Zamani Nejad, Mohammad; Jabbari, Mehdi; Ghannad, Mehdi
2014-01-01
Using disk form multilayers, a semi-analytical solution has been derived for determination of displacements and stresses in a rotating cylindrical shell with variable thickness under uniform pressure. The thick cylinder is divided into disk form layers form with their thickness corresponding to the thickness of the cylinder. Due to the existence of shear stress in the thick cylindrical shell with variable thickness, the equations governing disk layers are obtained based on first-order shear deformation theory (FSDT). These equations are in the form of a set of general differential equations. Given that the cylinder is divided into n disks, n sets of differential equations are obtained. The solution of this set of equations, applying the boundary conditions and continuity conditions between the layers, yields displacements and stresses. A numerical solution using finite element method (FEM) is also presented and good agreement was found.
Zamani Nejad, Mohammad; Jabbari, Mehdi; Ghannad, Mehdi
2014-01-01
Using disk form multilayers, a semi-analytical solution has been derived for determination of displacements and stresses in a rotating cylindrical shell with variable thickness under uniform pressure. The thick cylinder is divided into disk form layers form with their thickness corresponding to the thickness of the cylinder. Due to the existence of shear stress in the thick cylindrical shell with variable thickness, the equations governing disk layers are obtained based on first-order shear deformation theory (FSDT). These equations are in the form of a set of general differential equations. Given that the cylinder is divided into n disks, n sets of differential equations are obtained. The solution of this set of equations, applying the boundary conditions and continuity conditions between the layers, yields displacements and stresses. A numerical solution using finite element method (FEM) is also presented and good agreement was found. PMID:24719582
NASA Astrophysics Data System (ADS)
Hayat, Tasawar; Nazar, Hira; Imtiaz, Maria; Alsaedi, Ahmed
2017-06-01
The present analysis describes the magnetohydrodynamic (MHD) axisymmetric flow of a viscous fluid due to a rotating disk with variable thickness. An electrically conducting fluid fills the porous space. The first-order chemical reaction is considered. The equations of the present problem representing the flow of a fluid are reduced into nonlinear ordinary differential equations. Convergent series solutions are obtained. The impacts of the various involved dimensionless parameters on fluid flow, temperature, concentration, skin frction coefficient and Nusselt number are examined. The radial, tangential and axial components of velocity are affected in a similar manner on changing the thickness coefficient of the disk. Similar effects of the disk thickness coefficient are observed for both the temperature and concentration profile.
2014-01-01
Purpose. Optical coherence tomography (OCT) has been used to investigate papilledema in single-site, mostly retrospective studies. We investigated whether spectral-domain OCT (SD-OCT), which provides thickness and volume measurements of the optic nerve head and retina, could reliably demonstrate structural changes due to papilledema in a prospective multisite clinical trial setting. Methods. At entry, 126 subjects in the Idiopathic Intracranial Hypertension Treatment Trial (IIHTT) with mild visual field loss had optic disc and macular scans, using the Cirrus SD-OCT. Images were analyzed by using the proprietary commercial and custom 3D-segmentation algorithms to calculate retinal nerve fiber layer (RNFL), total retinal thickness (TRT), optic nerve head volume (ONHV), and retinal ganglion cell layer (GCL) thickness. We evaluated variability, with interocular comparison and correlation between results for both methods. Results. The average RNFL thickness > 95% of normal controls in 90% of eyes and the RNFL, TRT, ONH height, and ONHV showed strong (r > 0.8) correlations for interocular comparisons. Variability for repeated testing of OCT parameters was low for both methods and intraclass correlations > 0.9 except for the proprietary GCL thickness. The proprietary algorithm–derived RNFL, TRT, and GCL thickness measurements had failure rates of 10%, 16%, and 20% for all eyes respectively, which were uncommon with 3D-segmentation–derived measurements. Only 7% of eyes had GCL thinning that was less than fifth percentile of normal age-matched control eyes by both methods. Conclusions. Spectral-domain OCT provides reliable continuous variables and quantified assessment of structural alterations due to papilledema. (ClinicalTrials.gov number, NCT01003639.) PMID:25370510
Goldmann tonometer error correcting prism: clinical evaluation.
McCafferty, Sean; Lim, Garrett; Duncan, William; Enikov, Eniko T; Schwiegerling, Jim; Levine, Jason; Kew, Corin
2017-01-01
Clinically evaluate a modified applanating surface Goldmann tonometer prism designed to substantially negate errors due to patient variability in biomechanics. A modified Goldmann prism with a correcting applanation tonometry surface (CATS) was mathematically optimized to minimize the intraocular pressure (IOP) measurement error due to patient variability in corneal thickness, stiffness, curvature, and tear film adhesion force. A comparative clinical study of 109 eyes measured IOP with CATS and Goldmann prisms. The IOP measurement differences between the CATS and Goldmann prisms were correlated to corneal thickness, hysteresis, and curvature. The CATS tonometer prism in correcting for Goldmann central corneal thickness (CCT) error demonstrated a reduction to <±2 mmHg in 97% of a standard CCT population. This compares to only 54% with CCT error <±2 mmHg using the Goldmann prism. Equal reductions of ~50% in errors due to corneal rigidity and curvature were also demonstrated. The results validate the CATS prism's improved accuracy and expected reduced sensitivity to Goldmann errors without IOP bias as predicted by mathematical modeling. The CATS replacement for the Goldmann prism does not change Goldmann measurement technique or interpretation.
Using topsoil thickness to improve site-specific phosphorus and potassium management on claypan soil
USDA-ARS?s Scientific Manuscript database
Precise P and K fertilizer management on claypan soils can be difficult due to variable topsoil thickness, or depth to claypan (DTC), across landscapes, nutrient supply from subsoils, and crop removal. Therefore, a study was performed to determine if DTC could be used to improve P and K management f...
NASA Astrophysics Data System (ADS)
Hayat, Tasawar; Qayyum, Sajid; Alsaedi, Ahmed; Ahmad, Bashir
2018-05-01
Main objective of present analysis is to study the magnetohydrodynamic (MHD) nonlinear convective flow of thixotropic nanofluid. Flow is due to nonlinear stretching surface with variable thickness. Nonlinear thermal radiation and heat generation/absorption are utilized in the energy expression. Convective conditions and zero mass flux at sheet are considered. Intention in present analysis is to develop a model for nanomaterial comprising Brownian motion and thermophoresis phenomena. Appropriate transformations are implemented for the conversion of partial differential systems into a sets of ordinary differential equations. The transformed expressions have been scrutinized through homotopic algorithm. Behavior of various sundry variables on velocity, temperature, nanoparticle concentration, skin friction coefficient and local Nusselt number are displayed through graphs. It is concluded that qualitative behaviors of temperature and thermal layer thickness are similar for radiation and temperature ratio variables. Moreover an enhancement in heat generation/absorption show rise to thermal field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunke, Michael A.; Broxton, Patrick; Pelletier, Jon
2016-05-01
One of the recognized weaknesses of land surface models as used in weather and climate models is the assumption of constant soil thickness due to the lack of global estimates of bedrock depth. Using a 30 arcsecond global dataset for the thickness of relatively porous, unconsolidated sediments over bedrock, spatial variation in soil thickness is included here in version 4.5 of the Community Land Model (CLM4.5). The number of soil layers for each grid cell is determined from the average soil depth for each 0.9° latitude x 1.25° longitude grid cell. Including variable soil thickness affects the simulations most inmore » regions with shallow bedrock corresponding predominantly to areas of mountainous terrain. The greatest changes are to baseflow, with the annual minimum generally occurring earlier, while smaller changes are seen in surface fluxes like latent heat flux and surface runoff in which only the annual cycle amplitude is increased. These changes are tied to soil moisture changes which are most substantial in locations with shallow bedrock. Total water storage (TWS) anomalies do not change much over most river basins around the globe, since most basins contain mostly deep soils. However, it was found that TWS anomalies substantially differ for a river basin with more mountainous terrain. Additionally, the annual cycle in soil temperature are affected by including realistic soil thicknesses due to changes to heat capacity and thermal conductivity.« less
Towards decadal time series of Arctic and Antarctic sea ice thickness from radar altimetry
NASA Astrophysics Data System (ADS)
Hendricks, S.; Rinne, E. J.; Paul, S.; Ricker, R.; Skourup, H.; Kern, S.; Sandven, S.
2016-12-01
The CryoSat-2 mission has demonstrated the value of radar altimetry to assess the interannual variability and short-term trends of Arctic sea ice over the existing observational record of 6 winter seasons. CryoSat-2 is a particular successful mission for sea ice mass balance assessment due to its novel radar altimeter concept and orbit configuration, but radar altimetry data is available since 1993 from the ERS-1/2 and Envisat missions. Combining these datasets promises a decadal climate data record of sea ice thickness, but inter-mission biases must be taken into account due to the evolution of radar altimeters and the impact of changing sea ice conditions on retrieval algorithm parametrizations. The ESA Climate Change Initiative on Sea Ice aims to extent the list of data records for Essential Climate Variables (ECV's) with a consistent time series of sea ice thickness from available radar altimeter data. We report on the progress of the algorithm development and choices for auxiliary data sets for sea ice thickness retrieval in the Arctic and Antarctic Oceans. Particular challenges are the classification of surface types and freeboard retrieval based on radar waveforms with significantly varying footprint sizes. In addition, auxiliary data sets, e.g. for snow depth, are far less developed in the Antarctic and we will discuss the expected skill of the sea ice thickness ECV's in both hemispheres.
NASA Astrophysics Data System (ADS)
Gallet, Jean-Charles; Merkouriadi, Ioanna; Liston, Glen E.; Polashenski, Chris; Hudson, Stephen; Rösel, Anja; Gerland, Sebastian
2017-10-01
Snow is crucial over sea ice due to its conflicting role in reflecting the incoming solar energy and reducing the heat transfer so that its temporal and spatial variability are important to estimate. During the Norwegian Young Sea ICE (N-ICE2015) campaign, snow physical properties and variability were examined, and results from April until mid-June 2015 are presented here. Overall, the snow thickness was about 20 cm higher than the climatology for second-year ice, with an average of 55 ± 27 cm and 32 ± 20 cm on first-year ice. The average density was 350-400 kg m-3 in spring, with higher values in June due to melting. Due to flooding in March, larger variability in snow water equivalent was observed. However, the snow structure was quite homogeneous in spring due to warmer weather and lower amount of storms passing over the field camp. The snow was mostly consisted of wind slab, faceted, and depth hoar type crystals with occasional fresh snow. These observations highlight the more dynamic character of evolution of snow properties over sea ice compared to previous observations, due to more variable sea ice and weather conditions in this area. The snowpack was isothermal as early as 10 June with the first onset of melt clearly identified in early June. Based on our observations, we estimate than snow could be accurately represented by a three to four layers modeling approach, in order to better consider the high variability of snow thickness and density together with the rapid metamorphose of the snow in springtime.
Belsey, Natalie A; Cant, David J H; Minelli, Caterina; Araujo, Joyce R; Bock, Bernd; Brüner, Philipp; Castner, David G; Ceccone, Giacomo; Counsell, Jonathan D P; Dietrich, Paul M; Engelhard, Mark H; Fearn, Sarah; Galhardo, Carlos E; Kalbe, Henryk; Won Kim, Jeong; Lartundo-Rojas, Luis; Luftman, Henry S; Nunney, Tim S; Pseiner, Johannes; Smith, Emily F; Spampinato, Valentina; Sturm, Jacobus M; Thomas, Andrew G; Treacy, Jon P W; Veith, Lothar; Wagstaffe, Michael; Wang, Hai; Wang, Meiling; Wang, Yung-Chen; Werner, Wolfgang; Yang, Li; Shard, Alexander G
2016-10-27
We report the results of a VAMAS (Versailles Project on Advanced Materials and Standards) inter-laboratory study on the measurement of the shell thickness and chemistry of nanoparticle coatings. Peptide-coated gold particles were supplied to laboratories in two forms: a colloidal suspension in pure water and; particles dried onto a silicon wafer. Participants prepared and analyzed these samples using either X-ray photoelectron spectroscopy (XPS) or low energy ion scattering (LEIS). Careful data analysis revealed some significant sources of discrepancy, particularly for XPS. Degradation during transportation, storage or sample preparation resulted in a variability in thickness of 53 %. The calculation method chosen by XPS participants contributed a variability of 67 %. However, variability of 12 % was achieved for the samples deposited using a single method and by choosing photoelectron peaks that were not adversely affected by instrumental transmission effects. The study identified a need for more consistency in instrumental transmission functions and relative sensitivity factors, since this contributed a variability of 33 %. The results from the LEIS participants were more consistent, with variability of less than 10 % in thickness and this is mostly due to a common method of data analysis. The calculation was performed using a model developed for uniform, flat films and some participants employed a correction factor to account for the sample geometry, which appears warranted based upon a simulation of LEIS data from one of the participants and comparison to the XPS results.
NASA Technical Reports Server (NTRS)
Zuber, M. T.; Parmentier, E. M.; Neumann, G. A.
1994-01-01
An outstanding question relevant to understanding the tectonics of Venus is the mechanism of formation of fold and thrust belts, such as the mountain belts that surround Lakshmi Planum in western Ishtar Terra. These structures are typically long (hundreds of km) and narrow (many tens of km), and are often located at the margins of relatively high (km-scale) topographic rises. Previous studies have attempted to explain fold and thrust belts in various areas of Venus in the context of viscous and brittle wedge theory. However, while wedge theory can explain the change in elevation from the rise to the adjacent lowland, it fails to account for a fundamental aspect of the deformation, i.e., the topographic high at the edge of the rise. In this study we quantitatively explore the hypothesis that fold and thrust belt morphology on Venus can alternatively be explained by horizontal shortening of a lithosphere that is laterally heterogeneous, due either to a change in thickness of the lithosphere or the crust. Lateral heterogeneities in lithosphere structure may arise in response to thermal thinning or extensive faulting, while variations in crustal thickness may arise due to either spatially variable melting of mantle material or by horizontal shortening of the crust. In a variable thickness lithosphere or crust that is horizontally shortened, deformation will tend to localize in the vicinity of thickness heterogeneity, resulting in a higher component of dynamic topography there as compared to elsewhere in the shortening lithosphere. This mechanism may thus provide a simple explanation for the topographic high at the edge of the rise.
NASA Astrophysics Data System (ADS)
Zuber, M. T.; Parmentier, E. M.; Neumann, G. A.
1994-03-01
An outstanding question relevant to understanding the tectonics of Venus is the mechanism of formation of fold and thrust belts, such as the mountain belts that surround Lakshmi Planum in western Ishtar Terra. These structures are typically long (hundreds of km) and narrow (many tens of km), and are often located at the margins of relatively high (km-scale) topographic rises. Previous studies have attempted to explain fold and thrust belts in various areas of Venus in the context of viscous and brittle wedge theory. However, while wedge theory can explain the change in elevation from the rise to the adjacent lowland, it fails to account for a fundamental aspect of the deformation, i.e., the topographic high at the edge of the rise. In this study we quantitatively explore the hypothesis that fold and thrust belt morphology on Venus can alternatively be explained by horizontal shortening of a lithosphere that is laterally heterogeneous, due either to a change in thickness of the lithosphere or the crust. Lateral heterogeneities in lithosphere structure may arise in response to thermal thinning or extensive faulting, while variations in crustal thickness may arise due to either spatially variable melting of mantle material or by horizontal shortening of the crust. In a variable thickness lithosphere or crust that is horizontally shortened, deformation will tend to localize in the vicinity of thickness heterogeneity, resulting in a higher component of dynamic topography there as compared to elsewhere in the shortening lithosphere. This mechanism may thus provide a simple explanation for the topographic high at the edge of the rise.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simonen, F.A.; Khaleel, M.A.
This paper describes a statistical evaluation of the through-thickness copper variation for welds in reactor pressure vessels, and reviews the historical basis for the static and arrest fracture toughness (K{sub Ic} and K{sub Ia}) equations used in the VISA-II code. Copper variability in welds is due to fabrication procedures with copper contents being randomly distributed, variable from one location to another through the thickness of the vessel. The VISA-II procedure of sampling the copper content from a statistical distribution for every 6.35- to 12.7-mm (1/4- to 1/2-in.) layer through the thickness was found to be consistent with the statistical observations.more » However, the parameters of the VISA-II distribution and statistical limits required further investigation. Copper contents at few locations through the thickness were found to exceed the 0.4% upper limit of the VISA-II code. The data also suggest that the mean copper content varies systematically through the thickness. While, the assumption of normality is not clearly supported by the available data, a statistical evaluation based on all the available data results in mean and standard deviations within the VISA-II code limits.« less
Extracting a mix parameter from 2D radiography of variable density flow
NASA Astrophysics Data System (ADS)
Kurien, Susan; Doss, Forrest; Livescu, Daniel
2017-11-01
A methodology is presented for extracting quantities related to the statistical description of the mixing state from the 2D radiographic image of a flow. X-ray attenuation through a target flow is given by the Beer-Lambert law which exponentially damps the incident beam intensity by a factor proportional to the density, opacity and thickness of the target. By making reasonable assumptions for the mean density, opacity and effective thickness of the target flow, we estimate the contribution of density fluctuations to the attenuation. The fluctuations thus inferred may be used to form the correlation of density and specific-volume, averaged across the thickness of the flow in the direction of the beam. This correlation function, denoted by b in RANS modeling, quantifies turbulent mixing in variable density flows. The scheme is tested using DNS data computed for variable-density buoyancy-driven mixing. We quantify the deficits in the extracted value of b due to target thickness, Atwood number, and modeled noise in the incident beam. This analysis corroborates the proposed scheme to infer the mix parameter from thin targets at moderate to low Atwood numbers. The scheme is then applied to an image of counter-shear flow obtained from experiments at the National Ignition Facility. US Department of Energy.
Strong and highly variable push of ocean waves on Southern Ocean sea ice.
Stopa, Justin E; Sutherland, Peter; Ardhuin, Fabrice
2018-06-05
Sea ice in the Southern Ocean has expanded over most of the past 20 y, but the decline in sea ice since 2016 has taken experts by surprise. This recent evolution highlights the poor performance of numerical models for predicting extent and thickness, which is due to our poor understanding of ice dynamics. Ocean waves are known to play an important role in ice break-up and formation. In addition, as ocean waves decay, they cause a stress that pushes the ice in the direction of wave propagation. This wave stress could not previously be quantified due to insufficient observations at large scales. Sentinel-1 synthetic aperture radars (SARs) provide high-resolution imagery from which wave height is measured year round encompassing Antarctica since 2014. Our estimates give an average wave stress that is comparable to the average wind stress acting over 50 km of sea ice. We further reveal highly variable half-decay distances ranging from 400 m to 700 km, and wave stresses from 0.01 to 1 Pa. We expect that this variability is related to ice properties and possibly different floe sizes and ice thicknesses. A strong feedback of waves on sea ice, via break-up and rafting, may be the cause of highly variable sea-ice properties.
Predoi, Mihai Valentin; Ech Cherif El Kettani, Mounsif; Leduc, Damien; Pareige, Pascal; Coné, Khadidiatou
2015-08-01
The capability of shear horizontal (SH) guided waves, to evaluate geometrical imperfections in a bonding layer, is investigated. SH waves are used in a three-layer structure in which the adhesive layer has variable thickness. It is proven that the SH waves are adapting to the local thickness of the adhesive layer (adiabatic waves). This is particularly useful in case of small thickness variations, which is of technical interest. The influence of thickness and stiffness of the adhesive layer on the wavenumbers are investigated. The selected SH2 mode is proven to be very sensitive to the adhesive layer thickness variation in the given frequency range and considerably less sensitive to the adhesive stiffness variation. This property is due to its specific displacement field and is important in practical applications, such as inspection techniques based on SH waves, in order to avoid false alarms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belsey, Natalie A.; Cant, David J. H.; Minelli, Caterina
We report the results of a VAMAS (Versailles Project on Advanced Materials and Standards) inter-laboratory study on the measurement of the shell thickness and chemistry of nanoparticle coatings. Peptide-coated gold particles were supplied to laboratories in two forms: a colloidal suspension in pure water and; particles dried onto a silicon wafer. Participants prepared and analyzed these samples using either X-ray photoelectron spectroscopy (XPS) or low energy ion scattering (LEIS). Careful data analysis revealed some significant sources of discrepancy, particularly for XPS. Degradation during transportation, storage or sample preparation resulted in a variability in thickness of 53 %. The calculation methodmore » chosen by XPS participants contributed a variability of 67 %. However, variability of 12 % was achieved for the samples deposited using a single method and by choosing photoelectron peaks that were not adversely affected by instrumental transmission effects. The study identified a need for more consistency in instrumental transmission functions and relative sensitivity factors, since this contributed a variability of 33 %. The results from the LEIS participants were more consistent, with variability of less than 10 % in thickness and this is mostly due to a common method of data analysis. The calculation was performed using a model developed for uniform, flat films and some participants employed a correction factor to account for the sample geometry, which appears warranted based upon a simulation of LEIS data from one of the participants and comparison to the XPS results.« less
NASA Astrophysics Data System (ADS)
Piland, Geoffrey B.; Burdett, Jonathan J.; Hung, Tzu-Yao; Chen, Po-Hsun; Lin, Chi-Feng; Chiu, Tien-Lung; Lee, Jiun-Haw; Bardeen, Christopher J.
2014-05-01
Tetracene, a molecule that undergoes singlet fission, is deposited on Si with variable thickness LiF spacer layers. In agreement with earlier work (Hayashi et al., 1983 [10]), the fluorescence intensity of the tetracene greatly increases as the LiF thickness approaches 100 nm. This increase is partly due to a 30% increase in the prompt fluorescence decay time but mostly results from weaker coupling of the luminescence into the Si substrate. A decrease in the prompt fluorescence lifetime is observed as the tetracene thickness is increased on bare Si. We find no evidence for triplet energy transfer to the Si.
Agarwal, Prakashchand; Sathyan, P; Saini, VK
2014-01-01
ABSTRACT Aim: To compare the difference of retinal macular thickness and macular volume using optical coherence tomography (OCT) in primary open angle glaucoma (POAG) patients with the normal subjects. Materials and methods: This observational case control study included primary open angle glaucoma (POAG) patients (n = 124 eyes) and healthy subjects in the control group (n = 124 eyes). All subjects underwent detailed history, general and systemic exami -nation. Complete ocular examination included best corrected visual acuity (BCVA), slit lamp examination, intraocular pressure (IOP), central corneal thickness, gonioscopy, dilated fundus biomicroscopy. Field analysis was done by white on white Humphrey Field Analyzer (Carl Zeiss). Optical coherence tomography imaging of macular area was performed using Stratus OCT (OCT 3, Version 4, Carl Zeiss Inc, Dublin, California, USA). In both these groups, parameters analyzed were macular thickness, inner macular thicknesses (IMT), outer macular thicknesses (OMT), central macular thick ness (CMT) and total macular volume (TMV). Results: The POAG group had significantly decreased values of TMV, OMT and IMT, compared to control group, while there was no difference in CMT, presumably due to absence of ganglion cells in the central part. Thus, macular thickness and volume parameters may be used for making the diagnosis of glaucoma especially in patients with abnormalities of disc. Conclusion: Macular thickness parameters correlated well with the diagnosis of glaucoma. How to cite this article: Sharma A, Agarwal P, Sathyan P, Saini VK. Macular Thickness Variability in Primary Open Angle Glaucoma Patients using Optical Coherence Tomography. J Current Glau Prac 2014;8(1):10-14. PMID:26997801
Effect of design variables on irreversible magnet demagnetization in brushless dc motor
NASA Astrophysics Data System (ADS)
Kim, Tae Heoung; Lee, Ju
2005-05-01
The large demagnetizing currents in brushless dc (BLdc) motor are generated by the short-circuited stator windings and the fault of a drive circuit. So, irreversible magnet demagnetization occurs due to the external demagnetizing field by these currents. In this paper, we deal with the effect of design variables on irreversible magnet demagnetization in BLdc motor through the modeling approach using a two-dimensional finite-element method (2D FEM). The nonlinear analysis of a permanent magnet is added to 2D FEM to consider irreversible demagnetization. As a result, it is shown that magnet thickness, teeth surface width, and rotor back yoke thickness are the most important geometrical dimensions of BLdc motor in terms of irreversible magnet demagnetization.
Characterizing the Influence of the General Circulation on Marine Boundary Layer Clouds
NASA Technical Reports Server (NTRS)
Rozendaal, Margaret A.; Rossow, William B.; Hansen, James E. (Technical Monitor)
2001-01-01
The seasonal and intraseasonal variability of boundary layer cloud in the subtropical eastern oceans are studied using combined data from the International Satellite Cloud Climatology Project (ISCCP) and the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis. Spectral analysis reveals that most of the time variability of cloud properties occurs on seasonal to annual time scales. The variance decreases one to two orders of magnitude for each decade of time scale decrease, indicating that daily to monthly time scales have smaller, but non-negligible variability. The length of these dominant time scales suggests that the majority of the variability is influenced by the general circulation and its interaction with boundary layer turbulence, rather than a product of boundary layer turbulence alone. Previous datasets have lacked the necessary resolution in either time or in space to properly characterize variability on synoptic scales; this is remedied by using global satellite-retrieved cloud properties. We characterize the intraseasonal subtropical cloud variability in both hemispheres and in different seasons. In addition to cloud fraction, we examine variability of cloud optical thickness - cloud top pressure frequency distributions. Despite the large concentration of research on the variability of Northern Hemisphere (NH) regions during summer, it is noted that the largest amplitude intraseasonal variability in the NH regions occurs during local winter. The effect of intraseasonal variability on the calculation and interpretation of seasonal results is investigated. Decreases in seasonally averaged cloud cover, optical thickness and cloud top pressure from the May-through-September season to the November-through-March season are most apparent in the NH regions. Further analysis indicates that these changes are due to an increase in frequency, but a decrease in the persistence of synoptic events. In addition, changes in cloud top pressure and optical thickness characteristics from the summer to winter seasons indicate that the NH subtropics undergo a change in dynamic regime with season. This change appears in the cloud fields as a shift from the more commonly seen lower-altitude, thicker optical thickness clouds to higher-altitude, thinner clouds. The latter cloud-type is associated with the lower sea level pressure, upward vertical velocity phase of the synoptic wave. Intraseasonal changes in cloud properties in the Southern Hemisphere and NH summer are much smaller in amplitude. Although they also appear to be linked to changes in the large-scale dynamics, similarly to NH winter variations, the relationships are more ambiguous due to the small amplitudes and longer time scales. We attempt to interpret some of these relationships using the results of the Betts and Ridgway (1989) box model. However, these results cannot consistently explain the patterns when results from all regions are considered, implying that this model may not adequately explain all the processes involved in the variability.
Presley, Todd K.
2005-01-01
Lower than average rainfall during late 1997 and early 1998 in Majuro Atoll, Republic of the Marshall Islands, caused a drought and severe drinking-water shortage. Majuro depends on a public rainfall catchment system, which uses an airport runway and storage reservoirs. The storage reservoirs can supply water for about 30 to 50 days without replenishment. In February 1998, after a few months with less than one inch of rainfall per month, a drought-related disaster was declared. Reverse-osmosis water-purification systems were brought to Majuro to help alleviate the water shortage. Concurrent with the water-purification program, ground water from a freshwater lens in the Laura area of the atoll was pumped at increased rates. Of the total consumed water during this period, ground water from Laura supplied between 90 percent (March 1998) and 64 percent (May 1998) of the drinking water. Due to public concern, a study was initiated to determine the effects of the drought on the freshwater lens. The areal extent of the freshwater lens is about 350 acres. A monitoring-well network, consisting of multiple wells driven to varying depths at 11 sites, was installed to determine the thickness of the freshwater lens. Similar locations relative to an earlier study were chosen so that the data from this study could be compared to 1984-85 data. At the end of the drought in June 1998, the freshwater near the middle of the lens was about 45 feet thick; and at the north and south ends, the freshwater was about 25 to 38 feet thick, respectively. Monitoring of the freshwater lens was continued through the wet season following the drought. The lens increased in thickness by 1 to 8 feet after 7 months of rainfall. Greater increases in lens thickness were measured on the lagoon side than on the ocean side of the freshwater lens. Lens thickness during August 1998, and seasonal variation of lens thickness in 1998, were compared to data collected in 1984-85. Comparison of lens thickness from the different years yielded an inconsistent result; the lens was not uniformly thicker in 1984-85 despite more rainfall and little or no pumpage during this time. Seasonal variation in 1998-99 was greater than seasonal variation in 1984-85 due to differences in seasonal rainfall and pumpage. The change in lens thickness suggested by the comparison between 1998-99 and 1984-85 data was complicated by effects due to different well locations, different wells, and assumed small-scale variability in the thickness of fine and coarse calcareous sediments. This result suggests that a monitoring program that uses the same wells through time is needed to adequately describe long-term variability in lens thickness.
Topsoil thickness effects on phosphorus and potassium dynamics on claypan soils
USDA-ARS?s Scientific Manuscript database
Due to variable depth to claypan (DTC) across landscapes, nutrient supply from subsoils, and crop removal, precise P and K fertilizer management on claypan soil fields can be difficult. Therefore, a study was performed to determine if DTC derived from soil apparent electrical conductivity (ECa) coul...
Rapid Compton-thick/Compton-thin Transitions in the Seyfert 2 Galaxy NGC 1365
NASA Technical Reports Server (NTRS)
Risaliti, G.; Elvis, M.; Fabbiano, G.; Baldi, A.; Zezas, A.
2006-01-01
We present multiple Chandra and XMM-Newton observations of the type 1.8 Seyfert galaxy NGC 1365, which shows the most dramatic X-ray spectral changes observed so far in an active galactic nucleus: the source switched from reflection-dominated to transmission-dominated and back in just 6 weeks. During this time the soft thermal component, arising from a approx. 1 kpc region around the center, remained constant. The reflection component is constant at all timescales, and its high flux relative to the primary component implies the presence of thick gas covering a large fraction of the solid angle. The presence of this gas, and the fast variability timescale, suggest that the Compton-thick to Compton-thin change is due to variation in the line-of-sight absorber rather than to extreme intrinsic emission variability. We discuss a structure of the circumuclear absorber/reflector that can explain the observed X-ray spectral and temporal properties.
Passive microwave mapping of ice thickness. Final Report. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Apinis, J. J.; Peake, W. H.
1976-01-01
Basic calculations are presented for evaluating the feasibility of a scanning microwave radiometer system for mapping the thickness of lake ice. An analytical model for the apparent brightness temperature as a function of ice thickness has been developed, and elaborated to include such variables as galactic and atmospheric noise, aspect angle, polarization, temperature gradient in the ice, the presence of transition layers such as snow, slush, and water, increased loss due to air inclusions in the ice layer, and the presence of multiple ice thicknesses within the antenna footprint. It was found that brightness temperature measurements at six or seven frequencies in the range of 0.4 to 0.7 GHz were required to obtain unambiquous thickness estimates. A number of data processing methods were examined. The effects of antenna beamwidth, scanning rate, receiver bandwidth, noise figure, and integration time were studied.
NASA Astrophysics Data System (ADS)
Kabnure, Bahubali Bhupal; Shinde, Vasudev Dhondiram; Kolhapure, Rakesh Ramchandra
2018-05-01
Ductile irons are important engineering materials because of its high strength to weight ratio and castability. The ductile iron castings are used widely for automobile applications due to their wide spectrum of property range. Weight reduction is important in automobile to improve its fuel efficiency which can be achieved by thinning down the casting sections without altering its functionality. Generally, automobile castings are having varying section thickness. Varying thickness castings offers different cooling rates while solidification of the casting. The solidification cooling rate decides the final microstructure of the cast components. Cooling rate was found to affect directly the amount of pearlite and ultimately the as cast properties in varying thickness ductile iron castings. In view of this, the automobile impeller casting is selected for study in the present work as it consists of varying section thickness in which small sections are connected to central hub. The casting solidification simulations were performed and analyzed. The solidification cooling rates were analyzed further to correlate the experimental processing parameters. The samples from poured castings were analyzed for microstructure and hardness at different section thickness. Multiple response optimization of microstructure and hardness was carried out by combined Taguchi and Grey Relational Analysis (GRA). Contribution of input variables on the output variables is attained using ANOVA.
NASA Astrophysics Data System (ADS)
Hayat, Tasawar; Ahmed, Sohail; Muhammad, Taseer; Alsaedi, Ahmed
2017-10-01
This article examines homogeneous-heterogeneous reactions and internal heat generation in Darcy-Forchheimer flow of nanofluids with different base fluids. Flow is generated due to a nonlinear stretchable surface of variable thickness. The characteristics of nanofluid are explored using CNTs (single and multi walled carbon nanotubes). Equal diffusion coefficients are considered for both reactants and auto catalyst. The conversion of partial differential equations (PDEs) to ordinary differential equations (ODEs) is done via appropriate transformations. Optimal homotopy approach is implemented for solutions development of governing problems. Averaged square residual errors are computed. The optimal solution expressions of velocity, temperature and concentration are explored through plots by using several values of physical parameters. Further the coefficient of skin friction and local Nusselt number are examined through graphs.
A Bayesian Measurment Error Model for Misaligned Radiographic Data
Lennox, Kristin P.; Glascoe, Lee G.
2013-09-06
An understanding of the inherent variability in micro-computed tomography (micro-CT) data is essential to tasks such as statistical process control and the validation of radiographic simulation tools. The data present unique challenges to variability analysis due to the relatively low resolution of radiographs, and also due to minor variations from run to run which can result in misalignment or magnification changes between repeated measurements of a sample. Positioning changes artificially inflate the variability of the data in ways that mask true physical phenomena. We present a novel Bayesian nonparametric regression model that incorporates both additive and multiplicative measurement error inmore » addition to heteroscedasticity to address this problem. We also use this model to assess the effects of sample thickness and sample position on measurement variability for an aluminum specimen. Supplementary materials for this article are available online.« less
The support of long wavelength loads on Venus
NASA Astrophysics Data System (ADS)
Benerdt, W. B.; Saunders, R. S.
1985-04-01
One of the great surprises of the Pioneer Venus mission was the high degree of correlation between topography and gravity found at all wavelengths. This implies a close relationship between topography and lateral subsurface density anomalies, such as those due to passive or dynamic compensation. Sleep-Phillips type compensation model with a variable crustal thickness and a variable upper mantle density was developed. The thin shell theory was used to investigate three end member cases: (1) loading by topographic construction, resulting in a downward deflection of the surface (no mantle support); (2) completely compensated support of a constructional load (no surface deflection); and (3) topography due entirely to upward deflection of the surface supported by a low density upper mantle (no surface load). In general, the models imply relatively thick crust and dense upper mantle for Ishtar Terra and Ovda Regio (western Aphrodite), thinned crust and buoyant upper mantle for Tethus Regio and regions near Sappho and Alpha Regio, and a nearly uniform crust with a buoyant upper mantle for Beta Regio and Atla Regio (eastern Aphrodite).
The Support of Long Wavelength Loads on Venus
NASA Technical Reports Server (NTRS)
Benerdt, W. B.; Saunders, R. S.
1985-01-01
One of the great surprises of the Pioneer Venus mission was the high degree of correlation between topography and gravity found at all wavelengths. This implies a close relationship between topography and lateral subsurface density anomalies, such as those due to passive or dynamic compensation. Sleep-Phillips type compensation model with a variable crustal thickness and a variable upper mantle density was developed. The thin shell theory was used to investigate three end member cases: (1) loading by topographic construction, resulting in a downward deflection of the surface (no mantle support); (2) completely compensated support of a constructional load (no surface deflection); and (3) topography due entirely to upward deflection of the surface supported by a low density upper mantle (no surface load). In general, the models imply relatively thick crust and dense upper mantle for Ishtar Terra and Ovda Regio (western Aphrodite), thinned crust and buoyant upper mantle for Tethus Regio and regions near Sappho and Alpha Regio, and a nearly uniform crust with a buoyant upper mantle for Beta Regio and Atla Regio (eastern Aphrodite).
Ghosh, Sreya; Preza, Chrysanthe
2015-07-01
A three-dimensional (3-D) point spread function (PSF) model for wide-field fluorescence microscopy, suitable for imaging samples with variable refractive index (RI) in multilayered media, is presented. This PSF model is a key component for accurate 3-D image restoration of thick biological samples, such as lung tissue. Microscope- and specimen-derived parameters are combined with a rigorous vectorial formulation to obtain a new PSF model that accounts for additional aberrations due to specimen RI variability. Experimental evaluation and verification of the PSF model was accomplished using images from 175-nm fluorescent beads in a controlled test sample. Fundamental experimental validation of the advantage of using improved PSFs in depth-variant restoration was accomplished by restoring experimental data from beads (6 μm in diameter) mounted in a sample with RI variation. In the investigated study, improvement in restoration accuracy in the range of 18 to 35% was observed when PSFs from the proposed model were used over restoration using PSFs from an existing model. The new PSF model was further validated by showing that its prediction compares to an experimental PSF (determined from 175-nm beads located below a thick rat lung slice) with a 42% improved accuracy over the current PSF model prediction.
Spectral Monitoring of NGC 1365: Nucleus and Variable ULX
NASA Technical Reports Server (NTRS)
Mushotzky, Richard (Technical Monitor); Fabbiano, G.
2004-01-01
A letter has been submitted to ApJ, and is in the final stages of revision on the spectral variability of the nuclear source. We presented multiple Chandra and XMM-Newton observations of the Seyfert Galaxy NGC 1365, which shows the most dramatic X-ray spectral changes observed so far in an AGN: the source switched from reflection dominated to Compton- thin and back in just 6 weeks. During this time the soft thermal component, arising from a 1-kpc region around the center, remained constant. The reflection component is constant at all timescales, and its flux is a fraction of 5% or higher of the direct 2-10 keV emission, implying the presence of thick gas covering a big fraction of the solid angle. The presence of this gas, and the hst variability time scale, suggest that the Compton-thick to Compton thin change is due to variation in the line-of-sight absorber, rather than to extreme intrinsic emission variability. We discuss a structure of the circumnuclear absorbed reflector which can explain the observed X-ray spectral and temporal properties. But these important results come only from scratching the surface of the data, since we did not need any detailed spectral analysis to distinguish between the Compton thick and Compton thin states of the source, the difference in both spectral shape and flux being huge.
Bressler, Susan B.; Edwards, Allison R.; Chalam, Kakarla V.; Bressler, Neil M.; Glassman, Adam R.; Jaffe, Glenn J.; Melia, Michele; Saggau, David D.; Plous, Oren Z.
2014-01-01
Importance Advances in retinal imaging have led to the development of optical coherence tomography (OCT) instruments that incorporate spectral domain (SD) technology. Understanding measurement variability and relationships between retinal thickness measurements obtained on different machines is critical for proper use in clinical trials and clinical settings. Objectives Evaluate reproducibility of retinal thickness measurements from OCT images obtained by time domain (TD) (Zeiss Stratus) and SD (Zeiss Cirrus and Heidelberg Spectralis) instruments and formulate equations to convert retinal thickness measurements from SD-OCT to equivalent values on TD-OCT. Design Cross-sectional observational study. Each study eye underwent two replicate Stratus scans followed by two replicate Cirrus or Spectralis (real time image registration utilized) scans centered on the fovea. Setting Private and institutional practices Participants Diabetic persons with at least one eye with central-involved diabetic macular edema (DME), defined as Stratus central subfield thickness (CST)≥250μm. An additional normative cohort, individuals with diabetes but without DME, was enrolled. Main Outcome Measure(s) OCT CST and macular volume Results The Bland-Altman coefficient of repeatability for relative change in CST (the degree of change that could be expected from measurement variability) was lower on Spectralis compared with Stratus and Cirrus scans (7%, 12–15%, and 14%, respectively). For each cohort, the initial Stratus CST was within 10% of the replicate Stratus measurement 92% of the time; the conversion equations predicted a Stratus CST within 10% of the observed thickness 86% and 89% of the time for Stratus/Cirrus and Stratus/Spectralis groups, respectively. The Bland-Altman limits of agreement for relative change in CST between machines (the degree of change that could be expected from measurement variability, combined within and between instrument variability) were 21% for Cirrus and 19% for Spectralis, comparing predicted versus actual Stratus measurement. Conclusions and Relevance Reproducibility appears better on Spectralis than Cirrus and Stratus. Conversion equations to transform Cirrus or Spectralis measurements to Stratus-equivalent values, within 10% of the observed Stratus thickness values, appear feasible. CST changes beyond 10% when using the same machine or 20% when switching machines, after conversion to Stratus equivalents, are likely due to a change in retinal thickness and not measurement error. PMID:25058482
Inflammation, homocysteine and carotid intima-media thickness.
Baptista, Alexandre P; Cacdocar, Sanjiva; Palmeiro, Hugo; Faísca, Marília; Carrasqueira, Herménio; Morgado, Elsa; Sampaio, Sandra; Cabrita, Ana; Silva, Ana Paula; Bernardo, Idalécio; Gome, Veloso; Neves, Pedro L
2008-01-01
Cardiovascular disease is the main cause of morbidity and mortality in chronic renal patients. Carotid intima-media thickness (CIMT) is one of the most accurate markers of atherosclerosis risk. In this study, the authors set out to evaluate a population of chronic renal patients to determine which factors are associated with an increase in intima-media thickness. We included 56 patients (F=22, M=34), with a mean age of 68.6 years, and an estimated glomerular filtration rate of 15.8 ml/min (calculated by the MDRD equation). Various laboratory and inflammatory parameters (hsCRP, IL-6 and TNF-alpha) were evaluated. All subjects underwent measurement of internal carotid artery intima-media thickness by high-resolution real-time B-mode ultrasonography using a 10 MHz linear transducer. Intima-media thickness was used as a dependent variable in a simple linear regression model, with the various laboratory parameters as independent variables. Only parameters showing a significant correlation with CIMT were evaluated in a multiple regression model: age (p=0.001), hemoglobin (p=00.3), logCRP (p=0.042), logIL-6 (p=0.004) and homocysteine (p=0.002). In the multiple regression model we found that age (p=0.001) and homocysteine (p=0.027) were independently correlated with CIMT. LogIL-6 did not reach statistical significance (p=0.057), probably due to the small population size. The authors conclude that age and homocysteine correlate with carotid intima-media thickness, and thus can be considered as markers/risk factors in chronic renal patients.
NASA Astrophysics Data System (ADS)
Bacha, Tulu
The Goddard Lidar Observatory for Wind (GLOW), a mobile direct detection Doppler LIDAR based on molecular backscattering for measurement of wind in the troposphere and lower stratosphere region of atmosphere is operated and its errors characterized. It was operated at Howard University Beltsville Center for Climate Observation System (BCCOS) side by side with other operating instruments: the NASA/Langely Research Center Validation Lidar (VALIDAR), Leosphere WLS70, and other standard wind sensing instruments. The performance of Goddard Lidar Observatory for Wind (GLOW) is presented for various optical thicknesses of cloud conditions. It was also compared to VALIDAR under various conditions. These conditions include clear and cloudy sky regions. The performance degradation due to the presence of cirrus clouds is quantified by comparing the wind speed error to cloud thickness. The cloud thickness is quantified in terms of aerosol backscatter ratio (ASR) and cloud optical depth (COD). ASR and COD are determined from Howard University Raman Lidar (HURL) operating at the same station as GLOW. The wind speed error of GLOW was correlated with COD and aerosol backscatter ratio (ASR) which are determined from HURL data. The correlation related in a weak linear relationship. Finally, the wind speed measurements of GLOW were corrected using the quantitative relation from the correlation relations. Using ASR reduced the GLOW wind error from 19% to 8% in a thin cirrus cloud and from 58% to 28% in a relatively thick cloud. After correcting for cloud induced error, the remaining error is due to shot noise and atmospheric variability. Shot-noise error is the statistical random error of backscattered photons detected by photon multiplier tube (PMT) can only be minimized by averaging large number of data recorded. The atmospheric backscatter measured by GLOW along its line-of-sight direction is also used to analyze error due to atmospheric variability within the volume of measurement. GLOW scans in five different directions (vertical and at elevation angles of 45° in north, south, east, and west) to generate wind profiles. The non-uniformity of the atmosphere in all scanning directions is a factor contributing to the measurement error of GLOW. The atmospheric variability in the scanning region leads to difference in the intensity of backscattered signals for scanning directions. Taking the ratio of the north (east) to south (west) and comparing the statistical differences lead to a weak linear relation between atmospheric variability and line-of-sights wind speed differences. This relation was used to make correction which reduced by about 50%.
Airborne geophysics for mesoscale observations of polar sea ice in a changing climate
NASA Astrophysics Data System (ADS)
Hendricks, S.; Haas, C.; Krumpen, T.; Eicken, H.; Mahoney, A. R.
2016-12-01
Sea ice thickness is an important geophysical parameter with a significant impact on various processes of the polar energy balance. It is classified as Essential Climate Variable (ECV), however the direct observations of the large ice-covered oceans are limited due to the harsh environmental conditions and logistical constraints. Sea-ice thickness retrieval by the means of satellite remote sensing is an active field of research, but current observational capabilities are not able to capture the small scale variability of sea ice thickness and its evolution in the presence of surface melt. We present an airborne observation system based on a towed electromagnetic induction sensor that delivers long range measurements of sea ice thickness for a wide range of sea ice conditions. The purpose-built sensor equipment can be utilized from helicopters and polar research aircraft in multi-role science missions. While airborne EM induction sounding is used in sea ice research for decades, the future challenge is the development of unmanned aerial vehicle (UAV) platform that meet the requirements for low-level EM sea ice surveys in terms of range and altitude of operations. The use of UAV's could enable repeated sea ice surveys during the the polar night, when manned operations are too dangerous and the observational data base is presently very sparse.
NASA Astrophysics Data System (ADS)
Vaida, Mihai E.; Bernhardt, Thorsten M.
2017-11-01
The femtosecond-laser induced photodissociation of CH3Br adsorbed at sub-monolayer coverage on a solid surface was investigated by time-resolved pump-probe mass spectrometry. To tune the interaction of the CH3Br molecules with the substrate, an Mo(1 0 0) surface was covered with ultrathin insulating MgO layers of variable thickness. By gradually decreasing the magnesia layer thickness to the 2D limit the photodissociation dynamics observed by detection of the methyl fragment indicates an energetic lowering of the relevant methyl bromide excited states due to the increasing spatial proximity of the metallic support. Potential orientational effects of the methyl bromide adsorption geometry are also considered.
Jeffrey, Brett G; Cukras, Catherine A; Vitale, Susan; Turriff, Amy; Bowles, Kristin; Sieving, Paul A
2014-09-01
To examine the variability of four outcome measures that could be used to address safety and efficacy in therapeutic trials with X-linked juvenile retinoschisis. Seven men with confirmed mutations in the RS1 gene were evaluated over four visits spanning 6 months. Assessments included visual acuity, full-field electroretinograms (ERG), microperimetric macular sensitivity, and retinal thickness measured by optical coherence tomography (OCT). Eyes were separated into Better or Worse Eye groups based on acuity at baseline. Repeatability coefficients were calculated for each parameter and jackknife resampling used to derive 95% confidence intervals (CIs). The threshold for statistically significant change in visual acuity ranged from three to eight letters. For ERG a-wave, an amplitude reduction greater than 56% would be considered significant. For other parameters, variabilities were lower in the Worse Eye group, likely a result of floor effects due to collapse of the schisis pockets and/or retinal atrophy. The criteria for significant change (Better/Worse Eye) for three important parameters were: ERG b/a-wave ratio (0.44/0.23), point wise sensitivity (10.4/7.0 dB), and central retinal thickness (31%/18%). The 95% CI range for visual acuity, ERG, retinal sensitivity, and central retinal thickness relative to baseline are described for this cohort of participants with X-linked juvenile retinoschisis (XLRS). A quantitative understanding of the variability of outcome measures is vital to establishing the safety and efficacy limits for therapeutic trials of XLRS patients.
Ontogenetic changes in cranial vault thickness in a modern sample of Homo sapiens.
Anzelmo, Marisol; Ventrice, Fernando; Barbeito-Andrés, Jimena; Pucciarelli, Héctor M; Sardi, Marina L
2015-01-01
This work assesses cranial vault thickness (CVT) ontogenetic changes using a computed tomography database to register thickness across multiple regions. Vault images of 143 individuals from 0 to 31 years old were analyzed by thickness semiautomatic measurements. For each individual, we obtained a thickness mean measure (TMM) and its coefficient of variation, a measure of endocranial volume (EV), the distribution of relative frequencies of thickness-relative frequency polygon, and a topographic mapping that shows the thickness arrangement through a chromatic scale. Ontogenetic changes of these variables were evaluated by different regression models (TMM vs. age, EV vs. age, TMM vs. EV) and visual comparisons between the age groups. TMM increased during ontogeny until the onset of adulthood without sex differences, but the most accelerated growth rates occur during the first 6 years of postnatal life. TMM variations were associated with EV only in infants and children, but not in later periods. The polygons showed a flattening during ontogeny, probably due to an increase in thickness variation within individuals. However, the adult pattern of thickness arrangement, with the lateral region thinner than the regions near sagittal plane, was detected from infancy. The pattern of thickness arrangement is established early in ontogeny but CVT increases and changes in distribution until adolescence. Several factors may influence CVT, such as the brain, muscles, vessels, and sutures. © 2014 Wiley Periodicals, Inc.
Scutellà, Bernadette; Trelea, Ioan Cristian; Bourlès, Erwan; Fonseca, Fernanda; Passot, Stephanie
2018-07-01
During the primary drying step of the freeze-drying process, mass transfer resistance strongly affects the product temperature, and consequently the final product quality. The main objective of this study was to evaluate the variability of the mass transfer resistance resulting from the dried product layer (R p ) in a manufacturing batch of vials, and its potential effect on the product temperature, from data obtained in a pilot scale freeze-dryer. Sublimation experiments were run at -25 °C and 10 Pa using two different freezing protocols: with spontaneous or controlled ice nucleation. Five repetitions of each condition were performed. Global (pressure rise test) and local (gravimetric) methods were applied as complementary approaches to estimate R p . The global method allowed to assess variability of the evolution of R p with the dried layer thickness between different experiments whereas the local method informed about R p variability at a fixed time within the vial batch. A product temperature variability of approximately ±4.4 °C was defined for a product dried layer thickness of 5 mm. The present approach can be used to estimate the risk of failure of the process due to mass transfer variability when designing freeze-drying cycle. Copyright © 2018 Elsevier B.V. All rights reserved.
High interannual variability of sea ice thickness in the Arctic region.
Laxon, Seymour; Peacock, Neil; Smith, Doug
2003-10-30
Possible future changes in Arctic sea ice cover and thickness, and consequent changes in the ice-albedo feedback, represent one of the largest uncertainties in the prediction of future temperature rise. Knowledge of the natural variability of sea ice thickness is therefore critical for its representation in global climate models. Numerical simulations suggest that Arctic ice thickness varies primarily on decadal timescales owing to changes in wind and ocean stresses on the ice, but observations have been unable to provide a synoptic view of sea ice thickness, which is required to validate the model results. Here we use an eight-year time-series of Arctic ice thickness, derived from satellite altimeter measurements of ice freeboard, to determine the mean thickness field and its variability from 65 degrees N to 81.5 degrees N. Our data reveal a high-frequency interannual variability in mean Arctic ice thickness that is dominated by changes in the amount of summer melt, rather than by changes in circulation. Our results suggest that a continued increase in melt season length would lead to further thinning of Arctic sea ice.
NASA Astrophysics Data System (ADS)
Wang, X.-S.; Ma, M.-G.; Li, X.; Zhao, J.; Dong, P.; Zhou, J.
2010-04-01
The behavior of groundwater response to leakage of surface water in the middle reaches area of Heihe River Basin is significantly influenced by a thick vadose zone. The groundwater regime is a result of two recharge events due to leakage of Heihe River and irrigation water with different delay time. A nonlinear leakage model is developed to calculate the monthly leakage of Heihe River in considering changes of streamflow, river stage and agricultural water utilization. Numerical modeling of variable saturated flow is carried out to investigate the general behaviors of leakage-recharge conversion through a thick vadose zone. It is found that the recharge pattern can be approximated by simple reservoir models of leakages under a river and under an irrigation district with different delay-time and recession coefficient. A triple-reservoir model of relationship between surface water, vadose zone and groundwater is developed. It reproduces the groundwater regime during 1989-2006 with variable streamflow of Heihe River and agricultural water utilization. The model is applied to interpret changes of groundwater level during 2007-2008 that observed in the Watershed Airborne Telemetry Experimental Research (WATER).
Crustal thickness control on Sr/Y signatures of recent arc magmas: an Earth scale perspective
Chiaradia, Massimo
2015-01-01
Arc magmas originate in subduction zones as partial melts of the mantle, induced by aqueous fluids/melts liberated by the subducted slab. Subsequently, they rise through and evolve within the overriding plate crust. Aside from broadly similar features that distinguish them from magmas of other geodynamic settings (e.g., mid-ocean ridges, intraplate), arc magmas display variably high Sr/Y values. Elucidating the debated origin of high Sr/Y signatures in arc magmas, whether due to mantle-source, slab melting or intracrustal processes, is instrumental for models of crustal growth and ore genesis. Here, using a statistical treatment of >23000 whole rock geochemical data, I show that average Sr/Y values and degree of maturation (MgO depletion at peak Sr/Y values) of 19 out of 22 Pliocene-Quaternary arcs correlate positively with arc thickness. This suggests that crustal thickness exerts a first order control on the Sr/Y variability of arc magmas through the stabilization or destabilization of mineral phases that fractionate Sr (plagioclase) and Y (amphibole ± garnet). In fact, the stability of these mineral phases is function of the pressure at which magma evolves, which depends on crustal thickness. The data presented show also that high Sr/Y Pliocene-Quaternary intermediate-felsic arc rocks have a distinct origin from their Archean counterparts. PMID:25631193
Variations in debris distribution and thickness on Himalayan debris-covered glaciers
NASA Astrophysics Data System (ADS)
Gibson, Morgan; Rowan, Ann; Irvine-Fynn, Tristram; Quincey, Duncan; Glasser, Neil
2016-04-01
Many Himalayan glaciers are characterised by extensive supraglacial debris coverage; in Nepal 33% of glaciers exhibit a continuous layer of debris covering their ablation areas. The presence of such a debris layer modulates a glacier's response to climatic change. However, the impact of this modulation is poorly constrained due to inadequate quantification of the impact of supraglacial debris on glacier surface energy balance. Few data exist to describe spatial and temporal variations in parameters such as debris thickness, albedo and surface roughness in energy balance calculations. Consequently, improved understanding of how debris affects Himalayan glacier ablation requires the assessment of surface energy balance model sensitivity to spatial and temporal variability in these parameters. Measurements of debris thickness, surface temperature, reflectance and roughness were collected across Khumbu Glacier during the pre- and post-monsoon seasons of 2014 and 2015. The extent of the spatial variation in each of these parameters are currently being incorporated into a point-based glacier surface energy balance model (CMB-RES, Collier et al., 2014, The Cryosphere), applied on a pixel-by-pixel basis to the glacier surface, to ascertain the sensitivity of glacier surface energy balance and ablation values to these debris parameters. A time series of debris thickness maps have been produced for Khumbu Glacier over a 15-year period (2000-2015) using Mihalcea et al.'s (2008, Cold Reg. Sci. Technol.) method, which utilised multi-temporal ASTER thermal imagery and our in situ debris surface temperature and thickness measurements. Change detection between these maps allowed the identification of variations in debris thickness that could be compared to discrete measurements, glacier surface velocity and morphology of the debris-covered area. Debris thickness was found to vary spatially between 0.1 and 4 metres within each debris thickness map, and temporally on the order of 1 to 2 m. Temporal variability was a result of differential surface lowering, spatial variability in glacier surface velocities and intermittent input of debris to the glacier surface through mass movement. Most debris thickening is seen in initially thin areas of debris (< 0.4 m) or within ~1 km of the glacier terminus. Surface energy balance modelling is currently underway to determine the effect of these variations in debris thickness, and other parameters mentioned previously. Future work will be to calculate debris transport flux on the surface of Khumbu Glacier using the time series of debris thickness maps. Debris flux and refined energy balance calculations will then be incorporated into a 3-D ice flow model to determine the response of Khumbu Glacier to debris transport and climatic changes.
Vidic, N.; Pavich, M.; Lobnik, F.
1991-01-01
Alpine glaciations, climatic changes and tectonic movements have created a Quaternary sequence of gravely carbonate sediments in the upper Sava River Valley, Slovenia, Yugoslavia. The names for terraces, assigned in this model, Gu??nz, Mindel, Riss and Wu??rm in order of decreasing age, are used as morphostratigraphic terms. Soil chronosequence on the terraces was examined to evaluate which soil properties are time dependent and can be used to help constrain the ages of glaciofluvial sedimentation. Soil thickness, thickness of Bt horizons, amount and continuity of clay coatings and amount of Fe and Me concretions increase with soil age. The main source of variability consists of solutions of carbonate, leaching of basic cations and acidification of soils, which are time dependent and increase with the age of soils. The second source of variability is the content of organic matter, which is less time dependent, but varies more within soil profiles. Textural changes are significant, presented by solution of carbonate pebbles and sand, and formation is silt loam matrix, which with age becomes finer, with clay loam or clayey texture. The oldest, Gu??nz, terrace shows slight deviation from general progressive trends of changes of soil properties with time. The hypothesis of single versus multiple depositional periods of deposition was tested with one-way analysis of variance (ANOVA) on a staggered, nested hierarchical sampling design on a terrace of largest extent and greatest gravel volume, the Wu??rm terrace. The variability of soil properties is generally higher within subareas than between areas of the terrace, except for the soil thickness. Observed differences in soil thickness between the areas of the terrace could be due to multiple periods of gravel deposition, or to the initial differences of texture of the deposits. ?? 1991.
NASA Astrophysics Data System (ADS)
Choi, D.; Shinavski, R. J.; Steffier, W. S.; Spearing, S. M.
2005-04-01
Residual stress in thick coatings of polycrystalline chemical-vapor deposited SiC on Si substrates is a key variable that must be controlled if SiC is to be used in microelectromechanical systems. Studies have been conducted to characterize the residual stress level as a function of deposition temperature, Si wafer and SiC coating thickness, and the ratios of methyltrichlorosilane to hydrogen and hydrogen chloride. Wafer curvature was used to monitor residual stress in combination with a laminated plate analysis. Compressive intrinsic (growth) stresses were measured with magnitudes in the range of 200-300MPa; however, these can be balanced with the tensile stress due to the thermal-expansion mismatch to leave near-zero stress at room temperature. The magnitude of the compressive intrinsic stress is consistent with previously reported values of surface stress in combination with the competition between grain-boundary energy and elastic strain energy.
Ma, Jian; Bai, Bing; Wang, Liu-Jun; Tong, Cun-Zhu; Jin, Ge; Zhang, Jun; Pan, Jian-Wei
2016-09-20
InGaAs/InP single-photon avalanche diodes (SPADs) are widely used in practical applications requiring near-infrared photon counting such as quantum key distribution (QKD). Photon detection efficiency and dark count rate are the intrinsic parameters of InGaAs/InP SPADs, due to the fact that their performances cannot be improved using different quenching electronics given the same operation conditions. After modeling these parameters and developing a simulation platform for InGaAs/InP SPADs, we investigate the semiconductor structure design and optimization. The parameters of photon detection efficiency and dark count rate highly depend on the variables of absorption layer thickness, multiplication layer thickness, excess bias voltage, and temperature. By evaluating the decoy-state QKD performance, the variables for SPAD design and operation can be globally optimized. Such optimization from the perspective of specific applications can provide an effective approach to design high-performance InGaAs/InP SPADs.
NASA Astrophysics Data System (ADS)
Arntsen, A. E.; Perovich, D. K.; Polashenski, C.; Stwertka, C.
2015-12-01
The amount of light that penetrates the Arctic sea ice cover impacts sea-ice mass balance as well as ecological processes in the upper ocean. The seasonally evolving macro and micro spatial variability of transmitted spectral irradiance observed in the Chukchi Sea from May 18 to June 17, 2014 can be primarily attributed to variations in snow depth, ice thickness, and bottom ice algae concentrations. This study characterizes the interactions among these dominant variables using observed optical properties at each sampling site. We employ a normalized difference index to compute estimates of Chlorophyll a concentrations and analyze the increased attenuation of incident irradiance due to absorption by biomass. On a kilometer spatial scale, the presence of bottom ice algae reduced the maximum transmitted irradiance by about 1.5 orders of magnitude when comparing floes of similar snow and ice thicknesses. On a meter spatial scale, the combined effects of disparities in the depth and distribution of the overlying snow cover along with algae concentrations caused maximum transmittances to vary between 0.0577 and 0.282 at a single site. Temporal variability was also observed as the average integrated transmitted photosynthetically active radiation increased by one order of magnitude to 3.4% for the last eight measurement days compared to the first nine. Results provide insight on how interrelated physical and ecological parameters of sea ice in varying time and space may impact new trends in Arctic sea ice extent and the progression of melt.
Anisotropic imaging performance in indirect x-ray imaging detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badano, Aldo; Kyprianou, Iacovos S.; Sempau, Josep
We report on the variability in imaging system performance due to oblique x-ray incidence, and the associated transport of quanta (both x rays and optical photons) through the phosphor, in columnar indirect digital detectors. The analysis uses MANTIS, a combined x-ray, electron, and optical Monte Carlo transport code freely available. We describe the main features of the simulation method and provide some validation of the phosphor screen models considered in this work. We report x-ray and electron three-dimensional energy deposition distributions and point-response functions (PRFs), including optical spread in columnar phosphor screens of thickness 100 and 500 {mu}m, for 19,more » 39, 59, and 79 keV monoenergetic x-ray beams incident at 0 deg., 10 deg., and 15 deg. . In addition, we present pulse-height spectra for the same phosphor thickness, x-ray energies, and angles of incidence. Our results suggest that the PRF due to the phosphor blur is highly nonsymmetrical, and that the resolution properties of a columnar screen in a tomographic, or tomosynthetic imaging system varies significantly with the angle of x-ray incidence. Moreover, we find that the noise due to the variability in the number of light photons detected per primary x-ray interaction, summarized in the information or Swank factor, is somewhat independent of thickness and incidence angle of the x-ray beam. Our results also suggest that the anisotropy in the PRF is not less in screens with absorptive backings, while the noise introduced by variations in the gain and optical transport is larger. Predictions from MANTIS, after additional validation, can provide the needed understanding of the extent of such variations, and eventually, lead to the incorporation of the changes in imaging performance with incidence angle into the reconstruction algorithms for volumetric x-ray imaging systems.« less
Gender variations in the optical properties of skin in murine animal models
NASA Astrophysics Data System (ADS)
Calabro, Katherine; Curtis, Allison; Galarneau, Jean-Rene; Krucker, Thomas; Bigio, Irving J.
2011-01-01
Gender is identified as a significant source of variation in optical reflectance measurements on mouse skin, with variation in the thickness of the dermal layer being the key explanatory variable. For three different mouse strains, the thickness values of the epidermis, dermis, and hypodermis layers, as measured by histology, are correlated to optical reflectance measurements collected with elastic scattering spectroscopy (ESS). In all three strains, males are found to have up to a 50% increase in dermal thickness, resulting in increases of up to 80% in reflectance values and higher observed scattering coefficients, as compared to females. Collagen in the dermis is identified as the primary source of these differences due to its strong scattering nature; increased dermal thickness leads to a greater photon path length through the collagen, as compared to other layers, resulting in a larger scattering signal. A related increase in the observed absorption coefficient in females is also observed. These results emphasize the importance of considering gender during experimental design in studies that involve photon interaction with mouse skin. The results also elucidate the significant impact that relatively small thickness changes can have on observed optical measurements in layered tissue.
Progress toward a practical laser driven ion source using variable thickness liquid crystal targets
NASA Astrophysics Data System (ADS)
Poole, Patrick; Cochran, Ginevra; Zeil, Karl; Metzkes, Josephine; Obst, Lieselotte; Kluge, Thomas; Schlenvoigt, Hans-Peter; Prencipe, Irene; Cowan, Tom; Schramm, Uli; Schumacher, Douglass
2016-10-01
Ion acceleration from ultra-intense laser interaction has been long investigated in pursuit of requisite energies and spectral distributions for applications like proton cancer therapy. However, the details of ion acceleration mechanisms and their laser intensity scaling are not fully understood, especially the complete role of pulse contrast and target thickness. Additionally, target delivery and alignment at appropriate rates for study and subsequent treatment pose significant challenges. We present results from a campaign on the Draco laser using liquid crystal targets that have on-demand, in-situ thickness tunability over more than three orders of magnitude, enabling rapid data collection due to <1 minute, automatically aligned target formation. Diagnostics include spectral and spatial measurement of ions, electrons, and reflected and transmitted light, all with thickness, laser focus, and pulse contrast variations. In particular we discuss optimal thickness vs. contrast and details of ultra-thin target normal ion acceleration, along with supporting particle-in-cell studies. This work was supported by the DARPA PULSE program through AMRDEC, by the NNSA (DE-NA0001976), by EC Horizon 2020 LASERLAB-EUROPE/LEPP (654148), and by the German Federal Ministry of Education and Research (BMBF, 03Z1O511).
NASA Astrophysics Data System (ADS)
Oguro, Tsubasa; Endo, Hiroyuki; Kawai, Mika; Mitsumata, Tetsu
2017-12-01
A device consisting of a phase of magnetic elastomer, a phase of polyurethane foam (PUF), and permanent magnet was fabricated and the stress-strain curves for the two-phase magnetic elastomer were measured by a uniaxial compression measurement. A disk of magnetic elastomer was adhered on a disk of PUF by an adhesive agent. The PUF thickness was varied from 1 mm to 5 mm while the thickness of magnetic elastomers was constant at 5 mm. The stress at a strain of 0.15 for the two-phase magnetic elastomers was evaluated in the absence and in the presence of a magnetic field of 410 mT. The stress at 0 mT decreased remarkably with the PUF thickness due to the deformation of the PUF phase. On the other hand, the stress at 410 mT slightly decreased with the thickness; however, it kept high values even at high thickness. When the PUF thickness was 5 mm, the maximum stress increment with 45 times to the off-field stress was observed. An experiment using ping-pong balls demonstrated that the coefficient of restitution for the two-phase magnetic elastomers can be dramatically altered by the magnetic field.
Variability of the volume and thickness of sea ice in the Bay of Bothnia
NASA Astrophysics Data System (ADS)
Ronkainen, Iina; Lehtiranta, Jonni; Lensu, Mikko; Rinne, Eero; Hordoir, Robinson; Haapala, Jari
2017-04-01
Variability of the volume and thickness of sea ice in the Bay of Bothnia In our study, we want to quantify the variability of sea ice volume and thickness in the Bay of Bothnia and to introduce the drivers of the observed variability. There has been similar studies, but only for fast ice. We use various different data sets: in-situ ice thickness data, remote sensing data, model data and ice charts. In-situ data is from the regular monitoring stations in the coastal fast ice zone and from field campaigns. The remote sensing data is helicopter-borne and ship-borne electromagnetic data. The models we use are HELMI and NEMO-Nordic. We analyze the different data sets and compare them to each other to solve the inter-annual variability and to discuss the ratio of level and deformed ice.
Eom, Jung Seop; Jeon, Kyeongman; Um, Sang-Won; Koh, Won-Jung; Suh, Gee Young; Chung, Man Pyo; Kwon, O Jung
2013-01-01
Purpose Tracheal restenosis due to excessive granulation tissue around a silicone stent requires repeated bronchoscopic interventions in patients with post-tuberculosis tracheal stenosis (PTTS). The current study was conducted to identify the risk factors for granulation tissue formation after silicone stenting in PTTS patients. Materials and Methods A retrospective study was conducted between January 1998 and December 2010. Forty-two PTTS patients with silicone stenting were selected. Clinical and radiological variables were retrospectively collected and analyzed. Results Tracheal restenosis due to granulation tissue formation were found in 20 patients (47.6%), and repeated bronchoscopic interventions were conducted. In multivariate analysis, tracheal wall thickness, measured on axial computed tomography scan, was independently associated with granulation tissue formation after silicone stenting. Furthermore, the degree of tracheal wall thickness was well correlated with the degree of granulation tissue formation. Conclusion Tracheal wall thickening was associated with granulation tissue formation around silicone stents in patients with post-tuberculosis tracheal stenosis. PMID:23709431
Eom, Jung Seop; Kim, Hojoong; Jeon, Kyeongman; Um, Sang-Won; Koh, Won-Jung; Suh, Gee Young; Chung, Man Pyo; Kwon, O Jung
2013-07-01
Tracheal restenosis due to excessive granulation tissue around a silicone stent requires repeated bronchoscopic interventions in patients with post-tuberculosis tracheal stenosis (PTTS). The current study was conducted to identify the risk factors for granulation tissue formation after silicone stenting in PTTS patients. A retrospective study was conducted between January 1998 and December 2010. Forty-two PTTS patients with silicone stenting were selected. Clinical and radiological variables were retrospectively collected and analyzed. Tracheal restenosis due to granulation tissue formation were found in 20 patients (47.6%), and repeated bronchoscopic interventions were conducted. In multivariate analysis, tracheal wall thickness, measured on axial computed tomography scan, was independently associated with granulation tissue formation after silicone stenting. Furthermore, the degree of tracheal wall thickness was well correlated with the degree of granulation tissue formation. Tracheal wall thickening was associated with granulation tissue formation around silicone stents in patients with post-tuberculosis tracheal stenosis.
Ribeiro, Adèle H; Lotufo, Paulo A; Fujita, André; Goulart, Alessandra C; Chor, Dora; Mill, José G; Bensenor, Isabela M; Santos, Itamar S
2017-10-01
Blood pressure (BP) is associated with carotid intima-media thickness (CIMT), but few studies have explored the association between BP variability and CIMT. We aimed to investigate this association in the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil) baseline. We analyzed data from 7,215 participants (56.0% women) without overt cardiovascular disease (CVD) or antihypertensive use. We included 10 BP readings in varying positions during a 6-hour visit. We defined BP variability as the SD of these readings. We performed a 2-step analysis. We first linearly regressed the CIMT values on main and all-order interaction effects of the variables age, sex, body mass index, race, diabetes diagnosis, dyslipidemia diagnosis, family history of premature CVD, smoking status, and ELSA-Brasil site, and calculated the residuals (residual CIMT). We used partial least square path analysis to investigate whether residual CIMT was associated with BP central tendency and BP variability. Systolic BP (SBP) variability was significantly associated with residual CIMT in models including the entire sample (path coefficient [PC]: 0.046; P < 0.001), and in women (PC: 0.046; P = 0.007) but not in men (PC: 0.037; P = 0.09). This loss of significance was probably due to the smaller subsample size, as PCs were not significantly different according to sex. We found a small but significant association between SBP variability and CIMT values. This was additive to the association between SBP central tendency and CIMT values, supporting a role for high short-term SBP variability in atherosclerosis. © American Journal of Hypertension, Ltd 2017. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Microstructure-Tensile Properties Correlation for the Ti-6Al-4V Titanium Alloy
NASA Astrophysics Data System (ADS)
Shi, Xiaohui; Zeng, Weidong; Sun, Yu; Han, Yuanfei; Zhao, Yongqing; Guo, Ping
2015-04-01
Finding the quantitative microstructure-tensile properties correlations is the key to achieve performance optimization for various materials. However, it is extremely difficult due to their non-linear and highly interactive interrelations. In the present investigation, the lamellar microstructure features-tensile properties correlations of the Ti-6Al-4V alloy are studied using an error back-propagation artificial neural network (ANN-BP) model. Forty-eight thermomechanical treatments were conducted to prepare the Ti-6Al-4V alloy with different lamellar microstructure features. In the proposed model, the input variables are microstructure features including the α platelet thickness, colony size, and β grain size, which were extracted using Image Pro Plus software. The output variables are the tensile properties, including ultimate tensile strength, yield strength, elongation, and reduction of area. Fourteen hidden-layer neurons which can make ANN-BP model present the most excellent performance were applied. The training results show that all the relative errors between the predicted and experimental values are within 6%, which means that the trained ANN-BP model is capable of providing precise prediction of the tensile properties for Ti-6Al-4V alloy. Based on the corresponding relations between the tensile properties predicted by ANN-BP model and the lamellar microstructure features, it can be found that the yield strength decreases with increasing α platelet thickness continuously. However, the α platelet thickness exerts influence on the elongation in a more complicated way. In addition, for a given α platelet thickness, the yield strength and the elongation both increase with decreasing β grain size and colony size. In general, the β grain size and colony size play a more important role in affecting the tensile properties of Ti-6Al-4V alloy than the α platelet thickness.
Review of thickness swell in hardboard siding : effect of processing variables
Charles G. Carll
1997-01-01
Medium-density hardboard is used extensively as siding on residential structures. One hardboard behavior that can be measured in the laboratory is thickness swell after exposure to water. This report reviews the literature on processing variables that are known to or likely to influence thickness swell. Where the literature on hardboard is sparse, research on other...
Race- and Sex-Related Differences in Retinal Thickness and Foveal Pit Morphology
Wagner-Schuman, Melissa; Dubis, Adam M.; Nordgren, Rick N.; Lei, Yuming; Odell, Daniel; Chiao, Hellen; Weh, Eric; Fischer, William; Sulai, Yusufu; Dubra, Alfredo
2011-01-01
Purpose. To examine sex- and race-associated differences in macular thickness and foveal pit morphology by using spectral-domain optical coherence tomography (SD-OCT). Methods. One hundred eighty eyes of 90 healthy patients (43 women, 47 men) underwent retinal imaging with spectral-domain OCT. The lateral scale of each macular volume scan was corrected for individual differences in axial length by ocular biometry. From these corrected volumes, Early Treatment Diabetic Retinopathy Study (ETDRS) grids of retinal thickness were generated and compared between the groups. Foveal morphology was measured with previously described algorithms. Results. Compared with the Caucasians, the Africans and African Americans had reduced central subfield thickness. Central subfield thickness was also reduced in the women compared with the men, although the women also showed significant thinning in parafoveal regions. There was no difference between the sexes in foveal pit morphology; however, the Africans/African Americans had significantly deeper and broader foveal pits than the Caucasians. Conclusions. Previous studies have reported race- and sex-associated differences in macular thickness, and the inference has been that these differences represent similar anatomic features. However, the data on pit morphology collected in the present study reveal an important and significant variation. Between the sexes, the differences are due to global variability in retinal thickness, whereas the variation in thickness observed between the races appears to be driven by differences in foveal pit morphology. These differences have important implications for the use of SD-OCT in detecting and diagnosing retinal disease. PMID:20861480
Chaves, D A; Lyra, G B; Francelino, M R; Silva, Ldb; Thomazini, A; Schaefer, Cegr
2017-04-15
Permafrost and active layer studies are important to understand and predict regional climate changes. The objectives of this work were: i) to characterize the soil thermal regime (active layer thickness and permafrost formation) and its interannual variability and ii) to evaluate the influence of different climate variability modes to the observed soil thermal regime in a patterned ground soil in Maritime Antarctica. The study was carried out at Keller Peninsula, King George Island, Maritime Antarctica. Six soil temperatures probes were installed at different depths (10, 30 and 80cm) in the polygon center (Tc) and border (Tb) of a patterned ground soil. We applied cross-correlation analysis and standardized series were related to the Antarctic Oscillation Index (AAO). The estimated active layer thickness was approximately 0.75cm in the polygon border and 0.64cm in the center, indicating the presence of permafrost (within 80cm). Results indicate that summer and winter temperatures are becoming colder and warmer, respectively. Considering similar active layer thickness, the polygon border presented greater thawing days, resulting in greater vulnerability to warming, cooling faster than the center, due to its lower volumetric heat capacity (Cs). Cross-correlation analysis indicated statistically significant delay of 1day (at 10cm depth) in the polygon center, and 5days (at 80cm depth) for the thermal response between atmosphere and soil. Air temperature showed a delay of 5months with the climate variability models. The influence of southern winds from high latitudes, in the south facing slopes, favored freeze in the upper soil layers, and also contributed to keep permafrost closer to the surface. The observed cooling trend is linked to the regional climate variability modes influenced by atmospheric circulation, although longer monitoring period is required to reach a more precise scenario. Copyright © 2017 Elsevier B.V. All rights reserved.
Are Some Pre-Cataclysmic Variables also Post-Cataclysmic Variables?
NASA Astrophysics Data System (ADS)
Sarna, M. J.; Marks, P. B.; Smith, R. C.
1995-10-01
We propose an evolutionary scenario in which post-common-envelope binaries (PCEBs) with secondary component masses between 0.8 Msun and 1.2 M0 start semi-detached evolution almost immediately after the common-envelope (CE) phase. These systems detach due to unstable mass transfer when the secondary develops a thick convective envelope. The duration of the detached phase is a few times 108 yr, depending on the efficiency of magnetic braking and gravitational radiation. We suggest that some of the systems that have been classified as PCEBs may be in this stage of evolution and hence would be more realistically classified as pre-cataclysmic variables (PreCVs). We also propose an observational test based on measurements of the carbon and oxygen isotopic ratios from the infrared CO bands.
NASA Astrophysics Data System (ADS)
Lange, B. A.; Haas, C.; Beckers, J.; Hendricks, S.
2011-12-01
Satellite observations demonstrate a decreasing summer Arctic sea ice extent over the past ~40 years, as well as a smaller perennial sea ice zone, with a significantly accelerated decline in the last decade. Recent ice extent observations are significantly lower than predicted by any model employed by the Intergovernmental Panel on Climate Change. The disagreement of the modeled and observed results, along with the large variability of model results, can be in part attributed to a lack of consistent and long term sea ice mass balance observations for the High Arctic. This study presents the derivation of large scale (individual floe) seasonal sea ice mass balance in the Lincoln Sea and Nares Strait. Large scale melt estimates are derived by comparing aerial borne electromagnetic induction thickness surveys conducted in spring with surveys conducted in summer 2009. The comparison of coincident floes is ensured by tracking sea ice using ENIVSAT ASAR and MODIS satellite imagery. Only EM thickness survey sections of floes that were surveyed in both spring and summer are analyzed and the resulting modal thicknesses of the distributions, which represent the most abundant ice type, are compared to determine the difference in thickness and therefore total melt (snow+basal ice+surface ice melt). Preliminary analyses demonstrate a bulk (regional ice tracking) seasonal total thickness variability of 1.1m, Lincoln Sea modal thickness 3.7m (April, 2009) and Nares Strait modal thickness 2.6m (August 2009)(Fig1). More detailed floe tracking, in depth analysis of EM surveys and removal of deformed ridged/rafted sea ice (due to inaccuracies over deformed ice) will result in more accurate melt estimates for this region and will be presented. The physical structure of deformed sea ice and the footprint of the EM instrument typically underestimate the total thicknesses observed. Seasonal variations of sea ice properties can add additional uncertainty to the response of the EM instrument over deformed ridged/rafted sea ice. Here we will present additional analysis of the data comparing total thickness to ridge height that will provide some insight into the magnitude of seasonal discrepancies experienced by the EM instrument over deformed ice.
Dynamics and hydrodynamic mixing of reactive solutes at stable fresh-salt interfaces
NASA Astrophysics Data System (ADS)
van der Zee, Sjoerd E. A. T. M.; Eeman, Sara; Cirkel, Gijsbert; Leijnse, Toon
2014-05-01
In coastal zones with saline groundwater, but also in semi-arid regions, fresh groundwater lenses may form due to infiltration of rain water. The thickness of both the lens and the mixing zone, determines fresh water availability for plant growth. Due to recharge variation, the thickness of the lens and the mixing zone are not constant, which may adversely affect agricultural and natural vegetation if saline water reaches the root zone during the growing season. A similar situation is found in situations where groundwater is not saline, but has a different chemical signature than rainwater-affected groundwater. Then also, vegetation patches and botanic biodiversity may depend sensitively on the depth of the interface between different types of groundwater. In this presentation, we study the response of thin lenses and their mixing zone to variation of recharge. The recharge is varied using sinusoids with a range of amplitudes and frequencies. We vary lens properties by varying the Rayleigh number and Mass flux ratio of saline and fresh water, as these dominate on the thickness of thin lenses and their mixing zone. Numerical results show a linear relation between the normalised lens volume and the main lens and recharge characteristics, enabling an empirical approximation of the variation of lens thickness. Increase of the recharge amplitude causes increase and the increase of recharge frequency causes a decrease in the variation of lens thickness. The average lens thickness is not significantly influenced by these variations in recharge, contrary to the mixing zone thickness. The mixing zone thickness is compared to that of a Fickian mixing regime. A simple relation between the travelled distance of the centre of the mixing zone position due to variations in recharge and the mixing zone thickness is shown to be valid for both a sinusoidal recharge variation and actual records of irregularly varying daily recharge data. Starting from a step response function, convolution can be used to determine the effect of variable recharge in time. For a sinusoidal curve, we can determine delay of lens movement compared to the recharge curve as well as the lens amplitude, derived from the convolution integral. Together the proposed equations provide us with a first order approximation of lens characteristics using basic lens and recharge parameters without the use of numerical models. This enables the assessment of the vulnerability of any thin fresh water lens on saline, upward seeping groundwater to salinity stress in the root zone.
