Sample records for variable viscosity applications

  1. Simultaneous effects of single wall carbon nanotube and effective variable viscosity for peristaltic flow through annulus having permeable walls

    NASA Astrophysics Data System (ADS)

    Shahzadi, Iqra; Nadeem, S.; Rabiei, Faranak

    The current article deals with the combine effects of single wall carbon nanotubes and effective viscosity for the peristaltic flow of nanofluid through annulus. The nature of the walls is assumed to be permeable. The present theoretical model can be considered as mathematical representation to the motion of conductive physiological fluids in the existence of the endoscope tube which has many biomedical applications such as drug delivery system. The outer tube has a wave of sinusoidal nature that is travelling along its walls while the inner tube is rigid and uniform. Lubrication approach is used for the considered analysis. An empirical relation for the effective variable viscosity of nanofluid is proposed here interestingly. The viscosity of nanofluid is the function of radial distance and the concentration of nanoparticles. Exact solution for the resulting system of equations is displayed for various quantities of interest. The outcomes show that the maximum velocity of SWCNT-blood nanofluid enhances for larger values of viscosity parameter. The pressure gradient in the more extensive part of the annulus is likewise found to increase as a function of variable viscosity parameter. The size of the trapped bolus is also influenced by variable viscosity parameter. The present examination also revealed that the carbon nanotubes have many applications related to biomedicine.

  2. Self-similarity criteria in anisotropic flows with viscosity stratification

    NASA Astrophysics Data System (ADS)

    Danaila, L.; Voivenel, L.; Varea, E.

    2017-02-01

    Variable-viscosity flows exhibit a faster trend towards a fully developed turbulent state since fluctuations are produced at a larger amount. A legitimate expectation is that self-similarity to be tenable earlier than in classical, single-viscosity flows. The question which begs to be answered is: which are the self-similarity criteria for variable-viscosity, density-matched, flows? The similarity assumption, i.e., all scales evolve in a similar fashion in space/time, is applied to the transport equation for one- and two-point statistics of anisotropic, variable-viscosity flows. It is shown that the similarity assumption is valid for regions of the flow where viscosity (mean values and the fluctuations root-mean-square) is uniform. In regions where viscosity gradients are important, such as the sheared region and jet boundaries, similarity is not tenable. Our claims are applicable to any decaying flow, isotropic or anisotropic. Support is provided by experimental data obtained in the near field region of a jet issuing into a more viscous environment. The viscosity ratio is 3.5.

  3. On the self-preservation of turbulent jet flows with variable viscosity

    NASA Astrophysics Data System (ADS)

    Danaila, Luminita; Gauding, Michael; Varea, Emilien; Turbulence; mixing Team

    2017-11-01

    The concept of self-preservation has played an important role in shaping the understanding of turbulent flows. The assumption of complete self-preservation imposes certain constrains on the dynamics of the flow, allowing to express one-point or two-point statistics by choosing an appropriate unique length scale. Determining this length scale and its scaling is of high relevance for modeling. In this work, we study turbulent jet flows with variable viscosity from the self-preservation perspective. Turbulent flows encountered in engineering and environmental applications are often characterized by fluctuations of viscosity resulting for instance from variations of temperature or species composition. Starting from the transport equation for the moments of the mixture fraction increment, constraints for self-preservation are derived. The analysis is based on direct numerical simulations of turbulent jet flows where the viscosity between host and jet fluid differs. It is shown that fluctuations of viscosity do not affect the decay exponents of the turbulent energy or the dissipation but modify the scaling of two-point statistics in the dissipative range. Moreover, the analysis reveals that complete self-preservation in turbulent flows with variable viscosity cannot be achieved. Financial support from Labex EMC3 and FEDER is gratefully acknowledged.

  4. Application of SEAWAT to select variable-density and viscosity problems

    USGS Publications Warehouse

    Dausman, Alyssa M.; Langevin, Christian D.; Thorne, Danny T.; Sukop, Michael C.

    2010-01-01

    SEAWAT is a combined version of MODFLOW and MT3DMS, designed to simulate three-dimensional, variable-density, saturated groundwater flow. The most recent version of the SEAWAT program, SEAWAT Version 4 (or SEAWAT_V4), supports equations of state for fluid density and viscosity. In SEAWAT_V4, fluid density can be calculated as a function of one or more MT3DMS species, and optionally, fluid pressure. Fluid viscosity is calculated as a function of one or more MT3DMS species, and the program also includes additional functions for representing the dependence of fluid viscosity on temperature. This report documents testing of and experimentation with SEAWAT_V4 with six previously published problems that include various combinations of density-dependent flow due to temperature variations and/or concentration variations of one or more species. Some of the problems also include variations in viscosity that result from temperature differences in water and oil. Comparisons between the results of SEAWAT_V4 and other published results are generally consistent with one another, with minor differences considered acceptable.

  5. On the resolution of shallow mantle viscosity structure using post-earthquake relaxation data: Application to the 1999 Hector Mine, California, earthquake

    USGS Publications Warehouse

    Pollitz, Fred F.; Thatcher, Wayne R.

    2010-01-01

    Most models of lower crust/mantle viscosity inferred from postearthquake relaxation assume one or two uniform-viscosity layers. A few existing models possess apparently significant radially variable viscosity structure in the shallow mantle (e.g., the upper 200 km), but the resolution of such variations is not clear. We use a geophysical inverse procedure to address the resolving power of inferred shallow mantle viscosity structure using postearthquake relaxation data. We apply this methodology to 9 years of GPS-constrained crustal motions after the 16 October 1999 M = 7.1 Hector Mine earthquake. After application of a differencing method to isolate the postearthquake signal from the “background” crustal velocity field, we find that surface velocities diminish from ∼20 mm/yr in the first few months to ≲2 mm/yr after 2 years. Viscoelastic relaxation of the mantle, with a time-dependent effective viscosity prescribed by a Burgers body, provides a good explanation for the postseismic crustal deformation, capturing both the spatial and temporal pattern. In the context of the Burgers body model (which involves a transient viscosity and steady state viscosity), a resolution analysis based on the singular value decomposition reveals that at most, two constraints on depth-dependent steady state mantle viscosity are provided by the present data set. Uppermost mantle viscosity (depth ≲ 60 km) is moderately resolved, but deeper viscosity structure is poorly resolved. The simplest model that explains the data better than that of uniform steady state mantle viscosity involves a linear gradient in logarithmic viscosity with depth, with a small increase from the Moho to 220 km depth. However, the viscosity increase is not statistically significant. This suggests that the depth-dependent steady state viscosity is not resolvably different from uniformity in the uppermost mantle.

  6. Force effects on rotor of squeeze film damper using Newtonian and non-Newtonian fluid

    NASA Astrophysics Data System (ADS)

    Dominik, Šedivý; Petr, Ferfecki; Simona, Fialová

    2017-09-01

    This article presents the evaluation of force effects on rotor of squeeze film damper. Rotor is eccentric placed and its motion is translate-circular. The amplitude of rotor motion is smaller than its initial eccentricity. The force effects are calculated from pressure and viscous forces which were gained by using computational modeling. Two types of fluid were considered as filling of damper. First type of fluid is Newtonian (has constant viscosity) and second type is magnetorheological fluid (does not have constant viscosity). Viscosity of non-Newtonian fluid is given using Bingham rheology model. Yield stress is a function of magnetic induction which is described by many variables. The most important variables of magnetic induction are electric current and gap width which is between rotor and stator. Comparison of application two given types of fluids is shown in results.

  7. An accurate estimation method of kinematic viscosity for standard viscosity liquids

    NASA Astrophysics Data System (ADS)

    Kurano, Y.; Kobayashi, H.; Yoshida, K.; Imai, H.

    1992-07-01

    Deming's method of least squares is introduced to make an accurate kinematic viscosity estimation for a series of 13 standard-viscosity liquids at any desired temperature. The empirical ASTM kinematic viscosity-temperature equation is represented in the form loglog( v+c)=a-b log T, where v (in mm2. s-1) is the kinematic viscosity at temperature T (in K), a and b are the constants for a given liquid, and c has a variable value. In the present application, however, c is assumed to have a constant value for each standard-viscosity liquid, as do a and b in the ASTM equation. This assumption has since been verified experimentally for all standard-viscosity liquids. The kinematic viscosities for the 13 standard-viscosity liquids have been measured with a high accuracy in the temperature range of 20 40°C using a series of the NRLM capillary master viscometers with an automatic flow time detection system. The deviations between measured and estimated kinematic viscosities were less than ±0.04% for the 10 standard-viscosity liquids JS2.5 to JS2000 and ±0.11% for the 3 standard-viscosity liquids JS15H to JS200H, respectively. From the above investigation, it was revealed that the uncertainty in the present estimation method is less than one-third that in the usual ASTM method.

  8. Electroosmotic flow in capillary channels filled with nonconstant viscosity electrolytes: exact solution of the Navier-Stokes equation.

    PubMed

    Otevrel, Marek; Klepárník, Karel

    2002-10-01

    The partial differential equation describing unsteady velocity profile of electroosmotic flow (EOF) in a cylindrical capillary filled with a nonconstant viscosity electrolyte was derived. Analytical solution, based on the general Navier-Stokes equation, was found for constant viscosity electrolytes using the separation of variables (Fourier method). For the case of a nonconstant viscosity electrolyte, the steady-state velocity profile was calculated assuming that the viscosity decreases exponentially in the direction from the wall to the capillary center. Since the respective equations with nonconstant viscosity term are not solvable in general, the method of continuous binding conditions was used to solve this problem. In this method, an arbitrary viscosity profile can be modeled. The theoretical conclusions show that the relaxation times at which an EOF approaches the steady state are too short to have an impact on a separation process in any real systems. A viscous layer at the wall affects EOF significantly, if it is thicker than the Debye length of the electric double layer. The presented description of the EOF dynamics is applicable to any microfluidic systems.

  9. Magnetohydrodynamic dissipative flow across the slendering stretching sheet with temperature dependent variable viscosity

    NASA Astrophysics Data System (ADS)

    Jayachandra Babu, M.; Sandeep, N.; Ali, M. E.; Nuhait, Abdullah O.

    The boundary layer flow across a slendering stretching sheet has gotten awesome consideration due to its inexhaustible pragmatic applications in nuclear reactor technology, acoustical components, chemical and manufacturing procedures, for example, polymer extrusion, and machine design. By keeping this in view, we analyzed the two-dimensional MHD flow across a slendering stretching sheet within the sight of variable viscosity and viscous dissipation. The sheet is thought to be convectively warmed. Convective boundary conditions through heat and mass are employed. Similarity transformations used to change over the administering nonlinear partial differential equations as a group of nonlinear ordinary differential equations. Runge-Kutta based shooting technique is utilized to solve the converted equations. Numerical estimations of the physical parameters involved in the problem are calculated for the friction factor, local Nusselt and Sherwood numbers. Viscosity variation parameter and chemical reaction parameter shows the opposite impact to each other on the concentration profile. Heat and mass transfer Biot numbers are helpful to enhance the temperature and concentration respectively.

  10. A numerical model for density-and-viscosity-dependent flows in two-dimensional variably saturated porous media

    NASA Astrophysics Data System (ADS)

    Boufadel, Michel C.; Suidan, Makram T.; Venosa, Albert D.

    1999-04-01

    We present a formulation for water flow and solute transport in two-dimensional variably saturated media that accounts for the effects of the solute on water density and viscosity. The governing equations are cast in a dimensionless form that depends on six dimensionless groups of parameters. These equations are discretized in space using the Galerkin finite element formulation and integrated in time using the backward Euler scheme with mass lumping. The modified Picard method is used to linearize the water flow equation. The resulting numerical model, the MARUN model, is verified by comparison to published numerical results. It is then used to investigate beach hydraulics at seawater concentration (about 30 g l -1) in the context of nutrients delivery for bioremediation of oil spills on beaches. Numerical simulations that we conducted in a rectangular section of a hypothetical beach revealed that buoyancy in the unsaturated zone is significant in soils that are fine textured, with low anisotropy ratio, and/or exhibiting low physical dispersion. In such situations, application of dissolved nutrients to a contaminated beach in a freshwater solution is superior to their application in a seawater solution. Concentration-engendered viscosity effects were negligible with respect to concentration-engendered density effects for the cases that we considered.

  11. Lack of association between systolic blood pressure and blood viscosity in normotensive healthy subjects.

    PubMed

    Irace, Concetta; Carallo, Claudio; Scavelli, Faustina; Loprete, Antonio; Merante, Valentina; Gnasso, Agostino

    2012-01-01

    A direct relationship between blood pressure and viscosity has frequently been reported, although clear data are not available. To better understand the relationship between these two variables, we evaluated blood viscosity and blood pressure in a group of healthy subjects without cardiovascular risk factors. Healthy subjects were selected from participants in a campaign of prevention of cardiovascular disease (n = 103). They underwent blood sampling for measurement of plasma and blood viscosity, haematocrit, blood lipids and glucose. The quantity and distribution of body fat was assessed by body mass index and waist/hip ratio, respectively. Systolic blood pressure (SBP) correlated significantly with age (r = 0.222) and waist/hip ratio (r = 0.374). Diastolic blood pressure (DBP) correlated significantly with waist/hip ratio (r = 0.216), haematocrit (r = 0.333) and blood viscosity (r = 0.258). Multiple linear regression analyses demonstrated that the only variable significantly associated with SBP was age, while haematocrit was the only variable significantly associated with DBP. Blood viscosity was closely related to waist/hip ratio. These findings show that SBP, in healthy subjects, is not influenced by haematocrit and blood viscosity. In contrast, DBP is related to the values of haematocrit. Among classical cardiovascular risk factors, waist/hip ratio is closely related to blood viscosity.

  12. A Clot Model Examination: with Impulsion of Nanoparticles under Influence of Variable Viscosity and Slip Effects

    NASA Astrophysics Data System (ADS)

    Ijaz, S.; Shahzadi, Iqra; Nadeem, S.; Saleem, Anber

    2017-11-01

    In this speculative analysis, our main focused is to address the neurotic condition that occurs due to accumulation of blood components on the wall of the artery that results in blood coagulation. Specifically, to perceive this phenomena clot model is considered. To discuss this analysis mathematical model is formed in the presence of the effective thermal conductivity and variable viscosity of base fluid. Appropriate slip conditions are employed to obtain the close form solutions of temperature and velocity profile. The graphical illustrations have been presented for the assessment of pressure rise, pressure gradient and velocity profile. The effects of several parameters on the flow quantities for theoretical observation are investigated. At the end, the results confirmed that the impulsion of copper and silver nanoparticles as drug agent enlarges the amplitude of the velocity and hence nanoparticles play an important role in engineering and biomedical applications such as drug delivery system.

  13. A novel variable-gravity simulation method: potential for astronaut training.

    PubMed

    Sussingham, J C; Cocks, F H

    1995-11-01

    Zero gravity conditions for astronaut training have traditionally used neutral buoyancy tanks, and with such tanks hypogravity conditions are produced by the use of supplemental weights. This technique does not allow for the influence of water viscosity on any reduced gravity exercise regime. With a water-foam fluid produced by using a microbubble air flow together with surface active agents to prevent bubble agglomeration, it has been found possible to simulate a range of gravity conditions without the need for supplemental weights and additionally with a substantial reduction in the resulting fluid viscosity. This new technique appears to have application in improving the simulation environment for astronaut training under the reduced gravity conditions to be found on the moon or on Mars, and may have terrestrial applications in patient rehabilitation and exercise as well.

  14. Non-steady peristaltic propulsion with exponential variable viscosity: a study of transport through the digestive system.

    PubMed

    Tripathi, Dharmendra; Pandey, S K; Siddiqui, Abdul; Bég, O Anwar

    2014-01-01

    A theoretical study is presented for transient peristaltic flow of an incompressible fluid with variable viscosity in a finite length cylindrical tube as a simulation of transport in physiological vessels and biomimetic peristaltic pumps. The current axisymmetric analysis is qualitatively similar to two-dimensional analysis but exhibits quantitative variations. The current analysis is motivated towards further elucidating the physiological migration of gastric suspensions (food bolus) in the human digestive system. It also applies to variable viscosity industrial fluid (waste) peristaltic pumping systems. First, an axisymmetric model is analysed in the limit of large wavelength ([Formula: see text]) and low Reynolds number ([Formula: see text]) for axial velocity, radial velocity, pressure, hydromechanical efficiency and stream function in terms of radial vibration of the wall ([Formula: see text]), amplitude of the wave ([Formula: see text]), averaged flow rate ([Formula: see text]) and variable viscosity ([Formula: see text]). Subsequently, the peristaltic flow of a fluid with an exponential viscosity model is examined, which is based on the analytical solutions for pressure, wall shear stress, hydromechanical efficiency and streamline patterns in the finite length tube. The results are found to correlate well with earlier studies using a constant viscosity formulation. This study reveals some important features in the flow characteristics including the observation that pressure as well as both number and size of lower trapped bolus increases. Furthermore, the study indicates that hydromechanical efficiency reduces with increasing magnitude of viscosity parameter.

  15. An exploration of viscosity models in the realm of kinetic theory of liquids originated fluids

    NASA Astrophysics Data System (ADS)

    Hussain, Azad; Ghafoor, Saadia; Malik, M. Y.; Jamal, Sarmad

    The preeminent perspective of this article is to study flow of an Eyring Powell fluid model past a penetrable plate. To find the effects of variable viscosity on fluid model, continuity, momentum and energy equations are elaborated. Here, viscosity is taken as function of temperature. To understand the phenomenon, Reynold and Vogel models of variable viscosity are incorporated. The highly non-linear partial differential equations are transfigured into ordinary differential equations with the help of suitable similarity transformations. The numerical solution of the problem is presented. Graphs are plotted to visualize the behavior of pertinent parameters on the velocity and temperature profiles.

  16. Addition of simultaneous heat and solute transport and variable fluid viscosity to SEAWAT

    USGS Publications Warehouse

    Thorne, D.; Langevin, C.D.; Sukop, M.C.

    2006-01-01

    SEAWAT is a finite-difference computer code designed to simulate coupled variable-density ground water flow and solute transport. This paper describes a new version of SEAWAT that adds the ability to simultaneously model energy and solute transport. This is necessary for simulating the transport of heat and salinity in coastal aquifers for example. This work extends the equation of state for fluid density to vary as a function of temperature and/or solute concentration. The program has also been modified to represent the effects of variable fluid viscosity as a function of temperature and/or concentration. The viscosity mechanism is verified against an analytical solution, and a test of temperature-dependent viscosity is provided. Finally, the classic Henry-Hilleke problem is solved with the new code. ?? 2006 Elsevier Ltd. All rights reserved.

  17. Gravitational collapse of a turbulent vortex with application to star formation

    NASA Technical Reports Server (NTRS)

    Deissler, R. G.

    1976-01-01

    The gravitational collapse of a rotating cloud or vortex is analyzed by expanding the dependent variables in the equations of motion in two-dimensional Taylor series in the space variables. It is shown that the gravitational and rotational terms in the equations are of first order in the space variables, the pressure-gradient terms are of second order, and the turbulent-viscosity term is of third order. The presence of turbulent viscosity ensures that the initial rotation is solid-body-like near the origin. The effect of pressure on the collapse process is found to depend on the shape of the initial density disturbance at the origin. Dimensionless collapse times, as well as the evolution of density and velocity, are calculated by solving numerically the system of nonlinear ordinary differential equations resulting from the series expansions. The axial flow is always inward and allows collapse to occur (axially) even when the rotation is large. An approximate solution of the governing partial differential equations is also given in order to study the spatial distributions of the density and velocity.

  18. Gravitational collapse of a turbulent vortex with application to star formation

    NASA Technical Reports Server (NTRS)

    Deissler, R. G.

    1975-01-01

    The gravitational collapse of a rotating cloud or vortex is analyzed by expanding the dependent variables in the equations of motion in two-dimensional Taylor series in the space variables. It is shown that the gravitation and rotation terms in the equations are of first order in the space variables, the pressure gradient terms are of second order, and the turbulent viscosity term is of third order. The presence of a turbulent viscosity insures that the initial rotation is solid-body-like near the origin. The effect of pressure on the collapse process is found to depend on the shape of the intial density disturbance at the origin. Dimensionless collapse times, as well as the evolution of density and velocity, are calculated by solving numerically the system of nonlinear ordinary differential equations resulting from the series expansions. The axial inflow plays an important role and allows collapse to occur even when the rotation is large. An approximate solution of the governing partial differential equations is also given, in order to study the spacial distributions of the density and velocity.

  19. Relaxation of an unsteady turbulent boundary layer on a flat plate in an expansion tube

    NASA Technical Reports Server (NTRS)

    Gurta, R. N.; Trimpi, R. L.

    1974-01-01

    An analysis is presented for the relaxation of a turbulent boundary layer on a semi-infinite flat plate after passage of a shock wave and a trailing driver gas-driven gas interface. The problem has special application to expansion-tube flows. The flow-governing equations have been transformed into the Crocco variables, and a time-similar solution is presented in terms of the dimensionless distance-time variable alpha and the dimensionless velocity variable beta. An eddy-viscosity model, similar to that of time-steady boundary layers, is applied to the inner and outer regions of the boundary layer. A turbulent Prandtl number equal to the molecular Prandtl number is used to relate the turbulent heat flux to the eddy viscosity. The numerical results, obtained by using the Gauss-Seidel line-relaxation method, indicate that a fully turbulent boundary layer relaxes faster to the final steady-state values of heat transfer and skin friction than a laminar boundary layer. The results also give a fairly good estimate of the local skin friction and heat transfer for near steady-flow conditions.

  20. Gravitational collapse of a turbulent vortex with application to star formation

    NASA Technical Reports Server (NTRS)

    Deissler, R. G.

    1975-01-01

    The gravitational collapse of a rotating cloud or vortex is analyzed by expanding the dependent variables in the equations of motion in two-dimensional Taylor series in the space variables. It is shown that the gravitation and rotation terms in the equations are of first order in the space variables, the pressure gradient terms are of second order, and the turbulent viscosity term is of third order. The presence of a turbulent viscosity insures that the initial rotation is solid-body-like near the origin. The effect of pressure on the collapse process is found to depend on the shape of the initial density disturbance at the origin. Dimensionless collapse times, as well as the evolution of density and velocity, are calculated by solving numerically the system of nonlinear ordinary differential equations resulting from the series expansions. The axial inflow plays an important role and allows collapse to occur even when the rotation is large. An approximate solution of the governing partial differential equations is also given; the equations are used to study the spacial distributions of the density and velocity.

  1. A one-dimensional model for gas-solid heat transfer in pneumatic conveying

    NASA Astrophysics Data System (ADS)

    Smajstrla, Kody Wayne

    A one-dimensional ODE model reduced from a two-fluid model of a higher dimensional order is developed to study dilute, two-phase (air and solid particles) flows with heat transfer in a horizontal pneumatic conveying pipe. Instead of using constant air properties (e.g., density, viscosity, thermal conductivity) evaluated at the initial flow temperature and pressure, this model uses an iteration approach to couple the air properties with flow pressure and temperature. Multiple studies comparing the use of constant or variable air density, viscosity, and thermal conductivity are conducted to study the impact of the changing properties to system performance. The results show that the fully constant property calculation will overestimate the results of the fully variable calculation by 11.4%, while the constant density with variable viscosity and thermal conductivity calculation resulted in an 8.7% overestimation, the constant viscosity with variable density and thermal conductivity overestimated by 2.7%, and the constant thermal conductivity with variable density and viscosity calculation resulted in a 1.2% underestimation. These results demonstrate that gas properties varying with gas temperature can have a significant impact on a conveying system and that the varying density accounts for the majority of that impact. The accuracy of the model is also validated by comparing the simulation results to the experimental values found in the literature.

  2. Nonlinear Gravitational and Radiation Aspects in Nanoliquid with Exponential Space Dependent Heat Source and Variable Viscosity

    NASA Astrophysics Data System (ADS)

    Gireesha, B. J.; Kumar, P. B. Sampath; Mahanthesh, B.; Shehzad, S. A.; Abbasi, F. M.

    2018-05-01

    The nonlinear convective flow of kerosene-Alumina nanoliquid subjected to an exponential space dependent heat source and temperature dependent viscosity is investigated here. This study is focuses on augmentation of heat transport rate in liquid propellant rocket engine. The kerosene-Alumina nanoliquid is considered as the regenerative coolant. Aspects of radiation and viscous dissipation are also covered. Relevant nonlinear system is solved numerically via RK based shooting scheme. Diverse flow fields are computed and examined for distinct governing variables. We figured out that the nanoliquid's temperature increased due to space dependent heat source and radiation aspects. The heat transfer rate is higher in case of changeable viscosity than constant viscosity.

  3. Nonlinear Gravitational and Radiation Aspects in Nanoliquid with Exponential Space Dependent Heat Source and Variable Viscosity

    NASA Astrophysics Data System (ADS)

    Gireesha, B. J.; Kumar, P. B. Sampath; Mahanthesh, B.; Shehzad, S. A.; Abbasi, F. M.

    2018-02-01

    The nonlinear convective flow of kerosene-Alumina nanoliquid subjected to an exponential space dependent heat source and temperature dependent viscosity is investigated here. This study is focuses on augmentation of heat transport rate in liquid propellant rocket engine. The kerosene-Alumina nanoliquid is considered as the regenerative coolant. Aspects of radiation and viscous dissipation are also covered. Relevant nonlinear system is solved numerically via RK based shooting scheme. Diverse flow fields are computed and examined for distinct governing variables. We figured out that the nanoliquid's temperature increased due to space dependent heat source and radiation aspects. The heat transfer rate is higher in case of changeable viscosity than constant viscosity.

  4. Viscosity Analysis of Dual Variable Domain Immunoglobulin Protein Solutions: Role of Size, Electroviscous Effect and Protein-Protein Interactions.

    PubMed

    Raut, Ashlesha S; Kalonia, Devendra S

    2016-01-01

    Increased solution viscosity results in difficulties in manufacturing and delivery of therapeutic protein formulations, increasing both the time and production costs, and leading to patient inconvenience. The solution viscosity is affected by the molecular properties of both the solute and the solvent. The purpose of this work was to investigate the effect of size, charge and protein-protein interactions on the viscosity of Dual Variable Domain Immunoglobulin (DVD-Ig(TM)) protein solutions. The effect of size of the protein molecule on solution viscosity was investigated by measuring intrinsic viscosity and excluded volume calculations for monoclonal antibody (mAb) and DVD-Ig(TM) protein solutions. The role of the electrostatic charge resulting in electroviscous effects for DVD-Ig(TM) protein was assessed by measuring zeta potential. Light scattering measurements were performed to detect protein-protein interactions affecting solution viscosity. DVD-Ig(TM) protein exhibited significantly higher viscosity compared to mAb. Intrinsic viscosity and excluded volume calculations indicated that the size of the molecule affects viscosity significantly at higher concentrations, while the effect was minimal at intermediate concentrations. Electroviscous contribution to the viscosity of DVD-Ig(TM) protein varied depending on the presence or absence of ions in the solution. In buffered solutions, negative k D and B 2 values indicated the presence of attractive interactions which resulted in high viscosity for DVD-Ig(TM) protein at certain pH and ionic strength conditions. Results show that more than one factor contributes to the increased viscosity of DVD-Ig(TM) protein and interplay of these factors modulates the overall viscosity behavior of the solution, especially at higher concentrations.

  5. Variable-viscosity thermal hemodynamic slip flow conveying nanoparticles through a permeable-walled composite stenosed artery

    NASA Astrophysics Data System (ADS)

    Akbar, Noreen Sher; Tripathi, Dharmendra; Bég, O. Anwar

    2017-07-01

    This paper presents a mathematical model for simulating viscous, incompressible, steady-state blood flow containing copper nanoparticles and coupled heat transfer through a composite stenosed artery with permeable walls. Wall slip hydrodynamic and also thermal buoyancy effects are included. The artery is simulated as an isotropic elastic tube, following Joshi et al. (2009), and a variable viscosity formulation is employed for the flowing blood. The equations governing the transport phenomena are non-dimensionalized and the resulting boundary value problem is solved analytically in the steady state subject to physically appropriate boundary conditions. Numerical computations are conducted to quantify the effects of relevant hemodynamic, thermophysical and nanoscale parameters emerging in the model on velocity and temperature profiles, wall shear stress, impedance resistance and also streamline distributions. The model may be applicable to drug fate transport modeling with nanoparticle agents and also to the optimized design of nanoscale medical devices for diagnosing stenotic diseases in circulatory systems.

  6. Surface topography due to convection in a variable viscosity fluid - Application to short wavelength gravity anomalies in the central Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Lin, J.; Parmentier, E. M.

    1985-01-01

    Finite difference calculations of thermal convection in a fluid layer with a viscosity exponentially decreasing with temperature are performed in the context of examining the topography and gravity anomalies due to mantle convection. The surface topography and gravity anomalies are shown to be positive over regions of ascending flow and negative over regions of descending flow; at large Rayleigh numbers the amplitude of surface topography is inferred to depend on Rayleigh number to the power of 7/9. Compositional stratifications of the mantle is proposed as a mechanism for confining small-scale convection to a thin layer. A comparative analysis of the results with other available models is included.

  7. Optical fiber-based fluorescent viscosity sensor

    NASA Astrophysics Data System (ADS)

    Haidekker, Mark A.; Akers, Walter J.; Fischer, Derek; Theodorakis, Emmanuel A.

    2006-09-01

    Molecular rotors are a unique group of viscosity-sensitive fluorescent probes. Several recent studies have shown their applicability as nonmechanical fluid viscosity sensors, particularly in biofluids containing proteins. To date, molecular rotors have had to be dissolved in the fluid for the measurement to be taken. We now show that molecular rotors may be covalently bound to a fiber-optic tip without loss of viscosity sensitivity. The optical fiber itself may be used as a light guide for emission light (external illumination of the tip) as well as for both emission and excitation light. Covalently bound molecular rotors exhibit a viscosity-dependent intensity increase similar to molecular rotors in solution. An optical fiber-based fluorescent viscosity sensor may be used in real-time measurement applications ranging from biomedical applications to the food industry.

  8. Optical fiber-based fluorescent viscosity sensor.

    PubMed

    Haidekker, Mark A; Akers, Walter J; Fischer, Derek; Theodorakis, Emmanuel A

    2006-09-01

    Molecular rotors are a unique group of viscosity-sensitive fluorescent probes. Several recent studies have shown their applicability as nonmechanical fluid viscosity sensors, particularly in biofluids containing proteins. To date, molecular rotors have had to be dissolved in the fluid for the measurement to be taken. We now show that molecular rotors may be covalently bound to a fiber-optic tip without loss of viscosity sensitivity. The optical fiber itself may be used as a light guide for emission light (external illumination of the tip) as well as for both emission and excitation light. Covalently bound molecular rotors exhibit a viscosity-dependent intensity increase similar to molecular rotors in solution. An optical fiber-based fluorescent viscosity sensor may be used in real-time measurement applications ranging from biomedical applications to the food industry.

  9. Eddy Viscosity for Variable Density Coflowing Streams,

    DTIC Science & Technology

    EDDY CURRENTS, *JET MIXING FLOW, *VISCOSITY, *AIR FLOW, MATHEMATICAL MODELS, INCOMPRESSIBLE FLOW, AXISYMMETRIC FLOW, MATHEMATICAL PREDICTION, THRUST AUGMENTATION , EJECTORS , COMPUTER PROGRAMMING, SECONDARY FLOW, DENSITY, MODIFICATION.

  10. Superparamagnetic nanoparticle-based viscosity test

    NASA Astrophysics Data System (ADS)

    Wu, Kai; Liu, Jinming; Wang, Yi; Ye, Clark; Feng, Yinglong; Wang, Jian-Ping

    2015-08-01

    Hyperviscosity syndrome is triggered by high blood viscosity in the human body. This syndrome can result in retinopathy, vertigo, coma, and other unanticipated complications. Serum viscosity is one of the important factors affecting whole blood viscosity, which is regarded as an indicator of general health. In this letter, we propose and demonstrate a Brownian relaxation-based mixing frequency method to test human serum viscosity. This method uses excitatory and detection coils and Brownian relaxation-dominated superparamagnetic nanoparticles, which are sensitive to variables of the liquid environment such as viscosity and temperature. We collect the harmonic signals produced by magnetic nanoparticles and estimate the viscosity of unknown solutions by comparison to the calibration curves. An in vitro human serum viscosity test is performed in less than 1.5 min.

  11. Effect of oil liquid viscosity on hysteresis in double-liquid variable-focus lens based on electrowetting

    NASA Astrophysics Data System (ADS)

    Zeng, Zhi; Peng, Runling; He, Mei

    2017-02-01

    The double-liquid variable-focus lens based on the electrowetting has the characteristics of small size, light weight, fast response, and low price and so on. In this paper, double-liquid variable-focus lens's Principle and structure are introduced. The reasons for the existence and improvement of contact angle hysteresis are given according improved Young's equation. At last, 1-Bromododecane with silicone oil are mixed to get oil liquid with different viscosity and proportion liquid as insulating liquid. External voltages are applied to these three liquid lens and focal lengths of the lenses versus applied voltage are investigated. Experiments show that, the decreasing of oil liquid viscosity can reduce focal length hysteresis.

  12. Inferring crustal viscosity from seismic velocity: Application to the lower crust of Southern California

    NASA Astrophysics Data System (ADS)

    Shinevar, William J.; Behn, Mark D.; Hirth, Greg; Jagoutz, Oliver

    2018-07-01

    We investigate the role of composition on the viscosity of the lower crust through a joint inversion of seismic P-wave (Vp) and S-wave (Vs) velocities. We determine the efficacy of using seismic velocity to constrain viscosity, extending previous research demonstrating robust relationships between seismic velocity and crustal composition, as well as crustal composition and viscosity. First, we calculate equilibrium mineral assemblages and seismic velocities for a global compilation of crustal rocks at relevant pressures and temperatures. Second, we use a rheological mixing model that incorporates single-phase flow laws for major crust-forming minerals to calculate aggregate viscosity from predicted mineral assemblages. We find a robust correlation between crustal viscosity and Vp together with Vs in the α-quartz regime. Using seismic data, geodetic surface strain rates, and heat flow measurements from Southern California, our method predicts that lower crustal viscosity varies regionally by four orders of magnitude, and lower crustal stress varies by three orders of magnitude at 25 km depth. At least half of the total variability in stress can be attributed to composition, implying that regional lithology has a significant effect on lower crustal geodynamics. Finally, we use our method to predict the depth of the brittle-ductile transition and compare this to regional variations of the seismic-aseismic transition. The variations in the seismic-aseismic transition are not explained by the variations in our model rheology inferred from the geophysical observations. Thus, we conclude that fabric development, in conjunction with compositional variations (i.e., quartz and mica content), is required to explain the regional changes in the seismic-aseismic transition.

  13. Numerical simulation of hot-melt extrusion processes for amorphous solid dispersions using model-based melt viscosity.

    PubMed

    Bochmann, Esther S; Steffens, Kristina E; Gryczke, Andreas; Wagner, Karl G

    2018-03-01

    Simulation of HME processes is a valuable tool for increased process understanding and ease of scale-up. However, the experimental determination of all required input parameters is tedious, namely the melt rheology of the amorphous solid dispersion (ASD) in question. Hence, a procedure to simplify the application of hot-melt extrusion (HME) simulation for forming amorphous solid dispersions (ASD) is presented. The commercial 1D simulation software Ludovic ® was used to conduct (i) simulations using a full experimental data set of all input variables including melt rheology and (ii) simulations using model-based melt viscosity data based on the ASDs glass transition and the physical properties of polymeric matrix only. Both types of HME computation were further compared to experimental HME results. Variation in physical properties (e.g. heat capacity, density) and several process characteristics of HME (residence time distribution, energy consumption) among the simulations and experiments were evaluated. The model-based melt viscosity was calculated by using the glass transition temperature (T g ) of the investigated blend and the melt viscosity of the polymeric matrix by means of a T g -viscosity correlation. The results of measured melt viscosity and model-based melt viscosity were similar with only few exceptions, leading to similar HME simulation outcomes. At the end, the experimental effort prior to HME simulation could be minimized and the procedure enables a good starting point for rational development of ASDs by means of HME. As model excipients, Vinylpyrrolidone-vinyl acetate copolymer (COP) in combination with various APIs (carbamazepine, dipyridamole, indomethacin, and ibuprofen) or polyethylene glycol (PEG 1500) as plasticizer were used to form the ASDs. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Application of a laser trap as a viscometer

    NASA Astrophysics Data System (ADS)

    Cooper, James; Solomon, Rance; Elrod, Samuel; Barnes, Taylor; Crawford, Cameron; Farone, Anthony; Farone, Mary; Erenso, Daniel

    2013-06-01

    A laser tweezer (LT) along with advanced imaging techniques has been widely applied to manipulate and study living as well as nonliving microscopic objects. In this study we present yet another novel application of LTs for a precise measurement of the viscosities of fluids in a micro-volume flow. We have demonstrated this novel application by measuring the viscosity of a fetal bovine serum (FBS) using a LT constructed from a single intensity gradient laser trap. By calibrating the LT using dielectric silica micro-beads in a fluid with a known viscosity, specifically water, and by suspending same size of silica beads in the FBS and trapping with the same trap, we have determined the viscosity of the FBS at different temperatures. We have used the relationship between the trapping and Stoke's drag force for a constant drag speed to determine the viscosity. We have also analyzed the viscosities determined in comparison with corresponding viscosities measured using an Ostwald viscometer.

  15. Saliva viscosity as a potential risk factor for oral malodor.

    PubMed

    Ueno, Masayuki; Takeuchi, Susumu; Takehara, Sachiko; Kawaguchi, Yoko

    2014-11-01

    The objective of this study was to assess whether saliva viscosity, measured by a viscometer, was a predictor of oral malodor. The subjects were 617 patients who visited an oral malodor clinic. The organoleptic test (OT) was used for diagnosis of oral malodor. An oral examination assessed the numbers of teeth present and decayed teeth as well as the presence or absence of dentures. Further, periodontal pocket depths (PD), gingival bleeding, dental plaque and tongue coating were investigated. Unstimulated saliva were collected for 5 min. Saliva viscosity was measured with a viscometer. Logistic regression analysis with oral malodor status by OT as a dependent variable was performed. Possible confounders including age, gender, number of teeth present, number of decayed teeth, number of teeth with PD ≥ 4 mm, number of teeth with bleeding on probing, presence or absence of dentures, plaque index, area of tongue coating, saliva flow rate, saliva pH and saliva viscosity were used as independent variables. Saliva viscosity (p = 0.047) along with the number of teeth with PD ≥4 mm (p = 0.001), plaque index (p = 0.037) and area of tongue coating (p < 0.001) were significant variables for oral malodor. Subjects with a higher number of teeth with PD ≥ 4 mm (OR = 1.32), plaque index (OR = 2.13), area of tongue coating (OR = 3.17) and saliva viscosity (OR = 1.10) were more likely to have oral malodor compared to those with lower values. The results suggested that high saliva viscosity could be a potential risk factor for oral malodor.

  16. Viscosity of dilute suspensions of rigid bead arrays at low shear: accounting for the variation in hydrodynamic stress over the bead surfaces.

    PubMed

    Allison, Stuart A; Pei, Hongxia

    2009-06-11

    In this work, we examine the viscosity of a dilute suspension of irregularly shaped particles at low shear. A particle is modeled as a rigid array of nonoverlapping beads of variable size and geometry. Starting from a boundary element formalism, approximate account is taken of the variation in hydrodynamic stress over the surface of the individual beads. For a touching dimer of two identical beads, the predicted viscosity is lower than the exact value by 5.2%. The methodology is then applied to several other model systems including tetramers of variable conformation and linear strings of touching beads. An analysis is also carried out of the viscosity and translational diffusion of several dilute amino acids and diglycine in water. It is concluded that continuum hydrodynamic modeling with stick boundary conditions is unable to account for the experimental viscosity and diffusion data simultaneously. A model intermediate between "stick" and "slip" could possibly reconcile theory and experiment.

  17. Vertical structure of mean cross-shore currents across a barred surf zone

    USGS Publications Warehouse

    Haines, John W.; Sallenger, Asbury H.

    1994-01-01

    Mean cross-shore currents observed across a barred surf zone are compared to model predictions. The model is based on a simplified momentum balance with a turbulent boundary layer at the bed. Turbulent exchange is parameterized by an eddy viscosity formulation, with the eddy viscosity Aυ independent of time and the vertical coordinate. Mean currents result from gradients due to wave breaking and shoaling, and the presence of a mean setup of the free surface. Descriptions of the wave field are provided by the wave transformation model of Thornton and Guza [1983]. The wave transformation model adequately reproduces the observed wave heights across the surf zone. The mean current model successfully reproduces the observed cross-shore flows. Both observations and predictions show predominantly offshore flow with onshore flow restricted to a relatively thin surface layer. Successful application of the mean flow model requires an eddy viscosity which varies horizontally across the surf zone. Attempts are made to parameterize this variation with some success. The data does not discriminate between alternative parameterizations proposed. The overall variability in eddy viscosity suggested by the model fitting should be resolvable by field measurements of the turbulent stresses. Consistent shortcomings of the parameterizations, and the overall modeling effort, suggest avenues for further development and data collection.

  18. Peristaltic transport of a fractional Burgers' fluid with variable viscosity through an inclined tube

    NASA Astrophysics Data System (ADS)

    Rachid, Hassan

    2015-12-01

    In the present study,we investigate the unsteady peristaltic transport of a viscoelastic fluid with fractional Burgers' model in an inclined tube. We suppose that the viscosity is variable in the radial direction. This analysis has been carried out under low Reynolds number and long-wavelength approximations. An analytical solution to the problem is obtained using a fractional calculus approach. Figures are plotted to show the effects of angle of inclination, Reynolds number, Froude number, material constants, fractional parameters, parameter of viscosity and amplitude ratio on the pressure gradient, pressure rise, friction force, axial velocity and on the mechanical efficiency.

  19. Study the effect of chemical reaction and variable viscosity on free convection MHD radiating flow over an inclined plate bounded by porous medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, M., E-mail: ali.mehidi93@gmail.com; Department of Mathematics, Chittagong University of Engineering and Technology, Chittagong-4349; Alim, M. A., E-mail: maalim@math.buet.ac.bd

    An analysis is performed to study the free convection heat and mass transfer flow of an electrically conducting incompressible viscous fluid about a semi-infinite inclined porous plate under the action of radiation, chemical reaction in presence of magnetic field with variable viscosity. The dimensionless governing equations are steady, two-dimensional coupled and non-linear ordinary differential equation. Nachtsgeim-Swigert shooting iteration technique along with Runge-Kutta integration scheme is used to solve the non-dimensional governing equations. The effects of magnetic parameter, viscosity parameter and chemical reaction parameter on velocity, temperature and concentration profiles are discussed numerically and shown graphically. Therefore, the results of velocitymore » profile decreases for increasing values of magnetic parameter and viscosity parameter but there is no effect for reaction parameter. The temperature profile decreases in presence of magnetic parameter, viscosity parameter and Prandtl number but increases for radiation parameter. Also, concentration profile decreases for the increasing values of magnetic parameter, viscosity parameter and reaction parameter. All numerical calculations are done with respect to salt water and fixed angle of inclination of the plate.« less

  20. Nanostructures study of CNT nanofluids transport with temperature-dependent variable viscosity in a muscular tube

    NASA Astrophysics Data System (ADS)

    Akbar, Noreen Sher; Abid, Syed Ali; Tripathi, Dharmendra; Mir, Nazir Ahmed

    2017-03-01

    The transport of single-wall carbon nanotube (CNT) nanofluids with temperature-dependent variable viscosity is analyzed by peristaltically driven flow. The main flow problem has been modeled using cylindrical coordinates and flow equations are simplified to ordinary differential equations using long wavelength and low Reynolds' number approximation. Analytical solutions have been obtained for axial velocity, pressure gradient and temperature. Results acquired are discussed graphically for better understanding. It is observed that with an increment in the Grashof number the velocity of the governing fluids starts to decrease significantly and the pressure gradient is higher for pure water as compared to single-walled carbon nanotubes due to low density. As the specific heat is very high for pure water as compared to the multi-wall carbon nanotubes, it raises temperature of the muscles, in the case of pure water, as compared to the multi-walled carbon nanotubes. Furthermore, it is noticed that the trapped bolus starts decreasing in size as the buoyancy forces are dominant as compared to viscous forces. This model may be applicable in biomedical engineering and nanotechnology to design the biomedical devices.

