation studies of the driving of the Earth's magnetosphere-ionosphere-thermosphere system by the solar wind, these solar wind intercorrelations make determining cause and effect very difficult. In this report analyses of solar wind spacecraft measurements and compressible-fluid computer simulations are used to study the origins of the solar wind intercorrelations. Two causes are found: (1) synchronized changes in the values of the solar wind variables as the plasma types of the solar wind are switched by solar rotation and (2) dynamic interactions (compressions and rarefactions) in the solar wind between the Sun and the Earth. These findings provide an incremental increase in the understanding of how the Sun-Earth system operates.

  9. Do heat and moisture exchangers in the anaesthesia breathing circuit preserve body temperature in dogs undergoing anaesthesia for magnetic resonance imaging?

    PubMed

    Khenissi, Latifa; Covey-Crump, Gwen; Knowles, Toby G; Murrell, Joanna

    2017-05-01

    To investigate whether the use of a heat and moisture exchanger (HME) preserves body temperature in dogs weighing <10 kg anaesthetised for magnetic resonance imaging (MRI). Prospective, randomised, clinical trial. Thirty-one client-owned dogs. Dogs were assigned randomly to a treatment group [HME (n = 16) or no HME (n = 15)]. Dogs were pseudorandomised according to the premedication they were administered, either dexmedetomidine or no dexmedetomidine. Induction agents were not standardised. General anaesthesia was maintained with isoflurane vaporised in 100% oxygen delivered using a T-piece and a fresh gas flow of 600 mL kg -1 minute -1 . Rectal temperature was measured before premedication (T1), after induction (T2), before moving to the MRI unit (T3) and at the end of the MRI scan (T4). Ambient temperatures were measured in the induction room, outside and inside the MRI unit. Data were analysed using a general linear model with T4 as the outcome variable. Linear correlations were performed between T1, T2, T3 and T4, and variables that predicted T4 were investigated. Sex, age and body mass were not significantly different between groups. There were no significant differences in rectal temperature between groups at any time point (group with HME at the end of MRI = 36.3 ± 1.1 °C; group with no HME at the end of MRI = 36.2 ± 1.4 °C) but at the end of the MRI, dogs administered dexmedetomidine (36.6 ± 0.7 °C) had a higher rectal temperature compared with dogs not administered dexmedetomidine (35.9 ± 1.6 °C) for premedication. Rectal temperature varied directly with ambient temperature in MRI scanning room and inversely with anaesthetic duration. Using an HME did not alter body temperature in dogs weighing <10 kg undergoing an MRI, but including dexmedetomidine in the premedication regimen seemed to preserve the body temperature during anaesthesia. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  10. Determination of dosimetric and kinetic features of gamma irradiated solid calcium ascorbate dihydrate using ESR spectroscopy

    NASA Astrophysics Data System (ADS)

    Tuner, H.

    2013-01-01

    Effects of gamma radiation on solid calcium ascorbate dihydrate were studied using electron spin resonance (ESR) spectroscopy. Irradiated samples were found to present two specific ESR lines with shoulder at low and high magnetic field sides. Structural and kinetic features of the radicalic species responsible for experimental ESR spectrum were explored through the variations of the signal intensities with applied microwave power, variable temperature, high-temperature annealing and room temperature storage time studies. Dosimetric potential of the sample was also determined using spectrum area and measured signal intensity measurements. It was concluded that three radicals with different spectroscopic and kinetic features were produced upon gamma irradiation.

  11. Spin-glass and variable range hopping quantum interference magnetoresistance in FeSr2Y1.3Ce0.7Cu2O10-x

    NASA Astrophysics Data System (ADS)

    Sambale, S.; Williams, G. V. M.; Stephen, J.; Chong, S. V.

    2014-12-01

    Electronic transport and magnetic measurements have been made on FeSr2Y1.3Ce0.7Cu2O10-x. We observe a spin-glass at ˜23 K and a magnetoresistance that reaches -22% at 8 T. The magnetoresistance is due to variable range hopping quantum interference where at low temperatures each hop is over a large number of scatterers. This magnetoresistance is negative at and above 5 K and can be described by the Nguen, Spivak, and Shklovskii (NSS) model. However, there is an increasingly positive contribution to the magnetoresistance for temperatures below 5 K that may be due to scattering from localized free spins during each hop that is not accounted for in the NSS model.

  12. Mathematical Model of the Processes of Heat and Mass Transfer and Diffusion of the Magnetic Field in an Induction Furnace

    NASA Astrophysics Data System (ADS)

    Perminov, A. V.; Nikulin, I. L.

    2016-03-01

    We propose a mathematical model describing the motion of a metal melt in a variable inhomogeneous magnetic field of a short solenoid. In formulating the problem, we made estimates and showed the possibility of splitting the complete magnetohydrodynamical problem into two subproblems: a magnetic field diffusion problem where the distributions of the external and induced magnetic fields and currents are determined, and a heat and mass transfer problem with known distributions of volume sources of heat and forces. The dimensionless form of the heat and mass transfer equation was obtained with the use of averaging and multiscale methods, which permitted writing and solving separately the equations for averaged flows and temperature fields and their oscillations. For the heat and mass transfer problem, the boundary conditions for a real technological facility are discussed. The dimensionless form of the magnetic field diffusion equation is presented, and the experimental computational procedure and results of the numerical simulation of the magnetic field structure in the melt for various magnetic Reynolds numbers are described. The extreme dependence of heat release on the magnetic Reynolds number has been interpreted.

  13. Design of a temperature measurement and feedback control system based on an improved magnetic nanoparticle thermometer

    NASA Astrophysics Data System (ADS)

    Du, Zhongzhou; Sun, Yi; Liu, Jie; Su, Rijian; Yang, Ming; Li, Nana; Gan, Yong; Ye, Na

    2018-04-01

    Magnetic fluid hyperthermia, as a novel cancer treatment, requires precise temperature control at 315 K-319 K (42 °C-46 °C). However, the traditional temperature measurement method cannot obtain the real-time temperature in vivo, resulting in a lack of temperature feedback during the heating process. In this study, the feasibility of temperature measurement and feedback control using magnetic nanoparticles is proposed and demonstrated. This technique could be applied in hyperthermia. Specifically, the triangular-wave temperature measurement method is improved by reconstructing the original magnetization response of magnetic nanoparticles based on a digital phase-sensitive detection algorithm. The standard deviation of the temperature in the magnetic nanoparticle thermometer is about 0.1256 K. In experiments, the temperature fluctuation of the temperature measurement and feedback control system using magnetic nanoparticles is less than 0.5 K at the expected temperature of 315 K. This shows the feasibility of the temperature measurement method for temperature control. The method provides a new solution for temperature measurement and feedback control in hyperthermia.

  14. Guideway structural design and power/propulsion/braking in relation to guideways. Volume 3: Appendix B: Maglev guideway structural design

    NASA Astrophysics Data System (ADS)

    Falkowski, K. M.; Key, F. S.; Kuznetsov, S. B.

    1993-01-01

    This final report summarizes work completed in the investigation of the power, propulsion, and braking systems for five different electrodynamic (EDS) Maglev configurations. System requirements and recommendations, including a cost analysis, are determined for each configuration. The analysis considers variations in vehicle length, acceleration'/deceleration criteria, airgap clearance, and maximum propulsion thrust. Five different guideway configurations have been considered, each of which is based on air-core magnets made from low-temperature superconductors (LTSC) - (NbTi, Nb3Sn) or the newer high-T(sub c) ceramic superconductors (HTSCs). The material requirements and cost of the guideway electrical components were studied as a function of the energy conversion efficiency, the stator block length, armature current density, stator temperature rise, and other parameters. The propulsion design focused on a dual-parallel, linear synchronous motor (LSM) with thrust modulation achieved by applying a variable frequency and voltage along the guideway. Critical design parameters were estimated using a three-dimensional computer model for the inductances, magnetic fields, and electromagnetic forces. The study also addressed the conceptual design of the magnet, cryostat, and refrigeration subsystems. Magnetic fields, forces, AC losses, superconductor stability, heat loading, and refrigeration demands were analyzed; a specific design shows limits of passive shielding.

  15. Transverse transport of Fe3O4-H2O with viscosity variation under pure internal heating

    NASA Astrophysics Data System (ADS)

    Mehmood, Rashid; Tabassum, R.

    2018-05-01

    Smart fluids are the fluids whose properties can be changed by applying an electric or a magnetic field. Such type of fluid finds tremendous applications in electronic devices, semi-active dampers, magnetic resonance imaging, in space craft propulsion and many more. This communication addresses water based magneto ferrofluid striking at a stretching surface in an oblique manner. In order to present physically realistic analysis, viscosity is assumed to be dependent upon temperature as well as volume fraction of magnetite nanoparticle. The flow governing problem is altered into nonlinear coupled system of ordinary differential equations via scaling transformation which is then solved numerically by means of Runge-kutta Fehlberg scheme. Impact of sundry parameters such as magnetic field parameter, nanoparticle volume fraction, heat generation parameter and variable viscosity parameter on velocity and temperature profile of magneto ferrofluid is presented graphically and discussed in a physical manner. Practical measures of interest namely skin friction and heat flux at the surface are computed. Streamline patterns are traced out to examine the flow pattern. It is found that skin friction and rate of heat transfer at the wall enhances by strengthening the applied magnetic field. Local heat flux can also be enhanced with increasing the volume fraction of magnetite nanoparticles.

  16. Magnetic heat pumping

    NASA Technical Reports Server (NTRS)

    Brown, G. V. (Inventor)

    1978-01-01

    A ferromagnetic or ferrimagnetic element is used to control the temperature and applied magnetic field of the element to cause the state of the element as represented on a temperature-magnetic entropy diagram to repeatedly traverse a loop. The loop may have a first portion of concurrent substantially isothermal or constant temperature and increasing applied magnetic field, a second portion of lowering temperature and constant applied magnetic field, a third portion of isothermal and decreasing applied magnetic field, and a fourth portion of increasing temperature and constant applied magnetic field. Other loops may be four-sided, with two isotherms and two adiabats. Preferably, a regenerator is used to enhance desired cooling or heating effects, with varied magnetic fields, or varying temperatures including three-sided figures traversed by the representative point.

  17. Rock magnetic and geochemical evidence for authigenic magnetite formation via iron reduction in coal-bearing sediments offshore Shimokita Peninsula, Japan (IODP Site C0020)

    NASA Astrophysics Data System (ADS)

    Phillips, Stephen C.; Johnson, Joel E.; Clyde, William C.; Setera, Jacob B.; Maxbauer, Daniel P.; Severmann, Silke; Riedinger, Natascha

    2017-06-01

    Sediments recovered at Integrated Ocean Drilling Program (IODP) Site C0020, in a fore-arc basin offshore Shimokita Peninsula, Japan, include numerous coal beds (0.3-7 m thick) that are associated with a transition from a terrestrial to marine depositional environment. Within the primary coal-bearing unit (˜2 km depth below seafloor) there are sharp increases in magnetic susceptibility in close proximity to the coal beds, superimposed on a background of consistently low magnetic susceptibility throughout the remainder of the recovered stratigraphic sequence. We investigate the source of the magnetic susceptibility variability and characterize the dominant magnetic assemblage throughout the entire cored record, using isothermal remanent magnetization (IRM), thermal demagnetization, anhysteretic remanent magnetization (ARM), iron speciation, and iron isotopes. Magnetic mineral assemblages in all samples are dominated by very low-coercivity minerals with unblocking temperatures between 350 and 580°C that are interpreted to be magnetite. Samples with lower unblocking temperatures (300-400°C), higher ARM, higher-frequency dependence, and isotopically heavy δ56Fe across a range of lithologies in the coal-bearing unit (between 1925 and 1995 mbsf) indicate the presence of fine-grained authigenic magnetite. We suggest that iron-reducing bacteria facilitated the production of fine-grained magnetite within the coal-bearing unit during burial and interaction with pore waters. The coal/peat acted as a source of electron donors during burial, mediated by humic acids, to supply iron-reducing bacteria in the surrounding siliciclastic sediments. These results indicate that coal-bearing sediments may play an important role in iron cycling in subsiding peat environments and if buried deeply through time, within the subsequent deep biosphere.

  18. Direct observation of temperature-driven magnetic symmetry transitions by vectorial resolved MOKE magnetometry

    NASA Astrophysics Data System (ADS)

    Cuñado, Jose Luis F.; Pedrosa, Javier; Ajejas, Fernando; Perna, Paolo; Miranda, Rodolfo; Camarero, Julio

    2017-10-01

    Angle- and temperature-dependent vectorial magnetometry measurements are necessary to disentangle the effective magnetic symmetry in magnetic nanostructures. Here we present a detailed study on an Fe(1 0 0) thin film system with competing collinear biaxial (four-fold symmetry) and uniaxial (two-fold) magnetic anisotropies, carried out with our recently developed full angular/broad temperature range/vectorial-resolved magneto-optical Kerr effect magnetometer, named TRISTAN. The data give direct views on the angular and temperature dependence of the magnetization reversal pathways, from which characteristic axes, remanences, critical fields, domain wall types, and effective magnetic symmetry are obtained. In particular, although the remanence shows four-fold angular symmetry for all investigated temperatures (15 K-400 K), the critical fields show strong temperature and angular dependencies and the reversal mechanism changes for specific angles at a given (angle-dependent) critical temperature, showing signatures of an additional collinear two-fold symmetry. This symmetry-breaking is more relevant as temperature increases to room temperature. It originates from the competition between two anisotropy contributions with different symmetry and temperature evolution. The results highlight the importance of combining temperature and angular studies, and the need to look at different magnetic parameters to unravel the underlying magnetic symmetries and temperature evolutions of the symmetry-breaking effects in magnetic nanostructures.

  19. First results of transcritical magnetized collisionless shock studies on MSX

    NASA Astrophysics Data System (ADS)

    Weber, T. E.; Smith, R. J.; Hutchinson, T. M.; Taylor, S. F.; Hsu, S. C.

    2014-10-01

    Magnetized collisionless shocks exhibit transitional length and time scales much shorter than can be created through collisional processes. They are common throughout the cosmos, but have historically proven difficult to create in the laboratory. The Magnetized Shock Experiment (MSX) at LANL produces super-Alfvénic shocks through the acceleration and subsequent stagnation of Field Reversed Configuration (FRC) plasmoids against a strong magnetic mirror and flux-conserving vacuum boundary. Plasma flows have been produced with sonic and Alfvén Mach numbers up to ~10 over a wide range of plasma beta with embedded perpendicular, oblique, and parallel magnetic field. Macroscopic ion skin-depth and long ion-gyroperiod enable diagnostic access to relevant shock physics using common methods. Variable plasmoid velocity, density, temperature, and magnetic field provide access to a wide range of shock conditions, and a campaign to study the physics of transcritical and supercritical shocks within the FRC plasmoid is currently underway. An overview of the experimental design, diagnostics suite, physics objectives, and recent results will be presented. Supported by DOE Office of Fusion Energy Sciences under DOE Contract DE-AC52-06NA25369.

  20. Magnetic Properties and Microstructure of Some 2:17 High Temperature Magnets

    NASA Astrophysics Data System (ADS)

    Meng-Burany, X.; Hadjipanayis, George C.; Chui, S. T.

    1997-03-01

    Recent DOD demands for electric vehicle/plane applications require the use of magnets with operating temperatures > 450^circ C . Of existing high performance magnets, only the Sm(Co,Fe,Cu,Zr)z precipitation--hardened magnets have an operating temperature (300^circ C) which is close to the desired temperature and this makes these magnets potential candidates for further optimization studies. We have started a systematic study and modeling of the high temperature magnetic properties of several commercial magnets and other specially designed magnets supplied to us by Crucible Research. All the samples studied had a room temperature coercivity above 15 kOe. The coercivity was found to decrease with increasing temperature, with values of less than 4 kOe at 450^circ C , except for one sample which had a better temperature dependence with a coercivity above 6 kOe. TEM studies showed a cellular microstructure in all samples. The sample with better temperature properties had a smaller cell size but thicker cell walls. Lorentz electron microscopy studies are underway to image the domain walls and study their interaction with the cellular structure. The results of these studies will hopefully help us to understand the composition--microstructure--property relation in these magnets.

  1. Enhancement of magnetic ordering temperature in iron substituted ytterbium manganate (YbMn{sub 1-x}Fe{sub x}O{sub 3})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samal, S.L.; Magdaleno, T.; Ramanujachary, K.V.

    Oxides of the type YbMn{sub 1-x}Fe{sub x}O{sub 3}; x<=0.3 showing multiferroic behavior have been synthesized by the solid state route. These oxides crystallize in the hexagonal structure known for the parent YbMnO{sub 3} with the c/a ratio increasing with Fe substitution. The distortion of the MnO{sub 5} polyhedra (tbp) decreases and the Mn-O-Mn bonds in the a-b plane become shorter with Fe-substitution. Magnetic ordering is observed from the low temperature neutron diffraction study. The compounds were found to be antiferromagnetic and the ordering temperature T{sub N} increased from 82 K for pure YbMnO{sub 3} to 95 K for YbMn{sub 0.7}Fe{submore » 0.3}O{sub 3}. Variable temperature dielectric measurements (15-110 K) show an anomaly in the dielectric constant at temperatures close to the antiferromagnetic ordering temperature for all the compositions, showing a unique correlation between the magnetic and electric field. The increase in the ordering temperature in YbMn{sub 1-x}Fe{sub x}O{sub 3} is explained on the basis of increase in covalence of Mn/Fe-O-Mn/Fe bonds (shorter) with iron substitution. - Graphical abstract: Hexagonal manganites of the type YbMn{sub 1-x}Fe{sub x}O{sub 3}; x<=0.3 have been synthesized by the solid state route. The distortion of the MnO{sub 5} polyhedra (tbp) decreases and the Mn-O-Mn bonds in the a-b plane become shorter with Fe-substitution. The compounds were found to be antiferromagnetic and the ordering temperature T{sub N} increased from 82 K for pure YbMnO{sub 3} to 95 K for YbMn{sub 0.7}Fe{sub 0.3}O{sub 3}. The increase in the ordering temperature in YbMn{sub 1-x}Fe{sub x}O{sub 3} is explained on the basis of increase in covalence of Mn/Fe-O-Mn/Fe bonds with iron substitution. Low temperature dielectric measurements show a unique correlation between the magnetic and electric fields for all compositions.« less

  2. Thermodynamic Properties of a Double Ring-Shaped Quantum Dot at Low and High Temperatures

    NASA Astrophysics Data System (ADS)

    Khordad, R.; Sedehi, H. R. Rastegar

    2018-02-01

    In this work, we study thermodynamic properties of a GaAs double ring-shaped quantum dot under external magnetic and electric fields. To this end, we first solve the Schrödinger equation and obtain the energy levels and wave functions, analytically. Then, we calculate the entropy, heat capacity, average energy and magnetic susceptibility of the quantum dot in the presence of a magnetic field using the canonical ensemble approach. According to the results, it is found that the entropy is an increasing function of temperature. At low temperatures, the entropy increases monotonically with raising the temperature for all values of the magnetic fields and it is independent of the magnetic field. But, the entropy depends on the magnetic field at high temperatures. The entropy also decreases with increasing the magnetic field. The heat capacity and magnetic susceptibility show a peak structure. The heat capacity reduces with increasing the magnetic field at low temperatures. The magnetic susceptibility shows a transition between diamagnetic and paramagnetic below for T<4 K. The transition temperature depends on the magnetic field.

  3. Head flying characteristics in heat assisted magnetic recording considering various nanoscale heat transfer models

    NASA Astrophysics Data System (ADS)

    Hu, Yueqiang; Wu, Haoyu; Meng, Yonggang; Wang, Yu; Bogy, David

    2018-01-01

    The thermal issues in heat-assisted magnetic recording (HAMR) technology have drawn much attention in the recent literature. In this paper, the head flying characteristics and thermal performance of a HAMR system during the touch-down process considering different nanoscale heat transfer models across the head-disk interface are numerically studied. An optical-thermal-mechanical coupled model is first described. The coupling efficiency of the near field transducer is found to be dependent on the head disk clearance. The shortcomings of a constant disk-temperature model are investigated, which reveals the importance of considering the disk temperature as a variable. A study of the head flying on the disk is carried out using an air conduction model and additional near-field heat transfer models. It is shown that when the head disk interface is filled with a solid material caused by the laser-induced accumulation, the heat transfer coefficient can become unexpectedly large and the head's temperature can rise beyond desirable levels. Finally, the additional head protrusion due to the laser heating is investigated.

  4. Mixed convection of magnetohydrodynamic nanofluids inside microtubes at constant wall temperature

    NASA Astrophysics Data System (ADS)

    Moshizi, S. A.; Zamani, M.; Hosseini, S. J.; Malvandi, A.

    2017-05-01

    Laminar fully developed mixed convection of magnetohydrodynamic nanofluids inside microtubes at a constant wall temperature (CWT) under the effects of a variable directional magnetic field is investigated numerically. Nanoparticles are assumed to have slip velocities relative to the base fluid owing to thermophoretic diffusion (temperature gradient driven force) and Brownian diffusion (concentration gradient driven force). The no-slip boundary condition is avoided at the fluid-solid mixture to assess the non-equilibrium region at the fluid-solid interface. A scale analysis is performed to estimate the relative significance of the pertaining parameters that should be included in the governing equations. After the effects of pertinent parameters on the pressure loss and heat transfer enhancement were considered, the figure of merit (FoM) is employed to evaluate and optimize the thermal performance of heat exchange equipment. The results indicate the optimum thermal performance is obtained when the thermophoresis overwhelms the Brownian diffusion, which is for larger nanoparticles. This enhancement boosts when the buoyancy force increases. In addition, increasing the magnetic field strength and slippage at the fluid-solid interface enhances the thermal performance.

  5. A multi-state synthetic ferrimagnet with controllable switching near room temperature

    NASA Astrophysics Data System (ADS)

    Franco, A. F.; Landeros, P.

    2018-06-01

    Ferrite composites with temperature-induced magnetization reversal, and synthetic ferrimagnets and antiferromagnets have been of great interest to the scientific community due to their uncommon thermal properties and potential applications in magnetic storage, spintronic devices, and several other fields. One of the advantages of these structures is the strong antiferromagnetic coupling, which stabilizes the magnetization state and gives access to interesting static and dynamical magnetic behaviors. Some of their drawbacks lie in that it is difficult to induce temperature-induced magnetization reversal at room temperature in composites, and that the strong interaction makes it difficult to induce a parallel magnetization state (and thus a high magnetic moment). In this work, we study numerically the magnetization behaviour of a Cu(1 0 0)/Ni/Pt/[Co/Pt]4 synthetic ferrimagnet and show that is possible to revert the sign of its magnetization by varying the temperature in ranges around room temperature. We also show that the four parallel and antiparallel magnetization states are stable at temperatures up to 360 K, and demonstrate that it is possible to change deterministically between these states by increasing the temperature of the device and/or applying a magnetic field, showcasing simultaneous non-hysteretic and hysteretic switching processes induced by temperature. Thus, this structure opens the possibility to have reconfigurable magnetic devices with multiple purposes based on the nature of the different switching events and the interplay between them.

  6. Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique.

    PubMed

    Johannsen, M; Gneveckow, U; Eckelt, L; Feussner, A; Waldöfner, N; Scholz, R; Deger, S; Wust, P; Loening, S A; Jordan, A

    2005-11-01

    The aim of this pilot study was to evaluate whether the technique of magnetic fluid hyperthermia can be used for minimally invasive treatment of prostate cancer. This paper presents the first clinical application of interstitial hyperthermia using magnetic nanoparticles in locally recurrent prostate cancer. Treatment planning was carried out using computerized tomography (CT) of the prostate. Based on the individual anatomy of the prostate and the estimated specific absorption rate (SAR) of magnetic fluids in prostatic tissue, the number and position of magnetic fluid depots required for sufficient heat deposition was calculated while rectum and urethra were spared. Nanoparticle suspensions were injected transperineally into the prostate under transrectal ultrasound and flouroscopy guidance. Treatments were delivered in the first magnetic field applicator for use in humans, using an alternating current magnetic field with a frequency of 100 kHz and variable field strength (0-18 kA m(-1)). Invasive thermometry of the prostate was carried out in the first and last of six weekly hyperthermia sessions of 60 min duration. CT-scans of the prostate were repeated following the first and last hyperthermia treatment to document magnetic nanoparticle distribution and the position of the thermometry probes in the prostate. Nanoparticles were retained in the prostate during the treatment interval of 6 weeks. Using appropriate software (AMIRA), a non-invasive estimation of temperature values in the prostate, based on intra-tumoural distribution of magnetic nanoparticles, can be performed and correlated with invasively measured intra-prostatic temperatures. Using a specially designed cooling device, treatment was well tolerated without anaesthesia. In the first patient treated, maximum and minimum intra-prostatic temperatures measured at a field strength of 4.0-5.0 kA m(-1) were 48.5 degrees C and 40.0 degrees C during the 1st treatment and 42.5 degrees C and 39.4 degrees C during the 6th treatment, respectively. These first clinical experiences prompted us to initiate a phase I study to evaluate feasibility, toxicity and quality of life during hyperthermia using magnetic nanoparticles in patients with biopsy-proven local recurrence of prostate cancer following radiotherapy with curative intent. To the authors' knowledge, this is the first report on clinical application of interstitial hyperthermia using magnetic nanoparticles in the treatment of human cancer.

  7. Remote temperature distribution sensing using permanent magnets

    DOE PAGES

    Chen, Yi; Guba, Oksana; Brooks, Carlton F.; ...

    2016-10-31

    Remote temperature sensing is essential for applications in enclosed vessels where feedthroughs or optical access points are not possible. A unique sensing method for measuring the temperature of multiple closely-spaced points is proposed using permanent magnets and several three-axis magnetic field sensors. The magnetic field theory for multiple magnets is discussed and a solution technique is presented. Experimental calibration procedures, solution inversion considerations and methods for optimizing the magnet orientations are described in order to obtain low-noise temperature estimates. The experimental setup and the properties of permanent magnets are shown. Finally, experiments were conducted to determine the temperature of ninemore » magnets in different configurations over a temperature range of 5 to 60 degrees Celsius and for a sensor-to-magnet distance of up to 35 mm. Furthermore, to show the possible applications of this sensing system for measuring temperatures through metal walls, additional experiments were conducted inside an opaque 304 stainless steel cylinder.« less

  8. Intrinsic electrical properties of LuFe2O4

    NASA Astrophysics Data System (ADS)

    Lafuerza, Sara; García, Joaquín; Subías, Gloria; Blasco, Javier; Conder, Kazimierz; Pomjakushina, Ekaterina

    2013-08-01

    We here revisit the electrical properties of LuFe2O4, compound candidate for exhibiting multiferroicity. Measurements of dc electrical resistivity as a function of temperature, electric-field polarization measurements at low temperatures with and without magnetic field, and complex impedance as a function of both frequency and temperature were carried out in a LuFe2O4 single crystal, perpendicular and parallel to the hexagonal c axis, and in several ceramic polycrystalline samples. Resistivity measurements reveal that this material is a highly anisotropic semiconductor, being about two orders of magnitude more resistive along the c axis. The temperature dependence of the resistivity indicates a change in the conduction mechanism at TCO ≈ 320 K from thermal activation above TCO to variable range hopping below TCO. The resistivity values at room temperature are relatively small and are below 5000 Ω cm for all samples but we carried out polarization measurements at sufficiently low temperatures, showing that electric-field polarization curves are a straight line as expected for a paraelectric or antiferroelectric material. Furthermore, no differences are found in the polarization curves when a magnetic field is applied either parallel or perpendicular to the electric field. The analysis of the complex impedance data corroborates that the claimed colossal dielectric constant is a spurious effect mainly derived from the capacitance of the electrical contacts. Therefore, our data unequivocally evidence that LuFe2O4 is not ferroelectric.

  9. Nanostructure investigation of magnetic nanomaterial Ni{sub 0.5}Zn{sub 0.3}Cu{sub 0.2}Fe{sub 2}O{sub 4} synthesized by sol-gel method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pransisco, Prengki, E-mail: prengkipransisco@gmail.com; Badan Lingkungan Hidup Derah Kabupaten Empat Lawang South of Sumatera; Shafie, Afza, E-mail: afza@petronas.com.my

    2015-07-22

    Magnetic nanomaterial Ni{sub 0.5}Zn{sub 0.3}Cu{sub 0.2}Fe{sub 2}O{sub 4} was successfully prepared by using sol-gel method. Heat treatment on material is always giving defect on properties of material. This paper investigates the effect of heat treatment on nanostructure of magnetic nanomaterial Ni{sub 0.5}Zn{sub 0.3}Cu{sub 0.2}Fe{sub 2}O{sub 4}. According to thermo gravimetric analysis (TGA) that after 600°C there is no more weight loss detected and it was decided as minimum calcination temperature. Intensity, crystallite size, structure, lattice parameter and d-spacing of the material were investigated by using X-ray diffraction (XRD). High resolution transmission electron microscope (HRTEM) was used to examine nanostructure, nanosize,more » shape and distribution particle of magnetic material Ni{sub 0.5}Zn{sub 0.3}Cu{sub 0.2}Fe{sub 2}O{sub 4} and variable pressure field emission scanning electron microscope (VP-FESEM) was used to investigate the surface morphology and topography of the material. The XRD result shows single-phase cubic spinel structure with average crystallite size in the range of 25.6-95.9 nm, the value of the intensity of the material was increased with increasing temperature, and followed by lattice parameter was increased with increasing calcination temperature, value of d-spacing was relatively decreased with accompanied increasing temperature. From HRTEM result the distribution of particles was tend to be agglomerates with particle size of 7.8-17.68 nm. VP-FESEM result shows that grain size of the material increases with increasing calcination temperature and the surface morphology shows that the material is in hexagonal shape and it was also proved by mapping result which showing the presence each of constituents inside the compound.« less

  10. The effect of low temperature cryocoolers on the development of low temperature superconducting magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Michael A.

    2000-08-05

    The commercial development of reliable 4 K cryocoolers improves the future prospects for magnets made from low temperature superconductors (LTS). The hope of the developers of high temperature superconductors (HTS) has been to replace liquid helium cooled LTS magnets with HTS magnets that operate at or near liquid nitrogen temperature. There has been limited success in this endeavor, but continued problems with HTS conductors have greatly slowed progress toward this goal. The development of cryocoolers that reliably operate below 4 K will allow magnets made from LTS conductor to remain very competitive for many years to come. A key enablingmore » technology for the use of low temperature cryocoolers on LTS magnets has been the development of HTS leads. This report describes the characteristics of LTS magnets that can be successfully melded to low-temperature cryocoolers. This report will also show when it is not appropriate to consider the use of low-temperature cryocoolers to cool magnets made with LTS conductor. A couple of specific examples of LTS magnets where cryocoolers can be used are given.« less

  11. Rock Magnetic Study of IODP/ICDP Expedition 364 Site M0077A Drill Cores: Post-Impact Sediments, Impact Breccias, Melt, Granitic Basement and Dikes

    NASA Astrophysics Data System (ADS)

    Fucugauchi, J. U.; Perez-Cruz, L. L.; Rebolledo-Vieyra, M.; Tikoo, S.; Zylberman, W.; Lofi, J.

    2017-12-01

    Drilling at Site M0077 sampled post-impact sediments overlying a peak ring consisting of impact breccias, melt rock and granitoids. Here we focus on characterizing the peak ring using magnetic properties, which vary widely and depend on mineralogy, depositional and emplacement conditions and secondary alterations. Rock magnetic properties are integrated with Multi-Sensor Core Logger (MSCL) data, vertical seismic profile, physical properties, petrographic and chemical analyses and geophysical models. We measure low-field magnetic susceptibility at low- and high-frequencies, intensity and direction of natural remanent magnetization (NRM) and laboratory-induced isothermal (IRM) and anhysteretic (ARM) magnetizations, alternating-field demagnetization of NRM, IRM and NRM, susceptibility variation with temperature, anisotropy of magnetic susceptibility, hysteresis and IRM back-field demagnetization. Post-impact carbonates show low susceptibilities and NRM intensities, variable frequency-dependent susceptibilities and multivectorial remanences residing in low and high coercivity minerals. Hysteresis loops show low coercivity saturation magnetizations and variable paramagnetic mineral contents. Impact breccias (suevites) and melt rock show higher susceptibilities, low frequency-dependent susceptibilities, high NRM, ARM and IRM intensities and moderate ARM intensity/susceptibility ratios. Magnetic signal is dominated by fine-grained magnetite and titanomagnetites with PSD domain states. Melt rocks at the base of impactite section show the highest susceptibilities and remanence intensities. Basement section is characterized by low susceptibilities in the granites and higher values in the dikes, with NRM and ARM intensities increasing towards the base. The high susceptibilities and remanence intensities correlate with high seismic velocities, density and decreased porosity and electrical resistivity. Fracturing and alteration account for the reduced seismic velocities, density and magnetic properties in the basement section. Site M0077 is in a horizontal gradient high within the semi-circular gravity low in the crater central zone. Correlation with MSCL logs and petrographic and chemical data will allow further detailed characterization of peak ring units.

  12. Constraints on Variability of Brightness and Surface Magnetism on Time Scales of Decades to Centuries in the Sun and Sun-Like Stars: A Source of Potential Terrestrial Climate Variability

    NASA Technical Reports Server (NTRS)

    Baliunas, Sallie L.; Sharber, James (Technical Monitor)

    2003-01-01

    The following summarizes the most important, results of our research: (1) Conciliation of solar and stellar photometric variability; (2) Demonstration of an inverse correlation between the global temperature of the terrestrial lower troposphere, inferred from the NASA Microwave Sounding Unit (MSU)) radiometers, and the total area of the Sun covered by coronal holes from January 1979 to present (up to May 2000); (3) Identification of a possible climate mechanism amplifying the impact of solar ultraviolet irradiance variations; (4) Exploration of natural variability in an ocean-atmosphere climate model; (5) Presentation of a review of the sun's coronal influence on the terrestrial space environment; (6) Quantification of stellar variability as an influence on the analysis of periodic radial velocities that imply the presence of a planetary companion.

  13. Magnetic vortex nucleation/annihilation in artificial-ferrimagnet microdisks

    DOE PAGES

    Lapa, Pavel N.; Ding, Junjia; Phatak, Charudatta; ...

    2017-08-28

    The topological nature of magnetic-vortex state gives rise to peculiar magnetization reversal observed in magnetic microdisks. Interestingly, magnetostatic and exchange energies which drive this reversal can be effectively controlled in artificial ferrimagnet heterostructures composed of rare-earth and transition metals. [Py(t)/Gd(t)] 25 (t=1 or 2 nm) superlattices demonstrate a pronounced change of the magnetization and exchange stiffness in a 10–300 K temperature range as well as very small magnetic anisotropy. Due to these properties, the magnetization of cylindrical microdisks composed of these artificial ferrimagnets can be transformed from the vortex to uniformly-magnetized states in a permanent magnetic field by changing themore » temperature. We explored the behavior of magnetization in 1.5-µm [Py(t)/Gd(t)] 25 (t=1 or 2 nm) disks at different temperatures and magnetic fields and observed that due to the energy barrier separating vortex and uniformly-magnetized states, the vortex nucleation and annihilation occur at different temperatures. This causes the temperature dependences of the Py/Gd disks magnetization to demonstrate unique hysteretic behavior in a narrow temperature range. It was discovered that for the [Py(2 nm)/Gd(2 nm)] 25 microdisks the vortex can be metastable at a certain temperature range.« less

  14. Magnetic vortex nucleation/annihilation in artificial-ferrimagnet microdisks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapa, Pavel N.; Ding, Junjia; Phatak, Charudatta

    The topological nature of magnetic-vortex state gives rise to peculiar magnetization reversal observed in magnetic microdisks. Interestingly, magnetostatic and exchange energies which drive this reversal can be effectively controlled in artificial ferrimagnet heterostructures composed of rare-earth and transition metals. [Py(t)/Gd(t)] 25 (t=1 or 2 nm) superlattices demonstrate a pronounced change of the magnetization and exchange stiffness in a 10–300 K temperature range as well as very small magnetic anisotropy. Due to these properties, the magnetization of cylindrical microdisks composed of these artificial ferrimagnets can be transformed from the vortex to uniformly-magnetized states in a permanent magnetic field by changing themore » temperature. We explored the behavior of magnetization in 1.5-µm [Py(t)/Gd(t)] 25 (t=1 or 2 nm) disks at different temperatures and magnetic fields and observed that due to the energy barrier separating vortex and uniformly-magnetized states, the vortex nucleation and annihilation occur at different temperatures. This causes the temperature dependences of the Py/Gd disks magnetization to demonstrate unique hysteretic behavior in a narrow temperature range. It was discovered that for the [Py(2 nm)/Gd(2 nm)] 25 microdisks the vortex can be metastable at a certain temperature range.« less

  15. Critical current measurements of high-temperature superconducting short samples at a wide range of temperatures and magnetic fields.

    PubMed

    Ma, Hongjun; Liu, Huajun; Liu, Fang; Zhang, Huahui; Ci, Lu; Shi, Yi; Lei, Lei

    2018-01-01

    High-Temperature Superconductors (HTS) are potential materials for high-field magnets, low-loss transmission cables, and Superconducting Magnetic Energy Storage (SMES) due to their high upper critical magnetic field (H c2 ) and critical temperature (T c ). The critical current (I c ) of HTS, which is one of the most important parameters for superconductor application, depends strongly on the magnetic fields and temperatures. A new I c measurement system that can carry out accurate I c measurement for HTS short samples with various temperatures (4.2-80 K), magnetic fields (0-14 T), and angles of the magnetic field (0°-90°) has been developed. The I c measurement system mainly consists of a measurement holder, temperature-control system, background magnet, test cryostat, data acquisition system, and DC power supply. The accuracy of temperature control is better than ±0.1 K over the 20-80 K range and ±0.05 K when measured below 20 K. The maximum current is over 1000 A with a measurement uncertainty of 1%. The system had been successfully used for YBa 2 Cu 3 O 7-x (YBCO) tapes I c determination with different temperatures and magnetic fields.

  16. Critical current measurements of high-temperature superconducting short samples at a wide range of temperatures and magnetic fields

    NASA Astrophysics Data System (ADS)

    Ma, Hongjun; Liu, Huajun; Liu, Fang; Zhang, Huahui; Ci, Lu; Shi, Yi; Lei, Lei

    2018-01-01

    High-Temperature Superconductors (HTS) are potential materials for high-field magnets, low-loss transmission cables, and Superconducting Magnetic Energy Storage (SMES) due to their high upper critical magnetic field (Hc2) and critical temperature (Tc). The critical current (Ic) of HTS, which is one of the most important parameters for superconductor application, depends strongly on the magnetic fields and temperatures. A new Ic measurement system that can carry out accurate Ic measurement for HTS short samples with various temperatures (4.2-80 K), magnetic fields (0-14 T), and angles of the magnetic field (0°-90°) has been developed. The Ic measurement system mainly consists of a measurement holder, temperature-control system, background magnet, test cryostat, data acquisition system, and DC power supply. The accuracy of temperature control is better than ±0.1 K over the 20-80 K range and ±0.05 K when measured below 20 K. The maximum current is over 1000 A with a measurement uncertainty of 1%. The system had been successfully used for YBa2Cu3O7-x(YBCO) tapes Ic determination with different temperatures and magnetic fields.

  17. Magneto-Structural Correlations in Pseudotetrahedral Forms of the [Co(SPh)4]2- Complex Probed by Magnetometry, MCD Spectroscopy, Advanced EPR Techniques, and ab Initio Electronic Structure Calculations.

    PubMed

    Suturina, Elizaveta A; Nehrkorn, Joscha; Zadrozny, Joseph M; Liu, Junjie; Atanasov, Mihail; Weyhermüller, Thomas; Maganas, Dimitrios; Hill, Stephen; Schnegg, Alexander; Bill, Eckhard; Long, Jeffrey R; Neese, Frank

    2017-03-06

    The magnetic properties of pseudotetrahedral Co(II) complexes spawned intense interest after (PPh 4 ) 2 [Co(SPh) 4 ] was shown to be the first mononuclear transition-metal complex displaying slow relaxation of the magnetization in the absence of a direct current magnetic field. However, there are differing reports on its fundamental magnetic spin Hamiltonian (SH) parameters, which arise from inherent experimental challenges in detecting large zero-field splittings. There are also remarkable changes in the SH parameters of [Co(SPh) 4 ] 2- upon structural variations, depending on the counterion and crystallization conditions. In this work, four complementary experimental techniques are utilized to unambiguously determine the SH parameters for two different salts of [Co(SPh) 4 ] 2- : (PPh 4 ) 2 [Co(SPh) 4 ] (1) and (NEt 4 ) 2 [Co(SPh) 4 ] (2). The characterization methods employed include multifield SQUID magnetometry, high-field/high-frequency electron paramagnetic resonance (HF-EPR), variable-field variable-temperature magnetic circular dichroism (VTVH-MCD), and frequency domain Fourier transform THz-EPR (FD-FT THz-EPR). Notably, the paramagnetic Co(II) complex [Co(SPh) 4 ] 2- shows strong axial magnetic anisotropy in 1, with D = -55(1) cm -1 and E/D = 0.00(3), but rhombic anisotropy is seen for 2, with D = +11(1) cm -1 and E/D = 0.18(3). Multireference ab initio CASSCF/NEVPT2 calculations enable interpretation of the remarkable variation of D and its dependence on the electronic structure and geometry.

  18. HD 66051: the first eclipsing binary hosting an early-type magnetic star

    NASA Astrophysics Data System (ADS)

    Kochukhov, O.; Johnston, C.; Alecian, E.; Wade, G. A.

    2018-05-01

    Early-type magnetic stars are rarely found in close binary systems. No such objects were known in eclipsing binaries prior to this study. Here we investigated the eclipsing, spectroscopic double-lined binary HD 66051, which exhibits out-of-eclipse photometric variations suggestive of surface brightness inhomogeneities typical of early-type magnetic stars. Using a new set of high-resolution spectropolarimetric observations, we discovered a weak magnetic field on the primary and found intrinsic, element-dependent variability in its spectral lines. The magnetic field structure of the primary is dominated by a nearly axisymmetric dipolar component with a polar field strength Bd ≈ 600 G and an inclination with respect to the rotation axis of βd = 13°. A weaker quadrupolar component is also likely to be present. We combined the radial velocity measurements derived from our spectra with archival optical photometry to determine fundamental masses (3.16 and 1.75 M⊙) and radii (2.78 and 1.39 R⊙) with a 1-3% precision. We also obtained a refined estimate of the effective temperatures (13000 and 9000 K) and studied chemical abundances for both components with the help of disentangled spectra. We demonstrate that the primary component of HD 66051 is a typical late-B magnetic chemically peculiar star with a non-uniform surface chemical abundance distribution. It is not an HgMn-type star as suggested by recent studies. The secondary is a metallic-line star showing neither a strong, global magnetic field nor intrinsic spectral variability. Fundamental parameters provided by our work for this interesting system open unique possibilities for probing interior structure, studying atomic diffusion, and constraining binary star evolution.

  19. Comparative M-H Characteristics of 1-5 and 2-17 Type Samarium-Cobalt Permanent Magnets to 300 C

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.

    1994-01-01

    Recent consideration of the use of permanent magnets in space power converters at heat rejection temperatures exceeding 250 C and in miniature high temperature actuators is supporting a search for permanent magnets resistant to demagnetizing forces at high temperature. The present paper investigates the short-term demagnetization resistance to applied bucking fields and at temperatures up to 300 C of SmCo5 type magnets, in the form of 1-cm cubes, from several commercial sources. Quasistatic, 2nd quadrant M-H data taken at selected temperatures are the source of derived plots which are then compared to similar data for previously tested Sm2Co17 type magnets. The 1-5 magnet remanence tends to be about 1.5 kG below that of the 2-17 magnets throughout the temperature range. However, the intrinsic coercivities and M-H curve 'knee-fields' seen in particular 1-5 magnets were considerably above those seen previously in the 2-17 magnets. This superior resistance to demagnetizing fields attainable in 1-5 magnets is also illustrated by safe operating area plots based on the knee-field, the magnetic induction swing and temperature. Comments are made on the possibility that a remanence versus knee-field tradeoff can make 1-5 material competitive with 2-17 in applications where a magnet has to withstand large bucking fields at high temperature.

  20. Alternating current loss characteristics in (bismuth,lead)SCCO and yttrium barium copper oxide superconducting tapes

    NASA Astrophysics Data System (ADS)

    Nguyen, Doan Ngoc

    Alternating current (AC) loss and current carrying capacity are two of the most crucial considerations in large-scale power applications of high temperature superconducting (HTS) conductors. AC losses result in an increased thermal load for cooling machines, and thus increased operating costs. Furthermore, AC losses can stimulate quenching phenomena or at least decrease the stability margin for superconducting devices. Thus, understanding AC losses is essential for the development of HTS AC applications. The main focus of this dissertation is to make reliable total AC loss measurements and interpret the experimental results in a theoretical framework. With a specially designed magnet, advanced total AC loss measurement system in liquid nitrogen (77 K) has been successfully built. Both calorimetric and electromagnetic methods were employed to confirm the validity of the measured results and to have a more thorough understanding of AC loss in HTS conductors. The measurement is capable of measuring total AC loss in HTS tapes over a wide range of frequency and amplitude of transport current and magnetic field. An accurate phase control technique allows measurement of total AC loss with any phase difference between the transport current and magnetic field by calorimetric method. In addition, a novel total AC loss measurement system with variable temperatures from 30 K to 100 K was successfully built and tested. Understanding the dependence of AC losses on temperature will enable optimization of the operating temperature and design of HTS devices. As a part of the dissertation, numerical calculations using Brandt's model were developed to study electrodynamics and total AC loss in HTS conductors. In the calculations, the superconducting electrical behavior is assumed to follow a power-law model. In general, the practical properties of conductors, including field-dependence of critical current density Jc, n-value and non-uniform distribution of Jc, can be accounted for in the numerical calculations. The numerical calculations are also capable of investigating eddy current loss in the stabilizer and ferromagnetic loss in the substrate of YBa2Cu3O 7-delta (YBCO) coated conductor. AC loss characteristics and electrodynamics in several (Bi,Pb)2 Sr2Ca2Cu3Ox (Bi-2223) and YBCO tapes were studied experimentally and numerically. It was found that AC loss behavior Ax in HTS tapes is strongly affected by the sample parameters such as cross-section, structure, dimensions, critical current distribution as well as by operation parameters including temperature, frequency, the phase difference between transport current and magnetic field, the orientation of magnetic field. The Ni-5%W substrate in YBCO conductors generates some ferromagnetic loss but this loss component is significantly reduced by a small parallel DC magnetic field. At a given AC magnetic field B0, there is a temperature Tmax at which the magnetization loss is maximum. The design of HTS devices needs to be optimized to avoid operating at that temperature. In general, the total AC loss in HTS tapes is still high for many power device applications, especially for those that present a rather high AC applied magnetic field. The development of low loss conductors is therefore crucial for HTS large-scale applications.

  1. Field and temperature scaling of the critical current density in commercial REBCO coated conductors

    NASA Astrophysics Data System (ADS)

    Senatore, Carmine; Barth, Christian; Bonura, Marco; Kulich, Miloslav; Mondonico, Giorgio

    2016-01-01

    Scaling relations describing the electromagnetic behaviour of coated conductors (CCs) greatly simplify the design of REBCO-based devices. The performance of REBCO CCs is strongly influenced by fabrication route, conductor architecture and materials, and these parameters vary from one manufacturer another. In the present work we have examined the critical surface for the current density, J c(T, B, θ), of coated conductors from six different manufacturers: American Superconductor Co. (US), Bruker HTS GmbH (Germany), Fujikura Ltd (Japan), SuNAM Co. Ltd (Korea), SuperOx ZAO (Russia) and SuperPower Inc. (US). Electrical transport and magnetic measurements were performed at temperatures between 4.2 K and 77 K and in magnetic fields of up to 19 T. Experiments were conducted at three different orientations of the field with respect to the crystallographic c-axis of the REBCO layer, θ = 0°, 45° and 90°, in order to probe the angular anisotropy of J c. In spite of the large variability of the CCs’ performance, we show here that field and temperature dependences of J c at a given angle can be reproduced over wide ranges using a scaling relation based only on three parameters. Furthermore, we present and validate a new approach combining magnetic and transport measurements for the determination of the scaling parameters with minimal experimental effort.

