Sample records for variable valve control

  1. Spool-type control valve assembly with reduced spool stroke for hydraulic belt-and-pulley type continuously variable transmission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Itoh, H.; Akashi, T.; Takada, M.

    1987-03-31

    This patent describes a hydraulic control system for controlling a speed ratio of a hydraulically-operated continuously variable transmission of belt-and-pulley type having a variable-diameter pulley and a hydraulic cylinder for changing an effective diameter of the variable diameter-pulley of the transmission. The hydraulic control system includes a speed-ratio control valve assembly for controlling the supply and discharge of a pressurized fluid to and from the hydraulic cylinder to thereby change the speed ratio of the transmission. The speed-ratio control valve assembly comprises: a shift-direction switching valve unit disposed in fluid supply and discharge conduits communicating with the hydraulic cylinder, formore » controlling a direction in which the speed ratio of the transmission is varied; a shift-speed control valve unit of spool-valve type connected to the shift-direction switching valve unit. The shift-speed control valve unit is selectively placed in a first state in which the fluid supply and discharge flows to and from the hydraulic cylinder through the conduits are permitted, or in a second state in which the fluid supply flow is restricted while the fluid discharge flow is inhibited; an actuator means for placing the shift speed control valve unit alternately in the first and second states to control a rate of variation in the speed ratio of the transmission in the direction established by the shift-direction switching valve unit.« less

  2. Dynamic control of a homogeneous charge compression ignition engine

    DOEpatents

    Duffy, Kevin P [Metamora, IL; Mehresh, Parag [Peoria, IL; Schuh, David [Peoria, IL; Kieser, Andrew J [Morton, IL; Hergart, Carl-Anders [Peoria, IL; Hardy, William L [Peoria, IL; Rodman, Anthony [Chillicothe, IL; Liechty, Michael P [Chillicothe, IL

    2008-06-03

    A homogenous charge compression ignition engine is operated by compressing a charge mixture of air, exhaust and fuel in a combustion chamber to an autoignition condition of the fuel. The engine may facilitate a transition from a first combination of speed and load to a second combination of speed and load by changing the charge mixture and compression ratio. This may be accomplished in a consecutive engine cycle by adjusting both a fuel injector control signal and a variable valve control signal away from a nominal variable valve control signal. Thereafter in one or more subsequent engine cycles, more sluggish adjustments are made to at least one of a geometric compression ratio control signal and an exhaust gas recirculation control signal to allow the variable valve control signal to be readjusted back toward its nominal variable valve control signal setting. By readjusting the variable valve control signal back toward its nominal setting, the engine will be ready for another transition to a new combination of engine speed and load.

  3. Turbo-generator control with variable valve actuation

    DOEpatents

    Vuk, Carl T [Denver, IA

    2011-02-22

    An internal combustion engine incorporating a turbo-generator and one or more variably activated exhaust valves. The exhaust valves are adapted to variably release exhaust gases from a combustion cylinder during a combustion cycle to an exhaust system. The turbo-generator is adapted to receive exhaust gases from the exhaust system and rotationally harness energy therefrom to produce electrical power. A controller is adapted to command the exhaust valve to variably open in response to a desired output for the turbo-generator.

  4. Pressure model of a four-way spool valve for simulating electrohydraulic control systems

    NASA Technical Reports Server (NTRS)

    Gebben, V. D.

    1976-01-01

    An equation that relates the pressure flow characteristics of hydraulic spool valves was developed. The dependent variable is valve output pressure, and the independent variables are spool position and flow. This causal form of equation is preferred in applications that simulate the effects of hydraulic line dynamics. Results from this equation are compared with those from the conventional valve equation, whose dependent variable is flow. A computer program of the valve equations includes spool stops, leakage spool clearances, and dead-zone characteristics of overlap spools.

  5. Application of several variable-valve-timing concepts to an LHR engine

    NASA Technical Reports Server (NTRS)

    Morel, T.; Keribar, R.; Sawlivala, M.; Hakim, N.

    1987-01-01

    The paper discusses advantages provided by electronically controlled hydraulically activated valves (ECVs) when applied to low heat rejection (LHR) engines. The ECV concept provides additional engine control flexibility by allowing for a variable valve timing as a function of speed and load, or for a given transient condition. The results of a study carried out to assess the benefits that this flexibility can offer to an LHR engine indicated that, when judged on the benefits to BSFC, volumetric efficiency, and peak firing pressure, ECVs would provide only modest benefits in comparison to conventional valve profiles. It is noted, however, that once installed on the engine, the ECVs would permit a whole range of certain more sophisticated variable valve timing strategies not otherwise possible, such as high compression cranking, engine braking, cylinder cutouts, and volumetric efficiency timing with engine speed.

  6. Variable gas leak rate valve

    DOEpatents

    Eernisse, Errol P.; Peterson, Gary D.

    1976-01-01

    A variable gas leak rate valve which utilizes a poled piezoelectric element to control opening and closing of the valve. The gas flow may be around a cylindrical rod with a tubular piezoelectric member encircling the rod for seating thereagainst to block passage of gas and for reopening thereof upon application of suitable electrical fields.

  7. Intelligent Flow Control Valve

    NASA Technical Reports Server (NTRS)

    Kelley, Anthony R (Inventor)

    2015-01-01

    The present invention is an intelligent flow control valve which may be inserted into the flow coming out of a pipe and activated to provide a method to stop, measure, and meter flow coming from the open or possibly broken pipe. The intelligent flow control valve may be used to stop the flow while repairs are made. Once repairs have been made, the valve may be removed or used as a control valve to meter the amount of flow from inside the pipe. With the addition of instrumentation, the valve may also be used as a variable area flow meter and flow controller programmed based upon flowing conditions. With robotic additions, the valve may be configured to crawl into a desired pipe location, anchor itself, and activate flow control or metering remotely.

  8. Dedicated EGR engine with dynamic load control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayman, Alan W.; McAlpine, Robert S.; Keating, Edward J.

    An internal combustion engine comprises a first engine bank and a second engine bank. A first intake valve is disposed in an intake port of a cylinder of the first engine bank, and is configured for metering the first flow of combustion air by periodically opening and closing according to a first intake valve lift and duration characteristic. A variable valve train control mechanism is configured for affecting the first intake valve lift and duration characteristic. Either a lift or duration of the first intake valve is modulated so as to satisfy an EGR control criterion.

  9. Pressure variable orifice for hydraulic control valve

    NASA Technical Reports Server (NTRS)

    Ammerman, R. L.

    1968-01-01

    Hydraulic valve absorbs impact energy generated in docking or joining of two large bodies by controlling energy release to avoid jarring shock. The area of exit porting presented to the hydraulic control fluid is directly proportional to the pressure acting on the fluid.

  10. Variable-pulse switching circuit accurately controls solenoid-valve actuations

    NASA Technical Reports Server (NTRS)

    Gillett, J. D.

    1967-01-01

    Solid state circuit generating adjustable square wave pulses of sufficient power operates a 28 volt dc solenoid valve at precise time intervals. This circuit is used for precise time control of fluid flow in combustion experiments.

  11. Influence of Structural Parameters on the Performance of Vortex Valve Variable-Thrust Solid Rocket Motor

    NASA Astrophysics Data System (ADS)

    Wei, Xianggeng; Li, Jiang; He, Guoqiang

    2017-04-01

    The vortex valve solid variable thrust motor is a new solid motor which can achieve Vehicle system trajectory optimization and motor energy management. Numerical calculation was performed to investigate the influence of vortex chamber diameter, vortex chamber shape, and vortex chamber height of the vortex valve solid variable thrust motor on modulation performance. The test results verified that the calculation results are consistent with laboratory results with a maximum error of 9.5%. The research drew the following major conclusions: the optimal modulation performance was achieved in a cylindrical vortex chamber, increasing the vortex chamber diameter improved the modulation performance of the vortex valve solid variable thrust motor, optimal modulation performance could be achieved when the height of the vortex chamber is half of the vortex chamber outlet diameter, and the hot gas control flow could result in an enhancement of modulation performance. The results can provide the basis for establishing the design method of the vortex valve solid variable thrust motor.

  12. Cardiac findings in Quarter Horses with heritable equine regional dermal asthenia.

    PubMed

    Brinkman, Erin L; Weed, Benjamin C; Patnaik, Sourav S; Brazile, Bryn L; Centini, Ryan M; Wills, Robert W; Olivier, Bari; Sledge, Dodd G; Cooley, Jim; Liao, Jun; Rashmir-Raven, Ann M

    2017-03-01

    OBJECTIVE To compare biomechanical and histologic features of heart valves and echocardiographic findings between Quarter Horses with and without heritable equine regional dermal asthenia (HERDA). DESIGN Prospective case-control study. ANIMALS 41 Quarter Horses. PROCEDURES Ultimate tensile strength (UTS) of aortic and mitral valve leaflets was assessed by biomechanical testing in 5 horses with HERDA and 5 horses without HERDA (controls). Histologic evaluation of aortic and mitral valves was performed for 6 HERDA-affected and 3 control horses. Echocardiography was performed in 14 HERDA-affected and 11 control horses. Biomechanical data and echocardiographic variables of interest were compared between groups by statistical analyses, RESULTS Mean values for mean and maximum UTS of heart valves were significantly lower in HERDA-affected horses than in controls. Blood vessels were identified in aortic valve leaflets of HERDA-affected but not control horses. Most echocardiographic data did not differ between groups. When the statistical model for echocardiographic measures was controlled for body weight, mean and maximum height and width of the aorta at the valve annulus in short-axis images were significantly associated with HERDA status and were smaller for affected horses. CONCLUSIONS AND CLINICAL RELEVANCE Lower UTS of heart valves in HERDA-affected horses, compared with those of control horses, supported that tissues other than skin with high fibrillar collagen content are abnormal in horses with HERDA. Lack of significant differences in most echocardiographic variables between affected and control horses suggested that echocardiography may not be useful to detect a substantial loss of heart valve tensile strength. Further investigation is warranted to confirm these findings. Studies in horses with HERDA may provide insight into cardiac abnormalities in people with collagen disorders.

  13. Variable-Displacement Hydraulic Drive Unit

    NASA Technical Reports Server (NTRS)

    Lang, D. J.; Linton, D. J.; Markunas, A.

    1986-01-01

    Hydraulic power controlled through multiple feedback loops. In hydraulic drive unit, power closely matched to demand, thereby saving energy. Hydraulic flow to and from motor adjusted by motor-control valve connected to wobbler. Wobbler angle determines motor-control-valve position, which in turn determines motor displacement. Concept applicable to machine tools, aircraft controls, and marine controls.

  14. Locomotion of Amorphous Surface Robots

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T. (Inventor)

    2018-01-01

    An amorphous robot includes a compartmented bladder containing fluid, a valve assembly, and an outer layer encapsulating the bladder and valve assembly. The valve assembly draws fluid from a compartment(s) and discharges the drawn fluid into a designated compartment to displace the designated compartment with respect to the surface. Another embodiment includes elements each having a variable property, an outer layer that encapsulates the elements, and a control unit. The control unit energizes a designated element to change its variable property, thereby moving the designated element. The elements may be electromagnetic spheres with a variable polarity or shape memory polymers with changing shape and/or size. Yet another embodiment includes an elongated flexible tube filled with ferrofluid, a moveable electromagnet, an actuator, and a control unit. The control unit energizes the electromagnet and moves the electromagnet via the actuator to magnetize the ferrofluid and lengthen the flexible tube.

  15. Locomotion of Amorphous Surface Robots

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T. (Inventor)

    2016-01-01

    An amorphous robot includes a compartmented bladder containing fluid, a valve assembly, and an outer layer encapsulating the bladder and valve assembly. The valve assembly draws fluid from a compartment(s) and discharges the drawn fluid into a designated compartment to displace the designated compartment with respect to the surface. Another embodiment includes elements each having a variable property, an outer layer that encapsulates the elements, and a control unit. The control unit energizes a designated element to change its variable property, thereby moving the designated element. The elements may be electromagnetic spheres with a variable polarity or shape memory polymers with changing shape and/or size. Yet another embodiment includes an elongated flexible tube filled with ferrofluid, a moveable electromagnet, an actuator, and a control unit. The control unit energizes the electromagnet and moves the electromagnet via the actuator to magnetize the ferrofluid and lengthen the flexible tube.

  16. Locomotion of Amorphous Surface Robots

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T. (Inventor)

    2014-01-01

    An amorphous robot includes a compartmented bladder containing fluid, a valve assembly, and an outer layer encapsulating the bladder and valve assembly. The valve assembly draws fluid from a compartment(s) and discharges the drawn fluid into a designated compartment to displace the designated compartment with respect to the surface. Another embodiment includes elements each having a variable property, an outer layer that encapsulates the elements, and a control unit. The control unit energizes a designated element to change its variable property, thereby moving the designated element. The elements may be electromagnetic spheres with a variable polarity or shape memory polymers with changing shape and/or size. Yet another embodiment includes an elongated flexible tube filled with ferrofluid, a moveable electromagnet, an actuator, and a control unit. The control unit energizes the electromagnet and moves the electromagnet via the actuator to magnetize the ferrofluid and lengthen the flexible tube.

  17. Flex Fuel Optimized SI and HCCI Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Guoming; Schock, Harold; Yang, Xiaojian

    The central objective of the proposed work is to demonstrate an HCCI (homogeneous charge compression ignition) capable SI (spark ignited) engine that is capable of fast and smooth mode transition between SI and HCCI combustion modes. The model-based control technique was used to develop and validate the proposed control strategy for the fast and smooth combustion mode transition based upon the developed control-oriented engine; and an HCCI capable SI engine was designed and constructed using production ready two-step valve-train with electrical variable valve timing actuating system. Finally, smooth combustion mode transition was demonstrated on a metal engine within eight enginemore » cycles. The Chrysler turbocharged 2.0L I4 direct injection engine was selected as the base engine for the project and the engine was modified to fit the two-step valve with electrical variable valve timing actuating system. To develop the model-based control strategy for stable HCCI combustion and smooth combustion mode transition between SI and HCCI combustion, a control-oriented real-time engine model was developed and implemented into the MSU HIL (hardware-in-the-loop) simulation environment. The developed model was used to study the engine actuating system requirement for the smooth and fast combustion mode transition and to develop the proposed mode transition control strategy. Finally, a single cylinder optical engine was designed and fabricated for studying the HCCI combustion characteristics. Optical engine combustion tests were conducted in both SI and HCCI combustion modes and the test results were used to calibrate the developed control-oriented engine model. Intensive GT-Power simulations were conducted to determine the optimal valve lift (high and low) and the cam phasing range. Delphi was selected to be the supplier for the two-step valve-train and Denso to be the electrical variable valve timing system supplier. A test bench was constructed to develop control strategies for the electrical variable valve timing (VVT) actuating system and satisfactory electrical VVT responses were obtained. Target engine control system was designed and fabricated at MSU for both single-cylinder optical and multi-cylinder metal engines. Finally, the developed control-oriented engine model was successfully implemented into the HIL simulation environment. The Chrysler 2.0L I4 DI engine was modified to fit the two-step vale with electrical variable valve timing actuating system. A used prototype engine was used as the base engine and the cylinder head was modified for the two-step valve with electrical VVT actuating system. Engine validation tests indicated that cylinder #3 has very high blow-by and it cannot be reduced with new pistons and rings. Due to the time constraint, it was decided to convert the four-cylinder engine into a single cylinder engine by blocking both intake and exhaust ports of the unused cylinders. The model-based combustion mode transition control algorithm was developed in the MSU HIL simulation environment and the Simulink based control strategy was implemented into the target engine controller. With both single-cylinder metal engine and control strategy ready, stable HCCI combustion was achived with COV of 2.1% Motoring tests were conducted to validate the actuator transient operations including valve lift, electrical variable valve timing, electronic throttle, multiple spark and injection controls. After the actuator operations were confirmed, 15-cycle smooth combustion mode transition from SI to HCCI combustion was achieved; and fast 8-cycle smooth combustion mode transition followed. With a fast electrical variable valve timing actuator, the number of engine cycles required for mode transition can be reduced down to five. It was also found that the combustion mode transition is sensitive to the charge air and engine coolant temperatures and regulating the corresponding temperatures to the target levels during the combustion mode transition is the key for a smooth combustion mode transition. As a summary, the proposed combustion mode transition strategy using the hybrid combustion mode that starts with the SI combustion and ends with the HCCI combustion was experimentally validated on a metal engine. The proposed model-based control approach made it possible to complete the SI-HCCI combustion mode transition within eight engine cycles utilizing the well controlled hybrid combustion mode. Without intensive control-oriented engine modeling and HIL simulation study of using the hybrid combustion mode during the mode transition, it would be impossible to validate the proposed combustion mode transition strategy in a very short period.« less

  18. Synchronous temperature rate control and apparatus for refrigeration with reduced energy consumption

    DOEpatents

    Gomes, Alberto Regio; Keres, Stephen L.; Kuehl, Steven J.; Litch, Andrew D.; Richmond, Peter J.; Wu, Guolian

    2015-09-22

    A refrigerator appliance configuration, and associated methods of operation, for an appliance with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper, and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The controller, by operation of the compressor, fans, damper and/or valve system, depending on the appliance configuration, synchronizes alternating cycles of cooling each compartment to a temperature approximately equal to the compartment set point temperature.

  19. Synchronous compartment temperature control and apparatus for refrigeration with reduced energy consumption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomes, Alberto Regio; Keres, Stephen L.; Kuehl, Stephen J.

    A refrigerator appliance configuration, and associated methods of operation, for an appliance with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The controller, by operation of the compressor, fans, damper and/or valve system, depending on the appliance configuration, controls the cooling rate in one or both compartments to synchronize, alternating cycles of cooling the compartmentsmore » to their set point temperatures.« less

  20. Investigation of a rotary valving system with variable valve timing for internal combustion engines

    NASA Astrophysics Data System (ADS)

    Cross, Paul C.; Hansen, Craig N.

    1994-11-01

    The objective of the program was to provide a functional demonstration of the Hansen Rotary Valving System with Variable Valve Timing (HRVS/VVT), capable of throttleless inlet charge control, as an alternative to conventional poppet-valves for use in spark ignited internal combustion engines. The goal of this new technology is to secure benefits in fuel economy, broadened torque band, vibration reduction, and overhaul accessibility. Additionally, use of the variable valve timing capability to vary the effective compression ratio is expected to improve multifuel tolerance and efficiency. Efforts directed at the design of HRVS components proved to be far more extensive than had been anticipated, ultimately requiring that proof-trial design/development work be performed. Although both time and funds were exhausted before optical or ion-probe types of in-cylinder investigation could be undertaken, a great deal of laboratory data was acquired during the course of the design/development work. This laboratory data is the basis for the information presented in this final report.

  1. Sliding Mode Control of a Thermal Mixing Process

    NASA Technical Reports Server (NTRS)

    Richter, Hanz; Figueroa, Fernando

    2004-01-01

    In this paper we consider the robust control of a thermal mixer using multivariable Sliding Mode Control (SMC). The mixer consists of a mixing chamber, hot and cold fluid valves, and an exit valve. The commanded positions of the three valves are the available control inputs, while the controlled variables are total mass flow rate, chamber pressure and the density of the mixture inside the chamber. Unsteady thermodynamics and linear valve models are used in deriving a 5th order nonlinear system with three inputs and three outputs, An SMC controller is designed to achieve robust output tracking in the presence of unknown energy losses between the chamber and the environment. The usefulness of the technique is illustrated with a simulation.

  2. Simulation of a Hydraulic Pump Control Valve

    NASA Technical Reports Server (NTRS)

    Molen, G. Vander; Akers, A.

    1987-01-01

    This paper describes the mode of operation of a control valve assembly that is used with a hydraulic pump. The operating system of the valve is modelled in a simplified form, and an analogy for hydraulic resonance of the pressure sensing system is presented. For the control valve investigated, air entrainment, length and diameter of the resonator neck, and valve mass produced the greatest shift in resonant frequency. Experimental work was conducted on the hydraulic system so that the resonance levels and frequencies could be measured and the accuracy of the theory verified. The results obtained make it possible to evaluate what changes to any of the variables considered would be most effective in driving the second harmonic frequency above the operating range.

  3. Space Vehicle Valve System

    NASA Technical Reports Server (NTRS)

    Kelley, Anthony R. (Inventor); Lindner, Jeffrey L. (Inventor)

    2014-01-01

    The present invention is a space vehicle valve system which controls the internal pressure of a space vehicle and the flow rate of purged gases at a given internal pressure and aperture site. A plurality of quasi-unique variable dimension peaked valve structures cover the purge apertures on a space vehicle. Interchangeable sheet guards configured to cover valve apertures on the peaked valve structure contain a pressure-activated surface on the inner surface. Sheet guards move outwardly from the peaked valve structure when in structural contact with a purge gas stream flowing through the apertures on the space vehicle. Changing the properties of the sheet guards changes the response of the sheet guards at a given internal pressure, providing control of the flow rate at a given aperture site.

  4. A pulse-tube refrigerator using variable-resistance orifice

    NASA Astrophysics Data System (ADS)

    Huang, B. J.; Sun, B. W.

    2003-01-01

    In the present study, we propose a new design of orifice pulse-tube refrigerator (VROPT) using a variable-resistance valve to replace the conventional orifice. The variable-resistance orifice (VRO) is basically a high-speed solenoidal valve similar to the fuel jet device widely used in automobile engines. By changing the frequency and periods of ON and OFF of the valve through an electronic device, we can change the flow resistance of the VRO. This thus provides a possibility for an OPT to be controlled on-line during operation. From the results obtained in the present study, we have shown that VROPT is able to achieve on-line control by regulating the duty cycle d or frequency fv of the VRO. We also show that VROPT will not loss its thermal performance as compared to conventional OPT.

  5. Characteristic Analysis and Experiment of a Dynamic Flow Balance Valve

    NASA Astrophysics Data System (ADS)

    Bin, Li; Song, Guo; Xuyao, Mao; Chao, Wu; Deman, Zhang; Jin, Shang; Yinshui, Liu

    2017-12-01

    Comprehensive characteristics of a dynamic flow balance valve of water system were analysed. The flow balance valve can change the drag efficient automatically according to the condition of system, and the effective control flowrate is constant in the range of job pressure. The structure of the flow balance valve was introduced, and the theoretical calculation formula for the variable opening of the valve core was derived. A rated pressure of 20kPa to 200kPa and a rated flowrate of 10m3/h were offered in the numerical work. Static and fluent CFX analyses show good behaviours: through the valve core structure optimization and improve design of the compressive spring, the dynamic flow balance valve can stabilize the flowrate of system evidently. And experiments show that the flow control accuracy is within 5%.

  6. Loop Heat Pipe with Thermal Control Valve as a Variable Thermal Link

    NASA Technical Reports Server (NTRS)

    Hartenstine, John; Anderson, William G.; Walker, Kara; Dussinger, Pete

    2012-01-01

    Future lunar landers and rovers will require variable thermal links that allow for heat rejection during the lunar daytime and passively prevent heat rejection during the lunar night. During the lunar day, the thermal management system must reject the waste heat from the electronics and batteries to maintain them below the maximum acceptable temperature. During the lunar night, the heat rejection system must either be shut down or significant amounts of guard heat must be added to keep the electronics and batteries above the minimum acceptable temperature. Since guard heater power is unfavorable because it adds to system size and complexity, a variable thermal link is preferred to limit heat removal from the electronics and batteries during the long lunar night. Conventional loop heat pipes (LHPs) can provide the required variable thermal conductance, but they still consume electrical power to shut down the heat transfer. This innovation adds a thermal control valve (TCV) and a bypass line to a conventional LHP that proportionally allows vapor to flow back into the compensation chamber of the LHP. The addition of this valve can achieve completely passive thermal control of the LHP, eliminating the need for guard heaters and complex controls.

  7. Flow compensating pressure regulator

    NASA Technical Reports Server (NTRS)

    Baehr, E. F. (Inventor)

    1978-01-01

    An apparatus for regulating pressure of treatment fluid during ophthalmic procedures is described. Flow sensing and pressure regulating diaphragms are used to modulate a flow control valve. The pressure regulating diaphragm is connected to the flow control valve to urge the valve to an open position due to pressure being applied to the diaphragm by bias means such as a spring. The flow sensing diaphragm is mechanically connected to the flow control valve and urges it to an opened position because of the differential pressure on the diaphragm generated by a flow of incoming treatment fluid through an orifice in the diaphragm. A bypass connection with a variable restriction is connected in parallel relationship to the orifice to provide for adjusting the sensitivity of the flow sensing diaphragm. A multiple lever linkage system is utilized between the center of the second diaphragm and the flow control valve to multiply the force applied to the valve by the other diaphragm and reverse the direction of the force.

  8. Internal combustion engine with rotary valve assembly having variable intake valve timing

    DOEpatents

    Hansen, Craig N.; Cross, Paul C.

    1995-01-01

    An internal combustion engine has rotary valves associated with movable shutters operable to vary the closing of intake air/fuel port sections to obtain peak volumetric efficiency over the entire range of speed of the engine. The shutters are moved automatically by a control mechanism that is responsive to the RPM of the engine. A foot-operated lever associated with the control mechanism is also used to move the shutters between their open and closed positions.

  9. Pneumatic Variable Series Elastic Actuator.

    PubMed

    Zheng, Hao; Wu, Molei; Shen, Xiangrong

    2016-08-01

    Inspired by human motor control theory, stiffness control is highly effective in manipulation and human-interactive tasks. The implementation of stiffness control in robotic systems, however, has largely been limited to closed-loop control, and suffers from multiple issues such as limited frequency range, potential instability, and lack of contribution to energy efficiency. Variable-stiffness actuator represents a better solution, but the current designs are complex, heavy, and bulky. The approach in this paper seeks to address these issues by using pneumatic actuator as a variable series elastic actuator (VSEA), leveraging the compressibility of the working fluid. In this work, a pneumatic actuator is modeled as an elastic element with controllable stiffness and equilibrium point, both of which are functions of air masses in the two chambers. As such, for the implementation of stiffness control in a robotic system, the desired stiffness/equilibrium point can be converted to the desired chamber air masses, and a predictive pressure control approach is developed to control the timing of valve switching to obtain the desired air mass while minimizing control action. Experimental results showed that the new approach in this paper requires less expensive hardware (on-off valve instead of proportional valve), causes less control action in implementation, and provides good control performance by leveraging the inherent dynamics of the actuator.

  10. Pneumatic Variable Series Elastic Actuator

    PubMed Central

    Zheng, Hao; Wu, Molei; Shen, Xiangrong

    2016-01-01

    Inspired by human motor control theory, stiffness control is highly effective in manipulation and human-interactive tasks. The implementation of stiffness control in robotic systems, however, has largely been limited to closed-loop control, and suffers from multiple issues such as limited frequency range, potential instability, and lack of contribution to energy efficiency. Variable-stiffness actuator represents a better solution, but the current designs are complex, heavy, and bulky. The approach in this paper seeks to address these issues by using pneumatic actuator as a variable series elastic actuator (VSEA), leveraging the compressibility of the working fluid. In this work, a pneumatic actuator is modeled as an elastic element with controllable stiffness and equilibrium point, both of which are functions of air masses in the two chambers. As such, for the implementation of stiffness control in a robotic system, the desired stiffness/equilibrium point can be converted to the desired chamber air masses, and a predictive pressure control approach is developed to control the timing of valve switching to obtain the desired air mass while minimizing control action. Experimental results showed that the new approach in this paper requires less expensive hardware (on–off valve instead of proportional valve), causes less control action in implementation, and provides good control performance by leveraging the inherent dynamics of the actuator. PMID:27354755

  11. System for detecting operating errors in a variable valve timing engine using pressure sensors

    DOEpatents

    Wiles, Matthew A.; Marriot, Craig D

    2013-07-02

    A method and control module includes a pressure sensor data comparison module that compares measured pressure volume signal segments to ideal pressure volume segments. A valve actuation hardware remedy module performs a hardware remedy in response to comparing the measured pressure volume signal segments to the ideal pressure volume segments when a valve actuation hardware failure is detected.

  12. Development of digital flow control system for multi-channel variable-rate sprayers

    USDA-ARS?s Scientific Manuscript database

    Precision modulation of nozzle flow rates is a critical step for variable-rate spray applications in orchards and ornamental nurseries. An automatic flow rate control system activated with microprocessors and pulse width modulation (PWM) controlled solenoid valves was developed to control flow rates...

  13. Improved Merge Valve

    NASA Technical Reports Server (NTRS)

    George-Falvy, Dez

    1992-01-01

    Circumferential design combines compactness and efficiency. In remotely controlled valve, flow in tributary duct along circumference of primary duct merged with flow in primary duct. Flow in tributary duct regulated by variable throat nuzzle driven by worm gear. Design leak-proof, and most components easily fabricated on lathe.

  14. Control performances of a piezoactuator direct drive valve system at high temperatures with thermal insulation

    NASA Astrophysics Data System (ADS)

    Han, Yung-Min; Han, Chulhee; Kim, Wan Ho; Seong, Ho Yong; Choi, Seung-Bok

    2016-09-01

    This technical note presents control performances of a piezoactuator direct drive valve (PDDV) operated at high temperature environment. After briefly discussing operating principle and mechanical dimensions of the proposed PDDV, an appropriate size of the PDDV is manufactured. As a first step, the temperature effect on the valve performance is experimentally investigated by measuring the spool displacement at various temperatures. Subsequently, the PDDV is thermally insulated using aerogel and installed in a large-size heat chamber in which the pneumatic-hydraulic cylinders and sensors are equipped. A proportional-integral-derivative feedback controller is then designed and implemented to control the spool displacement of the valve system. In this work, the spool displacement is chosen as a control variable since it is directly related to the flow rate of the valve system. Three different sinusoidal displacements with different frequencies of 1, 10 and 50 Hz are used as reference spool displacement and tracking controls are undertaken up to 150 °C. It is shown that the proposed PDDV with the thermal insulation can provide favorable control responses without significant tracking errors at high temperatures.

  15. An electronic flow control system for a variable-rate tree sprayer

    USDA-ARS?s Scientific Manuscript database

    Precise modulation of nozzle flow rates is a critical measure to achieve variable-rate spray applications. An electronic flow rate control system accommodating with microprocessors and pulse width modulation (PWM) controlled solenoid valves was designed to manipulate the output of spray nozzles inde...

  16. A hybrid disturbance rejection control solution for variable valve timing system of gasoline engines.

    PubMed

    Xie, Hui; Song, Kang; He, Yu

    2014-07-01

    A novel solution for electro-hydraulic variable valve timing (VVT) system of gasoline engines is proposed, based on the concept of active disturbance rejection control (ADRC). Disturbances, such as oil pressure and engine speed variations, are all estimated and mitigated in real-time. A feed-forward controller was added to enhance the performance of the system based on a simple and static first principle model, forming a hybrid disturbance rejection control (HDRC) strategy. HDRC was validated by experimentation and compared with an existing manually tuned proportional-integral (PI) controller. The results show that HDRC provided a faster response and better tolerance of engine speed and oil pressure variations. © 2013 ISA Published by ISA All rights reserved.

  17. Detecting Solenoid Valve Deterioration in In-Use Electronic Diesel Fuel Injection Control Systems

    PubMed Central

    Tsai, Hsun-Heng; Tseng, Chyuan-Yow

    2010-01-01

    The diesel engine is the main power source for most agricultural vehicles. The control of diesel engine emissions is an important global issue. Fuel injection control systems directly affect fuel efficiency and emissions of diesel engines. Deterioration faults, such as rack deformation, solenoid valve failure, and rack-travel sensor malfunction, are possibly in the fuel injection module of electronic diesel control (EDC) systems. Among these faults, solenoid valve failure is most likely to occur for in-use diesel engines. According to the previous studies, this failure is a result of the wear of the plunger and sleeve, based on a long period of usage, lubricant degradation, or engine overheating. Due to the difficulty in identifying solenoid valve deterioration, this study focuses on developing a sensor identification algorithm that can clearly classify the usability of the solenoid valve, without disassembling the fuel pump of an EDC system for in-use agricultural vehicles. A diagnostic algorithm is proposed, including a feedback controller, a parameter identifier, a linear variable differential transformer (LVDT) sensor, and a neural network classifier. Experimental results show that the proposed algorithm can accurately identify the usability of solenoid valves. PMID:22163597

  18. Detecting solenoid valve deterioration in in-use electronic diesel fuel injection control systems.

    PubMed

    Tsai, Hsun-Heng; Tseng, Chyuan-Yow

    2010-01-01

    The diesel engine is the main power source for most agricultural vehicles. The control of diesel engine emissions is an important global issue. Fuel injection control systems directly affect fuel efficiency and emissions of diesel engines. Deterioration faults, such as rack deformation, solenoid valve failure, and rack-travel sensor malfunction, are possibly in the fuel injection module of electronic diesel control (EDC) systems. Among these faults, solenoid valve failure is most likely to occur for in-use diesel engines. According to the previous studies, this failure is a result of the wear of the plunger and sleeve, based on a long period of usage, lubricant degradation, or engine overheating. Due to the difficulty in identifying solenoid valve deterioration, this study focuses on developing a sensor identification algorithm that can clearly classify the usability of the solenoid valve, without disassembling the fuel pump of an EDC system for in-use agricultural vehicles. A diagnostic algorithm is proposed, including a feedback controller, a parameter identifier, a linear variable differential transformer (LVDT) sensor, and a neural network classifier. Experimental results show that the proposed algorithm can accurately identify the usability of solenoid valves.

  19. Variable Valve Actuation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffrey Gutterman; A. J. Lasley

    2008-08-31

    Many approaches exist to enable advanced mode, low temperature combustion systems for diesel engines - such as premixed charge compression ignition (PCCI), Homogeneous Charge Compression Ignition (HCCI) or other HCCI-like combustion modes. The fuel properties and the quantity, distribution and temperature profile of air, fuel and residual fraction in the cylinder can have a marked effect on the heat release rate and combustion phasing. Figure 1 shows that a systems approach is required for HCCI-like combustion. While the exact requirements remain unclear (and will vary depending on fuel, engine size and application), some form of substantially variable valve actuation ismore » a likely element in such a system. Variable valve actuation, for both intake and exhaust valve events, is a potent tool for controlling the parameters that are critical to HCCI-like combustion and expanding its operational range. Additionally, VVA can be used to optimize the combustion process as well as exhaust temperatures and impact the after treatment system requirements and its associated cost. Delphi Corporation has major manufacturing and product development and applied R&D expertise in the valve train area. Historical R&D experience includes the development of fully variable electro-hydraulic valve train on research engines as well as several generations of mechanical VVA for gasoline systems. This experience has enabled us to evaluate various implementations and determine the strengths and weaknesses of each. While a fully variable electro-hydraulic valve train system might be the 'ideal' solution technically for maximum flexibility in the timing and control of the valve events, its complexity, associated costs, and high power consumption make its implementation on low cost high volume applications unlikely. Conversely, a simple mechanical system might be a low cost solution but not deliver the flexibility required for HCCI operation. After modeling more than 200 variations of the mechanism it was determined that the single cam design did not have enough flexibility to satisfy three critical OEM requirements simultaneously, (maximum valve lift variation, intake valve opening timing and valve closing duration), and a new approach would be necessary. After numerous internal design reviews including several with the OEM a dual cam design was developed that had the flexibility to meet all motion requirements. The second cam added complexity to the mechanism however the cost was offset by the deletion of the electric motor required in the previous design. New patent applications including detailed drawings and potential valve motion profiles were generated and alternate two cam designs were proposed and evaluated for function, cost, reliability and durability. Hardware was designed and built and testing of sample hardware was successfully completed on an engine test stand. The mechanism developed during the course of this investigation can be applied by Original Equipment Manufacturers, (OEM), to their advanced diesel engines with the ultimate goal of reducing emissions and improving fuel economy. The objectives are: (1) Develop an optimal, cost effective, variable valve actuation (VVA) system for advanced low temperature diesel combustion processes. (2) Design and model alternative mechanical approaches and down-select for optimum design. (3) Build and demonstrate a mechanism capable of application on running engines.« less

  20. Development of a fast valve for mitigating disruptions in tokamaks

    NASA Astrophysics Data System (ADS)

    Savtchkov, A.; Finken, K. H.; Mank, G.

    2002-10-01

    In support of our disruption mitigation profram, a fast gas valve has been constructed and tested on TEXTOR at FZJ Juelich. Its main features have been shown to be: (1) rapid response time: 0.5 ms; (2) amount of injected gas: variable, 2-1000 mbar×l; (3) linear dependence of the number of injected particles on the gas pressure; (4) capability of working in a strong magnetic field; (5) sort of gas: any. The valve has the standard CF 35 flange, commonly used in vacuum engineering. All the components that have contact with vacuum were made of stainless steel, except for the closing aluminum piston. To prevent gas leaking directly from the bottles to the experimental vessel there are also two safety valves, closing the bottles before the shot. The required control equipment includes a high power supply and the combined controller for the safety valves and baratrons, both being able to work with TTL control signals. During tests and experiments on TEXTOR and ASDEX-Upgrade, the valve showed successful operation with three gas types: He, Ne, Ar.

  1. Synchronous temperature rate control for refrigeration with reduced energy consumption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomes, Alberto Regio; Keres, Stephen L.; Kuehl, Steven J.

    Methods of operation for refrigerator appliance configurations with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper, and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The methods may include synchronizing alternating cycles of cooling each compartment to a temperature approximately equal to the compartment set point temperature by operation of the compressor, fans, damper and/or valve system. The methods may also include controlling themore » cooling rate in one or both compartments. Refrigeration compartment cooling may begin at an interval before or after when the freezer compartment reaches its lower threshold temperature. Freezer compartment cooling may begin at an interval before or after when the freezer compartment reaches its upper threshold temperature.« less

  2. Synchronous temperature rate control for refrigeration with reduced energy consumption

    DOEpatents

    Gomes, Alberto Regio; Keres, Stephen L.; Kuehl, Steven J.; Litch, Andrew D.; Richmond, Peter J.; Wu, Guolian

    2015-09-22

    Methods of operation for refrigerator appliance configurations with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper, and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The methods may include synchronizing alternating cycles of cooling each compartment to a temperature approximately equal to the compartment set point temperature by operation of the compressor, fans, damper and/or valve system. The methods may also include controlling the cooling rate in one or both compartments. Refrigeration compartment cooling may begin at an interval before or after when the freezer compartment reaches its lower threshold temperature. Freezer compartment cooling may begin at an interval before or after when the freezer compartment reaches its upper threshold temperature.

  3. Evaluation of Application Accuracy and Performance of a Hydraulically Operated Variable-Rate Aerial Application System

    USDA-ARS?s Scientific Manuscript database

    An aerial variable-rate application system consisting of a DGPS-based guidance system, automatic flow controller, and hydraulically controlled pump/valve was evaluated for response time to rapidly changing flow requirements and accuracy of application. Spray deposition position error was evaluated ...

  4. Analysis of Complex Valve and Feed Systems

    NASA Technical Reports Server (NTRS)

    Ahuja, Vineet; Hosangadi, Ashvin; Shipman, Jeremy; Cavallo, Peter; Dash, Sanford

    2007-01-01

    A numerical framework for analysis of complex valve systems supports testing of propulsive systems by simulating key valve and control system components in the test loop. In particular, it is designed to enhance the analysis capability in terms of identifying system transients and quantifying the valve response to these transients. This system has analysis capability for simulating valve motion in complex systems operating in diverse flow regimes ranging from compressible gases to cryogenic liquids. A key feature is the hybrid, unstructured framework with sub-models for grid movement and phase change including cryogenic cavitations. The multi-element unstructured framework offers improved predictions of valve performance characteristics under steady conditions for structurally complex valves such as pressure regulator valve. Unsteady simulations of valve motion using this computational approach have been carried out for various valves in operation at Stennis Space Center such as the split-body valve and the 10-in. (approx.25.4-cm) LOX (liquid oxygen) valve and the 4-in. (approx.10 cm) Y-pattern valve (liquid nitrogen). Such simulations make use of variable grid topologies, thereby permitting solution accuracy and resolving important flow physics in the seat region of the moving valve. An advantage to this software includes possible reduction in testing costs incurred due to disruptions relating to unexpected flow transients or functioning of valve/flow control systems. Prediction of the flow anomalies leading to system vibrations, flow resonance, and valve stall can help in valve scheduling and significantly reduce the need for activation tests. This framework has been evaluated for its ability to predict performance metrics like flow coefficient for cavitating venturis and valve coefficient curves, and could be a valuable tool in predicting and understanding anomalous behavior of system components at rocket propulsion testing and design sites.

  5. Control rod drive hydraulic system

    DOEpatents

    Ose, Richard A.

    1992-01-01

    A hydraulic system for a control rod drive (CRD) includes a variable output-pressure CR pump operable in a charging mode for providing pressurized fluid at a charging pressure, and in a normal mode for providing the pressurized fluid at a purge pressure, less than the charging pressure. Charging and purge lines are disposed in parallel flow between the CRD pump and the CRD. A hydraulic control unit is disposed in flow communication in the charging line and includes a scram accumulator. An isolation valve is provided in the charging line between the CRD pump and the scram accumulator. A controller is operatively connected to the CRD pump and the isolation valve and is effective for opening the isolation valve and operating the CRD pump in a charging mode for charging the scram accumulator, and closing the isolation valve and operating the CRD pump in a normal mode for providing to the CRD through the purge line the pressurized fluid at a purge pressure lower than the charging pressure.

  6. QT dispersion and ventricular arrhythmias in children with primary mitral valve prolapse

    PubMed Central

    İmamoğlu, Ebru Yalın; Eroğlu, Ayşe Güler

    2016-01-01

    Aim: To investigate ventricular arrhythmias in children with primary mitral valve prolapse and to evaluate its relation with QT length, QT dispersion, autonomic function tests and heart rate variability measurements. Material and Methods: Fourty two children with mitral valve prolapse and 32 healthy children were enrolled into the study. Twelve-lead electrocardiograms, autonomic function tests, echocardiography and 24-hour rhythm Holter tests were performed. Electrocardiograms were magnified digitally. The QT length was corrected according to heart rate. The patients were grouped according to the number of premature ventricular contractions and presence of complex ventricular arhythmia in the 24-hour rhythm Holter monitor test. Heart rate variability measurements were calculated automatically from the 24-hour rhythm Holter monitor test. Orthostatic hypotension and resting heart rate were used as autonomic function tests. Results: The mean age was 13.9±3.3 years in the patient group and 14.6±3.1 years in the control group (p>0.05). Thirty four of the patients (81%) were female and eight (19%) were male. Twenty five of the control subjects (78%) were female and seven (22%) were male. The QT dispersion and heart rate corrected QT interval were found to be significantly increased in the children with primary mitral valve prolapse when compared with the control group (56±16 ms vs. 43±11 ms, p=0.001; 426±25 ms vs. 407±26 ms, p=0.002, respectively). In 24-hour rhythm Holter monitor tests, ventricular arrhythmias were found in 21 out of 42 patients (50%) and 6 out of 32 control subjects (18.8%) (p=0.006). QT dispersion was found to be significantly increased in patients with premature ventricular contractions ≥ 10/day and/or complex ventricular arrhythmias compared to the control group without ventricular premature beats (p=0.002). There was no significant difference in autonomic function tests and heart rate variability measurements between the patient and control groups. Conclusions: The noted increase in QT dispersion may be a useful indicator for the clinician in the evaluation of impending ventricular arrhythmias in children with primary mitral valve prolapse. PMID:27738397

  7. Combustion mode switching with a turbocharged/supercharged engine

    DOEpatents

    Mond, Alan; Jiang, Li

    2015-09-22

    A method for switching between low- and high-dilution combustion modes in an internal combustion engine having an intake passage with an exhaust-driven turbocharger, a crankshaft-driven positive displacement supercharger downstream of the turbocharger and having variable boost controllable with a supercharger bypass valve, and a throttle valve downstream of the supercharger. The current combustion mode and mass air flow are determined. A switch to the target combustion mode is commanded when an operating condition falls within a range of predetermined operating conditions. A target mass air flow to achieve a target air-fuel ratio corresponding to the current operating condition and the target combustion mode is determined. The degree of opening of the supercharger bypass valve and the throttle valve are controlled to achieve the target mass air flow. The amount of residual exhaust gas is manipulated.

  8. The Analysis for Regulation Performance of a Variable Thrust Rocket Engine Control System,

    DTIC Science & Technology

    1982-06-29

    valve: Q,- K .W(t).±K.APN(t) (14) where (15) K-KK (16) ( 17 ) (18) Equations (13) and (14) can be expressed as one equation: . Q(t)-QCt)-Qa(t)-n(" -K:)EQ...Hydraulic pressure when the needle valve starts to rise [g/mm 2 4PH (t)-Hydraulic pressure increment 2 AHHydraulic pressure function area (mm2 B-Needle...rate gain Ke and solenoid valve pressure coefficient K use relatedPH equations (15), (16), ( 17 ) and (18). If we use the parameters of * the exhaust

  9. Proportional mechanical ventilation through PWM driven on/off solenoid valve.

    PubMed

    Sardellitti, I; Cecchini, S; Silvestri, S; Caldwell, D G

    2010-01-01

    Proportional strategies for artificial ventilation are the most recent form of synchronized partial ventilatory assistance and intra-breath control techniques available in clinical practice. Currently, the majority of commercial ventilators allowing proportional ventilation uses proportional valves to generate the flow rate pattern. This paper proposes on-off solenoid valves for proportional ventilation given their small size, low cost and short switching time, useful for supplying high frequency ventilation. A new system based on a novel fast switching driver circuit combined with on/off solenoid valve is developed. The average short response time typical of onoff solenoid valves was further reduced through the driving circuit for the implementation of PWM control. Experimental trials were conducted for identifying the dynamic response of the PWM driven on/off valve and for verifying its effectiveness in generating variable-shaped ventilatory flow rate patterns. The system was able to smoothly follow the reference flow rate patterns also changing in time intervals as short as 20 ms, achieving a flow rate resolution up to 1 L/min and repeatability in the order of 0.5 L/min. Preliminary results showed the feasibility of developing a stand alone portable device able to generate both proportional and high frequency ventilation by only using on-off solenoid valves.

  10. Automated Temperature Control with Adjusting Outlet Valve of Fuel in the Process of Cooking Palm Sugar

    NASA Astrophysics Data System (ADS)

    Aripin, H.; Hiron, Nurul; Priatna, Edvin; Busaeri, Nundang; Andang, Asep; Suhartono; Sabchevski, Svilen

    2018-04-01

    In this paper, a real-time temperature control system for coconut sugar cooking is presented. It is based on a thermocouple temperature sensor. The temperature in the closed evaporator is used as a control variable of the DC servo control system for opening and closing of a valve embedded in a gas burner. The output power level, which is necessary in order to reach the target temperature is controlled by the microcontroller ATMega328P. A circuit module for control of the valve and temperature sensors as well as software for data acquisition have been implemented. The test results show that the system properly stabilizes the temperature in the closed evaporator for coconut sugar cooking in the range from room temperature to 110°C. A set point can be reached and held with an accuracy of ±0.75°C at a temperature of 110°C for 60 minutes.

  11. Diagnostic for two-mode variable valve activation device

    DOEpatents

    Fedewa, Andrew M

    2014-01-07

    A method is provided for diagnosing a multi-mode valve train device which selectively provides high lift and low lift to a combustion valve of an internal combustion engine having a camshaft phaser actuated by an electric motor. The method includes applying a variable electric current to the electric motor to achieve a desired camshaft phaser operational mode and commanding the multi-mode valve train device to a desired valve train device operational mode selected from a high lift mode and a low lift mode. The method also includes monitoring the variable electric current and calculating a first characteristic of the parameter. The method also includes comparing the calculated first characteristic against a predetermined value of the first characteristic measured when the multi-mode valve train device is known to be in the desired valve train device operational mode.

  12. Measurement of inspiratory muscle performance with incremental threshold loading: a comparison of two techniques.

    PubMed Central

    Bardsley, P A; Bentley, S; Hall, H S; Singh, S J; Evans, D H; Morgan, M D

    1993-01-01

    BACKGROUND--Incremental threshold loading (ITL) is a test of inspiratory muscle performance which is usually performed by breathing through a weighted inspiratory plunger, the load on the inspiratory muscles being increased by externally adding weights to the intake valve. This is not a true threshold device and may be inaccurate. This method was compared with a true threshold device consisting of a solenoid valve which only opens to supply air at a predetermined negative mouth pressure. METHODS--Six naive, normal subjects (three men and three women) aged 22-24 years underwent three tests using each system. The inspiratory loads were increased every minute by equivalent amounts, -10 cm H2O with the solenoid valve and by 50 g with the weighted plunger, until the subjects could not inspire or sustain inspiration for a full minute. Six experienced subjects (four men and two women) aged 23-41 years were subsequently randomised to perform ITL with the solenoid valve, twice with the breathing pattern fixed and twice free. RESULTS--The solenoid valve generated a more accurate mouth pressure response and was less variable at higher loads than the weighted plunger. The work performed (expressed as the pressure-time product) was less with the solenoid valve but was more reproducible. ITL with the solenoid valve was not influenced by controlling the breathing pattern of the subjects. CONCLUSIONS--The solenoid valve has several features that make it superior to the weighted plunger as a device for ITL. It generates a more accurate mouth pressure response which is less variable at higher loads. Increases in load are smoother and quicker to introduce. ITL with the solenoid valve is not influenced by varying breathing patterns and does not require any external regulation. PMID:8511732

  13. Measurement of inspiratory muscle performance with incremental threshold loading: a comparison of two techniques.

    PubMed

    Bardsley, P A; Bentley, S; Hall, H S; Singh, S J; Evans, D H; Morgan, M D

    1993-04-01

    Incremental threshold loading (ITL) is a test of inspiratory muscle performance which is usually performed by breathing through a weighted inspiratory plunger, the load on the inspiratory muscles being increased by externally adding weights to the intake valve. This is not a true threshold device and may be inaccurate. This method was compared with a true threshold device consisting of a solenoid valve which only opens to supply air at a predetermined negative mouth pressure. Six naive, normal subjects (three men and three women) aged 22-24 years underwent three tests using each system. The inspiratory loads were increased every minute by equivalent amounts, -10 cm H2O with the solenoid valve and by 50 g with the weighted plunger, until the subjects could not inspire or sustain inspiration for a full minute. Six experienced subjects (four men and two women) aged 23-41 years were subsequently randomised to perform ITL with the solenoid valve, twice with the breathing pattern fixed and twice free. The solenoid valve generated a more accurate mouth pressure response and was less variable at higher loads than the weighted plunger. The work performed (expressed as the pressure-time product) was less with the solenoid valve but was more reproducible. ITL with the solenoid valve was not influenced by controlling the breathing pattern of the subjects. The solenoid valve has several features that make it superior to the weighted plunger as a device for ITL. It generates a more accurate mouth pressure response which is less variable at higher loads. Increases in load are smoother and quicker to introduce. ITL with the solenoid valve is not influenced by varying breathing patterns and does not require any external regulation.

  14. Variable Frequency Diverter Actuation for Flow Control

    NASA Technical Reports Server (NTRS)

    Culley, Dennis E.

    2006-01-01

    The design and development of an actively controlled fluidic actuator for flow control applications is explored. The basic device, with one input and two output channels, takes advantage of the Coanda effect to force a fluid jet to adhere to one of two axi-symmetric surfaces. The resultant flow is bi-stable, producing a constant flow from one output channel, until a disturbance force applied at the control point causes the flow to switch to the alternate output channel. By properly applying active control the output flows can be manipulated to provide a high degree of modulation over a wide and variable range of frequency and duty cycle. In this study the momentary operative force is applied by small, high speed isolation valves of which several different types are examined. The active fluidic diverter actuator is shown to work in several configurations including that in which the operator valves are referenced to atmosphere as well as to a source common with the power stream.

  15. Compressor Modeling for Engine Control and Maintenance

    DTIC Science & Technology

    2011-07-01

    four compressor stages, while the high pressure compressor (HPC) consists of a set of variable pitch inlet guide vanes ( IGVs ) and 12 compressor...bleed valves at stages 5, 14 and 17, along with the variable IGVs and stators within the engine, are used to relieve the pressure and prevent

  16. Automotive gas turbine fuel control

    NASA Technical Reports Server (NTRS)

    Gold, H. (Inventor)

    1978-01-01

    A fuel control system is reported for automotive-type gas turbines and particulary advanced gas turbines utilizing variable geometry components to improve mileage and reduce pollution emission. The fuel control system compensates for fuel density variations, inlet temperature variations, turbine vane actuation, acceleration, and turbine braking. These parameters are utilized to control various orifices, spool valves and pistons.

  17. Hydraulic engine valve actuation system including independent feedback control

    DOEpatents

    Marriott, Craig D

    2013-06-04

    A hydraulic valve actuation assembly may include a housing, a piston, a supply control valve, a closing control valve, and an opening control valve. The housing may define a first fluid chamber, a second fluid chamber, and a third fluid chamber. The piston may be axially secured to an engine valve and located within the first, second and third fluid chambers. The supply control valve may control a hydraulic fluid supply to the piston. The closing control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the second fluid chamber to the supply control valve. The opening control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the supply control valve to the second fluid chamber.

  18. Miniature piezo electric vacuum inlet valve

    DOEpatents

    Keville, Robert F.; Dietrich, Daniel D.

    1998-03-24

    A miniature piezo electric vacuum inlet valve having a fast pulse rate and is battery operated with variable flow capability. The low power (<1.6 watts), high pulse rate (<2 milliseconds), variable flow inlet valve is utilized for mass spectroscopic applications or other applications where pulsed or continuous flow conditions are needed. The inlet valve also has a very minimal dead volume of less than 0.01 std/cc. The valve can utilize, for example, a 12 Vdc input/750 Vdc, 3 mA output power supply compared to conventional piezo electric valves which require preloading of the crystal drive mechanism and 120 Vac, thus the valve of the present invention is smaller by a factor of three.

  19. Criteria for determining the need for surgical treatment of tricuspid regurgitation during mitral valve replacement

    PubMed Central

    2012-01-01

    Background Tricuspid regurgitation (TR) is common in patients with mitral valve disease; however, there are no straightforward, rapidly determinably criteria available for deciding whether TR repair should be performed during mitral valve replacement. The aim of our retrospective study was to identify a simple and fast criterion for determining whether TR repair should be performed in patients undergoing mitral valve replacement. Methods We reviewed the records of patients who underwent mitral valve replacement with or without (control) TR repair (DeVega or Kay procedure) from January 2005 to December 2008. Preoperative and 2-year postoperative echocardiographic measurements included right ventricular and atrial diameter, interventricular septum size, TR severity, ejection fraction, and pulmonary artery pressure. Results A total of 89 patients were included (control, n = 50; DeVega, n = 27; Kay, n = 12). Demographic and clinical characteristics were similar between groups. Cardiac variables were similar between the DeVega and Kay groups. Right atrium and ventricular diameter and ejection fraction were significantly decreased postoperatively both in the control and operation (DeVega + Kay) group (P < 0.05). Pulmonary artery pressure was significantly decreased postoperatively in-operation groups (P < 0.05). Our findings indicate that surgical intervention for TR should be considered during mitral valve replacement if any of the following preoperative criteria are met: right atrial transverse diameter > 57 mm; right ventricular end-diastolic diameter > 55 mm; pulmonary artery pressure > 58 mmHg. Conclusions Our findings suggest echocardiography may be used as a rapid and simple means of determining which patients require TR repair during mitral valve replacement. PMID:22443513

  20. Control Valve Trajectories for SOFC Hybrid System Startup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorrell, Megan; Banta, Larry; Rosen, William

    2012-07-01

    Control and management of cathode airflow in a solid oxide fuel cell gas turbine hybrid power system was analyzed using the Hybrid Performance (HyPer) hardware simulation at the National Energy Technology (NETL), U.S. Department of Energy. This work delves into previously unexplored operating practices for HyPer, via simultaneous manipulation of bypass valves and the electric load on the generator. The work is preparatory to the development of a Multi-Input, Multi-Output (MIMO) controller for HyPer. A factorial design of experiments was conducted to acquire data for 81 different combinations of the manipulated variables, which consisted of three air flow control valvesmore » and the electric load on the turbine generator. From this data the response surface for the cathode airflow with respect to bypass valve positions was analyzed. Of particular interest is the control of airflow through the cathode during system startup and during large load swings. This paper presents an algorithm for controlling air mass flow through the cathode based on a modification of the steepest ascent method.« less

  1. A Process Dynamics and Control Experiment for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Spencer, Jordan L.

    2009-01-01

    This paper describes a process control experiment. The apparatus includes a three-vessel glass flow system with a variable flow configuration, means for feeding dye solution controlled by a stepper-motor driven valve, and a flow spectrophotometer. Students use impulse response data and nonlinear regression to estimate three parameters of a model…

  2. Miniature piezo electric vacuum inlet valve

    DOEpatents

    Keville, R.F.; Dietrich, D.D.

    1998-03-24

    A miniature piezo electric vacuum inlet valve having a fast pulse rate and is battery operated with variable flow capability is disclosed. The low power (<1.6 watts), high pulse rate (<2 milliseconds), variable flow inlet valve is utilized for mass spectroscopic applications or other applications where pulsed or continuous flow conditions are needed. The inlet valve also has a very minimal dead volume of less than 0.01 std/cc. The valve can utilize, for example, a 12 Vdc input/750 Vdc, 3 mA output power supply compared to conventional piezo electric valves which require preloading of the crystal drive mechanism and 120 Vac, thus the valve of the present invention is smaller by a factor of three. 6 figs.

  3. Control approach development for variable recruitment artificial muscles

    NASA Astrophysics Data System (ADS)

    Jenkins, Tyler E.; Chapman, Edward M.; Bryant, Matthew

    2016-04-01

    This study characterizes hybrid control approaches for the variable recruitment of fluidic artificial muscles with double acting (antagonistic) actuation. Fluidic artificial muscle actuators have been explored by researchers due to their natural compliance, high force-to-weight ratio, and low cost of fabrication. Previous studies have attempted to improve system efficiency of the actuators through variable recruitment, i.e. using discrete changes in the number of active actuators. While current variable recruitment research utilizes manual valve switching, this paper details the current development of an online variable recruitment control scheme. By continuously controlling applied pressure and discretely controlling the number of active actuators, operation in the lowest possible recruitment state is ensured and working fluid consumption is minimized. Results provide insight into switching control scheme effects on working fluids, fabrication material choices, actuator modeling, and controller development decisions.

  4. Fuel supply device for supplying fuel to an engine combustor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindsay, M.H.; Kerr, W.B.