  1. Study of heat transfer on physiological driven movement with CNT nanofluids and variable viscosity.

    PubMed

    Akbar, Noreen Sher; Kazmi, Naeem; Tripathi, Dharmendra; Mir, Nazir Ahmed

    2016-11-01

    With ongoing interest in CNT nanofluids and materials in biotechnology, energy and environment, microelectronics, composite materials etc., the current investigation is carried out to analyze the effects of variable viscosity and thermal conductivity of CNT nanofluids flow driven by cilia induced movement through a circular cylindrical tube. Metachronal wave is generated by the beating of cilia and mathematically modeled as elliptical wave propagation by Blake (1971). The problem is formulated in the form of nonlinear partial differential equations, which are simplified by using the dimensional analysis to avoid the complicacy of dimensional homogeneity. Lubrication theory is employed to linearize the governing equations and it is also physically appropriate for cilia movement. Analytical solutions for velocity, temperature and pressure gradient and stream function are obtained. The analytical results are numerically simulated by using the Mathematica Software and plotted the graphs for velocity profile, temperature profile, pressure gradient and stream lines for better discussion and visualization. This model is applicable in physiological transport phenomena to explore the nanotechnology in engineering the artificial cilia and ciliated tube/pipe. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Application of SH surface acoustic waves for measuring the viscosity of liquids in function of pressure and temperature.

    PubMed

    Kiełczyński, P; Szalewski, M; Balcerzak, A; Rostocki, A J; Tefelski, D B

    2011-12-01

    Viscosity measurements were carried out on triolein at pressures from atmospheric up to 650 MPa and in the temperature range from 10°C to 40°C using ultrasonic measuring setup. Bleustein-Gulyaev SH surface acoustic waves waveguides were used as viscosity sensors. Additionally, pressure changes occurring during phase transition have been measured over the same temperature range. Application of ultrasonic SH surface acoustic waves in the liquid viscosity measurements at high pressure has many advantages. It enables viscosity measurement during phase transitions and in the high-pressure range where the classical viscosity measurement methods cannot operate. Measurements of phase transition kinetics and viscosity of liquids at high pressures and various temperatures (isotherms) is a novelty. The knowledge of changes in viscosity in function of pressure and temperature can help to obtain a deeper insight into thermodynamic properties of liquids. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Effect of bolus volume and viscosity on pharyngeal automated impedance manometry variables derived for broad Dysphagia patients.

    PubMed

    Omari, Taher I; Dejaeger, Eddy; Tack, Jan; Van Beckevoort, Dirk; Rommel, Nathalie

    2013-06-01

    Automated impedance manometry (AIM) analysis measures swallow variables defining bolus timing, pressure, contractile vigour, and bolus presence, which are combined to derive a swallow risk index (SRI) correlating with aspiration. In a heterogeneous cohort of dysphagia patients, we assessed the impact of bolus volume and viscosity on AIM variables. We studied 40 patients (average age = 46 years). Swallowing of boluses was recorded with manometry, impedance, and videofluoroscopy. AIMplot software was used to derive functional variables: peak pressure (PeakP), pressure at nadir impedance (PNadImp), time from nadir impedance to peak pressure (TNadImp-PeakP), the interval of impedance drop in the distal pharynx (flow interval, FI), upper oesophageal sphincter (UES) relaxation interval (UES RI), nadir UES pressure (Nad UESP), UES intrabolus pressure (UES IBP), and UES resistance. The SRI was derived using the formula SRI = (FI * PNadImp)/(PeakP * (TNadImp-PeakP + 1)) * 100. A total of 173 liquid, 44 semisolid, and 33 solid boluses were analysed. The SRI was elevated in relation to aspiration. PeakP increased with volume. SRI was not significantly altered by bolus volume. PNadImp, UES IBP, and UES resistance increased with viscosity. SRI was lower with increased viscosity. In patients with dysphagia, the SRI is elevated in relation to aspiration, reduced by bolus viscosity, and not affected by bolus volume. These data provide evidence that pharyngeal AIM analysis may have clinical utility for assessing deglutitive aspiration risk to liquid boluses.

  4. Rheology of composite solid propellants during motor casting

    NASA Technical Reports Server (NTRS)

    Klager, K.; Rogers, C. J.; Smith, P. L.

    1978-01-01

    Results of casting studies are reviewed so as to define the viscosity criteria insuring the fabrication of defect-free grains. The rheology of uncured propellants is analyzed showing that a realistic assessment of a propellant's flow properties must include measurement of viscosity as a function of shear stress and time after curing agent. Methods for measuring propellant viscosity are discussed, with particular attention given to the Haake-Rotovisko rotational viscometer. The effects of propellant compositional and processing variables on apparent viscosity are examined, as are results relating rheological behavior to grain defect formation during casting.

  5. Heat and mass transfer of Williamson nanofluid flow yield by an inclined Lorentz force over a nonlinear stretching sheet

    NASA Astrophysics Data System (ADS)

    Khan, Mair; Malik, M. Y.; Salahuddin, T.; Hussian, Arif.

    2018-03-01

    The present analysis is devoted to explore the computational solution of the problem addressing the variable viscosity and inclined Lorentz force effects on Williamson nanofluid over a stretching sheet. Variable viscosity is assumed to vary as a linear function of temperature. The basic mathematical modelled problem i.e. system of PDE's is converted nonlinear into ODE's via applying suitable transformations. Computational solutions of the problem is also achieved via efficient numerical technique shooting. Characteristics of controlling parameters i.e. stretching index, inclined angle, Hartmann number, Weissenberg number, variable viscosity parameter, mixed convention parameter, Brownian motion parameter, Prandtl number, Lewis number, thermophoresis parameter and chemical reactive species on concentration, temperature and velocity gradient. Additionally, friction factor coefficient, Nusselt number and Sherwood number are describe with the help of graphics as well as tables verses flow controlling parameters.

  6. A study on the dependence of nuclear viscosity on temperature

    NASA Astrophysics Data System (ADS)

    Vardaci, E.; Di Nitto, A.; Nadtochy, P. N.; La Rana, G.; Cinausero, M.; Prete, G.; Gelli, N.; Ashaduzzaman, M.; Davide, F.; Pulcini, A.; Quero, D.; Kozulin, E. M.; Knyazheva, G. N.; Itkis, I. M.

    2018-05-01

    Nuclear viscosity is an irreplaceable ingredient of nuclear fission collective dynamical models. It drives the exchange of energy between the collective variables and the thermal bath of single particle degrees of freedom. Its dependence on the shape and temperature is a matter of controversy. By using systems of intermediate fissility we have demonstrated in a recent study that the viscosity parameters is larger for compact shapes, and decreases for larger deformations of the fissioning system, at variance with the conclusions of the statistical model modified to include empirically viscosity and time scales. In this contribution we propose an experimental scenario to highlight the possible dependence of the viscosity from the temperature.

  7. How Doth the Little Crocodilian: Analyzing the Influence of Environmental Viscosity on Feeding Performance of Juvenile Alligator mississippiensis

    PubMed Central

    Kerfoot, James R.; Easter, Emily; Elsey, Ruth M.

    2016-01-01

    Wetland habitats are used as nursery sites for hatchling and juvenile alligators (Alligator mississippiensis), where they utilize prey from aquatic and terrestrial settings. However, little is known about how viscosity of the medium influences feeding performance. We hypothesized that timing and linear excursion feeding kinematic variables would be different for individuals feeding on prey above the water compared with the same individuals feeding underwater. Individuals were fed immobile fish prey and feeding events were recorded using a high speed video camera. Feeding performance was summarized by analyzing three feeding kinematic variables (maximum gape, maximum gape velocity, duration of feeding bout) and success of strike. Results of a series of paired t-tests indicated no significant difference in kinematic variables between feeding events above water compared with underwater. Similarity in feeding performance could indicate that prey-capture is not altered by environmental viscosity or that feeding behavior can mitigate its influence. Behavioral differences were observed during feeding events with alligators approaching underwater prey having their mouths partially opened versus fully closed when feeding above water. This behavior could be an indication of a strategy used to overcome water viscosity. PMID:27706023

  8. Exploring the Use of Ionic Liquid Mixtures to Enhance the Performance of Dicationic Ionic Liquids

    DOE PAGES

    Lall-Ramnarine, Sharon I.; Suarez, Sophia N.; Fernandez, Eddie D.; ...

    2017-05-06

    Dicationic ionic liquids (DILs) of diverse structural architectures (including symmetrical and asymmetrical ammonium, phosphonium and heterodications and the bis(trifluoromethylsulfonyl)amide (NTf 2 -) anion) have been prepared and used as additives to N-methyl-N-ethoxyethylpyrrolidinium (P 1EOE) NTf 2, a relatively high-performing IL in terms of its transport properties (viscosity 53 mPa s). The three-ion, binary IL mixtures were characterized for their thermal and transport properties using differential scanning calorimetry, temperature dependent viscosity, conductivity and Pulsed Gradient Spin Echo (PGSE) NMR. Variable temperature 1H, 19F and 31P self-diffusion coefficients were determined at 25, 60 and 75°C. The order of the diffusion coefficients wasmore » D(P 1EOE +) > D(anion) > D(dication), and the composition of the dication had a strong effect on the degree to which diffusion of all three species is more or less coupled. IL mixtures containing about 30 mol % of the dicationic NTf 2 and 70 mol % of P 1EOE NTf 2 resulted in a significant decrease in glass transition temperatures and viscosities compared to the pure DIL. The mixtures extended the liquid range and potential for practical applications significantly. Finally, the data obtained here provides insight into the future design of dicationic salts tailored to exhibit lower viscosity and higher conductivities.« less

  9. Phenomenological and statistical analyses of turbulence in forced convection with temperature-dependent viscosity under non-Boussinesq condition.

    PubMed

    Yahya, S M; Anwer, S F; Sanghi, S

    2013-10-01

    In this work, Thermal Large Eddy Simulation (TLES) is performed to study the behavior of weakly compressible Newtonian fluids with anisotropic temperature-dependent viscosity in forced convection turbulent flow. A systematic analysis of variable-viscosity effects, isolated from gravity, with relevance to industrial cooling/heating applications is being carried out. A LES of a planar channel flow with significant heat transfer at a low Mach number was performed to study effects of fluid property variation on the near-wall turbulence structure. In this flow configuration the top wall is maintained at a higher temperature (T hot ) than the bottom wall (T cold ). The temperature ratio (R θ = T hot /T cold ) is fixed at 1.01, 2 and 3 to study the effects of property variations at low Mach number. Results indicate that average and turbulent fields undergo significant changes. Compared with isothermal flow with constant viscosity, we observe that turbulence is enhanced in the cold side of the channel, characterized by locally lower viscosity whereas a decrease of turbulent kinetic energy is found at the hot wall. The turbulent structures near the cold wall are very short and densely populated vortices but near the hot wall there seems to be a long streaky structure or large elongated vortices. Spectral study reveals that turbulence is completely suppressed at the hot side of the channel at a large temperature ratio because no inertial zone is obtained (i.e. index of Kolmogorov scaling law is zero) from the spectra in these region.

  10. Variable viscosity and density biofilm simulations using an immersed boundary method, part II: Experimental validation and the heterogeneous rheology-IBM

    NASA Astrophysics Data System (ADS)

    Stotsky, Jay A.; Hammond, Jason F.; Pavlovsky, Leonid; Stewart, Elizabeth J.; Younger, John G.; Solomon, Michael J.; Bortz, David M.

    2016-07-01

    The goal of this work is to develop a numerical simulation that accurately captures the biomechanical response of bacterial biofilms and their associated extracellular matrix (ECM). In this, the second of a two-part effort, the primary focus is on formally presenting the heterogeneous rheology Immersed Boundary Method (hrIBM) and validating our model by comparison to experimental results. With this extension of the Immersed Boundary Method (IBM), we use the techniques originally developed in Part I ([19]) to treat biofilms as viscoelastic fluids possessing variable rheological properties anchored to a set of moving locations (i.e., the bacteria locations). In particular, we incorporate spatially continuous variable viscosity and density fields into our model. Although in [14,15], variable viscosity is used in an IBM context to model discrete viscosity changes across interfaces, to our knowledge this work and Part I are the first to apply the IBM to model a continuously variable viscosity field. We validate our modeling approach from Part I by comparing dynamic moduli and compliance moduli computed from our model to data from mechanical characterization experiments on Staphylococcus epidermidis biofilms. The experimental setup is described in [26] in which biofilms are grown and tested in a parallel plate rheometer. In order to initialize the positions of bacteria in the biofilm, experimentally obtained three dimensional coordinate data was used. One of the major conclusions of this effort is that treating the spring-like connections between bacteria as Maxwell or Zener elements provides good agreement with the mechanical characterization data. We also found that initializing the simulations with different coordinate data sets only led to small changes in the mechanical characterization results. Matlab code used to produce results in this paper will be available at https://github.com/MathBioCU/BiofilmSim.

  11. Shear viscosity of the quark-gluon plasma in a weak magnetic field in perturbative QCD: Leading log

    NASA Astrophysics Data System (ADS)

    Li, Shiyong; Yee, Ho-Ung

    2018-03-01

    We compute the shear viscosity of two-flavor QCD plasma in an external magnetic field in perturbative QCD at leading log order, assuming that the magnetic field is weak or soft: e B ˜g4log (1 /g )T2. We work in the assumption that the magnetic field is homogeneous and static, and the electrodynamics is nondynamical in a formal limit e →0 while e B is kept fixed. We show that the shear viscosity takes a form η =η ¯(B ¯)T3/(g4log (1 /g )) with a dimensionless function η ¯(B ¯) in terms of a dimensionless variable B ¯=(e B )/(g4log (1 /g )T2). The variable B ¯ corresponds to the relative strength of the effect of cyclotron motions compared to the QCD collisions: B ¯˜lmfp/lcyclo. We provide a full numerical result for the scaled shear viscosity η ¯(B ¯).

  12. Dissipative advective accretion disc solutions with variable adiabatic index around black holes

    NASA Astrophysics Data System (ADS)

    Kumar, Rajiv; Chattopadhyay, Indranil

    2014-10-01

    We investigated accretion on to black holes in presence of viscosity and cooling, by employing an equation of state with variable adiabatic index and multispecies fluid. We obtained the expression of generalized Bernoulli parameter which is a constant of motion for an accretion flow in presence of viscosity and cooling. We obtained all possible transonic solutions for a variety of boundary conditions, viscosity parameters and accretion rates. We identified the solutions with their positions in the parameter space of generalized Bernoulli parameter and the angular momentum on the horizon. We showed that a shocked solution is more luminous than a shock-free one. For particular energies and viscosity parameters, we obtained accretion disc luminosities in the range of 10- 4 - 1.2 times Eddington luminosity, and the radiative efficiency seemed to increase with the mass accretion rate too. We found steady state shock solutions even for high-viscosity parameters, high accretion rates and for wide range of composition of the flow, starting from purely electron-proton to lepton-dominated accretion flow. However, similar to earlier studies of inviscid flow, accretion shock was not obtained for electron-positron pair plasma.

  13. Rational design of viscosity reducing mutants of a monoclonal antibody: Hydrophobic versus electrostatic inter-molecular interactions

    PubMed Central

    Nichols, Pilarin; Li, Li; Kumar, Sandeep; Buck, Patrick M; Singh, Satish K; Goswami, Sumit; Balthazor, Bryan; Conley, Tami R; Sek, David; Allen, Martin J

    2015-01-01

    High viscosity of monoclonal antibody formulations at concentrations ≥100 mg/mL can impede their development as products suitable for subcutaneous delivery. The effects of hydrophobic and electrostatic intermolecular interactions on the solution behavior of MAB 1, which becomes unacceptably viscous at high concentrations, was studied by testing 5 single point mutants. The mutations were designed to reduce viscosity by disrupting either an aggregation prone region (APR), which also participates in 2 hydrophobic surface patches, or a negatively charged surface patch in the variable region. The disruption of an APR that lies at the interface of light and heavy chain variable domains, VH and VL, via L45K mutation destabilized MAB 1 and abolished antigen binding. However, mutation at the preceding residue (V44K), which also lies in the same APR, increased apparent solubility and reduced viscosity of MAB 1 without sacrificing antigen binding or thermal stability. Neutralizing the negatively charged surface patch (E59Y) also increased apparent solubility and reduced viscosity of MAB 1, but charge reversal at the same position (E59K/R) caused destabilization, decreased solubility and led to difficulties in sample manipulation that precluded their viscosity measurements at high concentrations. Both V44K and E59Y mutations showed similar increase in apparent solubility. However, the viscosity profile of E59Y was considerably better than that of the V44K, providing evidence that inter-molecular interactions in MAB 1 are electrostatically driven. In conclusion, neutralizing negatively charged surface patches may be more beneficial toward reducing viscosity of highly concentrated antibody solutions than charge reversal or aggregation prone motif disruption. PMID:25559441

  14. Rational design of viscosity reducing mutants of a monoclonal antibody: hydrophobic versus electrostatic inter-molecular interactions.

    PubMed

    Nichols, Pilarin; Li, Li; Kumar, Sandeep; Buck, Patrick M; Singh, Satish K; Goswami, Sumit; Balthazor, Bryan; Conley, Tami R; Sek, David; Allen, Martin J

    2015-01-01

    High viscosity of monoclonal antibody formulations at concentrations ≥100 mg/mL can impede their development as products suitable for subcutaneous delivery. The effects of hydrophobic and electrostatic intermolecular interactions on the solution behavior of MAB 1, which becomes unacceptably viscous at high concentrations, was studied by testing 5 single point mutants. The mutations were designed to reduce viscosity by disrupting either an aggregation prone region (APR), which also participates in 2 hydrophobic surface patches, or a negatively charged surface patch in the variable region. The disruption of an APR that lies at the interface of light and heavy chain variable domains, VH and VL, via L45K mutation destabilized MAB 1 and abolished antigen binding. However, mutation at the preceding residue (V44K), which also lies in the same APR, increased apparent solubility and reduced viscosity of MAB 1 without sacrificing antigen binding or thermal stability. Neutralizing the negatively charged surface patch (E59Y) also increased apparent solubility and reduced viscosity of MAB 1, but charge reversal at the same position (E59K/R) caused destabilization, decreased solubility and led to difficulties in sample manipulation that precluded their viscosity measurements at high concentrations. Both V44K and E59Y mutations showed similar increase in apparent solubility. However, the viscosity profile of E59Y was considerably better than that of the V44K, providing evidence that inter-molecular interactions in MAB 1 are electrostatically driven. In conclusion, neutralizing negatively charged surface patches may be more beneficial toward reducing viscosity of highly concentrated antibody solutions than charge reversal or aggregation prone motif disruption.

  15. Development of Viscosity Model for Petroleum Industry Applications

    NASA Astrophysics Data System (ADS)

    Motahhari, Hamed reza

    Heavy oil and bitumen are challenging to produce and process due to their very high viscosity, but their viscosity can be reduced either by heating or dilution with a solvent. Given the key role of viscosity, an accurate viscosity model suitable for use with reservoir and process simulators is essential. While there are several viscosity models for natural gases and conventional oils, a compositional model applicable to heavy petroleum and diluents is lacking. The objective of this thesis is to develop a general compositional viscosity model that is applicable to natural gas mixtures, conventional crudes oils, heavy petroleum fluids, and their mixtures with solvents and other crudes. The recently developed Expanded Fluid (EF) viscosity correlation was selected as a suitable compositional viscosity model for petroleum applications. The correlation relates the viscosity of the fluid to its density over a broad range of pressures and temperatures. The other inputs are pressure and the dilute gas viscosity. Each fluid is characterized for the correlation by a set of fluid-specific parameters which are tuned to fit data. First, the applicability of the EF correlation was extended to asymmetric mixtures and liquid mixtures containing dissolved gas components. A new set of mass-fraction based mixing rules was developed to calculate the fluid-specific parameters for mixtures. The EF correlation with the new set of mixing rules predicted the viscosity of over 100 mixtures of hydrocarbon compounds and carbon dioxide with overall average absolute relative deviations (AARD) of less than 10% either with measured densities or densities estimated by Advanced Peng-Robinson equation of state (APR EoS). To improve the viscosity predictions with APR EoS-estimated densities, general correlations were developed for non-zero viscosity binary interaction parameters. The EF correlation was extended to non-hydrocarbon compounds typically encountered in natural gas industry. It was demonstrated that the framework of the correlation is valid for these compounds, except for compounds with strong hydrogen bonding such as water. A temperature dependency was introduced into the correlation for strongly hydrogen bonding compounds. The EF correlation fit the viscosity data of pure non-hydrocarbon compounds with AARDs below 6% and predicted the viscosity of sour and sweet natural gases and aqueous solutions of organic alcohols with overall AARDs less than 9%. An internally consistent estimation method was also developed to calculate the fluid-specific parameters for hydrocarbons when no experimental viscosity data are available. The method correlates the fluid-specific parameters to the molecular weight and specific gravity. The method was evaluated against viscosity data of over 250 pure hydrocarbon compounds and petroleum distillations cuts. The EF correlation predictions were found to be within the same order of magnitude of the measurements with an overall AARD of 31%. A methodology was then proposed to apply the EF viscosity correlation to crude oils characterized as mixtures of the defined components and pseudo-components. The above estimation methods are used to calculate the fluid-specific parameters for pseudo-components. Guidelines are provided for tuning of the correlation to available viscosity data, calculating the dilute gas viscosities, and improving the densities calculated with the Peng-Robinson EoS. The viscosities of over 10 dead and live crude oils and bitumen were predicted within a factor of 3 of the measured values using the measured density of the oils as the input. It was shown that single parameter tuning of the model improved the viscosity prediction to within 30% of the measured values. Finally, the performance of the EF correlation was evaluated for diluted heavy oils and bitumens. The required density and viscosity data were collected for over 20 diluted dead and live bitumen mixtures using an in-house capillary viscometer also equipped with an in-line density-meter at temperatures and pressures up to 175 °C and 10 MPa. The predictions of the correlation were found within the same order of magnitude of the measured values with overall AARDs less than 20%. It was shown that the predictions of the correlation with generalized non-zero interaction parameters for the solvent-oil pairs were improved to overall AARDs less than 10%.

  16. Transport coefficients and heat fluxes in non-equilibrium high-temperature flows with electronic excitation

    NASA Astrophysics Data System (ADS)

    Istomin, V. A.; Kustova, E. V.

    2017-02-01

    The influence of electronic excitation on transport processes in non-equilibrium high-temperature ionized mixture flows is studied. Two five-component mixtures, N 2 / N2 + / N / N + / e - and O 2 / O2 + / O / O + / e - , are considered taking into account the electronic degrees of freedom for atomic species as well as the rotational-vibrational-electronic degrees of freedom for molecular species, both neutral and ionized. Using the modified Chapman-Enskog method, the transport coefficients (thermal conductivity, shear viscosity and bulk viscosity, diffusion and thermal diffusion) are calculated in the temperature range 500-50 000 K. Thermal conductivity and bulk viscosity coefficients are strongly affected by electronic states, especially for neutral atomic species. Shear viscosity, diffusion, and thermal diffusion coefficients are not sensible to electronic excitation if the size of excited states is assumed to be constant. The limits of applicability for the Stokes relation are discussed; at high temperatures, this relation is violated not only for molecular species but also for electronically excited atomic gases. Two test cases of strongly non-equilibrium flows behind plane shock waves corresponding to the spacecraft re-entry (Hermes and Fire II) are simulated numerically. Fluid-dynamic variables and heat fluxes are evaluated in gases with electronic excitation. In inviscid flows without chemical-radiative coupling, the flow-field is weakly affected by electronic states; however, in viscous flows, their influence can be more important, in particular, on the convective heat flux. The contribution of different dissipative processes to the heat transfer is evaluated as well as the effect of reaction rate coefficients. The competition of diffusion and heat conduction processes reduces the overall effect of electronic excitation on the convective heating, especially for the Fire II test case. It is shown that reliable models of chemical reaction rates are of great importance for accurate predictions of the fluid dynamic variables and heat fluxes.

  17. Effect of Carboxymethylation on the Rheological Properties of Hyaluronan

    PubMed Central

    Wendling, Rian J.; Christensen, Amanda M.; Quast, Arthur D.; Atzet, Sarah K.; Mann, Brenda K.

    2016-01-01

    Chemical modifications made to hyaluronan to enable covalent crosslinking to form a hydrogel or to attach other molecules may alter the physical properties as well, which have physiological importance. Here we created carboxymethyl hyaluronan (CMHA) with varied degree of modification and investigated the effect on the viscosity of CMHA solutions. Viscosity decreased initially as modification increased, with a minimum viscosity for about 30–40% modification. This was followed by an increase in viscosity around 45–50% modification. The pH of the solution had a variable effect on viscosity, depending on the degree of carboxymethyl modification and buffer. The presence of phosphates in the buffer led to decreased viscosity. We also compared large-scale production lots of CMHA to lab-scale and found that large-scale required extended reaction times to achieve the same degree of modification. Finally, thiolated CMHA was disulfide crosslinked to create hydrogels with increased viscosity and shear-thinning aspects compared to CMHA solutions. PMID:27611817

  18. A Simple BODIPY-Based Viscosity Probe for Imaging of Cellular Viscosity in Live Cells

    PubMed Central

    Su, Dongdong; Teoh, Chai Lean; Gao, Nengyue; Xu, Qing-Hua; Chang, Young-Tae

    2016-01-01

    Intracellular viscosity is a fundamental physical parameter that indicates the functioning of cells. In this work, we developed a simple boron-dipyrromethene (BODIPY)-based probe, BTV, for cellular mitochondria viscosity imaging by coupling a simple BODIPY rotor with a mitochondria-targeting unit. The BTV exhibited a significant fluorescence intensity enhancement of more than 100-fold as the solvent viscosity increased. Also, the probe showed a direct linear relationship between the fluorescence lifetime and the media viscosity, which makes it possible to trace the change of the medium viscosity. Furthermore, it was demonstrated that BTV could achieve practical applicability in the monitoring of mitochondrial viscosity changes in live cells through fluorescence lifetime imaging microscopy (FLIM). PMID:27589762

  19. A Simple BODIPY-Based Viscosity Probe for Imaging of Cellular Viscosity in Live Cells.

    PubMed

    Su, Dongdong; Teoh, Chai Lean; Gao, Nengyue; Xu, Qing-Hua; Chang, Young-Tae

    2016-08-31

    Intracellular viscosity is a fundamental physical parameter that indicates the functioning of cells. In this work, we developed a simple boron-dipyrromethene (BODIPY)-based probe, BTV, for cellular mitochondria viscosity imaging by coupling a simple BODIPY rotor with a mitochondria-targeting unit. The BTV exhibited a significant fluorescence intensity enhancement of more than 100-fold as the solvent viscosity increased. Also, the probe showed a direct linear relationship between the fluorescence lifetime and the media viscosity, which makes it possible to trace the change of the medium viscosity. Furthermore, it was demonstrated that BTV could achieve practical applicability in the monitoring of mitochondrial viscosity changes in live cells through fluorescence lifetime imaging microscopy (FLIM).

  20. Application of Technology of Hydrodynamic Cavitation Processing High-Viscosity Oils for the Purpose of Improving the Rheological Characteristics of Oils

    NASA Astrophysics Data System (ADS)

    Zemenkov, Y. D.; Zemenkova, M. Y.; Vengerov, A. A.; Brand, A. E.

    2016-10-01

    There is investigated the technology of hydrodynamic cavitational processing viscous and high-viscosity oils and the possibility of its application in the pipeline transport system for the purpose of increasing of rheological properties of the transported oils, including dynamic viscosity shear stress in the article. It is considered the possibility of application of the combined hydrodynamic cavitational processing with addition of depressor additive for identification of effect of a synergism. It is developed the laboratory bench and they are presented results of modeling and laboratory researches. It is developed the hardware and technological scheme of application of the developed equipment at industrial objects of pipeline transport.

  1. Viscosity and Solvation

    ERIC Educational Resources Information Center

    Robertson, C. T.

    1973-01-01

    Discusses theories underlying the phenomena of solution viscosities, involving the Jones and Dole equation, B-coefficient determination, and flickering cluster model. Indicates that viscosity measurements provide a basis for the study of the structural effects of ions in aqueous solutions and are applicable in teaching high school chemistry. (CC)

  2. Correlation of shear and dielectric ion viscosity of dental resins - Influence of composition, temperature and filler content.

    PubMed

    Steinhaus, Johannes; Hausnerova, Berenika; Haenel, Thomas; Selig, Daniela; Duvenbeck, Fabian; Moeginger, Bernhard

    2016-07-01

    Shear viscosity and ion viscosity of uncured visible light-curing (VLC) resins and resin based composites (RBC) are correlated with respect to the resin composition, temperature and filler content to check where Dielectric Analysis (DEA) investigations of VLC RBC generate similar results as viscosity measurements. Mixtures of bisphenol A glycidyl methacrylate (Bis-GMA) and triethylene glycol dimethacrylate (TEGDMA) as well as the pure resins were investigated and compared with two commercial VLC dental resins and RBCs (VOCO, Arabesk Top and Grandio). Shear viscosity data was obtained using a Haake Mars III, Thermo Scientific. Ion viscosity measurements performed by a dielectric cure analyzer (DEA 231/1 Epsilon with Mini IDEX-Sensor, Netzsch-Gerätebau). Shear viscosity depends reciprocally on the mobility of molecules, whereas the ion viscosity also depends on the ion concentration as it is affected by both ion concentration and mixture viscosity. Except of pure TEGDMA, shear and ion viscosities depend on the resin composition qualitatively in a similar manner. Furthermore, shear and ion viscosities of the commercial VLC dental resins and composites exhibited the same temperature dependency regardless of filler content. Application of typical rheological models (Kitano and Quemada) revealed that ion viscosity measurements can be described with respect to filler contents of up to 30vol.%. Rheological behavior of a VLC RBC can be characterized by DEA under the condition that the ion concentration is kept constant. Both methods address the same physical phenomenon - motion of molecules. The proposed relations allows for calculating the viscosity of any Bis-GMA-TEGDMA mixture on the base of the viscosities of the pure components. This study demonstrated the applicability of DEA investigations of VLC RBCs with respect to quality assurance purposes. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Relaxation-based viscosity mapping for magnetic particle imaging.

    PubMed

    Utkur, M; Muslu, Y; Saritas, E U

    2017-05-07

    Magnetic particle imaging (MPI) has been shown to provide remarkable contrast for imaging applications such as angiography, stem cell tracking, and cancer imaging. Recently, there is growing interest in the functional imaging capabilities of MPI, where 'color MPI' techniques have explored separating different nanoparticles, which could potentially be used to distinguish nanoparticles in different states or environments. Viscosity mapping is a promising functional imaging application for MPI, as increased viscosity levels in vivo have been associated with numerous diseases such as hypertension, atherosclerosis, and cancer. In this work, we propose a viscosity mapping technique for MPI through the estimation of the relaxation time constant of the nanoparticles. Importantly, the proposed time constant estimation scheme does not require any prior information regarding the nanoparticles. We validate this method with extensive experiments in an in-house magnetic particle spectroscopy (MPS) setup at four different frequencies (between 250 Hz and 10.8 kHz) and at three different field strengths (between 5 mT and 15 mT) for viscosities ranging between 0.89 mPa · s-15.33 mPa · s. Our results demonstrate the viscosity mapping ability of MPI in the biologically relevant viscosity range.

  4. Relaxation-based viscosity mapping for magnetic particle imaging

    NASA Astrophysics Data System (ADS)

    Utkur, M.; Muslu, Y.; Saritas, E. U.

    2017-05-01

    Magnetic particle imaging (MPI) has been shown to provide remarkable contrast for imaging applications such as angiography, stem cell tracking, and cancer imaging. Recently, there is growing interest in the functional imaging capabilities of MPI, where ‘color MPI’ techniques have explored separating different nanoparticles, which could potentially be used to distinguish nanoparticles in different states or environments. Viscosity mapping is a promising functional imaging application for MPI, as increased viscosity levels in vivo have been associated with numerous diseases such as hypertension, atherosclerosis, and cancer. In this work, we propose a viscosity mapping technique for MPI through the estimation of the relaxation time constant of the nanoparticles. Importantly, the proposed time constant estimation scheme does not require any prior information regarding the nanoparticles. We validate this method with extensive experiments in an in-house magnetic particle spectroscopy (MPS) setup at four different frequencies (between 250 Hz and 10.8 kHz) and at three different field strengths (between 5 mT and 15 mT) for viscosities ranging between 0.89 mPa · s-15.33 mPa · s. Our results demonstrate the viscosity mapping ability of MPI in the biologically relevant viscosity range.

  5. Molecular weight of Escherichia coli β-galactosidase in concentrated solutions of guanidine hydrochloride

    PubMed Central

    Erickson, Robert P.

    1970-01-01

    The molecular weight of Escherichia coli β-galactosidase was determined in 6m- and 8m-guanidine hydrochloride by meniscus-depletion sedimentation equilibrium, sedimentation velocity and viscosity. Sedimentation equilibrium revealed heterogeneity with the smallest component having a molecular weight of about 50000. At lower speeds, the apparent weight-average molecular weight is about 80000. By use of a calculation based on an empirical correlation for proteins that are random coils in 6m-guanidine hydrochloride, sedimentation velocity gave a molecular weight of 91000, and the intrinsic viscosity indicated a viscosity-average molecular weight of 84000. Heating in 6m-guanidine hydrochloride lowered the viscosity of β-galactosidase in a variable manner. PMID:4924171

  6. Influence of hydroxypropyl methylcellulose on drug release pattern of a gastroretentive floating drug delivery system using a 3(2) full factorial design.

    PubMed

    Swain, Kalpana; Pattnaik, Satyanarayan; Mallick, Subrata; Chowdary, Korla Appana

    2009-01-01

    In the present investigation, controlled release gastroretentive floating drug delivery system of theophylline was developed employing response surface methodology. A 3(2) randomized full factorial design was developed to study the effect of formulation variables like various viscosity grades and contents of hydroxypropyl methylcellulose (HPMC) and their interactions on response variables. The floating lag time for all nine experimental trial batches were less than 2 min and floatation time of more than 12 h. Theophylline release from the polymeric matrix system followed non-Fickian anomalous transport. Multiple regression analysis revealed that both viscosity and content of HPMC had statistically significant influence on all dependent variables but the effect of these variables found to be nonlinear above certain threshold values.

  7. An eddy-viscosity treatment of the unsteady turbulent boundary layer on a flat plate in an expansion tube

    NASA Technical Reports Server (NTRS)

    Gupta, R. N.; Trimpi, R. L.

    1974-01-01

    An analysis is presented for the relaxation of a turbulent boundary layer on a semiinfinite flat plate after passage of a shock wave and a trailing driver gas-driven gas interface. The problem has special application to expansion tube flows. The flow-governing equations have been transformed into the Lamcrocco variables. The numerical results indicate that a fully turbulent boundary layer relaxes faster to the final steady-state values of heat transfer and skin-friction than a fully laminar boundary layer.

  8. Viscosity Difference Measurements for Normal and Para Liquid Hydrogen Mixtures

    NASA Technical Reports Server (NTRS)

    Webeler, R.; Bedard, F.

    1961-01-01

    The absence of experimental data in the literature concerning a viscosity difference for normal and equilibrium liquid hydrogen may be attributed to the limited reproducibility of "oscillating disk" measurements in a liquid-hydrogen environment. Indeed, there is disagreement over the viscosity values for equilibrium liquid hydrogen even without proton spin considerations. Measurements presented here represent the first application of the piezoelectric alpha quartz torsional oscillator technique to liquid-hydrogen viscosity measurements.

  9. Viscosity of thickened fluids that relate to the Australian National Standards.

    PubMed

    Karsten Hadde, Enrico; Ann Yvette Cichero, Julie; Michael Nicholson, Timothy

    2016-08-01

    In 2007, Australia published standardized terminology and definitions for three levels of thickened fluids used in the management of dysphagia. This study examined the thickness of the current Australian National Fluid Standards rheologically (i.e. viscosity, yield stress) and correlated these results with the "fork test", as described in the national standards. Clinicians who prescribe or work with thickened liquids and laypersons were recruited to categorize 15 different thickened fluids of known viscosities using the fork test. The mean apparent viscosity and the yield stress for each fluid category were calculated. Clear responses were obtained by both clinicians and laypersons for very thin fluids (< 90 mPa.s) and very thick fluids (> 1150 mPa.s), but large variations of responses were seen for intermediate viscosities. Measures of viscosity and yield stress were important in allocating liquids to different categories. Three bands of fluid viscosity with distinct intermediate band gaps and associated yield stress measures were clearly identifiable and are proposed as objective complements to the Australian National Standards. The "fork test" provides rudimentary information about both viscosity and yield stress, but is an inexact measure of both variables.

  10. A novel VLES model accounting for near-wall turbulence: physical rationale and applications

    NASA Astrophysics Data System (ADS)

    Jakirlic, Suad; Chang, Chi-Yao; Kutej, Lukas; Tropea, Cameron

    2014-11-01

    A novel VLES (Very Large Eddy Simulation) model whose non-resolved residual turbulence is modelled by using an advanced near-wall eddy-viscosity model accounting for the near-wall Reynolds stress anisotropy influence on the turbulence viscosity by modelling appropriately the velocity scale in the relevant formulation (Hanjalic et al., 2004) is proposed. It represents a variable resolution Hybrid LES/RANS (Reynolds-Averaged Navier-Stokes) computational scheme enabling a seamless transition from RANS to LES depending on the ratio of the turbulent viscosities associated with the unresolved scales corresponding to the LES cut-off and the `unsteady' scales pertinent to the turbulent properties of the VLES residual motion, which varies within the flow domain. The VLES method is validated interactively in the process of the model derivation by computing fully-developed flow in a plane channel (important representative of wall-bounded flows, underlying the log-law for the velocity field, for studying near-wall Reynolds stress anisotropy) and a separating flow over a periodic arrangement of smoothly-contoured 2-D hills. The model performances are also assessed in capturing the natural decay of the homogeneous isotropic turbulence. The model is finally applied to swirling flow in a vortex tube, flow in an IC-engine configuration and flow past a realistic car model.

  11. Transverse transport of Fe3O4-H2O with viscosity variation under pure internal heating

    NASA Astrophysics Data System (ADS)

    Mehmood, Rashid; Tabassum, R.

    2018-05-01

    Smart fluids are the fluids whose properties can be changed by applying an electric or a magnetic field. Such type of fluid finds tremendous applications in electronic devices, semi-active dampers, magnetic resonance imaging, in space craft propulsion and many more. This communication addresses water based magneto ferrofluid striking at a stretching surface in an oblique manner. In order to present physically realistic analysis, viscosity is assumed to be dependent upon temperature as well as volume fraction of magnetite nanoparticle. The flow governing problem is altered into nonlinear coupled system of ordinary differential equations via scaling transformation which is then solved numerically by means of Runge-kutta Fehlberg scheme. Impact of sundry parameters such as magnetic field parameter, nanoparticle volume fraction, heat generation parameter and variable viscosity parameter on velocity and temperature profile of magneto ferrofluid is presented graphically and discussed in a physical manner. Practical measures of interest namely skin friction and heat flux at the surface are computed. Streamline patterns are traced out to examine the flow pattern. It is found that skin friction and rate of heat transfer at the wall enhances by strengthening the applied magnetic field. Local heat flux can also be enhanced with increasing the volume fraction of magnetite nanoparticles.

  12. A similarity solution of time dependent MHD liquid film flow over stretching sheet with variable physical properties

    NASA Astrophysics Data System (ADS)

    Idrees, M.; Rehman, Sajid; Shah, Rehan Ali; Ullah, M.; Abbas, Tariq

    2018-03-01

    An analysis is performed for the fluid dynamics incorporating the variation of viscosity and thermal conductivity on an unsteady two-dimensional free surface flow of a viscous incompressible conducting fluid taking into account the effect of a magnetic field. Surface tension quadratically vary with temperature while fluid viscosity and thermal conductivity are assumed to vary as a linear function of temperature. The boundary layer partial differential equations in cartesian coordinates are transformed into a system of nonlinear ordinary differential equations (ODEs) by similarity transformation. The developed nonlinear equations are solved analytically by Homotopy Analysis Method (HAM) while numerically by using the shooting method. The Effects of natural parameters such as the variable viscosity parameter A, variable thermal conductivity parameter N, Hartmann number Ma, film Thickness, unsteadiness parameter S, Thermocapillary number M and Prandtl number Pr on the velocity and temperature profiles are investigated. The results for the surface skin friction coefficient f″ (0) , Nusselt number (heat flux) -θ‧ (0) and free surface temperature θ (1) are presented graphically and in tabular form.

  13. A defect stream function, law of the wall/wake method for compressible turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Barnwell, Richard W.; Dejarnette, Fred R.; Wahls, Richard A.

    1989-01-01

    The application of the defect stream function to the solution of the two-dimensional, compressible boundary layer is examined. A law of the wall/law of the wake formulation for the inner part of the boundary layer is presented which greatly simplifies the computational task near the wall and eliminates the need for an eddy viscosity model in this region. The eddy viscosity model in the outer region is arbitrary. The modified Crocco temperature-velocity relationship is used as a simplification of the differential energy equation. Formulations for both equilibrium and nonequilibrium boundary layers are presented including a constrained zero-order form which significantly reduces the computational workload while retaining the significant physics of the flow. A formulation for primitive variables is also presented. Results are given for the constrained zero-order and second-order equilibrium formulations and are compared with experimental data. A compressible wake function valid near the wall has been developed from the present results.

  14. Peristalsis of nonconstant viscosity Jeffrey fluid with nanoparticles

    NASA Astrophysics Data System (ADS)

    Alvi, N.; Latif, T.; Hussain, Q.; Asghar, S.

    Mixed convective peristaltic activity of variable viscosity nanofluids is addressed. Unlike the conventional consideration of constant viscosity; the viscosity is taken as temperature dependent. Constitutive relations for linear viscoelastic Jeffrey fluid are employed and uniform magnetic field is applied in the transverse direction. For nanofluids, the formulation is completed in presence of Brownian motion, thermophoresis, viscous dissipation and Joule heating. Consideration of temperature dependence of viscosity is not a choice but the realistic requirement of the wall temperature and the heat generated due to the viscous dissipation. Well established large wavelength and small Reynolds number approximations are invoked. Non-linear coupled system is analytically solved for the convergent series solutions identifying the interval of convergence explicitly. A comparative study between analytical and numerical solution is made for certainty. Influence of the parameters undertaken for the description of the problem is pointed out and its physics explained.

  15. The viscosity of magmatic silicate liquids: A model for calculation

    NASA Technical Reports Server (NTRS)

    Bottinga, Y.; Weill, D. F.

    1971-01-01

    A simple model has been designed to allow reasonably accurate calculations of viscosity as a function of temperature and composition. The problem of predicting viscosities of anhydrous silicate liquids has been investigated since such viscosity numbers are applicable to many extrusive melts and to nearly dry magmatic liquids in general. The fluidizing action of water dissolved in silicate melts is well recognized and it is now possible to predict the effect of water content on viscosity in a semiquantitative way. Water was not incorporated directly into the model. Viscosities of anhydrous compositions were calculated, and, where necessary, the effect of added water and estimated. The model can be easily modified to incorporate the effect of water whenever sufficient additional data are accumulated.