  2. X ray spectra of cataclysmic variables

    NASA Technical Reports Server (NTRS)

    Patterson, Joseph; Halpern, Jules

    1990-01-01

    X ray spectral parameters of cataclysmic variables observed with the 'Einstein' imaging proportional counter were determined by fitting an optically thin, thermal bremsstrahlung spectrum to the raw data. Most of the sources show temperatures of order a few keV, while a few sources exhibit harder spectra with temperatures in excess of 10 keV. Estimated 0.1 to 3.5 keV luminosities are generally in the range from 10(exp 30) to 10(exp 32) erg/sec. The results are consistent with the x rays originating in a disk/white dwarf boundary layer of non-magnetic systems, or in a hot, post-shock region in the accretion column of DQ Her stars, with a negligible contribution from the corona of the companion. In a few objects column densities were found that are unusually high for interstellar material. It was suggested that the absorption occurs in the system itself.

  3. Electrical transport properties of single-crystal CaB 6 , SrB 6 , and BaB 6

    DOE PAGES

    Stankiewicz, Jolanta; Rosa, Priscila F. S.; Schlottmann, Pedro; ...

    2016-09-22

    We measure the electrical resistivity and Hall effect of alkaline-earth-metal hexaboride single crystals as a function of temperature, hydrostatic pressure, and magnetic field. The transport properties vary weakly with the external parameters and are modeled in terms of intrinsic variable-valence defects. These defects can stay either in (1) delocalized shallow levels or in (2) localized levels resonant with the conduction band, which can be neutral or negatively charged. Satisfactory agreement is obtained for electronic transport properties in a broad temperature and pressure range, though fitting the magnetoresistance is less straightforward and a combination of various mechanisms is needed to explainmore » the field and temperature dependences.« less

  4. Electrical transport properties of single-crystal CaB 6 , SrB 6 , and BaB 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stankiewicz, Jolanta; Rosa, Priscila F. S.; Schlottmann, Pedro

    We measure the electrical resistivity and Hall effect of alkaline-earth-metal hexaboride single crystals as a function of temperature, hydrostatic pressure, and magnetic field. The transport properties vary weakly with the external parameters and are modeled in terms of intrinsic variable-valence defects. These defects can stay either in (1) delocalized shallow levels or in (2) localized levels resonant with the conduction band, which can be neutral or negatively charged. Satisfactory agreement is obtained for electronic transport properties in a broad temperature and pressure range, though fitting the magnetoresistance is less straightforward and a combination of various mechanisms is needed to explainmore » the field and temperature dependences.« less

  5. Effect of sintering process on the magnetic and mechanical properties of sintered Nd-Fe-B magnets

    NASA Astrophysics Data System (ADS)

    Hu, Z. H.; Qu, H. J.; Zhao, J. Q.; Yan, C. J.; Liu, X. M.

    2014-11-01

    The magnetic and mechanical properties of sintered Nd-Fe-B magnets prepared by different sintering processes were investigated. The results showed that the intrinsic coercivity and fracture toughness of sintered Nd-Fe-B magnets first increased, and then declined with increasing annealing temperature. The optimum magnetic properties and fracture toughness of sintered Nd-Fe-B magnets were obtained at the annealing temperature of 540 °C. Sintering temperature increasing from 1047 °C to 1071 °C had hardly effect on the magnetic properties of sintered Nd-Fe-B magnets. The variation of Vickers hardness and fracture toughness was not the same with increasing sintering temperature, and the effect of sintering temperature on the mechanical properties was complex and irregular. The reasons for the variation on magnetic and mechanical properties were analyzed, and we presumed that the effect of microstructure on the mechanical properties was more sensitive than the magnetic properties through analyzing the microstructure of sintered Nd-Fe-B magnets.

  6. Magnetization and isothermal magnetic entropy change of a mixed spin-1 and spin-2 Heisenberg superlattice

    NASA Astrophysics Data System (ADS)

    Xu, Ping; Du, An

    2017-09-01

    A superlattice composed of spin-1 and spin-2 with ABAB … structure was described with Heisenberg model. The magnetizations and magnetic entropy changes under different magnetic fields were calculated by the Green's function method. The magnetization compensation phenomenon could be observed by altering the intralayer exchange interactions and the single-ion anisotropies of spins. Along with the temperature increasing, the system in the absence of magnetization compensation shows normal magnetic entropy change and displays a peak near the critical temperature, and yet the system with magnetization compensation shows normal magnetic entropy change near the compensation temperature but inverse magnetic entropy change near the critical temperature. Finally, we illustrated the reasons of different behaviors of magnetic entropy change by analyzing the contributions of two sublattices to the total magnetic entropy change.

  7. Lightweight High Efficiency Electric Motors for Space Applications

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.; Tyler, Tony R.; Piper, P. J.

    2011-01-01

    Lightweight high efficiency electric motors are needed across a wide range of space applications from - thrust vector actuator control for launch and flight applications to - general vehicle, base camp habitat and experiment control for various mechanisms to - robotics for various stationary and mobile space exploration missions. QM Power?s Parallel Path Magnetic Technology Motors have slowly proven themselves to be a leading motor technology in this area; winning a NASA Phase II for "Lightweight High Efficiency Electric Motors and Actuators for Low Temperature Mobility and Robotics Applications" a US Army Phase II SBIR for "Improved Robot Actuator Motors for Medical Applications", an NSF Phase II SBIR for "Novel Low-Cost Electric Motors for Variable Speed Applications" and a DOE SBIR Phase I for "High Efficiency Commercial Refrigeration Motors" Parallel Path Magnetic Technology obtains the benefits of using permanent magnets while minimizing the historical trade-offs/limitations found in conventional permanent magnet designs. The resulting devices are smaller, lower weight, lower cost and have higher efficiency than competitive permanent magnet and non-permanent magnet designs. QM Power?s motors have been extensively tested and successfully validated by multiple commercial and aerospace customers and partners as Boeing Research and Technology. Prototypes have been made between 0.1 and 10 HP. They are also in the process of scaling motors to over 100kW with their development partners. In this paper, Parallel Path Magnetic Technology Motors will be discussed; specifically addressing their higher efficiency, higher power density, lighter weight, smaller physical size, higher low end torque, wider power zone, cooler temperatures, and greater reliability with lower cost and significant environment benefit for the same peak output power compared to typically motors. A further discussion on the inherent redundancy of these motors for space applications will be provided.

  8. Solid state nuclear magnetic resonance investigation of polymer backbone dynamics in poly(ethylene oxide) based lithium and sodium polyether-ester-sulfonate ionomers.

    PubMed

    Roach, David J; Dou, Shichen; Colby, Ralph H; Mueller, Karl T

    2013-05-21

    Polymer backbone dynamics of single ion conducting poly(ethylene oxide) (PEO)-based ionomer samples with low glass transition temperatures (T(g)) have been investigated using solid-state nuclear magnetic resonance. Experiments detecting (13)C with (1)H decoupling under magic angle spinning (MAS) conditions identified the different components of the polymer backbone (PEO spacer and isophthalate groups) and their relative mobilities for a suite of lithium- and sodium-containing ionomer samples with varying cation contents. Variable temperature (203-373 K) (1)H-(13)C cross-polarization MAS (CP-MAS) experiments also provided qualitative assessment of the differences in the motions of the polymer backbone components as a function of cation content and identity. Each of the main backbone components exhibit distinct motions, following the trends expected for motional characteristics based on earlier Quasi Elastic Neutron Scattering and (1)H spin-lattice relaxation rate measurements. Previous (1)H and (7)Li spin-lattice relaxation measurements focused on both the polymer backbone and cation motion on the nanosecond timescale. The studies presented here assess the slower timescale motion of the polymer backbone allowing for a more comprehensive understanding of the polymer dynamics. The temperature dependences of (13)C linewidths were used to both qualitatively and quantitatively examine the effects of cation content and identity on PEO spacer mobility. Variable contact time (1)H-(13)C CP-MAS experiments were used to further assess the motions of the polymer backbone on the microsecond timescale. The motion of the PEO spacer, reported via the rate of magnetization transfer from (1)H to (13)C nuclei, becomes similar for T≳1.1 T(g) in all ionic samples, indicating that at similar elevated reduced temperatures the motions of the polymer backbones on the microsecond timescale become insensitive to ion interactions. These results present an improved picture, beyond those of previous findings, for the dependence of backbone dynamics on cation density (and here, cation identity as well) in these amorphous PEO-based ionomer systems.

  9. Cavity magnon polaritons with lithium ferrite and three-dimensional microwave resonators at millikelvin temperatures

    NASA Astrophysics Data System (ADS)

    Goryachev, Maxim; Watt, Stuart; Bourhill, Jeremy; Kostylev, Mikhail; Tobar, Michael E.

    2018-04-01

    Single crystal lithium ferrite (LiFe) spheres of sub-mm dimension are examined at mK temperatures, microwave frequencies, and variable dc magnetic field, for use in hybrid quantum systems and condensed matter and fundamental physics experiments. Strong coupling regimes of the photon-magnon interaction (cavity magnon polariton quasiparticles) were observed with coupling strength of up to 250 MHz at 9.5 GHz (2.6%) with magnon linewidths of order 4 MHz (with potential improvement to sub-MHz values). We show that the photon-magnon coupling can be significantly improved and exceed that of the widely used yttrium iron garnet crystal, due to the small unit cell of LiFe, allowing twice the spins per unit volume. Magnon mode softening was observed at low dc fields and, combined with the normal Zeeman effect, creates magnon spin-wave modes that are insensitive to first-order magnetic-field fluctuations. This effect is observed in the Kittel mode at 5.5 GHz (and another higher order mode at 6.5 GHz) with a dc magnetic field close to 0.19 tesla. We show that if the cavity is tuned close to this frequency, the magnon polariton particles exhibit an enhanced range of strong coupling and insensitivity to magnetic field fluctuations with both first-order and second-order insensitivity to magnetic field as a function of frequency (double magic point clock transition), which could potentially be exploited in cavity QED experiments.

  10. Taking the temperature of the interiors of magnetically heated nanoparticles.

    PubMed

    Dong, Juyao; Zink, Jeffrey I

    2014-05-27

    The temperature increase inside mesoporous silica nanoparticles induced by encapsulated smaller superparamagnetic nanocrystals in an oscillating magnetic field is measured using a crystalline optical nanothermometer. The detection mechanism is based on the temperature-dependent intensity ratio of two luminescence bands in the upconversion emission spectrum of NaYF4:Yb(3+), Er(3+). A facile stepwise phase transfer method is developed to construct a dual-core mesoporous silica nanoparticle that contains both a nanoheater and a nanothermometer in its interior. The magnetically induced heating inside the nanoparticles varies with different experimental conditions, including the magnetic field induction power, the exposure time to the magnetic field, and the magnetic nanocrystal size. The temperature increase of the immediate nanoenvironment around the magnetic nanocrystals is monitored continuously during the magnetic oscillating field exposure. The interior of the nanoparticles becomes much hotter than the macroscopic solution and cools to the temperature of the ambient fluid on a time scale of seconds after the magnetic field is turned off. This continuous absolute temperature detection method offers quantitative insight into the nanoenvironment around magnetic materials and opens a path for optimizing local temperature controls for physical and biomedical applications.

  11. Investigation on the two-stage active magnetic regenerative refrigerator for liquefaction of hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Inmyong; Park, Jiho; Jeong, Sangkwon

    2014-01-29

    An active magnetic regenerative refrigerator (AMRR) is expected to be useful for hydrogen liquefaction due to its inherent high thermodynamic efficiency. Because the temperature of the cold end of the refrigerator has to be approximately liquid temperature, a large temperature span of the active magnetic regenerator (AMR) is indispensable when the heat sink temperature is liquid nitrogen temperature or higher. Since magnetic refrigerants are only effective in the vicinity of their own transition temperatures, which limit the temperature span of the AMR, an innovative structure is needed to increase the temperature span. The AMR must be a layered structure andmore » the thermophysical matching of magnetic field and flow convection effects is very important. In order to design an AMR for liquefaction of hydrogen, the implementation of multi-layered AMR with different magnetic refrigerants is explored with multi-staging. In this paper, the performance of the multi-layered AMR using four rare-earth compounds (GdNi{sub 2}, Gd{sub 0.1}Dy{sub 0.9}Ni{sub 2}, Dy{sub 0.85}Er{sub 0.15}Al{sub 2}, Dy{sub 0.5}Er{sub 0.5}Al{sub 2}) is investigated. The experimental apparatus includes two-stage active magnetic regenerator containing two different magnetic refrigerants each. A liquid nitrogen reservoir connected to the warm end of the AMR maintains the temperature of the warm end around 77 K. High-pressure helium gas is employed as a heat transfer fluid in the AMR and the maximum magnetic field of 4 T is supplied by the low temperature superconducting (LTS) magnet. The temperature span with the variation of parameters such as phase difference between magnetic field and mass flow rate of magnetic refrigerants in AMR is investigated. The maximum temperature span in the experiment is recorded as 50 K and several performance issues have been discussed in this paper.« less

  12. Linking Rock Magnetic Parameters and Tropical Paleoclimate in Postglacial Carbonates of the Tahitian Coral Reef

    NASA Astrophysics Data System (ADS)

    Platzman, E. S.; Lund, S.; Camoin, G.; Thouveny, N.

    2009-12-01

    In areas far away from active plate boundaries and previously glaciated regions, ecologically sensitive coral reefs provide an ideal laboratory for studying the timing and extent of deglaciation events as well as climatic change/variability at sub-millennial timescales. We have studied the Post Last-Glacial-Maximum (Post-LGM) coral reef terrace sediments recovered from the island of Tahiti on IODP Expedition 310. Samples for magnetic analysis were obtained from 632 meters of core from three reef tracts (Maraa, Tiarei, Faaa) surrounding the island (37 holes at 22 sites). The Post-LGM sediments are composed of >95% carbonate residing in a mixture of macroscopic framework corals, encrusting coralline algae, and bacterial microbialites (60% of the total core volume). Detailed paleomagnetic and rock magnetic measurements indicate that the microbialites carry a strong and stable natural magnetic remanence residing almost entirely in titanomagnetite derived from the Tahitian volcanic edifice. Within each tract, paleomagnetic results (inclination, relative paleointensity) were correlated to build a composite magnetic stratigraphy, which we could then compile with radiocarbon dates to develop an absolute chronostratigraphy. At the Maraa tract, for example, we use 54 radiocarbon dates to date our composite section to 7,500 to 13,500 cal. ybp. and demonstrate that the reef developed in a smooth and coherent manner over this interval. Overlaying the chronostratigraphy on measurements of the variation in magnetic properties including susceptibility, ARM, and IRM we can monitor changes in concentration, composition and grainsize of the influx of volcanogenic sediment over time. The ARM, IRM, and CHI intensities (normalized to sample weight) show a single strong peak between~9-10,000 years ago. We also observe a ~500-yr cyclicity in magnetic grain size and a clear increase in grain size associated with the Younger Dryas that we interpret to be related to rainfall variability. The rainfall variability, driven on both a global and regional scale, ultimately results from changes in western Pacific sea-surface temperatures (SST) that drive the island monsoon. Comparison with other proxy data will allow us to build up a detailed climate picture of this key postglacial period.

  13. Direct Fusion Drive for a Human Mars Orbital Mission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paluszek, Michael; Pajer, Gary; Razin, Yosef

    2014-08-01

    The Direct Fusion Drive (DFD) is a nuclear fusion engine that produces both thrust and electric power. It employs a field reversed configuration with an odd-parity rotating magnetic field heating system to heat the plasma to fusion temperatures. The engine uses deuterium and helium-3 as fuel and additional deuterium that is heated in the scrape-off layer for thrust augmentation. In this way variable exhaust velocity and thrust is obtained.

  14. Studies on in situ magnetic alignment of bonded anisotropic Nd-Fe-B alloy powders

    DOE PAGES

    Nlebedim, I. C.; Ucar, Huseyin; Hatter, Christine B.; ...

    2016-08-30

    We presented some considerations for achieving high degree of alignment in polymer bonded permanent magnets via the results of a study on in situ magnetic alignment of anisotropic Nd-Fe-B magnet powders. Contributions from effect of the alignment temperature, alignment magnetic field and the properties of the polymer on the hard magnetic properties of the bonded magnet were considered. Moreover, the thermo-rheological properties of the polymer and the response of the magnet powders to the applied magnetic field indicate that hard magnetic properties were optimized at an alignment temperature just above the melting temperature of the EVA co-polymer. This agrees withmore » an observed correlation between the change in magnetization due to improved magnetic alignment of the anisotropic powders and the change in viscosity of the binder. Finally, manufacturing cost can be minimized by identifying optimum alignment temperatures and magnetic field strengths.« less

  15. Studies on in situ magnetic alignment of bonded anisotropic Nd-Fe-B alloy powders

    NASA Astrophysics Data System (ADS)

    Nlebedim, I. C.; Ucar, Huseyin; Hatter, Christine B.; McCallum, R. W.; McCall, Scott K.; Kramer, M. J.; Paranthaman, M. Parans

    2017-01-01

    Considerations for achieving high degree of alignment in polymer bonded permanent magnets are presented via the results of a study on in situ magnetic alignment of anisotropic Nd-Fe-B magnet powders. Contributions from effect of the alignment temperature, alignment magnetic field and the properties of the polymer on the hard magnetic properties of the bonded magnet were considered. The thermo-rheological properties of the polymer and the response of the magnet powders to the applied magnetic field indicate that hard magnetic properties were optimized at an alignment temperature just above the melting temperature of the EVA co-polymer. This agrees with an observed correlation between the change in magnetization due to improved magnetic alignment of the anisotropic powders and the change in viscosity of the binder. Manufacturing cost can be minimized by identifying optimum alignment temperatures and magnetic field strengths.

  16. Visualizing ferromagnetic domains in undoped and Fe-doped Sr4Ru3O10

    NASA Astrophysics Data System (ADS)

    Sass, Paul; Wu, Weida; Mao, Zhiqiang; Li, Peigang

    Transition-metal oxides have proven to be a great source of interesting phenomena and new quantum phases of matter with high potential for developing exciting technologies. A remarkable sub-class of these materials with layer dependent properties is the ruthenium perovskites of the Ruddlesden-Popper series, specifically Srn + 1RunO3 n + 1 , exhibiting a range of behavior from ferromagnetism and metamagnetic quantum criticality to p-wave superconductivity. The triple layered oxide Sr4Ru3O10 exhibits coexistence of ferro- (TC < 105 K) and meta- (TM < 50 K) magnetism with strong anisotropy. Despite many studies on bulk magnetic properties of this material, the microscopic nature of the magnetic phase is still unclear. What is lacking is the real space imaging of magnetic domains. To this end, we report our variable temperature magnetic force microscopy studies on floating-zone grown undoped and Fe-doped Sr4Ru3O10 single crystals. Various stripe and branch-like domain patterns were observed below This work is supported by DOE BES under award DE-SC0008147.

  17. Magnetization of Extraterrestrial Allende material may relate to terrestrial descend

    NASA Astrophysics Data System (ADS)

    Kletetschka, Gunther

    2018-04-01

    The origin of magnetization in Allende may have significant implications for our understanding of core formation/differentiation/dynamo processes in chondrite parent bodies. The magnetic Allende data may contain information that could constrain the magnetic history of Allende. The measurements on Allende chondrules reveal an existence of magnetization component that was likely acquired during the meteorite transit to terrestrial conditions. Both the pyrrhotite carrying magnetic remanence intensity and direction of the chondrules change erratically when subjecting the Allende meteorite's chondrules to temperatures near 77 K and back to room temperature. Chondrules with more intense original magnetization are denser and contain larger inverse thermoremanent magnetization (ITRM). Temperature dependent monitoring of ITRM revealed that magnetization was acquired at temperature near 270 K. Such temperature is consistent with the condition when, in addition to temperature increase, the atmospheric uniaxial pressure applied during the meteorite entry on the porous material was responsible for meteorite break up in the atmosphere. During this process, collapse of the pore space in the matrix and some chondrules would generate crystalline anisotropy energy accumulation within pyrrhotite grains in form of parasitic magnetic transition.

  18. Preliminary scaling laws for plasma current, ion kinetic temperature, and plasma number density in the NASA Lewis bumpy torus plasma

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1976-01-01

    Parametric variation of independent variables which may affect the characteristics of bumpy torus plasma have identified those which have a significant effect on the plasma current, ion kinetic temperature, and plasma number density, and those which do not. Empirical power law correlations of the plasma current, and the ion kinetic temperature and number density were obtained as functions of potential applied to the midplane electrode rings, the background neutral gas pressure, and the magnetic field strength. Additional parameters studied included the type of gas, the polarity of the midplane electrode rings, the mode of plasma operation, and the method of measuring the plasma number density. No significant departures from the scaling laws appear to occur at the highest ion kinetic temperatures or number densities obtained to date.

  19. Spin injection and spin transport in paramagnetic insulators

    DOE PAGES

    Okamoto, Satoshi

    2016-02-22

    We investigate the spin injection and the spin transport in paramagnetic insulators described by simple Heisenberg interactions using auxiliary particle methods. Some of these methods allow access to both paramagnetic states above magnetic transition temperatures and magnetic states at low temperatures. It is predicted that the spin injection at an interface with a normal metal is rather insensitive to temperatures above the magnetic transition temperature. On the other hand below the transition temperature, it decreases monotonically and disappears at zero temperature. We also analyze the bulk spin conductance. We show that the conductance becomes zero at zero temperature as predictedmore » by linear spin wave theory but increases with temperature and is maximized around the magnetic transition temperature. These findings suggest that the compromise between the two effects determines the optimal temperature for spintronics applications utilizing magnetic insulators.« less

  20. Electrical Transport Signature of the Magnetic Fluctuation-Structure Relation in α-RuCl3 Nanoflakes.

    PubMed

    Mashhadi, Soudabeh; Weber, Daniel; Schoop, Leslie M; Schulz, Armin; Lotsch, Bettina V; Burghard, Marko; Kern, Klaus

    2018-05-09

    The small gap semiconductor α-RuCl 3 has emerged as a promising candidate for quantum spin liquid materials. Thus far, Raman spectroscopy, neutron scattering, and magnetization measurements have provided valuable hints for collective spin behavior in α-RuCl 3 bulk crystals. However, the goal of implementing α-RuCl 3 into spintronic devices would strongly benefit from the possibility of electrically probing these phenomena. To address this, we first investigated nanoflakes of α-RuCl 3 by Raman spectroscopy and observed similar behavior as in the case of the bulk material, including the signatures of possible fractionalized excitations. In complementary experiments, we investigated the electrical charge transport properties of individual α-RuCl 3 nanoflakes in the temperature range between 120 and 290 K. The observed temperature-dependent electrical resistivity is consistent with variable range hopping behavior and exhibits a transition at about 180 K, close to the onset temperature observed in our Raman measurements. In conjunction with the established relation between structure and magnetism in the bulk, we interpret this transition to coincide with the emergence of fractionalized excitations due to the Kitaev interactions in the nanoflakes. Compared to the bulk samples, the transition temperature of the underlying structural change is larger in the nanoflakes. This difference is tentatively attributed to the dimensionality of the nanoflakes as well as the formation of stacking faults during mechanical exfoliation. The demonstrated devices open up novel perspectives toward manipulating the Kitaev-phase in α-RuCl 3 via electrical means.

  1. The theory of an active magnetic regenerative refrigerator

    NASA Technical Reports Server (NTRS)

    Barclay, J. A.

    1983-01-01

    The adiabatic temperature change with field which is limited to about 2 K/Tesla for ferromagnets near their Curie temperatures by the change of magnetization with temperature and the lattice heat capacity is discussed. Practical magnetic refrigerators operate on a regenerative cycle such as the Brayton cycle. This cycle can be executed through the use of an active magnetic regenerator, i.e., a regenerator composed of magnetic material that is cycled in an out of a magnetic field with appropriate fluid flows. The theory of these devices is predicted by solving the partial differential equations that describe fluid and the magnetic solid. The active magnetic regenerator is described along with the method of calculation. Temperature profiles for a normal regenerator and a magnetic regenerative refrigerator are shown.

  2. Harmonic phases of the nanoparticle magnetization: An intrinsic temperature probe

    NASA Astrophysics Data System (ADS)

    Garaio, Eneko; Collantes, Juan-Mari; Garcia, Jose Angel; Plazaola, Fernando; Sandre, Olivier

    2015-09-01

    Magnetic fluid hyperthermia is a promising cancer therapy in which magnetic nanoparticles act as heat sources activated by an external AC magnetic field. The nanoparticles, located near or inside the tumor, absorb energy from the magnetic field and then heat up the cancerous tissues. During the hyperthermia treatment, it is crucial to control the temperature of different tissues: too high temperature can cause undesired damage in healthy tissues through an uncontrolled necrosis. However, the current thermometry in magnetic hyperthermia presents some important technical problems. The widely used optical fiber thermometers only provide the temperature in a discrete set of spatial points. Moreover, surgery is required to locate these probes in the correct place. In this scope, we propose here a method to measure the temperature of a magnetic sample. The approach relies on the intrinsic properties of the magnetic nanoparticles because it is based on monitoring the thermal dependence of the high order harmonic phases of the nanoparticle dynamic magnetization. The method is non-invasive and it does not need any additional probe or sensor attached to the magnetic nanoparticles. Moreover, this method has the potential to be used together with the magnetic particle imaging technique to map the spatial distribution of the temperature.

  3. Comparative study of magnetic ordering in bulk and nanoparticles of Sm0.65Ca0.35MnO3: Magnetization and electron magnetic resonance measurements

    NASA Astrophysics Data System (ADS)

    Goveas, Lora Rita; Anuradha, K. N.; Bhagyashree, K. S.; Bhat, S. V.

    2015-05-01

    To explore the effect of size reduction to nanoscale on the hole doped Sm0.65Ca0.35MnO3 compound, dc magnetic measurements and electron magnetic resonance (EMR) were done on bulk and nanoparticle samples in the temperature range 10 ≤ T ≤ 300 K. Magnetization measurement showed that the bulk sample undergoes a charge ordering transition at 240 K and shows a mixed magnetic phase at low temperature. However, the nanosample underwent a ferromagnetic transition at 75 K, and the charge ordered state was destabilized on size reduction down to nanoscale. The low-temperature ferromagnetic component is found to be enhanced in nanoparticles as compared to their bulk counterpart. Interestingly around room temperature, bulk particles show higher magnetization where as at low temperature nanoparticles show higher magnetization. Ferromagnetism in the bulk is due to super exchange where as ferromagnetism in nanoparticles is due to uncompensated spins of the surface layer. Temperature variation of EMR parameters correlates well with the results of magnetic measurements. The magnetic behaviour of the nanoparticles is understood in terms of the core shell scenario.

  4. A calibration loop to test hot-wire response under supercritical conditions

    NASA Astrophysics Data System (ADS)

    Radulović, Ivana; Vukoslavčević, P. V.; Wallace, J. M.

    2004-11-01

    A calibration facility to test the response of hot-wires in CO2 flow under supercritical conditions has been designed and constructed. It is capable of inducing variable speeds at different temperatures and pressures in the ranges of 0.15 - 2 m/s, 15 - 70 deg. C and 1 - 100 bar. The facility is designed as a closed loop with a test section, pump, electrical heater, DC motor and different regulating and measuring devices. The test section is a small tunnel, with a diffuser, honeycomb, screens and a nozzle to provide a uniform flow with a low turbulence level. The speed variation is created by a sealed, magnetic driven gear pump, with a variable rpm DC motor. Using the electrical heater and regulating the amount of CO2 in the facility, the desired temperature and pressure can be reached. The dimensions of the instalation are minimized to reduce the heat, pump power required, and CO2 consumption and to optimize safety. Preliminary testing of a single hot-wire velocity sensor at constant pressure (80 bar) and variable speed and temperature will be briefly described. The hot-wire probes calibrated in this loop will be used to measure turbulence properties in supercritical CO2 in support of improved designs of nuclear reactors to be cooled by supercritical fluids.

  5. New mixed valence defect dicubane cobalt(II)/cobalt(III) complex: Synthesis, crystal structure, photoluminescence and magnetic properties

    NASA Astrophysics Data System (ADS)

    Coban, Mustafa Burak; Gungor, Elif; Kara, Hulya; Baisch, Ulrich; Acar, Yasemin

    2018-02-01

    A new defect dicubane cobalt(II)/cobalt(III), [(CoII2CoIII2L42(H2O)(CH3COO)(CH3COOH]. 4H2O complex (1) where H2L = [1-(3-hydroxypropyliminomethyl)naphthalene-2-ol], has been synthesized and characterized by element analysis, FT-IR, solid UV-Vis spectroscopy and single crystal X-ray diffraction. The crystal structure determination shows a cationic tetrameric arrangement consisting of a defect dicubane core with two missing vertexes. Each cobalt ion has a distorted octahedral geometry with six coordinate ordered CoII and CoIII ions. The solid state photoluminescence properties of complex (1) and its ligand H2L have been investigated under UV light at 349 nm in the visible region. H2L exhibits blue emission while complex (1) shows red emission at room temperature. Variable-temperature magnetic susceptibility measurements on the complex (1) in the range 2-300 K indicate an antiferromagnetic interaction.

  6. Low-energy plasma observations at synchronous orbit

    NASA Technical Reports Server (NTRS)

    Lennartsson, W.; Reasoner, D. L.

    1978-01-01

    The University of California at San Diego Auroral Particles Experiment on the ATS 6 satellite in synchronous orbit has detected a low-energy plasma population which is separate and distinct from both the ring current and the plasma sheet populations. The density and temperature of this low-energy population are highly variable, with temperatures in the range kT = 1-30 eV and densities ranging from less than 1 per cu cm to more than 10 per cu cm. The occurrence of a dense low-energy plasma is most likely in the afternoon and dusk local time sectors, whereas n greater than 1 per cu cm is seen in the local night sector only during magnetically quiet periods. These observations suggest that this plasma is the outer zone of the plasmasphere. During magnetically active periods this low-energy plasma is often observed flowing sunward. In the dusk sector, strong sunward plasma flow is often observed for 1-2 hours prior to the onset of a substorm-associated particle injection.

  7. Electric-field-controlled ferromagnetism in high-Curie-temperature Mn0.05Ge0.95 quantum dots.

    PubMed

    Xiu, Faxian; Wang, Yong; Kim, Jiyoung; Hong, Augustin; Tang, Jianshi; Jacob, Ajey P; Zou, Jin; Wang, Kang L

    2010-04-01

    Electric-field manipulation of ferromagnetism has the potential for developing a new generation of electric devices to resolve the power consumption and variability issues in today's microelectronics industry. Among various dilute magnetic semiconductors (DMSs), group IV elements such as Si and Ge are the ideal material candidates because of their excellent compatibility with the conventional complementary metal-oxide-semiconductor (MOS) technology. Here we report, for the first time, the successful synthesis of self-assembled dilute magnetic Mn(0.05)Ge(0.95) quantum dots with ferromagnetic order above room temperature, and the demonstration of electric-field control of ferromagnetism in MOS ferromagnetic capacitors up to 100 K. We found that by applying electric fields to a MOS gate structure, the ferromagnetism of the channel layer can be effectively modulated through the change of hole concentration inside the quantum dots. Our results are fundamentally important in the understanding and to the realization of high-efficiency Ge-based spin field-effect transistors.

  8. Magnetic Properties of Fe-49Co-2V Alloy and Pure Fe at Room and Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    De Groh, Henry C., III; Geng, Steven M.; Niedra, Janis M.; Hofer, Richard R.

    2018-01-01

    The National Aeronautics and Space Administration (NASA) has a need for soft magnetic materials for fission power and ion propulsion systems. In this work the magnetic properties of the soft magnetic materials Hiperco 50 (Fe-49wt%Cr-2V) and CMI-C (commercially pure magnetic iron) were examined at various temperatures up to 600 C. Toroidal Hiperco 50 samples were made from stacks of 0.35 mm thick sheet, toroidal CMI-C specimens were machined out of solid bar stock, and both were heat treated prior to testing. The magnetic properties of a Hiperco 50 sample were measured at various temperatures up to 600 C and then again after returning to room temperature; the magnetic properties of CMI-C were tested at temperatures up to 400 C. For Hiperco 50 coercivity decreased as temperature increased, and remained low upon returning to room temperature; maximum permeability improved (increased) with increasing temperature and was dramatically improved upon returning to room temperature; remanence was not significantly affected by temperature; flux density at H = 0.1 kA/m increased slightly with increasing temperature, and was about 20% higher upon returning to room temperature; flux density at H = 0.5 kA/m was insensitive to temperature. It appears that the properties of Hiperco 50 improved with increasing temperature due to grain growth. There was no significant magnetic property difference between annealed and aged CMI-C iron material; permeability tended to decrease with increasing temperature; the approximate decline in the permeability at 400 C compared to room temperature was 30%; saturation flux density, B(sub S), was approximately equal for all temperatures below 400 C; B(sub S) was lower at 400 C.

  9. The role of electron heating physics in images and variability of the Galactic Centre black hole Sagittarius A*

    NASA Astrophysics Data System (ADS)

    Chael, Andrew; Rowan, Michael; Narayan, Ramesh; Johnson, Michael; Sironi, Lorenzo

    2018-05-01

    The accretion flow around the Galactic Centre black hole Sagittarius A* (Sgr A*) is expected to have an electron temperature that is distinct from the ion temperature, due to weak Coulomb coupling in the low-density plasma. We present four two-temperature general relativistic radiative magnetohydrodynamic (GRRMHD) simulations of Sgr A* performed with the code KORAL. These simulations use different electron heating prescriptions, motivated by different models of the underlying plasma microphysics. We compare the Landau-damped turbulent cascade model used in previous work with a new prescription we introduce based on the results of particle-in-cell simulations of magnetic reconnection. With the turbulent heating model, electrons are preferentially heated in the polar outflow, whereas with the reconnection model electrons are heated by nearly the same fraction everywhere in the accretion flow. The spectra of the two models are similar around the submillimetre synchrotron peak, but the models heated by magnetic reconnection produce variability more consistent with the level observed from Sgr A*. All models produce 230 GHz images with distinct black hole shadows which are consistent with the image size measured by the Event Horizon Telescope, but only the turbulent heating produces an anisotropic `disc-jet' structure where the image is dominated by a polar outflow or jet at frequencies below the synchrotron peak. None of our models can reproduce the observed radio spectral slope, the large near-infrared and X-ray flares, or the near-infrared spectral index, all of which suggest non-thermal electrons are needed to fully explain the emission from Sgr A*.

  10. Understanding temperature and magnetic-field actuated magnetization polarity reversal in the Prussian blue analogue Cu 0.73 Mn 0.77 [Fe(CN) 6 ]. z H 2 O, using XMCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lahiri, Debdutta; Choi, Yongseong; Yusuf, S. M.

    2016-02-23

    We have investigated the microscopic origin of temperature and magnetic-field actuated magnetization reversal in Cu0.73Mn0.77[Fe(CN)(6)]center dot zH(2)O, using XMCD. Our results show a fair deviation from the mean-field-theory in the form of different ordering temperatures of Fe and Mn sublattices. A preferential sign reversal of Mn spin under magnetic field and different spin cant angles for the two sublattices have also been observed. An antiferromagnetic coupling between the Fe and Mn sublattices along with different ordering temperatures (sublattice decoupling) for these sublattices explain the temperature-dependent magnetization reversal. Whereas, Mn spin reversal alone (under external magnetic field) is responsible for themore » observed field-dependent magnetization reversal. The dissimilar magnetic behavior of Fe and Mn sublattices in this cubic 3d-orbital system has been understood by invoking disparity and competition among inter-sublattice magnetic control parameters, viz. magnetic Zeeman energy, exchange coupling constant and magnetic anisotropy constant. Our results have significant design implications for future magnetic switches, by optimizing the competition among these magnetic control parameters.« less

  11. WEATHER ON OTHER WORLDS. I. DETECTION OF PERIODIC VARIABILITY IN THE L3 DWARF DENIS-P J1058.7-1548 WITH PRECISE MULTI-WAVELENGTH PHOTOMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinze, Aren N.; Metchev, Stanimir; Apai, Daniel

    2013-04-20

    Photometric monitoring from warm Spitzer reveals that the L3 dwarf DENIS-P J1058.7-1548 varies sinusoidally in brightness with a period of 4.25{sup +0.26}{sub -0.16} hr and an amplitude of 0.388% {+-} 0.043% (peak-to-valley) in the 3.6 {mu}m band, confirming the reality of a 4.31 {+-} 0.31 hr periodicity detected in J-band photometry from the SOAR telescope. The J-band variations are a factor of 2.17 {+-} 0.35 larger in amplitude than those at 3.6 {mu}m, while 4.5 {mu}m Spitzer observations yield a 4.5 {mu}m/3.6 {mu}m amplitude ratio of only 0.23 {+-} 0.15, consistent with zero 4.5 {mu}m variability. This wide range inmore » amplitudes indicates rotationally modulated variability due to magnetic phenomena and/or inhomogeneous cloud cover. Weak H{alpha} emission indicates some magnetic activity, but it is difficult to explain the observed amplitudes by magnetic phenomena unless they are combined with cloud inhomogeneities (which might have a magnetic cause). However, inhomogeneous cloud cover alone can explain all our observations, and our data align with theory in requiring that the regions with the thickest clouds also have the lowest effective temperature. Combined with published vsin (i) results, our rotation period yields a 95% confidence lower limit of R{sub *} {>=} 0.111 R{sub Sun }, suggesting upper limits of 320 Myr and 0.055 M{sub Sun} on the age and mass. These limits should be regarded cautiously because of {approx}3{sigma} inconsistencies with other data; however, a lower limit of 45 Degree-Sign on the inclination is more secure. DENIS-P J1058.7-1548 is only the first of nearly two dozen low-amplitude variables discovered and analyzed by the Weather on Other Worlds project.« less

  12. New Low-Temperature Magnetic Data Acquired on Synthetic Lepidocrocite

    NASA Astrophysics Data System (ADS)

    Guyodo, Y.; Bonville, P.; Ona-Nguema, G.; Carvallo, C.; Wang, Y.; Morin, G.

    2007-12-01

    Lepidocrocite (γ-FeOOH) is an iron oxyhydroxide commonly found in the environment, which is assumed to be antiferromagnetic with a small ferromagnetic-like behavior and a Néel temperature of about 50K (e.g., Hirt et al., 2002, JGR, 107, 10.1029/2001JB000242). It is currently used as starting material in bio- reduction experiments leading to the formation of Fe(II)-bearing minerals such as green rusts, magnetite, and siderite (e.g., Ona-Nguema et al., 2002, Environ. Sci. Technol., 36, 16-20). Both initial and resulting materials are being characterized using various techniques including low-temperature magnetic methods. At this meeting, results obtained on the initial synthetic lepidocrocite samples will be presented, which describe an unusual magnetic behavior. In particular, field cooled and zero field cooled induced magnetization curves (obtained using a 5mT magnetic induction) merge at a temperature around 150K (well above 50K). Below this temperature, the difference between the two curves can be qualified as a remanent magnetization, acquired during cooling of the sample in the presence of a magnetic field. As a consequence, some ferromagnetic-like behavior persists at temperatures above the admitted Néel temperature. The cooling/warming cycle of the room temperature remanent magnetization (acquired using a 2.5T magnetic induction) also indicates that some remanence can be acquired well above that temperature. Other types of measurement have been performed in order to better constrain the low-temperature magnetic behavior of these samples, in particular using a high-field VSM.

  13. Thermal stability analysis of a superconducting magnet considering heat flow between magnet surface and liquid helium

    NASA Astrophysics Data System (ADS)

    Jang, J. Y.; Hwang, Y. J.; Ahn, M. C.; Choi, Y. S.

    2018-07-01

    This paper represents a numerical calculation method that enables highly-accurate simulations on temperature analysis of superconducting magnets considering the heat flow between the magnet and liquid helium during a quench. A three-dimensional (3D) superconducting magnet space was divided into many cells and the finite-difference method (FDM) was adopted to calculate the superconducting magnet temperatures governed by the heat transfer and joule heating of the each cell during a quench. To enhance the accuracy of the temperature calculations during a quench, the heat flow between the superconducting magnet surface and liquid helium, which lowers the magnet temperatures, was considered in this work. The electrical equation coupled with the governing thermal equation was also applied to calculate the change of the decay of the magnet current related to the joule heating. The proposed FDM method for temperatures calculation of a superconducting magnet during a quench process achieved results that were in good agreement with those obtained from an experiment.

  14. Constraints on primordial magnetic fields from inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Daniel; Kobayashi, Takeshi, E-mail: drgreen@cita.utoronto.ca, E-mail: takeshi.kobayashi@sissa.it

    2016-03-01

    We present generic bounds on magnetic fields produced from cosmic inflation. By investigating field bounds on the vector potential, we constrain both the quantum mechanical production of magnetic fields and their classical growth in a model independent way. For classical growth, we show that only if the reheating temperature is as low as T{sub reh} ∼< 10{sup 2} MeV can magnetic fields of 10{sup −15} G be produced on Mpc scales in the present universe. For purely quantum mechanical scenarios, even stronger constraints are derived. Our bounds on classical and quantum mechanical scenarios apply to generic theories of inflationary magnetogenesis with a two-derivative timemore » kinetic term for the vector potential. In both cases, the magnetic field strength is limited by the gravitational back-reaction of the electric fields that are produced simultaneously. As an example of quantum mechanical scenarios, we construct vector field theories whose time diffeomorphisms are spontaneously broken, and explore magnetic field generation in theories with a variable speed of light. Transitions of quantum vector field fluctuations into classical fluctuations are also analyzed in the examples.« less

  15. Magnetic transition temperatures follow crystallographic symmetry in Samarium under high-pressures and low-temperatures

    DOE PAGES

    Vohra, Yogesh K.; Tsoi, Georgiy M.; Johnson, Craig R.

    2016-12-21

    Magnetic ordering temperatures in rare earth metal samarium (Sm) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to high-pressure up to 47 GPa and low-temperature to 10 K. The two magnetic transitions at 106 K and 14 K in the α-Sm phase, attributed to antiferromagnetic ordering on hexagonal and cubic layers respectively, collapse in to one magnetic transition near 10 GPa when Sm assumes a double hexagonal close packed (dhcp) phase. On further increase in pressure above 34 GPa, the magnetic transitions split again as Sm adopts a hexagonal-hP3 structure indicating differentmore » magnetic transition temperatures for different crystallographic sites. A model for magnetic ordering for the hexagonal-hP3 phase in samarium has been proposed based on the experimental data. The magnetic transition temperatures closely follow the crystallographic symmetry during α-Sm → dhcp → fcc/dist.fcc → hP3 structure sequence at high-pressures and low-temperatures.« less

  16. Magnetic transition temperatures follow crystallographic symmetry in Samarium under high-pressures and low-temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vohra, Yogesh K.; Tsoi, Georgiy M.; Johnson, Craig R.

    Magnetic ordering temperatures in rare earth metal samarium (Sm) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to high-pressure up to 47 GPa and low-temperature to 10 K. The two magnetic transitions at 106 K and 14 K in the α-Sm phase, attributed to antiferromagnetic ordering on hexagonal and cubic layers respectively, collapse in to one magnetic transition near 10 GPa when Sm assumes a double hexagonal close packed (dhcp) phase. On further increase in pressure above 34 GPa, the magnetic transitions split again as Sm adopts a hexagonal-hP3 structure indicating differentmore » magnetic transition temperatures for different crystallographic sites. A model for magnetic ordering for the hexagonal-hP3 phase in samarium has been proposed based on the experimental data. The magnetic transition temperatures closely follow the crystallographic symmetry during α-Sm → dhcp → fcc/dist.fcc → hP3 structure sequence at high-pressures and low-temperatures.« less

  17. Enhancing the magnetization of Mn4C by heating

    NASA Astrophysics Data System (ADS)

    Si, Ping-Zhan; Qian, Hui-Dong; Ge, Hong-Liang; Park, Jihoon; Choi, Chul-Jin

    2018-05-01

    Little is known about the physical properties of Mn4C for which is unstable and difficult to prepare. We herein report on the unusual thermomagnetic properties of high purity Mn4C powders obtained by plasma melting and magnetic separation processes. The saturation magnetization of Mn4C increases linearly with increasing temperature in the range of 50 K-590 K and remains stable at temperatures below 50 K. The anomalous magnetization increases of Mn4C with increasing temperature can be considered in terms of the Néel's P-type ferrimagnetism. At temperatures above 590 K, the Mn4C decomposes into Mn23C6 and Mn, which would be partially oxidized into manganosite when exposed to air. The remanent magnetization of Mn4C varies little with temperature. The Curie temperature of Mn4C is around ˜870 K. The positive temperature coefficient (˜0.0072 Am2 kg-1 K-1) of magnetization in Mn4C makes it potentially important in controlling the thermodynamics of magnetization in magnetic materials.

  18. Magnetic transition temperatures follow crystallographic symmetry in samarium under high-pressures and low-temperatures

    NASA Astrophysics Data System (ADS)

    Johnson, Craig R.; Tsoi, Georgiy M.; Vohra, Yogesh K.

    2017-02-01

    Magnetic ordering temperatures in rare earth metal samarium (Sm) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to high-pressure up to 47 GPa and low-temperature to 10 K. The two magnetic transitions at 106 K and 14 K in the α-Sm phase, attributed to antiferromagnetic ordering on hexagonal and cubic layers respectively, collapse in to one magnetic transition near 10 GPa when Sm assumes a double hexagonal close packed (dhcp) phase. On further increase in pressure above 34 GPa, the magnetic transitions split again as Sm adopts a hexagonal-hP3 structure indicating different magnetic transition temperatures for different crystallographic sites. A model for magnetic ordering for the hexagonal-hP3 phase in samarium has been proposed based on the experimental data. The magnetic transition temperatures closely follow the crystallographic symmetry during α-Sm  →  dhcp  →  fcc/dist.fcc  →  hP3 structure sequence at high-pressures and low-temperatures.

  19. Magnetic transition temperatures follow crystallographic symmetry in samarium under high-pressures and low-temperatures.

    PubMed

    Johnson, Craig R; Tsoi, Georgiy M; Vohra, Yogesh K

    2017-02-15

    Magnetic ordering temperatures in rare earth metal samarium (Sm) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to high-pressure up to 47 GPa and low-temperature to 10 K. The two magnetic transitions at 106 K and 14 K in the α-Sm phase, attributed to antiferromagnetic ordering on hexagonal and cubic layers respectively, collapse in to one magnetic transition near 10 GPa when Sm assumes a double hexagonal close packed (dhcp) phase. On further increase in pressure above 34 GPa, the magnetic transitions split again as Sm adopts a hexagonal-hP3 structure indicating different magnetic transition temperatures for different crystallographic sites. A model for magnetic ordering for the hexagonal-hP3 phase in samarium has been proposed based on the experimental data. The magnetic transition temperatures closely follow the crystallographic symmetry during α-Sm  →  dhcp  →  fcc/dist.fcc  →  hP3 structure sequence at high-pressures and low-temperatures.

  20. Lifting the geometric frustration through a monoclinic distortion in “114” YBaFe{sub 4}O{sub 7.0}: Magnetism and transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duffort, V.; Sarkar, T.; Caignaert, V., E-mail: vincent.caignaert@ensicaen.fr

    2013-09-15

    The possibility to lift the geometric frustration in the “114” stoichiomeric tetragonal oxide YBaFe{sub 4}O{sub 7.0} by decreasing the temperature has been investigated using neutron and synchrotron powder diffraction techniques. Besides the structural transition from tetragonal to monoclinic symmetry that appears at T{sub S}=180 K, a magnetic transition is observed below T{sub N}=95 K. The latter corresponds to a lifting of the 3D geometric frustration toward an antiferromagnetic long range ordering, never observed to date in a cubic based “114’” oxide. The magnetic structure, characterized by the propagation vector k{sub 1}=(0,0,½), shows that one iron Fe2 exhibits a larger magneticmore » moment than the three others, suggesting a possible charge ordering according to the formula YBaFe{sup 3+}Fe{sub 3}{sup 2+}O{sub 7.0}. The magnetic M(T) and χ′(T) curves, in agreement with neutron data, confirm the structural and magnetic transitions and evidence the coexistence of residual magnetic frustration. Moreover, the transport measurements show a resistive transition from a thermally activated conduction mechanism to a variable range hopping mechanism at T{sub S}=180 K, with a significant increase of the dependence of the resistivity vs. temperature. Mössbauer spectroscopy clearly evidences a change in the electronic configuration of the iron framework at the structural transition as well as coexistence of several oxidation states. The role of barium underbonding in these transitions is discussed. - Graphical abstract: Atomic displacements at the tetragonal-monoclinic transition in YBaFe{sub 4}O{sub 7}. Display Omitted - Highlights: • The structural and magnetic phase transitions of YBaFe{sub 4}O{sub 7} were studied below room temperature. • The tetragonal to monoclinic transition, characterized by NPD and SXRD, was studied using mode crystallography approach. • Monoclinic distortion allows the lifting of the geometrical frustration on the iron sublattice, leading to AF order at T=95 K.« less

  1. Study of flow fractionation characteristics of magnetic chromatography utilizing high-temperature superconducting bulk magnet.