    1990-05-29

    This patent describes a variable flow rate fuel supply device for supplying fuel to an engine combustor. It comprises: fuel metering means having a fuel valve means for controlling the flow rate of fuel to the combustor; piston means for dividing a first cooling fluid chamber from a second cooling fluid chamber; coupling means for coupling the piston means to the fuel valve means; and cooling fluid supply means in communication with the first and second cooling fluid chamber for producing a first pressure differential across the piston means for actuating the fuel valve means in a first direction, andmore » for producing a second pressure differential across the piston means for actuating the valve means in a second direction opposite the first direction, to control the flow rate of the fuel through the fuel metering means and into the engine combustor; and means for positioning the fuel metering means within the second cooling air chamber enabling the cooling air supply means to both cool the fuel metering means and control the fuel supply rate of fuel supplied by the fuel metering means to the combustor.« less

  5. Method of controlling a variable geometry type turbocharger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirabayashi, Y.

    1988-08-23

    This patent describes a method of controlling the supercharging pressure of a variable geometry type turbocharger having a bypass, comprising the following steps which are carried out successively: receiving signals from an engine speed sensor and from an engine knocking sensor; receiving a signal from a throttle valve sensor; judging whether or not an engine is being accelerated, and proceeding to step below if the engine is being accelerated and to step below if the engine is not being accelerated, i.e., if the engine is in a constant speed operation; determining a first correction value and proceeding to step below;more » judging whether or not the engine is knocking, and proceeding to step (d) if knocking is occurring and to step (f) below if no knocking is occurring; determining a second correction value and proceeding to step; receiving signals from the engine speed sensor and from an airflow meter which measures the quantity of airflow to be supplied to the engine; calculating an airflow rate per engine revolution; determining a duty valve according to the calculated airflow rate; transmitting the corrected duty value to control means for controlling the geometry of the variable geometry type turbocharger and the opening of bypass of the turbocharger, thereby controlling the supercharging pressure of the turbocharger.« less

  6. Microfluidic valve array control system integrating a fluid demultiplexer circuit

    NASA Astrophysics Data System (ADS)

    Kawai, Kentaro; Arima, Kenta; Morita, Mizuho; Shoji, Shuichi

    2015-06-01

    This paper proposes an efficient control method for the large-scale integration of microvalves in microfluidic systems. The proposed method can control 2n individual microvalves with 2n + 2 control lines (where n is an integer). The on-chip valves are closed by applying pressure to a control line, similar to conventional pneumatic microvalves. Another control line closes gate valves between the control line to the on-chip valves and the on-chip valves themselves, to preserve the state of the on-chip valves. The remaining control lines select an activated gate valve. While the addressed gate valve is selected by the other control lines, the corresponding on-chip valve is actuated by applying input pressure to the control line to the on-chip valves. Using this method would substantially reduce the number of world-to-chip connectors and off-chip valve controllers. Experiments conducted using a fabricated 28 microvalve array device, comprising 256 individual on-chip valves controlled with 18 (2   ×   8 + 2) control lines, yielded switching speeds for the selected on-chip valve under 90 ms.

  7. Advanced Processing and Characterization Technologies. Fabrication and Characterization of Semiconductor Optoelectronic Devices and Integrated Circuits Held in Clearwater, Florida on 8-10 May 1991. American Vacuum Society Series 10

    DTIC Science & Technology

    1992-07-01

    layer at 600°C without growth interruptions. The As and Ga Incorporation In the upper InP layers is apparent. Figure 6 shows X-ray rocking curves (XRCs...vs (cl) with time as the running variable) for two separate layers o AIx Gal -x As on GaAs. The dolled curve shows the trajectory when the control...valve is set to a norminal value and not adjusted. The solid curve shows the trajectory when the control voltage to the TEA valve is set to 15 half the

  8. Cardiac valve calcifications on low-dose unenhanced ungated chest computed tomography: inter-observer and inter-examination reliability, agreement and variability.

    PubMed

    van Hamersvelt, Robbert W; Willemink, Martin J; Takx, Richard A P; Eikendal, Anouk L M; Budde, Ricardo P J; Leiner, Tim; Mol, Christian P; Isgum, Ivana; de Jong, Pim A

    2014-07-01

    To determine inter-observer and inter-examination variability for aortic valve calcification (AVC) and mitral valve and annulus calcification (MC) in low-dose unenhanced ungated lung cancer screening chest computed tomography (CT). We included 578 lung cancer screening trial participants who were examined by CT twice within 3 months to follow indeterminate pulmonary nodules. On these CTs, AVC and MC were measured in cubic millimetres. One hundred CTs were examined by five observers to determine the inter-observer variability. Reliability was assessed by kappa statistics (κ) and intra-class correlation coefficients (ICCs). Variability was expressed as the mean difference ± standard deviation (SD). Inter-examination reliability was excellent for AVC (κ = 0.94, ICC = 0.96) and MC (κ = 0.95, ICC = 0.90). Inter-examination variability was 12.7 ± 118.2 mm(3) for AVC and 31.5 ± 219.2 mm(3) for MC. Inter-observer reliability ranged from κ = 0.68 to κ = 0.92 for AVC and from κ = 0.20 to κ = 0.66 for MC. Inter-observer ICC was 0.94 for AVC and ranged from 0.56 to 0.97 for MC. Inter-observer variability ranged from -30.5 ± 252.0 mm(3) to 84.0 ± 240.5 mm(3) for AVC and from -95.2 ± 210.0 mm(3) to 303.7 ± 501.6 mm(3) for MC. AVC can be quantified with excellent reliability on ungated unenhanced low-dose chest CT, but manual detection of MC can be subject to substantial inter-observer variability. Lung cancer screening CT may be used for detection and quantification of cardiac valve calcifications. • Low-dose unenhanced ungated chest computed tomography can detect cardiac valve calcifications. • However, calcified cardiac valves are not reported by most radiologists. • Inter-observer and inter-examination variability of aortic valve calcifications is sufficient for longitudinal studies. • Volumetric measurement variability of mitral valve and annulus calcifications is substantial.

  9. High speed variable delivery helical screw compressor/expander automotive air conditioning and waste heat energy recovery system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gagnon, J.A.; Schaefer, D.D.; Shaw, D.N.

    1980-09-02

    A compact, helical screw compressor/expander unit is described that is mounted in a vehicle and connected to the vehicle engine driven drive shaft has inlet and outlet ports and a capacity control slide valve and a pressure matching or volume ratio slide valve, respectively, for said ports. A refrigerant loop includes the compressor, a condenser mounted in the path of air flow over the engine and an evaporator mounted in a fresh air/cab return air flow duct for the occupant. Heat pipes thermally connect the cab air flow duct to the engine exhaust system which also bears the vapor boiler.more » Selectively operated damper valves control the fresh air/cab return air for passage selectively over the evaporator coil and the heat pipes as well as the exhaust gas flow over opposite ends of the heat pipes and the vapor boiler.« less

  10. Short-term heart rate variability in dogs with sick sinus syndrome or chronic mitral valve disease as compared to healthy controls.

    PubMed

    Bogucki, Sz; Noszczyk-Nowak, A

    2017-03-28

    Heart rate variability is an established risk factor for mortality in both healthy dogs and animals with heart failure. The aim of this study was to compare short-term heart rate variability (ST-HRV) parameters from 60-min electrocardiograms in dogs with sick sinus syndrome (SSS, n=20) or chronic mitral valve disease (CMVD, n=20) and healthy controls (n=50), and to verify the clinical application of ST-HRV analysis. The study groups differed significantly in terms of both time - and frequency- domain ST-HRV parameters. In the case of dogs with SSS and healthy controls, particularly evident differences pertained to HRV parameters linked directly to the variability of R-R intervals. Lower values of standard deviation of all R-R intervals (SDNN), standard deviation of the averaged R-R intervals for all 5-min segments (SDANN), mean of the standard deviations of all R-R intervals for all 5-min segments (SDNNI) and percentage of successive R-R intervals >50 ms (pNN50) corresponded to a decrease in parasympathetic regulation of heart rate in dogs with CMVD. These findings imply that ST-HRV may be useful for the identification of dogs with SSS and for detection of dysautonomia in animals with CMVD.

  11. System and method for controlling engine knock using electro-hydraulic valve actuation

    DOEpatents

    Brennan, Daniel G

    2013-12-10

    A control system for an engine includes a knock control module and a valve control module. The knock control module adjusts a period that one or more of an intake valve and an exhaust valve of a cylinder are open based on engine knock corresponding to the cylinder. The valve control module, based on the adjusted period, controls the one or more of the intake valve and the exhaust valve using one or more hydraulic actuators.

  12. Self-regulating flow control device

    DOEpatents

    Humphreys, Duane A.

    1984-01-01

    A variable, self-regulating valve having a hydraulic loss coefficient proportional to a positive exponential power of the flow rate. The device includes two objects in a flow channel and structure which assures that the distance between the two objects is an increasing function of the flow rate. The range of spacing between the objects is such that the hydraulic resistance of the valve is an increasing function of the distance between the two objects so that the desired hydraulic loss coefficient as a function of flow rate is obtained without variation in the flow area.

  13. Penetration and Duration of Fuel Sprays from a Pump Injection System

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Marsh, E T

    1931-01-01

    High-speed motion pictures were taken of individual fuel sprays from a pump injection system. The changes in the spray-tip penetration with changes in the pump speed, injection-valve opening and closing pressures, discharge-orifice area, injection-tube length and diameter, and pump throttle setting were measured. In addition, the effects of the variables on the time lag and duration of injection can be controlled by the dimensions of the injection tube, the area of the discharge orifice, and the injection-valve opening and closing pressures.

  14. Rates of fuel discharge as affected by the design of fuel-injection systems for internal-combustion engines

    NASA Technical Reports Server (NTRS)

    Gelalles, A G; Marsh, E T

    1933-01-01

    Using the method of weighing fuel collected in a receiver during a definite interval of the injection period, rates of discharge were determined, and the effects noted, when various changes were made in a fuel-injection system. The injection system consisted primarily of a by-pass controlled fuel pump and an automatic injection valve. The variables of the system studied were the pump speed, pump-throttle setting, discharge-orifice diameter, injection-valve opening and closing pressures, and injection-tube length and diameter.

  15. Advanced diesel engine component development program, tasks 4-14

    NASA Astrophysics Data System (ADS)

    Kaushal, Tony S.; Weber, Karen E.

    1994-11-01

    This report summarizes the Advanced Diesel Engine Component Development (ADECD) Program to develop and demonstrate critical technology needed to advance the heavy-duty low heat rejection engine concept. Major development activities reported are the design, analysis, and fabrication of monolithic ceramic components; vapor phase and solid film lubrication; electrohydraulic valve actuation; and high pressure common rail injection. An advanced single cylinder test bed was fabricated as a laboratory tool in studying these advanced technologies. This test bed simulates the reciprocator for a system having no cooling system, turbo compounding, Rankine bottoming cycle, common rail injection, and variable valve actuation to achieve fuel consumption of 160 g/kW-hr (.26 lb/hp-hr). The advanced concepts were successfully integrated into the test engine. All ceramic components met their functional and reliability requirements. The firedeck, cast-in-place ports, valves, valve guides, piston cap, and piston ring were made from silicon nitride. Breakthroughs required to implement a 'ceramic' engine included the fabrication of air-gap cylinder heads, elimination of compression gaskets, machining of ceramic valve seats within the ceramic firedeck, fabrication of cast-in-place ceramic port liners, implementation of vapor phase lubrication, and elimination of the engine coolant system. Silicon nitride valves were successfully developed to meet several production abuse test requirements and incorporated into the test bed with a ceramic valve guide and solid film lubrication. The ADECD cylinder head features ceramic port shields to increase insulation and exhaust energy recovery. The combustion chamber includes a ceramic firedeck and piston cap. The tribological challenge posed by top ring reversal temperatures of 550 C was met through the development of vapor phase lubrication using tricresyl phosphate at the ring-liner interface. A solenoid-controlled, variable valve actuation system that eliminated the conventional camshaft was demonstrated on the test bed. High pressure fuel injection via a common rail system was also developed to reduce particulate emissions.

  16. Advanced diesel engine component development program, tasks 4-14

    NASA Technical Reports Server (NTRS)

    Kaushal, Tony S.; Weber, Karen E.

    1994-01-01

    This report summarizes the Advanced Diesel Engine Component Development (ADECD) Program to develop and demonstrate critical technology needed to advance the heavy-duty low heat rejection engine concept. Major development activities reported are the design, analysis, and fabrication of monolithic ceramic components; vapor phase and solid film lubrication; electrohydraulic valve actuation; and high pressure common rail injection. An advanced single cylinder test bed was fabricated as a laboratory tool in studying these advanced technologies. This test bed simulates the reciprocator for a system having no cooling system, turbo compounding, Rankine bottoming cycle, common rail injection, and variable valve actuation to achieve fuel consumption of 160 g/kW-hr (.26 lb/hp-hr). The advanced concepts were successfully integrated into the test engine. All ceramic components met their functional and reliability requirements. The firedeck, cast-in-place ports, valves, valve guides, piston cap, and piston ring were made from silicon nitride. Breakthroughs required to implement a 'ceramic' engine included the fabrication of air-gap cylinder heads, elimination of compression gaskets, machining of ceramic valve seats within the ceramic firedeck, fabrication of cast-in-place ceramic port liners, implementation of vapor phase lubrication, and elimination of the engine coolant system. Silicon nitride valves were successfully developed to meet several production abuse test requirements and incorporated into the test bed with a ceramic valve guide and solid film lubrication. The ADECD cylinder head features ceramic port shields to increase insulation and exhaust energy recovery. The combustion chamber includes a ceramic firedeck and piston cap. The tribological challenge posed by top ring reversal temperatures of 550 C was met through the development of vapor phase lubrication using tricresyl phosphate at the ring-liner interface. A solenoid-controlled, variable valve actuation system that eliminated the conventional camshaft was demonstrated on the test bed. High pressure fuel injection via a common rail system was also developed to reduce particulate emissions.

  17. 30. Engine controls and valve gear, looking aft on main ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Engine controls and valve gear, looking aft on main (promenade) deck level. Threaded admission valve lift rods (two at immediate left of chronometer) permit adjustment of valve timing in lower and upper admission valves of cylinder (left rod controls lower valve, right rod upper valve). Valve rods are lifted by jaw-like "wipers" during operation. Exhaust valve lift rods and wipers are located to right of chronometer. Crank at extreme right drives valve wiper shaft when engaged to end of eccentric rod, shown under "Crank Indicator" dial. Pair of handles to immediate left of admission valve rods control condenser water valves; handles to right of exhaust valve rods control feedwater flow to boilers from pumps. Gauges indicate boiler pressure (left) and condenser vacuum (right); "Crank Indicator" on wall aids engineer in keeping engine crank off "dead-center" at stop so that engine may be easily restarted. - Steamboat TICONDEROGA, Shelburne Museum Route 7, Shelburne, Chittenden County, VT

  18. Pressure control valve. [inflating flexible bladders

    NASA Technical Reports Server (NTRS)

    Lambson, K. H. (Inventor)

    1980-01-01

    A control valve is provided which is adapted to be connected between a pressure source, such as a vacuum pump, and a pressure vessel so as to control the pressure in the vessel. The valve comprises a housing having a longitudinal bore which is connected between the pump and vessel, and a transversely movable valve body which controls the air flow through an air inlet in the housing. The valve body includes cylindrical and conical shaped portions which cooperate with reciprocally shaped portions of the housing to provide flow control. A filter in the air inlet removes foreign matter from the air. The bottom end of the valve body is screwed into the valve housing control knob formed integrally with the valve body and controls translation of the valve body, and the opening and closing of the valve.

  19. 77 FR 22637 - Federal Motor Vehicle Safety Standards; Accelerator Control Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-16

    ... severing a conductor at one location. The current language of the test procedure in FMVSS No. 124 is... routinely have variable valve lift and/or timing control. In at least one recent engine design, the level of.... Under the 2002 NPRM, a manufacturer could choose any one of the proposed test procedures as a basis for...

  20. Effect analysis of design variables on the disc in a double-eccentric butterfly valve.

    PubMed

    Kang, Sangmo; Kim, Da-Eun; Kim, Kuk-Kyeom; Kim, Jun-Oh

    2014-01-01

    We have performed a shape optimization of the disc in an industrial double-eccentric butterfly valve using the effect analysis of design variables to enhance the valve performance. For the optimization, we select three performance quantities such as pressure drop, maximum stress, and mass (weight) as the responses and three dimensions regarding the disc shape as the design variables. Subsequently, we compose a layout of orthogonal array (L16) by performing numerical simulations on the flow and structure using a commercial package, ANSYS v13.0, and then make an effect analysis of the design variables on the responses using the design of experiments. Finally, we formulate a multiobjective function consisting of the three responses and then propose an optimal combination of the design variables to maximize the valve performance. Simulation results show that the disc thickness makes the most significant effect on the performance and the optimal design provides better performance than the initial design.

  1. Simulation of proportional control of hydraulic actuator using digital hydraulic valves

    NASA Astrophysics Data System (ADS)

    Raghuraman, D. R. S.; Senthil Kumar, S.; Kalaiarasan, G.

    2017-11-01

    Fluid power systems using oil hydraulics in earth moving and construction equipment have been using proportional and servo control valves for a long time to achieve precise and accurate position control backed by system performance. Such valves are having feedback control in them and exhibit good response, sensitivity and fine control of the actuators. Servo valves and proportional valves are possessing less hysteresis when compared to on-off type valves, but when the servo valve spools get stuck in one position, a high frequency called as jitter is employed to bring the spool back, whereas in on-off type valves it requires lesser technology to retract the spool. Hence on-off type valves are used in a technology known as digital valve technology, which caters to precise control on slow moving loads with fast switching times and with good flow and pressure control mimicking the performance of an equivalent “proportional valve” or “servo valve”.

  2. Magnetorheological valve based actuator for improvement of passively controlled turbocharger system

    NASA Astrophysics Data System (ADS)

    Bahiuddin, I.; Mazlan, S. A.; Imaduddin, F.; Ubaidillah, Ichwan, B.

    2016-03-01

    Variable geometry turbochargers have been widely researched to fulfil the current engine stringent regulations. The passively controlled turbocharger (PCT) concept has been proposed to reduce energy consumption by utilizing the emission energy to move the actuator. However, it only covered a small range operating condition. Therefore, a magnetorheological(MR) Valve device, as typical smart material devices to enhance a passive device, is proposed to improve the PCT. Even though the benefits have been considered for the compactness and easiness to connect to an electrical system, the number of publications regarding the MR application within engine system is hard to be found. Therefore, this paper introduces a design of an MR Valve in a turbocharger. The main challenge is to make sure its capability to produce a sufficient total pressure drop. To overcome the challenge, its material properties, shape and pressure drop calculation has been analyzed to fulfil the requirement. Finally, to get a more understanding of actuator performance, the actuator response was simulated by treating the exhaust gas pressure as an input. It shows that the new MR actuator has a potential dynamic to improve the PCT controllability.

  3. Design and development of a direct injection system for cryogenic engines

    NASA Astrophysics Data System (ADS)

    Mutumba, Angela; Cheeseman, Kevin; Clarke, Henry; Wen, Dongsheng

    2018-04-01

    The cryogenic engine has received increasing attention due to its promising potential as a zero-emission engine. In this study, a new robust liquid nitrogen injection system was commissioned and set up to perform high-pressure injections into an open vessel. The system is used for quasi-steady flow tests used for the characterisation of the direct injection process for cryogenic engines. An electro-hydraulic valve actuator provides intricate control of the valve lift, with a minimum cycle time of 3 ms and a frequency of up to 20 Hz. With additional sub-cooling, liquid phase injections from 14 to 94 bar were achieved. Results showed an increase in the injected mass with the increase in pressure, and decrease in temperature. The injected mass was also observed to increases linearly with the valve lift. Better control of the injection process, minimises the number of variables, providing more comparable and repeatable sets of data. Implications of the results on the engine performance were also discussed.

  4. System and method for controlling hydraulic pressure in electro-hydraulic valve actuation systems

    DOEpatents

    Brennan, Daniel G; Marriott, Craig D; Cowgill, Joel; Wiles, Matthew A; Patton, Kenneth James

    2014-09-23

    A control system for an engine includes a first lift control module and a second lift control module. The first lift control module increases lift of M valves of the engine to a predetermined valve lift during a period before disabling or re-enabling N valves of the engine. The second lift control module decreases the lift of the M valves to a desired valve lift during a period after enabling or re-enabling the N valves of the engine, wherein N and M are integers greater than or equal to one.

  5. High precision high flow range control valve

    DOEpatents

    McCray, J.A.

    1999-07-13

    A fluid control valve is described having a valve housing having first and second valve housing openings for the ingress and egress of fluid through the control valve. Disposed within a void formed by the control valve is a sleeve having at least one sleeve opening to permit the flow of fluid therethrough. A flow restricter travels within the sleeve to progressively block off the sleeve opening and thereby control flow. A fluid passageway is formed between the first valve housing opening and the outer surface of the sleeve. A second fluid passageway is formed between the inside of the sleeve and the second valve housing opening. Neither fluid passageway contains more than one 90 [degree] turn. In the preferred embodiment only one of the two fluid passageways contains a 90[degree] turn. In another embodiment, the control valve housing is bifurcated by a control surface having control surface opening disposed therethrough. A flow restricter is in slidable contact with the control surface to restrict flow of fluid through the control surface openings. 12 figs.

  6. High precision high flow range control valve

    DOEpatents

    McCray, John A.

    1999-01-01

    A fluid control valve is described having a valve housing having first and second valve housing openings for the ingress and egress of fluid through the control valve. Disposed within a void formed by the control valve is a sleeve having at least one sleeve opening to permit the flow of fluid therethrough. A flow restricter travels within the sleeve to progressively block off the sleeve opening and thereby control flow. A fluid passageway is formed between the first valve housing opening and the outer surface of the sleeve. A second fluid passageway is formed between the inside of the sleeve and the second valve housing opening. Neither fluid passageway contains more than one 90.degree. turn. In the preferred embodiment only one of the two fluid passageways contains a 90.degree. turn. In another embodiment, the control valve housing is bifurcated by a control surface having control surface opening disposed therethrough. A flow restricter is in slidable contact with the control surface to restrict flow of fluid through the control surface openings.

  7. Improvement of a Pneumatic Control Valve with Self-Holding Function

    NASA Astrophysics Data System (ADS)

    Dohta, Shujiro; Akagi, Tetsuya; Kobayashi, Wataru; Shimooka, So; Masago, Yusuke

    2017-10-01

    The purpose of this study is to develop a small-sized, lightweight and low-cost control valve with low energy consumption and to apply it to the assistive system. We have developed some control valves; a tiny on/off valve using a vibration motor, and an on/off valve with self-holding function. We have also proposed and tested the digital servo valve with self-holding function using permanent magnets and a small-sized servo motor. In this paper, in order to improve the valve, an analytical model of the digital servo valve is proposed. And the simulated results by using the analytical model and identified parameters were compared with the experimental results. Then, the improved digital servo valve was designed based on the calculated results and tested. As a result, we realized the digital servo valve that can control the flow rate more precisely while maintaining its volume and weight compared with the previous valve. As an application of the improved valve, a position control system of rubber artificial muscle was built and the position control was performed successfully.

  8. Variable cycle engines for advanced supersonic transports

    NASA Technical Reports Server (NTRS)

    Howlett, R. A.; Kozlowski, H.

    1975-01-01

    Variable Cycle Engines being studied for advanced commercial supersonic transports show potential for significant environmental and economic improvements relative to 1st generation SST engines. The two most promising concepts are: a Variable Stream Control Engine and a Variable Cycle Engine with a rear flow-control valve. Each concept utilizes variable components and separate burners to provide independent temperature and velocity control for two coannular flow streams. Unique fuel control techniques are combined with cycle characteristics that provide low fuel consumption, similar to a turbojet engine, for supersonic operation. This is accomplished while retaining the good subsonic performance features of a turbofan engine. A two-stream coannular nozzle shows potential to reduce jet noise to below FAR Part 36 without suppressors. Advanced burner concepts have the potential for significant reductions in exhaust emissions. In total, these unique engine concepts have the potential for significant overall improvements to the environmental and economic characteristics of advanced supersonic transports.

  9. A low power, on demand electrothermal valve for wireless drug delivery applications

    PubMed Central

    Li, Po-Ying; Givrad, Tina K.; Sheybani, Roya; Holschneider, Daniel P.; Maarek, Jean-Michel I.

    2014-01-01

    We present a low power, on demand Parylene MEMS electrothermal valve. A novel Ω-shaped thermal resistive element requires low power (~mW) and enables rapid valve opening (~ms). Using both finite element analysis and valve opening experiments, a robust resistive element design for improved valve opening performance in water was obtained. In addition, a thermistor, as an inrush current limiter, was added into the valve circuit to provide variable current ramping. Wireless activation of the valve using RF inductive power transfer was demonstrated. PMID:20024057

  10. Supercharged two-cycle engines employing novel single element reciprocating shuttle inlet valve mechanisms and with a variable compression ratio

    NASA Technical Reports Server (NTRS)

    Wiesen, Bernard (Inventor)

    2008-01-01

    This invention relates to novel reciprocating shuttle inlet valves, effective with every type of two-cycle engine, from small high-speed single cylinder model engines, to large low-speed multiple cylinder engines, employing spark or compression ignition. Also permitting the elimination of out-of-phase piston arrangements to control scavenging and supercharging of opposed-piston engines. The reciprocating shuttle inlet valve (32) and its operating mechanism (34) is constructed as a single and simple uncomplicated member, in combination with the lost-motion abutments, (46) and (48), formed in a piston skirt, obviating the need for any complex mechanisms or auxiliary drives, unaffected by heat, friction, wear or inertial forces. The reciprocating shuttle inlet valve retains the simplicity and advantages of two-cycle engines, while permitting an increase in volumetric efficiency and performance, thereby increasing the range of usefulness of two-cycle engines into many areas that are now dominated by the four-cycle engine.

  11. FCA Group LLC Request for GHG Credit for Variable Crankcase Suction Valve Technology in Denso AC Compressors

    EPA Pesticide Factsheets

    FCA Group LLC request to the EPA regarding greenhouse (GHG) off-cycle credit for the use of the Denso SAS AC compressor with variable crankcase suction valve technology beginning with the 2019 MY Ram pickup truck.

  12. 14 CFR 23.995 - Fuel valves and controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System... valve rapidly after it has been closed. (c) Each valve and fuel system control must be supported so that... lines connected to the valve. (d) Each valve and fuel system control must be installed so that gravity...

  13. 14 CFR 23.995 - Fuel valves and controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System... valve rapidly after it has been closed. (c) Each valve and fuel system control must be supported so that... lines connected to the valve. (d) Each valve and fuel system control must be installed so that gravity...

  14. 14 CFR 23.995 - Fuel valves and controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System... valve rapidly after it has been closed. (c) Each valve and fuel system control must be supported so that... lines connected to the valve. (d) Each valve and fuel system control must be installed so that gravity...

  15. 14 CFR 23.995 - Fuel valves and controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System... valve rapidly after it has been closed. (c) Each valve and fuel system control must be supported so that... lines connected to the valve. (d) Each valve and fuel system control must be installed so that gravity...

  16. 14 CFR 23.995 - Fuel valves and controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System... valve rapidly after it has been closed. (c) Each valve and fuel system control must be supported so that... lines connected to the valve. (d) Each valve and fuel system control must be installed so that gravity...

  17. Energy conservation with automatic flow control valves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, D.

    Automatic flow control valves are offered in a wide range of sizes starting at 1/2 in. with flow rates of 0.5 gpm and up. They are also provided with materials and end connections to meet virtually any fan-coil system requirement. Among these are copper sweat type valves; ductile iron threaded valves; male/female threaded brass valves; and combination flow control/ball valves with union ends.

  18. Contribution of mitral valve leaflet length and septal wall thickness to outflow tract obstruction in patients with hypertrophic cardiomyopathy.

    PubMed

    Morant, Kareem; Mikami, Yoko; Nevis, Immaculate; McCarty, David; Stirrat, John; Scholl, David; Rajchl, Martin; Giannoccaro, Peter; Kolman, Louis; Heydari, Bobby; Lydell, Carmen; Howarth, Andrew; Grant, Andrew; White, James A

    2017-08-01

    We sought to examine whether elongation of the mitral valve leaflets in patients with hypertrophic cardiomyopathy (HCM) is synergistic to septal wall thickness (SWT) in the development of left ventricular outflow tract obstruction (LVOTO). HCM is a common genetic cardiac disease characterized by asymmetric septal hypertrophy and predisposition towards LVOTO. It has been reported that elongation of the mitral valve leaflets may be a primary phenotypic feature and contribute to LVOTO. However, the relative contribution of this finding versus SWT has not been studied. 152 patients (76 with HCM and 76 non-diseased age, race and BSA-matched controls) and 18 young, healthy volunteers were studied. SWT and the anterior mitral valve leaflet length (AMVLL) were measured using cine MRI. The combined contribution of these variables (SWT × AMVLL) was described as the Septal Anterior Leaflet Product (SALP). Peak LVOT pressure gradient was determined by Doppler interrogation and defined as "obstructive" if ≥ 30 mmHg. Patients with HCM were confirmed to have increased AMVLL compared with controls and volunteers (p < 0.01). Among HCM patients, both SWT and SALP were significantly higher in patients with LVOTO (N = 17) versus without. SALP showed modest improvement in predictive accuracy for LVOTO (AUC = 0.81) among the HCM population versus SWT alone (AUC = 0.77). However, in isolated patients this variable identified patients with LVOTO despite modest SWT. Elongation of the AMVLL is a primary phenotypic feature of HCM. While incremental contributions to LVOTO appear modest at a population level, specific patients may have dominant contribution to LVOTO. The combined marker of SALP allows for maintained identification of such patients despite modest increases in SWT.

  19. Conical Seat Shut-Off Valve

    NASA Technical Reports Server (NTRS)

    Farner, Bruce

    2013-01-01

    A moveable valve for controlling flow of a pressurized working fluid was designed. This valve consists of a hollow, moveable floating piston pressed against a stationary solid seat, and can use the working fluid to seal the valve. This open/closed, novel valve is able to use metal-to-metal seats, without requiring seat sliding action; therefore there are no associated damaging effects. During use, existing standard high-pressure ball valve seats tend to become damaged during rotation of the ball. Additionally, forces acting on the ball and stem create large amounts of friction. The combination of these effects can lead to system failure. In an attempt to reduce damaging effects and seat failures, soft seats in the ball valve have been eliminated; however, the sliding action of the ball across the highly loaded seat still tends to scratch the seat, causing failure. Also, in order to operate, ball valves require the use of large actuators. Positioning the metal-to-metal seats requires more loading, which tends to increase the size of the required actuator, and can also lead to other failures in other areas such as the stem and bearing mechanisms, thus increasing cost and maintenance. This novel non-sliding seat surface valve allows metal-to-metal seats without the damaging effects that can lead to failure, and enables large seating forces without damaging the valve. Additionally, this valve design, even when used with large, high-pressure applications, does not require large conventional valve actuators and the valve stem itself is eliminated. Actuation is achieved with the use of a small, simple solenoid valve. This design also eliminates the need for many seals used with existing ball valve and globe valve designs, which commonly cause failure, too. This, coupled with the elimination of the valve stem and conventional valve actuator, improves valve reliability and seat life. Other mechanical liftoff seats have been designed; however, they have only resulted in increased cost, and incurred other reliability issues. With this novel design, the seat is lifted by simply removing the working fluid pressure that presses it against the seat and no external force is required. By eliminating variables associated with existing ball and globe configurations that can have damaging effects upon a valve, this novel design reduces downtime in rocket engine test schedules and maintenance costs.

  20. Light valve based on nonimaging optics with potential application in cold climate greenhouses

    NASA Astrophysics Data System (ADS)

    Valerio, Angel A.; Mossman, Michele A.; Whitehead, Lorne A.

    2014-09-01

    We have evaluated a new concept for a variable light valve and thermal insulation system based on nonimaging optics. The system incorporates compound parabolic concentrators and can readily be switched between an open highly light transmissive state and a closed highly thermally insulating state. This variable light valve makes the transition between high thermal insulation and efficient light transmittance practical and may be useful in plant growth environments to provide both adequate sunlight illumination and thermal insulation as needed. We have measured light transmittance values exceeding 80% for the light valve design and achieved thermal insulation values substantially exceeding those of traditional energy efficient windows. The light valve system presented in this paper represents a potential solution for greenhouse food production in locations where greenhouses are not feasible economically due to high heating cost.

  1. Variable reluctance proximity sensors for cryogenic valve position indication

    NASA Technical Reports Server (NTRS)

    Cloyd, R. A.

    1982-01-01

    A test was conducted to determine the performance of a variable reluctance proximity sensor system when installed in a space shuttle external tank vent/relief valve. The sensors were used as position indicators. The valve and sensors were cycled through a series of thermal transients; while the valve was being opened and closed pneumatically, the sensor's performance was being monitored. During these thermal transients, the vent valve was cooled ten times by liquid nitrogen and two times by liquid hydrogen. It was concluded that the sensors were acceptable replacements for the existing mechanical switches. However, the sensors need a mechanical override for the target similar to what is presently used with the mechanical switches. This override could insure contact between sensor and target and eliminate any problems of actuation gap growth caused by thermal gradients.

  2. Bio-inspired online variable recruitment control of fluidic artificial muscles

    NASA Astrophysics Data System (ADS)

    Jenkins, Tyler E.; Chapman, Edward M.; Bryant, Matthew

    2016-12-01

    This paper details the creation of a hybrid variable recruitment control scheme for fluidic artificial muscle (FAM) actuators with an emphasis on maximizing system efficiency and switching control performance. Variable recruitment is the process of altering a system’s active number of actuators, allowing operation in distinct force regimes. Previously, FAM variable recruitment was only quantified with offline, manual valve switching; this study addresses the creation and characterization of novel, on-line FAM switching control algorithms. The bio-inspired algorithms are implemented in conjunction with a PID and model-based controller, and applied to a simulated plant model. Variable recruitment transition effects and chatter rejection are explored via a sensitivity analysis, allowing a system designer to weigh tradeoffs in actuator modeling, algorithm choice, and necessary hardware. Variable recruitment is further developed through simulation of a robotic arm tracking a variety of spline position inputs, requiring several levels of actuator recruitment. Switching controller performance is quantified and compared with baseline systems lacking variable recruitment. The work extends current variable recruitment knowledge by creating novel online variable recruitment control schemes, and exploring how online actuator recruitment affects system efficiency and control performance. Key topics associated with implementing a variable recruitment scheme, including the effects of modeling inaccuracies, hardware considerations, and switching transition concerns are also addressed.

  3. Redo aortic valve surgery versus transcatheter valve-in-valve implantation for failing surgical bioprosthetic valves: consecutive patients in a single-center setting

    PubMed Central

    Wottke, Michael; Deutsch, Marcus-André; Krane, Markus; Piazza, Nicolo; Lange, Ruediger; Bleiziffer, Sabine

    2015-01-01

    Background Due to a considerable rise in bioprosthetic as opposed to mechanical valve implantations, an increase of patients presenting with failing bioprosthetic surgical valves in need of a reoperation is to be expected. Redo surgery may pose a high-risk procedure. Transcatheter aortic valve-in-valve implantation is an innovative, less-invasive treatment alternative for these patients. However, a comprehensive evaluation of the outcome of consecutive patients after a valve-in-valve TAVI [transcatheter aortic valve-in-surgical aortic valve (TAV-in-SAV)] as compared to a standard reoperation [surgical aortic valve redo-operation (SAV-in-SAV)] has not yet been performed. The goal of this study was to compare postoperative outcomes after TAV-in-SAV and SAV-in-SAV in a single center setting. Methods All SAV-in-SAV and TAV-in-SAV patients from January 2001 to October 2014 were retrospectively reviewed. Patients with previous mechanical or transcatheter valves, active endocarditis and concomitant cardiac procedures were excluded. Patient characteristics, preoperative data, post-procedural complications, and 30-day mortality were collected from a designated database. Mean values ± SD were calculated for all continuous variables. Counts and percentages were calculated for categorical variables. The Chi-square and Fisher exact tests were used to compare categorical variables. Continuous variables were compared using the t-test for independent samples. A 2-sided P value <0.05 was considered statistically significant. Results A total of 102 patients fulfilled the inclusion criteria, 50 patients (49%) underwent a transcatheter valve-in-valve procedure, while 52 patients (51%) underwent redo-surgery. Patients in the TAV-in-SAV group were significantly older, had a higher mean logistic EuroSCORE and exhibited a lower mean left ventricular ejection fraction than patients in the SAV-in-SAV group (78.1±6.7 vs. 66.2±13.1, P<0.001; 27.4±18.7 vs. 14.4±10, P<0.001; and 49.8±13.1 vs. 56.7±15.8, P=0.019 respectively). Postoperative pacemaker implantation and chest tube output were higher in the SAV-in-SAV group compared to the TAV-in-SAV group [11 (21%) vs. 3 (6%), P=0.042 and 0.9±1.0 vs. 0.6±0.9, P=0.047, respectively]. There was no significant difference in myocardial infarction, stroke or dialysis postoperatively. Thirty-day mortality was not significantly different between the two groups [TAV-in-SAV2 (4%) vs. SAV-in-SAV0, P=0.238]. Kaplan-Meier (KM) 1-year survival was significantly lower in the TAV-in-SAV group than in the SAV-in-SAV group (83% vs. 96%, P<0.001). Conclusions The present investigation shows that both groups, irrespective of different baseline comorbidities, show very good early clinical outcomes. While redo surgery is still the standard of care, a subgroup of patients may profit from the transcatheter valve-in-valve procedure. PMID:26543594

  4. FTO Is Associated with Aortic Valve Stenosis in a Gender Specific Manner of Heterozygote Advantage: A Population-Based Case-Control Study.

    PubMed

    Thron, Cindy; Akhyari, Payam; Godehardt, Erhard; Lichtenberg, Artur; Rüther, Ulrich; Seehaus, Stefanie

    2015-01-01

    Single nucleotide polymorphisms (SNPs) within the Fat mass and obesity associated (FTO) gene have been linked with increased body weight. However, the data on an association of FTO with cardiovascular diseases remains conflicting. Therefore, we ascertained whether FTO is associated with aortic valve stenosis (AVS), one of the most frequent cardiovascular diseases in the Western world. In this population-based case-control study the FTO SNP rs9939609 was analyzed in 300 German patients with AVS and 429 German controls of the KORA survey S4, representing a random population. Blood samples were collected prior to aortic valve replacement in AVS cases and FTO rs9939609 was genotyped via ARMS-PCR. Genotype frequencies differed significantly between AVS cases and KORA controls (p = 0.004). Separate gender-analyses uncovered an association of FTO with AVS exclusively in males; homozygote carriers for the risk-allele (A) had a higher risk to develop AVS (p = 0.017, odds ratio (OR) 1.727; 95% confidence interval (CI) 1.087-2.747, recessive model), whereas heterozygote carriers for the risk-allele showed a lower risk (p = 0.002, OR 0.565, 95% CI 0.384-0.828, overdominant model). After adjustment for multiple co-variables, the odds ratios of heterozygotes remained significant for an association with AVS (p = 0.008, OR 0.565, 95% CI 0.369-0.861). This study revealed an association of FTO rs9939609 with AVS. Furthermore, this association was restricted to men, with heterozygotes having a significantly lower chance to develop AVS. Lastly, the association between FTO and AVS was independent of BMI and other variables such as diabetes mellitus.

  5. FTO Is Associated with Aortic Valve Stenosis in a Gender Specific Manner of Heterozygote Advantage: A Population-Based Case-Control Study

    PubMed Central

    Thron, Cindy; Akhyari, Payam; Godehardt, Erhard; Lichtenberg, Artur; Rüther, Ulrich; Seehaus, Stefanie

    2015-01-01

    Background Single nucleotide polymorphisms (SNPs) within the Fat mass and obesity associated (FTO) gene have been linked with increased body weight. However, the data on an association of FTO with cardiovascular diseases remains conflicting. Therefore, we ascertained whether FTO is associated with aortic valve stenosis (AVS), one of the most frequent cardiovascular diseases in the Western world. Methods and Findings In this population-based case-control study the FTO SNP rs9939609 was analyzed in 300 German patients with AVS and 429 German controls of the KORA survey S4, representing a random population. Blood samples were collected prior to aortic valve replacement in AVS cases and FTO rs9939609 was genotyped via ARMS-PCR. Genotype frequencies differed significantly between AVS cases and KORA controls (p = 0.004). Separate gender-analyses uncovered an association of FTO with AVS exclusively in males; homozygote carriers for the risk-allele (A) had a higher risk to develop AVS (p = 0.017, odds ratio (OR) 1.727; 95% confidence interval (CI) 1.087–2.747, recessive model), whereas heterozygote carriers for the risk-allele showed a lower risk (p = 0.002, OR 0.565, 95% CI 0.384–0.828, overdominant model). After adjustment for multiple co-variables, the odds ratios of heterozygotes remained significant for an association with AVS (p = 0.008, OR 0.565, 95% CI 0.369–0.861). Conclusions This study revealed an association of FTO rs9939609 with AVS. Furthermore, this association was restricted to men, with heterozygotes having a significantly lower chance to develop AVS. Lastly, the association between FTO and AVS was independent of BMI and other variables such as diabetes mellitus. PMID:26431034

  6. Experimental verification of the flow characteristics of an active controlled microfluidic valve with annular boundary

    NASA Astrophysics Data System (ADS)

    Pan, Chun-Peng; Wang, Dai-Hua

    2014-03-01

    The principle and structural configuration of an active controlled microfluidic valve with annular boundary is presented in this paper. The active controlled flowrate model of the active controlled microfluidic valve with annular boundary is established. The prototypes of the active controlled microfluidic valves with annular boundaries with three different combinations of the inner and outer radii are fabricated and tested on the established experimental setup. The experimental results show that: (1) The active controlled microfluidic valve with annular boundary possesses the on/off switching and the continuous control capability of the fluid with simple structure and easy fabrication processing; (2) When the inner and outer diameters of the annular boundary are 1.5 mm and 3.5 mm, respectively, the maximum flowrate of the valve is 0.14 ml/s when the differential pressure of the inlet and outlet of the valve is 1000 Pa and the voltage applied to circular piezoelectric unimorph actuator is 100 V; (3) The established active controlled flowrate model can accurately predict the controlled flowrate of the active controlled microfluidic valves with the maximum relative error of 6.7%. The results presented in this paper lay the foundation for designing and developing the active controlled microfluidic valves with annular boundary driven by circular piezoelectric unimorph actuators.

  7. Internal Acoustics of a Pintle Valve with Supercritical Helium Flow

    NASA Technical Reports Server (NTRS)

    Fishbach, Sean R.; Davis, R. Benjamin

    2010-01-01

    Large amplitude flow unsteadiness is a common phenomenon within the high flow rate ducts and valves associated with propulsion systems. Boundary layer noise, shear layers and vortex shedding are a few of the many sources of flow oscillations. The presence of lightly damped acoustic modes can organize and amplify these sources of flow perturbation, causing undesirable loading of internal parts. The present study investigates the self-induced acoustic environment within a pintle valve subject to high Reynolds Number flow of helium gas. Experiments were conducted to measure the internal pressure oscillations of the Ares I Launch Abort System (LAS) Attitude Control Motor (ACM) valve. The AGM consists of a solid propellant gas generator with eight pintle valves attached to the aft end. The pintle valve is designed to deliver variable upstream conditions to an attache( converging diverging nozzle. In order to investigate the full range of operating conditions 28 separate tests were conducted with varying pintle position and upstream pressure. Helium gas was utilized in order to closely mimic the speed of sound of the gas generator exhaust, minimizing required scaling during data analysis. The recordec pressure measurements were interrogated to multiple ends. The development of root mean square (RMS) value! versus Reynolds Number and Pintle position are important to creating bounding unsteady load curves for valve internal parts. Spectral analysis was also performed, helping to identify power spectral densities (PSD) of acoustic natural frequencies and boundary layer noise. An interesting and unexpected result was the identification of an acoustic mode within the valve which does not respond until the valve was over 60% open. Further, the response amplitude around this mode can be as large or larger than those associated with lower frequency modes.

  8. Principle design and actuation of a dual chamber electromagnetic micropump with coaxial cantilever valves.

    PubMed

    Zordan, Enrico; Amirouche, Farid; Zhou, Yu

    2010-02-01

    This paper deals with the design and characterization of an electromagnetic actuation micropump with superimposed dual chambers. An integral part of microfluidic system includes micropumps which have become a critical design focus and have the potential to alter treatment and drug delivery requirements to patients. In this paper, conceptual design of variable geometrical nozzle/diffuser elements, coaxial cantilever valve, is proposed. It takes advantages of cantilever fluctuating valves with preset geometry to optimize and control fluid flow. The integration of this conceptual valve into a dual chamber micropump has increased the flow rate when compared to a single chamber micropump. This technique also allows for the fluid flow to be actively controlled by adjusting the movement of the intermediate membrane and the cantilever valves due to their fast response and large deflection properties when subjected to an electromagnetic field. To ensure reliability and performance of both the membrane and electromagnets, finite element method was used to perform the stress-strain analysis and optimize the membrane structure and electromagnet configuration. The frequency-dependent flow rates and backpressure are investigated for different frequencies by varying the applied currents from 1A to 1.75A. The current micropump design exhibits a backpressure of 58 mmH(2)O and has a water flow rate that reaches maximum at 1.985 ml/s under a 1.75A current with a resonance frequency of 45 Hz. This proposed micropump while at its initial prototype stage can satisfy the requirements of wide flow rate drug delivery applications. Its controllability and process design are attractive for high volume fabrication and low cost.

  9. Variable cooling circuit for thermoelectric generator and engine and method of control

    DOEpatents

    Prior, Gregory P

    2012-10-30

    An apparatus is provided that includes an engine, an exhaust system, and a thermoelectric generator (TEG) operatively connected to the exhaust system and configured to allow exhaust gas flow therethrough. A first radiator is operatively connected to the engine. An openable and closable engine valve is configured to open to permit coolant to circulate through the engine and the first radiator when coolant temperature is greater than a predetermined minimum coolant temperature. A first and a second valve are controllable to route cooling fluid from the TEG to the engine through coolant passages under a first set of operating conditions to establish a first cooling circuit, and from the TEG to a second radiator through at least some other coolant passages under a second set of operating conditions to establish a second cooling circuit. A method of controlling a cooling circuit is also provided.

  10. Exhaust gas bypass valve control for thermoelectric generator

    DOEpatents

    Reynolds, Michael G; Yang, Jihui; Meisner, Greogry P.; Stabler, Francis R.; De Bock, Hendrik Pieter Jacobus; Anderson, Todd Alan

    2012-09-04

    A method of controlling engine exhaust flow through at least one of an exhaust bypass and a thermoelectric device via a bypass valve is provided. The method includes: determining a mass flow of exhaust exiting an engine; determining a desired exhaust pressure based on the mass flow of exhaust; comparing the desired exhaust pressure to a determined exhaust pressure; and determining a bypass valve control value based on the comparing, wherein the bypass valve control value is used to control the bypass valve.

  11. Valve for fluid control

    DOEpatents

    Oborny, Michael C.; Paul, Phillip H.; Hencken, Kenneth R.; Frye-Mason, Gregory C.; Manginell, Ronald P.

    2001-01-01

    A valve for controlling fluid flows. This valve, which includes both an actuation device and a valve body provides: the ability to incorporate both the actuation device and valve into a unitary structure that can be placed onto a microchip, the ability to generate higher actuation pressures and thus control higher fluid pressures than conventional microvalves, and a device that draws only microwatts of power. An electrokinetic pump that converts electric potential to hydraulic force is used to operate, or actuate, the valve.

  12. Analysis of fatigue reliability for high temperature and high pressure multi-stage decompression control valve

    NASA Astrophysics Data System (ADS)

    Yu, Long; Xu, Juanjuan; Zhang, Lifang; Xu, Xiaogang

    2018-03-01

    Based on stress-strength interference theory to establish the reliability mathematical model for high temperature and high pressure multi-stage decompression control valve (HMDCV), and introduced to the temperature correction coefficient for revising material fatigue limit at high temperature. Reliability of key dangerous components and fatigue sensitivity curve of each component are calculated and analyzed by the means, which are analyzed the fatigue life of control valve and combined with reliability theory of control valve model. The impact proportion of each component on the control valve system fatigue failure was obtained. The results is shown that temperature correction factor makes the theoretical calculations of reliability more accurate, prediction life expectancy of main pressure parts accords with the technical requirements, and valve body and the sleeve have obvious influence on control system reliability, the stress concentration in key part of control valve can be reduced in the design process by improving structure.

  13. Self-contained cryogenic gas sampling apparatus and method

    DOEpatents

    McManus, G.J.; Motes, B.G.; Bird, S.K.; Kotter, D.K.

    1996-03-26

    Apparatus for obtaining a whole gas sample, is composed of: a sample vessel having an inlet for receiving a gas sample; a controllable valve mounted for controllably opening and closing the inlet; a valve control coupled to the valve for opening and closing the valve at selected times; a portable power source connected for supplying operating power to the valve control; and a cryogenic coolant in thermal communication with the vessel for cooling the interior of the vessel to cryogenic temperatures. A method is described for obtaining an air sample using the apparatus described above, by: placing the apparatus at a location at which the sample is to be obtained; operating the valve control to open the valve at a selected time and close the valve at a selected subsequent time; and between the selected times maintaining the vessel at a cryogenic temperature by heat exchange with the coolant. 3 figs.

  14. Self-contained cryogenic gas sampling apparatus and method

    DOEpatents

    McManus, Gary J.; Motes, Billy G.; Bird, Susan K.; Kotter, Dale K.

    1996-01-01

    Apparatus for obtaining a whole gas sample, composed of: a sample vessel having an inlet for receiving a gas sample; a controllable valve mounted for controllably opening and closing the inlet; a valve control coupled to the valve for opening and closing the valve at selected times; a portable power source connected for supplying operating power to the valve control; and a cryogenic coolant in thermal communication with the vessel for cooling the interior of the vessel to cryogenic temperatures. A method of obtaining an air sample using the apparatus described above, by: placing the apparatus at a location at which the sample is to be obtained; operating the valve control to open the valve at a selected time and close the valve at a selected subsequent time; and between the selected times maintaining the vessel at a cryogenic temperature by heat exchange with the coolant.

  15. Scissor thrust valve actuator

    DOEpatents

    DeWall, Kevin G.; Watkins, John C; Nitzel, Michael E.

    2006-08-29

    Apparatus for actuating a valve includes a support frame and at least one valve driving linkage arm, one end of which is rotatably connected to a valve stem of the valve and the other end of which is rotatably connected to a screw block. A motor connected to the frame is operatively connected to a motor driven shaft which is in threaded screw driving relationship with the screw block. The motor rotates the motor driven shaft which drives translational movement of the screw block which drives rotatable movement of the valve driving linkage arm which drives translational movement of the valve stem. The valve actuator may further include a sensory control element disposed in operative relationship with the valve stem, the sensory control element being adapted to provide control over the position of the valve stem by at least sensing the travel and/or position of the valve stem.

  16. Method, apparatus and system for controlling fluid flow

    DOEpatents

    McMurtrey, Ryan D.; Ginosar, Daniel M.; Burch, Joesph V.

    2007-10-30

    A system, apparatus and method of controlling the flow of a fluid are provided. In accordance with one embodiment of the present invention, a flow control device includes a valve having a flow path defined therethrough and a valve seat in communication with the flow path with a valve stem disposed in the valve seat. The valve stem and valve seat are cooperatively configured to cause mutual relative linear displacement thereof in response to rotation of the valve stem. A gear member is coupled with the rotary stem and a linear positioning member includes a portion which complementarily engages the gear member. Upon displacement of the linear positioning member along a first axis, the gear member and rotary valve stem are rotated about a second axis and the valve stem and valve seat are mutually linearly displaced to alter the flow of fluid through the valve.

  17. Dynamic Feed Control For Injection Molding

    DOEpatents

    Kazmer, David O.

    1996-09-17

    The invention provides methods and apparatus in which mold material flows through a gate into a mold cavity that defines the shape of a desired part. An adjustable valve is provided that is operable to change dynamically the effective size of the gate to control the flow of mold material through the gate. The valve is adjustable while the mold material is flowing through the gate into the mold cavity. A sensor is provided for sensing a process condition while the part is being molded. During molding, the valve is adjusted based at least in part on information from the sensor. In the preferred embodiment, the adjustable valve is controlled by a digital computer, which includes circuitry for acquiring data from the sensor, processing circuitry for computing a desired position of the valve based on the data from the sensor and a control data file containing target process conditions, and control circuitry for generating signals to control a valve driver to adjust the position of the valve. More complex embodiments include a plurality of gates, sensors, and controllable valves. Each valve is individually controllable so that process conditions corresponding to each gate can be adjusted independently. This allows for great flexibility in the control of injection molding to produce complex, high-quality parts.

  18. Monovalve with integrated fuel injector and port control valve, and engine using same

    DOEpatents

    Milam, David M.

    2001-11-06

    An engine includes an engine casing that defines a hollow piston cavity separated from an exhaust passage and an intake passage by a valve seat. A gas exchange valve member is positioned adjacent the valve seat and is moveable between an open position and a closed position. The gas exchange valve member also defines an opening that opens into the hollow piston cavity. A needle valve member is positioned in the gas exchange valve member adjacent a nozzle outlet and is moveable between an inject position and a blocked position. A port control valve member, which has a hydraulic surface, is mounted around the gas exchange valve member and moveable between an intake position and an exhaust position. A pilot valve is moveable between a first position at which the port control hydraulic surface is exposed to a source of high pressure fluid, and a second position at which the port control hydraulic surface is exposed to a source of low pressure fluid.

  19. Fluid dynamics model of mitral valve flow: description with in vitro validation.

    PubMed

    Thomas, J D; Weyman, A E

    1989-01-01

    A lumped variable fluid dynamics model of mitral valve blood flow is described that is applicable to both Doppler echocardiography and invasive hemodynamic measurement. Given left atrial and ventricular compliance, initial pressures and mitral valve impedance, the model predicts the time course of mitral flow and atrial and ventricular pressure. The predictions of this mathematic formulation have been tested in an in vitro analog of the left heart in which mitral valve area and atrial and ventricular compliance can be accurately controlled. For the situation of constant chamber compliance, transmitral gradient is predicted to decay as a parabolic curve, and this has been confirmed in the in vitro model with r greater than 0.99 in all cases for a range of orifice area from 0.3 to 3.0 cm2, initial pressure gradient from 2.4 to 14.2 mm Hg and net chamber compliance from 16 to 29 cc/mm Hg. This mathematic formulation of transmitral flow should help to unify the Doppler echocardiographic and catheterization assessment of mitral stenosis and left ventricular diastolic dysfunction.

  20. Fluid valve with wide temperature range

    NASA Technical Reports Server (NTRS)

    Kast, Howard Berdolt (Inventor)

    1976-01-01

    A fluid valve suitable for either metering or pressure regulating fluids at various temperatures is provided for a fuel system as may be utilized in an aircraft gas turbine engine. The valve includes a ceramic or carbon pad which cooperates with a window in a valve plate to provide a variable area orifice which remains operational during large and sometimes rapid variations in temperature incurred from the use of different fuels.

  1. Are anticoagulant independent mechanical valves within reach-fast prototype fabrication and in vitro testing of innovative bi-leaflet valve models.

    PubMed

    Scotten, Lawrence N; Siegel, Rolland

    2015-08-01

    Exploration for causes of prosthetic valve thrombogenicity has frequently focused on forward or post-closure flow detail. In prior laboratory studies, we uncovered high amplitude flow velocities of short duration close to valve closure implying potential for substantial shear stress with subsequent initiation of blood coagulation pathways. This may be relevant to widely accepted clinical disparity between mechanical and tissue valves vis-à-vis thrombogenicity. With a series of prototype bi-leaflet mechanical valves, we attempt reduction of closure related velocities with the objective of identifying a prototype valve with thrombogenic potential similar to our tissue valve control. This iterative design approach may find application in preclinical assessment of valves for anticoagulation independence. Tested valves included: prototype mechanical bi-leaflet BVs (n=56), controls (n=2) and patented early prototype mechanicals (n=2) from other investigators. Pulsatile and quasi-steady flow systems were used for testing. Projected dynamic valve area (PDVA) was measured using previously described novel technology. Flow velocity over the open and closing periods was determined by volumetric flow rate/PDVA. For the closed valve interval, use was made of data obtained from quasi-steady back pressure/flow tests. Performance was ranked by a proposed thrombogenicity potential index (TPI) relative to tissue and mechanical control valves. Optimization of the prototype valve designs lead to a 3-D printed model (BV3D). For the mitral/aortic site, BV3D has lower TPI (1.10/1.47) relative to the control mechanical valve (3.44/3.93) and similar to the control tissue valve (ideal TPI ≤1.0). Using unique technology, rapid prototyping and thrombogenicity ranking, optimization of experimental valves for reduced thrombogenic potential was expedited and simplified. Innovative mechanical valve configurations were identified that merit consideration for further development which may bring the anti-coagulation independent mechanical valve within reach.

  2. Are anticoagulant independent mechanical valves within reach—fast prototype fabrication and in vitro testing of innovative bi-leaflet valve models

    PubMed Central

    Siegel, Rolland

    2015-01-01

    Background Exploration for causes of prosthetic valve thrombogenicity has frequently focused on forward or post-closure flow detail. In prior laboratory studies, we uncovered high amplitude flow velocities of short duration close to valve closure implying potential for substantial shear stress with subsequent initiation of blood coagulation pathways. This may be relevant to widely accepted clinical disparity between mechanical and tissue valves vis-à-vis thrombogenicity. With a series of prototype bi-leaflet mechanical valves, we attempt reduction of closure related velocities with the objective of identifying a prototype valve with thrombogenic potential similar to our tissue valve control. This iterative design approach may find application in preclinical assessment of valves for anticoagulation independence. Methods Tested valves included: prototype mechanical bi-leaflet BVs (n=56), controls (n=2) and patented early prototype mechanicals (n=2) from other investigators. Pulsatile and quasi-steady flow systems were used for testing. Projected dynamic valve area (PDVA) was measured using previously described novel technology. Flow velocity over the open and closing periods was determined by volumetric flow rate/PDVA. For the closed valve interval, use was made of data obtained from quasi-steady back pressure/flow tests. Performance was ranked by a proposed thrombogenicity potential index (TPI) relative to tissue and mechanical control valves. Results Optimization of the prototype valve designs lead to a 3-D printed model (BV3D). For the mitral/aortic site, BV3D has lower TPI (1.10/1.47) relative to the control mechanical valve (3.44/3.93) and similar to the control tissue valve (ideal TPI ≤1.0). Conclusions Using unique technology, rapid prototyping and thrombogenicity ranking, optimization of experimental valves for reduced thrombogenic potential was expedited and simplified. Innovative mechanical valve configurations were identified that merit consideration for further development which may bring the anti-coagulation independent mechanical valve within reach. PMID:26417581

  3. Fuel control for gas turbine with continuous pilot flame

    DOEpatents

    Swick, Robert M.