Monajjemi, Majid
2015-12-01
Cell membrane has a unique feature of storing biological energies in a physiologically relevant environment. This study illustrates a capacitor model of biological cell membrane including DPPC structures. The electron density profile models, electron localization function (ELF) and local information entropy have been applied to study the interaction of proteins with lipid bilayers in the cell membrane. The quantum and coulomb blockade effects of different thicknesses in the membrane have also been specifically investigated. It has been exhibited the quantum effects can appear in a small region of the free space within the membrane thickness due to the number and type of phospholipid layers. In addition, from the viewpoint of quantum effects by Heisenberg rule, it is shown the quantum tunneling is allowed in some micro positions while it is forbidden in other forms of membrane capacitor systems. Due to the dynamical behavior of the cell membrane, its capacitance is not fixed which results a variable capacitor. In presence of the external fields through protein trance membrane or ions, charges exert forces that can influence the state of the cell membrane. This causes to appear the charge capacitive susceptibility that can resonate with self-induction of helical coils; the resonance of which is the main reason for various biological pulses. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Markl, Daniel; Ziegler, Jakob; Hannesschläger, Günther; Sacher, Stephan; Buchsbaum, Andreas; Leitner, Michael; Khinast, Johannes G.
2014-05-01
Coating of tablets is a widely applied unit operation in the pharmaceutical industry. Thickness and uniformity of the coating layer are crucial for efficacy as well as for compliance. Not only due to different initiatives it is thus essential to monitor and control the coating process in-line. Optical coherence tomography (OCT) was already shown in previous works to be a suitable candidate for in-line monitoring of coating processes. However, to utilize the full potential of the OCT technology an automatic evaluation of the OCT measurements is essential. The automatic evaluation is currently implemented in MATLAB and includes several steps: (1) extraction of features of each A-scan, (2) classification of Ascan measurements based on their features, (3) detection of interfaces (air/coating and coating/tablet core), (4) correction of distortions due to the curvature of the bi-convex tablets and the oblique orientation of the tablets, and (5) determining the coating thickness. The algorithm is tested on OCT data acquired by moving the sensor head of the OCT system across a static tablet bed. The coating thickness variations of single tablets (i.e., intra-tablet coating variability) can additionally be analyzed as OCT allows the measurement of the coating thickness on multiple displaced positions on one single tablet. Specifically, the information about those parameters emphasizes the high capability of the OCT technology to improve process understanding and to assure a high product quality.
NASA Astrophysics Data System (ADS)
Zheng, Yuese; Solomon, Justin; Choudhury, Kingshuk; Marin, Daniele; Samei, Ehsan
2017-03-01
Texture analysis for lung lesions is sensitive to changing imaging conditions but these effects are not well understood, in part, due to a lack of ground-truth phantoms with realistic textures. The purpose of this study was to explore the accuracy and variability of texture features across imaging conditions by comparing imaged texture features to voxel-based 3D printed textured lesions for which the true values are known. The seven features of interest were based on the Grey Level Co-Occurrence Matrix (GLCM). The lesion phantoms were designed with three shapes (spherical, lobulated, and spiculated), two textures (homogenous and heterogeneous), and two sizes (diameter < 1.5 cm and 1.5 cm < diameter < 3 cm), resulting in 24 lesions (with a second replica of each). The lesions were inserted into an anthropomorphic thorax phantom (Multipurpose Chest Phantom N1, Kyoto Kagaku) and imaged using a commercial CT system (GE Revolution) at three CTDI levels (0.67, 1.42, and 5.80 mGy), three reconstruction algorithms (FBP, IR-2, IR-4), four reconstruction kernel types (standard, soft, edge), and two slice thicknesses (0.6 mm and 5 mm). Another repeat scan was performed. Texture features from these images were extracted and compared to the ground truth feature values by percent relative error. The variability across imaging conditions was calculated by standard deviation across a certain imaging condition for all heterogeneous lesions. The results indicated that the acquisition method has a significant influence on the accuracy and variability of extracted features and as such, feature quantities are highly susceptible to imaging parameter choices. The most influential parameters were slice thickness and reconstruction kernels. Thin slice thickness and edge reconstruction kernel overall produced more accurate and more repeatable results. Some features (e.g., Contrast) were more accurately quantified under conditions that render higher spatial frequencies (e.g., thinner slice thickness and sharp kernels), while others (e.g., Homogeneity) showed more accurate quantification under conditions that render smoother images (e.g., higher dose and smoother kernels). Care should be exercised is relating texture features between cases of varied acquisition protocols, with need to cross calibration dependent on the feature of interest.
Modelling Soil-Landscapes in Coastal California Hills Using Fine Scale Terrestrial Lidar
NASA Astrophysics Data System (ADS)
Prentice, S.; Bookhagen, B.; Kyriakidis, P. C.; Chadwick, O.
2013-12-01
Digital elevation models (DEMs) are the dominant input to spatially explicit digital soil mapping (DSM) efforts due to their increasing availability and the tight coupling between topography and soil variability. Accurate characterization of this coupling is dependent on DEM spatial resolution and soil sampling density, both of which may limit analyses. For example, DEM resolution may be too coarse to accurately reflect scale-dependent soil properties yet downscaling introduces artifactual uncertainty unrelated to deterministic or stochastic soil processes. We tackle these limitations through a DSM effort that couples moderately high density soil sampling with a very fine scale terrestrial lidar dataset (20 cm) implemented in a semiarid rolling hillslope domain where terrain variables change rapidly but smoothly over short distances. Our guiding hypothesis is that in this diffusion-dominated landscape, soil thickness is readily predicted by continuous terrain attributes coupled with catenary hillslope segmentation. We choose soil thickness as our keystone dependent variable for its geomorphic and hydrologic significance, and its tendency to be a primary input to synthetic ecosystem models. In defining catenary hillslope position we adapt a logical rule-set approach that parses common terrain derivatives of curvature and specific catchment area into discrete landform elements (LE). Variograms and curvature-area plots are used to distill domain-scale terrain thresholds from short range order noise characteristic of very fine-scale spatial data. The revealed spatial thresholds are used to condition LE rule-set inputs, rendering a catenary LE map that leverages the robustness of fine-scale terrain data to create a generalized interpretation of soil geomorphic domains. Preliminary regressions show that continuous terrain variables alone (curvature, specific catchment area) only partially explain soil thickness, and only in a subset of soils. For example, at spatial scales up 20, curvature explains 40% of soil thickness variance among soils <3 m deep, while soils >3 m deep show no clear relation to curvature. To further demonstration our geomorphic segmentation approach, we apply it to DEM domains where diffusion processes are less dominant than in our primary study area. Classified landform map derived from fine scale terrestrial lidar. Color classes depict hydrogeomorphic process domains in zero order watersheds.
NASA Astrophysics Data System (ADS)
Mathew, Simi; Natesan, Usha; Latha, Ganesan; Venkatesan, Ramasamy
2018-05-01
A study of the inter-annual variability of the warming of the southeastern Arabian Sea (SEAS) during the spring transition months was carried out from 2013 to 2015 based on in situ data from moored buoys. An attempt was made to identify the roles of the different variables in the warming of the SEAS (e.g., net heat flux, advection, entrainment, and thickness of the barrier layer during the previous northeast monsoon season). The intense freshening of the SEAS (approximately 2 PSU) occurring in each December, together with the presence of a downwelling Rossby wave, supports the formation of a thick barrier layer during the northeast monsoon season. It is known that the barrier layer thickness, varying each year, plays a major role in the spring warming of the SEAS. Interestingly, an anomalously thick barrier layer occurred during the northeast monsoon season of 2012-2013. However, the highest sea surface temperature (31 °C) was recorded during the last week of April 2015, while the lowest sea surface temperature (29.7 °C) was recorded during the last week of May 2013. The mixed layer heat budget analysis during the spring transition months proved that the intense warming has been mainly supported by the net heat flux, not by other factors like advection and entrainment. The inter-annual variability analysis of the net heat flux and its components, averaged over a box region of the SEAS, showed a substantial latent heat flux release and a reduction in net shortwave radiation in 2013. Both factors contributed to the negative net heat flux. Strong breaks in the warming were also observed in May due to the entrainment of cold sub-surface waters. These events are associated with the cyclonic eddy persisting over the SEAS during the same time. The entrainment term, favoring the cooling, was stronger in 2015 than that in 2013 and 2014. The surface temperatures measured in 2013 were lower than those in 2014 and 2015 despite the presence of a thick barrier layer. The substantial decrease in net heat flux along with entrainment cooling has been identified as causes for this behavior.
Agmon, Yoram; Meissner, Irene; Tajik, A Jamil; Seward, James B; Petterson, Tanya M; Christianson, Teresa J H; O'Fallon, W Michael; Wiebers, David O; Khandheria, Bijoy K
2005-02-01
The determinants of interatrial septal (IAS) thickening ("lipomatous hypertrophy"), a common echocardiographic finding in the elderly, are poorly defined. The objective of this study was to determine the clinical, laboratory, and transesophageal echocardiographic correlates of IAS thickening in the general population. The thickness of the IAS was measured by transesophageal echocardiography in 384 patients (median age: 66 years; range: 51-101 years; 53% men) participating in a population-based study (Stroke Prevention: Assessment of Risk in a Community). The associations between atherosclerosis risk factors, clinical cardiovascular disease, aortic atherosclerotic plaques, and IAS thickness were examined. Age and body surface area (BSA) were significantly associated with IAS thickness (median: 6 mm; range: 2-17 mm). IAS thickness increased by 12.6% per 10 years of age (95% confidence interval: 9.0-16.4%) adjusting for sex and BSA, and increased by 7.0% per 0.1 m 2 BSA (confidence interval: 5.0-9.2%) adjusting for age and sex. Overall, age, sex, and BSA accounted for 22.5% of the variability in IAS thickness. Current smoking (20.4% increase in IAS thickness in current smokers) and hypertension treatment (8.5% increase in treated patients) were associated with increased IAS thickness, adjusting for age, sex, and BSA ( P < .05), but these two risk factor variables jointly explained only an additional 2.3% of the variability in IAS thickness beyond the variability explained by age, sex, and BSA. Clinical coronary artery and cerebrovascular disease, atrial arrhythmias, and aortic atherosclerotic plaques were not associated with IAS thickness, adjusting for age, sex, and BSA ( P > .3). IAS thickening is an age-associated process. Atherosclerosis risk factors are weakly associated with IAS thickening, whereas atherosclerotic vascular disease is not.
Shang, Eric K; Nathan, Derek P; Sprinkle, Shanna R; Fairman, Ronald M; Bavaria, Joseph E; Gorman, Robert C; Gorman, Joseph H; Jackson, Benjamin M
2013-09-10
Wall stress calculated using finite element analysis has been used to predict rupture risk of aortic aneurysms. Prior models often assume uniform aortic wall thickness and fusiform geometry. We examined the effects of including local wall thickness, intraluminal thrombus, calcifications, and saccular geometry on peak wall stress (PWS) in finite element analysis of descending thoracic aortic aneurysms. Computed tomographic angiography of descending thoracic aortic aneurysms (n=10 total, 5 fusiform and 5 saccular) underwent 3-dimensional reconstruction with custom algorithms. For each aneurysm, an initial model was constructed with uniform wall thickness. Experimental models explored the addition of variable wall thickness, calcifications, and intraluminal thrombus. Each model was loaded with 120 mm Hg pressure, and von Mises PWS was computed. The mean PWS of uniform wall thickness models was 410 ± 111 kPa. The imposition of variable wall thickness increased PWS (481 ± 126 kPa, P<0.001). Although the addition of calcifications was not statistically significant (506 ± 126 kPa, P=0.07), the addition of intraluminal thrombus to variable wall thickness (359 ± 86 kPa, P ≤ 0.001) reduced PWS. A final model incorporating all features also reduced PWS (368 ± 88 kPa, P<0.001). Saccular geometry did not increase diameter-normalized stress in the final model (77 ± 7 versus 67 ± 12 kPa/cm, P=0.22). Incorporation of local wall thickness can significantly increase PWS in finite element analysis models of thoracic aortic aneurysms. Incorporating variable wall thickness, intraluminal thrombus, and calcifications significantly impacts computed PWS of thoracic aneurysms; sophisticated models may, therefore, be more accurate in assessing rupture risk. Saccular aneurysms did not demonstrate a significantly higher normalized PWS than fusiform aneurysms.
Alshadwi, Ahmad; Bhatia, Ishwar
2012-01-01
Oral submucous fibrosis is a chronic debilitating disease characterized by gradually increasing fibrosis of the oral cavity and pharynx, mainly the buccal mucosa, resulting in trismus. The highest incidence of oral submucous fibrosis is seen in South India due to various deleterious habits. In spite of the numerous medical modalities employed in the management of oral submucous fibrosis, occasionally surgical intervention becomes inevitable. Various surgical approaches have been used to reconstruct the surgical defects following excision of fibrous bands. Full thickness skin grafts have been described in the literature with variable outcomes. In the present study a 38-year-old male presented with severe oral submucous fibrosis of the buccal mucosa, which was successfully treated and reconstructed using full thickness skin graft with stable functional result after one year of treatment. An integrated review of the literature regarding etiology, histopathology, diagnostic, and treatment modalities of the disease follows. PMID:23304568
Limitation of Ground-based Estimates of Solar Irradiance Due to Atmospheric Variations
NASA Technical Reports Server (NTRS)
Wen, Guoyong; Cahalan, Robert F.; Holben, Brent N.
2003-01-01
The uncertainty in ground-based estimates of solar irradiance is quantitatively related to the temporal variability of the atmosphere's optical thickness. The upper and lower bounds of the accuracy of estimates using the Langley Plot technique are proportional to the standard deviation of aerosol optical thickness (approx. +/- 13 sigma(delta tau)). The estimates of spectral solar irradiance (SSI) in two Cimel sun photometer channels from the Mauna Loa site of AERONET are compared with satellite observations from SOLSTICE (Solar Stellar Irradiance Comparison Experiment) on UARS (Upper Atmospheric Research Satellite) for almost two years of data. The true solar variations related to the 27-day solar rotation cycle observed from SOLSTICE are about 0.15% at the two sun photometer channels. The variability in ground-based estimates is statistically one order of magnitude larger. Even though about 30% of these estimates from all Level 2.0 Cimel data fall within the 0.4 to approx. 0.5% variation level, ground-based estimates are not able to capture the 27-day solar variation observed from SOLSTICE.
Investigation of the annealing temperature dependence of the spin pumping in Co20Fe60B20/Pt systems
NASA Astrophysics Data System (ADS)
Belmeguenai, M.; Aitoukaci, K.; Zighem, F.; Gabor, M. S.; Petrisor, T.; Mos, R. B.; Tiusan, C.
2018-03-01
Co20Fe60B20/Pt systems with variable thicknesses of Co20Fe60B20 and of Pt have been sputtered and then annealed at various temperatures (Ta) up to 300 °C. Microstrip line ferromagnetic resonance (MS-FMR) has been used to investigate Co20Fe60B20 and Pt thickness dependencies of the magnetic damping enhancement due to the spin pumping. Using diffusion and ballistic models for spin pumping, the spin mixing conductance and the spin diffusion length have been deduced from the Co20Fe60B20 and the Pt thickness dependencies of the Gilbert damping parameter α of the Co20Fe60B20/Pt heterostructures, respectively. Within the ballistic simple model, both the spin mixing conductance at the CoFeB/Pt interface and the spin-diffusion length of Pt increase with the increasing annealing temperature and show a strong enhancement at 300 °C annealing temperature. In contrast, the spin mixing conductance, which increases with Ta, shows a different trend to the spin diffusion length when using the diffusion model. Moreover, MS-FMR measurements revealed that the effective magnetization varies linearly with the Co20Fe60B20 inverse thickness due to the perpendicular interface anisotropy, which is found to decrease as the annealing temperature increases. It also revealed that the angular dependence of the resonance field is governed by small uniaxial anisotropy which is found to vary linearly with the Co20Fe60B20 inverse thickness of the annealed films, in contrast to that of the as grown ones.
Baum, Rex L.
2017-01-01
Thickness of colluvium or regolith overlying bedrock or other consolidated materials is a major factor in determining stability of unconsolidated earth materials on steep slopes. Many efforts to model spatially distributed slope stability, for example to assess susceptibility to shallow landslides, have relied on estimates of constant thickness, constant depth, or simple models of thickness (or depth) based on slope and other topographic variables. Assumptions of constant depth or thickness rarely give satisfactory results. Geomorphologists have devised a number of different models to represent the spatial variability of regolith depth and applied them to various settings. I have applied some of these models that can be implemented numerically to different study areas with different types of terrain and tested the results against available depth measurements and landslide inventories. The areas include crystalline rocks of the Colorado Front Range, and gently dipping sedimentary rocks of the Oregon Coast Range. Model performance varies with model, terrain type, and with quality of the input topographic data. Steps in contour-derived 10-m digital elevation models (DEMs) introduce significant errors into the predicted distribution of regolith and landslides. Scan lines, facets, and other artifacts further degrade DEMs and model predictions. Resampling to a lower grid-cell resolution can mitigate effects of facets in lidar DEMs of areas where dense forest severely limits ground returns. Due to its higher accuracy and ability to penetrate vegetation, lidar-derived topography produces more realistic distributions of cover and potential landslides than conventional photogrammetrically derived topographic data.
NASA Astrophysics Data System (ADS)
Sadeghi, Arman
2018-03-01
Modeling of fluid flow in polyelectrolyte layer (PEL)-grafted microchannels is challenging due to their two-layer nature. Hence, the pertinent studies are limited only to circular and slit geometries for which matching the solutions for inside and outside the PEL is simple. In this paper, a simple variational-based approach is presented for the modeling of fully developed electroosmotic flow in PEL-grafted microchannels by which the whole fluidic area is considered as a single porous medium of variable properties. The model is capable of being applied to microchannels of a complex cross-sectional area. As an application of the method, it is applied to a rectangular microchannel of uniform PEL properties. It is shown that modeling a rectangular channel as a slit may lead to considerable overestimation of the mean velocity especially when both the PEL and electric double layer (EDL) are thick. It is also demonstrated that the mean velocity is an increasing function of the fixed charge density and PEL thickness and a decreasing function of the EDL thickness and PEL friction coefficient. The influence of the PEL thickness on the mean velocity, however, vanishes when both the PEL thickness and friction coefficient are sufficiently high.
Synchrotron FTIR imaging of OH in quartz mylonites
NASA Astrophysics Data System (ADS)
Kronenberg, Andreas K.; Hasnan, Hasnor F. B.; Holyoke, Caleb W., III; Law, Richard D.; Liu, Zhenxian; Thomas, Jay B.
2017-10-01
Previous measurements of water in deformed quartzites using conventional Fourier transform infrared spectroscopy (FTIR) instruments have shown that water contents of larger grains vary from one grain to another. However, the non-equilibrium variations in water content between neighboring grains and within quartz grains cannot be interrogated further without greater measurement resolution, nor can water contents be measured in finely recrystallized grains without including absorption bands due to fluid inclusions, films, and secondary minerals at grain boundaries.Synchrotron infrared (IR) radiation coupled to a FTIR spectrometer has allowed us to distinguish and measure OH bands due to fluid inclusions, hydrogen point defects, and secondary hydrous mineral inclusions through an aperture of 10 µm for specimens > 40 µm thick. Doubly polished infrared (IR) plates can be prepared with thicknesses down to 4-8 µm, but measurement of small OH bands is currently limited by strong interference fringes for samples < 25 µm thick, precluding measurements of water within individual, finely recrystallized grains. By translating specimens under the 10 µm IR beam by steps of 10 to 50 µm, using a software-controlled x - y stage, spectra have been collected over specimen areas of nearly 4.5 mm2. This technique allowed us to separate and quantify broad OH bands due to fluid inclusions in quartz and OH bands due to micas and map their distributions in quartzites from the Moine Thrust (Scotland) and Main Central Thrust (Himalayas).Mylonitic quartzites deformed under greenschist facies conditions in the footwall to the Moine Thrust (MT) exhibit a large and variable 3400 cm-1 OH absorption band due to molecular water, and maps of water content corresponding to fluid inclusions show that inclusion densities correlate with deformation and recrystallization microstructures. Quartz grains of mylonitic orthogneisses and paragneisses deformed under amphibolite conditions in the hanging wall to the Main Central Thrust (MCT) exhibit smaller broad OH bands, and spectra are dominated by sharp bands at 3595 to 3379 cm-1 due to hydrogen point defects that appear to have uniform, equilibrium concentrations in the driest samples. The broad OH band at 3400 cm-1 in these rocks is much less common. The variable water concentrations of MT quartzites and lack of detectable water in highly sheared MCT mylonites challenge our understanding of quartz rheology. However, where water absorption bands can be detected and compared with deformation microstructures, OH concentration maps provide information on the histories of deformation and recovery, evidence for the introduction and loss of fluid inclusions, and water weakening processes.
Synchrotron FTIR imaging of OH in quartz mylonites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kronenberg, Andreas K.; Hasnan, Hasnor F. B.; Holyoke III, Caleb W.
Previous measurements of water in deformed quartzites using conventional Fourier transform infrared spectroscopy (FTIR) instruments have shown that water contents of larger grains vary from one grain to another. However, the non-equilibrium variations in water content between neighboring grains and within quartz grains cannot be interrogated further without greater measurement resolution, nor can water contents be measured in finely recrystallized grains without including absorption bands due to fluid inclusions, films, and secondary minerals at grain boundaries.Synchrotron infrared (IR) radiation coupled to a FTIR spectrometer has allowed us to distinguish and measure OH bands due to fluid inclusions, hydrogen point defects,more » and secondary hydrous mineral inclusions through an aperture of 10 µm for specimens > 40 µm thick. Doubly polished infrared (IR) plates can be prepared with thicknesses down to 4–8 µm, but measurement of small OH bands is currently limited by strong interference fringes for samples < 25 µm thick, precluding measurements of water within individual, finely recrystallized grains. By translating specimens under the 10 µm IR beam by steps of 10 to 50 µm, using a software-controlled x- y stage, spectra have been collected over specimen areas of nearly 4.5 mm 2. This technique allowed us to separate and quantify broad OH bands due to fluid inclusions in quartz and OH bands due to micas and map their distributions in quartzites from the Moine Thrust (Scotland) and Main Central Thrust (Himalayas).Mylonitic quartzites deformed under greenschist facies conditions in the footwall to the Moine Thrust (MT) exhibit a large and variable 3400 cm -1 OH absorption band due to molecular water, and maps of water content corresponding to fluid inclusions show that inclusion densities correlate with deformation and recrystallization microstructures. Quartz grains of mylonitic orthogneisses and paragneisses deformed under amphibolite conditions in the hanging wall to the Main Central Thrust (MCT) exhibit smaller broad OH bands, and spectra are dominated by sharp bands at 3595 to 3379 cm -1 due to hydrogen point defects that appear to have uniform, equilibrium concentrations in the driest samples. The broad OH band at 3400 cm -1 in these rocks is much less common. The variable water concentrations of MT quartzites and lack of detectable water in highly sheared MCT mylonites challenge our understanding of quartz rheology. However, where water absorption bands can be detected and compared with deformation microstructures, OH concentration maps provide information on the histories of deformation and recovery, evidence for the introduction and loss of fluid inclusions, and water weakening processes.« less
NASA Astrophysics Data System (ADS)
Hayat, Tasawar; Qayyum, Sajid; Alsaedi, Ahmed; Ahmad, Bashir
2018-03-01
This article addresses the magnetohydrodynamic (MHD) stagnation point flow of third grade fluid towards a nonlinear stretching sheet. Energy expression is based through involvement of variable thermal conductivity. Heat and mass transfer aspects are described within the frame of double stratification effects. Boundary layer partial differential systems are deduced. Governing systems are then converted into ordinary differential systems by invoking appropriate variables. The transformed expressions are solved through homotopic technique. Impact of embedded variables on velocity, thermal and concentration fields are displayed and argued. Numerical computations are presented to obtain the results of skin friction coefficient and local Nusselt and Sherwood numbers. It is revealed that larger values of magnetic parameter reduces the velocity field while reverse situation is noticed due to wall thickness variable. Temperature field and local Nusselt number are quite reverse for heat generation/absorption parameter. Moreover qualitative behaviors of concentration field and local Sherwood number are similar for solutal stratification parameter.
10 Years of Asian Dust Storm Observations from SeaWiFS: Source, Pathway, and Interannual Variability
NASA Technical Reports Server (NTRS)
Hsu, N. Christina; Tsay, S.-C.; King, M.D.; Jeong, M.-J.
2008-01-01
In this paper, we will demonstrate the capability of a new satellite algorithm to retrieve aerosol optical thickness and single scattering albedo over bright-reflecting surfaces such as urban areas and deserts. Such retrievals have been difficult to perform using previously available algorithms that use wavelengths from the mid-visible to the near IR because they have trouble separating the aerosol signal from the contribution due to the bright surface reflectance. The new algorithm, called Deep Blue, utilizes blue-wavelength measurements from instruments such as SeaWiFS and MODIS to infer the properties of aerosols, since the surface reflectance over land in the blue part of the spectrum is much lower than for longer wavelength channels. We have validated the satellite retrieved aerosol optical thickness with data from AERONET sunphotometers over desert and semi-desert regions. The comparisons show reasonable agreements between these two. These new satellite products will allow scientists to determine quantitatively the aerosol properties near sources using high spatial resolution measurements from SeaWiFS and MODIS-like instruments. The multiyear satellite measurements (1998 - 2007) from SeaWiFS will be utilized to investigate the interannual variability of source, pathway, and dust loading associated with these dust outbreaks in East Asia. The monthly averaged aerosol optical thickness during the springtime from SeaWiFS will also be compared with the MODIS Deep Blue products.
Pascual Huerta, Javier; Alarcón García, Juan María
2007-06-01
The study was aimed to investigate plantar fascia thickness at different locations in healthy asymptomatic subjects and its relationship to the following variables: weight, height, sex and age. The study evaluates 96 feet of healthy asymptomatic volunteers. The plantar fascia thickness was measured at four different locations: 1cm proximal to the insertion of the plantar fascia, at the insertion of the plantar fascia on the calcaneus and separate out 1 cm + 2 cm distal to the insertion. A 10 MHz linear-array transducer was used. There were statistically significant differences in plantar fascia thickness at the four different locations (p<0.001) although no differences in PF thickness were found between the two distal from insertion locations (1 and 2 cm). Multiple regression analysis showed sex as independent predictor of plantar fascia thickness at 1cm proximal to the insertion. At origin and 1cm distal to insertion weight was an independent predictor of plantar fascia thickness. There are differences of thickness at different locations of plantar fascia measured by ultrasonography. Thickness at 1cm proximal to the insertion is influenced by sex and thickness at origin and at 1cm distal to the insertion has a direct relationship with body weight. This could be attributed to the overloading effect that weight has on plantar fascia in healthy symptomatic subjects at these two locations. Height and age did not seem to influence as independent variables in plantar fascia thickness among non-painful subjects.
Cho, Youngsang; Seong, Joon-Kyung; Jeong, Yong; Shin, Sung Yong
2012-02-01
Patterns of brain atrophy measured by magnetic resonance structural imaging have been utilized as significant biomarkers for diagnosis of Alzheimer's disease (AD). However, brain atrophy is variable across patients and is non-specific for AD in general. Thus, automatic methods for AD classification require a large number of structural data due to complex and variable patterns of brain atrophy. In this paper, we propose an incremental method for AD classification using cortical thickness data. We represent the cortical thickness data of a subject in terms of their spatial frequency components, employing the manifold harmonic transform. The basis functions for this transform are obtained from the eigenfunctions of the Laplace-Beltrami operator, which are dependent only on the geometry of a cortical surface but not on the cortical thickness defined on it. This facilitates individual subject classification based on incremental learning. In general, methods based on region-wise features poorly reflect the detailed spatial variation of cortical thickness, and those based on vertex-wise features are sensitive to noise. Adopting a vertex-wise cortical thickness representation, our method can still achieve robustness to noise by filtering out high frequency components of the cortical thickness data while reflecting their spatial variation. This compromise leads to high accuracy in AD classification. We utilized MR volumes provided by Alzheimer's Disease Neuroimaging Initiative (ADNI) to validate the performance of the method. Our method discriminated AD patients from Healthy Control (HC) subjects with 82% sensitivity and 93% specificity. It also discriminated Mild Cognitive Impairment (MCI) patients, who converted to AD within 18 months, from non-converted MCI subjects with 63% sensitivity and 76% specificity. Moreover, it showed that the entorhinal cortex was the most discriminative region for classification, which is consistent with previous pathological findings. In comparison with other classification methods, our method demonstrated high classification performance in both categories, which supports the discriminative power of our method in both AD diagnosis and AD prediction. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Kurtz, Nathan T.; Markus, Thorsten; Cavalieri, Donald J.; Sparling, Lynn C.; Krabill, William B.; Gasiewski, Albin J.; Sonntag, John G.
2009-01-01
Combinations of sea ice freeboard and snow depth measurements from satellite data have the potential to provide a means to derive global sea ice thickness values. However, large differences in spatial coverage and resolution between the measurements lead to uncertainties when combining the data. High resolution airborne laser altimeter retrievals of snow-ice freeboard and passive microwave retrievals of snow depth taken in March 2006 provide insight into the spatial variability of these quantities as well as optimal methods for combining high resolution satellite altimeter measurements with low resolution snow depth data. The aircraft measurements show a relationship between freeboard and snow depth for thin ice allowing the development of a method for estimating sea ice thickness from satellite laser altimetry data at their full spatial resolution. This method is used to estimate snow and ice thicknesses for the Arctic basin through the combination of freeboard data from ICESat, snow depth data over first-year ice from AMSR-E, and snow depth over multiyear ice from climatological data. Due to the non-linear dependence of heat flux on ice thickness, the impact on heat flux calculations when maintaining the full resolution of the ICESat data for ice thickness estimates is explored for typical winter conditions. Calculations of the basin-wide mean heat flux and ice growth rate using snow and ice thickness values at the 70 m spatial resolution of ICESat are found to be approximately one-third higher than those calculated from 25 km mean ice thickness values.
Nieves-Moreno, María; Martínez-de-la-Casa, José M; Bambo, María P; Morales-Fernández, Laura; Van Keer, Karel; Vandewalle, Evelien; Stalmans, Ingeborg; García-Feijoó, Julián
2018-02-01
This study examines the capacity to detect glaucoma of inner macular layer thickness measured by spectral-domain optical coherence tomography (SD-OCT) using a new normative database as the reference standard. Participants ( N = 148) were recruited from Leuven (Belgium) and Zaragoza (Spain): 74 patients with early/moderate glaucoma and 74 age-matched healthy controls. One eye was randomly selected for a macular scan using the Spectralis SD-OCT. The variables measured with the instrument's segmentation software were: macular nerve fiber layer (mRNFL), ganglion cell layer (GCL), and inner plexiform layer (IPL) volume and thickness along with circumpapillary RNFL thickness (cpRNFL). The new normative database of macular variables was used to define the cutoff of normality as the fifth percentile by age group. Sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC) of each macular measurement and of cpRNFL were used to distinguish between patients and controls. Overall sensitivity and specificity to detect early-moderate glaucoma were 42.2% and 88.9% for mRNFL, 42.4% and 95.6% for GCL, 42.2% and 94.5% for IPL, and 53% and 94.6% for RNFL, respectively. The best macular variable to discriminate between the two groups of subjects was outer temporal GCL thickness as indicated by an AUROC of 0.903. This variable performed similarly to mean cpRNFL thickness (AUROC = 0.845; P = 0.29). Using our normative database as reference, the diagnostic power of inner macular layer thickness proved comparable to that of peripapillary RNFL thickness. Spectralis SD-OCT, cpRNFL thickness, and individual macular inner layer thicknesses show comparable diagnostic capacity for glaucoma and RNFL, GCL, and IPL thickness may be useful as an alternative diagnostic test when the measure of cpRNFL shows artifacts.
The impact of the snow cover on sea-ice thickness products retrieved by Ku-band radar altimeters
NASA Astrophysics Data System (ADS)
Ricker, R.; Hendricks, S.; Helm, V.; Perovich, D. K.
2015-12-01
Snow on sea ice is a relevant polar climate parameter related to ocean-atmospheric interactions and surface albedo. It also remains an important factor for sea-ice thickness products retrieved from Ku-band satellite radar altimeters like Envisat or CryoSat-2, which is currently on its mission and the subject of many recent studies. Such satellites sense the height of the sea-ice surface above the sea level, which is called sea-ice freeboard. By assuming hydrostatic equilibrium and that the main scattering horizon is given by the snow-ice interface, the freeboard can be transformed into sea-ice thickness. Therefore, information about the snow load on hemispherical scale is crucial. Due to the lack of sufficient satellite products, only climatological values are used in current studies. Since such values do not represent the high variability of snow distribution in the Arctic, they can be a substantial contributor to the total sea-ice thickness uncertainty budget. Secondly, recent studies suggest that the snow layer cannot be considered as homogenous, but possibly rather featuring a complex stratigraphy due to wind compaction and/or ice lenses. Therefore, the Ku-band radar signal can be scattered at internal layers, causing a shift of the main scattering horizon towards the snow surface. This alters the freeboard and thickness retrieval as the assumption that the main scattering horizon is given by the snow-ice interface is no longer valid and introduces a bias. Here, we present estimates for the impact of snow depth uncertainties and snow properties on CryoSat-2 sea-ice thickness retrievals. We therefore compare CryoSat-2 freeboard measurements with field data from ice mass-balance buoys and aircraft campaigns from the CryoSat Validation Experiment. This unique validation dataset includes airborne laser scanner and radar altimeter measurements in spring coincident to CryoSat-2 overflights, and allows us to evaluate how the main scattering horizon is altered by the presence of a complex snow stratigraphy.
NASA Astrophysics Data System (ADS)
Powell, E. M.; Hay, C.; Latychev, K.; Gomez, N. A.; Mitrovica, J. X.
2016-12-01
Glacial Isostatic Adjustment (GIA) models used to constrain the extent of past ice sheets and viscoelastic Earth structure, or to correct geodetic and geological observables for ice age effects, generally only consider depth-dependent variations in Earth viscosity and lithospheric structure. A et al. [2013] argued that 3-D Earth structure could impact GIA observables in Antarctica, but concluded that the presence of such structure contributes less to GIA uncertainty than do differences in Antarctic deglaciation histories. New seismic and geological evidence, however, indicates the Antarctic is underlain by complex, high amplitude variability in viscoelastic structure, including a low viscosity zone (LVZ) under West Antarctica. Hay et al. [2016] showed that sea-level fingerprints of modern melting calculated using such Earth models differ from those based on elastic or 1-D viscoelastic Earth models within decades of melting. Our investigation is motivated by two questions: (1) How does 3-D Earth structure, especially this LVZ, impact observations of GIA-induced crustal deformation associated with the last deglaciation? (2) How will 3-D Earth structure affect predictions of future sea-level rise in Antarctica? We compute the gravitationally self-consistent sea level, uplift, and gravity changes using the finite volume treatment of Latychev et al. [2005]. We consider four viscoelastic Earth models: a global 1-D model; a regional, West Antarctic-like 1-D model; a 3-D model where the lithospheric thickness varies laterally; and a 3-D model where both viscosity and lithospheric thickness vary laterally. For our Last Glacial Maximum to present investigations we employ ICE6g [Peltier et al., 2015]. For our present-future investigations we consider a melt scenario consistent with GRACE satellite gravity derived solutions [Harig et al., 2015]. Our calculations indicate that predictions of crustal deformations due to both GIA and ongoing melting are strongly influenced by 3-D lithospheric thickness and viscosity structure. Future sea level change due to ongoing melting is primarily influenced by 3-D viscosity structure. We show that 1-D Earth models built using regional inferences of viscosity and lithospheric thickness do not accurately capture the variability introduced by 3-D Earth structure.
NASA Astrophysics Data System (ADS)
Powell, E. M.; Hay, C.; Latychev, K.; Gomez, N. A.; Mitrovica, J. X.
2017-12-01
Glacial Isostatic Adjustment (GIA) models used to constrain the extent of past ice sheets and viscoelastic Earth structure, or to correct geodetic and geological observables for ice age effects, generally only consider depth-dependent variations in Earth viscosity and lithospheric structure. A et al. [2013] argued that 3-D Earth structure could impact GIA observables in Antarctica, but concluded that the presence of such structure contributes less to GIA uncertainty than do differences in Antarctic deglaciation histories. New seismic and geological evidence, however, indicates the Antarctic is underlain by complex, high amplitude variability in viscoelastic structure, including a low viscosity zone (LVZ) under West Antarctica. Hay et al. [2016] showed that sea-level fingerprints of modern melting calculated using such Earth models differ from those based on elastic or 1-D viscoelastic Earth models within decades of melting. Our investigation is motivated by two questions: (1) How does 3-D Earth structure, especially this LVZ, impact observations of GIA-induced crustal deformation associated with the last deglaciation? (2) How will 3-D Earth structure affect predictions of future sea-level rise in Antarctica? We compute the gravitationally self-consistent sea level, uplift, and gravity changes using the finite volume treatment of Latychev et al. [2005]. We consider four viscoelastic Earth models: a global 1-D model; a regional, West Antarctic-like 1-D model; a 3-D model where the lithospheric thickness varies laterally; and a 3-D model where both viscosity and lithospheric thickness vary laterally. For our Last Glacial Maximum to present investigations we employ ICE6g [Peltier et al., 2015]. For our present-future investigations we consider a melt scenario consistent with GRACE satellite gravity derived solutions [Harig et al., 2015]. Our calculations indicate that predictions of crustal deformations due to both GIA and ongoing melting are strongly influenced by 3-D lithospheric thickness and viscosity structure. Future sea level change due to ongoing melting is primarily influenced by 3-D viscosity structure. We show that 1-D Earth models built using regional inferences of viscosity and lithospheric thickness do not accurately capture the variability introduced by 3-D Earth structure.
Free Vibrations of Nonthin Elliptic Cylindrical Shells of Variable Thickness
NASA Astrophysics Data System (ADS)
Grigorenko, A. Ya.; Efimova, T. L.; Korotkikh, Yu. A.
2017-11-01
The problem of the free vibrations of nonthin elliptic cylindrical shells of variable thickness under various boundary conditions is solved using the refined Timoshenko-Mindlin theory. To solve the problem, an effective numerical approach based on the spline-approximation and discrete-orthogonalization methods is used. The effect of the cross-sectional shape, thickness variation law, material properties, and boundary conditions on the natural frequency spectrum of the shells is analyzed.
Hong, Samin; Kim, Chan Yun; Lee, Won Seok; Seong, Gong Je
2010-01-01
To assess the reproducibility of the new spectral domain Cirrus high-definition optical coherence tomography (HD-OCT; Carl Zeiss Meditec, Dublin, CA, USA) for analysis of peripapillary retinal nerve fiber layer (RNFL) thickness in healthy eyes. Thirty healthy Korean volunteers were enrolled. Three optic disc cube 200 x 200 Cirrus HD-OCT scans were taken on the same day in discontinuous sessions by the same operator without using the repeat scan function. The reproducibility of the calculated RNFL thickness and probability code were determined by the intraclass correlation coefficient (ICC), coefficient of variation (CV), test-retest variability, and Fleiss' generalized kappa (kappa). Thirty-six eyes were analyzed. For average RNFL thickness, the ICC was 0.970, CV was 2.38%, and test-retest variability was 4.5 microm. For all quadrants except the nasal, ICCs were 0.972 or higher and CVs were 4.26% or less. Overall test-retest variability ranged from 5.8 to 8.1 microm. The kappa value of probability codes for average RNFL thickness was 0.690. The kappa values of quadrants and clock-hour sectors were lower in the nasal areas than in other areas. The reproducibility of Cirrus HD-OCT to analyze peripapillary RNFL thickness in healthy eyes was excellent compared with the previous reports for time domain Stratus OCT. For the calculated RNFL thickness and probability code, variability was relatively higher in the nasal area, and more careful analyses are needed.
Estimates of the effective compressive strength
NASA Astrophysics Data System (ADS)
Goldstein, R. V.; Osipenko, N. M.
2017-07-01
One problem encountered when determining the effective mechanical properties of large-scale objects, which requires calculating their strength in processes of mechanical interaction with other objects, is related to the possible variability in their local properties including those due to the action of external physical factors. Such problems comprise the determination of the effective strength of bodies one of whose dimensions (thickness) is significantly less than the others and whose properties and/or composition can vary with the thickness. A method for estimating the effective strength of such bodies is proposed and illustrated with example of ice cover strength under longitudinal compression with regard to a partial loss of the ice bearing capacity in deformation. The role of failure localization processes is shown. It is demonstrated that the proposed approach can be used in other problems of fracture mechanics.
Browning, David J.; Glassman, Adam R.; Aiello, Lloyd P.; Bressler, Neil M.; Bressler, Susan; Danis, Ronald P.; Davis, Matthew D.; Ferris, Frederick L.; Huang, Suber S.; Kaiser, Peter K.; Kollman, Craig; Sadda, Srinavas; Scott, Ingrid U.; Qin, Haijing
2009-01-01
Objective To evaluate optical coherence tomography (OCT) measurements and methods of analysis of OCT data in studies of diabetic macular edema (DME). Design Associations of pairs of OCT variables and results of three analysis methods using data from two studies of DME. Participants Two hundred sixty-three subjects from a study of modified Early Treatment of Diabetic Retinopathy Study (mETDRS) versus modified macular grid (MMG) photocoagulation for DME and 96 subjects from a study of diurnal variation of DME. Methods Correlations were calculated for pairs of OCT variables at baseline and for changes in the variables over time. Distribution of OCT measurement changes, predictive factors for OCT measurement changes, and treatment group outcomes were compared when three measures of change in macular thickness were analyzed: absolute change in retinal thickness, relative change in retinal thickness, and relative change in retinal thickening. Main Outcome Measures Concordance of results using different OCT variables and analysis methods. Results Center point thickness correlated highly with central subfield mean thickness (CSMT) at baseline (0.98–0.99). The distributions of changes in CSMT were approximately normally distributed for absolute change in retinal thickness and relative change in retinal thickness, but not for relative change in retinal thickening. The macular thinning in the mETDRS group was significantly greater than in the MMG group when absolute change in retinal thickness was used, but not when relative change in thickness and relative change in thickening were used. Relative change in macular thickening provides unstable data in eyes with mild degrees of baseline thickening, unlike the situation with absolute or relative change in retinal thickness. Conclusions Central subfield mean thickness is the preferred OCT measurement for the central macula because of its higher reproducibility and correlation with other measurements of the central macula. Total macular volume may be preferred when the central macula is less important. Absolute change in retinal thickness is the preferred analysis method in studies involving eyes with mild macular thickening. Relative change in thickening may be preferable when retinal thickening is more severe. PMID:18675696
Browning, David J; Glassman, Adam R; Aiello, Lloyd P; Bressler, Neil M; Bressler, Susan B; Danis, Ronald P; Davis, Matthew D; Ferris, Frederick L; Huang, Suber S; Kaiser, Peter K; Kollman, Craig; Sadda, Srinavas; Scott, Ingrid U; Qin, Haijing
2008-08-01
To evaluate optical coherence tomography (OCT) measurements and methods of analysis of OCT data in studies of diabetic macular edema (DME). Associations of pairs of OCT variables and results of 3 analysis methods using data from 2 studies of DME. Two hundred sixty-three subjects from a study of modified Early Treatment of Diabetic Retinopathy Study (mETDRS) versus modified macular grid (MMG) photocoagulation for DME and 96 subjects from a study of diurnal variation of DME. Correlations were calculated for pairs of OCT variables at baseline and for changes in the variables over time. Distribution of OCT measurement changes, predictive factors for OCT measurement changes, and treatment group outcomes were compared when 3 measures of change in macular thickness were analyzed: absolute change in retinal thickness, relative change in retinal thickness, and relative change in retinal thickening. Concordance of results using different OCT variables and analysis methods. Center point thickness correlated highly with central subfield mean thickness (CSMT) at baseline (0.98-0.99). The distributions of changes in CSMT were approximately normally distributed for absolute change in retinal thickness and relative change in retinal thickness, but not for relative change in retinal thickening. Macular thinning in the mETDRS group was significantly greater than in the MMG group when absolute change in retinal thickness was used, but not when relative change in thickness and relative change in thickening were used. Relative change in macular thickening provides unstable data in eyes with mild degrees of baseline thickening, unlike the situation with absolute or relative change in retinal thickness. Central subfield mean thickness is the preferred OCT measurement for the central macula because of its higher reproducibility and correlation with other measurements of the central macula. Total macular volume may be preferred when the central macula is less important. Absolute change in retinal thickness is the preferred analysis method in studies involving eyes with mild macular thickening. Relative change in thickening may be preferable when retinal thickening is more severe.
Dong, Xiaoli; Cohen, Matthew J.; Martin, Jonathan B.; ...
2018-05-18
Here, chemical weathering of bedrock plays an essential role in the formation and evolution of Earth's critical zone. Over geologic time, the negative feedback between temperature and chemical weathering rates contributes to the regulation of Earth climate. The challenge of understanding weathering rates and the resulting evolution of critical zone structures lies in complicated interactions and feedbacks among environmental variables, local ecohydrologic processes, and soil thickness, the relative importance of which remains unresolved. We investigate these interactions using a reactive-transport kinetics model, focusing on a low-relief, wetland-dominated karst landscape (Big Cypress National Preserve, South Florida, USA) as a case study.more » Across a broad range of environmental variables, model simulations highlight primary controls of climate and soil biological respiration, where soil thickness both supplies and limits transport of biologically derived acidity. Consequently, the weathering rate maximum occurs at intermediate soil thickness. The value of the maximum weathering rate and the precise soil thickness at which it occurs depend on several environmental variables, including precipitation regime, soil inundation, vegetation characteristics, and rate of groundwater drainage. Simulations for environmental conditions specific to Big Cypress suggest that wetland depressions in this landscape began to form around beginning of the Holocene with gradual dissolution of limestone bedrock and attendant soil development, highlighting large influence of age-varying soil thickness on weathering rates and consequent landscape development. While climatic variables are often considered most important for chemical weathering, our results indicate that soil thickness and biotic activity are equally important. Weathering rates reflect complex interactions among soil thickness, climate, and local hydrologic and biotic processes, which jointly shape the supply and delivery of chemical reactants, and the resulting trajectories of critical zone and karst landscape development.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Xiaoli; Cohen, Matthew J.; Martin, Jonathan B.
Here, chemical weathering of bedrock plays an essential role in the formation and evolution of Earth's critical zone. Over geologic time, the negative feedback between temperature and chemical weathering rates contributes to the regulation of Earth climate. The challenge of understanding weathering rates and the resulting evolution of critical zone structures lies in complicated interactions and feedbacks among environmental variables, local ecohydrologic processes, and soil thickness, the relative importance of which remains unresolved. We investigate these interactions using a reactive-transport kinetics model, focusing on a low-relief, wetland-dominated karst landscape (Big Cypress National Preserve, South Florida, USA) as a case study.more » Across a broad range of environmental variables, model simulations highlight primary controls of climate and soil biological respiration, where soil thickness both supplies and limits transport of biologically derived acidity. Consequently, the weathering rate maximum occurs at intermediate soil thickness. The value of the maximum weathering rate and the precise soil thickness at which it occurs depend on several environmental variables, including precipitation regime, soil inundation, vegetation characteristics, and rate of groundwater drainage. Simulations for environmental conditions specific to Big Cypress suggest that wetland depressions in this landscape began to form around beginning of the Holocene with gradual dissolution of limestone bedrock and attendant soil development, highlighting large influence of age-varying soil thickness on weathering rates and consequent landscape development. While climatic variables are often considered most important for chemical weathering, our results indicate that soil thickness and biotic activity are equally important. Weathering rates reflect complex interactions among soil thickness, climate, and local hydrologic and biotic processes, which jointly shape the supply and delivery of chemical reactants, and the resulting trajectories of critical zone and karst landscape development.« less
Secomb, Josh L.; Nimphius, Sophia; Farley, Oliver R.L.; Lundgren, Lina E.; Tran, Tai T.; Sheppard, Jeremy M.
2015-01-01
The purpose of the present study was to determine whether any relationships were present between lower-body muscle structure and, lower-body strength, variables measured during a countermovement jump (CMJ) and squat jump (SJ), and eccentric leg stiffness, in adolescent athletes. Thirty junior male (n = 23) and female (n = 7) surfing athletes (14.8 ± 1.7 y; 1.63 ± 0.09 m; 54.8 ± 12.1 kg) undertook lower-body muscle structure assessment with ultrasonography and performed a; CMJ, SJ and an isometric mid-thigh pull (IMTP). In addition, eccentric leg stiffness was calculated from variables of the CMJ and IMTP. Moderate to very large relationships (r = 0.46-0.73) were identified between the thickness of the vastus lateralis (VL) and lateral gastrocnemius (LG) muscles, and VL pennation angle and; peak force (PF) in the CMJ, SJ and IMTP. Additionally, moderate to large relationships (r = 0.37-0.59) were found between eccentric leg stiffness and; VL and LG thickness, VL pennation angle, and LG fascicle length, with a large relationship (r = 0.59) also present with IMTP PF. These results suggest that greater thickness of the VL and LG were related to improved maximal dynamic and isometric strength, likely due to increased hypertrophy of the extensor muscles. Furthermore, this increased thickness was related to greater eccentric leg stiffness, as the associated enhanced lower-body strength likely allowed for greater neuromuscular activation, and hence less compliance, during a stretch-shortening cycle. Key points Greater thickness of the VL and LG muscles were significantly related to an enhanced ability to express higher levels of isometric and dynamic strength, and explosiveness in adolescent athletes. Isometric strength underpinned performance in the CMJ and SJ in these athletes. Greater lower-body isometric strength was significantly related to eccentric leg stiffness, which is potentially the result of greater neuromuscular activation in the muscle-tendon unit. PMID:26664263
Variable thickness transient ground-water flow model. Volume 1. Formulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reisenauer, A.E.
1979-12-01
Mathematical formulation for the variable thickness transient (VTT) model of an aquifer system is presented. The basic assumptions are described. Specific data requirements for the physical parameters are discussed. The boundary definitions and solution techniques of the numerical formulation of the system of equations are presented.
Optimized ion acceleration using high repetition rate, variable thickness liquid crystal targets
NASA Astrophysics Data System (ADS)
Poole, Patrick; Willis, Christopher; Cochran, Ginevra; Andereck, C. David; Schumacher, Douglass
2015-11-01
Laser-based ion acceleration is a widely studied plasma physics topic for its applications to secondary radiation sources, advanced imaging, and cancer therapy. Recent work has centered on investigating new acceleration mechanisms that promise improved ion energy and spectrum. While the physics of these mechanisms is not yet fully understood, it has been observed to dominate for certain ranges of target thickness, where the optimum thickness depends on laser conditions including energy, pulse width, and contrast. The study of these phenomena is uniquely facilitated by the use of variable-thickness liquid crystal films, first introduced in P. L. Poole et al. PoP21, 063109 (2014). Control of the formation parameters of these freely suspended films such as volume, temperature, and draw speed allows on-demand thickness variability between 10 nanometers and several 10s of microns, fully encompassing the currently studied thickness regimes with a single target material. The low vapor pressure of liquid crystal enables in-situ film formation and unlimited vacuum use of these targets. Details on the selection and optimization of ion acceleration mechanism with target thickness will be presented, including recent experiments on the Scarlet laser facility and others. This work was performed with support from the DARPA PULSE program through a grant from AMRDEC and by the NNSA under contract DE-NA0001976.
Probabilistic structural analysis methods for improving Space Shuttle engine reliability
NASA Technical Reports Server (NTRS)
Boyce, L.
1989-01-01
Probabilistic structural analysis methods are particularly useful in the design and analysis of critical structural components and systems that operate in very severe and uncertain environments. These methods have recently found application in space propulsion systems to improve the structural reliability of Space Shuttle Main Engine (SSME) components. A computer program, NESSUS, based on a deterministic finite-element program and a method of probabilistic analysis (fast probability integration) provides probabilistic structural analysis for selected SSME components. While computationally efficient, it considers both correlated and nonnormal random variables as well as an implicit functional relationship between independent and dependent variables. The program is used to determine the response of a nickel-based superalloy SSME turbopump blade. Results include blade tip displacement statistics due to the variability in blade thickness, modulus of elasticity, Poisson's ratio or density. Modulus of elasticity significantly contributed to blade tip variability while Poisson's ratio did not. Thus, a rational method for choosing parameters to be modeled as random is provided.
Seto, Jennifer E.; Polat, Baris E.; Lopez, Renata F.V.; Blankschtein, Daniel; Langer, Robert
2010-01-01
The simultaneous application of ultrasound and the surfactant sodium lauryl sulfate (referred to as US/SLS) to skin enhances transdermal drug delivery (TDD) in a synergistic mechanical and chemical manner. Since full-thickness skin (FTS) and split-thickness skin (STS) differ in mechanical strength, US/SLS treatment may have different effects on their transdermal transport pathways. Therefore, we evaluated STS as an alternative to the well-established US/SLS-treated FTS model for TDD studies of hydrophilic permeants. We utilized the aqueous porous pathway model to compare the effects of US/SLS treatment on the skin permeability and the pore radius of pig and human FTS and STS over a range of skin electrical resistivity values. Our findings indicate that the US/SLS-treated pig skin models exhibit similar permeabilities and pore radii, but the human skin models do not. Furthermore, the US/SLS-enhanced delivery of gold nanoparticles and quantum dots (two model hydrophilic macromolecules) is greater through pig STS than through pig FTS, due to the presence of less dermis that acts as an artificial barrier to macromolecules. In spite of greater variability in correlations between STS permeability and resistivity, our findings strongly suggest the use of 700-μm-thick pig STS to investigate the in vitro US/SLS-enhanced delivery of hydrophilic macromolecules. PMID:20346994
Ruda, Mitchell C [Tucson, AZ; Greynolds, Alan W [Tucson, AZ; Stuhlinger, Tilman W [Tucson, AZ
2009-07-14
One or more disc-shaped angular shear plates each include a region thereon having a thickness that varies with a nonlinear function. For the case of two such shear plates, they are positioned in a facing relationship and rotated relative to each other. Light passing through the variable thickness regions in the angular plates is refracted. By properly timing the relative rotation of the plates and by the use of an appropriate polynomial function for the thickness of the shear plate, light passing therethrough can be focused at variable positions.
NASA Astrophysics Data System (ADS)
Benkhalifa, Jamel; Chaabane, Mabrouk
2016-02-01
The atmosphere contains molecules, clouds and aerosols that are sub-millimeter particles having a large variability in size, shape, chemical composition, lifetime and contents. The aerosols concentration depends greatly on the geographical situation, meteorological and environmental conditions, which makes aerosol climatology difficult to assess. Setting up a solar photometer (automatic, autonomous and portable instrument) on a given site allows carrying out the necessary measurements for aerosol characterization. The particle microphysical and optical properties are obtained from photometric measurements. The objective of this study is to analyze the spatial variability of aerosol optical thickness (AOT) in several Mediterranean regions and Central Africa, we considered a set of simultaneous data in the AErosol RObotic NETwork (AERONET) from six sites, two of which are located in Central Africa (Banizoumbou and Zinder Airport) and the rest are Mediterranean sites (Barcelona, Malaga, Lampedusa, and Forth Crete). The results have shown that the physical properties of aerosols are closely linked to the climate nature of the studied site. The optical thickness, single scattering albedo and aerosols size distribution can be due to the aging of the dust aerosol as they are transported over the Mediterranean basin.
Vibration and buckling of rotating, pretwisted, preconed beams including Coriolis effects
NASA Technical Reports Server (NTRS)
Subrahmanyam, K. B.; Kaza, K. R. V.
1985-01-01
The effects of pretwist, precone, setting angle and Coriolis forces on the vibration and buckling behavior of rotating, torsionally rigid, cantilevered beams were studied. The beam is considered to be clamped on the axis of rotation in one case, and off the axis of rotation in the other. Two methods are employed for the solution of the vibration problem: (1) one based upon a finite-difference approach using second order central differences for solution of the equations of motion, and (2) based upon the minimum of the total potential energy functional with a Ritz type of solution procedure making use of complex forms of shape functions for the dependent variables. The individual and collective effects of pretwist, precone, setting angle, thickness ratio and Coriolis forces on the natural frequencies and the buckling boundaries are presented. It is shown that the inclusion of Coriolis effects is necessary for blades of moderate to large thickness ratios while these effects are not so important for small thickness ratio blades. The possibility of buckling due to centrifugal softening terms for large values of precone and rotation is shown.
Vibration and buckling of rotating, pretwisted, preconed beams including Cooriolis effects
NASA Technical Reports Server (NTRS)
Subrahmanyam, K. B.; Kaza, K. R. V.
1985-01-01
The effects of pretwist, precone, setting angle and Coriolis forces on the vibration and buckling behavior of rotating, torsionally rigid, cantilevered beams were studied. The beam is considered to be clamped on the axis of rotation in one case, and off the axis of rotation in the other. Two methods are employed for the solution of the vibration problem: (1) one based upon a finite-difference approach using second order central differences for solution of the equations of motion, and (2) based upon the minimum of the total potential energy functional with a Ritz type of solution procedure making use of complex forms of shape functions for the dependent variables. The individual and collective effects of pretwist, precone, setting angle, thickness ratio and Coriolis forces on the natural frequencies and the buckling boundaries are presented. It is shown that the inclusion of Coriolis effects is necessary for blades of moderate to large thickness ratios while these effects are not so important for small thickness ratio blades. The possibility of buckling due to centrifugal softening terms for large values of precone and rotation is shown.
NASA Astrophysics Data System (ADS)
Campbell, Timothy; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya; Ogata, Shuji; Rodgers, Stephen
1999-06-01
Oxidation of aluminum nanoclusters is investigated with a parallel molecular-dynamics approach based on dynamic charge transfer among atoms. Structural and dynamic correlations reveal that significant charge transfer gives rise to large negative pressure in the oxide which dominates the positive pressure due to steric forces. As a result, aluminum moves outward and oxygen moves towards the interior of the cluster with the aluminum diffusivity 60% higher than that of oxygen. A stable 40 Å thick amorphous oxide is formed; this is in excellent agreement with experiments.
Measuring Rind Thickness on Polyurethane Foam
NASA Technical Reports Server (NTRS)
Johnson, C.; Miller, J.; Brown, H.
1985-01-01
Nondestructive test determines rind thickness of polyurethane foam. Surface harness of foam measured by Shore durometer method: hardness on Shore D scale correlates well with rind thickness. Shore D hardness of 20, for example, indicates rind thickness of 0.04 inch (1 millimeter). New hardness test makes it easy to determine rind thickness of sample nondestructively and to adjust fabrication variables accordingly.
NASA Astrophysics Data System (ADS)
Qayyum, Sajid; Hayat, Tasawar; Alsaedi, Ahmed
2018-05-01
Mathematical modeling for magnetohydrodynamic (MHD) radiative flow of third grade nano-material bounded by a nonlinear stretching sheet with variable thickness is introduced. The sheet moves with nonlinear velocity. Definitions of thermal radiation and heat generation/absorption are utilized in the energy expression. Intention in present investigation is to develop a model for nanomaterial comprising Brownian motion and thermophoresis phenomena. Newtonian conditions for heat and mass species are imposed. Governing equations of the locally similar flow are attempted through a homotopic technique and behaviors of involved variables on the flow fields are displayed graphically. It is revealed that increasing values of thermal conjugate variable corresponds to high temperature. Numerical investigation are explored to obtain the results of skin friction coefficient and local Nusselt and Sherwood numbers. It is revealed that velocity field reduces in the frame of magnetic variable while reverse situation is observed due to mixed convection parameter. Here qualitative behaviors of thermal field and heat transfer rate are opposite for thermophoresis variable. Moreover nanoparticle concentration and local Sherwood number via Brownian motion parameter are opposite.
NASA Astrophysics Data System (ADS)
Hasalova, Pavlina; Hunter, Nicholas James; Weinberg, Roberto; Finch, Melanie
2013-04-01
Ultramylonite formation is integral to understanding the accommodation of high strain in ductile shear zones, mountain building and crustal movement. The El Pichao Shear Zone (PSZ) is 3-7km thick ductile thrust zone in the Sierra de Quilmes, NW Argentina. Sinistral thrusting along the PSZ has placed granulite facies migmatites of the Tolombón Complex on top of amphibolite metasedimentary rocks of the Agua del Sapo Complex, separated by a sheared granitic body intruded by pegmatites. The fabric varies from protomylonite to ultramylonite. Ultramylonites in the core of the shear zone reach ~1km in thickness. Ultramylonites of this thickness are extremely rare, and thus the El Pichao Shear Zone provides a unique opportunity to investigate the origin of such high strain rocks. We used microstructural and quantitative textural analysis, quartz crystallographic preferred orientation (CPO), clast vorticity and geochemical data to investigate the origin of the thick ultramylonites, and variable strain accommodation associated with the mylonitization process. The mylonitic rocks have granitic composition and consist of a matrix of Bt+Qtz+Ms+Pl+Kfs, Qtz ribbons, mica bands and feldspar porphyroclasts. Feldspar clasts have been variably rotated and their deformation behaviour varies between brittle faulting and partial to complete dynamic recrystallisation. In the ultramylonite Qtz ribbons or strong S-C fabrics are lacking and the matrix tends to be homogeneous with only weak foliation defined by the preferred orientation of micas. There is also a systematic decrease in matrix grain size and mica connectivity towards ultramylonite. Quartz CPO suggests changes in deformation mechanisms associated with strain increase. The transition between mylonite and ultramylonite in the PSZ occurred due to a switch from dominant dislocation creep to dominant diffusion creep. Major and trace element data show no geochemical variation between samples, indicating that the mylonite-ultramylonite transition took place in a closed system with fixed P-T conditions. We argue that the formation of thick ultramlyonites can occur where strain is high enough to instigate intense clast rotation. The homogenization of the originally banded mylonite results from continual rotation of clasts, which disaggregated the anisotropic matrix and thus inhibited strain localisation. The relative rotation of clasts in the matrix was a function of their vorticity and geometry, which may have influenced the variable deformation behaviours of feldspars in the mylonites. Strain softening at the clast matrix interface may have also played a role in increasing the vorticity of clasts and promoting rotation-induced strain accomodation. Ultramylonite thickness may be explained, at least in part, by the homogenisation of the matrix by clast rotation, where the loss of effective slip planes resulted in strain being dispersed over larger areas in the ultramylonite.
Mancuso, J. Jacob; Halaney, David L.; Elahi, Sahar; Ho, Derek; Wang, Tianyi; Ouyang, Yongjian; Dijkstra, Jouke; Milner, Thomas E.; Feldman, Marc D.
2014-01-01
Abstract. We sought to elucidate the mechanisms underlying two common intravascular optical coherence tomography (IV-OCT) artifacts that occur when imaging metallic stents: “merry-go-rounding” (MGR), which is an increase in strut arc length (SAL), and “blooming,” which is an increase in the strut reflection thickness (blooming thickness). Due to uncontrollable variables that occur in vivo, we performed an in vitro assessment of MGR and blooming in stented vessel phantoms. Using Xience V and Driver stents, we examined the effects of catheter offset, intimal strut coverage, and residual blood on SAL and blooming thickness in IV-OCT images. Catheter offset and strut coverage both caused minor MGR, while the greatest MGR effect resulted from light scattering by residual blood in the vessel lumen, with 1% hematocrit (Hct) causing a more than fourfold increase in SAL compared with saline (p<0.001). Residual blood also resulted in blooming, with blooming thickness more than doubling when imaged in 0.5% Hct compared with saline (p<0.001). We demonstrate that a previously undescribed mechanism, light scattering by residual blood in the imaging field, is the predominant cause of MGR. Light scattering also results in blooming, and a newly described artifact, three-dimensional-MGR, which results in “ghost struts” in B-scans. PMID:25545341
African Descent and Glaucoma Evaluation Study (ADAGES)
Girkin, Christopher A.; Sample, Pamela A.; Liebmann, Jeffrey M.; Jain, Sonia; Bowd, Christopher; Becerra, Lida M.; Medeiros, Felipe A.; Racette, Lyne; Dirkes, Keri A.; Weinreb, Robert N.; Zangwill, Linda M.
2010-01-01
Objective To define differences in optic disc, retinal nerve fiber layer, and macular structure between healthy participants of African (AD) and European descent (ED) using quantitative imaging techniques in the African Descent and Glaucoma Evaluation Study (ADAGES). Methods Reliable images were obtained using stereoscopic photography, confocal scanning laser ophthalmoscopy (Heidelberg retina tomography [HRT]), and optical coherence tomography (OCT) for 648 healthy subjects in ADAGES. Findings were compared and adjusted for age, optic disc area, and reference plane height where appropriate. Results The AD participants had significantly greater optic disc area on HRT (2.06 mm2; P<.001) and OCT (2.47 mm2; P<.001) and a deeper HRT cup depth than the ED group (P<.001). Retinal nerve fiber layer thickness was greater in the AD group except within the temporal region, where it was significantly thinner. Central macular thickness and volume were less in the AD group. Conclusions Most of the variations in optic nerve morphologic characteristics between the AD and ED groups are due to differences in disc area. However, differences remain in HRT cup depth, OCT macular thickness and volume, and OCT retinal nerve fiber layer thickness independent of these variables. These differences should be considered in the determination of disease status. PMID:20457974
Weaver, P. M.
2016-01-01
The safe design of primary load-bearing structures requires accurate prediction of stresses, especially in the vicinity of geometric discontinuities where deleterious three-dimensional stress fields can be induced. Even for thin-walled structures significant through-thickness stresses arise at edges and boundaries, and this is especially precarious for laminates of advanced fibre-reinforced composites because through-thickness stresses are the predominant drivers in delamination failure. Here, we use a higher-order equivalent single-layer model derived from the Hellinger–Reissner mixed variational principle to examine boundary layer effects in laminated plates comprising constant-stiffness and variable-stiffness laminae and deforming statically in cylindrical bending. The results show that zigzag deformations, which arise due to layerwise differences in the transverse shear moduli, drive boundary layers towards clamped edges and are therefore critically important in quantifying localized stress gradients. The relative significance of the boundary layer scales with the degree of layerwise anisotropy and the thickness to characteristic length ratio. Finally, we demonstrate that the phenomenon of alternating positive and negative transverse shearing deformation through the thickness of composite laminates, previously only observed at clamped boundaries, can also occur at other locations as a result of smoothly varying the material properties over the in-plane dimensions of the laminate. PMID:27843401
NASA Astrophysics Data System (ADS)
Hendricks, S.; Hoppmann, M.; Hunkeler, P. A.; Kalscheuer, T.; Gerdes, R.
2015-12-01
In Antarctica, ice crystals (platelets) form and grow in supercooled waters below ice shelves. These platelets rise and accumulate beneath nearby sea ice to form a several meter thick sub-ice platelet layer. This special ice type is a unique habitat, influences sea-ice mass and energy balance, and its volume can be interpreted as an indicator for ice - ocean interactions. Although progress has been made in determining and understanding its spatio-temporal variability based on point measurements, an investigation of this phenomenon on a larger scale remains a challenge due to logistical constraints and a lack of suitable methodology. In the present study, we applied a lateral constrained Marquardt-Levenberg inversion to a unique multi-frequency electromagnetic (EM) induction sounding dataset obtained on the ice-shelf influenced fast-ice regime of Atka Bay, eastern Weddell Sea. We adapted the inversion algorithm to incorporate a sensor specific signal bias, and confirmed the reliability of the algorithm by performing a sensitivity study using synthetic data. We inverted the field data for sea-ice and sub-ice platelet-layer thickness and electrical conductivity, and calculated ice-volume fractions from platelet-layer conductivities using Archie's Law. The thickness results agreed well with drill-hole validation datasets within the uncertainty range, and the ice-volume fraction also yielded plausible results. Our findings imply that multi-frequency EM induction sounding is a suitable approach to efficiently map sea-ice and platelet-layer properties. However, we emphasize that the successful application of this technique requires a break with traditional EM sensor calibration strategies due to the need of absolute calibration with respect to a physical forward model.
Characterization of BN rich layer on ammonia treated Nextel{trademark}312 fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khasgiwale, N.R.; Butler, E.P.; Tsakalakos, L.
A BN rich layer grown on Nextel{trademark}312 fibers by appropriate ammonia treatments was evaluated using various complimentary techniques including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM)/Parallel Electron Energy Loss Spectroscopy (PEELS in TEM). Three different ammonia treatments were studied. Ammonia treatment resulted in crystallization of the Nextel{trademark}312 fiber. The BN rich surface layer formed due to ammonia treatment was clearly detected in XPS and PEELS both before and after oxidation. The layer thickness was estimated to be between 5--10 nm. The layer was stable after oxidation treatment at 600 C formore » 100 hours. High resolution TEM observations of the fiber surface revealed a variable BN rich layer thickness. Patches of turbostratic BN were observed under certain conditions, however mostly the layer appeared to be amorphous.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaudhuri, Swetaprovo; Kolla, Hemanth; Dave, Himanshu L.
The flame structure corresponding to lean hydrogen–air premixed flames in intense sheared turbulence in the thin reaction zone regime is quantified from flame thickness and conditional scalar dissipation rate statistics, obtained from recent direct numerical simulation data of premixed temporally-evolving turbulent slot jet flames. It is found that, on average, these sheared turbulent flames are thinner than their corresponding planar laminar flames. Extensive analysis is performed to identify the reason for this counter-intuitive thinning effect. The factors controlling the flame thickness are analyzed through two different routes i.e., the kinematic route, and the transport and chemical kinetics route. The kinematicmore » route is examined by comparing the statistics of the normal strain rate due to fluid motion with the statistics of the normal strain rate due to varying flame displacement speed or self-propagation. It is found that while the fluid normal straining is positive and tends to separate iso-scalar surfaces, the dominating normal strain rate due to self-propagation is negative and tends to bring the iso-scalar surfaces closer resulting in overall thinning of the flame. The transport and chemical kinetics route is examined by studying the non-unity Lewis number effect on the premixed flames. The effects from the kinematic route are found to couple with the transport and chemical kinetics route. In addition, the intermittency of the conditional scalar dissipation rate is also examined. It is found to exhibit a unique non-monotonicity of the exponent of the stretched exponential function, conventionally used to describe probability density function tails of such variables. As a result, the non-monotonicity is attributed to the detailed chemical structure of hydrogen-air flames in which heat release occurs close to the unburnt reactants at near free-stream temperatures.« less
Chaudhuri, Swetaprovo; Kolla, Hemanth; Dave, Himanshu L.; ...
2017-07-07
The flame structure corresponding to lean hydrogen–air premixed flames in intense sheared turbulence in the thin reaction zone regime is quantified from flame thickness and conditional scalar dissipation rate statistics, obtained from recent direct numerical simulation data of premixed temporally-evolving turbulent slot jet flames. It is found that, on average, these sheared turbulent flames are thinner than their corresponding planar laminar flames. Extensive analysis is performed to identify the reason for this counter-intuitive thinning effect. The factors controlling the flame thickness are analyzed through two different routes i.e., the kinematic route, and the transport and chemical kinetics route. The kinematicmore » route is examined by comparing the statistics of the normal strain rate due to fluid motion with the statistics of the normal strain rate due to varying flame displacement speed or self-propagation. It is found that while the fluid normal straining is positive and tends to separate iso-scalar surfaces, the dominating normal strain rate due to self-propagation is negative and tends to bring the iso-scalar surfaces closer resulting in overall thinning of the flame. The transport and chemical kinetics route is examined by studying the non-unity Lewis number effect on the premixed flames. The effects from the kinematic route are found to couple with the transport and chemical kinetics route. In addition, the intermittency of the conditional scalar dissipation rate is also examined. It is found to exhibit a unique non-monotonicity of the exponent of the stretched exponential function, conventionally used to describe probability density function tails of such variables. As a result, the non-monotonicity is attributed to the detailed chemical structure of hydrogen-air flames in which heat release occurs close to the unburnt reactants at near free-stream temperatures.« less
Thermo-mechanical fatigue behavior of reduced activation ferrite/martensite stainless steels
NASA Astrophysics Data System (ADS)
Petersen, C.; Rodrian, D.
2002-12-01
The thermo-mechanical cycling fatigue (TMCF) behavior of reduced activation ferrite/martensite stainless steels is examined. The test rig consists of a stiff load frame, which is directly heated by the digitally controlled ohmic heating device. Cylindrical specimens are used with a wall thickness of 0.4 mm. Variable strain rates are applied at TMCF test mode, due to the constant heating rate of 5.8 K/s and variable temperature changes. TMCF results of as received EUROFER 97 in the temperature range between 100 and 500-600 °C show a reduction in life time (a factor of 2) compared to F82H mod. and OPTIFER IV. TMCF-experiments with hold times of 100 and 1000 s show dramatic reduction in life time for all three materials.
Quantum imaging for underwater arctic navigation
NASA Astrophysics Data System (ADS)
Lanzagorta, Marco
2017-05-01
The precise navigation of underwater vehicles is a difficult task due to the challenges imposed by the variable oceanic environment. It is particularly difficult if the underwater vehicle is trying to navigate under the Arctic ice shelf. Indeed, in this scenario traditional navigation devices such as GPS, compasses and gyrocompasses are unavailable or unreliable. In addition, the shape and thickness of the ice shelf is variable throughout the year. Current Arctic underwater navigation systems include sonar arrays to detect the proximity to the ice. However, these systems are undesirable in a wartime environment, as the sound gives away the position of the underwater vehicle. In this paper we briefly describe the theoretical design of a quantum imaging system that could allow the safe and stealthy navigation of underwater Arctic vehicles.
Predicting active-layer soil thickness using topographic variables at a small watershed scale
Li, Aidi; Tan, Xing; Wu, Wei; Liu, Hongbin; Zhu, Jie
2017-01-01
Knowledge about the spatial distribution of active-layer (AL) soil thickness is indispensable for ecological modeling, precision agriculture, and land resource management. However, it is difficult to obtain the details on AL soil thickness by using conventional soil survey method. In this research, the objective is to investigate the possibility and accuracy of mapping the spatial distribution of AL soil thickness through random forest (RF) model by using terrain variables at a small watershed scale. A total of 1113 soil samples collected from the slope fields were randomly divided into calibration (770 soil samples) and validation (343 soil samples) sets. Seven terrain variables including elevation, aspect, relative slope position, valley depth, flow path length, slope height, and topographic wetness index were derived from a digital elevation map (30 m). The RF model was compared with multiple linear regression (MLR), geographically weighted regression (GWR) and support vector machines (SVM) approaches based on the validation set. Model performance was evaluated by precision criteria of mean error (ME), mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2). Comparative results showed that RF outperformed MLR, GWR and SVM models. The RF gave better values of ME (0.39 cm), MAE (7.09 cm), and RMSE (10.85 cm) and higher R2 (62%). The sensitivity analysis demonstrated that the DEM had less uncertainty than the AL soil thickness. The outcome of the RF model indicated that elevation, flow path length and valley depth were the most important factors affecting the AL soil thickness variability across the watershed. These results demonstrated the RF model is a promising method for predicting spatial distribution of AL soil thickness using terrain parameters. PMID:28877196
Knechtle, Beat; Knechtle, Patrizia; Barandun, Ursula; Rosemann, Thomas
2011-05-01
The relationship between skin-fold thickness and running has been investigated in distances ranging from 100 m to the marathon distance (42.195 km), with the exclusion of the half-marathon distance (21.0975 km). We investigated the association between anthropometric variables, prerace experience, and training variables with race time in 42 recreational, nonprofessional, female half-marathon runners using bi- and multivariate analysis. Body weight (r, 0.60); body mass index (r, 0.48); body fat percentage (r, 0.56); pectoral (r, 0.61), mid-axilla (r, 0.69), triceps (r, 0.49), subscapular (r, 0.61), abdominal (r, 0.59), suprailiac (r, 0.55), and medial calf (r, 0.53) skin-fold thickness; mean speed of the training sessions (r, -0.68); and personal best time in a half-marathon (r, 0.69) correlated with race time after bivariate analysis. Body weight (P = 0.0054), pectoral skin-fold thickness (P = 0.0068), and mean speed of the training sessions (P = 0.0041) remained significant after multivariate analysis. Mean running speed during training was related to mid-axilla (r, -0.31), subscapular (r, -0.38), abdominal (r, -0.44), and suprailiac (r, -0.41) skin-fold thickness, the sum of 8 skin-fold thicknesses (r, -0.36); and percent body fat (r, -0.31). It was determined that variables of both anthropometry and training were related to half-marathon race time, and that skin-fold thicknesses were associated with running speed during training. For practical applications, high running speed during training (as opposed to extensive training) may both reduce upper-body skin-fold thicknesses and improve race performance in recreational female half-marathon runners.
W.Henry. McNab
2010-01-01
The effects of soil and topographic variables on forest site index were determined for two mesophytic tree species, northern red oak (Quercus rubra L.) and yellow-poplar (Liriodendron tulipifera L.) in the Southern Appalachian Mountains of North Carolina. Stand variables included soil solum thickness, soil A-horizon thickness,...
Method and apparatus for conducting variable thickness vapor deposition
Nesslage, G.V.
1984-08-03
A method of vapor depositing metal on a substrate in variable thickness comprises conducting the deposition continuously without interruption to avoid formation of grain boundaries. To achieve reduced deposition in specific regions a thin wire or ribbon blocking body is placed between source and substrate to partially block vapors from depositing in the region immediately below.
Lee, Joo Yong; Chiu, Stephanie J.; Srinivasan, Pratul P.; Izatt, Joseph A.; Toth, Cynthia A.; Farsiu, Sina; Jaffe, Glenn J.
2013-01-01
Purpose. To determine whether a novel automatic segmentation program, the Duke Optical Coherence Tomography Retinal Analysis Program (DOCTRAP), can be applied to spectral-domain optical coherence tomography (SD-OCT) images obtained from different commercially available SD-OCT in eyes with diabetic macular edema (DME). Methods. A novel segmentation framework was used to segment the retina, inner retinal pigment epithelium, and Bruch's membrane on images from eyes with DME acquired by one of two SD-OCT systems, Spectralis or Cirrus high definition (HD)-OCT. Thickness data obtained by the DOCTRAP software were compared with those produced by Spectralis and Cirrus. Measurement agreement and its dependence were assessed using intraclass correlation (ICC). Results. A total of 40 SD-OCT scans from 20 subjects for each machine were included in the analysis. Spectralis: the mean thickness in the 1-mm central area determined by DOCTRAP and Spectralis was 463.8 ± 107.5 μm and 467.0 ± 108.1 μm, respectively (ICC, 0.999). There was also a high level agreement in surrounding areas (out to 3 mm). Cirrus: the mean thickness in the 1-mm central area was 440.8 ± 183.4 μm and 442.7 ± 182.4 μm by DOCTRAP and Cirrus, respectively (ICC, 0.999). The thickness agreement in surrounding areas (out to 3 mm) was more variable due to Cirrus segmentation errors in one subject (ICC, 0.734–0.999). After manual correction of the errors, there was a high level of thickness agreement in surrounding areas (ICC, 0.997–1.000). Conclusions. The DOCTRAP may be useful to compare retinal thicknesses in eyes with DME across OCT platforms. PMID:24084089
Variability of manual ciliary muscle segmentation in optical coherence tomography images.
Chang, Yu-Cherng; Liu, Keke; Cabot, Florence; Yoo, Sonia H; Ruggeri, Marco; Ho, Arthur; Parel, Jean-Marie; Manns, Fabrice
2018-02-01
Optical coherence tomography (OCT) offers new options for imaging the ciliary muscle allowing direct in vivo visualization. However, variation in image quality along the length of the muscle prevents accurate delineation and quantification of the muscle. Quantitative analyses of the muscle are accompanied by variability in segmentation between examiners and between sessions for the same examiner. In processes such as accommodation where changes in muscle thickness may be tens of microns- the equivalent of a small number of image pixels, differences in segmentation can influence the magnitude and potentially the direction of thickness change. A detailed analysis of variability in ciliary muscle thickness measurements was performed to serve as a benchmark for the extent of this variability in studies on the ciliary muscle. Variation between sessions and examiners were found to be insignificant but the magnitude of variation should be considered when interpreting ciliary muscle results.