    PubMed

    Fukui, Satoshi; Shoji, Yoshihiro; Ogawa, Jun; Oka, Tetsuo; Yamaguchi, Mitsugi; Sato, Takao; Ooizumi, Manabu; Imaizumi, Hiroshi; Ohara, Takeshi

    2009-02-01

    We present numerical simulation of separating magnetic particles with different magnetic susceptibilities by magnetic chromatography using a high-temperature superconducting bulk magnet. The transient transport is numerically simulated for two kinds of particles having different magnetic susceptibilities. The time evolutions were calculated for the particle concentration in the narrow channel of the spiral arrangement placed in the magnetic field. The field is produced by the highly magnetized high-temperature superconducting bulk magnet. The numerical results show the flow velocity difference of the particle transport corresponding to the difference in the magnetic susceptibility, as well as the possible separation of paramagnetic particles of 20 nm diameter.

  2. Conical Magnetic Bearing Development and Magnetic Bearing Testing for Extreme Temperature Environments

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Jansen, Mark

    2004-01-01

    The main proposed research of this grant were: to design a high-temperature, conical magnetic bearing facility, to test the high-temperature, radial magnetic bearing facility to higher speeds, to investigate different backup bearing designs and materials, to retrofit the high-temperature test facility with a magnetic thrust bearing, to evaluate test bearings at various conditions, and test several lubricants using a spiral orbit tribometer. A high-temperature, conical magnetic bearing facility has been fully developed using Solidworks. The facility can reuse many of the parts of the current high-temperature, radial magnetic bearing, helping to reduce overall build costs. The facility has the ability to measure bearing force capacity in the X, Y, and Z directions through a novel bearing mounting design. The high temperature coils and laminations, a main component of the facility, are based upon the current radial design and can be fabricated at Texas A&M University. The coil design was highly successful in the radial magnetic bearing. Vendors were contacted about fabrication of the high temperature lamination stack. Stress analysis was done on the laminations. Some of the components were procured, but due to budget cuts, the facility build up was stopped.

  3. Interfacial magnetism in CaRuO3/CaMnO3 superlattices grown on (001) SrTiO3

    NASA Astrophysics Data System (ADS)

    He, C.; Zhai, X.; Mehta, V. V.; Wong, F. J.; Suzuki, Y.

    2011-04-01

    We have studied epitaxially grown superlattices of CaRuO3/CaMnO3 as well as an alloy film of CaMn0.5Ru0.5O3 on (001) SrTiO3 substrates. In contrast to previous experiments, we have studied CRO/CMO superlattices with a constant CRO thickness and variable CMO thickness. All superlattices exhibit Curie temperatures (TC) of 110 K. The saturated magnetization per interfacial Mn cation has been found to be 1.1 μB/Mn ion. The TC's of the superlattices are much lower than the TC of the alloy film while the saturated magnetization values are larger than that of the alloy film. These observations suggest that interdiffusion alone cannot account for ferromagnetism in the superlattices and that double exchange induced FM must play a role at the interfaces.

  4. The second peak effect and vortex pinning mechanisms in Ba(Fe,Ni)2As2 superconductors

    NASA Astrophysics Data System (ADS)

    Ghorbani, S. R.; Arabi, H.; Wang, X. L.

    2017-09-01

    Vortex pinning mechanisms have been studied systematically in BaFe1.9Ni0.1As2 single crystal as a function of temperature and magnetic field. The obtained shielding current density, Js, showed a second peak in the intermediate magnetic field range at high temperatures. The temperature dependence of the shielding current density, Js(T), was analysed within the collective pinning model at different magnetic fields. It was found that the second peak reflects the coexistence of both δl pinning, reflecting spatial variation in the mean free path (l), and δTc pinning, reflecting spatial variation in the superconducting critical temperature (Tc) at low temperature and low magnetic fields in BaFe1.9Ni0.1As2 single crystal. The results clearly show that pinning mechanism effects are strongly temperature and magnetic field dependent, and the second peak effect is more powerful at higher temperatures and magnetic fields. It was also found that the magnetic field mainly controls the pinning mechanism effect.

  5. Room temperature organic magnets derived from sp3 functionalized graphene.

    PubMed

    Tuček, Jiří; Holá, Kateřina; Bourlinos, Athanasios B; Błoński, Piotr; Bakandritsos, Aristides; Ugolotti, Juri; Dubecký, Matúš; Karlický, František; Ranc, Václav; Čépe, Klára; Otyepka, Michal; Zbořil, Radek

    2017-02-20

    Materials based on metallic elements that have d orbitals and exhibit room temperature magnetism have been known for centuries and applied in a huge range of technologies. Development of room temperature carbon magnets containing exclusively sp orbitals is viewed as great challenge in chemistry, physics, spintronics and materials science. Here we describe a series of room temperature organic magnets prepared by a simple and controllable route based on the substitution of fluorine atoms in fluorographene with hydroxyl groups. Depending on the chemical composition (an F/OH ratio) and sp 3 coverage, these new graphene derivatives show room temperature antiferromagnetic ordering, which has never been observed for any sp-based materials. Such 2D magnets undergo a transition to a ferromagnetic state at low temperatures, showing an extraordinarily high magnetic moment. The developed theoretical model addresses the origin of the room temperature magnetism in terms of sp 2 -conjugated diradical motifs embedded in an sp 3 matrix and superexchange interactions via -OH functionalization.

  6. Room temperature organic magnets derived from sp3 functionalized graphene

    PubMed Central

    Tuček, Jiří; Holá, Kateřina; Bourlinos, Athanasios B.; Błoński, Piotr; Bakandritsos, Aristides; Ugolotti, Juri; Dubecký, Matúš; Karlický, František; Ranc, Václav; Čépe, Klára; Otyepka, Michal; Zbořil, Radek

    2017-01-01

    Materials based on metallic elements that have d orbitals and exhibit room temperature magnetism have been known for centuries and applied in a huge range of technologies. Development of room temperature carbon magnets containing exclusively sp orbitals is viewed as great challenge in chemistry, physics, spintronics and materials science. Here we describe a series of room temperature organic magnets prepared by a simple and controllable route based on the substitution of fluorine atoms in fluorographene with hydroxyl groups. Depending on the chemical composition (an F/OH ratio) and sp3 coverage, these new graphene derivatives show room temperature antiferromagnetic ordering, which has never been observed for any sp-based materials. Such 2D magnets undergo a transition to a ferromagnetic state at low temperatures, showing an extraordinarily high magnetic moment. The developed theoretical model addresses the origin of the room temperature magnetism in terms of sp2-conjugated diradical motifs embedded in an sp3 matrix and superexchange interactions via –OH functionalization. PMID:28216636

  7. A room-temperature magnetic semiconductor from a ferromagnetic metallic glass

    NASA Astrophysics Data System (ADS)

    Liu, Wenjian; Zhang, Hongxia; Shi, Jin-An; Wang, Zhongchang; Song, Cheng; Wang, Xiangrong; Lu, Siyuan; Zhou, Xiangjun; Gu, Lin; Louzguine-Luzgin, Dmitri V.; Chen, Mingwei; Yao, Kefu; Chen, Na

    2016-12-01

    Emerging for future spintronic/electronic applications, magnetic semiconductors have stimulated intense interest due to their promises for new functionalities and device concepts. So far, the so-called diluted magnetic semiconductors attract many attentions, yet it remains challenging to increase their Curie temperatures above room temperature, particularly those based on III-V semiconductors. In contrast to the concept of doping magnetic elements into conventional semiconductors to make diluted magnetic semiconductors, here we propose to oxidize originally ferromagnetic metals/alloys to form new species of magnetic semiconductors. We introduce oxygen into a ferromagnetic metallic glass to form a Co28.6Fe12.4Ta4.3B8.7O46 magnetic semiconductor with a Curie temperature above 600 K. The demonstration of p-n heterojunctions and electric field control of the room-temperature ferromagnetism in this material reflects its p-type semiconducting character, with a mobility of 0.1 cm2 V-1 s-1. Our findings may pave a new way to realize high Curie temperature magnetic semiconductors with unusual multifunctionalities.

  8. A series of tetraazalene radical-bridged M2 (M = CrIII, MnII, FeII, CoII) complexes with strong magnetic exchange coupling† †Electronic supplementary information (ESI) available: Experimental details, UV/Vis/NIR spectra for 2–8, additional magnetic data for 4–8, crystallographic data, selected bond distances, and crystallographic information files (CIFs) for 1, 2·0.4THF, 3·2.5THF, 4·2.5THF, and 5·2.9MeCN (CCDC 1414648–1414652). For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5sc02725j

    PubMed Central

    DeGayner, Jordan A.; Jeon, Ie-Rang

    2015-01-01

    The ability of tetraazalene radical bridging ligands to mediate exceptionally strong magnetic exchange coupling across a range of transition metal complexes is demonstrated. The redox-active bridging ligand N,N′,N′′,N′′′-tetra(2-methylphenyl)-2,5-diamino-1,4-diiminobenzoquinone (NMePhLH2) was metalated to give the series of dinuclear complexes [(TPyA)2M2(NMePhL2–)]2+ (TPyA = tris(2-pyridylmethyl)amine, M = MnII, FeII, CoII). Variable-temperature dc magnetic susceptibility data for these complexes reveal the presence of weak superexchange interactions between metal centers, and fits to the data provide coupling constants of J = –1.64(1) and –2.16(2) cm–1 for M = MnII and FeII, respectively. One-electron reduction of the complexes affords the reduced analogues [(TPyA)2M2(NMePhL3–˙)]+. Following a slightly different synthetic procedure, the related complex [(TPyA)2CrIII2(NMePhL3–˙)]3+ was obtained. X-ray diffraction, cyclic voltammetry, and Mössbauer spectroscopy indicate the presence of radical NMePhL3–˙ bridging ligands in these complexes. Variable-temperature dc magnetic susceptibility data of the radical-bridged species reveal the presence of strong magnetic interactions between metal centers and ligand radicals, with simulations to data providing exchange constants of J = –626(7), –157(7), –307(9), and –396(16) cm–1 for M = CrIII, MnII, FeII, and CoII, respectively. Moreover, the strength of magnetic exchange in the radical-bridged complexes increases linearly with decreasing M–L bond distance in the oxidized analogues. Finally, ac magnetic susceptibility measurements reveal that [(TPyA)2Fe2(NMePhL3–˙)]+ behaves as a single-molecule magnet with a relaxation barrier of Ueff = 52(1) cm–1. These results highlight the ability of redox-active tetraazalene bridging ligands to enable dramatic enhancement of magnetic exchange coupling upon redox chemistry and provide a rare opportunity to examine metal–radical coupling trends across a transmetallic series of complexes. PMID:29435213

  9. FAST TRACK COMMUNICATION: Finite-temperature magnetism in bcc Fe under compression

    NASA Astrophysics Data System (ADS)

    Sha, Xianwei; Cohen, R. E.

    2010-09-01

    We investigate the contributions of finite-temperature magnetic fluctuations to the thermodynamic properties of bcc Fe as functions of pressure. First, we apply a tight-binding total-energy model parameterized to first-principles linearized augmented plane-wave computations to examine various ferromagnetic, anti-ferromagnetic, and noncollinear spin spiral states at zero temperature. The tight-binding data are fit to a generalized Heisenberg Hamiltonian to describe the magnetic energy functional based on local moments. We then use Monte Carlo simulations to compute the magnetic susceptibility, the Curie temperature, heat capacity, and magnetic free energy. Including the finite-temperature magnetism improves the agreement with experiment for the calculated thermal expansion coefficients.

  10. Spin-glass polyamorphism induced by a magnetic field in LaMnO3 single crystal

    NASA Astrophysics Data System (ADS)

    Eremenko, V. V.; Sirenko, V. A.; Baran, A.; Čižmár, E.; Feher, A.

    2018-05-01

    We present experimental evidence of field-driven transition in spin-glass state, similar to pressure-induced transition between amorphous phases in structural and metallic glasses, attributed to the polyamorphism phenomena. Cusp in temperature dependences of ac magnetic susceptibility of weakly disordered LaMnO3 single crystal is registered below the temperature of magnetic ordering. Frequency dependence of the cusp temperature proves its spin-glass origin. The transition induced by a magnetic field in spin-glass state, is manifested by peculiarity in dependence of cusp temperature on applied magnetic field. Field dependent maximum of heat capacity is observed in the same magnetic field and temperature range.

  11. Structural and magnetic properties of granular CoPd multilayers

    NASA Astrophysics Data System (ADS)

    Vivas, L. G.; Figueroa, A. I.; Bartolomé, F.; Rubín, J.; García, L. M.; Deranlot, C.; Petroff, F.; Ruiz, L.; González-Calbet, J. M.; Brookes, N. B.; Wilhelm, F.; Rogalev, A.; Bartolomé, J.

    2016-02-01

    Multilayers of bimetallic CoPd alloyed and assembled nanoparticles, prepared by room temperature sequential sputtering deposition on amorphous alumina, were studied by means of high-resolution transmission electron microscopy, x-ray diffraction, SQUID-based magnetometry and x-ray magnetic circular dichroism. Alloying between Co and Pd in these nanoparticles gives rise to a high perpendicular magnetic anisotropy. Their magnetic properties are temperature dependent: at low temperature, the multilayers are ferromagnetic with a high coercive field; at intermediate temperature the behavior is of a soft-ferromagnet, and at higher temperature, the perpendicular magnetic anisotropy in the nanoparticles disappears. The magnetic orbital moment to spin moment ratio is enhanced compared with Co bare nanoparticles and Co fcc bulk.

  12. Iron oxides as pedoenvironmental indicators: state of the art, answers and questions (Philippe Duchaufour Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Torrent, J.

    2012-04-01

    The colour and magnetic properties of soils largely reflect the content and mineralogy of their iron oxides, which in turn relate to the physical, chemical and biological characteristics of the soil environment. For more than 50 years, soil mineralogists and chemists have collected data for iron oxides in soils formed in widely different environments and tried to understand the complex nature of the different suites and formation pathways for these minerals via laboratory experiments. The discovery of ferrihydrite —the poorly crystalline precursor of most Fe oxides— in 1971, and the recognition of its common presence in soils, raised interest in deciphering the environmental factors that affect its transformation into goethite and hematite, the two most abundant crystalline iron oxides in soil. Field observations were consistent with laboratory experiments in which temperature, water activity, pH, foreign ions and organic matter were found to play a key role in the crystallization of ferrihydrite. Thus, the hematite/(hematite + goethite) ratio increased with increasing temperature and also with the likelihood of seasonal soil drying. Exploiting this ratio as a (pedo)environment indicator is, however, not devoid of problems derived from insufficient knowledge of the interactions between the influential chemical variables, difficulties in quantifying the two minerals and changes brought about by reductive dissolution. Soil formation usually leads to magnetic enhancement as a result of the production of magnetite and/or maghemite, which are ferrimagnetic iron oxides, and, possibly, an ordered ferrimagnetic ferrihydrite, as suggested by recent laboratory experiments. The concentration of pedogenic ferrimagnets as estimated via proxies such as magnetic susceptibility or frequency-dependent magnetic susceptibility has been found to relate to climate variables [particularly (paleo)rainfall] in many studies reported over the last 30 years. However, extracting accurate environmental information from magnetic data is hampered by a still incomplete understanding of (i) the pathways through which pedogenic ferrimagnets are formed, and the chemical and biological factors that affect them; and (ii) the genetic relationships between ferrimagnets and other iron oxides. Competing hypotheses on these issues will be presented and their usefulness for pedoenvironmental interpretations discussed.

  13. Temperature-dependent magnetic anisotropy in the layered magnetic semiconductors Cr I3 and CrB r3

    NASA Astrophysics Data System (ADS)

    Richter, Nils; Weber, Daniel; Martin, Franziska; Singh, Nirpendra; Schwingenschlögl, Udo; Lotsch, Bettina V.; Kläui, Mathias

    2018-02-01

    Chromium trihalides are layered and exfoliable semiconductors and exhibit unusual magnetic properties with a surprising temperature dependence of the magnetization. By analyzing the evolution of the magnetocrystalline anisotropy with temperature in chromium iodide Cr I3 , we find it strongly changes from Ku=300 ±50 kJ / m3 at 5 K to Ku=43 ±7 kJ / m3 at 60 K , close to the Curie temperature. We draw a direct comparison to CrB r3 , which serves as a reference, and where we find results consistent with literature. In particular, we show that the anisotropy change in the iodide compound is more than 3 times larger than in the bromide. We analyze this temperature dependence using a classical model, showing that the anisotropy constant scales with the magnetization at any given temperature below the Curie temperature, indicating that the temperature dependence can be explained by a dominant uniaxial anisotropy where this scaling results from local spin clusters having thermally induced magnetization directions that deviate from the overall magnetization.

  14. High Temperature, Permanent Magnet Biased, Fault Tolerant, Homopolar Magnetic Bearing Development

    NASA Technical Reports Server (NTRS)

    Palazzolo, Alan; Tucker, Randall; Kenny, Andrew; Kang, Kyung-Dae; Ghandi, Varun; Liu, Jinfang; Choi, Heeju; Provenza, Andrew

    2008-01-01

    This paper summarizes the development of a magnetic bearing designed to operate at 1,000 F. A novel feature of this high temperature magnetic bearing is its homopolar construction which incorporates state of the art high temperature, 1,000 F, permanent magnets. A second feature is its fault tolerance capability which provides the desired control forces with over one-half of the coils failed. The construction and design methodology of the bearing is outlined and test results are shown. The agreement between a 3D finite element, magnetic field based prediction for force is shown to be in good agreement with predictions at room and high temperature. A 5 axis test rig will be complete soon to provide a means to test the magnetic bearings at high temperature and speed.

  15. Investigation of linearity of the ITER outer vessel steady-state magnetic field sensors at high temperature

    NASA Astrophysics Data System (ADS)

    Entler, S.; Duran, I.; Kocan, M.; Vayakis, G.

    2017-07-01

    Three vacuum vessel sectors in ITER will be instrumented by the outer vessel steady-state magnetic field sensors. Each sensor unit features a pair of metallic Hall sensors with a sensing layer made of bismuth to measure tangential and normal components of the local magnetic field. The influence of temperature and magnetic field on the Hall coefficient was tested for the temperature range from 25 to 250 oC and the magnetic field range from 0 to 0.5 T. A fit of the Hall coefficient normalized temperature function independent of magnetic field was found, and a model of the Hall coefficient functional dependence at a wide range of temperature and magnetic field was built with the purpose to simplify the calibration procedure.

  16. Flow behind an exponential shock wave in a rotational axisymmetric perfect gas with magnetic field and variable density.

    PubMed

    Nath, G; Sahu, P K

    2016-01-01

    A self-similar model for one-dimensional unsteady isothermal and adiabatic flows behind a strong exponential shock wave driven out by a cylindrical piston moving with time according to an exponential law in an ideal gas in the presence of azimuthal magnetic field and variable density is discussed in a rotating atmosphere. The ambient medium is assumed to possess radial, axial and azimuthal component of fluid velocities. The initial density, the fluid velocities and magnetic field of the ambient medium are assumed to be varying with time according to an exponential law. The gas is taken to be non-viscous having infinite electrical conductivity. Solutions are obtained, in both the cases, when the flow between the shock and the piston is isothermal or adiabatic by taking into account the components of vorticity vector. The effects of the variation of the initial density index, adiabatic exponent of the gas and the Alfven-Mach number on the flow-field behind the shock wave are investigated. It is found that the presence of the magnetic field have decaying effects on the shock wave. Also, it is observed that the effect of an increase in the magnetic field strength is more impressive in the case of adiabatic flow than in the case of isothermal flow. The assumption of zero temperature gradient brings a profound change in the density, non-dimensional azimuthal and axial components of vorticity vector distributions in comparison to those in the case of adiabatic flow. A comparison is made between isothermal and adiabatic flows. It is obtained that an increase in the initial density variation index, adiabatic exponent and strength of the magnetic field decrease the shock strength.

  17. Thermodynamics of anisotropic antiferromagnetic Heisenberg chain in the presence of longitudinal magnetic field

    NASA Astrophysics Data System (ADS)

    Rezania, H.

    2018-07-01

    We have addressed the specific heat and magnetization of one dimensional spin-1/2 anisotropic antiferromagnetic Heisenberg chain at finite magnetic field. We have investigated the thermodynamic properties by means of excitation spectrum in terms of a hard core Bosonic representation. The effect of in-plane anisotropy thermodynamic properties has also been studied via the Bosonic model by Green's function approach. This anisotropy is considered for exchange constants that couple spin components perpendicular to magnetic field direction. We have found the temperature dependence of the specific heat and longitudinal magnetization in the gapped field induced spin-polarized phase for various magnetic fields and anisotropy parameters. Furthermore we have studied the magnetic field dependence of specific heat and magnetization for various anisotropy parameters. Our results show temperature dependence of specific heat includes a peak so that its temperature position goes to higher temperature with increase of magnetic field. We have found the magnetic field dependence of specific heat shows a monotonic decreasing behavior for various magnetic fields due to increase of energy gap in the excitation spectrum. Also we have studied the temperature dependence of magnetization for different magnetic fields and various anisotropy parameters.

  18. Effect of electric field on the magnetic characteristics of a ferromagnetic nanosemiconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozhushner, M. A., E-mail: kozhushner@gmail.com; Lidskii, B. V.; Posvyanskii, V. S.

    A theory is developed to describe the effect of an electric field on the magnetization of a thin ferromagnetic semiconductor plate. It is shown that the magnetic moment density is nonuniform under these conditions and that the total magnetic moment and its density depend on the electric field and the temperature. An electric field is found to increase the Curie temperature, and an inflection point is detected in the temperature dependence of the derivative of the total magnetic moment with respect to temperature.

  19. Superconducting magnetic control system for manipulation of particulate matter and magnetic probes in medical and industrial applications

    DOEpatents

    Cha, Yung Sheng; Hull, John R.; Askew, Thomas R.

    2006-07-11

    A system and method of controlling movement of magnetic material with at least first and second high temperature superconductors at spaced locations. A plurality of solenoids are associated with the superconductors to induce a persistent currents in preselected high temperature superconductors establishing a plurality of magnetic fields in response to pulsed currents introduced to one or more of the solenoids. Control mechanism in communication with said solenoids and/or said high temperature superconductors are used to demagnetize selected ones of the high temperature superconductors to reduce the magnetic fields substantially to zero. Magnetic material is moved between magnetic fields by establishing the presence thereof and thereafter reducing magnetic fields substantially to zero and establishing magnetic fields in other superconductors arranged in a predetermined configuration.

  20. Magnetic and structural properties of glass-coated Heusler-type microwires exhibiting martensitic transformation.

    PubMed

    Zhukov, A; Ipatov, M; Del Val, J J; Zhukova, V; Chernenko, V A

    2018-01-12

    We have studied magnetic and structural properties of the Heusler-type Ni-Mn-Ga glass-coated microwires prepared by Tailor-Ulitovsky technique. As-prepared sample presents magnetoresistance effect and considerable dependence of magnetization curves (particularly magnetization values) on magnetic field attributed to the magnetic and atomic disorder. Annealing strongly affects the temperature dependence of magnetization and Curie temperature of microwires. After annealing of the microwires at 973 K, the Curie temperature was enhanced to about 280 K which is beneficial for the magnetic solid state refrigeration. The observed hysteretic anomalies on the temperature dependences of resistance and magnetization in the as-prepared and annealed samples are produced by the martensitic transformation. The magnetoresistance and magnetocaloric effects have been investigated to illustrate a potential technological capability of studied microwires.

  1. Low temperature superconductor and aligned high temperature superconductor magnetic dipole system and method for producing high magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Ramesh; Scanlan, Ronald; Ghosh, Arup K.

    A dipole-magnet system and method for producing high-magnetic-fields, including an open-region located in a radially-central-region to allow particle-beam transport and other uses, low-temperature-superconducting-coils comprised of low-temperature-superconducting-wire located in radially-outward-regions to generate high magnetic-fields, high-temperature-superconducting-coils comprised of high-temperature-superconducting-tape located in radially-inward-regions to generate even higher magnetic-fields and to reduce erroneous fields, support-structures to support the coils against large Lorentz-forces, a liquid-helium-system to cool the coils, and electrical-contacts to allow electric-current into and out of the coils. The high-temperature-superconducting-tape may be comprised of bismuth-strontium-calcium-copper-oxide or rare-earth-metal, barium-copper-oxide (ReBCO) where the rare-earth-metal may be yttrium, samarium, neodymium, or gadolinium. Advantageously, alignment of themore » large-dimension of the rectangular-cross-section or curved-cross-section of the high-temperature-superconducting-tape with the high-magnetic-field minimizes unwanted erroneous magnetic fields. Alignment may be accomplished by proper positioning, tilting the high-temperature-superconducting-coils, forming the high-temperature-superconducting-coils into a curved-cross-section, placing nonconducting wedge-shaped-material between windings, placing nonconducting curved-and-wedge-shaped-material between windings, or by a combination of these techniques.« less

  2. Magnetic cluster expansion simulation and experimental study of high temperature magnetic properties of Fe-Cr alloys.

    PubMed

    Lavrentiev, M Yu; Mergia, K; Gjoka, M; Nguyen-Manh, D; Apostolopoulos, G; Dudarev, S L

    2012-08-15

    We present a combined experimental and computational study of high temperature magnetic properties of Fe-Cr alloys with chromium content up to about 20 at.%. The magnetic cluster expansion method is applied to model the magnetic properties of random Fe-Cr alloys, and in particular the Curie transition temperature, as a function of alloy composition. We find that at low (3-6 at.%) Cr content the Curie temperature increases with the increase of Cr concentration. It is maximum at approximately 6 at.% Cr and then decreases for higher Cr content. The same feature is found in thermo-magnetic measurements performed on model Fe-Cr alloys, where a 5 at.% Cr alloy has a higher Curie temperature than pure Fe. The Curie temperatures of 10 and 15 at.% Cr alloys are found to be lower than the Curie temperature of pure Fe.

  3. A Magnetic Field Sensor Based on a Magnetic Fluid-Filled FP-FBG Structure

    PubMed Central

    Xia, Ji; Wang, Fuyin; Luo, Hong; Wang, Qi; Xiong, Shuidong

    2016-01-01

    Based on the characteristic magnetic-controlled refractive index property, in this paper, a magnetic fluid is used as a sensitive medium to detect the magnetic field in the fiber optic Fabry-Perot (FP) cavity. The temperature compensation in fiber Fabry-Perot magnetic sensor is demonstrated and achieved. The refractive index of the magnetic fluid varies with the applied magnetic field and external temperature, and a cross-sensitivity effect of the temperature and magnetic field occurs in the Fabry-Perot magnetic sensor and the accuracy of magnetic field measurements is affected by the thermal effect. In order to overcome this problem, we propose a modified sensor structure. With a fiber Bragg grating (FBG) written in the insert fiber end of the Fabry-Perot cavity, the FBG acts as a temperature compensation unit for the magnetic field measurement and it provides an effective solution to the cross-sensitivity effect. The experimental results show that the sensitivity of magnetic field detection improves from 0.23 nm/mT to 0.53 nm/mT, and the magnetic field measurement resolution finally reaches 37.7 T. The temperature-compensated FP-FBG magnetic sensor has obvious advantages of small volume and high sensitivity, and it has a good prospect in applications in the power industry and national defense technology areas. PMID:27136564

  4. A Magnetic Field Sensor Based on a Magnetic Fluid-Filled FP-FBG Structure.

    PubMed

    Xia, Ji; Wang, Fuyin; Luo, Hong; Wang, Qi; Xiong, Shuidong

    2016-04-29

    Based on the characteristic magnetic-controlled refractive index property, in this paper, a magnetic fluid is used as a sensitive medium to detect the magnetic field in the fiber optic Fabry-Perot (FP) cavity. The temperature compensation in fiber Fabry-Perot magnetic sensor is demonstrated and achieved. The refractive index of the magnetic fluid varies with the applied magnetic field and external temperature, and a cross-sensitivity effect of the temperature and magnetic field occurs in the Fabry-Perot magnetic sensor and the accuracy of magnetic field measurements is affected by the thermal effect. In order to overcome this problem, we propose a modified sensor structure. With a fiber Bragg grating (FBG) written in the insert fiber end of the Fabry-Perot cavity, the FBG acts as a temperature compensation unit for the magnetic field measurement and it provides an effective solution to the cross-sensitivity effect. The experimental results show that the sensitivity of magnetic field detection improves from 0.23 nm/mT to 0.53 nm/mT, and the magnetic field measurement resolution finally reaches 37.7 T. The temperature-compensated FP-FBG magnetic sensor has obvious advantages of small volume and high sensitivity, and it has a good prospect in applications in the power industry and national defense technology areas.

  5. Temperature and magnetic field induced multiple magnetic transitions in DyAg(2).

    PubMed

    Arora, Parul; Chattopadhyay, M K; Sharath Chandra, L S; Sharma, V K; Roy, S B

    2011-02-09

    The magnetic properties of the rare-earth intermetallic compound DyAg(2) are studied in detail with the help of magnetization and heat capacity measurements. It is shown that the multiple magnetic phase transitions can be induced in DyAg(2) both by temperature and magnetic field. The detailed magnetic phase diagram of DyAg(2) is determined experimentally. It was already known that DyAg(2) undergoes an incommensurate to commensurate antiferromagnetic phase transition close to 10 K. The present experimental results highlight the first order nature of this phase transition, and show that this transition can be induced by magnetic field as well. It is further shown that another isothermal magnetic field induced transition or metamagnetic transition exhibited by DyAg(2) at still lower temperatures is also of first order nature. The multiple magnetic phase transitions in DyAg(2) give rise to large peaks in the temperature dependence of the heat capacity below 17 K, which indicates its potential as a magnetic regenerator material for cryocooler related applications. In addition it is found that because of the presence of the temperature and field induced magnetic phase transitions, and because of short range magnetic correlations deep inside the paramagnetic regime, DyAg(2) exhibits a fairly large magnetocaloric effect over a wide temperature window, e.g., between 10 and 60 K.

  6. Thermal conductivity measurements of impregnated Nb3Sn coil samples in the temperature range of 3.5 K to 100 K

    NASA Astrophysics Data System (ADS)

    Koettig, T.; Maciocha, W.; Bermudez, S.; Rysti, J.; Tavares, S.; Cacherat, F.; Bremer, J.

    2017-02-01

    In the framework of the luminosity upgrade of the LHC, high-field magnets are under development. Magnetic flux densities of up to 13 T require the use of Nb3Sn superconducting coils. Quench protection becomes challenging due to the high stored energy density and the low stabilizer fraction. The thermal conductivity and diffusivity of the combination of insulating layers and Nb3Sn based cables are an important thermodynamic input parameter for quench protection systems and superfluid helium cooling studies. A two-stage cryocooler based test stand is used to measure the thermal conductance of the coil sample in two different heat flow directions with respect to the coil package geometry. Variable base temperatures of the experimental platform at the cryocooler allow for a steady-state heat flux method up to 100 K. The heat is applied at wedges style copper interfaces of the Rutherford cables. The respective temperature difference represents the absolute value of thermal conductance of the sample arrangement. We report about the measurement methodology applied to this kind of non-uniform sample composition and the evaluation of the used resin composite materials.

  7. Low temperature anomaly of light stimulated magnetization and heat capacity of the 1D diluted magnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Geffe, Chernet Amente

    2018-03-01

    This article reports magnetization and specific heat capacity anomalies in one dimensional diluted magnetic semiconductors observed at very low temperatures. Based on quantum field theory double time temperature dependent Green function technique is employed to evaluate magnon dispersion and the time correlation function. It is understood that magnon-photon coupling and magnetic impurity concentration controls both, such that near absolute temperature magnetization is nearly zero and abruptly increase to saturation level with decreasing magnon-photon coupling strength. We also found out dropping of magnetic specific heat capacity as a result of increase in magnetic impurity concentration x, perhaps because of inter-band disorder that would suppress the enhancement of density of spin waves.

  8. Variable-Speed Instrumented Centrifuges

    NASA Technical Reports Server (NTRS)

    Chapman, David K.; Brown, Allan H.

    1991-01-01

    Report describes conceptual pair of centrifuges, speed of which varied to produce range of artificial gravities in zero-gravity environment. Image and data recording and controlled temperature and gravity provided for 12 experiments. Microprocessor-controlled centrifuges include video cameras to record stop-motion images of experiments. Potential applications include studies of effect of gravity on growth and on production of hormones in corn seedlings, experiments with magnetic flotation to separate cells, and electrophoresis to separate large fragments of deoxyribonucleic acid.

  9. Variable electronic stripe structures of the parent iron-chalcogenide superconductor Fe1 +dTe observed by STM-STS

    NASA Astrophysics Data System (ADS)

    Sugimoto, Akira; Ekino, Toshikazu; Gabovich, Alexander M.

    2014-12-01

    Nanoscale stripe structures of the parent iron-11 superconductor Fe1.033Te were investigated using low-temperature scanning tunnel microscopy-scanning tunnel spectroscopy (STM-STS). STM topographies and d I /d V maps show clear stripe structures with the bias-dependent multiple periods 2 ×a0 and a0, where a0 is the lattice constant ˜0.38 nm. The form of the stripe structures seen on d I /d V maps strongly depends on the bias voltage. Varying stripe structures are apparently driven by magnetic order appearing below the transition temperature Ts˜72 K, that is defined by the noticeable drop in the temperature dependence of resistivity, and are strongly influenced by the underlying excess Fe.

  10. Magnetic field effect on Poiseuille flow and heat transfer of carbon nanotubes along a vertical channel filled with Casson fluid

    NASA Astrophysics Data System (ADS)

    Aman, Sidra; Khan, Ilyas; Ismail, Zulkhibri; Salleh, Mohd Zuki; Alshomrani, Ali Saleh; Alghamdi, Metib Said

    2017-01-01

    Applications of carbon nanotubes, single walls carbon nanotubes (SWCNTs) and multiple walls carbon nanotubes (MWCNTs) in thermal engineering have recently attracted significant attention. However, most of the studies on CNTs are either experimental or numerical and the lack of analytical studies limits further developments in CNTs research particularly in channel flows. In this work, an analytical investigation is performed on heat transfer analysis of SWCNTs and MWCNTs for mixed convection Poiseuille flow of a Casson fluid along a vertical channel. These CNTs are suspended in three different types of base fluids (Water, Kerosene and engine Oil). Xue [Phys. B Condens. Matter 368, 302-307 (2005)] model has been used for effective thermal conductivity of CNTs. A uniform magnetic field is applied in a transverse direction to the flow as magnetic field induces enhancement in the thermal conductivity of nanofluid. The problem is modelled by using the constitutive equations of Casson fluid in order to characterize the non-Newtonian fluid behavior. Using appropriate non-dimensional variables, the governing equations are transformed into the non-dimensional form, and the perturbation method is utilized to solve the governing equations with some physical conditions. Velocity and temperature solutions are obtained and discussed graphically. Expressions for skin friction and Nusselt number are also evaluated in tabular form. Effects of different parameters such as Casson parameter, radiation parameter and volume fraction are observed on the velocity and temperature profiles. It is found that velocity is reduced under influence of the exterior magnetic field. The temperature of single wall CNTs is found greater than MWCNTs for all the three base fluids. Increase in volume fraction leads to a decrease in velocity of the fluid as the nanofluid become more viscous by adding CNTs.

  11. Mossbauer Study of Low Temperature Magnetic and magnetooptic Properties of Amorphous Tb/Fe Multilayers

    NASA Astrophysics Data System (ADS)

    Chowdhury, Ataur

    Magnetic and magnetooptic properties of multilayers critically depend on detailed magnetic and structural ordering of the interface. To study these properties in Tb/Fe multilayers, samples with varying layer thicknesses were fabricated by planar magnetic sputtering on polyester substrates. Mossbauer effect spectra were recorded at different temperatures ranging between 20 K and 300 K. The results show that perpendicular magnetic anisotropy (PMA) increases as temperature decreases for samples that show parallel anisotropy at room temperature, and for samples that show strong PMA at room temperature, no significant change in PMA is observed at low temperature (<100 K). Hyperfine field of samples that display parallel anisotropy at room temperature shows oscillatory behavior, reminiscent of RKKY oscillations, at low temperatures (<100 K). Plausible causes of these properties will be discussed in the paper.

  12. Magnetic Properties and Phase Composition of Metamaterials Based on an Opal Matrix with 3 d-Transition Metal Particles

    NASA Astrophysics Data System (ADS)

    Rinkevich, A. B.; Korolev, A. V.; Samoilovich, M. I.; Perov, D. V.; Nemytova, O. V.

    2018-02-01

    The magnetic properties of metamaterials based on an opal matrix with transition-metal (iron, nickel, cobalt) particles have been studied. Magnetization curves and magnetic hysteresis loops have been measured and the dependences of real and imaginary parts of magnetization have been determined using the dynamic ac susceptibility measuring procedure. Structural studies of metamaterials have been performed. The saturation magnetization and coercive force of the studied metamaterials have been found to depend weakly on the temperature. The temperature dependence of magnetic susceptibility at a temperature above 30 K can be described adequately by Curie-Weiss law and, at lower temperature, deviates from the law.

  13. First-order martensitic transformation in Heusler-type glass-coated microwires

    NASA Astrophysics Data System (ADS)

    Zhukov, A.; Ipatov, M.; del Val, J. J.; Taskaev, S.; Churyukanova, M.; Zhukova, V.

    2017-12-01

    Properly annealed Ni-Mn-Ga glass-covered microwires exhibit a hysteretic anomaly on the temperature dependence of magnetization attributed to the first order martensitic transformation. The temperatures of the structural and magnetic transitions are drastically affected by annealing conditions. Annealed glass-coated Ni-Mn-Ga microwires show a Curie temperature shift close to room temperature. The temperature and magnetic field dependences of magnetization are discussed in terms of atomic disorder, the release of internal stresses, and recrystallization after annealing.

  14. Electron microscopic, rock magnetic and paleomagnetic studies of mid-ocean ridge basalts

    NASA Astrophysics Data System (ADS)

    Wang, Daming

    Mid-ocean ridge basalt (MORB) is the major source of marine magnetic anomalies which are the result of the earth's magnetic reversals recorded sequentially in progressively older oceanic crust, as embodied in the theory of sea-floor spreading. Titanomagnetite, the primary magnetic minerals in MORB, undergoes gradual low-temperature alteration to titanomaghemite after initial formation, presenting the paradoxical situation that apparently the original magnetic record stays well-preserved while carriers of this record undergo fundamental mineralogical transformations. An integrated electron microscopic, rock magnetic and paleomagnetic study of MORB has been carried out with the aim to understand the effects of low-temperaure alteration on magnetic properties of MORB. A component of this study documents the oxidation state of titanomagnetite in variably altered young (< 1 Ma) basalt. Titanomaghemites in discolored rims are, in a general sense, oxidized to a higher degree than those in the relatively unaltered gray interior. The titanomaghemite within the discolored rims appears to have oxidized relatively quickly. However, the alteration front of the discolored rims does not generally coincide with a pronounced jump in oxidation state, suggesting oxidation state of the Fe-Ti oxides and visible alteration in the discolored rims are not directly correlated. The natural remanent magnetization (NRM) of MORB shows comparatively higher intensity in early Tertiary and Cretaceous samples than in 10--30 Ma old samples. No compositional, petrological, rock-magnetic or paleomagnetic patterns are observed to account for the NRM variation trend. Geomagnetic field intensity is the only effect which can not be directly tested on the same samples, but shows a similar pattern as the measured NRM intensities. It is therefore concluded that the geomagnetic field strength was, on-average, significantly greater during the Cretaceous than during the Oligocene and Miocene. I proposed that the variability of oxidation state within a grain changes as a function of age: rapid oxidation giving rise to pronounced non-uniform oxidation within a grain during the first 10 to 20 m.y., whereupon oxidation of titanomagnetite gradually slows down due to equilibration with surrounding fluids. Meanwhile, oxidation gradients decrease gradually within a grain via diffusion. The change of oxidation state within a grain can greatly affect its internal stress, which in turn influences the magnetic stability. This stability, observed as coercivity or mean-destructive fields during alternating-field demagnetization, shows otherwise unexplained variations. These variations can only be explained by variability of oxidation degree within a given grain.

  15. The magnetic ordering in high magnetoresistance Mn-doped ZnO thin films

    DOE PAGES

    Venkatesh, S.; Baras, A.; Lee, J. -S.; ...

    2016-03-24

    Here, we studied the nature of magnetic ordering in Mn-doped ZnO thin films that exhibited ferromagnetism at 300 K and superparamagnetism at 5 K. We directly inter-related the magnetisation and magnetoresistance by invoking the polaronpercolation theory and variable range of hopping conduction below the metal-to-insulator transition. By obtaining a qualitative agreement between these two models, we attribute the ferromagnetism to the s-d exchange-induced spin splitting that was indicated by large positive magnetoresistance (~40 %). Low temperature superparamagnetism was attributed to the localization of carriers and non-interacting polaron clusters. This analysis can assist in understanding the presence or absence of ferromagnetismmore » in doped/un-doped ZnO.« less

  16. Axisymmetric flow of Casson fluid by a swirling cylinder

    NASA Astrophysics Data System (ADS)

    Javed, Muhammad Faisal; Khan, Muhammad Imran; Khan, Niaz Bahadur; Muhammad, Riaz; Rehman, Muftooh Ur; Khan, Sajjad Wali; Khan, Tufail A.

    2018-06-01

    The present communication aims to investigate the influence of heat generation/absorption on axisymmetric Casson liquid flow over a stretched cylinder. Flow is caused due to torsional motion of cylinder. The governing physical problem is modelled and transferred into set of coupled nonlinear ordinary differential equations. These equations are solved numerically using built-in-Shooting method. Influence of sundry variables on the swirling velocity, temperature, coefficient of skin friction and heat transfer rate are computed and analyzed in a physical manner. Magnitude of axial skin friction is enhances for larger Reynold number and magnetic parameter while local Nusselt number decays with the enhancement of Casson parameter, heat generation/absorption and magnetic parameter. Comparison with already existing results is also given in the limiting case.

  17. Designing an optimum pulsed magnetic field by a resistance/self-inductance/capacitance discharge system and alignment of carbon nanotubes embedded in polypyrrole matrix

    NASA Astrophysics Data System (ADS)

    Kazemikia, Kaveh; Bonabi, Fahimeh; Asadpoorchallo, Ali; Shokrzadeh, Majid

    2015-02-01

    In this work, an optimized pulsed magnetic field production apparatus is designed based on a RLC (Resistance/Self-inductance/Capacitance) discharge circuit. An algorithm for designing an optimum magnetic coil is presented. The coil is designed to work at room temperature. With a minor physical reinforcement, the magnetic flux density can be set up to 12 Tesla with 2 ms duration time. In our design process, the magnitude and the length of the magnetic pulse are the desired parameters. The magnetic field magnitude in the RLC circuit is maximized on the basis of the optimal design of the coil. The variables which are used in the optimization process are wire diameter and the number of coil layers. The coil design ensures the critically damped response of the RLC circuit. The electrical, mechanical, and thermal constraints are applied to the design process. A locus of probable magnetic flux density values versus wire diameter and coil layer is provided to locate the optimum coil parameters. Another locus of magnetic flux density values versus capacitance and initial voltage of the RLC circuit is extracted to locate the optimum circuit parameters. Finally, the application of high magnetic fields on carbon nanotube-PolyPyrrole (CNT-PPy) nano-composite is presented. Scanning probe microscopy technique is used to observe the orientation of CNTs after exposure to a magnetic field. The result shows alignment of CNTs in a 10.3 Tesla, 1.5 ms magnetic pulse.

  18. Hard permanent magnet development trends and their application to A.C. machines

    NASA Technical Reports Server (NTRS)

    Mildrum, H. F.

    1981-01-01

    The physical and magnetic properties of Mn-Al-C, Fe-Cr-Co, and RE-TM (rare earth-transition metal intermetallics) in polymer and soft metal bonded or sintered form are considered for ac circuit machine usage. The manufacturing processes for the magnetic materials are reviewed, and the mechanical and electrical properties of the magnetic materials are compared, with consideration given to the reference Alnico magnet. The Mn-Al-C magnets have the same magnetic properties and costs as Alnico units, operate well at low temperatures, but have poor high temperature performance. Fe-Cr-Co magnets also have comparable cost to Alnico magnets, and operate at high or low temperature, but are brittle, expensive, and contain Co. RE-Co magnets possess a high energy density, operate well in a wide temperature range, and are expensive. Recommendation for exploring the rare-earth alternatives are offered.

  19. Monte Carlo study of the magnetic properties in a bilayer dendrimer structure with non-magnetic layers

    NASA Astrophysics Data System (ADS)

    Jabar, A.; Masrour, R.

    2017-12-01

    In this paper, we study the Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions and magnetic layer effects on the bilayer transitions of a spin-5/2 Blume-Capel model formed by two magnetic blocs separated by a non-magnetic spacer of finite thickness. The thermalization process of magnetization for systems sizes has been given. We have shown that the magnetic order in the two magnetic blocs depend on the thickness of the magnetic layer. In the total magnetization profiles, the susceptibility peaks correspond to the reduced critical temperature. This critical temperature is displaced towards higher temperatures when increasing the number of magnetic layers. In addition, we have discussed and interpreted the behaviors of the magnetic hysteresis loops.

  20. The influence of magnetic order on the magnetoresistance anisotropy of Fe1 + δ-x Cu x Te

    NASA Astrophysics Data System (ADS)

    Helm, T.; Valdivia, P. N.; Bourret-Courchesne, E.; Analytis, J. G.; Birgeneau, R. J.

    2017-07-01

    We performed resistance measurements on \\text{F}{{\\text{e}}1+δ -x} Cu x Te with {{x}\\text{EDX}}≤slant 0.06 in the presence of in-plane applied magnetic fields, revealing a resistance anisotropy that can be induced at a temperature far below the structural and magnetic zero-field transition temperatures. The observed resistance anisotropy strongly depends on the field orientation with respect to the crystallographic axes, as well as on the field-cooling history. Our results imply a correlation between the observed features and the low-temperature magnetic order. Hysteresis in the angle-dependence indicates a strong pinning of the magnetic order within a temperature range that varies with the Cu content. The resistance anisotropy vanishes at different temperatures depending on whether an external magnetic field or a remnant field is present: the closing temperature is higher in the presence of an external field. For {{x}\\text{EDX}}=0.06 the resistance anisotropy closes above the structural transition, at the same temperature at which the zero-field short-range magnetic order disappears and the sample becomes paramagnetic. Thus we suggest that under an external magnetic field the resistance anisotropy mirrors the magnetic order parameter. We discuss similarities to nematic order observed in other iron pnictide materials.

  1. The influence of magnetic order on the magnetoresistance anisotropy of Fe 1+δ–xCu xTe

    DOE PAGES

    Helm, T.; Valdivia, P. N.; Bourret-Courchesne, E.; ...