    1983-01-01

    An improved fuel control for a gas turbine engine having a continuous pilot flame and a fuel distribution system including a pump drawing fuel from a source and supplying a line to the main fuel nozzle of the engine, the improvement being a control loop between the pump outlet and the pump inlet to bypass fuel, an electronically controlled throttle valve to restrict flow in the control loop when main nozzle demand exists and to permit substantially unrestricted flow without main nozzle demand, a minimum flow valve in the control loop downstream of the throttle valve to maintain a minimum pressure in the loop ahead of the flow valve, a branch tube from the pilot flame nozzle to the control loop between the throttle valve and the minimum flow valve, an orifice in the branch tube, and a feedback tube from the branch tube downstream of the orifice to the minimum flow valve, the minimum flow valve being operative to maintain a substantially constant pressure differential across the orifice to maintain constant fuel flow to the pilot flame nozzle.

  4. Mesofluidic two stage digital valve

    DOEpatents

    Jansen, John F; Love, Lonnie J; Lind, Randall F; Richardson, Bradley S

    2013-12-31

    A mesofluidic scale digital valve system includes a first mesofluidic scale valve having a valve body including a bore, wherein the valve body is configured to cooperate with a solenoid disposed substantially adjacent to the valve body to translate a poppet carried within the bore. The mesofluidic scale digital valve system also includes a second mesofluidic scale valve disposed substantially perpendicular to the first mesofluidic scale valve. The mesofluidic scale digital valve system further includes a control element in communication with the solenoid, wherein the control element is configured to maintain the solenoid in an energized state for a fixed period of time to provide a desired flow rate through an orifice of the second mesofluidic valve.

  5. Overflow control valve

    DOEpatents

    Hundal, Rolv; Kessinger, Boyd A.; Parlak, Edward A.

    1984-07-24

    An overflow control valve for use in a liquid sodium coolant pump tank which valve can be extended to create a seal with the pump tank wall or retracted to break the seal thereby accommodating valve removal. An actuating shaft which controls valve disc position also has cams which bear on roller surfaces to force retraction of a sliding cylinder against spring tension to retract the cylinder from sealing contact with the pump tank.

  6. Use of computer modeling to investigate a dynamic interaction problem in the Skylab TACS quad-valve package

    NASA Technical Reports Server (NTRS)

    Hesser, R. J.; Gershman, R.

    1975-01-01

    A valve opening-response problem encountered during development of a control valve for the Skylab thruster attitude control system (TACS) is described. The problem involved effects of dynamic interaction among valves in the quad-redundant valve package. Also described is a detailed computer simulation of the quad-valve package which was helpful in resolving the problem.

  7. Redundant electronic circuit provides fail-safe control

    NASA Technical Reports Server (NTRS)

    Archer, J. W.

    1970-01-01

    Circuit using dual control amplifiers and dual position demand potentiometers powered from separate sources is used for reliable hydraulic valve controller that prevents closure of valve when control circuits fail, and maintains valve control to close tolerance for more common modes of controller failure.

  8. Fast acting check valve

    NASA Technical Reports Server (NTRS)

    Perkins, Gerald S. (Inventor)

    1979-01-01

    A check valve which closes more rapidly to prevent wearing of the valve seat and of the valve member that seals thereagainst, including a solenoid or other actuator that aids the normal spring to quickly close the valve at approximately the time when downpath fluid flow would stop, the actuator then being deenergized. The control circuit that operates the actuator can include a pair of pressure sensors sensing pressure both upstream and downstream from the valve seat. Where the valve is utilized to control flow to or from a piston pump, energization of the actuator can be controlled by sensing when the pump piston reaches its extreme of travel.

  9. A Hydraulic Blowdown Servo System For Launch Vehicle

    NASA Astrophysics Data System (ADS)

    Chen, Anping; Deng, Tao

    2016-07-01

    This paper introduced a hydraulic blowdown servo system developed for a solid launch vehicle of the family of Chinese Long March Vehicles. It's the thrust vector control (TVC) system for the first stage. This system is a cold gas blowdown hydraulic servo system and consist of gas vessel, hydraulic reservoir, servo actuator, digital control unit (DCU), electric explosion valve, and pressure regulator etc. A brief description of the main assemblies and characteristics follows. a) Gas vessel is a resin/carbon fiber composite over wrapped pressure vessel with a titanium liner, The volume of the vessel is about 30 liters. b) Hydraulic reservoir is a titanium alloy piston type reservoir with a magnetostrictive sensor as the fluid level indicator. The volume of the reservoir is about 30 liters. c) Servo actuator is a equal area linear piston actuator with a 2-stage low null leakage servo valve and a linear variable differential transducer (LVDT) feedback the piston position, Its stall force is about 120kN. d) Digital control unit (DCU) is a compact digital controller based on digital signal processor (DSP), and deployed dual redundant 1553B digital busses to communicate with the on board computer. e) Electric explosion valve is a normally closed valve to confine the high pressure helium gas. f) Pressure regulator is a spring-loaded poppet pressure valve, and regulates the gas pressure from about 60MPa to about 24MPa. g) The whole system is mounted in the aft skirt of the vehicle. h) This system delivers approximately 40kW hydraulic power, by contrast, the total mass is less than 190kg. the power mass ratio is about 0.21. Have finished the development and the system test. Bench and motor static firing tests verified that all of the performances have met the design requirements. This servo system is complaint to use of the solid launch vehicle.

  10. Monovalve with integrated fuel injector and port control valve, and engine using same

    DOEpatents

    Milam, David M.

    2002-01-01

    Each cylinder of an internal combustion engine includes a combined gas exchange valve and fuel injector with a port control valve. The port control valve operates to open either an intake passage or an exhaust passage. The operation of the combined device is controlled by a pair of electrical actuators. The device is hydraulically actuated.

  11. Application of Model-based Prognostics to a Pneumatic Valves Testbed

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Kulkarni, Chetan S.; Gorospe, George

    2014-01-01

    Pneumatic-actuated valves play an important role in many applications, including cryogenic propellant loading for space operations. Model-based prognostics emphasizes the importance of a model that describes the nominal and faulty behavior of a system, and how faulty behavior progresses in time, causing the end of useful life of the system. We describe the construction of a testbed consisting of a pneumatic valve that allows the injection of faulty behavior and controllable fault progression. The valve opens discretely, and is controlled through a solenoid valve. Controllable leaks of pneumatic gas in the testbed are introduced through proportional valves, allowing the testing and validation of prognostics algorithms for pneumatic valves. A new valve prognostics approach is developed that estimates fault progression and predicts remaining life based only on valve timing measurements. Simulation experiments demonstrate and validate the approach.

  12. Reduced-impact sliding pressure control valve for pneumatic hammer drill

    DOEpatents

    Polsky, Yarom [Oak Ridge, TN; Grubelich, Mark C [Albuquerque, NM; Vaughn, Mark R [Albuquerque, NM

    2012-05-15

    A method and means of minimizing the effect of elastic valve recoil in impact applications, such as percussive drilling, where sliding spool valves used inside the percussive device are subject to poor positioning control due to elastic recoil effects experienced when the valve impacts a stroke limiting surface. The improved valve design reduces the reflected velocity of the valve by using either an energy damping material, or a valve assembly with internal damping built-in, to dissipate the compression stress wave produced during impact.

  13. Aortic Valve Stenosis Alters Expression of Regional Aortic Wall Shear Stress: New Insights From a 4-Dimensional Flow Magnetic Resonance Imaging Study of 571 Subjects.

    PubMed

    van Ooij, Pim; Markl, Michael; Collins, Jeremy D; Carr, James C; Rigsby, Cynthia; Bonow, Robert O; Malaisrie, S Chris; McCarthy, Patrick M; Fedak, Paul W M; Barker, Alex J

    2017-09-13

    Wall shear stress (WSS) is a stimulus for vessel wall remodeling. Differences in ascending aorta (AAo) hemodynamics have been reported between bicuspid aortic valve (BAV) and tricuspid aortic valve patients with aortic dilatation, but the confounding impact of aortic valve stenosis (AS) is unknown. Five hundred seventy-one subjects underwent 4-dimensional flow magnetic resonance imaging in the thoracic aorta (210 right-left BAV cusp fusions, 60 right-noncoronary BAV cusp fusions, 245 tricuspid aortic valve patients with aortic dilatation, and 56 healthy controls). There were 166 of 515 (32%) patients with AS. WSS atlases were created to quantify group-specific WSS patterns in the AAo as a function of AS severity. In BAV patients without AS, the different cusp fusion phenotypes resulted in distinct differences in eccentric WSS elevation: right-left BAV patients exhibited increased WSS by 9% to 34% ( P <0.001) at the aortic root and along the entire outer curvature of the AAo whereas right-noncoronary BAV patients showed 30% WSS increase ( P <0.001) at the distal portion of the AAo. WSS in tricuspid aortic valve patients with aortic dilatation patients with no AS was significantly reduced by 21% to 33% ( P <0.01) in 4 of 6 AAo regions. In all patient groups, mild, moderate, and severe AS resulted in a marked increase in regional WSS ( P <0.001). Moderate-to-severe AS further increased WSS magnitude and variability in the AAo. Differences between valve phenotypes were no longer apparent. AS significantly alters aortic hemodynamics and WSS independent of aortic valve phenotype and over-rides previously described flow patterns associated with BAV and tricuspid aortic valve with aortic dilatation. Severity of AS must be considered when investigating valve-mediated aortopathy. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  14. Multidetector computed tomography sizing of aortic annulus prior to transcatheter aortic valve replacement (TAVR): Variability and impact of observer experience.

    PubMed

    Le Couteulx, S; Caudron, J; Dubourg, B; Cauchois, G; Dupré, M; Michelin, P; Durand, E; Eltchaninoff, H; Dacher, J-N

    2018-05-01

    To evaluate intra- and inter-observer variability of multidetector computed tomography (MDCT) sizing of the aortic annulus before transcatheter aortic valve replacement (TAVR) and the effect of observer experience, aortic valve calcification and image quality. MDCT examinations of 52 consecutive patients with tricuspid aortic valve (30 women, 22 men) with a mean age of 83±7 (SD) years (range: 64-93 years) were evaluated retrospectively. The maximum and minimum diameters, area and circumference of the aortic annulus were measured twice at diastole and systole with a standardized approach by three independent observers with different levels of experience (expert [observer 1]; resident with intensive 6 months practice [observer 2]; trained resident with starting experience [observer 3]). Observers were requested to recommend the valve prosthesis size. Calcification volume of the aortic valve and signal to noise ratio were evaluated. Intra- and inter-observer reproducibility was excellent for all aortic annulus dimensions, with an intraclass correlation coefficient ranging respectively from 0.84 to 0.98 and from 0.82 to 0.97. Agreement for selection of prosthesis size was almost perfect between the two most experienced observers (k=0.82) and substantial with the inexperienced observer (k=0.67). Aortic valve calcification did not influence intra-observer reproducibility. Image quality influenced reproducibility of the inexperienced observer. Intra- and inter-observer variability of aortic annulus sizing by MDCT is low. Nevertheless, the less experienced observer showed lower reliability suggesting a learning curve. Copyright © 2017. Published by Elsevier Masson SAS.

  15. Fast-Acting Valve

    NASA Technical Reports Server (NTRS)

    Wojciechowski, Bogdan V. (Inventor); Pegg, Robert J. (Inventor)

    2003-01-01

    A fast-acting valve includes an annular valve seat that defines an annular valve orifice between the edges of the annular valve seat, an annular valve plug sized to cover the valve orifice when the valve is closed, and a valve-plug holder for moving the annular valve plug on and off the annular valve seat. The use of an annular orifice reduces the characteristic distance between the edges of the valve seat. Rather than this distance being equal to the diameter of the orifice, as it is for a conventional circular orifice, the characteristic distance equals the distance between the inner and outer radii (for a circular annulus). The reduced characteristic distance greatly reduces the gap required between the annular valve plug and the annular valve seat for the valve to be fully open, thereby greatly reducing the required stroke and corresponding speed and acceleration of the annular valve plug. The use of a valve-plug holder that is under independent control to move the annular valve plug between its open and closed positions is important for achieving controllable fast operation of the valve.

  16. Electrokinetic focusing injection methods on microfluidic devices.

    PubMed

    Fu, Lung-Ming; Yang, Ruey-Jen; Lee, Gwo-Bin

    2003-04-15

    This paper presents an experimental and numerical investigation into electrokinetic focusing injection on microfluidic chips. The valving characteristics on microfluidic devices are controlled through appropriate manipulations of the electric potential strengths during the sample loading and dispensing steps. The present study also addresses the design and testing of various injection systems used to deliver a sample plug. A novel double-cross injection microfluidic chip is fabricated, which employs electrokinetic focusing to deliver sample plugs of variable volume. The proposed design combines several functions of traditional sample plug injection systems on a single microfluidic chip. The injection technique uses an unique sequence of loading steps with different electric potential distributions and magnitudes within the various channels to effectuate a virtual valve.

  17. 9. BUTTERFLY VALVE CONTROL DIABLO POWERHOUSE. BUTTERFLY VALVES WERE MANUFACTURED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. BUTTERFLY VALVE CONTROL DIABLO POWERHOUSE. BUTTERFLY VALVES WERE MANUFACTURED BY THE PELTON WATER WHEEL COMPANY IN 1931, 1989. - Skagit Power Development, Diablo Powerhouse, On Skagit River, 6.1 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  18. Internal combustion engine and method for control

    DOEpatents

    Brennan, Daniel G

    2013-05-21

    In one exemplary embodiment of the invention an internal combustion engine includes a piston disposed in a cylinder, a valve configured to control flow of air into the cylinder and an actuator coupled to the valve to control a position of the valve. The internal combustion engine also includes a controller coupled to the actuator, wherein the controller is configured to close the valve when an uncontrolled condition for the internal engine is determined.

  19. Rotary-To-Axial Motion Converter For Valve

    NASA Technical Reports Server (NTRS)

    Reinicke, Robert H.; Mohtar, Rafic

    1991-01-01

    Nearly frictionless mechanism converts rotary motion into axial motion. Designed for use in electronically variable pressure-regulator valve. Changes rotary motion imparted by motor into translation that opens and closes valve poppet. Cables spaced equidistantly around edge of fixed disk support movable disk. As movable disk rotated, cables twist, lifting it. When rotated in opposite direction, cables untwist, lowering it. Spider disk helps to prevent cables from tangling. Requires no lubrication and insensitive to contamination in fluid flowing through valve.

  20. Real-Time Variable Rate Spraying in Orchards and Vineyards: A Review

    NASA Astrophysics Data System (ADS)

    Wandkar, Sachin Vilas; Bhatt, Yogesh Chandra; Jain, H. K.; Nalawade, Sachin M.; Pawar, Shashikant G.

    2018-06-01

    Effective and efficient use of pesticides in the orchards is of concern since many years. With the conventional constant rate sprayers, equal dose of pesticide is applied to each tree. Since, there is great variation in size and shape of each tree in the orchard, trees gets either oversprayed or undersprayed. Real-time variable rate spraying technology offers pesticide application in accordance with tree size. With the help of suitable sensors, tree characteristics such as canopy volume, foliage density, etc. can be acquired and with the micro-processing unit coupled with proper algorithm, flow of electronic proportional valves can be controlled thus, controlling the flow rate of nozzles according to tree characteristics. Also, sensors can help in the detection of spaces in-between trees which allows to control the spray in spaces. Variable rate spraying helps in achieving precision in spraying operation especially inside orchards. This paper reviews the real-time variable rate spraying technology and efforts made by the various researchers for real-time variable application in the orchards and vineyards.

  1. Real-Time Variable Rate Spraying in Orchards and Vineyards: A Review

    NASA Astrophysics Data System (ADS)

    Wandkar, Sachin Vilas; Bhatt, Yogesh Chandra; Jain, H. K.; Nalawade, Sachin M.; Pawar, Shashikant G.

    2018-02-01

    Effective and efficient use of pesticides in the orchards is of concern since many years. With the conventional constant rate sprayers, equal dose of pesticide is applied to each tree. Since, there is great variation in size and shape of each tree in the orchard, trees gets either oversprayed or undersprayed. Real-time variable rate spraying technology offers pesticide application in accordance with tree size. With the help of suitable sensors, tree characteristics such as canopy volume, foliage density, etc. can be acquired and with the micro-processing unit coupled with proper algorithm, flow of electronic proportional valves can be controlled thus, controlling the flow rate of nozzles according to tree characteristics. Also, sensors can help in the detection of spaces in-between trees which allows to control the spray in spaces. Variable rate spraying helps in achieving precision in spraying operation especially inside orchards. This paper reviews the real-time variable rate spraying technology and efforts made by the various researchers for real-time variable application in the orchards and vineyards.

  2. Study on the characters of control valve for ammonia injection in selective catalytic reduction (SCR) system of coal-fired power plant

    NASA Astrophysics Data System (ADS)

    Yao, Che; Li, Tao; Zhang, Hong; Zhou, Yanming

    2017-08-01

    In this paper, the characters of two control valves used for ammonia injection in SCR system are discussed. The linear/quadratic character between pressure drop/outlet flow rate and valve opening/dynamic pressure inlet are investigated using computational fluid dynamic (CFD) and response surface analysis (RSA) methods. The results show that the linear character of brake valve is significantly better than butterfly valve, which means that the brake valve is more suitable for ammonia injection adjustment than the butterfly valve.

  3. Ethylene monitoring and control system

    NASA Technical Reports Server (NTRS)

    Nelson, Bruce N. (Inventor); Kanc, James A. (Inventor); Richard, II, Roy V. (Inventor)

    2000-01-01

    A system that can accurately monitor and control low concentrations of ethylene gas includes a test chamber configured to receive sample gas potentially containing an ethylene concentration and ozone, a detector configured to receive light produced during a reaction between the ethylene and ozone and to produce signals related thereto, and a computer connected to the detector to process the signals to determine therefrom a value of the concentration of ethylene in the sample gas. The supply for the system can include a four way valve configured to receive pressurized gas at one input and a test chamber. A piston is journaled in the test chamber with a drive end disposed in a drive chamber and a reaction end defining with walls of the test chamber a variable volume reaction chamber. The drive end of the piston is pneumatically connected to two ports of the four way valve to provide motive force to the piston. A manifold is connected to the variable volume reaction chamber, and is configured to receive sample gasses from at least one of a plurality of ports connectable to degreening rooms and to supply the sample gas to the reactive chamber for reaction with ozone. The apparatus can be used to monitor and control the ethylene concentration in multiple degreening rooms.

  4. Ethylene monitoring and control system

    NASA Technical Reports Server (NTRS)

    Nelson, Bruce N. (Inventor); Kane, James A. (Inventor); Richard, II, Roy V. (Inventor)

    2001-01-01

    A system that can accurately monitor and control low concentrations of ethylene gas includes a test chamber configured to receive sample gas potentially containing an ethylene concentration and ozone, a detector configured to receive light produced during a reaction between the ethylene and ozone and to produce signals related thereto, and a computer connected to the detector to process the signals to determine therefrom a value of the concentration of ethylene in the sample gas. The supply for the system can include a four way valve configured to receive pressurized gas at one input and a test chamber. A piston is journaled in the test chamber with a drive end disposed in a drive chamber and a reaction end defining with walls of the test chamber a variable volume reaction chamber. The drive end of the piston is pneumatically connected to two ports of the four way valve to provide motive force to the piston. A manifold is connected to the variable volume reaction chamber, and is configured to receive sample gasses from at least one of a plurality of ports connectable to degreening rooms and to supply the sample gas to the reactive chamber for reaction with ozone. The apparatus can be used to monitor and control the ethylene concentration in multiple degreening rooms.

  5. Tape underlayment rotary-node (TURN) valves for simple on-chip microfluidic flow control

    PubMed Central

    Markov, Dmitry A.; Manuel, Steven; Shor, Leslie M.; Opalenik, Susan R.; Wikswo, John P.; Samson, Philip C.

    2013-01-01

    We describe a simple and reliable fabrication method for producing multiple, manually activated microfluidic control valves in polydimethylsiloxane (PDMS) devices. These screwdriver-actuated valves reside directly on the microfluidic chip and can provide both simple on/off operation as well as graded control of fluid flow. The fabrication procedure can be easily implemented in any soft lithography lab and requires only two specialized tools – a hot-glue gun and a machined brass mold. To facilitate use in multi-valve fluidic systems, the mold is designed to produce a linear tape that contains a series of plastic rotary nodes with small stainless steel machine screws that form individual valves which can be easily separated for applications when only single valves are required. The tape and its valves are placed on the surface of a partially cured thin PDMS microchannel device while the PDMS is still on the soft-lithographic master, with the master providing alignment marks for the tape. The tape is permanently affixed to the microchannel device by pouring an over-layer of PDMS, to form a full-thickness device with the tape as an enclosed underlayment. The advantages of these Tape Underlayment Rotary-Node (TURN) valves include parallel fabrication of multiple valves, low risk of damaging a microfluidic device during valve installation, high torque, elimination of stripped threads, the capabilities of TURN hydraulic actuators, and facile customization of TURN molds. We have utilized these valves to control microfluidic flow, to control the onset of molecular diffusion, and to manipulate channel connectivity. Practical applications of TURN valves include control of loading and chemokine release in chemotaxis assay devices, flow in microfluidic bioreactors, and channel connectivity in microfluidic devices intended to study competition and predator / prey relationships among microbes. PMID:19859812

  6. Control device for prosthetic urinary sphincter cuff

    NASA Technical Reports Server (NTRS)

    Reinicke, Robert H. (Inventor)

    1983-01-01

    A device for controlling flow of fluid to and from a resilient inflatable cuff implanted about the urethra to control flow of urine therethrough. The device comprises a flexible bulb reservoir and a control unit that includes a manually operated valve that opens automatically when the bulb is squeezed to force fluid into the cuff for closing the urethra. The control unit also includes a movable valve seat member having a relatively large area exposed to pressure of fluid in a chamber that is connected to the cuff and which moves to a position in which the valve member is unseated by an abutment when fluid pressure in the chamber exceeds a predetermined value to thereby relieve excess fluid pressure in the cuff. The arrangement is such that the valve element is held closed against the seat member by the full differential in fluid pressures acting on both sides of the valve element until the seat member is moved away from the valve element to thus insure positive closing of the valve element until the seat member is moved out of engagement with the valve element by excess pressure differential.

  7. Process control monitoring systems, industrial plants, and process control monitoring methods

    DOEpatents

    Skorpik, James R [Kennewick, WA; Gosselin, Stephen R [Richland, WA; Harris, Joe C [Kennewick, WA

    2010-09-07

    A system comprises a valve; a plurality of RFID sensor assemblies coupled to the valve to monitor a plurality of parameters associated with the valve; a control tag configured to wirelessly communicate with the respective tags that are coupled to the valve, the control tag being further configured to communicate with an RF reader; and an RF reader configured to selectively communicate with the control tag, the reader including an RF receiver. Other systems and methods are also provided.

  8. Development of myoelectric control type speaking valve with low flow resistance

    NASA Astrophysics Data System (ADS)

    Ooe, Katsutoshi; Sakurai, Kohei; Mimaki, Shinya

    2015-12-01

    We aimed to develop welfare devices for patients with phonation disorder. One of these devices is the electrical controltype speaking valve system. The conventional speaking valves have one-way valve architecture, they open when the user breathes in, and they close when user breathes out and produce voices. This type is very simple and tough, but some users feel closeness in case of exhalation without phonation. This problem is caused by its mechanism what can not be controlled by user's will. Therefore, we proposed an electrical control-type speaking valve system to resolve this problem. This valve is controlled by neck myoelectric signal of sternohyoid muscle. From our previous report, it was clarified that this valve had better performance about easy-to-breath. Furthermore, we proposed the compact myoelectric control-type speaking valve system. The new-type speaking valve was enough small to attach the human body, and its opening area is larger than that of conventional one. Additionally, we described the improvement of flow channel shape by using of FEM analysis. According to the result of the analysis, it was clarified that the shape-improved speaking valve gets the low flow resistance channel in case of inspiration. In this report, we tried to make the flow resistance lower by the shape of current plates, in case of both inspiration and exhalation. From the result of FEM analysis, our speaking valve could get better flow channel than older one.

  9. Variable valve timing in a homogenous charge compression ignition engine

    DOEpatents

    Lawrence, Keith E.; Faletti, James J.; Funke, Steven J.; Maloney, Ronald P.

    2004-08-03

    The present invention relates generally to the field of homogenous charge compression ignition engines, in which fuel is injected when the cylinder piston is relatively close to the bottom dead center position for its compression stroke. The fuel mixes with air in the cylinder during the compression stroke to create a relatively lean homogeneous mixture that preferably ignites when the piston is relatively close to the top dead center position. However, if the ignition event occurs either earlier or later than desired, lowered performance, engine misfire, or even engine damage, can result. The present invention utilizes internal exhaust gas recirculation and/or compression ratio control to control the timing of ignition events and combustion duration in homogeneous charge compression ignition engines. Thus, at least one electro-hydraulic assist actuator is provided that is capable of mechanically engaging at least one cam actuated intake and/or exhaust valve.

  10. Overdrainage and shunt technology. A critical comparison of programmable, hydrostatic and variable-resistance valves and flow-reducing devices.

    PubMed

    Aschoff, A; Kremer, P; Benesch, C; Fruh, K; Klank, A; Kunze, S

    1995-04-01

    When vertical body position is simulated, conventional differential pressure valves show an absolutely unphysiological flow, which is 2-170 times the normal liquor production rate. Although this is compensated in part by the resistance of the silicon tubes, which may produce up to 94% of the resistance of the complete shunt system, a negative intracranial pressure (ICP) of up to 30-44 cmH2O is an unavoidable consequence, which can be followed by subdural hematomas, slit ventricles, and other well-known complications. Modern shunt technology offers programmable, hydrostatic, and "flow-controlled" valves and anti-siphon devices; we have tested 13 different designs from 7 manufacturers (56 specimens), using the "Heidelberg Valve Test Inventory" with 16 subtests. "Programmable" valves reduce, but cannot exclude, unphysiological flow rates: even in the highest position and in combination with a standard catheter typical programmable Medos-Hakim valves allow a flow of 93-232 ml/h, Sophy SU-8-valves 86-168 ml/h with 30 cmH2O. The effect of hydrostatic valves (Hakim-Lumbar, Chhabra) can be inactivated by movements of daily life. The weight of the metal balls in most valves was too low for adequate flow reduction. Antisiphon devices are highly dependent on external, i.e. subcutaneous, pressure which has unpredictable influences on shunt function, and clinically is sometimes followed by shunt insufficiency. Two new Orbis-Sigma valves showed relatively physiological flow rates even when the vertical position (30 cmH2O) was simulated. One showed an insufficient flow (5.7 ml/h), and one was primarily obstructed. These have by far the smallest outlet of all valves. Additionally, the ruby pin tends to stick. Therefore, a high susceptibility to obliterations and blockade is unavoidable. Encouraging results obtained in pediatric patients contrast with disappointing experiences in some German and Swedish hospitals, which suggests that our laboratory findings are confirmed by clinical results. The concept of strict flow limitation seems to be inadaequate for adult patients, who need a relatively high flow during (nocturnal) ICP crises. The problem of shunt overdrainage remains unsolved.

  11. Value for controlling flow of cryogenic fluid

    DOEpatents

    Knapp, Philip A.

    1996-01-01

    A valve is provided for accurately controlling the flow of cryogenic fluids such as liquid nitrogen. The valve comprises a combination of disc and needle valves affixed to a valve stem in such a manner that the disc and needle are free to rotate about the stem, but are constrained in lateral and vertical movements. This arrangement provides accurate and precise fluid flow control and positive fluid isolation.

  12. Learning curve analysis of mitral valve repair using telemanipulative technology.

    PubMed

    Charland, Patrick J; Robbins, Tom; Rodriguez, Evilio; Nifong, Wiley L; Chitwood, Randolph W

    2011-08-01

    To determine if the time required to perform mitral valve repairs using telemanipulation technology decreases with experience and how that decrease is influenced by patient and procedure variables. A single-center retrospective review was conducted using perioperative and outcomes data collected contemporaneously on 458 mitral valve repair surgeries using telemanipulative technology. A regression model was constructed to assess learning with this technology and predict total robot time using multiple predictive variables. Statistical analysis was used to determine if models were significantly useful, to rule out correlation between predictor variables, and to identify terms that did not contribute to the prediction of total robot time. We found a statistically significant learning curve (P < .01). The institutional learning percentage∗ derived from total robot times† for the first 458 recorded cases of mitral valve repair using telemanipulative technology is 95% (R(2) = .40). More than one third of the variability in total robot time can be explained through our model using the following variables: type of repair (chordal procedures, ablations, and leaflet resections), band size, use of clips alone in band implantation, and the presence of a fellow at bedside (P < .01). Learning in mitral valve repair surgery using telemanipulative technology occurs at the East Carolina Heart Institute according to a logarithmic curve, with a learning percentage of 95%. From our regression output, we can make an approximate prediction of total robot time using an additive model. These metrics can be used by programs for benchmarking to manage the implementation of this new technology, as well as for capacity planning, scheduling, and capital budget analysis. Copyright © 2011 The American Association for Thoracic Surgery. All rights reserved.

  13. 17. ROSS POWERHOUSE: BUTTERFLY VALVE CONTROLS FOR UNIT 43. THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. ROSS POWERHOUSE: BUTTERFLY VALVE CONTROLS FOR UNIT 43. THE BUTTERFLY VALVE LOCK INDICATES THE BUTTERFLY VALVE IS CLOSED AS UNIT 43 WAS SHUT DOWN FOR REPAIRS, 1989. - Skagit Power Development, Ross Powerhouse, On Skagit River, 10.7 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  14. The Use of Stepper Motor-Controlled Proportional Valve for Fio2 Calculation in the Ventilator and its Control with Fuzzy Logic.

    PubMed

    Gölcük, Adem; Güler, İnan

    2017-01-01

    This article proposes the employment of a proportional valve that can calculate the amount of oxygen in the air to be given to patient in accordance with the amount of FiO 2 which is set from the control menu of the ventilation device. To actualize this, a stepper motor-controlled proportional valve was used. Two counts of valves were employed in order to control the gases with 2 bar pressure that came from both the oxygen and medical air tanks. Oxygen and medical air manometers alongside the pressure regulators were utilized to perform this task. It is a fuzzy-logic-based controller which calculates at what rate the proportional valves will be opened and closed for FiO 2 calculation. Fluidity and pressure of air given by the ventilation device were tested with a FlowMeter while the oxygen level was tested using the electronic lung model. The obtained results from the study revealed that stepper motor controlled proportional valve could be safely used in ventilation devices. In this article, it was indicated that fluidity and pressure control could be carried out with just two counts of proportional valve, which could be done with many solenoid valves, so this reduces the cost of ventilator, electrical power consumed by the ventilator, and the dimension of ventilator.

  15. Functional Changes of Diaphragm Type Shunt Valves Induced by Pressure Pulsation

    NASA Astrophysics Data System (ADS)

    Lee, Chong-Sun; Suh, Chang-Min; Ra, Young-Shin

    Shunt valves used to treat patients with hydrocephalus were tested to investigate influence of pressure pulsation on their flow control characteristics. Our focus was on flow dynamic and functional changes of the small and thin diaphragms in the valves that serve as the main flow control mechanism and are made from silicone elastomer. Firstly, pressure-flow control curves were compared under pulsed and steady flow (without pulsation) conditions. Secondly, functional changes of the valves were tested after a long-term continuous pulsation with a peristaltic pump. Thirdly, flushing procedures selectively conducted by neurosurgeons were simulated with a fingertip pressed on the dome of the valves. As 20cc/hr of flow rate was adjusted at a constant pressure, application of 40mmH2O of pressure pulse increased flow rate through shunt valves more than 60%. As a 90cm length silicone catheter was connected to the valve outlet, increase in the flow rate was substantially reduced to 17.5%. Pressure-flow control characteristics of some valves showed significant changes after twenty-eight days of pressure pulsation at 1.0 Hz under 50.0cc/hr of flow rate. Flushing simulation resulted in temporary decrease in the pressure level. It took three hours to fully recover the normal pressure-flow control characteristics after the flushing. Our results suggest that shunt valves with a thin elastic diaphragm as the main flow control mechanism are sensitive to intracranial pressure pulsation or pressure spikes enough to change their pressure-flow control characteristics.

  16. Aerodynamic Shutoff Valve

    NASA Technical Reports Server (NTRS)

    Horstman, Raymond H.

    1992-01-01

    Aerodynamic flow achieved by adding fixed fairings to butterfly valve. When valve fully open, fairings align with butterfly and reduce wake. Butterfly free to turn, so valve can be closed, while fairings remain fixed. Design reduces turbulence in flow of air in internal suction system. Valve aids in development of improved porous-surface boundary-layer control system to reduce aerodynamic drag. Applications primarily aerospace. System adapted to boundary-layer control on high-speed land vehicles.

  17. Engine including hydraulically actuated valvetrain and method of valve overlap control

    DOEpatents

    Cowgill, Joel [White Lake, MI

    2012-05-08

    An exhaust valve control method may include displacing an exhaust valve in communication with the combustion chamber of an engine to an open position using a hydraulic exhaust valve actuation system and returning the exhaust valve to a closed position using the hydraulic exhaust valve actuation assembly. During closing, the exhaust valve may be displaced for a first duration from the open position to an intermediate closing position at a first velocity by operating the hydraulic exhaust valve actuation assembly in a first mode. The exhaust valve may be displaced for a second duration greater than the first duration from the intermediate closing position to a fully closed position at a second velocity at least eighty percent less than the first velocity by operating the hydraulic exhaust valve actuation assembly in a second mode.

  18. Development and experimental characterization of a pneumatic valve actuated by a dielectric elastomer membrane

    NASA Astrophysics Data System (ADS)

    Hill, Marc; Rizzello, Gianluca; Seelecke, Stefan

    2017-08-01

    Due to their many features including lightweight and low energy consumption, dielectric elastomer (DE) membrane actuators are of interest for a number of industrial applications, such as pumping systems or valve control units. In particular, the use of DEs in valve control units offers advantages over traditional solenoid valves, including lower power requirements and relative simplicity in achieving proportional control. Additionally, DEs generate low thermal dissipation and are capable of virtually silent operation. The contribution of this work is the development of a new valve system based on a circular DE membrane pre-loaded with a linear spring. The valve is designed for pressurized air and operates by actuating a lever mechanism that opens and closes an outlet port. After presenting the operating principle and system design, several experiments are presented to compare actuator force, stroke, and dissipated energy for several pressure differentials and associated volume flows. It is observed that the DE-driven valve achieves a performance similar to a solenoid-based valve, while requiring a significantly lower amount of input energy. In addition, it is shown that DE-membrane valves can be controlled proportionally by simply adjusting the actuator voltage.

  19. Dual mode fuel injection system and fuel injector for same

    DOEpatents

    Lawrence, Keith E.; Tian, Ye

    2005-09-20

    A fuel injection system has the ability to produce two different spray patterns depending on the positioning of a needle control valve member. Positioning of the needle control valve member determines which of the two needle control chambers are placed in a low pressure condition. First and second needle valve members have closing hydraulic surfaces exposed to fluid pressure in the two needle control chambers. The injector preferably includes a homogenous charge nozzle outlet set and a conventional nozzle outlet set controlled respectively, by the first and second needle valve members.

  20. Microfluidic Valves Made From Polymerized Polyethylene Glycol Diacrylate

    PubMed Central

    Rogers, Chad I.; Oxborrow, Joseph B.; Anderson, Ryan R.; Tsai, Long-Fang; Nordin, Gregory P.; Woolley, Adam T.

    2013-01-01

    Pneumatically actuated, non-elastomeric membrane valves fabricated from polymerized polyethylene glycol diacrylate (poly-PEGDA) have been characterized for temporal response, valve closure, and long-term durability. A ~100 ms valve opening time and a ~20 ms closure time offer valve operation as fast as 8 Hz with potential for further improvement. Comparison of circular and rectangular valve geometries indicates that the surface area for membrane interaction in the valve region is important for valve performance. After initial fabrication, the fluid pressure required to open a closed circular valve is ~50 kPa higher than the control pressure holding the valve closed. However, after ~1000 actuations to reconfigure polymer chains and increase elasticity in the membrane, the fluid pressure required to open a valve becomes the same as the control pressure holding the valve closed. After these initial conditioning actuations, poly-PEGDA valves show considerable robustness with no change in effective operation after 115,000 actuations. Such valves constructed from non-adsorptive poly-PEGDA could also find use as pumps, for application in small volume assays interfaced with biosensors or impedance detection, for example. PMID:24357897

  1. Design and Construction of Multi-Variable Vortex-Ring Bubble Generator for Use in Interactive Exhibit

    DTIC Science & Technology

    2013-12-01

    providing the opportunity to teach complex subjects related to stable and unstable equilibrium, stochastic systems, and conservation laws. The...bubbles through adjustment of three variables. The seal pressure, actuating pressure, and cycle time of the triggering solenoid valve each contribute to...stable and unstable equilibrium, stochastic systems, and conservation laws. The diaphragm valve designed in this thesis provides the centerpiece for

  2. Rotating drum variable depth sampler

    DOEpatents

    Nance, Thomas A [Aiken, SC; Steeper, Timothy J [Trenton, SC

    2008-07-01

    A sampling device for collecting depth-specific samples in silt, sludge and granular media has three chambers separated by a pair of iris valves. Rotation of the middle chamber closes the valves and isolates a sample in a middle chamber.

  3. Check valve installation in pilot operated relief valve prevents reverse pressurization

    NASA Technical Reports Server (NTRS)

    Oswalt, L.

    1966-01-01

    Two check valves prevent reverse flow through pilot-operated relief valves of differential area piston design. Title valves control pressure flow to ensure that the piston dome pressure is always at least as great as the main relief valve discharge pressure.

  4. Electromagnetic Smart Valves for Cryogenic Applications

    NASA Astrophysics Data System (ADS)

    Traum, M. J.; Smith, J. L.; Brisson, J. G.; Gerstmann, J.; Hannon, C. L.

    2004-06-01

    Electromagnetic valves with smart control capability have been developed and demonstrated for use in the cold end of a Collins-style cryocooler. The toroidal geometry of the valves was developed utilizing a finite-element code and optimized for maximum opening force with minimum input current. Electromagnetic smart valves carry two primary benefits in cryogenic applications: 1) magnetic actuation eliminates the need for mechanical linkages and 2) valve timing can be modified during system cool down and in regular operation for cycle optimization. The smart feature of these electromagnetic valves resides in controlling the flow of current into the magnetic coil. Electronics have been designed to shape the valve actuation current, limiting the residence time of magnetic energy in the winding. This feature allows control of flow through the expander via an electrical signal while dissipating less than 0.0071 J/cycle as heat into the cold end. The electromagnetic smart valves have demonstrated reliable, controllable dynamic cycling. After 40 hours of operation, they suffered no perceptible mechanical degradation. These features enable the development of a miniaturized Collins-style cryocooler capable of removing 1 Watt of heat at 10 K.

  5. Prosthetic urinary sphincter

    NASA Technical Reports Server (NTRS)

    Helms, C. R.; Smyly, H. M. (Inventor)

    1981-01-01

    A pump/valve unit for controlling the inflation and deflation of a urethral collar in a prosthetic urinary sphincter device is described. A compressible bulb pump defining a reservoir was integrated with a valve unit for implantation. The valve unit includes a movable valve member operable by depression of a flexible portion of the valve unit housing for controlling fluid flow between the reservoir and collar; and a pressure sensing means which operates the valve member to relieve an excess pressure in the collar should too much pressure be applied by the patient.

  6. The anatomy and physiology of the terminal thoracic duct and ostial valve in health and disease: potential implications for intervention.

    PubMed

    Ratnayake, Chathura Bathiya Bandara; Escott, Alistair Brian James; Phillips, Anthony Ronald John; Windsor, John Albert

    2018-07-01

    The thoracic duct (TD) transports lymph drained from the body to the venous system in the neck via the lymphovenous junction. There has been increased interest in the TD lymph (including gut lymph) because of its putative role in the promotion of systemic inflammation and organ dysfunction during acute and critical illness. Minimally invasive TD cannulation has recently been described as a potential method to access TD lymph for investigation. However, marked anatomical variability exists in the terminal segment and the physiology regarding the ostial valve and terminal TD is poorly understood. A systematic review was conducted using three databases from 1909 until May 2017. Human and animal studies were included and data from surgical, radiological and cadaveric studies were retrieved. Sixty-three articles from the last 108 years were included in the analysis. The terminal TD exists as a single duct in its terminal course in 72% of cases and 13% have multiple terminations: double (8.5%), triple (1.8%) and quadruple (2.2%). The ostial valve functions to regulate flow in relation to the respiratory cycle. The patency of this valve found at the lymphovenous junction opening, is determined by venous wall tension. During inspiration, central venous pressure (CVP) falls and the valve cusps collapse to allow antegrade flow of lymph into the vein. During early expiration when CVP and venous wall tension rises, the ostial valve leaflets cover the opening of the lymphovenous junction preventing antegrade lymph flow. During chronic disease states associated with an elevated mean CVP (e.g. in heart failure or cirrhosis), there is a limitation of flow across the lymphovenous junction. Although lymph production is increased in both heart failure and cirrhosis, TD lymph outflow across the lymphovenous junction is unable to compensate for this increase. In conclusion the terminal TD shows marked anatomical variability and TD lymph flow is controlled at the ostial valve, which responds to changes in CVP. This information is relevant to techniques for cannulating the TD, with the aid of minimally invasive methods and high resolution ultrasonography, to enable longitudinal physiology and lymph composition studies in awake patients with both acute and chronic disease. © 2018 Anatomical Society.

  7. Refrigerator with variable capacity compressor and cycle priming action through capacity control and associated methods

    DOEpatents

    Gomes, Alberto Regio; Litch, Andrew D.; Wu, Guolian

    2016-03-15

    A refrigerator appliance (and associated method) that includes a condenser, evaporator and a multi-capacity compressor. The appliance also includes a pressure reducing device arranged within an evaporator-condenser refrigerant circuit, and a valve system for directing or restricting refrigerant flow through the device. The appliance further includes a controller for operating the compressor upon the initiation of a compressor ON-cycle at a priming capacity above a nominal capacity for a predetermined or calculated duration.

  8. Stratospheric mountain wave attenuation in positive and negative ambient wind shear

    NASA Astrophysics Data System (ADS)

    Kruse, C. G.; Smith, R. B.

    2016-12-01

    Recently, much has been learned about the vertical propagation and attenuation of mountain waves launched by the Southern Alps of New Zealand (NZ) from the Deep Propagating Gravity Wave Experiment (DEEPWAVE) field campaign. Over NZ, approximately half of mountain wave events are strongly attenuated in a lower-stratospheric "valve layer," defined as a layer of reduced wind with no critical levels. Within a valve layer, negative wind shear causes mountain waves steepen and attenuate, with the amount of transmitted momentum flux controlled by the minimum wind speed within the layer. The other half of wave events are deep (propagating to 35+ km), usually with positive wind shear. Within these deep events, increasing amplitude with decreasing density causes mountain waves to attenuate gradually (after spatial/temporal averaging). Global reanalyses indicate that this valve layer is a climatological feature in the wintertime mid-latitudes above the subtropical jet, while deep events and gradual attenuation occur over higher latitudes below the polar stratospheric jet. The local physics of mountain wave attenuation in positive and negative ambient wind shear are investigated using realistic winter-long (JJA) 6-km resolution Weather Research and Forecasting (WRF) model simulations over the Andes. Attention is given to the spatiotemporal variability of wave attenuation and the various factors driving this variability (e.g. variability in wave generation, ambient conditions at attenuation level, inherent wave-induced instabilities). Mesoscale potential vorticity generation is used as an indicator of wave attenuation. Additionally, regionally integrated wave momentum flux and gravity wave drag (GWD) within WRF are quantified and compared with parameterized quantities in the MERRA1 and 2 reanalyses.

  9. Anterior urethral valve associated with posterior urethral valves: report of 2 cases and review of the literature.

    PubMed

    Tran, Christine N; Reichard, Chad A; McMahon, Daniel; Rhee, Audrey

    2014-08-01

    Anterior urethral valve (AUV) associated with posterior urethral valves (PUVs) is an extremely rare congenital urologic anomaly resulting in lower urinary tract obstruction. We present our experience with 2 children with concomitant AUV and PUV as well as a literature review. The clinical presentation of concomitant AUV and PUV is variable. Successful endoscopic management can result in improvement in renal function, reversal of obstructive changes, and improvement or resolution of voiding dysfunction. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. PSC, a Programmable Software Controller for a Multiple Bladder, Sequentially Inflatable G-Suit.

    DTIC Science & Technology

    1983-12-01

    Valves . For inflation and deflation, industrial soleniod pilot valves provide filling and dumping via a manually thrown three -poition switch...medicine with a tool for performing that research. This research concerns itself with developing a programmable valve actuation controller generic to g...Subsystem 2 - Software Controller ......... -5 %o Subsystem 3 - Cromemco D/7A S-100 Bus S y m Conversion Board ....o...... -6 Subsyst 4 Computer/ Valve

  11. Multiple source/multiple target fluid transfer apparatus

    DOEpatents

    Turner, Terry D.

    1997-01-01

    A fluid transfer apparatus includes: a) a plurality of orifices for connection with fluid sources; b) a plurality of orifices for connection with fluid targets; c) a set of fluid source conduits and fluid target conduits associated with the orifices; d) a pump fluidically interposed between the source and target conduits to transfer fluid therebetween; e) a purge gas conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass a purge gas under pressure; f) a solvent conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass solvent, the solvent conduit including a solvent valve; g) pump control means for controlling operation of the pump; h) purge gas valve control means for controlling operation of the purge gas valve to selectively impart flow of purge gas to the fluid source conduits, fluid target conduits and pump; i) solvent valve control means for controlling operation of the solvent valve to selectively impart flow of solvent to the fluid source conduits, fluid target conduits and pump; and j) source and target valve control means for controlling operation of the fluid source conduit valves and the fluid target conduit valves to selectively impart passage of fluid between a selected one of the fluid source conduits and a selected one of the fluid target conduits through the pump and to enable passage of solvent or purge gas through selected fluid source conduits and selected fluid target conduits.

  12. Multiple source/multiple target fluid transfer apparatus

    DOEpatents

    Turner, T.D.

    1997-08-26

    A fluid transfer apparatus includes: (a) a plurality of orifices for connection with fluid sources; (b) a plurality of orifices for connection with fluid targets; (c) a set of fluid source conduits and fluid target conduits associated with the orifices; (d) a pump fluidically interposed between the source and target conduits to transfer fluid there between; (e) a purge gas conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass a purge gas under pressure; (f) a solvent conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass solvent, the solvent conduit including a solvent valve; (g) pump control means for controlling operation of the pump; (h) purge gas valve control means for controlling operation of the purge gas valve to selectively impart flow of purge gas to the fluid source conduits, fluid target conduits and pump; (i) solvent valve control means for controlling operation of the solvent valve to selectively impart flow of solvent to the fluid source conduits, fluid target conduits and pump; and (j) source and target valve control means for controlling operation of the fluid source conduit valves and the fluid target conduit valves to selectively impart passage of fluid between a selected one of the fluid source conduits and a selected one of the fluid target conduits through the pump and to enable passage of solvent or purge gas through selected fluid source conduits and selected fluid target conduits. 6 figs.

  13. 49 CFR 195.450 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... remote control valve as follows: (1) Check valve means a valve that permits fluid to flow freely in one direction and contains a mechanism to automatically prevent flow in the other direction. (2) Remote control.... The RCV is usually operated by the supervisory control and data acquisition (SCADA) system. The...

  14. 49 CFR 195.450 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... remote control valve as follows: (1) Check valve means a valve that permits fluid to flow freely in one direction and contains a mechanism to automatically prevent flow in the other direction. (2) Remote control.... The RCV is usually operated by the supervisory control and data acquisition (SCADA) system. The...

  15. 49 CFR 195.450 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... remote control valve as follows: (1) Check valve means a valve that permits fluid to flow freely in one direction and contains a mechanism to automatically prevent flow in the other direction. (2) Remote control.... The RCV is usually operated by the supervisory control and data acquisition (SCADA) system. The...

  16. 49 CFR 195.450 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... remote control valve as follows: (1) Check valve means a valve that permits fluid to flow freely in one direction and contains a mechanism to automatically prevent flow in the other direction. (2) Remote control.... The RCV is usually operated by the supervisory control and data acquisition (SCADA) system. The...

  17. 49 CFR 195.450 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... remote control valve as follows: (1) Check valve means a valve that permits fluid to flow freely in one direction and contains a mechanism to automatically prevent flow in the other direction. (2) Remote control.... The RCV is usually operated by the supervisory control and data acquisition (SCADA) system. The...

  18. AUTOMOTIVE DIESEL MAINTENANCE 2 UNIT IV, AUTOMATIC TRANSMISSIONS--HYDRAULICS (PART II).

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF VALVES UTILIZED IN HYDRAULIC TRANSMISSIONS USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) REVIEWING FACTS ABOUT PUMPS, (2) USING VALVES FOR CONTROL, (3) TROUBLESHOOTING PROCEDURES ON RELIEF VALVES, (4) USING DIRECTIONAL CONTROL VALVES,…

  19. 30 CFR 250.1624 - Blowout prevention equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... station and one BOP-control station on the rig floor; and (5) A choke line and a kill line each equipped with two full-opening valves and a choke manifold. One of the choke-line valves and one of the kill-line valves shall be remotely controlled except that a check valve may be installed on the kill line in...

  20. 30 CFR 250.1624 - Blowout prevention equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... station and one BOP-control station on the rig floor; and (5) A choke line and a kill line each equipped with two full-opening valves and a choke manifold. One of the choke-line valves and one of the kill-line valves shall be remotely controlled except that a check valve may be installed on the kill line in...

  1. 30 CFR 250.1624 - Blowout prevention equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... station and one BOP-control station on the rig floor; and (5) A choke line and a kill line each equipped with two full-opening valves and a choke manifold. One of the choke-line valves and one of the kill-line valves shall be remotely controlled except that a check valve may be installed on the kill line in...

  2. 30 CFR 250.1624 - Blowout prevention equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... station and one BOP-control station on the rig floor; and (5) A choke line and a kill line each equipped with two full-opening valves and a choke manifold. One of the choke-line valves and one of the kill-line valves shall be remotely controlled except that a check valve may be installed on the kill line in...

  3. Early Identification of Aortic Valve Sclerosis Using Iron Oxide Enhanced MRI

    PubMed Central

    Hamilton, Amanda M.; Rogers, Kem A.; Belisle, Andre J.L.; Ronald, John A.; Rutt, Brian K.; Weissleder, Ralph; Boughner, Derek R.

    2017-01-01

    Purpose To test the ability of MION-47 enhanced MRI to identify tissue macrophage infiltration in a rabbit model of aortic valve sclerosis (AVS). Materials and Methods The aortic valves of control and cholesterol-fed New Zealand White rabbits were imaged in vivo pre- and 48 h post-intravenous administration of MION-47 using a 1.5 Tesla (T) MR clinical scanner and a CINE fSPGR sequence. MION-47 aortic valve cusps were imaged ex vivo on a 3.0T whole-body MR system with a custom gradient insert coil and a three-dimensional (3D) FIESTA sequence and compared with aortic valve cusps from control and cholesterol-fed contrast-free rabbits. Histopathological analysis was performed to determine the site of iron oxide uptake. Results MION-47 enhanced the visibility of both control and cholesterol-fed rabbit valves in in vivo images. Ex vivo image analysis confirmed the presence of significant signal voids in contrast-administered aortic valves. Signal voids were not observed in contrast-free valve cusps. In MION-47 administered rabbits, histopathological analysis revealed iron staining not only in fibrosal macrophages of cholesterol-fed valves but also in myofibroblasts from control and cholesterol-fed valves. Conclusion Although iron oxide labeling of macrophage infiltration in AVS has the potential to detect the disease process early, a macrophage-specific iron compound rather than passive targeting may be required. PMID:20027578

  4. Engine control system having pressure-based timing

    DOEpatents

    Willi, Martin L [Dunlap, IL; Fiveland, Scott B [Metamora, IL; Montgomery, David T [Edelstein, IL; Gong, Weidong [Dunlap, IL

    2011-10-04

    A control system for an engine having a first cylinder and a second cylinder is disclosed having a first engine valve movable to regulate a fluid flow of the first cylinder and a first actuator associated with the first engine valve. The control system also has a second engine valve movable to regulate a fluid flow of the second cylinder and a sensor configured to generate a signal indicative of a pressure within the first cylinder. The control system also has a controller that is in communication with the first actuator and the sensor. The controller is configured to compare the pressure within the first cylinder with a desired pressure and selectively regulate the first actuator to adjust a timing of the first engine valve independently of the timing of the second engine valve based on the comparison.

  5. Remote fire stack igniter. [with solenoid-controlled valve

    NASA Technical Reports Server (NTRS)

    Ray, W. L. (Inventor)

    1974-01-01

    An igniter is described mounted on a vent stack with an upper, flame cage near the top of the stack to ignite emissions from the stack. The igniter is a tube with a lower, open, flared end having a spark plug near the lower end and a solenoid-controlled valve which supplies propane fuel from a supply tank. Propane from the tank is supplied at the top under control of a second, solenoid-controlled valve. The valve controlling the lower supply is closed after ignition at the flame cage. The igniter is economical, practical, and highly reliable.

  6. Electrowetting (EW)-based valve combined with hydrophilic teflon microfluidic guidance in controlling continuous fluid flow.

    PubMed

    Cheng, Ji-Yen; Hsiung, Lo-Chang

    2004-12-01

    Electrowetting (EW)-based techniques have been widely used in manipulating discrete liquid. However, few articles discussed the controlling of continuous fluid flow by using EW-based techniques. In this paper, an EW-based valve combined with plasma-modified Teflon surface, which serves as a microfluidic guidance, in controlling continuous fluid flow has been demonstrated. The plasma-modified Teflon surface is firstly demonstrated for confining continuous fluid flow. The EW-based microfluidic device possesses the functions of a valve and a microchannel without complex moving parts and grooved microchannels. The quantitative characteristics of the EW-based valve are also studied. Propylene carbonate (PC) is firstly demonstrated as the working liquid in the EW-based device because of its applications in parallel oligonucleotide synthesis. It is found that lower valve actuation voltage reduces the deterioration of the valve and improves the valve stability.

  7. Multi-port valve assembly

    DOEpatents

    Guggenheim, S. Frederic

    1986-01-01

    A multi-port fluid valve apparatus is used to control the flow of fluids through a plurality of valves and includes a web, which preferably is a stainless steel endless belt. The belt has an aperture therethrough and is progressed, under motor drive and control, so that its aperture is moved from one valve mechanism to another. Each of the valve mechanisms comprises a pair of valve blocks which are held in fluid-tight relationship against the belt. Each valve block consists of a block having a bore through which the fluid flows, a first seal surrounding the bore and a second seal surrounding the first seal, with the distance between the first and second seals being greater than the size of the belt aperture. In order to open a valve, the motor progresses the belt aperture to where it is aligned with the two bores of a pair of valve blocks, such alignment permitting a flow of the fluid through the valve. The valve is closed by movement of the belt aperture and its replacement, within the pair of valve blocks, by a solid portion of the belt.

  8. Recently patented transcatheter aortic valves in clinical trials.

    PubMed

    Neragi-Miandoab, Siyamek; Skripochnik, Edvard; Salemi, Arash; Girardi, Leonard

    2013-12-01

    The most widely used heart valve worldwide is the Edwards Sapien, which currently has 60% of the worldwide transcatheter aortic valve implantation (TAVI) market. The CoreValve is next in line in popularity, encompassing 35% of the worldwide TAVI market. Although these two valves dominate the TAVI market, a number of newer transcatheter valves have been introduced and others are in early clinical evaluation. The new valves are designed to reduce catheter delivery diameter, improve ease of positioning and sealing, and facilitate repositioning or removal. The most recent transcatheter valves for transapical use include Acurate TA (Symetis), Engager (Medtronic), and JenaValve the Portico (St Jude), Sadra Lotus Medical (Boston Scientific), and the Direct Flow Medical. These new inventions may introduce more effective treatment options for high-risk patients with severe aortic stenosis. Improvements in transcatheter valves and the developing variability among them may allow for more tailored approaches with respect to patient's anatomy, while giving operators the opportunity to choose devices they feel more comfortable with. Moreover, introducing new devices to the market will create a competitive environment among producers that will reduce high prices and expand availability. The present review article includes a discussion of recent patents related to Transcatheter Aortic Valves.

  9. Electrically Controlled Valve With Small Motor

    NASA Technical Reports Server (NTRS)

    Reinicke, Robert H.; Mohtar, Rafic; Nelson, Richard O.

    1992-01-01

    Design of electrically controlled valve exploits force-multiplying principle to overcome large back-pressure force resisting initial opening. Design makes possible to open valve by use of relatively small motor adequate for rest of valve motion, but otherwise not large enough to open valve. In simple linear lifting, small horizontal forces applied to pair of taut cables to lift large weight through short distance. In rotary lifting, similar effect achieved by rotating, about an axis, disk to which initially axial cables attached.

  10. Cavitation guide for control valves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tullis, J.P.

    1993-04-01

    This guide teaches the basic fundamentals of cavitation to provide the reader with an understanding of what causes cavitation, when it occurs, and the potential problems cavitation can cause to a valve and piping system. The document provides guidelines for understanding how to reduce the cavitation and/or select control valves for a cavitating system. The guide provides a method for predicting the cavitation intensity of control valves, and how the effect of cavitation on a system will vary with valve type, valve function, valve size, operating pressure, duration of operation and details of the piping installation. The guide defines sixmore » cavitation limits identifying cavitation intensities ranging from inception to the maximum intensity possible. The intensity of the cavitation at each limit Is described, including a brief discussion of how each level of cavitation influences the valve and system. Examples are included to demonstrate how to apply the method, including making both size and pressure scale effects corrections. Methods of controlling cavitation are discussed providing information on various techniques which can be used to design a new system or modify an existing one so it can operate at a desired level of cavitation.« less

  11. Non-linear control of a hydraulic piezo-valve using a generalised Prandtl-Ishlinskii hysteresis model

    NASA Astrophysics Data System (ADS)

    Stefanski, Frederik; Minorowicz, Bartosz; Persson, Johan; Plummer, Andrew; Bowen, Chris

    2017-01-01

    The potential to actuate proportional flow control valves using piezoelectric ceramics or other smart materials has been investigated for a number of years. Although performance advantages compared to electromagnetic actuation have been demonstrated, a major obstacle has proven to be ferroelectric hysteresis, which is typically 20% for a piezoelectric actuator. In this paper, a detailed study of valve control methods incorporating hysteresis compensation is made for the first time. Experimental results are obtained from a novel spool valve actuated by a multi-layer piezoelectric ring bender. A generalised Prandtl-Ishlinskii model, fitted to experimental training data from the prototype valve, is used to model hysteresis empirically. This form of model is analytically invertible and is used to compensate for hysteresis in the prototype valve both open loop, and in several configurations of closed loop real time control system. The closed loop control configurations use PID (Proportional Integral Derivative) control with either the inverse hysteresis model in the forward path or in a command feedforward path. Performance is compared to both open and closed loop control without hysteresis compensation via step and frequency response results. Results show a significant improvement in accuracy and dynamic performance using hysteresis compensation in open loop, but where valve position feedback is available for closed loop control the improvements are smaller, and so conventional PID control may well be sufficient. It is concluded that the ability to combine state-of-the-art multi-layer piezoelectric bending actuators with either sophisticated hysteresis compensation or closed loop control provides a route for the creation of a new generation of high performance piezoelectric valves.