What controls the distribution and tectono-magmatic features of oceanic hot spot volcanoes
NASA Astrophysics Data System (ADS)
Acocella, Valerio; Vezzoli, Luigina
2016-04-01
Hot spot oceanic volcanoes worldwide show significant deviations from the classic Hawaiian reference model; these mainly concern the distribution of edifices and overall tectono-magmatic features, as the development of the volcanic rift zones and extent of flank instability. Here we try to explain these deviations investigating and comparing the best-known hot spot oceanic volcanoes. At a general scale, these volcanoes show an age-distance progression ranging from focused to scattered. This is here explained as due to several independent factors, as the thermal or mechanical weakening of the plate (due to the lithosphere thickness or regional structures, respectively), or the plume structure. At a more detailed scale, hot spot volcanoes show recurrent features, including mafic shield edifices with summit caldera and volcanic rift zones, often at the head of an unstable flank. However, despite this recurrence, a widespread tectono-magmatic variability is often found. Here we show how this variability depends upon the magma supply and age of the oceanic crust (influencing the thickness of the overlying pelagic sediments). Well-developed rift zones and larger collapses are found on hot spot volcanoes with higher supply rate and older crust, as Hawaii and Canary Islands. Poorly-developed rift zones and limited collapses occur on hot spot volcanoes with lower supply rate and younger crust, as Easter Island and Ascension. Transitional features are observed at hot spots with intermediate productivity (Cape Verde, Reunion, Society Islands and, to a minor extent, the Azores), whereas the scarcity or absence of pelagic sediments may explain the lack of collapses and developed rift zones in the productive Galapagos hot spot.
Nearshore sediment thickness, Fire Island, New York
Locker, Stanley D.; Miselis, Jennifer L.; Buster, Noreen A.; Hapke, Cheryl J.; Wadman, Heidi M.; McNinch, Jesse E.; Forde, Arnell S.; Stalk, Chelsea A.
2017-04-03
Investigations of coastal change at Fire Island, New York (N.Y.), sought to characterize sediment budgets and determine geologic framework controls on coastal processes. Nearshore sediment thickness is critical for assessing coastal system sediment availability, but it is largely unquantified due to the difficulty of conducting geological or geophysical surveys across the nearshore. This study used an amphibious vessel to acquire chirp subbottom profiles. These profiles were used to characterize nearshore geology and provide an assessment of nearshore sediment volume. Two resulting sediment-thickness maps are provided: total Holocene sediment thickness and the thickness of the active shoreface. The Holocene sediment section represents deposition above the maximum flooding surface that is related to the most recent marine transgression. The active shoreface section is the uppermost Holocene sediment, which is interpreted to represent the portion of the shoreface thought to contribute to present and future coastal behavior. The sediment distribution patterns correspond to previously defined zones of erosion, accretion, and stability along the island, demonstrating the importance of sediment availability in the coastal response to storms and seasonal variability. The eastern zone has a thin nearshore sediment thickness, except for an ebb-tidal deposit at the wilderness breach caused by Hurricane Sandy. Thicker sediment is found along a central zone that includes shoreface-attached sand ridges, which is consistent with a stable or accretional coastline in this area. The thickest overall Holocene section is found in the western zone of the study, where a thicker lower section of Holocene sediment appears related to the westward migration of Fire Island Inlet over several hundred years.
A Probabilistic Method for Estimation of Bowel Wall Thickness in MR Colonography
Menys, Alex; Jaffer, Asif; Bhatnagar, Gauraang; Punwani, Shonit; Atkinson, David; Halligan, Steve; Hawkes, David J.; Taylor, Stuart A.
2017-01-01
MRI has recently been applied as a tool to quantitatively evaluate the response to therapy in patients with Crohn’s disease, and is the preferred choice for repeated imaging. Bowel wall thickness on MRI is an important biomarker of underlying inflammatory activity, being abnormally increased in the acute phase and reducing in response to successful therapy; however, a poor level of interobserver agreement of measured thickness is reported and therefore a system for accurate, robust and reproducible measurements is desirable. We propose a novel method for estimating bowel wall-thickness to improve the poor interobserver agreement of the manual procedure. We show that the variability of wall thickness measurement between the algorithm and observer measurements (0.25mm ± 0.81mm) has differences which are similar to observer variability (0.16mm ± 0.64mm). PMID:28072831
Ecological and Topographic Features of Volcanic Ash-Influenced Forest Soils
Mark Kimsey; Brian Gardner; Alan Busacca
2007-01-01
Volcanic ash distribution and thickness were determined for a forested region of north-central Idaho. Mean ash thickness and multiple linear regression analyses were used to model the effect of environmental variables on ash thickness. Slope and slope curvature relationships with volcanic ash thickness varied on a local spatial scale across the study area. Ash...
Scanning laser polarimetry retinal nerve fiber layer thickness measurements after LASIK.
Zangwill, Linda M; Abunto, Teresa; Bowd, Christopher; Angeles, Raymund; Schanzlin, David J; Weinreb, Robert N
2005-02-01
To compare retinal nerve fiber layer (RNFL) thickness measurements before and after LASIK. Cohort study. Twenty participants undergoing LASIK and 14 normal controls. Retinal nerve fiber layer thickness was measured before LASIK and approximately 3 months after surgery in one eye each of 20 patients using a scanning laser polarimeter (GDx Nerve Fiber Analyzer) with fixed corneal compensation (FCC), one with variable corneal compensation (GDx VCC), and optical coherence tomography (OCT). Fourteen normal controls also were tested at baseline and approximately 3 months later. Retinal nerve fiber layer thicknesses measured with the GDx FCC, GDx VCC, and OCT. At baseline, mean (95% confidence interval [CI]) RNFL thicknesses for the GDx FCC, GDx VCC, and OCT were 78.1 microm (72.2-83.9), 54.3 microm (52.7-56.0), and 96.8 microm (93.2-100.5), respectively. In both LASIK and control groups, there were no significant changes between baseline and follow-up examinations in GDx VCC and OCT RNFL thickness measurements globally or in the superior and inferior quadrants (mean change, <5 microm for each instrument). In the control group, there also was no significant change in GDx FCC measurements between baseline and follow-up. In LASIK patients, significant reductions were observed in GDx FCC RNFL measurements. Average absolute values of the mean (95% CI) change in thickness were 12.4 microm (7.7-17.2), 15.3 microm (9.6-20.9), and 12.9 microm (7.6-18.1) for GDx FCC RNFL measurements superiorly, inferiorly, and globally, respectively (all Ps < or = 0.001). LASIK does not seem to change RNFL thickness. Reduction in GDx FCC RNFL thickness measurements after LASIK is a measurement artifact and is most likely due to erroneous compensation for corneal birefringence. With scanning laser polarimetry, it is mandatory to compensate individually for change in corneal birefringence after LASIK to ensure accurate RNFL assessment.
Gould, A Lawrence; Koglin, Joerg; Bain, Raymond P; Pinto, Cathy-Anne; Mitchel, Yale B; Pasternak, Richard C; Sapre, Aditi
2009-08-01
Studies measuring progression of carotid artery intima-media thickness (cIMT) have been used to estimate the effect of lipid-modifying therapies cardiovascular event risk. The likelihood that future cIMT clinical trials will detect a true treatment effect is estimated by leveraging results from prior studies. The present analyses assess the impact of between- and within-study variability based on currently published data from prior clinical studies on the likelihood that ongoing or future cIMT trials will detect the true treatment effect of lipid-modifying therapies. Published data from six contemporary cIMT studies (ASAP, ARBITER 2, RADIANCE 1, RADIANCE 2, ENHANCE, and METEOR) including data from a total of 3563 patients were examined. Bayesian and frequentist methods were used to assess the impact of between study variability on the likelihood of detecting true treatment effects on 1-year cIMT progression/regression and to provide a sample size estimate that would specifically compensate for the effect of between-study variability. In addition to the well-described within-study variability, there is considerable between-study variability associated with the measurement of annualized change in cIMT. Accounting for the additional between-study variability decreases the power for existing study designs. In order to account for the added between-study variability, it is likely that future cIMT studies would require a large increase in sample size in order to provide substantial probability (> or =90%) to have 90% power of detecting a true treatment effect.Limitation Analyses are based on study level data. Future meta-analyses incorporating patient-level data would be useful for confirmation. Due to substantial within- and between-study variability in the measure of 1-year change of cIMT, as well as uncertainty about progression rates in contemporary populations, future study designs evaluating the effect of new lipid-modifying therapies on atherosclerotic disease progression are likely to be challenged by large sample sizes in order to demonstrate a true treatment effect.
Seto, Jennifer E; Polat, Baris E; Lopez, Renata F V; Blankschtein, Daniel; Langer, Robert
2010-07-01
The simultaneous application of ultrasound and the surfactant sodium lauryl sulfate (referred to as US/SLS) to skin enhances transdermal drug delivery (TDD) in a synergistic mechanical and chemical manner. Since full-thickness skin (FTS) and split-thickness skin (STS) differ in mechanical strength, US/SLS treatment may have different effects on their transdermal transport pathways. Therefore, we evaluated STS as an alternative to the well-established US/SLS-treated FTS model for TDD studies of hydrophilic permeants. We utilized the aqueous porous pathway model to compare the effects of US/SLS treatment on the skin permeability and the pore radius of pig and human FTS and STS over a range of skin electrical resistivity values. Our findings indicate that the US/SLS-treated pig skin models exhibit similar permeabilities and pore radii, but the human skin models do not. Furthermore, the US/SLS-enhanced delivery of gold nanoparticles and quantum dots (two model hydrophilic macromolecules) is greater through pig STS than through pig FTS, due to the presence of less dermis that acts as an artificial barrier to macromolecules. In spite of greater variability in correlations between STS permeability and resistivity, our findings strongly suggest the use of 700microm-thick pig STS to investigate the in vitro US/SLS-enhanced delivery of hydrophilic macromolecules. 2010 Elsevier B.V. All rights reserved.
Local Hydrological effects in Membach, Belgium: influence on the long term gravity variation
NASA Astrophysics Data System (ADS)
van Camp, M.; Dassargues, A.; Vanneste, K.; Verbeeck, K.; Warnant, R.
2003-04-01
Absolute (AG) and superconducting (SG) gravity measurements have been performed since 1996 at the underground Membach Station (Ardenne, eastern Belgium). Two effects can be distinguished: one seasonal-like and a long-term geophysical trend. The first effect is a 5 µGal seasonal-like term due most probably and mainly to hydrological variations. To determine the thickness of the porous unconsolidated layer covering the fissured bed-rock (low-porosity argillaceous sandstone with quartzitic beds) through which the tunnel was excavated, geophysical prospecting has been undertaken above the Membach station. This shows that the thickness of the weathered zone covering the bedrock can be highly variable between zero and 10 meters (possibly due to palaeo mudflows linked to periglacial conditions in the area). This leads to highly variable (in space) saturation capacity of the subsoil above the gallery. The extensive geological researches will allow us to correct the gravity variations induced by the variable mass of water stored in the shallow partially saturated soil. This work can be essential to correct local effects that can mask regional effects such as changes in continental water storage. Local effects, indeed, could prevent the combination of satellite data (e.g. GRACE) with ground-based gravity measurements. On the other hand, studying the local seasonal variations also contributes to investigate the influence of the water storage variations in small river basins on the time dependent gravity field. The second effect is the detection of a very low geophysical trend in gravity of -0.5+/-0.1 µGal/year. The SG drift, the hydrological effects, and the origin of the low trend are discussed. In particular, we show a good correlation between the gravity measurements and the continuous GPS measurements being made since 1997 at 3 km from the station. Possible crustal deformations could be linked to active faults in the Ardenne and/or bordering the Roer Valley Graben, or perhaps linked to the Eifel plume.
Satellite Observations of Antarctic Sea Ice Thickness and Volume
NASA Technical Reports Server (NTRS)
Kurtz, Nathan; Markus, Thorsten
2012-01-01
We utilize satellite laser altimetry data from ICESat combined with passive microwave measurements to analyze basin-wide changes in Antarctic sea ice thickness and volume over a 5 year period from 2003-2008. Sea ice thickness exhibits a small negative trend while area increases in the summer and fall balanced losses in thickness leading to small overall volume changes. Using a five year time-series, we show that only small ice thickness changes of less than -0.03 m/yr and volume changes of -266 cu km/yr and 160 cu km/yr occurred for the spring and summer periods, respectively. The calculated thickness and volume trends are small compared to the observational time period and interannual variability which masks the determination of long-term trend or cyclical variability in the sea ice cover. These results are in stark contrast to the much greater observed losses in Arctic sea ice volume and illustrate the different hemispheric changes of the polar sea ice covers in recent years.
Changes in Arctic Sea Ice Thickness and Floe Size
NASA Astrophysics Data System (ADS)
Zhang, J.; Schweiger, A. J. B.; Stern, H. L., III; Steele, M.
2016-12-01
A thickness, floe size, and enthalpy distribution sea ice model was implemented into the Pan-arctic Ice-Ocean Modeling and Assimilation System (PIOMAS) by coupling the Zhang et al. [2015] sea ice floe size distribution (FSD) theory with the Thorndike et al. [1975] ice thickness distribution (ITD) theory in order to explicitly simulate multicategory FSD and ITD simultaneously. A range of ice thickness and floe size observations were used for model calibration and validation. The expanded, validated PIOMAS was used to study sea ice response to atmospheric and oceanic changes in the Arctic, focusing on the interannual variability and trends of ice thickness and floe size over the period 1979-2015. It is found that over the study period both ice thickness and floe size have been decreasing steadily in the Arctic. The simulated ice thickness shows considerable spatiotemporal variability in recent years. As the ice cover becomes thinner and weaker, the model simulates an increasing number of small floes (at the low end of the FSD), which affects sea ice properties, particularly in the marginal ice zone.
Lima, Manoel C. S.; Barbosa, Maurício F.; Diniz, Tiego A.; Codogno, Jamile S.; Freitas, Ismael F.; Fernandes, Rômulo A.
2014-01-01
Background: It is unclear whether early physical activity has a greater influence on intima-media thickness and metabolic variables than current physical activity. Objective: To analyze the relationship between current and early physical activity, metabolic variables, and intima-media thickness measures in adults. Method: The sample was composed of 55 healthy subjects of both sexes (33 men and 22 women). Total body fat and trunk fat were estimated by dual-energy X-ray absorptiometry. Carotid and femoral intima-media thickness were measured using a Doppler ultrasound device. A 12-hour fasting blood sample collection was taken (fasting glucose and lipid profile). Early physical activity was assessed through face-to-face interview, and the current physical activity was assessed by pedometer (Digi-Walker Yamax, SW200), which was used for a period of seven days. Results: Current physical activity was negatively related to total cholesterol (rho=-0.31), while early physical activity was negatively related to triglycerides (rho=-0.42), total cholesterol (rho=-0.28), very low density lipoprotein (rho=-0.44), and carotid intima-media thickness (rho=-0.50). In the multivariate model, subjects engaged in sports activities during early life had lower values of very low density lipoprotein (b=-8.74 [b=-16.1; -1.47]) and carotid intima-media thickness (b=-0.17 [95%CI: -0.28; -0.05]). Conclusion: Early 95%CI physical activity has a significant influence on carotid intima-media thickness, regardless of the current physical activity. PMID:25372009
Lima, Manoel C S; Barbosa, Maurício F; Diniz, Tiego A; Codogno, Jamile S; Freitas Júnior, Ismael F; Fernandes, Rômulo A
2014-01-01
It is unclear whether early physical activity has a greater influence on intima-media thickness and metabolic variables than current physical activity. To analyze the relationship between current and early physical activity, metabolic variables, and intima-media thickness measures in adults. The sample was composed of 55 healthy subjects of both sexes (33 men and 22 women). Total body fat and trunk fat were estimated by dual-energy X-ray absorptiometry. Carotid and femoral intima-media thickness were measured using a Doppler ultrasound device. A 12-hour fasting blood sample collection was taken (fasting glucose and lipid profile). Early physical activity was assessed through face-to-face interview, and the current physical activity was assessed by pedometer (Digi-Walker Yamax, SW200), which was used for a period of seven days. Current physical activity was negatively related to total cholesterol (rho=-0.31), while early physical activity was negatively related to triglycerides (rho=-0.42), total cholesterol (rho=-0.28), very low density lipoprotein (rho=-0.44), and carotid intima-media thickness (rho=-0.50). In the multivariate model, subjects engaged in sports activities during early life had lower values of very low density lipoprotein (b=-8.74 [b95%CI=-16.1; -1.47]) and carotid intima-media thickness (b=-0.17 [95%CI: -0.28; -0.05]). Early 95%CI physical activity has a significant influence on carotid intima-media thickness, regardless of the current physical activity.
Influence of soil thickness on stand characteristics in a Sierra Nevada mixed-conifer forest
Marc D. Meyer; Malcolm P. North; Andrew N. Gray; Harold S. J. Zald
2007-01-01
Soil thickness can be an important factor influencing vegetation, yet few spatially explicit studies have examined soil horizon thickness and vegetation composition in summer drought forests. We compared seismic and soil penetration measurements of combined A + C and Cr horizon thickness, soil moisture and temperature, and stand variables in a contiguous 4-ha mixed-...
NASA Technical Reports Server (NTRS)
Nelson, Herbert C; Cunningham, Herbert J
1956-01-01
A Rayleigh type analysis involving chosen modes of the panel as degrees of freedom is used to treat the flutter of a two-dimensional flat panel supported at its leading and trailing edges and subjected to a middle-plane tensile force. The panel has a supersonic stream passing over its upper surface and still air below. The aerodynamic forces due to the supersonic stream are obtained from the theory for linearized two-dimensional unsteady flow and the forces due to the still air are obtained from acoustical theory. In order to study the effect of increasing the number of modes in the analysis, two and then four modes are employed. The modes used are the first four natural modes of the panel in a vacuum with no tensile force acting. The analysis includes these variables: Mach number, structural damping, tensile force, density of the still air, and edge fixity (clamped and pinned). For certain combinations of these variables, stability boundaries are obtained which can be used to determine the panel thickness required to prevent flutter for any panel material and altitude.
Variable angle spectroscopic ellipsometric characterization of HfO2 thin film
NASA Astrophysics Data System (ADS)
Kumar, M.; Kumari, N.; Karar, V.; Sharma, A. L.
2018-02-01
Hafnium Oxide film was deposited on BK7 glass substrate using reactive oxygenated E-Beam deposition technique. The film was deposited using in-situ quartz crystal thickness monitoring to control the film thickness and rate of evaporation. The thin film was grown with a rate of deposition of 0.3 nm/s. The coated substrate was optically characterized using spectrophotometer to determine its transmission spectra. The optical constants as well as film thickness of the hafnia film were extracted by variable angle spectroscopic ellipsometry with Cauchy fitting at incidence angles of 65˚, 70˚ and 75˚.
NASA Astrophysics Data System (ADS)
Hong, Ruijin; Shao, Wen; Ji, Jialin; Tao, Chunxian; Zhang, Dawei
2018-06-01
Silver thin films with linear variable thickness were deposited at room temperature. The corresponding tunability of optical properties and Raman scattering intensity were realized by thermal annealing process. With the thickness increasing, the topography of as-annealed silver thin films was observed to develop from discontinued nanospheres into continuous structure with a redshift of the surface plasmon resonance wavelength in visible region. Both the various nanosphere sizes and states of aggregation of as-annealed silver thin films contributed to significantly increasing the sensitivity of surface enhanced Raman scattering (SERS).
Structural and optical behavior due to thermal effects in end-pumped Yb:YAG disk lasers.
Sazegari, Vahid; Milani, Mohammad Reza Jafari; Jafari, Ahmad Khayat
2010-12-20
We employ a Monte Carlo ray-tracing code along with the ANSYS package to predict the optical and structural behavior in end-pumped CW Yb:YAG disk lasers. The presence of inhomogeneous temperature, stress, and strain distributions is responsible for many deleterious effects for laser action through disk fracture, strain-induced birefringence, and thermal lensing. The thermal lensing, in turn, results in the optical phase distortion in solid-state lasers. Furthermore, the dependence of optical phase distortion on variables such as the heat transfer coefficient, the cooling fluid temperature, and crystal thickness is discussed.
An analytical parametric study of the broadband noise from axial-flow fans
NASA Technical Reports Server (NTRS)
Chou, Shau-Tak; George, Albert R.
1987-01-01
The rotating dipole analysis of Ffowcs Williams and Hawkings (1969) is used to predict the far field noise radiation due to various rotor broadband noise mechanisms. Consideration is given to inflow turbulence noise, attached boundary layer/trailing-edge interaction noise, tip-vortex formation noise, and trailing-edge thickness noise. The parametric dependence of broadband noise from unducted axial-flow fans on several critical variables is studied theoretically. The angle of attack of the rotor blades, which is related to the rotor performance, is shown to be important to the trailing-edge noise and to the tip-vortex formation noise.
Maris polarization in neutron-rich nuclei
NASA Astrophysics Data System (ADS)
Shubhchintak; Bertulani, C. A.; Aumann, T.
2018-03-01
We present a theoretical study of the Maris polarization effect and its application in quasi-free reactions to assess information on the structure of exotic nuclei. In particular, we explore the dependence of the polarization effect on neutron excess and neutron-skin thickness. We discuss the uncertainties in the calculations of triple differential cross sections and of analyzing powers due the choices of various nucleon-nucleon interactions and optical potentials and the limitations of the method. Our study implies that polarization variables in (p, 2p) reactions in inverse kinematics can be an effective probe of single-particle structure of nuclei in radioactive-beam facilities.
Ellipsometric Analysis of Contaminant Layer on Optical Witness Samples from MISSE
NASA Technical Reports Server (NTRS)
Norwood, Joseph K.
2007-01-01
Several optical witness samples included in the Materials for International Space Station Experiment (MISSE) trays have been analyzed with a variable angle spectroscopic ellipsometer or VASE. Witness samples of gold or platinum mirrors are extremely useful as collectors of space-borne contamination, due to the relative inertness of these noble metals in the atomic oxygen-rich environment of LEO. Highly accurate thickness measurements, typically at the sub-nanometer scale, may be achieved with this method, which uses polarized light in a spectral range of 300 to 1300 nanometers at several angles of incidence to the sample surface.
LOGISMOS-B for primates: primate cortical surface reconstruction and thickness measurement
NASA Astrophysics Data System (ADS)
Oguz, Ipek; Styner, Martin; Sanchez, Mar; Shi, Yundi; Sonka, Milan
2015-03-01
Cortical thickness and surface area are important morphological measures with implications for many psychiatric and neurological conditions. Automated segmentation and reconstruction of the cortical surface from 3D MRI scans is challenging due to the variable anatomy of the cortex and its highly complex geometry. While many methods exist for this task in the context of the human brain, these methods are typically not readily applicable to the primate brain. We propose an innovative approach based on our recently proposed human cortical reconstruction algorithm, LOGISMOS-B, and the Laplace-based thickness measurement method. Quantitative evaluation of our approach was performed based on a dataset of T1- and T2-weighted MRI scans from 12-month-old macaques where labeling by our anatomical experts was used as independent standard. In this dataset, LOGISMOS-B has an average signed surface error of 0.01 +/- 0.03mm and an unsigned surface error of 0.42 +/- 0.03mm over the whole brain. Excluding the rather problematic temporal pole region further improves unsigned surface distance to 0.34 +/- 0.03mm. This high level of accuracy reached by our algorithm even in this challenging developmental dataset illustrates its robustness and its potential for primate brain studies.
Melt Electrospinning Writing of Highly Ordered Large Volume Scaffold Architectures.
Wunner, Felix M; Wille, Marie-Luise; Noonan, Thomas G; Bas, Onur; Dalton, Paul D; De-Juan-Pardo, Elena M; Hutmacher, Dietmar W
2018-05-01
The additive manufacturing of highly ordered, micrometer-scale scaffolds is at the forefront of tissue engineering and regenerative medicine research. The fabrication of scaffolds for the regeneration of larger tissue volumes, in particular, remains a major challenge. A technology at the convergence of additive manufacturing and electrospinning-melt electrospinning writing (MEW)-is also limited in thickness/volume due to the accumulation of excess charge from the deposited material repelling and hence, distorting scaffold architectures. The underlying physical principles are studied that constrain MEW of thick, large volume scaffolds. Through computational modeling, numerical values variable working distances are established respectively, which maintain the electrostatic force at a constant level during the printing process. Based on the computational simulations, three voltage profiles are applied to determine the maximum height (exceeding 7 mm) of a highly ordered large volume scaffold. These thick MEW scaffolds have fully interconnected pores and allow cells to migrate and proliferate. To the best of the authors knowledge, this is the first study to report that z-axis adjustment and increasing the voltage during the MEW process allows for the fabrication of high-volume scaffolds with uniform morphologies and fiber diameters. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Hamzah, Afiq; Ezaila Alias, N.; Ismail, Razali
2018-06-01
The aim of this study is to investigate the memory performances of gate-all-around floating gate (GAA-FG) memory cell implementing engineered tunnel barrier concept of variable oxide thickness (VARIOT) of low-k/high-k for several high-k (i.e., Si3N4, Al2O3, HfO2, and ZrO2) with low-k SiO2 using three-dimensional (3D) simulator Silvaco ATLAS. The simulation work is conducted by initially determining the optimized thickness of low-k/high-k barrier-stacked and extracting their Fowler–Nordheim (FN) coefficients. Based on the optimized parameters the device performances of GAA-FG for fast program operation and data retention are assessed using benchmark set by 6 and 8 nm SiO2 tunnel layer respectively. The programming speed has been improved and wide memory window with 30% increment from conventional SiO2 has been obtained using SiO2/Al2O3 tunnel layer due to its thin low-k dielectric thickness. Furthermore, given its high band edges only 1% of charge-loss is expected after 10 years of ‑3.6/3.6 V gate stress.
Croker, Sarah L; Reed, Warren; Donlon, Denise
2016-03-01
The task of identifying fragments of long bone shafts as human or non-human is difficult but necessary, for both forensic and archaeological cases, and a fast simple method is particularly useful. Previous literature suggests there may be differences in the thickness of the cortical bone between these two groups, but this has not been tested thoroughly. The aim of this study was not only to test this suggestion, but also to provide data that could be of practical assistance for future comparisons. The major limb bones (humerus, radius, femur and tibia) of 50 Caucasoid adult skeletons of known age and sex were radiographed, along with corresponding skeletal elements from sheep, pigs, cattle, large dogs and kangaroos. Measurements were taken from the radiographs at five points along the bone shaft, of shaft diameter, cortical bone thickness, and a cortical thickness index (sum of cortices divided by shaft diameter) in both anteroposterior and mediolateral orientations. Each variable for actual cortical bone thickness as well as cortical thickness indices were compared between the human group (split by sex) and each of the non-human groups in turn, using Student's t-tests. Results showed that while significant differences did exist between the human groups and many of the non-human groups, these were not all in the same direction. That is, some variables in the human groups were significantly greater than, and others were significantly less than, the corresponding variable in the non-human groups, depending on the particular non-human group, sex of the human group, or variable under comparison. This was the case for measurements of both actual cortical bone thickness and cortical thickness index. Therefore, for bone shaft fragments for which the skeletal element is unknown, the overlap in cortical bone thickness between different areas of different bones is too great to allow identification using this method alone. However, by providing extensive cortical bone thickness data for a range of bones, this study may be able to assist in the identification of some bone fragments by providing another piece of evidence that, used in conjunction with other clues, can provide a likely determination of the origin of a bone fragment. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Probabilistic Simulation of Combined Thermo-Mechanical Cyclic Fatigue in Composites
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
2011-01-01
A methodology to compute probabilistically-combined thermo-mechanical fatigue life of polymer matrix laminated composites has been developed and is demonstrated. Matrix degradation effects caused by long-term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress-dependent multifactor-interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability-integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/-45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical-cyclic loads and low thermal-cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical-cyclic loads and high thermal-cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.
Probabilistic Simulation for Combined Cycle Fatigue in Composites
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
2010-01-01
A methodology to compute probabilistic fatigue life of polymer matrix laminated composites has been developed and demonstrated. Matrix degradation effects caused by long term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress dependent multifactor interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/- 45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical cyclic loads and low thermal cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical cyclic loads and high thermal cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.
Probabilistic Simulation of Combined Thermo-Mechanical Cyclic Fatigue in Composites
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
2010-01-01
A methodology to compute probabilistically-combined thermo-mechanical fatigue life of polymer matrix laminated composites has been developed and is demonstrated. Matrix degradation effects caused by long-term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress-dependent multifactor-interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability-integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/-45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical-cyclic loads and low thermal-cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical-cyclic loads and high thermal-cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.
Effect of Cyclic Thermo-Mechanical Loads on Fatigue Reliability in Polymer Matrix Composites
NASA Technical Reports Server (NTRS)
Shah, A. R.; Murthy, P. L. N.; Chamis, C. C.
1996-01-01
A methodology to compute probabilistic fatigue life of polymer matrix laminated composites has been developed and demonstrated. Matrix degradation effects caused by long term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress dependent multi-factor interaction relationship developed at NASA Lewis Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability- based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/- 45/90)(sub s) graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical cyclic loads and low thermal cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical cyclic loads and high thermal cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.
Prenatal factors associated with the neonatal line thickness in human deciduous incisors.
Kurek, M; Żądzińska, E; Sitek, A; Borowska-Strugińska, B; Rosset, I; Lorkiewicz, W
2015-06-01
The neonatal line (NNL) is used to distinguish developmental events observed in enamel which occurred before and after birth. However, there are few studies reporting relationship between the characteristics of the NNL and factors affecting prenatal conditions. The aim of the study was to determine prenatal factors that may influence the NNL thickness in human deciduous teeth. The material consisted of longitudinal ground sections of 60 modern human deciduous incisors obtained from full-term healthy children with reported birth histories and prenatal factors. All teeth were sectioned in the labio-lingual plane using diamond blade (Buechler IsoMet 1000). Final specimens were observed using scanning electron microscopy at magnifications 320×. For each tooth, linear measurements of the NNL thickness were taken on its labial surface at the three levels from the cemento-enamel junction. The difference in the neonatal line thickness between tooth types and between males and females was statistically significant. A multiple regression analyses confirmed influence of two variables on the NNL thickness standardised on tooth type and the children's sex (z-score values). These variables are the taking of an antispasmodic medicine by the mother during pregnancy and the season of the child's birth. These two variables together explain nearly 17% of the variability of the NNL. Children of mothers taking a spasmolytic medicine during pregnancy were characterised by a thinner NNL compared with children whose mothers did not take such medication. Children born in summer and spring had a thinner NNL than children born in winter. These results indicate that the prenatal environment significantly contributes to the thickness of the NNL influencing the pace of reaching the post-delivery homeostasis by the newborn's organism. Copyright © 2014 Elsevier GmbH. All rights reserved.
Li, Yan; Chamberlain, Winston; Tan, Ou; Brass, Robert; Weiss, Jack L.; Huang, David
2016-01-01
PURPOSE To screen for subclinical keratoconus by analyzing corneal, epithelial, and stromal thickness map patterns with Fourier-domain optical coherence tomography (OCT). SETTING Four centers in the United States. DESIGN Cross-sectional observational study. METHODS Eyes of normal subjects, subclinical keratoconus eyes, and the topographically normal eye of a unilateral keratoconus patient were studied. Corneas were scanned using a 26 000 Hz Fourier-domain OCT system (RTVue). Normal subjects were divided into training and evaluation groups. Corneal, epithelial, and stromal thickness maps and derived diagnostic indices, including pattern standard deviation (PSD) variables and pachymetric map–based keratoconus risk scores were calculated from the OCT data. Area under the receiver operating characteristic curve (AUC) analysis was used to evaluate the diagnostic accuracy of the indices. RESULTS The study comprised 150 eyes of 83 normal subjects, 50 subclinical keratoconus eyes of 32 patients, and 1 topographically normal eye of a unilateral keratoconus patient. Subclinical keratoconus was characterized by inferotemporal thinning of the cornea, epithelium, and stroma. The PSD values for corneal (P < .001), epithelial (P < .001), and stromal (P = .049) thickness maps were all significantly higher in subclinical keratoconic eyes than in the normal group. The diagnostic accuracy was significantly higher for PSD variables (pachymetric PSD, AUC = 0.941; epithelial PSD, AUC = 0.985; stromal PSD, AUC = 0.924) than for the pachymetric map–based keratoconus risk score (AUC = 0.735). CONCLUSIONS High-resolution Fourier-domain OCT could map corneal, epithelial, and stromal thicknesses. Corneal and sublayer thickness changes in subclinical keratoconus could be detected with high accuracy using PSD variables. These new diagnostic variables might be useful in the detection of early keratoconus. PMID:27026454
Winnard, A; Debuse, D; Wilkinson, M; Samson, L; Weber, T; Caplan, Nick
2017-08-01
Lumbar multifidus (LM) and transversus abdominis (TrA) show altered motor control, and LM is atrophied, in people with low-back pain (LBP). The Functional Re-adaptive Exercise Device (FRED) involves cyclical lower-limb movement against minimal resistance in an upright posture. It has been shown to recruit LM and TrA automatically, and may have potential as an intervention for non-specific LBP. However, no studies have yet investigated the effects of changes in FRED movement amplitude on the activity of these muscles. This study aimed to assess the effects of different FRED movement amplitudes on LM and TrA muscle thickness and movement variability, to inform an evidence-based exercise prescription. Lumbar multifidus and TrA thickness of eight healthy male volunteers were examined using ultrasound imaging during FRED exercise, normalised to rest at four different movement amplitudes. Movement variability was also measured. Magnitude-based inferences were used to compare each amplitude. Exercise at all amplitudes recruited LM and TrA more than rest, with thickness increases of approximately 5 and 1 mm, respectively. Larger amplitudes also caused increased TrA thickness, LM and TrA muscle thickness variability and movement variability. The data suggests that all amplitudes are useful for recruiting LM and TrA. A progressive training protocol should start in the smallest amplitude, increasing the setting once participants can maintain a consistent movement speed, to continue to challenge the motor control system.
A viscoelastic higher-order beam finite element
NASA Technical Reports Server (NTRS)
Johnson, Arthur R.; Tressler, Alexander
1996-01-01
A viscoelastic internal variable constitutive theory is applied to a higher-order elastic beam theory and finite element formulation. The behavior of the viscous material in the beam is approximately modeled as a Maxwell solid. The finite element formulation requires additional sets of nodal variables for each relaxation time constant needed by the Maxwell solid. Recent developments in modeling viscoelastic material behavior with strain variables that are conjugate to the elastic strain measures are combined with advances in modeling through-the-thickness stresses and strains in thick beams. The result is a viscous thick-beam finite element that possesses superior characteristics for transient analysis since its nodal viscous forces are not linearly dependent an the nodal velocities, which is the case when damping matrices are used. Instead, the nodal viscous forces are directly dependent on the material's relaxation spectrum and the history of the nodal variables through a differential form of the constitutive law for a Maxwell solid. The thick beam quasistatic analysis is explored herein as a first step towards developing more complex viscoelastic models for thick plates and shells, and for dynamic analyses. The internal variable constitutive theory is derived directly from the Boltzmann superposition theorem. The mechanical strains and the conjugate internal strains are shown to be related through a system of first-order, ordinary differential equations. The total time-dependent stress is the superposition of its elastic and viscous components. Equations of motion for the solid are derived from the virtual work principle using the total time-dependent stress. Numerical examples for the problems of relaxation, creep, and cyclic creep are carried out for a beam made from an orthotropic Maxwell solid.
NASA Astrophysics Data System (ADS)
Wang, R.; Wang, Q.; Zhao, N.; Yu, G.; He, N.
2017-12-01
Fine roots are the most distal roots that act as the primary belowground organs in acquiring limiting nutrients and water from the soil. However, limited by the inconsistency in definitions of fine roots and the different protocols among studies, knowledge of root system traits has, to date, still lagged far behind our understanding of above-ground traits. In particular, whether variation in fine root traits among the plant species along a single root economics spectrum and this underlying mechanism are still hotly debated. In this study, we sampled the first-order root using the standardized protocols, and measured six important root traits related to resource use strategies, from 181 plant species from subtropical to boreal forests. Base on this large dataset, we concluded that different phylogenetic and environmental factors affected on root thickness and nutrient, resulting in the decoupled pattern between them. Specifically, variation in species-level traits related to root thickness (including root diameter, RD and specific root length, SRL) was restricted by common ancestry and little plastic to the changing environments, whereas the large-scale variation in woody root nutrient was mainly controlled by environmental differences, especially soil variables. For community-level traits, mean annual temperature (MAT) mainly influenced the community-level root thickness through the direct effect of changes in plant species composition, while soil P had a positive influence effect on community-level root nitrogen concentration (CWM_RN), reflecting the strong influence of soil fertility on belowground root nutrient. The different environmental constraints and selective pressures acting between root thickness and nutrient traits allows for multiple ecological strategies to adapt to complex environmental conditions. In addition, strong relationships between community-level root traits and environmental variables, due to environmental filters, indicate that in contrast with individual species-level trait, community-aggregated root traits could be used to improve our ability to predict how the distribution of vegetation will change in response to a changing climate.
Regional TEMPEST survey in north-east Namibia
NASA Astrophysics Data System (ADS)
Peters, Geoffrey; Street, Gregory; Kahimise, Ivor; Hutchins, David
2015-09-01
A regional scale TEMPEST208 airborne electromagnetic survey was flown in north-east Namibia in 2011. With broad line spacing (4 km) and a relatively low-powered, fixed-wing system, the approach was intended to provide a regional geo-electric map of the area, rather than direct detection of potential mineral deposits. A key component of the geo-electric profiling was to map the relative thickness of the Kalahari sediments, which is up to 200 m thick and obscures most of the bedrock in the area. Knowledge of the thickness would allow explorers to better predict the costs of exploration under the Kalahari. An additional aim was to determine if bedrock conductors were detectable beneath the Kalahari cover. The system succeeded in measuring the Kalahari thickness where this cover was relatively thin and moderately conductive. Limitations in depth penetration mean that it is not possible to map the thickness in the centre of the survey area, and much of the northern half of the survey area. Additional problems arise due to the variable conductivity of the Kalahari cover. Where the conductivity of the Kalahari sediment is close to that of the basement, there is no discernable contrast to delineate the base of the Kalahari. Basement conductors are visible beneath the more thinly covered areas such as in the north-west and south of the survey area. The remainder of the survey area generally comprises deeper, more conductive cover and for the most part basement conductors cannot be detected. A qualitative comparison with VTEM data shows comparable results in terms of regional mapping, and suggests that even more powerful systems such as the VTEM may not detect discrete conductors beneath the thick conductive parts of the Kalahari cover.
Vasfilov, S P
2011-01-01
The lamina dry mass: area ratio (LMA - Leaf Mass per Area) is a quite variable trait. Leaf dry mass consists of symplast mass (a set of all leaf protoplasts) and apoplast mass (a set of all cell walls in a leaf). The ratio between symplast and apoplast masses is positively related to any functional trait of leaf calculated per unit of dry mass. The value of this ratio is defined by cells size and their number per unit of leaf area, number of mesophyll cells layers and their differentiation between palisade and spongy ones, and also by density of cells packing. The LMA value is defined by leaf thickness and density. The extent and direction of variability in both leaf traits define the extent and direction of variability in LMA. Negative correlation between leaf thickness and density reduces the level of LMA variability. As a consequence of this correlation the following pattern emerges: the thinner a leaf, the denser it is. Changes in the traits that define the LMA value take place both within a species under the influence of environmental factors and between species that differ in leaf structure and functions. Light is the most powerful environmental factor that influences the LMA, increase in illumination leading to increase in LMA. This effect occurs during leaf growth at the expense of structural changes associated with the reduction of symplast/apoplast mass ratio. Under conditions of intense illumination, LMA may increase due to accumulation of starch. With regard to the majority of leaf functions, the mass of starch may be ascribed to apoplast. Starch accumulation in leaves is observed also under conditions of elevated CO2 concentration in the air. Under high illumination, however, LMA increases also due to increased apoplast contribution to leaf dry mass. Scarce mineral nutrition leads to LMA increase due to lowering of growth zones demands for phothosyntates and, therefore, to increase in starch content of leaves. High level of mineral nutrition during leaf growth period leads to LMA increase at the expense of mesophyll thickening where components of photosynthesis system are located. When additional environmental factors are involved, starch accumulation may be partly responsible for increase in LMA. LMA increase at the expense of starch accumulation, unlike that at the expense of mesophyll thickening, is accompanied by increased leaf density. Under conditions of water deficiency LMA increases, which in mature leaf may be caused by starch accumulation. LMA increase during leaf growth period under conditions of water deficiency is associated with decrease in the symplast/apoplast mass ratio.
He, Meng-Xuan; Li, Hong-Yuan; Mo, Xun-Qiang; Meng, Wei-Qing; Yang, Jia-Nan
2014-08-01
The thickness of surface soil, the covering thickness and the number of adding arbor seeds are all important factors to be considered in the application of soil seed bank (SSB) for vegetation recovery. To determine the optimal conditions, the Box-Behnken central composite design with three parameters and three levels was conducted and Design-Expert was used for response surface optimization. Finally, the optimal model and optimal level of each parameter were selected. The quadratic model was more suitable for response surface optimization (P < 0.0001), indicating the model had good statistical significance which could express ideal relations between all the independent variable and dependent variable. For the optimum condition, the thickness of surface soil was 4.3 cm, the covering thickness was 2 cm, and the number of adding arbor seeds was 224 ind x m(-2), under which the number of germinated seedlings could be reached up to 6222 plants x m(-2). During the process of seed germination, significant interactions between the thickness of surface soil and the covering thickness, as well as the thickness of surface soil and the number of adding arbor seeds were found, but the relationship between the covering thickness and the number of adding arbor seeds was relatively unremarkable. Among all the parameters, the thickness of surface soil was the most important one, which had the steepest curve and the largest standardized coefficient.
NASA Astrophysics Data System (ADS)
Polowick, Christopher
The Low Cost Composites (LCC) group at Carleton University is studying out-of-autoclave composite manufacturing processes such as Vacuum Assisted Resin Transfer Moulding (VARTM) and Closed Cavity Bag Moulding (CCBM). These processes are used to produce inexpensive and high performance components for the GeoSurv II, an Unmanned Aerial Vehicle (UAV) being developed at Carleton University. This research has focused on optimizing VARTM processing parameters to reduce the weight and improve the strength and surface finish of GeoSurv II composite components. A simulation was developed to model resin flow through in VARTM infusions and was used to simulate mould filling and resin emptying of the GeoSurv II inverted V-empennage and mission avionics hatch. The resin infusion schemes of these parts were designed to ensure full preform resin saturation, and minimize thickness variations. An experimental study of the effects of the presence of a corner on composite thickness, void content, and strength was conducted. It was found that inside corners result in local increases in thickness and void content due to poor preform compaction. A novel bagging technique was developed to improve corner compaction, and this technique was shown to reduce thickness variability and void content. The strength, void content, and thickness variation were found to be heavily dependent on corner radius, with corner radii greater than 6.4 mm displaying the greatest improvement in performance for the layups considered. The design of the empennage and hatch mould incorporated the results of this study to improve the quality of these components.
NASA Technical Reports Server (NTRS)
Dawicke, D. S.; Sutton, M. A.
1993-01-01
The stable tearing behavior of thin sheets 2024-T3 aluminum alloy was studied for middle crack tension specimens having initial cracks that were: flat cracks (low fatigue stress) and 45 degrees through-thickness slant cracks (high fatigue stress). The critical crack-tip-opening angle (CTOA) values during stable tearing were measured by two independent methods, optical microscopy and digital image correlation. Results from the two methods agreed well. The CTOA measurements and observations of the fracture surfaces showed that the initial stable tearing behavior of low and high fatigue stress tests is significantly different. The cracks in the low fatigue stress tests underwent a transition from flat-to-slant crack growth, during which the CTOA values were high and significant crack tunneling occurred. After crack growth equal to about the thickness, CTOA reached a constant value of 6 deg and after crack growth equal to about twice the thickness, crack tunneling stabilized. The initial high CTOA values, in the low fatigue crack tests, coincided with large three-dimensional crack front shape changes due to a variation in the through-thickness crack tip constraint. The cracks in the high fatigue stress tests reach the same constant CTOA value after crack growth equal to about the thickness, but produced only a slightly higher CTOA value during initial crack growth. For crack growth on the 45 degree slant, the crack front and local field variables are still highly three-dimensional. However, the constant CTOA values and stable crack front shape may allow the process to be approximated with two-dimensional models.
Variable Stiffness Panel Structural Analyses With Material Nonlinearity and Correlation With Tests
NASA Technical Reports Server (NTRS)
Wu, K. Chauncey; Gurdal, Zafer
2006-01-01
Results from structural analyses of three tow-placed AS4/977-3 composite panels with both geometric and material nonlinearities are presented. Two of the panels have variable stiffness layups where the fiber orientation angle varies as a continuous function of location on the panel planform. One variable stiffness panel has overlapping tow bands of varying thickness, while the other has a theoretically uniform thickness. The third panel has a conventional uniform-thickness [plus or minus 45](sub 5s) layup with straight fibers, providing a baseline for comparing the performance of the variable stiffness panels. Parametric finite element analyses including nonlinear material shear are first compared with material characterization test results for two orthotropic layups. This nonlinear material model is incorporated into structural analysis models of the variable stiffness and baseline panels with applied end shortenings. Measured geometric imperfections and mechanical prestresses, generated by forcing the variable stiffness panels from their cured anticlastic shapes into their flatter test configurations, are also modeled. Results of these structural analyses are then compared to the measured panel structural response. Good correlation is observed between the analysis results and displacement test data throughout deep postbuckling up to global failure, suggesting that nonlinear material behavior is an important component of the actual panel structural response.
NASA Technical Reports Server (NTRS)
Stimpert, D. L.; Clemons, A.
1977-01-01
Sound data which were obtained during tests of a 50.8 cm diameter, subsonic tip speed, low pressure ratio fan were analyzed. The test matrix was divided into two major investigations: (1) source noise reduction techniques; and (2) aft duct noise reduction with acoustic treatment. Source noise reduction techniques were investigated which include minimizing second harmonic noise by varying vane/blade ratio, variation in spacing, and lowering the Mach number through the vane row to lower fan broadband noise. Treatment in the aft duct which includes flow noise effects, faceplate porosity, rotor OGV treatment, slant cell treatment, and splitter simulation with variable depth on the outer wall and constant thickness treatment on the inner wall was investigated. Variable boundary conditions such as variation in treatment panel thickness and orientation, and mixed porosity combined with variable thickness were examined. Significant results are reported.
Wang, Guanyao; Huang, Yanhui; Wang, Yuxin; Jiang, Pingkai; Huang, Xingyi
2017-08-09
Dielectric polymer nanocomposites have received keen interest due to their potential application in energy storage. Nevertheless, the large contrast in dielectric constant between the polymer and nanofillers usually results in a significant decrease of breakdown strength of the nanocomposites, which is unfavorable for enhancing energy storage capability. Herein, BaTiO 3 nanowires (NWs) encapsulated by TiO 2 shells of variable thickness were utilized to fabricate dielectric polymer nanocomposites. Compared with nanocomposites with bare BaTiO 3 NWs, significantly enhanced energy storage capability was achieved for nanocomposites with TiO 2 encapsulated BaTiO 3 NWs. For instance, an ultrahigh energy density of 9.53 J cm -3 at 440 MV m -1 could be obtained for nanocomposites comprising core-shell structured nanowires, much higher than that of nanocomposites with 5 wt% raw ones (5.60 J cm -3 at 360 MV m -1 ). The discharged energy density of the proposed nanocomposites with 5 wt% mTiO 2 @BaTiO 3 -1 NWs at 440 MV m -1 seems to rival or exceed those of some previously reported nanocomposites (mostly comprising core-shell structured nanofillers). More notably, this study revealed that the energy storage capability of the nanocomposites can be tailored by the TiO 2 shell thickness. Finite element simulations were employed to analyze the electric field distribution in the nanocomposites. The enhanced energy storage capability should be mainly attributed to the smoother gradient of dielectric constant between the nanofillers and polymer matrix, which alleviated the electric field concentration and leakage current in the polymer matrix. The methods and results herein offer a feasible approach to construct high-energy-density polymer nanocomposites with core-shell structured nanowires.
Than, Christian; Tosovic, Danijel; Seidl, Laura; Mark Brown, J
2016-12-01
To determine whether mechanomyographic (MMG) determined contractile properties of the biceps brachii change during exercise-induced hypertrophy and subsequent disuse atrophy. Healthy subjects (mean ± SD, 23.7 ± 2.6 years, BMI 21.8 ± 2.4, n = 19) performed unilateral biceps curls (9 sets × 12 repetitions, 5 sessions per week) for 8 weeks (hypertrophic phase) before ceasing exercise (atrophic phase) for the following 8 weeks (non-dominant limb; treatment, dominant limb; control). MMG measures of muscle contractile properties (contraction time; T c , maximum displacement; D max , contraction velocity; V c ), electromyographic (EMG) measures of muscle fatigue (median power frequency; MPF), strength measures (maximum voluntary contraction; MVC) and measures of muscle thickness (ultrasound) were obtained. Two-way repeated measures ANOVA showed significant differences (P < 0.05) between treatment and control limbs. During the hypertrophic phase treatment MVC initially declined (weeks 1-3), due to fatigue (decline in MPF), followed by improvement against control during weeks 6-8. Between weeks 5 and 8 treatment, muscle thickness was greater than control, reflecting gross hypertrophy. MMG variables Dmax (weeks 2, 7) and Vc (weeks 7, 8) declined. During the atrophic phase, MVC (weeks 9-12) and muscle thickness (weeks 9, 10) initially remained high before declining to control levels, reflecting gross atrophy. MMG variables D max (weeks 9, 14) and V c (weeks 9, 14, 15) also declined during the atrophic phase. No change in T c was found throughout the hypertrophic or atrophic phases. MMG detects changes in contractile properties during stages of exercise-induced hypertrophy and disuse atrophy suggesting its applicability as a clinical tool in musculoskeletal rehabilitation.
Boudinage in nature and experiment
NASA Astrophysics Data System (ADS)
Marques, Fernando O.; Fonseca, Pedro D.; Lechmann, Sarah; Burg, Jean-Pierre; Marques, Ana S.; Andrade, Alexandre J. M.; Alves, Carlos
2012-03-01
Deformation of rocks produces structures at all scales that are in many cases periodic (folding or boudinage), with variable amplitude and wavelength. Here we focus on boudinage, a process of primordial importance for tectonics. In the present study, we carried out measurements of natural boudins and experimentally tested the effects of two variables on boudinage: layer thickness and compression rate. The models were made of a competent layer (mostly brittle, as in nature) of either elastic (soft paper) or viscoelastoplastic (clay) material embedded in a ductile matrix of linear viscous silicone putty. The competent layer lied with its greatest surface normal to the principal shortening axis and greatest length parallel to the principal stretching axis. The model was then subjected to pure shear at constant piston velocity and variable competent layer thickness (Model 1), or at different piston velocity and constant layer thickness (Model 2). The results of Model 1 show an exponential dependence of boudin width on competent layer thickness, in disagreement with data from the studied natural occurrence. This indicates that variables other than competent layer thickness are hidden in the linear relationship obtained for the natural boudinage. The results of Model 2 show that the higher the velocity the smaller the boudin width, following a power-law with exponent very similar to that of analytical predictions. The studied natural boudinage occasionally occurs in two orthogonal directions. This chocolate tablet boudinage can be the result of two successive stages of deformation: buckling followed by stretching of competent sandstone layers, or buckling followed by rotation of reverse limbs into the extensional field of simple shear.
Seismic Characterization of the Jakarta Basin
NASA Astrophysics Data System (ADS)
Cipta, A.; Saygin, E.; Cummins, P. R.; Masturyono, M.; Rudyanto, A.; Irsyam, M.
2015-12-01
Jakarta, Indonesia, is home to more than 10 million people. Many of these people live in seismically non-resilient structures in an area that historical records suggest is prone to earthquake shaking. The city lies in a sedimentary basin composed of Quaternary alluvium that experiences rapid subsidence (26 cm/year) due to groundwater extraction. Forecasts of how much subsidence may occur in the future are dependent on the thickness of the basin. However, basin geometry and sediment thickness are poorly known. In term of seismic hazard, thick loose sediment can lead to high amplification of seismic waves, of the kind that led to widespread damage in Mexico city during the Michoacan Earthquake of 1985. In order to characterize basin structure, a temporary seismograph deployment was undertaken in Jakarta in Oct 2013- Jan 2014. A total of 96 seismic instrument were deployed throughout Jakarta were deployed throughout Jakarta at 3-5 km spacing. Ambient noise tomography was applied to obtain models of the subsurface velocity structure. Important key, low velocity anomalies at short period (<8s) correspond to the main sedimentary sub-basins thought to be present based on geological interpretations of shallow stratigraphy in the Jakarta Basin. The result shows that at a depth of 300 m, shear-wave velocity in the northern part (600 m/s) of the basin is lower than that in the southern part. The most prominent low velocity structure appears in the northwest of the basin, down to a depth of 800 m, with velocity as low as 1200 m/s. This very low velocity indicates the thickness of sediment and the variability of basin geometry. Waveform computation using SPECFEM2D shows that amplification due to basin geometry occurs at the basin edge and the thick sediment leads to amplification at the basin center. Computation also shows the longer shaking duration occurrs at the basin edge and center of the basin. The nest step will be validating the basin model using earthquake events recorded by the Jakarta array. The Bohol 2013 earthquake is one good candidate event for model validation. This will require using a source model for the Bohol earthquake and a plane wave input to SPECFEM3D.
Brivio, Davide; Sajo, Erno; Zygmanski, Piotr
2017-12-01
We developed a method for measuring signal enhancement produced by high-Z nanofilm electrodes in parallel plate ionization chambers with variable thickness microgaps. We used a laboratory-made variable gap parallel plate ionization chamber with nanofilm electrodes made of aluminum-aluminum (Al-Al) and aluminum-tantalum (Al-Ta). The electrodes were evaporated on 1 mm thick glass substrates. The interelectrode air gap was varied from 3 μm to 1 cm. The gap size was measured using a digital micrometer and it was confirmed by capacitance measurements. The electric field in the chamber was kept between 0.1 kV/cm and 1 kV/cm for all the gap sizes by applying appropriate compensating voltages. The chamber was exposed to 120 kVp X-rays. The current was measured using a commercial data acquisition system with temporal resolution of 600 Hz. In addition, radiation transport simulations were carried out to characterize the dose, D(x), high-energy electron current, J(x), and deposited charge, Q(x), as a function of distance, x, from the electrodes. A deterministic method was selected over Monte Carlo due to its ability to produce results with 10 nm spatial resolution without stochastic uncertainties. Experimental signal enhancement ratio, SER(G) which we defined as the ratio of signal for Al-air-Ta to signal for Al-air-Al for each gap size, was compared to computations. The individual contributions of dose, electron current, and charge deposition to the signal enhancement were determined. Experimental signals matched computed data for all gap sizes after accounting for several contributions to the signal: (a) charge carrier generated via ionization due to the energy deposited in the air gap, D(x); (b) high-energy electron current, J(x), leaking from high-Z electrode (Ta) toward low-Z electrode (Al); (c) deposited charge in the air gap, Q(x); and (d) the decreased collection efficiency for large gaps (>~500 μm). Q(x) accounts for the electrons below 100 eV, which are regarded as stopped by the radiation transport code but which can move and form electron current in small gaps (<100 μm). While the total energy deposited in the air gap increases with gap size for both samples, the average high-energy current and deposited charge are moderately decreasing with the air gap. When gap sizes are smaller than ~20 μm, the contribution to signal from dose approaches zero while contributions from high-energy current and deposited charges give rise to an offset signal. The measured signal enhancement ratio (SER) was 40.0 ± 5.0 for the 3 μm gap and rapidly decreasing with gap size down to 9.9 ± 1.2 for the 21 μm gap and to 6.6 ± 0.3 for the 100 μm gap. The uncertainties in SER were mostly due to uncertainties in gap size and data acquisition system. We developed an experimental method to determine the signal enhancement due to high-Z nanolayers in parallel plate ionization chambers with micrometer spatial resolution. As the water-equivalent thicknesses of these air gaps are 3 nm to 10 μm, the method may also be applicable for nanoscopic spatial resolution of other gap materials. The method may be extended to solid insulator materials with low Z. © 2017 American Association of Physicists in Medicine.
Advanced stitching head for making stitches in a textile article having variable thickness
NASA Technical Reports Server (NTRS)
Thrash, Patrick J. (Inventor); Miller, Jeffrey L. (Inventor); Codos, Richard (Inventor)
1999-01-01
A stitching head for a computer numerically controlled stitching machine includes a thread tensioning mechanism for automatically adjusting thread tension according to the thickness of the material being stitched. The stitching head also includes a mechanism for automatically adjusting thread path geometry according to the thickness of the material being stitched.
Bark Thickness of 17-Year-Old Loblolly Pine Planted at Different Spacings
Donald P. Feduccia; William F. Mann
1975-01-01
Diameter at breast height was the only variable affecting double bark thickness at d.b.h. and midpoint of the merchantable stem for young loblolly pine planted at five initial spacings on plots with site indices of 77 to 111 feet. Bark thickness at the 4-inch top was not correlated with breast-height diameter.
Spatial and layer-controlled variability in fracture networks
NASA Astrophysics Data System (ADS)
Procter, Andrew; Sanderson, David J.
2018-03-01
Topological sampling, based on 1) node counting and 2) circular sampling areas, is used to measure fracture intensity in surface exposures of a layered limestone/shale sequence in north Somerset, UK. This method provides similar levels of precision as more traditional line samples, but is about 10 times quicker and allows characterization of the network topology. Georeferencing of photographs of the sample sites allows later analysis of trace lengths and orientations, and identification of joint set development. ANOVA tests support a complex interaction of within-layer, between-layer and between-location variability in fracture intensity, with the different layers showing anomalous intensity at different locations. This variation is not simply due to bed thickness, nor can it be related to any obvious compositional or textural variation between the limestone beds. These results are used to assess approaches to the spatial mapping of fracture intensity.
Modelling of active layer thickness evolution on James Ross Island in 2006-2015
NASA Astrophysics Data System (ADS)
Hrbáček, Filip; Uxa, Tomáš
2017-04-01
Antarctic Peninsula region has been considered as one of the most rapidly warming areas on the Earth. However, the recent studies (Turner et al., 2016; Oliva et al., 2017) showed that significant air temperature cooling began around 2000 and has continued until present days. The climate cooling led to reduction of active layer thickness in several parts of Antarctic Peninsula region during decade 2006-2015, but the information about spatiotemporal variability of active layer thickness across the region remains largely incoherent due to lack of active layer temperature data from deeper profiles. Valuable insights into active layer thickness evolution in Antarctic Peninsula region can be, however, provided by thermal modelling techniques. These have been widely used to study the active layer dynamics in different regions of Arctic since 1990s. By contrast, they have been employed much less in Antarctica. In this study, we present our first results from two equilibrium models, the Stefan and Kudryavtsev equations, that were applied to calculate the annual active layer thickness based on ground temperature data from depth of 5 cm on one site on James Ross Island, Eastern Antarctic Peninsula, in period 2006/07 to 2014/15. Study site (Abernethy Flats) is located in the central part of the major ice-free area of James Ross Island called Ulu Peninsula. Monitoring of air temperature 2 m above ground surface and ground temperature in 50 cm profile began on January 2006. The profile was extended under the permafrost table down to 75 cm in February 2012, which allowed precise determination of active layer thickness, defined as a depth of 0°C isotherm, in period 2012 to 2015. The active layer thickness in the entire observation period was reconstructed using the Stefan and Kudryavtsev models, which were driven by ground temperature data from depth of 5 cm and physical parameters of the ground obtained by laboratory analyses (moisture content and bulk density) and calculations from ground heat flux measurement (thermal conductivity and thermal capacity). Model results were validated using the reference active layer thicknesses from the summer seasons of 2012/13 to 2014/15 with very good accuracy of 0 to 4 cm and -4 to 1 cm for the Stefan and the Kudryavtsev models, respectively. Average active layer thickness on Abernethy Flats varied between 62 cm (Stefan model) and 60 cm (Kudryavtsev model) in period 2006/07-2014/15. Both models showed average active layer thinning of -1.3 cm.year-1 (Stefan model) and -2.3 cm.year-1 (Kudryavtsev model). Maximum active layer thickness was predicted in summer season 2008/09, reaching 75 cm (Stefan model) and 83 cm (Kudryavtsev model), while the minimum active layer thickness was observed in summer season 2009/10 when both models predicted 36 cm. Our results show that both models are well suited for conditions of Antarctica because their accuracy is in the order of the first centimetres. The nine-year series confirmed thinning of active layer in this part of Antarctic Peninsula region, which was mainly related to variability of summer air temperature. References: Turner, J., Lu, H., White, I., King, J. C., Phillips, T., Scott Hosking, J. Bracegirdle, T. J.,Marshall, G. J., Mulvaney, R., Deb, P., 2016. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature 535, doi: 10.1038/nature18645 Oliva, M., Navarro, F., Hrbáček, F., Hernandéz, A., Nývlt, D., Perreira, P., Ruiz-Fernandéz, J., Trigo, R., in press. Recent regional climate cooling on the Antarctic Peninsula and associated impacts on the cryosphere. Science of Total Environment. dx.doi.org/10.1016/j.scitotenv.2016.12.030
NASA Astrophysics Data System (ADS)
Ramjan, S.; Geldsetzer, T.; Yackel, J.
2016-12-01
A contemporary shift from primarily thicker, older multi-year sea ice (MYI) to thinner, smoother first-year sea ice (FYI) has been attributed to increased atmospheric and oceanic warming in the Arctic, with a steady diminishing of Arctic sea ice thickness due to a reduction of thick MYI compared to FYI. With an increase in FYI fraction, increased melting takes place during the summer months, exposing the sea ice to additional incoming solar radiation. With this change, an increase in melt pond fraction has been observed during the summer melt season. Prior research advocated that thin/thick snow leads to dominant surface flooding/snow patches during summer because of an enhanced ice-albedo feedback. For instance, thin snow cover areas form melt ponds first. Therefore, aerial measurements of melt pond fraction provide a proxy for relative snow thickness. RADARSAT-2 polarimetric SAR data can provide enhanced information about both surface scattering and volume scattering mechanisms, as well as recording the phase difference between polarizations. These polarimetric parameters can be computed that have a useful physical interpretation. The principle research focus is to establish a methodology to determine the relationship between selected geostatistics and image texture measures of pre-melt RADARSAT-2 parameters and aerially-measured melt pond fraction. Overall, the notion of this study is to develop an algorithm to estimate relative snow thickness variability in winter through an integrated approach utilizing SAR polarimetric parameters, geostatistical analysis and texture measures. Results are validated with test sets of melt pond fractions, and in situ snow thickness measurements. Preliminary findings show significant correlations with pond fraction for the standard deviation of HH and HV parameters at small incidence angles, and for the mean of the co-pol phase difference parameter at large incidence angles.
NASA Astrophysics Data System (ADS)
Hayat, Tasawar; Qayyum, Sumaira; Khan, Muhammad Ijaz; Alsaedi, Ahmed
2018-01-01
Simultaneous effects of viscous dissipation and Joule heating in flow by rotating disk of variable thickness are examined. Radiative flow saturating porous space is considered. Much attention is given to entropy generation outcome. Developed nonlinear ordinary differential systems are computed for the convergent series solutions. Specifically, the results of velocity, temperature, entropy generation, Bejan number, coefficient of skin friction, and local Nusselt number are discussed. Clearly the entropy generation rate depends on velocity and temperature distributions. Moreover the entropy generation rate is a decreasing function of Hartmann number, Eckert number, and Reynolds number, while they gave opposite behavior for Bejan numbers.
PVD thermal barrier coating applications and process development for aircraft engines
NASA Astrophysics Data System (ADS)
Rigney, D. V.; Viguie, R.; Wortman, D. J.; Skelly, D. W.
1997-06-01
Thermal barrier coatings (TBCs) have been developed for application to aircraft engine components to improve service life in an increasingly hostile thermal environment. The choice of TBC type is related to the component, intended use, and economics. Selection of electron beam physical vapor deposition proc-essing for turbine blade is due in part to part size, surface finish requirements, thickness control needs, and hole closure issues. Process development of PVD TBCs has been carried out at several different sites, including GE Aircraft Engines (GEAE). The influence of processing variables on microstructure is dis-cussed, along with the GEAE development coater and initial experiences of pilot line operation.
Gabriele, Michelle L.; Ishikawa, Hiroshi; Wollstein, Gadi; Bilonick, Richard A.; Townsend, Kelly A.; Kagemann, Larry; Wojtkowski, Maciej; Srinivasan, Vivek J.; Fujimoto, James G.; Duker, Jay S.; Schuman, Joel S.
2009-01-01
PURPOSE To investigate the effect on optical coherence tomography (OCT) retinal nerve fiber layer (RNFL) thickness measurements of varying the standard 3.4-mm-diameter circle location. METHODS The optic nerve head (ONH) region of 17 eyes of 17 healthy subjects was imaged with high-speed, ultrahigh-resolution OCT (hsUHR-OCT; 501 × 180 axial scans covering a 6 × 6-mm area; scan time, 3.84 seconds) for a comprehensive sampling. This method allows for systematic simulation of the variable circle placement effect. RNFL thickness was measured on this three-dimensional dataset by using a custom-designed software program. RNFL thickness was resampled along a 3.4-mm-diameter circle centered on the ONH, then along 3.4-mm circles shifted horizontally (x-shift), vertically (y-shift) and diagonally up to ±500 µm (at 100-µm intervals). Linear mixed-effects models were used to determine RNFL thickness as a function of the scan circle shift. A model for the distance between the two thickest measurements along the RNFL thickness circular profile (peak distance) was also calculated. RESULTS RNFL thickness tended to decrease with both positive and negative x- and y-shifts. The range of shifts that caused a decrease greater than the variability inherent to the commercial device was greater in both nasal and temporal quadrants than in the superior and inferior ones. The model for peak distance demonstrated that as the scan moves nasally, the RNFL peak distance increases, and as the circle moves temporally, the distance decreases. Vertical shifts had a minimal effect on peak distance. CONCLUSIONS The location of the OCT scan circle affects RNFL thickness measurements. Accurate registration of OCT scans is essential for measurement reproducibility and longitudinal examination (ClinicalTrials.gov number, NCT00286637). PMID:18515577
Wang, Mingwu; Lu, Ake Tzu-Hui; Varma, Rohit; Schuman, Joel S; Greenfield, David S; Huang, David
2014-03-01
To improve the diagnosis of glaucoma by combining time-domain optical coherence tomography (TD-OCT) measurements of the optic disc, circumpapillary retinal nerve fiber layer (RNFL), and macular retinal thickness. Ninety-six age-matched normal and 96 perimetric glaucoma participants were included in this observational, cross-sectional study. Or-logic, support vector machine, relevance vector machine, and linear discrimination function were used to analyze the performances of combined TD-OCT diagnostic variables. The area under the receiver-operating curve (AROC) was used to evaluate the diagnostic accuracy and to compare the diagnostic performance of single and combined anatomic variables. The best RNFL thickness variables were the inferior (AROC=0.900), overall (AROC=0.892), and superior quadrants (AROC=0.850). The best optic disc variables were horizontal integrated rim width (AROC=0.909), vertical integrated rim area (AROC=0.908), and cup/disc vertical ratio (AROC=0.890). All macular retinal thickness variables had AROCs of 0.829 or less. Combining the top 3 RNFL and optic disc variables in optimizing glaucoma diagnosis, support vector machine had the highest AROC, 0.954, followed by or-logic (AROC=0.946), linear discrimination function (AROC=0.946), and relevance vector machine (AROC=0.943). All combination diagnostic variables had significantly larger AROCs than any single diagnostic variable. There are no significant differences among the combination diagnostic indices. With TD-OCT, RNFL and optic disc variables had better diagnostic accuracy than macular retinal variables. Combining top RNFL and optic disc variables significantly improved diagnostic performance. Clinically, or-logic classification was the most practical analytical tool with sufficient accuracy to diagnose early glaucoma.
The Influence of PV Module Materials and Design on Solder Joint Thermal Fatigue Durability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bosco, Nick; Silverman, Timothy J.; Kurtz, Sarah
Finite element model (FEM) simulations have been performed to elucidate the effect of flat plate photovoltaic (PV) module materials and design on PbSn eutectic solder joint thermal fatigue durability. The statistical method of Latin Hypercube sampling was employed to investigate the sensitivity of simulated damage to each input variable. Variables of laminate material properties and their thicknesses were investigated. Using analysis of variance, we determined that the rate of solder fatigue was most sensitive to solder layer thickness, with copper ribbon and silicon thickness being the next two most sensitive variables. By simulating both accelerated thermal cycles (ATCs) and PVmore » cell temperature histories through two characteristic days of service, we determined that the acceleration factor between the ATC and outdoor service was independent of the variables sampled in this study. This result implies that an ATC test will represent a similar time of outdoor exposure for a wide range of module designs. This is an encouraging result for the standard ATC that must be universally applied across all modules.« less
NASA Technical Reports Server (NTRS)
Elishakoff, Isaac
1998-01-01
Ten papers, published in various publications, on buckling, and the effects of imperfections on various structures are presented. These papers are: (1) Buckling mode localization in elastic plates due to misplacement in the stiffner location; (2) On vibrational imperfection sensitivity on Augusti's model structure in the vicinity of a non-linear static state; (3) Imperfection sensitivity due to elastic moduli in the Roorda Koiter frame; (4) Buckling mode localization in a multi-span periodic structure with a disorder in a single span; (5) Prediction of natural frequency and buckling load variability due to uncertainty in material properties by convex modeling; (6) Derivation of multi-dimensional ellipsoidal convex model for experimental data; (7) Passive control of buckling deformation via Anderson localization phenomenon; (8)Effect of the thickness and initial im perfection on buckling on composite cylindrical shells: asymptotic analysis and numerical results by BOSOR4 and PANDA2; (9) Worst case estimation of homology design by convex analysis; (10) Buckling of structures with uncertain imperfections - Personal perspective.
NASA Astrophysics Data System (ADS)
Uluta, K.; Deer, D.; Skarlatos, Y.
2006-08-01
The electrical conductivity and absorption coefficient of amorphous indium oxide thin films, thermally evaporated on glass substrates at room temperature, were evaluated. For direct transitions the variation of the optical band gap with thickness was determined and this variation was supposed to appear due to the variation of localized gap states, whereas the variation of conductivity with thickness was supposed to be due to the variation of carrier concentration. We attribute the variation of absorption coefficient with thickness to the variation of optical band gap energy rather than optical interference.
Poole, P. L.; Willis, C.; Cochran, G. E.; ...
2016-10-10
Liquid crystal films are variable thickness, planar targets for ultra-intense laser matter experiments such as ion acceleration. Their target qualities also make them ideal for high-power laser optics such as plasma mirrors and waveplates. By controlling parameters of film formation, thickness can be varied on-demand from 10 nm to above 50 μm, enabling real-time optimization of laser interactions. Presented here are results using a device that draws films from a bulk liquid crystal source volume with any thickness in the aforementioned range. Films form within 2 μm of the same location each time, well within the Rayleigh range of evenmore » tight F/# systems, thus removing the necessity for realignment between shots. As a result, the repetition rate of the device exceeds 0.1 Hz for sub-100nm films, facilitating higher repetition rate operation of modern laser facilities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poole, P. L.; Willis, C.; Cochran, G. E.
Liquid crystal films are variable thickness, planar targets for ultra-intense laser matter experiments such as ion acceleration. Their target qualities also make them ideal for high-power laser optics such as plasma mirrors and waveplates. By controlling parameters of film formation, thickness can be varied on-demand from 10 nm to above 50 μm, enabling real-time optimization of laser interactions. Presented here are results using a device that draws films from a bulk liquid crystal source volume with any thickness in the aforementioned range. Films form within 2 μm of the same location each time, well within the Rayleigh range of evenmore » tight F/# systems, thus removing the necessity for realignment between shots. As a result, the repetition rate of the device exceeds 0.1 Hz for sub-100nm films, facilitating higher repetition rate operation of modern laser facilities.« less
Optical phase conjugation assisted scattering lens: variable focusing and 3D patterning
Ryu, Jihee; Jang, Mooseok; Eom, Tae Joong; Yang, Changhuei; Chung, Euiheon
2016-01-01
Variable light focusing is the ability to flexibly select the focal distance of a lens. This feature presents technical challenges, but is significant for optical interrogation of three-dimensional objects. Numerous lens designs have been proposed to provide flexible light focusing, including zoom, fluid, and liquid-crystal lenses. Although these lenses are useful for macroscale applications, they have limited utility in micron-scale applications due to restricted modulation range and exacting requirements for fabrication and control. Here, we present a holographic focusing method that enables variable light focusing without any physical modification to the lens element. In this method, a scattering layer couples low-angle (transverse wave vector) components into a full angular spectrum, and a digital optical phase conjugation (DOPC) system characterizes and plays back the wavefront that focuses through the scattering layer. We demonstrate micron-scale light focusing and patterning over a wide range of focal distances of 22–51 mm. The interferometric nature of the focusing scheme also enables an aberration-free scattering lens. The proposed method provides a unique variable focusing capability for imaging thick specimens or selective photoactivation of neuronal networks. PMID:27049442
NASA Astrophysics Data System (ADS)
Toyin, A.; Adekeye, O. A.; Bale, R. B.; Sanni, Z. J.; Jimoh, O. A.
2016-09-01
The basal unit of the succession in the Illela borehole belongs to the Dange Formation comprising thick calcareous and variably coloured dark-greyish shale of 36.30 m thick which is overlain by a 31.44 m thick limestone of Kalambaina Formation with 1.7 m thick shaly-limestone inclusive. The uppermost part of the section belongs to the Gwandu Formation which has intercalation of silty-clay, muddy siltstones with well lithified ironstone capping the borehole section. The limestone/carbonate microfacie as deduced from their salient lithologic, sedimentologic and paleontologic features are comparable to standard microfacie (SMF) types 9 and 10, i.e. bioclastic wackestone/bioclastic micrite and packstone-wackestone respectively. Diagenetically, syndepositional and early diagenesis have taken place particularly cementation and replacement in the carbonate rocks and these have greatly affected the reservoir potential negatively. The matrix/grain relationships indicate a shallow marine environment of deposition. The borehole section is delineated into upper foraminifera and lower ostracod biostratigraphic units as no formal biostratigraphic zonation could be attempted due to low diversity of both benthic foraminifera, marine ostracods and the absence of planktonic foraminifera. The similarity of the ostracod assemblages between this study area, Illela borehole, West Africa, North Africa (Libya), Mali and Niger Republic) and South-Western Nigeria (West Africa) suggests that a marine connection exists between the Gulf of Guinea and the Sokoto Basin via the area occupied by the River Niger during the Paleocene.
Koppenhaver, Shane L.; Fritz, Julie M.; Hebert, Jeffrey J.; Kawchuk, Greg N.; Parent, Eric C.; Gill, Norman W.; Childs, John D.; Teyhen, Deydre S.
2012-01-01
Understanding the clinical characteristics of patients with low back pain (LBP) who display improved lumbar multifidus (LM) muscle function after spinal manipulative therapy (SMT) may provide insight into a potentially synergistic interaction between SMT and exercise. Therefore, the purpose of this study was to identify the baseline historical and physical examination factors associated with increased contracted LM muscle thickness one week after SMT. Eighty-one participants with LBP underwent a baseline physical examination and ultrasound imaging assessment of the LM muscle during submaximal contraction before and one week after SMT. The relationship between baseline examination variables and 1-week change in contracted LM thickness was assessed using correlation analysis and hierarchical multiple linear regression. Four variables best predicted the magnitude of increases in contracted LM muscle thickness after SMT. When combined, these variables suggest that patients with LBP, (1) that are fairly acute, (2) have at least a moderately good prognosis without focal and irritable symptoms, and (3) exhibit signs of spinal instability, may be the best candidates for a combined SMT and LSE treatment approach. PMID:22516351
Knechtle, Beat; Knechtle, Patrizia; Rosemann, Thomas; Senn, Oliver
2010-12-01
The purpose of this study was to investigate the association between selected skin-fold thicknesses and training variables with a half-marathon race time, for both male and female recreational runners, using bi- and multivariate analysis. In 52 men, two skin-fold thicknesses (abdominal and calf) were significantly and positively correlated with race time; whereas in 15 women, five (pectoral, mid-axilla, subscapular, abdominal, and suprailiac) showed positive and significant relations with total race time. In men, the mean weekly running distance, minimum distance run per week, maximum distance run per week, mean weekly hours of running, number of running training sessions per week, and mean speed of the training sessions were significantly and negatively related to total race time, but not in women. Interaction analyses suggested that race time was more strongly associated with anthropometry in women than men. Race time for the women was independently associated with the sum of eight skin-folds; but for the men, only the mean speed during training sessions was independently associated. Skin-fold thicknesses and training variables in these groups were differently related to race time according to their sex.
Koppenhaver, Shane L; Fritz, Julie M; Hebert, Jeffrey J; Kawchuk, Greg N; Parent, Eric C; Gill, Norman W; Childs, John D; Teyhen, Deydre S
2012-10-01
Understanding the clinical characteristics of patients with low back pain (LBP) who display improved lumbar multifidus (LM) muscle function after spinal manipulative therapy (SMT) may provide insight into a potentially synergistic interaction between SMT and exercise. Therefore, the purpose of this study was to identify the baseline historical and physical examination factors associated with increased contracted LM muscle thickness one week after SMT. Eighty-one participants with LBP underwent a baseline physical examination and ultrasound imaging assessment of the LM muscle during submaximal contraction before and one week after SMT. The relationship between baseline examination variables and 1-week change in contracted LM thickness was assessed using correlation analysis and hierarchical multiple linear regression. Four variables best predicted the magnitude of increases in contracted LM muscle thickness after SMT. When combined, these variables suggest that patients with LBP, (1) that are fairly acute, (2) have at least a moderately good prognosis without focal and irritable symptoms, and (3) exhibit signs of spinal instability, may be the best candidates for a combined SMT and lumbar stabilization exercise (LSE) treatment approach. Published by Elsevier Ltd.
NASA Technical Reports Server (NTRS)
Meier, Walter N.; Hovelsrud, Greta K.; van Oort, Bob E. H.; Key, Jeffrey R.; Kovacs, Kit M.; Michel, Christine; Haas, Christian; Granskog, Mats A.; Gerland, Sebastian; Perovich, Donald K.;
2014-01-01
Sea ice in the Arctic is one of the most rapidly changing components of the global climate system. Over the past few decades, summer areal extent has declined over 30, and all months show statistically significant declining trends. New satellite missions and techniques have greatly expanded information on sea ice thickness, but many uncertainties remain in the satellite data and long-term records are sparse. However, thickness observations and other satellite-derived data indicate a 40 decline in thickness, due in large part to the loss of thicker, older ice cover. The changes in sea ice are happening faster than models have projected. With continued increasing temperatures, summer ice-free conditions are likely sometime in the coming decades, though there are substantial uncertainties in the exact timing and high interannual variability will remain as sea ice decreases. The changes in Arctic sea ice are already having an impact on flora and fauna in the Arctic. Some species will face increasing challenges in the future, while new habitat will open up for other species. The changes are also affecting peoples living and working in the Arctic. Native communities are facing challenges to their traditional ways of life, while new opportunities open for shipping, fishing, and natural resource extraction.
Evidence of unfrozen liquids and seismic anisotropy at the base of the polar ice sheets
NASA Astrophysics Data System (ADS)
Wittlinger, Gérard; Farra, Véronique
2015-03-01
We analyze seismic data from broadband stations located on the Antarctic and Greenland ice sheets to determine polar ice seismic velocities. P-to-S converted waves at the ice/rock interface and inside the ice sheets and their multiples (the P-receiver functions) are used to estimate in-situ P-wave velocity (Vp) and P-to-S velocity ratio (Vp/Vs) of polar ice. We find that the polar ice sheets have a two-layer structure; an upper layer of variable thickness (about 2/3 of the total thickness) with seismic velocities close to the standard ice values, and a lower layer of approximately constant thickness with standard Vp but ∼25% smaller Vs. The lower layer ceiling corresponds approximately to the -30 °C isotherm. Synthetic modeling of P-receiver functions shows that strong seismic anisotropy and low vertical S velocity are needed in the lower layer. The seismic anisotropy results from the preferred orientation of ice crystal c-axes toward the vertical. The low vertical S velocity may be due to the presence of unfrozen liquids resulting from premelting at grain joints and/or melting of chemical solutions buried in the ice. The strongly preferred ice crystal orientation fabric and the unfrozen fluids may facilitate polar ice sheet basal flow.