    2017-06-08

    We performed resistance measurements on [Formula: see text]Cu x Te with [Formula: see text] in the presence of in-plane applied magnetic fields, revealing a resistance anisotropy that can be induced at a temperature far below the structural and magnetic zero-field transition temperatures. The observed resistance anisotropy strongly depends on the field orientation with respect to the crystallographic axes, as well as on the field-cooling history. Our results imply a correlation between the observed features and the low-temperature magnetic order. Hysteresis in the angle-dependence indicates a strong pinning of the magnetic order within a temperature range that varies with the Cumore » content. The resistance anisotropy vanishes at different temperatures depending on whether an external magnetic field or a remnant field is present: the closing temperature is higher in the presence of an external field. For [Formula: see text] the resistance anisotropy closes above the structural transition, at the same temperature at which the zero-field short-range magnetic order disappears and the sample becomes paramagnetic. Thus we suggest that under an external magnetic field the resistance anisotropy mirrors the magnetic order parameter. We discuss similarities to nematic order observed in other iron pnictide materials.« less

  2. Brightness and magnetic evolution of solar coronal bright points

    NASA Astrophysics Data System (ADS)

    Ugarte Urra, Ignacio

    This thesis presents a study of the brightness and magnetic evolution of several Extreme ultraviolet (EUV) coronal bright points (hereafter BPs). The study was carried out using several instruments on board the Solar and Heliospheric Observatory, supported by the high resolution imaging from the Transition Region And Coronal Explorer. The results confirm that, down to 1" resolution, BPs are made of small loops with lengths of [approximate]6 Mm and cross-sections of ≈2 Mm. The loops are very dynamic, evolving in time scales as short as 1 - 2 minutes. This is reflected in a highly variable EUV response with fluctuations highly correlated in spectral lines at transition region temperatures, but not always at coronal temperatures. A wavelet analysis of the intensity variations reveals the existence of quasi-periodic oscillations with periods ranging 400--1000s, in the range of periods characteristic of the chromospheric network. The link between BPs and network bright points is discussed, as well as the interpretation of the oscillations in terms of global acoustic modes of closed magnetic structures. A comparison of the magnetic flux evolution of the magnetic polarities to the EUV flux changes is also presented. Throughout their lifetime, the intrinsic EUV emission of BPs is found to be dependent on the total magnetic flux of the polarities. In short time scales, co-spatial and co-temporal coronal images and magnetograms, reveal the signature of heating events that produce sudden EUV brightenings simultaneous to magnetic flux cancellations. This is interpreted in terms of magnetic reconnection events. Finally, a electron density study of six coronal bright points produces values of ≈1.6×10 9 cm -3 , closer to active region plasma than to quiet Sun. The analysis of a large coronal loop (half length of 72 Mm) introduces the discussion on the prospects of future plasma diagnostics of BPs with forthcoming solar missions.

  3. High temperature refrigerator

    DOEpatents

    Steyert, Jr., William A.

    1978-01-01

    A high temperature magnetic refrigerator which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle said working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot.

  4. 21st Century HVAC System for Future Naval Surface Combatants - Concept Development Report

    DTIC Science & Technology

    2007-09-01

    application of permanent magnet motors to ventilation fans3. The study emphasized reducing the motor size, incorporating variable speed operation to reduce...Incorporation of permanent magnet motors and variable speed is also feasible. Permanent magnet motor technology is ideally suited for variable...family incorporates high speed permanent magnet motors and further fan blade design improvements. The fan diameters will be reduced, substantially, at the

  5. Development of the active magnetic regenerative refrigerator operating between 77 K and 20 K with the conduction cooled high temperature superconducting magnet

    NASA Astrophysics Data System (ADS)

    Park, Inmyong; Jeong, Sangkwon

    2017-12-01

    The experimental investigation of an active magnetic regenerative refrigerator (AMRR) operating between 77 K and 20 K is discussed in this paper, with detailed energy transfer analysis. A multi-layered active magnetic regenerator (AMR) is used, which consists of four different rare earth intermetallic compounds in the form of irregular powder. Numerical simulation confirms that the AMR can attain its target operating temperature range. Magnetic field alternation throughout the AMR is generated by a high temperature superconducting (HTS) magnet. The HTS magnet is cooled by a two stage Gifford-McMahon (GM) cryocooler. Helium gas was employed as a working fluid and its oscillating flow in the AMR is controlled in accordance with the magnetic field variation. The AMR is divided into two stages and each stage has a different mass flow rate as needed to achieve the desired cooling performance. The temperature variation of the AMR during the experiment is monitored by temperature sensors installed inside the AMR. The experimental results show that the AMRR is capable of achieving no-load temperature of 25.4 K while the warm end temperature is 77 K. The performance of the AMRR is analyzed by observing internal temperature variations at cyclic steady state. Furthermore, numerical estimation of the cooling capacity and the temperature variation of the AMR are examined and compared with the experimental results.

  6. Influence of annealing temperature on structural and magnetic properties of pulsed laser-deposited YIG films on SiO2 substrate

    NASA Astrophysics Data System (ADS)

    Nag, Jadupati; Ray, Nirat

    2018-05-01

    Yttrium Iron Garnet (Y3Fe5O12) was synthesized by solid state/ceramic process. Thin films of YIG were deposited on SiO2 substrate at room temperature(RT) and at substrate temperature (Ts) 700 °C using pulsed laser deposition (PLD) technique. RT deposited thin films are amorphous in nature and non-magnetic. After annealing at temperature 800 ° RT deposited thin films showed X-ray peaks as well as the magnetic order. Magnetic ordering is enhanced by annealing temperature(Ta ≥ 750 °C) and resulted good quality of films with high magnetization value.

  7. A Variable Frequency, Mis-Match Tolerant, Inductive Plasma Source

    NASA Astrophysics Data System (ADS)

    Rogers, Anthony; Kirchner, Don; Skiff, Fred

    2014-10-01

    Presented here is a survey and analysis of an inductively coupled, magnetically confined, singly ionized Argon plasma generated by a square-wave, variable frequency plasma source. The helicon-style antenna is driven directly by the class ``D'' amplifier without matching network for increased efficiency while maintaining independent control of frequency and applied power at the feed point. The survey is compared to similar data taken using a traditional exciter--power amplifier--matching network source. Specifically, the flexibility of this plasma source in terms of the independent control of electron plasma temperature and density is discussed in comparison to traditional source arrangements. Supported by US DOE Grant DE-FG02-99ER54543.

  8. Rapid and semi-analytical design and simulation of a toroidal magnet made with YBCO and MgB 2 superconductors

    DOE PAGES

    Dimitrov, I. K.; Zhang, X.; Solovyov, V. F.; ...

    2015-07-07

    Recent advances in second-generation (YBCO) high-temperature superconducting wire could potentially enable the design of super high performance energy storage devices that combine the high energy density of chemical storage with the high power of superconducting magnetic storage. However, the high aspect ratio and the considerable filament size of these wires require the concomitant development of dedicated optimization methods that account for the critical current density in type-II superconductors. In this study, we report on the novel application and results of a CPU-efficient semianalytical computer code based on the Radia 3-D magnetostatics software package. Our algorithm is used to simulate andmore » optimize the energy density of a superconducting magnetic energy storage device model, based on design constraints, such as overall size and number of coils. The rapid performance of the code is pivoted on analytical calculations of the magnetic field based on an efficient implementation of the Biot-Savart law for a large variety of 3-D “base” geometries in the Radia package. The significantly reduced CPU time and simple data input in conjunction with the consideration of realistic input variables, such as material-specific, temperature, and magnetic-field-dependent critical current densities, have enabled the Radia-based algorithm to outperform finite-element approaches in CPU time at the same accuracy levels. Comparative simulations of MgB 2 and YBCO-based devices are performed at 4.2 K, in order to ascertain the realistic efficiency of the design configurations.« less

  9. Identification and paleoclimatic significance of magnetite nanoparticles in soils

    NASA Astrophysics Data System (ADS)

    Ahmed, Imad A. M.; Maher, Barbara A.

    2018-02-01

    In the world-famous sediments of the Chinese Loess Plateau, fossil soils alternate with windblown dust layers to record monsoonal variations over the last ˜3 My. The less-weathered, weakly magnetic dust layers reflect drier, colder glaciations. The fossil soils (paleosols) contain variable concentrations of nanoscale, strongly magnetic iron oxides, formed in situ during the wetter, warmer interglaciations. Mineralogical identification of the magnetic soil oxides is essential for deciphering these key paleoclimatic records. Formation of magnetite, a mixed Fe2+/Fe3+ ferrimagnet, has been linked to soil redox oscillations, and thence to paleorainfall. An opposite hypothesis states that magnetite can only form if the soil is water saturated for significant periods in order for Fe3+ to be reduced to Fe2+, and suggests instead the temperature-dependent formation of maghemite, an Fe3+-oxide, much of which ages subsequently into hematite, typically aluminum substituted. This latter, oxidizing pathway would have been temperature, but not rainfall dependent. Here, through structural fingerprinting and scanning transmission electron microscopy and electron energy loss spectroscopy analysis, we prove that magnetite is the dominant soil-formed ferrite. Maghemite is present in lower concentrations, and shows no evidence of aluminum substitution, negating its proposed precursor role for the aluminum-substituted hematite prevalent in the paleosols. Magnetite dominance demonstrates that magnetite formation occurs in well-drained, generally oxidizing soils, and that soil wetting/drying oscillations drive the degree of soil magnetic enhancement. The magnetic variations of the Chinese Loess Plateau paleosols thus record changes in monsoonal rainfall, over timescales of millions of years.

  10. A high-resolution combined scanning laser and widefield polarizing microscope for imaging at temperatures from 4 K to 300 K.

    PubMed

    Lange, M; Guénon, S; Lever, F; Kleiner, R; Koelle, D

    2017-12-01

    Polarized light microscopy, as a contrast-enhancing technique for optically anisotropic materials, is a method well suited for the investigation of a wide variety of effects in solid-state physics, as, for example, birefringence in crystals or the magneto-optical Kerr effect (MOKE). We present a microscopy setup that combines a widefield microscope and a confocal scanning laser microscope with polarization-sensitive detectors. By using a high numerical aperture objective, a spatial resolution of about 240 nm at a wavelength of 405 nm is achieved. The sample is mounted on a 4 He continuous flow cryostat providing a temperature range between 4 K and 300 K, and electromagnets are used to apply magnetic fields of up to 800 mT with variable in-plane orientation and 20 mT with out-of-plane orientation. Typical applications of the polarizing microscope are the imaging of the in-plane and out-of-plane magnetization via the longitudinal and polar MOKE, imaging of magnetic flux structures in superconductors covered with a magneto-optical indicator film via the Faraday effect, or imaging of structural features, such as twin-walls in tetragonal SrTiO 3 . The scanning laser microscope furthermore offers the possibility to gain local information on electric transport properties of a sample by detecting the beam-induced voltage change across a current-biased sample. This combination of magnetic, structural, and electric imaging capabilities makes the microscope a viable tool for research in the fields of oxide electronics, spintronics, magnetism, and superconductivity.

  11. A high-resolution combined scanning laser and widefield polarizing microscope for imaging at temperatures from 4 K to 300 K

    NASA Astrophysics Data System (ADS)

    Lange, M.; Guénon, S.; Lever, F.; Kleiner, R.; Koelle, D.

    2017-12-01

    Polarized light microscopy, as a contrast-enhancing technique for optically anisotropic materials, is a method well suited for the investigation of a wide variety of effects in solid-state physics, as, for example, birefringence in crystals or the magneto-optical Kerr effect (MOKE). We present a microscopy setup that combines a widefield microscope and a confocal scanning laser microscope with polarization-sensitive detectors. By using a high numerical aperture objective, a spatial resolution of about 240 nm at a wavelength of 405 nm is achieved. The sample is mounted on a 4He continuous flow cryostat providing a temperature range between 4 K and 300 K, and electromagnets are used to apply magnetic fields of up to 800 mT with variable in-plane orientation and 20 mT with out-of-plane orientation. Typical applications of the polarizing microscope are the imaging of the in-plane and out-of-plane magnetization via the longitudinal and polar MOKE, imaging of magnetic flux structures in superconductors covered with a magneto-optical indicator film via the Faraday effect, or imaging of structural features, such as twin-walls in tetragonal SrTiO3. The scanning laser microscope furthermore offers the possibility to gain local information on electric transport properties of a sample by detecting the beam-induced voltage change across a current-biased sample. This combination of magnetic, structural, and electric imaging capabilities makes the microscope a viable tool for research in the fields of oxide electronics, spintronics, magnetism, and superconductivity.

  12. Wireless Monitoring of Induction Machine Rotor Physical Variables

    PubMed Central

    Doolan Fernandes, Jefferson; Carvalho Souza, Francisco Elvis; de Paiva, José Alvaro

    2017-01-01

    With the widespread use of electric machines, there is a growing need to extract information from the machines to improve their control systems and maintenance management. The present work shows the development of an embedded system to perform the monitoring of the rotor physical variables of a squirrel cage induction motor. The system is comprised of: a circuit to acquire desirable rotor variable(s) and value(s) that send it to the computer; a rectifier and power storage circuit that converts an alternating current in a continuous current but also stores energy for a certain amount of time to wait for the motor’s shutdown; and a magnetic generator that harvests energy from the rotating field to power the circuits mentioned above. The embedded system is set on the rotor of a 5 HP squirrel cage induction motor, making it difficult to power the system because it is rotating. This problem can be solved with the construction of a magnetic generator device to avoid the need of using batteries or collector rings and will send data to the computer using a wireless NRF24L01 module. For the proposed system, initial validation tests were made using a temperature sensor (DS18b20), as this variable is known as the most important when identifying the need for maintenance and control systems. Few tests have shown promising results that, with further improvements, can prove the feasibility of using sensors in the rotor. PMID:29156564

  13. Wireless Monitoring of Induction Machine Rotor Physical Variables.

    PubMed

    Doolan Fernandes, Jefferson; Carvalho Souza, Francisco Elvis; Cipriano Maniçoba, Glauco George; Salazar, Andrés Ortiz; de Paiva, José Alvaro

    2017-11-18

    With the widespread use of electric machines, there is a growing need to extract information from the machines to improve their control systems and maintenance management. The present work shows the development of an embedded system to perform the monitoring of the rotor physical variables of a squirrel cage induction motor. The system is comprised of: a circuit to acquire desirable rotor variable(s) and value(s) that send it to the computer; a rectifier and power storage circuit that converts an alternating current in a continuous current but also stores energy for a certain amount of time to wait for the motor's shutdown; and a magnetic generator that harvests energy from the rotating field to power the circuits mentioned above. The embedded system is set on the rotor of a 5 HP squirrel cage induction motor, making it difficult to power the system because it is rotating. This problem can be solved with the construction of a magnetic generator device to avoid the need of using batteries or collector rings and will send data to the computer using a wireless NRF24L01 module. For the proposed system, initial validation tests were made using a temperature sensor (DS18b20), as this variable is known as the most important when identifying the need for maintenance and control systems. Few tests have shown promising results that, with further improvements, can prove the feasibility of using sensors in the rotor.

  14. Preliminary scaling laws for plasma current, ion kinetic temperature, and plasma number density in the NASA Lewis Bumpy Torus plasma

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1976-01-01

    Parametric variation of independent variables which may affect the characteristics of the NASA Lewis Bumpy Torus plasma have identified those which have a significant effect on the plasma current, ion kinetic temperature, and plasma number density, and those which do not. Empirical power-law correlations of the plasma current, and the ion kinetic temperature and number density were obtained as functions of the potential applied to the midplane electrode rings, the background neutral gas pressure, and the magnetic field strength. Additional parameters studied include the type of gas, the polarity of the midplane electrode rings (and hence the direction of the radial electric field), the mode of plasma operation, and the method of measuring the plasma number density. No significant departures from the scaling laws appear to occur at the highest ion kinetic temperatures or number densities obtained to date.

  15. A room-temperature magnetic semiconductor from a ferromagnetic metallic glass.

    PubMed

    Liu, Wenjian; Zhang, Hongxia; Shi, Jin-An; Wang, Zhongchang; Song, Cheng; Wang, Xiangrong; Lu, Siyuan; Zhou, Xiangjun; Gu, Lin; Louzguine-Luzgin, Dmitri V; Chen, Mingwei; Yao, Kefu; Chen, Na

    2016-12-08

    Emerging for future spintronic/electronic applications, magnetic semiconductors have stimulated intense interest due to their promises for new functionalities and device concepts. So far, the so-called diluted magnetic semiconductors attract many attentions, yet it remains challenging to increase their Curie temperatures above room temperature, particularly those based on III-V semiconductors. In contrast to the concept of doping magnetic elements into conventional semiconductors to make diluted magnetic semiconductors, here we propose to oxidize originally ferromagnetic metals/alloys to form new species of magnetic semiconductors. We introduce oxygen into a ferromagnetic metallic glass to form a Co 28.6 Fe 12.4 Ta 4.3 B 8.7 O 46 magnetic semiconductor with a Curie temperature above 600 K. The demonstration of p-n heterojunctions and electric field control of the room-temperature ferromagnetism in this material reflects its p-type semiconducting character, with a mobility of 0.1 cm 2  V -1  s -1 . Our findings may pave a new way to realize high Curie temperature magnetic semiconductors with unusual multifunctionalities.

  16. A room-temperature magnetic semiconductor from a ferromagnetic metallic glass

    PubMed Central

    Liu, Wenjian; Zhang, Hongxia; Shi, Jin-an; Wang, Zhongchang; Song, Cheng; Wang, Xiangrong; Lu, Siyuan; Zhou, Xiangjun; Gu, Lin; Louzguine-Luzgin, Dmitri V.; Chen, Mingwei; Yao, Kefu; Chen, Na

    2016-01-01

    Emerging for future spintronic/electronic applications, magnetic semiconductors have stimulated intense interest due to their promises for new functionalities and device concepts. So far, the so-called diluted magnetic semiconductors attract many attentions, yet it remains challenging to increase their Curie temperatures above room temperature, particularly those based on III–V semiconductors. In contrast to the concept of doping magnetic elements into conventional semiconductors to make diluted magnetic semiconductors, here we propose to oxidize originally ferromagnetic metals/alloys to form new species of magnetic semiconductors. We introduce oxygen into a ferromagnetic metallic glass to form a Co28.6Fe12.4Ta4.3B8.7O46 magnetic semiconductor with a Curie temperature above 600 K. The demonstration of p–n heterojunctions and electric field control of the room-temperature ferromagnetism in this material reflects its p-type semiconducting character, with a mobility of 0.1 cm2 V−1 s−1. Our findings may pave a new way to realize high Curie temperature magnetic semiconductors with unusual multifunctionalities. PMID:27929059

  17. Magnetocaloric effect and magnetic properties in SmFe1-xMnxO3 perovskite: Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Erchidi Elyacoubi, A. S.; Masrour, R.; Jabar, A.

    2018-03-01

    We have used Monte Carlo simulation to study the magnetocaloric effect on SmFe1-xMnxO3 perovskite. The temperature-dependent magnetization shows that the Néel temperature of the weak-ferromagnetic SmFeO3 decreases as Fe ions are substituted by Mn ions. A paramagnetic-to-weak-antiferromagnetic transition with decreasing the temperature is observed and the corresponding Néel temperature essentially decreases as the Mn content increases. The magnetocaloric effect shows two peaks related to magnetic behavior changes, at paramagnetic-like behavior TK(K) and at Néel temperature TN(K) of SmFe1-xMnxO3. The second phase transition is established. The magnetic entropy change is given for a several magnetic fields. We have also determined the relative cooling power for dilution x = 0.5 and for a several external magnetic fields. Finally, the magnetic hysteresis cycles have been obtained with different dilutions x and temperatures values.

  18. Magnetic ordering temperatures in rare earth metal dysprosium under ultrahigh pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.

    Magnetic ordering temperatures in heavy rare earth metal Dysprosium (Dy) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to extreme conditions of pressure to 69 GPa and temperature to 10 K. Previous studies using magnetic susceptibility measurements at high pressures were only able to track magnetic ordering temperature till 7 GPa in the hexagonal close packed ( hcp) phase of Dy. Our studies indicate that the magnetic ordering temperature shows an abrupt drop of 80 K at the hcp-Sm phase transition followed by a gradual decrease that continues till 17 GPa. Thismore » is followed by a rapid increase in the magnetic ordering temperatures in the double hexagonal close packed phase and finally leveling off in the distorted face centered cubic phase of Dy. Lastly, our studies reaffirm that 4f-shell remain localized in Dy and there is no loss of magnetic moment or 4f-shell delocalization for pressures up to 69 GPa.« less

  19. Magnetic, structural and magnetocaloric properties of Ni-Si and Ni-Al thermoseeds for self-controlled hyperthermia.

    PubMed

    Pandey, Sudip; Quetz, Abdiel; Aryal, Anil; Dubenko, Igor; Mazumdar, Dipanjan; Stadler, Shane; Ali, Naushad

    2017-11-01

    Self-controlled hyperthermia is a non-invasive technique used to kill or destroy cancer cells while preserving normal surrounding tissues. We have explored bulk magnetic Ni-Si and Ni-Al alloys as a potential thermoseeds. The structural, magnetic and magnetocaloric properties of the samples were investigated, including saturation magnetisation, Curie temperature (T C ), and magnetic and thermal hysteresis, using room temperature X-ray diffraction and magnetometry. The annealing time, temperature and the effects of homogenising the thermoseeds were studied to determine the functional hyperthermia applications. The bulk Ni-Si and Ni-Al binary alloys have Curie temperatures in the desired range, 316 K-319 K (43 °C-46 °C), which is suitable for magnetic hyperthermia applications. We have found that T C strictly follows a linear trend with doping concentration over a wide range of temperature. The magnetic ordering temperature and the magnetic properties can be controlled through substitution in these binary alloys.

  20. Magnetic ordering temperatures in rare earth metal dysprosium under ultrahigh pressures

    DOE PAGES

    Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.; ...

    2014-04-03

    Magnetic ordering temperatures in heavy rare earth metal Dysprosium (Dy) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to extreme conditions of pressure to 69 GPa and temperature to 10 K. Previous studies using magnetic susceptibility measurements at high pressures were only able to track magnetic ordering temperature till 7 GPa in the hexagonal close packed ( hcp) phase of Dy. Our studies indicate that the magnetic ordering temperature shows an abrupt drop of 80 K at the hcp-Sm phase transition followed by a gradual decrease that continues till 17 GPa. Thismore » is followed by a rapid increase in the magnetic ordering temperatures in the double hexagonal close packed phase and finally leveling off in the distorted face centered cubic phase of Dy. Lastly, our studies reaffirm that 4f-shell remain localized in Dy and there is no loss of magnetic moment or 4f-shell delocalization for pressures up to 69 GPa.« less

  1. Influence of uniaxial single-ion anisotropy on the magnetic and thermal properties of Heisenberg antiferromagnets within unified molecular field theory

    NASA Astrophysics Data System (ADS)

    Johnston, David C.

    2017-03-01

    The influence of uniaxial single-ion anisotropy -D Sz2 on the magnetic and thermal properties of Heisenberg antiferromagnets (AFMs) is investigated. The uniaxial anisotropy is treated exactly and the Heisenberg interactions are treated within unified molecular field theory (MFT) [Phys. Rev. B 91, 064427 (2015), 10.1103/PhysRevB.91.064427], where thermodynamic variables are expressed in terms of directly measurable parameters. The properties of collinear AFMs with ordering along the z axis (D >0 ) in applied field Hz=0 are calculated versus D and temperature T , including the ordered moment μ , the Néel temperature TN, the magnetic entropy, internal energy, heat capacity, and the anisotropic magnetic susceptibilities χ∥ and χ⊥ in the paramagnetic (PM) and AFM states. The high-field average magnetization per spin μz(Hz,D ,T ) is found, and the critical field Hc(D ,T ) is derived at which the second-order AFM to PM phase transition occurs. The magnetic properties of the spin-flop (SF) phase are calculated, including the zero-field properties TN(D ) and μ (D ,T ) . The high-field μz(Hz,D ,T ) is determined, together with the associated spin-flop field HSF(D ,T ) at which a second-order SF to PM phase transition occurs. The free energies of the AFM, SF, and PM phases are derived from which Hz-T phase diagrams are constructed. For fJ=-1 and -0.75 , where fJ=θp J/TN J and θp J and TN J are the Weiss temperature in the Curie-Weiss law and the Néel temperature due to exchange interactions alone, respectively, phase diagrams in the Hz-T plane similar to previous results are obtained. However, for fJ=0 we find a topologically different phase diagram where a spin-flop bubble with PM and AFM boundaries occurs at finite Hz and T . Also calculated are properties arising from a perpendicular magnetic field, including the perpendicular susceptibility χ⊥(D ,T ) , the associated effective torque at low fields arising from the -D Sz2 term in the Hamiltonian, the high-field perpendicular magnetization μ⊥, and the perpendicular critical field Hc ⊥ at which the second-order AFM to PM phase transition occurs. In addition to the above results for D >0 , the TN(D ) and ordered moment μ (T ,D ) for collinear AFM ordering along the x axis with D <0 are determined. In order to compare the properties of the above spin systems with those of noninteracting systems with -D Sz2 uniaxial anisotropy with either sign of D , Supplemental Material is provided in which results for the thermal and magnetic properties of such noninteracting spin systems are given.

  2. [The temperature factor and magnetic noise under the conditions of stochastic resonance of magnetosomes].

    PubMed

    Bingi, V N; Chernavskiĭ, D S; Rubin, A B

    2006-01-01

    The influence of magnetic noise on the dynamics of magnetic nanoparticles under the conditions of stochastic resonance is considered. The effect of the magnetic noise is shown to be equivalent to the growth of the effective thermostat temperature for the particles at the permanent actual temperature of the medium. This regularity may be used for testing the hypothesis on the involvement of magnetic nanoparticles in the formation of biological effects of weak magnetic fields.

  3. Thermal liquid propulsion system using magnetic nanofluid

    NASA Astrophysics Data System (ADS)

    Dave, V. H.; Virpura, H. A.; Bhatnagar, S. P.

    2018-05-01

    In the present study, we have demonstrated the thermal liquid propulsion system using the idea of magnetocaloric energy generation system. Thermal sensitive magnetic nanofluid is used for this study. In presence of magnetic field and temperature gradient, the magnetic nanofluid loses its magnetization. Hot fluid replaced by the fluid which is at ambient temperature. Temperature profile of liquid propulsion was measured in a horizontal closed loop of glass assembly.

  4. A magneto-resistance and magnetisation study of TaAs2 semimetal

    NASA Astrophysics Data System (ADS)

    Harimohan, V.; Bharathi, A.; Rajaraman, R.; Sundar, C. S.

    2018-04-01

    Here we report on the magneto-transport and magnetization studies on single crystalline samples of TaAs2. The resistivity versus temperature of the single crystalline sample shows a metallic behavior with a large residual resistivity ratio. The TaAs2 crystal shows large magneto resistance at low temperature, reaching 91000% at 2.5K in a field of 15 T and the resistivity versus temperature shows an upturn at low temperature, when measured with increase in magnetic field. Resistivity and magnetization measurements as a function of magnetic field show characteristic Shubnikov de Haas and de Hass van Alphen oscillations, displaying anisotropy with respect to the crystalline direction. The effective mass and Dingle temperature were estimated from the analysis of the oscillation amplitude as a function of temperature and magnetic field. Negative magneto-resistance was not observed with current parallel to the magnetic field direction, suggesting that TaAs2 is not an archetypical Weyl metal.

  5. Mechanical and electrical properties of low temperature phase MnBi

    NASA Astrophysics Data System (ADS)

    Jiang, Xiujuan; Roosendaal, Timothy; Lu, Xiaochuan; Palasyuk, Olena; Dennis, Kevin W.; Dahl, Michael; Choi, Jung-Pyung; Polikarpov, Evgueni; Marinescu, Melania; Cui, Jun

    2016-01-01

    Low temperature phase (LTP) manganese bismuth (MnBi) is a promising rare-earth-free permanent magnet material due to its high intrinsic coercivity and large positive temperature coefficient. While scientists are making progress on fabricating bulk MnBi magnets, engineers have begun considering MnBi magnets for motor applications. Physical properties other than magnetic ones could significantly affect motor design. Here, we report results of our investigation on the mechanical and electrical properties of bulk LTP MnBi and their temperature dependence. A MnBi ingot was prepared using an arc melting technique and subsequently underwent grinding, sieving, heat treatment, and cryomilling. The resultant powders with a particle size of ˜5 μm were magnetically aligned, cold pressed, and sintered at a predefined temperature. Micro-hardness testing was performed on a part of original ingot and we found that the hardness of MnBi was 109 ± 15 HV. The sintered magnets were subjected to compressive testing at different temperatures and it was observed that a sintered MnBi magnet fractured when the compressive stress exceeded 193 MPa at room temperature. Impedance spectra were obtained using electrochemical impedance spectroscopy at various temperatures and we found that the electrical resistance of MnBi at room temperature was about 6.85 μΩ m.

  6. Magnetic Levitation Force Measurement System at Any Low Temperatures From 20 K To 300 K

    NASA Astrophysics Data System (ADS)

    Celik, Sukru; Guner, S. Baris; Coskun, Elvan

    2015-03-01

    Most of the magnetic levitation force measurements in previous studies were performed at liquid nitrogen temperatures. For the levitation force of MgB2 and iron based superconducting samples, magnetic levitation force measurement system is needed. In this study, magnetic levitation force measurement system was designed. In this system, beside vertical force versus vertical motion, lateral and vertical force versus lateral motion measurements, the vertical force versus temperature at the fixed distance between permanent magnet PM - superconducting sample SS and the vertical force versus time measurements were performed at any temperatures from 20 K to 300 K. Thanks to these measurements, the temperature dependence, time dependence, and the distance (magnetic field) and temperature dependences of SS can be investigated. On the other hand, the magnetic stiffness MS measurements can be performed in this system. Using the measurement of MS at different temperature in the range, MS dependence on temperature can be investigated. These measurements at any temperatures in the range help to the superconductivity properties to be characterized. This work was supported by TUBTAK-the Scientific and technological research council of Turkey under project of MFAG - 110T622. This system was applied to the Turkish patent institute with the Application Number of 2013/13638 on 22/11/2013.

  7. EM Properties of Magnetic Minerals at RADAR Frequencies

    NASA Technical Reports Server (NTRS)

    Stillman, D. E.; Olhoeft, G. R.

    2005-01-01

    Previous missions to Mars have revealed that Mars surface is magnetic at DC frequency. Does this highly magnetic surface layer attenuate RADAR energy as it does in certain locations on Earth? It has been suggested that the active magnetic mineral on Mars is titanomaghemite and/or titanomagnetite. When titanium is incorporated into a maghemite or magnetite crystal, the Curie temperature can be significantly reduced. Mars has a wide range of daily temperature fluctuations (303K - 143K), which could allow for daily passes through the Curie temperature. Hence, the global dust layer on Mars could experience widely varying magnetic properties as a function of temperature, more specifically being ferromagnetic at night and paramagnetic during the day. Measurements of EM properties of magnetic minerals were made versus frequency and temperature (300K- 180K). Magnetic minerals and Martian analog samples were gathered from a number of different locations on Earth.

  8. Ultralow temperature terahertz magnetic thermodynamics of perovskite-like SmFeO3 ceramic

    PubMed Central

    Fu, Xiaojian; Zeng, Xinxi; Wang, Dongyang; Chi Zhang, Hao; Han, Jiaguang; Jun Cui, Tie

    2015-01-01

    The terahertz magnetic properties of perovskite-like SmFeO3 ceramic are investigated over a broad temperature range, especially at ultralow temperatures, using terahertz time-domain spectroscopy. It is shown that both resonant frequencies of quasi-ferromagnetic and quasi-antiferromagnetic modes have blue shifts with the decreasing temperature due to the enhancement of effective magnetic field. The temperature-dependent magnetic anisotropy constants are further estimated using the resonant frequencies, under the approximation of omitting the contribution of Sm3+ magnetic moments to the effective field. Specially, the effective anisotropy constants in the ca and cb planes at 3 K are 6.63 × 105 erg/g and 8.48 × 105 erg/g, respectively. This thoroughly reveals the terahertz magnetic thermodynamics of orthoferrites and will be beneficial to the application in terahertz magnetism. PMID:26424488

  9. X-ray diffraction study of the caged magnetic compound DyFe 2 Zn 20 at low temperatures

    NASA Astrophysics Data System (ADS)

    Ohashi, M.; Ohashi, K.; Sawabu, M.; Miyagawa, M.; Maeta, K.; Isikawa, Y.

    2018-05-01

    We have carried out high-angle X-ray powder diffraction measurements of the caged magnetic compound DyFe2Zn20 at low temperature between 14 and 300 K. Even though a strong magnetic anisotropy exists in the magnetization and magnetic susceptibility due to strong exchange interaction between Fe and Dy, almost all X-ray powder diffraction peaks correspond to Bragg reflections of the cubic structural models not only at room temperature paramagnetic state but also at low temperature magnetic ordering state. The Debye temperature is obtained to be 227 K from the results of the volumetric thermal expansion coefficient, which is approximately coincident with that of CeRu2Zn20 (245 K) and that of pure Zn metal (235 K).

  10. Low-temperature cross-talk magnetic-field sensor based on tapered all-solid waveguide-array fiber and magnetic fluids.

    PubMed

    Miao, Yinping; Ma, Xixi; Wu, Jixuan; Song, Binbin; Zhang, Hao; Zhang, Kailiang; Liu, Bo; Yao, Jianquan

    2015-08-15

    A compact fiber-optic magnetic-field sensor based on tapered all-solid waveguide-array fiber (WAF) and magnetic fluid (MF) has been proposed and experimentally demonstrated. The tapered all-solid WAF is fabricated by using a fusion splicer, and the sensor is formed by immersing the tapered all-solid WAF into the MF. The transmission spectra have been measured and analyzed under different magnetic-field intensities. Experimental results show that the acquired magnetic-field sensitivity is 44.57 pm/Oe for a linear magnetic-field intensity range from 50 to 200 Oe. All-solid WAF has very similar thermal expansion coefficient for high- and low-refractive-index glasses, so mode profile is not affected by thermal drifts. Also, magnetically induced refractive-index changes into the ferrofluid are of the order of ∼5×10(-2), while the corresponding thermally induced refractive-index changes into the ferrofluid are expected to be lower. The temperature response has also been detected, and the temperature-induced wavelength shift perturbation is less than 0.3 nm from temperature of 26.9°C-44°C. The proposed magnetic-field sensor has such advantages as low temperature sensitivity, simple structure, and ease of fabrication. It also indicates that the magnetic-field sensor based on tapered all-solid WAF and MF is helpful to reduce temperature cross-sensitivity for the measurement of magnetic field.

  11. Study of the glassy magnetic behaviour and charge-ordering phase transitions in La0.75Ca0.25FeO3-δ perovskite

    NASA Astrophysics Data System (ADS)

    Abdel-Khalek, E. K.; Mohamed, E. A.; Salem, A. F.

    2017-06-01

    In this work, La0.75Ca0.25FeO3-δ perovskite sample was prepared by the coprecipitation method. The nanoparticle was found to crystallize in the orthorhombic (Pbnm) phase as confirmed by X-ray diffraction (XRD) and transmission electron microscopic (TEM). The oxygen non-stoichiometry (δ) and magnetic states of iron ions (three magnetic sextets and non-magnetic doublet) were investigated by Mössbauer spectroscopy at room temperature (RT). The shape of the magnetic hysteresis loop of the sample reveals the existence of a weak ferromagnetism at RT. The magnetization vs. temperature curves, measured in the 9 to 200 K range, showed that the sample exhibits two magnetic-phase transition temperatures at 29 K (Tg) and 120 K (TCO). The magnetization isotherms, M (H), around these magnetic-phase transition temperatures for the sample are analyzed.

  12. Inductively-Charged High-Temperature Superconductors And Methods Of Use

    DOEpatents

    Bromberg, Leslie

    2003-09-16

    The invention provides methods of charging superconducting materials and, in particular, methods of charging high-temperature superconducting materials. The methods generally involve cooling a superconducting material to a temperature below its critical temperature. Then, an external magnetic field is applied to charge the material at a nearly constant temperature. The external magnetic field first drives the superconducting material to a critical state and then penetrates into the material. When in the critical state, the superconducting material loses all the pinning ability and therefore is in the flux-flow regime. In some embodiments, a first magnetic field may be used to drive the superconducting material to the critical state and then a second magnetic field may be used to penetrate the superconducting material. When the external field or combination of external fields are removed, the magnetic field that has penetrated into the material remains trapped. The charged superconducting material may be used as solenoidal magnets, dipole magnets, or other higher order multipole magnets in many applications.

  13. Maghemite soil nodules reveal the impact of fire on mineralogical and geochemical differentiation at the Earth's surface

    NASA Astrophysics Data System (ADS)

    Löhr, Stefan C.; Murphy, David T.; Nothdurft, Luke D.; Bolhar, Robert; Piazolo, Sandra; Siegel, Coralie

    2017-03-01

    Fires occur frequently over large parts of the Earth's surface. They potentially exert a significant influence on the mineralogical and geochemical characteristics of an environment that is otherwise considered to be dominated by low temperature processes. We test this hypothesis by comparing the mineralogy and geochemistry of (i) magnetic, iron-rich soil nodules, (ii) non-magnetic iron soil nodules and (iii) a published dataset of surficial sediments from eastern Australia. Maghemite-rich nodules are present in soils from around the world. It has been argued that they are thermal alteration products of non-magnetic precursors, but this remains controversial. We use detailed petrographic and mineralogical analyses to demonstrate that maghemite occurs as part of a high temperature mineral assemblage including hematite and χ-alumina, within a magnetic nodule microfabric indicative of fire-induced dehydroxylation and sintering of non-magnetic precursors at temperatures of up to 600 °C. The genetic link between magnetic and non-magnetic nodules means that their comparison offers insights into the geochemical impact of fire. Our results show that magnetic nodules are depleted in Si, Y, Zr and HREE but enriched in Fe and Cr relative to non-magnetic nodules that occur in close spatial proximity. Magnetic nodules also show variable but distinctly low Y/Ho (21.4 ± 0.4) and Zr/Hf (29.3 ± 0.8) as well as anomalously low La relative to the other LREE. In situ laser ablation analyses show that this is largely due to the presence of χ-alumina that is depleted in HREEs and has extremely low Y/Ho (mainly <20), as well as the low Zr/Hf of χ-alumina and the maghemite-hematite matrix, with no involvement from zircon. We propose a multi-stage process of formation where fire transforms non-magnetic nodule precursors into proto-magnetic nodules. This is associated with thermal transformation of clays as well as Fe and Al oxyhydroxides, followed by isochemical segregation into a sintered core with low Si, Y/Ho, Zr/Hf and La/Gd and a reciprocal cortex. Preferential loss of the weathering-sensitive cortex, which is rarely preserved on the magnetic nodules, then results in geochemical differentiation of magnetic nodules relative to their non-magnetic precursors. We propose that the elevated Zr/Hf and Y/Ho ratios previously reported for Australian fluvial sediments reflect, at least in part, the long history of palaeo-fires in the catchments of these rivers, with preferential removal, transport and sedimentation of the readily weathered, high Y/Ho and Zr/Hf cortex material that is a product of thermal alteration of Fe nodules. In addition, since magnetic Fe nodules are demonstrably related to fire, they may represent a promising, directly dateable record of severe fires, which can complement the sedimentary charcoal record.

  14. Automatic HTS force measurement instrument

    DOEpatents

    Sanders, Scott T.; Niemann, Ralph C.

    1999-01-01

    A device for measuring the levitation force of a high temperature superconductor sample with respect to a reference magnet includes a receptacle for holding several high temperature superconductor samples each cooled to superconducting temperature. A rotatable carousel successively locates a selected one of the high temperature superconductor samples in registry with the reference magnet. Mechanism varies the distance between one of the high temperature superconductor samples and the reference magnet, and a sensor measures levitation force of the sample as a function of the distance between the reference magnet and the sample. A method is also disclosed.

  15. Highly stable and finely tuned magnetic fields generated by permanent magnet assemblies.

    PubMed

    Danieli, E; Perlo, J; Blümich, B; Casanova, F

    2013-05-03

    Permanent magnetic materials are the only magnetic source that can be used to generate magnetic fields without power consumption or maintenance. Such stand-alone magnets are very attractive for many scientific and engineering areas, but they suffer from poor temporal field stability, which arises from the strong sensitivity of the magnetic materials and mechanical support to temperature variation. In this work, we describe a highly efficient method useful to cancel the temperature coefficient of permanent magnet assemblies in a passive and accurate way. It is based on the combination of at least two units made of magnetic materials with different temperature coefficients arranged in such a way that the ratio of the fields generated by each unit matches the ratio of their effective temperature coefficients defined by both the magnetic and mechanical contributions. Although typically available magnetic materials have negative temperature coefficients, the cancellation is achieved by aligning the fields generated by each unit in the opposite direction. We demonstrate the performance of this approach by stabilizing the field generated by a dipolar Halbach magnet, recently proposed to achieve high field homogeneity. Both the field drift and the homogeneity are monitored via nuclear magnetic resonance spectroscopy experiments. The results demonstrate the compatibility of the thermal compensation approach with existing strategies useful to fine-tune the spatial dependence of the field generated by permanent magnet arrays.

  16. Magnetization-induced second-harmonic generation in electrochemically synthesized magnetic films of ternary metal Prussian blue analogs

    NASA Astrophysics Data System (ADS)

    Ikeda, Katsuyoshi; Ohkoshi, Shin-ichi; Hashimoto, Kazuhito

    2003-02-01

    We observed magnetic field effects on transmitted second-harmonic generation (SHG) in electrochemically synthesized (FexIICr1-xII)1.5[CrIII(CN)6]ṡ7.5H2O magnetic films. These films showed a variety of temperature dependences for SH intensities below magnetic phase transition temperatures (TC). The SH intensity for x=0.25 increased monotonically with decreasing temperature and that for x=0.13 exhibited a minimum value around the magnetic compensation temperature under a zero magnetic field. These temperature dependences resembled those of the absolute value of magnetization, indicating that the magnetic strain of the films is responsible for the increase in SH below TC. In addition, the polarization of SH light was rotated by an applied external magnetic field. The observed SH rotation angle of 1.3° was much larger than the Faraday rotation angle of 0.079° at 388 nm. This SH rotation can be understood by the mechanism of magnetization-induced SHG caused by interaction between the electric polarization along the out-of-plane of film and spontaneous magnetization. The magnetic linear term [χijkLmagn(1)] contributed particularly to the SH rotation. The value of the magnetic linear tensor component relative to the crystallographic tensor component [|χyyyXmagn(1)|/|χzyycr], which induced the SH rotation, was 0.023 at 50 K under 10 kOe.

  17. Exploiting pressure to induce a "guest-blocked" spin transition in a framework material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sciortino, Natasha F.; Ragon, Florence; Zenere, Katrina A.

    A new functionalized 1,2,4-trizole ligand 4-[(E)-2-(5-methyl-2-thienyl)vinyl]-1,2,4-triazole (thiome) was prepared to assess the structural and magnetic consequence of ligand steric bulk in the resultant framework material [FeIIPd(CN)4(thiome)2]·2(H2O) (A·2(H2O)). Structural studies reveal that the pore size is smaller than realted 2-D Hofmann-type materials and that the water molecules can be reversibly removed with retention of the porous host framework. Magnetic measurements show ‘on-off’ sensing to the presence of water. The hydrated phase is spin crossover (SCO) inactive whereas the dehydrated phase undergoes an abrupt and hysteretic one-step spin transition. Partial dehydration (A·n(H2O), 0 ≤ n ≤ 2) leads to systematically varying spinmore » transition temperatures further demonstrating qualitative sensing. These studies suggest that the SCO properties are governed by internal lattice pressure effects. Variable pressure structure and magnetic studies on the hydrated phase, A·2(H2O), reveal that such internal guest pressure effects can be overcome with moderate external pressure application (0 – 0.68 GPa) resulting in a two-step spin transition at ambient temperatures at 0.68 GPa.« less

  18. The origin of Total Solar Irradiance variability on timescales less than a day

    NASA Astrophysics Data System (ADS)

    Shapiro, Alexander; Krivova, Natalie; Schmutz, Werner; Solanki, Sami K.; Leng Yeo, Kok; Cameron, Robert; Beeck, Benjamin

    2016-07-01

    Total Solar Irradiance (TSI) varies on timescales from minutes to decades. It is generally accepted that variability on timescales of a day and longer is dominated by solar surface magnetic fields. For shorter time scales, several additional sources of variability have been proposed, including convection and oscillation. However, available simplified and highly parameterised models could not accurately explain the observed variability in high-cadence TSI records. We employed the high-cadence solar imagery from the Helioseismic and Magnetic Imager onboard the Solar Dynamics Observatory and the SATIRE (Spectral And Total Irradiance Reconstruction) model of solar irradiance variability to recreate the magnetic component of TSI variability. The recent 3D simulations of solar near-surface convection with MURAM code have been used to calculate the TSI variability caused by convection. This allowed us to determine the threshold timescale between TSI variability caused by the magnetic field and convection. Our model successfully replicates the TSI measurements by the PICARD/PREMOS radiometer which span the period of July 2010 to February 2014 at 2-minute cadence. Hence, we demonstrate that solar magnetism and convection can account for TSI variability at all timescale it has ever been measured (sans the 5-minute component from p-modes).

  19. Measuring temperature and field profiles in heat assisted magnetic recording

    NASA Astrophysics Data System (ADS)

    Hohlfeld, J.; Zheng, X.; Benakli, M.

    2015-08-01

    We introduce a theoretical and experimental framework that enables quantitative measurements of the temperature and magnetic field profiles governing the thermo-magnetic write process in heat assisted magnetic recording. Since our approach allows the identification of the correct temperature dependence of the magneto-crystalline anisotropy field in the vicinity of the Curie point as well, it provides an unprecedented experimental foundation to assess our understanding of heat assisted magnetic recording.

  20. The influence of magnetic order on the magnetoresistance anisotropy of Fe 1 + δ–xCu xTe

    DOE PAGES

    Helm, T.; Valdivia, P. N.; Bourret-Courchesne, E.; ...

    2017-05-17

    In this study, e performed resistance measurements onmore » $$\\text{F}{{\\text{e}}_{1+\\delta -x}}$$ Cu x Te with $${{x}_{\\text{EDX}}}\\leqslant 0.06$$ in the presence of in-plane applied magnetic fields, revealing a resistance anisotropy that can be induced at a temperature far below the structural and magnetic zero-field transition temperatures. The observed resistance anisotropy strongly depends on the field orientation with respect to the crystallographic axes, as well as on the field-cooling history. Our results imply a correlation between the observed features and the low-temperature magnetic order. Hysteresis in the angle-dependence indicates a strong pinning of the magnetic order within a temperature range that varies with the Cu content. The resistance anisotropy vanishes at different temperatures depending on whether an external magnetic field or a remnant field is present: the closing temperature is higher in the presence of an external field. For $${{x}_{\\text{EDX}}}=0.06$$ the resistance anisotropy closes above the structural transition, at the same temperature at which the zero-field short-range magnetic order disappears and the sample becomes paramagnetic. Finally, we suggest that under an external magnetic field the resistance anisotropy mirrors the magnetic order parameter. We discuss similarities to nematic order observed in other iron pnictide materials.« less

  1. Size and diluted magnetic properties of diamond shaped graphene quantum dots: Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Masrour, R.; Jabar, A.

    2018-05-01

    The magnetic properties of diamond shaped graphene quantum dots have been investigated by varying their sizes with the Monte Carlo simulation. The magnetizations and magnetic susceptibilities have been studied with dilutions x (magnetic atom), several sizes L (carbon atom) and exchange interaction J between the magnetic atoms. The all magnetic susceptibilities have been situated at the transitions temperatures of each parameters. The obtained values increase when increases the values of x, L and J. The effect of exchanges interactions and crystal field on the magnetization has been discussed. The magnetic hysteresis cycles for several dilutions x, sizes L, exchange interactions J and temperatures T. The magnetic coercive increases with increasing the exchange interactions and decreases when the temperatures values increasing.

  2. Simultaneous measurement of magnetic field and temperature based on an etched TCFMI cascaded with an FBG

    NASA Astrophysics Data System (ADS)

    Yan, Guofeng; Zhang, Liang; He, Sailing

    2016-04-01

    In this paper, a dual-parameter measurement scheme based on an etched thin core fiber modal interferometer (TCMI) cascaded with a fiber Bragg grating (FBG) is proposed and experimentally demonstrated for simultaneous measurement of magnetic field and temperature. The magnetic field and temperature responses of the packaged TCFMI were first investigated, which showed that the magnetic field sensitivity could be highly enhanced by decreasing of the TCF diameter and the temperature-cross sensitivities were up to 3-7 Oe/°C at 1550 nm. Then, the theoretical analysis and experimental demonstration of the proposed dual-parameter sensing scheme were conducted. Experimental results show that, the reflection of the FBG has a magnetic field intensity and temperature sensitivities of -0.017 dB/Oe and 0.133 dB/°C, respectively, while the Bragg wavelength of the FBG is insensitive to magnetic field and has a temperature sensitivity of 13.23 pm/°C. Thus by using the sensing matrix method, the intensity of the magnetic field and the temperature variance can be measured, which enables magnetic field sensing under strict temperature environments. In the on-off time response test, the fabricated sensor exhibited high repeatability and short response time of ∼19.4 s. Meanwhile the reflective sensing probe type is more compact and practical for applications in hard-to-reach conditions.