  16. Variational approach to the volume viscosity of fluids

    NASA Astrophysics Data System (ADS)

    Zuckerwar, Allan J.; Ash, Robert L.

    2006-04-01

    The variational principle of Hamilton is applied to develop an analytical formulation to describe the volume viscosity in fluids. The procedure described here differs from those used in the past in that a dissipative process is represented by the chemical affinity and progress variable (sometimes called "order parameter") of a reacting species. These state variables appear in the variational integral in two places: first, in the expression for the internal energy, and second, in a subsidiary condition accounting for the conservation of the reacting species. As a result of the variational procedure, two dissipative terms appear in the Navier-Stokes equation. The first is the traditional volume viscosity term, proportional to the dilatational component of velocity; the second term is proportional to the material time derivative of the pressure gradient. Values of the respective volume viscosity coefficients are determined by applying the resulting volume-viscous Navier-Stokes equation to the case of acoustical propagation and then comparing expressions for the dispersion and absorption of sound. The formulation includes the special case of equilibration of the translational degrees of freedom. As examples, values are tabulated for dry and humid air, argon, and sea water.

  17. Surrogate Immiscible Liquid Solution Pairs with Refractive Indexes Matchable Over a Wide Range of Density and Viscosity Ratios

    NASA Astrophysics Data System (ADS)

    Saksena, Rajat; Christensen, Kenneth T.; Pearlstein, Arne J.

    2014-11-01

    Use of laser diagnostics in liquid-liquid flows is limited by refractive index mismatch. This can be avoided using a surrogate pair of immiscible index-matched liquids, with density and viscosity ratios matching those of the original liquid pair. We demonstrate that a wide range of density and viscosity ratios is accessible using aqueous solutions of 1,2-propanediol and CsBr (for which index, density, and viscosity are available), and solutions of light and heavy silicone oils and 1-bromooctane (for which we measured the same properties at 119 compositions). For each liquid phase, polynomials in the composition variables were fitted to index and density and to the logarithm of kinematic viscosity, and the fits were used to determine accessible density and viscosity ratios for each matchable index. Index-matched solution pairs can be prepared with density and viscosity ratios equal to those for water-liquid CO2 at 0oC over a range of pressure, and for water-crude oil and water-trichloroethylene, each over a range of temperature. For representative index-matched solutions, equilibration changes index, density, and viscosity only slightly, and chemical analysis show that no component of either solution has significant interphase solubility. Partially supported by Intl. Inst. for Carbon-Neutral Energy Research.

  18. Variability of hemodynamic parameters using the common viscosity assumption in a computational fluid dynamics analysis of intracranial aneurysms.

    PubMed

    Suzuki, Takashi; Takao, Hiroyuki; Suzuki, Takamasa; Suzuki, Tomoaki; Masuda, Shunsuke; Dahmani, Chihebeddine; Watanabe, Mitsuyoshi; Mamori, Hiroya; Ishibashi, Toshihiro; Yamamoto, Hideki; Yamamoto, Makoto; Murayama, Yuichi

    2017-01-01

    In most simulations of intracranial aneurysm hemodynamics, blood is assumed to be a Newtonian fluid. However, it is a non-Newtonian fluid, and its viscosity profile differs among individuals. Therefore, the common viscosity assumption may not be valid for all patients. This study aims to test the suitability of the common viscosity assumption. Blood viscosity datasets were obtained from two healthy volunteers. Three simulations were performed for three different-sized aneurysms, two using measured value-based non-Newtonian models and one using a Newtonian model. The parameters proposed to predict an aneurysmal rupture obtained using the non-Newtonian models were compared with those obtained using the Newtonian model. The largest difference (25%) in the normalized wall shear stress (NWSS) was observed in the smallest aneurysm. Comparing the difference ratio to the NWSS with the Newtonian model between the two Non-Newtonian models, the difference of the ratio was 17.3%. Irrespective of the aneurysmal size, computational fluid dynamics simulations with either the common Newtonian or non-Newtonian viscosity assumption could lead to values different from those of the patient-specific viscosity model for hemodynamic parameters such as NWSS.

  19. Flocculation and Settling Velocity Estimates for Reservoir Sedimentation Analysis

    DTIC Science & Technology

    2016-02-01

    viscosity ). Stokes’ law is commonly used to describe settling velocity of a single particle and is applicable when the particle Reynolds number (Rep...fluid viscosity , and ν is kinematic viscosity . Several researchers recognize that large, fast-settling particles disobey the laminar boundary...interparticle attraction caused by electrostatic and physiochemical forces. These properties give clays their stickiness and control essential

  20. Simultaneous viscosity and density measurement of small volumes of liquids using a vibrating microcantilever† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6an02674e Click here for additional data file.

    PubMed Central

    Payam, A. F.; Trewby, W.

    2017-01-01

    Many industrial and technological applications require precise determination of the viscosity and density of liquids. Such measurements can be time consuming and often require sampling substantial amounts of the liquid. These problems can partly be overcome with the use of microcantilevers but most existing methods depend on the specific geometry and properties of the cantilever, which renders simple, accurate measurement difficult. Here we present a new approach able to simultaneously quantify both the density and the viscosity of microliters of liquids. The method, based solely on the measurement of two characteristic frequencies of an immersed microcantilever, is completely independent of the choice of a cantilever. We derive analytical expressions for the liquid's density and viscosity and validate our approach with several simple liquids and different cantilevers. Application of our model to non-Newtonian fluids shows that the calculated viscosities are remarkably robust when compared to measurements obtained from a standard rheometer. However, the results become increasingly dependent on the cantilever geometry as the frequency-dependent nature of the liquid's viscosity becomes more significant. PMID:28352874

  1. 21 CFR 177.1960 - Vinyl chloride-hexene-1 copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... determined by any suitable analytical procedure of generally accepted applicability. (ii) Inherent viscosity... D1243-79, “Standard Test Method for Dilute Solution Viscosity of Vinyl Chloride Polymers,” which is...

  2. A mathematical model for the movement of food bolus of varying viscosities through the esophagus

    NASA Astrophysics Data System (ADS)

    Tripathi, Dharmendra

    2011-09-01

    This mathematical model is designed to study the influence of viscosity on swallowing of food bolus through the esophagus. Food bolus is considered as viscous fluid with variable viscosity. Geometry of esophagus is assumed as finite length channel and flow is induced by peristaltic wave along the length of channel walls. The expressions for axial velocity, transverse velocity, pressure gradient, volume flow rate and stream function are obtained under the assumptions of long wavelength and low Reynolds number. The impacts of viscosity parameter on pressure distribution, local wall shear stress, mechanical efficiency and trapping are numerically discussed with the help of computational results. On the basis of presented study, it is revealed that swallowing of low viscous fluids through esophagus requires less effort in comparison to fluids of higher viscosity. This result is similar to the experimental result obtained by Raut et al. [1], Dodds [2] and Ren et al. [3]. It is further concluded that the pumping efficiency increases while size of trapped bolus reduces when viscosity of fluid is high.

  3. Droplet flow along the wall of rectangular channel with gradient of wettability

    NASA Astrophysics Data System (ADS)

    Kupershtokh, A. L.

    2018-03-01

    The lattice Boltzmann equations (LBE) method (LBM) is applicable for simulating the multiphysics problems of fluid flows with free boundaries, taking into account the viscosity, surface tension, evaporation and wetting degree of a solid surface. Modeling of the nonstationary motion of a drop of liquid along a solid surface with a variable level of wettability is carried out. For the computer simulation of such a problem, the three-dimensional lattice Boltzmann equations method D3Q19 is used. The LBE method allows us to parallelize the calculations on multiprocessor graphics accelerators using the CUDA programming technology.

  4. Experimental study of the effects of surface mucus viscosity on the glottic cycle.

    PubMed

    Ayache, Stéphane; Ouaknine, Maurice; Dejonkere, Philippe; Prindere, Pierre; Giovanni, Antoine

    2004-03-01

    Numerous clinical findings indicate that viscosity of laryngeal mucosa is a crucial factor in glottal perfomance. Experience using experimental test benches has shown the importance of humidifying air stream used to induce vibration in excised larynges. Nevertheless, there is a lack of knowledge particularly regarding the physicochemical properties of laryngeal mucus. The purpose of this study was to research vocal fold vibration in excised larynges using artificial mucus of precisely known viscosity. Eight freshly harvested porcine larynges were examined. Parameters measured were Fo and vocal fold contact time. Measurements were performed under three conditions: basal (no fluid application on vocal cord surface), after application of a fluid of 60cP viscosity (Visc60), and after application of a fluid of 100cP viscosity (Visc100). Electroglottographic measurements were performed at two different times for each condition: 1 s after airflow onset (T1) and 6 seconds after airflow onset (T2). Statistical analysis consisted of comparing data obtained under each condition at T1 and T2. The results showed a significant decrease in Fo after application of Visc60 and Visc100 fluids and a decrease in Fo at T2. Closure time was significantly higher under Visc60 conditions and under Visc100 conditions than under basal conditions. Application of artificial mucus to the mucosa of the vocal folds lowered vibratory frequency and prolonged the contact phase. Our interpretation of this data is that the presence of mucus on the surface of the vocal folds generated superficial tension and caused adhesion, which is a source of nonlinearity in vocal vibration.

  5. Surface functionalisation with viscosity-sensitive BODIPY molecular rotor

    NASA Astrophysics Data System (ADS)

    Vyšniauskas, Aurimas; Lopez-Duarte, Ismael; Thompson, Alex J.; Bull, James A.; Kuimova, Marina K.

    2018-07-01

    Surface functionalisation with viscosity sensitive dyes termed ‘molecular rotors’ can potentially open up new opportunities in sensing, for example for non-invasive biological viscosity imaging, in studying the effect of shear stress on lipid membranes and in cells, and in imaging contacts between surfaces upon applied pressure. We have functionalised microscope slides with BODIPY-based molecular rotor capable of viscosity sensing via its fluorescence lifetime. We have optimised functionalisation conditions and prepared the slides with the BODIPY rotor attached directly to the surface of glass slides and through polymer linkers of 5 kDa and 40 kDa in mass. The slides were characterised for their sensitivity to viscosity, and used to measure viscosity of supported lipid bilayers during photooxidation, and of giant unilamellar vesicles lying on the surface of the slide. We conclude that our functionalised slides show promise for a variety of viscosity sensing applications.

  6. Extraction of shear viscosity in stationary states of relativistic particle systems

    NASA Astrophysics Data System (ADS)

    Reining, F.; Bouras, I.; El, A.; Wesp, C.; Xu, Z.; Greiner, C.

    2012-02-01

    Starting from a classical picture of shear viscosity we construct a stationary velocity gradient in a microscopic parton cascade. Employing the Navier-Stokes ansatz we extract the shear viscosity coefficient η. For elastic isotropic scatterings we find an excellent agreement with the analytic values. This confirms the applicability of this method. Furthermore, for both elastic and inelastic scatterings with pQCD based cross sections we extract the shear viscosity coefficient η for a pure gluonic system and find a good agreement with already published calculations.

  7. Design optimization and probabilistic analysis of a hydrodynamic journal bearing

    NASA Technical Reports Server (NTRS)

    Liniecki, Alexander G.

    1990-01-01

    A nonlinear constrained optimization of a hydrodynamic bearing was performed yielding three main variables: radial clearance, bearing length to diameter ratio, and lubricating oil viscosity. As an objective function a combined model of temperature rise and oil supply has been adopted. The optimized model of the bearing has been simulated for population of 1000 cases using Monte Carlo statistical method. It appeared that the so called 'optimal solution' generated more than 50 percent of failed bearings, because their minimum oil film thickness violated stipulated minimum constraint value. As a remedy change of oil viscosity is suggested after several sensitivities of variables have been investigated.

  8. Length-scales of Slab-induced Asthenospheric Deformation from Geodynamic Modeling, Mantle Deformation Fabric, and Synthetic Shear Wave Splitting

    NASA Astrophysics Data System (ADS)

    Jadamec, M. A.; MacDougall, J.; Fischer, K. M.

    2017-12-01

    The viscosity structure of the Earth's interior is critically important, because it places a first order constraint on plate motion and mantle flow rates. Geodynamic models using a composite viscosity based on experimentally derived flow laws for olivine aggregates show that lateral viscosity variations emerge in the upper mantle due to the subduction dynamics. However, the length-scale of this transition is still not well understood. Two-dimensional numerical models of subduction are presented that investigate the effect of initial slab dip, maximum yield stress (slab strength), and viscosity formulation (Newtonian versus composite) on the emergent lateral viscosity variations in the upper-mantle and magnitude of slab-driven mantle flow velocity. Significant viscosity reductions occur in regions of large flow velocity gradients due to the weakening effect of the dislocation creep deformation mechanism. The dynamic reductions in asthenospheric viscosity (less than 1018 Pa s) occur within approximately 500 km from driving force of the slab, with peak flow velocities occurring in models with a lower yield stress (weaker slab) and higher stress exponent. This leads to a sharper definition of the rheological base of the lithosphere and implies lateral variability in tractions along the base of the lithosphere. As the dislocation creep mechanism also leads to mantle deformation fabric, we then examine the spatial variation in the LPO development in the asthenosphere and calculate synthetic shear wave splitting. The models show that olivine LPO fabric in the asthenosphere generally increases in alignment strength with increased proximity to the slab, but can be transient and spatially variable on small length scales. The vertical flow fields surrounding the slab tip can produce shear-wave splitting variations with back-azimuth that deviate from the predictions of uniform trench-normal anisotropy, a result that bears on the interpretation of complexity in shear-wave splitting observed in real subduction zones.

  9. Fibrinogen, viscosity, and white blood cell count are major risk factors for ischemic heart disease. The Caerphilly and Speedwell collaborative heart disease studies.

    PubMed

    Yarnell, J W; Baker, I A; Sweetnam, P M; Bainton, D; O'Brien, J R; Whitehead, P J; Elwood, P C

    1991-03-01

    Recent studies have suggested that hemostatic factors and white blood cell count are predictive of ischemic heart disease (IHD). The relations of fibrinogen, viscosity, and white blood cell count to the incidence of IHD in the Caerphilly and Speedwell prospective studies are described. The two studies have a common core protocol and are based on a combined cohort of 4,860 middle-aged men from the general population. The first follow-up was at a nearly constant interval of 5.1 years in Caerphilly and 3.2 years in Speedwell; 251 major IHD events had occurred. Age-adjusted relative odds of IHD for men in the top 20% of the distribution compared with the bottom 20% were 4.1 (95% confidence interval, 2.6-6.5) for fibrinogen, 4.5 (95% confidence interval, 2.8-7.4) for viscosity, and 3.2 (95% confidence interval, 2.0-4.9) for white blood cell count. Associations with IHD were similar in men who had never smoked, exsmokers, and current smokers, and the results suggest that at least part of the effect of smoking on IHD is mediated through fibrinogen, viscosity, and white blood cell count. Multivariate analysis shows that white blood cell count is an independent risk factor for IHD as is either fibrinogen or viscosity, or possibly both. Jointly, these three variables significantly improve the fit of a logistic regression model containing all the main conventional risk factors. Further, a model including age, smoking habits, fibrinogen, viscosity, and white blood cell count predicts IHD as well as one in which the three hemostatic/rheological variables are replaced by total cholesterol, diastolic pressure, and body mass index. Jointly, fibrinogen, viscosity, and white blood cell count are important risk factors for IHD.

  10. An in vitro study on the influence of viscosity and frequency of application of fluoride/tin solutions on the progression of erosion of bovine enamel.

    PubMed

    Sakae, Letícia Oba; Bezerra, Sávio José Cardoso; João-Souza, Samira Helena; Borges, Alessandra Buhler; Aoki, Idalina V; Aranha, Ana Cecília Côrrea; Scaramucci, Taís

    2018-05-01

    To evaluate the influence of the viscosity and frequency of application of solutions containing fluoride (F) and stannous chloride (SnCl 2 ) on enamel erosion prevention. Bovine enamel specimens were randomly distributed into 12 groups (n = 10), according to the following study factors: solution (C: deionized water; F: 500 ppm F - ; F + Sn: 500 ppm F -  + 800 ppm Sn 2+ ); viscosity (low and high); and frequency of application (once and twice a day). Specimens were submitted to an erosive cycling model, consisting of 5 min immersion in 0.3% citric acid, followed by 60 min exposure to a mineral solution. This procedure was repeated 4×/day, for 5 days. Treatment with the experimental solutions was performed for 2 min, 1×/day or 2×/day. Enamel surface loss (SL) was determined by optical profilometry. Data were analyzed by 3-way ANOVA and Tukey tests (α = 0.05). There were significant differences between the levels of the factor solution (p < .001), viscosity (p < .001) and in the interaction between solution and viscosity (p = .01). Regarding solution, the mean SL ± standard deviation for the groups was F + Sn (4.90 ± 1.12) < F (7.89 ± 1.19) < C (14.20 ± 1.69). High viscosity solutions demonstrated less SL than low viscosity; however, only when applied once a day (p < .001). Applying the solutions twice a day yielded lower SL than once a day, but only for the low viscosity solutions (p = .003). Under the conditions of this short-term in vitro experiment, it could be concluded that increasing the viscosity of the oral rinse solutions reduced enamel loss by erosion; however, this effect was small and only observed when the solutions were applied once a day. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Continuum viscoplastic simulation of a granular column collapse on large slopes : μ(I) rheology and lateral wall effects

    NASA Astrophysics Data System (ADS)

    Martin, Nathan; Mangeney, Anne; Ionescu, Ioan; Bouchut, Francois

    2016-04-01

    The description of the mechanical behaviour of granular flows and in particular of the static/flowing transition is still an open and challenging issue with strong implication for hazard assessment [{Delannay et al.}, 2016]. In particular, {detailed quantitative} comparison between numerical models and observations is necessary to go further in this direction. We simulate here dry granular flows resulting from the collapse of granular columns on an inclined channel (from horizontal to 22^o) and compare precisely the results with laboratory experiments performed by {Mangeney et al.} [2010] and {Farin et al.} [2014]. Incompressibility is assumed despite the dilatancy observed in the experiments (up to 10%). The 2-D model is based on the so-called μ(I) rheology that induces a Drucker-Prager yield stress and a variable viscosity. A nonlinear Coulomb friction term, representing the friction on the lateral walls of the channel is added to the model. We demonstrate that this term is crucial to accurately reproduce granular collapses on slopes higher than 10o whereas it remains of little effect on horizontal slope [{Martin et al.}, 2016]. We show that the use of a variable or a constant viscosity does not change significantly the results provided that these viscosities are of the same order [{Ionescu et al.}, 2015]. However, only a fine tuning of the constant viscosity (η = 1 Pa.s) makes it possible to predict the slow propagation phase observed experimentally on large slopes. This was not possible when using, without tuning, the variable viscosity calculated from the μ(I) rheology with the parameters estimated from experiments. Finally, we discuss the well-posedness of the model with variable and constant viscosity based in particular on the development of shear bands observed in the numerical simulations. References Delannay, R., Valance, A., Mangeney, A., Roche, O., and Richard, P., 2016. Granular and particle-laden flows: from laboratory experiments to field observations, {J. Phys. D: Appl. Phys.}, submitted. Farin, M., Mangeney, A., and Roche, O., 2014. Dynamics, deposit and erosion processes in granular collapse over sloping beds, {J. Geophys. Res. Earth Surf.}, 119(3), 504-532. Ionescu, I., Mangeney, A., Bouchut, F., and Roche, O., 2015. Viscoplastic modelling of granular column collapse with pressure and rate dependent viscosity, {J. Non-Newtonian Fluid Mech.}, 219, 1-18. Mangeney, A., Roche, O., Hungr, O., Mangold, Faccanoni, G., and Lucas, A., 2010. Erosion and mobility in granular collapse over sloping beds, {J. Geophys. Res.-Earth Surf.}, 115, F03040. Martin, N., Ionescu, I. R., Mangeney, A., Bouchut, F. and Farin, M., Continuum viscoplastic simulation of a granular column collapse on large slopes: μ(I) rheology and lateral wall effects, submitted.

  12. Options for refractive index and viscosity matching to study variable density flows

    NASA Astrophysics Data System (ADS)

    Clément, Simon A.; Guillemain, Anaïs; McCleney, Amy B.; Bardet, Philippe M.

    2018-02-01

    Variable density flows are often studied by mixing two miscible aqueous solutions of different densities. To perform optical diagnostics in such environments, the refractive index of the fluids must be matched, which can be achieved by carefully choosing the two solutes and the concentration of the solutions. To separate the effects of buoyancy forces and viscosity variations, it is desirable to match the viscosity of the two solutions in addition to their refractive index. In this manuscript, several pairs of index matched fluids are compared in terms of viscosity matching, monetary cost, and practical use. Two fluid pairs are studied in detail, with two aqueous solutions (binary solutions of water and a salt or alcohol) mixed into a ternary solution. In each case: an aqueous solution of isopropanol mixed with an aqueous solution of sodium chloride (NaCl) and an aqueous solution of glycerol mixed with an aqueous solution of sodium sulfate (Na_2SO_4). The first fluid pair allows reaching high-density differences at low cost, but brings a large difference in dynamic viscosity. The second allows matching dynamic viscosity and refractive index simultaneously, at reasonable cost. For each of these four solutes, the density, kinematic viscosity, and refractive index are measured versus concentration and temperature, as well as wavelength for the refractive index. To investigate non-linear effects when two index-matched, binary solutions are mixed, the ternary solutions formed are also analyzed. Results show that density and refractive index follow a linear variation with concentration. However, the viscosity of the isopropanol and NaCl pair deviates from the linear law and has to be considered. Empirical correlations and their coefficients are given to create index-matched fluids at a chosen temperature and wavelength. Finally, the effectiveness of the refractive index matching is illustrated with particle image velocimetry measurements performed for a buoyant jet in a linearly stratified environment. The creation of the index-matched solutions and linear stratification in a large-scale experimental facility are detailed, as well as the practical challenges to obtain precise refractive index matching.

  13. Reliable Viscosity Calculation from Equilibrium Molecular Dynamics Simulations: A Time Decomposition Method.

    PubMed

    Zhang, Yong; Otani, Akihito; Maginn, Edward J

    2015-08-11

    Equilibrium molecular dynamics is often used in conjunction with a Green-Kubo integral of the pressure tensor autocorrelation function to compute the shear viscosity of fluids. This approach is computationally expensive and is subject to a large amount of variability because the plateau region of the Green-Kubo integral is difficult to identify unambiguously. Here, we propose a time decomposition approach for computing the shear viscosity using the Green-Kubo formalism. Instead of one long trajectory, multiple independent trajectories are run and the Green-Kubo relation is applied to each trajectory. The averaged running integral as a function of time is fit to a double-exponential function with a weighting function derived from the standard deviation of the running integrals. Such a weighting function minimizes the uncertainty of the estimated shear viscosity and provides an objective means of estimating the viscosity. While the formal Green-Kubo integral requires an integration to infinite time, we suggest an integration cutoff time tcut, which can be determined by the relative values of the running integral and the corresponding standard deviation. This approach for computing the shear viscosity can be easily automated and used in computational screening studies where human judgment and intervention in the data analysis are impractical. The method has been applied to the calculation of the shear viscosity of a relatively low-viscosity liquid, ethanol, and relatively high-viscosity ionic liquid, 1-n-butyl-3-methylimidazolium bis(trifluoromethane-sulfonyl)imide ([BMIM][Tf2N]), over a range of temperatures. These test cases show that the method is robust and yields reproducible and reliable shear viscosity values.

  14. Increasing viscosity and inertia using a robotically-controlled pen improves handwriting in children

    PubMed Central

    Ben-Pazi, Hilla; Ishihara, Abraham; Kukke, Sahana; Sanger, Terence D

    2010-01-01

    The aim of this study was to determine the effect of mechanical properties of the pen on the quality of handwriting in children. Twenty two school aged children, ages 8–14 years wrote in cursive using a pen attached to a robot. The robot was programmed to increase the effective weight (inertia) and stiffness (viscosity) of the pen. Speed, frequency, variability, and quality of the two handwriting samples were compared. Increased inertia and viscosity improved handwriting quality in 85% of children (p<0.05). Handwriting quality did not correlate with changes in speed, suggesting that improvement was not due to reduced speed. Measures of movement variability remained unchanged, suggesting that improvement was not due to mechanical smoothing of pen movement by the robot. Since improvement was not explained by reduced speed or mechanical smoothing, we conclude that children alter handwriting movements in response to pen mechanics. Altered movement could be caused by changes in proprioceptive sensory feedback. PMID:19794098

  15. Structure-triboproperty in biobased amphiphiles

    USDA-ARS?s Scientific Manuscript database

    Vegetable oils and their derivatives are amphiphilic and display a number of properties critical to their application in tribological processes. Among such properties are: viscosity, viscosity index, oxidation stability, cold flow, boundary friction, etc. The properties of these biobased amphiphiles...

  16. Effects of surface tension and viscosity on gold and silver sputtered onto liquid substrates

    NASA Astrophysics Data System (ADS)

    De Luna, Mark M.; Gupta, Malancha

    2018-05-01

    In this paper, we study DC magnetron sputtering of gold and silver onto liquid substrates of varying viscosities and surface tensions. We were able to separate the effects of viscosity from surface tension by depositing the metals onto silicone oils with a range of viscosities. The effects of surface tension were studied by depositing the metals onto squalene, poly(ethylene glycol), and glycerol. It was found that dispersed nanoparticles were formed on liquids with low surface tension and low viscosity whereas dense films were formed on liquids with low surface tension and high viscosity. Nanoparticles were formed on both the liquid surface and within the bulk liquid for high surface tension liquids. Our results can be used to tailor the metal and liquid interaction to fabricate particles and films for various applications in optics, electronics, and catalysis.

  17. Modeling the viscosity of polydisperse suspensions: Improvements in prediction of limiting behavior

    NASA Astrophysics Data System (ADS)

    Mwasame, Paul M.; Wagner, Norman J.; Beris, Antony N.

    2016-06-01

    The present study develops a fully consistent extension of the approach pioneered by Farris ["Prediction of the viscosity of multimodal suspensions from unimodal viscosity data," Trans. Soc. Rheol. 12, 281-301 (1968)] to describe the viscosity of polydisperse suspensions significantly improving upon our previous model [P. M. Mwasame, N. J. Wagner, and A. N. Beris, "Modeling the effects of polydispersity on the viscosity of noncolloidal hard sphere suspensions," J. Rheol. 60, 225-240 (2016)]. The new model captures the Farris limit of large size differences between consecutive particle size classes in a suspension. Moreover, the new model includes a further generalization that enables its application to real, complex suspensions that deviate from ideal non-colloidal suspension behavior. The capability of the new model to predict the viscosity of complex suspensions is illustrated by comparison against experimental data.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Kyle J.; Glynos, Emmanouil; Maroulas, Serafeim-Dionysios

    Incorporating nanoparticles (NPs) within a polymer host to create polymer nanocomposites (PNCs) while having the effect of increasing the functionality (e.g.: sensing, energy conversion) of these materials, introduces additional complications with regard to the processing-morphology-function behavior. A primary challenge is to understand and control the viscosity of a PNC with decreasing film thickness confinement for nanoscale applications. Using a combination of X-ray photon correlation spectroscopy (XPCS) and X-ray standing wave based resonance enhanced XPCS to study the dynamics of neat poly-2-vinyl pyridine (P2VP) chains and the nanoparticle dynamics, respectively, we identified a new mechanism that dictates the viscosity of PNCmore » films in the nanoscale regime. We show that while the viscosities of neat P2VP films as thin as 50 nm remained the same as the bulk, PNC films containing P2VP brush-coated gold NPs, spaced 50 nm apart, exhibited unprecedented increases in viscosities of over an order of magnitude. For thicker films or more widely separated NPs, the chain dynamics and viscosities were equal to the bulk values. These results -NP proximities and suppression of their dynamics -suggest a new mechanism by which the viscosities of polymeric liquids could be controlled for 2D and 3D nanoscale applications.« less

  19. Methods and instrumentation used in practice of clinical haemorheology.

    PubMed

    Dintenfass, L

    1984-01-01

    The aim of practice of clinical haemorheology is to study patients who might present themselves with or without any clinical symptoms but who might suffer from silent or overt cardiovascular disorders, some forms of cancer, anxiety, etc. A presence and a prognosis of these disorders are linked to an increase and/or abnormality of one or more of the blood viscosity factors: blood viscosity, plasma viscosity, red cell aggregation and rigidity, platelet aggregation, ability for formation of thrombi, flow instability, etc. Hyperviscosaemia might be present in spite of normal or low viscosity of the whole blood. Different disorders can be described by 'profiles of viscosity factors' which form a rheological fingerprint specific to a particular disease or a group of disorders. Determination of viscosity factors is carried out utilizing a series of instruments: (a) rotational viscometers, (b) capillary viscometers, (c) erythrocyte sedimentation tubes in 20C and 37C water tanks, (d) variable frequency thrombo-viscometer, (e) slit-capillary photo-viscometer, etc. One known factor which is not measured routinely is 'inversion phenomenon', and this is due to complexity and expense of measurements. Biochemical studies, including fibrinogen assay and estimation of ABO blood groups, are carried out. Effect of drugs on blood viscosity factors can be studied in vitro or in vivo.

  20. 21 CFR 177.1960 - Vinyl chloride-hexene-1 copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... accepted applicability. (ii) Inherent viscosity in cyclohexanone at 30 °C is not less than 0.59 deciliters per gram as determined by ASTM method D1243-79, “Standard Test Method for Dilute Solution Viscosity of...

  1. 21 CFR 177.1960 - Vinyl chloride-hexene-1 copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... accepted applicability. (ii) Inherent viscosity in cyclohexanone at 30 °C is not less than 0.59 deciliters per gram as determined by ASTM method D1243-79, “Standard Test Method for Dilute Solution Viscosity of...

  2. 21 CFR 177.1960 - Vinyl chloride-hexene-1 copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... accepted applicability. (ii) Inherent viscosity in cyclohexanone at 30 °C is not less than 0.59 deciliters per gram as determined by ASTM method D1243-79, “Standard Test Method for Dilute Solution Viscosity of...

  3. Viscous Dissipation in One-Dimensional Quantum Liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matveev, K. A.; Pustilnik, M.

    We develop a theory of viscous dissipation in one-dimensional single-component quantum liquids at low temperatures. Such liquids are characterized by a single viscosity coefficient, the bulk viscosity. We show that for a generic interaction between the constituent particles this viscosity diverges in the zerotemperature limit. In the special case of integrable models, the viscosity is infinite at any temperature, which can be interpreted as a breakdown of the hydrodynamic description. In conclusion, our consideration is applicable to all single-component Galilean- invariant one-dimensional quantum liquids, regardless of the statistics of the constituent particles and the interaction strength.

  4. Viscous Dissipation in One-Dimensional Quantum Liquids

    DOE PAGES

    Matveev, K. A.; Pustilnik, M.

    2017-07-20

    We develop a theory of viscous dissipation in one-dimensional single-component quantum liquids at low temperatures. Such liquids are characterized by a single viscosity coefficient, the bulk viscosity. We show that for a generic interaction between the constituent particles this viscosity diverges in the zerotemperature limit. In the special case of integrable models, the viscosity is infinite at any temperature, which can be interpreted as a breakdown of the hydrodynamic description. In conclusion, our consideration is applicable to all single-component Galilean- invariant one-dimensional quantum liquids, regardless of the statistics of the constituent particles and the interaction strength.

  5. The sensitivity of conduit flow models to basic input parameters: there is no need for magma trolls!

    NASA Astrophysics Data System (ADS)

    Thomas, M. E.; Neuberg, J. W.

    2012-04-01

    Many conduit flow models now exist and some of these models are becoming extremely complicated, conducted in three dimensions and incorporating the physics of compressible three phase fluids (magmas), intricate conduit geometries and fragmentation processes, to name but a few examples. These highly specialised models are being used to explain observations of the natural system, and there is a danger that possible explanations may be getting needlessly complex. It is coherent, for instance, to propose the involvement of sub-surface dwelling magma trolls as an explanation for the change in a volcanoes eruptive style, but assuming the simplest explanation would prevent such additions, unless they were absolutely necessary. While the understanding of individual, often small scale conduit processes is increasing rapidly, is this level of detail necessary? How sensitive are these models to small changes in the most basic of governing parameters? Can these changes be used to explain observed behaviour? Here we will examine the sensitivity of conduit flow models to changes in the melt viscosity, one of the fundamental inputs to any such model. However, even addressing this elementary issue is not straight forward. There are several viscosity models in existence, how do they differ? Can models that use different viscosity models be realistically compared? Each of these viscosity models is also heavily dependent on the magma composition and/or temperature, and how well are these variables constrained? Magma temperatures and water contents are often assumed as "ball-park" figures, and are very rarely exactly known for the periods of observation the models are attempting to explain, yet they exhibit a strong controlling factor on the melt viscosity. The role of both these variables will be discussed. For example, using one of the available viscosity models a 20 K decrease in temperature of the melt results in a greater than 100% increase in the melt viscosity. With changes of this magnitude resulting from small alterations in the basic governing parameters does this render any changes in individual conduit processes of secondary importance? As important as the melt viscosity is to any conduit flow model, it is a meaningless parameter unless there is a conduit through which to flow. The shape and size of a volcanic conduit are even less well constrained than magma's temperature and water content, but have an equally important role to play. Rudimentary changes such as simply increasing or decreasing the radius of a perfectly cylindrical conduit can have large effects, and when coupled with the range of magma viscosities that may be flowing through them can completely change interpretations. Although we present results specifically concerning the variables of magma temperature and water content and the radius of a cylindrical conduit, this is just the start, by systematically identifying the effect each parameter has on the conduit flow models it will be possible to identify which areas are most requiring of future attention.

  6. Challenges in Determining Intrinsic Viscosity Under Low Ionic Strength Solution Conditions.

    PubMed

    Pindrus, Mariya A; Shire, Steven J; Yadav, Sandeep; Kalonia, Devendra S

    2017-04-01

    To determine the intrinsic viscosity of several monoclonal antibodies (mAbs) under varying pH and ionic strength solution conditions. An online viscosity detector attached to HPLC (Viscotek®) was used to determine the intrinsic viscosity of mAbs. The Ross and Minton equation was used for viscosity prediction at high protein concentrations. Bulk viscosity was determined by a Cambridge viscometer. At 15 mM ionic strength, intrinsic viscosity of the mAbs determined by the single-point approach varied from 5.6 to 6.4 mL/g with changes in pH. High ionic strength did not significantly alter intrinsic viscosity, while a significant increase (up to 24.0 mL/g) was observed near zero mM. No difference in bulk viscosity of mAb3 was observed around pH 6 as a function of ionic strength. Data analysis revealed that near zero mM ionic strength limitations of the single-point technique result in erroneously high intrinsic viscosity. Intrinsic viscosity is a valuable tool that can be used to model baseline viscosity at higher protein concentrations. However, it is not predictive of solution non-ideality at higher protein concentrations. Furthermore, breakdown of numerous assumptions limits the applicability of experimental techniques near zero mM ionic strength conditions. For molecules and conditions studied, the single-point approach produced reliable intrinsic viscosity results at 15 mM. However, this approach must be used with caution near zero mM ionic strength. Data analysis can be used to reveal whether determined intrinsic viscosity is reliable or erroneously high.

  7. Suitability of E-tongue Sensors to Assess Taste-Masking of Pediatric Liquids by Different Beverages Considering Their Physico-chemical Properties.

    PubMed

    Immohr, Laura Isabell; Hedfeld, Claas; Lang, Artur; Pein-Hackelbusch, Miriam

    2017-02-01

    Manipulation of liquid oral drugs by mixing them into foodstuff is a common procedure for taste-masking of OTC pharmaceuticals when administered to children. However, the taste-masking capability of such application media is not systematically evaluated, and recommendations for suitable media are hardly published. In this study, a sensor array of commercially available and self-developed electronic tongue sensors was employed to assess the taste-masking efficiency of eight different beverages (tap water, apple juice, carrot juice, fennel tea, fruit tea, milk, cocoa, and Alete meal to drink) on the OTC pharmaceuticals Ambroxol-ratiopharm®, Cetirizin AL, and Laxoberal® by multivariate data analysis. The Euclidean distances between each pure application medium and its corresponding drug mixture were used as an indicator for the taste-masking efficiency and correlated to the physico-chemical properties of the beverages. Thus, the pH value, the viscosity, as well as the fat and sugar content of the beverages were included, whereas only the viscosity appeared to be insignificant in all cases. The sugar content as well as the fat content and pH value emerged to be a significant variable in taste-masking efficiency for some of the tested drug products. It was shown that the applied electronic tongue sensors were capable to demonstrate the impact of the physico-chemical properties of the application media on their taste-masking capacity regardless of their non-selectivity towards these characteristics.

  8. Thermal conductivity and viscosity measurements of ethylene glycol-based Al2O3 nanofluids

    NASA Astrophysics Data System (ADS)

    Pastoriza-Gallego, María José; Lugo, Luis; Legido, José Luis; Piñeiro, Manuel M.

    2011-12-01

    The dispersion and stability of nanofluids obtained by dispersing Al2O3 nanoparticles in ethylene glycol have been analyzed at several concentrations up to 25% in mass fraction. The thermal conductivity and viscosity were experimentally determined at temperatures ranging from 283.15 K to 323.15 K using an apparatus based on the hot-wire method and a rotational viscometer, respectively. It has been found that both thermal conductivity and viscosity increase with the concentration of nanoparticles, whereas when the temperature increases the viscosity diminishes and the thermal conductivity rises. Measured enhancements on thermal conductivity (up to 19%) compare well with literature values when available. New viscosity experimental data yield values more than twice larger than the base fluid. The influence of particle size on viscosity has been also studied, finding large differences that must be taken into account for any practical application. These experimental results were compared with some theoretical models, as those of Maxwell-Hamilton and Crosser for thermal conductivity and Krieger and Dougherty for viscosity.

  9. 30 CFR 35.6 - Application procedures and requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Pour point, °F.; freezing point, °F.; color; neutralization number or pH; viscosity at 100 °F., 150 °F., 175 °F. (Saybolt or Furol); viscosity index; specific gravity. (3) A statement of the water or other...

  10. 30 CFR 35.6 - Application procedures and requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Pour point, °F.; freezing point, °F.; color; neutralization number or pH; viscosity at 100 °F., 150 °F., 175 °F. (Saybolt or Furol); viscosity index; specific gravity. (3) A statement of the water or other...

  11. 30 CFR 35.6 - Application procedures and requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Pour point, °F.; freezing point, °F.; color; neutralization number or pH; viscosity at 100 °F., 150 °F., 175 °F. (Saybolt or Furol); viscosity index; specific gravity. (3) A statement of the water or other...

  12. Introduction of a theoretical splashing degree to assess the performance of low-viscosity oils in filling of capsules.

    PubMed

    Niederquell, Andreas; Kuentz, Martin

    2011-03-01

    These days an alternative to soft capsules is liquid-filled hard capsules. Their filling technology was investigated earlier with highly viscous formulations, while hardly any academic research focused on low-viscosity systems. Accordingly, this work addressed the filling of such oils that are splashing during the dosing process. It was aimed to first study capsule filling, using middle-chain triglycerides as reference oil, in order to then evaluate the concept of a new theoretical splashing degree for different oils. A laboratory-scale filling machine was used that included capsule sealing. Thus, the liquid encapsulation by microspray technology was employed to seal the dosage form. As a result of the study with reference oil, the filling volume and the temperature were found to be significant for the rate of leaking capsules. The filling volume was also important for weight variability of the capsules. However, most critical for this variability was the diameter of the filling nozzle. We proposed a power law for the coefficient of weight variability as a function of the nozzle diameter and the obtained exponent agreed with the proposed theory. Subsequently, a comparison of different oils revealed that the relative splashing degree shared a correlation with the coefficient of the capsule weight variability (Pearson product moment correlation of r=0.990). The novel theoretical concept was therefore found to be predictive for weight variability of the filled capsules. Finally, guidance was provided for the process development of liquid-filled capsules using low-viscosity oils. © 2011 American Association of Pharmaceutical Scientists

  13. More on the elongational viscosity of an oriented fiber assembly

    NASA Technical Reports Server (NTRS)

    Pipes, R. Byron, Jr.; Beaussart, A. J.; Okine, R. K.

    1990-01-01

    The effective elongational viscosity for an oriented fiber assembly of discontinuous fibers suspended in a viscous matrix fluid is developed for a fiber array with variable overlap length of both symmetric and asymmetric geometries. Further, the relation is developed for a power-law matrix fluid with finite yield stress. The developed relations for a Newtonian fluid reveal that the influence of overlap length upon elongational viscosity may be expressed as a polynomial of second order. The results for symmetric and asymmetric geometries are shown to be equivalent. Finally, for the power-law fluid the influence of fiber aspect ratio on elongational viscosity was shown to be of order m + 1, where m is greater than 0 and less than 1, as compared to 2 for the Newtonian fluid, while the effective yield stress was found to be proportional to the fiber aspect ratio and volume fraction.

  14. Ion Viscosity Mediated by Tangled Magnetic Fields: An Application to Black Hole Accretion Disks

    NASA Technical Reports Server (NTRS)

    Subramanian, Prasad; Becker, Peter A.; Kafatos, Menas

    1996-01-01

    We examine the viscosity associated with the shear stress exerted by ions in the presence of a tangled magnetic field. As an application, we consider the effect of this mechanism on the structure of black hole accretion disks. We do not attempt to include a self-consistent description of the magnetic field. Instead, we assume the existence of a tangled field with coherence length lambda(sub coh), which is the average distance between the magnetic 'kinks' that scatter the particles. For simplicity, we assume that the field is self-similar, and take lambda(sub coh) to be a fixed fraction zeta of the local disk height H. Ion viscosity in the presence of magnetic fields is generally taken to be the cross-field viscosity, wherein the effective mean free path is the ion Larmor radius lambda(sub L), which is much less than the ion-ion Coulomb mean free path A(sub ii) in hot accretion disks. However, we arrive at a formulation for a 'hybrid' viscosity in which the tangled magnetic field acts as an intermediary in the transfer of momentum between different layers in the shear flow. The hybrid viscosity greatly exceeds the standard cross-field viscosity when (lambda/lambda(sub L)) much greater than (lambda(sub L)/lambda(sub ii)), where lambda = ((lambda(sub ii)(sup -1) + lambda(sub (coh)(sup -1))(sup -1) is the effective mean free path for the ions. This inequality is well satisfied in hot accretion disks, which suggests that the ions may play a much larger role in the momentum transfer process in the presence of magnetic fields than was previously thought. The effect of the hybrid viscosity on the structure of a steady-state, two-temperature, quasi-Keplerian accretion disk is analyzed. The hybrid viscosity is influenced by the degree to which the magnetic field is tangled (represented by zeta = lambda(sub coh)), and also by the relative accretion rate M/M(sub E), where M(sub E) = L(sub E)/c(sup 2) and L(sub E) is the Eddington luminosity. We find that ion viscosity in the presence of magnetic fields (hybrid viscosity) can dominate over conventional magnetic viscosity for fields that are tangled on sufficiently small scales.