Pfister, Catherine A.; Roy, Kaustuv; Wootton, J. Timothy; McCoy, Sophie J.; Paine, Robert T.; Suchanek, Thomas H.; Sanford, Eric
2016-01-01
Seawater pH and the availability of carbonate ions are decreasing due to anthropogenic carbon dioxide emissions, posing challenges for calcifying marine species. Marine mussels are of particular concern given their role as foundation species worldwide. Here, we document shell growth and calcification patterns in Mytilus californianus, the California mussel, over millennial and decadal scales. By comparing shell thickness across the largest modern shells, the largest mussels collected in the 1960s–1970s and shells from two Native American midden sites (∼1000–2420 years BP), we found that modern shells are thinner overall, thinner per age category and thinner per unit length. Thus, the largest individuals of this species are calcifying less now than in the past. Comparisons of shell thickness in smaller individuals over the past 10–40 years, however, do not show significant shell thinning. Given our sampling strategy, these results are unlikely to simply reflect within-site variability or preservation effects. Review of environmental and biotic drivers known to affect shell calcification suggests declining ocean pH as a likely explanation for the observed shell thinning. Further future decreases in shell thickness could have significant negative impacts on M. californianus survival and, in turn, negatively impact the species-rich complex that occupies mussel beds. PMID:27306049
Pfister, Catherine A.; Roy, Kaustuv; Wootton, Timothy J.; McCoy, Sophie J.; Paine, Robert T.; Suchanek, Tom; Sanford, Eric
2016-01-01
Seawater pH and the availability of carbonate ions are decreasing due to anthropogenic carbon dioxide emissions, posing challenges for calcifying marine species. Marine mussels are of particular concern given their role as foundation species worldwide. Here, we document shell growth and calcification patterns in Mytilus californianus, the California mussel, over millennial and decadal scales. By comparing shell thickness across the largest modern shells, the largest mussels collected in the 1960s–1970s and shells from two Native American midden sites (∼1000–2420 years BP), we found that modern shells are thinner overall, thinner per age category and thinner per unit length. Thus, the largest individuals of this species are calcifying less now than in the past. Comparisons of shell thickness in smaller individuals over the past 10–40 years, however, do not show significant shell thinning. Given our sampling strategy, these results are unlikely to simply reflect within-site variability or preservation effects. Review of environmental and biotic drivers known to affect shell calcification suggests declining ocean pH as a likely explanation for the observed shell thinning. Further future decreases in shell thickness could have significant negative impacts on M. californianus survival and, in turn, negatively impact the species-rich complex that occupies mussel beds..
Pfister, Catherine A; Roy, Kaustuv; Wootton, J Timothy; McCoy, Sophie J; Paine, Robert T; Suchanek, Thomas H; Sanford, Eric
2016-06-15
Seawater pH and the availability of carbonate ions are decreasing due to anthropogenic carbon dioxide emissions, posing challenges for calcifying marine species. Marine mussels are of particular concern given their role as foundation species worldwide. Here, we document shell growth and calcification patterns in Mytilus californianus, the California mussel, over millennial and decadal scales. By comparing shell thickness across the largest modern shells, the largest mussels collected in the 1960s-1970s and shells from two Native American midden sites (∼1000-2420 years BP), we found that modern shells are thinner overall, thinner per age category and thinner per unit length. Thus, the largest individuals of this species are calcifying less now than in the past. Comparisons of shell thickness in smaller individuals over the past 10-40 years, however, do not show significant shell thinning. Given our sampling strategy, these results are unlikely to simply reflect within-site variability or preservation effects. Review of environmental and biotic drivers known to affect shell calcification suggests declining ocean pH as a likely explanation for the observed shell thinning. Further future decreases in shell thickness could have significant negative impacts on M. californianus survival and, in turn, negatively impact the species-rich complex that occupies mussel beds. © 2016 The Author(s).
Between-subject variability in asymmetry analysis of macular thickness.
Alluwimi, Muhammed S; Swanson, William H; Malinovsky, Victor E
2014-05-01
To investigate the use of asymmetry analysis to reduce between-subject variability of macular thickness measurements using spectral domain optical coherence tomography. Sixty-three volunteers (33 young subjects [aged 21 to 35 years] and 30 older subjects [aged 45 to 85 years]) free of eye disease were recruited. Macular images were gathered with the Spectralis optical coherence tomography. An overlay 24- by 24-degree grid was divided into five zones per hemifield, and asymmetry analysis was computed as the difference between superior and inferior zone thicknesses. We hypothesized that the lowest variation and the highest density of ganglion cells will be found approximately 3 to 6 degrees from the foveola, corresponding to zones 1 and 2. For each zone and age group, between-subject SDs were compared for retinal thickness versus asymmetry analysis using an F test. To account for repeated comparisons, p < 0.0125 was required for statistical significance. Axial length and corneal curvature were measured with an IOLMaster. For OD, asymmetry analysis reduced between-subject variability in zones 1 and 2 in both groups (F > 3.2, p < 0.001). Standard deviation for zone 1 dropped from 12.0 to 3.0 μm in the young group and from 11.7 to 2.6 μm in the older group. Standard deviation for zone 2 dropped from 13.6 to 5.3 μm in the young group and from 11.1 to 5.8 μm in the older group. Combining all subjects, neither retinal thickness nor asymmetry analysis showed a strong correlation with axial length or corneal curvature (R² < 0.01). Analysis for OS yielded the same pattern of results, as did asymmetry analyses between eyes (F > 3.8, p < 0.0001). Asymmetry analysis reduced between-subject variability in zones 1 and 2. Combining the five zones together produced a higher between-subject variation of the retinal thickness asymmetry analysis; thus, we encourage clinicians to be cautious when interpreting the asymmetry analysis printouts.
Effects of fire on ash thickness in a Lithuanian grassland and short-term spatio-temporal changes
NASA Astrophysics Data System (ADS)
Pereira, P.; Cerdà, A.; Úbeda, X.; Mataix-Solera, J.; Martin, D.; Jordán, A.; Burguet, M.
2012-12-01
Ash thickness is a key variable in the protection of soil against erosion agents after planned and unplanned fires. Thicker ash provides better protection against raindrop impact and reduces the runoff response by retaining water and promoting water infiltration although little is known about the distribution and the evolution of the ash layer after the fires. Ash thickness measurements were conducted along two transects (flat and sloping areas) following a a grid experimental design. Both transects extended from the burned area into an adjacent unburned area. We analysed ash thickness evolution according to time and fire severity. In order to interpolate data with accuracy and identify the techniques with the least bias, several interpolation methods were tested in the grid plot. Overall, the fire had a low severity. The fire significantly reduced the ground cover, especially on sloping areas owing to the higher fire severity and/or less biomass previous to the fire. Ash thickness depends on fire severity and is thin where fire severity was higher and thicker in lower fire severity sites. The ash thickness decreased with time after the fire. Between 4 and 16 days after the fire, ash was transported by wind. The major reduction took place between 16 and 34 days after the fire as a result of rainfall, and was more efficient where fire severity was higher. Between 34 and 45 days after the fire no significant differences in ash thickness were identified among ash colours and only traces of the ash layer remained. The omni-directional experimental variograms shown that variable structure did not change importantly with the time, however, the most accurate interpolation methods were different highlighting the slight different patterns of ash thickness distribution with the time. The ash spatial variability increased with the time, particularly on the slope, as a result of water erosion.
NASA Astrophysics Data System (ADS)
Zhang, J.; Stern, H. L., III; Hwang, P. B.; Schweiger, A. J. B.; Stark, M.; Steele, M.
2015-12-01
To better describe the state of sea ice in the marginal ice zone (MIZ) with floes of varying thicknesses and sizes, both an ice thickness distribution (ITD) and a floe size distribution (FSD) are needed. We have developed a FSD theory [Zhang et al., 2015] that is coupled to the ITD theory of Thorndike et al. [1975] in order to explicitly simulate the evolution of FSD and ITD jointly. The FSD theory includes a FSD function and a FSD conservation equation in parallel with the ITD equation. The FSD equation takes into account changes in FSD due to ice advection, thermodynamic growth, and lateral melting. It also includes changes in FSD because of mechanical redistribution of floe size due to ice opening, ridging and, particularly, ice fragmentation induced by stochastic ocean surface waves. The floe size redistribution due to ice fragmentation is based on the assumption that wave-induced breakup is a random process such that when an ice floe is broken, floes of any smaller sizes have an equal opportunity to form, without being either favored or excluded. It is also based on the assumption that floes of larger sizes are easier to break because they are subject to larger flexure-induced stresses and strains than smaller floes that are easier to ride with waves with little bending; larger floes also have higher areal coverages and therefore higher probabilities to break. These assumptions with corresponding formulations ensure that the simulated FSD follows a power law as observed by satellites and airborne surveys. The FSD theory has been tested in the Pan-arctic Ice/Ocean Modeling and Assimilation System (PIOMAS). The existing PIOMAS has 12 categories each for ice thickness, ice enthalpy, and snow depth. With the implementation of the FSD theory, PIOMAS is able to represent 12 categories of floe sizes ranging from 0.1 m to ~3000 m. It is found that the simulated 12-category FSD agrees reasonably well with FSD derived from SAR and MODIS images. In this study, we will examine PIOMAS-estimated variability and changes in Arctic FSD over the period 1979-present. Thorndike, A. S., D. A. Rothrock, G. A. Maykut, and R. Colony, The thickness distribution of sea ice. J. Geophys. Res., 80, 1975. Zhang, J., A. Schweiger, M. Steele, and H. Stern, Sea ice floe size distribution in the marginal ice zone: Theory and numerical experiments, J. Geophys. Res., 120, 2015.
Michalski, L J; Demers, C H; Baranger, D A A; Barch, D M; Harms, M P; Burgess, G C; Bogdan, R
2017-11-01
Elevated stress perception and depression commonly co-occur, suggesting that they share a common neurobiology. Cortical thickness of the rostral middle frontal gyrus (RMFG), a region critical for executive function, has been associated with depression- and stress-related phenotypes. Here, we examined whether RMFG cortical thickness is associated with these phenotypes in a large family-based community sample. RMFG cortical thickness was estimated using FreeSurfer among participants (n = 879) who completed the ongoing Human Connectome Project. Depression-related phenotypes (i.e. sadness, positive affect) and perceived stress were assessed via self-report. After accounting for sex, age, ethnicity, average whole-brain cortical thickness, twin status and familial structure, RMFG thickness was positively associated with perceived stress and sadness and negatively associated with positive affect at small effect sizes (accounting for 0.2-2.4% of variance; p-fdr: 0.0051-0.1900). Perceived stress was uniquely associated with RMFG thickness after accounting for depression-related phenotypes. Further, among siblings discordant for perceived stress, those reporting higher perceived stress had increased RMFG thickness (P = 4 × 10 -7 ). Lastly, RMFG thickness, perceived stress, depressive symptoms, and positive affect were all significantly heritable, with evidence of shared genetic and environmental contributions between self-report measures. Stress perception and depression share common genetic, environmental, and neural correlates. Variability in RMFG cortical thickness may play a role in stress-related depression, although effects may be small in magnitude. Prospective studies are required to examine whether variability in RMFG thickness may function as a risk factor for stress exposure and/or perception, and/or arises as a consequence of these phenotypes. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
NASA Astrophysics Data System (ADS)
Wadhams, P.; Tucker, W. B.; Krabill, W. B.; Swift, R. N.; Comiso, J. C.; Davis, N. R.
1992-12-01
We have confirmed our earlier finding that the probability density function (pdf) of ice freeboard in the Arctic Ocean can be converted to a pdf of ice draft by applying a simple coordinate transformation based on the measured mean draft and mean elevation. This applies in each of six 50-km sections (north of Greenland) of joint airborne laser and submarine sonar profile obtained along nearly coincident tracks from the Arctic Basin north of Greenland and tested for this study. Detailed differences in the shape of the pdf can be explained on the basis of snow load and can, in principle, be compensated by the use of a more sophisticated freeboard-dependent transformation. The measured "density ratio" R (actually mean draft/mean elevation ratio) for each section was found to be consistent over all sections tested, despite differences in the ice regime, indicating that a single value of R might be used for measurements done in this season of the year. The mean value
Methods and systems for fabricating high quality superconducting tapes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majkic, Goran; Selvamanickam, Venkat
An MOCVD system fabricates high quality superconductor tapes with variable thicknesses. The MOCVD system can include a gas flow chamber between two parallel channels in a housing. A substrate tape is heated and then passed through the MOCVD housing such that the gas flow is perpendicular to the tape's surface. Precursors are injected into the gas flow for deposition on the substrate tape. In this way, superconductor tapes can be fabricated with variable thicknesses, uniform precursor deposition, and high critical current densities.
Baser, Gonen; Cengiz, Hakan; Uyar, Murat; Seker Un, Emine
2016-01-01
To investigate the effects of dehydration due to fasting on diurnal changes of intraocular pressure, anterior segment biometrics, and refraction. The intraocular pressures, anterior segment biometrics (axial length: AL; Central corneal thickness: CCT; Lens thickness: LT; Anterior chamber depth: ACD), and refractive measurements of 30 eyes of 15 fasting healthy male volunteers were recorded at 8:00 in the morning and 17:00 in the evening in the Ramadan of 2013 and two months later. The results were compared and the statistical analyses were performed using the Rstudio software version 0.98.501. The variables were investigated using visual (histograms, probability plots) and analytical methods (Kolmogorov-Smirnov/Shapiro-Wilk test) to determine whether or not they were normally distributed. The refractive values remained stable in the fasting as well as in the control period (p = 0.384). The axial length measured slightly shorter in the fasting period (p = 0.001). The corneal thickness presented a diurnal variation, in which the cornea measured thinner in the evening. The difference between the fasting and control period was not statistically significant (p = 0.359). The major differences were observed in the anterior chamber depth and IOP. The ACD was shallower in the evening during the fasting period, where it was deeper in the control period. The diurnal IOP difference was greater in the fasting period than the control period. Both were statistically significant (p = 0.001). The LT remained unchanged in both periods. The major difference was shown in the anterior chamber shallowing in the evening hours and IOP. Our study contributes the hypothesis that the posterior segment of the eye is more responsible for the axial length alterations and normovolemia has a more dominant influence on diurnal IOP changes.
NASA Astrophysics Data System (ADS)
Matsukawa, Takashi; Liu, Yongxun; Mori, Takahiro; Morita, Yukinori; Otsuka, Shintaro; O'uchi, Shin-ichi; Fuketa, Hiroshi; Migita, Shinji; Masahara, Meishoku
2017-06-01
The influence of extension doping on parasitic resistance and its variability has been investigated for FinFETs. Electrical characterization of FinFETs and crystallinity evaluation of the doped fin structure are carried out for different fin thicknesses and different donor species for ion implantation, i.e., As and P. Reducing the fin thickness and the use of donor species with a larger mass cause serious degradation in the variability and median value of the parasitic resistance. Crystallinity evaluation by transmission electron microscope reveals that significant crystal defects remain after dopant activation annealing for the cases of smaller fin thickness and the implanted dopant with a larger mass. The unrecovered defects cause serious degradation in the parasitic resistance and its variability. In 1998, he joined the Electrotechnical Laboratory, which is former organization of National Institute of Advanced Industrial Science and Technology (AIST). He has been working on development of front-end process technology, variability issues of the FinFETs and technologies for suppressing the variability. He is now a group leader of the AIST and leads the research on the silicon-based CMOS devices. He is a member of the IEEE Electron Devices Society, and the Japan Society of Applied Physics.
Dynamics of Geometrically Nonlinear Elastic Nonthin Anisotropic Shells of Variable Thickness
NASA Astrophysics Data System (ADS)
Marchuk, M. V.; Tuchapskii, R. I.
2017-11-01
A theory of dynamic elastic geometrically nonlinear deformation of nonthin anisotropic shells with variable thickness is constructed. Shells are assumed asymmetric about the reference surface. Functions are expanded into Legendre series. The basic equations are written in a coordinate system aligned with the lines of curvature of the reference surface. The equations of motion and appropriate boundary conditions are obtained using the Hamilton-Ostrogradsky variational principle. The change in metric across the thickness is taken into account. The theory assumes that the refinement process is regular and allows deriving equations including products of terms of Legendre series of unknown functions of arbitrary order. The behavior of a square metallic plate acted upon by a pressure pulse distributed over its face is studied.
Tuning relaxation dynamics and mechanical properties of polymer films of identical thickness
NASA Astrophysics Data System (ADS)
Kchaou, Marwa; Alcouffe, Pierre; Chandran, Sivasurender; Cassagnau, Philippe; Reiter, Günter; Al Akhrass, Samer
2018-03-01
Using dewetting as a characterization tool, we demonstrate that physical properties of thin polymer films can be regulated and tuned by employing variable processing conditions. For different molecular weights, the variable behavior of polystyrene films of identical thickness, prepared along systematically altered pathways, became predictable through a single parameter P , defined as the ratio of time required over time available for the equilibration of polymers. In particular, preparation-induced residual stresses, the corresponding relaxation times as well as the rupture probability of such films (of identical thickness) varied by orders of magnitude following scaling relations with P . Our experimental findings suggest that we can predictably enhance properties and hence maximize the performance of thin polymer films via appropriately chosen processing conditions.
Tepelus, Tudor C; Hariri, Amir H; Balasubramanian, Siva; Sadda, SriniVas R
2018-06-01
To compare macular thickness measurement algorithms of two different spectral-domain optical coherence tomography (SD-OCT) devices in eyes affected by dry age-related macular degeneration (AMD). Patients with dry AMD and healthy volunteers from the retina clinic of the Doheny Eye Center - UCLA were imaged using two different SD-OCT devices: the RS-3000 Advance (Nidek, Padova, Italy) and the Cirrus HD-OCT (Carl Zeiss Meditec, Dublin, CA). All patients had been previously diagnosed with drusen or geographic atrophy due to AMD. The commercial instrument software was used to generate the macular retinal thickness measurements, and measurements were compared between devices. Eighty-five diseased eyes from 49 patients and 16 healthy control eyes from eight normal volunteers were included in this study. The macular thickness measurements generated by the two instruments in eyes with AMD differed significantly in mean retinal thickness in the foveal center subfield (257.34 μm ± 51.72 μm using the Nidek OCT vs. 238.20 μm ± 51.89 μm using the Cirrus OCT; P < .001). The mean difference in macular thickness between the two devices was 19.14 μm ± 5.84 μm for diseased eyes and 17.06 μm ± 5.28 μm in normal control eyes, and this was not statistically different between the two groups (P > .05). The macular thickness measurements in diseased eyes, as evaluated by the two different instruments, however, showed excellent correlation (r = 0.99; P < .001), with an intraclass correlation coefficient of 0.99 (95% confidence interval, 0.98-0.99). Post hoc evaluation of cases with larger differences also showed differences in foveal center selection and variabilities in boundary selection with specific pathology. Macular thickness measurements provided by the Nidek and Cirrus OCT instruments in eyes with dry AMD are highly correlated but show a consistent difference, which may allow the use of a standard correction factor to be applied to better interrelate measurements between the devices. [Ophthalmic Surg Lasers Imaging Retina. 2018;49:410-415.]. Copyright 2018, SLACK Incorporated.
Ischaemia-reperfusion injury in central retinal artery occlusion.
Saxena, Sandeep; Mishra, Nibha; Meyer, Carsten H; Akduman, Levent
2013-10-21
A 53-year-old man presented with sudden painless diminution of vision in his right eye for 3 days. His fundus examination showed diffuse whitening of the retina with a cherry red spot at the fovea with cilioretinal artery sparing. On fluorescein angiography delayed arteriovenous transit was observed. Three-dimensional spectral domain optical coherence tomography was used to assess retinal nerve fibre layer thickness and average macular central subfield thickness on days 3, 7, 30 and 90. Marked retinal oedema due to ischaemia was observed on day 3 of occurrence of central retinal artery occlusion. On day 7, significant decrease in retinal nerve fibre thickness and macular thickness was noted suggestive of acute reperfusion injury. Retinal nerve fibre layer thickness and macular thickness returned to near normal on day 30 due to restoration of blood supply with wash out of stress mediators. Retinal atrophy was observed on day 90.
Ischaemia-reperfusion injury in central retinal artery occlusion
Saxena, Sandeep; Mishra, Nibha; Meyer, Carsten H; Akduman, Levent
2013-01-01
A 53-year-old man presented with sudden painless diminution of vision in his right eye for 3 days. His fundus examination showed diffuse whitening of the retina with a cherry red spot at the fovea with cilioretinal artery sparing. On fluorescein angiography delayed arteriovenous transit was observed. Three-dimensional spectral domain optical coherence tomography was used to assess retinal nerve fibre layer thickness and average macular central subfield thickness on days 3, 7, 30 and 90. Marked retinal oedema due to ischaemia was observed on day 3 of occurrence of central retinal artery occlusion. On day 7, significant decrease in retinal nerve fibre thickness and macular thickness was noted suggestive of acute reperfusion injury. Retinal nerve fibre layer thickness and macular thickness returned to near normal on day 30 due to restoration of blood supply with wash out of stress mediators. Retinal atrophy was observed on day 90. PMID:24145508
NASA Technical Reports Server (NTRS)
Roth, Don J.
1996-01-01
This article describes a single transducer ultrasonic imaging method that eliminates the effect of plate thickness variation in the image. The method thus isolates ultrasonic variations due to material microstructure. The use of this method can result in significant cost savings because the ultrasonic image can be interpreted correctly without the need for machining to achieve precise thickness uniformity during nondestructive evaluations of material development. The method is based on measurement of ultrasonic velocity. Images obtained using the thickness-independent methodology are compared with conventional velocity and c-scan echo peak amplitude images for monolithic ceramic (silicon nitride), metal matrix composite and polymer matrix composite materials. It was found that the thickness-independent ultrasonic images reveal and quantify correctly areas of global microstructural (pore and fiber volume fraction) variation due to the elimination of thickness effects. The thickness-independent ultrasonic imaging method described in this article is currently being commercialized under a cooperative agreement between NASA Lewis Research Center and Sonix, Inc.
Dopant mapping in thin FIB prepared silicon samples by Off-Axis Electron Holography.
Pantzer, Adi; Vakahy, Atsmon; Eliyahou, Zohar; Levi, George; Horvitz, Dror; Kohn, Amit
2014-03-01
Modern semiconductor devices function due to accurate dopant distribution. Off-Axis Electron Holography (OAEH) in the transmission electron microscope (TEM) can map quantitatively the electrostatic potential in semiconductors with high spatial resolution. For the microelectronics industry, ongoing reduction of device dimensions, 3D device geometry, and failure analysis of specific devices require preparation of thin TEM samples, under 70 nm thick, by focused ion beam (FIB). Such thicknesses, which are considerably thinner than the values reported to date in the literature, are challenging due to FIB induced damage and surface depletion effects. Here, we report on preparation of TEM samples of silicon PN junctions in the FIB completed by low-energy (5 keV) ion milling, which reduced amorphization of the silicon to 10nm thick. Additional perpendicular FIB sectioning enabled a direct measurement of the TEM sample thickness in order to determine accurately the crystalline thickness of the sample. Consequently, we find that the low-energy milling also resulted in a negligible thickness of electrically inactive regions, approximately 4nm thick. The influence of TEM sample thickness, FIB induced damage and doping concentrations on the accuracy of the OAEH measurements were examined by comparison to secondary ion mass spectrometry measurements as well as to 1D and 3D simulations of the electrostatic potentials. We conclude that for TEM samples down to 100 nm thick, OAEH measurements of Si-based PN junctions, for the doping levels examined here, resulted in quantitative mapping of potential variations, within ~0.1 V. For thinner TEM samples, down to 20 nm thick, mapping of potential variations is qualitative, due to a reduced accuracy of ~0.3 V. This article is dedicated to the memory of Zohar Eliyahou. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Flores-Bustamante, Mario C.; Rosete-Aguilar, Martha; Calixto, Sergio
2016-03-01
A lens containing a liquid medium and having at least one elastic membrane as one of its components is known as an elastic membrane lens (EML). The elastic membrane may have a constant or variable thickness. The optical properties of the EML change by modifying the profile of its elastic membrane(s). The EML formed of elastic constant thickness membrane(s) have been studied extensively. However, EML information using elastic membrane of variable thickness is limited. In this work, we present simulation results of the mechanical and optical behavior of two EML with variable thickness membranes (convex-plane membranes). The profile of its surfaces were modified by liquid medium volume increases. The model of the convex-plane membranes, as well as the simulation of its mechanical behavior, were performed using Solidworks® software; and surface's points of the deformed elastic lens were obtained. Experimental stress-strain data, obtained from a silicone rubber simple tensile test, according to ASTM D638 norm, were used in the simulation. Algebraic expressions, (Schwarzschild formula, up to four deformation coefficients, in a cylindrical coordinate system (r, z)), of the meridional profiles of the first and second surfaces of the deformed convex-plane membranes, were obtained using the results from Solidworks® and a program in the software Mathematica®. The optical performance of the EML was obtained by simulation using the software OSLO® and the algebraic expressions obtained in Mathematica®.
NASA Astrophysics Data System (ADS)
Norris, P. M.; da Silva, A. M., Jr.
2016-12-01
Norris and da Silva recently published a method to constrain a statistical model of sub-gridcolumn moisture variability using high-resolution satellite cloud data. The method can be used for large-scale model parameter estimation or cloud data assimilation (CDA). The gridcolumn model includes assumed-PDF intra-layer horizontal variability and a copula-based inter-layer correlation model. The observables used are MODIS cloud-top pressure, brightness temperature and cloud optical thickness, but the method should be extensible to direct cloudy radiance assimilation for a small number of channels. The algorithm is a form of Bayesian inference with a Markov chain Monte Carlo (MCMC) approach to characterizing the posterior distribution. This approach is especially useful in cases where the background state is clear but cloudy observations exist. In traditional linearized data assimilation methods, a subsaturated background cannot produce clouds via any infinitesimal equilibrium perturbation, but the Monte Carlo approach is not gradient-based and allows jumps into regions of non-zero cloud probability. In the example provided, the method is able to restore marine stratocumulus near the Californian coast where the background state has a clear swath. The new approach not only significantly reduces mean and standard deviation biases with respect to the assimilated observables, but also improves the simulated rotational-Ramman scattering cloud optical centroid pressure against independent (non-assimilated) retrievals from the OMI instrument. One obvious difficulty for the method, and other CDA methods, is the lack of information content in passive cloud observables on cloud vertical structure, beyond cloud-top and thickness, thus necessitating strong dependence on the background vertical moisture structure. It is found that a simple flow-dependent correlation modification due to Riishojgaard is helpful, better honoring inversion structures in the background state.
Buhimschi, Catalin S; Buhimschi, Irina A; Wehrum, Mark J; Molaskey-Jones, Sherry; Sfakianaki, Anna K; Pettker, Christian M; Thung, Stephen; Campbell, Katherine H; Dulay, Antonette T; Funai, Edmund F; Bahtiyar, Mert O
2011-10-01
To test the hypothesis that myometrial thickness predicts the success of external cephalic version. Abdominal ultrasonographic scans were performed in 114 consecutive pregnant women with breech singletons before an external cephalic version maneuver. Myometrial thickness was measured by a standardized protocol at three sites: the lower segment, midanterior wall, and the fundal uterine wall. Independent variables analyzed in conjunction with myometrial thickness were: maternal age, parity, body mass index, abdominal wall thickness, estimated fetal weight, amniotic fluid index, placental thickness and location, fetal spine position, breech type, and delivery outcomes such as final mode of delivery and birth weight. Successful version was associated with a thicker ultrasonographic fundal myometrium (unsuccessful: 6.7 [5.5-8.4] compared with successful: 7.4 [6.6-9.7] mm, P=.037). Multivariate regression analysis showed that increased fundal myometrial thickness, high amniotic fluid index, and nonfrank breech presentation were the strongest independent predictors of external cephalic version success (P<.001). A fundal myometrial thickness greater than 6.75 mm and an amniotic fluid index greater than 12 cm were each associated with successful external cephalic versions (fundal myometrial thickness: odds ratio [OR] 2.4, 95% confidence interval [CI] 1.1-5.2, P=.029; amniotic fluid index: OR 2.8, 95% CI 1.3-6.0, P=.008). Combining the two variables resulted in an absolute risk reduction for a failed version of 27.6% (95% CI 7.1-48.1) and a number needed to treat of four (95% CI 2.1-14.2). Fundal myometrial thickness and amniotic fluid index contribute to success of external cephalic version and their evaluation can be easily incorporated in algorithms before the procedure. III.
Variable curvature mirror having variable thickness: design and fabrication
NASA Astrophysics Data System (ADS)
Zhao, Hui; Xie, Xiaopeng; Xu, Liang; Ding, Jiaoteng; Shen, Le; Gong, Jie
2017-10-01
Variable curvature mirror (VCM) can change its curvature radius dynamically and is usually used to correct the defocus and spherical aberration caused by thermal lens effect to improve the output beam quality of high power solid-state laser. Recently, the probable application of VCM in realizing non-moving element optical zoom imaging in visible band has been paid much attention. The basic requirement for VCM lies in that it should provide a large enough saggitus variation and still maintains a high enough surface figure at the same time. Therefore in this manuscript, by combing the pressurization based actuation with a variable thickness mirror design, the purpose of obtaining large saggitus variation and maintaining quite good surface figure accuracy at the same time could be achieved. A prototype zoom mirror with diameter of 120mm and central thickness of 8mm is designed, fabricated and tested. Experimental results demonstrate that the zoom mirror having an initial surface figure accuracy superior to 1/80λ could provide bigger than 36um saggitus variation and after finishing the curvature variation its surface figure accuracy could still be superior to 1/40λ with the spherical aberration removed, which proves that the effectiveness of the theoretical design.
Rössler, Erik; Mattea, Carlos; Saarakkala, Simo; Lehenkari, Petri; Finnilä, Mikko; Rieppo, Lassi; Karhula, Sakari; Nieminen, Miika T; Stapf, Siegfried
2017-08-01
NMR experiments carried out at magnetic fields below 1 T provide new relaxation parameters unavailable with conventional clinical scanners. Contrast of T 1 generally becomes larger towards low fields, as slow molecular reorientation processes dominate relaxation at the corresponding Larmor frequencies. This advantage has to be considered in the context of lower sensitivity and frequently reduced spatial resolution. The layered structure of cartilage is one example where a particularly strong variation of T 1 across the tissue occurs, being affected by degenerative diseases such as osteoarthritis (OA). Furthermore, the presence of 1 H- 14 N cross-relaxation, leading to so-called quadrupolar dips in the 1 H relaxation time dispersion, provide insight into the concentration and mobility of proteoglycans and collagen in cartilage, both being affected by OA. In this study, low-field imaging and variable-field NMR relaxometry were combined for the first time for tissue samples, employing unidirectional load to probe the mechanical properties. 20 human knee cartilage samples were placed in a compression cell, and studied by determining relaxation profiles without and with applied pressure (0.6 MPa) at 50 μm in-plane resolution, and comparing with volume-averaged T 1 dispersion. Samples were subsequently stored in formalin, prepared for histology and graded according to the Mankin score system. Quadrupolar dips and thickness change under load showed the strongest correlation with Mankin grade. Average T 1 and change of maximum T 1 under load, as well as its position, correlate with thickness and thickness change. Furthermore, T 1 (ω) above 25 mT was found to correlate with thickness change. While volume-averaged T 1 is not a suitable indicator for OA, its change due to mechanical load and its extreme values are suggested as biomarkers available in low-field MRI systems. The shape of the dispersion T 1 (ω) represents a promising access to understanding and quantifying molecular dynamics in tissue, pointing toward future in vivo tissue studies. Copyright © 2017 John Wiley & Sons, Ltd.
Intrinsic And Extrinsic Controls On Unsteady Deformation Rates, Northern Apennine Mountains, Italy
NASA Astrophysics Data System (ADS)
Anastasio, D. J.; Gunderson, K. L.; Pazzaglia, F. J.; Kodama, K. P.
2017-12-01
The slip rates of faults in the Northern Apennine Mountains were unsteady at 104-105 year timescales during the Neogene and Quaternary. Fault slip rates were recovered from growth strata and uplifted fluvial terraces associated with the Salsomaggiore, Quatto Castella, and Castevetro fault-related folds, sampled along the Stirone, Enza, and Panaro Rivers, respectively. The forelimb stratigraphy of each anticline was dated using rock magnetic-based cyclostratigraphy, which varies with Milankovitch periodicity, multispecies biostratigraphy, magnetostratigraphy, OSL luminescence dating, TCN burial dating, and radiocarbon dating of uplifted and folded fluvial terraces. Fault slip magnitudes were constrained with trishear forward models. We observed decoupled deformation and sediment accumulation rates at each structure. From 3.5Ma deformation of a thick and thin-skinned thrusts was temporally variable and controlled by intrinsic rock processes, whereas, the more regional Pede-Apenninic thrust fault, a thick-skinned thrust underlying the mountain front, was likely activated because of extrinsic forcing from foreland basin sedimentation rate accelerations since 1.4Ma. We found that reconstructed slip rate variability increased as the time resolution increased. The reconstructed slip history of the thin-skinned thrust faults was characterized relatively long, slow fold growth and associated fault slip, punctuated by shorter, more rapid periods limb rotation, and slip on the underlying thrust fault timed asynchronously. Thrust fault slip rates slip rates were ≤ 0.1 to 6 mm/yr at these intermediate timescales. The variability of slip rates on the thrusts is likely related to strain partitioning neighboring faults within the orogenic wedge. The studied structures slowed down at 1Ma when there was a switch to slower synchronous fault slip coincident with orogenic wedge thickening due to the emplacement of the out of sequence Pene-Apenninic thrust fault that was emplaced at 1.4±0.7 mm/yr. Both tectonic control and climate controlled variability on syntectonic sedimentation was observed in the growth sections.
NASA Astrophysics Data System (ADS)
Stanley, S.; Tian, B. Y.
2016-12-01
Previous dynamo scaling law studies (Christensen and Aubert, 2006) have demonstrated that the morphology of a planet's magnetic field is determined by the local Rossby number (Rol): a non-dimensional diagnostic variable that quantifies the ratio of inertial forces to Coriolis forces on the average length scale of the flow. Dynamos with Rol < 0.1 produce dipolar dominated magnetic fields whereas dynamos with Rol > 0.1 produce multipolar magnetic fields. Scaling studies have also determined the dependence of the local Rossby number on non-dimensional parameters governing the system - specifically the Ekman, Prandtl, magnetic Prandtl and flux-based Rayleigh numbers (Olson and Christensen, 2006). However, those studies focused on the specific convective shell thickness of the Earth's core and hence could not determine the influence of convective shell thickness on the local Rossby number. Aubert et al. (2009) investigated the role of convective shell thickness on dynamo scaling laws in order to investigate the palaeo-evolution of the geodynamo. Due to the focus of that study, they varied the ratio of the inner to outer core radii (rio) from 0 to 0.35 and found Rol scales with (1+rio). Here we consider a larger range of convective shell thicknesses and find an exponential dependence of rio on the local Rossby number. Our results are consistent with Aubert et al. (2009) for their small rio values. With this new scaling dependence on convective shell thickness, we find that Uranus and Neptune reside deeply in the multipolar regime, whereas without the dependence on rio, they resided near Rol =0.1; i.e. on the boundary between dipolar and multipolar fields and close to where Earth resides in the parameter space. We also find that Earth will reside more deeply in the multipolar regime, and hence not produce a stable dipolar field once the inner core has grown such that rio = 0.4.
Tailoring the heat transfer on the injection moulding cavity by plasma sprayed ceramic coatings
NASA Astrophysics Data System (ADS)
Bobzin, K.; Hopmann, Ch; Öte, M.; Knoch, M. A.; Alkhasli, I.; Dornebusch, H.; Schmitz, M.
2017-03-01
Inhomogeneous material shrinkage in injection moulding can cause warpage in thermoplastic components. To minimise the deformations of the injection moulding parts, the heat transfer during the cooling phase can be adjusted according to the local cooling demand on the surface of the mould cavity by means of plasma sprayed coatings with locally variable thermal resistance over the surface of the mould. Thermal resistance is a function of thermal conductivity and thickness of the coatings, where thermal conductivity of thermal barrier coatings can be adjusted by altering the chemical composition and the microstructure, which is depending on the thickness. This work evaluates the application of plasma sprayed coatings with variable thickness as thermal barrier coatings in the mould cavity. The thermal resistance of the coating and thereby the heat transfer from the melt into the mould will be influenced locally by varying the coating thickness over the cavity area according to the local cooling demand. Using the laser flash method, the thermal conduction of coatings with different thicknesses will be determined. On the basis of the experimentally determined thermal conduction, the effect of the coatings on the temperature field of the mould cavity will be numerically calculated and the required thickness distribution of the coating for an optimal temperature gradient will be determined.
Corrosion monitoring using high-frequency guided waves
NASA Astrophysics Data System (ADS)
Fromme, P.
2016-04-01
Corrosion can develop due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Generalized corrosion leading to wall thickness loss can cause the reduction of the strength and thus degradation of the structural integrity. The monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic wedge transducers with single sided access to the structure, guided wave modes were selectively generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted for wall thickness reduction due to milling of the steel structure. From the measured signal changes due to the wave mode interference the reduced wall thickness was monitored. Good agreement with theoretical predictions was achieved. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.
NASA Astrophysics Data System (ADS)
Khoshgoftar, M. J.; Mirzaali, M. J.; Rahimi, G. H.
2015-11-01
Recently application of functionally graded materials(FGMs) have attracted a great deal of interest. These materials are composed of various materials with different micro-structures which can vary spatially in FGMs. Such composites with varying thickness and non-uniform pressure can be used in the aerospace engineering. Therefore, analysis of such composite is of high importance in engineering problems. Thermoelastic analysis of functionally graded cylinder with variable thickness under non-uniform pressure is considered. First order shear deformation theory and total potential energy approach is applied to obtain the governing equations of non-homogeneous cylinder. Considering the inner and outer solutions, perturbation series are applied to solve the governing equations. Outer solution for out of boundaries and more sensitive variable in inner solution at the boundaries are considered. Combining of inner and outer solution for near and far points from boundaries leads to high accurate displacement field distribution. The main aim of this paper is to show the capability of matched asymptotic solution for different non-homogeneous cylinders with different shapes and different non-uniform pressures. The results can be used to design the optimum thickness of the cylinder and also some properties such as high temperature residence by applying non-homogeneous material.
Mellink, Eric; Riojas-López, Mónica E; Luévano-Esparza, Jaime
2009-07-01
We determined egg concentrations of organochlorines and thickness of eggshells from brown boobies at eight colonies ranging from the northern Gulf of California to southern Mexico. The only common residue was that of DDE, which was found in almost all eggs. DDE content apparently reflected pre-1990 DDT use in nearby agricultural areas and, at one site, intensive mosquito control for high-end tourism development. There were no inter-colony differences in eggshell thickness, and variation in this variable likely reflected individual bird characteristics and/or individual feeding source. This variable was not a good proxy to DDE exposure of brown boobies, under current DDE levels in the brown booby trophic chain. In the northern Gulf of California, eggshell thickness has recovered to pre-DDT conditions. Our data indicate that the Gulf of California and southwestern coast of Mexico have a healthy near-shore marine environment, as far as organochlorines are concerned.
NASA Astrophysics Data System (ADS)
Qayyum, Sajid; Hayat, Tasawar; Alsaedi, Ahmed
Nonlinear thermal radiation and chemical reaction in magnetohydrodynamic (MHD) flow of third grade nanofluid over a stretching sheet with variable thickness are addressed. Heat generation/absorption and nonlinear convection are considered. The sheet moves with nonlinear velocity. Sheet is convectively heated. In addition zero mass flux condition for nanoparticle concentration is imposed. Results for velocity, temperature, concentration, skin friction and local Nusselt number are presented and examined. It is found that velocity and boundary layer thickness are increasing for Reynolds number. Temperature is a increasing function of the heat generation/absorption parameter while it causes a decrease in the heat transfer rate. Moreover effect of Brownian motion and chemical reaction on the concentration are quite reverse.
NASA Astrophysics Data System (ADS)
Hsu, N.; Tsay, S.; Jeong, M.; Holben, B.
2006-12-01
Among the many components that contribute to air pollution, airborne mineral dust plays an important role due to its biogeochemical impact on the ecosystem and its radiative-forcing effect on the climate system. In East Asia, dust storms frequently accompany the cold and dry air masses that occur as part of spring-time cold front systems. China's capital, Beijing, and other large cities are on the primary pathway of these dust storm plumes, and their passage over such popu-lation centers causes flight delays, pushes grit through windows and doors, and forces people indoors. Furthermore, during the spring these anthropogenic and natural air pollutants, once generated over the source regions, can be transported out of the boundary layer into the free troposphere and can travel thousands of kilometers across the Pacific into the United States and beyond. In this paper, we will demonstrate the capability of a new satellite algorithm to retrieve aerosol optical thickness and single scattering albedo over bright-reflecting surfaces such as urban areas and deserts. Such retrievals have been dif-ficult to perform using previously available algorithms that use wavelengths from the mid-visible to the near IR because they have trouble separating the aerosol signal from the contribution due to the bright surface reflectance. The new algorithm, called Deep Blue, utilizes blue-wavelength measurements from instruments such as SeaWiFS and MODIS to infer the properties of aerosols, since the surface reflectance over land in the blue part of the spectrum is much lower than for longer wavelength channels. We have validated the satellite retrieved aerosol optical thickness with data from AERONET sunphotometers over desert and semi-desert regions. The compari-sons show reasonable agreements between these two. These new satellite prod-ucts will allow scientists to determine quantitatively the aerosol properties near sources using high spatial resolution measurements from SeaWiFS and MODIS-like instruments. The multiyear satellite measurements since 1998 from SeaWiFS will be utilized to investigate the interannual variability of source, pathway, and dust loading associated with these dust outbreaks in East Asia. The monthly av-eraged aerosol optical thickness during the springtime from SeaWiFS will also be compared with the MODIS Deep Blue products.
NASA Technical Reports Server (NTRS)
Hsu, N. Christina
2007-01-01
Among the many components that contribute to air pollution, airborne mineral dust plays an important role due to its biogeochemical impact on the ecosystem and its radiative-forcing effect on the climate system. In East Asia, dust storms frequently accompany the cold and dry air masses that occur as part of springtime cold front systems. China's capital, Beijing, and other large cities are on the primary pathway of these dust storm plumes, and their passage over such population centers causes flight delays, pushes grit through windows and doors, and forces people indoors. Furthermore, during the spring these anthropogenic and natural air pollutants, once generated over the source regions, can be transported out of the boundary layer into the free troposphere and can travel thousands of kilometers across the Pacific into the United States and beyond. In this paper, we will demonstrate the capability of a new satellite algorithm to retrieve aerosol optical thickness and single scattering albedo over bright-reflecting surfaces such as urban areas and deserts. Such retrievals have been difficult to perform using previously available algorithms that use wavelengths from the mid-visible to the near IR because they have trouble separating the aerosol signal from the contribution due to the bright surface reflectance. The new algorithm, called Deep Blue, utilizes blue-wavelength measurements from instruments such as SeaWiFS and MODIS to infer the properties of aerosols, since the surface reflectance over land in the blue part of the spectrum is much lower than for longer wavelength channels. We have validated the satellite retrieved aerosol optical thickness with data from AERONET sunphotometers over desert and semi-desert regions. The comparisons show reasonable agreements between these two. These new satellite products will allow scientists to determine quantitatively the aerosol properties near sources using high spatial resolution measurements from SeaWiFS and MODIS-like instruments. The multiyear satellite measurements since 1998 from SeaWiFS will be utilized to investigate the interannual variability of source, pathway, and dust loading associated with these dust outbreaks in East Asia. The monthly averaged aerosol optical thickness during the springtime from SeaWiFS will also be compared with the MODIS Deep Blue products.
NASA Technical Reports Server (NTRS)
Hsu, N. Christina; Tsay, S.-C.; Bettenhausen, C.; Salustro, C.; Jeong, M. J.
2010-01-01
Among the many components that contribute to air pollution, airborne mineral dust plays an important role due to its biogeochernical impact on the ecosystem and its radiative-forcing effect on the climate system. In East Asia, dust storms frequently accompany the cold and dry air masses that occur as part of springtime cold front systems. China's capital, Beijing, and other large cities are on the primary pathway of these dust storm plumes, and their passage over such population centers causes flight delays, pushes grit through windows and doors, and forces people indoors. Furthermore, during the spring these anthropogenic and natural air pollutants, once generated over the source regions, can be transported out of the boundary layer into the free troposphere and can travel thousands of kilometers across the Pacific into the United States and beyond. In this paper, we will demonstrate the capability of a new satellite algorithm to retrieve aerosol optical thickness and single scattering albedo over bright reflecting surfaces such as urban areas and deserts. Such retrievals have been difficult to perform using previously available algorithms that use wavelengths from the mid-visible to the near IR because they have trouble separating the aerosol signal from the contribution due to the bright surface reflectance. The new algorithm, called Deep Blue, utilizes blue-wavelength measurements from instruments such as SeaWiFS and MODIS to infer the properties of aerosols, since the surface reflectance over land in the blue part of the spectrum is much lower than for longer wavelength channels. We have validated the satellite retrieved aerosol optical thickness with data from AERONET sunphotometers over desert and semi-desert regions. The comparisons show reasonable agreements between these two. These new satellite products will allow scientists to determine quantitatively the aerosol properties near sources using high spatial resolution measurements from SeaWiFS and MODIS-like instruments. The multiyear satellite measurements since 1998 from SeaWiFS will be utilized to investigate the interannual variability of source, pathway, and dust loading associated with these dust outbreaks in East Asia. The monthly averaged aerosol optical thickness during the springtime from SeaWiFS will also be compared with the MODIS Deep Blue products.
NASA Technical Reports Server (NTRS)
Hsu, N. Christina; Tsay, S.-C.; Bettenhausen, C.; Sayer, A.
2011-01-01
Among the many components that contribute to air pollution, airborne mineral dust plays an important role due to its biogeochemical impact on the ecosystem and its radiative-forcing effect on the climate system. In East Asia, dust storms frequently accompany the cold and dry air masses that occur as part of springtime cold front systems. China's capital, Beijing, and other large cities are on the primary pathway of these dust storm plumes, and their passage over such population centers causes flight delays, pushes grit through windows and doors, and forces peop Ie indoors. Furthermore, during the spring these anthropogenic and natural air pollutants, once generated over the source regions, can be tran sported out of the boundary layer into the free troposphere and can travel thousands of kilometers across the Pacific into the United States and beyond. In this paper, we will demonstrate the capability of a new satellite algorithm to retrieve aerosol optical thickness and single scattering albedo over brightreflecting surfaces such as urban areas and deserts. Such retrievals have been difficult to perform using previously available algorithms that use wavelengths from the mid-visible to the near IR because they have trouble separating the aerosol signal from the contribution due to the bright surface reflectance. The new algorithm, called Deep Blue, utilizes blue-wavelength measurements from instruments such as Sea WiFS and MODIS to infer the properties of aerosols, since the surface reflectance over land in the blue part of the spectrum is much lower than for longer wavelength channels. We have validated the satellite retrieved aerosol optical thickness with data from AERONET sunphotometers over desert and semi-desert regions. The comparisons show reasonable agreements between these two. These new satellite products will allow scientists to determine quantitatively the aerosol properties near sources using high spatial resolution measurements from Sea WiFS and MODISlike instruments. The multiyear satellite measurements since 1998 from SeaWiFS will be utilized to investigate the interannual variability of source, pathway, and dust loading associated with these dust outbreaks in East Asia. The monthly averaged aerosol optical thickness during the springtime from SeaWiFS will also be compared with the MODIS Deep Blue products.
Compressive Behaviour and Energy Absorption of Aluminium Foam Sandwich
NASA Astrophysics Data System (ADS)
Endut, N. A.; Hazza, M. H. F. Al; Sidek, A. A.; Adesta, E. T. Y.; Ibrahim, N. A.
2018-01-01
Development of materials in automotive industries plays an important role in order to retain the safety, performance and cost. Metal foams are one of the idea to evolve new material in automotive industries since it can absorb energy when it deformed and good for crash management. Recently, new technology had been introduced to replace metallic foam by using aluminium foam sandwich (AFS) due to lightweight and high energy absorption behaviour. Therefore, this paper provides reliable data that can be used to analyze the energy absorption behaviour of aluminium foam sandwich by conducting experimental work which is compression test. Six experiments of the compression test were carried out to analyze the stress-strain relationship in terms of energy absorption behavior. The effects of input variables include varying the thickness of aluminium foam core and aluminium sheets on energy absorption behavior were evaluated comprehensively. Stress-strain relationship curves was used for energy absorption of aluminium foam sandwich calculation. The result highlights that the energy absorption of aluminium foam sandwich increases from 12.74 J to 64.42 J respectively with increasing the foam and skin thickness.
Effect of electron contamination on in vivo dosimetry for lung block shielding during TBI
Narayanasamy, Ganesh; Cruz, Wilbert; Saenz, Daniel L.; Stathakis, Sotirios; Papanikolaou, Niko
2016-01-01
Our institution performs in vivo verification measurement for each of our total body irradiation (TBI) patients with optically stimulated luminescent dosimeters (OSLD). The lung block verification measurements were commonly higher than expected. The aim of this work is to understand this discrepancy and improve the accuracy of these lung block verification measurements. Initially, the thickness of the lung block was increased to provide adequate lung sparing. Further tests revealed the increase was due to electron contamination dose emanating from the lung block. The thickness of the bolus material covering the OSLD behind the lung block was increased to offset the electron contamination. In addition, the distance from the lung block to the dosimeter was evaluated for its effect on the OSLD reading and found to be clinically insignificant over the range of variability in our clinic. The results show that the improved TBI treatment technique provides for better accuracy of measured dose in vivo and consistency of patient setup. PACS number(s): 87.53.Bn, 87.53.Kn, 87.55.N‐, 87.55.Qr PMID:27167290
NASA Astrophysics Data System (ADS)
Qayyum, Sumaira; Khan, Muhammad Ijaz; Hayat, Tasawar; Alsaedi, Ahmed
2018-04-01
Present article addresses the comparative study for flow of five water based nanofluids. Flow in presence of Joule heating is generated by rotating disk with variable thickness. Nanofluids are suspension of Silver (Ag), Copper (Cu), Copper oxide (CuO), Aluminum oxide or Alumina (Al2O3), Titanium oxide or titania (TiO2) and water. Boundary layer approximation is applied to partial differential equations. Using Von Karman transformations the partial differential equations are converted to ordinary differential equations. Convergent series solutions are obtained. Graphical results are presented to examine the behaviors of axial, radial and tangential velocities, temperature, skin friction and Nusselt number. It is observed that radial, axial and tangential velocities decay for slip parameters. Axial velocity decays for larger nanoparticle volume fraction. Effect of nanofluids on velocities dominant than base material. Temperature rises for larger Eckert number and temperature of silver water nanofluid is more because of its higher thermal conductivity. Surface drag force reduces for higher slip parameters. Transfer of heat is more for larger disk thickness index.
Simulation on Effect of Preform Diameter in Injection Stretch Blow Molding
NASA Astrophysics Data System (ADS)
Tan, Z. Q.; Rosli, Nurrina; Oktaviandri, Muchamad
2018-03-01
Polyethylene terephthalate (PET) is the most common material of resin for manufacturing plastic bottle by injection stretch blow molding due to its excellent properties. As various issues of health and environmental hazards due to the PET use have risen, PET bottle manufacture may be improved by minimizing the wall thickness to reduce the PET use. One of the critical qualifications of the manufacturing process which lead to the wall thickness distribution is the initial preform diameter. In this project, we used the ANSYS Polyflow with aim to evaluate the wall thickness distribution of PET bottle for different diameter of initial preform. As a result, only 4 mm preform diameter presented wall thickness below than 1 mm. On the other hand, at least 6 mm preform diameter can permit the wall thickness 1.3 mm i.e. at the shoulder area.
de Pablo, M A; Ramos, M; Molina, A; Prieto, M
2018-02-15
A new Circumpolar Active Layer Monitoring (CALM) site was established in 2009 at the Limnopolar Lake watershed in Byers Peninsula, Livingston Island, Antarctica, to provide a node in the western Antarctic Peninsula, one of the regions that recorded the highest air temperature increase in the planet during the last decades. The first detailed analysis of the temporal and spatial evolution of the thaw depth at the Limnopolar Lake CALM-S site is presented here, after eight years of monitoring. The average values range between 48 and 29cm, decreasing at a ratio of 16cm/decade. The annual thaw depth observations in the 100×100 m CALM grid are variable (Variability Index of 34 to 51%), although both the Variance Coefficient and the Climate Matrix Analysis Residual point to the internal consistency of the data. Those differences could be explained then by the terrain complexity and node-specific variability due to the ground properties. The interannual variability was about 60% during 2009-2012, increasing to 124% due to the presence of snow in 2013, 2015 and 2016. The snow has been proposed here as one of the most important factors controlling the spatial variability of ground thaw depth, since its values correlate with the snow thickness but also with the ground surface temperature and unconfined compression resistance, as measured in 2010. The topography explains the thaw depth spatial distribution pattern, being related to snowmelt water and its accumulation in low-elevation areas (downslope-flow). Patterned grounds and other surface features correlate well with high thaw depth patterns as well. The edaphic factor (E=0.05842m 2 /°C·day; R 2 =0.63) is in agreement with other permafrost environments, since frozen index (F>0.67) and MAAT (<-2°C) denote a continuous permafrost existence in the area. All these characteristics provided the basis for further comparative analyses between others nearby CALM sites. Copyright © 2017 Elsevier B.V. All rights reserved.
Santana, Pauliane Vieira; Prina, Elena; Albuquerque, André Luis Pereira; Carvalho, Carlos Roberto Ribeiro; Caruso, Pedro
2016-01-01
Objective: To investigate the applicability of ultrasound imaging of the diaphragm in interstitial lung disease (ILD). Methods: Using ultrasound, we compared ILD patients and healthy volunteers (controls) in terms of diaphragmatic mobility during quiet and deep breathing; diaphragm thickness at functional residual capacity (FRC) and at total lung capacity (TLC); and the thickening fraction (TF, proportional diaphragm thickening from FRC to TLC). We also evaluated correlations between diaphragmatic dysfunction and lung function variables. Results: Between the ILD patients (n = 40) and the controls (n = 16), mean diaphragmatic mobility was comparable during quiet breathing, although it was significantly lower in the patients during deep breathing (4.5 ± 1.7 cm vs. 7.6 ± 1.4 cm; p < 0.01). The patients showed greater diaphragm thickness at FRC (p = 0.05), although, due to lower diaphragm thickness at TLC, they also showed a lower TF (p < 0.01). The FVC as a percentage of the predicted value (FVC%) correlated with diaphragmatic mobility (r = 0.73; p < 0.01), and an FVC% cut-off value of < 60% presented high sensitivity (92%) and specificity (81%) for indentifying decreased diaphragmatic mobility. Conclusions: Using ultrasound, we were able to show that diaphragmatic mobility and the TF were lower in ILD patients than in healthy controls, despite the greater diaphragm thickness at FRC in the former. Diaphragmatic mobility correlated with ILD functional severity, and an FVC% cut-off value of < 60% was found to be highly accurate for indentifying diaphragmatic dysfunction on ultrasound. PMID:27167428
Thickness of the Mississippi River Valley confining unit, eastern Arkansas
Gonthier, Gerard; Mahon, Gary L.
1993-01-01
Concern arose in the late 1980s over the vulnerability of the Mississippi Valley alluvial aquifer to contamination from potential surface sources related to pesticide or fertilizer use, industrial activity, landfills, or livestock operations. In 1990 a study was begun to locate areas in Arkansas where the groundwater flow system is susceptible to contamination by surface contaminants. As a part of that effort, the thickness of the clay confining unit overlying the alluvial aquifer in eastern Arkansas was mapped. The study area included all or parts of 27 counties in eastern Arkansas that are underlain by the alluvial aquifer and its overlying confining unit. A database of well attributes was compiled based on data from driller's logs and from published data and stored in computer files. A confining-unit thickness map was created from the driller's-log database using geographic information systems technology. A computer program was then used to contour the data. Where the confining unit is present, it ranges in thickness from 0 feet in many locations in the study area to 140 feet in northeastern Greene County and can vary substantially over short distances. Although general trends in the thickness of the confining unit are apparent, the thickness has great spatial variability. An apparent relation exists between thickness of the confining unit and spatial variability in thickness. In areas where the thickness of the confining unit is 40 feet or less, such as in Clay, eastern Craighead, northwestern Mississippi, and Woodruff Counties, thickness of the unit tends robe more uniform than in areas where the thickness of the unit generally exceeds 40 feet, such as in Arkansas, Lonoke, and Prairie Counties. At some sites the confining unit is very thick compared to its thickness in the immediate surrounding area. Locations of abandoned Mississippi River meander channels generally coincide with location of locally thick confining unit. Deposition of the confining unit onto the coarser alluvial aquifer deposits has reduced the relief of the land surface. Hence, the altitude of the top of the alluvial aquifer varies more than the altitude of the land surface and is indicative of a depositional setting.
Finite element study of human pelvis model in side impact for Chinese adult occupants.
Ma, Zhengwei; Lan, Fengchong; Chen, Jiqing; Liu, Weiguo
2015-01-01
The occupant's pelvis is very vulnerable to side collision in road accidents. Finite element (FE) studies on pelvic injury help to design occupant protection devices to improve vehicle safety. This study was aimed to develop a highly biofidelic pelvis model of Chinese adults and assess its sensitivity to variations in pelvis cortical bone thickness, bone material properties, and loading conditions. In this study, 4 different FE models of the pelvis were developed from the computed tomography (CT) data of a volunteer representing the 50th percentile Chinese male. Two of them were meshed using entirely hexahedral elements with variable and constant cortical thickness distribution (the V-Hex and C-Hex models), and the others were modeled with hexahedral elements for cancellous bone and variable or constant thickness shell elements for cortical bone (the V-HS and C-HS models). In model developments, the semi-automatic multiblock meshing approach was employed to maintain the pelvis geometric curvature and generate a high-quality hexahedral mesh. Then, several simulations with postmortem human subjects (PMHS) tests were performed to obtain the most accurate model in predicting pelvic injury. Based on the most accurate model, sensitivity studies were conducted to analyze the effects of the cortex thickness, Young's modulus of the cortical and cancellous bone, impactor velocity, and impactor with or without padding on the biomechanical responses and injuries of pelvis. The results indicate that the models with variable cortical bone thickness can give more accurate predictions than those with constant cortical thickness. Both the V-Hex and V-HS models are favorable for simulating pelvic response and injury, but the simulation results of the V-Hex model agree with the tests better. The sensitivity study shows that pelvic response is more sensitive to alterations in the Young's modulus of cortical bone than cancellous bone. Compared to failure displacement, peak force is more sensitive to the cortical bone thickness. However, displacement is more sensitive to the Young's modulus of cancellous bone than peak force. The padding attached on the impactor plays a significant role in absorbing the impact energy and alleviating pelvic injury. The all-hex meshing method with variable cortical bone thickness has the highest accuracy but is time-consuming. The cortical bone plays a determining role in resisting pelvic fracture. Peak impact force appears to be a reasonable injury predictor for pelvic injury assessment. Some appropriate energy absorbers installed in the car door can significantly reduce pelvic injury and will be beneficial for occupant protection.
NASA Astrophysics Data System (ADS)
Hruba, J.; Kletetschka, G.
2017-12-01
Heat transport across the ice shell of Europa controls the thermal evolution of its interior. Such process involves energy sources that drive ice resurfacing (1). More importantly, heat flux through the ice shell controls the thickness of the ice (2), that is poorly constrained between 1 km to 30+ km (3). Thin ice would allow ocean water to be affected by radiation from space. Thick ice would limit the heat ocean sources available to the rock-ocean interface at the ocean's bottom due to tidal dissipation and potential radioactive sources. The heat flux structures control the development of geometrical configurations on the Europa's surface like double ridges, ice diapirs, chaos regions because the rheology of ice is temperature dependent (4).Analysis of temperature record of growing ice cover over a pond and water below revealed the importance of solar radiation during the ice growth. If there is no snow cover, a sufficient amount of solar radiation can penetrate through the ice and heat the water below. Due to temperature gradient, there is a heat flux from the water to the ice (Qwi), which may reduce ice growth at the bottom. Details and variables that constrain the heat flux through the ice can be utilized to estimate the ice thickness. We show with this analog analysis provides the forth step towards measurement strategy on the surface of Europa. We identify three types of thermal profiles (5) and fourth with combination of all three mechanisms.References:(1) Barr, A. C., A. P. Showman, 2009, Heat transfer in Europa's icy shell, University of Arizona Press, p. 405-430.(2) Ruiz, J., J. A. Alvarez-Gómez, R. Tejero, and N. Sánchez, 2007, Heat flow and thickness of a convective ice shell on Europa for grain size-dependent rheologies: Icarus, v. 190, p. 145-154.(3) Billings, S. E., S. A. Kattenhorn, 2005, The great thickness debate: Ice shell thickness models for Europa and comparisons with estimates based on flexure at ridges: Icarus, v. 177, p. 397-412.(4) Quick, L. C., B. D. Marsh, 2016, Heat transfer of ascending cryomagma on Europa: Journal of Volcanology and Geothermal Research, v. 319, p. 66-77.(5) Mitri, G., A. P. Showman, 2005, Convective-conductive transitions and sensitivity of a convecting ice shell to perturbations in heat flux and tidal-heating rate: Implications for Europa: Icarus, v. 177, p. 447-460.
NASA Astrophysics Data System (ADS)
Lombardo, Luigi; Fubelli, Giandomenico; Amato, Gabriele; Bonasera, Mauro; Mai, Martin
2016-04-01
This study implements a landslide triggering-thickness susceptibility approach in order to investigate the landslide scenario in the catchment of Mili, this being located in the north-easternmost sector of Sicily (Italy). From a detailed geomorphological campaign, thicknesses of mobilised materials at the triggering zone of each mass movement were collected and subsequently used as a dependent variable to be analysed in the framework of spatial predictive models. The adopted modelling methodology consisted of a presence-only learning algorithm which differently from classic presence-absence methods does not rely on stable conditions in order to derive functional relationships between dependent and independent variables. The dependent was pre-processed by reclassifying the crown thickness spectrum into a binary condition expressing thick (values equal or greater than 1m) and thin (values less than 1m) landslide crown classes. The explanatory variables were selected to express triggering-thickness dependency at different scales, these being in close proximity to the triggering point through primary and secondary attributes from a 2m-cell side Lidar HRDEM, at a medium scale through vegetation indexes from multispectral satellite images (ASTER) and a coarser scale through a geological, land use and tectonic maps. The choice of a presence-only approach allowed to effectively discriminate between the two types of landslide thicknesses at the triggering zone, producing excellent prediction skills associated with relatively low variances across a set of 50 randomly generated replicates. In addition, the role of each predictor was assessed for the two considered classes as relevant differences arose in terms of their contribution to the final models. In this regard, predictor importance, Jack-knife tests and response curves were used to assess the reliability of the models together with their geomorphological reasonability. This work attempts to capitalize on fieldwork data in order to produce an example for a landslide triggering-thickness susceptibility which differently from more common approaches, may performs as a better proxy for more complex landslide hazard assessments.
NASA Astrophysics Data System (ADS)
Arslanturk, Cihat
2011-02-01
Although tapered fins transfer more rate of heat per unit volume, they are not found in every practical application because of the difficulty in manufacturing and fabrications. Therefore, there is a scope to modify the geometry of a constant thickness fin in view of the less difficulty in manufacturing and fabrication as well as betterment of heat transfer rate per unit volume of the fin material. For the better utilization of fin material, it is proposed a modified geometry of new fin with a step change in thickness (SF) in the literature. In the present paper, the homotopy perturbation method has been used to evaluate the temperature distribution within the straight radiating fins with a step change in thickness and variable thermal conductivity. The temperature profile has an abrupt change in the temperature gradient where the step change in thickness occurs and thermal conductivity parameter describing the variation of thermal conductivity has an important role on the temperature profile and the heat transfer rate. The optimum geometry which maximizes the heat transfer rate for a given fin volume has been found. The derived condition of optimality gives an open choice to the designer.
Longitudinal analysis of progression in glaucoma using spectral-domain optical coherence tomography.
Wessel, Julia M; Horn, Folkert K; Tornow, Ralf P; Schmid, Matthias; Mardin, Christian Y; Kruse, Friedrich E; Juenemann, Anselm G; Laemmer, Robert
2013-05-01
To compare the longitudinal loss of RNFL thickness measurements by SD-OCT in healthy individuals and glaucoma patients with or without progression concerning optic disc morphology. A total of 62 eyes, comprising 38 glaucomatous eyes with open angle glaucoma and 24 healthy controls, were included in the study (Erlangen Glaucoma Registry, NTC00494923). All patients were investigated annually over a period of 3 years by Spectralis SD-OCT measuring peripapillary RNFL thickness. By masked comparative analysis of photographs, the eyes were classified into nonprogressive and progressive glaucoma cases. Longitudinal loss of RNFL thickness was compared with morphological changes of optic disc morphology. Mixed model analysis of annual OCT scans revealed an estimated annual decrease of the RNFL thickness by 2.12 μm in glaucoma eyes with progression, whereas glaucoma eyes without progression in optic disc morphology lost 1.18 μm per year in RNFL thickness (P = 0.002). The rate of change in healthy eyes was 0.60 μm and thereby also significantly lower than in glaucoma eyes with progression (P < 0.001). The intrasession variability of three successive measurements without head repositioning was 1.5 ± 0.7 μm. The loss of mean RNFL thickness exceeded the intrasession variability in 60% of nonprogressive eyes, and in 85% of progressive eyes after 3 years. LONGITUDINAL MEASUREMENTS OF RNFL THICKNESS USING SD-OCT SHOW A MORE PRONOUNCED REDUCTION OF RNFL THICKNESS IN PATIENTS WITH PROGRESSION COMPARED WITH PATIENTS WITHOUT PROGRESSION IN GLAUCOMATOUS OPTIC DISC CHANGES. (www.clinicaltrials.gov number, NTC00494923.).
Rice, Tyler B; Kwan, Elliott; Hayakawa, Carole K; Durkin, Anthony J; Choi, Bernard; Tromberg, Bruce J
2013-01-01
Laser Speckle Imaging (LSI) is a simple, noninvasive technique for rapid imaging of particle motion in scattering media such as biological tissue. LSI is generally used to derive a qualitative index of relative blood flow due to unknown impact from several variables that affect speckle contrast. These variables may include optical absorption and scattering coefficients, multi-layer dynamics including static, non-ergodic regions, and systematic effects such as laser coherence length. In order to account for these effects and move toward quantitative, depth-resolved LSI, we have developed a method that combines Monte Carlo modeling, multi-exposure speckle imaging (MESI), spatial frequency domain imaging (SFDI), and careful instrument calibration. Monte Carlo models were used to generate total and layer-specific fractional momentum transfer distributions. This information was used to predict speckle contrast as a function of exposure time, spatial frequency, layer thickness, and layer dynamics. To verify with experimental data, controlled phantom experiments with characteristic tissue optical properties were performed using a structured light speckle imaging system. Three main geometries were explored: 1) diffusive dynamic layer beneath a static layer, 2) static layer beneath a diffuse dynamic layer, and 3) directed flow (tube) submerged in a dynamic scattering layer. Data fits were performed using the Monte Carlo model, which accurately reconstructed the type of particle flow (diffusive or directed) in each layer, the layer thickness, and absolute flow speeds to within 15% or better.
Josse, G; George, J; Black, D
2011-08-01
Optical coherence tomography (OCT) is an imaging system that enables in vivo epidermal thickness (ET) measurement. In order to use OCT in large-scale clinical studies, automatic algorithm detection of the dermo-epidermal junction (DEJ) is needed. This may be difficult due to image noise from optical speckle, which requires specific image treatment procedures to reduce this. In the present work, a description of the position of the DEJ is given, and an algorithm for boundary detection is presented. Twenty-nine images were taken from the skin of normal healthy subjects, from five different body sites. Seven expert assessors were asked to trace the DEJ for ET measurement on each of the images. The variability between experts was compared with a new image processing method. Between-expert variability was relatively low with a mean standard deviation of 3.4 μm. However, local positioning of the DEJ between experts was often different. The described algorithm performed adequately on all images. ET was automatically measured with a precision of < 5 μm compared with the experts on all sites studied except that of the back. Moreover, the local algorithm positioning was verified. The new image processing method for measuring ET from OCT images significantly reduces calculation time for this parameter, and avoids user intervention. The main advantages of this are that data can be analyzed more rapidly and reproducibly in clinical trials. © 2011 John Wiley & Sons A/S.
Kanezaki, Akio; Hirata, Akimasa; Watanabe, Soichi; Shirai, Hiroshi
2010-08-21
The present study describes theoretical parametric analysis of the steady-state temperature elevation in one-dimensional three-layer (skin, fat and muscle) and one-layer (skin only) models due to millimeter-wave exposure. The motivation of this fundamental investigation is that some variability of warmth sensation in the human skin has been reported. An analytical solution for a bioheat equation was derived by using the Laplace transform for the one-dimensional human models. Approximate expressions were obtained to investigate the dependence of temperature elevation on different thermal and tissue thickness parameters. It was shown that the temperature elevation on the body surface decreases monotonically with the blood perfusion rate, heat conductivity and heat transfer from the body to air. Also revealed were the conditions where maximum and minimum surface temperature elevations were observed for different thermal and tissue thickness parameters. The surface temperature elevation in the three-layer model is 1.3-2.8 times greater than that in the one-layer model. The main reason for this difference is attributed to the adiabatic nature of the fat layer. By considering the variation range of thermal and tissue thickness parameters which causes the maximum and minimum temperature elevations, the dominant parameter influencing the surface temperature elevation was found to be the heat transfer coefficient between the body surface and air.
NASA Astrophysics Data System (ADS)
Méheust, Marie; Stein, Ruediger; Fahl, Kirsten; Max, Lars; Riethdorf, Jan-Rainer
2016-04-01
Due to its strong influence on heat and moisture exchange between the ocean and the atmosphere, sea ice is an essential component of the global climate system. In the context of its alarming decrease in terms of concentration, thickness and duration, understanding the processes controlling sea-ice variability and reconstructing paleo-sea-ice extent in polar regions have become of great interest for the scientific community. In this study, for the first time, IP25, a recently developed biomarker sea-ice proxy, was used for a high-resolution reconstruction of the sea-ice extent and its variability in the western North Pacific and western Bering Sea during the past 18,000 years. To identify mechanisms controlling the sea-ice variability, IP25 data were associated with published sea-surface temperature as well as diatom and biogenic opal data. The results indicate that a seasonal sea-ice cover existed during cold periods (Heinrich Stadial 1 and Younger Dryas), whereas during warmer intervals (Bølling-Allerød and Holocene) reduced sea ice or ice-free conditions prevailed in the study area. The variability in sea-ice extent seems to be linked to climate anomalies and sea-level changes controlling the oceanographic circulation between the subarctic Pacific and the Bering Sea, especially the Alaskan Stream injection though the Aleutian passes.
Base drag prediction on missile configurations
NASA Technical Reports Server (NTRS)
Moore, F. G.; Hymer, T.; Wilcox, F.
1993-01-01
New wind tunnel data have been taken, and a new empirical model has been developed for predicting base drag on missile configurations. The new wind tunnel data were taken at NASA-Langley in the Unitary Wind Tunnel at Mach numbers from 2.0 to 4.5, angles of attack to 16 deg, fin control deflections up to 20 deg, fin thickness/chord of 0.05 to 0.15, and fin locations from 'flush with the base' to two chord-lengths upstream of the base. The empirical model uses these data along with previous wind tunnel data, estimating base drag as a function of all these variables as well as boat-tail and power-on/power-off effects. The new model yields improved accuracy, compared to wind tunnel data. The new model also is more robust due to inclusion of additional variables. On the other hand, additional wind tunnel data are needed to validate or modify the current empirical model in areas where data are not available.
Code of Federal Regulations, 2014 CFR
2014-10-01
... must be considered as essential variables: Number of passes; thickness of plate; heat input per pass... not be used. The number of passes, thickness of plate, and heat input per pass may not vary more than... machine heat processes, provided such surfaces are remelted in the subsequent welding process. Where there...
Code of Federal Regulations, 2013 CFR
2013-10-01
... must be considered as essential variables: Number of passes; thickness of plate; heat input per pass... not be used. The number of passes, thickness of plate, and heat input per pass may not vary more than... machine heat processes, provided such surfaces are remelted in the subsequent welding process. Where there...
Code of Federal Regulations, 2012 CFR
2012-10-01
... must be considered as essential variables: Number of passes; thickness of plate; heat input per pass... not be used. The number of passes, thickness of plate, and heat input per pass may not vary more than... machine heat processes, provided such surfaces are remelted in the subsequent welding process. Where there...
Code of Federal Regulations, 2011 CFR
2011-10-01
... must be considered as essential variables: Number of passes; thickness of plate; heat input per pass... not be used. The number of passes, thickness of plate, and heat input per pass may not vary more than... machine heat processes, provided such surfaces are remelted in the subsequent welding process. Where there...
Żądzińska, E; Kurek, M; Borowska-Strugińska, B; Lorkiewicz, W; Rosset, I; Sitek, A
2013-08-01
Development of human tooth enamel is a part of a foetus's development; its correctness is the outcome of genetic and maternal factors shaping its prenatal environment. Many authors reported that individuals born in different seasons experience different early developmental conditions during pregnancy. In this study, we investigated the effects of season of birth and selected maternal factors on enamel thickness of deciduous incisors. Dental sample comprises 60 deciduous incisors. The parents who handed over their children's teeth for research fill in questionnaires containing questions about the course of pregnancy. All teeth were sectioned in the labio-linqual plane using diamond blade (Buechler IsoMet 1000). The final specimens were observed by way of scanning electron microscopy at magnifications 80× and 320×. The thickness of total enamel (TE), prenatally (PE) and postnatally (PSE) formed enamel was measured. Children born in summer and in spring (whose first and second foetal life fall on autumn and winter) have the thinnest enamel. Season of birth, number of children in family, diseases and spasmolytic medicines using by mother during pregnancy explained almost 13% of the variability of TE. Regression analysis proved a significant influence of the season of birth and selected maternal factors on the PE thickness - these factors explained over 17% of its variability. Neither of analysed variables had influenced PSE. Our findings suggests that the thickness of enamel of deciduous incisors depends on the season of birth and some maternal factors. The differences were observed only in the prenatally formed enamel. Copyright © 2013 Elsevier Ltd. All rights reserved.
Modelling ultrasound guided wave propagation for plate thickness measurement
NASA Astrophysics Data System (ADS)
Malladi, Rakesh; Dabak, Anand; Murthy, Nitish Krishna
2014-03-01
Structural Health monitoring refers to monitoring the health of plate-like walls of large reactors, pipelines and other structures in terms of corrosion detection and thickness estimation. The objective of this work is modeling the ultrasonic guided waves generated in a plate. The piezoelectric is excited by an input pulse to generate ultrasonic guided lamb waves in the plate that are received by another piezoelectric transducer. In contrast with existing methods, we develop a mathematical model of the direct component of the signal (DCS) recorded at the terminals of the piezoelectric transducer. The DCS model uses maximum likelihood technique to estimate the different parameters, namely the time delay of the signal due to the transducer delay and amplitude scaling of all the lamb wave modes due to attenuation, while taking into account the received signal spreading in time due to dispersion. The maximum likelihood estimate minimizes the energy difference between the experimental and the DCS model-generated signal. We demonstrate that the DCS model matches closely with experimentally recorded signals and show it can be used to estimate thickness of the plate. The main idea of the thickness estimation algorithm is to generate a bank of DCS model-generated signals, each corresponding to a different thickness of the plate and then find the closest match among these signals to the received signal, resulting in an estimate of the thickness of the plate. Therefore our approach provides a complementary suite of analytics to the existing thickness monitoring approaches.
Electrowetting Variable Optics for Visible and Infrared Applications
NASA Astrophysics Data System (ADS)
Watson, Alexander Maxwell
Miniaturized variable optical devices are important for the fields of medical technology, optical communication, and consumer imaging devices. Areas ranging from endoscopy and optogenetics to atomic clocks and imaging all benefit from versatile optical systems. These applications all require precise and rapid control of imaging focal depth and lateral scanning. Electrowetting variable optics is one emergent technology that has the capability to provide focus tuning, beam steering, and even phase modulation in a small and robust package which requires no moving parts. Furthermore, electrowetting based devices there are attractive due to their transmissive nature, polarization insensitivity, low insertion loss, low electrical power requirements, and high optical quality. These features mean that electrowetting adaptive optical components are an attractive solution, compared with MEMS and liquid crystal optical components. Electrowetting is a technique that enables control of the shape of a liquid droplet with applied voltage. A conductive droplet on a dielectric surface alters its contact angle due to charges that build up between an underlying electrode and the surface of the droplet. This effect can be used to tune the curvature and tilt of liquids within cavities. The liquid boundary creates a high quality surface to use for lensing or steering applications. This thesis will focus on the development of electrowetting based lenses and prisms and applications in imaging for both visible and infrared wavelengths. Within this dissertation is the first demonstration of electrowetting lenses for phase control, as well as the investigation of non-aqueous electrowetting lens liquids for electrowetting lenses operation in the infrared. Key considerations that affect the performance and reliability are dielectric material and thickness, liquid selection and source of ionic conduction. The optical devices presented herein utilize judicious selection of dielectric material and electrowetting liquids to enable low voltage variable optics and demonstrate applications in microscopy and microendoscopy.
Arctic sea ice trends, variability and implications for seasonal ice forecasting
Serreze, Mark C.; Stroeve, Julienne
2015-01-01
September Arctic sea ice extent over the period of satellite observations has a strong downward trend, accompanied by pronounced interannual variability with a detrended 1 year lag autocorrelation of essentially zero. We argue that through a combination of thinning and associated processes related to a warming climate (a stronger albedo feedback, a longer melt season, the lack of especially cold winters) the downward trend itself is steepening. The lack of autocorrelation manifests both the inherent large variability in summer atmospheric circulation patterns and that oceanic heat loss in winter acts as a negative (stabilizing) feedback, albeit insufficient to counter the steepening trend. These findings have implications for seasonal ice forecasting. In particular, while advances in observing sea ice thickness and assimilating thickness into coupled forecast systems have improved forecast skill, there remains an inherent limit to predictability owing to the largely chaotic nature of atmospheric variability. PMID:26032315
NASA Astrophysics Data System (ADS)
Chaluvadi, S. K.; Perna, P.; Ajejas, F.; Camarero, J.; Pautrat, A.; Flament, S.; Méchin, L.
2017-10-01
We investigate the in-plane magnetic anisotropy in La0.67Sr0.33MnO3 thin films grown on SrTiO3 (001) substrate using angular dependent room temperature Vectorial Magneto-Optical Kerr Magnetometry. The experimental data reveals that the magnetic anisotropy symmetry landscape significantly changes depending upon the strain and thickness. At low film thickness (12 and 25 nm) the dominant uniaxial anisotropy is due to interface effects, step edges due to mis-cut angle of SrTiO3 substrate. At intermediate thickness, the magnetic anisotropy presents a competition between magnetocrystalline (biaxial) and substrate step induced (uniaxial) anisotropy. Depending upon their relative strengths, a profound biaxial or uniaxial or mixed anisotropy is favoured. Above the critical thickness, magnetocrystalline anisotropy dominates all other effects and shows a biaxial anisotropy.
Parthasarathy, P; Vivekanandan, S
2018-12-01
Uric acid biosensors for arthritis disease has been developed for the specific selection of uricase enzyme film thickness coated over the TiO 2 -CeO 2 nano-composite matrix is modelled mathematically. This model is purely based on R-diffusion conditions with irreversible first-order catalytic reactions. By arithmetical method, the impact of the thickness of enzyme layer on the current response of the biosensor was explored. This article displays a structure for choice of the enzyme layer thickness, guaranteeing the adequately stable sensitivity of a biosensor in a required extent of the maximal enzymatic rate. The numerical outcomes showed subjective and sensible quantitative information for oxidation current due to uric acid also shows the maximum change in the biosensor current response due to the change in membrane thickness, which will be more suitable for uric acid biosensor for the application of arthritis disease diagnosis.
On the time-variable nature of Titan's obliquity
NASA Astrophysics Data System (ADS)
Noyelles, Benoit; Nimmo, Francis
2014-05-01
Titan presents an unexpectedly high obliquity (Stiles et al. 2008, Meriggiola & Iess 2012) while its topography and gravity suggest a non-hydrostatic ice shell (Hemingway et al. 2013). We here present a 6-dof model of the rotation of Titan simultaneously simulating the full orientation of the shell and the inner core, and considering a global subsurface ocean with a partially-compensated shell of spatially-variable thickness. Between 10 and 13% of our realistic interior models induce a resonance with the annual forcing, that dramatically raises the obliquity. The relevant model Titans are composed of a 130-140 km thick shell floating on a ~250 km thick ocean. The observed obliquity should not be considered as a mean one but as an instantaneous one, that should vary by ~7 arcmin over the duration of the Cassini mission.