  12. The effectiveness of a double-stem injection valve in controlling combustion in a compression-ignition engine

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Whitney, E G

    1931-01-01

    An investigation was made to determine to what extent the rates of combustion in a compression-ignition engine can be controlled by varying the rates of fuel injection. The tests showed that the double-stem valve operated satisfactorily under all normal injection conditions; the rate of injection has a definite effect on the rate of combustion; the engine performance with the double-stem valve was inferior to that obtained with a single-stem valve; and the control of injection rates permitted by an injection valve of two stages of discharge is not sufficient to effect the desired rates of combustion.

  13. Feasibility and testing of lighweight, energy efficient, additive manufactured pneumatic control valve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Love, Lonnie J.; Mell, Ellen

    2015-02-01

    AeroValve s innovative pneumatic valve technology recycles compressed air through the valve body with each cycle of the valve, and was reported to reduce compressed air requirements by an average of 25% 30%.This technology collaboration project between ORNL and Aerovalve confirms the energy efficiency of valve performance. Measuring air consumption per work completed, the AeroValve was as much as 85% better than the commercial Festo valve.

  14. Control Valve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Wayne R.

    A control valve includes a first conduit having a first inlet and a first outlet and defining a first passage; a second conduit having a second inlet and a second outlet and defining a second passage, the second conduit extending into the first passage such that the second inlet is located within the first passage; and a valve plate disposed pivotably within the first passage, the valve plate defining a valve plate surface. Pivoting of the valve plate within the first passage varies flow from the first inlet to the first outlet and the valve plate is pivotal between amore » first position and a second position such that in the first position the valve plate substantially prevents fluid communication between the first passage and the second passage and such that in the second position the valve plate permits fluid communication between the first passage and the second passage.« less

  15. Design of pneumatic proportional flow valve type 5/3

    NASA Astrophysics Data System (ADS)

    Laski, P. A.; Pietrala, D. S.; Zwierzchowski, J.; Czarnogorski, K.

    2017-08-01

    In this paper the 5/3-way pneumatic, proportional flow valve was designed and made. Stepper linear actuator was used to move the spool. The valve is controlled by the controlled based on a AVR microcontroller. Virtual model of the valve was created in CAD. The real element was made based on a standard 5/3-way manually actuated valve with hand lever, which was dismounted and replaced by linear stepper motor. All the elements was mounted in a specially made housing. The controller consists of microcontroller Atmega16, integrated circuit L293D, display, two potentiometers, three LEDs and six buttons. Series of research was also conducted. Simulation research were performed using CFD by the Flow Simulation addition to SolidWorks. During the experiments the valve characteristics of flow and pressure was determined.

  16. Load control system. [for space shuttle external tank ground tests

    NASA Technical Reports Server (NTRS)

    Grosse, J. C.

    1977-01-01

    The load control system developed for the shuttle external structural tests is described. The system consists of a load programming/display module, and a load control module along with the following hydraulic system components: servo valves, dump valves, hydraulic system components, and servo valve manifold blocks. One load programming/display subsystem can support multiple load control subsystem modules.

  17. Verification of the Chesapeake Bay Model.

    DTIC Science & Technology

    1981-12-01

    points on the model. Each inflow control unit consists of a pressure regulator , a digital flow control valve, and a flowmeter (Fig- ure 8). A mechanical...spring-type pressure regulator ensures constant pressure to the digital flow control valve. Each digital valve contains eight solenoid valve actuators...FT) =0.798 EEOC 1DGS 2.78 EPOCH (DEGS) - 11. 84 3 DATA TAKEN: AC(0) = 0. 11 38 F T A (0)= 0. 1653 FT 28 MAR 1978 RANGE (FT) - 1.638 RANGE (FT

  18. Energy efficient fluid powered linear actuator with variable area

    DOEpatents

    Lind, Randall F.; Love, Lonnie J.

    2016-09-13

    Hydraulic actuation systems having variable displacements and energy recovery capabilities include cylinders with pistons disposed inside of barrels. When operating in energy consuming modes, high speed valves pressurize extension chambers or retraction chambers to provide enough force to meet or counteract an opposite load force. When operating in energy recovery modes, high speed valves return a working fluid from extension chambers or retraction chambers, which are pressurized by a load, to an accumulator for later use.

  19. Unsteady Analyses of Valve Systems in Rocket Engine Testing Environments

    NASA Technical Reports Server (NTRS)

    Shipman, Jeremy; Hosangadi, Ashvin; Ahuja, Vineet

    2004-01-01

    This paper discusses simulation technology used to support the testing of rocket propulsion systems by performing high fidelity analyses of feed system components. A generalized multi-element framework has been used to perform simulations of control valve systems. This framework provides the flexibility to resolve the structural and functional complexities typically associated with valve-based high pressure feed systems that are difficult to deal with using traditional Computational Fluid Dynamics (CFD) methods. In order to validate this framework for control valve systems, results are presented for simulations of a cryogenic control valve at various plug settings and compared to both experimental data and simulation results obtained at NASA Stennis Space Center. A detailed unsteady analysis has also been performed for a pressure regulator type control valve used to support rocket engine and component testing at Stennis Space Center. The transient simulation captures the onset of a modal instability that has been observed in the operation of the valve. A discussion of the flow physics responsible for the instability and a prediction of the dominant modes associated with the fluctuations is presented.

  20. Actuator stiction compensation via variable amplitude pulses.

    PubMed

    Arifin, B M S; Munaro, C J; Angarita, O F B; Cypriano, M V G; Shah, S L

    2018-02-01

    A novel model free stiction compensation scheme is developed which eliminates the oscillations and also reduces valve movement, allowing good setpoint tracking and disturbance rejection. Pulses with varying amplitude are added to the controller output to overcome stiction and when the error becomes smaller than a specified limit, the compensation ceases and remains in a standby mode. The compensation re-starts as soon as the error exceeds the user specified threshold. The ability to cope with uncertainty in friction is a feature achieved by the use of pulses of varying amplitude. The algorithm has been evaluated via simulation and by application on an industrial DCS system interfaced to a pilot scale process with features identical to those found in industry including a valve positioner. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Monitoring circuit accurately measures movement of solenoid valve

    NASA Technical Reports Server (NTRS)

    Gillett, J. D.

    1966-01-01

    Solenoid operated valve in a control system powered by direct current issued to accurately measure the valve travel. This system is currently in operation with a 28-vdc power system used for control of fluids in liquid rocket motor test facilities.

  2. Dual-Use Partnership Addresses Performance Problems with "Y" Pattern Control Valves

    NASA Technical Reports Server (NTRS)

    Bailey, John W.

    2004-01-01

    A Dual-Use Cooperative Agreement between the Propulsion Test Directorate (PTD) at Stennis Space Center (SSC) and Oceaneering Reflange, Inc. of Houston, TX has produced an improved 'Y' pattern split-body control valve for use in the propulsion test facilities at Stennis Space Center. The split-body, or clamped bonnet technology, provides for a 'cleaner' valve design featuring enhanced performance and increased flow capacity with extended life expectancy. Other points addressed by the partnership include size, weight and costs. Overall size and weight of each valve will be reduced by 50% compared to valves currently in use at SSC. An initial procurement of two 10 inch valves will result in an overall cost reduction of 15% or approximately $50,000 per valve.

  3. High cleanliness globe valve with sine mechanism drive

    NASA Astrophysics Data System (ADS)

    Luo, Hu

    2018-06-01

    This paper gives a new type of quick-opening globe valve for life support pneumatic control system of the safety cabin at underground coal mine. The valve adopts the sine mechanism to transmit the rotating of the handle in the range of 90° to the reciprocating motion of the spool. The mechanism implements the quick-opening function of the valve through controlling the contact and separation between the O-ring and the end face of the valve. Since there is no relative sliding between the sealing interfaces, the valve solute uncontrollable disadvantage wear particles which produced by package ball valve, to ensure high cleanliness in flow path. Traditional transmission mechanism has a reinforcement effect and reduce handle open torque. By the finite element method, the relationship between the contact force and the compression of O-ring is analyzed to provide the boundary condition for the calculation of the rotational torque. Meanwhile the velocity field and pressure field along the flow path are simulated. The caliber size of the valve and the flow resistance coefficient are obtained. There is higher cleanliness, more reliable sealing, smaller handle open torque advantage compared with existing packing ball valve. The above work presents a new technical approach for the design of pneumatic control valve of the safety cabin.

  4. Heart valve scaffold fabrication: Bioinspired control of macro-scale morphology, mechanics and micro-structure.

    PubMed

    D'Amore, Antonio; Luketich, Samuel K; Raffa, Giuseppe M; Olia, Salim; Menallo, Giorgio; Mazzola, Antonino; D'Accardi, Flavio; Grunberg, Tamir; Gu, Xinzhu; Pilato, Michele; Kameneva, Marina V; Badhwar, Vinay; Wagner, William R

    2018-01-01

    Valvular heart disease is currently treated with mechanical valves, which benefit from longevity, but are burdened by chronic anticoagulation therapy, or with bioprosthetic valves, which have reduced thromboembolic risk, but limited durability. Tissue engineered heart valves have been proposed to resolve these issues by implanting a scaffold that is replaced by endogenous growth, leaving autologous, functional leaflets that would putatively eliminate the need for anticoagulation and avoid calcification. Despite the diversity in fabrication strategies and encouraging results in large animal models, control over engineered valve structure-function remains at best partial. This study aimed to overcome these limitations by introducing double component deposition (DCD), an electrodeposition technique that employs multi-phase electrodes to dictate valve macro and microstructure and resultant function. Results in this report demonstrate the capacity of the DCD method to simultaneously control scaffold macro-scale morphology, mechanics and microstructure while producing fully assembled stent-less multi-leaflet valves composed of microscopic fibers. DCD engineered valve characterization included: leaflet thickness, biaxial properties, bending properties, and quantitative structural analysis of multi-photon and scanning electron micrographs. Quasi-static ex-vivo valve coaptation testing and dynamic organ level functional assessment in a pressure pulse duplicating device demonstrated appropriate acute valve functionality. Copyright © 2017. Published by Elsevier Ltd.

  5. The development of a microprocessor-controlled linearly-actuated valve assembly

    NASA Technical Reports Server (NTRS)

    Wall, R. H.

    1984-01-01

    The development of a proportional fluid control valve assembly is presented. This electromechanical system is needed for space applications to replace the current proportional flow controllers. The flow is controlled by a microprocessor system that monitors the control parameters of upstream pressure and requested volumetric flow rate. The microprocessor achieves the proper valve stem displacement by means of a digital linear actuator. A linear displacement sensor is used to measure the valve stem position. This displacement is monitored by the microprocessor system as a feedback signal to close the control loop. With an upstream pressure between 15 and 47 psig, the developed system operates between 779 standard CU cm/sec (SCCS) and 1543 SCCS.

  6. 25. Typical valves used to control flow into and out ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Typical valves used to control flow into and out of filtration bed. Left valve (painted red) drains the bed, and center valve (painted green) admits water into the bed. The right valve is a cross over valve which is used to admit water into a dry bed from the bottom. This bottom fill excludes entrapped air as the bed is filled. When the water reached to top of the bed, filling is continued from the top of the bed. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  7. Optimal Control of the Valve Based on Traveling Wave Method in the Water Hammer Process

    NASA Astrophysics Data System (ADS)

    Cao, H. Z.; Wang, F.; Feng, J. L.; Tan, H. P.

    2011-09-01

    Valve regulation is an effective method for process control during the water hammer. The principle of d'Alembert traveling wave theory was used in this paper to construct the exact analytical solution of the water hammer, and the optimal speed law of the valve that can reduce the water hammer pressure in the maximum extent was obtained. Combining this law with the valve characteristic curve, the principle corresponding to the valve opening changing with time was obtained, which can be used to guide the process of valve closing and to reduce the water hammer pressure in the maximum extent.

  8. Development of a smart type motor operated valve for nuclear power plants

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Hwoi; Park, Joo-Hyun; Lee, Dong-young; Koo, In-Soo

    2005-12-01

    In this paper, the design concept of the smart type motor operator valve for nuclear power plant was described. The development objective of the smart valve is to achieve superior accuracy, long-term reliability, and ease of use. In this reasons, developed smart valve has fieldbus communication such as deviceNet and Profibus-DP, auto-tuning PID controller, self-diagnostics, and on-line calibration capabilities. And also, to achieve pressure, temperature, and flow control with internal PID controller, the pressure sensor and transmitter were included in this valve. And, temperature and flow signal acquisition port was prepared. The developed smart valve will be performed equipment qualification test such as environment, EMI/EMC, and vibration in Korea Test Lab. And, the valve performance is tested in a test loop which is located in Seoul National University Lab. To apply nuclear power plant, the software is being developed according to software life cycle. The developed software is verified by independent software V and V team. It is expected that the smart valve can be applied to an existing NPPs for replacing or to a new nuclear power plants. The design and fabrication of smart valve is now being processed.

  9. THERMALLY OPERATED VAPOR VALVE

    DOEpatents

    Dorward, J.G. Jr.

    1959-02-10

    A valve is presented for use in a calutron to supply and control the vapor to be ionized. The invention provides a means readily operable from the exterior of the vacuum tank of the apparatuss without mechanical transmission of forces for the quick and accurate control of the ionizing arc by a corresponding control of gas flow theretos thereby producing an effective way of carefully regulating the operation of the calutron. The invention consists essentially of a tube member extending into the charge bottle of a calutron devices having a poppet type valve closing the lower end of the tube. An electrical heating means is provided in the valve stem to thermally vary the length of the stem to regulate the valve opening to control the flow of material from the charge bottle.

  10. Fail-safe bidirectional valve driver

    NASA Technical Reports Server (NTRS)

    Fujimoto, H.

    1974-01-01

    Cross-coupled diodes are added to commonly used bidirectional valve driver circuit to protect circuit and power supply. Circuit may be used in systems requiring fail-safe bidirectional valve operation, particularly in chemical- and petroleum-processing control systems and computer-controlled hydraulic or pneumatic systems.

  11. Liquid-fuel valve with precise throttling control

    NASA Technical Reports Server (NTRS)

    Mcdougal, A. R.; Porter, R. N.; Riebling, R. W.

    1971-01-01

    Prototype liquid-fuel valve performs on-off and throttling functions in vacuum without component cold-welding or excessive leakage. Valve design enables simple and rapid disassembly and parts replacement and operates with short working stroke, providing maximum throttling sensitivity commensurate with good control.

  12. Calibration of sonic valves for the laminar flow control, leading-edge flight test

    NASA Technical Reports Server (NTRS)

    Petley, D. H.; Alexander, W., Jr.; Wright, A. S., Jr.; Vallas, M.

    1985-01-01

    Sonic needle valves were calibrated to measure and control airflow in the suction system for the leading-edge flight test. The procedure and results for the calibration flow test of 4:41 flight valves are given. Mass-flow rates, which ranged from 0.001 to 0.012 lbm/sec, and maximum back pressure were measured for total temperatures from -30 F to 75 F and total pressures from 120 to 540 psf. Correlating equations are obtained for mass-flow rate as a function of total pressure, total temperature, and valve opening length. The most important aspect of flow measurement and control is found to be the measurement of valve opening length.

  13. 40 CFR 89.309 - Analyzers required for gaseous emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... probe is below 190 °C, the temperature of the valves, pipework, and so forth, must be controlled so as... probe is above 190 °C, the temperature of the valves, pipework, and so forth, must be controlled so as... items, following the sample probe, in the given order: (A) Pipework, valves, and so forth, controlled so...

  14. 40 CFR 89.309 - Analyzers required for gaseous emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... probe is below 190 °C, the temperature of the valves, pipework, and so forth, must be controlled so as... probe is above 190 °C, the temperature of the valves, pipework, and so forth, must be controlled so as... items, following the sample probe, in the given order: (A) Pipework, valves, and so forth, controlled so...

  15. Profile of Heart Donors from the Human Valve Bank of the Santa Casa de Misericórdia de Curitiba.

    PubMed

    Ferreira, Renata Maria; da Costa, Marise Teresinha Brenner Affonso; Canciglieri Junior, Osiris; Sant'Anna, Ângelo Márcio Oliveira

    2016-04-01

    Human heart valves are used as replacement valves and have satisfactory functional results compared with conventional prostheses. Characterize the profile of effective heart donors from the human valve bank of the santa casa de misericórdia de curitiba and analyze the association between the profile variables. It consists of a retrospective and quantitative study of electronic medical records from heart donors for heart valves. every heart donation made to the bank between january 2004 and december 2014 was studied. 2,149 donations were analyzed, from donors aged 0 to 71 years old, with an average of 34.9 ± 15.03 years old. most donors were male 65.7% (n=1,411) and 34.3% (n=738) were female. among the most frequent causes of the donors' death are trauma at 53% (n=1,139) and cerebral vascular accident at 34.2% (n=735). there was significant statistical association between the analyzed variables. There has been an improvement in brazil's donation rate, being essential that the tissue banks work together with the state and federal district centers for notification, procurement and distribution of organs in order to increase the number of donors.

  16. Comparison of the Long-Term Outcomes of Mechanical and Bioprosthetic Aortic Valves - A Propensity Score Analysis.

    PubMed

    Minakata, Kenji; Tanaka, Shiro; Tamura, Nobushige; Yanagi, Shigeki; Ohkawa, Yohei; Okonogi, Shuichi; Kaneko, Tatsuo; Usui, Akihiko; Abe, Tomonobu; Shimamoto, Mitsuomi; Takahara, Yoshiharu; Yamanaka, Kazuo; Yaku, Hitoshi; Sakata, Ryuzo

    2017-07-25

    The aim of this study was to assess the long-term outcomes of aortic valve replacement (AVR) with either mechanical or bioprosthetic valves according to age at operation.Methods and Results:A total of 1,002 patients (527 mechanical valves and 475 bioprosthetic valves) undergoing first-time AVR were categorized according to age at operation: group Y, age <60 years; group M, age 60-69 years; and group O, age ≥70 years). Outcomes were compared on propensity score analysis (adjusted for 28 variables). Hazard ratio (HR) was calculated using the Cox regression model with adjustment for propensity score with bioprosthetic valve as a reference (HR=1). There were no significant differences in overall mortality between mechanical and bioprosthetic valves for all age groups. Valve-related mortality was significantly higher for mechanical valves in group O (HR, 2.53; P=0.02). Reoperation rate was significantly lower for mechanical valves in group Y (HR, 0.16; P<0.01) and group M (no events for mechanical valves). Although the rate of thromboembolic events was higher in mechanical valves in group Y (no events for tissue valves) and group M (HR, 9.05; P=0.03), there were no significant differences in bleeding events between all age groups. The type of prosthetic valve used in AVR does not significantly influence overall mortality.

  17. Zero-leak valve

    NASA Technical Reports Server (NTRS)

    Macglashan, W. F., Jr.

    1980-01-01

    Zero-leakage valve has fluid-sealing diaphragm support and flat sievelike sealing surface. Diaphragm-support valve is easy to fabricate and requires minimum maintenance. Potential applications include isolation valve for waste systems and remote air-actuated valve. Device is also useful in controlling flow of liquid fluorine and corrosive fluids at high pressures.

  18. 40 CFR Table W - 4 of Subpart W of Part 98-Default Total Hydrocarbon Emission Factors for Underground Natural Gas...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Population Emission Factors—Storage Wellheads, Gas Service Connector 0.01 Valve 0.1 Pressure Relief Valve 0.17 Open Ended Line 0.03 Population Emission Factors—Other Components, Gas Service Low Continuous... Bleed Pneumatic Device Vents 2 2.35 1 Valves include control valves, block valves and regulator valves...

  19. 40 CFR Table W - 4 of Subpart W of Part 98-Default Total Hydrocarbon Emission Factors for Underground Natural Gas...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Population Emission Factors—Storage Wellheads, Gas Service Connector 0.01 Valve 0.1 Pressure Relief Valve 0.17 Open Ended Line 0.03 Population Emission Factors—Other Components, Gas Service Low Continuous... Bleed Pneumatic Device Vents 2 2.35 1 Valves include control valves, block valves and regulator valves...

  20. Characterization of Engine Control Authority on HCCI Combustion as the High Load Limit is Approached

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szybist, James P; Edwards, Kevin Dean; Foster, Matthew

    2013-01-01

    While the potential emissions and efficiency benefits of homogeneous charge compression ignition (HCCI) combustion are well known, realizing the potentials on a production intent engine presents numerous challenges. In this study we focus on characterizing the authority of the available engine controls as the high load limit of HCCI combustion is approached. The experimental work is performed on a boosted single-cylinder research engine equipped with direct injection (DI) fueling, cooled external exhaust gas recirculation (EGR), and a hydraulic valve actuation (HVA) valve train to enable the negative valve overlap (NVO) breathing strategy. Valve lift and duration are held constant whilemore » phasing is varied in an effort to make the results as relevant as possible to production intent cam-based variable valve actuation (VVA) systems on multi-cylinder engines. Results presented include engine loads from 350 to 650 kPa IMEPnet and manifold pressure from 98 to 190 kPaa at 2000 rpm. It is found that in order to increase engine load to 650 kPa IMEPnet, it is necessary to increase manifold pressure and external EGR while reducing the NVO duration. Both NVO duration and fuel injection timing are effective means of controlling combustion phasing, with NVO duration being a coarse control and fuel injection timing being a fine control. NOX emissions are low throughout the study, with emissions below 0.1 g/kW-h at all boosted HCCI conditions, while good combustion efficiency is maintained (>96.5%). Net indicated thermal efficiency increases with load up to 600 kPa IMEPnet, where a peak efficiency of 41% is achieved. Results of independent parametric investigations are presented on the effect of external EGR, intake effect of manifold pressure, and the effect of NVO duration. It is found that increasing EGR at a constant manifold pressure and increasing manifold pressure at a constant EGR rate both have the effect of retarding combustion phasing. It is also found that combustion phasing becomes increasingly sensitive to NVO duration as engine load increases. Finally, comparisons are made between three commonly used noise metrics (AVL noise meter, ringing intensity (RI), and maximum pressure rise rate (MPRR)). It is found that compared to the AVL noise meter, RI significantly underestimates combustion noise under boosted conditions.« less

  1. Valving for controlling a fluid-driven reciprocating apparatus

    DOEpatents

    Whitehead, John C.

    1995-01-01

    A pair of control valve assemblies for alternately actuating a pair of fluid-driven free-piston devices by using fluid pressure communication therebetween. Each control valve assembly is switched by a pressure signal depending on the state of its counterpart's piston. The communication logic is arranged to provide overlap of the forward strokes of the pistons, so that at least one of the pair will always be pressurized. Thus, uninterrupted pumping of liquid is made possible from a pair of free-piston pumps. In addition, the speed and frequency of piston stroking is entirely dependent on the mechanical power load applied. In the case of a pair of pumps, this enables liquid delivery at a substantially constant pressure over the full range of flow rates, from zero to maximum flow. Each of the valve assemblies uses an intake-exhaust valve and a signal valve with the signal valve of one pump being connected to be pressure responsive to the piston of the opposite cylinder or pump.

  2. Valving for controlling a fluid-driven reciprocating apparatus

    DOEpatents

    Whitehead, J.C.

    1995-06-27

    A pair of control valve assemblies is described for alternately actuating a pair of fluid-driven free-piston devices by using fluid pressure communication therebetween. Each control valve assembly is switched by a pressure signal depending on the state of its counterpart`s piston. The communication logic is arranged to provide overlap of the forward strokes of the pistons, so that at least one of the pair will always be pressurized. Thus, uninterrupted pumping of liquid is made possible from a pair of free-piston pumps. In addition, the speed and frequency of piston stroking is entirely dependent on the mechanical power load applied. In the case of a pair of pumps, this enables liquid delivery at a substantially constant pressure over the full range of flow rates, from zero to maximum flow. Each of the valve assemblies uses an intake-exhaust valve and a signal valve with the signal valve of one pump being connected to be pressure responsive to the piston of the opposite cylinder or pump. 15 figs.

  3. Tracking control of a spool displacement in a direct piezoactuator-driven servo valve system

    NASA Astrophysics Data System (ADS)

    Han, Chulhee; Hwang, Yong-Hoon; Choi, Seung-Bok

    2017-03-01

    This paper presents tracking control performances of a piezostack direct drive valve (PDDV) operated at various temperatures. As afirst step, a spool valve and valve system are designed operated by the piezoactuator. After briefly describing about operating principle, an experimental apparatus to investigate the effect of temperaturs on the performances is set up. Subsequently, the PDDV is installed in a large-size heat chamber equipped with electric circuits and sensors. A classical proportional-integral-derivative (PID) controller is designed and applied to control the spool displacement. In addition, a fuzzt algorithm is integrated with the PID controller to enhace performance of the proposed valve system. The tracking performance of a spool displacement is tested by increasing the teperature and exciting frequency up to 150°C and 200 Hz, respectively. It is shown that the tracking performance heavily depends on both the operating temperature and the excitation frequency.

  4. Evaluation of a high response electrohydraulic digital control valve

    NASA Technical Reports Server (NTRS)

    Anderson, R. L.

    1973-01-01

    The application is described of a digital control valve on an electrohydraulic servo actuator. The digital control problem is discussed in general as well as the design and evaluation of a breadboard actuator. The evaluation revealed a number of problems associated with matching the valve to a hydraulic load. The problems were related to lost motion resulting from bulk modulus and leakage. These problems were effectively minimized in the breadboard actuator by maintaining a 1000 psi back pressure on the valve circuit and thereby improving the effective bulk modulus.

  5. Energy efficient fluid powered linear actuator with variable area and concentric chambers

    DOEpatents

    Lind, Randall F.; Love, Lonnie J.

    2016-11-15

    Hydraulic actuation systems having concentric chambers, variable displacements and energy recovery capabilities include cylinders with pistons disposed inside of barrels. When operating in energy consuming modes, high speed valves pressurize extension chambers or retraction chambers to provide enough force to meet or counteract an opposite load force. When operating in energy recovery modes, high speed valves return a working fluid from extension chambers or retraction chambers, which are pressurized by a load, to an accumulator for later use.

  6. Association between aortic valve calcification measured on non-contrast computed tomography and aortic valve stenosis in the general population.

    PubMed

    Paulsen, Niels Herluf; Carlsen, Bjarke Bønløkke; Dahl, Jordi Sanchez; Carter-Storch, Rasmus; Christensen, Nicolaj Lyhne; Khurrami, Lida; Møller, Jacob Eifer; Lindholt, Jes Sandal; Diederichsen, Axel Cosmus Pyndt

    2016-01-01

    Aortic valve calcification (AVC) measured on non-contrast computed tomography (CT) has shown correlation to severity of aortic valve stenosis (AS) and mortality in patients with known AS. The aim of this study was to determine the association of CT verified AVC and subclinical AS in a general population undergoing CT. CT scans from 566 randomly selected male participants (age 65-74) in the Danish cardiovascular screening study (DANCAVAS) were analyzed for AVC. All participants with a moderately or severely increased AVC score (≥300 arbitrary units (AU)) and a matched control group were invited for a supplementary echocardiography. AS was graded by indexed aortic valve area (AVAi) on echocardiography as moderate 0.6-0.85 cm(2)/m(2) and severe < 0.6 cm(2)/m(2), respectively. ROC- and regression analyses were performed. Due to prior valve surgery, and artifacts from ICD leads 16 individuals were excluded from the AVC scoring. Moderate or severe increased AVC was observed in 10.7% (95% CI: 8.4-13.7). Echocardiography was performed in 101 individuals; 32.7% (95% CI: 21.8 to 46.0) with moderate or high AVC score had moderate or severe AS, while none with no or low AVC. A ROC analysis defined an AVC score ≥588 AU to be suggestive of moderate or severe AS (AUC 0.89 ± 0.04, sensitivity 83% and specificity 87%). In the univariate analyses, AVC was the only variable significantly associated with AS. This study indicates an association between CT verified AVC and subclinical AS. Copyright © 2016 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.

  7. Biologic variability of N-terminal pro-brain natriuretic peptide in healthy dogs and dogs with myxomatous mitral valve disease.

    PubMed

    Winter, Randolph L; Saunders, Ashley B; Gordon, Sonya G; Buch, Jesse S; Miller, Matthew W

    2017-04-01

    To determine the biologic variability of N-terminal pro-brain natriuretic peptide (NTproBNP) in healthy dogs and dogs with various stages of myxomatous mitral valve disease (MMVD). Thirty-eight privately owned dogs: 28 with MMVD and 10 healthy controls. Prospective clinical study with comprehensive evaluation used to group dogs as healthy or into three stages of MMVD based on current guidelines. NTproBNP was measured hourly, daily, and weekly. For each group, analytical (CV A ), within-subject (CV I ), and between-subject (CV G ) coefficients of variability were calculated in addition to percent critical change value (CCV) and index of individuality (IoI). For healthy dogs, calculated NTproBNP values were: CV A  = 4.2%; CV I  = 25.2%; CV G  = 49.3%; IoI = 0.52, and CCV = 70.8%. For dogs with MMVD, calculated NTproBNP values were: CV A  = 6.2%; CV I  = 20.0%; CV G  = 61.3%; IoI = 0.34, and CCV = 58.2%. Biologic variability affects NTproBNP concentrations in healthy dogs and dogs with MMVD. Monitoring serial individual changes in NTproBNP may be clinically relevant in addition to using population-based reference ranges to determine changes in disease status. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Use of signal analysis of heart sounds and murmurs to assess severity of mitral valve regurgitation attributable to myxomatous mitral valve disease in dogs.

    PubMed

    Ljungvall, Ingrid; Ahlstrom, Christer; Höglund, Katja; Hult, Peter; Kvart, Clarence; Borgarelli, Michele; Ask, Per; Häggström, Jens

    2009-05-01

    To investigate use of signal analysis of heart sounds and murmurs in assessing severity of mitral valve regurgitation (mitral regurgitation [MR]) in dogs with myxomatous mitral valve disease (MMVD). 77 client-owned dogs. Cardiac sounds were recorded from dogs evaluated by use of auscultatory and echocardiographic classification systems. Signal analysis techniques were developed to extract 7 sound variables (first frequency peak, murmur energy ratio, murmur duration > 200 Hz, sample entropy and first minimum of the auto mutual information function of the murmurs, and energy ratios of the first heart sound [S1] and second heart sound [S2]). Significant associations were detected between severity of MR and all sound variables, except the energy ratio of S1. An increase in severity of MR resulted in greater contribution of higher frequencies, increased signal irregularity, and decreased energy ratio of S2. The optimal combination of variables for distinguishing dogs with high-intensity murmurs from other dogs was energy ratio of S2 and murmur duration > 200 Hz (sensitivity, 79%; specificity, 71%) by use of the auscultatory classification. By use of the echocardiographic classification, corresponding variables were auto mutual information, first frequency peak, and energy ratio of S2 (sensitivity, 88%; specificity, 82%). Most of the investigated sound variables were significantly associated with severity of MR, which indicated a powerful diagnostic potential for monitoring MMVD. Signal analysis techniques could be valuable for clinicians when performing risk assessment or determining whether special care and more extensive examinations are required.

  9. 3D Printed Multimaterial Microfluidic Valve.

    PubMed

    Keating, Steven J; Gariboldi, Maria Isabella; Patrick, William G; Sharma, Sunanda; Kong, David S; Oxman, Neri

    2016-01-01

    We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics.

  10. A normally-closed piezoelectric micro-valve with flexible stopper

    NASA Astrophysics Data System (ADS)

    Chen, Song; Lu, Song; Liu, Yong; Wang, Jiantao; Tian, Xiaochao; Liu, Guojun; Yang, Zhigang

    2016-04-01

    In the field of controlled drug delivery system, there are still many problems on those reported micro-valves, such as the small opening height, unsatisfactory particle tolerance and high cost. To solve the above problems, a novel normally-closed piezoelectric micro-valve is presented in this paper. The micro-valve was driven by circular unimorph piezoelectric vibrator and natural rubber membrane with high elasticity was used as the valve stopper. The small axial displacement of piezoelectric vibrator can be converted into a large stroke of valve stopper based on hydraulic amplification mechanism. The experiment indicates that maximum hydraulic amplification ratio is up to 14, and the cut-off pressure of the micro-valve is 39kPa in the case of no working voltage. The presented micro valve has a large flow control range (ranging from 0 to 8.75mL/min).

  11. Hydraulic High Pressure Valve Controller Using the In-Situ Pressure Difference

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor); Hall, Jeffery L. (Inventor); Sherrit, Stewart (Inventor); Bao, Xiaoqi (Inventor)

    2016-01-01

    A hydraulic valve controller that uses an existing pressure differential as some or all of the power source for valve operation. In a high pressure environment, such as downhole in an oil or gas well, the pressure differential between the inside of a pipe and the outside of the pipe may be adequately large to drive a linear slide valve. The valve is operated hydraulically by a piston in a bore. When a higher pressure is applied to one end of the bore and a lower pressure to the other end, the piston moves in response to the pressure differential and drives a valve attached to it. If the pressure differential is too small to drive the piston at a sufficiently high speed, a pump is provided to generate a larger pressure differential to be applied. The apparatus is conveniently constructed using multiport valves, which can be rotary valves.

  12. Variable control of neutron albedo in toroidal fusion devices

    DOEpatents

    Jassby, Daniel L.; Micklich, Bradley J.

    1986-01-01

    An arrangement is provided for controlling neutron albedo in toroidal fusion devices having inboard and outboard vacuum vessel walls for containment of the neutrons of a fusion plasma. Neutron albedo material is disposed immediately adjacent the inboard wall, and is movable, preferably in vertical directions, so as to be brought into and out of neutron modifying communication with the fusion neutrons. Neutron albedo material preferably comprises a liquid form, but may also take pebble, stringer and curtain-like forms. A neutron flux valve, rotatable about a vertical axis is also disclosed.

  13. Parameter tuning method for dither compensation of a pneumatic proportional valve with friction

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Song, Yang; Huang, Leisheng; Fan, Wei

    2016-05-01

    In the practical application of pneumatic control devices, the nonlinearity of a pneumatic control valve become the main factor affecting the control effect, which comes mainly from the dynamic friction force. The dynamic friction inside the valve may cause hysteresis and a dead zone. In this paper, a dither compensation mechanism is proposed to reduce negative effects on the basis of analyzing the mechanism of friction force. The specific dither signal (using a sinusoidal signal) was superimposed on the control signal of the valve. Based on the relationship between the parameters of the dither signal and the inherent characteristics of the proportional servo valve, a parameter tuning method was proposed, which uses a displacement sensor to measure the maximum static friction inside the valve. According to the experimental results, the proper amplitude ranges are determined for different pressures. In order to get the optimal parameters of the dither signal, some dither compensation experiments have been carried out on different signal amplitude and gas pressure conditions. Optimal parameters are determined under two kinds of pressure conditions. Using tuning parameters the valve spool displacement experiment has been taken. From the experiment results, hysteresis of the proportional servo valve is significantly reduced. And through simulation and experiments, the cut-off frequency of the proportional valve has also been widened. Therefore after adding the dither signal, the static and dynamic characteristics of the proportional valve are both improved to a certain degree. This research proposes a parameter tuning method of dither signal, and the validity of the method is verified experimentally.

  14. Lymphangiogenesis is increased in heart valve endocarditis.

    PubMed

    Niinimäki, Eetu; Mennander, Ari A; Paavonen, Timo; Kholová, Ivana

    2016-09-15

    Inflammation-associated lymphangiogenesis (IAL) has been identified as part of several acute and chronic inflammation. Sparse data exist on lymphatics during endocarditis. Fifty-two patients with surgically resected valves were included. Endocarditis was present in 18 aortic and 10 mitral valves. Controls consisted of 15 degenerative aortic and 9 degenerative mitral valves. There were 22 males with endocarditis and 17 males in controls. The mean age was 58 (SD 15) years with endocarditis vs. 62 (SD 13) years for controls. Lymphatics were detected by podoplanin antibody immunohistochemistry and morphometrical analysis was performed. The lymphatic density in endocarditis was 833 (SD 529) vessels/mm(2) (range 0-1707) as compared with 39 (SD 60) vessels/mm(2) (range 0-250) in controls (p=0.000). In endocarditis, the mean lymphatic size was 153 (SD 372) μm(2) ranging from 1 to 2034μm(2), whereas it was 30 (SD 29) μm(2), with maximum 90μm(2) and minimum 2μm(2) in controls (p=0.000). IAL is increased in valves with endocarditis as compared with controls. Lymphatics in heart valves may provide a novel means for treatment strategies against endocarditis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Rankine cycle condenser pressure control using an energy conversion device bypass valve

    DOEpatents

    Ernst, Timothy C; Nelson, Christopher R; Zigan, James A

    2014-04-01

    The disclosure provides a waste heat recovery system and method in which pressure in a Rankine cycle (RC) system of the WHR system is regulated by diverting working fluid from entering an inlet of an energy conversion device of the RC system. In the system, an inlet of a controllable bypass valve is fluidly coupled to a working fluid path upstream of an energy conversion device of the RC system, and an outlet of the bypass valve is fluidly coupled to the working fluid path upstream of the condenser of the RC system such that working fluid passing through the bypass valve bypasses the energy conversion device and increases the pressure in a condenser. A controller determines the temperature and pressure of the working fluid and controls the bypass valve to regulate pressure in the condenser.

  16. Improvement on Main/backup Controller Switching Device of the Nozzle Throat Area Control System for a Turbofan Aero Engine

    NASA Astrophysics Data System (ADS)

    Li, Jie; Duan, Minghu; Yan, Maode; Li, Gang; Li, Xiaohui

    2014-06-01

    A full authority digital electronic controller (FADEC) equipped with a full authority hydro-mechanical backup controller (FAHMBC) is adopted as the nozzle throat area control system (NTACS) of a turbofan aero engine. In order to ensure the switching reliability of the main/backup controller, the nozzle throat area control switching valve was improved from three-way convex desktop slide valve to six-way convex desktop slide valve. Simulation results show that, if malfunctions of FAEDC occur and abnormal signals are outputted from FADEC, NTACS will be seriously influenced by the main/backup controller switching in several working states, while NTACS will not be influenced by using the improved nozzle throat area control switching valve, thus the controller switching process will become safer and smoother and the working reliability of this turbofan aero engine is improved by the controller switching device improvement.

  17. Pressure tracking control of vehicle ABS using piezo valve modulator

    NASA Astrophysics Data System (ADS)

    Jeon, Juncheol; Choi, Seung-Bok

    2011-03-01

    This paper presents a wheel slip control for the ABS(anti-lock brake system) of a passenger vehicle using a controllable piezo valve modulator. The ABS is designed to optimize for braking effectiveness and good steerability. As a first step, the principal design parameters of the piezo valve and pressure modulator are appropriately determined by considering the braking pressure variation during the ABS operation. The proposed piezo valve consists of a flapper, pneumatic circuit and a piezostack actuator. In order to get wide control range of the pressure, the pressure modulator is desired. The modulator consists of a dual-type cylinder filled with different substances (fluid and gas) and a piston rod moving vertical axis to transmit the force. Subsequently, a quarter car wheel slip model is formulated and integrated with the governing equation of the piezo valve modulator. A sliding mode controller to achieve the desired slip rate is then designed and implemented. Braking control performances such as brake pressure and slip rate are evaluated via computer simulations.

  18. Characteristics of an electro-rheological fluid valve used in an inkjet printhead

    NASA Astrophysics Data System (ADS)

    Lee, C. Y.; Liao, W. C.

    2000-12-01

    The demand for non-impact printers has grown considerably with the advent of personal computers. For entry-level mass production, two drop-on-demand techniques have dominated the market - piezoelectric impulse and thermal-bubble types. However, the high cost of the piezoelectric printhead and the thermal problems encountered by the thermal-bubble jet printhead have restrained the use of these techniques in an array-type printhead. In this study, we propose a new design of printhead with an electro-rheological (ER) fluid acting as a control medium. The ER fluid valve controls the ink ejection. As a first step toward developing this new printhead, the characteristics of an ER fluid valve which controls the deflection of the elastic diaphragm are investigated. First, the response of a prototype is tested experimentally to prove the feasibility of using this ER valve for the inkjet printhead. Then, the discretized governing equation of the ER valve is derived. Finally, the prototype of the ER valve is fabricated. The experimental measurement based on the sinusoidal response verifies both the theoretical analysis and the controllability of the response of the ER valve by the applied electric field.

  19. Some Factors Affecting the Reproducibility of Penetration and the Cut-Off of Oil Sprays for Fuel-injection Engines

    NASA Technical Reports Server (NTRS)

    Beardsley, E G

    1928-01-01

    This investigation was undertaken at the Langley Memorial Aeronautical Laboratory in connection with a general research on fuel-injection for aircraft. The purpose of the investigation was to determine the factors controlling the reproducibility of spray penetration and secondary discharges after cut-off. The development of single sprays from automatic injection valves was recorded by means of special high-speed photographic apparatus capable of taking 25 consecutive pictures of the moving spray at a rate of 4,000 per second. The effect of two types of injection valves, injection-valve tube length, initial pressure in the injection-valve tube, speed of the injection control mechanism, and time of spray cut-off, on the reproducibility of spray penetration, and on secondary discharges were investigated. It was found that neither type of injection valve materially affected spray reproducibility. The initial pressure in the injection-valve tube controlled the reproducibility of spray penetrations. An increase in the initial pressure or in the length of the injection-valve tube slightly increased the spray penetration within the limits of this investigation. The speed of the injection-control mechanism did not affect the penetration. Analysis of the results indicates that secondary discharges were caused in this apparatus by pressure waves initiated by the rapid opening of the cut-off valve. The secondary discharges were eliminated in this investigation by increasing the length of the injection-valve tube. (author)

  20. Amyloid substance within stenotic aortic valves promotes mineralization.

    PubMed

    Audet, Audrey; Côté, Nancy; Couture, Christian; Bossé, Yohan; Després, Jean-Pierre; Pibarot, Philippe; Mathieu, Patrick

    2012-10-01

    Accumulation of apolipoproteins may play an important role in the pathobiology of calcific aortic valve disease (CAVD). We aimed to explore the hypothesis that apolipoprotein-derived amyloid could play a role in the development of CAVD. In 70 explanted CAVD valves and 15 control non-calcified aortic valves, we assessed the presence of amyloid by using Congo red staining. Immunohistochemistry was performed to document the presence of apolipoprotein AI (Apo-AI). Apoptosis was documented by terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) studies performed in control and CAVD valves. Control valves were free of amyloid. Deposition of amyloid was detected in all CAVD valves, and the amount was positively correlated with plasma high-density lipoprotein and Apo-AI levels. Apo-AI within CAVD valves co-localized with intense staining of fibrillar amyloid. In turn, deposition of amyloid co-localized with apoptosis near mineralized areas. Isolation of amyloid fibrils confirmed that Apo-AI is a major component of amyloid deposits in CAVD. In vitro, CAVD-derived amyloid extracts increased apoptosis and mineralization of isolated aortic valvular interstitial cells. Apo-AI is a major component of amyloid substance present within CAVD valves. Furthermore, amyloid deposits participate in mineralization in CAVD by promoting apoptosis of valvular interstitial cells. © 2012 Blackwell Publishing Ltd.

  1. 3D Printed Multimaterial Microfluidic Valve

    PubMed Central

    Patrick, William G.; Sharma, Sunanda; Kong, David S.; Oxman, Neri

    2016-01-01

    We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics. PMID:27525809

  2. Development of a Laboratory Test for Multiport Injector Deposits: Approaches 1 and 2.

    DTIC Science & Technology

    1987-09-01

    developed approximately 20 years ago by the U. S. Army at Southwest Research Institute (SwRI) for screening fuels with a tendency to form intake valve de ...the left in Figure 2 was developed specifically to evaluate the fuel- de - positing tendencies in both cold carburetor throat and hot intake valve areas...Carburetor Throttle U-,Removable Plate and Throat Deposit Sleeve De pos iti n Ass emb ly Variable Poerta Intake Valve Depositing Assembl> 1,� V. -A.C

  3. Reliability, Maintainability, and Performance Issues in Hydraulic System Design

    DTIC Science & Technology

    1977-06-01

    the piston and control valve, typically between 0.85 and 0.95 for an integrally mounted valve In a practical hardware installation, the actuator ...around the null position due to internal leakage through the piston seal and in the control valve. A newly installed CH-47 swashplate control actuator ...except when the pump is installed in the manu- facturer’s own test

  4. Twenty-five-year experience with the Björk-Shiley convexoconcave heart valve: a continuing clinical concern.

    PubMed

    Blot, William J; Ibrahim, Michel A; Ivey, Tom D; Acheson, Donald E; Brookmeyer, Ron; Weyman, Arthur; Defauw, Joseph; Smith, J Kermit; Harrison, Donald

    2005-05-31

    The first Björk-Shiley convexoconcave (BSCC) prosthetic heart valves were implanted in 1978. The 25th anniversary provided a stimulus to summarize the research data relevant to BSCC valve fracture, patient management, and current clinical options. Published and unpublished data on the risks of BSCC valve fracture and replacement were compiled, and strategies for identifying candidates for prophylactic valve reoperation were summarized. By December 2003, outlet strut fractures (OSFs), often with fatal outcomes, had been reported in 633 BSCC valves (0.7% of 86,000 valves implanted). Fractures still continue to occur, but average rates of OSFs in 60 degrees valves are now <0.1% per year. OSF risk varies markedly by valve characteristics, especially valve angle and size, with weaker effects associated with other manufacturing variables. OSF risks are mildly lower among women than men but decline sharply with advancing age. The risks of valve replacement typically greatly exceed those of OSF. By comparing individualized estimated risks of OSF versus valve replacement, guidelines have been developed to identify the small percentage of BSCC patients (mostly younger men) who would be expected to have a gain in life expectancy should reoperative surgery be performed. Twenty-five years after the initial BSCC valve implants, fractures continue to occur. Continued monitoring of BSCC patients is needed to track and quantify risks and enable periodic updating of guidelines for patients and their physicians.

  5. Simultaneously firing two cylinders of an even firing camless engine

    DOEpatents

    Brennan, Daniel G

    2014-03-11

    A valve control system includes an engine speed control module that determines an engine speed and a desired engine stop position. A piston position module determines a desired stopping position of a first piston based on the desired engine stop position. A valve control module receives the desired stopping position, commands a set of valves to close at the desired stopping position if the engine speed is less than a predetermined shutdown threshold, and commands the set of valves to reduce the engine speed if the engine speed is greater than the predetermined shutdown threshold.

  6. The Influence of Directed Air Flow on Combustion in Spark-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Spencer, R C

    1939-01-01

    The air movement within the cylinder of the NACA combustion apparatus was regulated by using shrouded inlet valves and by fairing the inlet passage. Rates of combustion were determined at different inlet-air velocities with the engine speed maintained constant and at different engine speeds with the inlet-air velocity maintained approximately constant. The rate of combustion increased when the engine speed was doubled without changing the inlet-air velocity; the observed increase was about the same as the increase in the rate of combustion obtained by doubling the inlet-air velocity without changing the engine speed. Certain types of directed air movement gave great improvement in the reproducibility of the explosions from cycle to cycle, provided that other variables were controlled. Directing the inlet air past the injection valve during injection increased the rate of burning.

  7. Advanced supersonic propulsion study, phase 2. [propulsion system performance, design analysis and technology assessment

    NASA Technical Reports Server (NTRS)

    Howlett, R. A.

    1975-01-01

    A continuation of the NASA/P and WA study to evaluate various types of propulsion systems for advanced commercial supersonic transports has resulted in the identification of two very promising engine concepts. They are the Variable Stream Control Engine which provides independent temperature and velocity control for two coannular exhaust streams, and a derivative of this engine, a Variable Cycle Engine that employs a rear flow-inverter valve to vary the bypass ratio of the cycle. Both concepts are based on advanced engine technology and have the potential for significant improvements in jet noise, exhaust emissions and economic characteristics relative to current technology supersonic engines. Extensive research and technology programs are required in several critical areas that are unique to these supersonic Variable Cycle Engines to realize these potential improvements. Parametric cycle and integration studies of conventional and Variable Cycle Engines are reviewed, features of the two most promising engine concepts are described, and critical technology requirements and required programs are summarized.

  8. Superconducting spin valves controlled by spiral re-orientation in B20-family magnets

    NASA Astrophysics Data System (ADS)

    Pugach, N. G.; Safonchik, M.; Champel, T.; Zhitomirsky, M. E.; Lähderanta, E.; Eschrig, M.; Lacroix, C.

    2017-10-01

    We propose a superconducting spin-triplet valve, which consists of a superconductor and an itinerant magnetic material, with the magnet showing an intrinsic non-collinear order characterized by a wave vector that may be aligned in a few equivalent preferred directions under the control of a weak external magnetic field. Re-orienting the spiral direction allows one to controllably modify long-range spin-triplet superconducting correlations, leading to spin-valve switching behavior. Our results indicate that the spin-valve effect may be noticeable. This bilayer may be used as a magnetic memory element for cryogenic nanoelectronics. It has the following advantages in comparison to superconducting spin valves proposed previously: (i) it contains only one magnetic layer, which may be more easily fabricated and controlled; (ii) its ground states are separated by a potential barrier, which solves the "half-select" problem of the addressed switch of memory elements.

  9. AB0 blood types: impact on development of prosthetic mechanical valve thrombosis

    PubMed Central

    Astarcıoğlu, Mehmet Ali; Kalçık, Macit; Yesin, Mahmut; Gürsoy, Mustafa Ozan; Şen, Taner; Karakoyun, Süleyman; Gündüz, Sabahattin; Özkan, Mehmet

    2016-01-01

    Objective: The non-O alleles of the ABO genotype have been associated with an increased risk of thrombosis. We aimed to assess the association between blood group status and prosthetic valve thrombosis. Methods: The association between AB0 blood group status and prosthetic valve thrombosis was assessed in this retrospective study. Transesophageal echocardiography was performed in 149 patients with a diagnosis of prosthetic valve thrombosis and in 192 control subjects. Results: Non-0 blood group type (p<0.001), presence of NYHA class III-IV status (p<0.001), and central nervous system (p<0.001) and non-central nervous system (p<0.001) emboli were significantly more prevalent in prosthetic valve thrombosis patients than in the control subjects. The incidence of ineffective anticoagulation was higher in patients with prosthetic valve thrombosis than in controls (p<0.001), as was the presence of moderate to severe left atrial spontaneous echo contrast (p<0.001). The non-0 blood prosthetic valve thrombosis subgroup had a higher incidence of obstructive thrombi and central nervous system thrombotic events than having 0 blood prosthetic valve thrombosis subgroup. Non-0 blood group, ineffective anticoagulation, left atrial spontaneous echo contrast, and a poor NYHA functional capacity were identified to be the predictors of prosthetic valve thrombosis. Conclusion: Our data demonstrate that patients with non-0 compared with 0 blood groups have higher incidence of prosthetic valve thrombosis and central nervous system embolism and similar rates of non-central nervous system embolism at presentation compared with 0 blood group type. Thus, non-O blood group may be a risk factor that may be prone to the development of prosthetic valve thrombosis in patients with prosthetic heart valves. PMID:27488753

  10. Quantification of mitral valve regurgitation in dogs with degenerative mitral valve disease by use of the proximal isovelocity surface area method.

    PubMed

    Gouni, Vassiliki; Serres, François J; Pouchelon, Jean-Louis; Tissier, Renaud; Lefebvre, Hervé P; Nicolle, Audrey P; Sampedrano, Carolina Carlos; Chetboul, Valérie

    2007-08-01

    To determine the within-day and between-day variability of regurgitant fraction (RF) assessed by use of the proximal isovelocity surface area (PISA) method in awake dogs with degenerative mitral valve disease (MVD), measure RF in dogs with MVD, and assess the correlation between RF and several clinical and Doppler echocardiographic variables. Prospective study. 6 MVD-affected dogs with no clinical signs and 67 dogs with MVD of differing severity (International Small Animal Cardiac Health Council [ISACHC] classification). The 6 dogs were used to determine the repeatability and reproducibility of the PISA method, and RF was then assessed in 67 dogs of various ISACHC classes. Mitral valve regurgitation was also assessed from the maximum area of regurgitant jet signal-to-left atrium area (ARJ/LAA) ratio determined via color Doppler echocardiographic mapping. Within- and between-day coefficients of variation of RF were 8% and 11%, respectively. Regurgitation fraction was significantly correlated with ISACHC classification and heart murmur grade and was higher in ISACHC class III dogs (mean +/- SD, 72.8 +/- 9.5%) than class II (57.9 +/- 20.1%) or I (40.7 +/- 19.2%) dogs. Regurgitation fraction and left atriumto-aorta ratio, fractional shortening, systolic pulmonary arterial pressure, and ARJ/LAA ratio were significantly correlated. Results suggested that RF is a repeatable and reproducible variable for noninvasive quantitative evaluation of mitral valve regurgitation in awake dogs. Regurgitation fraction also correlated well with disease severity. It appears that this Doppler echocardiographic index may be useful in longitudinal studies of MVD in dogs.

  11. Specific features of the control systems of new-modification 310-330-MW steam turbines manufactured by PAO turboatom

    NASA Astrophysics Data System (ADS)

    Shvetsov, V. L.; Babaev, I. N.

    2017-07-01

    Principal engineering solutions taken by PAO Turboatom when developing the control systems of the 310-325-MW turbines for thermal power stations are set forth. A schematic diagram of the control system is presented and the designs of the retrofitted basic mechanisms, viz., high-pressure steam-distribution unit and the cutoff valve, are described. It is noted that the accepted principles of designing the control systems allow retaining the following advantages of the latter: use of the condensate as a cheap nonflammable working fluid, valveless switches to control the locking servomotors, a mechanical ring-type turbine trip mechanism (TTM) in combination with an actuator fitted with two double-seated actuator valves to control the pressure in the pulse security lines, and a rotary valve to block the triggering of the actuator valves during successive testing of the TTM rings by filling the oil during the operation of the turbine and the subsequent raising of the above valves. The control systems of the new-modification turbines are based on microprocessor hardware using electromechanical converters to drive every cutoff valve as a universal solution that is not oriented towards a particular manufacturer of the control system electronics. Application of a mechanical turbine trip mechanism is acknowledged as indispensable for unconditional guarantee of the safe operation of the turbines irrespective of the presence of the electronic turbine trip mechanism.

  12. Long-Term Risk for Aortic Complications After Aortic Valve Replacement in Patients With Bicuspid Aortic Valve Versus Marfan Syndrome.

    PubMed

    Itagaki, Shinobu; Chikwe, Joanna P; Chiang, Yuting P; Egorova, Natalia N; Adams, David H

    2015-06-09

    Bicuspid aortic valves are associated with valve dysfunction, ascending aortic aneurysm and dissection. Management of the ascending aorta at the time of aortic valve replacement (AVR) in these patients is controversial and has been extrapolated from experience with Marfan syndrome, despite the absence of comparative long-term outcome data. This study sought to assess whether the natural history of thoracic aortopathy after AVR in patients with bicuspid aortic valve disease is substantially different from that seen in patients with Marfan syndrome. In this retrospective comparison, outcomes of 13,205 adults (2,079 with bicuspid aortic valves, 73 with Marfan syndrome, and 11,053 control patients with acquired aortic valve disease) who underwent primary AVR without replacement of the ascending aorta in New York State between 1995 and 2010 were compared. The median follow-up time was 6.6 years. The long-term incidence of thoracic aortic dissection was significantly higher in patients with Marfan syndrome (5.5 ± 2.7%) compared with those with bicuspid valves (0.55 ± 0.21%) and control group patients (0.41 ± 0.08%, p < 0.001). Thoracic aortic aneurysms were significantly more likely to be diagnosed in late follow-up in patients with Marfan syndrome (10.8 ± 4.4%) compared with those with bicuspid valves (4.8 ± 0.8%) and control group patients (1.4 ± 0.2%) (p < 0.001). Patients with Marfan syndrome were significantly more likely to undergo thoracic aortic surgery in late follow-up (10.4 ± 4.3%) compared with those with bicuspid valves (2.5 ± 0.6%) and control group patients (0.50 ± 0.09%) (p < 0.001). The much higher long-term rates of aortic complications after AVR observed in patients with Marfan syndrome compared with those with bicuspid aortic valves confirm that operative management of patients with bicuspid aortic valves should not be extrapolated from Marfan syndrome and support discrete treatment algorithms for these different clinical entities. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  13. Development of a Calibration Rig for a Large Multi-Component Rotor Balance

    DTIC Science & Technology

    2000-05-01

    valve pressure reducer pressure manifold pressure switch pressure transducer pressure relief valve pressure gage off on control valve pressure switch on...Each of the four manifolds has been equipped with a pressure switch , a pressure transducer, a pressure gage, and a pressure relief valve. If the...valve. A pressure switch is installed between the servo valve and the actuator. This pressure switch is used as a diagnostic indicator by the

  14. Line Fluid Actuated Valve Development Program. [for application on the space shuttle

    NASA Technical Reports Server (NTRS)

    Lynch, R. A.

    1975-01-01

    The feasibility of a line-fluid actuated valve design for potential application as a propellant-control valve on the space shuttle was examined. Design and analysis studies of two prototype valve units were conducted and demonstrated performance is reported. It was shown that the line-fluid actuated valve concept offers distinct weight and electrical advantages over alternate valve concepts. Summaries of projected performance and design goals are also included.

  15. 76 FR 28470 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses Involving No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-17

    ... feedwater valves isolation times to the Licensee Controlled Document that is referenced in the Bases and... Document that is referenced in the Bases. The requirements to perform the testing of these isolation valves... feedwater valve isolation times to the Licensee Controlled Document that is referenced in the Bases. In...

  16. 77 FR 23385 - Airworthiness Directives; Fokker Services B.V. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-19

    ... modifying the crossfeed valve control and power supply, the crossfeed indication logic and power supply, and... supply, of the crossfeed indication logic and power supply and of the fuel fire shut-off valve indication... this AD, modify the crossfeed valve control and power supply, the crossfeed indication logic and power...

  17. Study on a linear relationship between limited pressure difference and coil current of on/off valve and its influential factors.