  15. Resolution in QCM sensors for the viscosity and density of liquids: application to lead acid batteries.

    PubMed

    Cao-Paz, Ana María; Rodríguez-Pardo, Loreto; Fariña, José; Marcos-Acevedo, Jorge

    2012-01-01

    In battery applications, particularly in automobiles, submarines and remote communications, the state of charge (SoC) is needed in order to manage batteries efficiently. The most widely used physical parameter for this is electrolyte density. However, there is greater dependency between electrolyte viscosity and SoC than that seen for density and SoC. This paper presents a Quartz Crystal Microbalance (QCM) sensor for electrolyte density-viscosity product measurements in lead acid batteries. The sensor is calibrated in H(2)SO(4) solutions in the battery electrolyte range to obtain sensitivity, noise and resolution. Also, real-time tests of charge and discharge are conducted placing the quartz crystal inside the battery. At the same time, the present theoretical "resolution limit" to measure the square root of the density-viscosity product [Formula: see text] of a liquid medium or best resolution achievable with a QCM oscillator is determined. Findings show that the resolution limit only depends on the characteristics of the liquid to be studied and not on frequency. The QCM resolution limit for [Formula: see text] measurements worsens when the density-viscosity product of the liquid is increased, but it cannot be improved by elevating the work frequency.

  16. Probing the molecular design of hyper-branched aryl polyesters towards lubricant applications

    NASA Astrophysics Data System (ADS)

    Robinson, Joshua W.; Zhou, Yan; Bhattacharya, Priyanka; Erck, Robert; Qu, Jun; Bays, J. Timothy; Cosimbescu, Lelia

    2016-01-01

    We report novel polymeric materials that may be used as viscosity index improvers (VII) for lubricant applications. Our efforts included probing the comb-burst hyper-branched aryl polyester architecture for beneficial viscosity and friction behavior when utilized as an additive in a group I oil. The monomer was designed as to undergo polymerization via polycondensation within the architectural construct (AB2), typical of hyperbranched polymers. The monomer design was comprised of aliphatic arms (12 or 16 methylenes) to provide the necessary lipophilicity to achieve solubility in a non-polar medium. Once polymerized, via catalyst and heat, the surface alcohols were functionalized with fatty acids (lauric and palmitic). Controlling the aliphatic nature of the internal arms and peripheral end-groups provided four unique flexible polymer designs. Changing the reaction time and concentration provided opportunities to investigate the influence of molecular weight and branching density on oil-solubility, viscosity, and friction. Oil-solubility was found to decrease with fewer internal carbons, but the number of internal carbons appears to have little influence on the bulk solution viscosity. At concentrations of 2 wt % in a group I base oil, these polymer additives demonstrated an improved viscosity index and reduced friction coefficient, validating the basic approach.

  17. Resolution in QCM Sensors for the Viscosity and Density of Liquids: Application to Lead Acid Batteries

    PubMed Central

    Cao-Paz, Ana María; Rodríguez-Pardo, Loreto; Fariña, José; Marcos-Acevedo, Jorge

    2012-01-01

    In battery applications, particularly in automobiles, submarines and remote communications, the state of charge (SoC) is needed in order to manage batteries efficiently. The most widely used physical parameter for this is electrolyte density. However, there is greater dependency between electrolyte viscosity and SoC than that seen for density and SoC. This paper presents a Quartz Crystal Microbalance (QCM) sensor for electrolyte density-viscosity product measurements in lead acid batteries. The sensor is calibrated in H2SO4 solutions in the battery electrolyte range to obtain sensitivity, noise and resolution. Also, real-time tests of charge and discharge are conducted placing the quartz crystal inside the battery. At the same time, the present theoretical “resolution limit” to measure the square root of the density-viscosity product (ρη) of a liquid medium or best resolution achievable with a QCM oscillator is determined. Findings show that the resolution limit only depends on the characteristics of the liquid to be studied and not on frequency. The QCM resolution limit for ρη measurements worsens when the density-viscosity product of the liquid is increased, but it cannot be improved by elevating the work frequency. PMID:23112618

  18. Polythermal investigation of viscosity of solution of metal carboxylates in VIK-grade mixed carboxylic acids: Yttrium and gadolinium carboxylates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mezhov, E.A.; Samatov, A.V.; Troyanovskii, L.V.

    Kinematic viscosities have been measured for solutions of yttrium and gadolinium carboxylates in grade VIK mixed carboxylic acids (MCA). It has been established that the optimal fluidity of these metal carboxylate solutions for application to articles is reached at 333 K. A regression model has been developed to describe the concentration and temperature dependences of the viscosity of yttrium- and gadolinium-containing MCA solutions. 2 refs., 3 tabs.

  19. Inverse procedure for simultaneous evaluation of viscosity and density of Newtonian liquids from dispersion curves of Love waves

    NASA Astrophysics Data System (ADS)

    Kiełczyński, P.; Szalewski, M.; Balcerzak, A.

    2014-07-01

    Simultaneous determination of the viscosity and density of liquids is of great importance in the monitoring of technological processes in the chemical, petroleum, and pharmaceutical industry, as well as in geophysics. In this paper, the authors present the application of Love waves for simultaneous inverse determination of the viscosity and density of liquids. The inversion procedure is based on measurements of the dispersion curves of phase velocity and attenuation of ultrasonic Love waves. The direct problem of the Love wave propagation in a layered waveguide covered by a viscous liquid was formulated and solved. Love waves propagate in an elastic layered waveguide covered on its surface with a viscous (Newtonian) liquid. The inverse problem is formulated as an optimization problem with appropriately constructed objective function that depends on the material properties of an elastic waveguide of the Love wave, material parameters of a liquid (i.e., viscosity and density), and the experimental data. The results of numerical calculations show that Love waves can be efficiently applied to determine simultaneously the physical properties of liquids (i.e., viscosity and density). Sensors based on this method can be very attractive for industrial applications to monitor on-line the parameters (density and viscosity) of process liquid during the course of technological processes, e.g., in polymer industry.

  20. Fluid friction and wall viscosity of the 1D blood flow model.

    PubMed

    Wang, Xiao-Fei; Nishi, Shohei; Matsukawa, Mami; Ghigo, Arthur; Lagrée, Pierre-Yves; Fullana, Jose-Maria

    2016-02-29

    We study the behavior of the pulse waves of water into a flexible tube for application to blood flow simulations. In pulse waves both fluid friction and wall viscosity are damping factors, and difficult to evaluate separately. In this paper, the coefficients of fluid friction and wall viscosity are estimated by fitting a nonlinear 1D flow model to experimental data. In the experimental setup, a distensible tube is connected to a piston pump at one end and closed at another end. The pressure and wall displacements are measured simultaneously. A good agreement between model predictions and experiments was achieved. For amplitude decrease, the effect of wall viscosity on the pulse wave has been shown as important as that of fluid viscosity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Evaluation of anti-freeze viscosity modifier for potential external tank applications

    NASA Technical Reports Server (NTRS)

    Lynn, R. O. L.

    1981-01-01

    Viscosity modifiers and gelling agents were evaluated in combination with ethylene glycol and dimethyl sulfoxide water eutectics. Pectin and agarose are found to gel these eutectics effectively in low concentration, but the anti-freeze protection afforded by these compositions is found to be marginal in simulations of the intended applications. Oxygen vent shutters and vertical metallic surfaces were simulated, with water supplied as a spray, dropwise, and by condensation from the air.

  2. [Effects of nitrogen fertilizer application rate on nitrogen use efficiency and grain yield and quality of different rice varieties].

    PubMed

    Cong, Xi Han; Shi, Fu Zhi; Ruan, Xin Min; Luo, Yu Xiang; Ma, Ting Chen; Luo, Zhi Xiang

    2017-04-18

    To provide scientific basis for reasonable application of nitrogen and create varieties with high N use-efficiency, an experiment was carried out to study the effects of nitrogen fertilizer application rate on grain yield, N use rate and quality of different rice varieties. Four different genotypic rice varieties, Nipponbare, N70, N178 and OM052 were used as tested material and three levels of nitrogen application rate (0, 120, 270 kg·hm -2 ) were conducted. Urea as nitrogen source was applied as basal (70%) and panicle (30%) fertilizer. The results showed that nitrogen fertilizer could raise yield mainly because of the increased effective panicles and filled grains per panicle. When the N application rate was 120 and 270 kg·hm -2 , OM052 had the largest grain yield among four varieties, being 41.1% and 76.8% higher, respectively compared with control. Difference in grain yield among four varieties was due to the difference of nitrogen use efficiency. Under 120 and 270 kg·hm -2 nitrogen levels, Nipponbare had the lowest grain yield and N agronomic efficiency (NAE, 40.90 g·g -1 and 18.56 g·g -1 ), which was a variety with low N use-efficiency. On the contrary, OM052 had the highest grain yield and NAE (145.9 g·g -1 and 81.24 g·g -1 ), was a variety with high N use-efficiency. N fertilizer application increased the amylose content and protein content, lengthened gel consistency, reduced chalky kernel, chalkiness, and alkali digestion value. With the increase of N fertilizer application, hot paste viscosity, peak viscosity, consistence viscosity and breakdown viscosity were decreased gradually, and setback viscosity was increased. Correlation analysis showed that the yield and yield components had more significant correlations with appearance quality, cooking and eating quality under low N level. This study confirmed that OM052 was a double high variety with extremely high N agronomic efficiency and yield. Reasonable application of nitrogen fertilizer could significantly increase effective panicles and filled grains per panicle, improve rice quality, and ensure high yield and superior quality simultaneously.

  3. Revisiting the assessment of semen viscosity and its relationship to leucocytospermia.

    PubMed

    Flint, M; du Plessis, S S; Menkveld, R

    2014-10-01

    With infertility challenges posing an obstacle to many couples, the extension of variables to assess male fertility is an important line of research. At the Reproductive Biology Unit where the study was undertaken, a considerable proportion of male patient's seeking fertility assessment presented with hyperviscous semen samples and elevated concentrations of leucocytes. Despite viscosity being included as part of a routine spermiogram, it raises a considerable amount of concern as it is assessed semiquantitatively. The study was undertaken to evaluate the quantification of semen viscosity in centipoise (cP) and to investigate whether a correlation exists between hyperviscosity and leucocytospermia. A total of 200 semen samples were assessed from a sample cohort of two population groups: 162 male patients undergoing fertility assessment and 38 volunteer donors. Semen viscosity was determined by measuring the filling time of a capillary-loaded Leja chamber and quantifying the viscosity in cP. Leucocytes were identified histochemically with a leucocyte peroxidase test. The viscosity when quantified in cP was significantly higher in the peroxidase positive sample group (9.01 ± 0.49 vs. 7.39 ± 0.23 cP; P < 0.005). The introduction of a more accurate method of quantifying viscosity may possibly help to identify, diagnose and treat patients suffering from leucocytospermia to ultimately enhance their fertility potential. © 2013 Blackwell Verlag GmbH.

  4. Applying the technology of hydrodynamic cavitation treatment of high-viscosity oils to increase the efficiency of transportation

    NASA Astrophysics Data System (ADS)

    Brand, A. E.; Vershinina, S. V.; Vengerov, A. A.; Mostovaya, N. A.

    2015-10-01

    The article investigates the possibility of applying hydrodynamic cavitation treatment to reduce oil viscosity in Russian pipeline transportation system and increase its performance. The result of laboratory tests and suggestions on technology application are given

  5. Measurement of the microscopic viscosities of microfluids with a dynamic optical tweezers system

    NASA Astrophysics Data System (ADS)

    Zhang, Yuquan; Wu, Xiaojing; Wang, Yijia; Zhu, Siwei; Gao, Bruce Z.; Yuan, X.-C.

    2014-06-01

    Viscosity coefficients of microfluids—Newtonian and non-Newtonian—were explored through the rotational motion of a particle trapped by optical tweezers in a microflute. Unlike conventional methods based on viscometers, our microfluidic system employs samples of less than 30 μl to complete a measurement. Viscosity coefficients of ethanol and fetal bovine serum, as typical examples of Newtonian and non-Newtonian fluids, were obtained experimentally, and found to be in excellent agreement with theoretical predictions. Additionally, a practical application to a DNA solution with incremental ethidium bromide content was employed and the results are consistent with clinical data, indicating that our system provides a potentially important complementary tool for use in such biological and medical applications.

  6. Viscosity of rock-ice mixtures and applications to the evolution of icy satellites

    NASA Technical Reports Server (NTRS)

    Friedson, A. J.; Stevenson, D. J.

    1983-01-01

    Theory and experiments are used to establish lower and upper bounds on the ratio of actual viscosity to pure ice viscosity for a suspension of rock particles in a water ice matrix. A rheological model for rock-ice mixtures is described, establishing bounds for the range of possible viscosity enhancements provided by a suspension of silicate spheres in an ice matrix. A parametrized thermal convection model is described and used to determine a criterion for criticality, defined as the heat flow and/or silicate volume fraction for which the satellite temperature profile intercepts the melting curve of water ice. The consequences of achieving this critical state are examined, and it is shown that under certain circumstances a 'runaway' differentiation can occur in which the silicates settle to form a core and extensive melting of water ice takes place, the latent heat being supplied by the gravitational energy of differentiation. A possible application of these results to Ganymede and Callisto is described.

  7. Effects of extrusion variables on the properties of waxy hulless barley extrudates.

    PubMed

    Köksel, Hamit; Ryu, Gy-Hyung; Başman, Arzu; Demiralp, Hande; Ng, Perry K W

    2004-02-01

    The objective of this research was to investigate the extrudability of waxy hulless barley flour under various extrusion conditions. Waxy hulless barley flour was processed in a laboratory-scale corotating twin-screw extruder with different levels of feed moisture content (22.3, 26.8, and 30.7%) and die temperature (130, 150, and 170 degrees C) to develop a snack food with high beta-glucan content. The effects of extrusion condition variables (screw configuration, moisture, and temperature) on the system variables (pressure and specific mechanical energy), the extrudate physical properties (sectional expansion index, bulk density), starch gelatinization, pasting properties (cold peak viscosity, trough viscosity, and final viscosity), and beta-glucan contents were determined. Results were evaluated by using response surface methodology. Increased extrusion temperature and feed moisture content resulted in decreases in exit die pressure and specific mechanical energy values. For extrudates extruded under low shear screw configuration (LS), increased barrel temperature decreased sectional expansion index (SEI) values at both low and high moisture contents. The feed moisture seems to have an inverse relationship with SEI over the range studied. Bulk density was higher at higher moisture contents, for both low and high barrel temperatures, for samples extruded under high shear screw configuration (HS) and LS. Cold peak viscosities (CV) were observed in all samples. The CV increased with the increase in extrusion temperature and feed moisture content. Although beta-glucan contents of the LS extrudates were comparable to that of barley flour sample, HS samples had generally lower beta-glucan contents. The extrusion cooking technique seems to be promising for the production of snack foods with high beta-glucan content, especially using LS conditions.

  8. Thermal conductivity and viscosity measurements of ethylene glycol-based Al2O3 nanofluids

    PubMed Central

    2011-01-01

    The dispersion and stability of nanofluids obtained by dispersing Al2O3 nanoparticles in ethylene glycol have been analyzed at several concentrations up to 25% in mass fraction. The thermal conductivity and viscosity were experimentally determined at temperatures ranging from 283.15 K to 323.15 K using an apparatus based on the hot-wire method and a rotational viscometer, respectively. It has been found that both thermal conductivity and viscosity increase with the concentration of nanoparticles, whereas when the temperature increases the viscosity diminishes and the thermal conductivity rises. Measured enhancements on thermal conductivity (up to 19%) compare well with literature values when available. New viscosity experimental data yield values more than twice larger than the base fluid. The influence of particle size on viscosity has been also studied, finding large differences that must be taken into account for any practical application. These experimental results were compared with some theoretical models, as those of Maxwell-Hamilton and Crosser for thermal conductivity and Krieger and Dougherty for viscosity. PMID:21711737

  9. Viscous properties of isotropic fluids composed of linear molecules: departure from the classical Navier-Stokes theory in nano-confined geometries.

    PubMed

    Hansen, J S; Daivis, Peter J; Todd, B D

    2009-10-01

    In this paper we present equilibrium molecular-dynamics results for the shear, rotational, and spin viscosities for fluids composed of linear molecules. The density dependence of the shear viscosity follows a stretched exponential function, whereas the rotational viscosity and the spin viscosities show approximately power-law dependencies. The frequency-dependent shear and spin viscosities are also studied. It is found that viscoelastic behavior is first manifested in the shear viscosity and that the real part of the spin viscosities features a maximum for nonzero frequency. The calculated transport coefficients are used together with the extended Navier-Stokes equations to investigate the effect of the coupling between the intrinsic angular momentum and linear momentum for highly confined fluids. Both steady and oscillatory flows are studied. It is shown, for example, that the fluid flow rate for Poiseuille flow is reduced by up to 10% in a 2 nm channel for a buta-triene fluid at density 236 kg m(-3) and temperature 306 K. The coupling effect may, therefore, become very important for nanofluidic applications.

  10. The convergence of the order sequence and the solution function sequence on fractional partial differential equation

    NASA Astrophysics Data System (ADS)

    Rusyaman, E.; Parmikanti, K.; Chaerani, D.; Asefan; Irianingsih, I.

    2018-03-01

    One of the application of fractional ordinary differential equation is related to the viscoelasticity, i.e., a correlation between the viscosity of fluids and the elasticity of solids. If the solution function develops into function with two or more variables, then its differential equation must be changed into fractional partial differential equation. As the preliminary study for two variables viscoelasticity problem, this paper discusses about convergence analysis of function sequence which is the solution of the homogenous fractional partial differential equation. The method used to solve the problem is Homotopy Analysis Method. The results show that if given two real number sequences (αn) and (βn) which converge to α and β respectively, then the solution function sequences of fractional partial differential equation with order (αn, βn) will also converge to the solution function of fractional partial differential equation with order (α, β).

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Kyle J.; Glynos, Emmanouil; Maroulas, Serafeim-Dionysios

    Incorporating nanoparticles (NPs) within a polymer host to create polymer nanocomposites (PNCs) while having the effect of increasing the functionality (e.g., sensing, energy conversion) of these materials influences other properties. One challenge is to understand the effects of nanoparticles on the viscosity of nanoscale thick polymer films. A new mechanism that contributes to an enhancement of the viscosity of nanoscale thick polymer/nanoparticle films is identified. We show that while the viscosities of neat homopolymer poly(2-vinylpyridine) (P2VP) films as thin as 50 nm remained the same as the bulk, polymer/nanoparticle films containing P2VP brush-coated gold NPs, spaced 50 nm apart, exhibitedmore » unprecedented increases in viscosities of over an order of magnitude. For thicker films or more widely separated NPs, the chain dynamics and viscosities were comparable to the bulk values. These results - NP proximities and suppression of their dynamics - suggest a new mechanism by which the viscosities of polymeric liquids could be controlled for nanoscale applications.« less

  12. Anomalous intrinsic viscosity of octadecylamine-functionalised carbon nanotubes in suspension.

    PubMed

    Donovan, K J; Scott, K

    2013-06-28

    Single walled carbon nanotubes, SWCNTs, are used as a model cylinder of nanoscopic dimensions for testing rheological theories of how addition of cylindrical particles affects the viscosity of a suspension of such particles. Using the rate of growth of the accompanying induced linear dichroism following application of an applied electric field, the dynamics of carbon nanotube alignment is studied in suspensions of octadecylamine functionalised single walled carbon nanotubes, ODA-SWCNTs, in 1,2 dichloroethane. From such measurements the viscosity of the suspension is measured as the concentration of the suspension is varied. While working within the dilute limit the viscosity is found to increase linearly with concentration and the intrinsic viscosity of the suspension is found to be 8000. This anomalously high intrinsic viscosity is compared with the predictions of various models for a rigid cylinder and found to be incompatible with any of the current models. Some suggestions are made as to the way this ODA-SWCNT result may be eventually accommodated within other models.

  13. Drifting solutions with elliptic symmetry for the compressible Navier-Stokes equations with density-dependent viscosity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Hongli, E-mail: kaixinguoan@163.com; Yuen, Manwai, E-mail: nevetsyuen@hotmail.com

    2014-05-15

    In this paper, we investigate the analytical solutions of the compressible Navier-Stokes equations with dependent-density viscosity. By using the characteristic method, we successfully obtain a class of drifting solutions with elliptic symmetry for the Navier-Stokes model wherein the velocity components are governed by a generalized Emden dynamical system. In particular, when the viscosity variables are taken the same as Yuen [M. W. Yuen, “Analytical solutions to the Navier-Stokes equations,” J. Math. Phys. 49, 113102 (2008)], our solutions constitute a generalization of that obtained by Yuen. Interestingly, numerical simulations show that the analytical solutions can be used to explain the driftingmore » phenomena of the propagation wave like Tsunamis in oceans.« less

  14. Water hammer prediction and control: the Green's function method

    NASA Astrophysics Data System (ADS)

    Xuan, Li-Jun; Mao, Feng; Wu, Jie-Zhi

    2012-04-01

    By Green's function method we show that the water hammer (WH) can be analytically predicted for both laminar and turbulent flows (for the latter, with an eddy viscosity depending solely on the space coordinates), and thus its hazardous effect can be rationally controlled and minimized. To this end, we generalize a laminar water hammer equation of Wang et al. (J. Hydrodynamics, B2, 51, 1995) to include arbitrary initial condition and variable viscosity, and obtain its solution by Green's function method. The predicted characteristic WH behaviors by the solutions are in excellent agreement with both direct numerical simulation of the original governing equations and, by adjusting the eddy viscosity coefficient, experimentally measured turbulent flow data. Optimal WH control principle is thereby constructed and demonstrated.

  15. Application of Light-Emitting Diodes and Photodiodes Coupled to Optic Fibers to Study the Dependence of Liquid Viscosity on Temperature

    ERIC Educational Resources Information Center

    Victoria, L.; Arenas, A.

    2004-01-01

    A device designed to demonstrate the dependence of viscosity on temperature and to check the validity of the exponential relationship is described. The device has the advantage of versatility as it can be adapted to different types of viscosimeters.

  16. Numerical solution of problems concerning the thermal convection of a variable-viscosity liquid

    NASA Astrophysics Data System (ADS)

    Zherebiatev, I. F.; Lukianov, A. T.; Podkopaev, Iu. L.

    A stabilizing-correction scheme is constructed for integrating the fourth-order equation describing the dynamics of a viscous incompressible liquid. As an example, a solution is obtained to the problem of the solidification of a liquid in a rectangular region with allowance for convective energy transfer in the liquid phase as well as temperature-dependent changes of viscosity. It is noted that the proposed method can be used to study steady-state problems of thermal convection in ingots obtained through continuous casting.

  17. Probing the molecular design of hyper-branched aryl polyesters towards lubricant applications

    PubMed Central

    Robinson, Joshua W.; Zhou, Yan; Bhattacharya, Priyanka; Erck, Robert; Qu, Jun; Bays, J. Timothy; Cosimbescu, Lelia

    2016-01-01

    We report novel polymeric materials that may be used as viscosity index improvers (VII) for lubricant applications. Our efforts included probing the comb-burst hyper-branched aryl polyester architecture for beneficial viscosity and friction behavior when utilized as an additive in a group I oil. The monomer was designed as to undergo polymerization via polycondensation within the architectural construct (AB2), typical of hyperbranched polymers. The monomer design was comprised of aliphatic arms (12 or 16 methylenes) to provide the necessary lipophilicity to achieve solubility in a non-polar medium. Once polymerized, via catalyst and heat, the surface alcohols were functionalized with fatty acids (lauric and palmitic). Controlling the aliphatic nature of the internal arms and peripheral end-groups provided four unique flexible polymer designs. Changing the reaction time and concentration provided opportunities to investigate the influence of molecular weight and branching density on oil-solubility, viscosity, and friction. Oil-solubility was found to decrease with fewer internal carbons, but the number of internal carbons appears to have little influence on the bulk solution viscosity. At concentrations of 2 wt % in a group I base oil, these polymer additives demonstrated an improved viscosity index and reduced friction coefficient, validating the basic approach. PMID:26727881

  18. Probing the molecular design of hyper-branched aryl polyesters towards lubricant applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Joshua W.; Zhou, Yan; Bhattacharya, Priyanka

    We report novel polymeric materials that may be used as viscosity index improvers (VII) for lubricant applications. Our efforts included probing the comb-burst hyper-branched aryl polyester architecture for beneficial viscosity and friction behavior when utilized as an additive in a group I oil. The monomer was designed as to undergo polymerization via polycondensation within the architectural construct (AB2), typical of hyperbranched polymers. The monomer design was comprised of aliphatic arms (12 or 16 methylenes) to provide the necessary lipophilicity to achieve solubility in a non-polar medium. Once polymerized, via catalyst and heat, the surface alcohols were functionalized with fatty acidsmore » (lauric and palmitic). Controlling the aliphatic nature of the internal arms and peripheral end-groups provided four unique flexible polymer designs. Changing the reaction time and concentration provided opportunities to investigate the influence of molecular weight and branching density on oil-solubility, viscosity, and friction. Oil-solubility was found to decrease with fewer internal carbons, but the number of internal carbons appears to have little influence on the bulk solution viscosity. At concentrations of 2 wt % in a group I base oil, these polymer additives demonstrated an improved viscosity index and reduced friction coefficient, validating the basic approach.« less

  19. 3D printing of photocurable poly(glycerol sebacate) elastomers.

    PubMed

    Yeh, Yi-Cheun; Highley, Christopher B; Ouyang, Liliang; Burdick, Jason A

    2016-10-07

    Three-dimensional (3D) printed scaffolds have great potential in biomedicine; however, it is important that we are able to design such scaffolds with a range of diverse properties towards specific applications. Here, we report the extrusion-based 3D printing of biodegradable and photocurable acrylated polyglycerol sebacate (Acr-PGS) to fabricate scaffolds with elastic properties. Two Acr-PGS macromers were synthesized with varied molecular weights and viscosity, which were then blended to obtain photocurable macromer inks with a range of viscosities. The quality of extruded and photocured scaffolds was dependent on the initial ink viscosity, with flow of printed material resulting in a loss of structural resolution or sample breaking observed with too low or too high viscosity inks, respectively. However, scaffolds with high print resolution and up to ten layers were fabricated with an optimal ink viscosity. The mechanical properties of printed scaffolds were dependent on printing density, where the scaffolds with lower printing density possessed lower moduli and failure properties than higher density scaffolds. The 3D printed scaffolds supported the culture of 3T3 fibroblasts and both spreading and proliferation were observed, indicating that 3D printed Acr-PGS scaffolds are cytocompatible. These results demonstrate that Acr-PGS is a promising material for the fabrication of elastomeric scaffolds for biomedical applications.

  20. Development of low viscosity alkane-based urethane for connector potting applications

    NASA Technical Reports Server (NTRS)

    Morris, D. E.

    1983-01-01

    Two series of saturated hydrocarbon-based urethanes were prepared with isophorone diisocyanate and one series with methyl bis (4-cyclohexyl isocyanate). The urethanes with molecular weights as great as 2500 had viscosities low enough and a working life long enough to be used in potting, molding, and coating applications. Specimens were prepared and mechanical properties such as hardness, tensile strength elongation, and tear strength were determined. Thermomechanical properties (glass transition and expansion coefficient) and thermogravimetric properties were determined.

  1. Solvent viscosity mismatch between the solute plug and the mobile phase: Considerations in the applications of two-dimensional HPLC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shalliker, R. Andrew; Guiochon, Georges A

    Understanding the nature of viscosity contrast induced flow instabilities is an important aspect in the design of two-dimensional HPLC separations. When the viscosity contrast between the sample plug and the mobile phase is sufficiently large, the phenomenon known as viscous fingering can be induced. Viscous fingering is a flow instability phenomenon that occurs at the interface between two fluids with different viscosities. In liquid chromatography, viscous fingering results in the solute band undergoing a change in form as it enters into the chromatography column. Moreover, even in the absence of viscous fingering, band shapes change shape at low viscosity contrasts.more » These changes can result in a noticeable change in separation performance, with the result depending on whether the solvent pushing the solute plug has a higher or lower viscosity than the solute plug. These viscosity induced changes become more important as the solute injection volume increases and hence understanding the process becomes critical in the implementation of multidimensional HPLC techniques, since in these techniques the sample injection plug into the second dimension is an order of magnitude greater than in one-dimensional HPLC. This review article assesses the current understanding of the viscosity contrast induced processes as they relate to liquid chromatographic separation behaviour.« less

  2. Measuring viscosity with a resonant magnetic perturbation in the MST RFP

    NASA Astrophysics Data System (ADS)

    Fridström, Richard; Munaretto, Stefano; Frassinetti, Lorenzo; Chapman, Brett; Brunsell, Per; Sarff, John; MST Team

    2016-10-01

    Application of an m = 1 resonant magnetic perturbation (RMP) causes braking and locking of naturally rotating m = 1 tearing modes (TMs) in the MST RFP. The experimental TM dynamics are replicated by a theoretical model including the interaction between the RMP and multiple TMs [Fridström PoP 23, 062504 (2016)]. The viscosity is the only free parameter in the model, and it is chosen such that model TM velocity evolution matches that of the experiment. The model does not depend on the means by which the natural rotation is generated. The chosen value of the viscosity, about 40 m2/s, is consistent with separate measurements in MST using a biased probe to temporarily spin up the plasma. This viscosity is about 100 times larger than the classical prediction, likely due to magnetic stochasticity in the core of these plasmas. Viscosity is a key parameter in visco-resistive MHD codes like NIMROD. The validation of these codes requires measurement of the viscosity over a broad parameter range, which will now be possible with the RMP technique that, unlike the biased probe, is not limited to low-energy-density plasmas. Estimation with the RMP technique of the viscosity in several MST discharges suggests that the viscosity decreases as the electron beta increases. Work supported by USDOE.

  3. Reducing the Viscosity of Blood by Pulsed Magnetic Field

    NASA Astrophysics Data System (ADS)

    Tao, R.; Huang, K.

    2010-03-01

    Blood viscosity is a major player in heart disease. When blood is viscous, in addition to a high blood pressure required for the blood circulation, blood vessel walls are also easy to be damaged. While this issue is very important, currently the only method to reduce the blood viscosity is to take medicine, such as aspirin. Here we report our new finding that the blood viscosity can be reduced by pulsed magnetic field. Blood is a suspension of red blood cells (erythrocytes), white blood cells (leukocytes) and platelets in plasma, a complex solution of gases, salts, proteins, carbohydrates, and lipids. The base liquid, plasma, has low viscosity. The effective viscosity of whole blood increases mainly due to the red blood cells, which have a volume fraction about 40% or above. Red blood cells contain iron and are sensitive to magnetic field. Therefore, when we apply a strong magnetic field, the red cells make their diameters align in the field direction to form short chains. This change in rheology reduces the effective viscosity as high as 20-30%. While this reduction is not permanent, it lasts for several hours and repeatable. The reduction rate can be controlled by selecting suitable magnetic field and duration of field application to make blood viscosity within the normal range.

  4. Effects of variable properties on MHD heat and mass transfer flow near a stagnation point towards a stretching sheet in a porous medium with thermal radiation

    NASA Astrophysics Data System (ADS)

    M. Salem, A.; Rania, Fathy

    2012-05-01

    The effect of variable viscosity and thermal conductivity on steady magnetohydrodynamic (MHD) heat and mass transfer flow of viscous and incompressible fluid near a stagnation point towards a permeable stretching sheet embedded in a porous medium are presented, taking into account thermal radiation and internal heat genberation/absorbtion. The stretching velocity and the ambient fluid velocity are assumed to vary linearly with the distance from the stagnation point. The Rosseland approximation is used to describe the radiative heat flux in the energy equation. The governing fundamental equations are first transformed into a system of ordinary differential equations using a scaling group of transformations and are solved numerically by using the fourth-order Rung—Kutta method with the shooting technique. A comparison with previously published work has been carried out and the results are found to be in good agreement. The results are analyzed for the effect of different physical parameters, such as the variable viscosity and thermal conductivity, the ratio of free stream velocity to stretching velocity, the magnetic field, the porosity, the radiation and suction/injection on the flow, and the heat and mass transfer characteristics. The results indicate that the inclusion of variable viscosity and thermal conductivity into the fluids of light and medium molecular weight is able to change the boundary-layer behavior for all values of the velocity ratio parameter λ except for λ = 1. In addition, the imposition of fluid suction increases both the rate of heat and mass transfer, whereas fluid injection shows the opposite effect.

  5. The Effect of Lengthening Cation Ether Tails on Ionic Liquid Properties

    DOE PAGES

    Lall-Ramnarine, S.; Rodriguez, C.; Fernandez, R.; ...

    2016-08-30

    In order to explore the effect of multiple ether functionalities on ionic liquid properties, a series of ten pyrrolidinium ionic liquids and ten imidazolium ionic liquids bearing ether and alkyl side chains of varying lengths (4 to 10 atoms in length) were prepared for this study. Their physical properties, such as viscosity, conductivity and thermal profile were measured and compared. Consistent with earlier literature, a single ether substituent substantially decreases the viscosity of pyrrolidinium and imidazolium ILs compared to their alkyl congeners. Remarkably, as the number of ether units in the pyrrolidinium ILs increases there is hardly any increase inmore » the viscosity, in contrast to alkylpyrrolidinium ILs where the viscosity increases steadily with chain length. Viscosities of imidazolium ether ILs increase with chain length but always remain well below their alkyl congeners. These results provide significant insight on the choice of starting materials for researchers designing ILs for specific applications.« less

  6. Effect of Bamboo Viscose on the Wicking and Moisture Management Properties of Gauze

    NASA Astrophysics Data System (ADS)

    Akbar, Abdul R.; Su, Siwei; Amjad, Bilal; Cai, Yingjie; Lin, Lina

    2017-12-01

    Bamboo viscose or regenerated cellulose fibers were used to check their absorbency properties effect on the wicking and moisture management in gauzes. Bamboo viscose and cotton fibers were spun into five different yarn samples with different fiber proportion by ring spinning. Fifteen different gauze samples were made of these yarn samples. The gauze samples were subjected to wicking test to check the wicking ability. Water vapor transmission test was applied to check the vapor transmission rate. These tests were applied to measure the effectiveness of bamboo viscose, cotton and blended gauze samples in wound healing. Pure bamboo gauzes and gauzes with high content of bamboo fiber, i.e. 75B:25C and 50B:50C, shows better wicking and vapor transmission properties. It makes gauzes with high bamboo viscose suitable for wound care applications because of moisture absorbency.

  7. Multigrid calculation of three-dimensional viscous cascade flows

    NASA Technical Reports Server (NTRS)

    Arnone, A.; Liou, M.-S.; Povinelli, L. A.

    1991-01-01

    A 3-D code for viscous cascade flow prediction was developed. The space discretization uses a cell-centered scheme with eigenvalue scaling to weigh the artificial dissipation terms. Computational efficiency of a four stage Runge-Kutta scheme is enhanced by using variable coefficients, implicit residual smoothing, and a full multigrid method. The Baldwin-Lomax eddy viscosity model is used for turbulence closure. A zonal, nonperiodic grid is used to minimize mesh distortion in and downstream of the throat region. Applications are presented for an annular vane with and without end wall contouring, and for a large scale linear cascade. The calculation is validated by comparing with experiments and by studying grid dependency.

  8. Multigrid calculation of three-dimensional viscous cascade flows

    NASA Technical Reports Server (NTRS)

    Arnone, A.; Liou, M.-S.; Povinelli, L. A.

    1991-01-01

    A three-dimensional code for viscous cascade flow prediction has been developed. The space discretization uses a cell-centered scheme with eigenvalue scaling to weigh the artificial dissipation terms. Computational efficiency of a four-stage Runge-Kutta scheme is enhanced by using variable coefficients, implicit residual smoothing, and a full-multigrid method. The Baldwin-Lomax eddy-viscosity model is used for turbulence closure. A zonal, nonperiodic grid is used to minimize mesh distortion in and downstream of the throat region. Applications are presented for an annular vane with and without end wall contouring, and for a large-scale linear cascade. The calculation is validated by comparing with experiments and by studying grid dependency.

  9. Rheology and tribology of lubricants with polymeric viscosity modifiers

    NASA Astrophysics Data System (ADS)

    Babak, LotfizadehDehkordi

    Elastohydrodynamic lubrication (EHL) theory has been used to model the lubrication state of antifriction machine elements, where initial viscosity and pressure viscosity coefficients are essential parameters in film thickness modeling. Since the pressures of lubricants in the contact zone can be very high, it is important to know the rheological properties of lubricants in these pressure and temperature regimes. The characteristics of viscosity behavior as a function of pressure are also essential for a universal definition of the pressure viscosity coefficient in order to estimate film thickness in an EHL regime. In this study, viscosities and pressure-viscosity coefficients of ten commercial engine and gear oils and seventeen laboratory-produced oil/polymer viscosity modifiers (VM) additives are measured up to 1.3 GPa at 40, 75 and 100 °C. For the first time, a sharp increase in the viscosity and piezoviscous factor is observed in both mineral-based and synthetic-based oils with different VMs. Analysis of the experimental results indicates that sharp increase in viscosity observed in these experiments are believed to arise from physical changes in the VMs, that is liquid-solid phase transition. Evidence is offered that polymer properties such as molecular weight, concentration and structure influence the onset of the phase transitions. A modified Yasutomi model, which normally describes the pressure dependence of the viscosity of lubricants very well, fails to predict the viscosity of the specimens above the onset of sharp increase in viscosity. A design of experiment (DOE) analysis using Design-Expert software indicates that pressure and temperature are the most critical parameters in the viscosity variation. Tribological tests demonstrate that wear in the contact, zone occurs at temperatures and stresses that coincides with the VM phase transitions in both commercial and laboratory synthesized oil/VMs. Tribological results also indicate that the onset of the sharp increase in viscosity can have significant and unanticipated consequences on the elastohydrodynamic contact and can adversely affect EHL theory. The onset of the steep rise in viscosity may also affect the torque and power losses in a mechanical system. Hence, this previously unknown behavior of the lubricant with VMs should be seriously considered in the application of lubricant in mechanical system.

  10. Determination of Extensional Rheological Properties by Hyperbolic Contraction Flow

    NASA Astrophysics Data System (ADS)

    Stading, Mats

    2008-07-01

    Extensional rheologyy is important for diverse applications such as processing of viscoelastic fluids, mouthfeel of semi-solid foods, cell mitosis and baking, and is also a useful tool for testing the applicability of constitutive equations. Despite the documented influence of extensional rheological properties, it is seldom measured due to experimental difficulties. There are only commercial equipments available for low-viscosity fluids by Capillary Breakup and for polymer melts by Meissner-type winding of ribbons around cylinders. Both methods have limited applicability for medium-viscosity fluids such as foods and other biological systems. Contraction flows are extensively studied and a new test method has been developed based on contraction flow through a hyperbolic nozzle. The method is suitable for medium-viscosity fluids and has been validated by comparison to results from Filament Stretching and Capillary Breakup. The hyperbolic contraction flow method has been used to characterize food and medical systems, distinguish between different products having equal shear behavior, quantify ropy mouth feel and to predict foaming behavior of biopolymers.

  11. Microfluidic Bioprinting of Heterogeneous 3D Tissue Constructs Using Low-Viscosity Bioink.

    PubMed

    Colosi, Cristina; Shin, Su Ryon; Manoharan, Vijayan; Massa, Solange; Costantini, Marco; Barbetta, Andrea; Dokmeci, Mehmet Remzi; Dentini, Mariella; Khademhosseini, Ali

    2016-01-27

    A novel bioink and a dispensing technique for 3D tissue-engineering applications are presented. The technique incorporates a coaxial extrusion needle using a low-viscosity cell-laden bioink to produce highly defined 3D biostructures. The extrusion system is then coupled to a microfluidic device to control the bioink arrangement deposition, demonstrating the versatility of the bioprinting technique. This low-viscosity cell-responsive bioink promotes cell migration and alignment within each fiber organizing the encapsulated cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Viscosity measurements of CO2-in-water foam with dodecyl polypropoxy sulfate surfactants for enhanced oil recovery application

    NASA Astrophysics Data System (ADS)

    Pramudita, Ria Ayu; Ryoo, Won Sun

    2016-08-01

    Apparent viscosities of CO2-in-water foams were measured in a wide range of shear rate from 50 to 105 inverse second for enhanced oil recovery (EOR) application. The CO2-in-water dispersions, made of 50:50 weight proportions of CO2 and water with 1 wt.% surfactant concentration, were prepared in high-pressure recirculation apparatus under pressure where CO2 density becomes 0.7, 0.8, and 0.9 g/mL at each temperature of 35, 45, and 55°C. The surfactants used for the foam generation were sodium dodecyl polypropoxy sulfates with average propoxylation degrees of 4.7 and 6.2. The foam viscosity showed shear thinning behaviors with power-law indices ranging from 0.80 to 0.85, and approached a Newtonian regime in the lower shear rate range at several tens of inverse second. Zero-shear viscosity values projected from experimental data based on Ellis model were as high as 57.4 mPa·s and enough to control the mobility of water and CO2 in oil reservoirs.

  13. g-Jitter Mixed Convective Slip Flow of Nanofluid past a Permeable Stretching Sheet Embedded in a Darcian Porous Media with Variable Viscosity

    PubMed Central

    Uddin, Mohammed J.; Khan, Waqar A.; Amin, Norsarahaida S.

    2014-01-01

    The unsteady two-dimensional laminar g-Jitter mixed convective boundary layer flow of Cu-water and Al2O3-water nanofluids past a permeable stretching sheet in a Darcian porous is studied by using an implicit finite difference numerical method with quasi-linearization technique. It is assumed that the plate is subjected to velocity and thermal slip boundary conditions. We have considered temperature dependent viscosity. The governing boundary layer equations are converted into non-similar equations using suitable transformations, before being solved numerically. The transport equations have been shown to be controlled by a number of parameters including viscosity parameter, Darcy number, nanoparticle volume fraction, Prandtl number, velocity slip, thermal slip, suction/injection and mixed convection parameters. The dimensionless velocity and temperature profiles as well as friction factor and heat transfer rates are presented graphically and discussed. It is found that the velocity reduces with velocity slip parameter for both nanofluids for fluid with both constant and variable properties. It is further found that the skin friction decreases with both Darcy number and momentum slip parameter while it increases with viscosity variation parameter. The surface temperature increases as the dimensionless time increases for both nanofluids. Nusselt numbers increase with mixed convection parameter and Darcy numbers and decreases with the momentum slip. Excellent agreement is found between the numerical results of the present paper with published results. PMID:24927277

  14. Proteus two-dimensional Navier-Stokes computer code, version 2.0. Volume 3: Programmer's reference

    NASA Technical Reports Server (NTRS)

    Towne, Charles E.; Schwab, John R.; Bui, Trong T.

    1993-01-01

    A computer code called Proteus 2D was developed to solve the two-dimensional planar or axisymmetric, Reynolds-averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The objective in this effort was to develop a code for aerospace propulsion applications that is easy to use and easy to modify. Code readability, modularity, and documentation were emphasized. The governing equations are solved in generalized nonorthogonal body-fitted coordinates, by marching in time using a fully-coupled ADI solution procedure. The boundary conditions are treated implicitly. All terms, including the diffusion terms, are linearized using second-order Taylor series expansions. Turbulence is modeled using either an algebraic or two-equation eddy viscosity model. The thin-layer or Euler equations may also be solved. The energy equation may be eliminated by the assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used. Several time step options are available for convergence acceleration. The documentation is divided into three volumes. The Programmer's Reference contains detailed information useful when modifying the program. The program structure, the Fortran variables stored in common blocks, and the details of each subprogram are described.

  15. Proteus three-dimensional Navier-Stokes computer code, version 1.0. Volume 3: Programmer's reference

    NASA Technical Reports Server (NTRS)

    Towne, Charles E.; Schwab, John R.; Bui, Trong T.