  3. Magnetic exploration of a low-temperature ultramafic-hosted hydrothermal site (Lost City, 30°N, MAR)

    NASA Astrophysics Data System (ADS)

    Szitkar, Florent; Tivey, Maurice A.; Kelley, Deborah S.; Karson, Jeffrey A.; Früh-Green, Gretchen L.; Denny, Alden R.

    2017-03-01

    A 2003 high-resolution magnetic survey conducted by the Autonomous Underwater Vehicle ABE over the low-temperature, ultramafic-hosted hydrothermal field Lost City reveals a weak positive magnetic anomaly. This observation is in direct contrast to recent observations of strong positive magnetic anomalies documented over the high-temperature ultramafic-hosted hydrothermal vents fields Rainbow and Ashadze, which indicates that temperature may control the production of magnetization at these sites. The Lost City survey provides a unique opportunity to study a field that is, to date, one of a kind, and is an end member of ultramafic-hosted hydrothermal systems. Our results highlight the key contribution of temperature on magnetite production resulting from serpentinization reactions. Whereas high temperature promotes significant production and partitioning of iron into magnetite, low temperature favors iron partitioning into various alteration phases, resulting in a magnetite-poor rock. Moreover, the distribution of magnetic anomalies confirms results of a previous geological survey indicating the progressive migration of hydrothermal activity upslope. These discoveries contribute to the results of 25 yrs of magnetic exploration of a wide range of hydrothermal sites, from low- to high-temperature and from basalt- to ultramafic-hosted, and thereby validate using high-resolution magnetics as a crucial parameter for locating and characterizing hydrothermal sites hosting unique chemosynthetic-based ecosystems and potentially mineral-rich deposits.

  4. Mechanical and electrical properties of low temperature phase MnBi

    DOE PAGES

    Jiang, Xiujuan; Roosendaal, Timothy; Lu, Xiaochuan; ...

    2016-01-21

    The low temperature phase (LTP) MnBi is a promising rare-earth-free permanent magnet material due to its high intrinsic coercivity and its large positive temperature coefficient. While scientists are making progress on fabricating bulk MnBi magnets, engineers have started to consider MnBi magnet for motor applications. In addition to the magnetic properties, there are other physical properties that could significantly affect a motor design. Here, we report the results of our investigation on the mechanical and electrical properties of bulk LTP MnBi and their dependence on temperature. We found at room temperature the sintered MnBi magnet fractures when the compression stressmore » exceeds 193 MPa; and its room temperature electric resistance is about 6.85 μΩ-m.« less

  5. Magnet management in electric machines

    DOEpatents

    Reddy, Patel Bhageerath; El-Refaie, Ayman Mohamed Fawzi; Huh, Kum Kang

    2017-03-21

    A magnet management method of controlling a ferrite-type permanent magnet electrical machine includes receiving and/or estimating the temperature permanent magnets; determining if that temperature is below a predetermined temperature; and if so, then: selectively heating the magnets in order to prevent demagnetization and/or derating the machine. A similar method provides for controlling magnetization level by analyzing flux or magnetization level. Controllers that employ various methods are disclosed. The present invention has been described in terms of specific embodiment(s), and it is recognized that equivalents, alternatives, and modifications, aside from those expressly stated, are possible and within the scope of the appending claims.

  6. Temperature dependence dynamical permeability characterization of magnetic thin film using near-field microwave microscopy

    NASA Astrophysics Data System (ADS)

    Hung, Le Thanh; Phuoc, Nguyen N.; Wang, Xuan-Cong; Ong, C. K.

    2011-08-01

    A temperature dependence characterization system of microwave permeability of magnetic thin film up to 5 GHz in the temperature range from room temperature up to 423 K is designed and fabricated as a prototype measurement fixture. It is based on the near field microwave microscopy technique (NFMM). The scaling coefficient of the fixture can be determined by (i) calibrating the NFMM with a standard sample whose permeability is known; (ii) by calibrating the NFMM with an established dynamic permeability measurement technique such as shorted microstrip transmission line perturbation method; (iii) adjusting the real part of the complex permeability at low frequency to fit the value of initial permeability. The algorithms for calculating the complex permeability of magnetic thin films are analyzed. A 100 nm thick FeTaN thin film deposited on Si substrate by sputtering method is characterized using the fixture. The room temperature permeability results of the FeTaN film agree well with results obtained from the established short-circuited microstrip perturbation method. Temperature dependence permeability results fit well with the Landau-Lifshitz-Gilbert equation. The temperature dependence of the static magnetic anisotropy H_K^{sta}, the dynamic magnetic anisotropy H_K^{dyn}, the rotational anisotropy Hrot, together with the effective damping coefficient αeff, ferromagnetic resonance fFMR, and frequency linewidth Δf of the thin film are investigated. These temperature dependent magnetic properties of the magnetic thin film are important to the high frequency applications of magnetic devices at high temperatures.

  7. Photoluminescent and Slow Magnetic Relaxation Studies on Lanthanide(III)-2,5-pyrazinedicarboxylate Frameworks.

    PubMed

    Marinho, Maria Vanda; Reis, Daniella O; Oliveira, Willian X C; Marques, Lippy F; Stumpf, Humberto O; Déniz, Mariadel; Pasán, Jorge; Ruiz-Pérez, Catalina; Cano, Joan; Lloret, Francesc; Julve, Miguel

    2017-02-20

    In the series described in this work, the hydrothermal synthesis led to oxidation of the 5-methyl-pyrazinecarboxylate anion to the 2,5-pyrazinedicarboxylate dianion (2,5-pzdc) allowing the preparation of three-dimensional (3D) lanthanide(III) organic frameworks of formula {[Ln 2 (2,5-pzdc) 3 (H 2 O) 4 ]·6H 2 O} n [Ln = Ce (1), Pr (2), Nd (3), and Eu (4)] and {[Er 2 (2,5-pzdc) 3 (H 2 O) 4 ]·5H 2 O} n (5). Single-crystal X-ray diffraction on 1-5 reveals that they crystallize in the triclinic system, P1̅ space group with the series 1-4 being isostructural. The crystal structure of the five compounds are 3D with the lanthanide(III) ions linked through 2,5-pzdc 2- dianions acting as two- and fourfold connectors, building a binodal 4,4-connected (4·6 4 8)(4 2 6 2 8 2 )-mog network. The photophysical properties of the Nd(III) (3) and Eu(III) (4) complexes exhibit sensitized photoluminescence in the near-infrared and visible regions, respectively. The photoluminescence intensity and lifetime of 4 were very sensitive due to the luminescence quenching of the 5 D 0 level by O-H oscillators of four water molecules in the first coordination sphere leading to a quantum efficiency of 11%. Variable-temperature magnetic susceptibility measurements for 1-5 reveal behaviors as expected for the ground terms of the magnetically isolated rare-earth ions [ 2 F 5/2 , 2 H 4 , 4 I 9/2 , 7 F 0 , and 4 I 15/2 for Ce(III), Pr(III), Nd(III), Eu(III), and Er(III), respectively] with M J = 0 (2 and 4) and ±1/2 (1, 3, and 5). Q-band electron paramagnetic resonance measurements at low temperature corroborate these facts. Frequency-dependent alternating-current magnetic susceptibility signals under external direct-current fields in the range of 100-2500 G were observed for the Kramers ions of 1, 3, and 5, indicating slow magnetic relaxation (single-ion magnet) behavior. In these compounds, τ -1 decreases with decreasing temperature at any magnetic field, but no Arrhenius law can simulate such a dependence in all the temperature range. This dependence can be reproduced by the contributions of direct and Raman processes, the Raman exponent (n) reaching the expected value (n = 9) for a Kramers system.

  8. Low and room temperature magnetic features of the traffic related urban airborne PM

    NASA Astrophysics Data System (ADS)

    Winkler, A.; Sagnotti, L.

    2012-04-01

    We used magnetic measurements and analyses - such as hysteresis loops and FORCs both at room temperature and at 10K, isothermal remanent magnetization (IRM) vs temperature curves (from 10K to 293K) and IRM vs time decay curves - to characterize the magnetic properties of the traffic related airborne particulate matter (PM) in Rome. This study was specifically addressed to the identification of the ultrafine superparamagnetic (SP) particles, which are particularly sensitive to thermal relaxation effects, and on the eventual detection of low temperature phase transitions which may affect various magnetic minerals. We compared the magnetic properties at 10K and at room temperature of Quercus ilex leaves, disk brakes, diesel and gasoline exhaust pipes powders collected from vehicles circulating in Rome. The magnetic properties of the investigated powders significantly change upon cooling, and no clear phase transition occurs, suggesting that the thermal dependence is mainly triggered by the widespread presence of ultrafine SP particles. The contribution of the SP fraction to the total remanence of traffic related PM samples was quantified at room temperature measuring the decay of a IRM 100 s after the application of a saturation magnetic field. This same method has been also tested at 10K to investigate the temperature dependence of the observed time decay.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helm, T.; Valdivia, P. N.; Bourret-Courchesne, E.

    In this study, e performed resistance measurements onmore » $$\\text{F}{{\\text{e}}_{1+\\delta -x}}$$ Cu x Te with $${{x}_{\\text{EDX}}}\\leqslant 0.06$$ in the presence of in-plane applied magnetic fields, revealing a resistance anisotropy that can be induced at a temperature far below the structural and magnetic zero-field transition temperatures. The observed resistance anisotropy strongly depends on the field orientation with respect to the crystallographic axes, as well as on the field-cooling history. Our results imply a correlation between the observed features and the low-temperature magnetic order. Hysteresis in the angle-dependence indicates a strong pinning of the magnetic order within a temperature range that varies with the Cu content. The resistance anisotropy vanishes at different temperatures depending on whether an external magnetic field or a remnant field is present: the closing temperature is higher in the presence of an external field. For $${{x}_{\\text{EDX}}}=0.06$$ the resistance anisotropy closes above the structural transition, at the same temperature at which the zero-field short-range magnetic order disappears and the sample becomes paramagnetic. Finally, we suggest that under an external magnetic field the resistance anisotropy mirrors the magnetic order parameter. We discuss similarities to nematic order observed in other iron pnictide materials.« less

  10. Depth to Curie temperature across the central Red Sea from magnetic data using the de-fractal method

    NASA Astrophysics Data System (ADS)

    Salem, Ahmed; Green, Chris; Ravat, Dhananjay; Singh, Kumar Hemant; East, Paul; Fairhead, J. Derek; Mogren, Saad; Biegert, Ed

    2014-06-01

    The central Red Sea rift is considered to be an embryonic ocean. It is characterised by high heat flow, with more than 90% of the heat flow measurements exceeding the world mean and high values extending to the coasts - providing good prospects for geothermal energy resources. In this study, we aim to map the depth to the Curie isotherm (580 °C) in the central Red Sea based on magnetic data. A modified spectral analysis technique, the “de-fractal spectral depth method” is developed and used to estimate the top and bottom boundaries of the magnetised layer. We use a mathematical relationship between the observed power spectrum due to fractal magnetisation and an equivalent random magnetisation power spectrum. The de-fractal approach removes the effect of fractal magnetisation from the observed power spectrum and estimates the parameters of depth to top and depth to bottom of the magnetised layer using iterative forward modelling of the power spectrum. We applied the de-fractal approach to 12 windows of magnetic data along a profile across the central Red Sea from onshore Sudan to onshore Saudi Arabia. The results indicate variable magnetic bottom depths ranging from 8.4 km in the rift axis to about 18.9 km in the marginal areas. Comparison of these depths with published Moho depths, based on seismic refraction constrained 3D inversion of gravity data, showed that the magnetic bottom in the rift area corresponds closely to the Moho, whereas in the margins it is considerably shallower than the Moho. Forward modelling of heat flow data suggests that depth to the Curie isotherm in the centre of the rift is also close to the Moho depth. Thus Curie isotherm depths estimated from magnetic data may well be imaging the depth to the Curie temperature along the whole profile. Geotherms constrained by the interpreted Curie isotherm depths have subsequently been calculated at three points across the rift - indicating the variation in the likely temperature profile with depth.

  11. Structural and magnetic investigations of single-crystalline neodymium zirconate pyrochlore Nd2Zr2O7

    NASA Astrophysics Data System (ADS)

    Hatnean, M. Ciomaga; Lees, M. R.; Petrenko, O. A.; Keeble, D. S.; Balakrishnan, G.; Gutmann, M. J.; Klekovkina, V. V.; Malkin, B. Z.

    2015-05-01

    We report structural and magnetic properties studies of large high-quality single crystals of the frustrated magnet Nd2Zr2O7 . Powder x-ray diffraction analysis confirms that Nd2Zr2O7 adopts the pyrochlore structure. Room-temperature x-ray diffraction and time-of-flight neutron-scattering experiments show that the crystals are stoichiometric in composition with no measurable site disorder. The temperature dependence of the magnetic susceptibility shows no magnetic ordering at temperatures down to 0.5 K. Fits to the magnetic susceptibility data using a Curie-Weiss law reveal a ferromagnetic coupling between the Nd moments. Magnetization versus field measurements show a local Ising anisotropy along the <111 > axes of the Nd3 + ions in the ground state. Specific heat versus temperature measurements in zero applied magnetic field indicate the presence of a thermal anomaly below T ˜7 K, but no evidence of magnetic ordering is observed down to 0.5 K. The experimental temperature dependence of the single-crystal bulk dc susceptibility and isothermal magnetization are analyzed using crystal field theory and the crystal field parameters and exchange coupling constants determined.

  12. Effect of thermal aging on stability of transformer oil based temperature sensitive magnetic fluids

    NASA Astrophysics Data System (ADS)

    Kaur, Navjot; Chudasama, Bhupendra

    2018-04-01

    Synthesizing stable temperature sensitive magnetic fluids with tunable magnetic properties that can be used as coolant in transformers is of great interest, however not exploited commercially due to the lack of its stability at elevated temperatures in bulk quantities. The task is quite challenging as the performance parameters of magnetic fluids are strongly influenced by thermal aging. In this article, we report the effect of thermal aging on colloidal stability and magnetic properties of Mn1-xZnxFe2O4 magnetic fluids prepared in industrial grade transformer oil. As-synthesized magnetic fluids possess good dispersion stability and tunable magnetic properties. Effect of accelerated thermal aging on the dispersion stability and magnetic properties have been evaluated by photon correlation spectroscopy and vibration sample magnetometry, respectively. Magnetic fluids are stable under accelerated aging at elevated temperatures (from 50 °C to 125 °C), which is critical for their efficient performance in high power transformers.

  13. Influence of the Solar Cycle on Turbulence Properties and Cosmic-Ray Diffusion

    NASA Astrophysics Data System (ADS)

    Zhao, L.-L.; Adhikari, L.; Zank, G. P.; Hu, Q.; Feng, X. S.

    2018-04-01

    The solar cycle dependence of various turbulence quantities and cosmic-ray (CR) diffusion coefficients is investigated by using OMNI 1 minute resolution data over 22 years. We employ Elsässer variables z ± to calculate the magnetic field turbulence energy and correlation lengths for both the inwardly and outwardly directed interplanetary magnetic field (IMF). We present the temporal evolution of both large-scale solar wind (SW) plasma variables and small-scale magnetic fluctuations. Based on these observed quantities, we study the influence of solar activity on CR parallel and perpendicular diffusion using quasi-linear theory and nonlinear guiding center theory, respectively. We also evaluate the radial evolution of the CR diffusion coefficients by using the boundary conditions for different solar activity levels. We find that in the ecliptic plane at 1 au (1), the large-scale SW temperature T, velocity V sw, Alfvén speed V A , and IMF magnitude B 0 are positively related to solar activity; (2) the fluctuating magnetic energy density < {{z}+/- }2> , residual energy E D , and corresponding correlation functions all have an obvious solar cycle dependence. The residual energy E D is always negative, which indicates that the energy in magnetic fluctuations is larger than the energy in kinetic fluctuations, especially at solar maximum; (3) the correlation length λ for magnetic fluctuations does not show significant solar cycle variation; (4) the temporally varying shear source of turbulence, which is most important in the inner heliosphere, depends on the solar cycle; (5) small-scale fluctuations may not depend on the direction of the background magnetic field; and (6) high levels of SW fluctuations will increase CR perpendicular diffusion and decrease CR parallel diffusion, but this trend can be masked if the background IMF changes in concert with turbulence in response to solar activity. These results provide quantitative inputs for both turbulence transport models and CR diffusion models, and also provide valuable insight into the long-term modulation of CRs in the heliosphere.

  14. A Definition of the Magnetic Transition Temperature Using Valence Bond Theory.

    PubMed

    Jornet-Somoza, Joaquim; Deumal, Mercè; Borge, Juan; Robb, Michael A

    2018-03-01

    Macroscopic magnetic properties are analyzed using Valence Bond theory. Commonly the critical temperature T C for magnetic systems is associated with a maximum in the energy-based heat capacity C p (T). Here a more broadly applicable definition of the magnetic transition temperature T C is described using the spin moment expectation value (i.e., applying the spin exchange density operator) instead of energy. Namely, the magnetic capacity C s (T) reflects variation in the spin multiplicity as a function of temperature, which is shown to be related to ∂[χT(T)]/∂T. Magnetic capacity C s (T) depends on long-range spin interactions that are not relevant in the energy-based heat capacity C p (T). Differences between C s (T) and C p (T) are shown to be due to spin order/disorder within the crystal that can be monitored via a Valence Bond analysis of the corresponding magnetic wave function. Indeed the concept of the Boltzmann spin-alignment order is used to provide information about the spin correlation between magnetic units. As a final illustration, the critical temperature is derived from the magnetic capacity for several molecular magnets presenting different magnetic topologies that have been experimentally studied. A systematic shift between the transition temperatures associated with C s (T) and C p (T) is observed. It is demonstrated that this shift can be attributed to the loss of long-range spin correlation. This suggests that the magnetic capacity C s (T) can be used as a predictive tool for the magnetic topology and thus for the synthetic chemists.

  15. Analysis and interpretation of MAGSAT anomalies over north Africa

    NASA Technical Reports Server (NTRS)

    Phillips, R. J.

    1985-01-01

    Crustal anomaly detection with MAGSAT data is frustrated by inherent resolving power of the data and by contamination from external and core fields. Quality of the data might be tested by modeling specific tectonic features which produce anomalies that fall within proposed resolution and crustal amplitude capabilities of MAGSAT fields. To test this hypothesis, north African hotspots associated with Ahaggar, Tibesti and Darfur were modeled as magnetic induction anomalies. MAGSAT data were reduced by subtracting external and core fields to isolate scalar and vertical component crustal signals. Of the three volcanic areas, only the Ahaggar region had an associated anomaly of magnitude above error limits of the data. Hotspot hypothesis was tested for Ahaggar by seeing if predicted magnetic signal matched MAGSAT anomaly. Predicted model magnetic signal arising from surface topography of the uplift and the Curie isothermal surface was calculated at MAGSAT altitudes by Fourier transform technique modified to allow for variable magnetization. Curie isotherm surface was calculated using a method for temperature distribution in a moving plate above a fixed hotspot. Magnetic signal was calculated for a fixed plate as well as a number of plate velocities and directions.

  16. TRUMP; transient and steady state temperature distribution. [IBM360,370; CDC7600; FORTRAN IV (95%) and BAL (5%) (IBM); FORTRAN IV (CDC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elrod, D.C.; Turner, W.D.

    TRUMP solves a general nonlinear parabolic partial differential equation describing flow in various kinds of potential fields, such as fields of temperature, pressure, or electricity and magnetism; simultaneously, it will solve two additional equations representing, in thermal problems, heat production by decomposition of two reactants having rate constants with a general Arrhenius temperature dependence. Steady-state and transient flow in one, two, or three dimensions are considered in geometrical configurations having simple or complex shapes and structures. Problem parameters may vary with spatial position, time, or primary dependent variables--temperature, pressure, or field strength. Initial conditions may vary with spatial position, andmore » among the criteria that may be specified for ending a problem are upper and lower limits on the size of the primary dependent variable, upper limits on the problem time or on the number of time-steps or on the computer time, and attainment of steady state.IBM360,370;CDC7600; FORTRAN IV (95%) and BAL (5%) (IBM); FORTRAN IV (CDC); OS/360 (IBM360), OS/370 (IBM370), SCOPE 2.1.5 (CDC7600); As dimensioned, the program requires 400K bytes of storage on an IBM370 and 145,100 (octal) words on a CDC7600.« less

  17. Electrical and magnetic properties of La0.67Ba0.33Mn1- x (Me) x O3 perovskite manganites: case of manganese substituted by trivalent (Me = Cr) and tetravalent (Me = Ti) elements

    NASA Astrophysics Data System (ADS)

    Oumezzine, Marwène; Peña, Octavio; Kallel, Sami; Kallel, Nabil; Guizouarn, Thierry; Gouttefangeas, Francis; Oumezzine, Mohamed

    2014-03-01

    The effects of non-magnetic Ti4+ substitution on the structural, electrical and magnetic properties of La0.67Ba0.33Mn1- x Ti x O3 (0≤ x≤0.1) are investigated and compared to those existing in La0.67Ba0.33Mn1- x Cr x O3 (magnetic Cr3+). The structural refinement by the Rietveld method revealed that Ti-doped samples crystallize in the cubic lattice with space group , while samples with Cr crystallize in the hexagonal setting of the rhombohedral space group for identical contents of dopant. The most relevant structural features are an increase of the lattice parameters, of the cell volume and of the inter-ionic distances with increasing Ti doping level. Both series of samples show a decrease of the paramagnetic-ferromagnetic transition temperature when the amount of chromium or titanium increases. Transport measurements show that when increasing the metal doping, the resistivity increases whereas the metallic behavior of the parent compound La0.67Ba0.33MnO3 is destroyed. For a substitution higher than 5 at.% of Ti and 10 at.% of Cr, the samples exhibit a semiconducting behavior in the whole range of temperature, for which the electronic transport can be explained by variable range hopping and/or small polaron hopping models.

  18. Preliminary aeromagnetic anomaly map of California

    USGS Publications Warehouse

    Roberts, Carter W.; Jachens, Rober C.

    1999-01-01

    The magnetization in crustal rocks is the vector sum of induced in minerals by the Earth’s present main field and the remanent magnetization of minerals susceptible to magnetization (chiefly magnetite) (Blakely, 1995). The direction of remanent magnetization acquired during the rock’s history can be highly variable. Crystalline rocks generally contain sufficient magnetic minerals to cause variations in the Earth’s magnetic field that can be mapped by aeromagnetic surveys. Sedimentary rocks are generally weakly magnetized and consequently have a small effect on the magnetic field: thus a magnetic anomaly map can be used to “see through” the sedimentary rock cover and can convey information on lithologic contrasts and structural trends related to the underlying crystalline basement (see Nettleton,1971; Blakely, 1995). The magnetic anomaly map (fig. 2) provides a synoptic view of major anomalies and contributes to our understanding of the tectonic development of California. Reference fields, that approximate the Earth’s main (core) field, have been subtracted from the recorded magnetic data. The resulting map of the total magnetic anomalies exhibits anomaly patterns related to the distribution of magnetized crustal rocks at depths shallower than the Curie point isotherm (the surface within the Earth beneath which temperatures are so high that rocks lose their magnetic properties). The magnetic anomaly map has been compiled from existing digital data. Data obtained from aeromagnetic surveys that were made at different times, spacings and elevations, were merged by analytical continuation of each set onto a common surface 305 m (1000 ft) above terrain. Digital data in this compatible form allows application of analytical techniques (Blakley, 1995) that can be used to enhance anomaly characteristics (e.g., wavelength and trends) and provide new interpretive information.

  19. Ultra-Sensitive Magnetoresistive Displacement Sensing Device

    NASA Technical Reports Server (NTRS)

    Olivas, John D. (Inventor); Lairson, Bruce M. (Inventor); Ramesham, Rajeshuni (Inventor)

    2003-01-01

    An ultrasensitive displacement sensing device for use in accelerometers, pressure gauges, temperature transducers, and the like, comprises a sputter deposited, multilayer, magnetoresistive field sensor with a variable electrical resistance based on an imposed magnetic field. The device detects displacement by sensing changes in the local magnetic field about the magnetoresistive field sensor caused by the displacement of a hard magnetic film on a movable microstructure. The microstructure, which may be a cantilever, membrane, bridge, or other microelement, moves under the influence of an acceleration a known displacement predicted by the configuration and materials selected, and the resulting change in the electrical resistance of the MR sensor can be used to calculate the displacement. Using a micromachining approach, very thin silicon and silicon nitride membranes are fabricated in one preferred embodiment by means of anisotropic etching of silicon wafers. Other approaches include reactive ion etching of silicon on insulator (SOI), or Low Pressure Chemical Vapor Deposition of silicon nitride films over silicon substrates. The device is found to be improved with the use of giant magnetoresistive elements to detect changes in the local magnetic field.

  20. Improved Readout Scheme for SQUID-Based Thermometry

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin

    2007-01-01

    An improved readout scheme has been proposed for high-resolution thermometers, (HRTs) based on the use of superconducting quantum interference devices (SQUIDs) to measure temperature- dependent magnetic susceptibilities. The proposed scheme would eliminate counting ambiguities that arise in the conventional scheme, while maintaining the superior magnetic-flux sensitivity of the conventional scheme. The proposed scheme is expected to be especially beneficial for HRT-based temperature control of multiplexed SQUIDbased bolometer sensor arrays. SQUID-based HRTs have become standard for measuring and controlling temperatures in the sub-nano-Kelvin temperature range in a broad range of low-temperature scientific and engineering applications. A typical SQUIDbased HRT that utilizes the conventional scheme includes a coil wound on a core made of a material that has temperature- dependent magnetic susceptibility in the temperature range of interest. The core and the coil are placed in a DC magnetic field provided either by a permanent magnet or as magnetic flux inside a superconducting outer wall. The aforementioned coil is connected to an input coil of a SQUID. Changes in temperature lead to changes in the susceptibility of the core and to changes in the magnetic flux detected by the SQUID. The SQUID readout instrumentation is capable of measuring magnetic-flux changes that correspond to temperature changes down to a noise limit .0.1 nK/Hz1/2. When the flux exceeds a few fundamental flux units, which typically corresponds to a temperature of .100 nK, the SQUID is reset. The temperature range can be greatly expanded if the reset events are carefully tracked and counted, either by a computer running appropriate software or by a dedicated piece of hardware.

  1. Detailed ADM-based Modeling of Shock Retreat and X-ray Emission of τ Sco

    NASA Astrophysics Data System (ADS)

    Fletcher, C. L.; Petit, V.; Cohen, D. H.; Townsend, R. H.; Wade, G. A.

    2018-01-01

    Leveraging the improvement of spectropolarimeters over the past few decades, surveys have found that about 10% of OB-type stars host strong (˜ kG) and mostly dipolar surface magnetic fields. One B-type star, τ Sco, has a more complex surface magnetic field than the general population of OB stars. Interestingly, its X-ray luminosity is an order of magnitude higher than predicted from analytical models of magnetized winds. Previous studies of τ Sco's magnetosphere have predicted that the region of closed field loops should be located close to the stellar surface. However, the lack of X-ray variability and the location of the shock-heated plasma measured from forbidden-to-intercombination X-ray line ratios suggest that the hot plasma, and hence the closed magnetic loops, extend considerably farther from the stellar surface, implying a significantly lower mass loss rate than initially assumed. We present an adaptation of the Analytic Dynamical Magnetosphere model, describing the magnetic confinement of the stellar wind, for an arbitrary field loop configuration. This model is used to predict the shock-heated plasma temperatures for individual field loops, which are then compared to high resolution grating spectra from the Chandra X-ray Observatory. This comparison shows that larger closed magnetic loops are needed.

  2. Magnetization reversal behavior and magnetocaloric effect in SmCr0.85Mn0.15O3 chromites

    NASA Astrophysics Data System (ADS)

    Kumar, Surendra; Coondoo, Indrani; Vasundhara, M.; Patra, Ajit K.; Kholkin, Andrei L.; Panwar, Neeraj

    2017-01-01

    We have synthesized SmCr0.85Mn0.15O3 (SCMO) chromites through the ceramic route. The compound crystallized into a distorted orthorhombic structure with the Pnma space group, which was confirmed from the Rietveld refinement of x-ray powder diffraction patterns. Neel temperature, noticed at 168 K from the temperature variation of magnetisation, smaller than that reported for SmCrO3, indicated the influence of Mn3+ substitution on decreasing the antiferromagnetic ordering. A phenomenon of magnetization reversal was observed in the SCMO compound. At low magnetic fields, i.e., 500 Oe, a single compensation temperature (defined as the temperature where magnetization became zero) around 106 K was observed in the field cooled magnetization curve. However, with the application of higher magnetic fields, i.e., under an applied field of 1000 Oe, a second compensation temperature was noticed around 8 K. With a further increase in the magnetic field, the magnetization remained positive in both field cooled and zero field cooled protocols. A normal magnetocaloric effect was observed through an indirect method of field dependence of magnetisation measured in the temperature range of 2-152 K. The magnetic entropy change (-ΔS) of ˜11.36 J kg-1 K-1 along with the relative cooling power (RCP) of ˜175.89 J kg-1 was obtained in the temperature range of 10-20 K for an applied field of 90 kOe, and their values at 50 kOe applied field were, respectively, almost twenty and forty times larger in magnitude in comparison to those for the SmCrO3 compound. The relatively large values of ΔS and RCP make the studied compound a potential candidate for magnetic refrigeration applications at low temperatures.

  3. First Spitzer Space Telescope Observations of Magnetic Cataclysmic Variables: Evidence of Excess Emission at 3-8 μm

    NASA Astrophysics Data System (ADS)

    Howell, Steve B.; Brinkworth, Carolyn; Hoard, D. W.; Wachter, Stefanie; Harrison, Thomas; Chun, Howard; Thomas, Beth; Stefaniak, Linda; Ciardi, David R.; Szkody, Paula; van Belle, Gerard

    2006-07-01

    We present the first observations of magnetic cataclysmic variables using the Spitzer Space Telescope. We used the Infrared Array Camera to obtain photometry of the Polars EF Eri, GG Leo, V347 Pav, and RX J0154.0-5947 at 3.6, 4.5, 5.8, and 8.0 μm, respectively. In all of our targets, we detect excess mid-infrared emission over that expected from the component stars alone. We explore the origin of this IR excess by examining bremsstrahlung, cyclotron emission, circumbinary dust, and L/T brown dwarf secondary stars. Bremsstrahlung and cyclotron emission appear unlikely to be significant contributors to the observed fluxes. At present, the most likely candidate for the excess emission is dust that is probably located in a circumbinary disk with an inner temperature near 800 K. However, a simple dust disk plus any reasonable low-mass or brown dwarf-like secondary star is unable to fully explain the observed flux densities in the 3-8 μm region.

  4. Physics responsible for heating efficiency and self-controlled temperature rise of magnetic nanoparticles in magnetic hyperthermia therapy.

    PubMed

    Shaterabadi, Zhila; Nabiyouni, Gholamreza; Soleymani, Meysam

    2018-03-01

    Magnetic nanoparticles as heat-generating nanosources in hyperthermia treatment are still faced with many drawbacks for achieving sufficient clinical potential. In this context, increase in heating ability of magnetic nanoparticles in a biologically safe alternating magnetic field and also approach to a precise control on temperature rise are two challenging subjects so that a significant part of researchers' efforts has been devoted to them. Since a deep understanding of Physics concepts of heat generation by magnetic nanoparticles is essential to develop hyperthermia as a cancer treatment with non-adverse side effects, this review focuses on different mechanisms responsible for heat dissipation in a radio frequency magnetic field. Moreover, particular attention is given to ferrite-based nanoparticles because of their suitability in radio frequency magnetic fields. Also, the key role of Curie temperature in suppressing undesired temperature rise is highlighted. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Automatic HTS force measurement instrument

    DOEpatents

    Sanders, S.T.; Niemann, R.C.

    1999-03-30

    A device is disclosed for measuring the levitation force of a high temperature superconductor sample with respect to a reference magnet includes a receptacle for holding several high temperature superconductor samples each cooled to superconducting temperature. A rotatable carousel successively locates a selected one of the high temperature superconductor samples in registry with the reference magnet. Mechanism varies the distance between one of the high temperature superconductor samples and the reference magnet, and a sensor measures levitation force of the sample as a function of the distance between the reference magnet and the sample. A method is also disclosed. 3 figs.

  6. Experimental study of effect of magnetic field on anode temperature distribution in an ATON-type Hall thruster

    NASA Astrophysics Data System (ADS)

    Liu, Jinwen; Li, Hong; Mao, Wei; Ding, Yongjie; Wei, Liqiu; Li, Jianzhi; Yu, Daren; Wang, Xiaogang

    2018-05-01

    The energy deposition caused by the absorption of electrons by the anode is an important cause of power loss in a Hall thruster. The resulting anode heating is dangerous, as it can potentially reduce the thruster lifetime. In this study, by considering the ring shape of the anode of an ATON-type Hall thruster, the effects of the magnetic field strength and gradient on the anode ring temperature distribution are studied via experimental measurement. The results show that the temperature distribution is not affected by changes in the magnetic field strength and that the position of the peak temperature is essentially unchanged; however, the overall temperature does not change monotonically with the increase of the magnetic field strength and is positively correlated with the change in the discharge current. Moreover, as the magnetic field gradient increases, the position of the peak temperature gradually moves toward the channel exit and the temperature tends to decrease as a whole, regardless of the discharge current magnitude; in any case, the position of the peak temperature corresponds exactly to the intersection of the magnetic field cusp with the anode ring. Further theoretical analysis shows that the electrons, coming from the ionization region, travel along two characteristic paths to reach the anode under the guidance of the cusped magnetic field configuration. The change of the magnetic field strength or gradient changes the transfer of momentum and energy of the electrons in these two paths, which is the main reason for the changes in the temperature and distribution. This study is instructive for matching the design of the ring-shaped anode and the cusp magnetic field of an ATON-type Hall thruster.

  7. Ambipolar ion acceleration in an expanding magnetic nozzle

    NASA Astrophysics Data System (ADS)

    Longmier, Benjamin W.; Bering, Edgar A., III; Carter, Mark D.; Cassady, Leonard D.; Chancery, William J.; Díaz, Franklin R. Chang; Glover, Tim W.; Hershkowitz, Noah; Ilin, Andrew V.; McCaskill, Greg E.; Olsen, Chris S.; Squire, Jared P.

    2011-02-01

    The helicon plasma stage in the Variable Specific Impulse Magnetoplasma Rocket (VASIMR®) VX-200i device was used to characterize an axial plasma potential profile within an expanding magnetic nozzle region of the laboratory based device. The ion acceleration mechanism is identified as an ambipolar electric field produced by an electron pressure gradient, resulting in a local axial ion speed of Mach 4 downstream of the magnetic nozzle. A 20 eV argon ion kinetic energy was measured in the helicon source, which had a peak magnetic field strength of 0.17 T. The helicon plasma source was operated with 25 mg s-1 argon propellant and 30 kW of RF power. The maximum measured values of plasma density and electron temperature within the exhaust plume were 1 × 1020 m-3 and 9 eV, respectively. The measured plasma density is nearly an order of magnitude larger than previously reported steady-state helicon plasma sources. The exhaust plume also exhibits a 95% to 100% ionization fraction. The size scale and spatial location of the plasma potential structure in the expanding magnetic nozzle region appear to follow the size scale and spatial location of the expanding magnetic field. The thickness of the potential structure was found to be 104 to 105 λDe depending on the local electron temperature in the magnetic nozzle, many orders of magnitude larger than typical laboratory double layer structures. The background plasma density and neutral argon pressure were 1015 m-3 and 2 × 10-5 Torr, respectively, in a 150 m3 vacuum chamber during operation of the helicon plasma source. The agreement between the measured plasma potential and plasma potential that was calculated from an ambipolar ion acceleration analysis over the bulk of the axial distance where the potential drop was located is a strong confirmation of the ambipolar acceleration process.

  8. Effect of pressure on magnetic properties of mixed ferro-ferrimagnet (Ni0.38Mn0.62)3[Cr(CN)6]2.zH2O

    NASA Astrophysics Data System (ADS)

    Zentková, M.; Mihalik, M.; Arnold, Z.; Kamarád, J.

    2010-01-01

    We present the results of magnetization measurements performed on the ferro-ferrimagnetic (Ni0.38Mn0.62)3[Cr(CN)6]2.zH2O molecule-based magnet under pressures up to 0.8 GPa. Both antiferromagnetic JAF and ferromagnetic interaction JF are present in this magnet and temperature dependence of magnetization μ(T) exhibits the compensation temperature Tcomp at which the sign of the magnetization is reversed. Our results indicate that JAF dominates. The Curie temperature TC of the magnet increases with applied pressure, dTC/dp = 10.6 KGPa-1, due to strengthened JAF. The increase of the JAF is attributed to the enhanced value of the single electron overlapping integral S and the energy gap Δ of the mixed molecular orbitals t2g (Mn2+) and t2g (CrIII) induced by pressure. Magnetization processes are also affected by pressure: magnetization saturates at higher magnetic field and saturated magnetization is reduced. The compensation temperature Tcomp decreases under pressure.

  9. Preparation and characterization of a neutral {pi}-radical molecular conductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barclay, T.M.; Cordes, A.W.; Haddon, R.C.

    1999-02-10

    The synthesis and solid-state characterization of the heterocyclic {pi}-radical 1,2,5-thiadiazolo[3,4-b]-1,2,3-dithiazolo[3,4-b]pyrazin-2-yl, 1,2,3-TDTA, is described. The ESR spectrum of 1,2,3-TDTA (in CH{sub 2}-Cl{sub 2}, 293 K, g = 2.009) confirms a highly delocalized spin distribution, with observable hyperfine coupling to all five nitrogen atoms of the tricyclic molecule (a{sub N} = 0.514, 0.343, 0.109, 0.051, and 0.045 mT). While chemical and electrochemical oxidation (E{sub 1/2}(ox) = 1.14 V vs SCE) of 1,2,3-TDTA requires relatively harsh conditions, reduction is extremely fcile (E{sub 1/2}(red) = 0.15 V vs SCE). More importantly both the observed cell potential E{sub cell} and computed (MNDO) gas-phase enthalpy {Delta}H{submore » disp} for the disproportionation of this and other 1,2,3-dithiazolyls are significantly lower than those observed for their 1,3,2-isomers. Crystals of 1,2,3-TDTA are monoclinic P2{sub 1}/n, with a = 6.6749(16) {angstrom}, b = 11.7178(14) {angstrom}, c = 8.6148(14) {angstrom}, {beta} = 103.297(16){degree}, and Z = 4. The crystal structure consists of slipped stacks of heat-to-tail (centrosymmetric) {pi}-dimers. The closest intradimer S---S contact (S2---S3) is 3.2331(15) {angstrom}. Variable-temperature magnetic susceptibility measurements establish that 1,2,3-TDTA is essentially diamagnetic at room temperature. The magnetic data, along with the results of variable-temperature single-crystal conductivity measurements (1,2,3-TDTA exhibits a room-temperature conductivity {sigma} = 1 x 10{sup {minus}4} S cm{sup {minus}1}), are interpreted in terms of one-dimensional hopping mechanism for charge transport.« less

  10. Magnetically Controlled Variable Transformer

    NASA Technical Reports Server (NTRS)

    Kleiner, Charles T.

    1994-01-01

    Improved variable-transformer circuit, output voltage and current of which controlled by use of relatively small current supplied at relatively low power to control windings on its magnetic cores. Transformer circuits of this type called "magnetic amplifiers" because ratio between controlled output power and power driving control current of such circuit large. This ratio - power gain - can be as large as 100 in present circuit. Variable-transformer circuit offers advantages of efficiency, safety, and controllability over some prior variable-transformer circuits.

  11. Magnetic characteristics of polymorphic single crystal compounds DyIr2Si2

    NASA Astrophysics Data System (ADS)

    Uchima, Kiyoharu; Shigeoka, Toru; Uwatoko, Yoshiya

    2018-05-01

    We have confirmed that the tetragonal ternary compound DyIr2Si2 shows polymorphism; the ThCr2Si2-type structure as a low temperature phase (I-phase) and the CaBe2Ge2-type one as a high temperature phase (P-phase) exist. A comparative study on magnetic characteristics of the morphs was performed on the I- and P-phase single crystals in order to elucidate how magnetic properties are influenced by crystallographic symmetry. The magnetic behavior changes drastically depending on the structure. The DyIr2Si2(I) shows an antiferromagnetic ordering below TN = 30 K, additional magnetic transitions of T1 = 17 K and T2 = 10 K, and a strong uniaxial magnetic anisotropy with the easy [001] direction. The [001] magnetization shows four metamagnetic transitions at low temperatures. On the other hand, the DyIr2Si2(P) has comparatively low ordering temperature of TN1 = 9.4 K and an additional transition temperature of TN2 = 3.0 K, and exhibits an easy-plane magnetic anisotropy with the easy [110] direction. Two metamagnetic transitions appear in the basal plane magnetization processes. In both the morphs, the χ-T behavior suggests the existence of component-separated magnetic transitions. The ab-component of magnetic moments orders at the higher transition temperature TN1 for the P-phase compound, which is contrast to the I-phase behavior; the c-component orders firstly at TN. The crystalline electric field (CEF) analysis was made, and the difference in magnetic behaviors between both the morphs is explained by the CEF effects.

  12. Interface induced ferromagnetism in topological insulator above room temperature

    NASA Astrophysics Data System (ADS)

    Tang, Chi; Chang, Cui-Zu; Liu, Yawen; Chen, Tingyong; Moodera, Jagadeesh; Shi, Jing

    The quantum anomalous Hall effect (QAHE) observed in magnetic topological insulators (TI), an outcome of time reversal symmetry broken surface states, exhibits many exotic properties. However, a major obstacle towards high temperature QAHE is the low Curie temperature in the disordered magnetically doped TI systems. Here we report a study on heterostructures of TI and magnetic insulator in which the magnetic insulator, namely thulium iron garnet or TIG, has perpendicular magnetic anisotropy. At the TIG/TI interface, TIG magnetizes the surface states of the TI film by exchange coupling, as revealed by the anomalous Hall effect (AHE). We demonstrate that squared AHE hysteresis loops persist well above room temperature. The interface proximity induced high-temperature ferromagnetism in topological insulators opens up new possibilities for the realization of QAHE at high temperatures. This work was supported as part of the SHINES, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # SC0012670.

  13. Mixed valent stannide EuRuSn 3 - Structure, magnetic properties, and Mössbauer spectroscopic investigation

    NASA Astrophysics Data System (ADS)

    Harmening, Thomas; Hermes, Wilfried; Eul, Matthias; Pöttgen, Rainer

    2010-02-01

    The stannide EuRuSn 3 was synthesized by induction melting of the elements in a sealed tantalum tube in a water-cooled quartz glass sample chamber. The structure was refined on the basis of single crystal X-ray diffractometer data (LaRuSn 3 type, Pm3¯n, a = 976.0(1) pm, wR2 = 0.0399, 317 F2 values, and 13 variables). EuRuSn 3 shows modified Curie-Weiss behaviour in the temperature range 50-305 K with an experimental magnetic moment of 7.34(1) μB per formula unit. Thus, the europium atoms are not in a purely divalent state. Low field susceptibility measurement indicates a ferro- or ferrimagnetic ordering at TC = 11.2(2) K and magnetization measurements indicate EuRuSn 3 as a non-collinear ferro- or ferrimagnet. 151Eu Mössbauer spectroscopic measurements suggested one europium site to be static mixed valent with a Eu 2+/Eu 3+ ratio close to one and the other site purely divalent. This was supported by substituting the Eu 3+ atoms with Y 3+ in a sample with a composition of Eu 0.7Y 0.3RuSn 3 ( a = 971.24(8) pm, wR2 = 0.0485, 313 F2 values, 14 variables). The 119Sn Mössbauer spectra show a pronounced Gol'danskii-Karyagin effect in the paramagnetic range and a magnetic hyperfine field distribution at 4.2 K, due to the complex magnetic structure. The influence of the valence electron concentration on the europium valence was tested via Ru/Pd substitution. A EuRu 0.8Pd 0.2Sn 3 sample shows almost purely divalent europium.

  14. Threshold heating temperature for magnetic hyperthermia: Controlling the heat exchange with the blocking temperature of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Pimentel, B.; Caraballo-Vivas, R. J.; Checca, N. R.; Zverev, V. I.; Salakhova, R. T.; Makarova, L. A.; Pyatakov, A. P.; Perov, N. S.; Tishin, A. M.; Shtil, A. A.; Rossi, A. L.; Reis, M. S.

    2018-04-01

    La0.75Sr0.25MnO3 nanoparticles with average diameter close to 20.9 nm were synthesized using a sol-gel method. Measurements showed that the heating process stops at the blocking temperaturesignificantly below the Curie temperature. Measurements of Specific Absorption Rate (SAR) as a function of AC magnetic field revealed a superquadratic power law, indicating that, in addition to usual Néel and Brown relaxation, the hysteresis also plays an important role in the mechanism of heating. The ability to control the threshold heating temperature, a low remanent magnetization and a low field needed to achieve the magnetic saturation are the advantages of this material for therapeutic magnetic hyperthermia.

  15. Effects of sintering atmosphere and temperature on structural and magnetic properties of Ni-Cu-Zn ferrite nano-particles: Magnetic enhancement by a reducing atmosphere

    NASA Astrophysics Data System (ADS)

    Gholizadeh, Ahmad; Jafari, Elahe

    2017-01-01

    In this work, effects of sintering atmosphere and temperature on structural and magnetic properties of Ni0.3Cu0.2Zn0.5Fe2O4 nanoparticles prepared by citrate precursor method have been studied. The structural characterization of the samples by X-ray powder diffraction and FT-IR spectroscopy is evidence for formation of a cubic structure with no presence of impurity phase. Calculated values of crystallite size and unit cell parameter show an increase with sintering temperature under different atmospheres. Variation of saturation magnetization with sintering temperature and atmosphere can be attributed to change of three factors: magnetic core size, inversion parameter and the change of Fe3+-ion concentration due to the presence of Fe4+ and Fe2+ ions. The saturation magnetization gradually grows with sintering temperature due to increase of magnetic core size and a maximum 63 emu/g was achieved at 600 °C under carbon monoxide-ambient atmosphere.

  16. Magnetooptics of single and microresonator iron-garnet films at low temperatures

    NASA Astrophysics Data System (ADS)

    Shaposhnikov, A. N.; Prokopov, A. R.; Berzhansky, V. N.; Mikhailova, T. V.; Karavainikov, A. V.; Kharchenko, M. F.; Belotelov, V. I.; Lukienko, I. M.; Miloslavskaya, O. V.; Kharchenko, Yu. M.

    2016-02-01

    We have investigated the low-temperature behavior of the optical and magneto-optical properties of (Bi, Gd, Al)-substituted yttrium iron-garnet films that are either single or microresonator, i.e. sandwiched between two dielectric Bragg mirrors. It was shown that the magneto-optical properties of the microresonators with a magnetic film core are mainly determined by the properties of the constituent magnetic films. Special attention was paid to the compositions possessing magnetic compensation temperatures. The phenomenon of the temperature hysteresis was found and discussed for several samples. This testifies the fact that the magnetic moment reorientation in a magnetic field occurs by the full cycle of the first-order phase transitions "collinear phase - non-collinear phase - collinear phase". The Faraday hysteresis curves at around magnetic compensation temperatures are demonstrated to be very informative concerning composition of a sample. In particular, the hysteresis curves measured for the magnetic films on the garnet substrates showed bursts that indicates formation of a transition layer.

  17. Temperature compensated and self-calibrated current sensor using reference magnetic field

    DOEpatents

    Yakymyshyn, Christopher Paul; Brubaker, Michael Allen; Yakymyshyn, Pamela Jane

    2007-10-09

    A method is described to provide temperature compensation and self-calibration of a current sensor based on a plurality of magnetic field sensors positioned around a current carrying conductor. A reference magnetic field generated within the current sensor housing is detected by the magnetic field sensors and is used to correct variations in the output signal due to temperature variations and aging.