    PubMed

    Zhang, Junzhi; Lv, Chen; Yue, Xiaowei; Li, Yutong; Yuan, Ye

    2014-01-01

    On/off solenoid valves with PWM control are widely used in all types of vehicle electro-hydraulic control systems respecting to their desirable properties of reliable, low cost and fast acting. However, it can hardly achieve a linear hydraulic modulation by using on/off valves mainly due to the nonlinear behaviors of valve dynamics and fluid, which affects the control accuracy significantly. In this paper, a linear relationship between limited pressure difference and coil current of an on/off valve in its critical closed state is proposed and illustrated, which has a great potential to be applied to improve hydraulic control performance. The hydraulic braking system of case study is modeled. The linear correspondence between limited pressure difference and coil current of the inlet valve is simulated and further verified experimentally. Based on validated simulation models, the impacts of key parameters are researched. The limited pressure difference affected by environmental temperatures is experimentally studied, and the amended linear relation is given according to the test data. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  18. The protective arm of the renin-angiotensin system may counteract the intense inflammatory process in fetuses with posterior urethral valves.

    PubMed

    Rocha, Natalia P; Bastos, Fernando M; Vieira, Érica L M; Prestes, Thiago R R; Silveira, Katia D da; Teixeira, Mauro M; Simões E Silva, Ana Cristina

    2018-03-11

    Posterior urethral valve is the most common lower urinary tract obstruction in male children. A high percentage of patients with posterior urethral valve evolve to end-stage renal disease. Previous studies showed that cytokines, chemokines, and components of the renin-angiotensin system contribute to the renal damage in obstructive uropathies. The authors recently found that urine samples from fetuses with posterior urethral valve have increased levels of inflammatory molecules. The aim of this study was to measure renin-angiotensin system molecules and to investigate their correlation with previously detected inflammatory markers in the same urine samples of fetuses with posterior urethral valve. Urine samples from 24 fetuses with posterior urethral valve were collected and compared to those from 22 healthy male newborns at the same gestational age (controls). Renin-angiotensin system components levels were measured by enzyme-linked immunosorbent assay. Fetuses with posterior urethral valve presented increased urinary levels of angiotensin (Ang) I, Ang-(1-7) and angiotensin-converting enzyme 2 in comparison with controls. ACE levels were significantly reduced and Ang II levels were similar in fetuses with posterior urethral valve in comparison with controls. Increased urinary levels of angiotensin-converting enzyme 2 and of Ang-(1-7) in fetuses with posterior urethral valve could represent a regulatory response to the intense inflammatory process triggered by posterior urethral valve. Copyright © 2018 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  19. Influence of pre-injection control parameters on main-injection fuel quantity for an electronically controlled double-valve fuel injection system of diesel engine

    NASA Astrophysics Data System (ADS)

    Song, Enzhe; Fan, Liyun; Chen, Chao; Dong, Quan; Ma, Xiuzhen; Bai, Yun

    2013-09-01

    A simulation model of an electronically controlled two solenoid valve fuel injection system for a diesel engine is established in the AMESim environment. The accuracy of the model is validated through comparison with experimental data. The influence of pre-injection control parameters on main-injection quantity under different control modes is analyzed. In the spill control valve mode, main-injection fuel quantity decreases gradually and then reaches a stable level because of the increase in multi-injection dwell time. In the needle control valve mode, main-injection fuel quantity increases with rising multi-injection dwell time; this effect becomes more obvious at high-speed revolutions and large main-injection pulse widths. Pre-injection pulse width has no obvious influence on main-injection quantity under the two control modes; the variation in main-injection quantity is in the range of 1 mm3.

  20. Profile of Heart Donors from the Human Valve Bank of the Santa Casa de Misericórdia de Curitiba

    PubMed Central

    Ferreira, Renata Maria; da Costa, Marise Teresinha Brenner Affonso; Canciglieri Junior, Osiris; Sant'Anna, Ângelo Márcio Oliveira

    2016-01-01

    Introduction Human heart valves are used as replacement valves and have satisfactory functional results compared with conventional prostheses. Objective Characterize the profile of effective heart donors from the human valve bank of the santa casa de misericórdia de curitiba and analyze the association between the profile variables. Methods It consists of a retrospective and quantitative study of electronic medical records from heart donors for heart valves. every heart donation made to the bank between january 2004 and december 2014 was studied. Results 2,149 donations were analyzed, from donors aged 0 to 71 years old, with an average of 34.9 ± 15.03 years old. most donors were male 65.7% (n=1,411) and 34.3% (n=738) were female. among the most frequent causes of the donors' death are trauma at 53% (n=1,139) and cerebral vascular accident at 34.2% (n=735). there was significant statistical association between the analyzed variables. Conclusion There has been an improvement in brazil's donation rate, being essential that the tissue banks work together with the state and federal district centers for notification, procurement and distribution of organs in order to increase the number of donors. PMID:27556322

  1. 40 CFR Table W - 4 of Subpart W-Default Total Hydrocarbon Emission Factors for Underground Natural Gas Storage

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Connector 5.59 Open-Ended Line 17.27 Pressure Relief Valve 39.66 Meter 19.33 Population Emission Factors... Population Emission Factors—Other Components, Gas Service Low Continuous Bleed Pneumatic Device Vents 2 1.37... Valves include control valves, block valves and regulator valves. 2 Emission Factor is in units of “scf...

  2. KSC-2009-1875

    NASA Image and Video Library

    2009-02-25

    CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, a technician holds one of space shuttle Discovery's gaseous hydrogen flow control valves after its removal. Two of the three valves being removed will undergo detailed inspection. Part of the main propulsion system, the valves channel gaseous hydrogen from the main engines to the external tank. NASA and contractor teams have been working to identify what caused damage to a flow control valve on shuttle Endeavour during its November 2008 flight. Approximately 4,000 images of each valve removed will be reviewed for evidence of cracks. Valves that have flown fewer times will be installed in Discovery. NASA's Space Shuttle Program has established a plan that could support shuttle Discovery's launch to the International Space Station, tentatively targeted for March 12. An exact target launch date will be determined as work on the valves progresses. Photo credit: NASA/Dimitri Gerondidakis

  3. KSC-2009-1876

    NASA Image and Video Library

    2009-02-25

    CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, a technician holds one of space shuttle Discovery's gaseous hydrogen flow control valves after its removal. Two of the three valves being removed will undergo detailed inspection. Part of the main propulsion system, the valves channel gaseous hydrogen from the main engines to the external tank. NASA and contractor teams have been working to identify what caused damage to a flow control valve on shuttle Endeavour during its November 2008 flight. Approximately 4,000 images of each valve removed will be reviewed for evidence of cracks. Valves that have flown fewer times will be installed in Discovery. NASA's Space Shuttle Program has established a plan that could support shuttle Discovery's launch to the International Space Station, tentatively targeted for March 12. An exact target launch date will be determined as work on the valves progresses. Photo credit: NASA/Dimitri Gerondidakis

  4. KSC-2009-1874

    NASA Image and Video Library

    2009-02-25

    CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, a technician bags one of space shuttle Discovery's gaseous hydrogen flow control valves after its removal. Two of the three valves being removed will undergo detailed inspection. Part of the main propulsion system, the valves channel gaseous hydrogen from the main engines to the external tank. NASA and contractor teams have been working to identify what caused damage to a flow control valve on shuttle Endeavour during its November 2008 flight. Approximately 4,000 images of each valve removed will be reviewed for evidence of cracks. Valves that have flown fewer times will be installed in Discovery. NASA's Space Shuttle Program has established a plan that could support shuttle Discovery's launch to the International Space Station, tentatively targeted for March 12. An exact target launch date will be determined as work on the valves progresses. Photo credit: NASA/Dimitri Gerondidakis

  5. Variable camshaft timing system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butterfield, R.P.; Smith, F.R.

    1989-09-05

    This patent describes an improvement in a variable camshaft timing system for an internal combustion engine having intake and exhaust valves and a camshaft for each of the intake and exhaust valves, an intake sprocket and an exhaust sprocket keyed to their respective camshaft, only one of the camshafts being directly driven by an engine crankshaft, and a timing chain engaging both sprockets. The improvement comprising a single bracket carrying at least one idler sprocket engaging the timing chain, the bracket being mounted for movement to alter the timing relationship between the intake and exhaust sprockets.

  6. System for remotely servicing a top loading captive ball valve

    DOEpatents

    Berry, Stephen M.; Porter, Matthew L.

    1996-01-01

    An attachment for facilitating servicing of a valve, the valve including: an assembly composed of a valve seat defining a flow path, a flow control member movable relative to the valve seat for blocking or unblocking the valve seat, and a control device including a stem coupled to the flow control member and operable for moving the flow control member relative to the valve seat; a housing for receiving the assembly, the housing having an opening via which the assembly can be removed from, and installed in, the housing, and the housing having a plurality of threaded studs which surround the opening and project away from the housing; a valve housing cover for closing and sealing the opening in the housing, the cover having a first bore for passage of the stem of the control device when the assembly is installed in the housing and a plurality of second bores each located for passage of a respective stud when the cover closes the opening in the housing. A plurality of threaded nuts are engageable with the studs for securing the cover to the housing when the cover closes the opening in the housing, wherein the attachment comprises: a plurality of nut guide devices removable from the housing and each operatively associated with a respective stud for retaining a respective nut and guiding the respective nut into alignment with the respective stud to enable the respective nut to be rotated into engagement with the respective stud; and aligning the nut guide devices with the studs.

  7. Engine control system having speed-based timing

    DOEpatents

    Willi, Martin L [Dunlap, IL; Fiveland, Scott B [Metamora, IL; Montgomery, David T [Edelstein, IL; Gong, Weidong [Dunlap, IL

    2012-02-14

    A control system for an engine having a cylinder is disclosed having an engine valve movable to regulate a fluid flow of the cylinder and an actuator associated with the engine valve. The control system also has a controller in communication with the actuator. The controller is configured to receive a signal indicative of engine speed and compare the engine speed signal with a desired engine speed. The controller is also configured to selectively regulate the actuator to adjust a timing of the engine valve to control an amount of air/fuel mixture delivered to the cylinder based on the comparison.

  8. Development of a Passive Liquid Valve (PLV) Utilizing a Pressure Equilibrium Phenomenon on the Centrifugal Microfluidic Platform

    PubMed Central

    Al-Faqheri, Wisam; Ibrahim, Fatimah; Thio, Tzer Hwai Gilbert; Bahari, Norulain; Arof, Hamzah; Rothan, Hussin A.; Yusof, Rohana; Madou, Marc

    2015-01-01

    In this paper, we propose an easy-to-implement passive liquid valve (PLV) for the microfluidic compact-disc (CD). This valve can be implemented by introducing venting chambers to control the air flow of the source and destination chambers. The PLV mechanism is based on equalizing the main forces acting on the microfluidic CD (i.e., the centrifugal and capillary forces) to control the burst frequency of the source chamber liquid. For a better understanding of the physics behind the proposed PLV, an analytical model is described. Moreover, three parameters that control the effectiveness of the proposed valve, i.e., the liquid height, liquid density, and venting chamber position with respect to the CD center, are tested experimentally. To demonstrate the ability of the proposed PLV valve, microfluidic liquid switching and liquid metering are performed. In addition, a Bradford assay is performed to measure the protein concentration and evaluated in comparison to the benchtop procedure. The result shows that the proposed valve can be implemented in any microfluidic process that requires simplicity and accuracy. Moreover, the developed valve increases the flexibility of the centrifugal CD platform for passive control of the liquid flow without the need for an external force or trigger. PMID:25723143

  9. Development of a passive liquid valve (PLV) utilizing a pressure equilibrium phenomenon on the centrifugal microfluidic platform.

    PubMed

    Al-Faqheri, Wisam; Ibrahim, Fatimah; Thio, Tzer Hwai Gilbert; Bahari, Norulain; Arof, Hamzah; Rothan, Hussin A; Yusof, Rohana; Madou, Marc

    2015-02-25

    In this paper, we propose an easy-to-implement passive liquid valve (PLV) for the microfluidic compact-disc (CD). This valve can be implemented by introducing venting chambers to control the air flow of the source and destination chambers. The PLV mechanism is based on equalizing the main forces acting on the microfluidic CD (i.e., the centrifugal and capillary forces) to control the burst frequency of the source chamber liquid. For a better understanding of the physics behind the proposed PLV, an analytical model is described. Moreover, three parameters that control the effectiveness of the proposed valve, i.e., the liquid height, liquid density, and venting chamber position with respect to the CD center, are tested experimentally. To demonstrate the ability of the proposed PLV valve, microfluidic liquid switching and liquid metering are performed. In addition, a Bradford assay is performed to measure the protein concentration and evaluated in comparison to the benchtop procedure. The result shows that the proposed valve can be implemented in any microfluidic process that requires simplicity and accuracy. Moreover, the developed valve increases the flexibility of the centrifugal CD platform for passive control of the liquid flow without the need for an external force or trigger.

  10. 40 CFR Table W - 3 of Subpart W-Default Total Hydrocarbon Emission Factors for Onshore Natural Gas Transmission...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Connector 5.71 Open-Ended Line 11.27 Pressure Relief Valve 2.01 Meter 2.93 Population Emission Factors—Gas... 18.20 Intermittent Bleed Pneumatic Device Vents 2 2.35 1 Valves include control valves, block valves...

  11. Pulse-width-modulated servo valve for autopilot system

    NASA Technical Reports Server (NTRS)

    Garner, H. D.

    1974-01-01

    Valve was developed for autopilot wing-lever system and is to be used in light, single-engine aircraft. Valve is controlled by electronic circuit which feeds pulse-width-modulated correction signals to two solenoids. Valve housing is cast from plastic, making it very economical to fabricate.

  12. Fuel and oxidizer valve assembly employs single solenoid actuator

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Valve assembly simultaneously starts or stops the flow of oxidizer and fuel from separate inlet channels to reaction control motors. The assembly combines an oxidizer shutoff valve and a fuel shutoff valve which are mechanically linked and operated by a single high-speed solenoid actuator.

  13. Pneumatic Valve Operated by Multiplex Pneumatic Transmission

    NASA Astrophysics Data System (ADS)

    Nishioka, Yasutaka; Suzumori, Koichi; Kanda, Takefumi; Wakimoto, Shuichi

    A pneumatic system has several advantages, which are cheapness, lightweight, and reliability to human and environment. These advantages are adapted to some research areas, such as industrial lines, medical and nursing cares, and rehabilitation tools. However, the pneumatic system needs several devices; compressor, air tube, and control valve. This research aim to downsize pneumatic system. In this paper, a new method of multiplex pneumatic transmission for multi-pneumatic servo system is proposed. The valve for this system consists of two vibrators supported by springs, which was designed with simple and cheap structure. The working principle of the valve is vibrators resonance from multiplex pneumatic transmission and it is possible to work as ON/OFF valves without electric wire. Dynamic simulation was used to confirm the working principle of the resonance driving system. A prototype device confirming the principle was designed and developed based on the simulation. The experiments show that this new control system works very well to control two separated valves through single pneumatic tube.

  14. Microfluidic Automation using elastomeric valves and droplets: reducing reliance on external controllers

    PubMed Central

    Kim, Sung-Jin; Lai, David; Park, Joong Yull; Yokokawa, Ryuji

    2012-01-01

    This paper gives an overview of elastomeric valve- and droplet-based microfluidic systems designed to minimize the need of external pressure to control fluid flow. This concept article introduces the working principle of representative components in these devices along with relevant biochemical applications. This is followed by providing a perspective on the roles of different microfluidic valves and systems through comparison of their similarities and differences with transistors (valves) and systems in microelectronics. Despite some physical limitation of drawing analogies from electronic circuits, automated microfluidic circuit design can gain insights from electronic circuits to minimize external control units, while implementing high complexity and throughput analysis. PMID:22761019

  15. Combined pressure regulator and shutoff valve

    NASA Technical Reports Server (NTRS)

    Koch, E. F. (Inventor)

    1974-01-01

    A remotely operable pressure regulator and shutoff valve particularly suited for achieving high resolution and flow control, and positive shutoff is described. The valve is characterized by a spring-loaded ball coaxially aligned with a fluid port to be sealed, a spring-loaded pintle extended through the port into engagement with the ball, for controlling the position, a spring-loaded diaphragm for controlling the position of the pintle, and an axially displaceable spring supported by a movable stop which, in turn, is repositioned by a selectively operable stepper motor. Thus, the pressure-response characteristics for the valve can be varied through a selective repositioning of the stop.

  16. Controlling Capillary-Driven Fluid Transport in Paper-Based Microfluidic Devices Using a Movable Valve.

    PubMed

    Li, Bowei; Yu, Lijuan; Qi, Ji; Fu, Longwen; Zhang, Peiqing; Chen, Lingxin

    2017-06-06

    This paper describes a novel strategy for fabricating the movable valve on paper-based microfluidic devices to manipulate capillary-driven fluids. The movable valve fabrication is first realized using hollow rivets as the holding center to control the paper channel in different layer movement that results in the channel's connection or disconnection. The relatively simple valve fabrication procedure is robust, versatile, and compatible with microfluidic paper-based analytical devices (μPADs) with differing levels of complexity. It is remarkable that the movable valve can be convenient and free to control fluid without the timing setting, advantages that make it user-friendly for untrained users to carry out the complex multistep operations. For the performance of the movable valve to be verified, several different designs of μPADs were tested and obtained with satisfactory results. In addition, in the proof-of-concept enzyme-linked immunosorbent assay experiments, we demonstrate the use of these valves in μPADs for the successful analysis of samples of carcino-embryonic antigen, showing good sensitivity and reproducibility. We hope this technique will open new avenues for the fabrication of paper-based valves in an easily adoptable and widely available way on μPADs and provide potential point-of-care applications in the future.

  17. 46 CFR 154.540 - Quick-closing shut-off valves: Emergency shut-down system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design... emergency shut-down system that: (a) Closes all the valves; (b) Is actuated by a single control in at least two locations remote from the quick-closing valves; (c) Is actuated by a single control in each cargo...

  18. 46 CFR 154.540 - Quick-closing shut-off valves: Emergency shut-down system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design... emergency shut-down system that: (a) Closes all the valves; (b) Is actuated by a single control in at least two locations remote from the quick-closing valves; (c) Is actuated by a single control in each cargo...

  19. AeroValve Experimental Test Data Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noakes, Mark W.

    This report documents the collection of experimental test data and presents performance characteristics for the AeroValve brand prototype pneumatic bidirectional solenoid valves tested at the Oak Ridge National Laboratory (ORNL) in July/August 2014 as part of a validation of AeroValve energy efficiency claims. The test stand and control programs were provided by AeroValve. All raw data and processing are included in the report attachments.

  20. Control apparatus and method for efficiently heating a fuel processor in a fuel cell system

    DOEpatents

    Doan, Tien M.; Clingerman, Bruce J.

    2003-08-05

    A control apparatus and method for efficiently controlling the amount of heat generated by a fuel cell processor in a fuel cell system by determining a temperature error between actual and desired fuel processor temperatures. The temperature error is converted to a combustor fuel injector command signal or a heat dump valve position command signal depending upon the type of temperature error. Logic controls are responsive to the combustor fuel injector command signals and the heat dump valve position command signal to prevent the combustor fuel injector command signal from being generated if the heat dump valve is opened or, alternately, from preventing the heat dump valve position command signal from being generated if the combustor fuel injector is opened.

  1. 49 CFR 192.181 - Distribution line valves.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... line valves. (a) Each high-pressure distribution system must have valves spaced so as to reduce the... pressure, the size of the mains, and the local physical conditions. (b) Each regulator station controlling the flow or pressure of gas in a distribution system must have a valve installed on the inlet piping...

  2. Numerical simulation and experimental study of heat-fluid-solid coupling of double flapper-nozzle servo valve

    NASA Astrophysics Data System (ADS)

    Zhao, Jianhua; Zhou, Songlin; Lu, Xianghui; Gao, Dianrong

    2015-09-01

    The double flapper-nozzle servo valve is widely used to launch and guide the equipment. Due to the large instantaneous flow rate of servo valve working under specific operating conditions, the temperature of servo valve would reach 120°C and the valve core and valve sleeve deform in a short amount of time. So the control precision of servo valve significantly decreases and the clamping stagnation phenomenon of valve core appears. In order to solve the problem of degraded control accuracy and clamping stagnation of servo valve under large temperature difference circumstance, the numerical simulation of heat-fluid-solid coupling by using finite element method is done. The simulation result shows that zero position leakage of servo valve is basically impacted by oil temperature and change of fit clearance. The clamping stagnation is caused by warpage-deformation and fit clearance reduction of the valve core and valve sleeve. The distribution rules of the temperature and thermal-deformation of shell, valve core and valve sleeve and the pressure, velocity and temperature field of flow channel are also analyzed. Zero position leakage and electromagnet's current when valve core moves in full-stroke are tested using Electro-hydraulic Servo-valve Characteristic Test-bed of an aerospace sciences and technology corporation. The experimental results show that the change law of experimental current at different oil temperatures is roughly identical to simulation current. The current curve of the electromagnet is smooth when oil temperature is below 80°C, but the amplitude of current significantly increases and the hairy appears when oil temperature is above 80°C. The current becomes smooth again after the warped valve core and valve sleeve are reground. It indicates that clamping stagnation is caused by warpage-deformation and fit clearance reduction of valve core and valve sleeve. This paper simulates and tests the heat-fluid-solid coupling of double flapper-nozzle servo valve, and the obtained results provide the reference value for the design of double flapper-nozzle force feedback servo valve.

  3. Main Oxidizer Valve Design

    NASA Technical Reports Server (NTRS)

    Addona, Brad; Eddleman, David

    2015-01-01

    A developmental Main Oxidizer Valve (MOV) was designed by NASA-MSFC using additive manufacturing processes. The MOV is a pneumatically actuated poppet valve to control the flow of liquid oxygen to an engine's injector. A compression spring is used to return the valve to the closed state when pneumatic pressure is removed from the valve. The valve internal parts are cylindrical in shape, which lends itself to traditional lathe and milling operations. However, the valve body represents a complicated shape and contains the majority of the mass of the valve. Additive manufacturing techniques were used to produce a part that optimized mass and allowed for design features not practical with traditional machining processes.

  4. Self-regulating valve

    DOEpatents

    Humphreys, D.A.

    1982-07-20

    A variable, self-regulating valve having a hydraulic loss coefficient proportional to a positive exponential power of the flow rate. The device includes two objects in a flow channel and structure which assures that the distance between the two objects is an increasing function of the flow rate. The range of spacing between the objects is such that the hydraulic resistance of the valve is an increasing function of the distance between the two objects so that the desired hydraulic loss coefficient as a function of flow rate is obtained without variation in the flow area.

  5. Low-noise nozzle valve

    NASA Technical Reports Server (NTRS)

    Gwin, Hal S. (Inventor); Aaron, James (Inventor)

    1990-01-01

    A low noise, variable discharage area, valve is constructed having opposed recesses within which a pair of gates are slidably disposed. Each of the gates is provided with upstream edges having a radius thereon, the radius enabling smooth, accelerated, low noise flow therebetween. The gates are further provided with tracks along each side, which in turn slide along splines set in the side walls of the valve. A threaded rod which rotates in a threaded insert in a rear wall of each of the gates, serves to move the gates within their respective recesses.

  6. High pressure air compressor valve fault diagnosis using feedforward neural networks

    NASA Astrophysics Data System (ADS)

    James Li, C.; Yu, Xueli

    1995-09-01

    Feedforward neural networks (FNNs) are developed and implemented to classify a four-stage high pressure air compressor into one of the following conditions: baseline, suction or exhaust valve faults. These FNNs are used for the compressor's automatic condition monitoring and fault diagnosis. Measurements of 39 variables are obtained under different baseline conditions and third-stage suction and exhaust valve faults. These variables include pressures and temperatures at all stages, voltage between phase aand phase b, voltage between phase band phase c, total three-phase real power, cooling water flow rate, etc. To reduce the number of variables, the amount of their discriminatory information is quantified by scattering matrices to identify statistical significant ones. Measurements of the selected variables are then used by a fully automatic structural and weight learning algorithm to construct three-layer FNNs to classify the compressor's condition. This learning algorithm requires neither guesses of initial weight values nor number of neurons in the hidden layer of an FNN. It takes an incremental approach in which a hidden neuron is trained by exemplars and then augmented to the existing network. These exemplars are then made orthogonal to the newly identified hidden neuron. They are subsequently used for the training of the next hidden neuron. The betterment continues until a desired accuracy is reached. After the neural networks are established, novel measurements from various conditions that haven't been previously seen by the FNNs are then used to evaluate their ability in fault diagnosis. The trained neural networks provide very accurate diagnosis for suction and discharge valve defects.

  7. Legionella micdadei prosthetic valve endocarditis complicated by brain abscess: case report and review of the literature.

    PubMed

    Fukuta, Yuriko; Yildiz-Aktas, Isil Z; William Pasculle, A; Veldkamp, Peter J

    2012-06-01

    Legionella endocarditis is extremely uncommon, and embolic phenomena have never been reported. We report the first case of Legionella micdadei prosthetic valve endocarditis complicated by brain abscess. A 57-y-old immunocompromised woman with a history of mitral valve replacement developed confusion and left-sided weakness. Brain magnetic resonance imaging showed a 3-cm peripheral-enhancing mass. Transoesophageal echocardiography suggested a perivalvular abscess. Blood cultures and valve cultures were negative. She was diagnosed with 16S rRNA polymerase chain reaction and silver stain, and was discharged with levofloxacin after a redo mitral valve replacement. Twelve cases of Legionella endocarditis were reviewed. Only one case had a native valve, and her endocarditis occurred after pneumonia. All cases were cured. The duration of antibiotic therapy was variable. Legionella species should be considered in the differential diagnosis of culture-negative endocarditis in both immunocompetent and immunocompromised patients. Molecular techniques and silver impregnation stains are useful, especially when cultures using buffered charcoal-yeast extract agar are negative.

  8. Does the Use of a Decision Aid Improve Decision Making in Prosthetic Heart Valve Selection? A Multicenter Randomized Trial.

    PubMed

    Korteland, Nelleke M; Ahmed, Yunus; Koolbergen, David R; Brouwer, Marjan; de Heer, Frederiek; Kluin, Jolanda; Bruggemans, Eline F; Klautz, Robert J M; Stiggelbout, Anne M; Bucx, Jeroen J J; Roos-Hesselink, Jolien W; Polak, Peter; Markou, Thanasie; van den Broek, Inge; Ligthart, Rene; Bogers, Ad J J C; Takkenberg, Johanna J M

    2017-02-01

    A Dutch online patient decision aid to support prosthetic heart valve selection was recently developed. A multicenter randomized controlled trial was conducted to assess whether use of the patient decision aid results in optimization of shared decision making in prosthetic heart valve selection. In a 5-center randomized controlled trial, patients were allocated to receive either standard preoperative care (control group) or additional access to the patient decision aid (intervention group). Legally capable adult patients accepted for elective isolated or combined aortic and mitral valve replacement were included. Primary outcome was preoperative decisional conflict (Decisional Conflict Scale); secondary outcomes included patient knowledge, involvement in valve selection, anxiety and depression, (valve-specific) quality of life, and regret. Out of 306 eligible patients, 155 were randomized (78 control and 77 intervention). Preoperative decisional conflict did not differ between the groups (34% versus 33%; P =0.834). Intervention patients felt better informed (median Decisional Conflict Scale informed subscore: 8 versus 17; P =0.046) and had a better knowledge of prosthetic valves (85% versus 68%; P =0.004). Intervention patients experienced less anxiety and depression (median Hospital Anxiety and Depression Scale score: 6 versus 9; P =0.015) and better mental well-being (mean Short Form Health Survey score: 54 versus 50; P =0.032). Three months postoperatively, valve-specific quality of life and regret did not differ between the groups. A patient decision aid to support shared decision making in prosthetic heart valve selection does not lower decisional conflict. It does result in more knowledgeable, better informed, and less anxious and depressed patients, with a better mental well-being. http://www.trialregister.nl. Unique identifier: NTR4350. © 2017 American Heart Association, Inc.

  9. MASS SPECTROMETER LEAK

    DOEpatents

    Shields, W.R.

    1960-10-18

    An improved valve is described for precisely regulating the flow of a sample fluid to be analyzed, such as in a mass spectrometer, where a gas sample is allowed to "leak" into an evacuated region at a very low, controlled rate. The flow regulating valve controls minute flow of gases by allowing the gas to diffuse between two mating surfaces. The structure of the valve is such as to prevent the corrosive feed gas from contacting the bellows which is employed in the operation of the valve, thus preventing deterioration of the bellows.

  10. Serum gamma-glutamyltransferase activity is increased in patients with calcific aortic valve stenosis.

    PubMed

    Bozbas, Huseyin; Yildirir, Aylin; Demir, Ozlem; Cakmak, Abdulkadir; Karacaglar, Emir; Yilmaz, Mustafa; Eroglu, Serpil; Pirat, Bahar; Ozin, Bulent; Muderrisoglu, Haldun

    2008-07-01

    A growing body of data indicates an independent association between serum gamma-glutamyltransferase (GGT) activity, a marker of increased oxidative stress, and cardiovascular diseases. The process of calcific aortic valve disease has been shown to present characteristics of atherosclerosis. The study aim was to evaluate the possible role of serum GGT in patients with calcific aortic valve disease. The results of patients' echocardiography studies from 2005 for the presence of calcific aortic valve disease in the forms of aortic stenosis (AS) and aortic valve calcification (AVC) without significant valve stenosis, were retrospectively evaluated. Age-and gender-matched patients with normal aortic valve morphology were selected at random as a control group. A total of 383 patients was enrolled into the study (126 with AS, 133 with AVC, 124 controls). Serum GGT activity, along with other liver enzyme analyses and laboratory results, were determined and compared among the groups. Age, gender and clinical and laboratory results were similar among the three groups. Median serum GGT levels in the AS, AVC and control groups were 23.0 U/1 (mean 31.5 +/- 24.9 U/1), 22.0 U/1 (mean 27.6 +/- 18.6 U/) and 18.0 U/l (mean 22.4 +/- 16.4 U/l), respectively. Compared to controls, AS patients had significantly higher serum GGT and C-reactive protein levels, while the differences between AVC patients and controls for these parameters were not significant. The study results suggest that serum GGT activity is increased in patients with calcific AS. These increases seem to occur in advanced rather than milder forms of calcific aortic valve disease.

  11. 46 CFR 108.443 - Controls and valves.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... valves. (a) At least one control for operating a CO2 system must be outside the space or spaces that the... also in the protected space. (b) A CO2 system that protects more than one space must have a manifold... protected space. (c) A CO2 system that protects only one space must have a stop valve installed between the...

  12. Modular robot

    DOEpatents

    Ferrante, Todd A.

    1997-01-01

    A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold.

  13. Conceptual Study of the LB/TS (Large Blast/Thermal Simulator) Instrumentation, Data Acquisition and Facility Controls System.

    DTIC Science & Technology

    1984-09-12

    423, R. Jones ATTN: DAEN-ECE-T ATTN: DAEN-RDL DEPARTMENT OF THE AIR FORCE ATTN: DAEN-RDM. J. Healy ATTN: DAEN-ZCM Air Force Engineering & Services Ctr...31 7 Comparison Chart of Various Femperature Sensors (Prepared by HY-CAL Engineering ) ... ...... 36 8 Temperature Sensor Requirements and...Positions * TRS Valve Positions; LOX, AL, N2 Solenoid and Control . - Valve Positions 1.4 Air Compressor System Control * Valve Positions 0 Pressure

  14. Enhanced rhamnolipids production via efficient foam-control using stop valve as a foam breaker.

    PubMed

    Long, Xuwei; Shen, Chong; He, Ni; Zhang, Guoliang; Meng, Qin

    2017-01-01

    In this study, a stop valve was used as a foam breaker for dealing with the massive overflowing foam in rhamnolipid fermentation. As found, a stop valve at its tiny opening could break over 90% of the extremely stable rhamnolipid foam into enriched liquid when foam flows through the sharp gap in valve. The efficient foam-control by the stop valve considerably improved the rhamnolipid fermentation and significantly enhanced the rhamnolipid productivity by 83% compared to the regular fermentation. This efficient foam breaking was mainly achieved by a high shear rate in combination with fast separation of air from the collapsed foam. Altogether, the stop valve possessed a great activity in breaking rhamnolipid foam, and the involving mechanism holds the potential for developing efficient foam breakers for industrial rhamnolipid fermentation. Copyright © 2016. Published by Elsevier Ltd.

  15. KSC-2009-1873

    NASA Image and Video Library

    2009-02-25

    CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, technicians have removed space shuttle Discovery's three gaseous hydrogen flow control valves, two of which will undergo detailed inspection. Part of the main propulsion system, the valves channel gaseous hydrogen from the main engines to the external tank. NASA and contractor teams have been working to identify what caused damage to a flow control valve on shuttle Endeavour during its November 2008 flight. Approximately 4,000 images of each valve removed will be reviewed for evidence of cracks. Valves that have flown fewer times will be installed in Discovery. NASA's Space Shuttle Program has established a plan that could support shuttle Discovery's launch to the International Space Station, tentatively targeted for March 12. An exact target launch date will be determined as work on the valves progresses. Photo credit: NASA/Dimitri Gerondidakis

  16. Jet-controlled freeze valve for use in a glass melter

    DOEpatents

    Routt, Kenneth R.

    1986-09-02

    A drain valve for use in a furnace for the melting of thermoplastic material. The furnace includes a drain cavity formed in its bottom for withdrawing a flow of thermoplastic material. The drain valve includes a flow member which include a flow tube having an inlet and outlet for the material, and coaxially disposed concentric tubular members defining annuli surrounding the flow tube. The tubular members include heating and cooling means for the flow tube. The flow member is adapted to fit in mating relationship in the drain cavity. A freeze valve member is disposed adjacent the outlet of the flow member. The freeze valve member includes heating means and has a plurality of air jets adapted to direct streams of pressurized air at the outlet to control the flow of thermoplastic material through the flow members. The drain valve can also be used in a furnace of glass melting that includes a drain cavity for withdrawing molten glass from the furnace. The drain valve includes a flow tube member having an inlet and outlet, and having heating and cooling means. The tube member is adapted to fit in mating relationship with the drain cavity. A freeze valve member is disposed at the outlet of the flow tube member. The freeze valve member includes heating means and has a plurality of air jets adapted to direct a stream of pressurized air at the outlet to control the flow of glass through the flow tube member.

  17. Jet-controlled freeze valve for use in a glass melter

    DOEpatents

    Routt, Kenneth R.

    1986-01-01

    A drain valve for use in a furnace for the melting of thermoplastic material. The furnace includes a drain cavity formed in its bottom for withdrawing a flow of thermoplastic material. The drain valve includes a flow member which include a flow tube having an inlet and outlet for the material, and coaxially disposed concentric tubular members defining annuli surrounding the flow tube. The tubular members include heating and cooling means for the flow tube. The flow member is adapted to fit in mating relationship in the drain cavity. A freeze valve member is disposed adjacent the outlet of the flow member. The freeze valve member includes heating means and has a plurality of air jets adapted to direct streams of pressurized air at the outlet to control the flow of thermoplastic material through the flow members. The drain valve can also be used in a furnace of glass melting that includes a drain cavity for withdrawing molten glass from the furnace. The drain valve includes a flow tube member having an inlet and outlet, and having heating and cooling means. The tube member is adapted to fit in mating relationship with the drain cavity. A freeze valve member is disposed at the outlet of the flow tube member. The freeze valve member includes heating means and has a plurality of air jets adapted to direct a stream of pressurized air at the outlet to control the flow of glass through the flow tube member.

  18. 46 CFR 154.708 - Cargo boil-off as fuel: Valves.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.708 Cargo boil-off as fuel: Valves. (a) Gas fuel lines to the gas consuming equipment must have two fail-closed automatic valves in series. A third valve, designed to fail...

  19. 46 CFR 154.708 - Cargo boil-off as fuel: Valves.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.708 Cargo boil-off as fuel: Valves. (a) Gas fuel lines to the gas consuming equipment must have two fail-closed automatic valves in series. A third valve, designed to fail...

  20. 46 CFR 154.708 - Cargo boil-off as fuel: Valves.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.708 Cargo boil-off as fuel: Valves. (a) Gas fuel lines to the gas consuming equipment must have two fail-closed automatic valves in series. A third valve, designed to fail...

  1. 46 CFR 154.708 - Cargo boil-off as fuel: Valves.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.708 Cargo boil-off as fuel: Valves. (a) Gas fuel lines to the gas consuming equipment must have two fail-closed automatic valves in series. A third valve, designed to fail...

  2. 46 CFR 154.708 - Cargo boil-off as fuel: Valves.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.708 Cargo boil-off as fuel: Valves. (a) Gas fuel lines to the gas consuming equipment must have two fail-closed automatic valves in series. A third valve, designed to fail...

  3. Valve for controlling solids flow

    DOEpatents

    Feldman, David K.

    1980-01-01

    A fluidized solids control valve is disclosed that is particularly well adapted for use with a flow of coal or char that includes both large particles and fines. The particles may or may not be fluidized at various times during the operation. The valve includes a tubular body that terminates in a valve seat covered by a normally closed closure plate. The valve body at the seat and the closure plate is provided with aligned longitudinal slots that receive a pivotally supported key plate. The key plate is positionable by an operator in inserted, intermediate and retracted positions respecting the longitudinal slot in the valve body. The key plate normally closes the slot within the closure plate but is shaped and aligned obliquely to the longitudinal slot within the valve body to provide progressively increasing slot openings between the inserted and retracted positions. Transfer members are provided between the operator, key plate and closure plate to move the closure plate into an open position only when the key plate is retracted from the longitudinal slot within the valve body.

  4. Utility of Tissue Doppler Imaging in the Echocardiographic Evaluation of Left and Right Ventricular Function in Dogs with Myxomatous Mitral Valve Disease with or without Pulmonary Hypertension.

    PubMed

    Baron Toaldo, M; Poser, H; Menciotti, G; Battaia, S; Contiero, B; Cipone, M; Diana, A; Mazzotta, E; Guglielmini, C

    2016-05-01

    In human medicine, right ventricular (RV) functional parameters represent a tool for risk stratification in patients with congestive heart failure caused by left heart disease. Little is known about RV alterations in dogs with left-sided cardiac disorders. To assess RV and left ventricular (LV) function in dogs with myxomatous mitral valve disease (MMVD) with or without pulmonary hypertension (PH). One-hundred and fourteen dogs: 28 healthy controls and 86 dogs with MMVD at different stages. Prospective observational study. Animals were classified as healthy or having MMVD at different stages of severity and according to presence or absence of PH. Twenty-eight morphological, echo-Doppler, and tissue Doppler imaging (TDI) variables were measured and comparison among groups and correlations between LV and RV parameters were studied. No differences were found among groups regarding RV echo-Doppler and TDI variables. Sixteen significant correlations were found between RV TDI and left heart echocardiographic variables. Dogs with PH had significantly higher transmitral E wave peak velocity and higher E/e' ratio of septal (sMV) and lateral (pMV) mitral annulus. These 2 variables were found to predict presence of PH with a sensitivity of 84 and 72%, and a specificity of 71 and 80% at cut-off values of 10 and 9.33 for sMV E/e' and pMV E/e', respectively. No association between variables of RV function and different MMVD stage and severity of PH could be detected. Some relationships were found between echocardiographic variables of right and left ventricular function. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  5. Engine control system having fuel-based adjustment

    DOEpatents

    Willi, Martin L [Dunlap, IL; Fiveland, Scott B [Metamora, IL; Montgomery, David T [Edelstein, IL; Gong, Weidong [Dunlap, IL

    2011-03-15

    A control system for an engine having a cylinder is disclosed having an engine valve configured to affect a fluid flow of the cylinder, an actuator configured to move the engine valve, and an in-cylinder sensor configured to generate a signal indicative of a characteristic of fuel entering the cylinder. The control system also has a controller in communication with the actuator and the sensor. The controller is configured to determine the characteristic of the fuel based on the signal and selectively regulate the actuator to adjust a timing of the engine valve based on the characteristic of the fuel.

  6. Experimental research of flow servo-valve

    NASA Astrophysics Data System (ADS)

    Takosoglu, Jakub

    Positional control of pneumatic drives is particularly important in pneumatic systems. Some methods of positioning pneumatic cylinders for changeover and tracking control are known. Choking method is the most development-oriented and has the greatest potential. An optimal and effective method, particularly when applied to pneumatic drives, has been searched for a long time. Sophisticated control systems with algorithms utilizing artificial intelligence methods are designed therefor. In order to design the control algorithm, knowledge about real parameters of servo-valves used in control systems of electro-pneumatic servo-drives is required. The paper presents the experimental research of flow servo-valve.

  7. Active control of magnetoresistance of organic spin valves using ferroelectricity

    PubMed Central

    Sun, Dali; Fang, Mei; Xu, Xiaoshan; Jiang, Lu; Guo, Hangwen; Wang, Yanmei; Yang, Wenting; Yin, Lifeng; Snijders, Paul C.; Ward, T. Z.; Gai, Zheng; Zhang, X.-G.; Lee, Ho Nyung; Shen, Jian

    2014-01-01

    Organic spintronic devices have been appealing because of the long spin lifetime of the charge carriers in the organic materials and their low cost, flexibility and chemical diversity. In previous studies, the control of resistance of organic spin valves is generally achieved by the alignment of the magnetization directions of the two ferromagnetic electrodes, generating magnetoresistance. Here we employ a new knob to tune the resistance of organic spin valves by adding a thin ferroelectric interfacial layer between the ferromagnetic electrode and the organic spacer: the magnetoresistance of the spin valve depends strongly on the history of the bias voltage, which is correlated with the polarization of the ferroelectric layer; the magnetoresistance even changes sign when the electric polarization of the ferroelectric layer is reversed. These findings enable active control of resistance using both electric and magnetic fields, opening up possibility for multi-state organic spin valves. PMID:25008155

  8. A throat-bypass stability system for a YF-12 aircraft research inlet using self-acting mechanical valves

    NASA Technical Reports Server (NTRS)

    Cole, G. L.; Dustin, M. O.; Neiner, G. H.

    1975-01-01

    Results of a wind tunnel investigation are presented. The inlet was modified so that airflow can be removed through a porous cowl-bleed region in the vicinity of the throat. Bleed plenum exit flow area is controlled by relief type mechanical valves. Unlike valves in previous systems, these are made for use in a high Mach flight environment and include refinements so that the system could be tested on a NASA YF-12 aircraft. The valves were designed to provide their own reference pressure. The results show that the system can absorb internal-airflow-transients that are too fast for a conventional bypass door control system and that the two systems complement each other quite well. Increased tolerance to angle of attack and Mach number changes is indicated. The valves should provide sufficient time for the inlet control system to make geometry changes required to keep the inlet started.

  9. Flow restrictor silicon membrane microvalve actuated by optically controlled paraffin phase transition

    NASA Astrophysics Data System (ADS)

    Kolari, K.; Havia, T.; Stuns, I.; Hjort, K.

    2014-08-01

    Restrictor valves allow proportional control of fluid flow but are rarely integrated in microfluidic systems. In this study, an optically actuated silicon membrane restrictor microvalve is demonstrated. Its actuation is based on the phase transition of paraffin, using a paraffin wax mixed with a suitable concentration of optically absorbing nanographite particles. Backing up the membrane with oil (the melted paraffin) allows for a compliant yet strong contact to the valve seat, which enables handling of high pressures. At flow rates up to 30 µL min-1 and at a pressure of 2 bars, the valve can successfully be closed and control the flow level by restriction. The use of this paraffin composite as an adhesive layer sandwiched between the silicon valve and glass eases fabrication. This type of restrictor valve is best suited for high pressure, low volume flow silicon-based nanofluidic systems.

  10. Direct imaging of the tricuspid valve annular motions by fiberoptic cardioscopy in dogs. I. Does De Vega's annuloplasty preserve the annular motions?

    PubMed

    Minato, N; Itoh, T

    1992-12-01

    Applying the technology of direct imaging by fiberoptic cardioscopy, physiologic and pathophysiologic motions of the tricuspid valve anulus were studied in 10 anesthetized normal dogs (control group) and in 9 dogs that had chronic tricuspid regurgitation (TR group). The heart was perfused with transparent modified Tyrode's solution by working heart method, and the anuli, outlined by sutured beads, were observed and recorded on a high-speed video system in real time. Tricuspid valve annular area was calculated at 14 points during the cardiac cycle. The control group was studied in the normal condition, and the tricuspid regurgitation group was studied during four interventions: nontricuspid annuloplasty group and three tricuspid annuloplasty groups with reducing tricuspid valve annular area to 80%, 65%, and 50% of that of the non-tricuspid annuloplasty group by De Vega's procedure. Tricuspid valve annular area in the control group increased by 7% during atrial systole and was reduced by 34% mainly during ventricular systole, in which the free wall annular area and the septal annular area narrowed by an equal 34%. Chronic tricuspid regurgitation lessened tricuspid valve annular area narrowing to 20% in percent reduction (p < 0.01). In the TR group the decrease in tricuspid valve annular area narrowing was attributed mainly to lessened narrowing of the free wall anulus (percent reduction of tricuspid valve annular area, 19%; p < 0.01). The amplitudes in tricuspid valve annular area narrowing were unchanged in the tricuspid annuloplasty groups even when tricuspid valve annular area, was reduced to 50% by De Vega's tricuspid annuloplasty (percent reduction of tricuspid valve annular area, 16%; not significant). These findings suggest that De Vega's tricuspid annuloplasty is a reasonable method that does preserve the physiologic annular motions in the opening and closing mechanism of the tricuspid valve.

  11. Outlet strut fracture of Björk-Shiley convexo-concave valves: can valve-manufacturing characteristics explain the risk?

    PubMed

    Omar, R Z; Morton, L S; Beirne, M; Blot, W J; Lawford, P V; Hose, R; Taylor, K M

    2001-06-01

    Björk-Shiley 60 degrees convexo-concave prosthetic heart valves (Shiley, Inc, Irvine, Calif, a subsidiary of Pfizer, Inc) continue to be a concern for approximately 35,000 nonexplanted patients worldwide, with approximately 600 events reported to the manufacturer to date. Fractures of the outlet struts of the valves began to appear in the early 1980s and have continued to the present, but their causes are only partially understood. A matched case-control study was conducted evaluating manufacturing records for 52 valves with outlet strut fractures and 248 control subjects matched for age at implantation, valve size, and valve position. In addition to the risk factors recognized as determinants of outlet strut fracture, the United Kingdom case-control study has observed 7- to 9-fold increased risk with performance of multiple hook deflection tests. This test was performed more than once, usually after rework on the valve. Six valves in this study underwent multiple hook deflection tests, of which 4 experienced an outlet strut fracture. Cracks and further rework were noted for these valves. Significant associations were also observed between outlet strut fracture and disc-to-strut gap measurements taken before the attachment of the sewing ring. It is our view that a combination of factors related to valve design, manufacturing process, and patient characteristics are responsible for outlet strut fractures of Björk-Shiley convexo-concave valves. Multiple hook deflection tests have emerged as a potential new risk factor for outlet strut fracture in both The Netherlands and the United Kingdom. This factor appears to be correlated with the presence of other abnormalities. A further study is needed to investigate the factors correlated with multiple hook deflection tests. On confirmation of risk, the presence of multiple hook deflection tests may be added to equations, quantifying the risk of outlet strut fracture for comparison against risk of mortality and serious morbidity from explant operations.

  12. Design of a Cyclic Pressure Bioreactor for the Ex Vivo Study of Aortic Heart Valves

    PubMed Central

    Schipke, Kimberly J.; Filip To, S. D.; Warnock, James N.

    2011-01-01

    The aortic valve, located between the left ventricle and the aorta, allows for unidirectional blood flow, preventing backflow into the ventricle. Aortic valve leaflets are composed of interstitial cells suspended within an extracellular matrix (ECM) and are lined with an endothelial cell monolayer. The valve withstands a harsh, dynamic environment and is constantly exposed to shear, flexion, tension, and compression. Research has shown calcific lesions in diseased valves occur in areas of high mechanical stress as a result of endothelial disruption or interstitial matrix damage1-3. Hence, it is not surprising that epidemiological studies have shown high blood pressure to be a leading risk factor in the onset of aortic valve disease4. The only treatment option currently available for valve disease is surgical replacement of the diseased valve with a bioprosthetic or mechanical valve5. Improved understanding of valve biology in response to physical stresses would help elucidate the mechanisms of valve pathogenesis. In turn, this could help in the development of non-invasive therapies such as pharmaceutical intervention or prevention. Several bioreactors have been previously developed to study the mechanobiology of native or engineered heart valves6-9. Pulsatile bioreactors have also been developed to study a range of tissues including cartilage10, bone11 and bladder12. The aim of this work was to develop a cyclic pressure system that could be used to elucidate the biological response of aortic valve leaflets to increased pressure loads. The system consisted of an acrylic chamber in which to place samples and produce cyclic pressure, viton diaphragm solenoid valves to control the timing of the pressure cycle, and a computer to control electrical devices. The pressure was monitored using a pressure transducer, and the signal was conditioned using a load cell conditioner. A LabVIEW program regulated the pressure using an analog device to pump compressed air into the system at the appropriate rate. The system mimicked the dynamic transvalvular pressure levels associated with the aortic valve; a saw tooth wave produced a gradual increase in pressure, typical of the transvalvular pressure gradient that is present across the valve during diastole, followed by a sharp pressure drop depicting valve opening in systole. The LabVIEW program allowed users to control the magnitude and frequency of cyclic pressure. The system was able to subject tissue samples to physiological and pathological pressure conditions. This device can be used to increase our understanding of how heart valves respond to changes in the local mechanical environment. PMID:21876532

  13. Design of a cyclic pressure bioreactor for the ex vivo study of aortic heart valves.

    PubMed

    Schipke, Kimberly J; To, S D Filip; Warnock, James N

    2011-08-23

    The aortic valve, located between the left ventricle and the aorta, allows for unidirectional blood flow, preventing backflow into the ventricle. Aortic valve leaflets are composed of interstitial cells suspended within an extracellular matrix (ECM) and are lined with an endothelial cell monolayer. The valve withstands a harsh, dynamic environment and is constantly exposed to shear, flexion, tension, and compression. Research has shown calcific lesions in diseased valves occur in areas of high mechanical stress as a result of endothelial disruption or interstitial matrix damage(1-3). Hence, it is not surprising that epidemiological studies have shown high blood pressure to be a leading risk factor in the onset of aortic valve disease(4). The only treatment option currently available for valve disease is surgical replacement of the diseased valve with a bioprosthetic or mechanical valve(5). Improved understanding of valve biology in response to physical stresses would help elucidate the mechanisms of valve pathogenesis. In turn, this could help in the development of non-invasive therapies such as pharmaceutical intervention or prevention. Several bioreactors have been previously developed to study the mechanobiology of native or engineered heart valves(6-9). Pulsatile bioreactors have also been developed to study a range of tissues including cartilage(10), bone(11) and bladder(12). The aim of this work was to develop a cyclic pressure system that could be used to elucidate the biological response of aortic valve leaflets to increased pressure loads. The system consisted of an acrylic chamber in which to place samples and produce cyclic pressure, viton diaphragm solenoid valves to control the timing of the pressure cycle, and a computer to control electrical devices. The pressure was monitored using a pressure transducer, and the signal was conditioned using a load cell conditioner. A LabVIEW program regulated the pressure using an analog device to pump compressed air into the system at the appropriate rate. The system mimicked the dynamic transvalvular pressure levels associated with the aortic valve; a saw tooth wave produced a gradual increase in pressure, typical of the transvalvular pressure gradient that is present across the valve during diastole, followed by a sharp pressure drop depicting valve opening in systole. The LabVIEW program allowed users to control the magnitude and frequency of cyclic pressure. The system was able to subject tissue samples to physiological and pathological pressure conditions. This device can be used to increase our understanding of how heart valves respond to changes in the local mechanical environment.

  14. Torque-actuated valves for microfluidics.

    PubMed

    Weibel, Douglas B; Kruithof, Maarten; Potenta, Scott; Sia, Samuel K; Lee, Andrew; Whitesides, George M

    2005-08-01

    This paper describes torque-actuated valves for controlling the flow of fluids in microfluidic channels. The valves consist of small machine screws (> or =500 microm) embedded in a layer of polyurethane cast above microfluidic channels fabricated in poly(dimethylsiloxane) (PDMS). The polyurethane is cured photochemically with the screws in place; on curing, it bonds to the surrounding layer of PDMS and forms a stiff layer that retains an impression of the threads of the screws. The valves were separated from the ceiling of microfluidic channels by a layer of PDMS and were integrated into channels using a simple procedure compatible with soft lithography and rapid prototyping. Turning the screws actuated the valves by collapsing the PDMS layer between the valve and channel, controlling the flow of fluids in the underlying channels. These valves have the useful characteristic that they do not require power to retain their setting (on/off). They also allow settings between "on" and "off" and can be integrated into portable, disposable microfluidic devices for carrying out sandwich immunoassays.

  15. Simple, Internally Adjustable Valve

    NASA Technical Reports Server (NTRS)

    Burley, Richard K.

    1990-01-01

    Valve containing simple in-line, adjustable, flow-control orifice made from ordinary plumbing fitting and two allen setscrews. Construction of valve requires only simple drilling, tapping, and grinding. Orifice installed in existing fitting, avoiding changes in rest of plumbing.

  16. Flow metering valve

    DOEpatents

    Blaedel, K.L.

    1983-11-03

    An apparatus for metering fluids at high pressures of about 20,000 to 60,000 psi is disclosed. The apparatus includes first and second plates which are positioned adjacent each other to form a valve chamber. The plates are made of materials which have substantially equal elastic properties. One plate has a planar surface area, and the other a recessed surface area defined by periphery and central lips. When the two plates are positioned in adjacent contacting relationship, a valve chamber is formed between the planar surface area and the recessed surface area. Fluid is introduced into the chamber and exits therefrom when a deformation occurs at positions where they no longer form a valve seat. This permits the metering of fluids at high pressures and at slow variable rates. Fluid then exits from the chamber until an applied external force becomes large enough to bring the valve seats back into contact.

  17. Flow metering valve

    DOEpatents

    Blaedel, Kenneth L.

    1985-01-01

    An apparatus for metering fluids at high pressures of about 20,000 to 60,000 psi is disclosed. The apparatus includes first and second plates which are positioned adjacent each other to form a valve chamber. The plates are made of materials which have substantially equal elastic properties. One plate has a planar surface area, and the other a recessed surface area defined by periphery and central lips. When the two plates are positioned in adjacent contacting relationship, a valve chamber is formed between the planar surface area and the recessed surface area. Fluid is introduced into the chamber and exits therefrom when a deformation occurs at positions where they no longer form a valve seat. This permits the metering of fluids at high pressures and at slow variable rates. Fluid then exits from the chamber until an applied external force becomes large enough to bring the valve seats back into contact.

  18. Is valve choice a significant determinant of paravalular leak post-transcatheter aortic valve implantation? A systematic review and meta-analysis.

    PubMed

    O'Sullivan, Katie E; Gough, Aideen; Segurado, Ricardo; Barry, Mitchel; Sugrue, Declan; Hurley, John

    2014-05-01

    Paravalvular regurgitation (PVR) following transcatheter aortic valve implantation (TAVI) is associated with poor survival. The two main valve delivery systems used to date differ significantly in both structure and deployment technique. The primary objective of this study was to perform a systematic review and meta-analysis of studies identifying PVR in patients post-TAVI using Medtronic CoreValve (MCV) and Edward Sapien (ES) valves in order to identify whether a significant difference exists between valve types. The secondary objective was to identify additional factors predisposing to PVR to provide an overview of the other associated considerations. A systematic review and meta-analysis of the current literature to identify PVR rate in patients with MCV and ES valves was performed. We also sought to examine other factors predisposing to PVR. A total of 5910 patients were identified from 9 studies. PVR rates for MCV and ES were analysed. MCV was associated with a higher PVR rate of 15.75% [95% confidence interval (CI) 12.48-19.32] compared with ES 3.93% [95% CI 1.05-8.38]. We separately reviewed predisposing factors associated with PVR. A formal comparison of the MCV and ES valve leakage rates by mixed-effects meta-regression with a fixed-effect moderator variable for valve type (MCV or ES) suggested a statistically significant difference in leakage rate between the two valve types (P = 0.0002). Unfavourable anatomical and pathological factors as well as valve choice have an impact on rates of PVR. Additionally, certain anatomical features dictate valve choice. A direct comparison of all the predisposing factors at this time is not possible and will require prospective multivariate analysis. There is, however, a significant difference in the PVR rates between valves based on the published observational data available to date. The ES valve associated with a lower incidence of PVR overall; therefore, we conclude that valve choice is indeed a significant determinant of PVR post-TAVI.

  19. Prior oral conditions in patients undergoing heart valve surgery

    PubMed Central

    Gil-Raga, Irene; Martinez-Herrera, Mayte; Lauritano, Dorina; Silvestre-Rangil, Javier

    2017-01-01

    Background Patients scheduled for heart valve surgery should be free of any oral infectious disorders that might pose a risk in the postoperative period. Few studies have been made on the dental conditions of such patients prior to surgery. The present study describes the most frequent prior oral diseases in this population group. Material and Methods A prospective, observational case-control study was designed involving 60 patients (30 with heart valve disease and 30 controls, with a mean age of 71 years in both groups). A dental exploration was carried out, with calculation of the DMFT (decayed, missing and filled teeth) index and recording of the periodontal parameters (plaque index, gingival bleeding index, periodontal pocket depth, and attachment loss). The oral mucosa was also examined, and panoramic X-rays were used to identify possible intrabony lesions. Results Significant differences in bacterial plaque index were observed between the two groups (p<0.05), with higher scores in the patients with valve disease. Probing depth and the presence of moderate pockets were also greater in the patients with valve disease than among the controls (p<0.01). Sixty percent of the patients with valve disease presented periodontitis. Conclusions Patients scheduled for heart valve surgery should be examined for possible active periodontitis before the operation. Those individuals found to have periodontal disease should receive adequate periodontal treatment before heart surgery. Key words:Valve disease, aortic, mitral, heart surgery, periodontitis. PMID:29302279

  20. Prior oral conditions in patients undergoing heart valve surgery.

    PubMed

    Silvestre, Francisco-Javier; Gil-Raga, Irene; Martinez-Herrera, Mayte; Lauritano, Dorina; Silvestre-Rangil, Javier

    2017-11-01

    Patients scheduled for heart valve surgery should be free of any oral infectious disorders that might pose a risk in the postoperative period. Few studies have been made on the dental conditions of such patients prior to surgery. The present study describes the most frequent prior oral diseases in this population group. A prospective, observational case-control study was designed involving 60 patients (30 with heart valve disease and 30 controls, with a mean age of 71 years in both groups). A dental exploration was carried out, with calculation of the DMFT (decayed, missing and filled teeth) index and recording of the periodontal parameters (plaque index, gingival bleeding index, periodontal pocket depth, and attachment loss). The oral mucosa was also examined, and panoramic X-rays were used to identify possible intrabony lesions. Significant differences in bacterial plaque index were observed between the two groups ( p <0.05), with higher scores in the patients with valve disease. Probing depth and the presence of moderate pockets were also greater in the patients with valve disease than among the controls ( p <0.01). Sixty percent of the patients with valve disease presented periodontitis. Patients scheduled for heart valve surgery should be examined for possible active periodontitis before the operation. Those individuals found to have periodontal disease should receive adequate periodontal treatment before heart surgery. Key words: Valve disease, aortic, mitral, heart surgery, periodontitis.