NASA Technical Reports Server (NTRS)
Merkel, Kenneth G.; Snyder, Paul G.; Woollam, John A.; Alterovitz, Samuel; Rai, A. K.
1989-01-01
Variable angle of incidence spectroscopic ellipsometry (VASE) has been implemented as a means of determining layer thickness, alloy composition, and growth quality of GaAs/AlGaAs samples composed of relatively thick layers as well as superlattices. The structures studied in this work contained GaAs/AlGaAs multilayers with a superlattice 'barrier' and were grown for later formation of modulation-doped field effect transistors (MODFETs). Sample modeling was performed by treating the superlattice as a bulk AlGaAs layer of unknown composition. Extremely good data fits were realized when five layer thicknesses and two alloy ratios were allowed to vary in a regression analysis. Room temperature excitonic effects associated with the e-hh(1), e-lh(1) and e-hh(2) transitions were observed in the VASE data.
NASA Astrophysics Data System (ADS)
Hoppmann, Mario; Hunkeler, Priska A.; Hendricks, Stefan; Kalscheuer, Thomas; Gerdes, Rüdiger
2016-04-01
In Antarctica, ice crystals (platelets) form and grow in supercooled waters below ice shelves. These platelets rise, accumulate beneath nearby sea ice, and subsequently form a several meter thick, porous sub-ice platelet layer. This special ice type is a unique habitat, influences sea-ice mass and energy balance, and its volume can be interpreted as an indicator of the health of an ice shelf. Although progress has been made in determining and understanding its spatio-temporal variability based on point measurements, an investigation of this phenomenon on a larger scale remains a challenge due to logistical constraints and a lack of suitable methodology. In the present study, we applied a lateral constrained Marquardt-Levenberg inversion to a unique multi-frequency electromagnetic (EM) induction sounding dataset obtained on the ice-shelf influenced fast-ice regime of Atka Bay, eastern Weddell Sea. We adapted the inversion algorithm to incorporate a sensor specific signal bias, and confirmed the reliability of the algorithm by performing a sensitivity study using synthetic data. We inverted the field data for sea-ice and platelet-layer thickness and electrical conductivity, and calculated ice-volume fractions within the platelet layer using Archie's Law. The thickness results agreed well with drillhole validation datasets within the uncertainty range, and the ice-volume fraction yielded results comparable to other studies. Both parameters together enable an estimation of the total ice volume within the platelet layer, which was found to be comparable to the volume of landfast sea ice in this region, and corresponded to more than a quarter of the annual basal melt volume of the nearby Ekström Ice Shelf. Our findings show that multi-frequency EM induction sounding is a suitable approach to efficiently map sea-ice and platelet-layer properties, with important implications for research into ocean/ice-shelf/sea-ice interactions. However, a successful application of this technique requires a break with traditional EM sensor calibration strategies due to the need of absolute calibration with respect to a physical forward model.
Splashing, feeding, contracting: Drop impact and fluid dynamics of Vorticella
NASA Astrophysics Data System (ADS)
Pepper, Rachel E.
This thesis comprises two main topics: understanding drop impact and splashing, and studying the feeding and contracting of the microorganism Vorticella. In Chapter 1, we study the effect of substrate compliance on the splash threshold of a liquid drop using an elastic membrane under variable tension. We find that splashing can be suppressed by reducing this tension. Measurements of the velocity and acceleration of the spreading drop after impact indicate that the splashing behavior is set at very early times after, or possibly just before, impact, far before the actual splash occurs. We also provide a model for the tension dependence of the splashing threshold. In Chapter 2, we study the evolution of the ejected liquid sheet, or lamella, created after impact of a liquid drop onto a solid surface using high-speed video. We find that the lamella rim thickness is always much larger than the boundary layer thickness, and that this thickness decreases with increasing impact speed. We also observe an unusual plateau behavior in thickness versus time at higher impact speeds as we approach the splash threshold. In Chapter 3, we show through calculations, simulations, and experiments that the eddies often observed near sessile filter feeders are due to the presence of nearby boundaries. We model the common filter feeder Vorticella, and also track particles around live feeding Vorticella to determine the experimental flow field. Our models are in good agreement both with each other and with the experiments. We also provide simple approximate equations to predict experimental eddy sizes due to boundaries. In Chapter 4, we show through calculations that filter feeders such as Vorticella can greatly enhance their nutrient uptake by feeding at an angle rather than perpendicular to a substrate. We also show experimental evidence that living Vorticella use this strategy. Finally, in Chapter 5, we discuss possible future directions for these projects, including potential insights from a close examination of lamella behavior at the splash threshold, and calculations to determine if Vorticella contract rapidly towards the substrate to which they are attached in order to mix the surrounding fluid.
Dean, W.; Anderson, R.; Platt, Bradbury J.; Anderson, D.
2002-01-01
The deepest part (29.5 m) of Elk Lake, Clearwater County, northwestern Minnesota, contains a complete Holocene section that is continuously varved. The varve components are predominantly autochthonous (CaCO3, organic matter, biogenic silica, and several iron and manganese minerals), but the varves do contain a minor detrital-clastic (aluminosilicate) component that is predominantly wind-borne (eolian) and provides an important record of atmospheric conditions. Singular spectrum analysis (SSA) and wavelet analysis of varve thickness recognized significant periodicities in the multicentennial and multidecadal bands that varied in power (i.e., variable significance) and position (i.e., variable period) within the periodic bands. Persistent periodicities of about 10, 22, 40, and 90 years, and, in particular, multicentennial periodicities in varve thickness and other proxy variables are similar to those in spectra of radiocarbon production, a proxy for past solar activity. This suggests that there may be a solar control, perhaps through geomagnetic effects on atmospheric circulation. Multicentennial and multidecadal periodicities also occur in wavelet spectra of relative gray-scale density. However, gray-scale density does not appear to correlate with any of the measured proxy variables, and at this point we do not know what controlled gray scale.
Structure and corrosion properties of PVD Cr-N coatings
NASA Astrophysics Data System (ADS)
Liu, C.; Bi, Q.; Ziegele, H.; Leyland, A.; Matthews, A.
2002-05-01
PVD Cr-N coatings produced by physical vapor deposition (PVD) are increasingly used for mechanical and tribological applications in various industrial sectors. These coatings are particularly attractive for their excellent corrosion resistance, which further enhances the lifetime and service quality of coated components. PVD Cr-N coated steels in an aqueous solution are usually corroded by galvanic attack via through-coating ``permeable'' defects (e.g., pores). Therefore, the corrosion performance of Cr-N coated steel is determined by a number of variables of the coating properties and corrosive environment. These variables include: (i) surface continuity and uniformity; (ii) through-coating porosity; (iii) film density and chemical stability; (iv) growth stresses; (v) interfacial and intermediate layers; (vi) coating thickness; (vii) coating composition; and (viii) substrate properties. In this article, PVD Cr-N coatings were prepared, by electron-beam PVD and sputter deposition, with different compositions, thicknesses, and surface roughnesses, by changing the N2 flow rate, applying multilayering techniques and changing the substrate finish prior to coating. The microstructure of such coatings is investigated by various analytical techniques such as glancing angle x-ray diffraction and scanning electron microscopy, which are also correlated with the corrosion performance of the coated steel. Both dc polarization and ac impedance spectroscopy were employed to investigate the corrosion resistance of Cr-N coated steel in a 0.5N NaCl solution. It has been found that the N2 flow rate during reactive deposition strongly determines the microstructure of Cr-N coatings (due to the changing nitrogen content in the film) and can thus affect the corrosion resistance of coated systems. The surface finish of the steel substrate also affects the uniformity and coverage of PVD coatings; grooves and inclusions on the original substrate can raise the susceptibility of coated systems to crevice corrosion. Increased coating thickness can also greatly reduce the incidence of through-coating porosity such that the improvement in corrosion performance of thicker Cr-N coatings is significant.
On the homogeneity and heterogeneity of cortical thickness profiles in Homo sapiens sapiens.
Koten, Jan Willem; Schüppen, André; Morozova, Maria; Lehofer, Agnes; Koschutnig, Karl; Wood, Guilherme
2017-12-20
Cortical thickness has been investigated since the beginning of the 20th century, but we do not know how similar the cortical thickness profiles among humans are. In this study, the local similarity of cortical thickness profiles was investigated using sliding window methods. Here, we show that approximately 5% of the cortical thickness profiles are similarly expressed among humans while 45% of the cortical thickness profiles show a high level of heterogeneity. Therefore, heterogeneity is the rule, not the exception. Cortical thickness profiles of somatosensory homunculi and the anterior insula are consistent among humans, while the cortical thickness profiles of the motor homunculus are more variable. Cortical thickness profiles of homunculi that code for muscle position and skin stimulation are highly similar among humans despite large differences in sex, education, and age. This finding suggests that the structure of these cortices remains well preserved over a lifetime. Our observations possibly relativize opinions on cortical plasticity.
NASA Astrophysics Data System (ADS)
Anjum, A.; Mir, N. A.; Farooq, M.; Khan, M. Ijaz; Hayat, T.
2018-06-01
This article addresses thermally stratified stagnation point flow of viscous fluid induced by a non-linear variable thicked Riga plate. Velocity and thermal slip effects are incorporated to disclose the flow analysis. Solar thermal radiation phenomenon is implemented to address the characteristics of heat transfer. Variations of different physical parameters on the horizontal velocity and temperature distributions are described through graphs. Graphical interpretations of skin friction coefficient (drag force at the surface) and Nusselt number (rate of heat transfer) are also addressed. Modified Hartman number and thermal stratification parameter result in reduction of temperature distribution.
NASA Astrophysics Data System (ADS)
Ragettli, S.; Pellicciotti, F.; Immerzeel, W.
2014-12-01
In high-elevation watersheds of the Himalayan region the correct representation of the internal states and process dynamics in glacio-hydrological models can often not be verified due to missing in-situ measurements. The aim of this study is to provide a fundamental understanding of the hydrology of a Himalayan watershed through the systematic integration of in-situ data in a glacio-hydrological model. We use ground data from the upper Langtang valley in Nepal combined with high resolution satellite data to understand specific processes and test the application of new model components specifically developed. We apply a new model for ablation under debris that takes into account the varying effect of debris thickness on melt rates. A novel approach is tested to reconstruct spatial fields of debris thickness through combination of energy balance modelling, UAV-derived geodetic mass balance and statistical techniques. The systematic integration of in-situ data for model calibration enables the application of a state-of-the art model with many parameters to model glacier evolution and catchment runoff in spite of the lack of continuous long-term historical records. It allows drawing conclusions on the importance of processes that have been suggested as being relevant but never quantified before. The simulations show that 8.7% of total water inputs originate from sub-debris ice melt. 4.5% originate from melted avalanched snow. These components can be locally much more important, since the spatial variability of processes within the valley is high. The model is then used to simulate the response of the catchment to climate change. We show that climate warming leads to an increase in future icemelt and a peak in glacier runoff by mid-century. The increase in total icemelt is due to higher melt rates and large areas that are currently located above the equilibrium line altitude additionally that will contribute to melt. Catchment runoff will not reach below current levels throughout the 21st century due to precipitation increases. Debris covered glacier area will disappear at a slower pace than non-debris covered area. Still, due to the relative climate insensitivity of melt rates below thick debris, the contribution of sub-debris icemelt to runoff will not exceed 10% at all times.
Oliveira, Fernando; Lima, Cláudia Afonso; Brás, Susana; França, Ângela; Cerca, Nuno
2015-10-01
Coagulase-negative staphylococci (CoNS) are common bacterial colonizers of the human skin. They are often involved in nosocomial infections due to biofilm formation in indwelling medical devices. While biofilm formation has been extensively studied in Staphylococcus epidermidis, little is known regarding other CoNS species. Here, biofilms from six different CoNS species were characterized in terms of biofilm composition and architecture. Interestingly, the ability to form a thick biofilm was not associated with any particular species, and high variability on biofilm accumulation was found within the same species. Cell viability assays also revealed different proportions of live and dead cells within biofilms formed by different species, although this parameter was particularly similar at the intraspecies level. On the other hand, biofilm disruption assays demonstrated important inter- and intraspecies differences regarding extracellular matrix composition. Lastly, confocal laser scanning microscopy experiments confirmed this variability, highlighting important differences and common features of CoNS biofilms. We hypothesized that the biofilm formation heterogeneity observed was rather associated with biofilm matrix composition than with cells themselves. Additionally, our results indicate that polysaccharides, DNA and proteins are fundamental pieces in the process of CoNS biofilm formation. © FEMS 2015. All rights reserved.
Comparison of macular OCTs in right and left eyes of normal people
NASA Astrophysics Data System (ADS)
Mahmudi, Tahereh; Kafieh, Rahele; Rabbani, Hossein; Mehri dehnavi, Alireza; Akhlagi, Mohammadreza
2014-03-01
Retinal 3D Optical coherence tomography (OCT) is a non-invasive imaging modality in ocular diseases. Due to large volumes of OCT data, it is better to utilize automatic extraction of information from OCT images, such as total retinal thickness and retinal nerve fiber layer thickness (RNFLT). These two thickness values have become useful indices to indicate the progress of diseases like glaucoma, according to the asymmetry between two eyes of an individual. Furthermore, the loss of ganglion cells may not be diagnosable by other tests and even not be evaluated when we only consider the thickness of one eye (due to dramatic different thickness among individuals). This can justify our need to have a comparison between thicknesses of two eyes in symmetricity. Therefore, we have proposed an asymmetry analysis of the retinal nerve layer thickness and total retinal thickness around the macula in the normal Iranian population. In the first step retinal borders are segmented by diffusion map method and thickness profiles were made. Then we found the middle point of the macula by pattern matching scheme. RNFLT and retinal thickness are analyzed in 9 sectors and the mean and standard deviation of each sector in the right and left eye are obtained. The maximums of the average RNFL thickness in right and left eyes are seen in the perifoveal nasal, and the minimums are seen in the fovea. Tolerance limits in RNFL thickness is shown to be between 0.78 to 2.4 μm for 19 volunteers used in this study.
Spiker, E. C.; Hosker, R.P.; Weintraub, V.C.; Sherwood, S.I.
1995-01-01
The dry deposition of gaseous air pollutants on stone and other materials is influenced by atmospheric processes and the chemical characteristics of the deposited gas species and of the specific receptor material. Previous studies have shown that relative humidity, surface moisture, and acid buffering capability of the receptor surface are very important factors. To better quantify this behavior, a special recirculating wind tunnel/environmental chamber was constructed, in which wind speed, turbulence, air temperature, relative humidity, and concentrations of several pollutants (SO2, O3, nitrogen oxides) can be held constant. An airfoil sample holder holds up to eight stone samples (3.8 cm in diameter and 1 cm thick) in nearly identical exposure conditions. SO2 deposition on limestone was found to increase exponentially with increasing relative humidity (RH). Marble behaves similarly, but with a much lower deposition rate. Trends indicate there is little deposition below 20% RH on clean limestone and below 60% RH on clean marble. This large difference is due to the limestone's greater porosity, surface roughness, and effective surface area. These results indicate surface variables generally limit SO2 deposition below about 70% RH on limestone and below at least 95% RH on marble. Aerodynamic variables generally limit deposition at higher relative humidity or when the surface is wet.The dry deposition of gaseous air pollutants on stone and other materials is influenced by atmospheric processes and the chemical characteristics of the deposited gas species and of the specific receptor material. Previous studies have shown that relative humidity, surface moisture, and acid buffering capability of the receptor surface are very important factors. To better quantify this behavior, a special recirculating wind tunnel/environmental chamber was constructed, in which wind speed, turbulence, air temperature, relative humidity, and concentrations of several pollutants (SO2, O3, nitrogen oxides) can be held constant. An airfoil sample holder holds up to eight stone samples (3.8 cm in diameter and 1 cm thick) in nearly identical exposure conditions. SO2 deposition on limestone was found to increase exponentially with increasing relative humidity (RH). Marble behaves similarly, but with a much lower deposition rate. Trends indicate there is little deposition below 20% RH on clean limestone and below 60% RH on clean marble. This large difference is due to the limestone's greater porosity, surface roughness, and effective surface area. These results indicate surface variables generally limit SO2 deposition below about 70% RH on limestone and below at least 95% RH on marble. Aerodynamic variables generally limit deposition at higher relative humidity or when the surface is wet.
Improved Cloud and Snow Screening in MAIAC Aerosol Retrievals Using Spectral and Spatial Analysis
NASA Technical Reports Server (NTRS)
Lyapustin, A.; Wang, Y.; Laszlo, I.; Kokrkin, S.
2012-01-01
An improved cloud/snow screening technique in the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm is described. It is implemented as part of MAIAC aerosol retrievals based on analysis of spectral residuals and spatial variability. Comparisons with AERONET aerosol observations and a large-scale MODIS data analysis show strong suppression of aerosol optical thickness outliers due to unresolved clouds and snow. At the same time, the developed filter does not reduce the aerosol retrieval capability at high 1 km resolution in strongly inhomogeneous environments, such as near centers of the active fires. Despite significant improvement, the optical depth outliers in high spatial resolution data are and will remain the problem to be addressed by the application-dependent specialized filtering techniques.
Generation of light from free electrons.
Salisbury, W W
1966-10-21
Experiments with the interaction of a rectangular cross- section beam of electrons which is brought into contact with a metallic diffraction grat e ng produce light variable in wavelength throughout the visible spectrum. Con tinuous variation of the beam thickness shows that light is produced by electrons hundreds of wavelengths from the grating, if the side of the beam near the grating is in contact with it. The results can be accounted for by periodic accelerations of the electrons passing over the surface of the grating. These accelerations are caused by electrostatic forces which in turn are due to the average spacecharge of sheets of elec trons reflected from the grating surface, so that in their space- charge structure the periodicity of the grating rulings is preserved.
Semi-Automatic Extraction Algorithm for Images of the Ciliary Muscle
Kao, Chiu-Yen; Richdale, Kathryn; Sinnott, Loraine T.; Ernst, Lauren E.; Bailey, Melissa D.
2011-01-01
Purpose To development and evaluate a semi-automatic algorithm for segmentation and morphological assessment of the dimensions of the ciliary muscle in Visante™ Anterior Segment Optical Coherence Tomography images. Methods Geometric distortions in Visante images analyzed as binary files were assessed by imaging an optical flat and human donor tissue. The appropriate pixel/mm conversion factor to use for air (n = 1) was estimated by imaging calibration spheres. A semi-automatic algorithm was developed to extract the dimensions of the ciliary muscle from Visante images. Measurements were also made manually using Visante software calipers. Interclass correlation coefficients (ICC) and Bland-Altman analyses were used to compare the methods. A multilevel model was fitted to estimate the variance of algorithm measurements that was due to differences within- and between-examiners in scleral spur selection versus biological variability. Results The optical flat and the human donor tissue were imaged and appeared without geometric distortions in binary file format. Bland-Altman analyses revealed that caliper measurements tended to underestimate ciliary muscle thickness at 3 mm posterior to the scleral spur in subjects with the thickest ciliary muscles (t = 3.6, p < 0.001). The percent variance due to within- or between-examiner differences in scleral spur selection was found to be small (6%) when compared to the variance due to biological difference across subjects (80%). Using the mean of measurements from three images achieved an estimated ICC of 0.85. Conclusions The semi-automatic algorithm successfully segmented the ciliary muscle for further measurement. Using the algorithm to follow the scleral curvature to locate more posterior measurements is critical to avoid underestimating thickness measurements. This semi-automatic algorithm will allow for repeatable, efficient, and masked ciliary muscle measurements in large datasets. PMID:21169877
Holz, Eric R.
2009-01-01
Purpose: To study the refractive outcomes of 3-port lens-sparing vitrectomy (LSV) for subtotal retinal detachments due to retinopathy of prematurity (ROP). Lens-sparing vitrectomy may provide superior refractive outcomes by limiting induced myopia of prematurity. Methods: This is a retrospective, consecutive, nonrandomized, comparative (paired eye) study. Entrance criteria were previous complete ablative laser for threshold ROP in both eyes, followed by LSV in one eye for stage 4A traction retinal detachment. Both eyes then maintained complete retinal attachment. Main outcome variables were cycloplegic refraction, keratometry, and biometric values for axial length, lens thickness, and anterior chamber depth. Results: Nine patients met inclusion criteria. Lens-sparing vitrectomy eyes were significantly less myopic than control eyes (−6.78 D vs −10.33 D, P < .005). The reduction in myopia in LSV eyes was predominantly due to increased anterior chamber depth (3.81 mm ± 0.217 vs 2.96 mm ± 0.232, P < .005). There was a minor contribution from reduced corneal power in LSV eyes (43.89 D ± 0.253 vs 44.20 D ± 0.265, P < .005). There was a minor negative impact from increased lens thickness in LSV eyes (3.85 ± 0.32 mm vs 3.74 ± 0.31, P < .005). There was no significant difference in axial length or lens power between the LSV and control groups. Conclusions: The data demonstrate that infant eyes undergoing 3-port LSV for stage 4A ROP develop less myopia than fellow eyes treated with laser alone. The difference is due to posterior displacement of the lens-iris diaphragm with a smaller contribution from reduced corneal power. The reduction in myopia may improve functional outcomes following 3-port LSV for stage 4A ROP. PMID:20126504
Kinetics of the crust thickness development of bread during baking.
Soleimani Pour-Damanab, Alireza; Jafary, A; Rafiee, Sh
2014-11-01
The development of crust thickness of bread during baking is an important aspect of bread quality and shelf-life. Computer vision system was used for measuring the crust thickness via colorimetric properties of bread surface during baking process. Crust thickness had a negative and positive relationship with Lightness (L (*) ) and total color change (E (*) ) of bread surface, respectively. A linear negative trend was found between crust thickness and moisture ratio of bread samples. A simple mathematical model was proposed to predict the development of crust thickness of bread during baking, where the crust thickness was depended on moisture ratio that was described by the Page moisture losing model. The independent variables of the model were baking conditions, i.e. oven temperature and air velocity, and baking time. Consequently, the proposed model had well prediction ability, as the mean absolute estimation error of the model was 7.93 %.
Cloud-radiation interactions - Effects of cirrus optical thickness feedbacks
NASA Technical Reports Server (NTRS)
Somerville, Richard C. J.; Iacobellis, Sam
1987-01-01
The paper is concerned with a cloud-radiation feedback mechanism which may be an important component of the climate changes expected from increased atmospheric concentrations of carbon dioxide and other trace greenhouse gases. A major result of the study is that cirrus cloud optical thickness feedbacks may indeed tend to increase the surface warming due to trace gas increases. However, the positive feedback from cirrus appears to be generally weaker than the negative effects due to lower clouds. The results just confirm those of earlier research indicating that the net effect of cloud optical thickness feedbacks may be a negative feedback which may substantially (by a factor of about 2) reduce the surface warming due to the doubling of CO2, even in the presence of cirrus clouds.
Determination of a Critical Sea Ice Thickness Threshold for the Central Arctic Ocean
NASA Astrophysics Data System (ADS)
Ford, V.; Frauenfeld, O. W.; Nowotarski, C. J.
2017-12-01
While sea ice extent is readily measurable from satellite observations and can be used to assess the overall survivability of the Arctic sea ice pack, determining the spatial variability of sea ice thickness remains a challenge. Turbulent and conductive heat fluxes are extremely sensitive to ice thickness but are dominated by the sensible heat flux, with energy exchange expected to increase with thinner ice cover. Fluxes over open water are strongest and have the greatest influence on the atmosphere, while fluxes over thick sea ice are minimal as heat conduction from the ocean through thick ice cannot reach the atmosphere. We know that turbulent energy fluxes are strongest over open ocean, but is there a "critical thickness of ice" where fluxes are considered non-negligible? Through polar-optimized Weather Research and Forecasting model simulations, this study assesses how the wintertime Arctic surface boundary layer, via sensible heat flux exchange and surface air temperature, responds to sea ice thinning. The region immediately north of Franz Josef Land is characterized by a thickness gradient where sea ice transitions from the thickest multi-year ice to the very thin marginal ice seas. This provides an ideal location to simulate how the diminishing Arctic sea ice interacts with a warming atmosphere. Scenarios include both fixed sea surface temperature domains for idealized thickness variability, and fixed ice fields to detect changes in the ocean-ice-atmosphere energy exchange. Results indicate that a critical thickness threshold exists below 1 meter. The threshold is between 0.4-1 meters thinner than the critical thickness for melt season survival - the difference between first year and multi-year ice. Turbulent heat fluxes and surface air temperature increase as sea ice thickness transitions from perennial ice to seasonal ice. While models predict a sea ice free Arctic at the end of the warm season in future decades, sea ice will continue to transform seasonally during Polar winter. However, despite seasonal sea ice change, if and where its thickness remains below this critical threshold, the Arctic Ocean will continue interacting with the overlying atmosphere and contributing to Arctic amplification during the cold season.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Wug-Dong; Tanioka, Kenkichi
Amorphous selenium (a-Se) high-gain avalanche rushing amorphous photoconductor (HARP) film has been used for highly sensitive imaging devices. To improve the spectral response of a-Se HARP photoconductive film at a long wavelength, the tellurium (Te) doping effect in an 8-μm-thick a-Se HARP film was investigated. The thickness of the Te-doped a-Se layer in the 8-μm-thick a-Se HARP films was varied from 60 to 120 nm. The signal current increases significantly due to the avalanche multiplication when the target voltage is increased over the threshold voltage. In the 8-μm-thick a-Se HARP film with a Te-doped layer, the spectral response at a longmore » wavelength was improved in comparison with the a-Se HARP film without a Te-doped layer. In addition, the increase of the lag in the 8-μm-thick a-Se HARP target with a Te-doped layer of 120 nm is caused by the photoconductive lag due to the electrons trapped in the Te-doped layer. Based on the current-voltage characteristics, spectral response, and lag characteristics of the 8-μm-thick a-Se HARP targets, the Te-doped layer thickness of 90 nm is suitable for the 8-μm-thick a-Se HARP film.« less
Tellurium doping effect in avalanche-mode amorphous selenium photoconductive film
NASA Astrophysics Data System (ADS)
Park, Wug-Dong; Tanioka, Kenkichi
2014-11-01
Amorphous selenium (a-Se) high-gain avalanche rushing amorphous photoconductor (HARP) film has been used for highly sensitive imaging devices. To improve the spectral response of a-Se HARP photoconductive film at a long wavelength, the tellurium (Te) doping effect in an 8-μm-thick a-Se HARP film was investigated. The thickness of the Te-doped a-Se layer in the 8-μm-thick a-Se HARP films was varied from 60 to 120 nm. The signal current increases significantly due to the avalanche multiplication when the target voltage is increased over the threshold voltage. In the 8-μm-thick a-Se HARP film with a Te-doped layer, the spectral response at a long wavelength was improved in comparison with the a-Se HARP film without a Te-doped layer. In addition, the increase of the lag in the 8-μm-thick a-Se HARP target with a Te-doped layer of 120 nm is caused by the photoconductive lag due to the electrons trapped in the Te-doped layer. Based on the current-voltage characteristics, spectral response, and lag characteristics of the 8-μm-thick a-Se HARP targets, the Te-doped layer thickness of 90 nm is suitable for the 8-μm-thick a-Se HARP film.
Electrical characteristics of tunneling field-effect transistors with asymmetric channel thickness
NASA Astrophysics Data System (ADS)
Kim, Jungsik; Oh, Hyeongwan; Kim, Jiwon; Meyyappan, M.; Lee, Jeong-Soo
2017-02-01
Effects of using asymmetric channel thickness in tunneling field-effect transistors (TFET) are investigated in sub-50 nm channel regime using two-dimensional (2D) simulations. As the thickness of the source side becomes narrower in narrow-source wide-drain (NSWD) TFETs, the threshold voltage (V th) and the subthreshold swing (SS) decrease due to enhanced gate controllability of the source side. The narrow source thickness can make the band-to-band tunneling (BTBT) distance shorter and induce much higher electric field near the source junction at the on-state condition. In contrast, in a TFET with wide-source narrow-drain (WSND), the SS shows almost constant values and the V th slightly increases with narrowing thickness of the drain side. In addition, the ambipolar current can rapidly become larger with smaller thickness on the drain side because of the shorter BTBT distance and the higher electric-field at the drain junction. The on-current of the asymmetric channel TFET is lower than that of conventional TFETs due to the volume limitation of the NSWD TFET and high series resistance of the WSND TFET. The on-current is almost determined by the channel thickness of the source side.
Robust solder joint attachment of coaxial cable leads to piezoelectric ceramic electrodes.
Vianco, P T
1993-01-01
A technique was developed for the solder attachment of coaxial cable leads to silver-bearing thick-film electrodes on piezoelectric ceramics. Soldering the cable leads directly to the thick film caused bonds with low mechanical strength due to poor solder joint geometry. A barrier coating of 1.5 mum Cu/1.5 mum Ni/1.0 mum Sn deposited on the thick-film layer improved the strength of the solder joints by eliminating the adsorption of Ag from the thick film, which was responsible for the improper solder joint geometry. The procedure does not require special preparation of the electrode surface and is cost effective due to the use of nonprecious metal films and the batch processing capabilities of the electron beam deposition technique.
Greb, S.F.; Popp, J.T.
1999-01-01
The Pond Creek seam is one of the leading producers of coal in the Eastern Kentucky Coal Field. The geologic factors that affect mining were investigated in several underground mines and categorized in terms of coal thickness, coal quality, and roof control. The limits of mining and thick coal are defined by splitting along the margin of the coal body. Within the coal body, local thickness variation occurs because of (1) leader coal benches filling narrow, elongated depressions, (2) rider coal benches coming near to or merging with the main bench, (3) overthrust coal benches being included along paleochannel margins, (4) cutouts occuring beneath paleochannels, and (5) very hard and unusual rock partings occuring along narrow, elongated trends. In the study area, the coal is mostly mined as a compliance product: sulfur contents are less than 1% and ash yields are less than 10%. Local increases in sulfur occur beneath sandstones, and are inferred to represent post-depositional migration of fluids through porous sands into the coal. Run-of-mine quality is also affected by several mine-roof conditions and trends of densely concentrated rock partings, which lead to increased in- and out-of-seam dilution and overall ash content of the mined coal. Roof control is largely a function of a heterolithic facies mosaic of coastal-estuarine origin, regional fracture trends, and unloading stress related to varying mine depth beneath the surface. Lateral variability of roof facies is the rule in most mines. The largest falls occur beneath modern valleys and parallel fractures, along paleochannel margins, within tidally affected 'stackrock,' and beneath rider coals. Shale spalling, kettlebottoms, and falls within other more isolated facies also occur. Many of the lithofacies, and falls related to bedding weaknesses within or between lithofacies, occur along northeast-southwest trends, which can be projected in advance of mining. Fracture-related falls occur independently of lithofacies trends along northwest-southeast trends, especially beneath modern valleys where overburden thickness decreases sharply. Differentiating roof falls related to these trends can aid in predicting roof quality in advance of mining.The Pond Creek-Lower Elkhorn seam has been an important exploration target because it typically has very low sulfur contents and ash yields. Geologic research in several large Pond Creek mines suggested variability in roof quality and coal thickness. Due to mine access, geologic problems encountered during mining are documented and described.
Temporal and local variations in biochemical composition of Crassostrea gigas shells
NASA Astrophysics Data System (ADS)
Almeida, Maria J.; Machado, Jorge; Moura, Gabriela; Azevedo, Manuela; Coimbra, João
1998-12-01
The objective of this work was to find relations between organic and inorganic shell components. Crassostrea gigas shells were analysed from live specimens collected at five different stations: the Lima estuary (1), the Ria de Aveiro (2, 3), and the Mondego estuary (4, 5), Portugal. About 30% of the oysters, from stations 1, 2 and 3 had shell-thickness-index values ≤10, indicating a severe thickening. Oysters from the Mondego estuary contained mud blisters due to Polydora infestations. Oysters from station 3 had thicker shells and showed a higher Pb content in shell and tissues than oysters from the other stations. Amino-acid composition changed mainly according to the modified protein (jelly-like substance) probably produced by the presence of TBT (tributyltin) in the water; in particular, we observed an increase in glutamic acid and threonine and a decrease in major amino acids such as aspartic acid, serine and glycine. Elemental shell composition was mainly associated with environmental conditions: shells from stations in open areas had higher Li, Cd, Cr and Ca and lower Mn levels than those from semi-enclosed areas (fish farms). Discriminant analyses against the three kinds of shell observed (normal, thick and infested), using chemical elements and amino acids as discriminant variables, showed the infested group to have the biggest differences. There was no correlation between amino-acid and chemical-element patterns in shell composition. Observed changes in amino-acid pattern, probably due to TBT, did not imply a simultaneous change of elemental composition.
Baila-Rueda, Lucía; Lamiquiz-Moneo, Itziar; Jarauta, Estíbaliz; Mateo-Gallego, Rocío; Perez-Calahorra, Sofía; Marco-Benedí, Victoria; Bea, Ana M; Cenarro, Ana; Civeira, Fernando
2018-01-15
Familial hypercholesterolemia (FH) is a genetic disorder that result in abnormally high low-density lipoprotein cholesterol levels, markedly increased risk of coronary heart disease (CHD) and tendon xanthomas (TX). However, the clinical expression is highly variable. TX are present in other metabolic diseases that associate increased sterol concentration. If non-cholesterol sterols are involved in the development of TX in FH has not been analyzed. Clinical and biochemical characteristics, non-cholesterol sterols concentrations and Aquilles tendon thickness were determined in subjects with genetic FH with (n = 63) and without (n = 40) TX. Student-t test o Mann-Whitney test were used accordingly. Categorical variables were compared using a Chi square test. ANOVA and Kruskal-Wallis tests were performed to multiple independent variables comparison. Post hoc adjusted comparisons were performed with Bonferroni correction when applicable. Correlations of parameters in selected groups were calculated applying the non-parametric Spearman correlation procedure. To identify variables associated with Achilles tendon thickness changes, multiple linear regression were applied. Patients with TX presented higher concentrations of non-cholesterol sterols in plasma than patients without xanthomas (P = 0.006 and 0.034, respectively). Furthermore, there was a significant association between 5α-cholestanol, β-sitosterol, desmosterol, 24S-hydroxycholesterol and 27-hydroxycholesterol concentrations and Achilles tendon thickness (p = 0.002, 0.012, 0.020, 0.045 and 0.040, respectively). Our results indicate that non-cholesterol sterol concentrations are associated with the presence of TX. Since cholesterol and non-cholesterol sterols are present in the same lipoproteins, further studies would be needed to elucidate their potential role in the development of TX.
Ultrasonic Evaluation of the Pull-Off Adhesion between Added Repair Layer and a Concrete Substrate
NASA Astrophysics Data System (ADS)
Czarnecki, Slawomir
2017-10-01
This paper concerns the evaluation of the pull-off adhesion between a concrete added repair layer with variable thickness and a concrete substrate, based on parameters assessed using ultrasonic pulse velocity (UPV) method. In construction practice, the experimental determination of pull-off adhesion f b, between added repair layer and a concrete substrate is necessary to assess the quality of repair. This is usually carried out with the use of pull-off method which results in local damage of the added concrete layer in all the testing areas. Bearing this in mind, it is important to describe the method without these disadvantages. The prediction of the pull-off adhesion of the two-layer concrete elements with variable thickness of each layer might be provided by means of UPV method with two-sided access to the investigated element. For this purpose, two-layered cylindrical specimens were obtained by drilling the borehole from a large size specially prepared concrete element. Those two-layer elements were made out of concrete substrate layer and Polymer Cement Concrete (PCC) mortar as an added repair layer. The values of pull-off adhesion f b of the elements were determined before obtaining the samples by using the semi-destructive pull-off method. The ultrasonic wave velocity was determined in samples with variable thickness of each layer and was then compared to theoretical ultrasonic wave velocity predicted for those specimens. The regression curve for the dependence of velocity and pull-off adhesion, determined by the pulloff method, was made. It has been proved that together with an increase of ratio of investigated ultrasonic wave velocity divided by theoretical ultrasonic wave velocity, the pull-off adhesion value f b between added repair layer with variable thickness and a substrate layer also increases.
Variable variance Preisach model for multilayers with perpendicular magnetic anisotropy
NASA Astrophysics Data System (ADS)
Franco, A. F.; Gonzalez-Fuentes, C.; Morales, R.; Ross, C. A.; Dumas, R.; Åkerman, J.; Garcia, C.
2016-08-01
We present a variable variance Preisach model that fully accounts for the different magnetization processes of a multilayer structure with perpendicular magnetic anisotropy by adjusting the evolution of the interaction variance as the magnetization changes. We successfully compare in a quantitative manner the results obtained with this model to experimental hysteresis loops of several [CoFeB/Pd ] n multilayers. The effect of the number of repetitions and the thicknesses of the CoFeB and Pd layers on the magnetization reversal of the multilayer structure is studied, and it is found that many of the observed phenomena can be attributed to an increase of the magnetostatic interactions and subsequent decrease of the size of the magnetic domains. Increasing the CoFeB thickness leads to the disappearance of the perpendicular anisotropy, and such a minimum thickness of the Pd layer is necessary to achieve an out-of-plane magnetization.
Stacking-sequence optimization for buckling of laminated plates by integer programming
NASA Technical Reports Server (NTRS)
Haftka, Raphael T.; Walsh, Joanne L.
1991-01-01
Integer-programming formulations for the design of symmetric and balanced laminated plates under biaxial compression are presented. Both maximization of buckling load for a given total thickness and the minimization of total thickness subject to a buckling constraint are formulated. The design variables that define the stacking sequence of the laminate are zero-one integers. It is shown that the formulation results in a linear optimization problem that can be solved on readily available software. This is in contrast to the continuous case, where the design variables are the thicknesses of layers with specified ply orientations, and the optimization problem is nonlinear. Constraints on the stacking sequence such as a limit on the number of contiguous plies of the same orientation and limits on in-plane stiffnesses are easily accommodated. Examples are presented for graphite-epoxy plates under uniaxial and biaxial compression using a commercial software package based on the branch-and-bound algorithm.
[Expected effect of retinal thickness after focal photocoagulation in diabetic macular oedema].
Garcia-Rubio, Yatzul Zuhaila; Razo Blanco-Hernández, Dulce Milagros; Lima-Gómez, Virgilio
2016-01-01
Macular oedema is a form of diabetic retinopathy that can be treated with photocoagulation. The expected effect of treatment varies, and may depend on the previous characteristics of retinal thickening. To determine whether the change in retinal thickness after focal photocoagulation for diabetic macular oedema varies due to the presence of anatomical features that may justify a separate assessment. Non-experimental, comparative, retrospective, longitudinal study. The mean percentage change in macular volume was compared in eyes with diabetic macular oedema, 3 weeks after focal photocoagulation. The analysis was stratified according to the presence of central and perifoveal temporal thickening (Mann-Whitney U). A regression analysis was performed to identify the contribution of the anatomical variables before photocoagulation to the change in macular volume. A total of 72 eyes were evaluated. The mean change of macular volume in the sample was -0.68±3.84%. In the multiple regression analysis, the changes of perifoveal temporal (beta 0.54, p<0.001) and central field thickness (beta 0.3, p =0.01) contributed to the change of macular volume (R=0.64). Macular volume decreased by a mean of -2.1±4.3% in eyes with temporal perifoveal thickening, and increased by 0.5±2.8% (p =0.007) in eyes with no thickening. Perifoveal temporal thickening before photocoagulation changes the expected effect of this therapy on macular volume in eyes with focal diabetic macular oedema. It is recommended to evaluate the effect separately, and according to the perifoveal temporal thickness. Copyright © 2015 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.
A cloud-ozone data product from Aura OMI and MLS satellite measurements
NASA Astrophysics Data System (ADS)
Ziemke, Jerald R.; Strode, Sarah A.; Douglass, Anne R.; Joiner, Joanna; Vasilkov, Alexander; Oman, Luke D.; Liu, Junhua; Strahan, Susan E.; Bhartia, Pawan K.; Haffner, David P.
2017-11-01
Ozone within deep convective clouds is controlled by several factors involving photochemical reactions and transport. Gas-phase photochemical reactions and heterogeneous surface chemical reactions involving ice, water particles, and aerosols inside the clouds all contribute to the distribution and net production and loss of ozone. Ozone in clouds is also dependent on convective transport that carries low-troposphere/boundary-layer ozone and ozone precursors upward into the clouds. Characterizing ozone in thick clouds is an important step for quantifying relationships of ozone with tropospheric H2O, OH production, and cloud microphysics/transport properties. Although measuring ozone in deep convective clouds from either aircraft or balloon ozonesondes is largely impossible due to extreme meteorological conditions associated with these clouds, it is possible to estimate ozone in thick clouds using backscattered solar UV radiation measured by satellite instruments. Our study combines Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) satellite measurements to generate a new research product of monthly-mean ozone concentrations in deep convective clouds between 30° S and 30° N for October 2004-April 2016. These measurements represent mean ozone concentration primarily in the upper levels of thick clouds and reveal key features of cloud ozone including: persistent low ozone concentrations in the tropical Pacific of ˜ 10 ppbv or less; concentrations of up to 60 pphv or greater over landmass regions of South America, southern Africa, Australia, and India/east Asia; connections with tropical ENSO events; and intraseasonal/Madden-Julian oscillation variability. Analysis of OMI aerosol measurements suggests a cause and effect relation between boundary-layer pollution and elevated ozone inside thick clouds over landmass regions including southern Africa and India/east Asia.
Kim, Younggy; Walker, W Shane; Lawler, Desmond F
2012-05-01
In electrodialysis desalination, the boundary layer near ion-exchange membranes is the limiting region for the overall rate of ionic separation due to concentration polarization over tens of micrometers in that layer. Under high current conditions, this sharp concentration gradient, creating substantial ionic diffusion, can drive a preferential separation for certain ions depending on their concentration and diffusivity in the solution. Thus, this study tested a hypothesis that the boundary layer affects the competitive transport between di- and mono-valent cations, which is known to be governed primarily by the partitioning with cation-exchange membranes. A laboratory-scale electrodialyzer was operated at steady state with a mixture of 10mM KCl and 10mM CaCl(2) at various flow rates. Increased flows increased the relative calcium transport. A two-dimensional model was built with analytical solutions of the Nernst-Planck equation. In the model, the boundary layer thickness was considered as a random variable defined with three statistical parameters: mean, standard deviation, and correlation coefficient between the thicknesses of the two boundary layers facing across a spacer. Model simulations with the Monte Carlo method found that a greater calcium separation was achieved with a smaller mean, greater standard deviation, or more negative correlation coefficient. The model and experimental results were compared for the cationic transport number as well as the current and potential relationship. The mean boundary layer thickness was found to decrease from 40 to less than 10 μm as the superficial water velocity increased from 1.06 to 4.24 cm/s. The standard deviation was greater than the mean thickness at slower water velocities and smaller at faster water velocities. Copyright © 2012 Elsevier Ltd. All rights reserved.
A Cloud-Ozone Data Product from Aura OMI and MLS Satellite Measurements.
Ziemke, Jerald R; Strode, Sarah A; Douglass, Anne R; Joiner, Joanna; Vasilkov, Alexander; Oman, Luke D; Liu, Junhua; Strahan, Susan E; Bhartia, Pawan K; Haffner, David P
2017-01-01
Ozone within deep convective clouds is controlled by several factors involving photochemical reactions and transport. Gas-phase photochemical reactions and heterogeneous surface chemical reactions involving ice, water particles, and aerosols inside the clouds all contribute to the distribution and net production and loss of ozone. Ozone in clouds is also dependent on convective transport that carries low troposphere/boundary layer ozone and ozone precursors upward into the clouds. Characterizing ozone in thick clouds is an important step for quantifying relationships of ozone with tropospheric H 2 O, OH production, and cloud microphysics/transport properties. Although measuring ozone in deep convective clouds from either aircraft or balloon ozonesondes is largely impossible due to extreme meteorological conditions associated with these clouds, it is possible to estimate ozone in thick clouds using backscattered solar UV radiation measured by satellite instruments. Our study combines Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) satellite measurements to generate a new research product of monthly-mean ozone concentrations in deep convective clouds between 30°S to 30°N for October 2004 - April 2016. These measurements represent mean ozone concentration primarily in the upper levels of thick clouds and reveal key features of cloud ozone including: persistent low ozone concentrations in the tropical Pacific of ~10 ppbv or less; concentrations of up to 60 pphv or greater over landmass regions of South America, southern Africa, Australia, and India/east Asia; connections with tropical ENSO events; and intra-seasonal/Madden-Julian Oscillation variability. Analysis of OMI aerosol measurements suggests a cause and effect relation between boundary layer pollution and elevated ozone inside thick clouds over land-mass regions including southern Africa and India/east Asia.
Magnetic anisotropies in ultrathin fcc Fe(001) films grown on Cu(001) substrates
NASA Astrophysics Data System (ADS)
Cochran, J. F.; Rudd, J. M.; From, M.; Heinrich, B.; Bennett, W.; Schwarzacher, W.; Egelhoff, W. F., Jr.
1992-03-01
Ferromagnetic resonance absorption measurements at 36.3 GHz and at room temperature have been used to determine the g factor and anisotropy parameters for a series of bilayers composed of two 3-ML-thick fcc Fe (001) films separated by a variable thickness of fcc Cu(001). The resonance field and linewidth were measured versus the out-of-plane magnetic-field angle, θH. The magnetic properties of these ten coupled bilayer films were found to be remarkably similar from specimen to specimen, despite the fact that each member of the bilayer was only 3 ML thick. The average g factor was found to be
1979-12-01
the embankment. This core is 12 feet thick measured horizontally. Beneath the embankment is an earthfihi cutoff trench which is 12 feet wide at the...variable thickness and extends from the cutoff trench to the downstream toe of the embankment. It is made up of sand designated SM-SP. The natural...pendicular to the axis of the dam. The walls of the structure are 10 inches thick and the top slab is 8 inches thick . The structure is founded on bedrock
NASA Astrophysics Data System (ADS)
Mousa, Ahmed; Mickus, Kevin; Al-Rahim, Ali
2017-05-01
The Western Desert of Iraq is part of the stable shelf region on the Arabian Plate where the subsurface structural makeup is relatively unknown due to the lack of cropping out rocks, deep drill holes and deep seismic refraction and reflection profiles. To remedy this situation, magnetic and gravity data were analyzed to determine the thickness of the Phanerozoic cover sequences. The 2-D power spectrum method was used to estimate the depth to density and magnetic susceptibility interfaces by using 0.5° square windows. Additionally, the gravity data were analyzed using isostatic residual and decompensative methods to isolate gravity anomalies due to upper crustal density sources. The decompensative gravity anomaly and the differentially reduced to the pole magnetic map indicate a series of mainly north-south and northwest-southeast trending maxima and minima anomalies related to Proterozoic basement lithologies and the varying thickness of cover sequences. The magnetic and gravity derived thickness of cover sequences maps indicate that these thicknesses range from 4.5 to 11.5 km. Both maps in general are in agreement but more detail in the cover thicknesses was determined by the gravity analysis. The gravity-based cover thickness maps indicates regions with shallower depths than the magnetic-based cover thickness t map which may be due to density differences between limestone and shale units within the Paleozoic sediments. The final thickness maps indicate that the Western Desert is a complicated region of basins and uplifts that are more complex than have been shown on previous structural maps of the Western Desert. These basins and uplifts may be related to Paleozoic compressional tectonic events and possibly to the opening of the Tethys Ocean. In addition, petroleum exploration could be extended to three basins outlined by our analysis within the relatively unexplored western portions of the Western Desert.
NASA Astrophysics Data System (ADS)
Kane, I. A.; Hodgson, D.
2009-12-01
Thinning upwards of the turbidite beds that form deepmarine channel levees is a common motif reported from modern and recent levees on the seafloor, from subsurface examples, and from outcropping ancient examples. Because levees are thought to be built by deposition from turbidity currents superelevated over their channel form, the volume and style of overbank deposition are controlled primarily by the relationship between levee height (i.e., thalweg to crest) and flow thickness, determining the amount of overspill. Thus stratigraphic variability of turbidite thickness is explained by some change in either or both of those factors, which may arise autocyclicly or allocyclicly. Variation in the ratio of intra-channel and extra-channel deposition can be an autocyclic stratigraphic response, e.g., in bypass dominated systems, thalweg aggradation may be retarded with respect to levee aggradation, hence as levee relief increases, flows become more confined and, given a relatively narrow range of flow sizes, the volume of overbank flow and deposit thickness decrease with stratigraphic height. However, the same stratigraphic response of the levee may occur due to allocyclic flow magnitude variation, i.e., through decreasing flow magnitude. In both the autocyclic and allocyclic case the stratigraphic response of the levee may be one of thinning upwards, even if the overall system response may be one of progradation (autocyclic bypassing case) or retrogradation (allocyclic decreasing flow magnitude case), with entirely different connotations for sequence stratigraphic interpretation. Here we report examples of different scales of bed thickness cyclicity (both thickening and thinning upward cycles superimposed by smaller scale cycles) within levees of the Rosario Formation, Baja California, Mexico, and from the Laingsburg Formation, Karoo, South Africa, and, together with published examples, discuss criteria for the recognition, and drivers of, autocyclic and allocyclic bed thickness trends.
Interannual variability in the number of Northern Hemisphere Cut-off low systems.
NASA Astrophysics Data System (ADS)
Nieto, R.; Gimeno, L.; de La Torre, L.; Tesouro, M.; Añel, J. A.; Ribera, P.
2003-04-01
Cut-off low-pressure systems-COLS- are usually closed circulations at middle and upper troposphere developed from a deep trough in the westerlies. The importance of their study is due to both the convective severe events that can occur if they are over warm ocean and because they are important mechanisms of Stratosphere-troposphere exchange- STE-. However few is known about their interannual variability, due to the limited duration of the study (five years) of previous global climatologies. In this study we identify COLs systems in the Northern Hemisphere for a 41-year period (1958 to 1998) using an approach based in imposing the three main physical characteristics of the conceptual model of COL (a. closed circulation and minimum of geopotential, minimum of equivalent thickness, and two baroclinic zones, one in front of the low and the other behind the low). Data from NCAR-NCEP reanalysis were used. The aim of the study is to detect trends and to identify associations both with blocking events and major modes of climate variability. Results show that 1) in the Asian sector both less intense and more intense COLs had a significant positive trend whereas in the Pacific and the Atlantic sectors only less intense COLs had a significant positive trend, 2) Most of COLs were associated with blocking events, 3) During positive ENSO phases the number of less intense COLs in the Pacific were lower than during negative ENSO phases and 4) During positive Northern Annular Mode (NAM) phases the number of less intense COLs in the Atlantic were higher than during negative NAM phases.
NASA Technical Reports Server (NTRS)
Rajagopal, Kadambi R.; DebChaudhury, Amitabha; Orient, George
2000-01-01
This report describes a probabilistic structural analysis performed to determine the probabilistic structural response under fluctuating random pressure loads for the Space Shuttle Main Engine (SSME) turnaround vane. It uses a newly developed frequency and distance dependent correlation model that has features to model the decay phenomena along the flow and across the flow with the capability to introduce a phase delay. The analytical results are compared using two computer codes SAFER (Spectral Analysis of Finite Element Responses) and NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) and with experimentally observed strain gage data. The computer code NESSUS with an interface to a sub set of Composite Load Spectra (CLS) code is used for the probabilistic analysis. A Fatigue code was used to calculate fatigue damage due to the random pressure excitation. The random variables modeled include engine system primitive variables that influence the operating conditions, convection velocity coefficient, stress concentration factor, structural damping, and thickness of the inner and outer vanes. The need for an appropriate correlation model in addition to magnitude of the PSD is emphasized. The study demonstrates that correlation characteristics even under random pressure loads are capable of causing resonance like effects for some modes. The study identifies the important variables that contribute to structural alternate stress response and drive the fatigue damage for the new design. Since the alternate stress for the new redesign is less than the endurance limit for the material, the damage due high cycle fatigue is negligible.
Baptiste Dafflon; Rusen Oktem; John Peterson; Craig Ulrich; Anh Phuong Tran; Vladimir Romanovsky; Susan Hubbard
2017-05-10
The dataset contains measurements obtained through electrical resistivity tomography (ERT) to monitor soil properties, pole-mounted optical cameras to monitor vegetation dynamics, point probes to measure soil temperature, and periodic manual measurements of thaw layer thickness, snow thickness and soil dielectric permittivity.
Evaluation of Parallel-Element, Variable-Impedance, Broadband Acoustic Liner Concepts
NASA Technical Reports Server (NTRS)
Jones, Michael G.; Howerton, Brian M.; Ayle, Earl
2012-01-01
Recent trends in aircraft engine design have highlighted the need for acoustic liners that provide broadband sound absorption with reduced liner thickness. Three such liner concepts are evaluated using the NASA normal incidence tube. Two concepts employ additive manufacturing techniques to fabricate liners with variable chamber depths. The first relies on scrubbing losses within narrow chambers to provide acoustic resistance necessary for sound absorption. The second employs wide chambers that provide minimal resistance, and relies on a perforated sheet to provide acoustic resistance. The variable-depth chambers used in both concepts result in reactance spectra near zero. The third liner concept employs mesh-caps (resistive sheets) embedded at variable depths within adjacent honeycomb chambers to achieve a desired impedance spectrum. Each of these liner concepts is suitable for use as a broadband sound absorber design, and a transmission line model is presented that provides good comparison with their respective acoustic impedance spectra. This model can therefore be used to design acoustic liners to accurately achieve selected impedance spectra. Finally, the effects of increasing the perforated facesheet thickness are demonstrated, and the validity of prediction models based on lumped element and wave propagation approaches is investigated. The lumped element model compares favorably with measured results for liners with thin facesheets, but the wave propagation model provides good comparisons for a wide range of facesheet thicknesses.
Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations
NASA Astrophysics Data System (ADS)
Lindsay, R.; Schweiger, A.
2015-02-01
Sea ice thickness is a fundamental climate state variable that provides an integrated measure of changes in the high-latitude energy balance. However, observations of mean ice thickness have been sparse in time and space, making the construction of observation-based time series difficult. Moreover, different groups use a variety of methods and processing procedures to measure ice thickness, and each observational source likely has different and poorly characterized measurement and sampling errors. Observational sources used in this study include upward-looking sonars mounted on submarines or moorings, electromagnetic sensors on helicopters or aircraft, and lidar or radar altimeters on airplanes or satellites. Here we use a curve-fitting approach to determine the large-scale spatial and temporal variability of the ice thickness as well as the mean differences between the observation systems, using over 3000 estimates of the ice thickness. The thickness estimates are measured over spatial scales of approximately 50 km or time scales of 1 month, and the primary time period analyzed is 2000-2012 when the modern mix of observations is available. Good agreement is found between five of the systems, within 0.15 m, while systematic differences of up to 0.5 m are found for three others compared to the five. The trend in annual mean ice thickness over the Arctic Basin is -0.58 ± 0.07 m decade-1 over the period 2000-2012. Applying our method to the period 1975-2012 for the central Arctic Basin where we have sufficient data (the SCICEX box), we find that the annual mean ice thickness has decreased from 3.59 m in 1975 to 1.25 m in 2012, a 65% reduction. This is nearly double the 36% decline reported by an earlier study. These results provide additional direct observational evidence of substantial sea ice losses found in model analyses.
Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations
NASA Astrophysics Data System (ADS)
Lindsay, R.; Schweiger, A.
2014-08-01
Sea ice thickness is a fundamental climate state variable that provides an integrated measure of changes in the high-latitude energy balance. However, observations of ice thickness have been sparse in time and space making the construction of observation-based time series difficult. Moreover, different groups use a variety of methods and processing procedures to measure ice thickness and each observational source likely has different and poorly characterized measurement and sampling biases. Observational sources include upward looking sonars mounted on submarines or moorings, electromagnetic sensors on helicopters or aircraft, and lidar or radar altimeters on airplanes or satellites. Here we use a curve-fitting approach to evaluate the systematic differences between eight different observation systems in the Arctic Basin. The approach determines the large-scale spatial and temporal variability of the ice thickness as well as the mean differences between the observation systems using over 3000 estimates of the ice thickness. The thickness estimates are measured over spatial scales of approximately 50 km or time scales of 1 month and the primary time period analyzed is 2000-2013 when the modern mix of observations is available. Good agreement is found between five of the systems, within 0.15 m, while systematic differences of up to 0.5 m are found for three others compared to the five. The trend in annual mean ice thickness over the Arctic Basin is -0.58 ± 0.07 m decade-1 over the period 2000-2013, while the annual mean ice thickness for the central Arctic Basin alone (the SCICEX Box) has decreased from 3.45 m in 1975 to 1.11 m in 2013, a 68% reduction. This is nearly double the 36% decline reported by an earlier study. These results provide additional direct observational confirmation of substantial sea ice losses found in model analyses.
Kristensen, Terje; Ohlson, Mikael; Bolstad, Paul; Nagy, Zoltan
2015-08-01
Accurate field measurements from inventories across fine spatial scales are critical to improve sampling designs and to increase the precision of forest C cycling modeling. By studying soils undisturbed from active forest management, this paper gives a unique insight in the naturally occurring variability of organic layer C and provides valuable references against which subsequent and future sampling schemes can be evaluated. We found that the organic layer C stocks displayed great short-range variability with spatial autocorrelation distances ranging from 0.86 up to 2.85 m. When spatial autocorrelations are known, we show that a minimum of 20 inventory samples separated by ∼5 m is needed to determine the organic layer C stock with a precision of ±0.5 kg C m(-2). Our data also demonstrates a strong relationship between the organic layer C stock and horizon thickness (R (2) ranging from 0.58 to 0.82). This relationship suggests that relatively inexpensive measurements of horizon thickness can supplement soil C sampling, by reducing the number of soil samples collected, or to enhance the spatial resolution of organic layer C mapping.
NASA Astrophysics Data System (ADS)
Wang, X.-S.; Ma, M.-G.; Li, X.; Zhao, J.; Dong, P.; Zhou, J.
2009-12-01
The behavior of groundwater response to leakage of surface water in the middle reaches area of Heihe River Basin is significantly influenced by a thick vadose zone. The variation of groundwater level is a result of two recharge events corresponding to leakage of Heihe River and irrigation water with different delay time. A nonlinear leakage model is developed to calculate the monthly leakage of Heihe River in considering changes of streamflow, river stage and agricultural water utilization. Numerical modeling of variable saturated flow is carried out to investigate the general behaviors of leakage-recharge conversion through a thick vadose zone. It is found that the variable recharge can be approximated by simple reservoir models for both leakage under a river and leakage under an irrigation district but with different delay-time and recession coefficient. A triple-reservoir model of relationship between surface water, vadose zone and groundwater is developed. It reproduces the in situ water table movement during 1989-2006 with variable streamflow of Heihe River and agricultural water utilization. The model is applied to interpret groundwater dynamics during 2007-2008 that observed in the Watershed Airborne Telemetry Experimental Research (WATER).
Vibration-response due to thickness loss on steel plate excited by resonance frequency
NASA Astrophysics Data System (ADS)
Kudus, S. A.; Suzuki, Y.; Matsumura, M.; Sugiura, K.
2018-04-01
The degradation of steel structure due to corrosion is a common problem found especially in the marine structure due to exposure to the harsh marine environment. In order to ensure safety and reliability of marine structure, the damage assessment is an indispensable prerequisite for plan of remedial action on damaged structure. The main goal of this paper is to discuss simple vibration measurement on plated structure to give image on overview condition of the monitored structure. The changes of vibration response when damage was introduced in the plate structure were investigated. The damage on plate was simulated in finite element method as loss of thickness section. The size of damage and depth of loss of thickness were varied for different damage cases. The plate was excited with lower order of resonance frequency in accordance estimate the average remaining thickness based on displacement response obtain in the dynamic analysis. Significant reduction of natural frequency and increasing amplitude of vibration can be observed in the presence of severe damage. The vibration analysis summarized in this study can serve as benchmark and reference for researcher and design engineer.
NASA Astrophysics Data System (ADS)
Wei, Y. Y.; Eres, Gyula; Merkulov, V. I.; Lowndes, D. H.
2001-03-01
The correlation between prepatterned catalyst film thickness and carbon nanotube (CNT) growth by selective area chemical vapor deposition (CVD) was studied using Fe and Ni as catalyst. To eliminate sample-to-sample variations and create a growth environment in which the film thickness is the sole variable, samples with continuously changing catalyst film thickness from 0 to 60 nm were fabricated by electron-gun evaporation. Using thermal CVD CNTs preferentially grow as a dense mat on the thin regions of the catalyst film. Moreover, beyond a certain critical film thickness no tubes were observed. The critical film thickness for CNT growth was found to increase with substrate temperature. There appears to be no strong correlation between the film thickness and the diameter of the tubes. In contrast, using plasma enhanced CVD with Ni as catalyst, vertically oriented CNTs grow in the entire range of catalyst film thickness. The diameter of these CNTs shows a strong correlation with the catalyst film thickness. The significance of these experimental trends is discussed within the framework of the diffusion model for CNT growth.
Influence of the Surface and Cloud Nonuniformities in the Solar Energy Fluxes in the Arctic
NASA Technical Reports Server (NTRS)
Rozwadowska, A.; Cahalan, R. F.; Einaudi, Franco (Technical Monitor)
2000-01-01
Solar energy fluxes reaching the surface and absorbed by it are basic components of the energy balance of the Arctic. They depend mainly on the solar zenith angle, a state of the atmosphere, especially the cloudiness, and the surface albedo. However, they can also be modified by variabilities in the surface albedo and cloud optical thickness. The surface of the Arctic can be highly nonuniform. The surface of the Arctic Ocean, which covers the huge part of the Arctic can be view as a mosaic of sea water, sea ice, snow and, in the melting period, melting ponds. In our paper, results are presented of Monte Carlo simulations of the expected influence of nonuniform cloud structure and nonuniform surface albedo on radiative fluxes at the Arctic surface. In particular, the plane parallel biases in the surface absorptance and atmospheric transmittance are studied. The bias is defined as the difference between the real absorptance or transmittance (i.e. nonuniform conditions) averaged over a given area, and the uniform or plane parallel case with the same mean cloud optical thickness and the same mean surface albedo. The dependence of the biases is analysed with respect to the following: domain averaged values of the cloud optical thickness and surface albedo, scales of their spatial variabilities, correlation between cloud optical thickness and cloud albedo variabilities, cloud height, and the solar zenith angle. Ranges of means and standard deviations of the input parameters typical of Arctic conditions are obtained from the SHEBA experiment.
Ophthalmic variables in rehabilitated juvenile Kemp's ridley sea turtles (Lepidochelys kempii).
Gornik, Kara R; Pirie, Christopher G; Marrion, Ruth M; Wocial, Julika N; Innis, Charles J
2016-03-15
To determine central corneal thickness (total corneal thickness [TCT], epithelial thickness [ET], and stromal thickness [ST]), anterior chamber depth (ACD), and intraocular pressure (IOP) in Kemp's ridley sea turtles (Lepidochelys kempii). Prospective cross-sectional study. 25 healthy rehabilitated juvenile Kemp's ridley sea turtles. PROCEDURES; Body weight and straight-line standard carapace length (SCL) were recorded. All turtles underwent a complete anterior segment ophthalmic examination. Central TCT, ET, ST, and ACD were determined by use of a spectral-domain optical coherence tomography device. Intraocular pressure was determined with a rebound tonometer; the horse setting was used to measure IOP in all 25 turtles, and the undefined setting was also used to measure IOP in 20 turtles. For each variable, 3 measurements were obtained bilaterally. The mean was calculated for each eye and used for analysis purposes. The mean ± SD body weight and SCL were 3.85 ± 1.05 kg (8.47 ± 2.31 lb) and 29 ± 3 cm, respectively. The mean ± SD TCT, ET, ST, and ACD were 288 ± 23 μm, 100 ± 6 μm, 190 ± 19 μm, and 581 ± 128 μm, respectively. Mean ± SD IOP was 6.5 ± 1.0 mm Hg when measured with the horse setting and 3.8 ± 1.1 mm Hg when measured with the undefined setting. Results provided preliminary reference ranges for objective assessment of ophthalmic variables in healthy juvenile Kemp's ridley sea turtles.
Age-Related Changes in Pharyngeal Lumen Size: A Retrospective MRI Analysis.
Molfenter, Sonja M; Amin, M R; Branski, R C; Brumm, J D; Hagiwara, M; Roof, S A; Lazarus, C L
2015-06-01
Age-related loss of muscle bulk and strength (sarcopenia) is often cited as a potential mechanism underlying age-related changes in swallowing. Our goal was to explore this phenomenon in the pharynx, specifically, by measuring pharyngeal wall thickness and pharyngeal lumen area in a sample of young versus older women. MRI scans of the neck were retrospectively reviewed from 60 women equally stratified into three age groups (20s, 60s, 70+). Four de-identified slices were extracted per scan for randomized, blinded analysis: one mid-sagittal and three axial slices were selected at the anterior inferior border of C2 and C3, and at the pit of the vallecula. Pixel-based measures of pharyngeal wall thickness and pharyngeal lumen area were completed using ImageJ and then converted to metric units. Measures of pharyngeal wall thickness and pharyngeal lumen area were compared between age groups with one-way ANOVAs using Sidak adjustments for post-hoc pairwise comparisons. A significant main effect for age was observed across all variables whereby pharyngeal wall thickness decreased and pharyngeal lumen area increased with advancing age. Pairwise comparisons revealed significant differences between 20s versus 70+ for all variables and 20s versus 60s for all variables except those measured at C2. Effect sizes ranged from 0.54 to 1.34. Consistent with existing sacropenia literature, the pharyngeal muscles appear to atrophy with age and consequently, the size of the pharyngeal lumen increases.
Rybacka, Anna; Goździk-Spychalska, Joanna; Rybacki, Adam; Piorunek, Tomasz; Batura-Gabryel, Halina; Karmelita-Katulska, Katarzyna
2018-05-04
In cystic fibrosis, pulmonary function tests (PFTs) and computed tomography are used to assess lung function and structure, respectively. Although both techniques of assessment are congruent there are lingering doubts about which PFTs variables show the best congruence with computed tomography scoring. In this study we addressed the issue by reinvestigating the association between PFTs variables and the score of changes seen in computed tomography scans in patients with cystic fibrosis with and without pulmonary exacerbation. This retrospective study comprised 40 patients in whom PFTs and computed tomography were performed no longer than 3 weeks apart. Images (inspiratory: 0.625 mm slice thickness, 0.625 mm interval; expiratory: 1.250 mm slice thickness, 10 mm interval) were evaluated with the Bhalla scoring system. The most frequent structural abnormality found in scans were bronchiectases and peribronchial thickening. The strongest relationship was found between the Bhalla sore and forced expiratory volume in 1 s (FEV1). The Bhalla sore also was related to forced vital capacity (FVC), FEV1/FVC ratio, residual volume (RV), and RV/total lung capacity (TLC) ratio. We conclude that lung structural data obtained from the computed tomography examination are highly congruent to lung function data. Thus, computed tomography imaging may supersede functional assessment in cases of poor compliance with spirometry procedures in the lederly or children. Computed tomography also seems more sensitive than PFTs in the assessment of cystic fibrosis progression. Moreover, in early phases of cystic fibrosis, computed tomography, due to its excellent resolution, may be irreplaceable in monitoring pulmonary damage.
Lamaignère, Laurent; Gaudfrin, Kévin; Donval, Thierry; Natoli, Jeanyves; Sajer, Jean-Michel; Penninckx, Denis; Courchinoux, Roger; Diaz, Romain
2018-04-30
Forward pump pulses with nanosecond duration are able to generate an acoustic wave via electrostriction through a few centimeters of bulk silica. Part of the incident energy is then scattered back on this sound wave, creating a backward Stokes pulse. This phenomenon known as stimulated Brillouin scattering (SBS) might induce first energy-loss, variable change of the temporal waveform depending on the location in the spatial profile making accurate metrology impossible, and moreover it might also initiate front surface damage making the optics unusable. Experiments performed on thick fused silica optics at 355 nm with single longitudinal mode pulses allowed us to detect, observe and quantify these backward pulses. Experimental results are first compared to theoretical calculations in order to strengthen our confidence in metrology. On this basis a phase-modulator has been implemented on the continuous-wave seeders of the lasers leading to pulses with a wide spectrum that suppress SBS and do not exhibit temporal overshoots that also reduce Kerr effects. The developed set-ups are used to check the reduction of the backward stimulated Brillouin scattering and they allow measuring with accuracy the rear surface damage of thick fused silica optics.
Arctic sea ice trends, variability and implications for seasonal ice forecasting.
Serreze, Mark C; Stroeve, Julienne
2015-07-13
September Arctic sea ice extent over the period of satellite observations has a strong downward trend, accompanied by pronounced interannual variability with a detrended 1 year lag autocorrelation of essentially zero. We argue that through a combination of thinning and associated processes related to a warming climate (a stronger albedo feedback, a longer melt season, the lack of especially cold winters) the downward trend itself is steepening. The lack of autocorrelation manifests both the inherent large variability in summer atmospheric circulation patterns and that oceanic heat loss in winter acts as a negative (stabilizing) feedback, albeit insufficient to counter the steepening trend. These findings have implications for seasonal ice forecasting. In particular, while advances in observing sea ice thickness and assimilating thickness into coupled forecast systems have improved forecast skill, there remains an inherent limit to predictability owing to the largely chaotic nature of atmospheric variability. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Resin Film Infusion (RFI) Process Modeling for Large Transport Aircraft Wing Structures
NASA Technical Reports Server (NTRS)
Knott, Tamara W.; Loos, Alfred C.
2000-01-01
Resin film infusion (RFI) is a cost-effective method for fabricating stiffened aircraft wing structures. The RFI process lends itself to the use of near net shape textile preforms manufactured through a variety of automated textile processes such as knitting and braiding. Often, these advanced fiber architecture preforms have through-the-thickness stitching for improved damage tolerance and delamination resistance. The challenge presently facing RFI is to refine the process to ensure complete infiltration and cure of a geometrically complex shape preform with the high fiber volume fraction needed for structural applications. An accurate measurement of preform permeability is critical for successful modeling of the RFI resin infiltration process. Small changes in the permeability can result in very different infiltration behavior and times. Therefore, it is important to accurately measure the permeabilities of the textile preforms used in the RFI process. The objective of this investigation was to develop test methods that can be used to measure the compaction behavior and permeabilities of high fiber volume fraction, advanced fiber architecture textile preforms. These preforms are often highly compacted due to through-the-thickness stitching used to improve damage tolerance. Test fixtures were designed and fabricated and used to measure both transverse and in-plane permeabilities. The fixtures were used to measure the permeabilities of multiaxial warp knit and triaxial braided preforms at fiber volume fractions from 55% to 65%. In addition, the effects of stitching characteristics, thickness, and batch variability on permeability and compaction behavior were investigated.
NASA Technical Reports Server (NTRS)
Bahr, J.
1978-01-01
Flow-through cascade of an aircraft turbine compressor is studied experimentally over wide range of Reynolds numbers and subsonic Mach numbers; it was found that deterioration of flow properties due to decreasing Reynolds numbers is less noticeable on thin profiles than on thick ones; however, thick profiles are advantageous in compressors designed for efficient partial load behavior because thick profiles have a relatively large range of usable inlet flow angles.
Higashide, Tomomi; Ohkubo, Shinji; Hangai, Masanori; Ito, Yasuki; Shimada, Noriaki; Ohno-Matsui, Kyoko; Terasaki, Hiroko; Sugiyama, Kazuhisa; Chew, Paul; Li, Kenneth K W; Yoshimura, Nagahisa
2016-01-01
To identify the factors which significantly contribute to the thickness variabilities in macular retinal layers measured by optical coherence tomography with or without magnification correction of analytical areas in normal subjects. The thickness of retinal layers {retinal nerve fiber layer (RNFL), ganglion cell layer plus inner plexiform layer (GCLIPL), RNFL plus GCLIPL (ganglion cell complex, GCC), total retina, total retina minus GCC (outer retina)} were measured by macular scans (RS-3000, NIDEK) in 202 eyes of 202 normal Asian subjects aged 20 to 60 years. The analytical areas were defined by three concentric circles (1-, 3- and 6-mm nominal diameters) with or without magnification correction. For each layer thickness, a semipartial correlation (sr) was calculated for explanatory variables including age, gender, axial length, corneal curvature, and signal strength index. Outer retinal thickness was significantly thinner in females than in males (sr2, 0.07 to 0.13) regardless of analytical areas or magnification correction. Without magnification correction, axial length had a significant positive sr with RNFL (sr2, 0.12 to 0.33) and a negative sr with GCLIPL (sr2, 0.22 to 0.31), GCC (sr2, 0.03 to 0.17), total retina (sr2, 0.07 to 0.17) and outer retina (sr2, 0.16 to 0.29) in multiple analytical areas. The significant sr in RNFL, GCLIPL and GCC became mostly insignificant following magnification correction. The strong correlation between the thickness of inner retinal layers and axial length appeared to result from magnification effects. Outer retinal thickness may differ by gender and axial length independently of magnification correction.
Higashide, Tomomi; Ohkubo, Shinji; Hangai, Masanori; Ito, Yasuki; Shimada, Noriaki; Ohno-Matsui, Kyoko; Terasaki, Hiroko; Sugiyama, Kazuhisa; Chew, Paul; Li, Kenneth K. W.; Yoshimura, Nagahisa
2016-01-01
Purpose To identify the factors which significantly contribute to the thickness variabilities in macular retinal layers measured by optical coherence tomography with or without magnification correction of analytical areas in normal subjects. Methods The thickness of retinal layers {retinal nerve fiber layer (RNFL), ganglion cell layer plus inner plexiform layer (GCLIPL), RNFL plus GCLIPL (ganglion cell complex, GCC), total retina, total retina minus GCC (outer retina)} were measured by macular scans (RS-3000, NIDEK) in 202 eyes of 202 normal Asian subjects aged 20 to 60 years. The analytical areas were defined by three concentric circles (1-, 3- and 6-mm nominal diameters) with or without magnification correction. For each layer thickness, a semipartial correlation (sr) was calculated for explanatory variables including age, gender, axial length, corneal curvature, and signal strength index. Results Outer retinal thickness was significantly thinner in females than in males (sr2, 0.07 to 0.13) regardless of analytical areas or magnification correction. Without magnification correction, axial length had a significant positive sr with RNFL (sr2, 0.12 to 0.33) and a negative sr with GCLIPL (sr2, 0.22 to 0.31), GCC (sr2, 0.03 to 0.17), total retina (sr2, 0.07 to 0.17) and outer retina (sr2, 0.16 to 0.29) in multiple analytical areas. The significant sr in RNFL, GCLIPL and GCC became mostly insignificant following magnification correction. Conclusions The strong correlation between the thickness of inner retinal layers and axial length appeared to result from magnification effects. Outer retinal thickness may differ by gender and axial length independently of magnification correction. PMID:26814541
Massey, Suena H.; Stern, Daniel; Alden, Eva C.; Petersen, Julie E.; Cobia, Derin J.; Wang, Lei; Csernansky, John G.; Smith, Matthew J.
2016-01-01
Background Cognitive empathy is supported by the inferior frontal gyrus (IFG), anterior mid-cingulate cortex (aMCC), insula (INS), supplementary motor area (SMA), medial prefrontal cortex (mPFC), right temporo-parietal junction (TPJ), and precuneus (PREC). In healthy controls, cortical thickness in these regions has been linked to cognitive empathy. As cognitive empathy is impaired in schizophrenia, we examined whether reduced cortical thickness in these regions was associated with poorer cognitive empathy in this population. Methods 41 clinically-stable community-dwelling individuals with schizophrenia and 46 healthy controls group-matched on demographic variables completed self-report empathy questionnaires, a cognitive empathy task, and structural magnetic resonance imaging. We examined between-group differences in study variables using t-tests and analyses of variance. Next, we used Pearson correlations to evaluate the relationship between cognitive empathy and cortical thickness in the mPFC, IFG, aMCC, INS, SMA, TPJ, and PREC in both groups. Results Individuals with schizophrenia demonstrated cortical thinning in the IFG, INS, SMA, TPJ, and PREC (all p<0.05) and impaired cognitive empathy across all measures (all p<0.01) relative to controls. While cortical thickness in the mPFC, IFC, aMCC, and INS (all p<0.05) was related to cognitive empathy in controls, we did not observe these relationships in individuals with schizophrenia (all p>0.10). Conclusions Individuals with schizophrenia have reduced cortical thickness in empathy-related neural regions and significant impairments in cognitive empathy. Interestingly, cortical thickness was related to cognitive empathy in controls but not in the schizophrenia group. We discuss other mechanisms that may account for cognitive empathy impairment in schizophrenia. PMID:27665257
Massey, Suena H; Stern, Daniel; Alden, Eva C; Petersen, Julie E; Cobia, Derin J; Wang, Lei; Csernansky, John G; Smith, Matthew J
2017-01-01
Cognitive empathy is supported by the medial prefrontal cortex (mPFC), inferior frontal gyrus (IFG), anterior mid-cingulate cortex (aMCC), insula (INS), supplementary motor area (SMA), right temporo-parietal junction (TPJ), and precuneus (PREC). In healthy controls, cortical thickness in these regions has been linked to cognitive empathy. As cognitive empathy is impaired in schizophrenia, we examined whether reduced cortical thickness in these regions was associated with poorer cognitive empathy in this population. 41 clinically-stable community-dwelling individuals with schizophrenia and 46 healthy controls group-matched on demographic variables completed self-report empathy questionnaires, a cognitive empathy task, and structural magnetic resonance imaging. We examined between-group differences in study variables using t-tests and analyses of variance. Next, we used Pearson correlations to evaluate the relationship between cognitive empathy and cortical thickness in the mPFC, IFG, aMCC, INS, SMA, TPJ, and PREC in both groups. Individuals with schizophrenia demonstrated cortical thinning in the IFG, INS, SMA, TPJ, and PREC (all p<0.05) and impaired cognitive empathy across all measures (all p<0.01) relative to controls. While cortical thickness in the mPFC, IFC, aMCC, and INS (all p<0.05) was related to cognitive empathy in controls, we did not observe these relationships in individuals with schizophrenia (all p>0.10). Individuals with schizophrenia have reduced cortical thickness in empathy-related neural regions and significant impairments in cognitive empathy. Interestingly, cortical thickness was related to cognitive empathy in controls but not in the schizophrenia group. We discuss other mechanisms that may account for cognitive empathy impairment in schizophrenia. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Markus, Thorsten; Maksym, Ted
2007-01-01
Passive microwave snow depth, ice concentration, and ice motion estimates are combined with snowfall from the European Centre for Medium Range Weather Forecasting (ECMWF) reanalysis (ERA-40) from 1979-200 1 to estimate the prevalence of snow-to-ice conversion (snow-ice formation) on level sea ice in the Antarctic for April-October. Snow ice is ubiquitous in all regions throughout the growth season. Calculated snow- ice thicknesses fall within the range of estimates from ice core analysis for most regions. However, uncertainties in both this analysis and in situ data limit the usefulness of snow depth and snow-ice production to evaluate the accuracy of ERA-40 snowfall. The East Antarctic is an exception, where calculated snow-ice production exceeds observed ice thickness over wide areas, suggesting that ERA-40 precipitation is too high there. Snow-ice thickness variability is strongly controlled not just by snow accumulation rates, but also by ice divergence. Surprisingly, snow-ice production is largely independent of snow depth, indicating that the latter may be a poor indicator of total snow accumulation. Using the presence of snow-ice formation as a proxy indicator for near-zero freeboard, we examine the possibility of estimating level ice thickness from satellite snow depths. A best estimate for the mean level ice thickness in September is 53 cm, comparing well with 51 cm from ship-based observations. The error is estimated to be 10-20 cm, which is similar to the observed interannual and regional variability. Nevertheless, this is comparable to expected errors for ice thickness determined by satellite altimeters. Improvement in satellite snow depth retrievals would benefit both of these methods.