  18. Temperature compensated current sensor using reference magnetic field

    DOEpatents

    Yakymyshyn, Christopher Paul; Brubaker, Michael Allen; Yakymyshyn, Pamela Jane

    2007-10-09

    A method is described to provide temperature compensation and self-calibration of a current sensor based on a plurality of magnetic field sensors positioned around a current carrying conductor. A reference magnetic field generated within the current sensor housing is detected by a separate but identical magnetic field sensor and is used to correct variations in the output signal due to temperature variations and aging.

  19. Full-Vector, Low-Temperature Magnetic Measurements of Geologic Materials

    NASA Astrophysics Data System (ADS)

    Feinberg, J.; Sølheid, P.; Bowles, J. A.; Jackson, M. J.; Moskowitz, B. M.

    2010-12-01

    The magnetic properties of geologic materials offer insights into an enormous range of important geophysical phenomena ranging from core dynamics to paleoclimate. Low-temperature (<300 K) magnetic behavior can indicate the dominant magnetic mineral phases in a sample, determine the grain size distribution of the constituent magnetic minerals, and even reveal evidence of biogenic iron minerals. Low-temperature cycling across the magnetite Verwey transition is sometimes used to remove remanence associated with multi-domain grains, which is undesirable for paleointensity and other paleomagnetic experiments. Despite the utility of low-temperature magnetic data, probing these low-temperature phenomena from the perspective of understanding the underlying physical behavior has been hampered by instrumental limitations. Until now, nearly all measurements of low-temperature magnetization have been single-axis and are rarely done in true zero-field environments. Low-temperature remanence measurements at the Institute for Rock Magnetism (IRM) have been carried out almost exclusively on the Quantum Designs Magnetic Properties Measurement System (MPMS) where magnetization is measured only in the vertical direction, and “zero-fields” of up to 1 μT are common. The IRM - with funding from the Instrumentation and Facilities Program of the National Science Foundation, Earth Science Division, and in conjunction with ColdEdge Technologies (Allentown, Pennsylvania) - is developing a low-cost, cryogenic insert designed to work with a standard, horizontal-loading, 2G Enterprises magnetometer. Full three-axis measurements may now be made in ultra-low-field environments (nT) from ~17 K to room temperature. The design is compatible with both the large (7.6 cm) and small (4.2 cm) bore magnetometers, as well as many standard pulse magnetizers. Used in conjunction with the in-line degausser on the IRM’s pass-through magnetometer, it will ultimately be possible to acquire anhysteretic remanence (ARM) and/or AF demagnetize samples at cryogenic temperatures. The intent of this presentation is to advertise the capabilities of the cryogenic insert and to encourage members of the rock magnetic community to plan on using the instrument to further their own research.

  20. Wireless and passive temperature indicator utilizing the large hysteresis of magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Bergmair, Bernhard; Liu, Jian; Huber, Thomas; Gutfleisch, Oliver; Suess, Dieter

    2012-07-01

    An ultra-low cost, wireless magnetoelastic temperature indicator is presented. It comprises a magnetostrictive amorphous ribbon, a Ni-Mn-Sn-Co magnetic shape memory alloy with a highly tunable transformation temperature, and a bias magnet. It allows to remotely detect irreversible changes due to transgressions of upper or lower temperature thresholds. Therefore, the proposed temperature indicator is particularly suitable for monitoring the temperature-controlled supply chain of, e.g., deep frozen and chilled food or pharmaceuticals.

  1. Frustrated honeycomb-lattice bilayer quantum antiferromagnet in a magnetic field

    NASA Astrophysics Data System (ADS)

    Krokhmalskii, Taras; Baliha, Vasyl; Derzhko, Oleg; Schulenburg, Jörg; Richter, Johannes

    2018-05-01

    Frustrated bilayer quantum magnets have attracted attention as flat-band spin systems with unconventional thermodynamic properties. We study the low-temperature properties of a frustrated honeycomb-lattice bilayer spin-1/2 isotropic (XXX) Heisenberg antiferromagnet in a magnetic field by means of an effective low-energy theory using exact diagonalizations and quantum Monte Carlo simulations. Our main focus is on the magnetization curve and the temperature dependence of the specific heat indicating a finite-temperature phase transition in high magnetic fields.

  2. Rock-magnetic analyses as a tool to investigate archaeological fired sediments: a case study of Mirador cave (Sierra de Atapuerca, Spain)

    NASA Astrophysics Data System (ADS)

    Carrancho, Á.; Villalaín, J. J.; Angelucci, D. E.; Dekkers, M. J.; Vallverdú, J.; Vergès, J. M.

    2009-10-01

    Here we report a detailed mineral magnetic study of Neolithic burnt levels in the Mirador Cave (Sierra de Atapuerca, Burgos, Spain) to reconstruct the burning history and to investigate their suitability for archaeomagnetic purposes. As a consequence of the ancient burning, a characteristic facies sequence was developed along the Holocene stratigraphy. From top to bottom it includes: (i) 2-10 cm ash layers, (ii) ~2 cm underlying rubefied layers and (iii) clay, mainly unburnt and of variable thickness. In some cases a thermally altered facies (2-6 cm) with a heterogeneous texture was identified (facies TF), usually between rubefactions and the unburnt levels. 126 oriented samples from 4 units (MIR12, 15, 18 and 21) and a 2 m section, all comprised between units MIR21 (6380 +/- 40 14C BP) and MIR9 (5090 +/- 40 14C BP) were analysed with rock magnetic methods. In addition, bulk sediment from each facies that comprise the Neolithic sequence was investigated. Measurements included: stepwise alternating field and thermal demagnetization of natural remanent magnetization (NRM), viscosity experiments, determination of the anisotropy of the magnetic susceptibility (AMS), the susceptibility frequency dependence at room temperature and determination of the temperature dependence of the susceptibility. Additional experiments consisted in the determination of the behaviour of anhysteretic and isothermal (IRM) remanences, magnetic hysteresis loops, first-order-reversal-curve diagrams, and thermal demagnetization of three-axial IRM. It appeared that the facies all show a fairly similar magnetic mineralogy and grain size dominated by low-titanium magnetite that is often partially maghaemitized. Main differences constitute the amount of superparamagnetic particles that is higher in unburnt strata concurring with a less well-defined NRM behaviour. The magnetic mineral concentration is notably higher in ashes. This homogeneity strongly suggests that similar sources and burial conditions prevailed during Neolithic times. Agreeing with archaeological observations and favoured by rapid burial conditions, very limited alterations have been deduced. AMS data revealed the absence of fluid flow in the ash lenses sampled. Demagnetization revealed a stable single NRM component in ashes, a single or two-component NRM in rubefactions and less stable multicomponent behaviour in clays. In ashes, magnetic minerals are likely secondary in origin formed by low-temperature oxidization soon after burning. Although this thermochemical nature of the NRM invalidates the use of these sediments for palaeointensity studies, archaeomagnetic (directional) data can be successfully obtained because the burning and oxidation are closely confined in time.

  3. The YBa2Cu3O7- anomalous second peak and irreversible magnetic field in the magnetization hysteresis cycles

    NASA Astrophysics Data System (ADS)

    Taoufik, A.; Ramzi, A.; Senoussi, S.; Labrag, A.

    2004-05-01

    The flux jumps, the second peak and the irreversible magnetic field in the magnetization hysteresis cycles have been investigated in the high temperature superconductor YBa2Cu3O7- single crystals. These cycles were obtained for different temperature values, the applied magnetic fields up to 6 T and the angle between the applied magnetic field and c-axis. The magnetization curves exhibit a remarkable second peak fishtail, this second peak was not observed for the low temperature, but we observed the flux jumps saw tooth. The temperature dependence of the irreversible magnetic field, Hirr, for the applied magnetic field perpendicular to the ab planes is given by an extended expression, Hirr α (1-T/Tc )α, where α is a constant, the Abrikosov flux dynamics can explain this behavior. The Hirr as a function of has been strongly influenced by the flux pinning and the thermally assisted flux motion.

  4. Magnetization reversal in Py/Gd heterostructures

    DOE PAGES

    Lapa, Pavel N.; Ding, Junjia; Pearson, John E.; ...

    2017-07-13

    Here, using a combination of magnetometry and magnetotransport techniques, we studied temperature and magnetic-field behavior of magnetization in Py/Gd heterostructures. It was shown quantitatively that proximity with Py enhances magnetic order of Gd. Micromagnetic simulations demonstrate that a spin-flop transition observed in a Py/Gd bilayer is due to exchange-spring rotation of magnetization in the Gd layer. Transport measurements show that the magnetoresistance of a [Py(2nm)/Gd(2nm)] 25 multilayer changes sign at the compensation temperature and below 20 K. The positive magnetoresistance above the compensation temperature can be attributed to an in-plane domain wall, which appears because of the structural inhomogeneity ofmore » the film over its thickness. By measuring the angular dependence of resistance, we are able to determine the angle between magnetizations in the multilayer and the magnetic field at different temperatures. The measurements reveal that, due to a change in the chemical thickness profile, a noncollinear magnetization configuration is only stable in magnetic fields above 10 kOe.« less

  5. Magnetization reversal in Py/Gd heterostructures

    NASA Astrophysics Data System (ADS)

    Lapa, Pavel N.; Ding, Junjia; Pearson, John E.; Novosad, Valentine; Jiang, J. S.; Hoffmann, Axel

    2017-07-01

    Using a combination of magnetometry and magnetotransport techniques, we studied temperature and magnetic-field behavior of magnetization in Py/Gd heterostructures. It was shown quantitatively that proximity with Py enhances magnetic order of Gd. Micromagnetic simulations demonstrate that a spin-flop transition observed in a Py/Gd bilayer is due to exchange-spring rotation of magnetization in the Gd layer. Transport measurements show that the magnetoresistance of a [Py(2 nm ) /Gd (2 nm ) ] 25 multilayer changes sign at the compensation temperature and below 20 K. The positive magnetoresistance above the compensation temperature can be attributed to an in-plane domain wall, which appears because of the structural inhomogeneity of the film over its thickness. By measuring the angular dependence of resistance, we are able to determine the angle between magnetizations in the multilayer and the magnetic field at different temperatures. The measurements reveal that, due to a change in the chemical thickness profile, a noncollinear magnetization configuration is only stable in magnetic fields above 10 kOe.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, David C.

    Here, the influence of uniaxial single-ion anisotropy –DS 2 z on the magnetic and thermal properties of Heisenberg antiferromagnets (AFMs) is investigated. The uniaxial anisotropy is treated exactly and the Heisenberg interactions are treated within unified molecular field theory (MFT), where thermodynamic variables are expressed in terms of directly measurable parameters. The properties of collinear AFMs with ordering along the z axis (D>0) in applied field H z = 0 are calculated versus D and temperature T, including the ordered moment μ, the Néel temperature T N, the magnetic entropy, internal energy, heat capacity, and the anisotropic magnetic susceptibilities χmore » ∥ and χ ⊥ in the paramagnetic (PM) and AFM states. The high-field average magnetization per spin μ z(H z,D,T) is found, and the critical field H c(D,T) is derived at which the second-order AFM to PM phase transition occurs. The magnetic properties of the spin-flop (SF) phase are calculated, including the zero-field properties T N(D) and μ(D,T). The high-field μ z(H z,D,T) is determined, together with the associated spin-flop field H SF(D,T) at which a second-order SF to PM phase transition occurs. The free energies of the AFM, SF, and PM phases are derived from which H z–T phase diagrams are constructed. For f J =–1 and –0.75, where f J = θ pJ/T NJ and θ pJ and T NJ are the Weiss temperature in the Curie-Weiss law and the Néel temperature due to exchange interactions alone, respectively, phase diagrams in the H z–T plane similar to previous results are obtained. However, for f J = 0 we find a topologically different phase diagram where a spin-flop bubble with PM and AFM boundaries occurs at finite H z and T. Also calculated are properties arising from a perpendicular magnetic field, including the perpendicular susceptibility χ ⊥(D,T), the associated effective torque at low fields arising from the –DS 2 z term in the Hamiltonian, the high-field perpendicular magnetization μ ⊥, and the perpendicular critical field H c⊥ at which the second-order AFM to PM phase transition occurs. In addition to the above results for D > 0, the T N(D) and ordered moment μ(T,D) for collinear AFM ordering along the x axis with D < 0 are determined. In order to compare the properties of the above spin systems with those of noninteracting systems with –DS 2 z uniaxial anisotropy with either sign of D, Supplemental Material is provided in which results for the thermal and magnetic properties of such noninteracting spin systems are given.« less

  7. Superparamagnetic behavior of Fe70Dy30 granular thin film

    NASA Astrophysics Data System (ADS)

    Mekala, Laxman; Muhammed Shameem P., V.; Kumar, M. Senthil

    2018-04-01

    In the present study, the structural and magnetic properties of the Fe70Dy30 thin films are investigated. The Fe70Dy30 thin film with a thickness of 250 Å is fabricated using a dc magnetron sputtering system. Structural and temperature dependent magnetic properties indicate the granular nature of the film. The nonsaturation of the magnetization curves even at high fields of 50 kOe and the obtained very low coercivity in the temperature range 50 - 300 K reveal that films are superparamagnetic (SPM). The decreasing blocking temperature (Tb) with increasing an external magnetic field in temperature dependent magnetization curves are exposed qualitatively.

  8. Characterization of the magnetic properties of NdFeB thick films exposed to elevated temperatures

    NASA Astrophysics Data System (ADS)

    Fujiwara, Ryogen; Devillers, Thibaut; Givord, Dominique; Dempsey, Nora M.

    2018-05-01

    Hard magnetic films used in magnetic micro-systems may be exposed to elevated temperatures during film and system fabrication and also during use of the micro-system. In this work, we studied the influence of temperature on the magnetic properties of 10 μm thick out-of-plane textured NdFeB films fabricated by high rate triode sputtering. Out-of-plane hysteresis loops were measured in the range 300K - 650K to establish the temperature dependence of coercivity, magnetization at 7 T and remanent magnetization. Thermal demagnetization was measured and magnetization losses were recorded from 350K in films heated under zero or low (-0.1 T) external field and from 325 K for films heated under an external field of -0.5 T. The effect of thermal cycling under zero field on the remanent magnetization was also studied and it was found that cycling between room temperature and 323 K did not lead to any significant loss in remanence at room temperature, while a 4% drop is recorded when the sample is cycled between RT and 343K. Measurement of hysteresis loops at room temperature following exposure to elevated temperatures reveals that while remanent magnetisation is practically recovered in all cases, irreversible losses in coercivity occur (6.7 % following heating to 650K, and 1.3 % following heating to 343K). The relevance of these results is discussed in terms of system fabrication and use.

  9. Evolution of structure and magnetic properties for BaFe11.9Al0.1O19 hexaferrite in a wide temperature range

    NASA Astrophysics Data System (ADS)

    Trukhanov, A. V.; Trukhanov, S. V.; Panina, L. V.; Kostishyn, V. G.; Kazakevich, I. S.; Trukhanov, An. V.; Trukhanova, E. L.; Natarov, V. O.; Turchenko, V. A.; Salem, M. M.; Balagurov, A. M.

    2017-03-01

    M-type BaFe11.9Al0.1O19 hexaferrite was successfully synthesized by solid state reactions. Precision investigations of crystal and magnetic structures of BaFe11.9Al0.1O19 powder by neutron diffraction in the temperature range 4.2-730 K have been performed. Magnetic and electrical properties investigations were carried out in the wide temperature range. Neutron powder diffraction data were successfully refined in approximation for both space groups (SG): centrosymmetric #194 (standard non-polar phase) and non-centrosymmetric #186 (polar phase). It has been shown that at low temperatures (below room temperature) better fitting results (value χ2) were for the polar phase (SG: #186) or for the two phases coexistence (SG: #186 and SG: #194). At high temperatures (400-730 K) better fitting results were for SG: #194. It was established coexistence of the dual ferroic properties (specific magnetization and spontaneous polarization) at room temperature. Strong correlation between magnetic and electrical subsystems was demonstrated (magnetoelectrical effect). Temperature dependences of the spontaneous polarization, specific magnetization and magnetoelectrical effect were investigated.

  10. The 23 to 300 C demagnetization resistance of samarium-cobalt permanent magnets

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.; Overton, Eric

    1991-01-01

    The influence of temperature on knee point and squareness of the M-H demagnetization characteristic of permanent magnets is important information for the full utilization of the capabilities of samarium-cobalt magnets at high temperature in demagnetization resistent permanent magnet devices. Composite plots of the knee field and the demagnetizing field required to produce a given magnetic induction swing below remanence were obtained for several commercial Sm2Co17 type magnet samples in the temperature range of 23 to 300 C. Using the knee point to define the limits of operation safe against irreversible demagnetization, such plots are shown to provide an effective overview of the useable regions in the space of temperature-induction swing parameters. The observed second quadrant M-H characteristic squareness is shown, by two measures, to increase gradually with temperature, reaching a peak in the interval 200 to 300 C.

  11. From mean-field localized magnetism to itinerant spin fluctuations in the "nonmetallic metal" FeCrAs

    NASA Astrophysics Data System (ADS)

    Plumb, K. W.; Stock, C.; Rodriguez-Rivera, J. A.; Castellan, J.-P.; Taylor, J. W.; Lau, B.; Wu, W.; Julian, S. R.; Kim, Young-June

    2018-05-01

    FeCrAs displays an unusual electrical response that is neither metallic in character nor divergent at low temperatures, as expected for an insulating response, and therefore it has been termed a "nonmetal metal." The anomalous resistivity occurs for temperatures below ˜900 K. We have carried out neutron scattering experiments on powder and single crystal samples to study the magnetic dynamics and critical fluctuations in FeCrAs. Magnetic neutron diffraction measurements find Cr3 + magnetic order setting in at TN=115 K ˜10 meV with a mean-field critical exponent. Using neutron spectroscopy we observe gapless, high velocity, magnetic fluctuations emanating from magnetic positions with propagation wave vector q⃗0=(1/3 ,1/3 ) , which persists up to at least 80 meV ˜927 K, an energy scale much larger than TN. Despite the mean-field magnetic order at low temperatures, the magnetism in FeCrAs therefore displays a response which resembles that of itinerant magnets at high energy transfers. We suggest that the presence of stiff high-energy spin fluctuations extending up to a temperature scale of ˜900 K is the origin of the unusual temperature dependence of the resistivity.

  12. High resolution measurements of nightside ion troughs at Venus - Evidence of electrodynamic perturbations

    NASA Technical Reports Server (NTRS)

    Taylor, H. A., Jr.; Grebowsky, J. M.; Mayr, H. G.; Niemann, H. B.; Brace, L. H.; Cloutier, P. A.; Daniell, R. E., Jr.; Coulson, J. T.

    1982-01-01

    The Bennett rf ion mass spectrometer of the Pioneer Venus Orbiter was expressly designed to provide variable temporal resolution for measurements of thermal ion composition and density. The Explore-Adapt mode is used to obtain priority for measuring the most prominent ion species; in the 2/16 configuration, the two dominant ions within the available range of 16 species are selectively sampled at the highest rate of 0.2 sec/sample. The high-resolution measurements are combined with independent observations from the magnetic field, neutral mass spectrometer, and electron temperature experiments in investigating sharply structured troughs in the low-altitude nightside ion concentrations. The results suggest a close correlation between the structure in the ion distributions and the structured configuration of the magnetic field that is draped about the planet. In the regions of the ion depletions, sharp fluctuations in electron temperature and anomalous increases in the density of neutral gases suggest that the ion depletion may be associated with dynamic perturbation in the ion and neutral flows and/or local joule heating.

  13. Two novel two-dimensional copper(II) coordination polymers with 1-(4-aminobenzyl)-1,2,4-triazole: Synthesis, crystal structure, magnetic characterization and absorption of anion pollutants

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Wu, Xiang Xia; Guo, Jian-Hua; Huo, Jian-Zhong; Ding, Bin

    2017-01-01

    In this work a flexible multi-dentate 1-(4-aminobenzyl)-1,2,4-triazole (abtz) ligand has been employed, two novel triazole-Cu(II) coordination polymers {[Cu(abtz)2(Br)2]·(H2O)2}n (1) and {[Cu(abtz)2]·(SiF6)·(H2O)2}n (2) have been isolated under solvo-thermal conditions. 1 is a 2D neutral CuII coordination polymer while 2 is 2D cation micro-porous CuII coordination polymer with the channel dimensionalities of 11.852(1) Å × 11.852(1) Å (metal-metal distances). Variable-temperature magnetic susceptibility data of 1 and 2 have been recorded in the 2-300 K temperature range indicating weak anti-ferromagnetic interactions. Further absorption properties of anion pollutants for 2 also have been investigated. 2 presents the novel example of cationic triazole-copper(II) coordination framework for effectively capturing anion pollutants Cr2O72- in the water solutions and selectively capturing Congo Red in the methanol solutions.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Jie; Yan, Jiaqiang; Aczel, Adam A.

    The structural, electrical, and magnetic properties of the double perovskite Ba 2LuReO 6 have been examined in this paper. It is an insulator whose temperature dependent conductivity is consistent with variable range hopping electrical transport. A transition to an antiferromagnet state with type I order occurs below T N = 31 K. High resolution time-of-flight neutron powder diffraction measurements show that it retains the cubic double perovskite structure down to 10 K. High intensity, low resolution neutron powder diffraction measurements confirm the antiferromagnetic order and indicate that cubic symmetry is still observed at 1.5 K. The small ordered moment ofmore » 0.34(4)μ B per Re is comparable to estimates of moments on 5d 2 ions in other antiferromagnetically ordered cubic double perovskites. Finally, comparisons with related double perovskites containing 5d 2 ions, such as Os 6+ and Re 5+, reveal that subtle changes in structure or electron configuration of the diamagnetic octahedral cations can have a large impact on the magnetic ground state, the size of the ordered moment, and the Néel temperature.« less

  15. Nonlinear resistivity for magnetohydrodynamical models

    DOE PAGES

    Lingam, M.; Hirvijoki, E.; Pfefferlé, D.; ...

    2017-04-20

    A new formulation of the plasma resistivity that stems from the collisional momentum-transfer rate between electrons and ions is presented. The resistivity computed herein is shown to depend not only on the temperature and density but also on all other polynomial velocity-space moments of the distribution function, such as the pressure tensor and heat flux vector. The full expression for the collisional momentum-transfer rate is determined and is used to formulate the nonlinear anisotropic resistivity. The new formalism recovers the Spitzer resistivity, as well as the concept of thermal force if the heat flux is assumed to be proportional tomore » a temperature gradient. Furthermore, if the pressure tensor is related to viscous stress, the latter enters the expression for the resistivity. The relative importance of the nonlinear term(s) with respect to the well-established electron inertia and Hall terms is also examined. Lastly, the subtle implications of the nonlinear resistivity, and its dependence on the fluid variables, are discussed in the context of magnetized plasma environments and phenomena such as magnetic reconnection.« less

  16. Synthesis, crystal structure and physico-chemical properties of the new quaternary oxide Sr 5BiNi 2O 9.6

    NASA Astrophysics Data System (ADS)

    Novitskaya, Mariya; Makhnach, Leonid; Ivashkevich, Ludmila; Pankov, Vladimir; Klein, Holger; Rageau, Amélie; David, Jérémy; Gemmi, Mauro; Hadermann, Joke; Strobel, Pierre

    2011-12-01

    A new black quaternary oxide Sr 5BiNi 2O 9.6 was synthesized by solid state reaction at 1200 °C. Its structure was solved by electron crystallography and X-ray powder refinement, yielding a tetragonal structure with space group I4/ mmm, a=5.3637 (2) Å, c=17.5541(5) Å, Z=4. The structure can be described as a stacking of (Bi,Sr)-O rocksalt slabs and SrNiO 3- δ perovskite slabs. The initial nickel valence is close to +3.1. Thermogravimetry and high-temperature oxygen coulometry showed that this compound has variable oxygen content as a function of temperature and oxygen pressure, and ultimately decomposes when heated in low oxygen pressure above 800 °C. It is a metallic conductor with n-type conduction. Its thermoelectric power was determined and found to be -20 and -38 μV/K at 300 and 650 °C, respectively. Magnetic measurements confirm the nickel valence close to +3 and show evidence of magnetic ordering at 20 K.

  17. Multi-frequency ICRF diagnostic of Tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Lafonteese, David James

    This thesis explores the diagnostic possibilities of a fast wave-based method for measuring the ion density and temperature profiles of tokamak plasmas. In these studies fast waves are coupled to the plasma at frequencies at the second harmonic of the ion gyrofrequency, at which wave energy is absorbed by the finite-temperature ions. As the ion gyrofrequency is dependent upon the local magnetic field, which varies as l/R in a tokamak, this power absorption is radially localized. The simultaneous launching of multiple frequencies, all resonating at different plasma positions, allows local measurements of the ion density and temperature. To investigate the profile applications of wave damping measurements in a simulated tokamak, an inhouse slab-model ICRF code is developed. A variety of analysis methods are presented, and ion density and temperature profiles are reconstructed for hydrogen plasmas for the Electric Tokamak (ET) and ITER parameter spaces. These methods achieve promising results in simulated plasmas featuring bulk ion heating, off-axis RF heating, and density ramps. The experimental results of similar studies on the Electric Tokamak, a high aspect ratio (R/a = 5), low toroidal field (2.2 kG) device are then presented. In these studies, six fast wave frequencies were coupled using a single-strap, low-field-side antenna to ET plasmas. The frequencies were variable, and could be tuned to resonate at different radii for different experiments. Four magnetic pickup loops were used to measure of the toroidal component of the wave magnetic field. The expected greater eigenmode damping of center-resonant frequencies versus edge-resonant frequencies is consistently observed. Comparison of measured aspects of fast wave behavior in ET is made with the slab code predictions, which validate the code simulations under weakly-damped conditions. A density profile is measured for an ET discharge through analysis of the fast wave measurements, and is compared to an electron density profile derived from Thomson scattering data. The methodology behind a similar measurement of the ion temperature profile is also presented.

  18. Mössbauer characterization and in situ monitoring of thermal decomposition of potassium ferrate(VI), K2FeO4 in static air conditions.

    PubMed

    Machala, Libor; Zboril, Radek; Sharma, Virender K; Filip, Jan; Schneeweiss, Oldrich; Homonnay, Zoltán

    2007-04-26

    Solid orthorhombic crystals of potassium ferrate(VI) (K(2)FeO(4)) of a high-chemical purity (>99.0%) were characterized by low-temperature (1.5-5 K), high-temperature (463-863 K), and in-field (1.5 K/3 T) Mössbauer spectroscopy. Potassium ferrate(VI) reveals a Néel magnetic transition temperature (TN) of approximately 3.8 K and a saturation hyperfine magnetic field of 13.8 T at 1.5 K. Spectral line intensities recorded below TN in an external magnetic field of 3 T manifest a perfect antiferromagnetic ordering. For the in situ monitoring of the thermal behavior of K(2)FeO(4), high-temperature Mössbauer data were combined with those obtained from thermogravimetry, differential scanning calorimetry, and variable-temperature X-ray diffraction measurements. Such in situ approach allowed the identification of the reaction products and intermediates and yielded the first experimental evidence for the participation of CO2 in the decomposition process. As the primary conversion products, KFeO(2) and two potassium oxides in equivalent molar ratio, KO2 and K(2)O, were suggested. However, the KO2 phase is detectable with difficulty as it reacts very quickly with CO2 from air resulting in the formation of K(2)CO(3). The presented decomposition model is consistent with thermogravimetric data giving the mass loss of 8.0%, which corresponds to the participation of 1/6 mol of CO2 and liberation of 3/4 mol of O2 per 1 mol of K(2)FeO(4) (K(2)FeO(4) + 1/6CO2 --> KFeO(2) + 1/3K(2)O + 1/6K(2)CO(3) + 3/4O2). An explanation of the multistage reaction mechanism has an important practical impact for the optimization of the solid-state synthesis of potassium ferrate(VI).

  19. Magnetic nanohole superlattices

    DOEpatents

    Liu, Feng

    2013-05-14

    A magnetic material is disclosed including a two-dimensional array of carbon atoms and a two-dimensional array of nanoholes patterned in the two-dimensional array of carbon atoms. The magnetic material has long-range magnetic ordering at a temperature below a critical temperature Tc.

  20. Processing of MnBi bulk magnets with enhanced energy product

    DOE PAGES

    Poudyal, Narayan; Liu, Xubo; Wang, Wei; ...

    2016-02-23

    Here, we report magnetic properties and microstructure of high energy-product MnBi bulk magnets fabricated by low-temperature ball-milling and warm compaction technique. A maximum energy product (BH) max of 8.4 MGOe and a coercivity of 6.2 kOe were obtained in the bulk MnBi magnet at room temperature. Magnetic characterization at elevated temperatures showed an increase in coercivity to 16.2 kOe while (BH) max value decreased to 6.8 MGOe at 400 K. Microstructure characterization revealed that the bulk magnets consist of oriented uniform nanoscale grains with average size about 50 nm.

  1. Starspots and active regions on IN Com: UBVRI photometry and linear polarization

    NASA Astrophysics Data System (ADS)

    Alekseev, I. Yu.; Kozlova, O. V.

    2014-06-01

    The activity of the variable star IN Com is considered using the latest multicolor UBVRI photometry and linear polarimetric observations carried out during a decade. The photometric variability of the star is fully described using the zonal spottedness model developed at the Crimean Astrophysical Observatory (CrAO). Spotted regions cover up to 22% of the total stellar surface, with the difference in temperatures between the quiet photosphere and the spot umbra being 600 K. The spots are located at middle and low latitudes (40°-55°). The intrinsic broad-band linear polarization of IN Com and its rotational modulation in the U band due to local magnetic fields at the most spotted (active) stellar longitudes were detected for the first time.

  2. Magnetic and magnetocaloric properties of La{sub 0.6}Pr{sub 0.1}Sr{sub 0.3}Mn{sub 1−x}Fe{sub x}O{sub 3} (0≤x≤0.3) manganites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherif, R., E-mail: cherifrim18@yahoo.fr; Hlil, E.K.; Ellouze, M.

    2014-07-01

    The La{sub 0.6}Pr{sub 0.1}Sr{sub 0.3}Mn{sub 1−x}Fe{sub x}O{sub 3} (x=0, 0.1, 0.2 and 0.3) samples have been elaborated by the solid-state reaction method. X-ray powder diffraction shows that all the samples crystallize in a rhombohedric phase with R3{sup ¯}c space group. The variation of magnetization as a function of temperature and applied magnetic field was carried out. The samples for x=0 and 0.1 exhibit a FM–PM transition at the Curie temperature T{sub C}, however, for x=0.2 and 0.3 exhibit an AFM–PM one at the Neel temperature T{sub N}, when the temperature increases. A magneto-caloric effect has been calculated in terms ofmore » isothermal magnetic entropy change. A large magneto-caloric effect has been observed, the maximum entropy change, |ΔS{sub M}{sup max}|, reaches the highest value of 3.28 J/kgK under a magnetic field change of 5 T with an RCP value of 220 J/kg for La{sub 0.6}Pr{sub 0.1}Sr{sub 0.3}MnO{sub 3} composition, which will be an interesting compound for application materials working as magnetic refrigerants near room temperature. - Graphical abstract: Magnetic entropy change versus temperature and applied magnetic field for x=0.1 (a) and RCP versus applied magnetic field for x=0, 0.1 (b). - Highlights: • The La{sub 0.6}Pr{sub 0.1}Sr{sub 0.3}Mn{sub 1−x}Fe{sub x}O{sub 3} (0≤x≤0.3) polycrystalline samples were prepared by the solid state reaction method. • Crystalline and magnetic structures were investigated using DRX and magnetization measurements. • The magnetocaloric (MC) effect was estimated versus magnetic field and temperatures. • Compounds with x=0, 0.1 exhibit great potential for magnetic refrigeration at room temperature.« less

  3. Magnetic response of hybrid ferromagnetic and antiferromagnetic core-shell nanostructures

    NASA Astrophysics Data System (ADS)

    Khan, U.; Li, W. J.; Adeela, N.; Irfan, M.; Javed, K.; Wan, C. H.; Riaz, S.; Han, X. F.

    2016-03-01

    The synthesis of FeTiO3-Ni(Ni80Fe20) core-shell nanostructures by a two-step method (sol-gel and DC electrodeposition) has been demonstrated. XRD analysis confirms the rhombohedral crystal structure of FeTiO3(FTO) with space group R3&cmb.macr;. Transmission electron microscopy clearly depicts better morphology of nanostructures with shell thicknesses of ~25 nm. Room temperature magnetic measurements showed significant enhancement of magnetic anisotropy for the permalloy (Ni80Fe20)-FTO over Ni-FTO core-shell nanostructures. Low temperature magnetic measurements of permalloy-FeTiO3 core-shell structure indicated a strong exchange bias mechanism with magnetic coercivity below the antiferromagnetic Neel temperature (TN = 59 K). The exchange bias is attributed to the alignment of magnetic moments in the antiferromagnetic material at low temperature. Our scheme opens a path towards optimum automotive systems and wireless communications wherein broader bandwidths and smaller sizes are required.The synthesis of FeTiO3-Ni(Ni80Fe20) core-shell nanostructures by a two-step method (sol-gel and DC electrodeposition) has been demonstrated. XRD analysis confirms the rhombohedral crystal structure of FeTiO3(FTO) with space group R3&cmb.macr;. Transmission electron microscopy clearly depicts better morphology of nanostructures with shell thicknesses of ~25 nm. Room temperature magnetic measurements showed significant enhancement of magnetic anisotropy for the permalloy (Ni80Fe20)-FTO over Ni-FTO core-shell nanostructures. Low temperature magnetic measurements of permalloy-FeTiO3 core-shell structure indicated a strong exchange bias mechanism with magnetic coercivity below the antiferromagnetic Neel temperature (TN = 59 K). The exchange bias is attributed to the alignment of magnetic moments in the antiferromagnetic material at low temperature. Our scheme opens a path towards optimum automotive systems and wireless communications wherein broader bandwidths and smaller sizes are required. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07946b

  4. Finite Element Analysis in the Estimation of Air-Gap Torque and Surface Temperature of Induction Machine

    NASA Astrophysics Data System (ADS)

    Mr., J. Ravi Kumar; Banakara, Basavaraja, Dr.

    2017-08-01

    This paper presents electromagnetic and thermal behavior of Induction Motor (IM) through the modeling and analysis by applying multiphysics coupled Finite Element Analysis (FEA). Therefore prediction of the magnetic flux, electromagnetic torque, stator and rotor losses and temperature distribution inside an operating electric motor are the most important issues during its design. Prediction and estimation of these parameters allows design engineers to decide capability of the machine for the proposed load, temperature rating and its application for which it is being designed ensuring normal motor operation at rated conditions. In this work, multiphysics coupled electromagnetic - thermal modeling and analysis of induction motor at rated and high frequency has carried out applying Arkkio’s torque method. COMSOL Multiphysics software is used for modeling and finite element analysis of IM. Transient electromagnetic torque, magnetic field distribution, speed-torque characteristics of IM were plotted and studied at different frequencies. This proposed work helps in the design and prediction of accurate performance of induction motor specific to various industrial drive applications. Results obtained are also validated with experimental analysis. The main purpose of this model is to use it as an integral part of the design aiming to system optimization of Variable Speed Drive (VSD) and its components using coupled simulations.

  5. Negative Thermal Expansion over a Wide Temperature Range in Fe-doped MnNiGe Composites

    NASA Astrophysics Data System (ADS)

    Zhao, Wenjun; Sun, Ying; Liu, Yufei; Shi, Kewen; Lu, Huiqing; Song, Ping; Wang, Lei; Han, Huimin; Yuan, Xiuliang; Wang, Cong

    2018-02-01

    Fe-doped MnNiGe alloys were successfully synthesized by solid-state reaction. Giant negative thermal expansion (NTE) behaviors with the coefficients of thermal expansion (CTE) of -285.23×10-6 K-1 (192-305 K) and -1167.09×10-6 K-1 (246-305 K) have been obtained in Mn0.90Fe0.10NiGe and MnNi0.90Fe0.10Ge, respectively. Furthermore, these materials were combined with Cu in order to control the NTE properties. The results indicate that the absolute value of CTE gradually decreases with increasing Cu contents. In Mn0.92Fe0.08NiGe/x%Cu, the CTE gradually changes from -64.92×10-6 K-1 (125-274 K) to -4.73×10-6 K-1 (173-229 K) with increasing value of x from 15 to 70. The magnetic measurements reveal that the NTE behaviors in this work are strongly correlated with the process of the magnetic phase transition and the introduction of Fe atoms could also change the spiral anti-ferromagnetic (s-AFM) state into ferromagnetic (FM) state at low temperature. Our study launches a new candidate for controlling thermal expansion properties of metal matrix materials which could have potential application in variable temperature environment.

  6. Permanent magnet design for high-speed superconducting bearings

    DOEpatents

    Hull, John R.; Uherka, Kenneth L.; Abdoud, Robert G.

    1996-01-01

    A high temperature superconducting bearing including a permanent magnet rotor levitated by a high temperature superconducting structure. The rotor preferably includes one or more concentric permanent magnet rings coupled to permanent magnet ring structures having substantially triangular and quadrangular cross-sections. Both alternating and single direction polarity magnet structures can be used in the bearing.

  7. Design Issues for Using Magnetic Materials in Radiation Environments at Elevated Temperature

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl L.

    2013-01-01

    One of the challenges of designing motors and alternators for use in nuclear powered space missions is accounting for the effects of radiation. Terrestrial reactor power plants use distance and shielding to minimize radiation damage but space missions must economize volume and mass. Past studies have shown that sufficiently high radiation levels can affect the magnetic response of hard and soft magnetic materials. Theoretical models explaining the radiation-induced degradation have been proposed but not verified. This paper reviews the literature and explains the cumulative effects of temperature, magnetic-load, and radiation-level on the magnetic properties of component materials. Magnetic property degradation is very specific to alloy choice and processing history, since magnetic properties are very much entwined with specific chemistry and microstructural features. However, there is basic theoretical as well as supportive experimental evidence that the negative impact to magnetic properties will be minimal if the bulk temperature of the material is less than fifty percent of the Curie temperature, the radiation flux is low, and the demagnetization field is small. Keywords: Magnets, Permanent Magnets, Power Converters, Nuclear Electric Power Generation, Radiation Tolerance.

  8. Giant coercivity and high magnetic blocking temperatures for N 2 3- radical-bridged dilanthanide complexes upon ligand dissociation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demir, Selvan; Gonzalez, Miguel I.; Darago, Lucy E.

    Increasing the operating temperatures of single-molecule magnets—molecules that can retain magnetic polarization in the absence of an applied field—has potential implications toward information storage and computing, and may also inform the development of new bulk magnets. Progress toward these goals relies upon the development of synthetic chemistry enabling enhancement of the thermal barrier to reversal of the magnetic moment, while suppressing alternative relaxation processes. Here in this paper, we show that pairing the axial magnetic anisotropy enforced by tetramethylcyclopentadienyl (Cp Me4H) capping ligands with strong magnetic exchange coupling provided by an N 2 3- radical bridging ligand results in amore » series of dilanthanide complexes exhibiting exceptionally large magnetic hysteresis loops that persist to high temperatures. Significantly, reducing the coordination number of the metal centers appears to increase axial magnetic anisotropy, giving rise to larger magnetic relaxation barriers and 100-s magnetic blocking temperatures of up to 20 K, as observed for the complex [K(crypt-222)][(Cp Me4H 2Tb) 2(μ-N∙ 2« less

  9. Giant coercivity and high magnetic blocking temperatures for N 2 3- radical-bridged dilanthanide complexes upon ligand dissociation

    DOE PAGES

    Demir, Selvan; Gonzalez, Miguel I.; Darago, Lucy E.; ...

    2017-12-15

    Increasing the operating temperatures of single-molecule magnets—molecules that can retain magnetic polarization in the absence of an applied field—has potential implications toward information storage and computing, and may also inform the development of new bulk magnets. Progress toward these goals relies upon the development of synthetic chemistry enabling enhancement of the thermal barrier to reversal of the magnetic moment, while suppressing alternative relaxation processes. Here in this paper, we show that pairing the axial magnetic anisotropy enforced by tetramethylcyclopentadienyl (Cp Me4H) capping ligands with strong magnetic exchange coupling provided by an N 2 3- radical bridging ligand results in amore » series of dilanthanide complexes exhibiting exceptionally large magnetic hysteresis loops that persist to high temperatures. Significantly, reducing the coordination number of the metal centers appears to increase axial magnetic anisotropy, giving rise to larger magnetic relaxation barriers and 100-s magnetic blocking temperatures of up to 20 K, as observed for the complex [K(crypt-222)][(Cp Me4H 2Tb) 2(μ-N∙ 2« less

  10. Observation of magnetization reversal behavior in Sm0.9Gd0.1Cr0.85Mn0.15O3 orthochromites

    NASA Astrophysics Data System (ADS)

    Panwar, Neeraj; Joby, Jostin P.; Kumar, Surendra; Coondoo, Indrani; Vasundhara, M.; Kumar, Nitu; Palai, Ratnakar; Singhal, Rahul; Katiyar, Ram S.

    2018-05-01

    Impact of co-doping (Gd and Mn) on the magnetic properties has been systematically investigated in SmCrO3 compound. For the synthesized compound Sm0.9Gd0.1Cr0.85Mn0.15O3 (SGCMO), below the Neel transition temperature and under low applied magnetic field, temperature induced magnetization reversal at 105 K (crossover temperature) was noticed in the field cooled magnetization curve. Magnetization reversal attained maximum value of -1.03 emu/g at 17 K where spin reorientation occurred. The magnetization reversal disappeared under higher applied field. From the M-H plots an enhancement in the magnetization was observed due to Gd doping. Magnetocaloric effect at low temperatures measured through the magnetic entropy change was found sixteen times higher for this compound as compared to pristine SmCrO3 and twice to that of SmCr0.85Mn0.15O3 compound. The study reveals the importance of co-doping in tailoring the magnetic properties of rare-earth chromites.

  11. Weak magnetism of Aurivillius-type multiferroic thin films probed by polarized neutron reflectivity

    NASA Astrophysics Data System (ADS)

    Zhai, Xiaofang; Grutter, Alexander J.; Yun, Yu; Cui, Zhangzhang; Lu, Yalin

    2018-04-01

    Unambiguous magnetic characterization of room-temperature multiferroic materials remains challenging due in part to the difficulty of distinguishing their very weak ferromagnetism from magnetic impurity phases and other contaminants. In this study, we used polarized neutron reflectivity to probe the magnetization of B i6FeCoT i3O18 and LaB i5FeCoT i3O18 in their epitaxial thin films while eliminating a variety of impurity contributions. Our results show that LaB i5FeCoT i3O18 exhibits a magnetization of about 0.016 ±0.027 μB/Fe -Co pair at room temperature, while the B i6FeCoT i3O18 thin film only exhibits a weak magnetic moment below room temperature, with a saturation magnetization of 0.049 ±0.015 μB/Fe -Co pair at 50 K. This polarized-neutron-reflectivity study places an upper magnetization limit on the matrix material of the magnetically doped Aurivillius oxides and helps to clarify the true mechanism behind the room-temperature magnetic performance.

  12. Low Temperature Magnetic Ordering of the Magnetic Ionic Plastic Crystal, Choline[FeCl4

    NASA Astrophysics Data System (ADS)

    de Pedro, I.; García-Saiz, A.; Andreica, D.; Fernández Barquín, L.; Fernández-Díaz, M. T.; Blanco, J. A.; Amato, A.; Rodríguez Fernández, J.

    2015-11-01

    We report on the nature of the low temperature magnetic ordering of a magnetic ionic plastic crystal, Choline[FeCl4]. This investigation was carried out using heat capacity measurements, neutron diffraction experiments and muon spin relaxation (μSR) spectroscopy. The calorimetric measurements show the onset of an unusual magnetic ordering below 4 K with a possible second magnetic phase transition below 2 K. Low temperature neutron diffraction data reveal a three dimensional antiferromagnetic ordering at 2 K compatible with the previous magnetometry results. The analysis of μSR spectra indicates a magnetic phase transition below 2.2 K. At 1.6 K, the analysis of the shape of the μSR spectra suggests the existence of an additional magnetic phase with features of a possible incommensurate magnetic structure.

  13. The thermal stability of magnetically exchange coupled MnBi/FeCo composites at electric motor working temperature

    NASA Astrophysics Data System (ADS)

    Cheng, Ye; Wang, Hongying; Li, Zhigang; Liu, Wanhui; Bao, Ilian

    2018-04-01

    The magnetically exchange coupled MnBi/FeCo composites were synthesized through a magnetic self-assembly process. The MnBi/FeCo composites were then hot pressed in a magnetic field to form magnets. The thermal stability of the magnets were tested by annealing at electric motor working temperature of 200 °C for 20, 40 and 60 h, respectively. It was found that after heating for 20 h, there was negligible change in its hysteresis loop. However, when the heating time was increased 40 and 60 h, the magnetic hysteresis loops presented two-phase magnetic behaviors, and the maximum energy products of the magnet were decreased. This research showed that the magnetically exchange coupled MnBi/FeCo composites had low thermal stability at electric motor working temperature.

  14. Phase transitions and magnetization of the mixed-spin Ising–Heisenberg double sawtooth frustrated ladder

    NASA Astrophysics Data System (ADS)

    Arian Zad, Hamid; Ananikian, Nerses

    2018-04-01

    The mixed spin-(1,1/2) Ising–Heisenberg double sawtooth ladder containing a mixture of both spin-1 and spin-1/2 nodal atoms, and the spin-1/2 interstitial dimers are approximately solved by the transfer-matrix method. Here, we study in detail the ground-state phase diagrams, also influences of the bilinear exchange coupling on the rungs and cyclic four-spin exchange interaction in square plaquette of each block on the magnetization and magnetic susceptibility of the suggested ladder at low temperature. Such a double sawtooth ladder may be found in a Shastry-Sutherland lattice-type. In spite of the spin ordering of odd and even blocks being different from each other, due to the commutation relation between all different block Hamiltonians, phase diagrams, magnetization behavior and thermodynamic properties of the model are the same for odd and even blocks. We show that at low temperature, both exchange couplings can change the quality and quantity of the magnetization plateaus versus the magnetic field changes. Specially, we find a new magnetization plateau M/Ms= 5/6 for this model. Besides, we examine the magnetic susceptibility and specific heat of the model in detail. It is proven that behaviors of the magnetization and the magnetic susceptibility coincide at low temperature. The specific heat displays diverse temperature dependencies, which include a Schottky-type peak at a special temperature interval. We observe that with increase of the bilinear exchange coupling on the rungs, second peak temperature dependence grows.

  15. Correlating melting and collapse of charge ordering with magnetic transitions in La{sub 0.5-x}Pr{sub x}Ca{sub 0.5}MnO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nadeem, M., E-mail: mnadeemsb@gmail.com; Iqbal, M. Javid; Farhan, M. Arshad

    2016-08-15

    Highlights: • Concept of normalized magnetization is introduced to explain relative magnetic transitions. • Coexistence of two magnetic modes is correlated with the magnetic transitions and MIT. • Field induced melting and collapse of charge ordered antiferromagnetic (CO-AFM) state into ferromagnetic (FM) state is conferred. - Abstract: The magnetic properties of polycrystalline La{sub 0.5-x}Pr{sub x}Ca{sub 0.5}MnO{sub 3} material are investigated at different temperatures. The existence of magnetically diverse phases associated with various relaxation modes and their modulation with temperature and doping is analyzed. La{sub 0.5}Ca{sub 0.5}MnO{sub 3} exhibited field induced melting and collapse of charge ordered antiferromagnetic (CO-AFM) phase intomore » ferromagnetic (FM) state. This phenomenon results in lowering of Neel’s temperature (T{sub N}) along with changes in the slope of magnetic moment with temperature. Using normalized M(T) curves, the variation and interplay of charge ordered temperature (T{sub CO}), Curie temperature (T{sub C}) and T{sub N} is conferred. The coexistence of two magnetic modes is explained as major ingredient for the magnetic transitions as well as metal to insulator transition (MIT); where melting and collapse of charge ordering is conversed as basic feature in these Praseodymium (Pr) doped La{sub 0.5}Ca{sub 0.5}MnO{sub 3} materials.« less

  16. Charge and spin correlations in the monopole liquid

    NASA Astrophysics Data System (ADS)

    Slobinsky, D.; Baglietto, G.; Borzi, R. A.