    1993-01-01

    A computer code called Proteus 3D was developed to solve the three-dimensional, Reynolds-averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The objective in this effort was to develop a code for aerospace propulsion applications that is easy to use and easy to modify. Code readability, modularity, and documentation were emphasized. The governing equations are solved in generalized nonorthogonal body fitted coordinates, by marching in time using a fully-coupled ADI solution procedure. The boundary conditions are treated implicitly. All terms, including the diffusion terms, are linearized using second-order Taylor series expansions. Turbulence is modeled using either an algebraic or two-equation eddy viscosity model. The thin-layer or Euler equations may also be solved. The energy equation may be eliminated by the assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used. Several time step options are available for convergence acceleration. The documentation is divided into three volumes. The Programmer's Reference contains detailed information useful when modifying the program. The program structure, the Fortran variables stored in common blocks, and the details of each subprogram are described.

  16. Electron-processing technology: A promising application for the viscose industry

    NASA Astrophysics Data System (ADS)

    Stepanik, T. M.; Rajagopal, S.; Ewing, D.; Whitehouse, R.

    1998-06-01

    In marketing its IMPELA ® line of high power, high-throughput industrial accelerators, Atomic Energy of Canada Limited (AECL) is working with viscose (rayon) companies world-wide to integrate electron-processing technology as part of the viscose manufacturing process. The viscose industry converts cellulose wood pulp into products such as staple fiber, filament, cord, film, packaging, and non-edible sausage casings. This multibillion dollar industry is currently suffering from high production costs, and is facing increasingly stringent environmental regulations. The use of electron-treated pulp can significantly lower production costs and can provide equally significant environmental benefits. This paper describes our current understanding of the benefits of using electron-treated pulp in this process, and AECL's efforts in developing this technology.

  17. Surrogate immiscible liquid pairs with refractive indexes matchable over a wide range of density and viscosity ratios

    NASA Astrophysics Data System (ADS)

    Saksena, Rajat; Christensen, Kenneth T.; Pearlstein, Arne J.

    2015-08-01

    In liquid-liquid flows, use of optical diagnostics is limited by interphase refractive index mismatch, which leads to optical distortion and complicates data interpretation, and sometimes also by opacity. Both problems can be eliminated using a surrogate pair of immiscible index-matched transparent liquids, whose density and viscosity ratios match corresponding ratios for the original liquid pair. We show that a wide range of density and viscosity ratios is accessible using aqueous solutions of 1,2-propanediol and CsBr (for which index, density, and viscosity are available), and solutions of light and heavy silicone oils and 1-bromooctane (for which we measured the same properties at 119 compositions). For each liquid phase, polynomials in the composition variables, least-squares fitted to index and density and to the logarithm of kinematic viscosity, were used to determine accessible density and viscosity ratios for each matchable index. Index-matched solution pairs can be prepared with density and viscosity ratios equal to those for water-liquid CO2 at 0 °C over a range of pressure (allowing water-liquid CO2 behavior at inconveniently high pressure to be simulated by 1-bar experiments), and for water-crude oil and water-trichloroethylene (avoiding opacity and toxicity problems, respectively), each over a range of temperature. For representative index-matched solutions, equilibration changes index, density, and viscosity only slightly, and mass spectrometry and elemental analysis show that no component of either phase has significant interphase solubility. Finally, procedures are described for iteratively reducing the residual index mismatch in surrogate solution pairs prepared on the basis of approximate polynomial fits to experimental data, and for systematically dealing with nonzero interphase solubility.

  18. Fabrication of Biopolymer Nanofibers of Hyaluronic Acid via Electrospinning

    NASA Astrophysics Data System (ADS)

    Young, Denice; Queen, Hailey; Krause, Wendy

    2006-03-01

    Electrospinning is a novel technology that uses an electric field to form fibrous materials from a polymer solution. Unlike traditional spinning techniques, electrospinning can produce fibers on the order of 100 nm that can be utilized in applications where nanoscale fibers are necessary for successful implementation, including tissue engineering. Hyaluronic acid (HA) is a widely used biopolymer found in the extracellular matrix and currently marketed in medical applications for joint lubrications and tissue engineering. The high viscosity and surface tension of HA make it an unlikely candidate for electrospinning processes as viscosity is an important parameter in successful electrospinning. To promote HA fiber formation by electrospinning, the effects of salt (NaCl), which is used to reduce the viscosity of aqueous HA solutions; molecular weight of the HA; and an additional biocompatible polymer (e.g., PEO) are under investigation.

  19. Relationship between viscosity of the ankle joint complex and functional ankle instability for inversion ankle sprain patients.

    PubMed

    Lin, Che-Yu; Kang, Jiunn-Horng; Wang, Chung-Li; Shau, Yio-Wha

    2015-03-01

    Measurement of viscosity of the ankle joint complex is a novel method to assess mechanical ankle instability. In order to further investigate the clinical significance of the method, this study intended to investigate the relationship between ankle viscosity and severity of functional ankle instability. Cross-sectional study. 15 participants with unilateral inversion ankle sprain and 15 controls were recruited. Their ankles were further classified into stable and unstable ankles. Ankle viscosity was measured by an instrumental anterior drawer test. Severity of functional ankle instability was measured by the Cumberland Ankle Instability Tool. Unstable ankles were compared with stable ankles. Injured ankles were compared with uninjured ankles of both groups. The spearman's rank correlation coefficient was applied to determine the relationship between ankle viscosity and severity of functional ankle instability in unstable ankles. There was a moderate relationship between ankle viscosity and severity of functional ankle instability (r=-0.64, p<0.0001). Unstable ankles exhibited significantly lower viscosity (p<0.005) and more severe functional ankle instability (p<0.0001) than stable ankles. Injured ankles exhibited significantly lower viscosity and more severe functional ankle instability than uninjured ankles (p<0.0001). There was a moderate relationship between ankle viscosity and severity of functional ankle instability. This finding suggested that, severity of functional ankle instability may be partially attributed to mechanical insufficiencies such as the degenerative changes in ankle viscosity following the inversion ankle sprain. In clinical application, measurement of ankle viscosity could be a useful tool to evaluate severity of chronic ankle instability. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  20. Synthesis of oxidized guar gum by dry method and its application in reactive dye printing.

    PubMed

    Gong, Honghong; Liu, Mingzhu; Zhang, Bing; Cui, Dapeng; Gao, Chunmei; Ni, Boli; Chen, Jiucun

    2011-12-01

    The aim of this study was to prepare oxidized guar gum with a simple dry method, basing on guar gum, hydrogen peroxide and a small amount of solvent. To obtain a product with suitable viscosity for reactive dye printing, the effects of various factors such as the amount of oxidant and solvent, reaction temperature and time were studied with respect to the viscosity of reaction products. The product was characterized by Fourier transform infrared spectroscopy, size exclusion chromatography, scanning electron microscopy and differential scanning calorimetry. The hydrated rate of guar gum and oxidized guar gum was estimated through measuring the required time when their solutions (1%, w/v) reached the maximum viscosity. The effects of the salt concentration and pH on viscosity of the resultant product were studied. The mixed paste containing oxidized guar gum and carboxymethyl starch was prepared and its viscosity was determined by the viscometer. The rheological property of the mixed paste was appraised by the printing viscosity index. In addition, the applied effect of mixed paste in reactive dye printing was examined by assessing the fabric stiffness, color yield and sharp edge to the printed image in comparison with sodium alginate. And the results indicated that the mixed paste could partially replace sodium alginate as thickener in reactive dye printing. The study also showed that the method was low cost and eco-friendly and the product would have an extensive application in reactive dye printing. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Calculated viscosity-distance dependence for some actively flowing lavas

    NASA Technical Reports Server (NTRS)

    Pieri, David

    1987-01-01

    The importance of viscosity as a gauge of the various energy and momentum dissipation regimes of lava flows has been realized for a long time. Nevertheless, despite its central role in lava dynamics and kinematics, it remains among the most difficult of flow physical properties to measure in situ during an eruption. Attempts at reconstructing the actual emplacement viscosities of lava flows from their solidified topographic form are difficult. Where data are available on the position of an advancing flow front as a function of time, it is possible to calculate the effective viscosity of the front as a function of distance from the vent, under the assumptions of a steady state regime. As an application and test of an equation given, relevant parameters from five recent flows on Mauna Loa and Kilauea were utilized to infer the dynamic structure of their aggregate flow front viscosity as they advanced, up to cessation. The observed form of the viscosity-distance relation for the five active Hawaiian flows examined appears to be exponential, with a rapid increase just before the flows stopped as one would expect.

  2. Fluorescence lifetime imaging of optically levitated aerosol: a technique to quantitatively map the viscosity of suspended aerosol particles.

    PubMed

    Fitzgerald, C; Hosny, N A; Tong, H; Seville, P C; Gallimore, P J; Davidson, N M; Athanasiadis, A; Botchway, S W; Ward, A D; Kalberer, M; Kuimova, M K; Pope, F D

    2016-08-21

    We describe a technique to measure the viscosity of stably levitated single micron-sized aerosol particles. Particle levitation allows the aerosol phase to be probed in the absence of potentially artefact-causing surfaces. To achieve this feat, we combined two laser based techniques: optical trapping for aerosol particle levitation, using a counter-propagating laser beam configuration, and fluorescent lifetime imaging microscopy (FLIM) of molecular rotors for the measurement of viscosity within the particle. Unlike other techniques used to measure aerosol particle viscosity, this allows for the non-destructive probing of viscosity of aerosol particles without interference from surfaces. The well-described viscosity of sucrose aerosol, under a range of relative humidity conditions, is used to validate the technique. Furthermore we investigate a pharmaceutically-relevant mixture of sodium chloride and salbutamol sulphate under humidities representative of in vivo drug inhalation. Finally, we provide a methodology for incorporating molecular rotors into already levitated particles, thereby making the FLIM/optical trapping technique applicable to real world aerosol systems, such as atmospheric aerosols and those generated by pharmaceutical inhalers.

  3. Direct numerical simulation of incompressible acceleration-driven variable-density turbulence

    NASA Astrophysics Data System (ADS)

    Gat, Ilana; Matheou, Georgios; Chung, Daniel; Dimotakis, Paul

    2015-11-01

    Fully developed turbulence in variable-density flow driven by an externally imposed acceleration field, e.g., gravity, is fundamental in many applications, such as inertial confinement fusion, geophysics, and astrophysics. Aspects of this turbulence regime are poorly understood and are of interest to fluid modeling. We investigate incompressible acceleration-driven variable-density turbulence by a series of direct numerical simulations of high-density fluid in-between slabs of low-density fluid, in a triply-periodic domain. A pseudo-spectral numerical method with a Helmholtz-Hodge decomposition of the pressure field, which ensures mass conservation, is employed, as documented in Chung & Pullin (2010). A uniform dynamic viscosity and local Schmidt number of unity are assumed. This configuration encapsulates a combination of flow phenomena in a temporally evolving variable-density shear flow. Density ratios up to 10 and Reynolds numbers in the fully developed turbulent regime are investigated. The temporal evolution of the vertical velocity difference across the shear layer, shear-layer growth, mean density, and Reynolds number are discussed. Statistics of Lagrangian accelerations of fluid elements and of vorticity as a function of the density ratio are also presented. This material is based upon work supported by the AFOSR, the DOE, the NSF GRFP, and Caltech.

  4. Relationship between blood viscosity and infarct size in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention.

    PubMed

    Cecchi, Emanuele; Liotta, Agatina Alessandriello; Gori, Anna Maria; Valente, Serafina; Giglioli, Cristina; Lazzeri, Chiara; Sofi, Francesco; Gensini, Gian Franco; Abbate, Rosanna; Mannini, Lucia

    2009-05-15

    Previous studies explored the association between hemorheological alterations and acute myocardial infarction, pointing out the role of hematological components on microvascular flow. The aim of this study was to evaluate the association between blood viscosity and infarct size, estimated by creatine kinase (CK) peak activity and cardiac Troponin I (cTnI) peak concentration in ST-segment elevation myocardial infarction (STEMI) patients after primary percutaneous coronary intervention (PCI). The study population included 197 patients with diagnosis of STEMI undergoing PCI. Hemorheological studies were performed by assessing whole blood viscosity (measured at shear rates of 0.512 s(-1) and 94.5 s(-1)) and plasma viscosity using the Rotational Viscosimeter LS 30 and erythrocyte deformability index by Myrenne filtrometer. Significant correlations between CK peak activity, cTnI peak concentration, left ventricular ejection fraction and hemorheological variables were observed. At linear regression analysis (adjusted for age, gender, traditional cardiovascular risk factors, renal dysfunction, timeliness of reperfusion, pre-PCI TIMI flow, infarct location, multivessel disease and previous coronary artery disease) leukocytes and whole blood viscosity at 0.512 s(-1) and 94.5 s(-1) were independently and positively associated with infarct size. These results demonstrate a significant and independent association between hemorheology and infarct size in STEMI patients after PCI suggesting that blood viscosity, in a condition of low flow, might worsen myocardial perfusion leading to an increased infarct size. The measurement of whole blood viscosity in STEMI patients could help to identify those who may benefit from new therapeutic strategies.

  5. Hematocrit is associated with carotid atherosclerosis in men but not in women.

    PubMed

    Irace, Concetta; Ciamei, Monica; Crivaro, Andrea; Fiaschi, Elio; Madia, Angela; Cortese, Claudio; Gnasso, Agostino

    2003-06-01

    It is known that blood and plasma viscosities are associated with clinical manifestations of atherosclerosis, though evidence is not conclusive particularly in women. To verify whether hematocrit and blood and plasma viscosities are independently associated with carotid atherosclerosis and whether their measurement can improve the definition of the global coronary heart disease (CHD) risk. Eight hundred and ninety-two participants in a cardiovascular disease prevention campaign were examined with regard to conventional CHD risk factors (age, blood pressure, lipids, glucose, body mass index, waist/hip ratio, cigarette smoking and diabetes), hematocrit and blood and plasma viscosities. According to the degree of carotid atherosclerosis, investigated by echo-Doppler, participants were divided in three groups: those without atherosclerosis, those with a low degree of atherosclerosis and those with a high degree of atherosclerosis. In men, age, blood pressure, intima-media thickness (IMT), hematocrit (47.4+/-3.7%, 47.8+/-3.7%, 48.4+/-3.7%, P<0.05) and blood viscosity (4.69+/-0.51 cP, 4.77+/-0.55 cP, 4.82+/-0.51 cP, P=0.05) increased with increasing degree of carotid atherosclerosis. In women, age, blood pressure, total cholesterol and low-density lipoprotein-cholesterol, IMT and plasma viscosity (1.42+/-0.12 cP, 1.44+/-0.11 cP, 1.46+/-0.13 cP, P<0.05) increased with increasing carotid score. Analysis of covariance (ANCOVA) showed that after adjusting for hematocrit, blood viscosity was no longer different in the three groups. In discriminant analysis, hematocrit, among the hemorheological variables investigated, was independently associated with carotid score in men (F=3.66, P<0.05). Neither hematocrit nor blood and plasma viscosities were significantly associated with carotid score in women. These findings suggest that in men, both hematocrit and blood viscosity are related to carotid atherosclerosis but hematocrit would appear to have an independent effect over and above that mediated by viscosity.

  6. Viscosity Dependence of Some Protein and Enzyme Reaction Rates: Seventy-Five Years after Kramers.

    PubMed

    Sashi, Pulikallu; Bhuyan, Abani K

    2015-07-28

    Kramers rate theory is a milestone in chemical reaction research, but concerns regarding the basic understanding of condensed phase reaction rates of large molecules in viscous milieu persist. Experimental studies of Kramers theory rely on scaling reaction rates with inverse solvent viscosity, which is often equated with the bulk friction coefficient based on simple hydrodynamic relations. Apart from the difficulty of abstraction of the prefactor details from experimental data, it is not clear why the linearity of rate versus inverse viscosity, k ∝ η(-1), deviates widely for many reactions studied. In most cases, the deviation simulates a power law k ∝ η(-n), where the exponent n assumes fractional values. In rate-viscosity studies presented here, results for two reactions, unfolding of cytochrome c and cysteine protease activity of human ribosomal protein S4, show an exceedingly overdamped rate over a wide viscosity range, registering n values up to 2.4. Although the origin of this extraordinary reaction friction is not known at present, the results indicate that the viscosity exponent need not be bound by the 0-1 limit as generally suggested. For the third reaction studied here, thermal dissociation of CO from nativelike cytochrome c, the rate-viscosity behavior can be explained using Grote-Hynes theory of time-dependent friction in conjunction with correlated motions intrinsic to the protein. Analysis of the glycerol viscosity-dependent rate for the CO dissociation reaction in the presence of urea as the second variable shows that the protein stabilizing effect of subdenaturing amounts of urea is not affected by the bulk viscosity. It appears that a myriad of factors as diverse as parameter uncertainty due to the difficulty of knowing the exact reaction friction and both mode and consequences of protein-solvent interaction work in a complex manner to convey as though Kramers rate equation is not absolute.

  7. Probing the molecular design of hyper-branched aryl polyesters towards lubricant applications

    DOE PAGES

    Robinson, Joshua W.; Zhou, Yan; Bhattacharya, Priyanka; ...

    2016-01-05

    We report novel polymeric materials that may be used as viscosity index improvers (VII) for lubricant applications. Our efforts included probing the comb-burst hyper-branched aryl polyester architecture for beneficial viscosity and friction behavior when utilized as an additive in a group I oil. The monomer was designed as to undergo polymerization via polycondensation within the architectural construct (AB2), typical of hyperbranched polymers. The monomer design was comprised of aliphatic arms (12 or 16 methylenes) to provide the necessary lipophilicity to achieve solubility in a non-polar medium. Once polymerized, via catalyst and heat, the surface alcohols were functionalized with fatty acidsmore » (lauric and palmitic). Controlling the aliphatic nature of the internal arms and peripheral end-groups provided four unique flexible polymer designs. Changing the reaction time and concentration provided opportunities to investigate the influence of molecular weight and branching density on oil-solubility, viscosity, and friction. Oil-solubility was found to decrease with fewer internal carbons, but the number of internal carbons appears to have little influence on the bulk solution viscosity. Increased branching and degree of polymerization, and thus molecular weight, were found to reduce the solubility of these systems in the base oil. At concentrations of 2 wt % in a group I base oil, these polymer additives demonstrated improved viscosity index and reduced friction coefficient, validating the basic approach.« less

  8. Rheology and microstructure of dilute graphene oxide suspension

    NASA Astrophysics Data System (ADS)

    Tesfai, Waka; Singh, Pawan; Shatilla, Youssef; Iqbal, Muhammad Z.; Abdala, Ahmed A.

    2013-10-01

    Graphene and graphene oxide are potential candidates as nanofluids for thermal management applications. Here, we investigate the rheological properties and intrinsic viscosity of aqueous suspension of graphene and use the measured intrinsic viscosity to determine the aspect ratio of graphene oxide. Dilute suspension of graphene oxide (0.05 to 0.5 mg/mL) exhibits a shear thinning behavior at low shear rates followed by a shear-independent region that starts at shear rate between 5 and 100/s depending on the concentration. This shear thinning behavior becomes more pronounced with the increase of particle loading. Moreover, AFM imaging of the dried graphene oxide indicates the evolution of irregular and thin low fractal aggregates of 0.3-1.8 nm thickness at lower concentrations to oblate compact structures of 1-18 nm thickness of nanosheets at higher concentration. These observations elucidate the microstructure growth mechanisms of graphene oxide in multiphase systems, which are important for nanofluids applications and for dispersing graphene and graphene oxide in composite materials. The suspension has a very high intrinsic viscosity of 1661 due to the high graphene oxide aspect ratio. Based on this intrinsic viscosity, we predict graphene oxide aspect ratio of 2445. While the classical Einstein and Batchelor models underestimate the relative viscosity of graphene oxide suspension, Krieger-Dougherty prediction is in a good agreement with the experimental measurement.

  9. Probing the molecular design of hyper-branched aryl polyesters towards lubricant applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Joshua W.; Zhou, Yan; Bhattacharya, Priyanka

    We report novel polymeric materials that may be used as viscosity index improvers (VII) for lubricant applications. Our efforts included probing the comb-burst hyper-branched aryl polyester architecture for beneficial viscosity and friction behavior when utilized as an additive in a group I oil. The monomer was designed as to undergo polymerization via polycondensation within the architectural construct (AB2), typical of hyperbranched polymers. The monomer design was comprised of aliphatic arms (12 or 16 methylenes) to provide the necessary lipophilicity to achieve solubility in a non-polar medium. Once polymerized, via catalyst and heat, the surface alcohols were functionalized with fatty acidsmore » (lauric and palmitic). Controlling the aliphatic nature of the internal arms and peripheral end-groups provided four unique flexible polymer designs. Changing the reaction time and concentration provided opportunities to investigate the influence of molecular weight and branching density on oil-solubility, viscosity, and friction. Oil-solubility was found to decrease with fewer internal carbons, but the number of internal carbons appears to have little influence on the bulk solution viscosity. Increased branching and degree of polymerization, and thus molecular weight, were found to reduce the solubility of these systems in the base oil. At concentrations of 2 wt % in a group I base oil, these polymer additives demonstrated improved viscosity index and reduced friction coefficient, validating the basic approach.« less

  10. Experimental study of uncentralized squeeze film dampers

    NASA Technical Reports Server (NTRS)

    Quinn, R. D.

    1983-01-01

    The vibration response of a rotor system supported by a squeeze film damper (SFD) was experimentally investigated in order to provide experimental data in support of the Rotor/Stator Interactive Finite Element theoretical development. Part of the investigation required the designing and building of a rotor/SFD system that could operate with or without end seals in order to accommodate different SFD lengths. SFD variables investigated included clearance, eccentricity mass, fluid pressure, and viscosity and temperature. The results show inlet pressure, viscosity and clearance have significant influence on the damper performance and accompanying rotor response.

  11. Experimental Investigation of the Effects of Viscosity on the Drag and Base Pressure of Bodies of Revolution at a Mach Number 1.5

    NASA Technical Reports Server (NTRS)

    Chapman, Dean R; Perkins, Edward W

    1951-01-01

    Models were tested to evaluate effects of Reynolds number for both laminar and turbulent boundary layers. Principal geometric variables investigated were afterbody shape and length-diameter ratio. Force tests and base-pressure measurements were made. Schlieren photographs were used to analyze the effects of viscosity on flow separation and shock-wave configuration and to verify the condition of the boundary layer as deduced from the force tests. The results are discussed and compared with theoretical calculations.

  12. Analysis of turbulent heat transfer, mass transfer, and friction in smooth tubes at high Prandtl and Schmidt numbers

    NASA Technical Reports Server (NTRS)

    Deissler, Robert G

    1955-01-01

    The expression for eddy diffusivity from a previous analysis was modified in order to account for the effect of kinematic viscosity on the turbulence in the region close to a wall. By using the modified expression, good agreement was obtained between predicted and experimental results for heat and mass transfer at Prandtl and Schmidt numbers between 0.5 and 3000. The effects of length-to-diameter ratio and of variable viscosity were also investigated for a wide range of Prandtl numbers.

  13. Applying Magneto-rheology to Reduce Blood Viscosity and Suppress Turbulence to Prevent Heart Attacks

    NASA Astrophysics Data System (ADS)

    Tao, R.

    Heart attacks are the leading causes of death in USA. Research indicates one common thread, high blood viscosity, linking all cardiovascular diseases. Turbulence in blood circulation makes different regions of the vasculature vulnerable to development of atherosclerotic plaque. Turbulence is also responsible for systolic ejection murmurs and places heavier workload on heart, a possible trigger of heart attacks. Presently, neither medicine nor method is available to suppress turbulence. The only method to reduce the blood viscosity is to take medicine, such as aspirin. However, using medicine to reduce the blood viscosity does not help suppressing turbulence. In fact, the turbulence gets worse as the Reynolds number goes up with the viscosity reduction by the medicine. Here we report our new discovery: application of a strong magnetic field to blood along its flow direction, red blood cells are polarized in the magnetic field and aggregated into short chains along the flow direction. The blood viscosity becomes anisotropic: Along the flow direction the viscosity is significantly reduced, but in the directions perpendicular to the flow the viscosity is considerably increased. In this way, the blood flow becomes laminar, turbulence is suppressed, the blood circulation is greatly improved, and the risk for heart attacks is reduced. While these effects are not permanent, they last for about 24 hours after one magnetic therapy treatment.

  14. The Impacts of 3-D Earth Structure on GIA-Induced Crustal Deformation and Future Sea-Level Change in the Antarctic

    NASA Astrophysics Data System (ADS)

    Powell, E. M.; Hay, C.; Latychev, K.; Gomez, N. A.; Mitrovica, J. X.

    2016-12-01

    Glacial Isostatic Adjustment (GIA) models used to constrain the extent of past ice sheets and viscoelastic Earth structure, or to correct geodetic and geological observables for ice age effects, generally only consider depth-dependent variations in Earth viscosity and lithospheric structure. A et al. [2013] argued that 3-D Earth structure could impact GIA observables in Antarctica, but concluded that the presence of such structure contributes less to GIA uncertainty than do differences in Antarctic deglaciation histories. New seismic and geological evidence, however, indicates the Antarctic is underlain by complex, high amplitude variability in viscoelastic structure, including a low viscosity zone (LVZ) under West Antarctica. Hay et al. [2016] showed that sea-level fingerprints of modern melting calculated using such Earth models differ from those based on elastic or 1-D viscoelastic Earth models within decades of melting. Our investigation is motivated by two questions: (1) How does 3-D Earth structure, especially this LVZ, impact observations of GIA-induced crustal deformation associated with the last deglaciation? (2) How will 3-D Earth structure affect predictions of future sea-level rise in Antarctica? We compute the gravitationally self-consistent sea level, uplift, and gravity changes using the finite volume treatment of Latychev et al. [2005]. We consider four viscoelastic Earth models: a global 1-D model; a regional, West Antarctic-like 1-D model; a 3-D model where the lithospheric thickness varies laterally; and a 3-D model where both viscosity and lithospheric thickness vary laterally. For our Last Glacial Maximum to present investigations we employ ICE6g [Peltier et al., 2015]. For our present-future investigations we consider a melt scenario consistent with GRACE satellite gravity derived solutions [Harig et al., 2015]. Our calculations indicate that predictions of crustal deformations due to both GIA and ongoing melting are strongly influenced by 3-D lithospheric thickness and viscosity structure. Future sea level change due to ongoing melting is primarily influenced by 3-D viscosity structure. We show that 1-D Earth models built using regional inferences of viscosity and lithospheric thickness do not accurately capture the variability introduced by 3-D Earth structure.

  15. The Impacts of 3-D Earth Structure on GIA-Induced Crustal Deformation and Future Sea-Level Change in the Antarctic

    NASA Astrophysics Data System (ADS)

    Powell, E. M.; Hay, C.; Latychev, K.; Gomez, N. A.; Mitrovica, J. X.

    2017-12-01

    Glacial Isostatic Adjustment (GIA) models used to constrain the extent of past ice sheets and viscoelastic Earth structure, or to correct geodetic and geological observables for ice age effects, generally only consider depth-dependent variations in Earth viscosity and lithospheric structure. A et al. [2013] argued that 3-D Earth structure could impact GIA observables in Antarctica, but concluded that the presence of such structure contributes less to GIA uncertainty than do differences in Antarctic deglaciation histories. New seismic and geological evidence, however, indicates the Antarctic is underlain by complex, high amplitude variability in viscoelastic structure, including a low viscosity zone (LVZ) under West Antarctica. Hay et al. [2016] showed that sea-level fingerprints of modern melting calculated using such Earth models differ from those based on elastic or 1-D viscoelastic Earth models within decades of melting. Our investigation is motivated by two questions: (1) How does 3-D Earth structure, especially this LVZ, impact observations of GIA-induced crustal deformation associated with the last deglaciation? (2) How will 3-D Earth structure affect predictions of future sea-level rise in Antarctica? We compute the gravitationally self-consistent sea level, uplift, and gravity changes using the finite volume treatment of Latychev et al. [2005]. We consider four viscoelastic Earth models: a global 1-D model; a regional, West Antarctic-like 1-D model; a 3-D model where the lithospheric thickness varies laterally; and a 3-D model where both viscosity and lithospheric thickness vary laterally. For our Last Glacial Maximum to present investigations we employ ICE6g [Peltier et al., 2015]. For our present-future investigations we consider a melt scenario consistent with GRACE satellite gravity derived solutions [Harig et al., 2015]. Our calculations indicate that predictions of crustal deformations due to both GIA and ongoing melting are strongly influenced by 3-D lithospheric thickness and viscosity structure. Future sea level change due to ongoing melting is primarily influenced by 3-D viscosity structure. We show that 1-D Earth models built using regional inferences of viscosity and lithospheric thickness do not accurately capture the variability introduced by 3-D Earth structure.

  16. Dynamics of charged viscous dissipative cylindrical collapse with full causal approach

    NASA Astrophysics Data System (ADS)

    Shah, S. M.; Abbas, G.

    2017-11-01

    The aim of this paper is to investigate the dynamical aspects of a charged viscous cylindrical source by using the Misner approach. To this end, we have considered the more general charged dissipative fluid enclosed by the cylindrical symmetric spacetime. The dissipative nature of the source is due to the presence of dissipative variables in the stress-energy tensor. The dynamical equations resulting from such charged cylindrical dissipative source have been coupled with the causal transport equations for heat flux, shear and bulk viscosity, in the context of the Israel-Steward theory. In this case, we have the considered Israel-Steward transportation equations without excluding the thermodynamics viscous/heat coupling coefficients. The results are compared with the previous works in which such coefficients were excluded and viscosity variables do not satisfy the casual transportation equations.

  17. Effects of Amine and Anhydride Curing Agents on the VARTM Matrix Processing Properties

    NASA Technical Reports Server (NTRS)

    Grimsley, Brian W.; Hubert, Pascal; Song, Xiaolan; Cano, Roberto J.; Loos, Alfred C.; Pipes, R. Byron

    2002-01-01

    To ensure successful application of composite structure for aerospace vehicles, it is necessary to develop material systems that meet a variety of requirements. The industry has recently developed a number of low-viscosity epoxy resins to meet the processing requirements associated with vacuum assisted resin transfer molding (VARTM) of aerospace components. The curing kinetics and viscosity of two of these resins, an amine-cured epoxy system, Applied Poleramic, Inc. VR-56-4 1, and an anhydride-cured epoxy system, A.T.A.R.D. Laboratories SI-ZG-5A, have been characterized for application in the VARTM process. Simulations were carried out using the process model, COMPRO, to examine heat transfer, curing kinetics and viscosity for different panel thicknesses and cure cycles. Results of these simulations indicate that the two resins have significantly different curing behaviors and flow characteristics.

  18. Sensory and rheological characteristics of thickened liquids differing concentrations of a xanthan gum-based thickener.

    PubMed

    Kim, Hyeri; Hwang, Han-Im; Song, Ki-Won; Lee, Jeehyun

    2017-12-01

    The objectives of this study were to develop and compare sensory characteristics of beverages and soups thickened with different concentrations of a xanthan gum-based thickener, and to examine, using rheological measurement, whether the viscosity of the thickened liquids conformed to the recommendations of the National Dysphagia Diet (NDD) Task Force. Beverages tested included water, apple juice, orange juice, soymilk, and Yakult. The thickening agent was added to samples at concentrations of 1, 2, or 3%. Addition of the thickening agent had a significant effect on the appearance, texture, and starchy flavor, which were evaluated by descriptive sensory evaluation. The reference standards of viscosity used in sensory descriptive analysis could be useful to practitioners who have to make dysphagia diets and need to learn to make them properly. In rheological measurement, viscosity of thickened liquids in stationary state would be perceived as higher compared to that while swallowing, because of the shear thinning property. This could lead to noncompliance of the medical advice or malnutrition. It is necessary to determine optimal proportion of xanthan gum-based thickener or uncover alternatives, which have shear thinning properties lower than those of xanthan gum, for the acceptance of dysphagia patients. There was no pudding-like viscosity as classified by NDD, when prepared following instructions. Future studies should include higher concentrations of thickener to find out the concentration of the thickener resulting in pudding-like viscosity as recommended by NDD. When a manufacturer modifies or develops a xanthan gum-based thickener, findings from this study can be utilized to understand sensory and rheological characteristics of thickened liquid. For practitioners who have to make dysphagia diets, the reference standards of viscosity used in sensory descriptive analysis could be helpful for deciding the viscosity level of thickened liquids based only on visual evaluation. This study suggests manufacturers should provide clear direction for viscosity range and thickener concentration. Medical doctors should pay close attention to the risk of aspiration when prescribing pudding-like viscosity. Dietitians should understand the variability in achieving different levels of viscosity and should educate preparers who are responsible for making dysphagia meals. © 2017 Wiley Periodicals, Inc.

  19. Variable Viscosity Effects on Time Dependent Magnetic Nanofluid Flow past a Stretchable Rotating Plate

    NASA Astrophysics Data System (ADS)

    Ram, Paras; Joshi, Vimal Kumar; Sharma, Kushal; Walia, Mittu; Yadav, Nisha

    2016-01-01

    An attempt has been made to describe the effects of geothermal viscosity with viscous dissipation on the three dimensional time dependent boundary layer flow of magnetic nanofluids due to a stretchable rotating plate in the presence of a porous medium. The modelled governing time dependent equations are transformed a from boundary value problem to an initial value problem, and thereafter solved by a fourth order Runge-Kutta method in MATLAB with a shooting technique for the initial guess. The influences of mixed temperature, depth dependent viscosity, and the rotation strength parameter on the flow field and temperature field generated on the plate surface are investigated. The derived results show direct impact in the problems of heat transfer in high speed computer disks (Herrero et al. [1]) and turbine rotor systems (Owen and Rogers [2]).

  20. Viscosity models for pure hydrocarbons at extreme conditions: A review and comparative study

    DOE PAGES

    Baled, Hseen O.; Gamwo, Isaac K.; Enick, Robert M.; ...

    2018-01-12

    Here, viscosity is a critical fundamental property required in many applications in the chemical and oil industries. In this review the performance of seven select viscosity models, representative of various predictive and correlative approaches, is discussed and evaluated by comparison to experimental data of 52 pure hydrocarbons including straight-chain alkanes, branched alkanes, cycloalkanes, and aromatics. This analysis considers viscosity data to extremely high-temperature, high-pressure conditions up to 573 K and 300 MPa. Unsatisfactory results are found, particularly at high pressures, with the Chung-Ajlan-Lee-Starling, Pedersen-Fredenslund, and Lohrenz-Bray-Clark models commonly used for oil reservoir simulation. If sufficient experimental viscosity data are readilymore » available to determine model-specific parameters, the free volume theory and the expanded fluid theory models provide generally comparable results that are superior to those obtained with the friction theory, particularly at pressures higher than 100 MPa. Otherwise, the entropy scaling method by Lötgering-Lin and Gross is recommended as the best predictive model.« less

  1. Viscosity models for pure hydrocarbons at extreme conditions: A review and comparative study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baled, Hseen O.; Gamwo, Isaac K.; Enick, Robert M.

    Here, viscosity is a critical fundamental property required in many applications in the chemical and oil industries. In this review the performance of seven select viscosity models, representative of various predictive and correlative approaches, is discussed and evaluated by comparison to experimental data of 52 pure hydrocarbons including straight-chain alkanes, branched alkanes, cycloalkanes, and aromatics. This analysis considers viscosity data to extremely high-temperature, high-pressure conditions up to 573 K and 300 MPa. Unsatisfactory results are found, particularly at high pressures, with the Chung-Ajlan-Lee-Starling, Pedersen-Fredenslund, and Lohrenz-Bray-Clark models commonly used for oil reservoir simulation. If sufficient experimental viscosity data are readilymore » available to determine model-specific parameters, the free volume theory and the expanded fluid theory models provide generally comparable results that are superior to those obtained with the friction theory, particularly at pressures higher than 100 MPa. Otherwise, the entropy scaling method by Lötgering-Lin and Gross is recommended as the best predictive model.« less

  2. Light-Induced Gelling in a Micellar Fluid Based on a Zwitterionic Surfactant.

    NASA Astrophysics Data System (ADS)

    Kumar, Rakesh; Raghavan, Srinivasa

    2007-03-01

    Fluids with photoresponsive rheological properties (i.e. photorheological or PR fluids) can be useful in a range of applications, such as in dampers, sensors, and valves for microfluidic or MEMS devices. Previously, we have demonstrated a cationic surfactant-based PR fluid whose viscosity can be rapidly decreased by UV irradiation. This viscosity decrease was not reversible. Here, we describe a different formulation based on a zwitterionic surfactant that shows a rapid increase in viscosity (gelling) upon exposure to UV radiation. The formulation consists of the zwitterionic surfactant and a photosensitive cinnamic acid derivative. Initially, the viscosity of the fluid is low indicating the presence of small micelles. Upon UV irradiation, the cinnamic acid derivative is photoisomerized from trans to cis. In turn, the small micelles transform into long wormlike micelles, thus increasing the solution viscosity by more than five orders of magnitude. Small angle neutron scattering (SANS) data confirms the dramatic increase in micelle length. Possible reasons for such changes in micelle dimensions will be discussed.

  3. Inorganic/organic nanocomposites: Reaching a high filler content without increasing viscosity using core-shell structured nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benhadjala, W., E-mail: warda.benhadjala@cea.fr; CEA, LETI, Minatec Campus, 38000 Grenoble; Gravoueille, M.

    2015-11-23

    Extensive research is being conducted on the development of inorganic/organic nanocomposites for a wide variety of applications in microelectronics, biotechnologies, photonics, adhesives, or optical coatings. High filler contents are usually required to fully optimize the nanocomposites properties. However, numerous studies demonstrated that traditional composite viscosity increases with increasing the filler concentration reducing therefore significantly the material processability. In this work, we synthesized inorganic/organic core-shell nanocomposites with different shell thicknesses. By reducing the shell thickness while maintaining a constant core size, the nanoparticle molecular mass decreases but the nanocomposite filler fraction is correlatively increased. We performed viscosity measurements, which clearly highlightedmore » that intrinsic viscosity of hybrid nanoparticles decreases as the molecular mass decreases, and thus, as the filler fraction increases, as opposed to Einstein predictions about the viscosity of traditional inorganic/polymer two-phase mixtures. This exceptional behavior, modeled by Mark-Houwink-Sakurada equation, proves to be a significant breakthrough for the development of industrializable nanocomposites with high filler contents.« less

  4. Hyperviscosity for unstructured ALE meshes

    NASA Astrophysics Data System (ADS)

    Cook, Andrew W.; Ulitsky, Mark S.; Miller, Douglas S.

    2013-01-01

    An artificial viscosity, originally designed for Eulerian schemes, is adapted for use in arbitrary Lagrangian-Eulerian simulations. Changes to the Eulerian model (dubbed 'hyperviscosity') are discussed, which enable it to work within a Lagrangian framework. New features include a velocity-weighted grid scale and a generalised filtering procedure, applicable to either structured or unstructured grids. The model employs an artificial shear viscosity for treating small-scale vorticity and an artificial bulk viscosity for shock capturing. The model is based on the Navier-Stokes form of the viscous stress tensor, including the diagonal rate-of-expansion tensor. A second-order version of the model is presented, in which Laplacian operators act on the velocity divergence and the grid-weighted strain-rate magnitude to ensure that the velocity field remains smooth at the grid scale. Unlike sound-speed-based artificial viscosities, the hyperviscosity model is compatible with the low Mach number limit. The new model outperforms a commonly used Lagrangian artificial viscosity on a variety of test problems.

  5. Measuring Viscosity with a Levitating Magnet: Application to Complex Fluids

    ERIC Educational Resources Information Center

    Even, C.; Bouquet, F.; Remond, J.; Deloche, B.

    2009-01-01

    As an experimental project proposed to students in fourth year of university, a viscometer was developed, consisting of a small magnet levitating in a viscous fluid. The viscous force acting on the magnet is directly measured: viscosities in the range 10-10[superscript 6] mPa s are obtained. This experiment is used as an introduction to complex…

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barra, Giuseppina; Guadagno, Liberata; Simonet, Bartolome

    Different industrial mixing methods and some of their combinations (1) ultrasound; (2) stirring; (3) (4) by roller machine, (5) by gears machine (6) Ultrasound radiation + high stirring were investigated for incorporating Multi walled Carbon nanotubes (MWCNT) into a resin based on an aeronautical epoxy precursor, cured with 4,4′ diamine-dibenzylsulfone (DDS). The effect of different parameters, ultrasound intensity, number of cycles, type of blade, gears speed on the nanofiller dispersion were analyzed. The inclusion of the nanofiller in the resin causes a drastic increase in the viscosity, preventing the homogenization of the resin and a drastic increase in temperature inmore » the zones closest to the ultrasound probe. To overcome these challenges, the application of high speed agitation simultaneously with the application of ultrasonic radiation was used. This allows on the one hand a homogeneous dispersion, on the other hand an improvement of the dissipation of heat generated by ultrasonic radiation. A comprehensive study with parameters like viscosity and temperature was performed. It is necessary a balance between viscosity and temperature. Viscosity must be low enough to facilitate the dispersion and homogenization of the nanofillers, whereas the temperature cannot be too high because of re-agglomerations.« less

  7. Computer Modeling of Thermal Convection in Melts to Explain Glass Formation in Low Gravity and on Earth

    NASA Technical Reports Server (NTRS)

    Ray, Chandra S.; Ramachandran, Narayanan

    2006-01-01

    Experiments conducted up to this time on glass forming melts in the low gravity environment of space show that glasses prepared in low-g are more chemically homogeneous and more resistant to crystallization than the comparable glasses prepared at 1-g on Earth. This result is somewhat surprising and opposite to the accepted concept on glass formation for a melt. A hypothesis based on "shear thinning" of a melt, a decrease in viscosity with increasing shear stress, is proposed as an explanation for the observed low-gravity results. This paper describes detailed simulation procedures to test the role of thermal convection in introducing shear stress in glass forming melts, using a lithium disilcate melt as a model. The simulation system in its idealized version consists of a cylinder that is heated at one end and cooled at the other with gravity acting in a transverse direction to the thermal gradient. The side wall of the cylinder is assumed to be insulating. The governing equations of motion and energy are solved using variable properties for viscosity (Arrehenius and non-Arrehenius behaviors) and density (constant and temperature dependent). Other parametric variables in the calculations include gravity level and gravity vector orientation. The shear stress in the system are then computed as a function of gravity from the calculated values of maximum melt velocity, and its effect on melt viscosity (shear thinning) is predicted. Also included and discussed are the modeling efforts related to other potential convective processes in glass forming melts and their possible effects on melt viscosity.

  8. The impact of manufacturing variables on in vitro release of clobetasol 17-propionate from pilot scale cream formulations.

    PubMed

    Fauzee, Ayeshah Fateemah Beebee; Khamanga, Sandile Maswazi; Walker, Roderick Bryan

    2014-12-01

    The purpose of the study was to evaluate the effect of different homogenization speeds and times, anchor speeds and cooling times on the viscosity and cumulative % clobetasol 17-propionate released per unit area at 72 h from pilot scale cream formulations. A 2(4) full factorial central composite design for four independent variables were investigated. Thirty pilot scale batches of cream formulations were manufactured using a Wintech® cream/ointment plant. The viscosity and in vitro release of CP were monitored and compared to an innovator product that is commercially available on the South African market, namely, Dermovate® cream. Contour and three-dimensional response surface plots were produced and the viscosity and cumulative % CP released per unit area at 72 h were found to be primarily dependent on the homogenization and anchor speeds. An increase in the homogenization and anchor speeds appeared to exhibit a synergistic effect on the resultant viscosity of the cream whereas an antagonistic effect was observed for the in vitro release of CP from the experimental cream formulations. The in vitro release profiles were best fitted to a Higuchi model and diffusion proved to be the dominant mechanism of drug release that was confirmed by use of the Korsmeyer-Peppas model. The research was further validated and confirmed by the high prognostic ability of response surface methodology (RSM) with a resultant mean percentage error of (±SD) 0.17 ± 0.093 suggesting that RSM may be an efficient tool for the development and optimization of topical formulations.