  1. Wirelessly powered and remotely controlled valve-array for highly multiplexed analytical assay automation on a centrifugal microfluidic platform.

    PubMed

    Torres Delgado, Saraí M; Kinahan, David J; Nirupa Julius, Lourdes Albina; Mallette, Adam; Ardila, David Sáenz; Mishra, Rohit; Miyazaki, Celina M; Korvink, Jan G; Ducrée, Jens; Mager, Dario

    2018-06-30

    In this paper we present a wirelessly powered array of 128 centrifugo-pneumatic valves that can be thermally actuated on demand during spinning. The valves can either be triggered by a predefined protocol, wireless signal transmission via Bluetooth, or in response to a sensor monitoring a parameter like the temperature, or homogeneity of the dispersion. Upon activation of a resistive heater, a low-melting membrane (Parafilm™) is removed to vent an entrapped gas pocket, thus letting the incoming liquid wet an intermediate dissolvable film and thereby open the valve. The proposed system allows up to 12 heaters to be activated in parallel, with a response time below 3 s, potentially resulting in 128 actuated valves in under 30 s. We demonstrate, with three examples of common and standard procedures, how the proposed technology could become a powerful tool for implementing diagnostic assays on Lab-on-a-Disc. First, we implement wireless actuation of 64 valves during rotation in a freely programmable sequence, or upon user input in real time. Then, we show a closed-loop centrifugal flow control sequence for which the state of mixing of reagents, evaluated from stroboscopically recorded images, triggers the opening of the valves. In our last experiment, valving and closed-loop control are used to facilitate centrifugal processing of whole blood. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Impact of Chronic Rheumatic Valve Diseases on Large Vessels.

    PubMed

    Altunbas, Gokhan; Yuce, Murat; Ozer, Hasan O; Davutoglu, Vedat; Ercan, Suleyman; Kizilkan, Nese; Bilici, Muhammet

    2016-01-01

    BACKGROUND AND AIM OF STUDY: Rheumatic valvular heart disease, which remains a common health problem in developing countries, has numerous consequences on the heart chambers and circulation. The study aim was to investigate the effects of chronic rheumatic valve disease on the diameters of the descending aorta (DA) and inferior vena cava (IVC). METHODS: A total of 88 patients with echocardiographically documented rheumatic valvular heart disease and 112 healthy controls were enrolled into the study. All patients underwent detailed echocardiographic examinations, while their height and body weight were recorded and adjusted to their body surface area. RESULTS: The most common involvement was mitral valve disease, followed by aortic valve disease and tricuspid valve disease. The mean diameter of the DA (indexed to BSA) was 1.79 ± 0.49 cm for patients and 1.53 ± 0.41 for controls (p <0.001). The mean diameter of the IVC (indexed to BSA) was 1.69 ± 0.73 for patients and 1.38 ± 0.35 cm for controls (p <0.001). There was a significant positive correlation between mitral valve mean gradient and IVC diameter (p = 0.01, r = 0.18). There were also strong associations between the mitral valve area and the diameters of the DA (p = 0.001, r = -0.239) and IVC (p <0.001, r = -0.246). CONCLUSION: Rheumatic valve disease, especially mitral stenosis, was closely related to remodeling of the great vessels.

  3. After Superficial Ablation for Superficial Reflux Associated with Primary Deep Axial Reflux, Can Variable Outcomes be Caused by Deep Venous Valve Anomalies?

    PubMed

    Maleti, O; Lugli, M; Perrin, M

    2017-02-01

    To identify which deep anatomical anomalies can explain variable hemodynamic outcomes in patients with superficial reflux associated with primary deep axial reflux who underwent isolated superficial vein ablation without improvement. This is a retrospective study of deep venous valve anomalies in patients who underwent superficial vein ablation for superficial and associated deep reflux. A group of 21 patients who were diagnosed with saphenous reflux associated with primary deep axial reflux, were submitted to great saphenous vein ablation. In 17 patients the deep reflux was not abolished. In this subgroup, surgical exploration of the deep valve was carried out using venotomy for possible valve repair. Among the 17 subgroup patients, four post-thrombotic lesions were discovered intra-operatively in four patients; they underwent different surgical procedures. In 13 of the subgroup patients, primary valve incompetence was confirmed intra-operatively. In 11 cases the leaflets were asymmetrical and in only two were they symmetrical. After valvuloplasty, deep reflux was abolished in all 13 patients. Clinical improvement was obtained in 12/13 patients (92%). It is noteworthy that abolition of deep reflux was associated with significant improvement in air plethysmography data as well as with improvement in clinical status measured on CEAP class, VCSS and the SF-36 questionnaire. Failure to correct deep axial reflux by superficial ablation in patients with superficial and associated primary deep axial reflux may be related to asymmetry in the leaflets of the incompetent deep venous valve. Copyright © 2016 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  4. Valve surgery in active infective endocarditis: a simple score to predict in-hospital prognosis.

    PubMed

    Martínez-Sellés, Manuel; Muñoz, Patricia; Arnáiz, Ana; Moreno, Mar; Gálvez, Juan; Rodríguez-Roda, Jorge; de Alarcón, Arístides; García Cabrera, Emilio; Fariñas, María C; Miró, José M; Montejo, Miguel; Moreno, Alfonso; Ruiz-Morales, Josefa; Goenaga, Miguel A; Bouza, Emilio

    2014-07-15

    Surgery for infective endocarditis (IE) is associated with high mortality. Our objectives were to describe the experience with surgical treatment for IE in Spain, and to identify predictors of in-hospital mortality. Prospective cohort of 1000 consecutive patients with IE. Data were collected in 26 Spanish hospitals. Surgery was performed in 437 patients (43.7%). Patients treated with surgery were younger and predominantly male. They presented fewer comorbid conditions and more often had negative blood cultures and heart failure. In-hospital mortality after surgery was lower than in the medical therapy group (24.3 vs 30.7%, p=0.02). In patients treated with surgery, endocarditis involved a native valve in 267 patients (61.1%), a prosthetic valve in 122 (27.9%), and a pacemaker lead with no clear further valve involvement in 48 (11.0%). The most common aetiologies were Staphylococcus (186, 42.6%), Streptococcus (97, 22.2%), and Enterococcus (49, 11.2%). The main indications for surgery were heart failure and severe valve regurgitation. A risk score for in-hospital mortality was developed using 7 prognostic variables with a similar predictive value (OR between 1.7 and 2.3): PALSUSE: prosthetic valve, age ≥ 70, large intracardiac destruction, Staphylococcus spp, urgent surgery, sex [female], EuroSCORE ≥ 10. In-hospital mortality ranged from 0% in patients with a PALSUSE score of 0 to 45.4% in patients with PALSUSE score >3. The prognosis of IE surgery is highly variable. The PALSUSE score could help to identify patients with higher in-hospital mortality. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Coronary flow reserve is impaired in patients with aortic valve calcification.

    PubMed

    Bozbas, Huseyin; Pirat, Bahar; Yildirir, Aylin; Simşek, Vahide; Sade, Elif; Eroglu, Serpil; Atar, Ilyas; Altin, Cihan; Demirtas, Saadet; Ozin, Bulent; Muderrisoglu, Haldun

    2008-04-01

    Calcific aortic valve disease is an active and progressive condition. Data indicate that aortic valve calcification (AVC) is associated with endothelial dysfunction and accepted as a manifestation of atherosclerosis. Coronary flow reserve (CFR) determined by transthoracic echocardiography has been introduced as a reliable indicator for coronary microvascular function. In this study we aimed to evaluate CFR in patients with AVC. Eighty patients, aged more than 60 years, without coronary heart disease or diabetes mellitus were included: 40 had AVC without significant stenosis (peak gradient across the valve <25 mm Hg) and 40 had normal aortic valves (controls). Using transthoracic Doppler echocardiography, we measured coronary diastolic peak flow velocities (PFV) at baseline and after dipyridamole infusion. CFR was calculated as the ratio of hyperemic to baseline diastolic PFV and was compared between groups. Mean ages for patients with AVC and controls were 68.9+/-6.2 and 67.6+/-5.9 years (P=.3). There were no significant differences regarding clinical characteristics, laboratory findings, ejection fraction, or peak aortic valve gradients. Mean diastolic PFV at baseline and during hyperemia were 28.4+/-4.2 and 59.2+/-7.8 cm/s for AVC and 27.7+/-3.9 and 68.5+/-10.5 cm/s for controls. Compared with controls, patients with AVC had significantly lower CFR values (2.12+/-0.41 versus 2.51+/-0.51; P<.0001). CFR is impaired in patients with AVC before valve stenosis develops, suggesting that microvascular-endothelial dysfunction is present during the early stages of the calcific aortic valve disease.

  6. Performance of different PEEP valves and helmet outlets at increasing gas flow rates: a bench top study.

    PubMed

    Isgrò, S; Zanella, A; Giani, M; Abd El Aziz El Sayed Deab, S; Pesenti, A; Patroniti, N

    2012-10-01

    Aim of the paper was to assess the performance of different expiratory valves and the resistance of helmet outlet ports at increasing gas flow rates. A gas flow-meter was connected to 10 different expiratory peep valves: 1 water-seal valve, 4 precalibrated fixed PEEP valves and 5 adjustable PEEP valves. Three new valves of each brand, set at different pressure levels (5-7.5-10-12.5-15 cmH(2)O, if available), were tested at increasing gas flow rates (from 30 to 150 L/min). We measured the pressure generated just before the valves. Three different helmets sealed on a mock head were connected at the inlet port with a gas flow-meter while the outlet was left clear. We measured the pressure generated inside the helmet (due to the flow-resistance of the outlet port) at increasing gas flow rates. Adjustable valves showed a variable degree flow-dependency (increasing difference between the measured and the expected pressure at increasing flow rates), while pre-calibrated valves revealed a flow-independent behavior. Water seal valve showed low degree flow-dependency. The pressures generated by the outlet port of the tested helmets ranged from 0.02 to 2.29 cmH(2)O at the highest gas flow rate. Adjustable PEEP valves are not suggested for continuous-flow CPAP systems as their flow-dependency can lead to pressures higher than expected. Precalibrated and water seal valves exhibit the best performance. Different helmet outlet ports do not significantly affect the pressure generated during helmet CPAP. In order to avoid iatrogenic complications gas flow and pressure delivered during helmet CPAP must always be monitored.

  7. Prognostic value of echocardiographic indices of left atrial morphology and function in dogs with myxomatous mitral valve disease

    PubMed Central

    Romito, Giovanni; Guglielmini, Carlo; Diana, Alessia; Pelle, Nazzareno G.; Contiero, Barbara; Cipone, Mario

    2018-01-01

    Background The prognostic relevance of left atrial (LA) morphological and functional variables, including those derived from speckle tracking echocardiography (STE), has been little investigated in veterinary medicine. Objectives To assess the prognostic value of several echocardiographic variables, with a focus on LA morphological and functional variables in dogs with myxomatous mitral valve disease (MMVD). Animals One‐hundred and fifteen dogs of different breeds with MMVD. Methods Prospective cohort study. Conventional morphologic and echo‐Doppler variables, LA areas and volumes, and STE‐based LA strain analysis were performed in all dogs. A survival analysis was performed to test for the best echocardiographic predictors of cardiac‐related death. Results Most of the tested variables, including all LA STE‐derived variables were univariate predictors of cardiac death in Cox proportional hazard analysis. Because of strong correlation between many variables, only left atrium to aorta ratio (LA/Ao > 1.7), mitral valve E wave velocity (MV E vel > 1.3 m/s), LA maximal volume (LAVmax > 3.53 mL/kg), peak atrial longitudinal strain (PALS < 30%), and contraction strain index (CSI per 1% increase) were entered in the univariate analysis, and all were predictors of cardiac death. However, only the MV E vel (hazard ratio [HR], 4.45; confidence interval [CI], 1.76‐11.24; P < .001) and LAVmax (HR, 2.32; CI, 1.10‐4.89; P = .024) remained statistically significant in the multivariable analysis. Conclusions and Clinical Importance The assessment of LA dimension and function provides useful prognostic information in dogs with MMVD. Considering all the LA variables, LAVmax appears the strongest predictor of cardiac death, being superior to LA/Ao and STE‐derived variables. PMID:29572938

  8. Lightweight Motorized Valve

    NASA Technical Reports Server (NTRS)

    Gonzalez, R.; Vandewalle, J.

    1986-01-01

    Redesigned actuator assembly weighs 50 percent less. Isolator valve operated by ac motor instead of usual dc solenoid. Valve weighs only 3 lb (1.4 kg). New valve functions with either two-phase or three-phase power. Developed for isolating fluids in propellant tanks, manifolds, and interconnecting lines of Space Shuttle reaction control and orbital maneuvering subsystems, valve suited to applications in which leakage must be kept to minimum at high pressure differences - in petroleum and chemical processing.

  9. Valve exploiting the principle of a side channel turbine

    NASA Astrophysics Data System (ADS)

    Jandourek, Pavel; Habán, Vladimír; Pochylý, František; Fic, Miloslav

    The article deals with a side channel turbine, which can be used as a suitable substitute for a pressure reducing valve. Reducing valves are a source of hydraulic losses. The aim is to replace them by a side channel turbine. With that in mind, hydraulic losses can be replaced by a production of electrical energy at comparable characteristics of the valve and the turbine. The basis for the design is the loss characteristics of the valve. Thereby creating a kind of turbine valve with speed-controlled flow in dependence of runner revolution.

  10. Slow opening valve. [valve design for shuttle portable oxygen system

    NASA Technical Reports Server (NTRS)

    Drapeau, D. F. (Inventor)

    1984-01-01

    A valve control is described having a valve body with an actuator stem and a rotating handle connected to the actuator stem by a differential drive mechanism which, during uniform movement of the handle in one direction, initially opens the valve at a relatively slow rate and, thereafter, complete the valve movement at a substantially faster rate. A series of stop rings are received about the body in frictional abutting relationship and serially rotated by the handle to uniformly resist handle movement independently of the extent of handle movement.

  11. B-1 Systems Approach to Training. Task Analysis Listings

    DTIC Science & Technology

    1975-07-01

    OFF FUEL VALVES AND PUMPS PHR-OFF FUEL VALVES AND PUMPS = AUTO ^FT TFR MODE LAND SELECTOR SWITCHES TQ *QFF...TFR MODE SWITCH-RIGHT «JFT L TFR MODE SELECT SWITCH TQ * TF1 CHECKLIST TFR MODE SWITCH-LEFT TFR MODE SWITCH-LEFT...DOOR HANDLE ENTRY LADDER CONTROL SWITCH ENTRY LADDER CONTROL SWITCH = DN* 16.1.1.001.OC* SET TANK FILL VALVE SWS ON

  12. Sliding pressure control valve for pneumatic hammer drill

    DOEpatents

    Polsky, Yarom [Albuquerque, NM

    2011-08-30

    A pneumatic device control apparatus and method comprising a ported valve slidably fitted over a feed tube of the pneumatic device, and using a compliant biasing device to constrain motion of the valve to provide asymmetric timing for extended pressurization of a power chamber and reduced pressurization of a return chamber of the pneumatic device. The pneumatic device can be a pneumatic hammer drill.

  13. Microprocessor-Based Valved Controller

    NASA Technical Reports Server (NTRS)

    Norman, Arnold M., Jr.

    1987-01-01

    New controller simpler, more precise, and lighter than predecessors. Mass-flow controller compensates for changing supply pressure and temperature such as occurs when gas-supply tank becomes depleted. By periodically updating calculation of mass-flow rate, controller determines correct new position for valve and keeps mass-flow rate nearly constant.

  14. Combustion engine variable compression ratio apparatus and method

    DOEpatents

    Lawrence,; Keith, E [Peoria, IL; Strawbridge, Bryan E [Dunlap, IL; Dutart, Charles H [Washington, IL

    2006-06-06

    An apparatus and method for varying a compression ratio of an engine having a block and a head mounted thereto. The apparatus and method includes a cylinder having a block portion and a head portion, a piston linearly movable in the block portion of the cylinder, a cylinder plug linearly movable in the head portion of the cylinder, and a valve located in the cylinder plug and operable to provide controlled fluid communication with the block portion of the cylinder.

  15. Analysis of the STS-126 Flow Control Valve Structural-Acoustic Coupling Failure

    NASA Technical Reports Server (NTRS)

    Jones, Trevor M.; Larko, Jeffrey M.; McNelis, Mark E.

    2010-01-01

    During the Space Transportation System mission STS-126, one of the main engine's flow control valves incurred an unexpected failure. A section of the valve broke off during liftoff. It is theorized that an acoustic mode of the flowing fuel, coupled with a structural mode of the valve, causing a high cycle fatigue failure. This report documents the analysis efforts conducted in an attempt to verify this theory. Hand calculations, computational fluid dynamics, and finite element methods are all implemented and analyses are performed using steady-state methods in addition to transient analysis methods. The conclusion of the analyses is that there is a critical acoustic mode that aligns with a structural mode of the valve

  16. 46 CFR 78.47-38 - Valves and closing appliances.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Valves and closing appliances. 78.47-38 Section 78.47-38... Fire and Emergency Equipment, Etc. § 78.47-38 Valves and closing appliances. (a) All valves and closing appliances, or other mechanisms which may be required to be operated for damage control purposes in case of...

  17. 40 CFR 63.1014 - Open-ended valves or lines standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Open-ended valves or lines standards... (CONTINUED) National Emission Standards for Equipment Leaks-Control Level 1 § 63.1014 Open-ended valves or... requirements. (1) Each open-ended valve or line shall be equipped with a cap, blind flange, plug, or a second...

  18. Lightweight Valve Closes Duct Quickly

    NASA Technical Reports Server (NTRS)

    Fournier, Walter L.; Burgy, N. Frank

    1991-01-01

    Expanding balloon serves as lightweight emergency valve to close wide duct. Uninflated balloon stored in housing of duct. Pad resting on burst diaphragm protects balloon from hot gases in duct. Once control system triggers valve, balloon inflates rapidly to block duct. Weighs much less than does conventional butterfly, hot-gas, or poppet valve capable of closing duct of equal diameter.

  19. Influence of DC-biasing on the performance of graphene spin valve

    NASA Astrophysics Data System (ADS)

    Iqbal, Muhammad Zahir; Hussain, Ghulam; Siddique, Salma; Hussain, Tassadaq; Iqbal, Muhammad Javaid

    2018-04-01

    Generating and controlling the spin valve signal are key factors in 'spintronics', which aims to utilize the spin degree of electrons. For this purpose, spintronic devices are constructed that can detect the spin signal. Here we investigate the effect of direct current (DC) on the magnetoresistance (MR) of graphene spin valve. The DC input not only decreases the magnitude of MR but also distorts the spin valve signal at higher DC inputs. Also, low temperature measurements revealed higher MR for the device, while the magnitude is noticed to decrease at higher temperatures. Furthermore, the spin polarization associated with NiFe electrodes is continuously increased at low DC bias and low temperatures. We also demonstrate the ohmic behavior of graphene spin valve by showing linear current-voltage (I-V) characteristics of the junction. Our findings may contribute significantly in modulating and controlling the spin transport properties of vertical spin valve structures.

  20. Analog-Computer Investigation of Effects of Friction and Preload on the Dynamic Longitudinal Characteristics of a Pilot-Airplane Combination

    NASA Technical Reports Server (NTRS)

    Crane, Harold L.

    1961-01-01

    With an electric analog computer, an investigation has been made of the effects of control frictions and preloads on the transient longitudinal response of a fighter airplane during abrupt small attitude corrections. The simulation included the airplane dynamics, powered control system, feel system, and a simple linearized pseudopilot. Control frictions at the stick pivot and at the servo valve as well as preloads of the stick and valve were considered individually and in combinations. It is believed that the results which are presented in the form of time histories and vector diagrams present a more detailed illustration of the effects of stray forces and compensating forces in the longitudinal control system than has previously been available. Consistent with the results of previous studies, the present results show that any of these four friction and preload forces caused some deterioration of the response. However, even a small amount of valve friction caused an oscillatory pitching response during which the phasing of the valve friction was such that it caused energy to be fed into the pitching oscillation of the air-plane. Of the other friction and preload forces which were considered, it was found that stick preload was close to 180 deg. out of phase with valve friction and thus could compensate in large measure for valve friction as long as the cycling of the stick encompassed the trim point. Either stick friction or valve preload provided a smaller stabilizing effect primarily through a reduction in the amplitude of the resultant force vector acting on the control system. Some data were obtained on the effects of friction when the damping or inertia of the control system or the pilot lag was varied.

  1. Analog-computer investigation of effects of friction and preload on the dynamic longitudinal characteristics of a pilot-airplane combination

    NASA Technical Reports Server (NTRS)

    Crane, Harold L

    1957-01-01

    With an electric analog computer, an investigation has been made of the effects of control frictions and preloads on the transient longitudinal response of a fighter airplane during abrupt small attitude corrections. The simulation included the airplane dynamics, powered control system, feel system, and a simple linearized pseudopilot. Control frictions at the stick pivot and at the servo valve as well as preloads of the stick and valve were considered individually and in combinations. It is believed that the results which are presented in the form of time histories and vector diagrams present a more detailed illustration of the effects of stray forces and compensating forces in the longitudinal control system than has previously been available. Consistent with the results of previous studies, the present results show that any of thesefour friction and preload forces caused some deterioration of the response. However, even a small amount of valve friction caused an oscillatory pitching response during which the phasing of the valve friction was such that it caused energy to be fed into the pitching oscillation of the airplane. Of the other friction and preload forces which were considered, it was found that stick preload was close to 180 degrees out of phase with valve friction and thus could compensate in large measure for valve friction as long as the cycling of the stick encompassed the trim point. Either stick friction or valve preload provided a smaller stabilizing effect primarily through a reduction in the amplitude of the resultant force vector acting on the control system. Some data were obtained on the effects of friction when the damping or inertia of the control system or the pilot lag was varied.

  2. Impact of mitral valve geometry on hemodynamic efficacy of surgical repair in secondary mitral regurgitation.

    PubMed

    Padala, Muralidhar; Gyoneva, Lazarina I; Thourani, Vinod H; Yoganathan, Ajit P

    2014-01-01

    Mitral valve geometry is significantly altered secondary to left ventricular remodeling in non-ischemic and ischemic dilated cardiomyopathies. Since the extent of remodeling and asymmetry of dilatation of the ventricle differ significantly between individual patients, the valve geometry and tethering also differ. The study aim was to determine if mitral valve geometry has an impact on the efficacy of surgical repairs to eliminate regurgitation and restore valve closure in a validated experimental model. Porcine mitral valves (n = 8) were studied in a pulsatile heart simulator, in which the mitral valve geometry can be precisely altered and controlled throughout the experiment. Baseline hemodynamics for each valve were measured (Control), and the valves were tethered in two distinct ways: annular dilatation with 7 mm apical papillary muscle (PM) displacement (Tether 1, symmetric), and annular dilatation with 7 mm apical, 7 mm posterior and 7 mm lateral PM displacement (Tether 2, asymmetric). Mitral annuloplasty was performed on each valve (Annular Repair), succeeded by anterior leaflet secondary chordal cutting (Sub-annular Repair). The efficacy of each repair in the setting of a given valve geometry was quantified by measuring the changes in mitral regurgitation (MR), leaflet coaptation length, tethering height and area. At baseline, none of the valves was regurgitant. Significant leaflet tethering was measured in Tether 2 over Tether 1, but both groups were significantly higher compared to baseline (60.9 +/- 31 mm2 for Control versus 129.7 +/- 28.4 mm2 for Tether 1 versus 186.4 +/- 36.3 mm2 for Tether 2). Consequently, the MR fraction was higher in Tether 2 group (23.0 +/- 5.7%) than in Tether 1 (10.5 +/- 5.5%). Mitral annuloplasty reduced MR in both groups, but remnant regurgitation after the repair was higher in Tether 2. After chordal cutting a similar trend was observed with trace regurgitation in Tether 1 group at 3.6 +/- 2.8%, in comparison to 18.6 +/- 4.2% in the Tether 2 group. In this experimental model, the tethering geometry of the mitral valve impacts the valve hemodynamics after annuloplasty and chordal cutting. The quantitative assessment of valve geometry may help in tailoring a repair to the specific tethering pattern.

  3. System for remotely servicing a top loading captive ball valve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, S.M.; Porter, M.L.

    1996-06-25

    An attachment for facilitating servicing of a valve is disclosed including: an assembly composed of a valve seat defining a flow path, a flow control member movable relative to the valve seat for blocking or unblocking the valve seat, and a control device including a stem coupled to the flow control member and operable for moving the flow control member relative to the valve seat; a housing for receiving the assembly, the housing having an opening via which the assembly can be removed from, and installed in, the housing, and the housing having a plurality of threaded studs which surroundmore » the opening and project away from the housing; a valve housing cover for closing and sealing the opening in the housing, the cover having a first bore for passage of the stem of the control device when the assembly is installed in the housing and a plurality of second bores each located for passage of a respective stud when the cover closes the opening in the housing. A plurality of threaded nuts are engageable with the studs for securing the cover to the housing when the cover closes the opening in the housing, wherein the attachment comprises: a plurality of nut guide devices removable from the housing and each operatively associated with a respective stud for retaining a respective nut and guiding the respective nut into alignment with the respective stud to enable the respective nut to be rotated into engagement with the respective stud; and aligning the nut guide devices with the studs. 7 figs.« less

  4. System for remotely servicing a top loading captive ball valve

    DOEpatents

    Berry, S.M.; Porter, M.L.

    1996-06-25

    An attachment for facilitating servicing of a valve is disclosed including: an assembly composed of a valve seat defining a flow path, a flow control member movable relative to the valve seat for blocking or unblocking the valve seat, and a control device including a stem coupled to the flow control member and operable for moving the flow control member relative to the valve seat; a housing for receiving the assembly, the housing having an opening via which the assembly can be removed from, and installed in, the housing, and the housing having a plurality of threaded studs which surround the opening and project away from the housing; a valve housing cover for closing and sealing the opening in the housing, the cover having a first bore for passage of the stem of the control device when the assembly is installed in the housing and a plurality of second bores each located for passage of a respective stud when the cover closes the opening in the housing. A plurality of threaded nuts are engageable with the studs for securing the cover to the housing when the cover closes the opening in the housing, wherein the attachment comprises: a plurality of nut guide devices removable from the housing and each operatively associated with a respective stud for retaining a respective nut and guiding the respective nut into alignment with the respective stud to enable the respective nut to be rotated into engagement with the respective stud; and aligning the nut guide devices with the studs. 7 figs.

  5. Harmonic engine

    DOEpatents

    Bennett, Charles L.; Sewall, Noel; Boroa, Carl

    2014-08-19

    An engine based on a reciprocating piston engine that extracts work from pressurized working fluid. The engine includes a harmonic oscillator inlet valve capable of oscillating at a resonant frequency for controlling the flow of working fluid into of the engine. In particular, the inlet valve includes an inlet valve head and a spring arranged together as a harmonic oscillator so that the inlet valve head is moveable from an unbiased equilibrium position to a biased closed position occluding an inlet. Upon releasing the inlet valve the inlet valve head undergoes a single oscillation past the equilibrium positio to a maximum open position and returns to a biased return position close to the closed position to choke the flow and produce a pressure drop across the inlet valve causing the inlet valve to close. Protrusions carried either by the inlet valve head or piston head are used to bump open the inlet valve from the closed position and initiate the single oscillation of the inlet valve head, and protrusions carried either by the outlet valve head or piston head are used to close the outlet valve ahead of the bump opening of the inlet valve.

  6. Mixed Mode Fuel Injector And Injection System

    DOEpatents

    Stewart, Chris Lee; Tian, Ye; Wang, Lifeng; Shafer, Scott F.

    2005-12-27

    A fuel injector includes a homogenous charge nozzle outlet set and a conventional nozzle outlet set that are controlled respectively by first and second three way needle control valves. Each fuel injector includes first and second concentric needle valve members. One of the needle valve members moves to an open position for a homogenous charge injection event, while the other needle valve member moves to an open position for a conventional injection event. The fuel injector has the ability to operate in a homogenous charge mode with a homogenous charge spray pattern, a conventional mode with a conventional spray pattern or a mixed mode.

  7. Modeling and control of fuel distribution in a dual-fuel internal combustion engine leveraging late intake valve closings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassa, Mateos; Hall, Carrie; Ickes, Andrew

    Advanced internal combustion engines, although generally more efficient than conventional combustion engines, often encounter limitations in multi-cylinder applications due to variations in the combustion process encountered across cylinders and between cycles. This study leverages experimental data from an inline 6-cylinder heavy-duty dual fuel engine equipped with exhaust gas recirculation (EGR), a variable geometry turbocharger, and a fully-flexible variable intake valve actuation system to study cylinder-to-cylinder variations in power production and the underlying uneven fuel distribution that causes these variations. The engine is operated with late intake valve closure timings in a dual-fuel combustion mode in which a high reactivity fuelmore » is directly injected into the cylinders and a low reactivity fuel is port injected into the cylinders. Both dual fuel implementation and late intake valve closing (IVC) timings have been shown to improve thermal efficiency. However, experimental data from this study reveal that when late IVC timings are used on a multi-cylinder dual fuel engine a significant variation in IMEP across cylinders results and as such, leads to efficiency losses. The difference in IMEP between the different cylinders ranges from 9% at an IVC of 570°ATDC to 38% at an IVC of 610°ATDC and indicates an increasingly uneven fuel distribution. These experimental observations along with engine simulation models developed using GT-Power have been used to better understand the distribution of the port injected fuel across cylinders under various operating conditions on such dual fuel engines. This study revealed that the fuel distribution across cylinders in this dual fuel application is significantly affected by changes in the effective compression ratio as determined by the intake valve close timing as well as the design of the intake system (specifically the length of the intake runners). Late intake valve closures allow a portion of the trapped air and port injected fuel to flow back out of the cylinders into the intake manifold. The fuel that is pushed back in the intake manifold is then unevenly redistributed across the cylinders largely due to the dominating direction of the flow in the intake manifold. The effects of IVC as well as the impact of intake runner length on fuel distribution were quantitatively analyzed and a model was developed that can be used to accurately predict the fuel distribution of the port injected fuel at different operating conditions with an average estimation error of 1.5% in cylinder-specific fuel flow.« less

  8. Automated electric valve for electrokinetic separation in a networked microfluidic chip.

    PubMed

    Cui, Huanchun; Huang, Zheng; Dutta, Prashanta; Ivory, Cornelius F

    2007-02-15

    This paper describes an automated electric valve system designed to reduce dispersion and sample loss into a side channel when an electrokinetically mobilized concentration zone passes a T-junction in a networked microfluidic chip. One way to reduce dispersion is to control current streamlines since charged species are driven along them in the absence of electroosmotic flow. Computer simulations demonstrate that dispersion and sample loss can be reduced by applying a constant additional electric field in the side channel to straighten current streamlines in linear electrokinetic flow (zone electrophoresis). This additional electric field was provided by a pair of platinum microelectrodes integrated into the chip in the vicinity of the T-junction. Both simulations and experiments of this electric valve with constant valve voltages were shown to provide unsatisfactory valve performance during nonlinear electrophoresis (isotachophoresis). On the basis of these results, however, an automated electric valve system was developed with improved valve performance. Experiments conducted with this system showed decreased dispersion and increased reproducibility as protein zones isotachophoretically passed the T-junction. Simulations of the automated electric valve offer further support that the desired shape of current streamlines was maintained at the T-junction during isotachophoresis. Valve performance was evaluated at different valve currents based on statistical variance due to dispersion. With the automated control system, two integrated microelectrodes provide an effective way to manipulate current streamlines, thus acting as an electric valve for charged species in electrokinetic separations.

  9. Microfluidic valve with cored glass microneedle for microinjection.

    PubMed

    Lee, Sanghoon; Jeong, Wonje; Beebe, David J

    2003-08-01

    In this paper, a new microinjection device was constructed by fusing a glass microneedle and a PDMS-based microvalve. The microneedle was fabricated via traditional micropipette pulling. The PDMS-based microvalve regulates the fluid flow in the microchannel and microneedle. The 'ON/OFF' operation of the valve was controlled by manually supplied pneumatic pressure. The valve membrane utilized a two level geometry to improve control at low flow rates. The relation between pressure and flow was measured and the results showed that very small volumes of fluid (>1 nl) could be controlled. The valve operation was investigated by monitoring the tip of the needle and pneumatic pressure simultaneously and it demonstrated very stable 'ON/OFF' operation to the pressure change.

  10. Microfluidic automation using elastomeric valves and droplets: reducing reliance on external controllers.

    PubMed

    Kim, Sung-Jin; Lai, David; Park, Joong Yull; Yokokawa, Ryuji; Takayama, Shuichi

    2012-10-08

    This paper gives an overview of elastomeric valve- and droplet-based microfluidic systems designed to minimize the need of external pressure to control fluid flow. This Concept article introduces the working principle of representative components in these devices along with relevant biochemical applications. This is followed by providing a perspective on the roles of different microfluidic valves and systems through comparison of their similarities and differences with transistors (valves) and systems in microelectronics. Despite some physical limitation of drawing analogies from electronic circuits, automated microfluidic circuit design can gain insights from electronic circuits to minimize external control units, while implementing high-complexity and high-throughput analysis. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Evaluation test program, valve, explosive actuated, normally closed Pyronetics model 1400

    NASA Technical Reports Server (NTRS)

    Avalos, E.

    1971-01-01

    Evaluation tests of the explosive actuated normally closed valves used to control and isolate hydrazine flow in the TOPS spacecraft, are presented. The malfunctions, modifications, service life, and reliability of the valve are also outlined.

  12. Development and Characterization Testing of an Air Pulsation Valve for a Pulse Detonation Engine Supersonic Parametric Inlet Test Section

    NASA Technical Reports Server (NTRS)

    Tornabene, Robert

    2005-01-01

    In pulse detonation engines, the potential exists for gas pulses from the combustor to travel upstream and adversely affect the inlet performance of the engine. In order to determine the effect of these high frequency pulses on the inlet performance, an air pulsation valve was developed to provide air pulses downstream of a supersonic parametric inlet test section. The purpose of this report is to document the design and characterization tests that were performed on a pulsation valve that was tested at the NASA Glenn Research Center 1x1 Supersonic Wind Tunnel (SWT) test facility. The high air flow pulsation valve design philosophy and analyses performed are discussed and characterization test results are presented. The pulsation valve model was devised based on the concept of using a free spinning ball valve driven from a variable speed electric motor to generate air flow pulses at preset frequencies. In order to deliver the proper flow rate, the flow port was contoured to maximize flow rate and minimize pressure drop. To obtain sharp pressure spikes the valve flow port was designed to be as narrow as possible to minimize port dwell time.

  13. Mixed mode fuel injector with individually moveable needle valve members

    DOEpatents

    Stewart, Chris; Chockley, Scott A.; Ibrahim, Daniel R.; Lawrence, Keith; Tomaseki, Jay; Azam, Junru H.; Tian, Steven Ye; Shafer, Scott F.

    2004-08-03

    A fuel injector includes a homogenous charge nozzle outlet set and a conventional nozzle outlet set controlled respectively, by first and second needle valve members. One of the needle valve members moves to an open position while the other needle valve member remains stationary for a homogeneous charge injection event. The former needle valve member stays stationary while the other needle valve member moves to an open position for a conventional injection event. One of the needle valve members is at least partially positioned in the other needle valve member. Thus, the injector can perform homogeneous charge injection events, conventional injection events, or even a mixed mode having both types of injection events in a single engine cycle.

  14. Engine control system having fuel-based timing

    DOEpatents

    Willi, Martin L [Dunlap, IL; Fiveland, Scott B [Metamora, IL; Montgomery, David T [Edelstein, IL; Gong, Weidong [Dunlap, IL

    2012-04-03

    A control system for an engine having a cylinder is disclosed having an engine valve movable to regulate a fluid flow of the cylinder and an actuator associated with the engine valve. The control system also has a sensor configured to generate a signal indicative of an amount of an air/fuel mixture remaining within the cylinder after completion of a first combustion event and a controller in communication with the actuator and the sensor. The controller may be configured to compare the amount with a desired amount, and to selectively regulate the actuator to adjust a timing of the engine valve associated with a subsequent combustion event based on the comparison.

  15. Modular robot

    DOEpatents

    Ferrante, T.A.

    1997-11-11

    A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold. 12 figs.

  16. Outcomes After Operations for Unicuspid Aortic Valve With or Without Ascending Repair in Adults

    PubMed Central

    Zhu, Yuanjia; Roselli, Eric E.; Idrees, Jay J.; Wojnarski, Charles M.; Griffin, Brian; Kalahasti, Vidyasagar; Pettersson, Gosta; Svensson, Lars G.

    2016-01-01

    Background Unicuspid aortic valve is an important subset of bicuspid aortic valve, and knowledge regarding its aortopathy pattern and surgical outcomes is limited. Our objectives were to characterize unicuspid aortic valve patients, associated aortopathy, and surgical outcomes. Methods From January 1990 to May 2013, 149 adult unicuspid aortic valve patients underwent aortic valve replacement or repair for aortic stenosis (n = 13), regurgitation (n = 13), or both (n = 123), and in 91 (61%) the aortic valve operation was combined with aortic repair. Data were obtained from the Cardiovascular Information Registry and medical record review. Three-dimensional imaging analysis was performed from preoperative computed tomography and magnetic resonance imaging scans. The Kaplan-Meier method was used for survival analysis. Results Patients had a mean maximum aortic diameter of 44 ± 8 mm and variably involved the aortic root, ascending, or arch, or both. Patients with valve operations alone were more likely to be hypertensive (p = 0.01) and to have severe aortic stenosis (p = 0.07) than those who underwent concurrent aortic operations. There were no operative deaths, strokes, or myocardial infarctions. Patients undergoing aortic repair had better long-term survival. Estimated survival at 1, 5, and 10 years was 100%, 100%, and 100% after combined operations and was 100%, 88%, and 88% after valve operations alone (p = 0.01). Conclusions Patients with a dysfunctional unicuspid aortic valve frequently present with an ascending aneurysm that requires repair. Combined aortic valve operations and aortic repair was associated with significantly better long-term survival than a valve operation alone. Further study of this association may direct decisions about timing of surgical intervention. PMID:26453423

  17. Mathematical multi-scale model of the cardiovascular system including mitral valve dynamics. Application to ischemic mitral insufficiency

    PubMed Central

    2011-01-01

    Background Valve dysfunction is a common cardiovascular pathology. Despite significant clinical research, there is little formal study of how valve dysfunction affects overall circulatory dynamics. Validated models would offer the ability to better understand these dynamics and thus optimize diagnosis, as well as surgical and other interventions. Methods A cardiovascular and circulatory system (CVS) model has already been validated in silico, and in several animal model studies. It accounts for valve dynamics using Heaviside functions to simulate a physiologically accurate "open on pressure, close on flow" law. However, it does not consider real-time valve opening dynamics and therefore does not fully capture valve dysfunction, particularly where the dysfunction involves partial closure. This research describes an updated version of this previous closed-loop CVS model that includes the progressive opening of the mitral valve, and is defined over the full cardiac cycle. Results Simulations of the cardiovascular system with healthy mitral valve are performed, and, the global hemodynamic behaviour is studied compared with previously validated results. The error between resulting pressure-volume (PV) loops of already validated CVS model and the new CVS model that includes the progressive opening of the mitral valve is assessed and remains within typical measurement error and variability. Simulations of ischemic mitral insufficiency are also performed. Pressure-Volume loops, transmitral flow evolution and mitral valve aperture area evolution follow reported measurements in shape, amplitude and trends. Conclusions The resulting cardiovascular system model including mitral valve dynamics provides a foundation for clinical validation and the study of valvular dysfunction in vivo. The overall models and results could readily be generalised to other cardiac valves. PMID:21942971

  18. Valve repair in aortic regurgitation without root dilatation--aortic valve repair.

    PubMed

    Lausberg, H F; Aicher, D; Kissinger, A; Langer, F; Fries, R; Schäfers, H-J

    2006-02-01

    Aortic valve repair was established in the context of aortic root remodeling. Variable results have been reported for isolated valve repair. We analyzed our experience with isolated valve repair and compared the results with those of aortic root remodeling. Between October 1995 and August 2003, isolated repair of the aortic valve was performed in 83 patients (REP), remodeling of the aortic valve in 175 patients (REMO). The demographics of the two groups were comparable (REP: mean age 54.4 +/- 20.7 yrs, male-female ratio 2.1 : 1; REMO: mean age 60.8 +/- 13.6 yrs, male-female ratio 2.4 : 1; p = ns). In both groups the number of bicuspid valves was comparable (REP: 41 %, REMO: 32 %; p = ns). All patients were followed by echocardiography for a cumulative follow-up of 8204 patient months (mean 32 +/- 23 months). Overall in-hospital mortality was 2.4 % in REP and 4.6 % in REMO ( p = 0.62). Systolic gradients were comparable in both groups (REP: 5.8 +/- 2.2, REMO: 6.5 +/- 3.1 mm Hg, p = 0.09). The mean degree of aortic regurgitation 12 months postoperatively was 0.8 +/- 0.7 after REP and 0.7 +/- 0.7 after REMO ( p = 0.29). Freedom from significant regurgitation (> or = II degrees ) after 5 years was 86 % in REP and 89 % in REMO ( p = 0.17). Freedom from re-operation after 5 years was 94.4 % in REP and 98.2 % in REMO ( p = 0.33). Aortic regurgitation without concomitant root dilatation can be treated effectively by aortic valve repair. The functional results are equivalent to those obtained with valve-preserving root replacement. Aortic valve repair appears to be an alternative to valve replacement in aortic regurgitation.

  19. Survival characteristics and prognostic variables of dogs with mitral regurgitation attributable to myxomatous valve disease.

    PubMed

    Borgarelli, M; Savarino, P; Crosara, S; Santilli, R A; Chiavegato, D; Poggi, M; Bellino, C; La Rosa, G; Zanatta, R; Haggstrom, J; Tarducci, A

    2008-01-01

    There are few studies evaluating the natural history and prognostic variables in chronic mitral valve disease (CMVI) in a heterogeneous population of dogs. To estimate survival and prognostic value of clinical and echocardiographic variables in dogs with CMVI of varying severity. Five hundred and fifty-eight dogs belonging to 36 breeds were studied. Dogs were included after clinical examination and echocardiography. Long-term outcome was assessed by telephone interview with the owner. The mean follow-up time was 22.7 +/- 13.6 months, and the median survival time was 19.5 +/- 13.2 months. In univariate analysis, age>8 years, syncope, HR>140 bpm, dyspnea, arrhythmias, class of heart failure (International Small Animal Cardiac Health Council), furosemide therapy, end-systolic volume-index (ESV-I)>30 mL/m(2), left atrial to aortic root ratio (LA/Ao)>1.7, E wave transmitral peak velocity (Emax)>1.2 m/s, and bilateral mitral valve leaflet engagement were associated with survival time when all causes of death were included. For the cardiac-related deaths, all the previous variables except dyspnea and EDV-I>100 mL/m(2) were significantly associated with survival time. Significant variables in multivariate analysis (all causes of death) were syncope, LA/Ao>1.7 m/s, and Emax>1.2 m/s. For cardiac-related death, the only significant variable was LA/Ao>1.7. Mild CMVI is a relatively benign condition in dogs. However, some clinical variables can identify dogs at a higher risk of death; these variables might be useful to identify individuals that need more frequent monitoring or therapeutic intervention.

  20. 49 CFR Appendix A to Part 180 - Internal Self-closing Stop Valve Emergency Closure Test for Liquefied Compressed Gases

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Part 180—Internal Self-closing Stop Valve Emergency Closure Test for Liquefied Compressed Gases 1. In performing this test, all internal self-closing stop valves must be opened. Each emergency discharge control... 49 Transportation 3 2011-10-01 2011-10-01 false Internal Self-closing Stop Valve Emergency Closure...

  1. Lower-Stratospheric Control of the Frequency of Sudden Stratospheric Warming Events

    NASA Astrophysics Data System (ADS)

    Martineau, Patrick; Chen, Gang; Son, Seok-Woo; Kim, Joowan

    2018-03-01

    The sensitivity of stratospheric polar vortex variability to the basic-state stratospheric temperature profile is investigated by performing a parameter sweep experiment with a dry dynamical core general circulation model where the equilibrium temperature profiles in the polar lower and upper stratosphere are systematically varied. It is found that stratospheric variability is more sensitive to the temperature distribution in the lower stratosphere than in the upper stratosphere. In particular, a cold lower stratosphere favors a strong time-mean polar vortex with a large daily variability, promoting frequent sudden stratospheric warming events in the model runs forced with both wavenumber-1 and wavenumber-2 topographies. This sensitivity is explained by the control exerted by the lower-stratospheric basic state onto fluxes of planetary-scale wave activity from the troposphere to the stratosphere, confirming that the lower stratosphere can act like a valve for the upward propagation of wave activity. It is further shown that with optimal model parameters, stratospheric polar vortex climatology and variability mimicking Southern and Northern Hemisphere conditions are obtained with both wavenumber-1 and wavenumber-2 topographies.

  2. An air-pressure-free elastomeric valve for integrated nucleic acid analysis by capillary electrophoresis

    NASA Astrophysics Data System (ADS)

    Jung, Wooseok; Barrett, Matthew; Brooks, Carla; Rivera, Andrew; Birdsell, Dawn N.; Wagner, David M.; Zenhausern, Frederic

    2015-12-01

    We present a new elastomeric valve for integrated nucleic acid analysis by capillary electrophoresis. The valve functions include metering to capture a designated volume of biological sample into a polymerase chain reaction (PCR) chamber, sealing to preserve the sample during PCR cycling, and transfer of the PCR-products and on-chip formamide post-processing for the analysis of DNA fragments by capillary gel electrophoresis. This new valve differs from prior art polydimethylsiloxane (PDMS) valves in that the valve is not actuated externally by air-pressure or vacuum so that it simplifies a DNA analysis system by eliminating the need for an air-pressure or vacuum source, and off-cartridge solenoid valves, control circuit boards and software. Instead, the new valve is actuated by a thermal cycling peltier assembly integrated within the hardware instrument that tightly comes in contact with a microfluidic cartridge for thermal activation during PCR, so that it spontaneously closes the valve without an additional actuator system. The valve has bumps in the designated locations so that it has a self-alignment that does not require precise alignment of a valve actuator. Moreover, the thickness of the new valve is around 600 μm with an additional bump height of 400 μm so that it is easy to handle and very feasible to fabricate by injection molding compared to other PDMS valves whose thicknesses are around 30-100 μm. The new valve provided over 95% of metering performance in filling the fixed volume of the PCR chamber, preserved over 97% of the sample volume during PCR, and showed very comparable capillary electrophoresis peak heights to the benchtop assay tube controls with very consistent transfer volume of the PCR-product and on-chip formamide. The new valve can perform a core function for integrated nucleic acid analysis by capillary electrophoresis.

  3. 77 FR 16919 - Airworthiness Directives; Bombardier, Inc. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-23

    ... door from opening. It was found that the existing airstair door pneumatic shut-off valve control logic... Control Logic Change] to prevent the above-mentioned failure conditions. You may obtain further... Off Valve Control Logic Change, in accordance with the Accomplishment Instructions of Bombardier...

  4. Decellularized heart valve as a scaffold for in vivo recellularization: deleterious effects of granulocyte colony-stimulating factor.

    PubMed

    Juthier, Francis; Vincentelli, André; Gaudric, Julien; Corseaux, Delphine; Fouquet, Olivier; Calet, Christine; Le Tourneau, Thierry; Soenen, Valérie; Zawadzki, Christophe; Fabre, Olivier; Susen, Sophie; Prat, Alain; Jude, Brigitte

    2006-04-01

    Autologous recellularization of decellularized heart valve scaffolds is a promising challenge in the field of tissue-engineered heart valves and could be boosted by bone marrow progenitor cell mobilization. The aim of this study was to examine the spontaneous in vivo recolonization potential of xenogeneic decellularized heart valves in a lamb model and the effects of granulocyte colony-stimulating factor mobilization of bone marrow cells on this process. Decellularized porcine aortic valves were implanted in 12 lambs. Six lambs received granulocyte colony-stimulating factor (10 microg x kg(-1) x d(-1) for 7 days, granulocyte colony-stimulating factor group), and 6 received no granulocyte colony-stimulating factor (control group). Additionally, nondecellularized porcine valves were implanted in 5 lambs (xenograft group). Angiographic and histologic evaluation was performed at 3, 6, 8, and 16 weeks. Few macroscopic modifications of leaflets and the aortic wall were observed in the control group, whereas progressive shrinkage and thickening of the leaflets appeared in the granulocyte colony-stimulating factor and xenograft groups. In the 3 groups progressive ovine cell infiltration (fluorescence in situ hybridization) was observed in the leaflets and in the adventitia and the intima of the aortic wall but not in the media. Neointimal proliferation of alpha-actin-positive cells, inflammatory infiltration, adventitial neovascularization, and calcifications were more important in the xenograft and the granulocyte colony-stimulating factor groups than in the control group. Continuous re-endothelialization appeared only in the control group. Decellularized xenogeneic heart valve scaffolds allowed partial autologous recellularization. Granulocyte colony-stimulating factor led to accelerated heart valve deterioration similar to that observed in nondecellularized xenogeneic cardiac bioprostheses.

  5. Regression of aortic valve stenosis by ApoA-I mimetic peptide infusions in rabbits

    PubMed Central

    Busseuil, D; Shi, Y; Mecteau, M; Brand, G; Kernaleguen, A-E; Thorin, E; Latour, J-G; Rhéaume, E; Tardif, J-C

    2008-01-01

    Background and purpose: Aortic valve stenosis (AVS) is the most common valvular heart disease, and standard curative therapy remains open heart surgical valve replacement. The aim of our experimental study was to determine if apolipoprotein A-I (ApoA-I) mimetic peptide infusions could induce regression of AVS. Experimental approach: Fifteen New Zealand White male rabbits received a cholesterol-enriched diet and vitamin D2 until significant AVS was detected by echocardiography. The enriched diet was then stopped to mimic cholesterol-lowering therapy and animals were allocated randomly to receive saline (control group, n=8) or an ApoA-I mimetic peptide (treated group, n=7), three times per week for 2 weeks. Serial echocardiograms and post mortem valve histology were performed. Key results: Aortic valve area increased significantly by 25% in the treated group after 14 days of treatment (P=0.012). Likewise, aortic valve thickness decreased by 21% in the treated group, whereas it was unchanged in controls (P=0.0006). Histological analysis revealed that the extent of lesions at the base of valve leaflets and sinuses of Valsalva was smaller in the treated group compared with controls (P=0.032). The treatment also reduced calcification, as revealed by the loss of the positive relationship observed in the control group (r=0.87, P=0.004) between calcification area and aortic valve thickness. Conclusions and implications: Infusions of ApoA-I mimetic peptide lead to regression of experimental AVS. These positive results justify the further testing of high-density lipoprotein (HDL)-based therapies in patients with valvular aortic stenosis. Regression of aortic stenosis, if achieved safely, could transform the clinical treatment of this disease. PMID:18414386

  6. On-demand control of microfluidic flow via capillary-tuned solenoid microvalve suction.

    PubMed

    Zhang, Qiang; Zhang, Peiran; Su, Yetian; Mou, Chunbo; Zhou, Teng; Yang, Menglong; Xu, Jian; Ma, Bo

    2014-12-21

    A simple, low-cost and on-demand microfluidic flow controlling platform was developed based on a unique capillary-tuned solenoid microvalve suction effect without any outer pressure source. The suction effect was innovatively employed as a stable and controllable driving force for the manipulation of the microfluidic system by connecting a piece of capillary between the microvalve and the microfluidic chip, which caused significant hydrodynamic resistance differences among the solenoid valve ports and changed the flowing mode inside the valve. The volume of sucked liquid could be controlled from microliters even down to picoliters either by decreasing the valve energized duration (from a maximum energized duration to the valve response time of 20 ms) or by increasing the inserted capillary length (i.e., its hydrodynamic resistance). Several important microfluidic unit operations such as cell/droplet sorting and on-demand size-controllable droplet generation have been demonstrated on the developed platform and both simulations and experiments confirmed that this platform has good controllability and stability.

  7. KSC-2009-1950

    NASA Image and Video Library

    2009-03-03

    CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, technicians prepare to install three gaseous hydrogen flow control valves on space shuttle Discovery. The valves were retested after installation. Part of the main propulsion system, the valves channel gaseous hydrogen from the main engines to the external tank. NASA and contractor teams have worked to identify what caused damage to a flow control valve on shuttle Endeavour during its November 2008 flight. Space Shuttle Program managers decided to replace Discovery's valves with others that have undergone a detailed eddy current inspection. Program managers will review the testing and determine whether to meet on March 6 for the Flight Readiness Review for the STS-119 mission. Launch of Discovery tentatively is targeted for March 12. Photo credit: NASA/Chris Rhodes

  8. KSC-2009-1951

    NASA Image and Video Library

    2009-03-03

    CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, technicians install three gaseous hydrogen flow control valves on space shuttle Discovery. The valves were retested after installation. Part of the main propulsion system, the valves channel gaseous hydrogen from the main engines to the external tank. NASA and contractor teams have worked to identify what caused damage to a flow control valve on shuttle Endeavour during its November 2008 flight. Space Shuttle Program managers decided to replace Discovery's valves with others that have undergone a detailed eddy current inspection. Program managers will review the testing and determine whether to meet on March 6 for the Flight Readiness Review for the STS-119 mission. Launch of Discovery tentatively is targeted for March 12. Photo credit: NASA/Chris Rhodes

  9. Solid handling valve

    DOEpatents

    Williams, William R.

    1979-01-01

    The present invention is directed to a solids handling valve for use in combination with lock hoppers utilized for conveying pulverized coal to a coal gasifier. The valve comprises a fluid-actuated flow control piston disposed within a housing and provided with a tapered primary seal having a recessed seat on the housing and a radially expandable fluid-actuated secondary seal. The valve seals are highly resistive to corrosion, erosion and abrasion by the solids, liquids, and gases associated with the gasification process so as to minimize valve failure.

  10. Zero-torque spanner wrench

    NASA Technical Reports Server (NTRS)

    Friedell, M. V.

    1980-01-01

    Wrench converts gripping action of hand to rotary motion without imparting reactive moments or forces on part being turned or on operator. Wrench should be useful in undersea operations and other delicate work where reactive forces and torques have to be controlled. In design for valve tightening, tool resembles cross between conventional spanner wrench and pilers. One handle engages valve body; second handle has ratchet pawl that engages toothed coupling ring on perimeter of valve handle. When operator squeezes wrench handles, valve handle rotates with respect to valve body.

  11. Double-reed exhaust valve engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Charles L.

    An engine based on a reciprocating piston engine that extracts work from pressurized working fluid. The engine includes a double reed outlet valve for controlling the flow of low-pressure working fluid out of the engine. The double reed provides a stronger force resisting closure of the outlet valve than the force tending to open the outlet valve. The double reed valve enables engine operation at relatively higher torque and lower efficiency at low speed, with lower torque, but higher efficiency at high speed.

  12. 46 CFR 76.17-10 - Controls.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Controls. 76.17-10 Section 76.17-10 Shipping COAST GUARD... Systems, Details § 76.17-10 Controls. (a) The foam agent, its container, and all controls and valves for... controls and valves for the operation of the system shall be outside the space protected and shall not be...

  13. 46 CFR 76.17-10 - Controls.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Controls. 76.17-10 Section 76.17-10 Shipping COAST GUARD... Systems, Details § 76.17-10 Controls. (a) The foam agent, its container, and all controls and valves for... controls and valves for the operation of the system shall be outside the space protected and shall not be...

  14. 46 CFR 76.17-10 - Controls.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Controls. 76.17-10 Section 76.17-10 Shipping COAST GUARD... Systems, Details § 76.17-10 Controls. (a) The foam agent, its container, and all controls and valves for... controls and valves for the operation of the system shall be outside the space protected and shall not be...

  15. 46 CFR 76.17-10 - Controls.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Controls. 76.17-10 Section 76.17-10 Shipping COAST GUARD... Systems, Details § 76.17-10 Controls. (a) The foam agent, its container, and all controls and valves for... controls and valves for the operation of the system shall be outside the space protected and shall not be...

  16. 46 CFR 76.17-10 - Controls.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Controls. 76.17-10 Section 76.17-10 Shipping COAST GUARD... Systems, Details § 76.17-10 Controls. (a) The foam agent, its container, and all controls and valves for... controls and valves for the operation of the system shall be outside the space protected and shall not be...

  17. Nonlinear control of rotating stall and surge with axisymmetric bleed and air injection on axial flow compressors

    NASA Astrophysics Data System (ADS)

    Yeung, Chung-Hei (Simon)

    The study of compressor instabilities in gas turbine engines has received much attention in recent years. In particular, rotating stall and surge are major causes of problems ranging from component stress and lifespan reduction to engine explosion. In this thesis, modeling and control of rotating stall and surge using bleed valve and air injection is studied and validated on a low speed, single stage, axial compressor at Caltech. Bleed valve control of stall is achieved only when the compressor characteristic is actuated, due to the fast growth rate of the stall cell compared to the rate limit of the valve. Furthermore, experimental results show that the actuator rate requirement for stall control is reduced by a factor of fourteen via compressor characteristic actuation. Analytical expressions based on low order models (2--3 states) and a high fidelity simulation (37 states) tool are developed to estimate the minimum rate requirement of a bleed valve for control of stall. A comparison of the tools to experiments show a good qualitative agreement, with increasing quantitative accuracy as the complexity of the underlying model increases. Air injection control of stall and surge is also investigated. Simultaneous control of stall and surge is achieved using axisymmetric air injection. Three cases with different injector back pressure are studied. Surge control via binary air injection is achieved in all three cases. Simultaneous stall and surge control is achieved for two of the cases, but is not achieved for the lowest authority case. This is consistent with previous results for control of stall with axisymmetric air injection without a plenum attached. Non-axisymmetric air injection control of stall and surge is also studied. Three existing control algorithms found in literature are modeled and analyzed. A three-state model is obtained for each algorithm. For two cases, conditions for linear stability and bifurcation criticality on control of rotating stall are derived and expressed in terms of implementation-oriented variables such as number of injectors. For the third case, bifurcation criticality conditions are not obtained due to complexity, though linear stability property is derived. A theoretical comparison between the three algorithms is made, via the use of low-order models, to investigate pros and cons of the algorithms in the context of operability. The effects of static distortion on the compressor facility at Caltech is characterized experimentally. Results consistent with literature are obtained. Simulations via a high fidelity model (34 states) are also performed and show good qualitative as well as quantitative agreement to experiments. A non-axisymmetric pulsed air injection controller for stall is shown to be robust to static distortion.