    2018-05-01

    A monopole liquid is a spin system with a high density of magnetic charges but no magnetic-charge order. We study such a liquid over an Ising pyrochlore lattice, where a single topological charge or monopole sits in each tetrahedron. Restricting the study to the case with no magnetic field applied we show that, in spite of the liquidlike correlations between charges imposed by construction constraints, the spins are uncorrelated like in a perfect paramagnet. We calculate a massive residual entropy for this phase (ln(2 )/2 , a result which is exact in the thermodynamic limit), implying a free Ising-like variable per tetrahedron. After defining a simple model Hamiltonian for this system (the balanced monopole liquid) we study its thermodynamics. Surprisingly, this monopole liquid remains a perfect paramagnet at all temperatures. Thermal disorder can then be simply and quantitatively interpreted as single charge dilution, by the excitation of neutral sites and double monopoles. The addition of the usual nearest neighbors interactions favoring neutral `2in-2out' excitations as a perturbation maintains the same ground state but induces short-range (topological) order by thermal disorder. While it decreases charge-charge correlations, pair spin correlations—resembling those in spin ice—appear on increasing temperature. This helps us to see in another light the dipolarlike correlations present in spin ices at unexpectedly high temperatures. On the other side, favoring double excitations strengthens the charges short range order and its associated spin correlations. Finally, we discuss how the monopole liquid can be related to other systems and materials where different phases of monopole matter have been observed.

  17. Realistic finite temperature simulations of magnetic systems using quantum statistics

    NASA Astrophysics Data System (ADS)

    Bergqvist, Lars; Bergman, Anders

    2018-01-01

    We have performed realistic atomistic simulations at finite temperatures using Monte Carlo and atomistic spin dynamics simulations incorporating quantum (Bose-Einstein) statistics. The description is much improved at low temperatures compared to classical (Boltzmann) statistics normally used in these kind of simulations, while at higher temperatures the classical statistics are recovered. This corrected low-temperature description is reflected in both magnetization and the magnetic specific heat, the latter allowing for improved modeling of the magnetic contribution to free energies. A central property in the method is the magnon density of states at finite temperatures, and we have compared several different implementations for obtaining it. The method has no restrictions regarding chemical and magnetic order of the considered materials. This is demonstrated by applying the method to elemental ferromagnetic systems, including Fe and Ni, as well as Fe-Co random alloys and the ferrimagnetic system GdFe3.

  18. The Influence of Domain Structure on the Faraday Effect in Terbium Garnet Ferrite in the Vicinity of the Magnetic-Compensation Temperature

    NASA Astrophysics Data System (ADS)

    Sokolov, B. Yu.; Sharipov, M. Z.

    2013-12-01

    The temperature dependence of the Faraday effect in terbium garnet ferrite, Tb3Fe5O12, is investigated near its magnetic-compensation temperature, Т с = 249 K. A non-monotonous variation in the value of the Faraday rotation angle Ф is observed in a weak magnetic field as the temperature approaches Т с : the temperature plot of the Faraday rotation angle has two local maxima observed left and right of the magnetic compensation point. A theoretical model is proposed, which follows from the phenomenological theory of domain-boundary displacement under the action of a magnetic field, offering an unambiguous description of the principles of domain-structure influence on the Faraday effect in Tb3Fe5O12 near Т с .

  19. Effects of biomass reducing agent on magnetic properties and phase transformation of Baotou low-grade limonite during magnetizing-roasting

    PubMed Central

    Guo, Wen chao; Luo, Hui juan; Gong, Zhi jun; Li, Bao wei; Wu, Wen fei

    2017-01-01

    Biomass was used as reducing agent to roast the Baotou low-grade limonite in a high temperature vacuum atmosphere furnace. The effect of calcination temperature, time and ratio of reducing agent on the magnetic properties of calcined ore was studied by VSM. The phase and microstructure changes of limonite before and after calcination were analyzed by XRD and SEM. The results show that in the roasting process the phase transition process of the ferrous material in limonite is first dehydrated at high temperature to formα-Fe2O3, and then it is converted into Fe3O4 by the reduction of biomass. With the increase of calcination temperature, the magnetic properties of the calcined ore first increase and then decrease. When the temperature is higher than 650°C, Fe3O4 will become Fe2SiO4, resulting in reduced the magnetic material in calcined ore and the magnetic weakened. The best magnetization effect was obtained when the roasting temperature is 550°C, the percentage of biomass was 15% and the roasting time was 30min. The saturation magnetization can reach 60.13emu·g-1, the recovery of iron was 72% and the grade of iron was 58%. PMID:29040307

  20. Effects of biomass reducing agent on magnetic properties and phase transformation of Baotou low-grade limonite during magnetizing-roasting.

    PubMed

    Zhang, Kai; Chen, Xiu Li; Guo, Wen Chao; Luo, Hui Juan; Gong, Zhi Jun; Li, Bao Wei; Wu, Wen Fei

    2017-01-01

    Biomass was used as reducing agent to roast the Baotou low-grade limonite in a high temperature vacuum atmosphere furnace. The effect of calcination temperature, time and ratio of reducing agent on the magnetic properties of calcined ore was studied by VSM. The phase and microstructure changes of limonite before and after calcination were analyzed by XRD and SEM. The results show that in the roasting process the phase transition process of the ferrous material in limonite is first dehydrated at high temperature to formα-Fe2O3, and then it is converted into Fe3O4 by the reduction of biomass. With the increase of calcination temperature, the magnetic properties of the calcined ore first increase and then decrease. When the temperature is higher than 650°C, Fe3O4 will become Fe2SiO4, resulting in reduced the magnetic material in calcined ore and the magnetic weakened. The best magnetization effect was obtained when the roasting temperature is 550°C, the percentage of biomass was 15% and the roasting time was 30min. The saturation magnetization can reach 60.13emu·g-1, the recovery of iron was 72% and the grade of iron was 58%.

  1. Study of axial magnetic effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braguta, Victor; School of Biomedicine, Far Eastern Federal University, Ajax 10 Building 25, Russian island, Vladivostok, 690922; Chernodub, M. N.

    2016-01-22

    The Axial Magnetic Effect manifests itself as an equilibrium energy flow of massless fermions induced by the axial (chiral) magnetic field. Here we study the Axial Magnetic Effect in the quenched SU(2) lattice gauge theory with massless overlap fermions at finite temperature. We numerically observe that in the low-temperature hadron phase the effect is absent due to the quark confinement. In the high-temperature deconfinement phase the energy flow is an increasing function of the temperature which reaches the predicted asymptotic T{sup 2} behavior at high temperatures. We find, however, that energy flow is about one order of magnitude lower comparedmore » to a theoretical prediction.« less

  2. Consecutive magnetic phase diagram of UCoGe-URhGe-UIrGe system

    NASA Astrophysics Data System (ADS)

    Pospíšil, Jiří; Haga, Yoshinori; Miyake, Atsushi; Kambe, Shinsaku; Tateiwa, Naoyuki; Tokunaga, Yo; Honda, Fuminori; Nakamura, Ai; Homma, Yoshiya; Tokunaga, Masashi; Aoki, Dai; Yamamoto, Etsuji

    2018-05-01

    We prepared single crystals in UCo1-xRhxGe and UIr1-xRhxGe systems to establish a complex dU-U-T (dU-U is the shortest interatomic uranium distance and T is temperature) magnetic phase diagram. This recognized a characteristic maximum in magnetic susceptibility at temperature Tmax along the b axis as an important parameter. Three magnetically ordered regions can be distinguished within this scope; first a ferromagnetic region with Curie temperature

  3. Magnetization of Paraffin-Based Magnetic Nanocolloids

    NASA Astrophysics Data System (ADS)

    Dikanskii, Yu. I.; Ispiryan, A. G.; Kunikin, S. A.; Radionov, A. V.

    2018-01-01

    Using paraffin-based magnetic nanocolloids as an example, the reasons for maxima in the temperature dependence of the magnetic susceptibility of magnetic colloids have been discussed. The behavior of these dependences in a wide temperature interval has been analyzed for colloids in solid and liquid states. It has been concluded that the maximum observed at the melting point of paraffin can be attributed to freezing Brownian degrees of freedom in magnetite coarse particles, the magnetic moment of which is intimately related to the solid matrix. The second main maximum, which arises in the solid state, is explained by the superparamagnetic-magnetically hard transition of most fine particles at lower temperatures. It has been noted that the flatness of this maximum results from the polydispersity of the magnetic nanoparticle ensemble.

  4. Observations of electron vortex magnetic holes and related wave-particle interactions in the turbulent magnetosheath

    NASA Astrophysics Data System (ADS)

    Huang, S.; Sahraoui, F.; Yuan, Z.; He, J.; Zhao, J.; Du, J.; Le Contel, O.; Wang, X.; Deng, X.; Fu, H.; Zhou, M.; Shi, Q.; Breuillard, H.; Pang, Y.; Yu, X.; Wang, D.

    2017-12-01

    Magnetic hole is characterized by a magnetic depression, a density peak, a total electron temperature increase (with a parallel temperature decrease but a perpendicular temperature increase), and strong currents carried by the electrons. The current has a dip in the core region of the magnetic hole and a peak in the outer region of the magnetic hole. There is an enhancement in the perpendicular electron fluxes at 90° pitch angles inside the magnetic hole, implying that the electrons are trapped within it. The variations of the electron velocity components Vem and Ven suggest that an electron vortex is formed by trapping electrons inside the magnetic hole in the circular cross-section. These observations demonstrate the existence of a new type of coherent structures behaving as an electron vortex magnetic hole in turbulent space plasmas as predicted by recent kinetic simulations. We perform a statistically study using high time solution data from the MMS mission. The magnetic holes with short duration (i.e., < 0.5 s) have their cross section smaller than the ion gyro-radius. Superposed epoch analysis of all events reveals that an increase in the electron density and total temperature, significantly increase (resp. decrease) the electron perpendicular (resp. parallel) temperature, and an electron vortex inside the holes. Electron fluxes at 90° pitch angles with selective energies increase in the KSMHs, are trapped inside KSMHs and form the electron vortex due to their collective motion. All these features are consistent with the electron vortex magnetic holes obtained in 2D and 3D particle-in-cell simulations, indicating that the observed the magnetic holes seem to be best explained as electron vortex magnetic holes. It is furthermore shown that the magnetic holes are likely to heat and accelerate the electrons. We also investigate the coupling between whistler waves and electron vortex magnetic holes. These whistler waves can be locally generated inside electron vortex magnetic holes by electron temperature anisotropic instability.

  5. Long-Term Variability of the Sun in the Context of Solar-Analog Stars

    NASA Astrophysics Data System (ADS)

    Egeland, Ricky

    2018-06-01

    The Sun is the best observed object in astrophysics, but despite this distinction the nature of its well-ordered generation of magnetic field in 11-year activity cycles remains a mystery. In this work, we place the solar cycle in a broader context by examining the long-term variability of solar analog stars within 5% of the solar effective temperature, but varied in rotation rate and metallicity. Emission in the Fraunhofer H & K line cores from singly-ionized calcium in the lower chromosphere is due to magnetic heating, and is a proven proxy for magnetic flux on the Sun. We use Ca H & K observations from the Mount Wilson Observatory HK project, the Lowell Observatory Solar Stellar Spectrograph, and other sources to construct composite activity time series of over 100 years in length for the Sun and up to 50 years for 26 nearby solar analogs. Archival Ca H & K observations of reflected sunlight from the Moon using the Mount Wilson instrument allow us to properly calibrate the solar time series to the S-index scale used in stellar studies. We find the mean solar S-index to be 5–9% lower than previously estimated, and the amplitude of activity to be small compared to active stars in our sample. A detailed look at the young solar analog HD 30495, which rotates 2.3 times faster than the Sun, reveals a large amplitude ~12-year activity cycle and an intermittent short-period variation of 1.7 years, comparable to the solar variability time scales despite its faster rotation. Finally, time series analyses of the solar analog ensemble and a quantitative analysis of results from the literature indicate that truly Sun-like cyclic variability is rare, and that the amplitude of activity over both long and short timescales is linearly proportional to the mean activity. We conclude that the physical conditions conducive to a quasi-periodic magnetic activity cycle like the Sun’s are rare in stars of approximately the solar mass, and that the proper conditions may be restricted to a relatively narrow range of rotation rates.

  6. Long-Term Variability of the Sun in the Context of Solar-Analog Stars

    NASA Astrophysics Data System (ADS)

    Egeland, Ricky

    2017-04-01

    The Sun is the best observed object in astrophysics, but despite this distinction the nature of its well-ordered generation of magnetic field in 11-year activity cycles remains a mystery. In this work, we place the solar cycle in a broader context by examining the long-term variability of solar analog stars within 5% of the solar effective temperature, but varied in rotation rate and metallicity. Emission in the Fraunhofer H & K line cores from singly-ionized calcium in the lower chromosphere is due to magnetic heating, and is a proven proxy for magnetic flux on the Sun. We use Ca H & K observations from the Mount Wilson Observatory HK project, the Lowell Observatory Solar Stellar Spectrograph, and other sources to construct composite activity time series of over 100 years in length for the Sun and up to 50 years for 26 nearby solar analogs. Archival Ca H & K observations of reflected sunlight from the Moon using the Mount Wilson instrument allow us to properly calibrate the solar time series to the S-index scale used in stellar studies. We find the mean solar S-index to be 5-9% lower than previously estimated, and the amplitude of activity to be small compared to active stars in our sample. A detailed look at the young solar analog HD 30495, which rotates 2.3 times faster than the Sun, reveals a large amplitude 12-year activity cycle and an intermittent short-period variation of 1.7 years, comparable to the solar variability time scales despite its faster rotation. Finally, time series analyses of the solar analog ensemble and a quantitative analysis of results from the literature indicate that truly Sun-like cyclic variability is rare, and that the amplitude of activity over both long and short timescales is linearly proportional to the mean activity. We conclude that the physical conditions conducive to a quasi-periodic magnetic activity cycle like the Sun's are rare in stars of approximately the solar mass, and that the proper conditions may be restricted to a relatively narrow range of rotation rates.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Lu

    The objective of this research is to investigate the high-field magnetic properties of high temperature superconductors, materials that conduct electricity without loss. A technique known as high-resolution torque magnetometry that was developed to directly measure the magnetization of high temperature superconductors. This technique was implemented using the 65 Tesla pulsed magnetic field facility that is part of the National High Magnetic Field Laboratory at Los Alamos National Laboratory. This research addressed unanswered questions about the interplay between magnetism and superconductivity, determine the electronic structure of high temperature superconductors, and shed light on the mechanism of high temperature superconductivity and onmore » potential applications of these materials in areas such as energy generation and power transmission. Further applications of the technology resolve the novel physical phenomena such as correlated topological insulators, and spin liquid state in quantum magnets.« less

  8. Temperature dependence of spin-torque driven ferromagnetic resonance in MgO-based magnetic tunnel junction with a perpendicularly free layer

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Feng, Jiafeng; Guo, Peng; Wei, H. X.; Han, X. F.; Fang, B.; Zeng, Z. M.

    2017-12-01

    We report the temperature dependence of the spin-torque (ST) driven ferromagnetic resonance in MgO-based magnetic tunnel junction (MTJ) nanopillars with a perpendicularly free layer and an in-plane reference layer. From the evolution of the resonance frequency with magnetic field, we clearly identify the free-layer resonance mode and reference-layer mode. For the reference layer, we demonstrate a monotonic increase in resonance frequency and the effective damping with decreasing temperature, which suggests the saturated magnetization of the reference layer is dominant. However, for the free layer, the frequency and damping exhibit almost no change with temperature, indicating that the perpendicular magnetic anisotropy plays an important role in magnetization dynamics of the free layer.

  9. Tuning magnetic spirals beyond room temperature with chemical disorder

    NASA Astrophysics Data System (ADS)

    Canevet, Emmanuel; Morin, Mickael; Raynaud, Adrien; Bartkowiak, Marek; Sheptyakov, Denis; Ban, Voraksmy; Kenzelmann, Michel; Pomjakushina, Ekaterina; Conder, Kazimierz; Medarde, Marisa

    In the past years, magnetism-driven ferroelectricity and gigantic magnetoelectric effects have been reported for a number of frustrated magnets with spiral magnetic orders. Such materials are of high current interest due to their potential for spintronics and low-power magnetoelectric devices. However, their low magnetic order temperatures (typically lower than 100K) greatly restrict their fields of application. In this talk we will show that chemical disorder is a powerful tool that can be used to stabilize magnetic spiral phases at higher temperatures. To illustrate this mechanism, we will present our recent results obtain by neutron diffraction on the perovskyte YBaFeCuCuO5, where a controlled manipulation of the Cu/Fe chemical disorder was successfully used to increase the spiral order temperature from 154 to 310K.

  10. Mathematical Model of Solidification During Electroslag Casting of Pilger Roll

    NASA Astrophysics Data System (ADS)

    Liu, Fubin; Li, Huabing; Jiang, Zhouhua; Dong, Yanwu; Chen, Xu; Geng, Xin; Zang, Ximin

    A mathematical model for describing the interaction of multiple physical fields in slag bath and solidification process in ingot during pilger roll casting with variable cross-section which is produced by the electroslag casting (ESC) process was developed. The commercial software ANSYS was applied to calculate the electromagnetic field, magnetic driven fluid flow, buoyancy-driven flow and heat transfer. The transportation phenomenon in slag bath and solidification characteristic of ingots are analyzed for variable cross-section with variable input power under the conditions of 9Cr3NiMo steel and 70%CaF2 - 30%Al2O3 slag system. The calculated results show that characteristic of current density distribution, velocity patterns and temperature profiles in the slag bath and metal pool profiles in ingot have distinct difference at variable cross-sections due to difference of input power and cooling condition. The pool shape and the local solidification time (LST) during Pilger roll ESC process are analyzed.

  11. Crystal Structure of the Caged Magnetic Compound DyFe2Zn20 at Low Temperature Magnetic Ordering State

    NASA Astrophysics Data System (ADS)

    Kishii, Nobuya; Tateno, Shota; Ohashi, Masashi; Isikawa, Yosikazu

    We have carried out X-ray powder diffraction and thermal expansion measurements of the caged magnetic compound DyFe2Zn20. Even though a strong magnetic anisotropy exists in the magnetization and magnetic susceptibility due to strong exchange interaction between Fe and Dy, almost all X-ray powder diffraction peaks at 14 K correspond to Bragg reflections of the cubic structural models not only at room temperature paramagnetic state but also at low temperature magnetic ordering state. Although the temperature change of the lattice constant is isotropic, an anomalous behavior was observed in the thermal expansion coefficient around 15 K, while the anomaly around TC = 53 K is not clear. The results indicate that the volume change is not caused by the ferromagnetic interaction between Fe and Dy but by the exchange interaction between two Dy ions.

  12. Size and surface effects on the magnetism of magnetite and maghemite nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikiforov, V. N., E-mail: pppnvn@yandex.ru; Ignatenko, A. N.; Irkhin, V. Yu.

    2017-02-15

    The size effects of magnetite and maghemite nanoparticles on their magnetic properties (magnetic moment, Curie temperature, blocking temperature, etc.) have been investigated. Magnetic separation and centrifugation of an aqueous solution of nanoparticles were used for their separation into fractions; their sizes were measured by atomic force microscopy, dynamic light scattering, and electron microscopy. A change in the size leads to a change in the Curie temperature and magnetic moment per formula unit. Both native nanoparticles and those covered with a bioresorbable layer have been considered. The magnetic properties have been calculated by the Monte Carlo method for the classical Heisenbergmore » model with various bulk and surface magnetic moments.« less

  13. In situ scanning tunneling microscope tip treatment device for spin polarization imaging

    DOEpatents

    Li, An-Ping [Oak Ridge, TN; Jianxing, Ma [Oak Ridge, TN; Shen, Jian [Knoxville, TN

    2008-04-22

    A tip treatment device for use in an ultrahigh vacuum in situ scanning tunneling microscope (STM). The device provides spin polarization functionality to new or existing variable temperature STM systems. The tip treatment device readily converts a conventional STM to a spin-polarized tip, and thereby converts a standard STM system into a spin-polarized STM system. The tip treatment device also has functions of tip cleaning and tip flashing a STM tip to high temperature (>2000.degree. C.) in an extremely localized fashion. Tip coating functions can also be carried out, providing the tip sharp end with monolayers of coating materials including magnetic films. The device is also fully compatible with ultrahigh vacuum sample transfer setups.

  14. FDR Soil Moisture Sensor for Environmental Testing and Evaluation

    NASA Astrophysics Data System (ADS)

    Linmao, Ye; longqin, Xue; guangzhou, Zhang; haibo, Chen; likuai, Shi; zhigang, Wu; gouhe, Yu; yanbin, Wang; sujun, Niu; Jin, Ye; Qi, Jin

    To test the affect of environmental stresses on a adaptability of soil moisture capacitance sensor(FDR) a number of stresses were induced including vibrational shock as well as temperature and humidity through the use of a CH-I constant humidity chamber with variable temperature. A Vibrational platform was used to exam the resistance and structural integrity of the sensor after vibrations simulating the process of using, transporting and handling the sensor. A Impactive trial platform was used to test the resistance and structural integrity of the sensor after enduring repeated mechanical shocks. An CH-I constant humidity chamber with high-low temperature was used to test the adaptability of sensor in different environments with high temperature, low temperature and constant humidity. Otherwise, scope of magnetic force line of sensor was also tested in this paper. Test show:the capacitance type soil moisture sensor spread a feeling machine to bear heat, high wet and low temperature, at bear impact and vibration experiment in pass an examination, is a kind of environment to adapt to ability very strong instrument;Spread a feeling machine moreover electric field strength function radius scope 7 cms.

  15. SYNTHESIS of MOLECULE/POLYMER-BASED MAGNETIC MATERIALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Joel S.

    2016-02-01

    We have synthesized and characterized several families of organic-based magnets, a new area showing that organic species can exhibit the technologically important property of magnetic ordering. Thin film magnets with ordering temperatures exceeding room temperature have been exceeded. Hence, organic-based magnets represent a new class of materials that exhibit magnetic ordering and do not require energy-intensive metallurgical processing and are based upon Earth-abundant elements.

  16. Temperature dependent and applied field strength dependent magnetic study of cobalt nickel ferrite nano particles: Synthesized by an environmentally benign method

    NASA Astrophysics Data System (ADS)

    Sontu, Uday Bhasker; G, Narsinga Rao; Chou, F. C.; M, V. Ramana Reddy

    2018-04-01

    Spinel ferrites have come a long way in their versatile applications. The ever growing applications of these materials demand detailed study of material properties and environmental considerations in their synthesis. In this article, we report the effect of temperature and applied magnetic field strength on the magnetic behavior of the cobalt nickel ferrite nano powder samples. Basic structural properties of spinel ferrite nano particles, that are synthesized by an environmentally benign method of auto combustion, are characterized through XRD, TEM, RAMAN spectroscopy. Diffuse Reflectance Spectroscopy (DRS) is done to understand the nickel substitution effect on the optical properties of cobalt ferrite nano particles. Thermo magnetic studies using SQUID in the temperature range 5 K to 400 K and room temperature (300 K) VSM studies are performed on these samples. Fields of 0Oe (no applied field: ZF), 1 kOe (for ZFC and FC curves), 5 kOe (0.5 T), 50 kOe (5T) (for M-H loop study) are used to study the magnetic behavior of these nano particles. The XRD,TEM analysis suggest 40 nm crystallites that show changes in the cation distribution and phase changes in the spinel structure with nickel substitution. Raman micrographs support phase purity changes and cation redistributions with nickel substitution. Diffuse reflectance study on powder samples suggests two band gap values for nickel rich compounds. The Magnetic study of these sample nano particles show varied magnetic properties from that of hard magnetic, positive multi axial anisotropy and single-magnetic-domain structures at 5 K temperature to soft magnetic core shell like structures at 300 K temperature. Nickel substitution effect is non monotonous. Blocking temperature of all the samples is found to be higher than the values suggested in the literature.

  17. Superposed epoch analysis of vertical ion velocity, electron temperature, field-aligned current, and thermospheric wind in the dayside auroral region as observed by DMSP and CHAMP

    NASA Astrophysics Data System (ADS)

    Kervalishvili, G.; Lühr, H.

    2016-12-01

    This study reports on the results obtained by a superposed epoch analysis (SEA) method applied to the electron temperature, vertical ion velocity, field-aligned current (FAC), and thermospheric zonal wind velocity at high-latitudes in the Northern Hemisphere. The SEA study is performed in a magnetic latitude versus magnetic local time (MLat-MLT) frame. The obtained results are based on observations collected during the years 2001-2005 by the CHAMP and DMSP (F13 and F15) satellites. The dependence on interplanetary magnetic field (IMF) orientations is also investigated using data from the NASA/GSFC's OMNI database. Further, the obtained results are subdivided into three Lloyd seasons of 130 days each, which are defined as follows: local winter (1 January ± 65 days), combined equinoxes (1 April and 1 October ± 32days), and local summer (1 July ± 65 days). A period of 130 days is needed by the CHAMP satellite to pass through all local times. The time and location of the electron temperature peaks from CHAMP measurements near the cusp region are used as the reference parameter for the SEA method to investigate the relationship between the electron temperature and other ionospheric quantities. The SEA derived MLat profiles of the electron temperature show a seasonal dependence, increasing from winter to summer, as expected. But, the temperature rise (difference between the reference temperature peak and the background electron temperature) strongly decreases towards local summer. The SEA derived MLat profiles of the ion vertical velocity at DMSP altitude show the same seasonal behaviour as the electron temperature rice. There exists a clear linear relation between these two variables with a quiet large correlation coefficient value, >0.9. The SEA derived MLat profiles of both, thermospheric zonal wind velocity and FAC, show a clear IMF By orientation dependence for all local seasons. The zonal wind velocity is prominently directed towards west in the MLat-MLT frame for both signs of IMF By, but speeds are larger for positive By. FAC shows a systematic imbalance between downward (upward) and upward (downward) peaks equatorward and poleward of the reference point for positive (negative) IMF By. The influence of upflow events depends strongly on the amplitude of IMF By, to a lesser extend on Bz.

  18. Low-temperature magnetic refrigerator

    DOEpatents

    Barclay, John A.

    1985-01-01

    The disclosure is directed to a low temperature 4 to 20 K. refrigeration apparatus and method utilizing a ring of magnetic material moving through a magnetic field. Heat exchange is accomplished in and out of the magnetic field to appropriately utilize the device to execute Carnot and Stirling cycles.

  19. Tuning magnetic spirals beyond room temperature with chemical disorder

    NASA Astrophysics Data System (ADS)

    Morin, Mickaël; Canévet, Emmanuel; Raynaud, Adrien; Bartkowiak, Marek; Sheptyakov, Denis; Ban, Voraksmy; Kenzelmann, Michel; Pomjakushina, Ekaterina; Conder, Kazimierz; Medarde, Marisa

    2016-12-01

    In the past years, magnetism-driven ferroelectricity and gigantic magnetoelectric effects have been reported for a number of frustrated magnets featuring ordered spiral magnetic phases. Such materials are of high-current interest due to their potential for spintronics and low-power magnetoelectric devices. However, their low-magnetic ordering temperatures (typically <100 K) greatly restrict their fields of application. Here we demonstrate that the onset temperature of the spiral phase in the perovskite YBaCuFeO5 can be increased by more than 150 K through a controlled manipulation of the Fe/Cu chemical disorder. Moreover, we show that this novel mechanism can stabilize the magnetic spiral state of YBaCuFeO5 above the symbolic value of 25 °C at zero magnetic field. Our findings demonstrate that the properties of magnetic spirals, including its wavelength and stability range, can be engineered through the control of chemical disorder, offering a great potential for the design of materials with magnetoelectric properties beyond room temperature.

  20. Tuning magnetic spirals beyond room temperature with chemical disorder

    PubMed Central

    Morin, Mickaël; Canévet, Emmanuel; Raynaud, Adrien; Bartkowiak, Marek; Sheptyakov, Denis; Ban, Voraksmy; Kenzelmann, Michel; Pomjakushina, Ekaterina; Conder, Kazimierz; Medarde, Marisa

    2016-01-01

    In the past years, magnetism-driven ferroelectricity and gigantic magnetoelectric effects have been reported for a number of frustrated magnets featuring ordered spiral magnetic phases. Such materials are of high-current interest due to their potential for spintronics and low-power magnetoelectric devices. However, their low-magnetic ordering temperatures (typically <100 K) greatly restrict their fields of application. Here we demonstrate that the onset temperature of the spiral phase in the perovskite YBaCuFeO5 can be increased by more than 150 K through a controlled manipulation of the Fe/Cu chemical disorder. Moreover, we show that this novel mechanism can stabilize the magnetic spiral state of YBaCuFeO5 above the symbolic value of 25 °C at zero magnetic field. Our findings demonstrate that the properties of magnetic spirals, including its wavelength and stability range, can be engineered through the control of chemical disorder, offering a great potential for the design of materials with magnetoelectric properties beyond room temperature. PMID:27982127

  1. Magnetic minerals in three Asian rivers draining into the South China Sea: Pearl, Red, and Mekong Rivers

    NASA Astrophysics Data System (ADS)

    Kissel, Catherine; Liu, Zhifei; Li, Jinhua; Wandres, Camille

    2016-05-01

    The use of the marine sedimentary magnetic properties, as tracers for changes in precipitation rate and in oceanic water masses transport and exchanges, implies to identify and to characterize the different sources of the detrital fraction. This is of particular importance in closed and/or marginal seas such as the South China Sea. We report on the magnetic properties of sedimentary samples collected in three main Asian rivers draining into the South China Sea: the Pearl, Red, and Mekong Rivers. The geological formations as well as the present climatic conditions are different from one catchment to another. The entire set of performed magnetic analyses (low-field magnetic susceptibility, ARM acquisition and decay, IRM acquisition and decay, back-field acquisition, thermal demagnetization of three-axes IRM, hysteresis parameters, FORC diagrams, and low-temperature magnetic measurements) allow us to identify the magnetic mineralogy and the grain-size distribution when magnetite is dominant. Some degree of variability is observed in each basin, illustrating different parent rocks and degree of weathering. On average it appears that the Pearl River is rich in magnetite along the main stream while the Mekong River is rich in hematite. The Red River is a mixture of the two. Compared to clay mineral assemblages and major element contents previously determined on the same samples, these new findings indicate that the magnetic fraction brings complementary information of great interest for environmental reconstructions based on marine sediments from the South China Sea.

  2. Influence of uniaxial single-ion anisotropy on the magnetic and thermal properties of Heisenberg antiferromagnets within unified molecular field theory

    DOE PAGES

    Johnston, David C.

    2017-03-17

    Here, the influence of uniaxial single-ion anisotropy –DS 2 z on the magnetic and thermal properties of Heisenberg antiferromagnets (AFMs) is investigated. The uniaxial anisotropy is treated exactly and the Heisenberg interactions are treated within unified molecular field theory (MFT), where thermodynamic variables are expressed in terms of directly measurable parameters. The properties of collinear AFMs with ordering along the z axis (D>0) in applied field H z = 0 are calculated versus D and temperature T, including the ordered moment μ, the Néel temperature T N, the magnetic entropy, internal energy, heat capacity, and the anisotropic magnetic susceptibilities χmore » ∥ and χ ⊥ in the paramagnetic (PM) and AFM states. The high-field average magnetization per spin μ z(H z,D,T) is found, and the critical field H c(D,T) is derived at which the second-order AFM to PM phase transition occurs. The magnetic properties of the spin-flop (SF) phase are calculated, including the zero-field properties T N(D) and μ(D,T). The high-field μ z(H z,D,T) is determined, together with the associated spin-flop field H SF(D,T) at which a second-order SF to PM phase transition occurs. The free energies of the AFM, SF, and PM phases are derived from which H z–T phase diagrams are constructed. For f J =–1 and –0.75, where f J = θ pJ/T NJ and θ pJ and T NJ are the Weiss temperature in the Curie-Weiss law and the Néel temperature due to exchange interactions alone, respectively, phase diagrams in the H z–T plane similar to previous results are obtained. However, for f J = 0 we find a topologically different phase diagram where a spin-flop bubble with PM and AFM boundaries occurs at finite H z and T. Also calculated are properties arising from a perpendicular magnetic field, including the perpendicular susceptibility χ ⊥(D,T), the associated effective torque at low fields arising from the –DS 2 z term in the Hamiltonian, the high-field perpendicular magnetization μ ⊥, and the perpendicular critical field H c⊥ at which the second-order AFM to PM phase transition occurs. In addition to the above results for D > 0, the T N(D) and ordered moment μ(T,D) for collinear AFM ordering along the x axis with D < 0 are determined. In order to compare the properties of the above spin systems with those of noninteracting systems with –DS 2 z uniaxial anisotropy with either sign of D, Supplemental Material is provided in which results for the thermal and magnetic properties of such noninteracting spin systems are given.« less

  3. Evidence for preferential flux flow at the grain boundaries of superconducting RF-quality niobium

    NASA Astrophysics Data System (ADS)

    Sung, Z.-H.; Lee, P. J.; Gurevich, A.; Larbalestier, D. C.

    2018-04-01

    The question of whether grain boundaries (GBs) in niobium can be responsible for lowered operating field (B RF) or quality factor (Q 0) in superconducting radio frequency (SRF) cavities is still controversial. Here, we show by direct DC transport across planar GBs isolated from a slice of very large-grain SRF-quality Nb that vortices can preferentially flow along the grain boundary when the external magnetic field lies in the GB plane. However, increasing the misalignment between the GB plane and the external magnetic field vector markedly reduces preferential flux flow along the GB. Importantly, we find that preferential GB flux flow is more prominent for a buffered chemical polished than for an electropolished bi-crystal. The voltage-current characteristics of GBs are similar to those seen in low angle grain boundaries of high temperature superconductors where there is clear evidence of suppression of the superconducting order parameter at the GB. While local weakening of superconductivity at GBs in cuprates and pnictides is intrinsic, deterioration of current transparency of GBs in Nb appears to be extrinsic, since the polishing method clearly affect the local GB degradation. The dependence of preferential GB flux flow on important cavity preparation and experimental variables, particularly the final chemical treatment and the angle between the magnetic field and the GB plane, suggests two more reasons why real cavity performance can be so variable.

  4. Permanent magnet design for high-speed superconducting bearings

    DOEpatents

    Hull, J.R.; Uherka, K.L.; Abdoud, R.G.

    1996-09-10

    A high temperature superconducting bearing including a permanent magnet rotor levitated by a high temperature superconducting structure is disclosed. The rotor preferably includes one or more concentric permanent magnet rings coupled to permanent magnet ring structures having substantially triangular and quadrangular cross-sections. Both alternating and single direction polarity magnet structures can be used in the bearing. 9 figs.

  5. Change in the magnetic properties of nanoferrihydrite with an increase in the volume of nanoparticles during low-temperature annealing

    NASA Astrophysics Data System (ADS)

    Balaev, D. A.; Krasikov, A. A.; Stolyar, S. V.; Iskhakov, R. S.; Ladygina, V. P.; Yaroslavtsev, R. N.; Bayukov, O. A.; Vorotynov, A. M.; Volochaev, M. N.; Dubrovskiy, A. A.

    2016-09-01

    The results of the investigation into the effect of low-temperature annealing of a powder of nanoparticles of bacterial ferrihydrite on its magnetic properties have been presented. It has been found that an increase in the time (up to 240 h) and temperature (in the range from 150 to 200°C) of annealing leads to a monotonic increase in the superparamagnetic blocking temperature, the coercive force, and the threshold field of the opening of the magnetic hysteresis loop (at liquid-helium temperatures), as well as to an increase in the magnetic resonance line width at low temperatures and in the magnetic susceptibility at room temperature. At the same time, according to the results of the analysis of the Mössbauer spectra, the annealing of ferrihydrite does not lead to the formation of new iron oxide phases. Most of these features are well consistent with the fact that the low-temperature annealing of ferrihydrite causes an increase in the size of nanoparticles, which is confirmed by the results of transmission electron microscopy studies.

  6. Honeycomb artificial spin ice at low temperatures

    NASA Astrophysics Data System (ADS)

    Zeissler, Katharina; Chadha, Megha; Cohen, Lesley; Branford, Will

    2015-03-01

    Artificial spin ice is a macroscopic playground for magnetically frustrated systems. It consists of a geometrically ordered but magnetically frustrated arrangement of ferromagnetic macros spins, e.g. an arrangement of single domain ferromagnetic nanowires on a honeycomb lattice. Permalloy and cobalt which have critical temperature scales far above 290 K, are commonly used in the construction of such systems. Previous measurements have shown unusual features in the magnetotransport signature of cobalt honeycomb artificial spin ice at temperatures below 50 K which are due to changes in the artificial spin ice's magnetic reversal. In that case, the artificial spin ice bars were 1 micron long, 100 nm wide and 20 nm thick. Here we explore the low temperature magnetic behavior of honeycomb artificial spin ice structures with a variety of bar dimensions, indirectly via electrical transport, as well as, directly using low temperature magnetic imaging techniques. We discuss the extent to which this change in the magnetic reversal at low temperatures is generic to the honeycomb artificial spin ice geometry and whether the bar dimensions have an influence on its onset temperature. The EPSRC (Grant No. EP/G004765/1; Grant No. EP/L504786/1) and the Leverhulme Trust (Grant No. RPG 2012-692) funded this scientific work.

  7. Anomalous low temperature resistivity in CeCr0.8V0.2Ge3

    NASA Astrophysics Data System (ADS)

    Singh, Durgesh; Patidar, Manju Mishra; Mishra, A. K.; Krishnan, M.; Ganesan, V.

    2018-04-01

    Resistivity (8T) and heat capacity (0T) of CeCr0.8V0.2Ge3 at low temperatures and high magnetic fields are reported. Resistivity curve shows a Kondo like behavior at an anomalously high temperature of 250K. A broad peak at 20K is observed in resistivity. A sharp change in resistivity around 7.3K is due to magnetic ordering mediated by coherence effects. Similar low temperature peak is also observed in heat capacity around 7.2K. A small magnetic field of the order of 1T shifts the peak towards lower temperatures confirming the antiferromagnetic ordering. A broad feature, which appears in resistivity at 20K, is absent in heat capacity. This feature shift towards higher temperatures with magnetic field, and may be due to the partial ferromagnetic ordering or due to geometrical frustration which opposes the magnetic ordering. The system shows a moderate heavy fermion behavior with Sommerfeld coefficient (γ) of 111mJ/mol-K2. Debye temperature of the compound is 250K. Shifting of TN in magnetic fields towards 0K indicates a possibility of quantum criticality in this system.

  8. Modeling of temperature-induced near-infrared and low-field time-domain nuclear magnetic resonance spectral variation: chemometric prediction of limonene and water content in spray-dried delivery systems.

    PubMed

    Andrade, Letícia; Farhat, Imad A; Aeberhardt, Kasia; Bro, Rasmus; Engelsen, Søren Balling

    2009-02-01

    The influence of temperature on near-infrared (NIR) and nuclear magnetic resonance (NMR) spectroscopy complicates the industrial applications of both spectroscopic methods. The focus of this study is to analyze and model the effect of temperature variation on NIR spectra and NMR relaxation data. Different multivariate methods were tested for constructing robust prediction models based on NIR and NMR data acquired at various temperatures. Data were acquired on model spray-dried limonene systems at five temperatures in the range from 20 degrees C to 60 degrees C and partial least squares (PLS) regression models were computed for limonene and water predictions. The predictive ability of the models computed on the NIR spectra (acquired at various temperatures) improved significantly when data were preprocessed using extended inverted signal correction (EISC). The average PLS regression prediction error was reduced to 0.2%, corresponding to 1.9% and 3.4% of the full range of limonene and water reference values, respectively. The removal of variation induced by temperature prior to calibration, by direct orthogonalization (DO), slightly enhanced the predictive ability of the models based on NMR data. Bilinear PLS models, with implicit inclusion of the temperature, enabled limonene and water predictions by NMR with an error of 0.3% (corresponding to 2.8% and 7.0% of the full range of limonene and water). For NMR, and in contrast to the NIR results, modeling the data using multi-way N-PLS improved the models' performance. N-PLS models, in which temperature was included as an extra variable, enabled more accurate prediction, especially for limonene (prediction error was reduced to 0.2%). Overall, this study proved that it is possible to develop models for limonene and water content prediction based on NIR and NMR data, independent of the measurement temperature.

  9. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study.

    PubMed

    Vogel, Michael W; Giorni, Andrea; Vegh, Viktor; Pellicer-Guridi, Ruben; Reutens, David C

    2016-01-01

    We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20-50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably.

  10. Analysis of spatial thermal field in a magnetic bearing

    NASA Astrophysics Data System (ADS)

    Wajnert, Dawid; Tomczuk, Bronisław

    2018-03-01

    This paper presents two mathematical models for temperature field analysis in a new hybrid magnetic bearing. Temperature distributions have been calculated using a three dimensional simulation and a two dimensional one. A physical model for temperature testing in the magnetic bearing has been developed. Some results obtained from computer simulations were compared with measurements.

  11. Relationship of magnetic field strength and brightness of fine-structure elements in the solar temperature minimum region

    NASA Technical Reports Server (NTRS)

    Cook, J. W.; Ewing, J. A.

    1990-01-01

    A quantitative relationship was determined between magnetic field strength (or magnetic flux) from photospheric magnetograph observations and the brightness temperature of solar fine-structure elements observed at 1600 A, where the predominant flux source is continuum emission from the solar temperature minimum region. A Kitt Peak magnetogram and spectroheliograph observations at 1600 A taken during a sounding rocket flight of the High Resolution Telescope and Spectrograph from December 11, 1987 were used. The statistical distributions of brightness temperature in the quiet sun at 1600 A, and absolute value of magnetic field strength in the same area were determined from these observations. Using a technique which obtains the best-fit relationship of a given functional form between these two histogram distributions, a quantitative relationship was determined between absolute value of magnetic field strength B and brightness temperature which is essentially linear from 10 to 150 G. An interpretation is suggested, in which a basal heating occurs generally, while brighter elements are produced in magnetic regions with temperature enhancements proportional to B.

  12. Temperature characteristics and magnetization mechanism of Fe1.2Co films

    NASA Astrophysics Data System (ADS)

    Dong, Dashun; Fang, Qingqing; Wang, Wenwen; Yang, Jingjing

    2017-11-01

    Fe1.2Co films with various thicknesses were prepared on glass substrates by pulsed laser deposition (PLD). The Fe1.2Co crystal structure exhibited a preferred orientation in the <1 1 0> direction. Also, we found that changing the film thickness affected its magnetic properties and the formation of its reversed nucleus. By measuring magnetism-temperature (M-T) curves under applied field cooling (FC) and zero-field cooling (ZFC), we found that the mechanism of the formation and growth of the reversed nucleus played a main role in blocking the motion of domain walls: the mechanism was competition between a ferromagnetic phase (FM) and an anti-ferromagnetic phase (AFM) at 10-300 K. Moreover, we found that the reversed nucleus blocked the motion of magnetic domains more at 10 K than at 300 K. We suggest that the reversed nucleus affects the magnetism more at low temperatures, which causes the coercivity to be higher at low temperature than at room temperature. These results will help us to understand the magnetic properties and temperature characteristics of FeCo thin films.

  13. Development of Ferrite-Based Temperature Sensors for Magnetic Resonance Imaging: A Study of Cu1 -xZnxFe2O4

    NASA Astrophysics Data System (ADS)

    Alghamdi, N. A.; Hankiewicz, J. H.; Anderson, N. R.; Stupic, K. F.; Camley, R. E.; Przybylski, M.; Żukrowski, J.; Celinski, Z.

    2018-05-01

    We investigate the use of Cu1 -xZnxFe2O4 ferrites (0.60

  14. Quark–hadron phase structure, thermodynamics, and magnetization of QCD matter

    NASA Astrophysics Data System (ADS)

    Nasser Tawfik, Abdel; Magied Diab, Abdel; Hussein, M. T.

    2018-05-01

    The SU(3) Polyakov linear-sigma model (PLSM) is systematically implemented to characterize the quark-hadron phase structure and to determine various thermodynamic quantities and the magnetization of quantum chromodynamic (QCD) matter. Using mean-field approximation, the dependence of the chiral order parameter on a finite magnetic field is also calculated. Under a wide range of temperatures and magnetic field strengths, various thermodynamic quantities including trace anomaly, speed of sound squared, entropy density, and specific heat are presented, and some magnetic properties are described as well. Where available these results are compared to recent lattice QCD calculations. The temperature dependence of these quantities confirms our previous finding that the transition temperature is reduced with the increase in the magnetic field strength, i.e. QCD matter is characterized by an inverse magnetic catalysis. Furthermore, the temperature dependence of the magnetization showing that QCD matter has paramagnetic properties slightly below and far above the pseudo-critical temperature is confirmed as well. The excellent agreement with recent lattice calculations proves that our QCD-like approach (PLSM) seems to possess the correct degrees of freedom in both the hadronic and partonic phases and describes well the dynamics deriving confined hadrons to deconfined quark-gluon plasma.

  15. Room temperature magnetic ordering, enhanced magnetization and exchange bias of GdMnO3 nanoparticles in (GdMnO3)0.70(CoFe2O4)0.30

    NASA Astrophysics Data System (ADS)

    Mitra, A.; Mahapatra, A. S.; Mallick, A.; Chakrabarti, P. K.

    2017-02-01

    Nanoparticles of GdMnO3 (GMO) are prepared by sol-gel method. To enhance the magnetic property and also to obtain the magnetic ordering at room temperature (RT), nanoparticles of GMO are incorporated in the matrix of CoFe2O4 (CFO). Desired crystallographic phases of CFO, GMO and GMO-CFO are confirmed by analyzing X-ray diffractrograms (XRD) using Rietveld method. The average size of nanoparticles and their distribution, crystallographic phase, nanocrystallinity etc. are studied by high-resolution transmission electron microscope (HRTEM). Magnetic hysteresis loops (M-H) of GMO-CFO under zero field cooled (ZFC) and field cooled (FC) conditions are observed at different temperatures down to 5 K. Magnetization vs. temperature (M-T) under ZFC and FC conditions are also recorded. Interestingly, exchange bias (EB) is found at low temperature which suggests the encapsulation of the ferromagnetic (FM) nanoparticles of GMO by the ferrimagnetic nanoparticles of CFO below 100 K. Enhanced magnetization, EB effect and RT magnetic ordering of GMO-CFO would be interesting for both theoretical and experimental investigations.

  16. Petrophysical Properties (Density and Magnetization) of Rocks from the Suhbaatar-Ulaanbaatar-Dalandzadgad Geophysical Profile in Mongolia and Their Implications

    PubMed Central

    Gao, Jintian; Gu, Zuowen; Dagva, Baatarkhuu; Tserenpil, Batsaikhan

    2013-01-01

    Petrophysical properties of 585 rock samples from the Suhbaatar-Ulaanbaatar-Dalandzadgad geophysical profile in Mongolia are presented. Based on the rock classifications and tectonic units, petrophysical parameters (bulk density, magnetic susceptibility, intensity of natural remanent magnetization, and Köenigsberger ratio) of these rocks are summarized. Results indicate that (1) significant density contrast of different rocks would result in variable gravity anomalies along the profile; (2) magnetic susceptibility and natural remanent magnetization of all rocks are variable, covering 5-6 orders of magnitude, which would make a variable induced magnetization and further links to complex magnetic anomalies in ground surface; (3) the distribution of rocks with different lithologies controls the pattern of lithospheric magnetic anomaly along the profile. The petrophysical database thus provides not only one of the keys to understand the geological history and structure of the profile, but also essential information for analysis and interpretation of the geophysical (e.g., magnetic and gravity) survey data. PMID:24324382

  17. Petrophysical properties (density and magnetization) of rocks from the Suhbaatar-Ulaanbaatar-Dalandzadgad geophysical profile in Mongolia and their implications.

    PubMed

    Yang, Tao; Gao, Jintian; Gu, Zuowen; Dagva, Baatarkhuu; Tserenpil, Batsaikhan

    2013-01-01

    Petrophysical properties of 585 rock samples from the Suhbaatar-Ulaanbaatar-Dalandzadgad geophysical profile in Mongolia are presented. Based on the rock classifications and tectonic units, petrophysical parameters (bulk density, magnetic susceptibility, intensity of natural remanent magnetization, and Köenigsberger ratio) of these rocks are summarized. Results indicate that (1) significant density contrast of different rocks would result in variable gravity anomalies along the profile; (2) magnetic susceptibility and natural remanent magnetization of all rocks are variable, covering 5-6 orders of magnitude, which would make a variable induced magnetization and further links to complex magnetic anomalies in ground surface; (3) the distribution of rocks with different lithologies controls the pattern of lithospheric magnetic anomaly along the profile. The petrophysical database thus provides not only one of the keys to understand the geological history and structure of the profile, but also essential information for analysis and interpretation of the geophysical (e.g., magnetic and gravity) survey data.