Long-term Satellite Observations of Asian Dust Storm: Source, Pathway, and Interannual Variability
NASA Technical Reports Server (NTRS)
Hsu, N. Christina
2008-01-01
Among the many components that contribute to air pollution, airborne mineral dust plays an important role due to its biogeochemical impact on the ecosystem and its radiative-forcing effect on the climate system. In East Asia, dust storms frequently accompany the cold and dry air masses that occur as part of springtime cold front systems. Outbreaks of Asian dust storms occur often in the arid and semi-arid areas of northwestern China -about 1.6x10(exp 6) square kilometers including the Gobi and Taklimakan deserts- with continuous expanding of spatial coverage. These airborne dust particles, originating in desert areas far from polluted regions, interact with anthropogenic sulfate and soot aerosols emitted from Chinese megacities during their transport over the mainland. Adding the intricate effects of clouds and marine aerosols, dust particles reaching the marine environment can have drastically different properties than those from their sources. Furthermore, these aerosols, once generated over the source regions, can be transported out of the boundary layer into the free troposphere and can travel thousands of kilometers across the Pacific into the United States and beyond. In this paper, we will demonstrate the capability of a new satellite algorithm to retrieve aerosol properties (e.g., optical thickness, single scattering albedo) over bright-reflecting surfaces such as urban areas and deserts. Such retrievals have been difficult to perform using previously available algorithms that use wavelengths from the mid-visible to the near IR because they have trouble separating the aerosol signal from the contribution due to the bright surface reflectance. This new algorithm, called Deep Blue, utilizes blue-wavelength measurements from instruments such as SeaWiFS and MODIS to infer the properties of aerosols, since the surface reflectance over land in the blue part of the spectrum is much lower than for longer wavelength channels. Reasonable agreements have been achieved between Deep Blue retrievals of aerosol optical thickness and those directly from AERONET sunphotometers over desert and semi-desert regions. New Deep Blue products will allow scientists to determine quantitatively the aerosol properties near sources using high spatial resolution measurements from SeaWiFS and MODIS-like instruments. Long-term satellite measurements (1998 - 2007) from SeaWiFS will be utilized to investigate the interannual variability of source, pathway, and dust loading associated with the Asian dust storm outbreaks. In addition, monthly averaged aerosol optical thickness during the springtime from SeaWiFS will also be compared with the MODIS Deep Blue products.
The Effect of Nozzle Trailing Edge Thickness on Jet Noise
NASA Technical Reports Server (NTRS)
Henderson, Brenda; Kinzie, Kevin; Haskin, Henry
2004-01-01
The effect of nozzle trailing edge thickness on broadband acoustic radiation and the production of tones is investigated for coannular nozzles. Experiments were performed for a core nozzle trailing edge thickness between 0.38 mm and 3.17 mm. The on-set of discrete tones was found to be predominantly affected by the velocity ratio, the ratio of the fan velocity to the core velocity, although some dependency on trailing edge thickness was also noted. For a core nozzle trailing edge thickness greater than or equal to 0.89 mm, tones were produced for velocity ratios between 0.91 and 1.61. For a constant nozzle trailing edge thickness, the frequency varied almost linearly with the core velocity. The Strouhal number based on the core velocity changed with nozzle trailing edge thickness and varied between 0.16 and 0.2 for the core nozzles used in the experiments. Increases in broadband noise with increasing trailing edge thickness were observed for tone producing and non-tone producing conditions. A variable thickness trailing edge (crenellated) nozzle resulted in no tonal production and a reduction of the broadband trailing edge noise relative to that of the corresponding constant thickness trailing edge.
Rahman, A.; Tsai, F.T.-C.; White, C.D.; Willson, C.S.
2008-01-01
This study investigates capture zone uncertainty that relates to the coupled semivariogram uncertainty of hydrogeological and geophysical data. Semivariogram uncertainty is represented by the uncertainty in structural parameters (range, sill, and nugget). We used the beta distribution function to derive the prior distributions of structural parameters. The probability distributions of structural parameters were further updated through the Bayesian approach with the Gaussian likelihood functions. Cokriging of noncollocated pumping test data and electrical resistivity data was conducted to better estimate hydraulic conductivity through autosemivariograms and pseudo-cross-semivariogram. Sensitivities of capture zone variability with respect to the spatial variability of hydraulic conductivity, porosity and aquifer thickness were analyzed using ANOVA. The proposed methodology was applied to the analysis of capture zone uncertainty at the Chicot aquifer in Southwestern Louisiana, where a regional groundwater flow model was developed. MODFLOW-MODPATH was adopted to delineate the capture zone. The ANOVA results showed that both capture zone area and compactness were sensitive to hydraulic conductivity variation. We concluded that the capture zone uncertainty due to the semivariogram uncertainty is much higher than that due to the kriging uncertainty for given semivariograms. In other words, the sole use of conditional variances of kriging may greatly underestimate the flow response uncertainty. Semivariogram uncertainty should also be taken into account in the uncertainty analysis. ?? 2008 ASCE.
Ultra-Wideband Radar Measurements of Thickness of Snow Over Sea Ice
NASA Technical Reports Server (NTRS)
Kanagaratnam, P.; Markus, T.; Lytle, V.; Heavey, B.; Jansen, P.; Prescott, G.; Gogineni, S.
2007-01-01
An accurate knowledge of snow thickness and its variability over sea ice is crucial for determining the overall polar heat and freshwater budget, which influences the global climate. Recently, algorithms have been developed to extract snow thicknesses from passive microwave satellite data. However, validation of these data over the large footprint of the passive microwave sensor has been a challenge. The only method used thus far has been with meter sticks during ship cruises. To address this problem, we developed an ultra wideband frequency-modulated continuous-wave (FM-CW) radar to measure snow thickness over sea ice. We made snow-thickness measurements over Antarctic sea ice by operating the radar from a sled during September and October, 2003. We performed radar measurements over 11 stations with varying snow thickness between 4 and 85 cm. We observed excellent agreement between radar estimates of snow thickness with physical measurements, achieving a correlation coefficient of 0.95 and a vertical resolution of about 3 cm.
Spatial Evolution of the Thickness Variations over a CFRP Laminated Structure
NASA Astrophysics Data System (ADS)
Davila, Yves; Crouzeix, Laurent; Douchin, Bernard; Collombet, Francis; Grunevald, Yves-Henri
2017-10-01
Ply thickness is one of the main drivers of the structural performance of a composite part. For stress analysis calculations (e.g., finite element analysis), composite plies are commonly considered to have a constant thickness compared to the reality (coefficients of variation up to 9% of the mean ply thickness). Unless this variability is taken into account reliable property predictions cannot be made. A modelling approach of such variations is proposed using parameters obtained from a 16-ply quasi-isotropic CFRP plate cured in an autoclave. A discrete Fourier transform algorithm is used to analyse the frequency response of the observed ply and plate thickness profiles. The model inputs, obtained by a mathematical representation of the ply thickness profiles, permit the generation of a representative stratification considering the spatial continuity of the thickness variations that are in good agreement with the real ply profiles spread over the composite part. A residual deformation FE model of the composite plate is used to illustrate the feasibility of the approach.
X-ray spectral variability of Seyfert 2 galaxies
NASA Astrophysics Data System (ADS)
Hernández-García, L.; Masegosa, J.; González-Martín, O.; Márquez, I.
2015-07-01
Context. Variability across the electromagnetic spectrum is a property of active galactic nuclei (AGN) that can help constrain the physical properties of these galaxies. Nonetheless, the way in which the changes happen and whether they occur in the same way in every AGN are still open questions. Aims: This is the third in a series of papers with the aim of studying the X-ray variability of different families of AGN. The main purpose of this work is to investigate the variability pattern(s) in a sample of optically selected Seyfert 2 galaxies. Methods: We use the 26 Seyfert 2s in the Véron-Cetty and Véron catalog with data available from Chandra and/or XMM-Newton public archives at different epochs, with timescales ranging from a few hours to years. All the spectra of the same source were simultaneously fitted, and we let different parameters vary in the model. Whenever possible, short-term variations from the analysis of the light curves and/or long-term UV flux variations were studied. We divided the sample into Compton-thick and Compton-thin candidates to account for the degree of obscuration. When transitions between Compton-thick and thin were obtained for different observations of the same source, we classified it as a changing-look candidate. Results: Short-term variability at X-rays was studied in ten cases, but variations are not found. From the 25 analyzed sources, 11 show long-term variations. Eight (out of 11) are Compton-thin, one (out of 12) is Compton-thick, and the two changing-look candidates are also variable. The main driver for the X-ray changes is related to the nuclear power (nine cases), while variations at soft energies or related to absorbers at hard X-rays are less common, and in many cases these variations are accompanied by variations in the nuclear continuum. At UV frequencies, only NGC 5194 (out of six sources) is variable, but the changes are not related to the nucleus. We report two changing-look candidates, MARK 273 and NGC 7319. Conclusions: A constant reflection component located far away from the nucleus plus a variable nuclear continuum are able to explain most of our results. Within this scenario, the Compton-thick candidates are dominated by reflection, which suppresses their continuum, making them seem fainter, and they do not show variations (except MARK 3), while the Compton-thin and changing-look candidates do. Appendices are available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Sung, Shijun; Bajwa, Neha; Deng, Sophie X.; Taylor, Zachary; Grundfest, Warren
2016-03-01
Well-regulated corneal water content is critical for ocular health and function and can be adversely affected by a number of diseases and injuries. Current clinical practice limits detection of unhealthy corneal water content levels to central corneal thickness measurements performed by ultrasound or optical coherence tomography. Trends revealing increasing or decreasing corneal thickness are fair indicators of corneal water content by individual measurements are highly inaccurate due to the poorly understood relationship between corneal thickness and natural physiologic variation. Recently the utility of THz imaging to accuarately measure corneal water content has been explored on with rabbit models. Preliminary experiments revealed that contact with dielectric windows confounded imaging data and made it nearly impossible to deconvolve thickness variations due to contact from thickness variations due to water content variation. A follow up study with a new optical design allowed the acquisition of rabbit data and the results suggest that the observed, time varying contrast was due entirely to the water dynamics of the cornea. This paper presents the first ever in vivo images of human cornea. Five volunteers with healthy cornea were recruited and their eyes were imaged three times over the course of a few minutes with our novel imaging system. Noticeable changes in corneal reflectivity were observed and attributed to the drying of the tear film. The results suggest that clinically compatible, non-contact corneal imaging is feasible and indicate that signal acquired from non-contact imaging of the cornea is a complicated coupling of stromal water content and tear film.
Modeling of Thickness and Profile Uniformity of Thermally Sprayed Coatings Deposited on Cylinders
NASA Astrophysics Data System (ADS)
Yanjun, Zhang; Wenbo, Li; Dayu, Li; Jinkun, Xiao; Chao, Zhang
2018-02-01
In thermal spraying processes, kinematic parameters of the robot play a decisive role in the coating thickness and profile. In this regard, some achievements have been made to optimize the spray trajectory on flat surfaces. However, few reports have focused on nonholonomic or variable-curvature cylindrical surfaces. The aim of this study is to investigate the correlation between the coating profile, coating thickness, and scanning step, which is determined by the radius of curvature and scanning angle. A mathematical simulation model was developed to predict the thickness of thermally sprayed coatings. Experiments were performed on cylinders with different radiuses of curvature to evaluate the predictive ability of the model.
Investigation of percolation thickness of sputter coated thin NiCr films on clear float glass
NASA Astrophysics Data System (ADS)
Erkan, Selen; Arpat, Erdem; Peters, Sven
2017-11-01
Percolation thickness of reactively sputtered nickel chromium (NiCr) thin films is reported in this study. Nickel-chromium films with the thicknesses in between 1 and 10 nm were deposited on 4 mm clear glass substrate by dc magnetron sputtering. Optical properties such as refractive index, extinction coefficient and also sheet resistance, carrier concentration and mobility of NiCr films were determined by a combination of variable-angle spectroscopic ellipsometry and four point probe measurements. We show both the percolation phenomena in atmosphere and critical percolation thickness for thin NiCr films by both electrical and optical techniques. The two techniques gave consistent results with each other.
NASA Technical Reports Server (NTRS)
Jacobs, Eastman N
1932-01-01
Report presents the results of wind tunnel tests on a group of eight very thick airfoils having sections of the same thickness as those used near the roots of tapered airfoils. The tests were made to study certain discontinuities in the characteristic curves that have been obtained from previous tests of these airfoils, and to compare the characteristics of the different sections at values of the Reynolds number comparable with those attained in flight. The discontinuities were found to disappear as the Reynolds number was increased. The results obtained from the large-scale airfoil, a symmetrical airfoil having a thickness ratio of 21 per cent, has the best general characteristics.
How Thin Is Foil? Applying Density to Find the Thickness of Aluminum Foil
ERIC Educational Resources Information Center
Concannon, James P.
2011-01-01
In this activity, I show how high school students apply their knowledge of density to solve an unknown variable, such as thickness. Students leave this activity with a better understanding of density, the knowledge that density is a characteristic property of a given substance, and the ways density can be measured. (Contains 4 figures and 1 table.)
Impact of small-scale vegetation structure on tephra layer preservation
Cutler, Nick A.; Shears, Olivia M.; Streeter, Richard T.; Dugmore, Andrew J.
2016-01-01
The factors that influence tephra layer taphonomy are poorly understood, but vegetation cover is likely to play a role in the preservation of terrestrial tephra deposits. The impact of vegetation on tephra layer preservation is important because: 1) the morphology of tephra layers could record key characteristics of past land surfaces and 2) vegetation-driven variability in tephra thickness could affect attempts to infer eruption and dispersion parameters. We investigated small- (metre-) scale interactions between vegetation and a thin (<10 cm), recent tephra layer. We conducted surveys of vegetation structure and tephra thickness at two locations which received a similar tephra deposit, but had contrasting vegetation cover (moss vs shrub). The tephra layer was thicker and less variable under shrub cover. Vegetation structure and layer thickness were correlated on the moss site but not under shrub cover, where the canopy reduced the influence of understory vegetation on layer morphology. Our results show that vegetation structure can influence tephra layer thickness on both small and medium (site) scales. These findings suggest that some tephra layers may carry a signal of past vegetation cover. They also have implications for the sampling effort required to reliably estimate the parameters of initial deposits. PMID:27845415
NASA Technical Reports Server (NTRS)
Croke, E. T.; Wang, K. L.; Heyd, A. R.; Alterovitz, S. A.; Lee, C. H.
1996-01-01
Variable angle spectroscopic ellipsometry (VASE) has been used to characterize Si(x)Ge(1-x)/Ge superlattices (SLs) grown on Ge substrates and thick Si(x)Ge(1-x)/Ge heterostructures grown on Si substrates. Our VASE analysis yielded the thicknesses and alloy compositions of all layers within the optical penetration depth of the surface. In addition, strain effects were observed in the VASE results for layers under both compressive and tensile strain. Results for the SL structures were found to be in close agreement with high resolution x-ray diffraction measurements made on the same samples. The VASE analysis has been upgraded to characterize linearly graded Si(x)Ge(1-x) buffer layers. The algorithm has been used to determine the total thickness of the buffer layer along with the start and end alloy composition by breaking the total thickness into many (typically more than 20) equal layers. Our ellipsometric results for 1 (mu)m buffer layers graded in the ranges 0.7 less than or = x less than or = 1.0, and 0.5 less than or = x less than or = 1.0 are presented, and compare favorably with the nominal values.
Integrated Seismic Study of Weathering in Hawaiian Volcanic Flows
NASA Astrophysics Data System (ADS)
Yaede, J.; Nelson, S. J.; Flores, J. A.; Weber, M.; Turnbull, S.; Tingey, D. G.; Park, C.; McBride, J. H.
2012-12-01
Chemical weathering profiles of lateritic volcanic rocks in tropical environments can be used to estimate local-scale denudation rates and atmospheric CO2 removal, as well as evaluate ground stability during seismic events. However, the estimation of laterite thickness is a critical parameter. Characterizing laterites with traditional seismological methods can be difficult where discrete breaks in material properties are lacking and where velocity inversions are present. The multichannel analysis of surface waves (MASW) method was used to determine shear wave velocity profiles and integrated with standard walk-through reflection surveys (common mid-point "CMP" reflection profiles and first-break tomographic modeling). We performed experiments at the Schofield Barracks (United States Army), Oahu, Hawaii in which MASW and reflection results are correlated with geological constraints on laterite thicknesses and properties. Oahu is an ideal field laboratory for studying the effects of climate on chemical weathering due to the variation in climate (very wet to very dry) across the island, combined with a single type of bedrock (basalt). Baseline seismic experiments were conducted in the Sevier Desert near Fillmore, Utah, where young and relatively unweathered basalts are covered by valley fill at known depths. Our results indicate the effectiveness of an integrated approach for characterizing the acoustic properties of thick laterites. Study sites were chosen where laterite thicknesses were known from well logs or could be inferred from nearby deeply-incised ravines. Standard walk-through CMP reflection surveys exhibit reflectors within laterite horizons that probably reflect relict contrasts in the original volcanic stratigraphy. Coincident MASW measurements were conducted with repeated increased offsets in an attempt to improve resolution at depth. In many cases MASW profiles produced shear-wave velocity models that can be correlated with the CMP reflection profiles, well logs, and geologic observations. Multiple sites were examined at the Schofield Barracks, including profiles near one another in order to constrain the small-scale variability of laterite thickness. Once laterite thickness is estimated, a local mean weathering rate can be estimated by dividing the thickness of laterite by age of the underlying bedrock (~2 Ma in the case of Schofield Barracks). Application of this approach may also lead to improved site-specific characterization of seismic hazards and provide a baseline data set to compare topographically derived V s30 estimates.
Lin, Yi-Jia; Lee, Shih-Chi; Chang, Chao-Chin; Liu, Tsung-Han
2018-01-01
This study is aimed at determining the effects of midsole thickness on movement characteristic during side cutting movement. Fifteen athletes performed side-step cutting while wearing shoes with varying midsole thicknesses. Temporal-spatial and ground reaction force variables as well as foot and ankle frontal kinematics were used to describe breaking and propulsive movement characteristics and modulation strategies. Regardless of midsole thickness, temporal-spatial variables and breaking and propulsive force during side cutting were statistically unchanged. Significantly greater peaks of ankle inversion and plantarflexion with a thicker sole and greater midtarsal pronation with a thinner sole were observed. Current results demonstrated that hypotheses formed solely based on material testing were insufficient to understand the adaptations in human movement because of the redundancy of the neuromusculoskeletal system. Participants were able to maintain temporal-spatial performance during side cutting while wearing shoes with midsoles of varying thicknesses. Increased pronation for a thinner sole might help reduce the force of impact but might be associated with an increased risk of excessive stress on soft tissue. Increased peak of ankle inversion and plantarflexion for a thicker sole may be unfavorable for the stability of ankle joint. Information provided in human movement testing is crucial for understanding factors associated with movement characteristics and injury and should be considered in the future development of shoe design. PMID:29854000
Historical trend in river ice thickness and coherence in hydroclimatological trends in Maine
Huntington, T.G.; Hodgkins, G.A.; Dudley, R.W.
2003-01-01
We analyzed long-term records of ice thickness on the Piscataquis River in central Maine and air temperature in Maine to determine whether there were temporal trends that were associated with climate warming. The trend in ice thickness was compared and correlated with regional time series of winter air temperature, heating degree days (HDD), date of river ice-out, seasonal center-of-volume date (SCVD) (date on which half of the stream runoff volume during the period 1 Jan. to 31 May has occurred), water temperature, and lake ice-out date. All of these variables except lake ice-out date showed significant temporal trends during the 20th century. Average ice thickness around 28 February decreased by about 23 cm from 1912 to 2001. Over the period 1900 to 1999, winter air temperature increased by 1.7??C and HDD decreased by about 7.5%. Final ice-out date on the Piscataquis River occurred earlier (advanced), by 0.21 days yr-1 over the period 1931 to 2002, and the SCVD advanced by 0.11 days yr-1 over the period 1903 to 2001. Ice thickness was significantly correlated (P-value < 0.01) with winter air temperature, HDD, river ice-out, and SCVD. These systematic temporal trends in multiple hydrologic indicator variables indicate a coherent response to climate forcing.
Large birefringence and linear dichroism in TiS3 nanosheets.
Papadopoulos, Nikos; Frisenda, Riccardo; Biele, Robert; Flores, Eduardo; Ares, Jose R; Sánchez, Carlos; van der Zant, Herre S J; Ferrer, Isabel J; D'Agosta, Roberto; Castellanos-Gomez, Andres
2018-06-21
TiS3 nanosheets have proven to be promising candidates for ultrathin optoelectronic devices due to their direct narrow band-gap and the strong light-matter interaction. In addition, the marked in-plane anisotropy of TiS3 is appealing for the fabrication of polarization sensitive optoelectronic devices. Herein, we study the optical contrast of TiS3 nanosheets of variable thickness on SiO2/Si substrates, from which we obtain the complex refractive index in the visible spectrum. We find that TiS3 exhibits very large birefringence, larger than that of well-known strong birefringent materials like TiO2 or calcite, and linear dichroism. These findings are in qualitative agreement with ab initio calculations that suggest an excitonic origin for the birefringence and linear dichroism of the material.
Arctic Sea ice thickness loss determined using subsurface, aircraft, and satellite observations
NASA Astrophysics Data System (ADS)
Lindsay, R. W.; Schweiger, A. J. B.
2014-12-01
Sea ice thickness is a fundamental climate state variable. However, observations of ice thickness have been sparse in time and space making the construction of observation-based time series difficult. Moreover, different groups use a variety of methods and processing procedures to measure ice thickness and each observational source likely has different and poorly characterized measurement and sampling biases. Observational sources include upward looking sonars mounted on submarines or moorings, electromagnetic sensors on helicopters or aircraft, and lidar or radar altimeters on airplanes or satellites. Are these data sources now adequate so that we can construct time series of the mean sea ice thickness with meaningful information about thickness changes? How do the different measurement systems compare in the mean? Are there systematic differences? Very few of the observations provide overlapping measurements of ice of a variety of thickness classes or types for direct comparisons. Error characteristics may vary considerably depending on the presence or thickness of the ridged ice. Here we use a curve-fitting approach to evaluate the systematic differences between eight different observation systems in the Arctic Basin, including ICESat and IceBridge measurements. The approach determines the large-scale spatial and temporal variability of the ice thickness as well as the mean differences between the observation systems using over 3000 estimates of the ice thickness. The thickness estimates are measured over spatial scales of approximately 50 km or time scales of 1 month and the primary time period analyzed is 2000-2013 when the modern mix of observations is available. Good agreement is found between five of the systems, within 0.15 m, while systematic differences of up to 0.5 m are found for three others compare to the five. The annual mean ice thickness for the central Arctic Basin based on observations only has decreased from 3.45 m in 1975 to 1.11 m in 2013, a 68% reduction and there is no indication it may be leveling off as seen in an earlier study of submarine ice drafts by Rothrock et al. (2008). This is nearly double the 36% decline report by them. These results provide additional direct observational confirmation of sea ice losses found in model reanalyses.
Characterization of the Infrared/X-ray sub-second variability for the black-hole transient GX 339-4
NASA Astrophysics Data System (ADS)
Vincentelli, F. M.; Casella, P.; Maccarone, T. J.; Uttley, P.; Gandhi, P.; Belloni, T.; De Marco, B.; Russell, D. M.; Stella, L.; O'Brien, K.
2018-03-01
We present a detailed analysis of the X-ray/IR fast variability of the Black-Hole Transient GX 339-4 during its low/hard state in August 2008. Thanks to simultaneous high time-resolution observations made with the VLT and RXTE, we performed the first characterisation of the sub-second variability in the near-infrared band - and of its correlation with the X-rays - for a low-mass X-ray binary, using both time- and frequency-domain techniques. We found a power-law correlation between the X-ray and infrared fluxes when measured on timescales of 16 seconds, with a marginally variable slope, steeper than the one found on timescales of days at similar flux levels. We suggest the variable slope - if confirmed - could be due to the infrared flux being a non-constant combination of both optically thin and optically thick synchrotron emission from the jet, as a result of a variable self-absorption break. From cross spectral analysis we found an approximately constant infrared time lag of ≈0.1s, and a very high coherence of ˜90 per cent on timescales of tens of seconds, slowly decreasing toward higher frequencies. Finally, we report on the first detection of a linear rms-flux relation in the emission from a low-mass X-ray binary jet, on timescales where little correlation is found between the X-rays and the jet emission itself. This suggests that either the inflow variations and jet IR emission are coupled by a non-linear or time-variable transform, or that the IR rms-flux relation is not transferred from the inflow to the jet, but is an intrinsic property of emission processes in the jet.
Characterization of the infrared/X-ray subsecond variability for the black hole transient GX 339-4
NASA Astrophysics Data System (ADS)
Vincentelli, F. M.; Casella, P.; Maccarone, T. J.; Uttley, P.; Gandhi, P.; Belloni, T.; De Marco, B.; Russell, D. M.; Stella, L.; O'Brien, K.
2018-07-01
We present a detailed analysis of the X-ray/IR fast variability of the Black-Hole Transient GX 339-4 during its low/hard state in 2008 August. Thanks to simultaneous high time resolution observations made with the VLT and RXTE, we performed the first characterization of the subsecond variability in the near-infrared band - and of its correlation with the X-rays - for a low-mass X-ray binary, using both time- and frequency-domain techniques. We found a power-law correlation between the X-ray and infrared fluxes when measured on time-scales of 16 s, with a marginally variable slope, steeper than the one found on time-scales of days at similar flux levels. We suggest the variable slope - if confirmed - could be due to the infrared flux being a non-constant combination of both optically thin and optically thick synchrotron emission from the jet, as a result of a variable self-absorption break. From cross spectral analysis, we found an approximately constant infrared time lag of ≈0.1 s, and a very high coherence of ˜90 per cent on time-scales of tens of seconds, slowly decreasing towards higher frequencies. Finally, we report on the first detection of a linear rms-flux relation in the emission from a low-mass X-ray binary jet, on time-scales where little correlation is found between the X-rays and the jet emission itself. This suggests that either the inflow variations and jet IR emission are coupled by a non-linear or time-variable transform, or that the IR rms-flux relation is not transferred from the inflow to the jet, but is an intrinsic property of emission processes in the jet.
NASA Astrophysics Data System (ADS)
Fischer, D.; Hertwig, A.; Beck, U.; Negendank, D.; Lohse, V.; Kormunda, M.; Esser, N.
2017-11-01
In this study, thickness related changes of the optical properties of doped tin oxide were studied. Two different sets of samples were prepared. The first set was doped with iron or nickel on silicon substrate with thicknesses of 29-56 nm, the second was iron doped on gold/glass substrate with 1.6-6.3 nm. The optical constants were determined by using spectral ellipsometry (SE) followed by modelling of the dielectric function with an oscillator model using Gaussian peaks. The analysis of the optical constants shows a dependence of the refraction and the absorption on the thickness of the doped tin oxide coating. In addition to the tin oxide absorption in the UV, one additional absorption peak was found in the near-IR/red which is related to plasmonic effects due to the doping. This peak shifts from the near-IR to the red part of the visible spectrum and becomes stronger by reducing the thickness, probably due to the formation of metal nanoparticles in this layer. These results were found for two different sets of samples by using the same optical model. Afterwards the second sample set was tested in the Surface Plasmon Resonance Enhanced Ellipsometric (SPREE) gas measurement with CO gas. It was found that the thickness has significant influence on the sensitivity and thus the adsorption of the CO gas. By increasing the thickness from 1.6 nm to 5.1 nm, the sensing ability is enhanced due to a higher coverage of the surface with the over coating. This is explained by the high affinity of CO molecules to the incorporated Fe-nanoparticles in the tin oxide coating. By increasing the thickness further to 6.3 nm, the sensing ability drops because the layer disturbs the SPR sensing effect too much.
Evolution of multidecadal variability in the West African monsoon during the last deglaciation
NASA Astrophysics Data System (ADS)
Shanahan, T. M.; McKay, N.
2017-12-01
The West African monsoon system is strongly linked to changes in Atlantic variability on multidecadal to millennial timescales. Understanding the nature of these linkages thus provides important insights into the susceptibility of West African precipitation to past and future changes in Atlantic circulation. Here, we use an annually-resolved record of lamination thickness variations from Lake Bosumtwi, Ghana to generate an unprecedented record of changes in the West African monsoon spanning the last deglaciation ( 12.8-24 ka BP) and the latest Holocene (0-2.6 ka BP). Millennial-scale variability in varve thickness is consistent with published data from hydrogen isotopes in leaf waxes, showing a dramatic and sustained shift to drier conditions during HS1, a rapid recovery at the onset of the Bølling-Allerød and a gradual shift towards drier conditions following the end of the African Humid Period. The varve thickness record also indicates the presence of significant multidecadal ( 40- 80 years) West African monsoon variability throughout much of the record, disappearing only during the later portion of HS1 ( 14.8-16 ka BP). Previous studies have linked multidecadal variability in the West African monsoon to the Atlantic Multidecadal Oscillation (AMO), a low frequency mode of North Atlantic sea surface temperature variability that is hypothesized to be controlled by changes in North Atlantic heat transport via the Atlantic Meridional Overturning Circulation (AMOC). Our reconstruction indicates that this mode of multidecadal variability was active not only throughout the late Holocene but during the Last Glacial Maximum and much of the deglaciation, including the first half of HS1. The later result is unexpected in that it suggests that the AMO remained active even as the Atlantic overturning circulation collapsed and the African monsoon weakened during the initial phase of HS1. The decoupling of multidecadal and millennial scale variability suggests either a complex, time-transgressive Atlantic circulation response to changing conditions during HS1 or that the driver of multidecadal variability resides in some process other than the AMOC.
Kinetics of sub-spinodal dewetting of thin films of thickness dependent viscosity.
Kotni, Tirumala Rao; Khanna, Rajesh; Sarkar, Jayati
2017-05-04
An alternative explanation of the time varying and very low growth exponents in dewetting of polymer films like polystyrene films is presented based on non-linear simulations. The kinetics of these films is explored within the framework of experimentally observed thickness dependent viscosity. These films exhibit sub-spinodal dewetting via formation of satellite holes in between primary dewetted holes under favorable conditions of excess intermolecular forces and film thicknesses. We find that conditions responsible for sub-spinodal dewetting concurrently lead to remarkable changes in the kinetics of dewetting of even primary holes. For example, the radius of the hole grows in time with a power-law growth exponent sequence of [Formula: see text], in contrast to the usual ∼4/5. This is due to the cumulative effect of reduced rim mobility due to thickness dependent viscosity and hindrance created by satellite holes.
Model for thickness dependence of radiation charging in MOS structures
NASA Technical Reports Server (NTRS)
Viswanathan, C. R.; Maserjian, J.
1976-01-01
The model considers charge buildup in MOS structures due to hole trapping in the oxide and the creation of sheet charge at the silicon interface. The contribution of hole trapping causes the flatband voltage to increase with thickness in a manner in which square and cube dependences are limiting cases. Experimental measurements on samples covering a 200 - 1000 A range of oxide thickness are consistent with the model, using independently obtained values of hole-trapping parameters. An important finding of our experimental results is that a negative interface charge contribution due to surface states created during irradiation compensates most of the positive charge in the oxide at flatband. The tendency of the surface states to 'track' the positive charge buildup in the oxide, for all thicknesses, applies both in creation during irradiation and in annihilation during annealing. An explanation is proposed based on the common defect origin of hole traps and potential surface states.
Degree of Ice Particle Surface Roughness Inferred from Polarimetric Observations
NASA Technical Reports Server (NTRS)
Hioki, Souichiro; Yang, Ping; Baum, Bryan A.; Platnick, Steven; Meyer, Kerry G.; King, Michael D.; Riedi, Jerome
2016-01-01
The degree of surface roughness of ice particles within thick, cold ice clouds is inferred from multidirectional, multi-spectral satellite polarimetric observations over oceans, assuming a column-aggregate particle habit. An improved roughness inference scheme is employed that provides a more noise-resilient roughness estimate than the conventional best-fit approach. The improvements include the introduction of a quantitative roughness parameter based on empirical orthogonal function analysis and proper treatment of polarization due to atmospheric scattering above clouds. A global 1-month data sample supports the use of a severely roughened ice habit to simulate the polarized reflectivity associated with ice clouds over ocean. The density distribution of the roughness parameter inferred from the global 1- month data sample and further analyses of a few case studies demonstrate the significant variability of ice cloud single-scattering properties. However, the present theoretical results do not agree with observations in the tropics. In the extra-tropics, the roughness parameter is inferred but 74% of the sample is out of the expected parameter range. Potential improvements are discussed to enhance the depiction of the natural variability on a global scale.
NASA Astrophysics Data System (ADS)
Moritz, R. E.
2005-12-01
The properties, distribution and temporal variation of sea-ice are reviewed for application to problems of ice-atmosphere chemical processes. Typical vertical structure of sea-ice is presented for different ice types, including young ice, first-year ice and multi-year ice, emphasizing factors relevant to surface chemistry and gas exchange. Time average annual cycles of large scale variables are presented, including ice concentration, ice extent, ice thickness and ice age. Spatial and temporal variability of these large scale quantities is considered on time scales of 1-50 years, emphasizing recent and projected changes in the Arctic pack ice. The amount and time evolution of open water and thin ice are important factors that influence ocean-ice-atmosphere chemical processes. Observations and modeling of the sea-ice thickness distribution function are presented to characterize the range of variability in open water and thin ice.
NASA Astrophysics Data System (ADS)
Maguen, Ezra I.; Papaioannou, Thanassis; Nesburn, Anthony B.; Salz, James J.; Warren, Cathy; Grundfest, Warren S.
1996-05-01
Multivariable regression analysis was used to evaluate the combined effects of some preoperative and operative variables on the change of refraction following excimer laser photorefractive keratectomy for myopia (PRK). This analysis was performed on 152 eyes (at 6 months postoperatively) and 156 eyes (at 12 months postoperatively). The following variables were considered: intended refractive correction, patient age, treatment zone, central corneal thickness, average corneal curvature, and intraocular pressure. At 6 months after surgery, the cumulative R2 was 0.43 with 0.38 attributed to the intended correction and 0.06 attributed to the preoperative corneal curvature. At 12 months, the cumulative R2 was 0.37 where 0.33 was attributed to the intended correction, 0.02 to the preoperative corneal curvature, and 0.01 to both preoperative corneal thickness and to the patient age. Further model augmentation is necessary to account for the remaining variability and the behavior of the residuals.
Effects of drilling variables on burr properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillespie, L.K.
1976-09-01
An investigation utilizing 303Se stainless steel, 17-4PH stainless steel, 1018 steel, and 6061-T6 aluminum was conducted to determine the influence of drilling variables in controlling burr size to minimize burr-removal cost and improve the quality and reliability of parts for small precision mechanisms. Burr thickness can be minimized by reducing feedrate and cutting velocity, and by using drills having high helix angles. High helix angles reduce burr thickness, length, and radius, while most other variables reduce only one of these properties. Radial-lip drills minimize burrs from 303Se stainless steel when large numbers of holes are drilled; this material stretches 10more » percent before drill-breakthrough. Entrance burrs can be minimized by the use of subland drills at a greatly increased tool cost. Backup-rods used in cross-drilled holes may be difficult to remove and may scratch the hole walls.« less
Diana, Alessia; Guglielmini, Carlo; Fracassi, Federico; Pietra, Marco; Balletti, Erika; Cipone, Mario
2008-09-01
To assess the usefulness of high-frequency diagnostic ultrasonography for evaluation of changes of skin thickness in relation to hydration status and fluid distribution at various cutaneous sites in dogs. 10 clinically normal adult dogs (6 males and 4 females) of various breeds. Ultrasonographic examination of the skin was performed before and after hydration via IV administration of an isotonic crystalloid solution (30 mL/kg/h for 30 minutes). A 13-MHz linear-array transducer was used to obtain series of ultrasonographic images at 4 different cutaneous sites (the frontal, sacral, flank, and metatarsal regions). Weight and various clinicopathologic variables (PCV; serum osmolality; and serum total protein, albumin, and sodium concentrations) were determined before and after the infusion. These variables and ultrasonographic measurements of skin thickness before and after hydration were compared. Among the 10 dogs, mean preinfusion skin thickness ranged from 2,211 microm (metatarsal region) to 3,249 microm (sacral region). Compared with preinfusion values, weight was significantly increased, whereas PCV; serum osmolality; and serum total protein, albumin, and sodium concentrations were significantly decreased after infusion. After infusion, dermal echogenicity decreased and skin thickness increased significantly by 21%, 14%, 15%, and 13% in the frontal, sacral, flank, and metatarsal regions, respectively. Cutaneous site and hydration were correlated with cutaneous characteristics and skin thickness determined by use of high-frequency ultrasonography in dogs. Thus, diagnostic ultrasonography may be a useful tool for the noninvasive evaluation of skin hydration in healthy dogs and in dogs with skin edema.
NASA Technical Reports Server (NTRS)
Alterovitz, S. A.; Sieg, R. M.; Yao, H. D.; Snyder, P. G.; Woollam, J. A.; Pamulapati, J.; Bhattacharya, P. K.; Sekula-Moise, P. A.
1991-01-01
Variable-angle spectroscopic ellipsometry was used to estimate the thicknesses of all layers within the optical penetration depth of InGaAs-based modulation doped field effect transistor structures. Strained and unstrained InGaAs channels were made by molecular beam epitaxy (MBE) on InP substrates and by metal-organic chemical vapor deposition on GaAs substrates. In most cases, ellipsometrically determined thicknesses were within 10% of the growth-calibration results. The MBE-made InGaAs strained layers showed large strain effects, indicating a probable shift in the critical points of their dielectric function toward the InP lattice-matched concentration.
Analytical modeling and tolerance analysis of a linear variable filter for spectral order sorting.
Ko, Cheng-Hao; Chang, Kuei-Ying; Huang, You-Min
2015-02-23
This paper proposes an innovative method to overcome the low production rate of current linear variable filter (LVF) fabrication. During the fabrication process, a commercial coater is combined with a local mask on a substrate. The proposed analytical thin film thickness model, which is based on the geometry of the commercial coater, is developed to more effectively calculate the profiles of LVFs. Thickness tolerance, LVF zone width, thin film layer structure, transmission spectrum and the effects of variations in critical parameters of the coater are analyzed. Profile measurements demonstrate the efficacy of local mask theory in the prediction of evaporation profiles with a high degree of accuracy.
Design and Experimental Results for the S825 Airfoil; Period of Performance: 1998-1999
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somers, D. M.
2005-01-01
A 17%-thick, natural-laminar-flow airfoil, the S825, for the 75% blade radial station of 20- to 40-meter, variable-speed and variable-pitch (toward feather), horizontal-axis wind turbines has been designed and analyzed theoretically and verified experimentally in the NASA Langley Low-Turbulence Pressure Tunnel. The two primary objectives of high maximum lift, relatively insensitive to roughness and low-profile drag have been achieved. The airfoil exhibits a rapid, trailing-edge stall, which does not meet the design goal of a docile stall. The constraints on the pitching moment and the airfoil thickness have been satisfied. Comparisons of the theoretical and experimental results generally show good agreement.
NASA Astrophysics Data System (ADS)
Shui, Lang; Cui, Zhixiang; Ma, Xiaodong; Jiang, Xu; Chen, Mao; Xiang, Yong; Zhao, Baojun
2018-05-01
The bottom-blown copper smelting furnace is a novel copper smelter developed in recent years. Many advantages of this furnace have been found, related to bath mixing behavior under its specific gas injection scheme. This study aims to use an oil-water double-phased laboratory-scale model to investigate the impact of industry-adjustable variables on bath mixing time, including lower layer thickness, gas flow rate, upper layer thickness and upper layer viscosity. Based on experimental results, an overall empirical relationship of mixing time in terms of these variables has been correlated, which provides the methodology for industry to optimize mass transfer in the furnace.
NASA Astrophysics Data System (ADS)
Ursini, F.; Petrucci, P.-O.; Matt, G.; Bianchi, S.; Cappi, M.; Dadina, M.; Grandi, P.; Torresi, E.; Ballantyne, D. R.; De Marco, B.; De Rosa, A.; Giroletti, M.; Malzac, J.; Marinucci, A.; Middei, R.; Ponti, G.; Tortosa, A.
2018-05-01
We present the analysis of five joint XMM-Newton/NuSTARobservations, 20 ks each and separated by 12 days, of the broad-line radio galaxy 3C 382. The data were obtained as part of a campaign performed in September-October 2016 simultaneously with VLBA. The radio data and their relation with the X-ray ones will be discussed in a following paper. The source exhibits a moderate flux variability in the UV/X-ray bands, and a limited spectral variability especially in the soft X-ray band. In agreement with past observations, we find the presence of a warm absorber, an iron Kα line with no associated Compton reflection hump, and a variable soft excess well described by a thermal Comptonization component. The data are consistent with a "two-corona" scenario, in which the UV emission and soft excess are produced by a warm (kT ≃ 0.6 keV), optically thick (τ ≃ 20) corona consistent with being a slab fully covering a nearly passive accretion disc, while the hard X-ray emission is due to a hot corona intercepting roughly 10% of the soft emission. These results are remarkably similar to those generally found in radio-quiet Seyferts, thus suggesting a common accretion mechanism.
NASA Astrophysics Data System (ADS)
Liu, Yuanyuan; Huang, Jiamu; Claypool, James B.; Castano, Carlos E.; O'Keefe, Matthew J.
2015-11-01
Cerium oxide based coatings from ∼100 to ∼1400 nm in thickness were deposited onto Al 2024-T3 alloy substrates by magnetron sputtering of a 99.99% pure CeO2 target. The crystallite size of CeO2 coatings increased from 15 nm to 46 nm as the coating thickness increased from ∼100 nm to ∼1400 nm. The inhomogeneous lattice strain increased from 0.36% to 0.91% for the ∼100 nm to ∼900 nm thick coatings and slightly decreased to 0.89% for the ∼1400 nm thick coating. The highest adhesion strength to Al alloy substrates was for the ∼210 nm thick coating, due to a continuous film coverage and low internal stress. Electrochemical measurements indicated that sputter deposited crystalline CeO2 coatings acted as physical barriers that provide good cathodic inhibition for Al alloys in saline solution. The ∼900 nm thick CeO2 coated sample had the best corrosion performance that increased the corrosion resistance by two orders magnitude and lowered the cathodic current density 30 times compared to bare Al 2024-T3 substrates. The reduced defects and exposed surface, along with suppressed charge mobility, likely accounts for the improved corrosion performance as coating thickness increased from ∼100 nm to ∼900 nm. The corrosion performance decreased for ∼1400 nm thick coatings due in part to an increase in coating defects and porosity along with a decrease in adhesion strength.
Depositional history of the Fire Clay coal bed (Late Duckmantian), Eastern Kentucky, USA
Greb, S.F.; Eble, C.F.; Hower, J.C.
1999-01-01
More than 3800 coal thickness measurements, proximate analyses from 97 localities, and stratigraphic and sedimentological analyses from more than 300 outcrops and cores were used in conjunction with previously reported palynological and petrographic studies to map individual benches of the coal and document bench-scale variability in the Fire Clay (Hazard No. 4) coal bed across a 1860 km2 area of the Eastern Kentucky Coal Field. The bench architecture of the Fire Clay coal bed consists of uncommon leader benches, a persistent but variable lower bench, a widespread, and generally thick upper bench, and local, variable rider benches. Rheotrophic conditions are inferred for the leader benches and lower bench based on sedimentological associations, mixed palynomorph assemblages, locally common cannel coal layers, and generally high ash yields. The lower bench consistently exhibits vertical variability in petrography and palynology that reflects changing trophic conditions as topographic depressions infilled. Infilling also led to unconfined flooding and ultimately the drowning of the lower bench mire. The drowned mire was covered by an air-fall volcanic-ash deposit, which produced the characteristic flint clay parting. The extent and uniform thickness of the parting suggests that the ash layer was deposited in water on a relatively flat surface without a thick canopy or extensive standing vegetation across most of the study area. Ash deposits led to regional ponding and establishment of a second planar mire. Because the topography had become a broadly uniform, nutrient-rich surface, upper-bench peats became widespread with large areas of the mire distant to clastic sources. Vertical sections of thick (> 70 cm), low-ash yield, upper coal bench show a common palynomorph change from arborescent lycopod dominance upward to fern and densospore-producing, small lycopod dominance, inferred as a shift from planar to ombrotrophic mire phases. Domed mires appear to have been surrounded by wide areas of planar mires, where the coal was thinner (< 70 cm), higher in ash yield, and dominated by arborescent lycopods. Rectangular thickness trends suggest that syndepositional faulting influenced peat accumulation, and possibly the position of the domed mire phase. Faulting also influenced post-depositional clastic environments of deposition, resulting in sandstone channels with angular changes in orientation. Channels and lateral facies were locally draped by high-ash-yield rider coal benches, which sometimes merged with the upper coal bench. These arborescent-lycopod dominant rider coal benches were profoundly controlled by palcotopography, much like the leader coal benches. Each of the benches of coal documented here represent distinctly different mires that came together to form the Fire Clay coal bed, rather than a single mire periodically split by clastic influx. This is significant as each bench of the coal has its own characteristics, which contribute to the total coal characteristics. The large data set allows interpretation of both vertical and lateral limits to postulated domed phases in the upper coal bench, and to the delineation of subtle tectonic structures that allow for meaningful thickness projections beyond the limits of present mining.A study was conducted to analyze the depositional history of the Fire Clay coal bed in the eastern Kentucky coal field. The study involved over 3800 coal thickness measurements, proximate analyses from 97 localities, and stratigraphic and sedimentological analyses from more than 300 outcrops and cores in conjunction with previously reported palynological and petrographic studies to map individual benches of the coal and document bench-scale variability.
Knechtle, Beat; Knechtle, Patrizia; Andonie, Jorge Luis; Kohler, Götz
2007-01-01
Objective To investigate the influence of anthropometric variables on race performance in ultra‐endurance triathletes in an ultra‐triathlon. Design Descriptive field study. Setting The “World Challenge Deca Iron Triathlon 2006” in Monterrey, Mexico, in which everyday for 10 consecutive days athletes had to perform the distance of one Ironman triathlon of 3.8 km swimming, 180 km cycling and 42.195 km running. Subjects Eight male ultra‐endurance athletes (mean (SD) age 40.6 (10.7) years, weight 76.4 (8.4) kg, height 175 (4) cm and body mass index (BMI) 24.7 (2.2) kg/m2). Interventions None. Main outcome measures Direct measurement of body mass, height, leg length, skinfold thicknesses, limb circumference and calculation of BMI, skeletal muscle mass (SM), percentage SM (%SM) and percentage body fat (%BF) in order to correlate measured and calculated anthropometric variables with race performance. Results Race time was not significantly (p>0.05) influenced by the directly measured variables, height, leg length, body mass, average skinfold thicknesses, or circumference of thigh, calf or upper arm. Furthermore, no significant (p>0.05) correlation was observed between race time and the calculated variables, BMI, %SM and %BF. Conclusions In a multistage ultra‐triathlon over 10 Ironman triathlon distances in 10 consecutive days, there was no effect of body mass, height, leg length, skinfold thicknesses, limb circumference, BMI, %SM or %BF on race performance in the only eight finishers. PMID:17556527
Tendon Adaptation to Sport-specific Loading in Adolescent Athletes.
Cassel, M; Carlsohn, A; Fröhlich, K; John, M; Riegels, N; Mayer, F
2016-02-01
Tendon adaptation due to mechanical loading is controversially discussed. However, data concerning the development of tendon thickness in adolescent athletes is sparse. The purpose of this study was to examine possible differences in Achilles (AT) and patellar tendon (PT) thickness in adolescent athletes while considering age, gender and sport-specific loading. In 500 adolescent competitive athletes of 16 different sports and 40 recreational controls both ATs and PTs were sonographically measured. Subjects were divided into 2 age groups (< 13; ≥ 13 years) and 6 sport type categories (ball, combat, and water sports, combined disciplines, cycling, controls). In addition, 3 risk groups (low, moderate, high) were created according to the athlete's risk of developing tendinopathy. AT and PT thickness did not significantly differ between age groups (AT/PT:<13: 5.4±0.7 mm/3.6±0.5 mm;≥13: 5.3±0.7 mm/3.6±0.5 mm). In both age groups males presented higher tendon thickness than females (p<0.001). AT thickness was highest in ball sports/cyclists and lowest in controls (p≤0.002). PT thickness was greatest in water sports and lowest in controls (p=0.02). High risk athletes presented slightly higher AT thickness compared to the low risk group (p=0.03). Increased AT and PT thickness in certain sport types compared to controls supports the hypothesis of structural tendon adaptation due to sport-specific loading. © Georg Thieme Verlag KG Stuttgart · New York.
High-frequency guided ultrasonic waves to monitor corrosion thickness loss
NASA Astrophysics Data System (ADS)
Fromme, Paul; Bernhard, Fabian; Masserey, Bernard
2017-02-01
Corrosion due to adverse environmental conditions can occur for a range of industrial structures, e.g., ships and offshore oil platforms. Pitting corrosion and generalized corrosion can lead to the reduction of the strength and thus degradation of the structural integrity. The nondestructive detection and monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided ultrasonic waves propagating along the structure. Using standard ultrasonic transducers with single sided access to the structure, the two fundamental Lamb wave modes were selectively generated simultaneously, penetrating through the complete thickness of the structure. The wave propagation and interference of the guided wave modes depends on the thickness of the structure. Numerical simulations were performed using a 2D Finite Difference Method (FDM) algorithm in order to visualize the guided wave propagation and energy transfer across the plate thickness. Laboratory experiments were conducted and the wall thickness reduced initially uniformly by milling of the steel structure. Further measurements were conducted using accelerated corrosion in salt water. From the measured signal change due to the wave mode interference, the wall thickness reduction was monitored and good agreement with theoretical predictions was achieved. Corrosion can lead to non-uniform thickness reduction and the influence of this on the propagation of the high frequency guided ultrasonic waves was investigated. The wave propagation in a steel specimen with varying thickness was measured experimentally and the influence on the wave propagation characteristics quantified.
Corrosion monitoring using high-frequency guided ultrasonic waves
NASA Astrophysics Data System (ADS)
Fromme, Paul
2014-02-01
Corrosion develops due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the structural integrity. The nondestructive detection and monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, guided wave modes were generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted and the wall thickness reduced by consecutive milling of the steel structure. Further measurements were conducted using accelerated corrosion in a salt water bath and the damage severity monitored. From the measured signal change due to the wave mode interference the wall thickness reduction was monitored. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.
Histogram Matching Extends Acceptable Signal Strength Range on Optical Coherence Tomography Images
Chen, Chieh-Li; Ishikawa, Hiroshi; Wollstein, Gadi; Bilonick, Richard A.; Sigal, Ian A.; Kagemann, Larry; Schuman, Joel S.
2015-01-01
Purpose. We minimized the influence of image quality variability, as measured by signal strength (SS), on optical coherence tomography (OCT) thickness measurements using the histogram matching (HM) method. Methods. We scanned 12 eyes from 12 healthy subjects with the Cirrus HD-OCT device to obtain a series of OCT images with a wide range of SS (maximal range, 1–10) at the same visit. For each eye, the histogram of an image with the highest SS (best image quality) was set as the reference. We applied HM to the images with lower SS by shaping the input histogram into the reference histogram. Retinal nerve fiber layer (RNFL) thickness was automatically measured before and after HM processing (defined as original and HM measurements), and compared to the device output (device measurements). Nonlinear mixed effects models were used to analyze the relationship between RNFL thickness and SS. In addition, the lowest tolerable SSs, which gave the RNFL thickness within the variability margin of manufacturer recommended SS range (6–10), were determined for device, original, and HM measurements. Results. The HM measurements showed less variability across a wide range of image quality than the original and device measurements (slope = 1.17 vs. 4.89 and 1.72 μm/SS, respectively). The lowest tolerable SS was successfully reduced to 4.5 after HM processing. Conclusions. The HM method successfully extended the acceptable SS range on OCT images. This would qualify more OCT images with low SS for clinical assessment, broadening the OCT application to a wider range of subjects. PMID:26066749
Gong, Chunmei; Yang, Bin; Shi, Yarong; Liu, Zhongqiong; Wan, Lili; Zhang, Hong; Jiang, Denghua; Zhang, Lian
2016-08-01
Objectives The aim of this study was to investigate factors affecting ablative efficiency of high intensity focused ultrasound (HIFU) for adenomyosis. Materials and methods In all, 245 patients with adenomyosis who underwent ultrasound guided HIFU (USgHIFU) were retrospectively reviewed. All patients underwent dynamic contrast-enhanced magnetic resonance imaging (MRI) before and after HIFU treatment. The non-perfused volume (NPV) ratio, energy efficiency factor (EEF) and greyscale change were set as dependent variables, while the factors possibly affecting ablation efficiency were set as independent variables. These variables were used to build multiple regression models. Results A total of 245 patients with adenomyosis successfully completed HIFU treatment. Enhancement type on T1 weighted image (WI), abdominal wall thickness, volume of adenomyotic lesion, the number of hyperintense points, location of the uterus, and location of adenomyosis all had a linear relationship with the NPV ratio. Distance from skin to the adenomyotic lesion's ventral side, enhancement type on T1WI, volume of adenomyotic lesion, abdominal wall thickness, and signal intensity on T2WI all had a linear relationship with EEF. Location of the uterus and abdominal wall thickness also both had a linear relationship with greyscale change. Conclusion The enhancement type on T1WI, signal intensity on T2WI, volume of adenomyosis, location of the uterus and adenomyosis, number of hyperintense points, abdominal wall thickness, and distance from the skin to the adenomyotic lesion's ventral side can all be used as predictors of HIFU for adenomyosis.
A new directly moulded patellar-tendon-bearing socket.
Boot, D A; Young, N J
1985-08-01
Silicone rubbers and casting tapes individually have previously been used in the manufacture of sockets (Swanson, 1972; Sweitzer, 1973; Ruder, 1977; Graves, 1980; Aqualite, 1982). The authors believe that the present combination of these materials to manufacture a directly moulded socket with a complete silicone rubber lining of variable thickness has not previously been described. The new socket, after addition of the modular components, allows fitting of an aligned below-knee prosthesis within three hours. The socket (Fig. 1.) is made directly on the below-knee stump, can be completed with experience in an hour and does not require the use of specialized equipment. The socket consists of an outer supportive Scotchflex layer inside which is a lining of soft smooth biocompatible silicone rubber of deliberately variable thickness to allow pressure tolerant areas to accept more load and pressure sensitive areas to accept less load (Fig.2). The thicker areas of silicone are produced by applying carefully cut Plastazote pads to the pressure sensitive areas. The thickness and extent of the pads is individually assessed according to the estimated sensitivity of the particular area (Fig. 3). The Scotchflex socket is then manufactured directly on the below-knee stump with these pads applied. The pads are then removed prior to insertion of a semi-liquid silicone rubber. Thus, when the socket with the liquid silicone rubber is re-applied to the stump, the space produced by the pads is filled by the rubber which then sets at room temperature. In this way a layer of variable thickness is produced.(ABSTRACT TRUNCATED AT 250 WORDS)
Mechanism for detecting NAPL using electrical resistivity imaging.
Halihan, Todd; Sefa, Valina; Sale, Tom; Lyverse, Mark
2017-10-01
The detection of non-aqueous phase liquid (NAPL) related impacts in freshwater environments by electrical resistivity imaging (ERI) has been clearly demonstrated in field conditions, but the mechanism generating the resistive signature is poorly understood. An electrical barrier mechanism which allows for detecting NAPLs with ERI is tested by developing a theoretical basis for the mechanism, testing the mechanism in a two-dimensional sand tank with ERI, and performing forward modeling of the laboratory experiment. The NAPL barrier theory assumes at low bulk soil NAPL concentrations, thin saturated NAPL barriers can block pore throats and generate a detectable electrically resistive signal. The sand tank experiment utilized a photographic technique to quantify petroleum saturation, and to help determine whether ERI can detect and quantify NAPL across the water table. This experiment demonstrates electrical imaging methods can detect small quantities of NAPL of sufficient thickness in formations. The bulk volume of NAPL is not the controlling variable for the amount of resistivity signal generated. The resistivity signal is primarily due to a zone of high resistivity separate phase liquid blocking current flow through the fully NAPL saturated pores spaces. For the conditions in this tank experiment, NAPL thicknesses of 3.3cm and higher in the formation was the threshold for detectable changes in resistivity of 3% and greater. The maximum change in resistivity due to the presence of NAPL was an increase of 37%. Forward resistivity models of the experiment confirm the barrier mechanism theory for the tank experiment. Copyright © 2017 Elsevier B.V. All rights reserved.
Panel flutter optimization by gradient projection
NASA Technical Reports Server (NTRS)
Pierson, B. L.
1975-01-01
A gradient projection optimal control algorithm incorporating conjugate gradient directions of search is described and applied to several minimum weight panel design problems subject to a flutter speed constraint. New numerical solutions are obtained for both simply-supported and clamped homogeneous panels of infinite span for various levels of inplane loading and minimum thickness. The minimum thickness inequality constraint is enforced by a simple transformation of variables.
We present development of a process to perform greyscale photolithography on a 2.55-m thick photoresist in order to transfer tiered and sloped...platinum or iridium oxide (IrO2) electrodes above and below each layer. Process variables including resist rehydration , focus of the exposure, and UV cure...bake temperature were optimized to produce the best greyscale profile through the thickness of the resist.
Numerical Modeling of the Deformation Behavior of Fault Bounded Lens Shaped Bodies in 2D
NASA Astrophysics Data System (ADS)
van der Zee, W.; Urai, J. L.
2001-12-01
Fault zones cause dramatic discontinuous changes in mechanical properties. The early stages of evolution of fault zones are important for its long-term behavior. We consider faults which develop from deformation bands or pre-existing joints which are the initially unconnected discontinuities. With further deformation, these coalesce into a connected network, and develop into a 'mature' fault gouge. When segments are not coplanar, soft linkage or bends in the fault plane (releasing and restraining bends, fault bounded lens-shaped bodies etc) necessarily occurs. Further movement causes additional deformation, and the fault zone has a strongly variable thickness. Here, we present the results of detailed fieldwork combined with numerical modeling on the deformation of fault bounded lens-shaped bodies in the fault zone. Detailed study of a number of lenses in the field shows that the lens is invariably more deformed than the surrounding material. This observation can be explained in several ways. In one end member most of the deformation in the future lens occurs before full coalescence of the slip planes and the formation of the lens. The other end member is that the slip planes coalesce before plastic deformation of the lens is occurring. The internal deformation of the lens occurs after the lens is formed, due to the redistributed stresses in the structure. If this is the case, then lens shaped bodies can be always expected to deform preferentially. Finite element models were used to investigate the shear behavior of a planar fault with a lens shaped body or a sinus-shaped asperity. In a sensitivity analysis, we consider different lens shapes and fault friction coefficients. Results show that 1) during slip, the asperity shears off to form a lens shaped body 2) lens interior deforms more than the surroundings, due to the redistribution of stresses 3) important parameters in this system are the length-thickness ratio of the lens and the fault friction coefficient 4) lens structures can evolve in different ways, but in the final stage the result is a lens with deformed interior In the later stages after further displacement, these zones of preferential deformation evolve into sections containing thick gouge, and the initial lens width controls long term fault gouge thickness.
Krishnan, K; Lin, C-Y; Keswani, R; Pandolfino, J E; Kahrilas, P J; Komanduri, S
2014-08-01
Esophageal motor disorders are a heterogeneous group of conditions identified by esophageal manometry that lead to esophageal dysfunction. The aim of this study was to assess the clinical utility of endoscopic ultrasound (EUS) in the further evaluation of patients with esophageal motor disorders categorized using the updated Chicago Classification. We performed a retrospective, single center study of 62 patients with esophageal motor disorders categorized according to the Chicago Classification. All patients underwent standard radial endosonography to assess for extra-esophageal findings or alternative explanations for esophageal outflow obstruction. Secondary outcomes included esophageal wall thickness among the different patient subsets within the Chicago Classification. EUS identified 9/62 (15%) clinically relevant findings that altered patient management and explained the etiology of esophageal outflow obstruction. We further identified substantial variability in esophageal wall thickness in a proportion of patients including some with a significantly thickened non-muscular layer. EUS findings are clinically relevant in a significant number of patients with motor disorders and can alter clinical management. Variability in esophageal wall thickness of the muscularis propria and non-muscular layers identified by EUS may also explain the observed variability in response to standard therapies for achalasia. © 2014 John Wiley & Sons Ltd.
Krishnan, Kumar; Lin, Chen-Yuan; Keswani, Rajesh; Pandolfino, John E; Kahrilas, Peter J; Komanduri, Srinadh
2015-01-01
Background and aims Esophageal motor disorders are a heterogenous group of conditions identified by esophageal manometry that lead to esophageal dysfunction. The aim of this study was to assess the clinical utility of endoscopic ultrasound in the further evaluation of patients with esophageal motor disorders categorized using the updated Chicago Classification. Methods We performed a retrospective, single center study of 62 patients with esophageal motor disorders categorized according to the Chicago Classification. All patients underwent standard radial endosonography to assess for extra esophageal findings or alternative explanations for esophageal outflow obstruction. Secondary outcomes included esophageal wall thickness among the different patient subsets within the Chicago Classification Key Results EUS identified 9/62 (15%) clinically relevant findings that altered patient management and explained the etiology of esophageal outflow obstruction. We further identified substantial variability in esophageal wall thickness in a proportion of patients including some with a significantly thickened non-muscular layer. Conclusions EUS findings are clinically relevant in a significant number of patients with motor disorders and can alter clinical management. Variability in esophageal wall thickness of the muscularis propria and non-muscular layers identified by EUS may also explain the observed variability in response to standard therapies for achalasia. PMID:25041229
Pérez Bartolomé, Francisco; Martínez de la Casa, Jose María; Camacho Bosca, Irene; Sáenz-Francés, Federico; Aguilar Munoa, Soledad; Martín Juan, Alberto; Garcia-Feijoo, Julian
2018-01-01
To examine interrelations between corneal biomechanics, ocular biometric variables and optic disc size (ODS), lamina cribosa depth (LCD) or thickness (LCT) in a healthy population. In a cross-sectional case-control study, the following measurements were made in 81 eyes of 81 participants: axial length, anterior chamber depth, lens thickness, and central corneal thickness using the optical biometer Lenstar LS900; and corneal hysteresis (CH), corneal resistance factor (CRF), Goldman-correlated intraocular pressure (IOPg), and corneal-compensated IOP (IOPcc) using the Ocular Response Analyzer. Serial horizontal enhanced depth imaging optical coherence tomography (EDI OCT) B-scans of the optic nerve head were obtained in each participant. Mean ODS, mean LCD, and mean LCT were measured in 11 equally spaced horizontal B-scans, excluding the LC insertion area under Bruch's membrane and scleral rim. LCD was measured in 74 of 81 eyes (91.36%); LCT in 60/81 (75.3%); ODS in 81/81 (100%). CRF was poorly, but significantly, correlated with LCT (Pearson's R = 0.264; P = 0.045). IOPcc, IOPg, CH, and ocular biometrics variables were poorly (non-significantly) correlated with LCD, LCT, and ODS. CRF was poorly but directly correlated with LCT. No association was detected between CH or ocular biometric variables and ODS, LCD, or LCT.
NASA Technical Reports Server (NTRS)
Ferrare, R. A.; Chin, M.; Clayton, M.; Turner, D.
2002-01-01
We use profiles of aerosol extinction, water vapor mixing ratio, and relative humidity measured by the ARM SGP Raman lidar in northern Oklahoma to show how the vertical distributions of aerosol extinction and water vapor vary throughout the diurnal cycle. While significant (20-30%) variations in aerosol extinction occurred near the surface as well as aloft, smaller (approximately 10%) variations were observed in the diurnal variability of aerosol optical thickness (AOT). The diurnal variations in aerosol extinction profiles are well correlated with corresponding variations in the average relative humidity profiles. The water vapor mixing ratio profiles and integrated water vapor amounts generally show less diurnal variability. The Raman lidar profiles are also used to evaluate the aerosol optical thickness and aerosol extinction profiles simulated by the GOCART global aerosol model. Initial comparisons show that the AOT simulated by GOCART was in closer agreement with the AOT derived from the Raman lidar and Sun photometer measurements during November 2000 than during September 2000. For both months, the vertical variability in average aerosol extinction profiles simulated by GOCART is less than the variability in the corresponding Raman lidar profiles.
A study of lateral fall-off (penumbra) optimisation for pencil beam scanning (PBS) proton therapy
NASA Astrophysics Data System (ADS)
Winterhalter, C.; Lomax, A.; Oxley, D.; Weber, D. C.; Safai, S.
2018-01-01
The lateral fall-off is crucial for sparing organs at risk in proton therapy. It is therefore of high importance to minimize the penumbra for pencil beam scanning (PBS). Three optimisation approaches are investigated: edge-collimated uniformly weighted spots (collimation), pencil beam optimisation of uncollimated pencil beams (edge-enhancement) and the optimisation of edge collimated pencil beams (collimated edge-enhancement). To deliver energies below 70 MeV, these strategies are evaluated in combination with the following pre-absorber methods: field specific fixed thickness pre-absorption (fixed), range specific, fixed thickness pre-absorption (automatic) and range specific, variable thickness pre-absorption (variable). All techniques are evaluated by Monte Carlo simulated square fields in a water tank. For a typical air gap of 10 cm, without pre-absorber collimation reduces the penumbra only for water equivalent ranges between 4-11 cm by up to 2.2 mm. The sharpest lateral fall-off is achieved through collimated edge-enhancement, which lowers the penumbra down to 2.8 mm. When using a pre-absorber, the sharpest fall-offs are obtained when combining collimated edge-enhancement with a variable pre-absorber. For edge-enhancement and large air gaps, it is crucial to minimize the amount of material in the beam. For small air gaps however, the superior phase space of higher energetic beams can be employed when more material is used. In conclusion, collimated edge-enhancement combined with the variable pre-absorber is the recommended setting to minimize the lateral penumbra for PBS. Without collimator, it would be favourable to use a variable pre-absorber for large air gaps and an automatic pre-absorber for small air gaps.
Drug release from slabs and the effects of surface roughness.
Kalosakas, George; Martini, Dimitra
2015-12-30
We discuss diffusion-controlled drug release from slabs or thin films. Analytical and numerical results are presented for slabs with flat surfaces, having a uniform thickness. Then, considering slabs with rough surfaces, the influence of a non-uniform slab thickness on release kinetics is numerically investigated. The numerical release profiles are obtained using Monte Carlo simulations. Release kinetics is quantified through the stretched exponential (or Weibull) function and the resulting dependence of the two parameters of this function on the thickness of the slab, for flat surfaces, and the amplitude of surface fluctuations (or the degree of thickness variability) in case of roughness. We find that a higher surface roughness leads to a faster drug release. Copyright © 2015 Elsevier B.V. All rights reserved.
Prediction of Layer Thickness in Molten Borax Bath with Genetic Evolutionary Programming
NASA Astrophysics Data System (ADS)
Taylan, Fatih
2011-04-01
In this study, the vanadium carbide coating in molten borax bath process is modeled by evolutionary genetic programming (GEP) with bath composition (borax percentage, ferro vanadium (Fe-V) percentage, boric acid percentage), bath temperature, immersion time, and layer thickness data. Five inputs and one output data exist in the model. The percentage of borax, Fe-V, and boric acid, temperature, and immersion time parameters are used as input data and the layer thickness value is used as output data. For selected bath components, immersion time, and temperature variables, the layer thicknesses are derived from the mathematical expression. The results of the mathematical expressions are compared to that of experimental data; it is determined that the derived mathematical expression has an accuracy of 89%.
Simulation and analysis of Au-MgF2 structure in plasmonic sensor in near infrared spectral region
NASA Astrophysics Data System (ADS)
Sharma, Anuj K.
2018-05-01
Plasmonic sensor based on metal-dielectric combination of gold and MgF2 layers is studied in near infrared (NIR) spectral region. An emphasis is given on the effect of variable thickness of MgF2 layer in combination with operating wavelength and gold layer thickness on the sensor's performance in NIR. It is established that the variation in MgF2 thickness in connection with plasmon penetration depth leads to significant variation in sensor's performance. The analysis leads to a conclusion that taking smaller values of MgF2 layer thickness and operating at longer NIR wavelength leads to enhanced sensing performance. Also, fluoride glass can provide better sensing performance than chalcogenide glass and silicon substrate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keighin, C.W.; Flores, R.M.; Ochs, A.
In southwestern North Dakota, minable lignite beds in the Paleocene Fort Union Formation include the Harmon and Hansen beds in the Bowman-Gascoyne area. Data from more than 700 drill holes penetrating these beds was used to construct stratigraphic cross sections. The Harmon and Hansen beds are the thickest and most laterally persistent lignites found under < 150 ft of overburden. The Harmon coal bed is as much as 34 ft thick, and is often split by claystone interbeds of variable thickness. The Hansen coal bed typically occurs 10--100 ft below the Harmon coal bed; it rarely attains a thickness ofmore » 15 ft, and averages 4 ft in thickness.« less
NASA Astrophysics Data System (ADS)
Halkides, D. J.; Waliser, Duane E.; Lee, Tong; Menemenlis, Dimitris; Guan, Bin
2015-02-01
Spatial and temporal variation of processes that determine ocean mixed-layer (ML) temperature (MLT) variability on the timescale of the Madden-Julian Oscillation (MJO) in the Tropical Indian Ocean (TIO) are examined in a heat-conserving ocean state estimate for years 1993-2011. We introduce a new metric for representing spatial variability of the relative importance of processes. In general, horizontal advection is most important at the Equator. Subsurface processes and surface heat flux are more important away from the Equator, with surface heat flux being the more dominant factor. Analyses at key sites are discussed in the context of local dynamics and literature. At 0°, 80.5°E, for MLT events > 2 standard deviations, ocean dynamics account for more than two thirds of the net tendency during cooling and warming phases. Zonal advection alone accounts for ˜40% of the net tendency. Moderate events (1-2 standard deviations) show more differences between events, and some are dominated by surface heat flux. At 8°S, 67°E in the Seychelles-Chagos Thermocline Ridge (SCTR) area, surface heat flux accounts for ˜70% of the tendency during strong cooling and warming phases; subsurface processes linked to ML depth (MLD) deepening (shoaling) during cooling (warming) account for ˜30%. MLT is more sensitive to subsurface processes in the SCTR, due to the thin MLD, thin barrier layer and raised thermocline. Results for 8°S, 67°E support assertions by Vialard et al. (2008) not previously confirmed due to measurement error that prevented budget closure and the small number of events studied. The roles of MLD, barrier layer thickness, and thermocline depth on different timescales are examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matvejeff, M., E-mail: mikko.matvejeff@picosun.com; Department of Chemistry, Aalto University, Kemistintie 1, 02150 Espoo; Ahvenniemi, E.
We study magnetic coupling between hole-doped manganite layers separated by either a perovskite or a rock-salt barrier of variable thickness. Both the type and the quality of the interface have a strong impact on the minimum critical barrier thickness where the manganite layers become magnetically decoupled. A rock-salt barrier layer only 1 unit cell (0.5 nm) thick remains insulating and is able to magnetically de-couple the electrode layers. The technique can therefore be used for developing high-performance planar oxide electronic devices such as magnetic tunnel junctions and quantum well structures that depend on magnetically and electronically sharp heterointerfaces.
Buckling analysis of variable thickness nanoplates using nonlocal continuum mechanics
NASA Astrophysics Data System (ADS)
Farajpour, Ali; Danesh, Mohammad; Mohammadi, Moslem
2011-12-01
This paper presents an investigation on the buckling characteristics of nanoscale rectangular plates under bi-axial compression considering non-uniformity in the thickness. Based on the nonlocal continuum mechanics, governing differential equations are derived. Numerical solutions for the buckling loads are obtained using the Galerkin method. The present study shows that the buckling behaviors of single-layered graphene sheets (SLGSs) are strongly sensitive to the nonlocal and non-uniform parameters. The influence of percentage change of thickness on the stability of SLGSs is more significant in the strip-type nonoplates (nanoribbons) than in the square-type nanoplates.
NASA Technical Reports Server (NTRS)
Carsey, F. D.; Argus, S. D.
1988-01-01
Image data from synthetic aperture radar (SAR) are used to observe an ice compaction event off the East Coast of Newfoundland in spring, 1987. The information developed from sequential SAR observations is shown to do a remarkably effective job of describing the ice conditions; the difficult variable is the ice thickness which is found to be surprisingly large (2 to 4 times the thickness predictable from thermodynamic growth alone). It may be possible to model the ice thickness using SAR-derived ice motion.
Extracting nuclear sizes of medium to heavy nuclei from total reaction cross sections
NASA Astrophysics Data System (ADS)
Horiuchi, W.; Hatakeyama, S.; Ebata, S.; Suzuki, Y.
2016-04-01
Background: Proton and neutron radii are fundamental quantities of atomic nuclei. To study the sizes of short-lived unstable nuclei, there is a need for an alternative to electron scattering. Purpose: The recent paper by Horiuchi et al. [Phys. Rev. C 89, 011601(R) (2014)], 10.1103/PhysRevC.89.011601 proposed a possible way of extracting the matter and neutron-skin thickness of light- to medium-mass nuclei using total reaction cross section, σR. The analysis is extended to medium to heavy nuclei up to lead isotopes with due attention to Coulomb breakup contributions as well as density distributions improved by paring correlation. Methods: We formulate a quantitative calculation of σR based on the Glauber model including the Coulomb breakup. To substantiate the treatment of the Coulomb breakup, we also evaluate the Coulomb breakup cross section due to the electric dipole field in a canonical-basis-time-dependent-Hartree-Fock-Bogoliubov theory in the three-dimensional coordinate space. Results: We analyze σR's of 103 nuclei with Z =20 , 28, 40, 50, 70, and 82 incident on light targets, H,21, 4He, and 12C. Three kinds of Skyrme interactions are tested to generate those wave functions. To discuss possible uncertainty due to the Coulomb breakup, we examine its dependence on the target, the incident energy, and the Skyrme interaction. The proton is a most promising target for extracting the nuclear sizes as the Coulomb excitation can safely be neglected. We find that the so-called reaction radius, aR=√{σR/π } , for the proton target is very well approximated by a linear function of two variables, the matter radius and the skin thickness, in which three constants depend only on the incident energy. We quantify the accuracy of σR measurements needed to extract the nuclear sizes. Conclusions: The proton is the best target because, once the incident energy is set, its aR is very accurately determined by only the matter radius and neutron-skin thickness. If σR's at different incident energies are measured, one can determine both the proton and neutron radii for unstable nuclei as well. The total reaction cross sections calculated in this paper are given as Supplemental Material for the sake of future measurements.
NASA Astrophysics Data System (ADS)
Möller, R.; Möller, M.; Kukla, P. A.; Schneider, C.; Römer, W.; Lehmkuhl, F.; Gudmundsson, M. T.
2016-12-01
On Iceland, explosive subglacial eruptions are common. The two latest eruptions were at Eyjafjallajökull 2010 and at Grímsvötn 2011. Both eruptions produced considerable amounts of tephra fallout that were deposited over large parts of major Icelandic ice caps. These extensive supraglacial tephra deposits are known to considerably alter the energy and mass balance of the ice caps at a strong spatial and temporal variability. We present a statistical evaluation of relationships and links between geochemistry, thermal conductivity, spectral reflectance characteristics, albedo and deposition thickness of the tephra covers and their variability in space and time. Samples of the tephra deposits were gathered in the field and analyzed in the laboratory regarding their chemical and mineralogical composition using X-ray fluorescence and diffraction analyses. Spatial patterns of spectral reflectance over the tephra-covered areas of the three major ice caps Eyjafjallajökull, Myrdalsjökull and Vatnajökull were obtained from multispectral ASTER and MODIS satellite datasets. Spatial patterns of broad-band albedo across the tephra-covered areas and differences to the albedo of unaffected surfaces were obtained from remotely-sensed data and geostatistical modeling. Changes in tephra-cover thickness with time were assessed using a modeling approach that includes thermal conductivity of the tephra cover and surface temperature. The former is derived from laboratory analysis while the latter is based on MODIS observations. We found that there are characteristic patterns of spectral reflectance that could be linked to deposition thickness and geochemical composition of the respective tephra. The temporal variability of the albedo patterns across the ice caps is strongly linked to the evolution of the deposition thicknesses over time.
Sunda-Banda Arc Transition: Marine Wide-Angle Seismic Modeling
NASA Astrophysics Data System (ADS)
Shulgin, A.; Planert, L.; Kopp, H.; Mueller, C.; Lueschen, E.; Engels, M.; Flueh, E.; Djajadihardja, Y.; Sindbad Working Group, T
2008-12-01
The Sunda-Banda Arc transition is the region of active convergence and collision of the Indo-Australian and Eurasian Plates. The style of subduction changes from an oceanic-island arc subduction to a continental- island arc collision. The character of the incoming plate varies from the rough topography of the Roo Rise, to the smooth seafloor of the Abyssal Plain off Bali, Sumbawa. Forearc structures include well-developed forearc basins and an accretionary prism/outer forearc high of variable size and shape. To quantify the variability of structure of the lower plate and the effects on the upper plate a refraction seismic survey was carried during cruise SO190-2. A total of 245 ocean bottom seismometers were deployed along 1020 nm of wide-angle seismic profiles in four major north-south oriented corridors. To assess the velocity structure we used a tomographic method which jointly inverts for refracted and reflected phases. The sedimentary layers of the models, obtained by the analysis of high-resolution MCS data (see Lueschen et al), were incorporated into the starting model. The obtained models exhibit strong changes of the incoming oceanic crust for the different portions of the margin: The westernmost profile off eastern Java shows a crustal thickness of more than 15 km, most likely related to the presence of an oceanic plateau. Profiles off Lombok reveal an oceanic crust of 8-9 km average thickness in the Argo Abyssal Plain. Crustal and upper mantle velocities are slightly decreased within an area of about 50-60 km seaward of the trench, indicating fracturing and related serpentinization due to bending of the oceanic crust and associated normal faulting. The outer forearc high is characterized by velocities of 2.5-5.5 km/s. For the Lombok Basin, the profiles show a sedimentary infill of up to 3.5 km thick and typical sediment velocities of 1.75-3.0 km/s. A reflector at 16 km depth and velocity values of 7.4-7.8 km/s beneath it suggest the presence of a shallow forearc mantle and a hydrated mantle wedge in this part of the margin. See in this session Planert et al.
Mercury's Low-Degree Geoid and Topography from Insolation-Driven Elastic Deformation
NASA Astrophysics Data System (ADS)
Tosi, N.; Cadek, O.; Padovan, S.; Wieczorek, M. A.
2014-12-01
Because of Mercury's high eccentricity, nearly zero obliquity, and 3:2 spin-orbit resonance, the planet's surface is characterized by an average insolation pattern resulting in longitudinal and latitudinal temperature variations that can be expressed in terms of the (2,0), (2,2) and (4,0) harmonics [Vasavada et al., 1999]. We show that the temperature anomalies that propagate from the surface into the deep mantle can be used to interpret the above harmonics of the geoid and topography spectra in terms of the elastic response of the lithosphere and mantle. Using 3D numerical simulations of thermal evolution constrained by MESSENGER observations [Tosi et al., 2013], we first demonstrate that mantle convection either ceased in the past or, at most, is very weak at present, implying that the mantle is in a conductive or nearly-conductive state. As a consequence, the power spectra of the geoid and topography due to present-day mantle convection only are orders of magnitude smaller than the observed ones. We assume therefore that present-day heat transport in the mantle occurs primarily via thermal conduction and numerically solve the diffusion equation in a 3D spherical shell with variable surface temperature and internal heat sources partitioned between the mantle and a crust of variable thickness according to different enrichment factors. We obtain a set of temperature distributions that are employed to calculate the deformation of a compressible elastic layer overlying a quasi-hydrostatic mantle in which shear stresses are assumed to be relaxed and deformation solely induced by thermal and mechanical compressibility. The surface displacements calculated with this model are then compared against the observed topography, while the internal density anomalies and the displacements of the surface and core-mantle boundary are used to calculate Mercury's geoid. We thoroughly explore the parameter space by varying the thickness of the boundary between the elastic and quasi-hydrostatic layers, the lithosphere's elastic parameters and the coefficient of thermal expansion. Our model can reproduce more than 90% of the observed low-degree geoid and topography thereby allowing us to constrain the effective thickness of Mercury's elastic lithosphere.
Influence of tundra snow layer thickness on measured and modelled radar backscatter
NASA Astrophysics Data System (ADS)
Rutter, N.; Sandells, M. J.; Derksen, C.; King, J. M.; Toose, P.; Wake, L. M.; Watts, T.