  18. An Introduction to Controller Performance Assessment in Process Control Class through Stiction in Control Valves

    ERIC Educational Resources Information Center

    Srinivasan, Ranganathan; Rengaswamy, Raghunathan; Harris, Sandra

    2007-01-01

    In this paper, we discuss a simple liquid level experiment that can be used to teach nonlinear phenomena in process control through stiction in control valves. This experiment can be used to introduce the undergraduate students to the area of Controller Performance Assessment (CPA). The experiment is very easy to set-up and demonstrate. While…

  19. Control of respiration-driven retrograde flow in the subdiaphragmatic venous return of the Fontan circulation

    PubMed Central

    Vukicevic, M; Conover, T; Jaeggli, M; Zhou, J; Pennati, G; Hsia, TY; Figliola, RS

    2014-01-01

    Respiration influences the subdiaphragmatic venous return in the total cavopulmonary connection (TCPC) of the Fontan circulation whereby both the inferior vena cava (IVC) and hepatic vein flows can experience retrograde motion. Controlling retrograde flows could improve patient outcomes. Using a patient-specific model within a Fontan mock circulatory system with respiration, we inserted a valve into the IVC to examine its effects on local hemodynamics while varying retrograde volumes by changing vascular impedances. A bovine valved conduit reduced IVC retrograde flow to within 3% of antegrade flow in all cases. The valve closed only under conditions supporting retrograde flow and its effects on local hemodynamics increased with larger retrograde volume. Liver and TCPC pressures improved only while the valve leaflets were closed while cycle-averaged pressures improved only slightly (italic>1 mm Hg). Increased pulmonary vascular resistance raised mean circulation pressures but the valve functioned and cardiac output improved and stabilized. Power loss across the TCPC improved by 12–15% (pbold>0.05) with a valve. The effectiveness of valve therapy is dependent on patient vascular impedance. PMID:24814833

  20. Control methods and valve arrangement for start-up and shutdown of pressurized combustion and gasification systems integrated with a gas turbine

    DOEpatents

    Provol, Steve J.; Russell, David B.; Isaksson, Matti J.

    1994-01-01

    A power plant having a system for converting coal to power in a gas turbine comprises a coal fed pressurized circulating bed for converting coal to pressurized gases, a gas turbine having a compressor for pressurizing air for the pressurized circulating bed and expander for receiving and expanding hot combustion gases for powering a generator, a first fast acting valve for controlling the pressurized air, a second fast acting valve means for controlling pressurized gas from the compressor to the expander.

  1. Thermally-actuated, phase change flow control for microfluidic systems.

    PubMed

    Chen, Zongyuan; Wang, Jing; Qian, Shizhi; Bau, Haim H

    2005-11-01

    An easy to implement, thermally-actuated, noninvasive method for flow control in microfluidic devices is described. This technique takes advantage of the phase change of the working liquid itself-the freezing and melting of a portion of a liquid slug-to noninvasively close and open flow passages (referred to as a phase change valve). The valve was designed for use in a miniature diagnostic system for detecting pathogens in oral fluids at the point of care. The paper describes the modeling, construction, and characteristics of the valve. The experimental results favorably agree with theoretical predictions. In addition, the paper demonstrates the use of the phase change valves for flow control, sample metering and distribution into multiple analysis paths, sealing of a polymerase chain reaction (PCR) chamber, and sample introduction into and withdrawal from a closed loop. The phase change valve is electronically addressable, does not require any moving parts, introduces only minimal dead volume, is leakage and contamination free, and is biocompatible.

  2. 46 CFR 108.443 - Controls and valves.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Controls and valves. 108.443 Section 108.443 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.443 Controls and...

  3. 46 CFR 108.443 - Controls and valves.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Controls and valves. 108.443 Section 108.443 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.443 Controls and...

  4. Atrioventricular valve repair in patients with functional single-ventricle physiology: impact of ventricular and valve function and morphology on survival and reintervention.

    PubMed

    Honjo, Osami; Atlin, Cori R; Mertens, Luc; Al-Radi, Osman O; Redington, Andrew N; Caldarone, Christopher A; Van Arsdell, Glen S

    2011-08-01

    This study was to determine whether atrioventricular valve repair modifies natural history of single-ventricle patients with atrioventricular valve insufficiency and to identify factors predicting survival and reintervention. Fifty-seven (13.5%) of 422 single-ventricle patients underwent atrioventricular valve repair. Valve morphology, regurgitation mechanism, and ventricular morphology and function were analyzed for effect on survival, transplant, and reintervention with multivariate logistic and Cox regression models. Comparative analysis used case-matched controls. Atrioventricular valve was tricuspid in 67% and common in 28%. Ventricular morphology was right in 83%. Regurgitation mechanisms were prolapse (n = 24, 46%), dysplasia (n = 18, 35%), annular dilatation (n = 8, 15%), and restriction or cleft (n = 2, 4%). Postrepair insufficiency was none or trivial in 14 (26%), mild in 33 (61%), and moderate in 7 (13%). Survival in repair group was lower than in matched controls (78.9% vs 92.7% at 1 year, 68.7% vs 90.6% at 3 years, P = .015). Patients with successful repair and normal ventricular function had equivalent survival to matched controls (P = .36). Independent predictors for death or transplant included increased indexed annular size (P = .05), increased cardiopulmonary bypass time (P = .04), and decreased postrepair ventricular function (P = .01). Ventricular dilation was a time-related factor for all events, including failed repair. Survival was lower in single-ventricle patients operated on for atrioventricular valve insufficiency than in case-matched controls. Patients with little postoperative residual regurgitation and preserved ventricular function had equivalent survival to controls. Lower grade ventricular function and ventricular dilation correlated with death and repair failure, suggesting that timing of intervention may affect outcome. Copyright © 2011 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  5. Sclerostin as a potential novel biomarker for aortic valve calcification: an in-vivo and ex-vivo study.

    PubMed

    Koos, Ralf; Brandenburg, Vincent; Mahnken, Andreas Horst; Schneider, Rebekka; Dohmen, Guido; Autschbach, Rüdiger; Marx, Nikolaus; Kramann, Rafael

    2013-05-01

    Sclerostin is a key negative regulator of bone formation. It was hypothesized that sclerostin might also play a potential role in the development of aortic valve calcification (AVC). The study aim was to evaluate serum sclerostin levels in patients with different degrees of AVC compared to a healthy control group, and to investigate local sclerostin expression in explanted calcified and non-calcified aortic valves. A prospective cross-sectional study was performed in 115 patients (mean age 74 +/- 7 years) with echocardiographically proven AVC. Sclerostin serum levels were measured using ELISA and compared to values obtained from a healthy control population. For quantification of AVC, all patients of the study cohort underwent non-contrast-enhanced dual-source computed tomography (DSCT). Immunohistochemistry (IHC) staining for sclerostin and mRNA sclerostin expression was analyzed in 10 calcified aortic valves and 10 non-calcified age-matched control valves. Patients with AVC showed significantly higher sclerostin serum levels as compared to healthy controls (0.94 +/- 0.45 versus 0.58 +/- 0.26 ng/ml, p < 0.001). A significant correlation between sclerostin serum levels and Agatston AVC scores as assessed by DSCT was observed (r = 0.62, p < 0.001) in the study cohort. IHC revealed positive sclerostin staining in nine calcified valves, in contrast to negative staining for sclerostin in all non-calcified valves. Quantitative real-time PCR confirmed the increased sclerostin expression on mRNA level, with a significant up-regulation of sclerostin mRNA (fold change 150 +/- 52, p < 0.001) expression being shown in calcified aortic valves compared to non-calcified control valves. Co-staining experiments revealed that sclerostin-expressing cells co-express the major osteogenic transcription factor Runx2 and the extracellular matrix protein osteocalcin. Patients with AVC showed increased sclerostin serum levels compared to a healthy reference population, and it was revealed that the severity of AVC may be linked to increased sclerostin serum levels. Moreover, the PCR and staining data demonstrated an increased sclerostin expression in parallel to prototypic markers of osteogenic transdifferentiation, indicating a role of sclerostin in the valvular calcification process.

  6. Hydraulically actuated gas exchange valve assembly and engine using same

    DOEpatents

    Carroll, Thomas S.; Taylor, Gregory O.

    2002-09-03

    An engine comprises a housing that defines a hollow piston cavity that is separated from a gas passage by a valve seat. The housing further defines a biasing hydraulic cavity and a control hydraulic cavity. A gas valve member is also included in the engine and is movable relative to the valve seat between an open position at which the hollow piston cavity is open to the gas passage and a closed position in which the hollow piston cavity is blocked from the gas passage. The gas valve member includes a ring mounted on a valve piece and a retainer positioned between the ring and the valve piece. A closing hydraulic surface is included on the gas valve member and is exposed to liquid pressure in the biasing hydraulic cavity.

  7. Remote manual operator for space station intermodule ventilation valve

    NASA Technical Reports Server (NTRS)

    Guyaux, James R.

    1996-01-01

    The Remote Manual Operator (RMO) is a mechanism used for manual operation of the Space Station Intermodule Ventilation (IMV) valve and for visual indication of valve position. The IMV is a butterfly-type valve, located in the ventilation or air circulation ducts of the Space Station, and is used to interconnect or isolate the various compartments. The IMV valve is normally operated by an electric motor-driven actuator under computer or astronaut control, but it can also be operated manually with the RMO. The IMV valve RMO consists of a handle with a deployment linkage, a gear-driven flexible shaft, and a linkage to disengage the electric motor actuator during manual operation. It also provides visual indication of valve position. The IMV valve RMO is currently being prepared for qualification testing.

  8. Natural vacuum electronics

    NASA Technical Reports Server (NTRS)

    Leggett, Nickolaus

    1990-01-01

    The ambient natural vacuum of space is proposed as a basis for electron valves. Each valve is an electron controlling structure similiar to a vacuum tube that is operated without a vacuum sustaining envelope. The natural vacuum electron valves discussed offer a viable substitute for solid state devices. The natural vacuum valve is highly resistant to ionizing radiation, system generated electromagnetic pulse, current transients, and direct exposure to space conditions.

  9. Integrated control and health management. Orbit transfer rocket engine technology program

    NASA Technical Reports Server (NTRS)

    Holzmann, Wilfried A.; Hayden, Warren R.

    1988-01-01

    To insure controllability of the baseline design for a 7500 pound thrust, 10:1 throttleable, dual expanded cycle, Hydrogen-Oxygen, orbit transfer rocket engine, an Integrated Controls and Health Monitoring concept was developed. This included: (1) Dynamic engine simulations using a TUTSIM derived computer code; (2) analysis of various control methods; (3) Failure Modes Analysis to identify critical sensors; (4) Survey of applicable sensors technology; and, (5) Study of Health Monitoring philosophies. The engine design was found to be controllable over the full throttling range by using 13 valves, including an oxygen turbine bypass valve to control mixture ratio, and a hydrogen turbine bypass valve, used in conjunction with the oxygen bypass to control thrust. Classic feedback control methods are proposed along with specific requirements for valves, sensors, and the controller. Expanding on the control system, a Health Monitoring system is proposed including suggested computing methods and the following recommended sensors: (1) Fiber optic and silicon bearing deflectometers; (2) Capacitive shaft displacement sensors; and (3) Hot spot thermocouple arrays. Further work is needed to refine and verify the dynamic simulations and control algorithms, to advance sensor capabilities, and to develop the Health Monitoring computational methods.

  10. Exhaust emission reduction for intermittent combustion aircraft engines

    NASA Technical Reports Server (NTRS)

    Moffett, R. N.

    1979-01-01

    Three concepts for optimizing the performance, increasing the fuel economy, and reducing exhaust emission of the piston aircraft engine were investigated. High energy-multiple spark discharge and spark plug tip penetration, ultrasonic fuel vaporization, and variable valve timing were evaluated individually. Ultrasonic fuel vaporization did not demonstrate sufficient improvement in distribution to offset the performance loss caused by the additional manifold restriction. High energy ignition and revised spark plug tip location provided no change in performance or emissions. Variable valve timing provided some performance benefit; however, even greater performance improvement was obtained through induction system tuning which could be accomplished with far less complexity.

  11. Analysis of pressure losses in the diffuser of a control valve

    NASA Astrophysics Data System (ADS)

    Turecký, Petr; Mrózek, Lukáš; Tajč, Ladislav; Kolovratník, Michal

    The pressure loss in the diffuser of a control valve is evaluated by using CFD computations. Pressure ratios and lifts of a cone for the recommended flow characteristics of an experimental turbine are considered. The pressure loss in a valve is compared with the pressure loss in a nozzle, i.e. the embodiment of the valve without a cone. Computations are carried out for the same mass flow. Velocity profiles are evaluated in both versions of computations. Comparison of computed pressure losses, with the loss evaluated by using relations for diffusers with the ideal velocity conditions in the input cross-section, is carried out.

  12. Ferroelectric Fluid Flow Control Valve

    NASA Technical Reports Server (NTRS)

    Jalink, Antony, Jr. (Inventor); Hellbaum, Richard F. (Inventor); Rohrbach, Wayne W. (Inventor)

    1999-01-01

    An active valve is controlled and driven by external electrical actuation of a ferroelectric actuator to provide for improved passage of the fluid during certain time periods and to provide positive closure of the valve during other time periods. The valve provides improved passage in the direction of flow and positive closure in the direction against the flow. The actuator is a dome shaped internally prestressed ferroelectric actuator having a curvature, said dome shaped actuator having a rim and an apex. and a dome height measured from a plane through said rim said apex that varies with an electric voltage applied between an inside and an outside surface of said dome shaped actuator.

  13. 137. VALVES ON SOUTH WALL OF LIQUID NITROGEN CONTROL ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    137. VALVES ON SOUTH WALL OF LIQUID NITROGEN CONTROL ROOM (115), LSB (BLDG. 770) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  14. Magnetic timing valves for fluid control in paper-based microfluidics.

    PubMed

    Li, Xiao; Zwanenburg, Philip; Liu, Xinyu

    2013-07-07

    Multi-step analytical tests, such as an enzyme-linked immunosorbent assay (ELISA), require delivery of multiple fluids into a reaction zone and counting the incubation time at different steps. This paper presents a new type of paper-based magnetic valves that can count the time and turn on or off a fluidic flow accordingly, enabling timed fluid control in paper-based microfluidics. The timing capability of these valves is realized using a paper timing channel with an ionic resistor, which can detect the event of a solution flowing through the resistor and trigger an electromagnet (through a simple circuit) to open or close a paper cantilever valve. Based on this principle, we developed normally-open and normally-closed valves with a timing period up to 30.3 ± 2.1 min (sufficient for an ELISA on paper-based platforms). Using the normally-open valve, we performed an enzyme-based colorimetric reaction commonly used for signal readout of ELISAs, which requires a timed delivery of an enzyme substrate to a reaction zone. This design adds a new fluid-control component to the tool set for developing paper-based microfluidic devices, and has the potential to improve the user-friendliness of these devices.

  15. Broad-Range 16S rDNA PCR on Heart Valves in Infective Endocarditis.

    PubMed

    Müller Premru, Manica; Lejko Zupanc, Tatjana; Klokočovnik, Tomislav; Ruzić Sabljić, Eva; Cerar, Tjaša

    2016-03-01

    Infective endocarditis (IE) is diagnosed by blood and/or resected valve cultivation and echocardiographic findings, as defined by the Duke criteria. Unfortunately, cultures may be negative due to prior antibiotic therapy or fastidious or slow-growing microorganisms. The study aim was to investigate the value of the broad-range polymerase chain reaction (PCR) in addition to blood and valve culture for the detection of causative microorganisms. Between February 2012 and March 2015, valve samples from 36 patients undergoing cardiac surgery were analyzed; of these patients, 26 had a preoperative diagnosis of IE and 10 served as controls. Multiple blood cultures were obtained from 34 patients before antibiotic therapy was commenced. Valve samples were inoculated on bacteriological media and underwent analysis using broad-range PCR (16S rDNA). IE was confirmed microbiologically in 21 of the 26 patients (80.7%); in 20 cases (76.9%) this was by positive blood cultures and in 16 (61.5%) by positive valves. Valves were positive in 15 blood culturepositive patients, and in one blood-culture negative patient. Broad-range PCR detected a microorganism in valves significantly more frequently (n = 14; 53.8%) compared to valve culture (n = 8; 30.7%) (chisquare 11.5, p <0.001). The predominant microorganisms were Staphylococcus aureus, Streptococcus of the viridans group, coagulasenegative staphylococci and Enterococcus faecalis. Blood, valve cultures and broad-range PCR were negative in five patients (19.3%) with IE, and in all 10 subjects of the control group. Broad-range PCR on valves was more sensitive than valve culture. However, blood culture, if taken before the start of antibiotic therapy, was the best method for detecting IE.

  16. The Leipzig experience with robotic valve surgery.

    PubMed

    Autschbach, R; Onnasch, J F; Falk, V; Walther, T; Krüger, M; Schilling, L O; Mohr, F W

    2000-01-01

    The study describes the single-center experience using robot-assisted videoscopic mitral valve surgery and the early results with a remote telemanipulator-assisted approach for mitral valve repair. Out of a series of 230 patients who underwent minimally invasive mitral valve surgery, in 167 patients surgery was performed with the use of robotic assistance. A voice-controlled robotic arm was used for videoscopic guidance in 152 cases. Most recently, a computer-enhanced telemanipulator was used in 15 patients to perform the operation remotely. The mitral valve was repaired in 117 and replaced in all other patients. The voice-controlled robotic arm (AESOP 3000) facilitated videoscopic-assisted mitral valve surgery. The procedure was completed without the need for an additional assistant as "solo surgery." Additional procedures like radiofrequency ablation and tricuspid valve repair were performed in 21 and 4 patients, respectively. Duration of bypass and clamp time was comparable to conventional procedures (107 A 34 and 50 A 16 min, respectively). Hospital mortality was 1.2%. Using the da Vinci telemanipulation system, remote mitral valve repair was successfully performed in 13 of 15 patients. Robotic-assisted less invasive mitral valve surgery has evolved to a reliable technique with reproducible results for primary operations and for reoperations. Robotic assistance has enabled a solo surgery approach. The combination with radiofrequency ablation (Mini Maze) in patients with chronic atrial fibrillation has proven to be beneficial. The use of telemanipulation systems for remote mitral valve surgery is promising, but a number of problems have to be solved before the introduction of a closed chest mitral valve procedure.

  17. Water hammer caused by closure of turbine safety spherical valves

    NASA Astrophysics Data System (ADS)

    Karadžić, U.; Bergant, A.; Vukoslavčević, P.

    2010-08-01

    This paper investigates water hammer effects caused by closure of spherical valves against the discharge. During the first phase of modernisation of Perućica high-head hydropower plant (HPP), Montenegro, safety spherical valves (inlet turbine valves) have been refurbished on the first two Pelton turbine units. The valve closure is controlled by the valve actuator (hydraulic servomotor). Because the torque acting on the valve body is dependent on flow conditions the valve closing time may vary significantly for different flow velocities (passive valve). For the passive valve the torques acting on the valve body should be considered in the valve model. The valve closing time results from numerical simulation. On the contrary, for the active valve the valve closing time is assumed prior to simulation. The spherical valve boundary condition is incorporated into the method of characteristics (MOC) algorithm. The staggered (diamond) grid in applying the MOC is used in this paper. The passive valve boundary condition is described by the water hammer equations, the valve equation that relates discharge to pressure head drop and the dynamic equation of the valve body motion (torque equation). The active valve boundary condition is described by the first two equations, respectively. Standard quasi-steady friction model is used for estimating friction losses in plant's tunnel and penstocks. Numerical results using both the active and the passive spherical valve models are compared with results of measurements. It has been found that the influence of flow conditions on the spherical valve closing time is minor for the cases considered. Computed and measured results agree reasonably well.

  18. 46 CFR 194.10-30 - Magazine sprinklers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... shall be installed in each magazine or magazine group. The control valve shall generally be in... control valve. (2) Sprinkler systems shall be designed in accordance with the requirements of part 76 of..., USE, AND CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Magazines § 194.10-30 Magazine sprinklers...

  19. 46 CFR 194.10-30 - Magazine sprinklers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... shall be installed in each magazine or magazine group. The control valve shall generally be in... control valve. (2) Sprinkler systems shall be designed in accordance with the requirements of part 76 of..., USE, AND CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Magazines § 194.10-30 Magazine sprinklers...

  20. 46 CFR 194.10-30 - Magazine sprinklers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... shall be installed in each magazine or magazine group. The control valve shall generally be in... control valve. (2) Sprinkler systems shall be designed in accordance with the requirements of part 76 of..., USE, AND CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Magazines § 194.10-30 Magazine sprinklers...

  1. 46 CFR 194.10-30 - Magazine sprinklers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... shall be installed in each magazine or magazine group. The control valve shall generally be in... control valve. (2) Sprinkler systems shall be designed in accordance with the requirements of part 76 of..., USE, AND CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Magazines § 194.10-30 Magazine sprinklers...

  2. 46 CFR 194.10-30 - Magazine sprinklers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... shall be installed in each magazine or magazine group. The control valve shall generally be in... control valve. (2) Sprinkler systems shall be designed in accordance with the requirements of part 76 of..., USE, AND CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Magazines § 194.10-30 Magazine sprinklers...

  3. 46 CFR 108.443 - Controls and valves.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.443 Controls and valves. (a) At least one control for operating a CO2 system must be outside the space or spaces that the...

  4. In Vitro Hydrodynamic Assessment of a New Transcatheter Heart Valve Concept (the TRISKELE).

    PubMed

    Rahmani, Benyamin; Tzamtzis, Spyros; Sheridan, Rose; Mullen, Michael J; Yap, John; Seifalian, Alexander M; Burriesci, Gaetano

    2017-04-01

    This study presents the in vitro hydrodynamic assessment of the TRISKELE, a new system suitable for transcatheter aortic valve implantation (TAVI), aiming to mitigate the procedural challenges experienced with current technologies. The TRISKELE valve comprises three polymeric leaflet and an adaptive sealing cuff, supported by a novel fully retrievable self-expanding nitinol wire frame. Valve prototypes were manufactured in three sizes of 23, 26, and 29 mm by automated dip-coating of a biostable polymer, and tested in a hydrodynamic bench setup in mock aortic roots of 21, 23, 25, and 27 mm annulus, and compared to two reference valves suitable for equivalent implantation ranges: Edwards SAPIEN XT and Medtronic CoreValve. The TRISKELE valves demonstrated a global hydrodynamic performance comparable or superior to the controls with significant reduction in paravalvular leakage. The TRISKELE valve exhibits enhanced anchoring and improved sealing. The valve is currently under preclinical investigation.

  5. Histopathology of valves in infective endocarditis, diagnostic criteria and treatment considerations.

    PubMed

    Brandão, Tatiana J D; Januario-da-Silva, Carolina A; Correia, Marcelo G; Zappa, Monica; Abrantes, Jaime A; Dantas, Angela M R; Golebiovski, Wilma; Barbosa, Giovanna Ianini F; Weksler, Clara; Lamas, Cristiane C

    2017-04-01

    Infective endocarditis (IE) is a severe disease. Pathogen isolation is fundamental so as to treat effectively and reduce morbidity and mortality. Blood and valve culture and histopathology (HP) are routinely employed for this purpose. Valve HP is the gold standard for diagnosis. To determine the sensitivity and specificity of clinical criteria for IE (the modified Duke and the St Thomas' minor modifications, STH) of blood and valve culture compared to valve HP, and to evaluate antibiotic treatment duration. Prospective case series of patients, from 2006 to 2014 with surgically treated IE. Statistical analysis was done by the R software. There were 136 clinically definite episodes of IE in 133 patients. Mean age ± SD was 43 ± 15.6 years and IE was left sided in 81.6 %. HP was definite in 96 valves examined, which were used as gold standard. Sensitivity of blood culture was 61 % (CI 0.51, 0.71) and of valve culture 15 % (CI 0.07, 0.26). The modified Duke criteria were 65 % (CI 0.55, 0.75) sensitive and 33 % specific, while the STH's sensitivity was 72 % (CI 0.61, 0.80) with similar specificity. In multivariate analysis and logistic regression, the only variable with statistical significance was duration of antibiotic therapy postoperatively. Valve HP had high sensitivity and valve culture low sensitivity in the diagnosis of IE. The STH's criteria were more sensitive than the modified Duke criteria. Valve HP should guide duration of postoperative antibiotic treatment.

  6. Fully Soft 3D-Printed Electroactive Fluidic Valve for Soft Hydraulic Robots.

    PubMed

    Zatopa, Alex; Walker, Steph; Menguc, Yigit

    2018-06-01

    Soft robots are designed to utilize their compliance and contortionistic abilities to both interact safely with their environment and move through it in ways a rigid robot cannot. To more completely achieve this, the robot should be made of as many soft components as possible. Here we present a completely soft hydraulic control valve consisting of a 3D-printed photopolymer body with electrorheological (ER) fluid as a working fluid and gallium-indium-tin liquid metal alloy as electrodes. This soft 3D-printed ER valve weighs less than 10 g and allows for onboard actuation control, furthering the goal of an entirely soft controllable robot. The soft ER valve pressure-holding capabilities were tested under unstrained conditions, cyclic valve activation, and the strained conditions of bending, twisting, stretching, and indentation. It was found that the max holding pressure of the valve when 5 kV was applied across the electrodes was 264 kPa, and that the holding pressure deviated less than 15% from the unstrained max holding pressure under all strain conditions except for indentation, which had a 60% max pressure increase. In addition, a soft octopus-like robot was designed, 3D printed, and assembled, and a soft ER valve was used to stop the fluid flow, build pressure in the robot, and actuate six tentacle-like soft bending actuators.

  7. Patient selection, echocardiographic screening and treatment strategies for interventional tricuspid repair using the edge-to-edge repair technique.

    PubMed

    Hausleiter, Jörg; Braun, Daniel; Orban, Mathias; Latib, Azeem; Lurz, Philipp; Boekstegers, Peter; von Bardeleben, Ralph Stephan; Kowalski, Marek; Hahn, Rebecca T; Maisano, Francesco; Hagl, Christian; Massberg, Steffen; Nabauer, Michael

    2018-04-24

    Severe tricuspid regurgitation (TR) has long been neglected despite its well known association with mortality. While surgical mortality rates remain high in isolated tricuspid valve surgery, interventional TR repair is rapidly evolving as an alternative to cardiac surgery in selected patients at high surgical risk. Currently, interventional edge-to-edge repair is the most frequently applied technique for TR repair even though the device has not been developed for this particular indication. Due to the inherent differences in tricuspid and mitral valve anatomy and pathology, percutaneous repair of the tricuspid valve is challenging due to a variety of factors including the complexity and variability of tricuspid valve anatomy, echocardiographic visibility of the valve leaflets, and device steering to the tricuspid valve. Furthermore, it remains to be clarified which patients are suitable for a percutaneous tricuspid repair and which features predict a successful procedure. On the basis of the available experience, we describe criteria for patient selection including morphological valve features, a standardized process for echocardiographic screening, and a strategy for clip placement. These criteria will help to achieve standardization of valve assessment and the procedural approach, and to further develop interventional tricuspid valve repair using either currently available devices or dedicated tricuspid edge-to-edge repair devices in the future. In summary, this manuscript will provide guidance for patient selection and echocardiographic screening when considering edge-to-edge repair for severe TR.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fetterly, K; Mathew, V

    Purpose: Transcatheter aortic valve replacement (TAVR) procedures provide a method to implant a prosthetic aortic valve via a minimallyinvasive, catheter-based procedure. TAVR procedures require use of interventional fluoroscopy c-arm projection angles which are aligned with the aortic valve plane to minimize prosthetic valve positioning error due to x-ray imaging parallax. The purpose of this work is to calculate the continuous range of interventional fluoroscopy c-arm projection angles which are aligned with the aortic valve plane from a single planar image of a valvuloplasty balloon inflated across the aortic valve. Methods: Computational methods to measure the 3D angular orientation of themore » aortic valve were developed. Required inputs include a planar x-ray image of a known valvuloplasty balloon inflated across the aortic valve and specifications of x-ray imaging geometry from the DICOM header of the image. A-priori knowledge of the species-specific typical range of aortic orientation is required to specify the sign of the angle of the long axis of the balloon with respect to the x-ray beam. The methods were validated ex-vivo and in a live pig. Results: Ex-vivo experiments demonstrated that the angular orientation of a stationary inflated valvuloplasty balloon can be measured with precision less than 1 degree. In-vivo pig experiments demonstrated that cardiac motion contributed to measurement variability, with precision less than 3 degrees. Error in specification of x-ray geometry directly influences measurement accuracy. Conclusion: This work demonstrates that the 3D angular orientation of the aortic valve can be calculated precisely from a planar image of a valvuloplasty balloon inflated across the aortic valve and known x-ray geometry. This method could be used to determine appropriate c-arm angular projections during TAVR procedures to minimize x-ray imaging parallax and thereby minimize prosthetic valve positioning errors.« less

  9. Direct-heating solar-collector dump valve

    NASA Technical Reports Server (NTRS)

    Howikman, T. C.

    1977-01-01

    Five-port ganged valve isolates collector from primary load system pressure and drains collectors, allowing use of direct heating with all its advantages. Valve is opened and closed by same switch that controls pump or by temperature sensor set at O C, while providing direct dump option.

  10. Valve for abrasive material

    DOEpatents

    Gardner, Harold S.

    1982-01-01

    A ball valve assembly for controlling the flow of abrasive particulates including an enlarged section at the bore inlet and an enlarged section at the bore outlet. A refractory ceramic annular deflector is positioned in each of the enlarged sections, substantially extending the useful life of the valve.

  11. High-speed pressure clamp.

    PubMed

    Besch, Stephen R; Suchyna, Thomas; Sachs, Frederick

    2002-10-01

    We built a high-speed, pneumatic pressure clamp to stimulate patch-clamped membranes mechanically. The key control element is a newly designed differential valve that uses a single, nickel-plated piezoelectric bending element to control both pressure and vacuum. To minimize response time, the valve body was designed with minimum dead volume. The result is improved response time and stability with a threefold decrease in actuation latency. Tight valve clearances minimize the steady-state air flow, permitting us to use small resonant-piston pumps to supply pressure and vacuum. To protect the valve from water contamination in the event of a broken pipette, an optical sensor detects water entering the valve and increases pressure rapidly to clear the system. The open-loop time constant for pressure is 2.5 ms for a 100-mmHg step, and the closed-loop settling time is 500-600 micros. Valve actuation latency is 120 micros. The system performance is illustrated for mechanically induced changes in patch capacitance.

  12. klf2a couples mechanotransduction and zebrafish valve morphogenesis through fibronectin synthesis

    PubMed Central

    Steed, Emily; Faggianelli, Nathalie; Roth, Stéphane; Ramspacher, Caroline; Concordet, Jean-Paul; Vermot, Julien

    2016-01-01

    The heartbeat and blood flow signal to endocardial cell progenitors through mechanosensitive proteins that modulate the genetic program controlling heart valve morphogenesis. To date, the mechanism by which mechanical forces coordinate tissue morphogenesis is poorly understood. Here we use high-resolution imaging to uncover the coordinated cell behaviours leading to heart valve formation. We find that heart valves originate from progenitors located in the ventricle and atrium that generate the valve leaflets through a coordinated set of endocardial tissue movements. Gene profiling analyses and live imaging reveal that this reorganization is dependent on extracellular matrix proteins, in particular on the expression of fibronectin1b. We show that blood flow and klf2a, a major endocardial flow-responsive gene, control these cell behaviours and fibronectin1b synthesis. Our results uncover a unique multicellular layering process leading to leaflet formation and demonstrate that endocardial mechanotransduction and valve morphogenesis are coupled via cellular rearrangements mediated by fibronectin synthesis. PMID:27221222

  13. Control valve and control valve system for controlling solids flow, methods of manufacture thereof and articles comprising the same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jukkola, Glen D.; Teigen, Bard C.

    Disclosed herein is a solids flow control valve comprising a standpipe; a shoe; and a transport pipe; wherein the standpipe is in operative communication with the shoe and lies upstream of the shoe; the standpipe comprising a first end and a second end, where the first end is in contact with a source that contains disposable solids and the second end is in fluid contact with the shoe; the shoe being operative to restrict the flow of the disposable solids; the transport pipe being disposed downstream of the shoe to receive and transport the solids from the shoe.

  14. 8. DETAIL: GENERATOR FLOOR DIABLO POWERHOUSE SHOWING BUTTERFLY VALVE CONTROL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. DETAIL: GENERATOR FLOOR DIABLO POWERHOUSE SHOWING BUTTERFLY VALVE CONTROL, MOSAIC TILE FLOOR, AS SEEN FROM VISITORS GALLERY, 1989. - Skagit Power Development, Diablo Powerhouse, On Skagit River, 6.1 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  15. 28. Credit JTL. Overview of unit 5 (installed 1908) showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. Credit JTL. Overview of unit 5 (installed 1908) showing exciter, generator, deflector motor, needle valve control, impulse wheel housing, and gate valve controls. - Battle Creek Hydroelectric System, Battle Creek & Tributaries, Red Bluff, Tehama County, CA

  16. Shuttle Primary Reaction Control Subsystem Thruster Fuel Valve Pilot Seal Extrusion: A Failure Correlation

    NASA Technical Reports Server (NTRS)

    Waller, Jess; Saulsberry, Regor L.

    2003-01-01

    Pilot operated valves (POVs) are used to control the flow of hypergolic propellants monomethylhydrazine (fuel) and nitrogen tetroxide (oxidizer) to the Shuttle orbiter Primary Reaction Control Subsystem (PRCS) thrusters. The POV incorporates a two-stage design: a solenoid-actuated pilot stage, which in turn controls a pressure-actuated main stage. Isolation of propellant supply from the thruster chamber is accomplished in part by a captive polytetrafluoroethylene (PTFE) pilot seal retained inside a Custom 455.1 stainless steel cavity. Extrusion of the pilot seal restricts the flow of fuel around the pilot poppet, thus impeding or preventing the main valve stage from opening. It can also prevent the main stage from staying open with adequate force margin, particularly if there is gas in the main stage actuation cavity. During thruster operation on-orbit, fuel valve pilot seal extrusion is commonly indicated by low or erratic chamber pressure or failure of the thruster to fire upon command (Fail-Off). During ground turnaround, pilot seal extrusion is commonly indicated by slow gaseous nitrogen (GN2) main valve opening times (greater than 38 ms) or slow water main valve opening response times (greater than 33 ms). Poppet lift tests and visual inspection can also detect pilot seal extrusion during ground servicing; however, direct metrology on the pilot seat assembly provides the most quantitative and accurate means of identifying extrusion. Minimizing PRCS fuel valve pilot seal extrusion has become an important issue in the effort to improve PRCS reliability and reduce associated life cycle costs.

  17. Position control of an electro-pneumatic system based on PWM technique and FLC.

    PubMed

    Najjari, Behrouz; Barakati, S Masoud; Mohammadi, Ali; Futohi, Muhammad J; Bostanian, Muhammad

    2014-03-01

    In this paper, modeling and PWM based control of an electro-pneumatic system, including the four 2-2 valves and a double acting cylinder are studied. Dynamic nonlinear behavior of the system, containing fast switching solenoid valves and a pneumatic cylinder, as well as electrical, magnetic, mechanical, and fluid subsystems are modeled. A DC-DC power converter is employed to improve solenoid valve performance and suppress system delay. Among different position control methods, a proportional integrator derivative (PID) controller and fuzzy logic controller (FLC) are evaluated. An experimental setup, using an AVR microcontroller is implemented. Simulation and experimental results verify the effectiveness of the proposed control strategies. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Active Control of Forebody Vortices on a schematic Aircraft Model

    DTIC Science & Technology

    2001-06-01

    coeffi- The system comprised two miniature soleniod on/off cient (C, = 0.0013) was sufficient to reliably switch pneumatic valves to control the flow to...method and time-average rolling moment, pitching moment, and normal force. Nomenclature T duration a valve is open during the alternating blow- b wing...reasonably high reduced frequency of the valves , and the tubes that delivered the air to the (* =0.16). Having established that the forebody vor- nozzles

  19. Multi-Element Unstructured Analyses of Complex Valve Systems

    NASA Technical Reports Server (NTRS)

    Sulyma, Peter (Technical Monitor); Ahuja, Vineet; Hosangadi, Ashvin; Shipman, Jeremy

    2004-01-01

    The safe and reliable operation of high pressure test stands for rocket engine and component testing places an increased emphasis on the performance of control valves and flow metering devices. In this paper, we will present a series of high fidelity computational analyses of systems ranging from cryogenic control valves and pressure regulator systems to cavitating venturis that are used to support rocket engine and component testing at NASA Stennis Space Center. A generalized multi-element framework with sub-models for grid adaption, grid movement and multi-phase flow dynamics has been used to carry out the simulations. Such a framework provides the flexibility of resolving the structural and functional complexities that are typically associated with valve-based high pressure feed systems and have been difficult to deal with traditional CFD methods. Our simulations revealed a rich variety of flow phenomena such as secondary flow patterns, hydrodynamic instabilities, fluctuating vapor pockets etc. In the paper, we will discuss performance losses related to cryogenic control valves, and provide insight into the physics of the dominant multi-phase fluid transport phenomena that are responsible for the choking like behavior in cryogenic control elements. Additionally, we will provide detailed analyses of the modal instability that is observed in the operation of the dome pressure regulator valve. Such instabilities are usually not localized and manifest themselves as a system wide phenomena leading to an undesirable chatter at high flow conditions.

  20. Noise generated by a flight weight, air flow control valve in a vertical takeoff and landing aircraft thrust vectoring system

    NASA Technical Reports Server (NTRS)

    Huff, Ronald G.

    1989-01-01

    Tests were conducted in the NASA Lewis Research Center's Powered Lift Facility to experimentally evaluate the noise generated by a flight weight, 12 in. butterfly valve installed in a proposed vertical takeoff and landing thrust vectoring system. Fluctuating pressure measurements were made in the circular duct upstream and downstream of the valve. This data report presents the results of these tests. The maximum overall sound pressure level is generated in the duct downstream of the valve and reached a value of 180 dB at a valve pressure ratio of 2.8. At the higher valve pressure ratios the spectra downstream of the valve is broad banded with its maximum at 1000 Hz.

  1. View forward from bulkhead no. 38 of compartment B126 crew ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View forward from bulkhead no. 38 of compartment B-126 crew space. Note stop valves on bulkhead at right side of photograph; these steam control valves allowed remote activation of the main, auxiliary and safety valves for the port engine in the event that the engine room valves were disabled or unreachable. (044) - USS Olympia, Penn's Landing, 211 South Columbus Boulevard, Philadelphia, Philadelphia County, PA

  2. Dual mode fuel injector with one piece needle valve member

    DOEpatents

    Lawrence, Keith E.; Hinrichsen, Michael H.; Buckman, Colby

    2005-01-18

    A fuel injector includes a homogenous charge nozzle outlet set and a conventional nozzle outlet set controlled respectively by inner and outer needle value members. The homogenous charged nozzle outlet set is defined by an outer needle value member that is moveably positioned in an injector body, which defines the conventional nozzle outlet set. The inner needle valve member is positioned in the outer needle valve member. The outer needle valve member is a piece component that includes at least one external guide surface, an external value surface and an internal valve seat.

  3. Solenoid valve, type 1, NASA P/N 20M32258-1 (Carleton P/N 2426-0001-1)

    NASA Technical Reports Server (NTRS)

    Baczkowski, M. L.

    1972-01-01

    The design, development, and evaluation of a solenoid valve assembly are discussed. The valve is a two-way, normally closed configuration for use as a control element in the metabolic analyzer of biomedical experiments during Skylab missions.

  4. 46 CFR 169.746 - Fuel shutoff valves.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Fuel shutoff valves. 169.746 Section 169.746 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.746 Fuel shutoff valves. Each remote fuel...

  5. 46 CFR 169.746 - Fuel shutoff valves.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Fuel shutoff valves. 169.746 Section 169.746 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.746 Fuel shutoff valves. Each remote fuel...

  6. 46 CFR 169.746 - Fuel shutoff valves.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Fuel shutoff valves. 169.746 Section 169.746 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.746 Fuel shutoff valves. Each remote fuel...

  7. Robust adaptive precision motion control of hydraulic actuators with valve dead-zone compensation.

    PubMed

    Deng, Wenxiang; Yao, Jianyong; Ma, Dawei

    2017-09-01

    This paper addresses the high performance motion control of hydraulic actuators with parametric uncertainties, unmodeled disturbances and unknown valve dead-zone. By constructing a smooth dead-zone inverse, a robust adaptive controller is proposed via backstepping method, in which adaptive law is synthesized to deal with parametric uncertainties and a continuous nonlinear robust control law to suppress unmodeled disturbances. Since the unknown dead-zone parameters can be estimated by adaptive law and then the effect of dead-zone can be compensated effectively via inverse operation, improved tracking performance can be expected. In addition, the disturbance upper bounds can also be updated online by adaptive laws, which increases the controller operability in practice. The Lyapunov based stability analysis shows that excellent asymptotic output tracking with zero steady-state error can be achieved by the developed controller even in the presence of unmodeled disturbance and unknown valve dead-zone. Finally, the proposed control strategy is experimentally tested on a servovalve controlled hydraulic actuation system subjected to an artificial valve dead-zone. Comparative experimental results are obtained to illustrate the effectiveness of the proposed control scheme. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Physical control oriented model of large scale refrigerators to synthesize advanced control schemes. Design, validation, and first control results

    NASA Astrophysics Data System (ADS)

    Bonne, François; Alamir, Mazen; Bonnay, Patrick

    2014-01-01

    In this paper, a physical method to obtain control-oriented dynamical models of large scale cryogenic refrigerators is proposed, in order to synthesize model-based advanced control schemes. These schemes aim to replace classical user experience designed approaches usually based on many independent PI controllers. This is particularly useful in the case where cryoplants are submitted to large pulsed thermal loads, expected to take place in the cryogenic cooling systems of future fusion reactors such as the International Thermonuclear Experimental Reactor (ITER) or the Japan Torus-60 Super Advanced Fusion Experiment (JT-60SA). Advanced control schemes lead to a better perturbation immunity and rejection, to offer a safer utilization of cryoplants. The paper gives details on how basic components used in the field of large scale helium refrigeration (especially those present on the 400W @1.8K helium test facility at CEA-Grenoble) are modeled and assembled to obtain the complete dynamic description of controllable subsystems of the refrigerator (controllable subsystems are namely the Joule-Thompson Cycle, the Brayton Cycle, the Liquid Nitrogen Precooling Unit and the Warm Compression Station). The complete 400W @1.8K (in the 400W @4.4K configuration) helium test facility model is then validated against experimental data and the optimal control of both the Joule-Thompson valve and the turbine valve is proposed, to stabilize the plant under highly variable thermals loads. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.

  9. Physical control oriented model of large scale refrigerators to synthesize advanced control schemes. Design, validation, and first control results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonne, François; Bonnay, Patrick; Alamir, Mazen

    2014-01-29

    In this paper, a physical method to obtain control-oriented dynamical models of large scale cryogenic refrigerators is proposed, in order to synthesize model-based advanced control schemes. These schemes aim to replace classical user experience designed approaches usually based on many independent PI controllers. This is particularly useful in the case where cryoplants are submitted to large pulsed thermal loads, expected to take place in the cryogenic cooling systems of future fusion reactors such as the International Thermonuclear Experimental Reactor (ITER) or the Japan Torus-60 Super Advanced Fusion Experiment (JT-60SA). Advanced control schemes lead to a better perturbation immunity and rejection,more » to offer a safer utilization of cryoplants. The paper gives details on how basic components used in the field of large scale helium refrigeration (especially those present on the 400W @1.8K helium test facility at CEA-Grenoble) are modeled and assembled to obtain the complete dynamic description of controllable subsystems of the refrigerator (controllable subsystems are namely the Joule-Thompson Cycle, the Brayton Cycle, the Liquid Nitrogen Precooling Unit and the Warm Compression Station). The complete 400W @1.8K (in the 400W @4.4K configuration) helium test facility model is then validated against experimental data and the optimal control of both the Joule-Thompson valve and the turbine valve is proposed, to stabilize the plant under highly variable thermals loads. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.« less

  10. Computational Modeling of Liquid and Gaseous Control Valves

    NASA Technical Reports Server (NTRS)

    Daines, Russell; Ahuja, Vineet; Hosangadi, Ashvin; Shipman, Jeremy; Moore, Arden; Sulyma, Peter

    2005-01-01

    In this paper computational modeling efforts undertaken at NASA Stennis Space Center in support of rocket engine component testing are discussed. Such analyses include structurally complex cryogenic liquid valves and gas valves operating at high pressures and flow rates. Basic modeling and initial successes are documented, and other issues that make valve modeling at SSC somewhat unique are also addressed. These include transient behavior, valve stall, and the determination of flow patterns in LOX valves. Hexahedral structured grids are used for valves that can be simplifies through the use of axisymmetric approximation. Hybrid unstructured methodology is used for structurally complex valves that have disparate length scales and complex flow paths that include strong swirl, local recirculation zones/secondary flow effects. Hexahedral (structured), unstructured, and hybrid meshes are compared for accuracy and computational efficiency. Accuracy is determined using verification and validation techniques.

  11. Harmonic uniflow engine

    DOEpatents

    Bennett, Charles L.

    2016-03-22

    A reciprocating-piston uniflow engine includes a harmonic oscillator inlet valve capable of oscillating at a resonant frequency for controlling the flow of working fluid into the engine. In particular, the inlet valve includes an inlet valve head and a spring arranged together as a harmonic oscillator so that the inlet valve head is moveable from an unbiased equilibrium position to a biased closed position occluding an inlet. When released, the inlet valve head undergoes a single oscillation past the equilibrium position to a maximum open position and returns to a biased return position close to the closed position to choke the flow and produce a pressure drop across the inlet valve causing the inlet valve to close. In other embodiments, the harmonic oscillator arrangement of the inlet valve enables the uniflow engine to be reversibly operated as a uniflow compressor.

  12. Controlled differential pressure system for an enhanced fluid blending apparatus

    DOEpatents

    Hallman, Jr., Russell Louis

    2009-02-24

    A system and method for producing a controlled blend of two or more fluids. Thermally-induced permeation through a permeable tube is used to mix a first fluid from outside the tube with a second fluid flowing through the tube. Mixture ratios may be controlled by adjusting the temperature of the first fluid or by adjusting the pressure drop through the permeable tube. The combination of a back pressure control valve and a differential regulator is used to control the output pressure of the blended fluid. The combination of the back pressure control valve and differential regulator provides superior flow control of the second dry gas. A valve manifold system may be used to mix multiple fluids, and to adjust the volume of blended fluid produced, and to further modify the mixture ratio.

  13. Remotely controlled valves on interstate natural gas pipelines : September 1999.

    DOT National Transportation Integrated Search

    1999-09-01

    This report is in response to a Congressional mandate in the : Accountable Pipeline Safety and Partnership Act of 1996 to survey : and assess the effectiveness of remotely controlled valves (RCVs) : on interstate natural gas pipelines and to determin...

  14. Two-step rocket engine bipropellant valve concept

    NASA Technical Reports Server (NTRS)

    Capps, J. E.; Ferguson, R. E.; Pohl, H. O.

    1969-01-01

    Initiating combustion of altitude control rocket engines in a precombustion chamber of ductile material reduces high pressure surges generated by hypergolic propellants. Two-step bipropellant valve concepts control initial propellant flow into precombustion chamber and subsequent full flow into main chamber.

  15. Spool valve cycles at controlled frequency

    NASA Technical Reports Server (NTRS)

    Charlton, K. W.; Van Arnam, D. E.

    1966-01-01

    Spool valve accurately controls the cycle of a pneumatically-actuated system over long periods. Regulation of pressure from the external source, positioning of the adjusting plugs, and magnet selection, together afford wide variation in cyclic timing and speed of closure in either direction.

  16. Mid- to long-term outcome comparison of the Medtronic Hancock II and bi-leaflet mechanical aortic valve replacement in patients younger than 60 years of age: a propensity-matched analysis.

    PubMed

    Wang, Yin; Chen, Si; Shi, Jiawei; Li, Geng; Dong, Nianguo

    2016-03-01

    This study aims to compare mid-long-term clinical outcomes between patients younger than 60 years of age undergoing bioprosthetic and mechanical aortic valve replacement. From January 2002 to December 2009, patients younger than 60 years of age who received Medtronic Hancock II porcine bioprostheses were selected and compared with those who received mechanical bi-leaflet valves in the aortic position. A stepwise logistic regression propensity score identified a subset of 112 evenly matched patient-pairs. Mid-long-term outcomes of survival, valve-related reoperations, thromboembolic events and bleeding events were assessed. The follow-up was only 95.1% complete. Fourteen measurable variables were statistically similar for the matched cohort. Postoperative in-hospital mortality was 3.6% (bioprosthetic valves) and 2.7% (mechanical valves) (P = 0.700). Survival at 5 and 10 years was 96.3 and 88.7% for patients receiving bioprosthetic valve replacement versus 96.3 and 87.9% for patients receiving mechanical valve replacement (P = 0.860), respectively. At 5 and 10 years after operations, freedom from valve-related reoperation was 97.2 and 94.8% for patients receiving mechanical valve replacement, and 96.3 and 90.2% for patients receiving bioprosthetic valve replacement (P = 0.296), respectively. There was no difference between freedom from thromboembolic events (P = 0.528) and bleeding events (P = 0.128) between the matched groups during the postoperative 10 years. In patients younger than 60 years of age undergoing aortic valve replacement, mid-long-term survival rate was similar for patients receiving bioprosthetic versus mechanical valve replacement. Bioprosthetic valves were associated with a trend for a lower risk of anticoagulation treatment and did not have significantly greater likelihood of a reoperation. These findings suggest that a bioprosthetic valve may be a reasonable choice for AVR in patients younger than 60 years of age. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  17. Complete versus partial preservation of mitral valve apparatus during mitral valve replacement: meta-analysis and meta-regression of 1535 patients.

    PubMed

    Sá, Michel Pompeu Barros De Oliveira; Escobar, Rodrigo Renda; Ferraz, Paulo Ernando; Vasconcelos, Frederico Pires; Lima, Ricardo Carvalho

    2013-11-01

    To determine if there is any real difference between complete preservation (CP) and partial preservation (PP) of the mitral valve apparatus during mitral valve replacement (MVR) in terms of hard outcomes. MEDLINE, EMBASE, CENTRAL/CCTR, SciELO, LILACS, Google Scholar and reference lists of relevant articles were searched for clinical studies that compared outcomes [30-day mortality, postoperative low cardiac output syndrome (LCOS), 5-year mortality or left ventricle ejection fraction (LVEF) before and after surgery] between MVR-CP vs MVR-PP during MVR until July 2012. The principal summary measures were odds ratios (ORs) with 95% confidence interval (CI)--for categorical variables (30-day mortality, postoperative LCOS, 5-year mortality); difference means and standard error (SE)--for continuous variables (LVEF before and after surgery) and P values (that will be considered statistically significant when <0.05). The ORs were combined across studies using DerSimonian-Laird random effects weighted model. The same procedure was executed for continuous variables, taking into consideration the difference in means. Eight studies (2 randomized and 6 non-randomized) were identified and included a total of 1535 patients (597 for MVR-CP and 938 for MVR-PP). There was no significant difference between MVR-CP or MVR-PP groups in the risk for 30-day mortality (OR 0.870; 95% CI 0.50-1.52; P = 0.63) or postoperative LCOS (OR 0.35; 95% CI 0.11-1.08 and P = 0.07) or 5-year mortality (OR 0.70; 95% CI 0.43-1.14; P = 0.15). Taking into consideration LVEF, neither MVR-CP nor MVR-CP demonstrated a statistically significant improvement in LVEF before and after surgery, and both strategies were not different from each other. No publication bias was observed. We found evidence that argues against any superiority between both techniques of preservation (complete or partial) of mitral valve apparatus during MVR.

  18. Electromechanically Actuated Valve for Controlling Flow Rate

    NASA Technical Reports Server (NTRS)

    Patterson, Paul

    2007-01-01

    A proposed valve for controlling the rate of flow of a fluid would include an electric-motor-driven ball-screw mechanism for adjusting the seating element of the valve to any position between fully closed and fully open. The motor would be of a type that can be electronically controlled to rotate to a specified angular position and to rotate at a specified rate, and the ball screw would enable accurate linear positioning of the seating element as a function of angular position of the motor. Hence, the proposed valve would enable fine electronic control of the rate of flow and the rate of change of flow. The uniqueness of this valve lies in a high degree of integration of the actuation mechanism with the flow-control components into a single, relatively compact unit. A notable feature of this integration is that in addition to being a major part of the actuation mechanism, the ball screw would also be a flow-control component: the ball screw would be hollow so as to contain part of the main flow passage, and one end of the ball screw would be the main seating valve element. The relationships among the components of the valve are best understood by reference to the figure, which presents meridional cross sections of the valve in the fully closed and fully open positions. The motor would be supported by a bracket bolted to the valve body. By means of gears or pulleys and a timing belt, motor drive would be transmitted to a sleeve that would rotate on bearings in the valve body. A ball nut inside the sleeve would be made to rotate with the sleeve by use of a key. The ball screw would pass through and engage the ball nut. A key would prevent rotation of the ball screw in the valve body while allowing the ball screw to translate axially when driven by the ball nut. The outer surface of the ball screw would be threaded only in a mid-length region: the end regions of the outer surface of the ball screw would be polished so that they could act as dynamic sealing surfaces. The inlet end (the right end as depicted in the figure) of the ball screw would be the main seating valve element: in the fully closed position, it would be pressed against the valve seat, as depicted in the upper part of the figure. A retainer would hold the valve seat in an inlet fitting. In addition, the retainer would be contoured to obtain a specified flow rate as a function of axial position of the ball screw. In the fully closed position, little force would be needed to press the ball screw against the seat because the push bore area upon which the upstream pressure would act would be small. The motor would position and hold the ball screw against the seat, providing the force necessary for sealing. To open the valve to a particular position, the motor would be commanded to rotate to a particular angular position (equivalently, a particular number of revolutions) at a particular rate of rotation within its torque limitations. Once the valve was open, fluid would flow through the inlet fitting and the chamber in the inlet housing, past the seat and its retainer, along the hollow core of the ball screw, and through the outlet housing and outlet fitting. The net force generated from fluid pressure in the open position would be small because the pressure exposed to the push bore areas at the inlet and outlet are nearly equal and the forces generated would be in opposing directions.

  19. Novel Active Combustion Control Valve

    NASA Technical Reports Server (NTRS)

    Caspermeyer, Matt

    2014-01-01

    This project presents an innovative solution for active combustion control. Relative to the state of the art, this concept provides frequency modulation (greater than 1,000 Hz) in combination with high-amplitude modulation (in excess of 30 percent flow) and can be adapted to a large range of fuel injector sizes. Existing valves often have low flow modulation strength. To achieve higher flow modulation requires excessively large valves or too much electrical power to be practical. This active combustion control valve (ACCV) has high-frequency and -amplitude modulation, consumes low electrical power, is closely coupled with the fuel injector for modulation strength, and is practical in size and weight. By mitigating combustion instabilities at higher frequencies than have been previously achieved (approximately 1,000 Hz), this new technology enables gas turbines to run at operating points that produce lower emissions and higher performance.

  20. 49 CFR 236.508 - Interference with application of brakes by means of brake valve.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... GOVERNING THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Automatic Train Stop, Train Control and Cab Signal Systems Standards § 236.508 Interference with application of brakes by means of brake valve. The automatic train stop, train control, or...

  1. 49 CFR 236.508 - Interference with application of brakes by means of brake valve.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... GOVERNING THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Automatic Train Stop, Train Control and Cab Signal Systems Standards § 236.508 Interference with application of brakes by means of brake valve. The automatic train stop, train control, or...

  2. 77 FR 3508 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses Involving No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-24

    ... feedwater valve isolation times to the Licensee Controlled Document that is referenced in the Bases. The... Controlled Document that is referenced in the Bases and replacing the isolation time with the phase, ``within... isolation valve times to the Licensee Controlled Document that is referenced in the Bases. The requirements...

  3. The effect of an Ahmed glaucoma valve implant on corneal endothelial cell density in children with glaucoma secondary to uveitis.

    PubMed

    Kalinina Ayuso, Viera; Scheerlinck, Laura M; de Boer, Joke H

    2013-03-01

    To assess the effect of Ahmed glaucoma valve implants on corneal endothelial cell density (ECD) in children with uveitic glaucoma. Cross-sectional study. setting: Institutional. patientpopulation: Eighty eyes from 42 patients diagnosed with uveitis before the age of 16. Twenty-eight eyes had an Ahmed glaucoma valve implant because of secondary glaucoma. Fifty-two eyes without an implant served as controls. intervention orobservationprocedure(s): Corneal ECD was examined cross-sectionally using a noncontact specular microscope. Univariate and multivariate generalized estimating equations analyses with correction for paired eyes were performed. mainoutcomemeasure(s): Correlation of ECD with the presence of an Ahmed glaucoma valve implant and with the time following implantation. ECD was significantly lower in the Ahmed glaucoma valve group than in controls (2359 and 3088 cells/mm(2), respectively; P < .001) following an average of 3.5 years after Ahmed glaucoma valve implantation. Presence of an Ahmed glaucoma valve implant, previous intraocular surgery, age, duration of uveitis, and history of corneal touch by the implant tube were all significantly associated with decreased ECD. Following a multivariate analysis, presence of an Ahmed glaucoma valve implant (B = -340; adjusted P < .011) and older age (B = -58; adjusted P = .005) remained independently associated with decreased ECD. Within the implant group, the age-adjusted time interval following Ahmed glaucoma valve implantation was highly correlated with decreased ECD (B = -558, P < .001). Ahmed glaucoma valve implants in children with uveitic glaucoma are independently associated with decreased ECD, and this effect is associated with the time interval following Ahmed glaucoma valve implantation. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. 40 CFR 1054.230 - How do I select emission families?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...). (3) Valve configuration (for example, side-valve vs. overhead valve). (4) Method of air aspiration... configuration) and approximate total displacement. (7) Engine class, as defined in § 1054.801. (8) Method of control for engine operation, other than governing (mechanical or electronic). (9) The numerical level of...

  5. 40 CFR 63.1014 - Open-ended valves or lines standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Open-ended valves or lines standards... PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Equipment Leaks-Control Level 1 § 63.1014 Open-ended valves or...

  6. Bistable (latching) solenoid actuated propellant isolation valve

    NASA Technical Reports Server (NTRS)

    Wichmann, H.; Deboi, H. H.

    1979-01-01

    The design, fabrication, assembly and test of a development configuration bistable (latching) solenoid actuated propellant isolation valve suitable for the control hydrazine and liquid fluorine to an 800 pound thrust rocket engine is described. The valve features a balanced poppet, utilizing metal bellows, a hard poppet/seat interface and a flexure support system for the internal moving components. This support system eliminates sliding surfaces, thereby rendering the valve free of self generated particles.