  18. Closed loop control of the induction heating process using miniature magnetic sensors

    DOEpatents

    Bentley, Anthony E.; Kelley, John Bruce; Zutavern, Fred J.

    2003-05-20

    A method and system for providing real-time, closed-loop control of the induction hardening process. A miniature magnetic sensor located near the outer surface of the workpiece measures changes in the surface magnetic field caused by changes in the magnetic properties of the workpiece as it heats up during induction heating (or cools down during quenching). A passive miniature magnetic sensor detects a distinct magnetic spike that appears when the saturation field, B.sub.sat, of the workpiece has been exceeded. This distinct magnetic spike disappears when the workpiece's surface temperature exceeds its Curie temperature, due to the sudden decrease in its magnetic permeability. Alternatively, an active magnetic sensor can measure changes in the resonance response of the monitor coil when the excitation coil is linearly swept over 0-10 MHz, due to changes in the magnetic permeability and electrical resistivity of the workpiece as its temperature increases (or decreases).

  19. Use of miniature magnetic sensors for real-time control of the induction heating process

    DOEpatents

    Bentley, Anthony E.; Kelley, John Bruce; Zutavern, Fred J.

    2002-01-01

    A method of monitoring the process of induction heating a workpiece. A miniature magnetic sensor located near the outer surface of the workpiece measures changes in the surface magnetic field caused by changes in the magnetic properties of the workpiece as it heats up during induction heating (or cools down during quenching). A passive miniature magnetic sensor detects a distinct magnetic spike that appears when the saturation field, B.sub.sat, of the workpiece has been exceeded. This distinct magnetic spike disappears when the workpiece's surface temperature exceeds its Curie temperature, due to the sudden decrease in its magnetic permeability. Alternatively, an active magnetic sensor can also be used to measure changes in the resonance response of the monitor coil when the excitation coil is linearly swept over 0-10 MHz, due to changes in the magnetic permeability and electrical resistivity of the workpiece as its temperature increases (or decreases).

  20. Joining of parts via magnetic heating of metal aluminum powders

    DOEpatents

    Baker, Ian

    2013-05-21

    A method of joining at least two parts includes steps of dispersing a joining material comprising a multi-phase magnetic metal-aluminum powder at an interface between the at least two parts to be joined and applying an alternating magnetic field (AMF). The AMF has a magnetic field strength and frequency suitable for inducing magnetic hysteresis losses in the metal-aluminum powder and is applied for a period that raises temperature of the metal-aluminum powder to an exothermic transformation temperature. At the exothermic transformation temperature, the metal-aluminum powder melts and resolidifies as a metal aluminide solid having a non-magnetic configuration.

  1. Local observation of reverse-domain superconductivity in a superconductor-ferromagnet hybrid.

    PubMed

    Fritzsche, J; Moshchalkov, V V; Eitel, H; Koelle, D; Kleiner, R; Szymczak, R

    2006-06-23

    Nanoscale magnetic and superconducting properties of the superconductor-ferromagnet Nb/PbFe12O19 hybrid were studied as a function of applied magnetic fields. Low-temperature scanning laser microscopy (LTSLM) together with transport measurements were carried out in order to reveal local variations of superconductivity induced by the magnetic field template produced by the ferromagnetic substrate. Room temperature magnetic force microscopy (MFM) was performed and magnetization curves were taken at room and low temperature to investigate the magnetic properties of the hybrid. Comparative analysis of the LTSLM and the MFM images has convincingly demonstrated the presence of the reverse-domain superconductivity.

  2. Iron Atoms in Cr-Mn Antiferromagnetic Matrix

    NASA Astrophysics Data System (ADS)

    Szymański, K.; Satuła, D.; Dobrzyński, L.; Biernacka, M.; Perzyńska, K.; Zaleski, P.

    2002-06-01

    The results of the Mössbauer effect measurements on bcc Cr rich Cr-Fe-Mn alloys in temperature range 12-296 K in zero- and in applied magnetic fields are reported. Monochromatic, circularly polarized radiation was used for investigation of iron moments alignment. Strong enhancement of internal hyperfine magnetic field induced by the applied magnetic field was detected and explained as due to dynamical effects. At high temperatures alignment of iron moments in antiferromagnetic phase is weakly magnetic field-dependent. At low temperatures the average hyperfine magnetic field is antiparallel to the net magnetization showing that iron moments are partly ordered by the applied field.

  3. Deconfinement phase transition in a magnetic field in 2 + 1 dimensions from holographic models

    NASA Astrophysics Data System (ADS)

    M. Rodrigues, Diego; Capossoli, Eduardo Folco; Boschi-Filho, Henrique

    2018-05-01

    Using two different models from holographic quantum chromodynamics (QCD) we study the deconfinement phase transition in 2 + 1 dimensions in the presence of a magnetic field. Working in 2 + 1 dimensions lead us to exact solutions on the magnetic field, in contrast with the case of 3 + 1 dimensions where the solutions on the magnetic field are perturbative. As our main result we predict a critical magnetic field Bc where the deconfinement critical temperature vanishes. For weak fields meaning B Bc we find that the critical temperature raises with growing field showing a magnetic catalysis (MC). These results for IMC and MC are in agreement with the literature.

  4. Magnetic and levitation characteristics of bulk high-temperature superconducting magnets above a permanent magnet guideway

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Zheng, Botian; He, Dabo; Sun, Ruixue; Deng, Zigang; Xu, Xun; Dou, Shixue

    2016-09-01

    Due to the large levitation force or the large guidance force of bulk high-temperature superconducting magnets (BHTSMs) above a permanent magnet guideway (PMG), it is reasonable to employ pre-magnetized BHTSMs to replace applied-magnetic-field-cooled superconductors in a maglev system. There are two combination modes between the BHTSM and the PMG, distinguished by the different directions of the magnetization. One is the S-S pole mode, and the other is the S-N pole mode combined with a unimodal PMG segment. A multi-point magnetic field measurement platform was employed to acquire the magnetic field signals of the BHTSM surface in real time during the pre-magnetization process and the re-magnetization process. Subsequently, three experimental aspects of levitation, including the vertical movement due to the levitation force, the lateral movement due to the guidance force, and the force relaxation with time, were explored above the PMG segment. Moreover, finite element modeling by COMSOL Multiphysics has been performed to simulate the different induced currents and the potentially different temperature rises with different modes inside the BHTSM. It was found that the S-S pole mode produced higher induced current density and a higher temperature rise inside the BHTSM, which might escalate its lateral instability above the PMG. The S-N pole mode exhibits the opposite characteristics. In general, this work is instructive for understanding and connecting the magnetic flux, the inner current density, the levitation behavior, and the temperature rise of BHTSMs employed in a maglev system.

  5. High-Temperature (940 °C) furnace in 18/20 T cold bore magnet

    NASA Astrophysics Data System (ADS)

    Wang, Ze; Hou, Yubin; Feng, Qiyuan; Dong, Hongliang; Lu, Qingyou

    2018-01-01

    We present a high-temperature furnace that can work continuously in an 18/20 T cold bore magnet. A specially designed liquid nitrogen (LN2) jacket is between the high-temperature parts of the furnace and the liquid helium in the magnet Dewar. With LN2 serving as the cooling medium, the calculated value of radiation received by the liquid helium (LHe) is as low as 0.004 W. The furnace can be put into LHe Dewar directly. Together with the magnet, the furnace can provide experimental conditions of a strong static magnetic field and temperatures up to 940 °C. A cobalt oxide synthesis in solution was carried out at 200 °C with and without a 15 T magnetic field for 8 h. Differences in material structure with the applied field were observed in transmission electron micrographs of the products. A Co film sample was treated at 900 °C with and without a 6.8 T magnetic field for 30 min. The scanning electron micrographs of the treated samples show that magnetic field had a clear effect on the heat treatment process. These two applications confirmed the performance of the furnace both in high magnetic field and at high temperature.

  6. Magnetization and transport properties of single RPd2P2 (R=Y, La-Nd, Sm-Ho, Yb)

    NASA Astrophysics Data System (ADS)

    Drachuck, Gil; Boehmer, Anna; Bud'Ko, Sergey L.; Canfield, Paul

    Single crystals of RPd2P2 (R=Y, La-Nd, Sm-Ho, Yb) were grown using a self-flux method and were characterized by room-temperature powder X-ray diffraction, anisotropic temperature and field dependent magnetization and temperature dependent in-plane resistivity. Anisotropic magnetic properties, arising mostly from crystal electric field (CEF) effects, were observed for most magnetic rare earths. The experimentally estimated CEF parameters B02 were calculated from the anisotropic paramagnetic θab and θcvalues. Ordering temperatures, as well as the polycrystalline averaged paramagnetic Curie-Weiss temperature, θave, were extracted from magnetization and resistivity measurements. Work done at Ames Laboratory was supported by US Department of Energy, Basic Energy Sciences, Division of Materials Sciences and Engineering under Contract No. DE-AC02-07CH111358.

  7. Soft x-ray resonant diffraction study of magnetic structure in magnetoelectric Y-type hexaferrite

    NASA Astrophysics Data System (ADS)

    Ueda, H.; Tanaka, Y.; Wakabayashi, Y.; Kimura, T.

    2018-05-01

    The effect of magnetic field on the magnetic structure associated with magnetoelectric properties in a Y-type hexaferrite, Ba1.3Sr0.7CoZnFe11AlO22, was investigated by utilizing the soft x-ray resonant diffraction technique. In this hexaferrite, the so-called alternating longitudinal conical phase is stabilized at room temperature and zero magnetic field. Below room temperature, however, this phase is transformed into the so-called transverse conical phase by applying an in-plane magnetic field (≈ 0.3 T). The transverse conical phase persists even after removing the magnetic field. The magnetoelectricity, which is magnetically-induced electric polarization, observed in the hexaferrite is discussed in terms of the temperature-dependent magnetic structure at zero field.

  8. Maglev Facility for Simulating Variable Gravity

    NASA Technical Reports Server (NTRS)

    Liu, Yuanming; Strayer, Donald M.; Israelsson, Ulf E.

    2010-01-01

    An improved magnetic levitation apparatus ("Maglev Facility") has been built for use in experiments in which there are requirements to impose variable gravity (including zero gravity) in order to assess the effects of gravity or the absence thereof on physical and physiological processes. The apparatus is expected to be especially useful for experiments on the effects of gravity on convection, boiling, and heat transfer in fluids and for experiments on mice to gain understanding of bone loss induced in human astronauts by prolonged exposure to reduced gravity in space flight. The maglev principle employed by the apparatus is well established. Diamagnetic cryogenic fluids such as liquid helium have been magnetically levitated for studying their phase transitions and critical behaviors. Biological entities consist mostly of diamagnetic molecules (e.g., water molecules) and thus can be levitated by use of sufficiently strong magnetic fields having sufficiently strong vertical gradients. The heart of the present maglev apparatus is a vertically oriented superconducting solenoid electromagnet (see figure) that generates a static magnetic field of about 16 T with a vertical gradient sufficient for levitation of water in normal Earth gravity. The electromagnet is enclosed in a Dewar flask having a volume of 100 L that contains liquid helium to maintain superconductivity. The Dewar flask features a 66-mm-diameter warm bore, lying within the bore of the magnet, wherein experiments can be performed at room temperature. The warm bore is accessible from its top and bottom ends. The superconducting electromagnet is run in the persistent mode, in which the supercurrent and the magnetic field can be maintained for weeks with little decay, making this apparatus extremely cost and energy efficient to operate. In addition to water, this apparatus can levitate several common fluids: liquid hydrogen, liquid oxygen, methane, ammonia, sodium, and lithium, all of which are useful, variously, as rocket fuels or as working fluids for heat transfer devices. A drop of water 45 mm in diameter and a small laboratory mouse have been levitated in this apparatus.

  9. Electric-field control of magnetic properties for α-Fe2O3/Al2O3 films

    NASA Astrophysics Data System (ADS)

    Cheng, Bin; Qin, Hongwei; Liu, Liang; Xie, Jihao; Zhou, Guangjun; Chen, Lubin; Hu, Jifan

    2018-06-01

    α-Fe2O3/Al2O3 films can exhibit weak ferromagnetism at room temperature. The saturation magnetization of the thinner film is larger than that of the thick one deposited at the same temperature of 500 °C, which implies that the weak ferromagnetism at room temperature comes not only from the intrinsic canted magnetic structure, but also from the effects of interface between α-Fe2O3/Al2O3, such as the effect of Al diffusion into α-Fe2O3 film. Perpendicular electric field upon α-Fe2O3/Al2O3 film at room temperature could adjust the magnetic properties (saturation magnetization, magnetic remanence, coercivity and saturation magnetizing field). The positive electric field can enhance the magnetism of α-Fe2O3/Al2O3 thin film, while negative electric field can reduce it. The change induced by electric field may be connected with the migration effects of Al3+ ions. The steps of curve for saturation magnetization versus the electric field may reflect these complicated processes. The magnetization of the film deposited at a higher temperature can be changed by electric field more easily. This study may inspire more in-depth research and lead to an alternative approach to future magneto-electronic devices.

  10. Numerical analysis of the effect of non-uniformity of the magnetic field produced by a solenoid on temperature distribution during magnetic hyperthermia

    NASA Astrophysics Data System (ADS)

    Tang, Yun-dong; Flesch, Rodolfo C. C.; Zhang, Cheng; Jin, Tao

    2018-03-01

    Magnetic hyperthermia ablates malignant cells by the heat produced by power dissipation of magnetic nanoparticles (MNPs) under an alternating magnetic field. Most of the works in literature consider a uniform magnetic field for solving numerical models to estimate the temperature field during a hyperthermia treatment, however this assumption is generally not true in real circumstances. This paper considers the magnetic field produced by a solenoid and analyzes its effects on the treatment temperature. To that end, a set of partial differential equations is numerically solved for a specific tumor model using the finite element method and the obtained results are analyzed to draw general conclusions. The magnetic field inside the solenoid is obtained by using Maxwell's theory, and the treatment temperature of the tumor model is determined by using Rosensweig's theory and Pennes bio-heat transfer equation. Simulation results demonstrate that the temperature field obtained using a solenoid model is similar to that obtained considering a uniform magnetic field if tumor is centered with respect to solenoid and if the physical characteristics of solenoid are properly defined based on tumor volume. As the distance of tumor from the solenoid center is increased, the effects of non-uniformity of magnetic field become more evident and the adoption of the proposed model is necessary to obtain accurate results.

  11. A novel high temperature superconducting magnetic flux pump for MRI magnets

    NASA Astrophysics Data System (ADS)

    Bai, Zhiming; Yan, Guo; Wu, Chunli; Ding, Shufang; Chen, Chuan

    2010-10-01

    This paper presents a kind of minitype magnetic flux pump made of high temperature superconductor. This kind of novel high temperature superconducting (HTS) flux pump has not any mechanical revolving parts or thermal switches. The excitation current of copper coils in magnetic pole system is controlled by a singlechip. The structure design and operational principle have been described. The operating performance of the new model magnetic flux pump has been preliminarily tested. The experiments show that the maximum pumping current is approximately 200 A for Bi2223 flux pump and 80 A for MgB 2 flux pump operating at 20 K. By comparison, it is discovered that the operating temperature range is wider, the ripple is smaller and the pumping frequency is higher in Bi2223 flux pump than those in MgB 2 flux pump. These results indicate that the newly developed Bi2223 magnetic flux pump may efficiently compensate the magnetic field decay in HTS magnet and make the magnet operate in persistent current mode, this point is significant to the magnetic resonance imaging (MRI) magnets. This new flux pump is under construction presently. It is expected that the Bi2223 flux pump would be applied to the superconducting MRI magnets by further optimizing structure and improving working process.

  12. Method and Apparatus of Implementing a Magnetic Shield Flux Sweeper

    NASA Technical Reports Server (NTRS)

    Sadleir, John E. (Inventor)

    2018-01-01

    The present invention relates to a method and apparatus of protecting magnetically sensitive devices with a shield, including: a non-superconducting metal or lower transition temperature (T.sub.c) material compared to a higher transition temperature material, disposed in a magnetic field; means for creating a spatially varying order parameter's |.PSI.(r,T)|.sup.2 in a non-superconducting metal or a lower transition temperature material; wherein a spatially varying order parameter is created by a proximity effect, such that the non-superconducting metal or the lower transition temperature material becomes superconductive as a temperature is lowered, creating a flux-free Meissner state at a center thereof, in order to sweep magnetic flux lines to the periphery.

  13. Quasipermanent magnets of high temperature superconductor - Temperature dependence

    NASA Technical Reports Server (NTRS)

    Chen, In-Gann; Liu, Jianxiong; Ren, Yanru; Weinstein, Roy; Kozlowski, Gregory; Oberly, Charles E.

    1993-01-01

    We report on persistent field in quasi-permanent magnets of high temperature superconductors. Magnets composed of irradiated Y(1+)Ba2Cu3O7 trapped field Bt = 1.52 T at 77 K and 1.9 T at lower temperature. However, the activation magnet limited Bt at lower temperature. We present data on Jc(H,T) for unirradiated materials, and calculate Bt at various T. Based upon data at 65 K, we calculate Bt in unirradiated single grains at 20 K and find that 5.2 T will be trapped for grain diameter d about 1.2 cm, and 7.9 T for d = 2.3 cm. Irradiated grains will trap four times these values.

  14. Investigation of Dynamics in BMIM TFSA Ionic Liquid through Variable Temperature and Pressure NMR Relaxometry and Diffusometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pilar, Kartik; Rua, Armando; Suarez, Sophia N.

    A comprehensive variable temperature, pressure and frequency multinuclear ( 1H, 2H, and 19F) magnetic resonance study was undertaken on selectively deuterated 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide (BMIM TFSA) ionic liquid isotopologues. This study builds on our earlier investigation of the effects of increasing alkyl chain length on diffusion and dynamics in imidazolium-based TFSA ionic liquids. Fast field cycling 1H T 1 data revealed multiple modes of motion. Through calculation of diffusion coefficient (D) values and activation energies, the low- and high-field regimes were assigned to the translational and reorientation dynamics respectively. Variable-pressure 2H T 1 measurements reveal site-dependent interactions in the cation withmore » strengths in the order MD 3 > CD 3 > CD 2, indicating dissimilarities in the electric field gradients along the alkyl chain, with the CD 2 sites having the largest gradient. Additionally, the α saturation effect in T 1 vs. P was observed for all three sites, suggesting significant reduction of the short-range rapid reorientational dynamics. This reduction was also deduced from the variable pressure 1H T 1 data, which showed an approach to saturation for both the methyl and butyl group terminal methyl sites. Pressure-dependent D measurements show independent motions for both cations and anions, with the cations having greater D values over the entire pressure range.« less

  15. Investigation of Dynamics in BMIM TFSA Ionic Liquid through Variable Temperature and Pressure NMR Relaxometry and Diffusometry

    DOE PAGES

    Pilar, Kartik; Rua, Armando; Suarez, Sophia N.; ...

    2017-05-11

    A comprehensive variable temperature, pressure and frequency multinuclear ( 1H, 2H, and 19F) magnetic resonance study was undertaken on selectively deuterated 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide (BMIM TFSA) ionic liquid isotopologues. This study builds on our earlier investigation of the effects of increasing alkyl chain length on diffusion and dynamics in imidazolium-based TFSA ionic liquids. Fast field cycling 1H T 1 data revealed multiple modes of motion. Through calculation of diffusion coefficient (D) values and activation energies, the low- and high-field regimes were assigned to the translational and reorientation dynamics respectively. Variable-pressure 2H T 1 measurements reveal site-dependent interactions in the cation withmore » strengths in the order MD 3 > CD 3 > CD 2, indicating dissimilarities in the electric field gradients along the alkyl chain, with the CD 2 sites having the largest gradient. Additionally, the α saturation effect in T 1 vs. P was observed for all three sites, suggesting significant reduction of the short-range rapid reorientational dynamics. This reduction was also deduced from the variable pressure 1H T 1 data, which showed an approach to saturation for both the methyl and butyl group terminal methyl sites. Pressure-dependent D measurements show independent motions for both cations and anions, with the cations having greater D values over the entire pressure range.« less

  16. Investigating Trapped Particle Asymmetry Modes and Temperature Effects in the Lawrence Non-neutral Torus II

    NASA Astrophysics Data System (ADS)

    Nirwan, R.; Swanson, P.; Stoneking, M. R.

    2017-10-01

    Electron plasma is confined in the Lawrence Non-Neutral Torus II using a purely toroidal magnetic field (R0 = 18 cm, B < 1 kG) for confinement times exceeding 1 second. The LNT II can be configured for fully toroidal traps or variable-length partial toroidal traps. The behavior of the plasma is observed by monitoring the image charge on isolated wall sectors. The plasma is excited by application of a sinusoidal tone burst to selected wall sectors. Phase-space separatrices are introduced by applying squeeze potentials to toroidally localized, but poloidally continuous sectors and the resulting interaction between trapped and passing particles populations results in asymmetry modes and transport. These experiments provide a comparison with similar experiments in cylindrical traps. We also report on the development of temperature measurement techniques and assess temperature affects on diocotron and asymmetry modes. This work is supported by National Science Foundation Grant No. PHY-1202540.

  17. Peristalsis of nonconstant viscosity Jeffrey fluid with nanoparticles

    NASA Astrophysics Data System (ADS)

    Alvi, N.; Latif, T.; Hussain, Q.; Asghar, S.

    Mixed convective peristaltic activity of variable viscosity nanofluids is addressed. Unlike the conventional consideration of constant viscosity; the viscosity is taken as temperature dependent. Constitutive relations for linear viscoelastic Jeffrey fluid are employed and uniform magnetic field is applied in the transverse direction. For nanofluids, the formulation is completed in presence of Brownian motion, thermophoresis, viscous dissipation and Joule heating. Consideration of temperature dependence of viscosity is not a choice but the realistic requirement of the wall temperature and the heat generated due to the viscous dissipation. Well established large wavelength and small Reynolds number approximations are invoked. Non-linear coupled system is analytically solved for the convergent series solutions identifying the interval of convergence explicitly. A comparative study between analytical and numerical solution is made for certainty. Influence of the parameters undertaken for the description of the problem is pointed out and its physics explained.

  18. Thermal radiation and heat generation/absorption aspects in third grade magneto-nanofluid over a slendering stretching sheet with Newtonian conditions

    NASA Astrophysics Data System (ADS)

    Qayyum, Sajid; Hayat, Tasawar; Alsaedi, Ahmed

    2018-05-01

    Mathematical modeling for magnetohydrodynamic (MHD) radiative flow of third grade nano-material bounded by a nonlinear stretching sheet with variable thickness is introduced. The sheet moves with nonlinear velocity. Definitions of thermal radiation and heat generation/absorption are utilized in the energy expression. Intention in present investigation is to develop a model for nanomaterial comprising Brownian motion and thermophoresis phenomena. Newtonian conditions for heat and mass species are imposed. Governing equations of the locally similar flow are attempted through a homotopic technique and behaviors of involved variables on the flow fields are displayed graphically. It is revealed that increasing values of thermal conjugate variable corresponds to high temperature. Numerical investigation are explored to obtain the results of skin friction coefficient and local Nusselt and Sherwood numbers. It is revealed that velocity field reduces in the frame of magnetic variable while reverse situation is observed due to mixed convection parameter. Here qualitative behaviors of thermal field and heat transfer rate are opposite for thermophoresis variable. Moreover nanoparticle concentration and local Sherwood number via Brownian motion parameter are opposite.

  19. Preparation and characterization of temperature-responsive magnetic composite particles for multi-modal cancer therapy.

    PubMed

    Yao, Aihua; Chen, Qi; Ai, Fanrong; Wang, Deping; Huang, Wenhai

    2011-10-01

    The temperature-responsive magnetic composite particles were synthesized by emulsion-free polymerization of N-isopropylacrylamide (NIPAAm) and acrylamide (Am) in the presence of oleic acid-modified Fe(3)O(4) nanoparticles. The magnetic properties and heat generation ability of the composite particles were characterized. Furthermore, temperature and alternating magnetic field (AMF) triggered drug release behaviors of vitamin B(12)-loaded composite particles were also examined. It was found that composite particles enabled drug release to be controlled through temperature changes in the neighborhood of lower critical solution temperature. Continuous application of AMF resulted in an accelerated release of the loaded drug. On the other hand, intermittent AMF application to the composite particles resulted in an "on-off", stepwise release pattern. Longer release duration and larger overall release could be achieved by intermittent application of AMF as compared to continuous magnetic field. Such composite particles may be used for magnetic drug targeting followed by simultaneous hyperthermia and drug release.

  20. Influence of Chromium Doping on Electrical and Magnetic Behavior of Nd0.5Sr0.5MnO3 System

    NASA Astrophysics Data System (ADS)

    Lalitha, G.; Pavan Kumar, N.; Venugopal Reddy, P.

    2018-04-01

    With a view to understand the influence of chromium doping at the Mn site on the electrical and magnetic behavior of the Nd0.5Sr0.5MnO3 manganite system, a series of samples were prepared by the citrate sol-gel route method. The samples were characterized structurally by XRD. A systematic investigation of electrical resistivity over a temperature range 5-300 K was carried out mainly to understand the magneto-transport behavior in these materials. Studies on the variation of magnetization with temperature over a temperature range 80-330 K were undertaken. Investigation of magnetization at different magnetic fields at two different temperatures, viz. 80 and 300 K, was also carried out. The results show that chromium doping gave typical electrical and magnetic properties. It has been concluded that the coexistence of charge ordered and ferromagnetic phases induced by chromium doping plays an important role in the low-temperature behavior of the system.

  1. High temperature electrons exhausted from rf plasma sources along a magnetic nozzle

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazunori; Akahoshi, Hikaru; Charles, Christine; Boswell, Rod W.; Ando, Akira

    2017-08-01

    Two dimensional profiles of electron temperature are measured inside and downstream of a radiofrequency plasma thruster source having a magnetic nozzle and being immersed in vacuum. The temperature is estimated from the slope of the fully swept I-V characteristics of a Langmuir probe acquired at each spatial position and with the assumption of a Maxwellian distribution. The results show that the peripheral high temperature electrons in the magnetic nozzle originate from the upstream antenna location and are transported along the "connecting" magnetic field lines. Two-dimensional measurements of electron energy probability functions are also carried out in a second simplified laboratory device consisting of the source contiguously connected to the diffusion chamber: again the high temperature electrons are detected along the magnetic field lines intersecting the wall at the antenna location, even when the antenna location is shifted along the main axis. These results demonstrate that the peripheral energetic electrons in the magnetic nozzle mirror those created in the source tube.

  2. M-H characteristics and demagnetization resistance of samarium-cobalt permanent magnets to 300 C

    NASA Technical Reports Server (NTRS)

    Niedra, J. M.

    1992-01-01

    The influence of temperature on the M-H demagnetization characteristics of permanent magnets is important information for the full utilization of the capabilities of samarium-cobalt magnets at high temperatures in demagnetization-resistant permanent magnet devices. In high temperature space power converters, such as free-piston Stirling engine driven linear alternators, magnet demagnetization can occur as long-term consequence of thermal agitation of domains and of metallurgical change, and also as an immediate consequence of too large an applied field. Investigated here is the short-term demagnetization resistance to applied fields derived from basic M-H data. These quasistatic demagnetization data were obtained for commercial, high-intrinsic-coercivity, Sm2Co17-type magnets from 5 sources, in the temperature range 23 to 300 C. An electromagnet driven, electronic hysteresigraph was used to test the 1-cm cubic samples. The observed variation of the 2nd quadrant M-H characteristics was a typical rapid loss of M-coercivity and a relatively lesser loss of remanence with increasing temperature.

  3. Effect of temperature variations and thermal noise on the static and dynamic behavior of straintronics devices

    NASA Astrophysics Data System (ADS)

    Barangi, Mahmood; Mazumder, Pinaki

    2015-11-01

    A theoretical model quantifying the effect of temperature variations on the magnetic properties and static and dynamic behavior of the straintronics magnetic tunneling junction is presented. Four common magnetostrictive materials (Nickel, Cobalt, Terfenol-D, and Galfenol) are analyzed to determine their temperature sensitivity and to provide a comprehensive database for different applications. The variations of magnetic anisotropies are studied in detail for temperature levels up to the Curie temperature. The energy barrier of the free layer and the critical voltage required for flipping the magnetization vector are inspected as important metrics that dominate the energy requirements and noise immunity when the device is incorporated into large systems. To study the dynamic thermal noise, the effect of the Langevin thermal field on the free layer's magnetization vector is incorporated into the Landau-Lifshitz-Gilbert equation. The switching energy, flipping delay, write, and hold error probabilities are studied, which are important metrics for nonvolatile memories, an important application of the straintronics magnetic tunneling junctions.

  4. 3D Printing of Polymer-Bonded Rare-Earth Magnets With a Variable Magnetic Compound Fraction for a Predefined Stray Field.

    PubMed

    Huber, Christian; Abert, Claas; Bruckner, Florian; Groenefeld, Martin; Schuschnigg, Stephan; Teliban, Iulian; Vogler, Christoph; Wautischer, Gregor; Windl, Roman; Suess, Dieter

    2017-08-25

    Additive manufacturing of polymer-bonded magnets is a recently developed technique, for single-unit production, and for structures that have been impossible to manufacture previously. Also, new possibilities to create a specific stray field around the magnet are triggered. The current work presents a method to 3D print polymer-bonded magnets with a variable magnetic compound fraction distribution. This means the saturation magnetization can be adjusted during the printing process to obtain a required external field of the manufactured magnets. A low-cost, end-user 3D printer with a mixing extruder is used to mix permanent magnetic filaments with pure polyamide (PA12) filaments. The magnetic filaments are compounded, extruded, and characterized for the printing process. To deduce the quality of the manufactured magnets with a variable magnetic compound fraction, an inverse stray field framework is developed. The effectiveness of the printing process and the simulation method is shown. It can also be used to manufacture magnets that produce a predefined stray field in a given region. This opens new possibilities for magnetic sensor applications. This setup and simulation framework allows the design and manufacturing of polymer-bonded permanent magnets, which are impossible to create with conventional methods.

  5. Magnetic Materials Characterization and Modeling for the Enhanced Design of Magnetic Shielding of Cryomodules in Particle Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sah, Sanjay

    Particle accelerators produce beams of high-energy particles, which are used for both fundamental and applied scientific research and are critical to the development of accelerator driven sub-critical reactor systems. An effective magnetic shield is very important to achieve higher quality factor (Qo) of the cryomodule of a particle accelerator. The allowed value of field inside the cavity due to all external fields (particularly the Earth’s magnetic field) is ~15 mG or less. The goal of this PhD dissertation is to comprehensively study the magnetic properties of commonly used magnetic shielding materials at both cryogenic and room temperatures. This knowledge canmore » be used for the enhanced design of magnetic shields of cryomodes (CM) in particle accelerators. To this end, we first studied the temperature dependent magnetization behavior (M-H curves) of Amumetal and A4K under different annealing and deformation conditions. This characterized the effect of stress or deformation induced during the manufacturing processes and subsequent restoration of high permeability with appropriate heat treatment. Next, an energy based stochastic model for temperature dependent anhysteretic magnetization behavior of ferromagnetic materials was proposed and benchmarked against experimental data. We show that this model is able to simulate and explain the magnetic behavior of as rolled, deformed and annealed amumetal and A4K over a large range of temperatures. The experimental results for permeability are then used in a finite element model (FEM) in COMSOL to evaluate the shielding effectiveness of multiple shield designs at room temperature as well as cryogenic temperature. This work could serve as a guideline for future design, development and fabrication of magnetic shields of CMs.« less

  6. Evolution of structural, magnetic and transport behavior by Pr doping in SrRuO3

    NASA Astrophysics Data System (ADS)

    Gupta, Renu; Pramanik, A. K.

    2018-05-01

    Here we report the evolution of structural, magnetic and transport behavior in perovskite based ruthenates Sr1-xPrxRuO3 (x=0.0 and 0.1). The substitution of Pr on Sr site retains orthorhombic structure while we find the slight change in structural parameters. The SrRuO3 has itinerant ferromagnet (FM) type nature of ordering temperature ˜160 K and below the transition temperature showing large bifurcation between ZFC and FC magnetization. By Pr doping, the magnetic moment decreases with decreasing bifurcation of ZFC and FC. The ZFC data show three distinct peaks (three transition temperature; TM1,TM2 and TM3). The magnetization study of both the samples, at high temperature fitted with modified CWL showing the decreasing value of ordering temperature by Pr doping matches close to TM2. The low-temperature isothermal magnetization M (H) data show that the high field saturation moment has decreased by Pr doping. The Arrott plot gives spontaneous magnetization (Ms) which is also decreased by Pr substitution. Evolution of Rhodes-Wohlfarth ratio value increases, which suggests that FM in this system evolves toward the more itinerant type by Pr doping. The electrical resistivity ρ(T) of both the samples show metallic behavior, in the all temperature range and ρ(T) increases by Pr doping while around below 45 K, the resistivity decreases by Pr doping and this crossing temperature also matches with ZFC data.

  7. PALOMA: A Magnetic CV between Polars and Intermediate Polars

    NASA Astrophysics Data System (ADS)

    Joshi, Arti; Pandey, J. C.; Singh, K. P.; Agrawal, P. C.

    2016-10-01

    We present analyses of archival X-ray data obtained from the XMM-Newton satellite and optical photometric data obtained from 1 m class telescopes of ARIES, Nainital of a magnetic cataclysmic variable (MCV) Paloma. Two persistent periods at 156 ± 1 minutes and 130 ± 1 minutes are present in the X-ray data, which we interpret as the orbital and spin periods, respectively. These periods are similar to those obtained from the previous as well as new optical photometric observations. The soft-X-ray excess seen in the X-ray spectrum of Paloma and the averaged X-ray spectra are well fitted by two-temperature plasma models with temperatures of {0.10}-0.01+0.02 and {13.0}-0.5+0.5 keV with an Fe Kα line and an absorbing column density of 4.6 × 1022 cm-2. This material partially covers 60 ± 2% of the X-ray source. We also present the orbital and spin-phase-resolved spectroscopy of Paloma in the 0.3{--}10.0 {keV} energy band and find that the X-ray spectral parameters show orbital and spin-phase dependencies. New results obtained from optical and X-ray studies of Paloma indicate that it belongs to a class of a few magnetic CVs that seem to have the characteristics of both the polars and the intermediate polars.

  8. A Dual Operational Refrigerator/Flow Cryostat with Wide Bore Medium Field Magnet for Application Demonstration

    NASA Astrophysics Data System (ADS)

    Young, E. A.; Bailey, W. O. S.; Al-Mosawi, M. K.; Beduz, C.; Yang, Y.; Chappell, S.; Twin, A.

    Since stand alone cryocooler systems have become more widely available, there has been increased commercial interest in superconductor applications in the temperature range intermediate to liquid helium and liquid nitrogen. There are however few facilities that have large in-field bore size with variable temperatures. A large bore system can reduce costs associated with full scale demonstration magnets by testing smaller coils and qualify medium length (up to meters) conductors. A 5 T, wide bore, (170 mm) Nb3Sn Oxford Instrument magnet has been integrated into a custom built dual mode refrigerator/helium flow cryostat with 600A HTS current leads. In one mode the system can be used with zero field without cost of liquid helium relying for cooling on a Sumitomo GM cryocooler with 1.5W at 4.2K: (no He) this can be used either as the sole characterisation method, or as a preliminary check before more expensive and extensive measurements are taken. The first measurements using MgB2 wire from 10 to 20K were made using a transient current step of ∼5s duration, as opposed to a DC measurement. This has the advantage of not requiring thermal equilibrium to be achieved at nominal current. The feasibility of this technique for determining critical transport properties is discussed.

  9. Low-temperature magnetic refrigerator

    DOEpatents

    Barclay, J.A.

    1983-05-26

    The invention relates to magnetic refrigeration and more particularly to low temperature refrigeration between about 4 and about 20 K, with an apparatus and method utilizing a belt of magnetic material passed in and out of a magnetic field with heat exchangers within and outside the field operably disposed to accomplish refrigeration.

  10. Magnetic-Flux-Compression Cooling Using Superconductors

    NASA Technical Reports Server (NTRS)

    Strayer, Donald M.; Israelsson, Ulf E.; Elleman, Daniel D.

    1989-01-01

    Proposed magnetic-flux-compression refrigeration system produces final-stage temperatures below 4.2 K. More efficient than mechanical and sorption refrigerators at temperatures in this range. Weighs less than comparable liquid-helium-cooled superconducting magnetic refrigeration systems operating below 4.2 K. Magnetic-flux-compression cooling stage combines advantages of newly discovered superconductors with those of cooling by magnetization and demagnetization of paramagnetic salts.

  11. Measurement of temperature changes in cooling dead rats using magnetic resonance thermometry.

    PubMed

    Kuribayashi, Hideto; Cui, Fanlai; Hirakawa, Keiko; Kanawaku, Yoshimasa; Ohno, Youkichi

    2011-11-01

    Magnetic resonance imaging thermometry has been introduced as a technique for measurement of temperature changes in cooling dead rats. Rat pelvic magnetic resonance images were acquired sequentially more than 2h after euthanasia by halothane overdose. A series of temperature difference maps in cooling dead rats was obtained with calculating imaging phase changes induced by the water proton frequency shift caused by temperature changes. Different cooling processes were monitored by the temperature difference maps in the rats. Magnetic resonance imaging thermometry applied in the study of laboratory animals could theoretically reproduce a variety of causes of death with different environmental conditions. Outcomes from experimental animal studies could be translated into a temperature-based time of death estimation in forensics. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  12. The effect of temperature on the average volume of Barkhausen jump on Q235 carbon steel

    NASA Astrophysics Data System (ADS)

    Guo, Lei; Shu, Di; Yin, Liang; Chen, Juan; Qi, Xin

    2016-06-01

    On the basis of the average volume of Barkhausen jump (AVBJ) vbar generated by irreversible displacement of magnetic domain wall under the effect of the incentive magnetic field on ferromagnetic materials, the functional relationship between saturation magnetization Ms and temperature T is employed in this paper to deduce the explicit mathematical expression among AVBJ vbar, stress σ, incentive magnetic field H and temperature T. Then the change law between AVBJ vbar and temperature T is researched according to the mathematical expression. Moreover, the tensile and compressive stress experiments are carried out on Q235 carbon steel specimens at different temperature to verify our theories. This paper offers a series of theoretical bases to solve the temperature compensation problem of Barkhausen testing method.

  13. The conformation of the monomethyl ethers of methyl beta-lactoside in D2O and Me2SO-d6 solutions.

    PubMed

    Fernández, P; Jiménez-Barbero, J

    1993-10-04

    The solution conformations of all the possible monomethyl ethers of methyl beta-lactoside have been analysed using molecular mechanics and dynamics calculations and nuclear magnetic resonance data (variable temperature and NOE experiments). The overall shape of all the compounds studied is fairly similar and may be described by conformers included in a low-energy region with phi = -100 +/- 40 degrees and psi = -135 +/- 35 degrees, which is ca. 5% of the total potential energy surface for the glycosidic linkages of the disaccharides.

  14. An "intermediate spin" nickel hydride complex stemming from delocalized Ni2(μ-H)2 bonding.

    PubMed

    Yao, Shu A; Corcos, Amanda R; Infante, Ivan; Hillard, Elizabeth A; Clérac, Rodolphe; Berry, John F

    2014-10-01

    The nickel hydride complex [Cp'Ni(μ-H)]2 (1, Cp' = 1,2,3,4-tetraisopropylcyclopentadienyl) is found to have a strikingly short Ni-Ni distance of 2.28638(3) Å. Variable temperature and field magnetic measurements indicate an unexpected triplet ground state for 1 with a large zero-field splitting of +90 K (63 cm(-1)). Electronic structure calculations (DFT and CASSCF/CASPT2) explain this ground state as arising from half occupation of two nearly degenerate Ni-Ni π* orbitals.

  15. Exponential blocking-temperature distribution in ferritin extracted from magnetization measurements

    NASA Astrophysics Data System (ADS)

    Lee, T. H.; Choi, K.-Y.; Kim, G.-H.; Suh, B. J.; Jang, Z. H.

    2014-11-01

    We developed a direct method to extract the zero-field zero-temperature anisotropy energy barrier distribution of magnetic particles in the form of a blocking-temperature distribution. The key idea is to modify measurement procedures slightly to make nonequilibrium magnetization calculations (including the time evolution of magnetization) easier. We applied this method to the biomagnetic molecule ferritin and successfully reproduced field-cool magnetization by using the extracted distribution. We find that the resulting distribution is more like an exponential type and that the distribution cannot be correlated simply to the widely known log-normal particle-size distribution. The method also allows us to determine the values of the zero-temperature coercivity and Bloch coefficient, which are in good agreement with those determined from other techniques.

  16. Growth, and magnetic study of Sm0.4Er0.6FeO3 single crystal grown by optical floating zone technique

    NASA Astrophysics Data System (ADS)

    Wu, Anhua; Zhao, Xiangyang; Man, Peiwen; Su, Liangbi; Kalashnikova, A. M.; Pisarev, R. V.

    2018-03-01

    Sm0.4Er0.6FeO3 single crystals were successfully grown by optical floating zone method; high quality samples with various orientations were manufactured. Based on these samples, Magnetic property of Sm0.4Er0.6FeO3 single crystals were investigated systemically by means of the temperature dependence of magnetization. It indicated that compositional variations not only alter the spin reorientation temperature, but also the compensation temperature of the orthoferrites. Unlike single rare earth orthoferrites, the reversal transition temperature point of Sm0.4Er0.6FeO3 increases as magnetic field increases, which is positive for designing novel spin switching or magnetic sensor device.

  17. Room-temperature observation and current control of skyrmions in Pt/Co/Os/Pt thin films

    NASA Astrophysics Data System (ADS)

    Tolley, R.; Montoya, S. A.; Fullerton, E. E.

    2018-04-01

    We report the observation of room-temperature magnetic skyrmions in Pt/Co/Os/Pt thin-film heterostructures and their response to electric currents. The magnetic properties are extremely sensitive to inserting thin Os layers between the Co-Pt interface, resulting in reduced saturation magnetization, magnetic anisotropy, and Curie temperature. The observed skyrmions exist in a narrow temperature, applied-field and layer-thickness range near the spin-reorientation transition from perpendicular to in-plane magnetic anisotropy. The skyrmions have an average diameter of 2.3 μ m and transport measurements demonstrate these features can be displaced by means of spin-orbit torques with current densities as low as J =2 ×108A / m2 and display a skyrmion Hall effect.

  18. High-resolution rock-magnetic variability in shallow marine sediment: a sensitive paleoclimatic metronome

    NASA Astrophysics Data System (ADS)

    Arai, Kohsaku; Sakai, Hideo; Konishi, Kenji

    1997-05-01

    An outer shelf deposit in central Japan centered on the Olduvai normal polarity event in the reversed Matuyama chron reveals a close correlation of both the magnetic susceptibility and remanent intensity with the sedimentary cyclicities apparent in lithologies and molluscan assemblages. Two sedimentary cycles are characterized by distinctly similar, but double-peaked magnetic cyclicities. The rock-magnetic variability is primarily attributed to the relative abundance of terrigenous magnetic minerals, and the double peak of the variability is characterized by the concentration of finer-grained magnetic minerals. The concentration is suspected to be controlled by both climatic change and shifting proximity of the shoreline as a function of rise and fall of the sea level due to glacio-eustasy. Rock-magnetic study reveals the record of a 21 ka period of orbital precession cycles within the sedimentary cyclicity attributable to a 41 ka period of orbital obliquity forcing.

  19. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration.

    PubMed

    Rodrigues, Harley F; Mello, Francyelli M; Branquinho, Luis C; Zufelato, Nicholas; Silveira-Lacerda, Elisângela P; Bakuzis, Andris F

    2013-12-01

    Magnetic nanoparticle hyperthermia consists of an increase of the temperature of magnetic nanoparticles (heat centres) due to the interaction of their magnetic moments with an alternating magnetic field. In vivo experiments using this method usually use a few fibre-optic thermometers inserted in the animal body to monitor the heat deposition. As a consequence, only a few points of the 3D temperature distribution can be monitored by this invasive procedure. It is the purpose of this work to show that non-invasive infrared thermography is able to detect, in real time, magnetic nanoparticle hyperthermia as well as monitor the harmful field-induced eddy currents in a murine model with a subcutaneous tumour. This surface temperature measurement method has the potential to give information about the intratumoral temperature. The non-invasive magnetic hyperthermia experiments were performed at 300 kHz in non-uniform field configuration conditions in healthy mice and murine tumour induced by sarcoma S180. A soft ferrite-based biocompatible magnetic colloid consisting of manganese-ferrite nanoparticles surface-coated with citric acid were used in the experiments, which were extensively characterised by several techniques (transmission electron microscopy (TEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM)). The amplitude of the alternating magnetic fields was obtained from measurements using an AC field probe at similar experimental conditions. The temperature measurements were obtained from an infrared thermal camera and a fibre-optic thermometer. Three-minute magnetic hyperthermia experiments revealed surface temperature increase as high as 11 °K in healthy and (5 °K in S180 tumour) animals when injecting subcutaneously 2 mg of magnetic nanoparticles (86 μL of magnetic fluid), in contrast to around 1.5 °K (for healthy) and 2.5 °K (for cancerous) animals in experiments without the colloid due to field-induced eddy currents at the animal surface. The thermographic temperature measurements were found to agree with the fibre-optic measurements within a 5% error, and were associated with the skin emissivity angle of dependence in the experimental set-up. On the other hand, a 30-min magnetic nanoparticle hyperthermia revealed surface temperature increases as high as 12 °K close to the injection site, while above 2-3 cm no significant temperature increase was observed. Curiously, the intratumoral temperature, monitored by a fibre-optic sensor, was found to be almost the same as the thermal camera surface temperature after achieving an equilibrium temperature regime. From the observed isotherms at the animal surface, using an analytical heat conduction model, taking into account surface conductance, we estimate a magnetic heating power of 0.45 W/cm(3) and a specific loss power (SLP) of 85 W/g for a field of the order of only 10 kA/m at the injection site region. The results indicate that infrared thermography may be a promising tool for both early cancer detection and for hyperthermia treatment (at least for subcutaneous tumours), since the method permits access to information about the intratumoral temperature during a real-time magnetic hyperthermia as well as to estimate the in vivo nanoparticles SLP.

  20. Magnetic signature of river sediments drained into the southern and eastern part of the South China Sea (Malay Peninsula, Sumatra, Borneo, Luzon and Taiwan)

    NASA Astrophysics Data System (ADS)

    Kissel, Catherine; Liu, Zhifei; Li, Jinhua; Wandres, Camille

    2017-01-01

    Magnetic properties of 22 river samples collected in the Malay Peninsula, Sumatra, Borneo, Luzon and Taiwan have been investigated in order to magnetically characterize the sediments drained and deposited into the South China Sea. The geological formations as well as the present climatic conditions are different from one region to another. Laboratory analyses include low-field magnetic susceptibility, anhysteretic (ARM) and isothermal (IRM) remanent magnetizations acquisition and decay, back-field acquisition, thermal demagnetization of three-axes IRM, hysteresis cycles and low-temperature magnetic measurements. The magnetic properties indicate that the sediments are a mixture of hematite, magnetite and pyrrhotite in different proportions depending on the region. Combined with results previously reported for the three main Asian rivers (Pearl, Red and Mekong rivers), the new data indicate that, in general, hematite-rich sediments are delivered to the southern basin of the South China Sea while the northern basin is fed with magnetite and pyrrhotite-rich sediments. In addition to this general picture, some variability is observed at smaller geographic scales. Indeed, the magnetic assemblages are closely related to the geology of the various catchments while clay minerals, previously reported for the same samples, are more representative of the climatic conditions under which the parent rocks have evolved within each catchment. The magnetic fraction, now well characterized in the main river sediments drained into the South China Sea, can be used as a tracer for changes in precipitation on land and in oceanic water mass transport and exchange.

Top