2017-12-01
Microwave radar backscatter within a tundra snowpack is strongly influenced by spatial variability of the thickness of internal layering. Arctic tundra snowpacks often comprise layers consisting of two dominant snow microstructures; a basal depth hoar layer overlain by a layer of wind slab. Occasionally there is also a surface layer of decomposing fresh snow. The two main layers have strongly different microwave scattering properties. Depth hoar has a greater capacity for scattering electromagnetic energy than wind slab, however, wind slab usually has a larger snow water equivalent (SWE) than depth hoar per unit volume due to having a higher density. So, determining the relative proportions of depth hoar and wind slab from a snowpack of a known depth may help our future capacity to invert forward models of electromagnetic backscatter within a data assimilation scheme to improve modelled estimates of SWE. Extensive snow measurements were made within Trail Valley Creek, NWT, Canada in April 2013. Snow microstructure was measured at 18 pit and 9 trench locations throughout the catchment (trench extent ranged between 5 to 50 m). Ground microstructure measurements included traditional stratigraphy, near infrared stratigraphy, Specific Surface Area (SSA), and density. Coincident airborne Lidar measurements were made to estimate distributed snow depth across the catchment, in addition to airborne radar snow backscatter using a dual polarized (VV/VH) X- and Ku-band Synthetic Aperture Radar (SnowSAR). Ground measurements showed the mean proportion of depth hoar was just under 30% of total snow depth and was largely unresponsive to increasing snow depth. The mean proportion of wind slab is consistently greater than 50% and showed an increasing trend with increasing total snow depth. A decreasing trend in the mean proportion of surface snow (approximately 25% to 10%) with increasing total depth accounted for this increase in wind slab. This new knowledge of variability in stratigraphic thickness, relative to respective proportions of total snow depth, was used to investigate the representativeness of point measurements of density and microstructure for forward simulations of the SMRT microwave scattering model, using Lidar derived snow depths.
Experimental Investigation of Terminal Fans Prograding on a Salt Substrate: 3-d Physical Experiments
NASA Astrophysics Data System (ADS)
Chatmas, E.; Kim, W.
2015-12-01
Interactions between geologic features and a mobile substrate layer are present in several passive margin locations throughout the world. Deformation of a substrate layer is primarily due to differential loading of sediment and results in complexities within the morphology and subsequently the stratigraphic record. By using simplified scaled tank experiments, we investigated the relationship between substrate deformation and fan evolution in a fluvial-dump-wind-redistribution setting. In this system, sediment is being eroded from a mountain range and creating terminal fans; fluvial channels form off of the fan body and the deposited fluvial sediment is the source for an aeolian dune field. Several past experimental studies have focused on how deltas and dunes are affected on when deposited on a salt substrate, however terminal fans and channel formation off of fans have not been thoroughly investigated. The current experiments focused on which variables are the most significant in controlling fan growth, channel initiation and channel behavior on the salt substrate. Our experimental basin is 120 cm long, 60 cm wide and 30 cm tall. The materials used for a suite of five experiments involved a polymer polydimethylsiloxane (PDMS) as the deformable substrate analog and 100-μm quartz sand. By isolating certain variables such as substrate thickness, basin slope and sediment discharge we are able to see how terminal fans and channels are affected in different settings. The experimental results show that 1) increase in substrate thickness increased the amount of subsidence around the fan body, limiting sediment transport to channels off of the toe of the fan, 2) a higher basin slope increased the number of channels formed and increased sinuosity and width variations of channels over distance, and 3) a higher sediment discharge rate on a thin substrate allowed for the farthest downstream fan deposits. Preliminary results show that channel behavior and fan morphology is strongly dependent on substrate thickness and basin slope directly influences channel geometry. These findings will also be compared to the Mojave River Wash located in southern California off the San Bernardino Mountains near Zzyzx, CA to further understand the dynamics of terminal fans on a mobile substrate.
Molina-Montenegro, Marco A.; Acuña-Rodríguez, Ian S.; Flores, Tomás S. M.; Hereme, Rasme; Lafon, Alejandra; Atala, Cristian; Torres-Díaz, Cristian
2018-01-01
It has been widely suggested that invasion success along broad environmental gradients may be partially due to phenotypic plasticity, but rapid evolution could also be a relevant factor for invasions. Seed and fruit traits can be relevant for plant invasiveness since they are related to dispersal, germination, and fitness. Some seed traits vary along environmental gradients and can be heritable, with the potential to evolve by means of natural selection. Utilizing cross-latitude and reciprocal-transplant experiments, we evaluated the adaptive value of seed thickness as assessed by survival and biomass accumulation in Taraxacum officinale plants. In addition, thickness of a seed and Endosperm to Seed Coat Proportion (ESCP) in a second generation (F2) was measured to evaluate the heritability of this seed trait. On the other hand, we characterized the genetic variability of the sampled individuals with amplified fragment length polymorphism (AFLP) markers, analyzing its spatial distribution and population structure. Overall, thickness of seed coat (plus wall achene) decreases with latitude, indicating that individuals of T. officinale from northern populations have a thicker seed coat than those from southern populations. Germination increased with greater addition of water and seeds from southern localities germinated significantly more than those from the north. Additionally, reciprocal transplants showed significant differences in survival percentage and biomass accumulation among individuals from different localities and moreover, the high correlation between maternal plants and their offspring can be suggesting a high grade of heritability of this trait. Although genetic differentiation was found when was considered all populations, there was no significant differentiation when only was compared the northernmost populations which inhabit in the driest climate conditions. Our results suggest that climatic conditions could affect both, the ESCP and the genetic variability in the invasive T. officinale, suggesting that this seed trait could be indicative of adaptive selection. Thus, colonization along broad geographical gradients in many cases may be the result –in part- for the presence of functional traits as shown in invasive plant species with rapid adaptive capacity. PMID:29535741
Jacotot, Adrien; Marchand, Cyril; Allenbach, Michel
2018-08-01
We performed a preliminary study to quantify CO 2 and CH 4 emissions from the water column within a Rhizophora spp. mangrove forest. Mean CO 2 and CH 4 emissions during the studied period were 3.35±3.62mmolCm -2 h -1 and 18.30±27.72μmolCm -2 h -1 , respectively. CO 2 and CH 4 emissions were highly variable and mainly driven by tides (flow/ebb, water column thickness, neap/spring). Indeed, an inverse relationship between the magnitude of the emissions and the thickness of the water column above the mangrove soil was observed. δ 13 CO 2 values ranged from -26.88‰ to -8.6‰, suggesting a mixing between CO 2 -enriched pore waters and lagoon incoming waters. In addition, CO 2 and CH 4 emissions were significantly higher during ebb tides, mainly due to the progressive enrichment of the water column by diffusive fluxes as its residence time over the forest floor increased. Eventually, we observed higher CO 2 and CH 4 emissions during spring tides than during neap tides, combined to depleted δ 13 CO 2 values, suggesting a higher contribution of soil-produced gases to the emissions. These higher emissions may result from higher renewable of the electron acceptor and enhanced exchange surface between the soil and the water column. This study shows that CO 2 and CH 4 emissions from the water column were not negligible and must be considered in future carbon budgets in mangroves. Copyright © 2018 Elsevier B.V. All rights reserved.
A cutting-edge solution for 1µm laser metal processing
NASA Astrophysics Data System (ADS)
Baumbach, N.; Kühl, P.; Karam, J.; Jonkers, J.; Villarreal-Saucedo, F.; Reyes, M.
2017-02-01
The recent 1μm-laser cutting market is dominated by fiber and disk lasers due to their excellent beam quality of below 4mm*mrad. Teradiode's 4kW direct diode laser source achieves similar beam quality while having a different beam shape and shorter wavelengths which are known for higher absorption rates at the inclined front of the cutting keyhole. Research projects, such as the HALO Project, have additionally shown that polarized radiation and beams with shapes different from the typical LG00 lead to improved cut quality for ferrous and non-ferrous metals. [1] Diode laser have the inherent property of not being sensitive to back reflection which brings advantages in cutting high-reflective materials. The II-VI HIGHYAG laser cutting head BIMO-FSC offers the unique feature of machine controlled and continuous adjustment of both the focus diameter and the focus position. This feature is proven to be beneficial for cutting and piercing with high speed and small hole diameters. In addition, the optics are designed for lowest focus shift. As a leading laser processing head manufacturer, II-VI HIGHYAG qualified its BIMO-FSC MZ (M=magnification, Z=focus position) cutting head for Teradiode's 4kW direct diode laser source to offer a cutting-edge solution for highpower laser cutting. Combining the magnification ability of the cutting head with this laser source, customers experience strong advantages in cutting metals in broad thickness ranges. Thicknesses up to 25mm mild steel can easily be cut with excellent edge quality. Furthermore, a new optical setup equivalent to an axicon with a variable axicon angle is demonstrated which generates variable sized ring spots. The setup provides new degrees of freedom to tailor the energy distribution for even higher productivity and quality.
Active layer thermal monitoring at Fildes Peninsula, King George Island, Maritime Antarctica
NASA Astrophysics Data System (ADS)
Michel, R. F. M.; Schaefer, C. E. G. R.; Simas, F. N. B.; Francelino M., R.; Fernandes-Filho, E. I.; Lyra, G. B.; Bockheim, J. G.
2014-07-01
International attention to the climate change phenomena has grown in the last decade; the active layer and permafrost are of great importance in understanding processes and future trends due to their role in energy flux regulation. The objective of the this paper is to present active layer temperature data for one CALM-S site located at Fildes Peninsula, King George Island, Maritime Antarctica over an fifth seven month period (2008-2012). The monitoring site was installed during the summer of 2008 and consists of thermistors (accuracy of ± 0.2 °C), arranged vertically with probes at different depths, recording data at hourly intervals in a~high capacity data logger. A series of statistical analysis were performed to describe the soil temperature time series, including a linear fit in order to identify global trend and a series of autoregressive integrated moving average (ARIMA) models were tested in order to define the best fit for the data. The controls of weather on the thermal regime of the active layer have been identified, providing insights about the influence of climate chance over the permafrost. The active layer thermal regime in the studied period was typical of periglacial environment, with extreme variation at the surface during summer resulting in frequent freeze and thaw cycles. The active layer thickness (ALT) over the studied period showed variability related to different annual weather conditions, reaching a maximum of 117.5 cm in 2009. The ARIMA model was considered appropriate to treat the dataset, enabling more conclusive analysis and predictions when longer data sets are available. Despite the variability when comparing temperature readings and active layer thickness over the studied period, no warming trend was detected.
NASA Astrophysics Data System (ADS)
Czymzik, Markus; Kienel, Ulrike; Dreibrodt, Stefan; Brauer, Achim
2013-04-01
Societies are susceptible to the effects of even short-term climate variations on water supply, health, and agricultural productivity. However, understanding of human-climate interactions is limited due to the lack of high-resolution climate records in space and time. Varved lake sediments provide long time-series of seasonal climate variability directly from populated areas that can be compared to historical and archeological records. Calibration against meteorological data enables process-based insights into sediment deposition within the lake that can be extrapolated into the past using transfer functions. Lakes Woseriner See (53°40'N/12°2'E; 37 m asl.) and Tiefer See (53°23'N/13°97'E, 65 m asl.) in northeastern Germany are located only 35 km apart. Situated within the former settlement areas, the lakes are well suited for studying climate influences on society related to the Neolithic Funnelbeaker culture or the Slavic colonization. Sub-recent annual laminations allow to establish climate proxy data-series at seasonal resolution that can be calibrated against the long meteorological record from the nearby City of Schwerin. Seasonal climate proxy data-series covering the last 90 years have been obtained from short sediment cores applying a combination of microfacies analyses, X-ray fluorescence scanning (µ-XRF), and varve counting. Main sediment microfacies in both lakes are endogenic calcite varves comprising calcite and organic layer couplets of varying thickness, diatom layers, and dispersed detrital grains. Calibration against meteorological data indicates that variations in sediment layer thickness and composition are not stationary through time but influenced by inter-annual variations in meteorological conditions.
Bass, Deborah S.; Herkenhoff, Kenneth; Paige, David A.
2000-01-01
Previous studies interpreted differences in ice coverage between Mariner 9 and Viking Orbiter observations of Mars' north residual polar cap as evidence of interannual variability of ice deposition on the cap. However, these investigators did not consider the possibility that there could be significant changes in the ice coverage within the northern residual cap over the course of the summer season. Our more comprehensive analysis of Mariner 9 and Viking Orbiter imaging data shows that the appearance of the residual cap does not show large-scale variance on an interannual basis. Rather we find evidence that regions that were dark at the beginning of summer look bright by the end of summer and that this seasonal variation of the cap repeats from year to year. Our results suggest that this brightening was due to the deposition of newly formed water ice on the surface. We find that newly formed ice deposits in the summer season have the same red-to-violet band image ratios as permanently bright deposits within the residual cap. We believe the newly formed ice accumulates in a continuous layer. To constrain the minimum amount of deposited ice, we used observed albedo data in conjunction with calculations using Mie theory for single scattering and a delta-Eddington approximation of radiative transfer for multiple scattering. The brightening could have been produced by a minimum of (1) a ~35-μm-thick layer of 50-μm-sized ice particles with 10% dust or (2) a ~14-μm-thick layer of 10-μm-sized ice particles with 50% dust.
NASA Astrophysics Data System (ADS)
Shea, Y.; Wielicki, B. A.; Sun-Mack, S.; Minnis, P.; Zelinka, M. D.
2016-12-01
Detecting trends in climate variables on global, decadal scales requires highly accurate, stable measurements and retrieval algorithms. Trend uncertainty depends on its magnitude, natural variability, and instrument and retrieval algorithm accuracy and stability. We applied a climate accuracy framework to quantify the impact of absolute calibration on cloud property trend uncertainty. The cloud properties studied were cloud fraction, effective temperature, optical thickness, and effective radius retrieved using the Clouds and the Earth's Radiant Energy System (CERES) Cloud Property Retrieval System, which uses Moderate-resolution Imaging Spectroradiometer measurements (MODIS). Modeling experiments from the fifth phase of the Climate Model Intercomparison Project (CMIP5) agree that net cloud feedback is likely positive but disagree regarding its magnitude, mainly due to uncertainty in shortwave cloud feedback. With the climate accuracy framework we determined the time to detect trends for instruments with various calibration accuracies. We estimated a relationship between cloud property trend uncertainty, cloud feedback, and Equilibrium Climate Sensitivity and also between effective radius trend uncertainty and aerosol indirect effect trends. The direct relationship between instrument accuracy requirements and climate model output provides the level of instrument absolute accuracy needed to reduce climate model projection uncertainty. Different cloud types have varied radiative impacts on the climate system depending on several attributes, such as their thermodynamic phase, altitude, and optical thickness. Therefore, we also conducted these studies by cloud types for a clearer understanding of instrument accuracy requirements needed to detect changes in their cloud properties. Combining this information with the radiative impact of different cloud types helps to prioritize among requirements for future satellite sensors and understanding the climate detection capabilities of existing sensors.
Meiburger, Kristen M; Molinari, Filippo; Wong, Justin; Aguilar, Luis; Gallo, Diego; Steinman, David A; Morbiducci, Umberto
2016-07-01
The common carotid artery intima-media thickness (IMT) is widely accepted and used as an indicator of atherosclerosis. Recent studies, however, have found that the irregularity of the IMT along the carotid artery wall has a stronger correlation with atherosclerosis than the IMT itself. We set out to validate IMT variability (IMTV), a parameter defined to assess IMT irregularities along the wall. In particular, we analyzed whether or not manual segmentations of the lumen-intima and media-adventitia can be considered reliable in calculation of the IMTV parameter. To do this, we used a total of 60 simulated ultrasound images with a priori IMT and IMTV values. The images, simulated using the Fast And Mechanistic Ultrasound Simulation software, presented five different morphologies, four nominal IMT values and three different levels of variability along the carotid artery wall (no variability, small variability and large variability). Three experts traced the lumen-intima (LI) and media-adventitia (MA) profiles, and two automated algorithms were employed to obtain the LI and MA profiles. One expert also re-traced the LI and MA profiles to test intra-reader variability. The average IMTV measurements of the profiles used to simulate the longitudinal B-mode images were 0.002 ± 0.002, 0.149 ± 0.035 and 0.286 ± 0.068 mm for the cases of no variability, small variability and large variability, respectively. The IMTV measurements of one of the automated algorithms were statistically similar (p > 0.05, Wilcoxon signed rank) when considering small and large variability, but non-significant when considering no variability (p < 0.05, Wilcoxon signed rank). The second automated algorithm resulted in statistically similar values in the small variability case. Two readers' manual tracings, however, produced IMTV measurements with a statistically significant difference considering all three variability levels, whereas the third reader found a statistically significant difference in both the no variability and large variability cases. Moreover, the error range between the reader and automatic IMTV values was approximately 0.15 mm, which is on the same order of small IMTV values, indicating that manual and automatic IMTV readings should be not used interchangeably in clinical practice. On the basis of our findings, we conclude that expert manual tracings should not be considered reliable in IMTV measurement and, therefore, should not be trusted as ground truth. On the other hand, our automated algorithm was found to be more reliable, indicating how automated techniques could therefore foster analysis of the carotid artery intima-media thickness irregularity. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Phototransformation Rate Constants of PAHs Associated with Soot Particles
Kim, Daekyun; Young, Thomas M.; Anastasio, Cort
2013-01-01
Photodegradation is a key process governing the residence time and fate of polycyclic aromatic hydrocarbons (PAHs) in particles, both in the atmosphere and after deposition. We have measured photodegradation rate constants of PAHs in bulk deposits of soot particles illuminated with simulated sunlight. The photodegradation rate constants at the surface (k0p), the effective diffusion coefficients (Deff), and the light penetration depths (z0.5) for PAHs on soot layers of variable thickness were determined by fitting experimental data with a model of coupled photolysis and diffusion. The overall disappearance rates of irradiated low molecular weight PAHs (with 2-3 rings) on soot particles were influenced by fast photodegradation and fast diffusion kinetics, while those of high molecular weight PAHs (with 4 or more rings) were apparently controlled by either the combination of slow photodegradation and slow diffusion kinetics or by very slow diffusion kinetics alone. The value of z0.5 is more sensitive to the soot layer thickness than the k0p value. As the thickness of the soot layer increases, the z0.5 values increase, but the k0p values are almost constant. The effective diffusion coefficients calculated from dark experiments are generally higher than those from the model fitting method for illumination experiments. Due to the correlation between k0p and z0.5 in thinner layers, Deff should be estimated by an independent method for better accuracy. Despite some limitations of the model used in this study, the fitted parameters were useful for describing empirical results of photodegradation of soot-associated PAHs. PMID:23247292
Slope gradient and shape effects on soil profiles in the northern mountainous forests of Iran
NASA Astrophysics Data System (ADS)
Fazlollahi Mohammadi, M.; Jalali, S. G. H.; Kooch, Y.; Said-Pullicino, D.
2016-12-01
In order to evaluate the variability of the soil profiles at two shapes (concave and convex) and five positions (summit, shoulder, back slope, footslope and toeslope) of a slope, a study of a virgin area was made in a Beech stand of mountain forests, northern Iran. Across the slope positions, the soil profiles demonstrated significant changes due to topography for two shape slopes. The solum depth of the convex slope was higher than the concave one in all five positions, and it decreased from the summit to shoulder and increased from the mid to lower slope positions for both convex and concave slopes. The thin solum at the upper positions and concave slope demonstrated that pedogenetic development is least at upper slope positions and concave slope where leaching and biomass productivity are less than at lower slopes and concave slope. A large decrease in the thickness of O and A horizons from the summit to back slope was noted for both concave and convex slopes, but it increased from back slope toward down slope for both of them. The average thickness of B horizons increased from summit to down slopes in the case of the concave slope, but in the case of convex slope it decreased from summit to shoulder and afterwards it increased to the down slope. The thicknesses of the different horizons varied in part in the different positions and shape slopes because they had different plant species cover and soil features, which were related to topography.
New clues on the interior of Titan from its rotation state
NASA Astrophysics Data System (ADS)
Noyelles, Benoît; Nimmo, Francis
2014-07-01
The Saturnian satellite Titan is one of the main targets of the Cassini-Huygens mission, which revealed in particular Titan's shape, gravity field, and rotation state. The shape and gravity field suggest that Titan is not in hydrostatic equilibrium, that it has a global subsurface ocean, and that its ice shell is both rigid (at tidal periods) and of variable thickness. The rotational state of Titan consists of an expected synchronous rotation rate and an unexpectedly high obliquity (0.3○) explained by Baland et al. (2011) to be a resonant behavior. We here combine a realistic model of the ice shell and interior and a 6-degrees of freedom rotational model, in which the librations, obliquity and polar motion of the rigid core and of the shell are modelled, to constrain the structure of Titan from the observations. We consider the gravitational pull of Saturn on the 2 rigid layers, the gravitational coupling between them, and the pressure coupling at the liquid-solid interfaces. We confirm the influence of the resonance found by Baland et al., that affects between 10 and 13% of the possible Titans. It is due to the 29.5-year periodic annual forcing. The resonant Titans can be obtained in situations in which a mass anomaly at the shell-ocean boundary (bottom loading) is from 80 to 92% compensated. This suggests a 250 to 280 km thick ocean below a 130 to 140 km thick shell, and is consistent with the degree-3 analysis of Hemingway 26 et al. (2013).
The Chemical Composition of the Galactic Bulge and Implications for its Evolution
NASA Astrophysics Data System (ADS)
McWilliam, Andrew
2016-08-01
At a bulge latitude of b = -4°, the average [Fe/H] and [Mg/H] values are +0.06 and +0.17 dex, roughly 0.2 and 0.7 dex higher than the local thin and thick disk values, respectively, suggesting a large bulge effective yield, perhaps due to efficient retention of supernova ejecta. The bulge vertical [Fe/H] gradient, at ∼0.5 dex/kpc, appears to be due to a changing mixture of sub-populations (near +0.3 dex and -0.3 dex and one possibly near -0.7 dex) with latitude. At solar [Fe/H], the bulge [Al/Fe] and [α/Fe] ratios are ∼ +0.15 dex. Below [Fe/H] ∼ -0.5 dex, the bulge and local thick disk compositions are very similar; but the measured [Mg/Fe], [
Variable Thermal-Force Bending of a Three-Layer Bar with a Compressible Filler
NASA Astrophysics Data System (ADS)
Starovoitov, E. I.; Leonenko, D. V.
2017-11-01
Deformation of a three-layer elastoplastic bar with a compressible filler in a temperature field is considered. To describe the kinematics of a pack asymmetric across its thickness, the hypothesis of broken line is accepted, according to which the Bernoulli hypothesis is true in thin bearing layers, and the Timoshenko hypothesis is valid for a filler compressible across the its thickness, with a linear approximation of displacements across the layer thickness. The work of filler in the tangential direction is taken into account. The physical stress-strain relations correspond to the theory of small elastoplastic deformations. Temperature variations are calculated from a formula obtained by averaging the thermophysical properties of layer materials across the bar thickness. Using the variational method, a system of differential equilibrium equations is derived. On the boundary, the kinematic conditions of simply supported ends of the bar are assumed. The solution of the boundary problem is reduced to the search for four functions, namely, deflections and longitudinal displacements of median surfaces of the bearing layers. An analytical solution is derived by the method of elastic solutions with the use of the Moskvitin theorem on variable loadings. Its numerical analysis is performed for the cases of continuous and local loads.
Dynamics of the global meridional ice flow of Europa's icy shell
NASA Astrophysics Data System (ADS)
Ashkenazy, Yosef; Sayag, Roiy; Tziperman, Eli
2018-01-01
Europa is one of the most probable places in the solar system to find extra-terrestrial life1,2, motivating the study of its deep ( 100 km) ocean3-6 and thick icy shell3,7-11. The chaotic terrain patterns on Europa's surface12-15 have been associated with vertical convective motions within the ice8,10. Horizontal gradients of ice thickness16,17 are expected due to the large equator-to-pole gradient of surface temperature and can drive a global horizontal ice flow, yet such a flow and its observable implications have not been studied. We present a global ice flow model for Europa composed of warm, soft ice flowing beneath a cold brittle rigid ice crust3. The model is coupled to an underlying (diffusive) ocean and includes the effect of tidal heating and convection within the ice. We show that Europa's ice can flow meridionally due to pressure gradients associated with equator-to-pole ice thickness differences, which can be up to a few km and can be reduced both by ice flow and due to ocean heat transport. The ice thickness and meridional flow direction depend on whether the ice convects or not; multiple (convecting and non-convecting) equilibria are found. Measurements of the ice thickness and surface temperature from future Europa missions18,19 can be used with our model to deduce whether Europa's icy shell convects and to constrain the effectiveness of ocean heat transport.
Planetary radio astronomy observations from Voyager-2 near Saturn
NASA Technical Reports Server (NTRS)
Warwick, J. W.; Evans, D. R.; Romig, J. H.; Alexander, J. K.; Desch, M. D.; Kaiser, M. L.; Aubier, M.; Leblanc, Y.; Lecacheux, A.; Pedersen, B. M.
1981-01-01
Voyager-2 planetry radio astronomy measurements obtained near Saturn are discussed. They indicate that Saturnian kilometric radiation is emitted by a strong, dayside source at auroral latitudes in the northern hemisphere and by a weaker (by more than an order of magnitude) source at complementary latitudes in the southern hemisphere. These emissions are variable both due to Saturn's rotation and, on longer time scales, probably due to influences of the solar wind and the satellite Dione. The Saturn electrostatic discharge bursts first discovered by Voyager-1 and attributed to emissions from the B-ring were again observed with the same broadband spectral properties and a 10(h)11(m) + or - 5(m) episodic recurrence period but with an occurrence frequency of only of about 30 percent of that detected with Voyager-1. During the crossing of the ring plane at a distance of 2.88 R sub S, an intense noise event is interpreted to be consequence of the impact/vaporization/ionization of charged micron-size G-ring particles distributed over a total vertical thickness of about 1500 km.
Compressibility effects in the shear layer over a rectangular cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beresh, Steven J.; Wagner, Justin L.; Casper, Katya M.
2016-10-26
we studied the influence of compressibility on the shear layer over a rectangular cavity of variable width in a free stream Mach number range of 0.6–2.5 using particle image velocimetry data in the streamwise centre plane. As the Mach number increases, the vertical component of the turbulence intensity diminishes modestly in the widest cavity, but the two narrower cavities show a more substantial drop in all three components as well as the turbulent shear stress. Furthermore, this contrasts with canonical free shear layers, which show significant reductions in only the vertical component and the turbulent shear stress due to compressibility.more » The vorticity thickness of the cavity shear layer grows rapidly as it initially develops, then transitions to a slower growth rate once its instability saturates. When normalized by their estimated incompressible values, the growth rates prior to saturation display the classic compressibility effect of suppression as the convective Mach number rises, in excellent agreement with comparable free shear layer data. The specific trend of the reduction in growth rate due to compressibility is modified by the cavity width.« less
Li, Zuoping; Kindig, Matthew W; Subit, Damien; Kent, Richard W
2010-11-01
The purpose of this paper was to investigate the sensitivity of the structural responses and bone fractures of the ribs to mesh density, cortical thickness, and material properties so as to provide guidelines for the development of finite element (FE) thorax models used in impact biomechanics. Subject-specific FE models of the second, fourth, sixth and tenth ribs were developed to reproduce dynamic failure experiments. Sensitivity studies were then conducted to quantify the effects of variations in mesh density, cortical thickness, and material parameters on the model-predicted reaction force-displacement relationship, cortical strains, and bone fracture locations for all four ribs. Overall, it was demonstrated that rib FE models consisting of 2000-3000 trabecular hexahedral elements (weighted element length 2-3mm) and associated quadrilateral cortical shell elements with variable thickness more closely predicted the rib structural responses and bone fracture force-failure displacement relationships observed in the experiments (except the fracture locations), compared to models with constant cortical thickness. Further increases in mesh density increased computational cost but did not markedly improve model predictions. A ±30% change in the major material parameters of cortical bone lead to a -16.7 to 33.3% change in fracture displacement and -22.5 to +19.1% change in the fracture force. The results in this study suggest that human rib structural responses can be modeled in an accurate and computationally efficient way using (a) a coarse mesh of 2000-3000 solid elements, (b) cortical shells elements with variable thickness distribution and (c) a rate-dependent elastic-plastic material model. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Belmeguenai, M.; Roussigné, Y.; Bouloussa, H.; Chérif, S. M.; Stashkevich, A.; Nasui, M.; Gabor, M. S.; Mora-Hernández, A.; Nicholson, B.; Inyang, O.-O.; Hindmarch, A. T.; Bouchenoire, L.
2018-04-01
The interfacial Dzyaloshinskii-Moriya interaction (IDMI) is investigated in Co2FeAl (CFA) ultrathin films of various thicknesses (0.8 nm ≤tCFA≤2 nm ) grown by sputtering on Si substrates, using Pt, W, Ir, and MgO buffer or/and capping layers. Vibrating sample magnetometry reveals that the magnetization at saturation (Ms ) for the Pt- and Ir-buffered films is higher than the usual Ms of CFA due to the proximity-induced magnetization (PIM) in Ir and Pt estimated to be 19% and 27%, respectively. The presence of PIM in these materials is confirmed using x-ray resonant magnetic reflectivity. Moreover, while no PIM is induced in W, higher PIM is obtained with Pt when it is used as a buffer layer rather than a capping layer. Brillouin light scattering in the Damon-Eshbach geometry is used to investigate the thickness dependences of the IDMI constants from the spin-wave nonreciprocity and the perpendicular anisotropy field versus the annealing temperature. The IDMI sign is found to be negative for Pt /CFA and Ir /CFA , while it is positive for W /CFA . The thickness dependence of the effective IDMI constant for stacks involving Pt and W shows the existence of two regimes similar to that of the perpendicular anisotropy constant due to the degradation of the interfaces as the CFA thickness approaches a critical thickness. The surface IDMI and anisotropy constants of each stack are determined for the thickest samples where a linear thickness dependence of the effective IDMI constant and the effective magnetization are observed. The interface anisotropy and IDMI constants investigated for the Pt /CFA /MgO system show different trends with the annealing temperature. The decrease of the IDMI constant with increasing annealing temperature is probably due to the electronic structure changes at the interfaces, while the increase of the interface anisotropy constant is coherent with the interface quality and disorder enhancement.
Color stainability of CAD/CAM and nanocomposite resin materials.
Acar, Ozlem; Yilmaz, Burak; Altintas, Subutay Han; Chandrasekaran, Indumathi; Johnston, William M
2016-01-01
The color stainability of recently introduced computer-assisted design/computer-assisted manufacturing (CAD/CAM) hybrid ceramic and resin nanoceramic is unknown. The purpose of this in vitro study was to compare the effect of coffee staining on the color of 3 different CAD/CAM restorative materials and a nanocomposite resin. Specimens from a hybrid dental ceramic (VITA Enamic), a resin nanoceramic (Lava Ultimate), a lithium disilicate glass ceramic (IPS e.max CAD), and a nanocomposite resin (Filtek Supreme Ultra Universal) were evaluated for color change due to thermocycling in coffee (n=5). Specimens 0.5 to 0.7 mm and 1 to 1.2 mm in thickness were thermocycled for 5000 cycles. CIEDE2000 color differences (ΔE00) due to thermocycling in coffee were calculated using the color coordinates obtained from a spectroradiometer. ANCOVA was used to analyze the color differences among the materials with thickness as the covariate. Significant differences at average thickness were analyzed with the Tukey-Kramer test. For color difference due to staining, thickness was a significant covariate (P<.001). Regarding the analysis of color differences, every pair of the tested materials was significantly different (P<.001). Least squares means of color differences (ΔE00) at mean thickness were 4.34 for the nanohybrid composite resin, 3.66 for the resin nanoceramic, 1.35 for the hybrid ceramic, and 0.43 for the lithium disilicate ceramic. When exposed to hot and cold coffee, the color change was beyond clinical acceptability for the tested resin nanoceramic and nanocomposite resin materials. The average color change of the hybrid ceramic was clinically perceivable over the tested thickness values. The color change of lithium disilicate ceramic was not clinically perceivable at any tested thickness. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Chen, Chih-Yen; Hsieh, Chieh; Liao, Che-Hao; Chung, Wei-Lun; Chen, Hao-Tsung; Cao, Wenyu; Chang, Wen-Ming; Chen, Horng-Shyang; Yao, Yu-Feng; Ting, Shao-Ying; Kiang, Yean-Woei; Yang, Chih-Chung C C; Hu, Xiaodong
2012-05-07
The counteraction between the increased carrier localization effect due to the change of composition nanostructure in the quantum wells (QWs), which is caused by the thermal annealing process, and the enhanced quantum-confined Stark effect in the QWs due to the increased piezoelectric field, which is caused by the increased p-type layer thickness, when the p-type layer is grown at a high temperature on the InGaN/GaN QWs of a high-indium light-emitting diode (LED) is demonstrated. Temperature- and excitation power-dependent photoluminescence (PL) measurements are performed on three groups of sample, including 1) the samples with both effects of thermal annealing and increased p-type thickness, 2) those only with the similar thermal annealing process, and 3) those with increased overgrowth thickness and minimized thermal annealing effect. From the comparisons of emission wavelength, internal quantum efficiency (IQE), spectral shift with increasing PL excitation level, and calibrated activation energy of carrier localization between various samples in the three groups, one can clearly see the individual effects of thermal annealing and increased p-type layer thickness. The counteraction leads to increased IQE and blue-shifted emission spectrum with increasing p-type thickness when the thickness is below a certain value (20-nm p-AlGaN plus 60-nm p-GaN under our growth conditions). Beyond this thickness, the IQE value decreases and the emission spectrum red shifts with increasing p-type thickness.
NASA Technical Reports Server (NTRS)
Peck, Ann W.
1998-01-01
As composites are introduced into more complex structures with out-of-plane loadings, a better understanding is needed of the out-of-plane, matrix-dominated failure mechanisms. This work investigates the transverse tension fatigue characteristics of IM6/3501 composite materials. To test the 90 degree laminae, a three-point bend test was chosen, potentially minimizing handling and gripping issues associated with tension tests. A finite element analysis was performed of a particular specimen configuration to investigate the influence of specimen size on the stress distribution for a three-point bend test. Static testing of 50 specimens of 9 different sized configurations produced a mean transverse tensile strength of 61.3 Mpa (8.0 ksi). The smallest configuration (10.2 mm wide, Span-to-thickness ratio of 3) consistently exhibited transverse tensile failures. A volume scale effect was difficult to discern due to the large scatter of the data. Static testing of 10 different specimens taken from a second panel produced a mean transverse tensile strength of 82.7 Mpa (12.0 ksi). Weibull parameterization of the data was possible, but due to variability in raw material and/or manufacturing, more replicates are needed for greater confidence. Three-point flex fatigue testing of the smallest configuration was performed on 59 specimens at various levels of the mean static transverse tensile strength using an R ratio of 0.1 and a frequency of 20 Hz. A great deal of scatter was seen in the data. The majority of specimens failed near the center loading roller. To determine whether the scatter in the fatigue data is due to variability in raw material and/or the manufacturing process, additional testing should be performed on panels manufactured from different sources.
High resolution in-beam γ-ray spectroscopy
NASA Astrophysics Data System (ADS)
Kern, J.; Dousse, J.-Cl.; Gasser, M.; Perny, B.; Rhême, Ch.
1985-01-01
An in-beam curved crystal facility has been installed at the SIN variable energy cyclotron. Using the (110) planes of a 3.0 mm thick quartz lamina bent at 3.15 m, diffraction peaks typically 6 arcsec wide (FWHM) are obtained. The energy resolution is thus, for instance, 110 eV at 170 keV in 3rd order. Due to a sophisticated detector system and heavy shielding, the sensitivity of the instrument is quite good. The facility proves quite useful in (p,xnγ) reaction studies whenever the γ-ray spectrum is very complex, e.g. in the study of odd-odd deformed nuclei. Complicated multiplets appearing in the 176Yb(p,3nγ)174Lu spectrum could be successfully resolved. From the results we derive that the g-factors of the 142 d, Jπ=6- isomer, take anomalous values.
Leakage effect analysis on the performance of a cylindrical adjustable inertance tube
NASA Astrophysics Data System (ADS)
Zhou, Wenjie; Pfotenhauer, John M.; Zhi, Xiaoqin
2018-04-01
The inertance tube plays a significant role in improving the performance of the Stirling type pulse tube cryocooler by providing the desired phase angle between the mass flow and pressure wave. The phase angle is highly depended on the inertance tube geometry, such as diameter and length. A cylindrical threaded root device with variable thread depth on the outer screw and inner screw creates an adjustable inertance tube whose diameter and length can be adjusted in the real time. However, due to its geometry imperfectness, the performance of this threaded inertance tube is reduced by the leaks through the roots between the two screws. Its phase angle shift ability is decreased by 30% with the leakage clearance thickness of 15.5 μm according to both the theoretical prediction and the experimental verification.
Flat plate vs. concentrator solar photovoltaic cells - A manufacturing cost analysis
NASA Technical Reports Server (NTRS)
Granon, L. A.; Coleman, M. G.
1980-01-01
The choice of which photovoltaic system (flat plate or concentrator) to use for utilizing solar cells to generate electricity depends mainly on the cost. A detailed, comparative manufacturing cost analysis of the two types of systems is presented. Several common assumptions, i.e., cell thickness, interest rate, power rate, factory production life, polysilicon cost, and direct labor rate are utilized in this analysis. Process sequences, cost variables, and sensitivity analyses have been studied, and results of the latter show that the most important parameters which determine manufacturing costs are concentration ratio, manufacturing volume, and cell efficiency. The total cost per watt of the flat plate solar cell is $1.45, and that of the concentrator solar cell is $1.85, the higher cost being due to the increased process complexity and material costs.
Ice water path estimation and characterization using passive microwave radiometry
NASA Technical Reports Server (NTRS)
Vivekanandan, J.; Turk, J.; Bringi, V. N.
1991-01-01
Model computations of top-of-atmospheric microwave brightness temperatures T(B) from layers of precipitation-sized ice of variable bulk density and ice water content (IWC) are presented. It is shown that the 85-GHz T(B) depends essentially on the ice optical thickness. The results demonstrate the potential usefulness of scattering-based channels for characterizing the ice phase and suggest a top-down methodology for retrieval of cloud vertical structure and precipitation estimation from multifrequency passive microwave measurements. Attention is also given to radiative transfer model results based on the multiparameter radar data initialization from the Cooperative Huntsville Meteorological Experiment (COHMEX) in northern Alabama. It is shown that brightness temperature warming effects due to the inclusion of a cloud liquid water profile are especially significant at 85 GHz during later stages of cloud evolution.
Zhang, Xuemeng; Kampourakis, Thomas; Yan, Ziqian; Sevrieva, Ivanka; Irving, Malcolm; Sun, Yin-Biao
2017-02-23
The Frank-Starling relation is a fundamental auto-regulatory property of the heart that ensures the volume of blood ejected in each heartbeat is matched to the extent of venous filling. At the cellular level, heart muscle cells generate higher force when stretched, but despite intense efforts the underlying molecular mechanism remains unknown. We applied a fluorescence-based method, which reports structural changes separately in the thick and thin filaments of rat cardiac muscle, to elucidate that mechanism. The distinct structural changes of troponin C in the thin filaments and myosin regulatory light chain in the thick filaments allowed us to identify two aspects of the Frank-Starling relation. Our results show that the enhanced force observed when heart muscle cells are maximally activated by calcium is due to a change in thick filament structure, but the increase in calcium sensitivity at lower calcium levels is due to a change in thin filament structure.
NASA Astrophysics Data System (ADS)
Moro, D.; Valdre, G.
2016-02-01
Quantitative microanalysis of tiny asbestos mineral fibres by scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (SEM-EDS) still represents a complex analytical issue. This complexity arises from the variable fibre shape and small thickness (< 5 μm) compared with the penetration of the incident electron beam. Here, we present the results of Monte Carlo simulations of chrysotile, crocidolite and amosite fibres (and bundles of fibres) of circular and square section and thicknesses from 0.1 μm to 10 μm, to investigate the effect of shape and thickness on SEM-EDS microanalysis. The influence of shape and thickness on the simulated spectrum was investigated for electron beam energies of 5, 15 and 25 keV, respectively. A strong influence of the asbestos bundles and fibres shape and thickness on the detected EDS X-ray intensity was observed. The X-ray intensity trends as a function of fibre thickness showed a non-linear dependence for all the elements and minerals. In general, the X-ray intensities showed a considerable reduction for thicknesses below about 5 μm at 5 keV, 2 μm at 15 keV, and 5 μm at 25 keV. Correction parameters, k-ratios, for the asbestos fibre thickness effect, are reported.
Determination of the thickness of Al2O3 barriers in magnetic tunnel junctions
NASA Astrophysics Data System (ADS)
Buchanan, J. D. R.; Hase, T. P. A.; Tanner, B. K.; Hughes, N. D.; Hicken, R. J.
2002-07-01
The barrier thickness in magnetic spin-dependent tunnel junctions with Al2O3 barriers has been measured using grazing incidence x-ray reflectivity and by fitting the tunneling current to the Simmons model. We have studied the effect of glow discharge oxidation time on the barrier structure, revealing a substantial increase in Al2O3 thickness with oxidation. The greater thickness of barrier measured using grazing incidence x-ray reflectivity compared with that obtained by fitting current density-voltage to the Simmons electron tunneling model suggests that electron tunneling is localized to specific regions across the barrier, where the thickness is reduced by fluctuations due to nonconformal roughness.
Radiation-Driven Flame Spread Over Thermally-Thick Fuels in Quiescent Microgravity Environments
NASA Technical Reports Server (NTRS)
Honda, Linton K.; Son, Youngjin; Ronney, Paul D.; Olson, Sandra (Technical Monitor); Gokoglu, Suleyman (Technical Monitor)
2001-01-01
Microgravity experiments on flame spread over thermally thick fuels were conducted using foam fuels to obtain low density and thermal conductivity, and thus large spread rate (Sf) compared to dense fuels such as PMMA. This scheme enabled meaningful results to lie obtained even in 2.2 second drop tower experiments. It was found that, in contrast conventional understanding; steady spread can occur over thick fuels in quiescent microgravity environments, especially when a radiatively active diluent gas such as CO2 is employed. This is proposed to be due to radiative transfer from the flame to the fuel surface. Additionally, the transition from thermally thick to thermally thin behavior with decreasing bed thickness is demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaojie; Wang, Cai -Zhuang
Using first-principles calculations, we show that both face-centered cubic (fcc) Ag (1 1 0) ultrathin films and body-centered cubic (bcc) Eu(1 1 0) ultrathin films exhibit thickness selective stability. Furthermore, the origin of such thickness selection is different. While the thickness selective stability in fcc Ag(1 1 0) films is mainly due to the well-known quantum well states ascribed to the quantum confinement effects in free-electron-like metal films, the thickness selection in bcc Eu(1 1 0) films is more complex and also strongly correlated with the occupation of the surface and surface resonance states.
Liu, Xiaojie; Wang, Cai -Zhuang
2017-04-03
Using first-principles calculations, we show that both face-centered cubic (fcc) Ag (1 1 0) ultrathin films and body-centered cubic (bcc) Eu(1 1 0) ultrathin films exhibit thickness selective stability. Furthermore, the origin of such thickness selection is different. While the thickness selective stability in fcc Ag(1 1 0) films is mainly due to the well-known quantum well states ascribed to the quantum confinement effects in free-electron-like metal films, the thickness selection in bcc Eu(1 1 0) films is more complex and also strongly correlated with the occupation of the surface and surface resonance states.
NASA Astrophysics Data System (ADS)
Hashim; Khan, Masood; Alshomrani, Ali Saleh
2017-12-01
This article considers a realistic approach to examine the magnetohydrodynamics (MHD) flow of Carreau fluid induced by the shrinking sheet subject to the stagnation-point. This study also explores the impacts of non-linear thermal radiation on the heat transfer process. The governing equations of physical model are expressed as a system of partial differential equations and are transformed into non-linear ordinary differential equations by introducing local similarity variables. The economized equations of the problem are numerically integrated using the Runge-Kutta Fehlberg integration scheme. In this study, we explore the condition of existence, non-existence, uniqueness and dual nature for obtaining numerical solutions. It is found that the solutions may possess multiple natures, upper and lower branch, for a specific range of shrinking parameter. Results indicate that due to an increment in the magnetic parameter, range of shrinking parameter where a dual solution exists, increases. Further, strong magnetic field enhances the thickness of the momentum boundary layer in case of the second solution while for first solution it reduces. We further note that the fluid suction diminishes the fluid velocity and therefore the thickness of the hydrodynamic boundary layer decreases as well. A critical analysis with existing works is performed which shows that outcome are benchmarks with these works.
Comparison between recreational male Ironman triathletes and marathon runners.
Gianoli, Daniele; Knechtle, Beat; Knechtle, Patrizia; Barandun, Ursula; Rüst, Christoph Alexander; Rosemann, Thomas
2012-08-01
Recent investigations described a personal best marathon time as a predictor variable for an Ironman race time in recreational male Ironman triathletes. Similarities and differences in anthropometry and training were investigated between 83 recreational male Ironman triathletes and 81 recreational male marathoners. Ironman triathletes were significantly taller and had a higher body mass and a higher skin-fold thickness of the calf compared to the marathoners. Weekly training volume in hours was higher in Ironman triathletes. In the Ironman triathletes, percent body fat was related to overall race time and both the split time in cycling and running. The weekly swim kilometres were related to the split time in swimming, and the speed in cycling was related to the bike split time. For the marathoners, the calf skin-fold thickness and running speed during training were related to marathon race time. Although personal best marathon time was a predictor of Ironman race time in male triathletes, anthropometric and training characteristics of male marathoners were different from those of male Ironman triathletes, probably due to training of different muscle groups and metabolic endurance beyond marathon running, as the triathletes are also training for high-level performance in swimming and cycling. Future studies should compare Olympic distance triathletes and road cyclists with Ironman triathletes.
Merritt, E. C.; Doss, F. W.; Loomis, E. N.; ...
2015-06-24
Counter-propagating shear experiments conducted at the OMEGA Laser Facility have been evaluating the effect of target initial conditions, specifically the characteristics of a tracer foil located at the shear boundary, on Kelvin-Helmholtz instability evolution and experiment transition toward nonlinearity and turbulence in the high-energy-density (HED) regime. Experiments are focused on both identifying and uncoupling the dependence of the model initial turbulent length scale in variable-density turbulence models of k-ϵ type on competing physical instability seed lengths as well as developing a path toward fully developed turbulent HED experiments. We present results from a series of experiments controllably and independently varyingmore » two initial types of scale lengths in the experiment: the thickness and surface roughness (surface perturbation scale spectrum) of a tracer layer at the shear interface. We show that decreasing the layer thickness and increasing the surface roughness both have the ability to increase the relative mixing in the system, and thus theoretically decrease the time required to begin transitioning to turbulence in the system. In addition, we also show that we can connect a change in observed mix width growth due to increased foil surface roughness to an analytically predicted change in model initial turbulent scale lengths.« less
An investigation of abdominal muscle recruitment for sustained phonation in 25 healthy singers.
Macdonald, Ian; Rubin, John S; Blake, Ed; Hirani, Shashi; Epstein, Ruth
2012-11-01
The purpose of this study was to investigate the baseline muscle thickness and recruitment patterns of the transversus abdominis muscle (TAM) and the internal oblique muscle (IOM) during semisupine phonation in a group of healthy performers. This was a 2 × 3×2 within-group, repeated-measure study in which 25 professional vocalists--12 male and 13 female performed a series of sustained pitches in differing vocal qualities. Measurements were taken with ultrasound (Sonosite Micromaxx Ultrasound System) of the baseline thickness and % recruitment during voicing, of two deep abdominal muscles--TAM and the IOM. Correlations between TAM and IOM absolute change scores, TAM and IOM percentage change scores, and changes in muscle thickness (absolute and percentage) and age were examined using Spearman's correlations. Gender differences in the four types of change scores within each combination of pitch and quality were conducted with one-way analysis of variances. Differences in muscle thickness change 1) absolute scores and 2) percentage change in TAM and IOM, by pitch and quality (and their interactions) were analyzed using linear mixed models, using restricted maximum likelihood estimations, employing a Toeplitz variance-covariance matrix structure in SPSS (IBM, 2011). Post hoc analyses for independent variable group differences used Sidak's correction for multiple comparisons. Alpha level was set to 0.05. In terms of absolute contractions (changes in the actual millimeter thickness of the muscle), the IOM was greater than the TAM. However in terms of percentage changes in muscles during phonation, the TAM was always greater than the IOM. The TAM as a percentage change was recruited preferentially and significantly in most vocal qualities tested. Although there were differences in muscle mass and recruitment patterns between genders, and males had thicker muscle mass at rest, differences due to muscle mass were not conclusive. Overall this study supports the argument that the peri-abdominal muscles do indeed play a role in supporting the "performing" or athletic voice in healthy subjects, and will hopefully act as a database for further research in individuals with healthy and injured voices. Copyright © 2012 The Voice Foundation. Published by Mosby, Inc. All rights reserved.
Measurement of the thickness of the urethrovaginal space in women with or without vaginal orgasm.
Gravina, Giovanni Luca; Brandetti, Fulvia; Martini, Paolo; Carosa, Eleonora; Di Stasi, Savino M; Morano, Susanna; Lenzi, Andrea; Jannini, Emmanuele A
2008-03-01
The physiology and anatomy of female sexual function are poorly understood. The differences in sexual function among women may be partly attributed to anatomical factors. The purpose of this study was to use ultrasonography to evaluate the anatomical variability of the urethrovaginal space in women with and without vaginal orgasm. Twenty healthy, neurologically intact volunteers were recruited from a population of women who were a part of a previous published study. All women underwent a complete urodynamic evaluation and those with clinical and urodynamic urinary incontinence, idiopathic detrusor overactivity, or micturition disorders, as well as postmenopausal women and those with sexual dysfunction were excluded. The reported experience of vaginal orgasm was investigated. The urethrovaginal space thickness as measured by ultrasound was chosen as the indicator of urogenital anatomical variability. Designated evaluators carried out the measurements in a blinded fashion. The urethrovaginal space and distal, middle, and proximal urethrovaginal segments were thinner in women without vaginal orgasm. A direct correlation between the presence of vaginal orgasm and the thickness of urethrovaginal space was found. Women with a thicker urethrovaginal space were more likely to experience vaginal orgasm (r = 0.884; P = 0.015). A direct and significant correlation between the thickness of each urethrovaginal segment and the presence of vaginal orgasm was found, with the best correlation observed for the distal segment (r = 0.863; P < 0.0001). Interobserver agreement between the designated evaluators was excellent (r = 0.87; P < 0.001). The measurement of the space within the anterior vaginal wall by ultrasonography is a simple tool to explore anatomical variability of the human clitoris-urethrovaginal complex, also known as the G-spot, which can be correlated to the ability to experience the vaginally activated orgasm.
Predictor variables for half marathon race time in recreational female runners.
Knechtle, Beat; Knechtle, Patrizia; Barandun, Ursula; Rosemann, Thomas; Lepers, Romuald
2011-01-01
The relationship between skin-fold thickness and running performance has been investigated from 100 m to the marathon distance, except the half marathon distance. To investigate whether anthropometry characteristics or training practices were related to race time in 42 recreational female half marathoners to determine the predictor variables of half-marathon race time and to inform future novice female half marathoners. Observational field study at the 'Half Marathon Basel' in Switzerland. In the bivariate analysis, body mass (r = 0.60), body mass index (r = 0.48), body fat (r = 0.56), skin-fold at pectoral (r = 0.61), mid-axilla (r = 0.69), triceps (r = 0.49), subscapular (r = 0.61), abdominal (r = 0.59), suprailiac (r = 0.55) medial calf (r = 0.53) site, and speed of the training sessions (r = -0.68) correlated to race time. Mid-axilla skin-fold (p = 0.04) and speed of the training sessions (p = 0.0001) remained significant after multi-variate analysis. Race time in a half marathon might be predicted by the following equation (r² = 0.71): Race time (min) = 166.7 + 1.7x (mid-axilla skin-fold, mm) - 6.4x (speed in training, km/h). Running speed during training was related to skinfold thickness at mid-axilla (r = -0.31), subscapular (r = -0.38), abdominal (r = -0.44), suprailiacal (r = -0.41), the sum of eight skin-folds (r = -0.36) and percent body fat (r = -0.31). Anthropometric and training variables were related to half-marathon race time in recreational female runners. Skin-fold thicknesses at various upper body locations were related to training intensity. High running speed in training appears to be important for fast half-marathon race times and may reduce upper body skin-fold thicknesses in recreational female half marathoners.
Holmes, Avram J.; Lee, Phil H.; Hollinshead, Marisa O.; Bakst, Leah; Roffman, Joshua L.; Smoller, Jordan W.; Buckner, Randy L.
2013-01-01
Individual differences in affective and social processes may arise from variability in amygdala-medial prefrontal (mPFC) circuitry and related genetic heterogeneity. To explore this possibility in humans, we examined the structural correlates of trait negative affect in a sample of 1050 healthy young adults with no history of psychiatric illness. Analyses revealed that heightened negative affect was associated with increased amygdala volume and reduced thickness in a left mPFC region encompassing the subgenual and rostral anterior cingulate cortex. The most extreme individuals displayed an inverse correlation between amygdala volume and mPFC thickness, suggesting that imbalance between these structures is linked to negative affect in the general population. Subgroups of participants were further evaluated on social (n = 206) and emotional (n = 533) functions. Individuals with decreased mPFC thickness exhibited the poorest social cognition and were least able to correctly identify facial emotion. Given prior links between disrupted amygdala–mPFC circuitry and the presence of major depressive disorder (MDD), we explored whether the individual differences in anatomy observed here in healthy young adults were associated with polygenic risk for MDD (n = 438) using risk scores derived from a large genome-wide association analysis (n = 18,759). Analyses revealed associations between increasing polygenic burden for MDD and reduced cortical thickness in the left mPFC. These collective findings suggest that, within the healthy population, there is significant variability in amygdala–mPFC circuitry that is associated with poor functioning across affective and social domains. Individual differences in this circuitry may arise, in part, from common genetic variability that contributes to risk for MDD. PMID:23238724
Digital Thickness Measurement of a Transparent Plastic Orthodontic Device
NASA Astrophysics Data System (ADS)
Kim, Yoon-Hwan; Rhim, Sung-Han
2018-05-01
A transparent orthodontic device is used to move the teeth to the final calibration position to form a proper set of teeth. Because the uniform thickness of the device plays an important role in tooth positioning, the accuracy of the device's thickness profile is important for effective orthodontic treatment. However, due to the complexity of the device's geometry and the transparency of the device's material, measuring the complete thickness profile has been difficult. In the present study, a new optical scanning method to measure the thickness profile of transparent plastic orthodontic devices is proposed and evaluated by using scanning electron microscopy (SEM). The error of the new measurement method is less than ±18 μm. The new method can be used to measure the thickness of non-specific, multi-curved, transparent orthodontic devices.
Optical properties and light irradiance of monolithic zirconia at variable thicknesses.
Sulaiman, Taiseer A; Abdulmajeed, Aous A; Donovan, Terrence E; Ritter, André V; Vallittu, Pekka K; Närhi, Timo O; Lassila, Lippo V
2015-10-01
The aims of this study were to: (1) estimate the effect of polishing on the surface gloss of monolithic zirconia, (2) measure and compare the translucency of monolithic zirconia at variable thicknesses, and (3) determine the effect of zirconia thickness on irradiance and total irradiant energy. Four monolithic partially stabilized zirconia (PSZ) brands; Prettau® (PRT, Zirkonzahn), Bruxzir® (BRX, Glidewell), Zenostar® (ZEN, Wieland), Katana® (KAT, Noritake), and one fully stabilized zirconia (FSZ); Prettau Anterior® (PRTA, Zirkonzahn) were used to fabricate specimens (n=5/subgroup) with different thicknesses (0.5, 0.7, 1.0, 1.2, 1.5, and 2.0mm). Zirconia core material ICE® Zircon (ICE, Zirkonzahn) was used as a control. Surface gloss and translucency were evaluated using a reflection spectrophotometer. Irradiance and total irradiant energy transmitted through each specimen was quantified using MARC® Resin Calibrator. All specimens were then subjected to a standardized polishing method and the surface gloss, translucency, irradiance, and total irradiant energy measurements were repeated. Statistical analysis was performed using two-way ANOVA and post-hoc Tukey's tests (p<0.05). Surface gloss was significantly affected by polishing (p<0.05), regardless of brand and thickness. Translucency values ranged from 5.65 to 20.40 before polishing and 5.10 to 19.95 after polishing. The ranking from least to highest translucent (after polish) was: BRX=ICE=PRT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, Umakant; Drewniak, Beth; Jastrow, Julie D.
Soil properties such as soil organic carbon (SOC) stocks and active-layer thickness are used in earth system models (F.SMs) to predict anthropogenic and climatic impacts on soil carbon dynamics, future changes in atmospheric greenhouse gas concentrations, and associated climate changes in the permafrost regions. Accurate representation of spatial and vertical distribution of these soil properties in ESMs is a prerequisite for redudng existing uncertainty in predicting carbon-climate feedbacks. We compared the spatial representation of SOC stocks and active-layer thicknesses predicted by the coupled Modellntercomparison Project Phase 5 { CMIP5) ESMs with those predicted from geospatial predictions, based on observation datamore » for the state of Alaska, USA. For the geospatial modeling. we used soil profile observations {585 for SOC stocks and 153 for active-layer thickness) and environmental variables (climate, topography, land cover, and surficial geology types) and generated fine-resolution (50-m spatial resolution) predictions of SOC stocks (to 1-m depth) and active-layer thickness across Alaska. We found large inter-quartile range (2.5-5.5 m) in predicted active-layer thickness of CMIP5 modeled results and small inter-quartile range (11.5-22 kg m-2) in predicted SOC stocks. The spatial coefficient of variability of active-layer thickness and SOC stocks were lower in CMIP5 predictions compared to our geospatial estimates when gridded at similar spatial resolutions (24.7 compared to 30% and 29 compared to 38%, respectively). However, prediction errors. when calculated for independent validation sites, were several times larger in ESM predictions compared to geospatial predictions. Primaly factors leading to observed differences were ( 1) lack of spatial heterogeneity in ESM predictions, (2) differences in assumptions concerning environmental controls, and (3) the absence of pedogenic processes in ESM model structures. Our results suggest that efforts to incorporate these factors in F.SMs should reduce current uncertainties associated with ESM predictions of carbon-climate feedbacks.« less
Effective dilution of surfactants due to thinning of the soap film
NASA Astrophysics Data System (ADS)
Sane, Aakash; Mandre, Shreyas; Kim, Ildoo
2017-11-01
A flowing soap film is a system whose hydrodynamic properties can be affected by its thickness. Despite abundant experiments performed using soap films, few have examined the dependence of its physical as well as chemical properties with respect to its thickness. We investigate one such property - surface tension of the flowing film and delineate its dependence on the concentration of the soap solution and flow rate per unit width i.e. thickness of the soap film. Using our proposed method to measure the average surface tension in-situ over the whole soap film, we show that the surface tension increases by reducing the thickness of the film and by reducing the concentration of the soap solution. Our data suggests that thinning of the soap film is effectively diluting the solution. Thinning increases the adsorption of surfactants to the surfaces, but it decreases the total number of molecules per unit area. Our work brings new insight into the physics of soap films and we believe that this effective dilution due to thinning is a signature of the flowing soap films, whose surface concentration of surfactants is affected by the thickness.
Impact of lightweight and conventional jackhammers on the operator.
Campbell-Kyureghyan, Naira; Singh, Gurjeet; Otieno, Wilkistar; Cooper, Karen
2012-01-01
Jackhammer manufacturers have recently developed lightweight (45-60 lbs) jackhammers intended to reduce the required lifting and pushing forces during operation. However, the vibration characteristics of the lightweight jackhammers and their effect on muscle activity are currently unknown. The objective of this study was to compare the measured vibration and muscle activity between: (i) conventional (90 lb) and light weight (60 lb) jackhammers, (ii) different pavement type/thickness combinations, and (iii) pneumatic and hydraulic jackhammers. Five jackhammers were tested on 4 and 6 inch thick asphalt and concrete pavements by four experienced operators. Analysis of the results revealed that both weight classes averaged 9.7 m/s(2) at the 20 Hz weighted 1/3 octave band frequency, and the TLV of daily exposure for either weight class of jackhammer was less than 1.5 hours/per day. There was an approximately 33% difference in vibration measured on the hand of the operators due to pavement thickness, 30% due pavement type, and no difference due to power source. Conventional jackhammers overall produced higher muscle activity than lightweight jackhammers. Although selection of the correct jackhammer for the job involves many factors including pavement type and thickness, the results of this research can be used to assist in selecting the appropriate jackhammer.
NASA Astrophysics Data System (ADS)
Farner, Michael J.; Lee, Cin-Ty A.
2017-07-01
The majority of arc magmas are highly evolved due to differentiation within the lithosphere or crust. Some studies have suggested a relationship between crustal thickness and magmatic differentiation, but the exact nature of this relationship is unclear. Here, we examine the interplay of crustal thickness and magmatic differentiation using a global geochemical dataset compiled from active volcanic arcs and elevation as a proxy for crustal thickness. With increasing crustal thickness, average arc magma compositions become more silicic (andesitic) and enriched in incompatible elements, indicating that on average, arc magmas in thick crust are more evolved, which can be easily explained by the longer transit and cooling times of magmas traversing thick arc lithosphere and crust. As crustal thickness increases, arc magmas show higher degrees of iron depletion at a given MgO content, indicating that arc magmas saturate earlier in magnetite when traversing thick crust. This suggests that differentiation within thick crust occurs under more oxidizing conditions and that the origin of oxidation is due to intracrustal processes (contamination or recharge) or the role of thick crust in modulating melting degree in the mantle wedge. We also show that although arc magmas are on average more silicic in thick crust, the most silicic magmas (>70 wt.% SiO2) are paradoxically found in thin crust settings, where average compositions are low in silica (basaltic). We suggest that extreme residual magmas, such as those exceeding 70 wt.% SiO2, are preferentially extracted from shallow crustal magma bodies than from deep-seated magma bodies, the latter more commonly found in regions of thick crust. We suggest that this may be because the convective lifespan of crustal magma bodies is limited by conductive cooling through the overlying crustal lid and that magma bodies in thick crust cool more slowly than in thin crust. When the crust is thin, cooling is rapid, preventing residual magmas from being extracted; in the rare case that residual magmas can be extracted, they represent the very last melt fractions, which are highly silicic. When the crust is thick, cooling is slow, so intermediate melt fractions can readily segregate and erupt to the surface, where they cool and crystallize before highly silicic residual melts can be generated.
NASA Astrophysics Data System (ADS)
Pahlevaninezhad, H.; Lee, A. M. D.; Hyun, C.; Lam, S.; MacAulay, C.; Lane, P. M.
2013-03-01
In this paper, we conduct a phantom study for modeling the autofluorescence (AF) properties of tissue. A combined optical coherence tomography (OCT) and AF imaging system is proposed to measure the strength of the AF signal in terms of the scattering layer thickness and concentration. The combined AF-OCT system is capable of estimating the AF loss due to scattering in the epithelium using the thickness and scattering concentration calculated from the co-registered OCT images. We define a correction factor to account for scattering losses in the epithelium and calculate a scatteringcorrected AF signal. We believe the scattering-corrected AF will reduce the diagnostic false-positives rate in the early detection of airway lesions due to confounding factors such as increased epithelial thickness and inflammations.
Thermal energy effects on articular cartilage: a multidisciplinary evaluation
NASA Astrophysics Data System (ADS)
Kaplan, Lee D.; Ernsthausen, John; Ionescu, Dan S.; Studer, Rebecca K.; Bradley, James P.; Chu, Constance R.; Fu, Freddie H.; Farkas, Daniel L.
2002-05-01
Partial thickness articular cartilage lesions are commonly encountered in orthopedic surgery. These lesions do not have the ability to heal by themselves, due to lack of vascular supply. Several types of treatment have addressed this problem, including mechanical debridement and thermal chondroplasty. The goal of these treatments is to provide a smooth cartilage surface and prevent propagation of the lesions. Early thermal chondroplasty was performed using lasers, and yielded very mixed results, including severe damage to the cartilage, due to poor control of the induced thermal effects. This led to the development (including commercial) of probes using radiofrequency to generate the thermal effects desired for chondroplasty. Similar concerns over the quantitative aspects and control ability of the induced thermal effects in these treatments led us to test the whole range of complex issues and parameters involved. Our investigations are designed to simultaneously evaluate clinical conditions, instrument variables for existing radiofrequency probes (pressure, speed, distance, dose) as well as the associated basic science issues such as damage temperature and controllability (down to the subcellular level), damage geometry, and effects of surrounding conditions (medium, temperature, flow, pressure). The overall goals of this work are (1) to establish whether thermal chondroplasty can be used in a safe and efficacious manner, and (2) provide a prescription for multi-variable optimization of the way treatments are delivered, based on quantitative analysis. The methods used form an interdisciplinary set, to include precise mechanical actuation, high accuracy temperature and temperature gradient control and measurement, advanced imaging approaches and mathematical modeling.
Percolative effects on noise in pentacene transistors
NASA Astrophysics Data System (ADS)
Conrad, B. R.; Cullen, W. G.; Yan, W.; Williams, E. D.
2007-12-01
Noise in pentacene thin film transistors has been measured as a function of device thickness from well above the effective conduction channel thickness to only two conducting layers. Over the entire thickness range, the spectral noise form is 1/f, and the noise parameter varies inversely with gate voltage, confirming that the noise is due to mobility fluctuations, even in the thinnest films. Hooge's parameter varies as an inverse power law with conductivity for all film thicknesses. The magnitude and transport characteristics of the spectral noise are well explained in terms of percolative effects arising from the grain boundary structure.
NASA Astrophysics Data System (ADS)
Printz Ringbæk, Toke; Weber, Uli; Santiago, Alina; Simeonov, Yuri; Fritz, Peter; Krämer, Michael; Wittig, Andrea; Bassler, Niels; Engenhart-Cabillic, Rita; Zink, Klemens
2016-06-01
A ripple filter (RiFi)—also called mini-ridge filter—is a passive energy modulator used in particle beam treatments that broadens the Bragg peak (BP) as a function of its maximum thickness. The number of different energies requested from the accelerator can thus be reduced, which significantly reduces the treatment time. A new second generation RiFi with 2D groove shapes was developed using rapid prototyping, which optimizes the beam-modulating material and enables RiFi thicknesses of up to 6 mm. Carbon ion treatment plans were calculated using the standard 1D 3 mm thick RiFi and the new 4 and 6 mm 2D RiFis for spherical planning target volumes (PTVs) in water, eight stage I non-small cell lung cancer cases, four skull base chordoma cases and three prostate cancer cases. TRiP98 was used for treatment planning with facility-specific base data calculated with the Monte Carlo code SHIELD-HIT12A. Dose-volume-histograms, spatial dose distributions and dosimetric indexes were used for plan evaluation. Plan homogeneity and conformity of thinner RiFis were slightly superior to thicker RiFis but satisfactory results were obtained for all RiFis investigated. For the 6 mm RiFi, fine structures in the dose distribution caused by the larger energy steps were observed at the PTV edges, in particular for superficial and/or very small PTVs but performances for all RiFis increased with penetration depth due to straggling and scattering effects. Plans with the new RiFi design yielded for the studied cases comparable dosimetric results to the standard RiFi while the 4 and 6 mm RiFis lowered the irradiation time by 25-30% and 45-49%, respectively.
Analysis of variance in investigations on anisotropy of Cu ore deposits
NASA Astrophysics Data System (ADS)
Namysłowska-Wilczyńska, B.
1986-10-01
The problem of variability of copper grades and ore thickness in the Lubin copper ore deposit in southwestern Poland is presented. Results of statistical analysis of variations of ledge parameters carried out for three exploited regions of the mine, representing different types of lithological profile show considerable differences. Variability of copper grades occurs in vertical profiles, as well as on extension of field (the copper-bearing series). Against the background of a complex, well-substantiated description of the spatial variability in the Lubin deposit, a methodology is presented that has been applied for the determination of homogeneous ore blocks. The method is a two-factorial (cross) analysis of variance with the special tests of Tukey, Scheffe and Duncan. Blocks of homogeneous sandstone ore have dimensions of up to 160,000 m2 and 60,000 m2 in the case of the Cu content parameter and 200,000 m2 and 10,000 m2 for the thickness parameter.
Tests of N.A.C.A. airfoils in the variable-density wind tunnel Series 24
NASA Technical Reports Server (NTRS)
Jacobs, Eastman N; WARD KENNETH E
1932-01-01
This note is the fifth of a series covering an investigation of a number of related airfoils. It presents the results obtained from tests of a group of six low-cambered airfoils in the variable-density wind tunnel. The mean camber lines are identical for the six airfoils and are of such a form that the maximum mean camber is 2 per cent of the chord and is at a position 0.4 of the chord behind the loading edge. The airfoils differ in thickness only, the maximum-thickness/chord ratios being 0.06, 0.09, 0.12, 0.15, 0.18, and 0.21. The results have been presented in the form of both infinite and finite aspect-ratio characteristics. The values of C(sub L) max/C(sub d) degrees min for this group of airfoils are among the highest thus far obtained, the minimum profile drags being approximately equal to those for the symmetrical series of corresponding thickness, while the maximum lift coefficients are considerably higher.
Cascaded Ga1-xAlxAs/GaAs solar cell with graded i-region
NASA Astrophysics Data System (ADS)
Mil'shtein, Sam; Halilov, Samed
2018-02-01
In current study we designed p-i-n junction with extended intrinsic layer, where linearly graded Alx Ga1-x As presents variable energy gap so needed for effective harvesting of sun radiation. The design realization involves two regions of compositional structure in the stacking direction. The top AlxGa1-xAs layer of 1 um total thickness has stoichiometric structure x=0.3-0.2d, where depth d runs from 0 to 1 um, topmost 200 nm of which is Be-doped. Bottom AlxGa1-xAs layer of 3 um total thickness has a variable composition of x=0.133-0.033d, d runs from 1 to 4 um, the very bottom of which with 10 nm thickness is Si-doped. On the top surface, there is a 50 nm layer of p+ doped GaAs as a spacer for growing AuGe/Ni anode electrode of 20% surface area, the bottom is coated with AuGe/Ni cathode electrode. The designed cell demonstrates 89% fill factor and 30% conversion efficiency without anti-reflection coating.
Ellipsometric study of oxide films formed on LDEF metal samples
NASA Technical Reports Server (NTRS)
Franzen, W.; Brodkin, J. S.; Sengupta, L. C.; Sagalyn, P. L.
1992-01-01
The optical constants of samples of six different metals (Al, Cu, Ni, Ta, W, and Zr) exposed to space on the Long Duration Exposure Facility (LDEF) were studied by variable angle spectroscopic ellipsometry. Measurements were also carried out on portions of each sample which were shielded from direct exposure by a metal bar. A least-squares fit of the data using an effective medium approximation was then carried out, with thickness and composition of surface films formed on the metal substrates as variable parameters. The analysis revealed that exposed portions of the Cu, Ni, Ta, and Zr samples are covered with porous oxide films ranging in thickness from 500 to 1000 A. The 410 A thick film of Al2O3 on the exposed Al sample is practically free of voids. Except for Cu, the shielded portions of these metals are covered by thin non-porous oxide films characteristic of exposure to air. The shielded part of the Cu sample has a much thicker porous coating of Cu2O. The tungsten data could not be analyzed.
Fluid Structural Analysis of Human Cerebral Aneurysm Using Their Own Wall Mechanical Properties
Valencia, Alvaro; Burdiles, Patricio; Ignat, Miguel; Mura, Jorge; Rivera, Rodrigo; Sordo, Juan
2013-01-01
Computational Structural Dynamics (CSD) simulations, Computational Fluid Dynamics (CFD) simulation, and Fluid Structure Interaction (FSI) simulations were carried out in an anatomically realistic model of a saccular cerebral aneurysm with the objective of quantifying the effects of type of simulation on principal fluid and solid mechanics results. Eight CSD simulations, one CFD simulation, and four FSI simulations were made. The results allowed the study of the influence of the type of material elements in the solid, the aneurism's wall thickness, and the type of simulation on the modeling of a human cerebral aneurysm. The simulations use their own wall mechanical properties of the aneurysm. The more complex simulation was the FSI simulation completely coupled with hyperelastic Mooney-Rivlin material, normal internal pressure, and normal variable thickness. The FSI simulation coupled in one direction using hyperelastic Mooney-Rivlin material, normal internal pressure, and normal variable thickness is the one that presents the most similar results with respect to the more complex FSI simulation, requiring one-fourth of the calculation time. PMID:24151523
ENSO in a warming world: interannual climate variability in the early Miocene Southern Hemisphere
NASA Astrophysics Data System (ADS)
Fox, Bethany; Wilson, Gary; Lee, Daphne
2016-04-01
The El Niño - Southern Oscillation (ENSO) is the dominant source of interannual variability in the modern-day climate system. ENSO is a quasi-periodic cycle with a recurrence interval of 2-8 years. A major question in modern climatology is how ENSO will respond to increased climatic warmth. ENSO-like (2-8 year) cycles have been detected in many palaeoclimate records for the Holocene. However, the temporal resolution of pre-Quaternary palaeoclimate archives is generally too coarse to investigate ENSO-scale variability. We present a 100-kyr record of ENSO-like variability during the second half of the Oligocene/Miocene Mi-1 event, a period of increasing global temperatures and Antarctic deglaciation (~23.032-2.93 Ma). This record is drawn from an annually laminated lacustrine diatomite from southern New Zealand, a region strongly affected by ENSO in the present day. The diatomite consists of seasonal alternations of light (diatom bloom) and dark (low diatom productivity) layers. Each light-dark couplet represents one year's sedimentation. Light-dark couplet thickness is characterised by ENSO-scale variability. We use high-resolution (sub-annual) measurements of colour spectra to detect couplet thickness variability. Wavelet analysis indicates that absolute values are modulated by orbital cycles. However, when orbital effects are taken into account, ENSO-like variability occurs throughout the entire depositional period, with no clear increase or reduction in relation to Antarctic deglaciation and increasing global warmth.
NASA Astrophysics Data System (ADS)
Sabra, Mohammad S.
2016-09-01
In the paper by Mohammad S. Sabra, due to a mixup, wrong calculations for NEPR ratios, normalized to 20 cm-thick copper, for 40 cm and 60 cm-thick copper at 30° for QGSP-BIC, QGSP-BERT, QGSP-INCLXX, and SHIELDING were published in Table 2. The correct values are listed in the revised Table 2 as below.
LaBounty, T M; Hardy, W D; Fan, Z; Yumul, R; Li, D; Dharmakumar, R; Conte, A Hernandez
2016-08-01
While patients with HIV infection have an elevated stroke risk, ultrasound studies of carotid artery wall thickness have reported variable results. We hypothesized that subjects with HIV infection on chronic highly active antiretroviral therapy (HAART) would have increased carotid artery wall thickness by magnetic resonance imaging (MRI). This cross-sectional study compared carotid artery wall thickness between 26 individuals infected with HIV on chronic HAART and 20 controls, without HIV infection but with similar cardiovascular risk factors, using 3.0-T noncontrast MRI. Inclusion criteria included male gender, age 35-55 years, and chronic HAART (≥ 3 years) among HIV-seropositive subjects; those with known cardiovascular disease or diabetes were excluded. Between subjects with HIV infection and controls, there were no differences in mean (±SD) age (47.8 ± 5.0 vs. 47.8 ± 4.7 years, respectively; P = 0.19) or cardiovascular risk factors (P > 0.05 for each). Mean (±SD) wall thickness was increased in those with HIV infection vs. controls for the left (0.88 ± 0.08 vs. 0.83 ± 0.08 mm, respectively; P = 0.03) and right (0.90 ± 0.10 vs. 0.85 ± 0.07 mm, respectively; P = 0.046) common carotid arteries. Among individuals with HIV infection, variables associated with increased mean carotid artery wall thickness included lipoaccumulation [+0.09 mm; 95% confidence interval (CI) 0.03-0.14 mm; P = 0.003], Framingham risk score ≥ 5% (+0.07 mm; 95% CI 0.01-0.12; P = 0.02 mm), and increased duration of protease inhibitor therapy (+0.03 mm per 5 years; 95% CI 0.01-0.06 mm; P = 0.02). Individuals with HIV infection on chronic HAART had increased carotid artery wall thickness as compared to similar controls. In subjects with HIV infection, the presence of lipoaccumulation and longer duration of protease inhibitor therapy were associated with greater wall thickness. © 2015 British HIV Association.
Balch, Charles M.; Murad, Tariq M.; Soong, Seng-Jaw; Ingalls, Anna Lee; Halpern, Norman B.; Maddox, William A.
1978-01-01
A multifactorial analysis was used to identify the dominant prognostic variables affecting survival from a computerized data base of 339 melanoma patients treated at this institution during the past 17 years. Five of the 13 parameters examined simultaneously were found to independently influence five year survival rates: 1) pathological stage (I vs II, p = 0.0014), 2) lesion ulceration (present vs absent, p = 0.006), 3) surgical treatment (wide excision vs wide excision plus lymphadenectomy, p = 0.024), 4) melanoma thickness (p = 0.032), and 5) location (upper extremity vs lower extremity vs trunk vs head and neck, p = 0.038). Additional factors considered that had either indirect or no influence on survival rates were clinical stage of disease, age, sex, level of invasion, pigmentation, lymphocyte infiltration, growth pattern, and regression. Most of these latter variables derived their prognostic value from correlation with melanoma thickness, except sex which correlated with location (extremity lesions were more frequent on females, trunk lesions on males). This statistical analysis enabled us to derive a mathematical equation for predicting an individual patient's probability of five year survival. Three categories of risk were delineated by measuring tumor thickness (Breslow microstaging) in Stage I patients: 1) thin melanomas (<0.76 mm) were associated with localized disease and a 100% cure rate: 2) intermediate thickness melanomas (0.76-4.00 mm) had an increasing risk (up to 80%) of harboring regional and/or distant metastases and 3) thick melanomas (≥4.00 mm) had a 80% risk of occult distant metastases at the time of initial presentation. The level of invasion (Clark's microstaging) correlated with survival, but was less predictive than measuring tumor thickness. Within each of Clark's Level II, III and IV groups, there were gradations of thickness with statistically different survival rates. Both microstaging methods (Breslow and Clark) were less predictive factors in patients with lymph node or distant metastases. Clinical trials evaluating alternative surgical treatments or adjunctive therapy modalities for melanoma patients should incorporate these parameters into their assessment, especially in Stage I (localized) disease where tumor thickness and the anatomical site of the primary melanoma are dominant prognostic factors. PMID:736651
Optical properties of cells with melanin
NASA Astrophysics Data System (ADS)
Rohde, Barukh; Coats, Israel; Krueger, James; Gareau, Dan
2014-02-01
The optical properties of pigmented lesions have been studied using diffuse reflectance spectroscopy in a noninvasive configuration on optically thick samples such as skin in vivo. However, it is difficult to un-mix the effects of absorption and scattering with diffuse reflectance spectroscopy techniques due to the complex anatomical distributions of absorbing and scattering biomolecules. We present a device and technique that enables absorption and scattering measurements of tissue volumes much smaller than the optical mean-free path. Because these measurements are taken on fresh-frozen sections, they are direct measurements of the optical properties of tissue, albeit in a different hydration state than in vivo tissue. Our results on lesions from 20 patients including melanomas and nevi show the absorption spectrum of melanin in melanocytes and basal keratinocytes. Our samples consisted of fresh frozen sections that were unstained. Fitting the spectrum as an exponential decay between 500 and 1100 nm [mua = A*exp(-B*(lambda-C)) + D], we report on the fit parameters of and their variation due to biological heterogeneity as A = 4.20e4 +/- 1.57e5 [1/cm], B = 4.57e-3 +/- 1.62e-3 [1/nm], C = 210 +/- 510 [nm] , D = 613 +/- 534 [1/cm]. The variability in these results is likely due to highly heterogeneous distributions of eumelanin and pheomelanin.
GIA Modeling with 3D Rheology and Recent Ice Thickness Changes in Polar Regions
NASA Astrophysics Data System (ADS)
Van Der Wal, W.; Wu, P. P.
2012-12-01
Models for Glacial Isostatic Adjustment (GIA) mainly focus on the response of the solid Earth to ice thickness changes on the scale of thousands of years. However, some of the fastest vertical movement in former glaciated regions is due to changes in ice thickness that occurred within the last 1,000 years. Similar studies for the polar regions are limited, possibly due to a lack of knowledge on past ice sheet thicknesses there. Still, predictions of uplift rate and mass change due to recent ice thickness changes need to improve in order to provide accurate estimates of current mass loss. In order to obtain a measurable response to variations in ice thickness in the last 1,000 years, viscosity in the lithosphere or top of the upper mantle needs to be lower than the mantle viscosity values in conventional GIA models. In the absence of reliable models for recent ice thickness changes we aim to bracket the predicted uplift rates and gravity rates for such changes by assuming simplified past ice growth and melt patterns. Instead of adding a low-viscous layer in the mantle a priori, creep parameters are based on information from experimental constraints, seismology and heatflow measurements. Thus the model includes viscosity varying in space and time. The simulations are performed on a finite element model of a spherical, self-gravitating, incompressible Earth using the commercial software Abaqus. 3D composite rheology is implemented based on temperature fields from heatflow measurements or seismic velocity anomalies. The lithospheric thickness does not need to be specified as the effective elastic thickness is determined by the local effective viscosity. ICE-5G is used as ice loading history while ice changes during and around the Little Ice Age in Greenland are assumed to take place near the coast. A 3D composite rheology has been shown to match historic sea levels well, but uplift rates are somewhat underestimated. With the GIA models that best match uplift rates in Fennoscandia and North America we find that ice thickness increase during the Little Ice Age in Greenland can make up a significant part of the mass change signal observed by the GRACE satellites (locally up to 10%). 3D non-linear rheology models introduce variation of up to 30% of the maximum signal observed with GRACE, compared to about 20% for conventional GIA models with 1D viscosity.