  9. Structure-Property Relationships of Architectural Coatings by Neutron Methods

    NASA Astrophysics Data System (ADS)

    Nakatani, Alan

    2015-03-01

    Architectural coatings formulations are multi-component mixtures containing latex polymer binder, pigment, rheology modifiers, surfactants, and colorants. In order to achieve the desired flow properties for these formulations, measures of the underlying structure of the components as a function of shear rate and the impact of formulation variables on the structure is necessary. We have conducted detailed measurements to understand the evolution under shear of local microstructure and larger scale mesostructure in model architectural coatings formulations by small angle neutron scattering (SANS) and ultra small angle neutron scattering (USANS), respectively. The SANS results show an adsorbed layer of rheology modifier molecules exist on the surface of the latex particles. However, the additional hydrodynamic volume occupied by the adsorbed surface layer is insufficient to account for the observed viscosity by standard hard sphere suspension models (Krieger-Dougherty). The USANS results show the presence of latex aggregates, which are fractal in nature. These fractal aggregates are the primary structures responsible for coatings formulation viscosity. Based on these results, a new model for the viscosity of coatings formulations has been developed, which is capable of reproducing the observed viscosity behavior.

  10. Modeling the effects of the variability of temperature-related dynamic viscosity on the thermal-affected zone of groundwater heat-pump systems

    NASA Astrophysics Data System (ADS)

    Lo Russo, Stefano; Taddia, Glenda; Cerino Abdin, Elena

    2018-06-01

    Thermal perturbation in the subsurface produced in an open-loop groundwater heat pump (GWHP) plant is a complex transport phenomenon affected by several factors, including the exploited aquifer's hydrogeological and thermal characteristics, well construction features, and the temporal dynamics of the plant's groundwater abstraction and reinjection system. Hydraulic conductivity has a major influence on heat transport because plume propagation, which occurs primarily through advection, tends to degrade following conductive heat transport and convection within moving water. Hydraulic conductivity is, in turn, influenced by water reinjection because the dynamic viscosity of groundwater varies with temperature. This paper reports on a computational analysis conducted using FEFLOW software to quantify how the thermal-affected zone (TAZ) is influenced by the variation in dynamic viscosity due to reinjected groundwater in a well-doublet scheme. The modeling results demonstrate non-negligible groundwater dynamic-viscosity variation that affects thermal plume propagation in the aquifer. This influence on TAZ calculation was enhanced for aquifers with high intrinsic permeability and/or substantial temperature differences between abstracted and post-heat-pump-reinjected groundwater.

  11. Modeling the effects of the variability of temperature-related dynamic viscosity on the thermal-affected zone of groundwater heat-pump systems

    NASA Astrophysics Data System (ADS)

    Lo Russo, Stefano; Taddia, Glenda; Cerino Abdin, Elena

    2018-01-01

    Thermal perturbation in the subsurface produced in an open-loop groundwater heat pump (GWHP) plant is a complex transport phenomenon affected by several factors, including the exploited aquifer's hydrogeological and thermal characteristics, well construction features, and the temporal dynamics of the plant's groundwater abstraction and reinjection system. Hydraulic conductivity has a major influence on heat transport because plume propagation, which occurs primarily through advection, tends to degrade following conductive heat transport and convection within moving water. Hydraulic conductivity is, in turn, influenced by water reinjection because the dynamic viscosity of groundwater varies with temperature. This paper reports on a computational analysis conducted using FEFLOW software to quantify how the thermal-affected zone (TAZ) is influenced by the variation in dynamic viscosity due to reinjected groundwater in a well-doublet scheme. The modeling results demonstrate non-negligible groundwater dynamic-viscosity variation that affects thermal plume propagation in the aquifer. This influence on TAZ calculation was enhanced for aquifers with high intrinsic permeability and/or substantial temperature differences between abstracted and post-heat-pump-reinjected groundwater.

  12. Scheduling the blended solution as industrial CO2 absorber in separation process by back-propagation artificial neural networks.

    PubMed

    Abdollahi, Yadollah; Sairi, Nor Asrina; Said, Suhana Binti Mohd; Abouzari-lotf, Ebrahim; Zakaria, Azmi; Sabri, Mohd Faizul Bin Mohd; Islam, Aminul; Alias, Yatimah

    2015-11-05

    It is believe that 80% industrial of carbon dioxide can be controlled by separation and storage technologies which use the blended ionic liquids absorber. Among the blended absorbers, the mixture of water, N-methyldiethanolamine (MDEA) and guanidinium trifluoromethane sulfonate (gua) has presented the superior stripping qualities. However, the blended solution has illustrated high viscosity that affects the cost of separation process. In this work, the blended fabrication was scheduled with is the process arranging, controlling and optimizing. Therefore, the blend's components and operating temperature were modeled and optimized as input effective variables to minimize its viscosity as the final output by using back-propagation artificial neural network (ANN). The modeling was carried out by four mathematical algorithms with individual experimental design to obtain the optimum topology using root mean squared error (RMSE), R-squared (R(2)) and absolute average deviation (AAD). As a result, the final model (QP-4-8-1) with minimum RMSE and AAD as well as the highest R(2) was selected to navigate the fabrication of the blended solution. Therefore, the model was applied to obtain the optimum initial level of the input variables which were included temperature 303-323 K, x[gua], 0-0.033, x[MDAE], 0.3-0.4, and x[H2O], 0.7-1.0. Moreover, the model has obtained the relative importance ordered of the variables which included x[gua]>temperature>x[MDEA]>x[H2O]. Therefore, none of the variables was negligible in the fabrication. Furthermore, the model predicted the optimum points of the variables to minimize the viscosity which was validated by further experiments. The validated results confirmed the model schedulability. Accordingly, ANN succeeds to model the initial components of the blended solutions as absorber of CO2 capture in separation technologies that is able to industries scale up. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Application of Complex Fluids in Lignocellulose Processing

    NASA Astrophysics Data System (ADS)

    Carrillo Lugo, Carlos A.

    Complex fluids such as emulsions, microemulsions and foams, have been used for different applications due to the multiplicity of properties they possess. In the present work, such fluids are introduced as effective media for processing lignocellulosic biomass. A demonstration of the generic benefits of complex fluids is presented to enhance biomass impregnation, to facilitate pretreatment for fiber deconstruction and to make compatible cellulose fibrils with hydrophobic polymers during composite manufacture. An improved impregnation of woody biomass was accomplished by application of water-continuous microemulsions. Microemulsions with high water content, > 85%, were formulated and wood samples were impregnated by wicking and capillary flooding at atmospheric pressure and temperature. Formulations were designed to effectively impregnate different wood species during shorter times and to a larger extent compared to the single components of the microemulsions (water, oil or surfactant solutions). The viscosity of the microemulsions and their interactions with cell wall constituents in fibers were critical to define the extent of impregnation and solubilization. The relation between composition and formulation variables and the extent of microemulsion penetration in different woody substrates was studied. Formulation variables such as salinity content of the aqueous phase and type of surfactant were elucidated. Likewise, composition variables such as the water-to-oil ratio and surfactant concentration were investigated. These variables affected the characteristics of the microemulsion and determined their effectiveness in wood treatment. Also, the interactions between the surfactant and the substrate had an important contribution in defining microemulsion penetration in the capillary structure of wood. Microemulsions as an alternative pretreatment for the manufacture of cellulose nanofibrils (CNFs) was also studied. Microemulsions were applied to pretreat lignin-free and lignin-containing fibers obtained from various processes. Incorporation of active agents in the microemulsion facilitated fiber pretreatment before deconstruction via grinding and microfluidization. The energy consumed during the manufacture of cellulose nanofibrils was reduced by up to 55 and 32% in the case of lignin-containing and lignin-free fibers. Moreover, such pre-treatment did not affect negatively the mechanical properties of films prepared with the produced CNF. CNF was also used to enhance the stability of normal and multiple emulsions of the water-in-oil-in-water (W/O/W) type and to prevent their creaming. This was achieved by the marked increase in viscosity of the aqueous phase in the presence CNF. Finally, water-continuous emulsions were used to prepare nanocomposite fibers containing polystyrene and CNF. The morphology of composite fibers obtained after electrospinning of emulsions incorporating polystyrene and CNF was affected by parameters such the concentration of surfactant additives present in the microemulsion and the conductivity of the aqueous phase. Overall, emulsions and microemulsions are presented as a convenient platform to improve the compatibility between polymers of different hydrophilicity, to facilitate their processing and integration in composites.

  14. Effect of polycarboxylate ether comb-type polymer on viscosity and interfacial properties of kaolinite clay suspensions.

    PubMed

    Zhang, Ling; Lu, Qingye; Xu, Zhenghe; Liu, Qingxia; Zeng, Hongbo

    2012-07-15

    The interactions between kaolinite clay particles and a comb-type polymer (polycarboxylate ether or PCE), so-called PCE super-plasticizer, were investigated through viscosity and surface forces measurements by a rheometer and a Surface Forces Apparatus (SFA). The addition of PCE shows a strong impact on the viscosity of concentrated kaolinite suspensions in alkaline solutions (pH=8.3) but a weak effect under acidic conditions (pH=3.4). In acidic solutions, the high viscosity measured is attributed to the strong electrostatic interaction between negatively charged basal planes and positively charged edge surfaces of clay particles. Under the alkaline condition, the suspension viscosity was found to first increase significantly and then decrease with increasing PCE dosages. The results from surface forces measurement show that PCE molecules at low dosages can bridge the kaolinite particles in the concentrated suspensions via hydrogen bonding, leading to the formation of a kaolinite-PCE "network" and hence an increased suspension viscosity. At high PCE dosages, clay particles are fully covered by PCE molecules, leading to a more dispersed kaolinite suspensions and hence lower suspension viscosity due to steric repulsion between the adsorbed PCE molecules. The insights derived from measuring viscosity and interfacial properties of kaolinite suspensions containing varying amount of comb-type super-plasticizer PCE at different pH provide the foundation for many engineering applications and optimizing industrial processes. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Influence of hydroxyapatite nanoparticles on the viscosity of dimethyl sulfoxide-H2O-NaCl and glycerol-H2O-NaCl ternary systems at subzero temperatures.

    PubMed

    Yi, Jingru; Tang, Heyu; Zhao, Gang

    2014-10-01

    The viscosity, at subzero temperatures, of ternary solutions commonly used in cryopreservation is tremendously important for understanding ice formation and molecular diffusion in biopreservation. However, this information is scarce in the literature. In addition, to the best of our knowledge, the effect of nanoparticles on the viscosity of these solutions has not previously been reported. The objectives of this study were thus: (i) to systematically measure the subzero viscosity of two such systems, dimethyl sulfoxide (Me2SO)-H2O-NaCl and glycerol-H2O-NaCl; (ii) to explore the effect of hydroxyapatite (HA) nanoparticles on the viscosity; and (iii) to provide models that precisely predict viscosity at multiple concentrations of cryoprotective agent (CPA) in saline solutions at subzero temperatures. Our experiments were performed in two parts. We first measured the viscosity at multiple CPA concentrations [0.3-0.75 (w/w)] in saline solution with and without nanoparticles at subzero temperatures (0 to -30°C). The data exhibited a good fit to the Williams-Landel-Ferry (WLF) equation. We then measured the viscosity of residual unfrozen ternary solutions with and without nanoparticles during equilibrium freezing. HA nanoparticles made the solution more viscous, suggesting applications for these nanoparticles in preventing cell dehydration, ice nucleation, and ice growth during freezing and thawing in cryopreservation. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. A Thermodynamical Theory with Internal Variables Describing Thermal Effects in Viscous Fluids

    NASA Astrophysics Data System (ADS)

    Ciancio, Vincenzo; Palumbo, Annunziata

    2018-04-01

    In this paper the heat conduction in viscous fluids is described by using the theory of classical irreversible thermodynamics with internal variables. In this theory, the deviation from the local equilibrium is characterized by vectorial internal variables and a generalized entropy current density expressed in terms of so-called current multipliers. Cross effects between heat conduction and viscosity are also considered and some phenomenological generalizations of Fourier's and Newton's laws are obtained.

  17. A field-validated model for in situ transport of polymer-stabilized nZVI and implications for subsurface injection.

    PubMed

    Krol, Magdalena M; Oleniuk, Andrew J; Kocur, Chris M; Sleep, Brent E; Bennett, Peter; Xiong, Zhong; O'Carroll, Denis M

    2013-07-02

    Nanoscale zerovalent iron (nZVI) particles have significant potential to remediate contaminated source zones. However, the transport of these particles through porous media is not well understood, especially at the field scale. This paper describes the simulation of a field injection of carboxylmethyl cellulose (CMC) stabilized nZVI using a 3D compositional simulator, modified to include colloidal filtration theory (CFT). The model includes composition dependent viscosity and spatially and temporally variable velocity, appropriate for the simulation of push-pull tests (PPTs) with CMC stabilized nZVI. Using only attachment efficiency as a fitting parameter, model results were in good agreement with field observations when spatially variable viscosity effects on collision efficiency were included in the transport modeling. This implies that CFT-modified transport equations can be used to simulate stabilized nZVI field transport. Model results show that an increase in solution viscosity, resulting from injection of CMC stabilized nZVI suspension, affects nZVI mobility by decreasing attachment as well as changing the hydraulics of the system. This effect is especially noticeable with intermittent pumping during PPTs. Results from this study suggest that careful consideration of nZVI suspension formulation is important for optimal delivery of nZVI which can be facilitated with the use of a compositional simulator.

  18. Drop Spreading with Random Viscosity

    NASA Astrophysics Data System (ADS)

    Xu, Feng; Jensen, Oliver

    2016-11-01

    Airway mucus acts as a barrier to protect the lung. However as a biological material, its physical properties are known imperfectly and can be spatially heterogeneous. In this study we assess the impact of these uncertainties on the rate of spreading of a drop (representing an inhaled aerosol) over a mucus film. We model the film as Newtonian, having a viscosity that depends linearly on the concentration of a passive solute (a crude proxy for mucin proteins). Given an initial random solute (and hence viscosity) distribution, described as a Gaussian random field with a given correlation structure, we seek to quantify the uncertainties in outcomes as the drop spreads. Using lubrication theory, we describe the spreading of the drop in terms of a system of coupled nonlinear PDEs governing the evolution of film height and the vertically-averaged solute concentration. We perform Monte Carlo simulations to predict the variability in the drop centre location and width (1D) or area (2D). We show how simulation results are well described (at much lower computational cost) by a low-order model using a weak disorder expansion. Our results show for example how variability in the drop location is a non-monotonic function of the solute correlation length increases. Engineering and Physical Sciences Research Council.

  19. A Rotational Pressure-Correction Scheme for Incompressible Two-Phase Flows with Open Boundaries

    PubMed Central

    Dong, S.; Wang, X.

    2016-01-01

    Two-phase outflows refer to situations where the interface formed between two immiscible incompressible fluids passes through open portions of the domain boundary. We present several new forms of open boundary conditions for two-phase outflow simulations within the phase field framework, as well as a rotational pressure correction based algorithm for numerically treating these open boundary conditions. Our algorithm gives rise to linear algebraic systems for the velocity and the pressure that involve only constant and time-independent coefficient matrices after discretization, despite the variable density and variable viscosity of the two-phase mixture. By comparing simulation results with theory and the experimental data, we show that the method produces physically accurate results. We also present numerical experiments to demonstrate the long-term stability of the method in situations where large density contrast, large viscosity contrast, and backflows occur at the two-phase open boundaries. PMID:27163909

  20. Time variability of viscosity parameter in differentially rotating discs

    NASA Astrophysics Data System (ADS)

    Rajesh, S. R.; Singh, Nishant K.

    2014-07-01

    We propose a mechanism to produce fluctuations in the viscosity parameter (α) in differentially rotating discs. We carried out a nonlinear analysis of a general accretion flow, where any perturbation on the background α was treated as a passive/slave variable in the sense of dynamical system theory. We demonstrate a complete physical picture of growth, saturation and final degradation of the perturbation as a result of the nonlinear nature of coupled system of equations. The strong dependence of this fluctuation on the radial location in the accretion disc and the base angular momentum distribution is demonstrated. The growth of fluctuations is shown to have a time scale comparable to the radial drift time and hence the physical significance is discussed. The fluctuation is found to be a power law in time in the growing phase and we briefly discuss its statistical significance.

  1. Smoothed Particle Hydrodynamics Simulations of Ultrarelativistic Shocks with Artificial Viscosity

    NASA Astrophysics Data System (ADS)

    Siegler, S.; Riffert, H.

    2000-03-01

    We present a fully Lagrangian conservation form of the general relativistic hydrodynamic equations for perfect fluids with artificial viscosity in a given arbitrary background spacetime. This conservation formulation is achieved by choosing suitable Lagrangian time evolution variables, from which the generic fluid variables of rest-mass density, 3-velocity, and thermodynamic pressure have to be determined. We present the corresponding equations for an ideal gas and show the existence and uniqueness of the solution. On the basis of the Lagrangian formulation we have developed a three-dimensional general relativistic smoothed particle hydrodynamics (SPH) code using the standard SPH formalism as known from nonrelativistic fluid dynamics. One-dimensional simulations of a shock tube and a wall shock are presented together with a two-dimensional test calculation of an inclined shock tube. With our method we can model ultrarelativistic fluid flows including shocks with Lorentz factors of even 1000.

  2. Effects of Temperature, Oxygen Partial Pressure, and Materials Selection on Slag Infiltration into Porous Refractories for Entrained-Flow Gasifiers

    NASA Astrophysics Data System (ADS)

    Kaneko, Tetsuya Kenneth

    The penetration rate of molten mineral contents (slag) from spent carbonaceous feedstock into porous ceramic-oxide refractory linings is a critical parameter in determining the lifecycle of integrated gasification combined cycle energy production plants. Refractory linings that withstand longer operation without interruption are desirable because they can mitigate consumable and maintenance costs. Although refractory degradation has been extensively studied for many other high-temperature industrial processes, this work focuses on the mechanisms that are unique to entrained-flow gasification systems. The use of unique feedstock mixtures, temperatures from 1450 °C to 1600 °C, and oxygen partial pressures from 10-7 atm to 10-9 atm pose engineering challenges in designing an optimal refractory material. Experimentation, characterization, and modeling show that gasifier slag infiltration into porous refractory is determined by interactions between the slag and the refractory that either form a physical barrier that impedes fluid flow or induce an increased fluid viscosity that decelerates the velocity of the fluid body. The viscosity of the slag is modified by the thermal profile of the refractory along the penetration direction as well as reactions between the slag and refractory that alter the chemistry, and thereby the thermo-physical properties of the fluid. Infiltration experiments reveal that the temperature gradient inherently present along the refractory lining limits penetration. A refractory in near-isothermal conditions demonstrates deeper slag penetration as compared to one that experiences a steeper thermal profile. The decrease in the local temperatures of the slag as it travels deeper into the refractory increases the viscosity of the fluid, which in turn slows the infiltration velocity of fluid body into the pores of the refractory microstructure. With feedstock mixtures that exhibit high iron-oxide concentrations, a transition-metal-oxide, the oxygen partial pressure of the operating atmosphere regulates the penetration of slag into refractory. The viscosity of the slag, which dictates its penetration rate, is influenced by the oxidation state of the Fe cation. Slag penetrations are shallower in oxidizing conditions than they are in reducing conditions because the iron-oxide from the slag solutions into the corundum-structured refractory and the slag is depleted of iron-oxide, increasing the viscosity of slags. Equally, the chemistries of both the refractory and slag materials dictate the course of penetration. Cr2O3-Al2O3 refractory limits mixed feedstock slag penetration through formation of a chromium spinel layer that functions as a physical obstacle against fluid flow. Al2O 3-SiO2 refractory limits eastern coal feedstock slag penetration as a result of refractory dissolution of SiO2, which increases the viscosity of slags. A physical model, which considers unidirectional fluid flow of slag through each pore of the porous microstructure of the refractory, sufficiently approximates the penetration depth of the slag into the refractory. Agreement between experiments and the physical model demonstrates that the slag is driven into the refractory by capillary pressure. Since the viscosity of the slag continuously changes as the slag travels through the inherent temperature gradient of the refractory lining, the model incorporates dynamic viscosities that are dependent on both temperature and composition to project depths that are unique to the experimental parameters. The significantly different length scales of the radial and penetration directions of the pores allows for the application of a lubrication approximation onto the momentum equation. This process produces an analytical solution that effectively envelopes the variable viscosity into a single term.

  3. Solvent and viscosity effects on the rate-limiting product release step of glucoamylase during maltose hydrolysis.

    PubMed

    Sierks, M R; Sico, C; Zaw, M

    1997-01-01

    Release of product from the active site is the rate-limiting step in a number of enzymatic reactions, including maltose hydrolysis by glucoamylase (GA). With GA, an enzymatic conformational change has been associated with the product release step. Solvent characteristics such as viscosity can strongly influence protein conformational changes. Here we show that the rate-limiting step of GA has a rather complex dependence on solvent characteristics. Seven different cosolvents were added to the GA/maltose reaction solution. Five of the cosolvents, all having an ethylene glycol base, resulted in an increase in activity at low concentration of cosolvent and variable decreases in activity at higher concentrations. The increase in enzyme activity was dependent on polymer length of the cosolvent; the longer the polymer, the lower the concentration needed. The maximum increase in catalytic activity at 45 degrees C (40-45%) was obtained with the three longest polymers (degree of polymerization from 200 to 8000). A further increase in activity to 60-65% was obtained at 60 degrees C. The linear relationship between ln(kcat) and (viscosity)2 obtained with all the cosolvents provides further evidence that product release is the rate-limiting step in the GA catalytic mechanism. A substantial increase in the turnover rate of GA by addition of relatively small amounts of a cosolvent has potential applications for the food industry where high-fructose corn syrup (HFCS) is one of the primary products produced with GA. Since maltodextrin hydrolysis by GA is by far the slowest step in the production of HFCS, increasing the catalytic rate of GA can substantially reduce the process time.

  4. One-, two- and three-phase viscosity treatments for basaltic lava flows

    PubMed Central

    Harris, Andrew J. L.; Allen, John S.

    2009-01-01

    Lava flows comprise three-phase mixtures of melt, crystals, and bubbles. While existing one-phase treatments allow melt phase viscosity to be assessed on the basis of composition, water content, and/or temperature, two-phase treatments constrain the effects of crystallinity or vesicularity on mixture viscosity. However, three-phase treatments, allowing for the effects of coexisting crystallinity and vesicularity, are not well understood. We investigate existing one- and two-phase treatments using lava flow case studies from Mauna Loa (Hawaii) and Mount Etna (Italy) and compare these with a three-phase treatment that has not been applied previously to basaltic mixtures. At Etna, melt viscosities of 425 ± 30 Pa s are expected for well-degassed (0.1 w. % H2O), and 135 ± 10 Pa s for less well-degassed (0.4 wt % H2O), melt at 1080°C. Application of a three-phase model yields mixture viscosities (45% crystals, 25–35% vesicles) in the range 5600–12,500 Pa s. This compares with a measured value for Etnean lava of 9400 ± 1500 Pa s. At Mauna Loa, the three-phase treatment provides a fit with the full range of field measured viscosities, giving three-phase mixture viscosities, upon eruption, of 110–140 Pa s (5% crystals, no bubble effect due to sheared vesicles) to 850–1400 Pa s (25–30% crystals, 40–60% spherical vesicles). The ability of the three-phase treatment to characterize the full range of melt-crystal-bubble mixture viscosities in both settings indicates the potential of this method in characterizing basaltic lava mixture viscosity. PMID:21691456

  5. The turbulent mean-flow, Reynolds-stress, and heat flux equations in mass-averaged dependent variables

    NASA Technical Reports Server (NTRS)

    Rubesin, M. W.; Rose, W. C.

    1973-01-01

    The time-dependent, turbulent mean-flow, Reynolds stress, and heat flux equations in mass-averaged dependent variables are presented. These equations are given in conservative form for both generalized orthogonal and axisymmetric coordinates. For the case of small viscosity and thermal conductivity fluctuations, these equations are considerably simpler than the general Reynolds system of dependent variables for a compressible fluid and permit a more direct extension of low speed turbulence modeling to computer codes describing high speed turbulence fields.

  6. Automation of a high-speed imaging setup for differential viscosity measurements

    NASA Astrophysics Data System (ADS)

    Hurth, C.; Duane, B.; Whitfield, D.; Smith, S.; Nordquist, A.; Zenhausern, F.

    2013-12-01

    We present the automation of a setup previously used to assess the viscosity of pleural effusion samples and discriminate between transudates and exudates, an important first step in clinical diagnostics. The presented automation includes the design, testing, and characterization of a vacuum-actuated loading station that handles the 2 mm glass spheres used as sensors, as well as the engineering of electronic Printed Circuit Board (PCB) incorporating a microcontroller and their synchronization with a commercial high-speed camera operating at 10 000 fps. The hereby work therefore focuses on the instrumentation-related automation efforts as the general method and clinical application have been reported earlier [Hurth et al., J. Appl. Phys. 110, 034701 (2011)]. In addition, we validate the performance of the automated setup with the calibration for viscosity measurements using water/glycerol standard solutions and the determination of the viscosity of an "unknown" solution of hydroxyethyl cellulose.

  7. Mapping microbubble viscosity using fluorescence lifetime imaging of molecular rotors

    PubMed Central

    Hosny, Neveen A.; Mohamedi, Graciela; Rademeyer, Paul; Owen, Joshua; Wu, Yilei; Tang, Meng-Xing; Eckersley, Robert J.; Stride, Eleanor; Kuimova, Marina K.

    2013-01-01

    Encapsulated microbubbles are well established as highly effective contrast agents for ultrasound imaging. There remain, however, some significant challenges to fully realize the potential of microbubbles in advanced applications such as perfusion mapping, targeted drug delivery, and gene therapy. A key requirement is accurate characterization of the viscoelastic surface properties of the microbubbles, but methods for independent, nondestructive quantification and mapping of these properties are currently lacking. We present here a strategy for performing these measurements that uses a small fluorophore termed a “molecular rotor” embedded in the microbubble surface, whose fluorescence lifetime is directly related to the viscosity of its surroundings. We apply fluorescence lifetime imaging to show that shell viscosities vary widely across the population of the microbubbles and are influenced by the shell composition and the manufacturing process. We also demonstrate that heterogeneous viscosity distributions exist within individual microbubble shells even with a single surfactant component. PMID:23690599

  8. Automation of a high-speed imaging setup for differential viscosity measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurth, C.; Duane, B.; Whitfield, D.

    We present the automation of a setup previously used to assess the viscosity of pleural effusion samples and discriminate between transudates and exudates, an important first step in clinical diagnostics. The presented automation includes the design, testing, and characterization of a vacuum-actuated loading station that handles the 2 mm glass spheres used as sensors, as well as the engineering of electronic Printed Circuit Board (PCB) incorporating a microcontroller and their synchronization with a commercial high-speed camera operating at 10 000 fps. The hereby work therefore focuses on the instrumentation-related automation efforts as the general method and clinical application have beenmore » reported earlier [Hurth et al., J. Appl. Phys. 110, 034701 (2011)]. In addition, we validate the performance of the automated setup with the calibration for viscosity measurements using water/glycerol standard solutions and the determination of the viscosity of an “unknown” solution of hydroxyethyl cellulose.« less

  9. A kinematic eddy viscosity model including the influence of density variations and preturbulence

    NASA Technical Reports Server (NTRS)

    Cohen, L. S.

    1973-01-01

    A model for the kinematic eddy viscosity was developed which accounts for the turbulence produced as a result of jet interactions between adjacent streams as well as the turbulence initially present in the streams. In order to describe the turbulence contribution from jet interaction, the eddy viscosity suggested by Prandtl was adopted, and a modification was introduced to account for the effect of density variation through the mixing layer. The form of the modification was ascertained from a study of the compressible turbulent boundary layer on a flat plate. A kinematic eddy viscosity relation which corresponds to the initial turbulence contribution was derived by employing arguments used by Prandtl in his mixing length hypothesis. The resulting expression for self-preserving flow is similar to that which describes the mixing of a submerged jet. Application of the model has led to analytical predictions which are in good agreement with available turbulent mixing experimental data.

  10. Volumetric and viscometric study of molecular interactions in the mixtures of some secondary alcohols with equimolar mixture of ethanol and N, N-dimethylacetamide at 308.15 K

    NASA Astrophysics Data System (ADS)

    Sreekanth, K.; Sravana Kumar, D.; Kondaiah, M.; Krishna Rao, D.

    2011-02-01

    Densities and viscosities of mixtures of isopropanol, isobutanol and isoamylalcohol with equimolar mixture of ethanol and N, N-dimethylacetamide have been measured at 308.15 K over the entire composition range. Deviations in viscosity, excess molar volume and excess Gibb’s free energy of activation of viscous flow have been calculated from the experimental values of densities and viscosities. Excess properties have been fitted to the Redlich-Kister type polynomial equation and the corresponding standard deviations have been calculated. The experimental data of viscosity have been used to test the applicability of empirical relations of Grunberg-Nissan, Hind-McLaughlin, Katti-Chaudhary and Heric-Brewer for the systems studied. Molecular interactions in the liquid mixtures have been investigated in the light of variation of deviation and of excess values in evaluated properties.

  11. Modeling viscosity and diffusion of plasma mixtures across coupling regimes

    NASA Astrophysics Data System (ADS)

    Arnault, Philippe

    2014-10-01

    Viscosity and diffusion of plasma for pure elements and multicomponent mixtures are modeled from the high-temperature low-density weakly coupled regime to the low-temperature high-density strongly coupled regime. Thanks to an atom in jellium modeling, the effect of electron screening on the ion-ion interaction is incorporated through a self-consistent definition of the ionization. This defines an effective One Component Plasma, or an effective Binary Ionic Mixture, that is representative of the strength of the interaction. For the viscosity and the interdiffusion of mixtures, approximate kinetic expressions are supplemented by mixing laws applied to the excess viscosity and self-diffusion of pure elements. The comparisons with classical and quantum molecular dynamics results reveal deviations in the range 20--40% on average with almost no predictions further than a factor of 2 over many decades of variation. Applications in the inertial confinement fusion context could help in predicting the growth of hydrodynamic instabilities.

  12. Experience in using a numerical scheme with artificial viscosity at solving the Riemann problem for a multi-fluid model of multiphase flow

    NASA Astrophysics Data System (ADS)

    Bulovich, S. V.; Smirnov, E. M.

    2018-05-01

    The paper covers application of the artificial viscosity technique to numerical simulation of unsteady one-dimensional multiphase compressible flows on the base of the multi-fluid approach. The system of the governing equations is written under assumption of the pressure equilibrium between the "fluids" (phases). No interfacial exchange is taken into account. A model for evaluation of the artificial viscosity coefficient that (i) assumes identity of this coefficient for all interpenetrating phases and (ii) uses the multiphase-mixture Wood equation for evaluation of a scale speed of sound has been suggested. Performance of the artificial viscosity technique has been evaluated via numerical solution of a model problem of pressure discontinuity breakdown in a three-fluid medium. It has been shown that a relatively simple numerical scheme, explicit and first-order, combined with the suggested artificial viscosity model, predicts a physically correct behavior of the moving shock and expansion waves, and a subsequent refinement of the computational grid results in a monotonic approaching to an asymptotic time-dependent solution, without non-physical oscillations.

  13. Connecting Structural and Transport Properties of Ionic Liquids with Cationic Oligoether Chains

    DOE PAGES

    Lall-Ramnarine, Sharon I.; Zhao, Man; Rodriguez, Chanele; ...

    2017-06-01

    We used X-ray diffraction and molecular dynamics simulations to probe the structures of two families of ionic liquids containing oligoether tails on the cations. Imidazolium and pyrrolidinium bis(trifluoromethylsulfonyl)amide ILs with side chains ranging from 4 to 10 atoms in length, including both linear alkyl and oligo-ethylene oxide tails, were prepared. Furthermore, their physical properties, such as viscosity, conductivity and thermal profile, were measured and compared for systematic trends. Consistent with earlier literature, a single ether substituent substantially decreases the viscosity of pyrrolidinium and imidazolium ILs compared to their alkyl congeners. Remarkably, as the number of ether units in the pyrrolidiniummore » ILs increases there is hardly any increase in the viscosity, in contrast to alkylpyrrolidinium ILs where the viscosity increases steadily with chain length. Viscosities of imidazolium ether ILs increase with chain length but always remain well below their alkyl congeners. To complement the experimentally determined properties, molecular dynamics simulations were run on the two ILs with the longest ether chains. Our results point to specific aspects that could be useful for researchers designing ILs for specific applications.« less

  14. Heat flux viscosity in collisional magnetized plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, C., E-mail: cliu@pppl.gov; Fox, W.; Bhattacharjee, A.

    2015-05-15

    Momentum transport in collisional magnetized plasmas due to gradients in the heat flux, a “heat flux viscosity,” is demonstrated. Even though no net particle flux is associated with a heat flux, in a plasma there can still be momentum transport owing to the velocity dependence of the Coulomb collision frequency, analogous to the thermal force. This heat-flux viscosity may play an important role in numerous plasma environments, in particular, in strongly driven high-energy-density plasma, where strong heat flux can dominate over ordinary plasma flows. The heat flux viscosity can influence the dynamics of the magnetic field in plasmas through themore » generalized Ohm's law and may therefore play an important role as a dissipation mechanism allowing magnetic field line reconnection. The heat flux viscosity is calculated directly using the finite-difference method of Epperlein and Haines [Phys. Fluids 29, 1029 (1986)], which is shown to be more accurate than Braginskii's method [S. I. Braginskii, Rev. Plasma Phys. 1, 205 (1965)], and confirmed with one-dimensional collisional particle-in-cell simulations. The resulting transport coefficients are tabulated for ease of application.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lall-Ramnarine, Sharon I.; Zhao, Man; Rodriguez, Chanele

    We used X-ray diffraction and molecular dynamics simulations to probe the structures of two families of ionic liquids containing oligoether tails on the cations. Imidazolium and pyrrolidinium bis(trifluoromethylsulfonyl)amide ILs with side chains ranging from 4 to 10 atoms in length, including both linear alkyl and oligo-ethylene oxide tails, were prepared. Furthermore, their physical properties, such as viscosity, conductivity and thermal profile, were measured and compared for systematic trends. Consistent with earlier literature, a single ether substituent substantially decreases the viscosity of pyrrolidinium and imidazolium ILs compared to their alkyl congeners. Remarkably, as the number of ether units in the pyrrolidiniummore » ILs increases there is hardly any increase in the viscosity, in contrast to alkylpyrrolidinium ILs where the viscosity increases steadily with chain length. Viscosities of imidazolium ether ILs increase with chain length but always remain well below their alkyl congeners. To complement the experimentally determined properties, molecular dynamics simulations were run on the two ILs with the longest ether chains. Our results point to specific aspects that could be useful for researchers designing ILs for specific applications.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lall-Ramnarine, Sharon I.; Zhao, Man; Rodriguez, Chanele

    X-ray diffraction and molecular dynamics simulations were used to probe the structures of two families of ionic liquids containing oligoether tails on the cations. Imidazolium and pyrrolidinium bis(trifluoromethylsulfonyl)amide ILs with side chains ranging from 4 to 10 atoms in length, including both linear alkyl and oligo-ethylene oxide tails, were prepared. Their physical properties, such as viscosity, conductivity and thermal profile, were measured and compared for systematic trends. Consistent with earlier literature, a single ether substituent substantially decreases the viscosity of pyrrolidinium and imidazolium ILs compared to their alkyl congeners. Remarkably, as the number of ether units in the pyrrolidinium ILsmore » increases there is hardly any increase in the viscosity, in contrast to alkylpyrrolidinium ILs where the viscosity increases steadily with chain length. Viscosities of imidazolium ether ILs increase with chain length but always remain well below their alkyl congeners. To complement the experimentally determined properties, molecular dynamics simulations were run on the two ILs with the longest ether chains. The results point to specific aspects that could be useful for researchers designing ILs for specific applications.« less

  17. A priori testing of subgrid-scale models for the velocity-pressure and vorticity-velocity formulations

    NASA Technical Reports Server (NTRS)

    Winckelmans, G. S.; Lund, T. S.; Carati, D.; Wray, A. A.

    1996-01-01

    Subgrid-scale models for Large Eddy Simulation (LES) in both the velocity-pressure and the vorticity-velocity formulations were evaluated and compared in a priori tests using spectral Direct Numerical Simulation (DNS) databases of isotropic turbulence: 128(exp 3) DNS of forced turbulence (Re(sub(lambda))=95.8) filtered, using the sharp cutoff filter, to both 32(exp 3) and 16(exp 3) synthetic LES fields; 512(exp 3) DNS of decaying turbulence (Re(sub(Lambda))=63.5) filtered to both 64(exp 3) and 32(exp 3) LES fields. Gaussian and top-hat filters were also used with the 128(exp 3) database. Different LES models were evaluated for each formulation: eddy-viscosity models, hyper eddy-viscosity models, mixed models, and scale-similarity models. Correlations between exact versus modeled subgrid-scale quantities were measured at three levels: tensor (traceless), vector (solenoidal 'force'), and scalar (dissipation) levels, and for both cases of uniform and variable coefficient(s). Different choices for the 1/T scaling appearing in the eddy-viscosity were also evaluated. It was found that the models for the vorticity-velocity formulation produce higher correlations with the filtered DNS data than their counterpart in the velocity-pressure formulation. It was also found that the hyper eddy-viscosity model performs better than the eddy viscosity model, in both formulations.

  18. Alterations in Blood Coagulation and Viscosity Among Young Male Cigarette Smokers of Al-Jouf Region in Saudi Arabia.

    PubMed

    Almarshad, Hassan A; Hassan, Fathelrahman M

    2016-05-01

    Hemorheology, a measure of rheological properties of blood, is often correlated with cerebral blood flow and cardiac output; an increased blood viscosity may increase the risk of thrombosis or thromboembolic events. Previous studies have reported a large variation in hemorheological properties of blood among smokers. This prompted us to conduct coagulation experiments to evaluate the effect of cigarette smoking on hematological parameters, like cell counts, and coagulation parameters among young males in Al-Jouf region, Saudi Arabia. The hematological and coagulation parameters were used to relate the changes in viscosity and coagulation to smoking. A total of 321 male participants (126 nonsmokers and 195 smokers) were enrolled into the study as randomized sample. Complete blood count was measured by hematology analyzer, and coagulation tests were performed by coagulation analyzer. Thettest analysis was performed to compare the relationships of variables between the 2 groups. The results confirmed that smoking alters some hematology parameters leading to significant deterioration in blood flow properties. Smoking also increased the hematocrit (HCT), whole blood viscosity (WBV), and plasma viscosity (PV) but decreased the international normalized ratio (INR). The decrease in INR was found to be associated with the increase in WBV, PV, and HCT. Further investigations are necessary to assess the reversibility of such changes in cessation of smoking or other elements of influence. © The Author(s) 2014.

  19. The influence of tongue strength on oral viscosity discrimination acuity.

    PubMed

    Steele, Catriona M

    2018-06-01

    The ability to generate tongue pressures is widely considered to be critical for liquid bolus propulsion in swallowing. It has been proposed that the application of tongue pressure may also serve the function of collecting sensory information regarding bolus viscosity (resistance to flow). In this study, we explored the impact of age-related reductions in tongue strength on oral viscosity discrimination acuity. The experiment employed a triangle test discrimination protocol with an array of xanthan-gum thickened liquids in the mildly to moderately thick consistency range. A sample of 346 healthy volunteers was recruited, with age ranging from 12 to 86 (164 men, 182 women). On average, participants were able to detect a 0.29-fold increase in xanthan-gum concentration, corresponding to a 0.5-fold increase in viscosity at 50/s. Despite having significantly reduced tongue strength on maximum isometric tongue-palate pressure tasks, and regardless of sex, older participants in this study showed no reductions in viscosity discrimination acuity. In this article, the relationship between tongue strength and the ability to discriminate small differences in liquid viscosity during oral processing is explored. Given that tongue strength declines with age in healthy adults and is also reduced in individuals with dysphagia, it is interesting to determine whether reduced tongue strength might contribute to difficulties in evaluating liquid viscosity during the oral stage of swallowing. Using an array of mildly to moderately thick xanthan-gum thickened liquids, this experiment failed to find any evidence that reductions in tongue strength influence oral viscosity discrimination acuity. © 2017 Wiley Periodicals, Inc.

  20. A Theoretical Study of Love Wave Sensors Based on ZnO–Glass Layered Structures for Application to Liquid Environments

    PubMed Central

    Caliendo, Cinzia; Hamidullah, Muhammad

    2016-01-01

    The propagation of surface acoustic Love modes along ZnO/glass-based structures was modeled and analysed with the goal of designing a sensor able to detect changes in the environmental parameters, such as liquid viscosity changes and minute amounts of mass supported in the viscous liquid medium. Love mode propagation was modeled by numerically solving the system of coupled electro-mechanical field equations and Navier–Stokes equations. The phase and group velocities and the attenuation of the acoustic wave propagating along the 30° tilted c-axis ZnO/glass structure contacting a viscous non-conductive liquid were calculated for different ZnO guiding layer thicknesses, added mass thicknesses, and liquid viscosity and density. The three sensor responses, i.e., the wave phase and group velocity, and attenuation changes are calculated for different environmental parameters and related to the sensor velocity and attenuation sensitivities. The resulted sensitivities to liquid viscosity and added mass were optimized by adjusting the ZnO guiding layer thickness corresponding to a sensitivity peak. The present analysis is valuable for the manufacture and application of the ZnO-glass structure Love wave sensors for the detection of liquid properties, such as viscosity, density and mass anchored to the sensor surface. PMID:27918419

  1. Hierarchical Cluster Formation in Concentrated Monoclonal Antibody Formulations

    NASA Astrophysics Data System (ADS)

    Godfrin, P. Douglas; Zarzar, Jonathan; Zarraga, Isidro Dan; Porcar, Lionel; Falus, Peter; Wagner, Norman; Liu, Yun

    Reversible cluster formation has been identified as an underlying cause of large solution viscosities observed in some concentrated monoclonal antibody (mAb) formulations. As high solution viscosity prevents the use of subcutaneous injection as a delivery method for some mAbs, a fundamental understanding of the interactions responsible for high viscosities in concentrated mAb solutions is of significant relevance to mAb applications in human health care as well as of intellectual interest. Here, we present a detailed investigation of a well-studied IgG1 based mAb to relate the short time dynamics and microstructure to significant viscosity changes over a range of pharmaceutically relevant physiochemical conditions. Using a combination of experimental techniques, it is found that upon adding Na2SO4, these antibodies dimerize in solution. Proteins form strongly bounded reversible dimers at dilute concentrations that, when concentrated, interact with each other to form loosely bounded, large, transient clusters. The combined effect of forming strongly bounded dimers and a large transient network is a significant increase in the solution viscosity. Strongly bounded, reversible dimers may exist in many IgG1 based mAb systems such that these results contribute to a more comprehensive understanding of the physical mechanisms producing high viscosities in concentrated protein solutions.

  2. Water drop impact onto oil covered solid surfaces

    NASA Astrophysics Data System (ADS)

    Chen, Ningli; Chen, Huanchen; Amirfazli, Alidad

    2016-11-01

    Droplet impact onto an oily surface can be encountered routinely in industrial applications; e.g., in spray cooling. It is not clear from literature what impact an oil film may have on the impact process. In this work, water drop impact onto both hydrophobic (glass) and hydrophilic (OTS) substrates which were covered by oil films (silicone) of different thickness (5um-50um) and viscosity (5cst-100cst) were performed. The effects of drop impact velocity, film thickness, and viscosity of the oil film and wettability of the substrate were studied. Our results show that when the film viscosity and impact velocity is low, the water drop deformed into the usual disk shape after impact, and rebounded from the surface. Such rebound phenomena disappears, when the viscosity of oil becomes very large. With the increase of the impact velocity, crown and splashing appears in the spreading phase. The crown and splashing behavior appears more easily with the increase of film thickness and decrease of its viscosity. It was also found that the substrate wettability can only affect the impact process in cases which drop has a large Webber number (We = 594), and the film's viscosity and thickness are small. This work was support by National Natural Science Foundation of China and the Project Number is 51506084.