  7. Virtual solar field - An opportunity to optimize transient processes in line-focus CSP power plants

    NASA Astrophysics Data System (ADS)

    Noureldin, Kareem; Hirsch, Tobias; Pitz-Paal, Robert

    2017-06-01

    Optimizing solar field operation and control is a key factor to improve the competitiveness of line-focus solar thermal power plants. However, the risks of assessing new and innovative control strategies on operational power plants hinder such optimizations and result in applying more conservative control schemes. In this paper, we describe some applications for a whole solar field transient in-house simulation tool developed at the German Aerospace Centre (DLR), the Virtual Solar Field (VSF). The tool offers a virtual platform to simulate real solar fields while coupling the thermal and hydraulic conditions of the field with high computational efficiency. Using the tool, developers and operator can probe their control strategies and assess the potential benefits while avoiding the high risks and costs. In this paper, we study the benefits gained from controlling the loop valves and of using direct normal irradiance maps and forecasts for the field control. Loop valve control is interesting for many solar field operators since it provides a high degree of flexibility to the control of the solar field through regulating the flow rate in each loop. This improves the reaction to transient condition, such as passing clouds and field start-up in the morning. Nevertheless, due to the large number of loops and the sensitivity of the field control to the valve settings, this process needs to be automated and the effect of changing the setting of each valve on the whole field control needs to be taken into account. We used VSF to implement simple control algorithms to control the loop valves and to study the benefits that could be gained from using active loop valve control during transient conditions. Secondly, we study how using short-term highly spatially-resolved DNI forecasts provided by cloud cameras could improve the plant energy yield. Both cases show an improvement in the plant efficiency and outlet temperature stability. This paves the road for further investigations of new control strategies or for optimizations of the currently implemented ones.

  8. Respiratory transfer value has fail-safe feature

    NASA Technical Reports Server (NTRS)

    Puccinelli, A. A.; Smith, J. R., Jr.

    1965-01-01

    Quick-acting, remote controlled valve connects either one of two oxygen or air supplies to a breathing tube. The valve, which is fall-safe, incorporates a cammed piston arrangement that is driven by a remote controlled reversible rotary solenoid or reversible electric motor.

  9. Prognostic value of echocardiographic indices of left atrial morphology and function in dogs with myxomatous mitral valve disease.

    PubMed

    Baron Toaldo, Marco; Romito, Giovanni; Guglielmini, Carlo; Diana, Alessia; Pelle, Nazzareno G; Contiero, Barbara; Cipone, Mario

    2018-05-01

    The prognostic relevance of left atrial (LA) morphological and functional variables, including those derived from speckle tracking echocardiography (STE), has been little investigated in veterinary medicine. To assess the prognostic value of several echocardiographic variables, with a focus on LA morphological and functional variables in dogs with myxomatous mitral valve disease (MMVD). One-hundred and fifteen dogs of different breeds with MMVD. Prospective cohort study. Conventional morphologic and echo-Doppler variables, LA areas and volumes, and STE-based LA strain analysis were performed in all dogs. A survival analysis was performed to test for the best echocardiographic predictors of cardiac-related death. Most of the tested variables, including all LA STE-derived variables were univariate predictors of cardiac death in Cox proportional hazard analysis. Because of strong correlation between many variables, only left atrium to aorta ratio (LA/Ao > 1.7), mitral valve E wave velocity (MV E vel > 1.3 m/s), LA maximal volume (LAVmax > 3.53 mL/kg), peak atrial longitudinal strain (PALS < 30%), and contraction strain index (CSI per 1% increase) were entered in the univariate analysis, and all were predictors of cardiac death. However, only the MV E vel (hazard ratio [HR], 4.45; confidence interval [CI], 1.76-11.24; P < .001) and LAVmax (HR, 2.32; CI, 1.10-4.89; P = .024) remained statistically significant in the multivariable analysis. The assessment of LA dimension and function provides useful prognostic information in dogs with MMVD. Considering all the LA variables, LAVmax appears the strongest predictor of cardiac death, being superior to LA/Ao and STE-derived variables. Copyright © 2018 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  10. Aeroacoustics of automotive vents

    NASA Astrophysics Data System (ADS)

    Guérin, S.; Thomy, E.; Wright, M. C. M.

    2005-08-01

    This paper studies the generation of noise by car ventilation systems whose outlet rates are controlled by a butterfly valve and whose directions are controlled by grilles. First the noise created by the valve alone is analysed with the theory formulated by Nelson and Morfey for spoiler-generated noise in-duct flow. To confirm this theory the fluctuating force experienced by the valve is measured experimentally and the mean drag force is deduced from analytical work presented by Sarpkaya. Then the noise generated by the grille and its effect on sound transmission is investigated. Finally, it is shown that a strong and complex interaction between the wake shed behind the valve and the grille occurs when both elements are placed close together. This is responsible for an overall increase in the noise level although some sound reduction is measured at low frequency. It is found that moving the valve further upstream can reduce the noise by several decibels.

  11. Differential pressure pin discharge apparatus

    DOEpatents

    Oakley, David J.

    1987-02-03

    Disclosed is a discharge assembly for allowing elongate pins to be discharged from an area of relatively low pressure to an area of relatively greater pressure. The discharge assembly includes a duck valve having a lip piece made of flexible material. The flexible lip piece responds to a fluctuating pressure created downstream by an aspirator. The aspirator reduces the downstream pressure sensed by the duck valve when the discharge assembly is in the open position. This allows elongate pins to be moved through the duck valve with no backflow because the aspirator pressure is less than the pressure in the low pressure area from which the pins originate. Closure of the assembly causes the aspirator static pressure to force the flexible duck valve lip piece into a tightly sealed position also preventing backflow. The discharge assembly can be easily controlled using a single control valve which blocks the flow of aspirator gas and closes the pin passageway extending through the assembly.

  12. Differential pressure pin discharge apparatus

    DOEpatents

    Oakley, D.J.

    1984-05-30

    Disclosed is a discharge assembly for allowing elongate pins to be discharged from an area of relatively low pressure to an area of relatively greater pressure. The discharge assembly includes a duck valve having a lip piece made of flexible material. The flexible lip piece responds to a fluctuating pressure created downstream by an aspirator. The aspirator reduces the downstream pressure sensed by the duck valve when the discharge assembly is in the open position. This allows elongate pins to be moved through the duck valve with no backflow because the aspirator pressure is less than the pressure in the low pressure area from which the pins originate. Closure of the assembly causes the aspirator static pressure to force the flexible duck valve lip piece into a tightly sealed position also preventing backflow. The discharge assembly can be easily controlled using a single control valve which blocks the flow of aspirator gas and closes the pins passageway extending through the assembly.

  13. Differential pressure pin discharge apparatus

    DOEpatents

    Oakley, David J.

    1987-01-01

    Disclosed is a discharge assembly for allowing elongate pins to be discharged from an area of relatively low pressure to an area of relatively greater pressure. The discharge assembly includes a duck valve having a lip piece made of flexible material. The flexible lip piece responds to a fluctuating pressure created downstream by an aspirator. The aspirator reduces the downstream pressure sensed by the duck valve when the discharge assembly is in the open position. This allows elongate pins to be moved through the duck valve with no backflow because the aspirator pressure is less than the pressure in the low pressure area from which the pins originate. Closure of the assembly causes the aspirator static pressure to force the flexible duck valve lip piece into a tightly sealed position also preventing backflow. The discharge assembly can be easily controlled using a single control valve which blocks the flow of aspirator gas and closes the pin passageway extending through the assembly.

  14. Fuel cell system shutdown with anode pressure control

    DOEpatents

    Clingerman, Bruce J.; Doan, Tien M.; Keskula, Donald H.

    2002-01-01

    A venting methodology and pressure sensing and vent valving arrangement for monitoring anode bypass valve operating during the normal shutdown of a fuel cell apparatus of the type used in vehicle propulsion systems. During a normal shutdown routine, the pressure differential between the anode inlet and anode outlet is monitored in real time in a period corresponding to the normal closing speed of the anode bypass valve and the pressure differential at the end of the closing cycle of the anode bypass valve is compared to the pressure differential at the beginning of the closing cycle. If the difference in pressure differential at the beginning and end of the anode bypass closing cycle indicates that the anode bypass valve has not properly closed, a system controller switches from a normal shutdown mode to a rapid shutdown mode in which the anode inlet is instantaneously vented by rapid vents.

  15. An electromagnetic microvalve for pneumatic control of microfluidic systems.

    PubMed

    Liu, Xuling; Li, Songjing

    2014-10-01

    An electromagnetic microvalve for pneumatic control of microfluidic devices has been designed, fabricated, and tested. The microvalve is composed of two parts: a miniature electromagnetic actuator and a valve body. The electromagnetic actuator consists mainly of a thin polydimethylsiloxane (PDMS)-based elastomer, which acts as the valve diaphragm. The diaphragm, used as a solid hydraulic medium, converts the large contact area of a valve core into a small contact area of valve head while maintaining a large stroking force. This microvalve remains closed because of a compressed mechanical spring force generated by the actuator. On the other hand, when a voltage is applied, the valve core moves up, relaxing the thin PDMS membrane, opening the microvalve. The fast open response (~17 ms) of the valve was achieved with a leak rate as low as 0.026 sccm at 200 KPa (N2) pressure. We tested the pertinent dynamic parameters such as flow rate in on/off mode, flow rate of duty cycles, and actuated frequencies in pulse width modulation (PWM) mode. Our method provides a simple, cheap, and small microvalve that avoids the bulky and expensive external pressure control solenoid manifold. This allows it to be easily integrated into portable and disposable devices. © 2014 Society for Laboratory Automation and Screening.

  16. Incorporation of prefabricated screw, pneumatic, and solenoid valves into microfluidic devices

    PubMed Central

    Hulme, S. Elizabeth; Shevkoplyas, Sergey S.

    2011-01-01

    This paper describes a method for prefabricating screw, pneumatic, and solenoid valves and embedding them in microfluidic devices. This method of prefabrication and embedding is simple, requires no advanced fabrication, and is compatible with soft lithography. Because prefabrication allows many identical valves to be made at one time, the performance across different valves made in the same manner is reproducible. In addition, the performance of a single valve is reproducible over many cycles of opening and closing: an embedded solenoid valve opened and closed a microfluidic channel more than 100,000 times with no apparent deterioration in its function. It was possible to combine all three types of prefabricated valves in a single microfluidic device to control chemical gradients in a microfluidic channel temporally and spatially. PMID:19209338

  17. Incorporation of prefabricated screw, pneumatic, and solenoid valves into microfluidic devices.

    PubMed

    Hulme, S Elizabeth; Shevkoplyas, Sergey S; Whitesides, George M

    2009-01-07

    This paper describes a method for prefabricating screw, pneumatic, and solenoid valves and embedding them in microfluidic devices. This method of prefabrication and embedding is simple, requires no advanced fabrication, and is compatible with soft lithography. Because prefabrication allows many identical valves to be made at one time, the performance across different valves made in the same manner is reproducible. In addition, the performance of a single valve is reproducible over many cycles of opening and closing: an embedded solenoid valve opened and closed a microfluidic channel more than 100,000 times with no apparent deterioration in its function. It was possible to combine all three types of prefabricated valves in a single microfluidic device to control chemical gradients in a microfluidic channel temporally and spatially.

  18. Method and apparatus for controlling fluid flow

    DOEpatents

    Miller, J.R.

    1980-06-27

    A method and apparatus for precisely controlling the rate (and hence amount) of fluid flow are given. The controlled flow rate is finely adjustable, can be extremely small (on the order of microliter-atmospheres per second), can be adjusted to zero (flow stopped), and is stable to better than 1% with time. The dead volume of the valve can be made arbitrarily small, in fact essentially zero. The valve employs no wearing mechanical parts (including springs, stems, or seals). The valve is finely adjustable, has a flow rate dynamic range of many decades, can be made compatible with any fluid, and is suitable for incorporation into an open or closed loop servo-control system.

  19. Experimental assessment of valve performance in healthy and diseased right ventricular outflow tracts using magnetic resonance velocimetry

    NASA Astrophysics Data System (ADS)

    Schiavone, Nicole; Elkins, Christopher; McElhinney, Doff; Eaton, John K.; Marsden, Alison

    2017-11-01

    Tetralogy of Fallot (ToF), the most common type of cyanotic congenital heart defect, affects 1 in every 2500 newborns annually and typically requires surgical repair of the right ventricular outflow tract (RVOT) and placement of an artificial pulmonary valve. All artificial valves are subject to dysfunction, but their longevity is highly variable. Clinical observation reveals large variations in RVOT anatomy in ToF patients, which may affect longevity. This work aims to experimentally assess the performance of artificial pulmonary valves in anatomically realistic healthy and diseased RVOT geometries using magnetic resonance velocimetry (MRV). With MRV, we can capture 3D, three-component, phase-averaged velocity fields in 3D printed RVOT geometries. The experiment is designed to ensure physiological flow rate and pressure waveforms, while the RVOT geometries are based on anatomies seen clinically in ToF patients. Two models are used in the current work: an idealized RVOT based on healthy subjects aged eleven to thirteen and a diseased geometry with a dilation of 150% in vessel diameter downstream of the pulmonary valve. We will also present preliminary rigid-wall blood flow simulations in each model, towards the ultimate goal of experimental validation of valve simulations.

  20. Aortic valve repair with autologous pericardial patch.

    PubMed

    Lausberg, Henning F; Aicher, Diana; Langer, Frank; Schäfers, Hans-Joachim

    2006-08-01

    Isolated aortic valve repair (AVR) has been gaining increasing interest in recent times. Results of isolated aortic valve repair have been reported to be variable. Various techniques have been utilized. We analyzed our experience with isolated valve repair using autologous pericardial patch plasty and compared the results to an age-matched collective with aortic valve repair without the use of additional material. Between January 1997 and June 2005, pericardial patch plasty of the aortic valve was performed in 42 patients (PATCH). During the same period, 42 patients after AVR without the use of additional material were age matched (NO-PATCH). Mean age in both groups was 52 years with a majority of male patients (PATCH ratio, 3.7:1; NO-PATCH ratio, 5:1). Valve anatomy was similar in both groups. All patients were followed by echocardiography for a cumulative follow-up of 2341 patient months (mean 28+/-23 months). No patient died in the hospital in neither group. The average systolic gradient was 5.9+/-2.2 mmHg in PATCH and 4.8+/-2.1 mmHg in NO-PATCH; p=0.17). Freedom from aortic regurgitation > or = II degrees was 87.8% in PATCH and 95.0% in NO-PATCH after 5 years (p=0.21). Freedom from reoperation was 97.6% in PATCH and 97.4% in NO-PATCH (p=0.96). Aortic regurgitation can be treated effectively by aortic valve repair using pericardial patch plasty. The functional results are satisfactory. With the application of this technique also more complex pathologies of the aortic valve can be addressed adequately thus extending the concept of valve preservation in patients with aortic regurgitation.

  1. Determinants of image quality of rotational angiography for on-line assessment of frame geometry after transcatheter aortic valve implantation.

    PubMed

    Rodríguez-Olivares, Ramón; El Faquir, Nahid; Rahhab, Zouhair; Maugenest, Anne-Marie; Van Mieghem, Nicolas M; Schultz, Carl; Lauritsch, Guenter; de Jaegere, Peter P T

    2016-07-01

    To study the determinants of image quality of rotational angiography using dedicated research prototype software for motion compensation without rapid ventricular pacing after the implantation of four commercially available catheter-based valves. Prospective observational study including 179 consecutive patients who underwent transcatheter aortic valve implantation (TAVI) with either the Medtronic CoreValve (MCS), Edward-SAPIEN Valve (ESV), Boston Sadra Lotus (BSL) or Saint-Jude Portico Valve (SJP) in whom rotational angiography (R-angio) with motion compensation 3D image reconstruction was performed. Image quality was evaluated from grade 1 (excellent image quality) to grade 5 (strongly degraded). Distinction was made between good (grades 1, 2) and poor image quality (grades 3-5). Clinical (gender, body mass index, Agatston score, heart rate and rhythm, artifacts), procedural (valve type) and technical variables (isocentricity) were related with the image quality assessment. Image quality was good in 128 (72 %) and poor in 51 (28 %) patients. By univariable analysis only valve type (BSL) and the presence of an artefact negatively affected image quality. By multivariate analysis (in which BMI was forced into the model) BSL valve (Odds 3.5, 95 % CI [1.3-9.6], p = 0.02), presence of an artifact (Odds 2.5, 95 % CI [1.2-5.4], p = 0.02) and BMI (Odds 1.1, 95 % CI [1.0-1.2], p = 0.04) were independent predictors of poor image quality. Rotational angiography with motion compensation 3D image reconstruction using a dedicated research prototype software offers good image quality for the evaluation of frame geometry after TAVI in the majority of patients. Valve type, presence of artifacts and higher BMI negatively affect image quality.

  2. Aortic valve function after bicuspidization of the unicuspid aortic valve.

    PubMed

    Aicher, Diana; Bewarder, Moritz; Kindermann, Michael; Abdul-Khalique, Hashim; Schäfers, Hans-Joachim

    2013-05-01

    Unicuspid aortic valve (UAV) anatomy leads to dysfunction of the valve in young individuals. We introduced a reconstructive technique of bicuspidizing the UAV. Initially we copied the typical asymmetry of a normal bicuspid aortic valve (BAV) (I), later we created a symmetric BAV (II). This study compared the hemodynamic function of the two designs of a bicuspidized UAV. Aortic valve function was studied at rest and during exercise in 28 patients after repair of UAV (group I, n = 8; group II, n = 20). There were no differences among the groups I and II with respect to gender, age, body size, or weight. All patients were in New York Heart Association class I. Six healthy adults served as control individuals. All patients were studied with transthoracic echocardiography between 4 and 65 months postoperatively. Systolic gradients were assessed by continuous wave Doppler while patients were at rest and exercising on a bicycle ergometer. Aortic regurgitation was grade I or less in all patients. Resting gradients were significantly elevated in group I compared with group II and control individuals (group I, peak 33.8 ± 7.8 mm Hg; mean 19.1 ± 5.4 mm Hg; group II, peak 15.8 ± 5.4, mean 8.2 ± 2.8 mm Hg; control individuals, peak 6.0 ± 1.6, mean 3.2 ± 0.8 mm Hg; p < 0.001). At 100 W peak gradients were highest in group I (group I, 62.7 ± 16.7 mm Hg; group II, 28.1 ± 7.6 mm Hg; control individuals, 15.4 ± 4.6 mm Hg; p < 0.001). Converting a UAV into a symmetric bicuspid design results in adequate valve competence. A symmetric repair design leads to improved systolic aortic valve function at rest and during exercise. Copyright © 2013 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  3. 141. Detail of east control panel in control room, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    141. Detail of east control panel in control room, looking east. This panel contains electrical switches that were used to control valves at circular forebay. It also contains voltage regulators, synchroscope adjust field breaker, ammeters, wattmeters, temperature indicator of generator windings, and butterfly valve and governor controls. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  4. Development of the transtibial prosthesis controlled pneumatically and electrically by microcomputer system.

    PubMed

    Shimada, Youichi; Terayama, Yukio

    2006-01-01

    This report represents the development of the prototype transtibial prosthesis to assist a smooth and comfortable walking for an unilateral amputee. This prosthesis is composed of two air cylinders, solenoid valves, portable and small air tank for compressed air storage, a multiple sensor system and a microprocessor. Two air cylinders are located around the rods to act as antagonistic and agonistic muscles. The system causes flexion and extension of the foot plate jointed at the ankle with compressed air, injected -or discharged via a solenoid or electromagnetic valves. The valves or solenoids are controlled with a microprocessor (Microchip Technology Inc., PIC16F876), the microprocessor generates control signals to the interface circuits for valve opening and closing consistent with the foot position during the walking phase. The control patterns generated in the microprocessor are modified with feedback from the touch sensor, ankle joint angle sensor and the two dimensional acceleration sensor. The primary walking pattern for an individual amputee should be developed through the gait analysis with video.

  5. Hemodynamic Evaluation of a Biological and Mechanical Aortic Valve Prosthesis Using Patient-Specific MRI-Based CFD.

    PubMed

    Hellmeier, Florian; Nordmeyer, Sarah; Yevtushenko, Pavlo; Bruening, Jan; Berger, Felix; Kuehne, Titus; Goubergrits, Leonid; Kelm, Marcus

    2018-01-01

    Modeling different treatment options before a procedure is performed is a promising approach for surgical decision making and patient care in heart valve disease. This study investigated the hemodynamic impact of different prostheses through patient-specific MRI-based CFD simulations. Ten time-resolved MRI data sets with and without velocity encoding were obtained to reconstruct the aorta and set hemodynamic boundary conditions for simulations. Aortic hemodynamics after virtual valve replacement with a biological and mechanical valve prosthesis were investigated. Wall shear stress (WSS), secondary flow degree (SFD), transvalvular pressure drop (TPD), turbulent kinetic energy (TKE), and normalized flow displacement (NFD) were evaluated to characterize valve-induced hemodynamics. The biological prostheses induced significantly higher WSS (medians: 9.3 vs. 8.6 Pa, P = 0.027) and SFD (means: 0.78 vs. 0.49, P = 0.002) in the ascending aorta, TPD (medians: 11.4 vs. 2.7 mm Hg, P = 0.002), TKE (means: 400 vs. 283 cm 2 /s 2 , P = 0.037), and NFD (means: 0.0994 vs. 0.0607, P = 0.020) than the mechanical prostheses. The differences between the prosthesis types showed great inter-patient variability, however. Given this variability, a patient-specific evaluation is warranted. In conclusion, MRI-based CFD offers an opportunity to assess the interactions between prosthesis and patient-specific boundary conditions, which may help in optimizing surgical decision making and providing additional guidance to clinicians. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  6. Feasibility of Biventricular Repair in Right Dominant Unbalanced Atrioventricular Septal Defect: A New Echocardiographic Metric to Refine Surgical Decision-Making.

    PubMed

    Lugones, Ignacio; Biancolini, María Fernanda; Biancolini, Julio César; Dios, Ana M S de; Lugones, Germán

    2017-07-01

    Unbalanced forms of atrioventricular septal defect continue to be challenging and present poor surgical outcomes. Echocardiographic indicators such as atrioventricular valve index, right ventricle/left ventricle inflow angle, and size of the ventricular septal defect have been identified as relevant discriminators that may guide surgical strategy. Our purpose is to describe another metric to refine surgical decision-making. We outline a geometrical description of the anatomic features of atrioventricular septal defect and describe equations that help explain the interplay between the main echocardiographic variables. A new metric called "indexed ventricular septal defect" is defined as the size of the defect in relation to the valve diameter. We derive a final equation relating this index with the atrioventricular valve index and the right ventricle/left ventricle inflow angle. In the light of that equation, we discuss the interdependence of variables and employ data from a Congenital Heart Surgeons' Society study to set the limits of the new index. Combined use of indexed ventricular septal defect and atrioventricular valve index might help clarify surgical decision-making in patients with mild and moderate unbalance (modified atrioventricular valve index between 0.2 and 0.39). For indexed ventricular septal defect smaller than 0.2, biventricular repair may be recommended. Between 0.2 and 0.35, this strategy could probably be achieved depending on other factors. However, other strategies should be considered for those patients showing an indexed ventricular septal defect between 0.35 and 0.5. For values above 0.5 to 0.55, univentricular palliation might be a reasonable strategy.

  7. Predictors of clinical outcome in emphysema patients with atelectasis following endoscopic valve therapy: A retrospective study.

    PubMed

    Gompelmann, Daniela; Hofbauer, Tobias; Gerovasili, Vasiliki; Eberhardt, Ralf; Lim, Hyun-Ju; Herth, Felix; Heussel, Claus-Peter

    2016-10-01

    The aim of endoscopic valve therapy in patients with emphysema is complete lobar atelectasis of the most emphysematous lobe. However, even after the radiological advent of atelectasis, great variability in clinical outcomes can be observed. The baseline clinical measures (vital capacity (VC), forced expiratory flow in 1 s (FEV1 ), residual volume (RV) and 6-min walk test (6-MWT)) and computed tomography variables (low attenuation volume (LAV) of the target lobe, LAV% of the target and the ipsilateral untreated lobe and LAV of the target lobe to LAV of the target lung and to LAV of the total lung) of 77 patients with complete atelectasis following valve therapy were retrospectively examined to determine their impact on patient´s outcome (changes in VC, FEV1 , RV and 6-MWT from baseline to the time of atelectasis). Low attenuation volume of the target lobe to LAV of the target lung predicts a significant FEV1 improvement in patients with complete lobar atelectasis following valve therapy. A 10% difference in that computed tomography predictor was associated with a 82-mL improvement in FEV1 (P = 0.006). Lower 6-MWT scores, low VC and high RV at baseline were significantly associated with greater improvement in the respective parameter (all P < 0.001). Low attenuation volume of the target lobe to LAV of the target lung and baseline clinical measures seem to significantly predict clinical outcomes in patients with complete lobar atelectasis following valve treatment. © 2016 Asian Pacific Society of Respirology.

  8. Apixaban Versus Warfarin for Mechanical Heart Valve Thromboprophylaxis in a Swine Aortic Heterotopic Valve Model.

    PubMed

    Lester, Patrick A; Coleman, Dawn M; Diaz, Jose A; Jackson, Tatum O; Hawley, Angela E; Mathues, Angela R; Grant, Brandon T; Knabb, Robert M; Ramacciotti, Eduardo; Frost, Charles E; Song, Yan; Wakefield, Thomas W; Myers, Daniel D

    2017-05-01

    Warfarin is the current standard for oral anticoagulation therapy in patients with mechanical heart valves, yet optimal therapy to maximize anticoagulation and minimize bleeding complications requires routine coagulation monitoring, possible dietary restrictions, and drug interaction monitoring. As alternatives to warfarin, oral direct acting factor Xa inhibitors are currently approved for the prophylaxis and treatment of venous thromboembolism and reduction of stroke and systemic embolization. However, no in vivo preclinical or clinical studies have been performed directly comparing oral factor Xa inhibitors such as apixaban to warfarin, the current standard of therapy. A well-documented heterotopic aortic valve porcine model was used to test the hypothesis that apixaban has comparable efficacy to warfarin for thromboprophylaxis of mechanical heart valves. Sixteen swine were implanted with a bileaflet mechanical aortic valve that bypassed the ligated descending thoracic aorta. Animals were randomized to 4 groups: control (no anticoagulation; n=4), apixaban oral 1 mg/kg twice a day (n=5), warfarin oral 0.04 to 0.08 mg/kg daily (international normalized ratio 2-3; n=3), and apixaban infusion (n=4). Postmortem valve thrombus was measured 30 days post-surgery for control-oral groups and 14 days post-surgery for the apixaban infusion group. Control thrombus weight (mean) was significantly different (1422.9 mg) compared with apixaban oral (357.5 mg), warfarin (247.1 mg), and apixiban 14-day infusion (61.1 mg; P <0.05). Apixaban is a promising candidate and may be a useful alternative to warfarin for thromboprophylaxis of mechanical heart valves. Unlike warfarin, no adverse bleeding events were observed in any apixaban groups. © 2017 American Heart Association, Inc.

  9. 40 CFR 63.3556 - How do I establish the emission capture system and add-on control device operating limits during...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... capture system and add-on control device operating limits during the performance test? 63.3556 Section 63... system and add-on control device operating limits during the performance test? During the performance... of key parameters of the valve operating system (e.g., solenoid valve operation, air pressure...

  10. 40 CFR 63.3556 - How do I establish the emission capture system and add-on control device operating limits during...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... capture system and add-on control device operating limits during the performance test? 63.3556 Section 63... system and add-on control device operating limits during the performance test? During the performance... of key parameters of the valve operating system (e.g., solenoid valve operation, air pressure...

  11. 49 CFR 393.49 - Control valves for brakes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., which is equipped with power brakes, must have the braking system so arranged that one application valve must when activated cause all of the service brakes on the motor vehicle or combination motor vehicle... with an additional valve to be used to operate the brakes on a trailer or trailers or as required for...

  12. 40 CFR Table W - 3 of Subpart W of Part 98-Default Total Hydrocarbon Emission Factors for Onshore Natural Gas...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Service Valve 1 6.42 Connector 5.71 Open-Ended Line 11.27 Pressure Relief Valve 2.01 Meter 2.93 Population... Pneumatic Device Vents 2 18.20 Intermittent Bleed Pneumatic Device Vents 2 2.35 1 Valves include control...

  13. 40 CFR Table W - 3 of Subpart W of Part 98-Default Total Hydrocarbon Emission Factors for Onshore Natural Gas...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Service Valve 1 6.42 Connector 5.71 Open-Ended Line 11.27 Pressure Relief Valve 2.01 Meter 2.93 Population... Pneumatic Device Vents 2 18.20 Intermittent Bleed Pneumatic Device Vents 2 2.35 1 Valves include control...

  14. 49 CFR 179.400-19 - Valves and gages.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... control of vapor phase pressure, vapor phase venting, liquid transfer and liquid flow rates. All valves... within suitable protective housings. A liquid level gage and a vapor phase pressure gage must be provided... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-19 Valves and gages...

  15. 49 CFR 179.400-19 - Valves and gages.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... control of vapor phase pressure, vapor phase venting, liquid transfer and liquid flow rates. All valves... within suitable protective housings. A liquid level gage and a vapor phase pressure gage must be provided... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-19 Valves and gages...

  16. 49 CFR 179.400-19 - Valves and gages.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... control of vapor phase pressure, vapor phase venting, liquid transfer and liquid flow rates. All valves... within suitable protective housings. A liquid level gage and a vapor phase pressure gage must be provided... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-19 Valves and gages...

  17. Electrohydraulic linear actuator with two stepping motors controlled by overshoot-free algorithm

    NASA Astrophysics Data System (ADS)

    Milecki, Andrzej; Ortmann, Jarosław

    2017-11-01

    The paper describes electrohydraulic spool valves with stepping motors used as electromechanical transducers. A new concept of a proportional valve in which two stepping motors are working differentially is introduced. Such valve changes the fluid flow proportionally to the sum or difference of the motors' steps numbers. The valve design and principle of its operation is described. Theoretical equations and simulation models are proposed for all elements of the drive, i.e., the stepping motor units, hydraulic valve and cylinder. The main features of the valve and drive operation are described; some specific problem areas covering the nature of stepping motors and their differential work in the valve are also considered. The whole servo drive non-linear model is proposed and used further for simulation investigations. The initial simulation investigations of the drive with a new valve have shown that there is a significant overshoot in the drive step response, which is not allowed in positioning process. Therefore additional effort is spent to reduce the overshoot and in consequence reduce the settling time. A special predictive algorithm is proposed to this end. Then the proposed control method is tested and further improved in simulations. Further on, the model is implemented in reality and the whole servo drive system is tested. The investigation results presented in this paper, are showing an overshoot-free positioning process which enables high positioning accuracy.

  18. Large Scale Magnetostrictive Valve Actuator

    NASA Technical Reports Server (NTRS)

    Richard, James A.; Holleman, Elizabeth; Eddleman, David

    2008-01-01

    Marshall Space Flight Center's Valves, Actuators and Ducts Design and Development Branch developed a large scale magnetostrictive valve actuator. The potential advantages of this technology are faster, more efficient valve actuators that consume less power and provide precise position control and deliver higher flow rates than conventional solenoid valves. Magnetostrictive materials change dimensions when a magnetic field is applied; this property is referred to as magnetostriction. Magnetostriction is caused by the alignment of the magnetic domains in the material s crystalline structure and the applied magnetic field lines. Typically, the material changes shape by elongating in the axial direction and constricting in the radial direction, resulting in no net change in volume. All hardware and testing is complete. This paper will discuss: the potential applications of the technology; overview of the as built actuator design; discuss problems that were uncovered during the development testing; review test data and evaluate weaknesses of the design; and discuss areas for improvement for future work. This actuator holds promises of a low power, high load, proportionally controlled actuator for valves requiring 440 to 1500 newtons load.

  19. Modeling the Mitral Valve

    NASA Astrophysics Data System (ADS)

    Kaiser, Alexander

    2016-11-01

    The mitral valve is one of four valves in the human heart. The valve opens to allow oxygenated blood from the lungs to fill the left ventricle, and closes when the ventricle contracts to prevent backflow. The valve is composed of two fibrous leaflets which hang from a ring. These leaflets are supported like a parachute by a system of strings called chordae tendineae. In this talk, I will describe a new computational model of the mitral valve. To generate geometry, general information comes from classical anatomy texts and the author's dissection of porcine hearts. An MRI image of a human heart is used to locate the tips of the papillary muscles, which anchor the chordae tendineae, in relation to the mitral ring. The initial configurations of the valve leaflets and chordae tendineae are found by solving solving an equilibrium elasticity problem. The valve is then simulated in fluid (blood) using the immersed boundary method over multiple heart cycles in a model valve tester. We aim to identify features and mechanisms that influence or control valve function. Support from National Science Foundation, Graduate Research Fellowship Program, Grant DGE 1342536.

  20. Research on digital system design of nuclear power valve

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolong; Li, Yuan; Wang, Tao; Dai, Ye

    2018-04-01

    With the progress of China's nuclear power industry, nuclear power plant valve products is in a period of rapid development, high performance, low cost, short cycle of design requirements for nuclear power valve is proposed, so there is an urgent need for advanced digital design method and integrated design platform to provide technical support. Especially in the background of the nuclear power plant leakage in Japan, it is more practical to improve the design capability and product performance of the nuclear power valve. The finite element numerical analysis is a common and effective method for the development of nuclear power valves. Nuclear power valve has high safety, complexity of valve chamber and nonlinearity of seal joint surface. Therefore, it is urgent to establish accurate prediction models for earthquake prediction and seal failure to meet engineering accuracy and calculation conditions. In this paper, a general method of finite element modeling for nuclear power valve assembly and key components is presented, aiming at revealing the characteristics and rules of finite element modeling of nuclear power valves, and putting forward aprecision control strategy for finite element models for nuclear power valve characteristics analysis.

  1. Analysis of DC control in double-inlet GM type pulse tube refrigerators for detectors

    NASA Astrophysics Data System (ADS)

    Du, B. Y.

    2016-10-01

    Pulse tube refrigerators have demonstrated many advantages with respect to temperature stability, vibration, reliability and lifetime among cryo-coolers for detectors. Double-inlet type pulse tube refrigerators are popular in GM type pulse tube refrigerators. The single double-inlet valve may introduce DC flow in refrigerator, which deteriorates the performance of pulse tube refrigerator. One new type of DC control mode is introduced in this paper. Two parallel-placed needle valves with opposite direction named double-valve configuration, instead of single double-inlet valve, are used in our experiment to reduce the DC flow. With two double-inlet operating, the lowest cold end temperature of 18.1K and a coolant of 1.2W@20K have been obtained. It has proved that this method is useful for controlling DC flow of the pulse tube refrigerators, which is very important to understand the characters of pulse tube refrigerators for detectors.

  2. Secreted Klotho Attenuates Inflammation-Associated Aortic Valve Fibrosis in Senescence-Accelerated Mice P1.

    PubMed

    Chen, Jianglei; Fan, Jun; Wang, Shirley; Sun, Zhongjie

    2018-05-01

    Senescence-accelerated mice P1 (SAMP1) is an aging model characterized by shortened lifespan and early signs of senescence. Klotho is an aging-suppressor gene. The purpose of this study is to investigate whether in vivo expression of secreted klotho ( Skl ) gene attenuates aortic valve fibrosis in SAMP1 mice. SAMP1 mice and age-matched (AKR/J) control mice were used. SAMP1 mice developed obvious fibrosis in aortic valves, namely fibrotic aortic valve disease. Serum level of Skl was decreased drastically in SAMP1 mice. Expression of MCP-1 (monocyte chemoattractant protein 1), ICAM-1 (intercellular adhesion molecule 1), F4/80, and CD68 was increased in aortic valves of SAMP1 mice, indicating inflammation. An increase in expression of α-smooth muscle actin (myofibroblast marker), transforming growth factorβ-1, and scleraxis (a transcription factor of collagen synthesis) was also found in aortic valves of SAMP1 mice, suggesting that accelerated aging is associated with myofibroblast transition and collagen gene activation. We constructed adeno-associated virus 2 carrying mouse Skl cDNA for in vivo expression of Skl. Skl gene delivery effectively increased serum Skl of SAMP1 mice to the control level. Skl gene delivery inhibited inflammation and myofibroblastic transition in aortic valves and attenuated fibrotic aortic valve disease in SAMP1 mice. It is concluded that senescence-related fibrotic aortic valve disease in SAMP1 mice is associated with a decrease in serum klotho leading to inflammation, including macrophage infiltration and transforming growth factorβ-1/scleraxis-driven myofibroblast differentiation in aortic valves. Restoration of serum Skl levels by adeno-associated virus 2 carrying mouse Skl cDNA effectively suppresses inflammation and myofibroblastic transition and attenuates aortic valve fibrosis. Skl may be a potential therapeutic target for fibrotic aortic valve disease. © 2018 American Heart Association, Inc.

  3. Method and apparatus for manufacturing gas tags

    DOEpatents

    Gross, K.C.; Laug, M.T.

    1996-12-17

    For use in the manufacture of gas tags employed in a gas tagging failure detection system for a nuclear reactor, a plurality of commercial feed gases each having a respective noble gas isotopic composition are blended under computer control to provide various tag gas mixtures having selected isotopic ratios which are optimized for specified defined conditions such as cost. Using a new approach employing a discrete variable structure rather than the known continuous-variable optimization problem, the computer controlled gas tag manufacturing process employs an analytical formalism from condensed matter physics known as stochastic relaxation, which is a special case of simulated annealing, for input feed gas selection. For a tag blending process involving M tag isotopes with N distinct feed gas mixtures commercially available from an enriched gas supplier, the manufacturing process calculates the cost difference between multiple combinations and specifies gas mixtures which approach the optimum defined conditions. The manufacturing process is then used to control tag blending apparatus incorporating tag gas canisters connected by stainless-steel tubing with computer controlled valves, with the canisters automatically filled with metered quantities of the required feed gases. 4 figs.

  4. Method and apparatus for manufacturing gas tags

    DOEpatents

    Gross, Kenny C.; Laug, Matthew T.

    1996-01-01

    For use in the manufacture of gas tags employed in a gas tagging failure detection system for a nuclear reactor, a plurality of commercial feed gases each having a respective noble gas isotopic composition are blended under computer control to provide various tag gas mixtures having selected isotopic ratios which are optimized for specified defined conditions such as cost. Using a new approach employing a discrete variable structure rather than the known continuous-variable optimization problem, the computer controlled gas tag manufacturing process employs an analytical formalism from condensed matter physics known as stochastic relaxation, which is a special case of simulated annealing, for input feed gas selection. For a tag blending process involving M tag isotopes with N distinct feed gas mixtures commercially available from an enriched gas supplier, the manufacturing process calculates the cost difference between multiple combinations and specifies gas mixtures which approach the optimum defined conditions. The manufacturing process is then used to control tag blending apparatus incorporating tag gas canisters connected by stainless-steel tubing with computer controlled valves, with the canisters automatically filled with metered quantities of the required feed gases.

  5. Engine having a variable valve actuation system

    DOEpatents

    Hefler, Gregory W [Chillicothe, IL

    2004-10-12

    An engine has a cylinder head having a first surface and a second surface spaced from the first surface. A valve is moveably connected to the cylinder head. A rocker arm is connected to the valve, and a rocker shaft having a first location spaced a maximum distance from the cylinder head is connected to the rocker arm. A support member has and an actuator fluid passage network. The actuator fluid passage network defines a volume. The support member is connected to the cylinder head and is positioned such that a majority of the volume of the actuator fluid passage network is between the first location of the rocker shaft and the second surface of the cylinder head.

  6. Engine having a variable valve actuation system

    DOEpatents

    Hefler, Gregory W.

    2005-10-12

    An engine has a cylinder head having a first surface and a second surface spaced from the first surface. A valve is moveably connected to the cylinder head. A rocker arm is connected to the valve, and a rocker shaft having a first location spaced a maximum distance from the cylinder head is connected to the rocker arm. A support member has and an actuator fluid passage network. The actuator fluid passage network defines a volume. The support member is connected to the cylinder head and is positioned such that a majority of the volume of the actuator fluid passage network is between the first location of the rocker shaft and the second surface of the cylinder head.

  7. Banking cryopreserved heart valves in Europe: assessment of a 5-year operation in an international tissue bank in Brussels.

    PubMed

    Goffin, Y; Grandmougin, D; Van Hoeck, B

    1996-01-01

    The heart valve bank of the European Homograft Bank has been set up in 1988 to meet the growing demand of cardiac surgeons for various sized and quality controlled cryopreserved homografts. Heart valve donors less than 60 years of age were classified in 3 categories: multiorgan donors with non transplantable hearts, recipients of cardiac transplantation and non beating heart cadavers with a warm ischemic time of less than 6 hours. Past history and biology were checked for transmissible diseases. Preparation, progressive freezing and storage in liquid nitrogen vapors, and quality control were according to the standards of the Belgian Ministry of Health. From end January 1989 to end May 1994, 989 homograft valves were cryopreserved (514 pulmonary, 475 aortic and 3 mitral) whereas 962 valves were discarded. The first cause of rejection being a major macroscopic lesion (41.48%). 138 hearts accepted at inspection were contaminated and 43 cases remained so after antibiotics. 38 cases were positive for hepatitis B or C. Complication at distribution and thawing included 10 instances of bag rupture and 15 of transversal fracture through the wall of the conduit. 477 aortic, 474 pulmonary valves as well as one mitral were implanted between May 1989 and May 1994, either for left or right ventricular outflow tract reconstruction. In the left ventricular outflow tract series 111 aortic and 23 pulmonary homograft valves were used in cases of native endocarditis, prosthetic endocarditis or recurrent endocarditis after homograft implantation. 9.6% of the requests could no be satisfied. Regular follow up information was available from 382 implants-40.1% only. The assessment of 5 years operation of the heart valve bank indicates: 1) the efficiency of selecting, cryopreserving and allocating quality controlled homograft valves from a large pool of donor hearts provided by a network of hospitals; 2) the difficulty of obtaining regular follow up information on the implants.

  8. Static Flow Characteristics of a Mass Flow Injecting Valve

    NASA Technical Reports Server (NTRS)

    Mattern, Duane; Paxson, Dan

    1995-01-01

    A sleeve valve is under development for ground-based forced response testing of air compression systems. This valve will be used to inject air and to impart momentum to the flow inside the first stage of a multi-stage compressor. The valve was designed to deliver a maximum mass flow of 0.22 lbm/s (0.1 kg/s) with a maximum valve throat area of 0.12 sq. in (80 sq. mm), a 100 psid (689 KPA) pressure difference across the valve and a 68 F, (20 C) air supply. It was assumed that the valve mass flow rate would be proportional to the valve orifice area. A static flow calibration revealed a nonlinear valve orifice area to mass flow relationship which limits the maximum flow rate that the valve can deliver. This nonlinearity was found to be caused by multiple choking points in the flow path. A simple model was used to explain this nonlinearity and the model was compared to the static flow calibration data. Only steady flow data is presented here. In this report, the static flow characteristics of a proportionally controlled sleeve valve are modelled and validated against experimental data.

  9. Thermostatic Valves Containing Silicone-Oil Actuators

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep; Birur, Gajanana C.; Bame, David P.; Karlmann, Paul B.; Prina, Mauro; Young, William; Fisher, Richard

    2009-01-01

    Flow-splitting and flow-mixing thermally actuated spool valves have been developed for controlling flows of a heat-transfer fluid in a temperature-regulation system aboard the Mars Science Laboratory (MSL) rover. Valves like these could also be useful in terrestrial temperature-regulation systems, including automobile air-conditioning systems and general refrigeration systems. These valves are required to provide smoother actuation over a wider temperature range than the flow-splitting, thermally actuated spool valves used in the Mars Explorer Rover (MER). Also, whereas the MER valves are unstable (tending to oscillate) in certain transition temperature ranges, these valves are required not to oscillate. The MER valves are actuated by thermal expansion of a wax against spring-loaded piston rods (as in common automotive thermostats). The MSL valves contain similar actuators that utilize thermal expansion of a silicone oil, because silicone-oil actuators were found to afford greater and more nearly linear displacements, needed for smoother actuation, over the required wider temperature range. The MSL valves also feature improved spool designs that reflect greater understanding of fluid dynamics, consideration of pressure drops in valves, and a requirement for balancing of pressures in different flow branches.

  10. Air/fuel ratio control system for internal combustion engine having rotary valve and step motor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, M.

    A system for feedback control of the air/fuel mixing ratio in an internal combustion engine equipped with a carburetor. The control system has an air/fuel ratio detector of a gas sensor type which provides a feedback signal to a control circuit and a rotary valve which is operated by a stepping motor responsive to a control pulse signal produced by the control circuit to regulate the fuel feed rate so as to nullify a deviation of the detected actual air/fuel ratio from a preset air/fuel ratio. The control system may include two auxiliary air-admitting passages respectively connected to a mainmore » fuel passage and a slow fuel passage in the carburetor, and in this case the single rotary valve is designed and arranged so as to simultaneously control the admission of air into both of the two auxiliary air-admitting passages.« less

  11. Development of variable-rate sprayer for nursery liner applications

    USDA-ARS?s Scientific Manuscript database

    Sensor-guided application technologies are needed to achieve constant spray deposition for the rapid growth of nursery liner trees during a growing season. An experimental real-time variable-rate sprayer that implemented 20 Hz ultrasonic sensors and pulse width modulation (PWM) solenoid valve-contro...

  12. Embryonic Ethanol Exposure Dysregulates BMP and Notch Signaling, Leading to Persistent Atrio-Ventricular Valve Defects in Zebrafish

    PubMed Central

    Sarmah, Swapnalee; Muralidharan, Pooja

    2016-01-01

    Fetal alcohol spectrum disorder (FASD), birth defects associated with ethanol exposure in utero, includes a wide spectrum of congenital heart defects (CHDs), the most prevalent of which are septal and conotruncal defects. Zebrafish FASD model was used to dissect the mechanisms underlying FASD-associated CHDs. Embryonic ethanol exposure (3–24 hours post fertilization) led to defects in atrio-ventricular (AV) valvulogenesis beginning around 37 hpf, a morphogenetic event that arises long after ethanol withdrawal. Valve leaflets of the control embryos comprised two layers of cells confined at the compact atrio-ventricular canal (AVC). Ethanol treated embryos had extended AVC and valve forming cells were found either as rows of cells spanning the AVC or as unorganized clusters near the AV boundary. Ethanol exposure reduced valve precursors at the AVC, but some ventricular cells in ethanol treated embryos exhibited few characteristics of valve precursors. Late staged larvae and juvenile fish exposed to ethanol during embryonic development had faulty AV valves. Examination of AVC morphogenesis regulatory networks revealed that early ethanol exposure disrupted the Bmp signaling gradient in the heart during valve formation. Bmp signaling was prominent at the AVC in controls, but ethanol-exposed embryos displayed active Bmp signaling throughout the ventricle. Ethanol exposure also led to mislocalization of Notch signaling cells in endocardium during AV valve formation. Normally, highly active Notch signaling cells were organized at the AVC. In ethanol-exposed embryos, highly active Notch signaling cells were dispersed throughout the ventricle. At later stages, ethanol-exposed embryos exhibited reduced Wnt/β-catenin activity at the AVC. We conclude that early embryonic ethanol exposure alters Bmp, Notch and other signaling activities during AVC differentiation leading to faulty valve morphogenesis and valve defects persist in juvenile fish. PMID:27556898

  13. Embryonic Ethanol Exposure Dysregulates BMP and Notch Signaling, Leading to Persistent Atrio-Ventricular Valve Defects in Zebrafish.

    PubMed

    Sarmah, Swapnalee; Muralidharan, Pooja; Marrs, James A

    2016-01-01

    Fetal alcohol spectrum disorder (FASD), birth defects associated with ethanol exposure in utero, includes a wide spectrum of congenital heart defects (CHDs), the most prevalent of which are septal and conotruncal defects. Zebrafish FASD model was used to dissect the mechanisms underlying FASD-associated CHDs. Embryonic ethanol exposure (3-24 hours post fertilization) led to defects in atrio-ventricular (AV) valvulogenesis beginning around 37 hpf, a morphogenetic event that arises long after ethanol withdrawal. Valve leaflets of the control embryos comprised two layers of cells confined at the compact atrio-ventricular canal (AVC). Ethanol treated embryos had extended AVC and valve forming cells were found either as rows of cells spanning the AVC or as unorganized clusters near the AV boundary. Ethanol exposure reduced valve precursors at the AVC, but some ventricular cells in ethanol treated embryos exhibited few characteristics of valve precursors. Late staged larvae and juvenile fish exposed to ethanol during embryonic development had faulty AV valves. Examination of AVC morphogenesis regulatory networks revealed that early ethanol exposure disrupted the Bmp signaling gradient in the heart during valve formation. Bmp signaling was prominent at the AVC in controls, but ethanol-exposed embryos displayed active Bmp signaling throughout the ventricle. Ethanol exposure also led to mislocalization of Notch signaling cells in endocardium during AV valve formation. Normally, highly active Notch signaling cells were organized at the AVC. In ethanol-exposed embryos, highly active Notch signaling cells were dispersed throughout the ventricle. At later stages, ethanol-exposed embryos exhibited reduced Wnt/β-catenin activity at the AVC. We conclude that early embryonic ethanol exposure alters Bmp, Notch and other signaling activities during AVC differentiation leading to faulty valve morphogenesis and valve defects persist in juvenile fish.

  14. A Parylene MEMS Electrothermal Valve

    PubMed Central

    Li, Po-Ying; Givrad, Tina K.; Holschneider, Daniel P.; Maarek, Jean-Michel I.; Meng, Ellis

    2011-01-01

    The first microelectromechanical-system normally closed electrothermal valve constructed using Parylene C is described, which enables both low power (in milliwatts) and rapid operation (in milliseconds). This low-power valve is well suited for applications in wirelessly controlled implantable drug-delivery systems. The simple design was analyzed using both theory and modeling and then characterized in benchtop experiments. Operation in air (constant current) and water (current ramping) was demonstrated. Valve-opening powers of 22 mW in air and 33 mW in water were obtained. Following integration of the valve with catheters, our valve was applied in a wirelessly operated microbolus infusion pump, and the in vivo functionality for the appropriateness of use of this pump for future brain mapping applications in small animals was demonstrated. PMID:21350679

  15. TFTR diagnostic vacuum controller

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, D.; Persons, R.

    1981-01-01

    The TFTR diagnostic vacuum controller (DVC) provides in conjunction with the Central Instrumentation Control and Data Acquisition System (CICADA), control and monitoring for the pumps, valves and gauges associated with each individual diagnostic vacuum system. There will be approximately 50 systems on TFTR. Two standard versions of the controller (A and B) wil be provided in order to meet the requirements of two diagnostic manifold arrangements. All pump and valve sequencing, as well as protection features, will be implemented by the controller.

  16. Bicuspid aortic valves: diagnostic accuracy of standard axial 64-slice chest CT compared to aortic valve image plane ECG-gated cardiac CT.

    PubMed

    Murphy, David J; McEvoy, Sinead H; Iyengar, Sri; Feuchtner, Gudrun; Cury, Ricardo C; Roobottom, Carl; Baumueller, Stephan; Alkadhi, Hatem; Dodd, Jonathan D

    2014-08-01

    To assess the diagnostic accuracy of standard axial 64-slice chest CT compared to aortic valve image plane ECG-gated cardiac CT for bicuspid aortic valves. The standard axial chest CT scans of 20 patients with known bicuspid aortic valves were blindly, randomly analyzed for (i) the appearance of the valve cusps, (ii) the largest aortic sinus area, (iii) the longest aortic cusp length, (iv) the thickest aortic valve cusp and (v) valve calcification. A second blinded reader independently analyzed the appearance of the valve cusps. Forty-two age- and sex-matched patients with known tricuspid aortic valves were used as controls. Retrospectively ECG-gated cardiac CT multiphase reconstructions of the aortic valve were used as the gold-standard. Fourteen (21%) scans were scored as unevaluable (7 bicuspid, 7 tricuspid). Of the remainder, there were 13 evaluable bicuspid valves, ten of which showed an aortic valve line sign, while the remaining three showed a normal Mercedes-Benz appearance owing to fused valve cusps. The 35 evaluable tricuspid aortic valves all showed a normal Mercedes-Benz appearance (P=0.001). Kappa analysis=0.62 indicating good interobserver agreement for the aortic valve cusp appearance. Aortic sinus areas, aortic cusp lengths and aortic cusp thicknesses of ≥ 3.8 cm(2), 3.2 cm and 1.6mm respectively on standard axial chest CT best distinguished bicuspid from tricuspid aortic valves (P<0.0001 for all). Of evaluable scans, the sensitivity, specificity, positive and negative predictive values of standard axial chest CT in diagnosing bicuspid aortic valves was 77% (CI 0.54-1.0), 100%, 100% and 70% respectively. The aortic valve is evaluable in approximately 80% of standard chest 64-slice CT scans. Bicuspid aortic valves may be diagnosed on evaluable scans with good diagnostic accuracy. An aortic valve line sign, enlarged aortic sinuses and elongated, thickened valve cusps are specific CT features. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. A review of design and modeling of magnetorheological valve

    NASA Astrophysics Data System (ADS)

    Abd Fatah, Abdul Yasser; Mazlan, Saiful Amri; Koga, Tsuyoshi; Zamzuri, Hairi; Zeinali, Mohammadjavad; Imaduddin, Fitrian

    2015-01-01

    Following recent rapid development of researches in utilizing Magnetorheological (MR) fluid, a smart material that can be magnetically controlled to change its apparent viscosity instantaneously, a lot of applications have been established to exploit the benefits and advantages of using the MR fluid. One of the most important applications for MR fluid in devices is the MR valve, where it uses the popular flow or valve mode among the available working modes for MR fluid. As such, MR valve is widely applied in a lot of hydraulic actuation and vibration reduction devices, among them are dampers, actuators and shock absorbers. This paper presents a review on MR valve, discusses on several design configurations and the mathematical modeling for the MR valve. Therefore, this review paper classifies the MR valve based on the coil configuration and geometrical arrangement of the valve, and focusing on four different mathematical models for MR valve: Bingham plastic, Herschel-Bulkley, bi-viscous and Herschel-Bulkley with pre-yield viscosity (HBPV) models for calculating yield stress and pressure drop in the MR valve. Design challenges and opportunities for application of MR fluid and MR valve are also highlighted in this review. Hopefully, this review paper can provide basic knowledge on design and modeling of MR valve, complementing other reviews on MR fluid, its applications and technologies.

  18. Sildenafil improves heart rate variability in dogs with asymptomatic myxomatous mitral valve degeneration

    PubMed Central

    PIRINTR, Prapawadee; SAENGKLUB, Nakkawee; LIMPRASUTR, Vudhiporn; SAWANGKOON, Suwanakiet; KIJTAWORNRAT, Anusak

    2017-01-01

    Myxomatous mitral valve degeneration (MMVD) causes an imbalance of sympathovagal activity resulted in poor cardiac outcomes. Phosphodiesterase-5 inhibitors have been revealed cardioprotective effect in patients with heart diseases. This study aimed to 1) compare the heart rate variability (HRV) between asymptomatic MMVD and healthy dogs and 2) assess long-term effects of sildenafil and enalapril on time- and frequency-domains analyzes. Thirty-four dogs with MMVD stage B1 or B2 and thirteen healthy dogs were recruited into the study. MMVD dogs were divided into 3 subgroups: control (n=13), sildenafil (n=12) and enalapril (n=9). HRV was analyzed from 1-hr Holter recording at baseline (D0) in all dogs and at 30, 90 and 180 days after treatment. The results showed that MMVD dogs had significant higher heart rate (HR), systemic blood pressures, the ratio of low to high frequency (LF/HF) and had significant decreased standard deviation of all normal to normal RR intervals (SDNN) and the percentage of the number of normal-to-normal sinus RR intervals with differences >50 msec computed over the entire recording (pNN50) when compared with healthy dogs (P<0.05). Neither time nor frequency domain parameters were different among subgroups of MMVD dogs at D0. After treatment with sildenafil for 90 days, both time- and frequency-domain parameters were significantly increased when compared with control and enalapril groups. This study demonstrated that sildenafil improves HRV in asymptomatic MMVD dogs suggesting that sildenafil should be used in the MMVD dogs to restore the sympathovagal balance. PMID:28717064

  19. A hybrid approach to modeling and control of vehicle height for electronically controlled air suspension

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoqiang; Cai, Yingfeng; Wang, Shaohua; Liu, Yanling; Chen, Long

    2016-01-01

    The control problems associated with vehicle height adjustment of electronically controlled air suspension (ECAS) still pose theoretical challenges for researchers, which manifest themselves in the publications on this subject over the last years. This paper deals with modeling and control of a vehicle height adjustment system for ECAS, which is an example of a hybrid dynamical system due to the coexistence and coupling of continuous variables and discrete events. A mixed logical dynamical (MLD) modeling approach is chosen for capturing enough details of the vehicle height adjustment process. The hybrid dynamic model is constructed on the basis of some assumptions and piecewise linear approximation for components nonlinearities. Then, the on-off statuses of solenoid valves and the piecewise approximation process are described by propositional logic, and the hybrid system is transformed into the set of linear mixed-integer equalities and inequalities, denoted as MLD model, automatically by HYSDEL. Using this model, a hybrid model predictive controller (HMPC) is tuned based on online mixed-integer quadratic optimization (MIQP). Two different scenarios are considered in the simulation, whose results verify the height adjustment effectiveness of the proposed approach. Explicit solutions of the controller are computed to control the vehicle height adjustment system in realtime using an offline multi-parametric programming technology (MPT), thus convert the controller into an equivalent explicit piecewise affine form. Finally, bench experiments for vehicle height lifting, holding and lowering procedures are conducted, which demonstrate that the HMPC can adjust the vehicle height by controlling the on-off statuses of solenoid valves directly. This research proposes a new modeling and control method for vehicle height adjustment of ECAS, which leads to a closed-loop system with favorable dynamical properties.

  20. Self-powered automatic secondary air controllers for woodstoves and small furnaces

    DOEpatents

    Siemer, Darryl D.

    1991-01-01

    A controller for automatically regulating the supply of secondary combustion air to woodstoves and small furnaces. The controller includes a movable air valve for controlling the amount of secondary air admitted into the chamber. A self powered means monitors the concentration of combustible gases and vapors and actuates the movable air valve to increase the supply of secondary air in response to increasing concentrations of the combustible gases and vapors. The self-powered means can be two fluid filled sensor bulbs, one of which has a coating of a combustion catalyst. Alternatively, the self powered means can be two metallic stripes laminated together, one of which is coated with a combustion catalyst, and when heated, causes the air valve to actuate.

Top