Turan, Kadriye Erkan; Sekeroglu, Hande Taylan; Baytaroglu, Ata; Bezci, Figen; Karahan, Sevilay
2018-01-01
To (a) determine the normative values for optical coherence tomography (OCT) parameters such as central macular thickness, retinal nerve fiber layer thickness, and choroidal thickness in healthy children; (b) investigate the relationships of these parameters with axial length, central corneal thickness, refractive errors, and intraocular pressure; and (c) determine interexaminer agreement for choroidal thickness measurements. In this cross-sectional study, 120 healthy children aged 8-15 years underwent detailed ophthalmological examination and OCT measurements. Choroidal thickness was measured at three separate locations by two independent examiners. The mean global retinal nerve fiber layer thickness was 98.75 ± 9.45 μm (79.0-121.0). The mean central macular thickness was 232.29 ± 29.37 μm (190.0-376.0). The mean subfoveal choroidal thickness obtained by examiner 1 was 344.38 ± 68.83 μm and that obtained by examiner 2 was 344.04 ± 68.92 μm. Interexaminer agreement was between 99.6%-99.8% for choroidal thickness at three separate locations. Central macular thickness increased with axial length (r=0.245, p=0.007). Choroidal thickness increased with age (r=0.291, p=0.001) and decreased with axial length (r=-0.191, p=0.037). Global retinal nerve fiber layer thickness decreased with axial length (r=-0.247, p=0.007) and increased with central corneal thickness (r=0.208, p=0.022). Global retinal nerve fiber layer thickness positively correlated with choroidal thickness (r=0.354, p<0.001). Global retinal nerve fiber layer thickness (r=0.223, p=0.014) and choroidal thickness (r=0.272, p=0.003) increased with the spherical equivalent (D). Optical coherence tomography parameters showed a wide range of variability in children. Retinal nerve fiber layer thickness, central macular thickness, and choroidal thickness were found to be either inter-related or correlated with age, central corneal thickness, axial length, and refractive errors. Furthermore, manual measurements of choroidal thickness showed high interexaminer agreement. Because normative values for optical coherence tomography parameters differed in children, the measurements should be interpreted according to an age-appropriate database.
Analytic Closed-Form Solution of a Mixed Layer Model for Stratocumulus Clouds
NASA Astrophysics Data System (ADS)
Akyurek, Bengu Ozge
Stratocumulus clouds play an important role in climate cooling and are hard to predict using global climate and weather forecast models. Thus, previous studies in the literature use observations and numerical simulation tools, such as large-eddy simulation (LES), to solve the governing equations for the evolution of stratocumulus clouds. In contrast to the previous works, this work provides an analytic closed-form solution to the cloud thickness evolution of stratocumulus clouds in a mixed-layer model framework. With a focus on application over coastal lands, the diurnal cycle of cloud thickness and whether or not clouds dissipate are of particular interest. An analytic solution enables the sensitivity analysis of implicitly interdependent variables and extrema analysis of cloud variables that are hard to achieve using numerical solutions. In this work, the sensitivity of inversion height, cloud-base height, and cloud thickness with respect to initial and boundary conditions, such as Bowen ratio, subsidence, surface temperature, and initial inversion height, are studied. A critical initial cloud thickness value that can be dissipated pre- and post-sunrise is provided. Furthermore, an extrema analysis is provided to obtain the minima and maxima of the inversion height and cloud thickness within 24 h. The proposed solution is validated against LES results under the same initial and boundary conditions. Then, the proposed analytic framework is extended to incorporate multiple vertical columns that are coupled by advection through wind flow. This enables a bridge between the micro-scale and the mesoscale relations. The effect of advection on cloud evolution is studied and a sensitivity analysis is provided.
Alizadeh, Mohammad; Daneghian, Sevana; Ghaffari, Aida; Ostadrahimi, Alireza; Safaeiyan, Abdolrasoul; Estakhri, Rassul; Gargari, Bahram Pourghasem
2010-01-01
BACKGROUND: Identifying new ways to decrease adiposity will be very valuable for health. The aim of this study was to find out whether L-Arginine (Arg) and selenium alone or together can increase the effect of hypocaloric diet enriched in legumes (HDEL) on anthropometric measures in healthy obese women. METHODS: This randomized, double-blind, placebo-controlled trial was undertaken in 84 healthy premenopausal women with central obesity. After 2 weeks of run-in on an isocaloric diet, participants were randomly considered to eat HDEL, Arg (5 g/d) and HDEL, selenium (200 µg/d) and HDEL or Arg, selenium and HDEL for 6 weeks. The following variables were assessed before intervention and 3 and 6 weeks after it: weight, waist circumference, hip circumference, waist to hip ratio (WHR), body mass index (BMI), and fasting nitrite/nitrate (NOx) concentrations. Other variables (arm, thigh, calf and breast circumferences, subscapular, triceps, biceps and suprailiac skinfold thicknesses, sum of skinfold thicknesses (SSF), body density (D) and estimated percent of body fat (EPF)) were assessed before and after intervention. RESULTS: HDEL showed a significant effect in reduction of waist, hip, arm, thigh, calf and breast circumferences, triceps, biceps, subscapular and suprailiac skinfold thicknesses, WHR, SSF, D and EPF. HDEL + Arg + selenium significantly reduced suprailiac skinfold thicknesses; and there was no significant effect of HDEL, Arg, selenium and Arg plus selenium on weight, BMI and fasting NOx. CONCLUSIONS: The study indicates that HDEL + Arg + selenium reduce suprailiac skinfold thicknesses which represents the abdominal obesity reduction. PMID:21526106
NASA Astrophysics Data System (ADS)
Wongpan, P.; Meiners, K. M.; Langhorne, P. J.; Heil, P.; Smith, I. J.; Leonard, G. H.; Massom, R. A.; Clementson, L. A.; Haskell, T. G.
2018-03-01
Fast ice is an important component of Antarctic coastal marine ecosystems, providing a prolific habitat for ice algal communities. This work examines the relationships between normalized difference indices (NDI) calculated from under-ice radiance measurements and sea ice algal biomass and snow thickness for Antarctic fast ice. While this technique has been calibrated to assess biomass in Arctic fast ice and pack ice, as well as Antarctic pack ice, relationships are currently lacking for Antarctic fast ice characterized by bottom ice algae communities with high algal biomass. We analyze measurements along transects at two contrasting Antarctic fast ice sites in terms of platelet ice presence: near and distant from an ice shelf, i.e., in McMurdo Sound and off Davis Station, respectively. Snow and ice thickness, and ice salinity and temperature measurements support our paired in situ optical and biological measurements. Analyses show that NDI wavelength pairs near the first chlorophyll a (chl a) absorption peak (≈440 nm) explain up to 70% of the total variability in algal biomass. Eighty-eight percent of snow thickness variability is explained using an NDI with a wavelength pair of 648 and 567 nm. Accounting for pigment packaging effects by including the ratio of chl a-specific absorption coefficients improved the NDI-based algal biomass estimation only slightly. Our new observation-based algorithms can be used to estimate Antarctic fast ice algal biomass and snow thickness noninvasively, for example, by using moored sensors (time series) or mapping their spatial distributions using underwater vehicles.
Noda, Yasufumi; Kanki, Akihiko; Yamamoto, Akira; Higashi, Hiroki; Tanimoto, Daigo; Sato, Tomohiro; Higaki, Atsushi; Tamada, Tsutomu; Ito, Katsuyoshi
2014-07-01
To evaluate age-related change in renal corticomedullary differentiation and renal cortical thickness by means of noncontrast-enhanced steady-state free precession (SSFP) magnetic resonance imaging (MRI) with spatially selective inversion recovery (IR) pulse. The Institutional Review Board of our hospital approved this retrospective study and patient informed consent was waived. This study included 48 patients without renal diseases who underwent noncontrast-enhanced SSFP MRI with spatially selective IR pulse using variable inversion times (TIs) (700-1500 msec). The signal intensity of renal cortex and medulla were measured to calculate renal corticomedullary contrast ratio. Additionally, renal cortical thickness was measured. The renal corticomedullary junction was clearly depicted in all patients. The mean cortical thickness was 3.9 ± 0.83 mm. The mean corticomedullary contrast ratio was 4.7 ± 1.4. There was a negative correlation between optimal TI for the best visualization of renal corticomedullary differentiation and age (r = -0.378; P = 0.001). However, there was no significant correlation between renal corticomedullary contrast ratio and age (r = 0.187; P = 0.20). Similarly, no significant correlation was observed between renal cortical thickness and age (r = 0.054; P = 0.712). In the normal kidney, noncontrast-enhanced SSFP MRI with spatially selective IR pulse can be used to assess renal corticomedullary differentiation and cortical thickness without the influence of aging, although optimal TI values for the best visualization of renal corticomedullary junction were shortened with aging. © 2013 Wiley Periodicals, Inc.
Probabilistic Simulation of Multi-Scale Composite Behavior
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
2012-01-01
A methodology is developed to computationally assess the non-deterministic composite response at all composite scales (from micro to structural) due to the uncertainties in the constituent (fiber and matrix) properties, in the fabrication process and in structural variables (primitive variables). The methodology is computationally efficient for simulating the probability distributions of composite behavior, such as material properties, laminate and structural responses. Bi-products of the methodology are probabilistic sensitivities of the composite primitive variables. The methodology has been implemented into the computer codes PICAN (Probabilistic Integrated Composite ANalyzer) and IPACS (Integrated Probabilistic Assessment of Composite Structures). The accuracy and efficiency of this methodology are demonstrated by simulating the uncertainties in composite typical laminates and comparing the results with the Monte Carlo simulation method. Available experimental data of composite laminate behavior at all scales fall within the scatters predicted by PICAN. Multi-scaling is extended to simulate probabilistic thermo-mechanical fatigue and to simulate the probabilistic design of a composite redome in order to illustrate its versatility. Results show that probabilistic fatigue can be simulated for different temperature amplitudes and for different cyclic stress magnitudes. Results also show that laminate configurations can be selected to increase the redome reliability by several orders of magnitude without increasing the laminate thickness--a unique feature of structural composites. The old reference denotes that nothing fundamental has been done since that time.
The Multi-Layer Variable Absorbers in NGC 1365 Revealed by XMM-Newton and NuSTAR
NASA Technical Reports Server (NTRS)
Rivers, E.; Risaliti, G.; Walton, D. J.; Harrison, F.; Arevalo, P.; Baur, F. E.; Boggs, S. E.; Brenneman, L. W.; Brightman, M.; Zhang, W. W.
2015-01-01
Between 2012 July and 2013 February, NuSTAR and XMM-Newton performed four long-look joint observations of the type 1.8 Seyfert, NGC 1365. We have analyzed the variable absorption seen in these observations in order to characterize the geometry of the absorbing material. Two of the observations caught NGC 1365 in an unusually low absorption state, revealing complexity in the multi-layer absorber that had previously been hidden. We find the need for three distinct zones of neutral absorption in addition to the two zones of ionized absorption and the Compton-thick torus previously seen in this source. The most prominent absorber is likely associated with broad-line region clouds with column densities of around approximately 10 (sup 23) per square centimeter and a highly clumpy nature as evidenced by an occultation event in 2013 February. We also find evidence of a patchy absorber with a variable column around approximately 10 (sup 22) per square centimeter and a line-of-sight covering fraction of 0.3-0.9, which responds directly to the intrinsic source flux, possibly due to a wind geometry. A full-covering, constant absorber with a low column density of approximately 1 by 10 (sup 22) per square centimeter is also present, though the location of this low density haze is unknown.
NASA Astrophysics Data System (ADS)
Siebert, Christian; Broder, Merkel; Thomas, Pohl; Yossi, Yechieli; Eldat, Hazan; Danny, Ionescu; Ulf, Mallast
2017-04-01
Along the coastline of the hyper-saline and dramatically dropping Dead Sea, fresh to highly saline groundwaters discharge abundantly from dry falling lakebed. During its history, the level and hence salinity of the lake strongly fluctuated, resulting in the deposition of an alternating sequence of clayey and chemical sediments (mainly halite, carbonates and sulfates), intercalated by thick beds of halite and of coarse clastics around wadi outlets, respectively. Due to the asymmetrical shape of the lake's basin, these strata are deposited unequally along the eastern and western flank, why only groundwaters coming from the west have to pass thick layers of these sediments on their way into the lake. On the base of trace elements (REE), element ratios, stable and radioisotopes and microbiological findings, the observed onshore and offshore springs revealed, freshwaters discharge from both Cretaceous limestone aquifers and efficiently dissolve the easily soluble halite and flush the interstitial brines from the saliferous clay formation, immediately after entering the sedimentary strata. Abundant microbial activity result in the widespread production of sulfuric acid, accelerating erosion of carbonates and sulfates. These processes result in a fast and striking karstification of the strata, enabling groundwaters to transcendent the fresh/saltwater interface trough open pipes. As results, submarine groundwater discharge (SGD) occurs randomly and in addition to terrestrial, submarine sinkholes develop very quickly too. Due to the variable maturity of the flow paths, salinity and chemical composition of SGD shows an extremely wide range, from potable water to TDS of >250 g/l. Submarine emerging groundwaters with salinities even higher then that of the Dead Sea and distinctly different chemical and isotopic composition form outlets, which are not known elsewhere and represent a novel and unique type of SGD, only observed in the Dead Sea yet.
NASA Astrophysics Data System (ADS)
Sifa, A.; Baskoro, A. S.; Sugeng, S.; Badruzzaman, B.; Endramawan, T.
2018-02-01
Resistance Spot Welding (RSW) is a process of connecting between two worksheet with thermomechanical loading process, RSW is widely used in automotive industry, the quality of splicing spot welding is influenced by several factors. One of the factors at the time of the welding process is pressure. The quality of welding on the nuggets can be determined by undertaking non-destructive testing by using Non Destructive Test (NDT) - Ultrasonic Test. In the NDT test is done by detecting the thickness of the nugget area, the purpose of research conducted to determine the effect of pressure to welding quality with Nugget thickness gauge measurement with Non Destructive Test method and manual measurement with micrometer, Experimental welding process by entering the welding parameters that have been specified and pressure variables 1 -5 bars on the worksheet thickness of 1 mm. The results of testing with NDT show there is addition of thickness in nugget superiority after compare with measurement result of thickness of nugget with micrometer which slightly experience thickness in nugget area, this indicates that the welding results have a connection between worksheet 1 and worksheet 2.
NASA Technical Reports Server (NTRS)
Lahti, G. P.; Mueller, R. A.
1973-01-01
Measurements of MeV neutron were made at the surface of a lithium hydride and depleted uranium shielded reactor. Four shield configurations were considered: these were assembled progressively with cylindrical shells of 5-centimeter-thick depleted uranium, 13-centimeter-thick lithium hydride, 5-centimeter-thick depleted uranium, 13-centimeter-thick lithium hydride, 5-centimeter-thick depleted uranium, and 3-centimeter-thick depleted uranium. Measurements were made with a NE-218 scintillation spectrometer; proton pulse height distributions were differentiated to obtain neutron spectra. Calculations were made using the two-dimensional discrete ordinates code DOT and ENDF/B (version 3) cross sections. Good agreement between measured and calculated spectral shape was observed. Absolute measured and calculated fluxes were within 50 percent of one another; observed discrepancies in absolute flux may be due to cross section errors.
A Thick Target for Synchrotrons and Betatrons
DOE R&D Accomplishments Database
McMillan, E. M.
1950-09-19
If a wide x-ray beam from an electron synchrotron or betatron is desired, in radiographic work with large objects for example, the usually very thin target may be replaced by a thick one, provided the resulting distortion of the x-ray spectrum due to multiple radiative processes is permissible. It is difficult to make the circulating electron beam traverse a thick target directly because of the small spacing between successive turns. Mounting a very thin beryllium, or other low-z material, fin on the edge of the thick target so that the fin projects into the beam will cause the beam to lose sufficient energy, and therefore radium, to strike the thick target the next time around. Sample design calculations are given.
Threshold thickness for applying diffusion equation in thin tissue optical imaging
NASA Astrophysics Data System (ADS)
Zhang, Yunyao; Zhu, Jingping; Cui, Weiwen; Nie, Wei; Li, Jie; Xu, Zhenghong
2014-08-01
We investigated the suitability of the semi-infinite model of the diffusion equation when using diffuse optical imaging (DOI) to image thin tissues with double boundaries. Both diffuse approximation and Monte Carlo methods were applied to simulate light propagation in the thin tissue model with variable optical parameters and tissue thicknesses. A threshold value of the tissue thickness was defined as the minimum thickness in which the semi-infinite model exhibits the same reflected intensity as that from the double-boundary model and was generated as the final result. In contrast to our initial hypothesis that all optical properties would affect the threshold thickness, our results show that only absorption coefficient is the dominant parameter and the others are negligible. The threshold thickness decreases from 1 cm to 4 mm as the absorption coefficient grows from 0.01 mm-1 to 0.2 mm-1. A look-up curve was derived to guide the selection of the appropriate model during the optical diagnosis of thin tissue cancers. These results are useful in guiding the development of the endoscopic DOI for esophageal, cervical and colorectal cancers, among others.
Effect of Specimen Thickness on Mechanical Behavior of SiC/SiC Composites
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.; Singh, Mrityunjay; Freedman, Marc
2004-01-01
Potential composite applications in aerospace and transportation application systems have different thickness requirements. For example, space applications such as nozzle ramps or heat exchangers use very thin (less than 1 mm) structures whereas turbine blades need very thick parts greater than or equal to cm). There has been little investigation into the effect of thickness on stress-strain behavior or elevated temperature tensile properties controlled by oxidation. In this study, composites consisting of woven Hi-NicalonTM fibers, a carbon interphase, and CVI Sic matrix were fabricated with different numbers of plies to provide variable thickness. The composites ranged from a single ply (approximately 0.4 mm) to thirty-six plies (approximately 1 cm). Tensile tests were performed at room temperature with acoustic emission used to monitor matrix crack behavior. Elevated temperature tensile stress-rupture tests were performed in air. Considerably different room and elevated temperature tensile behavior was observed that will be discussed with respect to the effect of thickness on matrix crack formation, matrix crack growth and oxidation diffusion kinetics.
High sensitivity of tidewater outlet glacier dynamics to shape
NASA Astrophysics Data System (ADS)
Enderlin, E. M.; Howat, I. M.; Vieli, A.
2013-02-01
Variability in tidewater outlet glacier behavior under similar external forcing has been attributed to differences in outlet shape (i.e. bed elevation and width), but this dependence has not been investigated in detail. Here we use a numerical ice flow model to show that the dynamics of tidewater outlet glaciers under external forcing are highly sensitive to width and bed topography. Our sensitivity tests indicate that for glaciers with similar discharge, the trunks of wider glaciers and those grounded over deeper basal depressions tend to be closer to flotation, so that less dynamically induced thinning results in rapid, unstable retreat following a perturbation. The lag time between the onset of the perturbation and unstable retreat varies with outlet shape, which may help explain intra-regional variability in tidewater outlet glacier behavior. Further, because the perturbation response is dependent on the thickness relative to flotation, varying the bed topography within the range of observational uncertainty can result in either stable or unstable retreat due to the same perturbation. Thus, extreme care must be taken when interpreting the future behavior of actual glacier systems using numerical ice flow models that are not accompanied by comprehensive sensitivity analyses.
High sensitivity of tidewater outlet glacier dynamics to shape
NASA Astrophysics Data System (ADS)
Enderlin, E. M.; Howat, I. M.; Vieli, A.
2013-06-01
Variability in tidewater outlet glacier behavior under similar external forcing has been attributed to differences in outlet shape (i.e., bed elevation and width), but this dependence has not been investigated in detail. Here we use a numerical ice flow model to show that the dynamics of tidewater outlet glaciers under external forcing are highly sensitive to width and bed topography. Our sensitivity tests indicate that for glaciers with similar discharge, the trunks of wider glaciers and those grounded over deeper basal depressions tend to be closer to flotation, so that less dynamically induced thinning results in rapid, unstable retreat following a perturbation. The lag time between the onset of the perturbation and unstable retreat varies with outlet shape, which may help explain intra-regional variability in tidewater outlet glacier behavior. Further, because the perturbation response is dependent on the thickness relative to flotation, varying the bed topography within the range of observational uncertainty can result in either stable or unstable retreat due to the same perturbation. Thus, extreme care must be taken when interpreting the future behavior of actual glacier systems using numerical ice flow models that are not accompanied by comprehensive sensitivity analyses.
Higher order acoustoelastic Lamb wave propagation in stressed plates.
Pei, Ning; Bond, Leonard J
2016-11-01
Modeling and experiments are used to investigate Lamb wave propagation in the direction perpendicular to an applied stress. Sensitivity, in terms of changes in velocity, for both symmetrical and anti-symmetrical modes was determined. Codes were developed based on analytical expressions for waves in loaded plates and they were used to give wave dispersion curves. The experimental system used a pair of compression wave transducers on variable angle wedges, with set separation, and variable frequency tone burst excitation, on an aluminum plate 0.16 cm thick with uniaxial applied loads. The loads, which were up to 600 με, were measured using strain gages. Model results and experimental data are in good agreement. It was found that the change in Lamb wave velocity, due to the acoustoelastic effect, for the S 1 mode exhibits about ten times more sensitive, in terms of velocity change, than the traditional bulk wave measurements, and those performed using the fundamental Lamb modes. The data presented demonstrate the potential for the use of higher order Lamb modes for online industrial stress measurement in plate, and that the higher sensitivity seen offers potential for improved measurement systems.
Horizontal-to-vertical spectral ratio variability in the presence of permafrost
NASA Astrophysics Data System (ADS)
Kula, Damian; Olszewska, Dorota; Dobiński, Wojciech; Glazer, Michał
2018-07-01
Due to fluctuations in the thickness of the permafrost active layer, there exists a seasonal seismic impedance contrast in the permafrost table. The horizontal-to-vertical spectral ratio (HVSR) method is commonly used to estimate the resonant frequency of sedimentary layers on top of bedrock. Results obtained using this method are thought to be stable in time. The aim of the study is to verify whether seasonal variability in the permafrost active layer influences the results of the HVSR method. The research area lies in the direct vicinity of the Polish Polar Station, Hornsund, which is located in Southern Spitsbergen, Svalbard. Velocity models of the subsurface are obtained using the HVSR method, which are juxtaposed with electrical resistivity tomography profiles conducted near the seismic station. Survey results indicate that the active layer of permafrost has a major influence on the high-frequency section of the HVSR results. In addition, the depth of the permafrost table inferred using the HVSR method is comparable to the depth visible in electrical resistivity tomography results. This study proves that, in certain conditions, the HVSR method results vary seasonally, which must be taken into account in their interpretation.
Estimating the fuel moisture content of indicator sticks from selected weather variables
Theodore G. Storey
1965-01-01
Equations were developed to predict the fuel moisture content of indicator sticks from the controlling weather variables. Moisture content of ⅛-inch thick basswood slats used in the South and East could be determined with about equal precision by equation in the critical low moisture range or by weighing at fire danger stations. The most useful equation...
USDA-ARS?s Scientific Manuscript database
The ADIPOQ gene of cattle, is located in the vicinity of the quantitative trait locus (QTL) wich effects marbling, the rib eye muscle area and fat thickness on BTA1. In our study, a novel variable duplication (NW_003103812.1:g.9232067_9232133 dup) in the bovine ADIPOQ promoter region was identified ...
Self-heating forecasting for thick laminate specimens in fatigue
NASA Astrophysics Data System (ADS)
Lahuerta, F.; Westphal, T.; Nijssen, R. P. L.
2014-12-01
Thick laminate sections can be found from the tip to the root in most common wind turbine blade designs. Obtaining accurate and reliable design data for thick laminates is subject of investigations, which include experiments on thick laminate coupons. Due to the poor thermal conductivity properties of composites and the material self-heating that occurs during the fatigue loading, high temperature gradients may appear through the laminate thickness. In the case of thick laminates in high load regimes, the core temperature might influence the mechanical properties, leading to premature failures. In the present work a method to forecast the self-heating of thick laminates in fatigue loading is presented. The mechanical loading is related with the laminate self-heating, via the cyclic strain energy and the energy loss ratio. Based on this internal volumetric heat load a thermal model is built and solved to obtain the temperature distribution in the transient state. Based on experimental measurements of the energy loss factor for 10mm thick coupons, the method is described and the resulting predictions are compared with experimental surface temperature measurements on 10 and 30mm UD thick laminate specimens.
Understanding the Importance of Oceanic Forcing on Sea Ice Variability
2010-12-01
problem, which includes ice thickness. Thorndike et al. (1975) recognized that many of the physical properties of sea ice depend upon its thickness...IMB2005B are presented below. In agreement with previous studies (e.g., Thorndike and Colony 1982), they show that during the winter months (December...During the Past 100 Years, 33, 2, 143– 154. 148 Thorndike , A.S., and R. Colony, 1982: Sea ice motion in response to geostrophic winds. Journal of
Target Track and Stabilization for Manportable Direct Fire Missiles.
1981-11-01
appeared to achieve resonable results, since there is always the possibility that summing weighted scores can be misleading, as was the case with the 1-3...coelostat and variable prism compensation approaches (Appendix, Reference 6) but both suffered from even greater size and complexity problems than approach...8 mm Thick 2 an. Al., Glass, etc. ( ( )Rotating Prisms (Rilley) -30 mm diam x 6 mm Thick 2 ea Germanium. Silicon. Zu On Searn motion ± max requires
2001-10-01
villous or arborescent outgrowths of fibrovascular stroma covered by neoplastic cells; although benign, papillomas are premalignant lesions that will...thin stratum corneum; 1, minimal hyperplasia , epithelium ~4–6 cell layers thick; 2, minimal to mild hyperplasia , variable amounts of hyperplasia ...across the specimen, areas fitting each description present; 3, mild hyperplasia , epithelium ~7–9 cell layers thick or epithelial layer composed of ~4–6
NASA Astrophysics Data System (ADS)
Pal, S.; Xueref-Remy, I.; Ammoura, L.; Chazette, P.; Gibert, F.; Royer, P.; Dieudonné, E.; Dupont, J.-C.; Haeffelin, M.; Lac, C.; Lopez, M.; Morille, Y.; Ravetta, F.
2012-12-01
Within the framework of a French nationally funded project (CO2-MEGAPARIS) for quantifying the CO2 emissions of the Paris area, a lidar-based experimental investigation of the variability of the atmospheric boundary layer (ABL) depths was performed over four days in March 2011 under clear sky conditions. The prevailing synoptic settings were mainly characterized by anti-cyclonic situations with low wind. The key aim of this paper is to assess the impact of the urban heat island intensity (UHII) on the spatio-temporal variability of the ABL depths over the Paris megacity. A network of fixed aerosol lidars was deployed inside the city and in the vicinity of sub-urban and rural areas. Additionally, the spatial heterogeneity of the nocturnal boundary layer (NBL) depths over greater Paris area is addressed, thanks in particular, to the deployment of a 355-nm elastic lidar in a mobile van to measure the aerosol distributions. Radiosonde-derived profiles (twice a day) of thermodynamic variables over the sub-urban site helped investigate the temperature inversion above ground and hence to compare the lidar-derived ABL depths. Comparing these two results, an excellent concordance was found with a correlation coefficient of 0.994. Five important factors closely related to the ABL circulation, namely, spatio-temporal variability of the ABL depths, growth rate of the ABL depths, entrainment zone thickness, and near-surface temperature fields including resultant UHII were considered to infer the urban-rural contrasts. The mean NBL depth over the urban area was on average 63 m (45%) higher than its adjacent sub-urban area which was, on occasion, as much as (74 m) 58% higher mainly due to the effect of UHII. Daytime well-mixed convective boundary layer and associated strong turbulent mixing near its top over the urban area showed higher entrainment zone thickness (326 m) than over sub-urban (234 m) and rural (200 m) areas. Temperature growth rates during sunrise increased up to more than 3 °C h-1 over the sub-urban area while over the urban region it was 2.5 °C h-1 or even less. The ABL depths over the urban site decayed more slowly (500 m h-1) than over the sub-urban area (600 m h-1) during the late afternoon transition period suggesting an impact of the UHII on the ABL dynamics over the urban area.
Rand, R.S.; Clark, R.N.; Livo, K.E.
2011-01-01
The Deepwater Horizon oil spill covered a very large geographical area in the Gulf of Mexico creating potentially serious environmental impacts on both marine life and the coastal shorelines. Knowing the oil's areal extent and thickness as well as denoting different categories of the oil's physical state is important for assessing these impacts. High spectral resolution data in hyperspectral imagery (HSI) sensors such as Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) provide a valuable source of information that can be used for analysis by semi-automatic methods for tracking an oil spill's areal extent, oil thickness, and oil categories. However, the spectral behavior of oil in water is inherently a highly non-linear and variable phenomenon that changes depending on oil thickness and oil/water ratios. For certain oil thicknesses there are well-defined absorption features, whereas for very thin films sometimes there are almost no observable features. Feature-based imaging spectroscopy methods are particularly effective at classifying materials that exhibit specific well-defined spectral absorption features. Statistical methods are effective at classifying materials with spectra that exhibit a considerable amount of variability and that do not necessarily exhibit well-defined spectral absorption features. This study investigates feature-based and statistical methods for analyzing oil spills using hyperspectral imagery. The appropriate use of each approach is investigated and a combined feature-based and statistical method is proposed.
Volumetric calculations in an oil field: The basis method
Olea, R.A.; Pawlowsky, V.; Davis, J.C.
1993-01-01
The basis method for estimating oil reserves in place is compared to a traditional procedure that uses ordinary kriging. In the basis method, auxiliary variables that sum to the net thickness of pay are estimated by cokriging. In theory, the procedure should be more powerful because it makes full use of the cross-correlation between variables and forces the original variables to honor interval constraints. However, at least in our case study, the practical advantages of cokriging for estimating oil in place are marginal. ?? 1993.
Bae, Steven S; Menninga, Isaac; Hoshino, Richard; Humphreys, Christine; Chan, Clara C
2018-06-01
The purpose of this study was to develop a nomogram to predict postcut thickness of corneal grafts prepared at an eye bank for Descemet stripping automated endothelial keratoplasty (DSAEK). Retrospective chart review was performed of DSAEK graft preparations by 3 experienced technicians from April 2012 to May 2017 at the Eye Bank of Canada-Ontario Division. Variables collected included the following: donor demographics, death-to-preservation time, death-to-processing time, precut tissue thickness, postcut tissue thickness, microkeratome head size, endothelial cell count, cut technician, and rate of perforation. Linear regression models were generated for each microkeratome head size (300 and 350 μm). A total of 780 grafts were processed during the study period. Twelve preparation attempts resulted in perforation (1.5%) and were excluded. Mean precut tissue thickness was 510 ± 49 μm (range: 363-670 μm). Mean postcut tissue thickness was 114 ± 22 μm (range: 57-193 μm). Seventy-nine percent (608/768) of grafts were ≤130 μm. The linear regression models included precut thickness and donor age, which were able to predict the thickness to within 25 μm 80% of the time. We report a nomogram to predict thickness of DSAEK corneal grafts prepared in an eye bank setting, which was accurate to within 25 μm 80% of the time. Other eye banks could consider performing similar analyses.
NASA Technical Reports Server (NTRS)
Fulton, James P. (Inventor); Namkung, Min (Inventor); Simpson, John W. (Inventor); Wincheski, Russell A. (Inventor); Nath, Shridhar C. (Inventor)
1998-01-01
A thickness gauging instrument uses a flux focusing eddy current probe and two-point nonlinear calibration algorithm. The instrument is small and portable due to the simple interpretation and operational characteristics of the probe. A nonlinear interpolation scheme incorporated into the instrument enables a user to make highly accurate thickness measurements over a fairly wide calibration range from a single side of nonferromagnetic conductive metals. The instrument is very easy to use and can be calibrated quickly.
NASA Astrophysics Data System (ADS)
Bostron, Jason
Ultrasonic guided waves are becoming more widely used in nondestructive evaluation applications due to their efficiency in defect detection, ability to inspect hidden areas, and other reasons. This dissertation addresses two main topics: ultrasonic guided wave bond evaluation of thin and thick coatings on thick metallic structures, and the use of a novel phased array technique for optimal guided wave mode and frequency selection. (Abstract shortened by UMI.).
NASA Astrophysics Data System (ADS)
Zhang, Zhaoru; Uotila, Petteri; Stössel, Achim; Vihma, Timo; Liu, Hailong; Zhong, Yisen
2018-02-01
Variations of southern hemisphere (SH) climate variables are often linked to the southern annular mode (SAM) variability. We examined such linkage by seasons using state-of-the-art atmosphere and ocean/sea-ice reanalyses. The associated SAM related anomaly (SRA) fields of the climate variables, denoting anomalies corresponding to the same variation in SAM, are overall consistent across the reanalyses. Among the atmospheric products, 20CRV2 differs from ERA-interim and CFSR in the sea-level pressure SRAs over the Amundsen Sea, resulting in less warming over the Antarctic Peninsula. Among the ocean reanalyses, ORAP5 and C-GLORS exhibit the largest consistency. The major difference between them and the lower-resolution CFSR and SODA reanalyses is deeper penetration of anomalous meridional currents. Compared to the other ocean reanalyses, CFSR exhibits stronger and spatially more coherent surface-current SRAs, resulting in greater SRAs of sea-ice motion and ice thickness along the ice edges. The SRAs of sensible and total surface heat fluxes are reduced in CFSR due to ocean-atmosphere coupling. Significant sea-ice concentration SRAs are present on the west side of peninsulas along the east Antarctica coast in spring and winter, most notably in ORAP5 and C-GLORS, implying changes in new-ice production and shelf-water formation. Most atmosphere and ocean variables manifest an annular SRA pattern in summer and a non-annular pattern in the other seasons, with a wavenumber-3 structure strongest in autumn and weakest in summer. The wavenumber-3 structure should be related to the zonal wave three pattern of the SH circulation, the relation of which to SAM needs further exploration.
NASA Astrophysics Data System (ADS)
Hamm, T. G.; Borthwick, L.; Jarrin, D.; Miller, M.; Wall, R.; Beem, L.; Riverman, K. L.
2016-12-01
High resolution measurements of spatial ice thickness variability on the Juneau Icefield are critical to an understanding of current glacial dynamics in the Coast Mountains of Southeast Alaska. In particular, such data are lacking on the Taku Glacier, a tidewater glacier in the Juneau region whose unique advance has slowed in recent years. Significantly, such information is necessary to develop an accurate description of ice dynamics as well as sub-surface hydrology and bedrock erosion. Utilizing relative gravimetry, we sought to modify existing parameterized models of ice thickness with field measurements taken along the centerline of the Taku. Here we present a three-dimensional representation of ice thickness for the Taku, based on in situ observations from July 2016. As the glacier approaches a potential period of rapid terminal retreat, this data gives refined physical information prior to this potential juncture in the tidewater cycle-an observation that may yield insight into marine ice sheet instabilities more broadly.
A variable-order laminated plate theory based on the variational-asymptotical method
NASA Technical Reports Server (NTRS)
Lee, Bok W.; Sutyrin, Vladislav G.; Hodges, Dewey H.
1993-01-01
The variational-asymptotical method is a mathematical technique by which the three-dimensional analysis of laminated plate deformation can be split into a linear, one-dimensional, through-the-thickness analysis and a nonlinear, two-dimensional, plate analysis. The elastic constants used in the plate analysis are obtained from the through-the-thickness analysis, along with approximate, closed-form three-dimensional distributions of displacement, strain, and stress. In this paper, a theory based on this technique is developed which is capable of approximating three-dimensional elasticity to any accuracy desired. The asymptotical method allows for the approximation of the through-the-thickness behavior in terms of the eigenfunctions of a certain Sturm-Liouville problem associated with the thickness coordinate. These eigenfunctions contain all the necessary information about the nonhomogeneities along the thickness coordinate of the plate and thus possess the appropriate discontinuities in the derivatives of displacement. The theory is presented in this paper along with numerical results for the eigenfunctions of various laminated plates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Y.; Wang, H. H.; Indacochea, J. E.
2011-12-15
Simple and low cost colorimetric sensors for explosives detection were explored and developed. Anodized aluminum oxide (AAO) with large surface area through its porous structure and light background color was utilized as the substrate for colorimetric sensors. Fabricated thin AAO films with thickness less than {approx} 500 nm allowed us to observe interference colors which were used as the background color for colorimetric detection. AAO thin films with various thickness and pore-to-pore distance were prepared through anodizing aluminum foils at different voltages and times in dilute sulfuric acid. Various interference colors were observed on these samples due to their differencemore » in structures. Accordingly, suitable anodization conditions that produce AAO samples with desired light background colors for optical applications were obtained. Thin film interference model was applied to analyze the UV-vis reflectance spectra and to estimate the thickness of the AAO membranes. We found that the thickness of produced AAO films increased linearly with anodization time in sulfuric acid. In addition, the growth rate was higher for AAO anodized using higher voltages. The thin film interference formulism was further validated with a well established layer by layer deposition technique. Coating poly(styrene sulfonate) sodium salt (PSS) and poly(allylamine hydrochloride) (PAH) layer by layer on AAO thin film consistently shifted its surface color toward red due to the increase in thickness. The red shift of UV-vis reflectance was correlated quantitatively to the number of layers been assembled. This sensitive red shift due to molecular attachment (increase in thickness) on AAO substrate was applied toward nitroaromatics detection. Aminopropyltrimethoxysilane (APTS) which can be attached onto AAO nanowells covalently through silanization and attract TNT molecules was coated and applied for TNT detection. UV-vis spectra of AAO with APTS shifted to the longer wavelength side due to TNT attachment. This red shift implied AAO thickness increased and positive detection of TNT molecules. It was also observed that both APTS and polyethyleneimine (PEI) were electron rich polymers which formed Meisenheimer complexes with TNT in solution and changed its color abruptly. This strong color change due to chemical reaction was applied as another approach for direct TNT detection. Commercial AAO films with long pores (60 {mu}m) and white background color were coated with APTS or PEI and then exposed to TNT in solution. These membranes turned to pink rapidly and eventually became visibly orange after a few hours with a strong absorption around 500 nm that was consistent with the formation of Meisenheimer complexes. The visible color change can be observed by unaided eyes and is suitable for nitroaromatics detection at higher concentration while interference color red shift in AAO thin film is designed for nitroaromatics detection at monolayer (nm) level.« less
[Development of weight-estimation formulae for the bedridden elderly requiring care].
Oonishi, Reiko; Fujii, Kouji; Tsuda, Hiroko; Imai, Katsumi
2012-01-01
Bedridden elderly persons requiring care need special body-weight measurement implements, and body-weighting assumes more difficult if they live at their own homes. Therefore, we tried to design a new weight-estimation formulae using various anthropometric variables. The subjects were 33 male and 132 female elderly inpatients certified to be at care level 4 or 5. The body composition included height, body weight, arm circumference, triceps skinfold thickness, subscapular skinfold thickness, calf circumference, and waist circumference. We studied the correlation between the body weight and each anthropometric variable and age. In men, the highest correlation with body weight was shown by waist circumference (r=0.891, p<0.0001), followed by age (r=0.779, p<0.0001) and calf circumference (r=0.614, p<0.0001). The variables that showed the highest correlation with body weight in women were waist circumference (r=0.806, p<0.0001), followed by triceps skinfold thickness (r=0.723, p<0.0001) and arm circumference (r=0.662, p<0.0001). The weight estimation formulae were obtained by multiple regression analysis. Formulae for men: body weight=0.660×waist circumference (cm)+0.702×calf circumference (cm)+0.096×age (years)-26.917 (R(2)=0.862, p<0.001); formulae for women: body weight=0.315×waist circumference (cm)+0.684×arm circumference (cm)+0.183×height (cm)-28.788 (R(2)=0.836, p<0.001). We successfully developed gender-specific weight-estimation formulae with high coefficients of determination. The results suggest that waist circumference, which is an index of visceral fat, is an effective anthropometric variable to estimate the body weight of bedridden elderly patients requiring care.
NASA Technical Reports Server (NTRS)
Rais-Rohani, Masoud
2003-01-01
This report discusses the development and application of two alternative strategies in the form of global and sequential local response surface (RS) techniques for the solution of reliability-based optimization (RBO) problems. The problem of a thin-walled composite circular cylinder under axial buckling instability is used as a demonstrative example. In this case, the global technique uses a single second-order RS model to estimate the axial buckling load over the entire feasible design space (FDS) whereas the local technique uses multiple first-order RS models with each applied to a small subregion of FDS. Alternative methods for the calculation of unknown coefficients in each RS model are explored prior to the solution of the optimization problem. The example RBO problem is formulated as a function of 23 uncorrelated random variables that include material properties, thickness and orientation angle of each ply, cylinder diameter and length, as well as the applied load. The mean values of the 8 ply thicknesses are treated as independent design variables. While the coefficients of variation of all random variables are held fixed, the standard deviations of ply thicknesses can vary during the optimization process as a result of changes in the design variables. The structural reliability analysis is based on the first-order reliability method with reliability index treated as the design constraint. In addition to the probabilistic sensitivity analysis of reliability index, the results of the RBO problem are presented for different combinations of cylinder length and diameter and laminate ply patterns. The two strategies are found to produce similar results in terms of accuracy with the sequential local RS technique having a considerably better computational efficiency.
Thickness Dependence of Failure in Ultra-thin Glassy Polymer Films
NASA Astrophysics Data System (ADS)
Bay, Reed; Shimomura, Shinichiro; Liu, Yujie; Ilton, Mark; Crosby, Alfred
The physical properties of polymer thin films change as the polymer chains become confined. Similar changes in mechanical properties have been observed, though these critical properties have only been explored a limited extent and with indirect methods. Here, we use a recently developed method to measure the complete uniaxial stress strain relationship of polymer thin films of polystyrene films (PS, Mw =130kg/mol, 490kg/mol, and 853kg/mol) as a function of thickness (20 nm-220nm). In this method, we hold a `dog-bone' shaped film on water between a flexible cantilever and a movable rigid boundary, measuring force-displacement from the cantilever deflection. From our measurements, we find that the modulus decreases as the PS chains become confined. The PS thin films exhibit ``ideal perfectly plastic'' behavior due to crazing, which differs from the typical brittle response of bulk PS. The draw stress due to crazing decreases with film thickness. These results provide new fundamental insight into how polymer behavior is altered due to structural changes in the entangled polymer network upon confinement. NSF DMR 1608614.
Gnat, Rafael; Saulicz, Edward; Miądowicz, Barbara
2012-08-01
To investigate intra- and inter-rater reliability of the ultrasound measurement of transversus abdominis (TrA) thickness and thickness change (difference between thickness at rest and during contraction) in asymptomatic, trained subjects. To define the number of repeated measurements that provide acceptable level of reliability. To investigate variability of the measurements over time of 5 days and the reliability of duplicate analysis of images. A single-group repeated-measures design was used to assess reliability. Healthy volunteers (n = 10) were subjected to 1-week training in voluntary activation of TrA. Real-time ultrasound imaging and subsequent measurement of the TrA thickness at rest and during voluntary contraction were repeated on Monday, Wednesday and Friday of the next week. Using a single repeated measurement, intraclass correlation coefficients (ICCs) for TrA thickness were: 0.86-0.95 (intra-rater), 0.86-0.92 (inter-rater); and for TrA thickness change: 0.34-0.56 (intra-rater), 0.47-0.61 (inter-rater). Using the mean of three repeated measurements respective values were: 0.97, 0.96-0.98; and 0.81-0.84, 0.80-0.90. No significant differences were found between mean values of TrA thickness as well as thickness change obtained on three consecutive measurement days. Duplicate analysis of the images was highly reliable with ICCs of 0.89-0.99. Two repeated measurements for TrA thickness and at least three measurements for TrA thickness change are needed to achieve acceptable levels of intra- and inter-rater reliability. In healthy trained volunteers TrA thickness and thickness change are relatively stable parameters over a 5-day period. Duplicate analysis of the same images by two blinded observers is reliable.
Impacts of the Variability of Ice Types on the Decline of the Arctic Perennial Sea Ice Cover
NASA Technical Reports Server (NTRS)
Comiso, Josefino C.
2005-01-01
The observed rapid decline in the Arctic perennial ice cover is one of the most remarkable signal of change in the Arctic region. Updated data now show an even higher rate of decline of 9.8% per decade than the previous report of 8.9% per decade mainly because of abnormally low values in the last 4 years. To gain insights into this decline, the variability of the second year ice, which is the relatively thin component of the perennial ice cover, and other ice types is studied. The perennial ice cover in the 1990s was observed to be highly variable which might have led to higher production of second year ice and may in part explain the observed ice thinning during the period and triggered further decline. The passive microwave signature of second year ice is also studied and results show that while the signature is different from that of the older multiyear ice, it is surprisingly more similar to that of first year ice. This in part explains why previous estimates of the area of multiyear ice during the winter period are considerably lower than the area of the perennial ice cover during the preceding summer. Four distinct clusters representing radiometrically different types have been identified using multi-channel cluster analysis of passive microwave data. Data from two of these clusters, postulated to come from second year and older multiyear ice regions are also shown to have average thicknesses of 2.4 and 4.1 m, respectively, indicating that the passive microwave data may contain some ice thickness information that can be utilized for mass balance studies. The yearly anomaly maps indicate high gains of first year ice cover in the Arctic during the last decade which means higher production of second year ice and fraction of this type in the declining perennial ice cover. While not the only cause, the rapid decline in the perennial ice cover is in part caused by the increasing fractional component of the thinner second year ice cover that is very vulnerable to total melt due to warming in the Arctic, especially in spring.
NASA Astrophysics Data System (ADS)
Choi, Hyeok-Cheol; You, Chun-Yeol; Kim, Ki-Yeon; Lee, Jeong-Soo; Shim, Je-Ho; Kim, Dong-Hyun
2010-06-01
We have investigated the dependence of magnetic anisotropies of the exchange-biased NiFe/FeMn/CoFe trilayers on the antiferromagnetic (AF) layer thickness (tAF) by measuring in-plane angular-dependent ferromagnetic resonance fields. The resonance fields of NiFe and CoFe sublayers are shifted to lower and higher values compared to those of single unbiased ferromagnetic (F) layers, respectively, due to the interfacial exchange coupling when tAF≥2nm . In-plane angular dependence of resonance field reveals that uniaxial and unidirectional anisotropies coexist in the film plane, however, they are not collinear with each other. It is found that these peculiar noncollinear anisotropies significantly depend on tAF . The angle of misalignment displays a maximum around tAF=5nm and converges to zero when tAF is thicker than 10 nm. Contributions from thickness-dependent AF anisotropy and spin frustrations at both F/AF interfaces due to the structural imperfections should be accounted in order to understand the AF-layer thickness dependence of noncollinear magnetic anisotropies.
Role of target thickness in proton acceleration from near-critical mass-limited plasmas
NASA Astrophysics Data System (ADS)
Kuri, Deep Kumar; Das, Nilakshi; Patel, Kartik
2017-07-01
The role played by the target thickness in generating high energetic protons by a circularly polarized laser from near-critical mass-limited targets (MLT) has been investigated with the help of three-dimensional (3D) particle-in-cell (PIC) simulations. The radiation pressure accelerates protons from the front side of the target. Due to hole boring, the target front side gets deformed resulting in a change in the effective angle of incidence which causes vacuum heating and hence generates hot electrons. These hot electrons travel through the target at an angle with the laser axis and hence get more diverged along transverse directions for large target thickness. The hot electrons form sheath fields on the target rear side which accelerates protons via target normal sheath acceleration (TNSA). It is observed that the collimation of radiation pressure accelerated protons gets degraded on reaching the target rear side due to TNSA. The effect of transverse hot electron recirculations gets suppressed and the energetic protons get highly collimated on decreasing target thickness as the radiation pressure acceleration (RPA) starts dominating the acceleration process.
Resistance Spot Welding of AA5052 Sheet Metal of Dissimilar Thickness
NASA Astrophysics Data System (ADS)
Mat Din, N. A.; Zuhailawati, H.; Anasyida, A. S.
2016-02-01
Resistance spot welding of dissimilar thickness of AA5052 aluminum alloy was performed in order to investigate the effect of metal thickness on the weldment strength. Resistance spot welding was done using a spot welder machine available in Coraza Systems Sdn Bhd using a hemispherical of chromium copper electrode tip with radius of 6.00 mm under 14 kA of current and 0.02 bar of pressure for all thickness combinations. Lap joint configuration was produced between 2.0 mm thick sheet and 1.2 - 3.2 mm thick sheet, respectively. Microstructure of joint showed asymmetrical nugget shape that was larger on the thicker side indicating larger molten metal volume. Joint 2.0 mm x 3.2 mm sheets has the lowest hardness in both transverse direction and through thickness direction because less heat left in the weld nugget. The microstructure shows that this joint has coarse grains of HAZ. As thickness of sheet metal increased, the failure load of the joints increased. However, there was no linear correlation established between joint strength and metal thickness due to different shape of fusion zone in dissimilar thickness sheet metal.
Anatomy of the AGN in NGC 5548. VII. Swift study of obscuration and broadband continuum variability
NASA Astrophysics Data System (ADS)
Mehdipour, M.; Kaastra, J. S.; Kriss, G. A.; Cappi, M.; Petrucci, P.-O.; De Marco, B.; Ponti, G.; Steenbrugge, K. C.; Behar, E.; Bianchi, S.; Branduardi-Raymont, G.; Costantini, E.; Ebrero, J.; Di Gesu, L.; Matt, G.; Paltani, S.; Peterson, B. M.; Ursini, F.; Whewell, M.
2016-04-01
We present our investigation into the long-term variability of the X-ray obscuration and optical-UV-X-ray continuum in the Seyfert 1 galaxy NGC 5548. In 2013 and 2014, the Swift observatory monitored NGC 5548 on average every day or two, with archival observations reaching back to 2005, totalling about 670 ks of observing time. Both broadband spectral modelling and temporal rms variability analysis are applied to the Swift data. We disentangle the variability caused by absorption, due to an obscuring weakly-ionised outflow near the disk, from variability of the intrinsic continuum components (the soft X-ray excess and the power law) originating in the disk and its associated coronae. The spectral model that we apply to this extensive Swift data is the global model that we derived for NGC 5548 from analysis of the stacked spectra from our multi-satellite campaign of 2013 (including XMM-Newton, NuSTAR, and HST). The results of our Swift study show that changes in the covering fraction of the obscurer is the primary and dominant cause of variability in the soft X-ray band on timescales of 10 days to ~5 months. The obscuring covering fraction of the X-ray source is found to range between 0.7 and nearly 1.0. The contribution of the soft excess component to the X-ray variability is often much less than that of the obscurer, but it becomes comparable when the optical-UV continuum flares up. We find that the soft excess is consistent with being the high-energy tail of the optical-UV continuum and can be explained by warm Comptonisation: up-scattering of the disk seed photons in a warm, optically thick corona as part of the inner disk. To this date, the Swift monitoring of NGC 5548 shows that the obscurer has been continuously present in our line of sight for at least 4 years (since at least February 2012).
Estimation of prenatal aorta intima-media thickness from ultrasound examination
NASA Astrophysics Data System (ADS)
Veronese, E.; Tarroni, G.; Visentin, S.; Cosmi, E.; Linguraru, M. G.; Grisan, E.
2014-10-01
Prenatal events such as intrauterine growth restriction and increased cardiovascular risk in later life have been shown to be associated with an increased intima-media thickness (aIMT) of the abdominal aorta in the fetus. In order to assess and manage atherosclerosis and cardiovascular disease risk in adults and children, in recent years the measurement of abdominal and carotid artery thickness has gained a growing appeal. Nevertheless, no computer aided method has been proposed for the analysis of prenatal vessels from ultrasound data, yet. To date, these measurements are being performed manually on ultrasound fetal images by skilled practitioners. The aim of the presented study is to introduce an automatic algorithm that identifies abdominal aorta and estimates its diameter and aIMT from routine third trimester ultrasonographic fetal data. The algorithm locates the aorta, then segments it and, by modeling the arterial wall longitudinal sections by means of a gaussian mixture, derives a set of measures of the aorta diameter (aDiam) and of the intima-media thickness (aIMT). After estimating the cardiac cycle, the mean diameter and the aIMT at the end-diastole phase are computed. Considering the aIMT value for each subject, the correlation between automatic and manual end-diastolic aIMT measurements is 0.91 in a range of values 0.44-1.10 mm, corresponding to both normal and pathological conditions. The automatic system yields a mean relative error of 19%, that is similar to the intra-observer variability (14%) and much lower that the inter-observer variability (42%). The correlation between manual and automatic measurements and the small error confirm the ability of the proposed system to reliably estimate aIMT values in prenatal ultrasound sequences, reducing measurement variability and suggesting that it can be used for an automatic assessment of aIMT. Preliminary results have been presented in E Veronese, E Cosmi, S Visentin, E Grisan: 'Semiautomatic estimation of fetal aorta intima-media thickness from ultrasound examination', MICCAI Workshop on Perinatal and Paediatric Imaging: PaPI 2012.
Xie, Long; Pluta, John B.; Das, Sandhitsu R.; Wisse, Laura E.M.; Wang, Hongzhi; Mancuso, Lauren; Kliot, Dasha; Avants, Brian B.; Ding, Song-Lin; Manjón, José V.; Wolk, David A.; Yushkevich, Paul A.
2016-01-01
Rational The human perirhinal cortex (PRC) plays critical roles in episodic and semantic memory and visual perception. The PRC consists of Brodmann areas 35 and 36 (BA35, BA36). In Alzheimer's disease (AD), BA35 is the first cortical site affected by neurofibrillary tangle pathology, which is closely linked to neural injury in AD. Large anatomical variability, manifested in the form of different cortical folding and branching patterns, makes it difficult to segment the PRC in MRI scans. Pathology studies have found that in ~97% of specimens, the PRC falls into one of three discrete anatomical variants. However, current methods for PRC segmentation and morphometry in MRI are based on single-template approaches, which may not be able to accurately model these discrete variants Methods A multi-template analysis pipeline that explicitly accounts for anatomical variability is used to automatically label the PRC and measure its thickness in T2-weighted MRI scans. The pipeline uses multi-atlas segmentation to automatically label medial temporal lobe cortices including entorhinal cortex, PRC and the parahippocampal cortex. Pairwise registration between label maps and clustering based on residual dissimilarity after registration are used to construct separate templates for the anatomical variants of the PRC. An optimal path of deformations linking these templates is used to establish correspondences between all the subjects. Experimental evaluation focuses on the ability of single-template and multi-template analyses to detect differences in the thickness of medial temporal lobe cortices between patients with amnestic mild cognitive impairment (aMCI, n=41) and age-matched controls (n=44). Results The proposed technique is able to generate templates that recover the three dominant discrete variants of PRC and establish more meaningful correspondences between subjects than a single-template approach. The largest reduction in thickness associated with aMCI, in absolute terms, was found in left BA35 using both regional and summary thickness measures. Further, statistical maps of regional thickness difference between aMCI and controls revealed different patterns for the three anatomical variants. PMID:27702610
Green’s Functions for a Theoretical Model of an Aperture Fed Stacked-Patch Microstrip Antenna
1989-12-01
44 4 - 1 Normalized values of D bk3b on the real axis for (a) f = 4 GHz, bib = 1.6 mm, b2b = 4.8 mm, Flb = 5 o’ 2b = 2.5 Eo’ 3b = Co, P’lb = 2b...dielectric la. bIb Thickness of dielectric lb. b2b Total thickness of dielectrics lb and 2b. Cli Observer cell on the aperture, i is an index variable...interface 3b (patch 2). Sfj Source current cell on the feedline. tb Thickness of dielectric layer 2b ( b2b - bib). T lj Vector rooftop basis function
A&M. TAN607 sections. Section A shows variable roof lines, variable ...
A&M. TAN-607 sections. Section A shows variable roof lines, variable thickness of hot shop shield walls, relationship of subterranean pool to grade. Section B shows relative heights of hot shop floor and its control gallery, position of bridge cranes and manipulator rails. Locomotive service pit. Referent drawing is ID-33-E-158 Above. Ralph M. Parsons 902-3-ANP-607-A 105. Date: December 1952. Approved by INEEL Classification Office for public release. INEEL index code no. 034-0607-00-693-106757 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Few-layer 1T‧ MoTe2 as gapless semimetal with thickness dependent carrier transport
NASA Astrophysics Data System (ADS)
Song, Peng; Hsu, Chuanghan; Zhao, Meng; Zhao, Xiaoxu; Chang, Tay-Rong; Teng, Jinghua; Lin, Hsin; Loh, Kian Ping
2018-07-01
Semimetal MoTe2 can be a type II Weyl semimetal in the bulk, but monolayer of this material is predicted to be quantum spin hall insulators. This dramatic change in electronic properties with number of layers is an excellent example of the dimensional effects of quantum transport. However, a detailed experimental study of the carrier transport and band structure of ultrathin semimetal MoTe2 is lacking so far. We performed magneto-transport measurements to study the conduction behavior and quantum phase coherence of 1T‧ MoTe2 as a function of its thickness. We show that due to a unique two-band transport mechanism (synergetic contribution from electron conduction and hole conduction), the conduction behavior of 1T‧ MoTe2 changes from metallic to p-type unipolar, and finally to ambipolar as the thickness decreases, suggesting that this effect can be used in devices by effectively controlling the thickness. Our transport studies, optical measurements and first-principles electronic structure calculations reveal that 1T‧ MoTe2 remains gapless down to a few (~2–3) layers. Despite being gapless, 1T‧ MoTe2 exhibits metal-insulator transition at 3-layer thickness, due to enhanced carrier localization effect.
NASA Astrophysics Data System (ADS)
Montazami, Reza; Liu, Sheng; Liu, Yang; Wang, Dong; Zhang, Qiming; Heflin, James R.
2011-05-01
Ionic electroactive polymer (IEAP) actuators containing porous conductive network composites (CNCs) and ionic liquids can result in high strain and fast response times. Incorporation of spherical gold nanoparticles in the CNC enhances conductivity and porosity, while maintaining relatively small thickness. This leads to improved mechanical strain and bending curvature of the actuators. We have employed the layer-by-layer self-assembly technique to fabricate a CNC with enhanced curvature (0.43 mm-1) and large net intrinsic strain (6.1%). The results demonstrate that curvature and net strain of IEAP actuators due to motion of the anions increase linearly with the thickness of the CNC as a result of the increased volume in which the anions can be stored. In addition, after subtracting the curvature of a bare Nafion actuator without a CNC, it is found that the net intrinsic strain of the CNC layer is independent of thickness for the range of 20-80 nm, indicating that the entire CNC volume contributes equivalently to the actuator motion. Furthermore, the response time of the actuator due to anion motion is independent of CNC thickness, suggesting that traversal through the Nafion membrane is the limiting factor in the anion motion.
Effect of dropped plies on the strength of graphite-epoxy laminates
NASA Technical Reports Server (NTRS)
Curry, James M.; Johnson, Eric R.; Starnes, James H., Jr.
1987-01-01
The reduction in the compressive and tensile strengths of graphite-epoxy laminates with thickness discontinuities due to dropped plies was studied by experiment and analysis. The specimens were fabricated with all the dropped plies lumped together in the center of a sixteen-ply quasi-isotropic layup, such that one surface was flat and the slope of the opposite surface changed abruptly at the dropped ply location to accommodate the thickness change. Even though the thick and thin sections are symmetrically laminated, there exists bending-extension coupling due to the geometric eccentricity of the middle planes of the thick and thin sections. Experiments were conducted on fifty-four specimens that differed in the configuration of the dropped plies only. The strength of a laminate with dropped plies is less than the strength of its thin section, and the compressive strength of a laminate with dropped plies is less than its tensile strength. The reduction in strength is directly related to the axial stiffness change between the thick and thin sections. To examine the mechanism of failure, the three-dimensional state of stress in the dropped ply region was evaluated by the finite element method. A tensile interlaminar criterion predicted the correct location of failure, but underestimated the failure load.
NASA Technical Reports Server (NTRS)
Howard, W. E.; Gossard, Terry, Jr.; Jones, Robert M.
1989-01-01
The present generalized plane-strain FEM analysis for the prediction of interlaminar normal stress reduction when a U-shaped cap is bonded to the edge of a composite laminate gives attention to the highly variable transverse stresses near the free edge, cap length and thickness, and a gap under the cap due to the manufacturing process. The load-transfer mechanism between cap and laminate is found to be strain-compatibility, rather than shear lag. In the second part of this work, the three-dimensional composite material failure criteria are used in a progressive laminate failure analysis to predict failure loads of laminates with different edge-cap designs; symmetric 11-layer graphite-epoxy laminates with a one-layer cap of kevlar-epoxy are shown to carry 130-140 percent greater loading than uncapped laminates, under static tensile and tension-tension fatigue loading.
Mortality from bacterial meningitis in children in Kosovo.
Namani, Sadie; Milenkovic, Zvonko; Kuchar, Ernest; Koci, Remzie; Mehmeti, Murat
2012-01-01
Bacterial meningitis is a severe infection responsible for high mortality. This prospective study of 277 pediatric bacterial meningitis cases was done to identify factors predicting death in children <16 years of age living and treated in a limited-resources country (Kosovo). Of the 277 children enrolled, 60 patients (22%) developed neurologic complications, and 15 children died (5%). The following variables were strongly correlated with mortality: altered mental status on admission (relative risk [RR] = 29.9), presentation of the initial cerebrospinal fluid as thick pus (RR = 29.9), prehospital seizures (RR = 23.5) and their recurrence >24 hours after admission (RR = 11.5), age <1 month (RR = 19.3), the use of inotropic agents (RR = 11.5), and admission after 5 days' duration of illness (P < .001). The mortality rate in children in Kosovo is similar to those reported from developing countries, and this is most likely due to the unfavorable living conditions.
Impact ionisation in Al0.9Ga0.1As0.08Sb0.92 for Sb-based avalanche photodiodes
NASA Astrophysics Data System (ADS)
Collins, X.; Craig, A. P.; Roblin, T.; Marshall, A. R. J.
2018-01-01
We report the impact ionisation coefficients of the quaternary alloy Al0.9Ga0.1As0.08Sb0.92 lattice matched to GaSb substrates within the field range of 150 to 550 kV cm-1 using p-i-n and n-i-p diodes of various intrinsic thicknesses. The coefficients were found with an evolutionary fitting algorithm using a non-local recurrence based multiplication model and a variable electric field profile. These coefficients indicate that an avalanche photodiode not only can be designed to be a function in the mid-wave infrared but also can be operated at lower voltages. This is due to the high magnitude of the impact ionisation coefficients at relatively low fields compared to other III-V materials typically used in avalanche multiplication regions.
Joining of Silicon Carbide Through the Diffusion Bonding Approach
NASA Technical Reports Server (NTRS)
Halbig, Michael .; Singh, Mrityunjay
2009-01-01
In order for ceramics to be fully utilized as components for high-temperature and structural applications, joining and integration methods are needed. Such methods will allow for the fabrication the complex shapes and also allow for insertion of the ceramic component into a system that may have different adjacent materials. Monolithic silicon carbide (SiC) is a ceramic material of focus due to its high temperature strength and stability. Titanium foils were used as an interlayer to form diffusion bonds between chemical vapor deposited (CVD) SiC ceramics with the aid of hot pressing. The influence of such variables as interlayer thickness and processing time were investigated to see which conditions contributed to bonds that were well adhered and crack free. Optical microscopy, scanning electron microscopy, and electron microprobe analysis were used to characterize the bonds and to identify the reaction formed phases.
NASA Technical Reports Server (NTRS)
Salikuddin, M.; Wisler, S.; Majjigi, R.
2004-01-01
The principle objectives of the current program were to experimentally investigate the repeatability of acoustic and aerodynamic characteristics of 2D-CD mixer-ejector nozzles and the effects on the acoustic and aerodynamic characteristics of 2D mixer-ejectors due to (1) the configurational variations, which include mixers with aligned CD chutes, aligned convergent chutes, and staggered CD chutes and aerodynamic cycle variables, (2) treatment variations by using different treatment materials, treating the ejector with varying area, location, and treatment thickness for a mixer-ejector configuration, and (3) secondary inlet shape (i.e., a more realistic inlet) and the blockage across the inlet (a possible fin-like structure needed for installation purpose) by modifying one of the inlet of a mixer-ejector configuration. The objectives also included the measurement dynamic pressures internal to the ejector for a few selected configuration to examine the internal noise characteristics.
NASA Astrophysics Data System (ADS)
Bazilevs, Yuri; Hsu, M.-C.; Benson, D. J.; Sankaran, S.; Marsden, A. L.
2009-12-01
The Fontan procedure is a surgery that is performed on single-ventricle heart patients, and, due to the wide range of anatomies and variations among patients, lends itself nicely to study by advanced numerical methods. We focus on a patient-specific Fontan configuration, and perform a fully coupled fluid-structure interaction (FSI) analysis of hemodynamics and vessel wall motion. To enable physiologically realistic simulations, a simple approach to constructing a variable-thickness blood vessel wall description is proposed. Rest and exercise conditions are simulated and rigid versus flexible vessel wall simulation results are compared. We conclude that flexible wall modeling plays an important role in predicting quantities of hemodynamic interest in the Fontan connection. To the best of our knowledge, this paper presents the first three-dimensional patient-specific fully coupled FSI analysis of a total cavopulmonary connection that also includes large portions of the pulmonary circulation.
The effect of pair cascades on the high-energy spectral cut-off in gamma-ray bursts
NASA Astrophysics Data System (ADS)
Gill, Ramandeep; Granot, Jonathan
2018-03-01
The highly luminous and variable prompt emission in gamma-ray bursts (GRBs) arises in an ultra-relativistic outflow. The exact underlying radiative mechanism shaping its non-thermal spectrum is still uncertain, making it hard to determine the outflow's bulk Lorentz factor Γ. GRBs with spectral cut-off due to pair production (γγ → e+e-) at energies Ec ≳ 10 MeV are extremely useful for inferring Γ. We find that when the emission region has a high enough compactness, then as it becomes optically thick to scattering, Compton downscattering by non-relativistic e±-pairs can shift the spectral cut-off energy well below the self-annihilation threshold, Esa = Γmec2/(1 + z). We treat this effect numerically and show that Γ obtained assuming Ec = Esa can underpredict its true value by as much as an order of magnitude.
NASA Astrophysics Data System (ADS)
Negrini, Marianne; Smith, Steven A. F.; Scott, James M.; Tarling, Matthew S.
2018-01-01
Layers of calc-mylonite in the Mount Irene shear zone, Fiordland, New Zealand, show substantial variations in thickness due to deflection of the shear zone boundaries around wall rock asperities. In relatively thick parts (c. 2.6 m) of the shear zone, calcite porphyroclasts are internally strained, contain abundant subgrain boundaries and have a strong shape preferred orientation (SPO) and crystallographic preferred orientation (CPO), suggesting that deformation occurred mainly by dislocation creep involving subgrain-rotation recrystallization. In relatively thin parts (c. 1.5 m) of the shear zone, aggregates of fine-grained recrystallized calcite surrounding flattened porphyroclasts have a weak SPO and CPO, and contain polygonal calcite grains with low degrees of internal misorientation. The recrystallized aggregates also contain microstructures (e.g. grain quadruple junctions, randomized misorientation axes) similar to those reported for neighbor-switching processes during grain-boundary sliding. Comparison of subgrain sizes in the porphyroclasts to published grain-size differential-stress relationships indicates that stresses and strain rates were substantially higher in relatively thin parts of the shear zone. The primary microstructural response to higher stresses and strain rates was an increase in the amount of recrystallization to produce aggregates that deformed by grain-boundary sliding. However, even after the development of interconnected networks of recrystallized grains, dislocation creep by subgrain-rotation recrystallization continued to occur within porphyroclasts. This behavior suggests that the bulk rheology of shear zones undergoing thinning and thickening can be controlled by concomitant grain-size insensitive and grain-size sensitive mechanisms. Overall, our observations show that shear zone thickness variations at constant P-T can result in highly variable stresses and strain rates, which in turn modifies microstructure, deformation mechanism and shear zone rheology.
Phototransformation rate constants of PAHs associated with soot particles.
Kim, Daekyun; Young, Thomas M; Anastasio, Cort
2013-01-15
Photodegradation is a key process governing the residence time and fate of polycyclic aromatic hydrocarbons (PAHs) in particles, both in the atmosphere and after deposition. We have measured photodegradation rate constants of PAHs in bulk deposits of soot particles illuminated with simulated sunlight. The photodegradation rate constants at the surface (k(p)(0)), the effective diffusion coefficients (D(eff)), and the light penetration depths (z(0.5)) for PAHs on soot layers of variable thickness were determined by fitting experimental data with a model of coupled photolysis and diffusion. The overall disappearance rates of irradiated low molecular weight PAHs (with 2-3 rings) on soot particles were influenced by fast photodegradation and fast diffusion kinetics, while those of high molecular weight PAHs (with 4 or more rings) were apparently controlled by either the combination of slow photodegradation and slow diffusion kinetics or by very slow diffusion kinetics alone. The value of z(0.5) is more sensitive to the soot layer thickness than the k(p)(0) value. As the thickness of the soot layer increases, the z(0.5) values increase, but the k(p)(0) values are almost constant. The effective diffusion coefficients calculated from dark experiments are generally higher than those from the model fitting method for illumination experiments. Due to the correlation between k(p)(0) and z(0.5) in thinner layers, D(eff) should be estimated by an independent method for better accuracy. Despite some limitations of the model used in this study, the fitted parameters were useful for describing empirical results of photodegradation of soot-associated PAHs. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nowak, G., E-mail: Gregor.Nowak@hzg.de; Störmer, M.; Horstmann, C.
2015-01-21
Due to the present shortage of {sup 3}He and the associated tremendous increase of its price, the supply of large neutron detection systems with {sup 3}He becomes unaffordable. Alternative neutron detection concepts, therefore, have been invented based on solid {sup 10}B converters. These concepts require development in thin film deposition technique regarding high adhesion, thickness uniformity and chemical purity of the converter coating on large area substrates. We report on the sputter deposition of highly uniform large-area {sup 10}B{sub 4}C coatings of up to 2 μm thickness with a thickness deviation below 4% using the Helmholtz-Zentrum Geesthacht large area sputtering system.more » The {sup 10}B{sub 4}C coatings are x-ray amorphous and highly adhesive to the substrate. Material analysis by means of X-ray-Photoelectron Spectroscopy, Secondary-Ion-Mass-Spectrometry, and Rutherford-Back-Scattering (RBS) revealed low impurities concentration in the coatings. The isotope composition determined by Secondary-Ion-Mass-Spectrometry, RBS, and inelastic nuclear reaction analysis of the converter coatings evidences almost identical {sup 10}B isotope contents in the sputter target and in the deposited coating. Neutron conversion and detection test measurements with variable irradiation geometry of the converter coating demonstrate an average relative quantum efficiency ranging from 65% to 90% for cold neutrons as compared to a black {sup 3}He-monitor. Thus, these converter coatings contribute to the development of {sup 3}He-free prototype detectors based on neutron grazing incidence. Transferring the developed coating process to an industrial scale sputtering system can make alternative {sup 3}He-free converter elements available for large area neutron detection systems.« less
Behera, G; Sutar, P P; Aditya, S
2017-11-01
The commercially available dry turmeric powder at 10.34% d.b. moisture content was decontaminated using microwaves at high power density for short time. To avoid the loss of moisture from turmeric due to high microwave power, the drying kinetics were modelled and considered during optimization of microwave decontamination process. The effect of microwave power density (10, 33.5 and 57 W g -1 ), exposure time (10, 20 and 30 s) and thickness of turmeric layer (1, 2 and 3 mm) on total plate, total yeast and mold (YMC) counts, color change (∆E), average final temperature of the product (T af ), water activity (a w ), Page model rate constant (k) and total moisture loss (ML) was studied. The perturbation analysis was carried out for all variables. It was found that to achieve more than one log reduction in yeast and mold count, a substantial reduction in moisture content takes place leading to the reduced output. The microwave power density significantly affected the YMC, T af and a w of turmeric powder. But the thickness of sample and microwave exposure time showed effect only on T af , a w and ML. The colour of turmeric and Page model rate constant were not significantly changed during the process as anticipated. The numerical optimization was done at 57.00 W g -1 power density, 1.64 mm thickness of sample layer and 30 s exposure time. It resulted into 1.6 × 10 7 CFU g -1 YMC, 82.71 °C T af , 0.383 a w and 8.41% (d.b.) final moisture content.
NASA Astrophysics Data System (ADS)
Nowak, G.; Störmer, M.; Becker, H.-W.; Horstmann, C.; Kampmann, R.; Höche, D.; Haese-Seiller, M.; Moulin, J.-F.; Pomm, M.; Randau, C.; Lorenz, U.; Hall-Wilton, R.; Müller, M.; Schreyer, A.
2015-01-01
Due to the present shortage of 3He and the associated tremendous increase of its price, the supply of large neutron detection systems with 3He becomes unaffordable. Alternative neutron detection concepts, therefore, have been invented based on solid 10B converters. These concepts require development in thin film deposition technique regarding high adhesion, thickness uniformity and chemical purity of the converter coating on large area substrates. We report on the sputter deposition of highly uniform large-area 10B4C coatings of up to 2 μm thickness with a thickness deviation below 4% using the Helmholtz-Zentrum Geesthacht large area sputtering system. The 10B4C coatings are x-ray amorphous and highly adhesive to the substrate. Material analysis by means of X-ray-Photoelectron Spectroscopy, Secondary-Ion-Mass-Spectrometry, and Rutherford-Back-Scattering (RBS) revealed low impurities concentration in the coatings. The isotope composition determined by Secondary-Ion-Mass-Spectrometry, RBS, and inelastic nuclear reaction analysis of the converter coatings evidences almost identical 10B isotope contents in the sputter target and in the deposited coating. Neutron conversion and detection test measurements with variable irradiation geometry of the converter coating demonstrate an average relative quantum efficiency ranging from 65% to 90% for cold neutrons as compared to a black 3He-monitor. Thus, these converter coatings contribute to the development of 3He-free prototype detectors based on neutron grazing incidence. Transferring the developed coating process to an industrial scale sputtering system can make alternative 3He-free converter elements available for large area neutron detection systems.
NASA Technical Reports Server (NTRS)
Kwok, R.; Cunningham, G. F.; Pang, S. S.
2004-01-01
We summarize 24 years (1978??2) of ice export estimates and examine, over a 9-year record, the associated variability in the time-varying upward-looking sonar (ULS) thickness distributions of the Fram Strait.
Sun, Jun; Luo, Yun; Chao, Yong-Lie
2005-06-01
The purpose of this study was to evaluate the color changes of gingival porcelain through varying thickness and shade of porcelain of ceramometal restorations. In this study a spectrophotometer (PR-650) was used for color analysis. The color changes of dentin porcelain and gingival porcelain with three varied thickness (0.3 mm, 0.6 mm and 0.9 mm) were investigated. In addition, the color variances of Shofu vintage porcelain shade A2, A3 and B2 were tested. The results showed that decreased L * value of ceramometal restorations and increased a * value were due to the increase of the gingival porcelain thickness, color measurements showed the same trend as the increased dentin porcelain thickness and the opaque and dentin porcelain with different color affected the appearance of gingival porcelain. The color of gingival porcelain would be changed with the differences of thickness and shade of porcelain of ceramometal restorations.
NASA Astrophysics Data System (ADS)
Kim, Si Joon; Mohan, Jaidah; Lee, Jaebeom; Lee, Joy S.; Lucero, Antonio T.; Young, Chadwin D.; Colombo, Luigi; Summerfelt, Scott R.; San, Tamer; Kim, Jiyoung
2018-04-01
We report on the effect of the Hf0.5Zr0.5O2 (HZO) film thickness on the ferroelectric and dielectric properties using pulse write/read measurements. HZO films of thicknesses ranging from 5 to 20 nm were annealed at 400 °C for 1 min in a nitrogen ambient to be compatible with the back-end of the line thermal budget. As the HZO film thickness decreases, low-voltage operation (1.0 V or less) can be achieved without the dead layer effect, although switching polarization (Psw) tends to decrease due to the smaller grain size. Meanwhile, for 20-nm-thick HZO films prepared under the identical stress (similar TiN top electrode thickness and thermal budget), the Psw and dielectric constant are reduced because of additional monoclinic phase formation.
Ramseyer, Vanesa D.; Gonzalez-Vicente, Agustin; Carretero, Oscar A.
2014-01-01
Thick ascending limbs reabsorb 30% of the filtered NaCl load. Nitric oxide (NO) produced by NO synthase 3 (NOS3) inhibits NaCl transport by this segment. In contrast, chronic angiotensin II (ANG II) infusion increases net thick ascending limb transport. NOS3 activity is regulated by changes in expression and phosphorylation at threonine 495 (T495) and serine 1177 (S1177), inhibitory and stimulatory sites, respectively. We hypothesized that NO production by thick ascending limbs is impaired by chronic ANG II infusion, due to reduced NOS3 expression, increased phosphorylation of T495, and decreased phosphorylation of S1177. Rats were infused with 200 ng·kg−1·min−1 ANG II or vehicle for 1 and 5 days. ANG II infusion for 5 days decreased NOS3 expression by 40 ± 12% (P < 0.007; n = 6) and increased T495 phosphorylation by 147 ± 26% (P < 0.008; n = 6). One-day ANG II infusion had no significant effect. NO production in response to endothelin-1 was blunted in thick ascending limbs from ANG II-infused animals [ANG II −0.01 ± 0.06 arbitrary fluorescence units (AFU)/min vs. 0.17 ± 0.02 AFU/min in controls; P < 0.01]. This was not due to reduced endothelin-1 receptor expression. Phosphatidylinositol 3,4,5-triphosphate (PIP3)-induced NO production was also reduced in ANG II-infused rats (ANG II −0.07 ± 0.06 vs. 0.13 ± 0.04 AFU/min in controls; P < 0.03), and this correlated with an impaired ability of PIP3 to increase S1177 phosphorylation. We conclude that in ANG II-induced hypertension NO production by thick ascending limbs is impaired due to decreased NOS3 expression and altered phosphorylation. PMID:25377910
Ramseyer, Vanesa D; Gonzalez-Vicente, Agustin; Carretero, Oscar A; Garvin, Jeffrey L
2015-01-15
Thick ascending limbs reabsorb 30% of the filtered NaCl load. Nitric oxide (NO) produced by NO synthase 3 (NOS3) inhibits NaCl transport by this segment. In contrast, chronic angiotensin II (ANG II) infusion increases net thick ascending limb transport. NOS3 activity is regulated by changes in expression and phosphorylation at threonine 495 (T495) and serine 1177 (S1177), inhibitory and stimulatory sites, respectively. We hypothesized that NO production by thick ascending limbs is impaired by chronic ANG II infusion, due to reduced NOS3 expression, increased phosphorylation of T495, and decreased phosphorylation of S1177. Rats were infused with 200 ng·kg(-1)·min(-1) ANG II or vehicle for 1 and 5 days. ANG II infusion for 5 days decreased NOS3 expression by 40 ± 12% (P < 0.007; n = 6) and increased T495 phosphorylation by 147 ± 26% (P < 0.008; n = 6). One-day ANG II infusion had no significant effect. NO production in response to endothelin-1 was blunted in thick ascending limbs from ANG II-infused animals [ANG II -0.01 ± 0.06 arbitrary fluorescence units (AFU)/min vs. 0.17 ± 0.02 AFU/min in controls; P < 0.01]. This was not due to reduced endothelin-1 receptor expression. Phosphatidylinositol 3,4,5-triphosphate (PIP3)-induced NO production was also reduced in ANG II-infused rats (ANG II -0.07 ± 0.06 vs. 0.13 ± 0.04 AFU/min in controls; P < 0.03), and this correlated with an impaired ability of PIP3 to increase S1177 phosphorylation. We conclude that in ANG II-induced hypertension NO production by thick ascending limbs is impaired due to decreased NOS3 expression and altered phosphorylation. Copyright © 2015 the American Physiological Society.