  3. Tribological Properties of a Pennzane(Registered Trademark)-Based Liquid Lubricant (Disubstituted Alkylated Cyclopentane) for Low Temperature Space Applications

    NASA Technical Reports Server (NTRS)

    Venier, Clifford; Casserly, Edward W.; Jones, William R., Jr.; Marchetti, Mario; Jansen, Mark J.; Predmore, Roamer E.

    2002-01-01

    The tribological properties of a disubstituted alkylated cyclopentane, Pennzane (registered) Synthesized Hydrocarbon Fluid X-1000, are presented. This compound is a lower molecular weight version of the commonly used multiply alkylated cyclopentane, Pennzane X-2000, currently used in many space mechanisms. New, lower temperature applications will require liquid lubricants with lower viscosities and pour points and acceptable vapor pressures. Properties reported include: friction and wear studies and lubricated lifetime in vacuum; additionally, typical physical properties (i.e., viscosity-temperature, pour point, flash and fire point, specific gravity, refractive index, thermal properties, volatility and vapor pressure) are reported.

  4. Transport properties of mixtures by the soft-SAFT + free-volume theory: application to mixtures of n-alkanes and hydrofluorocarbons.

    PubMed

    Llovell, F; Marcos, R M; Vega, L F

    2013-05-02

    In a previous paper (Llovell et al. J. Phys. Chem. B, submitted for publication), the free-volume theory (FVT) was coupled with the soft-SAFT equation of state for the first time to extend the capabilities of the equation to the calculation of transport properties. The equation was tested with molecular simulations and applied to the family of n-alkanes. The capability of the soft-SAFT + FVT treatment is extended here to other chemical families and mixtures. The compositional rules of Wilke (Wilke, C. R. J. Chem. Phys. 1950, 18, 517-519) are used for the diluted term of the viscosity, while the dense term is evaluated using very simple mixing rules to calculate the viscosity parameters. The theory is then used to predict the vapor-liquid equilibrium and the viscosity of mixtures of nonassociating and associating compounds. The approach is applied to determine the viscosity of a selected group of hydrofluorocarbons, in a similar manner as previously done for n-alkanes. The soft-SAFT molecular parameters are taken from a previous work, fitted to vapor-liquid equilibria experimental data. The application of FVT requires three additional parameters related to the viscosity of the pure fluid. Using a transferable approach, the α parameter is taken from the equivalent n-alkane, while the remaining two parameters B and Lv are fitted to viscosity data of the pure fluid at several isobars. The effect of these parameters is then investigated and compared to those obtained for n-alkanes, in order to better understand their effect on the calculations. Once the pure fluids are well characterized, the vapor-liquid equilibrium and the viscosity of nonassociating and associating mixtures, including n-alkane + n-alkane, hydrofluorocarbon + hydrofluorocarbon, and n-alkane + hydrofluorocarbon mixtures, are calculated. One or two binary parameters are used to account for deviations in the vapor-liquid equilibrium diagram for nonideal mixtures; these parameters are used in a transferable manner to predict the viscosity of the mixtures. Very good agreement with available experimental data is found in all cases, with an average absolute deviation ranging between 1.0% and 5.5%, even when the system presents azeotropy, reinforcing the robustness of the approach.

  5. Experimental Investigation of the Thermophysical Properties of TiO2/Propylene Glycol-Water Nanofluids for Heat-Transfer Applications

    NASA Astrophysics Data System (ADS)

    Leena, M.; Srinivasan, S.

    2018-05-01

    Nanofluids have been prepared by dispersing TiO2 nanoparticles in 70:30% (by weight) water-propylene glycol mixture. The thermal conductivity and viscosity were found experimentally at various temperatures with the volume concentrations 0.1-0.8%. The results indicate that the thermal conductivity of the nanofluids increases with the volume concentration and temperature. Similarly, the viscosity of the nanofluids increases with the volume concentration but decreases with increase in the temperature. Correlations have been proposed for estimating the thermal conductivity and viscosity of the nanofluids. The potential heat transfer benefits of their use in laminar and turbulent flow conditions has been explained.

  6. Development of a homogeneous pulse shape discriminating flow-cell radiation detection system

    NASA Astrophysics Data System (ADS)

    Hastie, K. H.; DeVol, T. A.; Fjeld, R. A.

    1999-02-01

    A homogeneous flow-cell radiation detection system which utilizes coincidence counting and pulse shape discrimination circuitry was assembled and tested with five commercially available liquid scintillation cocktails. Two of the cocktails, Ultima Flo (Packard) and Mono Flow 5 (National Diagnostics) have low viscosities and are intended for flow applications; and three of the cocktails, Optiphase HiSafe 3 (Wallac), Ultima Gold AB (Packard), and Ready Safe (Beckman), have higher viscosities and are intended for static applications. The low viscosity cocktails were modified with 1-methylnaphthalene to increase their capability for alpha/beta pulse shape discrimination. The sample loading and pulse shape discriminator setting were optimized to give the lowest minimum detectable concentration for alpha radiation in a 30 s count time. Of the higher viscosity cocktails, Optiphase HiSafe 3 had the lowest minimum detectable activities for alpha and beta radiation, 0.2 and 0.4 Bq/ml for 233U and 90Sr/ 90Y, respectively, for a 30 s count time. The sample loading was 70% and the corresponding alpha/beta spillover was 5.5%. Of the low viscosity cocktails, Mono Flow 5 modified with 2.5% (by volume) 1-methylnaphthalene resulted in the lowest minimum detectable activities for alpha and beta radiation; 0.3 and 0.5 Bq/ml for 233U and 90Sr/ 90Y, respectively, for a 30 s count time. The sample loading was 50%, and the corresponding alpha/beta spillover was 16.6%. HiSafe 3 at a 10% sample loading was used to evaluate the system under simulated flow conditions.

  7. Decorrelation-based viscosity measurement using phase-sensitive optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Blackburn, Brecken J.; Gu, Shi; Jenkins, Michael W.; Rollins, Andrew M.

    2017-02-01

    A robust method to measure viscosity of microquantities of biological samples, such as blood and mucus, could lead to a better understanding and diagnosis of diseases. Microsamples have presented persistent challenges to conventional rheology, which requires bulk quantities of a sample. Alternatively, fluid viscosity can be probed by monitoring microscale motion of particles. Here, we present a decorrelation-based method using M-mode phase-sensitive optical coherence tomography (OCT) to measure particle Brownian motion. This is similar to previous methods using laser speckle decorrelation but with sensitivity to nanometer-scale displacement. This allows for the measurement of decorrelation in less than 1 millisecond and significantly decreases sensitivity to bulk motion, thereby potentially enabling in vivo and in situ applications. From first principles, an analytical method is established using M-mode images obtained from a 47 kHz spectral-domain OCT system. A g(1) first-order autocorrelation is calculated from windows containing several pixels over a time frame of 200-1000 microseconds. Total imaging time is 500 milliseconds for averaging purposes. The autocorrelation coefficient over this short time frame decreases linearly and at a rate proportional to the diffusion constant of the particles, allowing viscosity to be calculated. In verification experiments using phantoms of microbeads in 200 µL glycerol-water mixtures, this method showed insensitivity to 2 mm/s lateral bulk motion and accurate viscosity measurements over a depth of 400 µm. In addition, the method measured a significant decrease of the apparent diffusion constant of soft tissue after formalin fixation, suggesting potential applications in mapping tissue stiffness.

  8. Mitigation of reversible self-association and viscosity in a human IgG1 monoclonal antibody by rational, structure-guided Fv engineering

    PubMed Central

    Geoghegan, James C.; Fleming, Ryan; Damschroder, Melissa; Bishop, Steven M.; Sathish, Hasige A.; Esfandiary, Reza

    2016-01-01

    ABSTRACT Undesired solution behaviors such as reversible self-association (RSA), high viscosity, and liquid-liquid phase separation can introduce substantial challenges during development of monoclonal antibody formulations. Although a global mechanistic understanding of RSA (i.e., native and reversible protein-protein interactions) is sufficient to develop robust formulation controls, its mitigation via protein engineering requires knowledge of the sites of protein-protein interactions. In the study reported here, we coupled our previous hydrogen-deuterium exchange mass spectrometry findings with structural modeling and in vitro screening to identify the residues responsible for RSA of a model IgG1 monoclonal antibody (mAb-C), and rationally engineered variants with improved solution properties (i.e., reduced RSA and viscosity). Our data show that mutation of either solvent-exposed aromatic residues within the heavy and light chain variable regions or buried residues within the heavy chain/light chain interface can significantly mitigate RSA and viscosity by reducing the IgG's surface hydrophobicity. The engineering strategy described here highlights the utility of integrating complementary experimental and in silico methods to identify mutations that can improve developability, in particular, high concentration solution properties, of candidate therapeutic antibodies. PMID:27050875

  9. The delineation and interpretation of the earth's gravity field

    NASA Technical Reports Server (NTRS)

    Marsh, Bruce D.

    1988-01-01

    A series of fluid dynamical experiments in variable viscosity fluid have been made and are in progress to study: (1) the onset of small scale convection relative to lithosphere growth rate; (2) the influence of paired fracture zones in modulating the horizontal scale of small scale convection; (3) the influence of the mantle vertical viscosity structure on determing the mode of small scale convection; and (4) the 3-D and temporal evolution of flows beneath a high viscosity lid. These experiments extend and amplify the present experimental work that has produced small scale convection beneath a downward-moving solidification front. Rapid growth of a high viscosity lid stifles the early onset of convection such that convection only begins once the lithosphere is older than a certain minimum age. The interplay of this convection with both the structure of the lithosphere and mantle provide a fertile field of investigation into the origin of geoid, gravity, and topographic anomalies in the central Pacific. These highly correlated fields of intermediate wavelength (approximately 200 to 2000 km), but not the larger wavelengths. It is the ultimate, dynamic origin of this class of anomalies that is sought in this investigation.

  10. FOR STIMULI-RESPONSIVE POLYMERS WITH ENHANCED EFFICIENCY IN RESERVOIR RECOVERY PROCESSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charles McCormick; Roger Hester

    To date, our synthetic research efforts have been focused on the development of stimuli-responsive water-soluble polymers designed for use in enhanced oil recovery (EOR) applications. These model systems are structurally tailored for potential application as viscosifiers and/or mobility control agents for secondary and tertiary EOR methods. The following report discloses the progress of our ongoing research of polyzwitterions, polymers derived from monomers bearing both positive and negative charges, that show the ability to sustain or increase their hydrodynamic volume (and thus, solution viscosity) in the presence of electrolytes. Such polymers appear to be well-suited for use under conditions similar tomore » those encountered in EOR operations. Additionally, we disclose the synthesis and characterization of a well-defined set of polyacrylamide (PAM) homopolymers that vary by MW. The MW of the PAM samples is controlled by addition of sodium formate to the polymerization medium as a conventional chain transfer agent. Data derived from polymer characterization is used to determine the kinetic parameter C{sub CT}, the chain transfer constant to sodium formate under the given polymerization conditions. The PAM homopolymer series will be employed in future set of experiments designed to test a simplified intrinsic viscosity equation. The flow resistance of a polymer solution through a porous medium is controlled by the polymer's hydrodynamic volume, which is strongly related to it's intrinsic viscosity. However, the hydrodynamic volume of a polymer molecule in an aqueous solution varies with fluid temperature, solvent composition, and polymer structure. This report on the theory of polymer solubility accentuates the importance of developing polymer solutions that increase in intrinsic viscosity when fluid temperatures are elevated above room conditions. The intrinsic viscosity response to temperature and molecular weight variations of three polymer solutions verified the modeling capability of a simplified intrinsic viscosity equation. These results imply that the simplified intrinsic viscosity equation is adequate in modeling polymer coil size response to solvent composition, temperature and polymer molecular weight. The equation can be used to direct efforts to produce superior polymers for mobility control during flooding of reservoirs at elevated temperatures.« less

  11. Quality by design approach for understanding the critical quality attributes of cyclosporine ophthalmic emulsion.

    PubMed

    Rahman, Ziyaur; Xu, Xiaoming; Katragadda, Usha; Krishnaiah, Yellela S R; Yu, Lawrence; Khan, Mansoor A

    2014-03-03

    Restasis is an ophthalmic cyclosporine emulsion used for the treatment of dry eye syndrome. There are no generic products for this product, probably because of the limitations on establishing in vivo bioequivalence methods and lack of alternative in vitro bioequivalence testing methods. The present investigation was carried out to understand and identify the appropriate in vitro methods that can discriminate the effect of formulation and process variables on critical quality attributes (CQA) of cyclosporine microemulsion formulations having the same qualitative (Q1) and quantitative (Q2) composition as that of Restasis. Quality by design (QbD) approach was used to understand the effect of formulation and process variables on critical quality attributes (CQA) of cyclosporine microemulsion. The formulation variables chosen were mixing order method, phase volume ratio, and pH adjustment method, while the process variables were temperature of primary and raw emulsion formation, microfluidizer pressure, and number of pressure cycles. The responses selected were particle size, turbidity, zeta potential, viscosity, osmolality, surface tension, contact angle, pH, and drug diffusion. The selected independent variables showed statistically significant (p < 0.05) effect on droplet size, zeta potential, viscosity, turbidity, and osmolality. However, the surface tension, contact angle, pH, and drug diffusion were not significantly affected by independent variables. In summary, in vitro methods can detect formulation and manufacturing changes and would thus be important for quality control or sameness of cyclosporine ophthalmic products.

  12. The tribological behaviour of different clearance MOM hip joints with lubricants of physiological viscosities.

    PubMed

    Hu, X Q; Wood, R J K; Taylor, A; Tuke, M A

    2011-11-01

    Clearance is one of the most influential parameters on the tribological performance of metal-on-metal (MOM) hip joints and its selection is a subject of considerable debate. The objective of this paper is to study the lubrication behaviour of different clearances for MOM hip joints within the range of human physiological and pathological fluid viscosities. The frictional torques developed by MOM hip joints with a 50 mm diameter were measured for both virgin surfaces and during a wear simulator test. Joints were manufactured with three different diametral clearances: 20, 100, and 200 microm. The fluid used for the friction measurements which contained different ratios of 25 percent newborn calf serum and carboxymethyl cellulose (CMC) with the obtained viscosities values ranging from 0.001 to 0.71 Pa s. The obtained results indicate that the frictional torque for the 20 microm clearance joint remains high over the whole range of the viscosity values. The frictional torque of the 100 microm clearance joint was low for the very low viscosity (0.001 Pa s) lubricant, but increased with increasing viscosity value. The frictional torque of the 200 microm clearance joint was high at very low viscosity levels, however, it reduced with increasing viscosity. It is concluded that a smaller clearance level can enhance the formation of an elastohydrodynamic lubrication (EHL) film, but this is at the cost of preventing fluid recovery between the bearing surfaces during the unloaded phase of walking. Larger clearance bearings allow a better recovery of lubricant during the unloaded phase, which is necessary for higher viscosity lubricants. The selection of the clearance value should therefore consider both the formation of the EHL film and the fluid recovery as a function of the physiological viscosity in order to get an optimal tribological performance for MOM hip joints. The application of either 25 per cent bovine serum or water in existing in vitro tribological study should also be revised to consider the relevance of clinic synovial fluid viscosities and to avoid possible misleading results.

  13. Alkyltributylphosphonium chloride ionic liquids: synthesis, physicochemical properties and crystal structure.

    PubMed

    Adamová, Gabriela; Gardas, Ramesh L; Nieuwenhuyzen, Mark; Puga, Alberto V; Rebelo, Luís Paulo N; Robertson, Allan J; Seddon, Kenneth R

    2012-07-21

    A series of alkyltributylphosphonium chloride ionic liquids, prepared from tributylphosphine and the respective 1-chloroalkane, C(n)H(2n+1)Cl (where n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12 or 14), is reported. This work is a continuation of an extended series of tetraalkylphosphonium ionic liquids, where the focus is on the variability of n and its impact on the physical properties, such as melting points/glass transitions, thermal stability, density and viscosity. Experimental density and viscosity data were interpreted using QPSR and group contribution methods and the crystal structure of propyl(tributyl)phosphonium chloride is detailed.

  14. Chitosan solutions as injectable systems for dermal filler applications: Rheological characterization and biological evidence.

    PubMed

    Halimi, C; Montembault, A; Guerry, A; Delair, T; Viguier, E; Fulchiron, R; David, L

    2015-01-01

    A new generation of dermal filler for wrinkle filler based on chitosan was compared to current hyaluronic acid-based dermal fillers by using a new rheological performance criterion based on viscosity during injection related to Newtonian viscosity. In addition an in vivo evaluation was performed for preclinical evidence of chitosan use as dermal filler. In this way, biocompatibility and dermis reconstruction was evaluated on a pig model.

  15. Aerodynamic Modeling of Transonic Aircraft Using Vortex Lattice Coupled with Transonic Small Disturbance for Conceptual Design

    NASA Technical Reports Server (NTRS)

    Chaparro, Daniel; Fujiwara, Gustavo E. C.; Ting, Eric; Nguyen, Nhan

    2016-01-01

    The need to rapidly scan large design spaces during conceptual design calls for computationally inexpensive tools such as the vortex lattice method (VLM). Although some VLM tools, such as Vorview have been extended to model fully-supersonic flow, VLM solutions are typically limited to inviscid, subcritical flow regimes. Many transport aircraft operate at transonic speeds, which limits the applicability of VLM for such applications. This paper presents a novel approach to correct three-dimensional VLM through coupling of two-dimensional transonic small disturbance (TSD) solutions along the span of an aircraft wing in order to accurately predict transonic aerodynamic loading and wave drag for transport aircraft. The approach is extended to predict flow separation and capture the attenuation of aerodynamic forces due to boundary layer viscosity by coupling the TSD solver with an integral boundary layer (IBL) model. The modeling framework is applied to the NASA General Transport Model (GTM) integrated with a novel control surface known as the Variable Camber Continuous Trailing Edge Flap (VCCTEF).

  16. Strategies to improve the mechanical strength and water resistance of agar films for food packaging applications.

    PubMed

    Sousa, Ana M M; Gonçalves, Maria P

    2015-11-05

    Agar films possess several properties adequate for food packaging applications. However, their high cost-production and quality variations caused by physiological and environmental factors affecting wild seaweeds make them less attractive for industries. In this work, native (NA) and alkali-modified (AA) agars obtained from sustainably grown seaweeds (integrated multi-trophic aquaculture) were mixed with locust bean gum (LBG) to make 'knife-coated' films with fixed final concentration (1 wt%) and variable agar/LBG ratios. Agar films were easier to process upon LBG addition (viscosity increase and gelling character decrease of the film-forming solutions observed by dynamic oscillatory and steady shear measurements). The mechanical properties and water resistance were optimal for films with 50 and/or 75% LBG contents and best in the case of NA (cheaper to extract). These findings can help reduce the cost-production of agar packaging films. Moreover, the controlled cultivation of seaweeds can provide continuous and reliable feedstock for transformation industries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Electrorheology for energy production and conservation

    NASA Astrophysics Data System (ADS)

    Huang, Ke

    Recently, based on the physics of viscosity, we developed a new technology, which utilizes electric or magnetic fields to change the rheology of complex fluids to reduce the viscosity, while keeping the temperature unchanged. The method is universal and applicable to all complex fluids with suspended particles of nano-meter, submicrometer, or micrometer size. Completely different from the traditional viscosity reduction method, raising the temperature, this technology is energy-efficient, as it only requires small amount of energy to aggregate the suspended particles. In this thesis, we will first discuss this new technology in detail, both in theory and practice. Then, we will report applications of our technology to energy science research. Presently, 80% of all energy sources are liquid fuels. The viscosity of liquid fuels plays an important role in energy production and energy conservation. With an electric field, we can reduce the viscosity of asphalt-based crude oil. This is important and useful for heavy crude oil and off-shore crude oil production and transportation. Especially, since there is no practical way to raise the temperature of crude oil inside the deepwater pipelines, our technology may play a key role in future off-shore crude oil production. Electrorehology can also be used to reduce the viscosity of refinery fuels, such as diesel fuel and gasoline. When we apply this technology to fuel injection, the fuel droplets in the fuel atomization become smaller, leading to faster combustion in the engine chambers. As the fuel efficiency of internal combustion engines depends on the combustion speed and timing, the fast combustion produces much higher fuel efficiency. Therefore, adding our technology on existing engines improves the engine efficiency significantly. A theoretical model for the engine combustion, which explains how fast combustion improves the engine efficiency, is also presented in the thesis. As energy is the key to our national security, we believe that our technology is important and will have a strong impact on energy production and conversation in the future.

  18. Defining the upper viscosity limit for mineral slurries used in drilled shaft construction : [summary].

    DOT National Transportation Integrated Search

    2014-02-01

    Many structures built on Floridas variable, sandy : soils require deep foundations, such as pilings. : Although pilings may be more familiar, drilled : shafts are also often used. Drilled shafts require : less expensive equipment and create less o...

  19. Teaching Science. The Soup-Can Olympics.

    ERIC Educational Resources Information Center

    Leyden, Michael

    1996-01-01

    Presents classroom science activities to illustrate concepts of inertia, linear momentum, and friction. Students or teachers conduct races down a slope, using cans containing soups varying in mass, mass distribution, and viscosity. Students predict outcomes, compare speeds, and identify variables affecting the results. (KDFB)

  20. Effect of Position- and Velocity-Dependent Forces on Reaching Movements at Different Speeds

    PubMed Central

    Summa, Susanna; Casadio, Maura; Sanguineti, Vittorio

    2016-01-01

    The speed of voluntary movements is determined by the conflicting needs of maximizing accuracy and minimizing mechanical effort. Dynamic perturbations, e.g., force fields, may be used to manipulate movements in order to investigate these mechanisms. Here, we focus on how the presence of position- and velocity-dependent force fields affects the relation between speed and accuracy during hand reaching movements. Participants were instructed to perform reaching movements under visual control in two directions, corresponding to either low or high arm inertia. The subjects were required to maintain four different movement durations (very slow, slow, fast, very fast). The experimental protocol included three phases: (i) familiarization—the robot generated no force; (ii) force field—the robot generated a force; and (iii) after-effect—again, no force. Participants were randomly assigned to four groups, depending on the type of force that was applied during the “force field” phase. The robot was programmed to generate position-dependent forces—with positive (K+) or negative stiffness (K−)—or velocity-dependent forces, with either positive (B+) or negative viscosity (B−). We focused on path curvature, smoothness, and endpoint error; in the latter we distinguished between bias and variability components. Movements in the high-inertia direction are smoother and less curved; smoothness also increases with movement speed. Endpoint bias and variability are greater in, respectively, the high and low inertia directions. A robust dependence on movement speed was only observed in the longitudinal components of both bias and variability. The strongest and more consistent effects of perturbation were observed with negative viscosity (B−), which resulted in increased variability during force field adaptation and in a reduction of the endpoint bias, which was retained in the subsequent after-effect phase. These findings confirm that training with negative viscosity produces lasting effects in movement accuracy at all speeds. PMID:27965559

  1. Models for viscosity and shear localization in bubble-rich magmas

    NASA Astrophysics Data System (ADS)

    Vona, Alessandro; Ryan, Amy G.; Russell, James K.; Romano, Claudia

    2016-09-01

    Bubble content influences magma rheology and, thus, styles of volcanic eruption. Increasing magma vesicularity affects the bulk viscosity of the bubble-melt suspension and has the potential to promote non-Newtonian behavior in the form of shear localization or brittle failure. Here, we present a series of high temperature uniaxial deformation experiments designed to investigate the effect of bubbles on the magma bulk viscosity. The starting materials are cores of natural rhyolitic obsidian synthesized to have variable vesicularity (ϕ = 0- 66%). The foamed cores were deformed isothermally (T = 750 °C) at atmospheric conditions using a high-temperature uniaxial press under constant displacement rates (strain rates between 0.5- 1 ×10-4 s-1) and to total strains of 10-40%. The viscosity of the bubble-free melt (η0) was measured by micropenetration and parallel plate methods to establish a baseline for experiments on the vesicle rich cores. At the experimental conditions, rising vesicle content produces a marked decrease in bulk viscosity that is best described by a two-parameter empirical equation: log10 ⁡ηBulk =log10 ⁡η0 - 1.47[ ϕ / (1 - ϕ) ] 0.48. Our parameterization of the bubble-melt rheology is combined with Maxwell relaxation theory to map the potential onset of non-Newtonian behavior (shear localization) in magmas as a function of melt viscosity, vesicularity, and strain rate. For low degrees of strain (i.e. as in our study), the rheological properties of vesicular magmas under different flow types (pure vs. simple shear) are indistinguishable. For high strain or strain rates where simple and pure shear viscosity values may diverge, our model represents a maximum boundary condition. Vesicular magmas can behave as non-Newtonian fluids at lower strain rates than unvesiculated melts, thereby, promoting shear localization and (explosive or non-explosive) magma fragmentation. The extent of shear localization in magma influences outgassing efficiency, thereby, affecting magma ascent and the potential for explosivity.

  2. The Mechanisms and Biomedical Applications of an NIR BODIPY-Based Switchable Fluorescent Probe

    PubMed Central

    Cheng, Bingbing; Bandi, Venugopal; Yu, Shuai; D’Souza, Francis; Nguyen, Kytai T.; Hong, Yi; Tang, Liping; Yuan, Baohong

    2017-01-01

    Highly environment-sensitive fluorophores have been desired for many biomedical applications. Because of the noninvasive operation, high sensitivity, and high specificity to the microenvironment change, they can be used as excellent probes for fluorescence sensing/imaging, cell tracking/imaging, molecular imaging for cancer, and so on (i.e., polarity, viscosity, temperature, or pH measurement). In this work, investigations of the switching mechanism of a recently reported near-infrared environment-sensitive fluorophore, ADP(CA)2, were conducted. Besides, multiple potential biomedical applications of this switchable fluorescent probe have been demonstrated, including wash-free live-cell fluorescence imaging, in vivo tissue fluorescence imaging, temperature sensing, and ultrasound-switchable fluorescence (USF) imaging. The fluorescence of the ADP(CA)2 is extremely sensitive to the microenvironment, especially polarity and viscosity. Our investigations showed that the fluorescence of ADP(CA)2 can be switched on by low polarity, high viscosity, or the presence of protein and surfactants. In wash-free live-cell imaging, the fluorescence of ADP(CA)2 inside cells was found much brighter than the dye-containing medium and was retained for at least two days. In all of the fluorescence imaging applications conducted in this study, high target-to-noise (>5-fold) was achieved. In addition, a high temperature sensitivity (73-fold per Celsius degree) of ADP(CA)2-based temperature probes was found in temperature sensing. PMID:28208666

  3. Hemorheology and heart rate variability in patients with diabetes mellitus type 2.

    PubMed

    Velcheva, Irena; Damianov, Petar; Mantarova, Stefka; Antonova, Nadia

    2011-01-01

    Our study aimed to investigate the relationship between hemorheological parameters and heart rate variability (HRV) in patients with diabetes mellitus type 2. Hemorheological variables, including hematocrit (Ht), fibrinogen (Fib), whole blood (WBV) and plasma viscosity (PV) at shear rates of 0.0237 s(-1) to 128.5 s(-1) were examined in 20 patients with diabetes mellitus type 2 and in 10 control subjects. They all underwent non-invasive short-term monitoring of heart rate at rest and after passive head-up tilt. Measurement of the R-R intervals and calculation of the time domain parameters and the power spectral data were performed by our softwear, using fast Fourier transformation. Significant increase of Fib and WBV in the patients in comparison to controls was found within the range of shear rates 0.0237 s(-1) to 128.5 s(-1). In the diabetic patients parallel decrease of the total power (TP), the low frequency spectral power (LF) and of the mean RR and mild increase of the low frequency-high frequency ratio (LF/HF) at rest were established. This tendency was kept after the passive tilt. In patients with diabetes mellitus type 2 the increased blood viscosity was associated with reduced HRV.

  4. An automated system for performing continuous viscosity versus temperature measurements of fluids using an Ostwald viscometer

    NASA Astrophysics Data System (ADS)

    Beaulieu, L. Y.; Logan, E. R.; Gering, K. L.; Dahn, J. R.

    2017-09-01

    An automated system was developed to measure the viscosity of fluids as a function of temperature using image analysis tracking software. An Ostwald viscometer was placed in a three-wall dewar in which ethylene glycol was circulated using a thermal bath. The system collected continuous measurements during both heating and cooling cycles exhibiting no hysteresis. The use of video tracking analysis software greatly reduced the measurement errors associated with measuring the time required for the meniscus to pass through the markings on the viscometer. The stability of the system was assessed by performing 38 consecutive measurements of water at 42.50 ± 0.05 °C giving an average flow time of 87.7 ± 0.3 s. A device was also implemented to repeatedly deliver a constant volume of liquid of 11.00 ± 0.03 ml leading to an average error in the viscosity of 0.04%. As an application, the system was used to measure the viscosity of two Li-ion battery electrolyte solvents from approximately 10 to 40 °C with results showing excellent agreement with viscosity values calculated using Gering's Advanced Electrolyte Model (AEM).

  5. Effects of Eddy Viscosity on Time Correlations in Large Eddy Simulation

    NASA Technical Reports Server (NTRS)

    He, Guowei; Rubinstein, R.; Wang, Lian-Ping; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    Subgrid-scale (SGS) models for large. eddy simulation (LES) have generally been evaluated by their ability to predict single-time statistics of turbulent flows such as kinetic energy and Reynolds stresses. Recent application- of large eddy simulation to the evaluation of sound sources in turbulent flows, a problem in which time, correlations determine the frequency distribution of acoustic radiation, suggest that subgrid models should also be evaluated by their ability to predict time correlations in turbulent flows. This paper compares the two-point, two-time Eulerian velocity correlation evaluated from direct numerical simulation (DNS) with that evaluated from LES, using a spectral eddy viscosity, for isotropic homogeneous turbulence. It is found that the LES fields are too coherent, in the sense that their time correlations decay more slowly than the corresponding time. correlations in the DNS fields. This observation is confirmed by theoretical estimates of time correlations using the Taylor expansion technique. Tile reason for the slower decay is that the eddy viscosity does not include the random backscatter, which decorrelates fluid motion at large scales. An effective eddy viscosity associated with time correlations is formulated, to which the eddy viscosity associated with energy transfer is a leading order approximation.

  6. Conformational Control of Ultrafast Molecular Rotor Property: Tuning Viscosity Sensing Efficiency by Twist Angle Variation.

    PubMed

    Ghosh, Rajib; Kushwaha, Archana; Das, Dipanwita

    2017-09-21

    Fluorescent molecular rotors find widespread application in sensing and imaging of microscopic viscosity in complex chemical and biological media. Development of viscosity-sensitive ultrafast molecular rotor (UMR) relies upon the understanding of the excited-state dynamics and their implications for viscosity-dependent fluorescence signaling. Unraveling the structure-property relationship of UMR behavior is of significance toward development of an ultrasensitive fluorescence microviscosity sensor. Herein we show that the ground-state equilibrium conformation has an important role in the ultrafast twisting dynamics of UMRs and consequent viscosity sensing efficiency. Synthesis, photophysics, and ultrafast spectroscopic experiments in conjunction with quantum chemical calculation of a series of UMRs based on dimethylaniline donor and benzimidazolium acceptor with predefined ground-state torsion angle led us to unravel that the ultrafast torsional dynamics around the bond connecting donor and acceptor groups profoundly influences the molecular rotor efficiency. This is the first experimental demonstration of conformational control of small-molecule-based UMR efficiencies which can have wider implication toward development of fluorescence sensors based on the UMR principle. Conformation-controlled UMR efficiency has been shown to exhibit commensurate fluorescence enhancement upon DNA binding.

  7. Dynamics of intrinsic axial flows in unsheared, uniform magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J. C.; Diamond, P. H.; Xu, X. Q.

    2016-05-15

    A simple model for the generation and amplification of intrinsic axial flow in a linear device, controlled shear decorrelation experiment, is proposed. This model proposes and builds upon a novel dynamical symmetry breaking mechanism, using a simple theory of drift wave turbulence in the presence of axial flow shear. This mechanism does not require complex magnetic field structure, such as shear, and thus is also applicable to intrinsic rotation generation in tokamaks at weak or zero magnetic shear, as well as to linear devices. This mechanism is essentially the self-amplification of the mean axial flow profile, i.e., a modulational instability.more » Hence, the flow development is a form of negative viscosity phenomenon. Unlike conventional mechanisms where the residual stress produces an intrinsic torque, in this dynamical symmetry breaking scheme, the residual stress induces a negative increment to the ambient turbulent viscosity. The axial flow shear is then amplified by this negative viscosity increment. The resulting mean axial flow profile is calculated and discussed by analogy with the problem of turbulent pipe flow. For tokamaks, the negative viscosity is not needed to generate intrinsic rotation. However, toroidal rotation profile gradient is enhanced by the negative increment in turbulent viscosity.« less

  8. Online measurement of viscosity for biological systems in stirred tank bioreactors.

    PubMed

    Schelden, Maximilian; Lima, William; Doerr, Eric Will; Wunderlich, Martin; Rehmann, Lars; Büchs, Jochen; Regestein, Lars

    2017-05-01

    One of the most critical parameters in chemical and biochemical processes is the viscosity of the medium. Its impact on mixing, as well as on mass and energy transfer is substantial. An increase of viscosity with reaction time can be caused by the formation of biopolymers like xanthan or by filamentous growth of microorganisms. In either case the properties of fermentation broth are changing and frequently non-Newtonian behavior are observed, resulting in major challenges for the measurement and control of mixing and mass transfer. This study demonstrates a method for the online determination of the viscosity inside a stirred tank reactor. The presented method is based on online measurement of heat transfer capacity from the bulk medium to the jacket of the reactor. To prove the feasibility of the method, fermentations with the xanthan producing bacterium Xanthomonas campestris pv. campestris B100 as model system were performed. Excellent correlation between offline measured apparent viscosity and online determined heat transfer capacity were found. The developed tool should be applicable to any other process with formation of biopolymers and filamentous growth. Biotechnol. Bioeng. 2017;114: 990-997. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Molecular dynamics of liquid crystals

    NASA Astrophysics Data System (ADS)

    Sarman, Sten

    1997-02-01

    We derive Green-Kubo relations for the viscosities of a nematic liquid crystal. The derivation is based on the application of a Gaussian constraint algorithm that makes the director angular velocity of a liquid crystal a constant of motion. Setting this velocity equal to zero means that a director-based coordinate system becomes an inertial frame and that the constraint torques do not do any work on the system. The system consequently remains in equilibrium. However, one generates a different equilibrium ensemble. The great advantage of this ensemble is that the Green-Kubo relations for the viscosities become linear combinations of time correlation function integrals, whereas they are complicated rational functions in the conventional canonical ensemble. This facilitates the numerical evaluation of the viscosities by molecular dynamics simulations.

  10. VALIDITY OF A TWO-DIMENSIONAL MODEL FOR VARIABLE-DENSITY HYDRODYNAMIC CIRCULATION

    EPA Science Inventory

    A three-dimensional model of temperatures and currents has been formulated to assist in the analysis and interpretation of the dynamics of stratified lakes. In this model, nonlinear eddy coefficients for viscosity and conductivities are included. A two-dimensional model (one vert...

  11. Electrofluidic Circuit-Based Microfluidic Viscometer for Analysis of Newtonian and Non-Newtonian Liquids under Different Temperatures.

    PubMed

    Lee, Tse-Ang; Liao, Wei-Hao; Wu, Yi-Fan; Chen, Yeng-Long; Tung, Yi-Chung

    2018-02-06

    This paper reports a microfluidic viscometer with an integrated pressure sensor based on electrofluidic circuits, which are electrical circuits constructed by ionic liquid-filled microfluidic channels. The electrofluidic circuit provides a pressure-sensing scheme with great long-term and thermal stability. The viscosity of the tested fluidic sample is estimated by its flow resistance, which is a function of pressure drop, flow rate, and the geometry of the microfluidic channel. The viscometer can be exploited to measure viscosity of either Newtonian or non-Newtonian power-law fluid under various shear rates (3-500 1/s) and temperatures (4-70 °C) with small sample volume (less than 400 μL). The developed sensor-integrated microfluidic viscometer is made of poly(dimethylsiloxane) (PDMS) with transparent electrofluidic circuit, which makes it feasible to simultaneously image samples under tests. In addition, the entire device is disposable to prevent cross-contamination between samples, which is desired for various chemical and biomedical applications. In the experiments, viscosities of Newtonian fluids, glycerol water solutions with different concentrations and a mixture of pyrogallol and sodium hydroxide (NaOH), and non-Newtonian fluids, xanthan gum solutions and human blood samples, have been characterized. The results demonstrate that the developed microfluidic viscometer provides a convenient and useful platform for practical viscosity characterization of fluidic samples for a wide variety of applications.

  12. Thermodynamic scaling of the shear viscosity of Mie n-6 fluids and their binary mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delage-Santacreu, Stephanie; Galliero, Guillaume, E-mail: guillaume.galliero@univ-pau.fr; Hoang, Hai

    2015-05-07

    In this work, we have evaluated the applicability of the so-called thermodynamic scaling and the isomorph frame to describe the shear viscosity of Mie n-6 fluids of varying repulsive exponents (n = 8, 12, 18, 24, and 36). Furthermore, the effectiveness of the thermodynamic scaling to deal with binary mixtures of Mie n-6 fluids has been explored as well. To generate the viscosity database of these fluids, extensive non-equilibrium molecular dynamics simulations have been performed for various thermodynamic conditions. Then, a systematic approach has been used to determine the gamma exponent value (γ) characteristic of the thermodynamic scaling approach formore » each system. In addition, the applicability of the isomorph theory with a density dependent gamma has been confirmed in pure fluids. In both pure fluids and mixtures, it has been found that the thermodynamic scaling with a constant gamma is sufficient to correlate the viscosity data on a large range of thermodynamic conditions covering liquid and supercritical states as long as the density is not too high. Interestingly, it has been obtained that, in pure fluids, the value of γ is directly proportional to the repulsive exponent of the Mie potential. Finally, it has been found that the value of γ in mixtures can be deduced from those of the pure component using a simple logarithmic mixing rule.« less

  13. Individual lipid encapsulated microbubble radial oscillations: Effects of fluid viscosity

    PubMed Central

    Helfield, Brandon; Chen, Xucai; Qin, Bin; Villanueva, Flordeliza S.

    2016-01-01

    Ultrasound-stimulated microbubble dynamics have been shown to be dependent on intrinsic bubble properties, including size and shell characteristics. The effect of the surrounding environment on microbubble response, however, has been less investigated. In particular, microbubble optimization studies are generally conducted in water/saline, characterized by a 1 cP viscosity, for application in the vasculature (i.e., 4 cP). In this study, ultra-high speed microscopy was employed to investigate fluid viscosity effects on phospholipid encapsulated microbubble oscillations at 1 MHz, using a single, eight-cycle pulse at peak negative pressures of 100 and 250 kPa. Microbubble oscillations were shown to be affected by fluid viscosity in a size- and pressure-dependent manner. In general, the oscillation amplitudes exhibited by microbubbles between 3 and 6 μm in 1 cP fluid were larger than in 4 cP fluid, reaching a maximum of 1.7-fold at 100 kPa for microbubbles 3.8 μm in diameter and 1.35-fold at 250 kPa for microbubbles 4.8 μm in diameter. Simulation results were in broad agreement at 250 kPa, however generally underestimated the effect of fluid viscosity at 100 kPa. This is the first experimental demonstration documenting the effects of surrounding fluid viscosity on microbubble oscillations, resulting in behavior not entirely predicted by current microbubble models. PMID:26827018

  14. Monitoring corneal crosslinking using phase-decorrelation OCT (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Blackburn, Brecken J.; Gu, Shi; Jenkins, Michael W.; Rollins, Andrew M.

    2017-02-01

    Viscosity is often a critical characteristic of biological fluids such as blood and mucus. However, traditional rheology is often inadequate when only small quantities of sample are available. A robust method to measure viscosity of microquantities of biological samples could lead to a better understanding and diagnosis of diseases. Here, we present a method to measure viscosity by observing particle Brownian motion within a sample. M-mode optical coherence tomography (OCT) imaging, obtained with a phase-sensitive 47 kHz spectral domain system, yields a viscosity measurement from multiple 200-1000 microsecond frames. This very short period of continuous acquisition, as compared to laser speckle decorrelation, decreases sensitivity to bulk motion, thereby potentially enabling in vivo and in situ applications. The theory linking g(1) first-order image autocorrelation to viscosity is derived from first principles of Brownian motion and the Stokes-Einstein relation. To improve precision, multiple windows acquired over 500 milliseconds are analyzed and the resulting linear fit parameters are averaged. Verification experiments were performed with 200 µL samples of glycerol and water with polystyrene microbeads. Lateral bulk motion up to 2 mm/s was tolerated and accurate viscosity measurements were obtained to a depth of 400 µm or more. Additionally, the method measured a significant decrease of the apparent diffusion constant of soft tissue after formalin fixation, suggesting potential for mapping tissue stiffness over a volume.

  15. Viscosity Measurement Using Drop Coalescence in Microgravity

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.; Ethridge, Edwin C.; Maxwell, Daniel; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    We present in here validation studies of a new method for application in microgravity environment which measures the viscosity of highly viscous undercooled liquids using drop coalescence. The method has the advantage of avoiding heterogeneous nucleation at container walls caused by crystallization of undercooled liquids during processing. Homogeneous nucleation can also be avoided due to the rapidity of the measurement using this method. The technique relies on measurements from experiments conducted in near zero gravity environment as well as highly accurate analytical formulation for the coalescence process. The viscosity of the liquid is determined by allowing the computed free surface shape relaxation time to be adjusted in response to the measured free surface velocity for two coalescing drops. Results are presented from two sets of validation experiments for the method which were conducted on board aircraft flying parabolic trajectories. In these tests the viscosity of a highly viscous liquid, namely glycerin, was determined at different temperatures using the drop coalescence method described in here. The experiments measured the free surface velocity of two glycerin drops coalescing under the action of surface tension alone in low gravity environment using high speed photography. The liquid viscosity was determined by adjusting the computed free surface velocity values to the measured experimental data. The results of these experiments were found to agree reasonably well with the known viscosity for the test liquid used.

  16. Solution of magnetohydrodynamic flow and heat transfer of radiative viscoelastic fluid with temperature dependent viscosity in wire coating analysis

    PubMed Central

    Khan, Muhammad Altaf; Siddiqui, Nasir; Ullah, Murad; Shah, Qayyum

    2018-01-01

    Wire coating process is a continuous extrusion process for primary insulation of conducting wires with molten polymers for mechanical strength and protection in aggressive environments. In the present study, radiative melt polymer satisfying third grade fluid model is used for wire coating process. The effect of magnetic parameter, thermal radiation parameter and temperature dependent viscosity on wire coating analysis has been investigated. Reynolds model and Vogel’s models have been incorporated for variable viscosity. The governing equations characterizing the flow and heat transfer phenomena are solved analytically by utilizing homotopy analysis method (HAM). The computed results are also verified by ND-Solve method (Numerical technique) and Adomian Decomposition Method (ADM). The effect of pertinent parameters is shown graphically. In addition, the instability of the flow in the flows of the wall of the extrusion die is well marked in the case of the Vogel model as pointed by Nhan-Phan-Thien. PMID:29596448

  17. Viscosity of the oil-in-water Pickering emulsion stabilized by surfactant-polymer and nanoparticle-surfactant-polymer system

    NASA Astrophysics Data System (ADS)

    Sharma, Tushar; Kumar, G. Suresh; Chon, Bo Hyun; Sangwai, Jitendra S.

    2014-11-01

    Information on the viscosity of Pickering emulsion is required for their successful application in upstream oil and gas industry to understand their stability at extreme environment. In this work, a novel formulation of oil-in-water (o/w) Pickering emulsion stabilized using nanoparticle-surfactant-polymer (polyacrylamide) system as formulated in our earlier work (Sharma et al., Journal of Industrial and Engineering Chemistry, 2014) is investigated for rheological stability at high pressure and high temperature (HPHT) conditions using a controlled-strain rheometer. The nanoparticle (SiO2 and clay) concentration is varied from 1.0 to 5.0 wt%. The results are compared with the rheological behavior of simple o/w emulsion stabilized by surfactant-polymer system. Both the emulsions exhibit non-Newtonian shear thinning behavior. A positive shift in this behavior is observed for surfactant-polymer stabilized emulsion at high pressure conditions. Yield stress is observed to increase with pressure for surfactant-polymer emulsion. In addition, increase in temperature has an adverse effect on the viscosity of emulsion stabilized by surfactant-polymer system. In case of nanoparticle-surfactant-polymer stabilized o/w emulsion system, the viscosity and yield stress are predominantly constant for varying pressure and temperature conditions. The viscosity data for both o/w emulsion systems are fitted by the Herschel-Bulkley model and found to be satisfactory. In general, the study indicates that the Pickering emulsion stabilized by nanoparticle-surfactant-polymer system shows improved and stable rheological properties as compared to conventional emulsion stabilized by surfactant-polymer system indicating their successful application for HPHT environment in upstream oil and gas industry.

  18. Making a Magnetorheological Fluid from Mining Tailings

    NASA Astrophysics Data System (ADS)

    Quitian, G.; Saldarriaga, W.; Rojas, N.

    2017-12-01

    We have obtained magnetite mining tailings and used it to fabricate a magnetorheological fluid (MRF). Mineralogical and morphological characteristics were determined using X-ray diffraction (XRD) and energy dispersive spectrometry (EDS), as well as size and geometry for the obtained magnetite. Finally, the fabricated MRF was rheologically characterized in a device attached to a rheometer. The application of a magnetic field of 0.12 Tesla can increase the viscosity of the MRF by more than 400 pct. A structural formation should occur within the fluid by a reordering of particles into magnetic columns, which are perpendicular to the flow direction. These structures give the fluid an increased viscosity. As the magnetic field increases, the structure formed is more resistant, resulting in an increased viscosity. One can appreciate that with a value equal to or less than 0.06 Tesla of applied magnetic field, many viscosity values associated with the work area of the oils can be achieved (0.025 and 0.34 Pa s).

  19. Fluid viscosity affects the fragmentation and inertial cavitation threshold of lipid encapsulated microbubbles

    PubMed Central

    Helfield, Brandon; Black, John J.; Qin, Bin; Pacella, John; Chen, Xucai; Villanueva, Flordeliza S.

    2015-01-01

    Ultrasound and microbubble optimization studies for therapeutic applications are often conducted in water/saline, with a fluid viscosity of 1 cP. In an in vivo context, microbubbles are situated in blood, a more viscous fluid (~4 cP). In this study, ultra-high speed microscopy and passive cavitation approaches were employed to investigate the effect of fluid viscosity on microbubble behavior at 1 MHz subject to high pressures (0.25 – 2 MPa). The propensity for individual microbubble (n=220) fragmentation was shown to significantly decrease in 4 cP fluid as compared to 1 cP fluid, despite achieving similar maximum radial excursions. Microbubble populations diluted in 4 cP fluid exhibited decreased wideband emissions (up to 10.2 times), and increasingly distinct harmonic emission peaks (e.g. ultraharmonic) with increasing pressure as compared to 1 cP fluid. These results suggest that in vitro studies should consider an evaluation using physiologic viscosity perfusate before transitioning to in vivo evaluations. PMID:26674676

  20. Tuning Fork Oscillators as Downhole Viscometers in Oilfield Applications

    NASA Astrophysics Data System (ADS)

    Gonzalez, Miguel; Bernero, Greg; Alvarez, Oliverio; Ham, Gregory; Max, Deffenbaugh; Sensors Development Team

    2015-03-01

    The commerciality of oil wells is greatly influenced by the physical properties of the fluids being produced. A key parameter in determining how producible the hydrocarbons are is their viscosity. Pressure and temperature changes in recovering a downhole sample to the surface can alter viscosity while accurate downhole measurement of this critical property remains a rudimentary effort in the industry. In this presentation we describe the challenges of measuring and quantifying the viscosity of reservoir fluids in situ at downhole conditions, as well as present an overview of some of the different measurement techniques currently used. Additionally, we show our characterization of a piezoelectric tuning fork oscillator used as a viscosity sensor. In an attempt to recreate the environment found in oil wells, its mechanical and electrical properties were studied while the device was immersed in different fluids and, separately, under different conditions of pressure and temperature. This device is a first step toward the development of an inexpensive, integrated, and miniaturized sensing platform for the in situ characterization of reservoir fluids.

  1. Viscosity and stability of ultra-high internal phase CO2-in-water foams stabilized with surfactants and nanoparticles with or without polyelectrolytes.

    PubMed

    Xue, Zheng; Worthen, Andrew; Qajar, Ali; Robert, Isaiah; Bryant, Steven L; Huh, Chun; Prodanović, Maša; Johnston, Keith P

    2016-01-01

    To date, relatively few examples of ultra-high internal phase supercritical CO2-in-water foams (also referred to as macroemulsions) have been observed, despite interest in applications including "waterless" hydraulic fracturing in energy production. The viscosities and stabilities of foams up to 0.98 CO2 volume fraction were investigated in terms of foam bubble size, interfacial tension, and bulk and surface viscosity. The foams were stabilized with laurylamidopropyl betaine (LAPB) surfactant and silica nanoparticles (NPs), with and without partially hydrolyzed polyacrylamide (HPAM). For foams stabilized with mixture of LAPB and NPs, fine ∼70 μm bubbles and high viscosities on the order of 100 cP at>0.90 internal phase fraction were stabilized for hours to days. The surfactant reduces interfacial tension, and thus facilitates bubble generation and decreases the capillary pressure to reduce the drainage rate of the lamella. The LAPB, which is in the cationic protonated form, also attracts anionic NPs (and anionic HPAM in systems containing polymer) to the interface. The adsorbed NPs at the interface are shown to slow down Ostwald ripening (with or without polymer added) and increase foam stability. In systems with added HPAM, the increase in the bulk and surface viscosity of the aqueous phase further decreases the lamella drainage rate and inhibits coalescence of foams. Thus, the added polymer increases the foam viscosity by threefold. Scaling law analysis shows the viscosity of 0.90 volume fraction foams is inversely proportional to the bubble size. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Numerical Simulation of Permeability Change in Wellbore Cement Fractures after Geomechanical Stress and Geochemical Reactions Using X-ray Computed Tomography Imaging.

    PubMed

    Kabilan, Senthil; Jung, Hun Bok; Kuprat, Andrew P; Beck, Anthon N; Varga, Tamas; Fernandez, Carlos A; Um, Wooyong

    2016-06-21

    X-ray microtomography (XMT) imaging combined with three-dimensional (3D) computational fluid dynamics (CFD) modeling technique was used to study the effect of geochemical and geomechanical processes on fracture permeability in composite Portland cement-basalt caprock core samples. The effect of fluid density and viscosity and two different pressure gradient conditions on fracture permeability was numerically studied by using fluids with varying density and viscosity and simulating two different pressure gradient conditions. After the application of geomechanical stress but before CO2-reaction, CFD revealed fluid flow increase, which resulted in increased fracture permeability. After CO2-reaction, XMT images displayed preferential precipitation of calcium carbonate within the fractures in the cement matrix and less precipitation in fractures located at the cement-basalt interface. CFD estimated changes in flow profile and differences in absolute values of flow velocity due to different pressure gradients. CFD was able to highlight the profound effect of fluid viscosity on velocity profile and fracture permeability. This study demonstrates the applicability of XMT imaging and CFD as powerful tools for characterizing the hydraulic properties of fractures in a number of applications like geologic carbon sequestration and storage, hydraulic fracturing for shale gas production, and enhanced geothermal systems.

  3. Polymethacrylic acid grafted psyllium (Psy- g-PMA): a novel material for waste water treatment

    NASA Astrophysics Data System (ADS)

    Kumar, Ranvijay; Sharma, Kaushlendra; Tiwary, K. P.; Sen, Gautam

    2013-03-01

    Polymethacrylic acid grafted psyllium (Psy- g-PMA) was synthesized by microwave assisted method, which involves a microwave irradiation in synergism with silver sulfate as a free radical initiator to initiate grafting reaction. Psy- g-PMA grades have been synthesized and characterized on structural basis (elemental analysis, FTIR spectroscopy, intrinsic viscosity study) as well as morphological and thermal studies, taking psyllium as reference. The effects of reaction time, amount of monomer and silver sulfate (free radical initiator) on grafting of PMA on psyllium backbone have been studied. It is observed that all the grades of Psy- g-PMA have higher intrinsic viscosities than that of psyllium. The best synthesized grade was Psy- g-PMA having intrinsic viscosity of 6.93 and 58 % grafting of PMA on the main polymer backbone. Further Psy- g-PMA applications as flocculants for waste water treatment have been investigated. Psy- g-PMA resulted in higher decrease in the flocculation parameters such as total dissolved solid or total solids compared to psyllium. Hence the result shows the possible application of grafted psyllium in wastewater treatment.

  4. A quality by design approach to optimization of emulsions for electrospinning using factorial and D-optimal designs.

    PubMed

    Badawi, Mariam A; El-Khordagui, Labiba K

    2014-07-16

    Emulsion electrospinning is a multifactorial process used to generate nanofibers loaded with hydrophilic drugs or macromolecules for diverse biomedical applications. Emulsion electrospinnability is greatly impacted by the emulsion pharmaceutical attributes. The aim of this study was to apply a quality by design (QbD) approach based on design of experiments as a risk-based proactive approach to achieve predictable critical quality attributes (CQAs) in w/o emulsions for electrospinning. Polycaprolactone (PCL)-thickened w/o emulsions containing doxycycline HCl were formulated using a Span 60/sodium lauryl sulfate (SLS) emulsifier blend. The identified emulsion CQAs (stability, viscosity and conductivity) were linked with electrospinnability using a 3(3) factorial design to optimize emulsion composition for phase stability and a D-optimal design to optimize stable emulsions for viscosity and conductivity after shifting the design space. The three independent variables, emulsifier blend composition, organic:aqueous phase ratio and polymer concentration, had a significant effect (p<0.05) on emulsion CQAs, the emulsifier blend composition exerting prominent main and interaction effects. Scanning electron microscopy (SEM) of emulsion-electrospun NFs and desirability functions allowed modeling of emulsion CQAs to predict electrospinnable formulations. A QbD approach successfully built quality in electrospinnable emulsions, allowing development of hydrophilic drug-loaded nanofibers with desired morphological characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Melt transport - a personal cashing-up

    NASA Astrophysics Data System (ADS)

    Renner, J.

    2005-12-01

    The flow of fluids through rocks transports heat and material and changes bulk composition. The large-scale chemical differentiation of the Earth is related to flow of partial melts. From the perspective of current understanding of tectonic processes, prominent examples of such transport processes are the formation of oceanic crust from ascending basic melts at mid-ocean ridges, melt segregation involved in the solidification of the Earth's core, and dissolution-precipitation creep in subduction channels. Transport and deformation cannot be separated for partially molten aggregates. Permeability is only defined as an instantaneous parameter in the sense that Darcy's law is assumed to be valid; it is not an explicit parameter in the fundamental mechanical conservation laws but can be derived from them in certain circumstances as a result of averaging schemes. The governing, explicit physical properties in the mechanical equations are the shear and bulk viscosities of the solid framework and the fluid viscosity and compressibility. Constraints on the magnitude of these properties are available today from experiments at specific loading configurations, i.e., more or less well constrained initial and boundary conditions. The melt pressure remains the least controlled parameter. While the fluid viscosity is often much lower than the solid's the two-phase aggregate may exhibit considerable strength owing to the difficulty of moving the fluid through the branched pore network. The extremes in behavior depend on the time scale of loading, as known from daily live experiences (spounge, Danish coffee-pot, human tissue between neighboring bones). Several theoretical approaches attempted to formulate mechanical constitutive equations for two-phase aggregates. An important issue is the handling of internal variables in these equations. At experimental conditions, grain size, melt pocket orientation and crystallographic orientation -prime candidates for internal variables- change considerably and potentially contribute significantly to the total dissipation of the external work. Theoretically founded evolution equations for these internal variables are lacking. In experiments, both the kinetics of grain growth but also the resultant shape of grains is affected by the presence of melt. The latter is linked to the alignment of melt pockets with the maximum principle stress. Thus, the melt redistribution causes direct anisotropy but also indirect through a shape-preferred orientation of solid grains. Notably, the foliation is parallel to the maximum principle stress in contrast to deformation controlled by crystal defects alone. Extremum principles developed for dissipation potentials in the framework of irreversible thermodynamics may allow us to postulate evolution equations. Owing to their significant effect on aggregate viscosities understanding the evolution of internal variables is mandatory for substantial large-scale modeling.

  6. Density and viscosity of aqueous blends of N-methyldiethanolamine and 2-amino-2-methyl-1-propanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welsh, L.M.; Davis, R.A.

    Aqueous solutions of alkanolamines such as N-methyldiethanolamine (MDEA) and 2-amino-2-methyl-1-propanol (AMP) have application in acid gas treatment for the removal of acid gases such as carbon dioxide and hydrogen sulfide. The density and kinematic viscosity of aqueous blends of N-methyldiethanolamine and 2-amino-2-methyl-1-propanol were determined from experiments within the temperature range 10--60 C. The composition of the alkanolamines in water ranged from 5% to 50% by mass.

  7. The Ultrasensitivity of Living Polymers

    NASA Astrophysics Data System (ADS)

    O'Shaughnessy, Ben; Vavylonis, Dimitrios

    2003-03-01

    Synthetic and biological living polymers are self-assembling chains whose chain length distributions (CLDs) are dynamic. We show these dynamics are ultrasensitive: Even a small perturbation (e.g., temperature jump) nonlinearly distorts the CLD, eliminating or massively augmenting short chains. The origin is fast relaxation of mass variables (mean chain length, monomer concentration) which perturbs CLD shape variables before these can relax via slow chain growth rate fluctuations. Viscosity relaxation predictions agree with experiments on the best-studied synthetic system, α-methylstyrene.

  8. Sorting process of nanoparticles and applications of same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler, Timothy P.; Henry, Anne-Isabelle; Van Duyne, Richard P.

    In one aspect of the present invention, a method for sorting nanoparticles includes preparing a high-viscosity density gradient medium filled in a container, dispersing nanoparticles into an aqueous solution to form a suspension of the nanoparticles, each nanoparticle having one or more cores and a shell encapsulating the one or more cores, layering the suspension of the nanoparticles on the top of the high-viscosity density gradient medium in the container, and centrifugating the layered suspension of the nanoparticles on the top of the high-viscosity density gradient medium in the container at a predetermined speed for a predetermined period of timemore » to form a gradient of fractions of the nanoparticles along the container, where each fraction comprises nanoparticles in a respective one of aggregation states of the nanoparticles.« less

  9. Motion of Molecular Probes and Viscosity Scaling in Polyelectrolyte Solutions at Physiological Ionic Strength

    PubMed Central

    Sozanski, Krzysztof; Wisniewska, Agnieszka; Kalwarczyk, Tomasz; Sznajder, Anna; Holyst, Robert

    2016-01-01

    We investigate transport properties of model polyelectrolyte systems at physiological ionic strength (0.154 M). Covering a broad range of flow length scales—from diffusion of molecular probes to macroscopic viscous flow—we establish a single, continuous function describing the scale dependent viscosity of high-salt polyelectrolyte solutions. The data are consistent with the model developed previously for electrically neutral polymers in a good solvent. The presented approach merges the power-law scaling concepts of de Gennes with the idea of exponential length scale dependence of effective viscosity in complex liquids. The result is a simple and applicable description of transport properties of high-salt polyelectrolyte solutions at all length scales, valid for motion of single molecules as well as macroscopic flow of the complex liquid. PMID:27536866

  10. MODELING COSOLVENT-WATER DISPLACEMENT IN POROUS MEDIA USING A VARIABLE DENSITY AND VISCOSITY FLOW AND TRANSPORT APPROACH (R823579)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  11. Quantitative analysis of the pendulum test: application to multiple sclerosis patients treated with botulinum toxin.

    PubMed

    Bianchi, L; Monaldi, F; Paolucci, S; Iani, C; Lacquaniti, F

    1999-01-01

    The aim of this study was to develop quantitative analytical methods in the application of the pendulum test to both normal and spastic subjects. The lower leg was released by a torque motor from different starting positions. The resulting changes in the knee angle were fitted by means of a time-varying model. Stiffness and viscosity coefficients were derived for each half-cycle oscillation in both flexion and extension, and for all knee starting positions. This method was applied to the assessment of the effects of Botulinum toxin A (BTX) in progressive multiple sclerosis patients in a follow-up study. About half of the patients showed a significant decrement in stiffness and viscosity coefficients.

  12. Structural and molecular basis of starch viscosity in hexaploid wheat.

    PubMed

    Ral, J-P; Cavanagh, C R; Larroque, O; Regina, A; Morell, M K

    2008-06-11

    Wheat starch is considered to have a low paste viscosity relative to other starches. Consequently, wheat starch is not preferred for many applications as compared to other high paste viscosity starches. Increasing the viscosity of wheat starch is expected to increase the functionality of a range of wheat flour-based products in which the texture is an important aspect of consumer acceptance (e.g., pasta, and instant and yellow alkaline noodles). To understand the molecular basis of starch viscosity, we have undertaken a comprehensive structural and rheological analysis of starches from a genetically diverse set of wheat genotypes, which revealed significant variation in starch traits including starch granule protein content, starch-associated lipid content and composition, phosphate content, and the structures of the amylose and amylopectin fractions. Statistical analysis highlighted the association between amylopectin chains of 18-25 glucose residues and starch pasting properties. Principal component analysis also identified an association between monoesterified phosphate and starch pasting properties in wheat despite the low starch-phosphate level in wheat as compared to tuber starches. We also found a strong negative correlation between the phosphate ester content and the starch content in flour. Previously observed associations between internal starch granule fatty acids and the swelling peak time and pasting temperature have been confirmed. This study has highlighted a range of parameters associated with increased starch viscosity that could be used in prebreeding/breeding programs to modify wheat starch pasting properties.

  13. Viscosities encountered during the cryopreservation of dimethyl sulphoxide systems.

    PubMed

    Kilbride, P; Morris, G J

    2017-06-01

    This study determined the viscous conditions experienced by cells in the unfrozen freeze concentrated channels between ice crystals in slow cooling protocols. This was examined for both the binary Me 2 SO-water and the ternary Me 2 SO-NaCl-water systems. Viscosity increases from 6.9 ± 0.1 mPa s at -14.4 ± 0.3 °C to 958 ± 27 mPa s at -64.3 ± 0.4 °C in the binary system, and up to 55387 ± 1068 mPa s at -75 ± 0.5 °C in the ternary (10% Me 2 SO, 0.9% NaCl by weight) solution were seen. This increase in viscosity limits molecular diffusion, reducing adsorption onto the crystal plane. These viscosities are significantly lower than observed in glycerol based systems and so cells in freeze concentrated channels cooled to between -60 °C and -75 °C will reside in a thick fluid not a near-solid state as is often assumed. In addition, the viscosities experienced during cooling of various Me 2 SO based vitrification solutions is determined to below -70 °C, as is the impact which additional solutes exert on viscosity. These data show that additional solutes in a cryopreservation system cause disproportionate increases in viscosity. This in turn impacts diffusion rates and mixing abilities of high concentrations of cryoprotectants, and have applications to understanding the fundamental cooling responses of cells to Me 2 SO based cryopreservation solutions. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Viscosity Meaurement Technique for Metal Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ban, Heng; Kennedy, Rory

    2015-02-09

    Metallic fuels have exceptional transient behavior, excellent thermal conductivity, and a more straightforward reprocessing path, which does not separate out pure plutonium from the process stream. Fabrication of fuel containing minor actinides and rare earth (RE) elements for irradiation tests, for instance, U-20Pu-3Am-2Np-1.0RE-15Zr samples at the Idaho National Laboratory, is generally done by melt casting in an inert atmosphere. For the design of a casting system and further scale up development, computational modeling of the casting process is needed to provide information on melt flow and solidification for process optimization. Therefore, there is a need for melt viscosity data, themore » most important melt property that controls the melt flow. The goal of the project was to develop a measurement technique that uses fully sealed melt sample with no Americium vapor loss to determine the viscosity of metallic melts and at temperatures relevant to the casting process. The specific objectives of the project were to: develop mathematical models to establish the principle of the measurement method, design and build a viscosity measurement prototype system based on the established principle, and calibrate the system and quantify the uncertainty range. The result of the project indicates that the oscillation cup technique is applicable for melt viscosity measurement. Detailed mathematical models of innovative sample ampoule designs were developed to not only determine melt viscosity, but also melt density under certain designs. Measurement uncertainties were analyzed and quantified. The result of this project can be used as the initial step toward the eventual goal of establishing a viscosity measurement system for radioactive melts.« less

  15. Viscosity Control Experiment Feasibility Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, Heidi E.; Bradley, Paul Andrew

    Turbulent mix has been invoked to explain many results in Inertial Confinement Fusion (ICF) and High Energy Density (HED) physics, such as reduced yield in capsule implosions. Many ICF capsule implosions exhibit interfacial instabilities seeded by the drive shock, but it is not clear that fully developed turbulence results from this. Many simulations use turbulent mix models to help match simulation results to data, but this is not appropriate if turbulence is not present. It would be useful to have an experiment where turbulent mixing could be turned on or off by design. The use of high-Z dopants to modifymore » viscosity and the resulting influence on turbulence is considered here. A complicating factor is that the plasma in some implosions can become strongly coupled, which makes the Spitzer expression for viscosity invalid. We first consider equations that cover a broad parameter space in temperature and density to address regimes for various experimental applications. Next, a previous shock-tube and other ICF experiments that investigate viscosity or use doping to examine the effects on yield are reviewed. How viscosity and dopants play a role in capsule yield depends on the region and process under consideration. Experiments and simulations have been performed to study the effects of viscosity on both the hot spot and the fuel/ablator mix. Increases in yield have been seen for some designs, but not all. We then discuss the effect of adding krypton dopant to the gas region of a typical OMEGA and a 2-shock NIF implosion to determine approximately the effect of adding dopant on the computed Reynolds number. Recommendations for a path forward for possible experiments using high-Z dopants to affect viscosity and turbulence are made.« less

  16. Assessment of alginate hydrogel degradation in biological tissue using viscosity-sensitive fluorescent dyes

    NASA Astrophysics Data System (ADS)

    Shkand, Tatiana V.; Chizh, Mykola O.; Sleta, Iryna V.; Sandomirsky, Borys P.; Tatarets, Anatoliy L.; Patsenker, Leonid D.

    2016-12-01

    The main goal of this study is to investigate a combination of viscosity-sensitive and viscosity-insensitive fluorescent dyes to distinguish different rheological states of hydrogel based biostructural materials and carriers in biological tissues and to assess their corresponding location areas. The research is done in the example of alginate hydrogel stained with viscosity-sensitive dyes Seta-470 and Seta-560 as well as the viscosity-insensitive dye Seta-650. These dyes absorb/emit at 469/518, 565/591 and 651/670 nm, respectively. The rheological state of the alginate, the area of the fluorescence signal and the mass of the dense alginate versus the calcium gluconate concentration utilized for alginate gelation were studied in vitro. The most pronounced change in the fluorescence signal area was found at the same concentrations of calcium gluconate (below ~1%) as the change in the alginate plaque mass. The stained alginate was also implanted in situ in rat hip and myocardium and monitored using fluorescence imaging. In summary, our data indicate that the viscosity sensitive dye in combination with the viscosity-insensitive dye allow tracking the biodegradation of the alginate hydrogel and determining the rheological state of hydrogel in biological tissue, which both should have relevance for research and clinical applications. Using this method we estimated the half-life of the dense alginate hydrogel in a rat hip to be in the order of 4 d and about 6-8 d in rat myocardium. The half-life of the dense hydrogel in the myocardium was found to be long enough to prevent aneurysm rupture of the left ventricle wall, one of the more severe complications of the early post-infarction period.

  17. The rheology of crystal-rich magmas (Kuno Award Lecture)

    NASA Astrophysics Data System (ADS)

    Huber, Christian; Aldin Faroughi, Salah; Degruyter, Wim

    2016-04-01

    The rheology of magmas controls not only eruption dynamics but also the rate of transport of magmas through the crust and to a large extent the rate of magma differentiation and degassing. Magma bodies stalled in the upper crust are known to spend most of their lifespan above the solidus at a high crystal content (Cooper and Kent, 2014; Huber et al., 2009), where the probability of melt extraction (crystal fractionation) is the greatest (Dufek and Bachmann, 2010). In this study, we explore a new theoretical framework to study the viscosity of crystal bearing magmas. Since the seminal work of A. Einstein and W. Sutherland in the early 20th century, it has been shown theoretically and tested experimentally that a simple self-similar behavior exist between the relative viscosity of dilute (low crystal content) suspensions and the particle volume fraction. The self-similar nature of that relationship is quickly lost as we consider crystal fractions beyond a few volume percent. We propose that the relative viscosity of crystal-bearing magmas can be fully described by two state variables, the intrinsic viscosity and the crowding factor (a measure of the packing threshold in the suspension). These two state variables can be measured experimentally under different conditions, which allows us to develop closure relationships in terms of the applied shear stress and the crystal shape and size distributions. We build these closure equations from the extensive literature on the rheology of synthetic suspensions, where the nature of the particle shape and size distributions is better constrained and apply the newly developed model to published experiments on crystal-bearing magmas. We find that we recover a self-similar behavior (unique rheology curve) up to the packing threshold and show that the commonly reported break in slope between the relative viscosity and crystal volume fraction around the expected packing threshold is most likely caused by a sudden change in the state of dispersion of the magma (change in the state variables caused by either shear localization or crystal breakage). We argue that the model we propose is a first step to go beyond fitting experimental data and towards building a predictive rheology model for crystal-bearing magmas. Cooper, K.M., and Kent, A.J.R. (2014) Rapid remobilization of magmatic crystals kept in cold storage. Nature, 506(7489), 480-483. Dufek, J., and Bachmann, O. (2010) Quantum magmatism: Magmatic compositional gaps generated by melt-crystal dynamics. Geology, 38(8), 687-690. Huber, C., Bachmann, O., and Manga, M. (2009) Homogenization processes in silicic magma chambers by stirring and mushification (latent heat buffering). Earth and Planetary Science Letters, 283(1-4), 38-47.

  18. The spectral element method (SEM) on variable-resolution grids: evaluating grid sensitivity and resolution-aware numerical viscosity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guba, O.; Taylor, M. A.; Ullrich, P. A.

    2014-11-27

    We evaluate the performance of the Community Atmosphere Model's (CAM) spectral element method on variable-resolution grids using the shallow-water equations in spherical geometry. We configure the method as it is used in CAM, with dissipation of grid scale variance, implemented using hyperviscosity. Hyperviscosity is highly scale selective and grid independent, but does require a resolution-dependent coefficient. For the spectral element method with variable-resolution grids and highly distorted elements, we obtain the best results if we introduce a tensor-based hyperviscosity with tensor coefficients tied to the eigenvalues of the local element metric tensor. The tensor hyperviscosity is constructed so that, formore » regions of uniform resolution, it matches the traditional constant-coefficient hyperviscosity. With the tensor hyperviscosity, the large-scale solution is almost completely unaffected by the presence of grid refinement. This later point is important for climate applications in which long term climatological averages can be imprinted by stationary inhomogeneities in the truncation error. We also evaluate the robustness of the approach with respect to grid quality by considering unstructured conforming quadrilateral grids generated with a well-known grid-generating toolkit and grids generated by SQuadGen, a new open source alternative which produces lower valence nodes.« less

  19. The spectral element method on variable resolution grids: evaluating grid sensitivity and resolution-aware numerical viscosity

    DOE PAGES

    Guba, O.; Taylor, M. A.; Ullrich, P. A.; ...

    2014-06-25

    We evaluate the performance of the Community Atmosphere Model's (CAM) spectral element method on variable resolution grids using the shallow water equations in spherical geometry. We configure the method as it is used in CAM, with dissipation of grid scale variance implemented using hyperviscosity. Hyperviscosity is highly scale selective and grid independent, but does require a resolution dependent coefficient. For the spectral element method with variable resolution grids and highly distorted elements, we obtain the best results if we introduce a tensor-based hyperviscosity with tensor coefficients tied to the eigenvalues of the local element metric tensor. The tensor hyperviscosity ismore » constructed so that for regions of uniform resolution it matches the traditional constant coefficient hyperviscsosity. With the tensor hyperviscosity the large scale solution is almost completely unaffected by the presence of grid refinement. This later point is important for climate applications where long term climatological averages can be imprinted by stationary inhomogeneities in the truncation error. We also evaluate the robustness of the approach with respect to grid quality by considering unstructured conforming quadrilateral grids generated with a well-known grid-generating toolkit and grids generated by SQuadGen, a new open source alternative which produces lower valence nodes.« less

  20. Influence of processing conditions on apparent viscosity and system parameters during extrusion of distiller's dried grains-based snacks.

    PubMed

    Singha, Poonam; Muthukumarappan, Kasiviswanathan; Krishnan, Padmanaban

    2018-01-01

    A combination of different levels of distillers dried grains processed for food application (FDDG), garbanzo flour and corn grits were chosen as a source of high-protein and high-fiber extruded snacks. A four-factor central composite rotatable design was adopted to study the effect of FDDG level, moisture content of blends, extrusion temperature, and screw speed on the apparent viscosity, mass flow rate or MFR, torque, and specific mechanical energy or SME during the extrusion process. With increase in the extrusion temperature from 100 to 140°C, apparent viscosity, specific mechanical energy, and torque value decreased. Increase in FDDG level resulted in increase in apparent viscosity, SME and torque. FDDG had no significant effect (p > .5) on mass flow rate. SME also increased with increase in the screw speed which could be due to the higher shear rates at higher screw speeds. Screw speed and moisture content had significant negative effect ( p  <   .05) on the torque. The apparent viscosity of dough inside the extruder and the system parameters were affected by the processing conditions. This study will be useful for control of extrusion process of blends containing these ingredients for the development of high-protein high-fiber extruded snacks.

  1. Micro-Electromechanical Affinity Sensor for the Monitoring of Glucose in Bioprocess Media

    PubMed Central

    Theuer, Lorenz; Lehmann, Micha; Junne, Stefan; Neubauer, Peter; Birkholz, Mario

    2017-01-01

    An affinity-viscometry-based micro-sensor probe for continuous glucose monitoring was investigated with respect to its suitability for bioprocesses. The sensor operates with glucose and dextran competing as binding partner for concanavalin A, while the viscosity of the assay scales with glucose concentration. Changes in viscosity are determined with a micro-electromechanical system (MEMS) in the measurement cavity of the sensor probe. The study aimed to elucidate the interactions between the assay and a typical phosphate buffered bacterial cultivation medium. It turned out that contact with the medium resulted in a significant long-lasting drift of the assay’s viscosity at zero glucose concentration. Adding glucose to the medium lowers the drift by a factor of eight. The cglc values measured off-line with the glucose sensor for monitoring of a bacterial cultivation were similar to the measurements with an enzymatic assay with a difference of less than ±0.15 g·L−1. We propose that lectin agglomeration, the electro-viscous effect, and constitutional changes of concanavalin A due to exchanges of the incorporated metal ions may account for the observed viscosity increase. The study has demonstrated the potential of the MEMS sensor to determine sensitive viscosity changes within very small sample volumes, which could be of interest for various biotechnological applications. PMID:28594350

  2. Effect of Liquid Viscosity on Dispersion of Quasi-Lamb Waves in an Elastic-Layer-Viscous-Liquid-Layer System

    NASA Astrophysics Data System (ADS)

    Guz, A. N.; Bagno, A. M.

    2017-07-01

    The dispersion curves are constructed and propagation of quasi-Lamb waves are studied for wide range of frequencies based on the Navier -Stokes three-dimensional linearized equations for a viscous liquid and linear equations of the classical theory of elasticity for an elastic layer. For a thick liquid layer, the effect of the viscosity of the liquid and the thickness of elastic and liquid layers on the phase velocities and attenuation coefficients of quasi-Lamb modes is analyzed. It is shown that in the case of a thick liquid layer for all modes, there are elastic layers of certain thickness with minimal effect of liquid viscosity on the phase velocities and attenuation coefficients of modes. It is also discovered that for some modes, there are both certain thicknesses and certain ranges of thickness where the effect of liquid viscosity on the phase velocities and attenuation coefficients of these modes is considerable. We ascertain that liquid viscosity promotes decrease of the penetration depth of the lowest quasi-Lamb mode into the liquid. The developed approach and the obtained results make it possible to ascertain for wave processes the limits of applicability of the model of ideal compressible fluid. Numerical results in the form of graphs are adduced and analyzed.

  3. Axisymmetric magnetorotational instability in ideal and viscous laboratory plasmas

    NASA Astrophysics Data System (ADS)

    Mikhailovskii, A. B.; Lominadze, J. G.; Churikov, A. P.; Erokhin, N. N.; Pustovitov, V. D.; Konovalov, S. V.

    2008-10-01

    The original analysis of the axisymmetric magnetorotational instability (MRI) by Velikhov (Sov. Phys. JETP 9, 995 (1959)) and Chandrasekhar (Proc. Nat. Acad. Sci. 46, 253 (1960)), applied to the ideally conducting magnetized medium in the laboratory conditions and restricted to the incompressible approximation, is extended by allowing for the compressibility. Thereby, two additional driving mechanisms of MRI are revealed in addition to the standard drive due to the negative medium rotation frequency gradient (the Velikhov effect). One is due to the squared medium pressure gradient and another is a combined effect of the pressure and density gradients. For laboratory applications, the expression for the MRI boundary with all the above driving mechanisms and the stabilizing magnetoacoustic effect is derived. The effects of parallel and perpendicular viscosities on the MRI in the laboratory plasma are investigated. It is shown that, for strong viscosity, there is a family of MRI driven for the same condition as the ideal one. It is also revealed that the presence of strong viscosity leads to additional family of instabilities called the viscosity-driven MRI. Then the parallel-viscositydriven MRI looks as an overstability (oscillatory instability) possessing both the growth rate and the real part of oscillation frequency, while the perpendicular-viscosity MRI is the aperiodical instability.

  4. The adhesive strength and initial viscosity of denture adhesives.

    PubMed

    Han, Jian-Min; Hong, Guang; Dilinuer, Maimaitishawuti; Lin, Hong; Zheng, Gang; Wang, Xin-Zhi; Sasaki, Keiichi

    2014-11-01

    To examine the initial viscosity and adhesive strength of modern denture adhesives in vitro. Three cream-type denture adhesives (Poligrip S, Corect Cream, Liodent Cream; PGS, CRC, LDC) and three powder-type denture adhesives (Poligrip Powder, New Faston, Zanfton; PGP, FSN, ZFN) were used in this study. The initial viscosity was measured using a controlled-stress rheometer. The adhesive strength was measured according to ISO-10873 recommended procedures. All data were analyzed independently by one-way analysis of variance combined with a Student-Newman-Keuls multiple comparison test at a 5% level of significance. The initial viscosity of all the cream-type denture adhesives was lower than the powder-type adhesives. Before immersion in water, all the powder-type adhesives exhibited higher adhesive strength than the cream-type adhesives. However, the adhesive strength of cream-type denture adhesives increased significantly and exceeded the powder-type denture adhesives after immersion in water. For powder-type adhesives, the adhesive strength significantly decreased after immersion in water for 60 min, while the adhesive strength of the cream-type adhesives significantly decreased after immersion in water for 180 min. Cream-type denture adhesives have lower initial viscosity and higher adhesive strength than powder type adhesives, which may offer better manipulation properties and greater efficacy during application.

  5. Viscosity Measurement using Drop Coalescence in Microgravity

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.; Ethridge, Edwin; Maxwell, Daniel

    1999-01-01

    We present in here details of a new method, using drop coalescence, for application in microgravity environment for determining the viscosity of highly viscous undercooled liquids. The method has the advantage of eliminating heterogeneous nucleation at container walls caused by crystallization of undercooled liquids during processing. Also, due to the rapidity of the measurement, homogeneous nucleation would be avoided. The technique relies on both a highly accurate solution to the Navier-Stokes equations as well as on data gathered from experiments conducted in near zero gravity environment. The liquid viscosity is determined by allowing the computed free surface shape relaxation time to be adjusted in response to the measured free surface velocity of two coalescing drops. Results are presented from two validation experiments of the method which were conducted recently on board the NASA KC-135 aircraft. In these tests the viscosity of a highly viscous liquid, such as glycerine at different temperatures, was determined to reasonable accuracy using the liquid coalescence method. The experiments measured the free surface velocity of two glycerine drops coalescing under the action of surface tension alone in low gravity environment using high speed photography. The free surface velocity was then compared with the computed values obtained from different viscosity values. The results of these experiments were found to agree reasonably well with the calculated values.

  6. Noninvasive determination of cell nucleoplasmic viscosity by fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Liang, Lifang; Wang, Xichao; Xing, Da; Chen, Tongsheng; Chen, Wei R.

    2009-03-01

    Noninvasive and reliable quantification of rheological characteristics in the nucleus is extremely useful for fundamental research and practical applications in medicine and biology. This study examines the use of fluorescence correlation spectroscopy (FCS) to noninvasively determine nucleoplasmic viscosity (ɛnu), an important parameter of nucleoplasmic rheology. Our FCS analyses show that ɛnu of lung adenocarcinoma (ASTC-a-1) and HeLa cells are 1.77+/-0.42 cP and 1.40+/-0.27 cP, respectively, about three to four times larger than the water viscosity at 37 °C. ɛnu was reduced by 31 to 36% upon hypotonic exposure and increased by 28 to 52% from 37 to 24 °C. In addition, we found that ɛnu of HeLa cells reached the lowest value in the S phase and that there was no significant difference of ɛnu between in the G1 and G2 phases. Last, nucleoplasmic viscosity was found to be larger than cytoplasmic viscosity in both HeLa and ASTC-a-1 cells. These results indicate that FCS can be used as a noninvasive tool to investigate the microenvironment of living cells. This is the first report on the measurement of ɛnu in living cells synchronized in the G1, S, and G2 phases.

  7. Indentation size effect of cortical bones submitted to different soft tissue removals.

    PubMed

    Bandini, A; Chicot, D; Berry, P; Decoopman, X; Pertuz, A; Ojeda, D

    2013-04-01

    Properties of elasticity, hardness and viscosity are determined for the study of the visco-elastoplastic behavior of bones. The mechanical properties are compared in two upright sections of the bone due to their anisotropy. Besides, influence of hydration treatments leading to structural modifications of collagen and ground substance contents of bones on the mechanical properties is studied on a femoral cortical bovine bone. The treatments applied to the bone are used by forensic anthropologists to remove the soft tissue and modifying the hydration degree coupled to the collagen content. From instrumented indentation experiments, the hardness is characterized by the macrohardness and a hardness length-scale factor stating the hardness-load dependence. The elastic modulus results from the application of the methodology of Oliver and Pharr (1992). The coefficient of viscosity is deduced from a rheological model representing the indenter time-displacement observed under the application of a constant load. As a result, all the mechanical properties are found to be lower in the transverse section in an extent depending on the hydration treatment, i.e. the different values are located between 5% and 25% for the hardness around 0.5GPa, between 25% and 40% for the elastic modulus around 20GPa and between 2% and 35% for the coefficient of viscosity around 60GPa.s. Unexpectedly, the elastic modulus to coefficient of viscosity ratio is found to be independent on the hydration treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Effect of formulation- and administration-related variables on deposition pattern of nasal spray pumps evaluated using a nasal cast.

    PubMed

    Kundoor, Vipra; Dalby, Richard N

    2011-08-01

    To systematically evaluate the effect of formulation- and administration-related variables on nasal spray deposition using a nasal cast. Deposition pattern was assessed by uniformly coating a transparent nose model with Sar-Gel®, which changes from white to purple on contact with water. Sprays were subsequently discharged into the cast, which was then digitally photographed. Images were quantified using Adobe® Photoshop. The effects of formulation viscosity (which influences droplet size), simulated administration techniques (head orientation, spray administration angle, spray nozzle insertion depth), spray pump design and metering volume on nasal deposition pattern were investigated. There was a significant decrease in the deposition area associated with sprays of increasing viscosity. This appeared to be mediated by an increase in droplet size and a narrowing of the spray plume. Administration techniques and nasal spray pump design also had a significant effect on the deposition pattern. This simple color-based method provides quantitative estimates of the effects that different formulation and administration variables may have on the nasal deposition area, and provides a rational basis on which manufacturers of nasal sprays can base their patient instructions or post approval changes when it is impractical to optimize these using a clinical study.

  9. Optimization of Sugar Replacement with Date Syrup in Prebiotic Chocolate Milk Using Response Surface Methodology.

    PubMed

    Kazemalilou, Sahar; Alizadeh, Ainaz

    2017-01-01

    Chocolate milk is one of the most commonly used non-fermentative dairy products, which, due to high level of sucrose, could lead to diabetes and tooth decay among children. Therefore, it is important to replace sucrose with other types of sweeteners, especially, natural ones. In this research, response surface methodology (RSM) was used to optimize the ingredients formulation of prebiotic chocolate milk, date syrup as sweetener (4-10%w/w), inulin as prebiotic texturizer (0-0.5%w/w) and carrageenan as thickening agent (0-0.04%w/w) in the formulation of chocolate milk. The fitted models to predict the variables of selected responses such as pH, viscosity, total solid, sedimentation and overall acceptability of chocolate milk showed a high coefficient of determination. The independent effect of carrageenan was the most effective parameter which led to pH and sedimentation decrease but increased viscosity. Moreover, in most treatments, date syrup and inulin variables had significant effects which had a mutual impact. Optimization of the variables, based on the responses surface 3D plots showed that the sample containing 0.48% (w/w) of inulin, 0.04% (w/w) of carrageenan, and 10% of date syrup was selected as the optimum condition.

  10. Release adiabat measurements on minerals: The effect of viscosity

    NASA Technical Reports Server (NTRS)

    Jeanloz, R.; Ahrens, T. J.

    1979-01-01

    The current inversion of pressure-particle velocity data for release from a high pressure shock state to a pressure-density path is analyzed. It is assumed that the release process is isentropic. It was shown that for geological materials below stresses of 150 GPa, the effective viscosity must be 1000 kg/m/s in order that the viscous (irreversible) work carried out on the material in the shock state remains small compared to the mechanical work recovered upon adiabatic rarefaction. The available data pertaining to the offset of the Rayleigh line from the Hugoniot for minerals, the magnitude of the shear stress in the high pressure shock state for minerals, and the direct measurements of the viscosities of several engineering materials shocked to pressures below 150 GPa yield effective viscosities of 1000 kg/m/s or less. An inferance that this indicates that the conditions for isentropic release of minerals from shock states are achieved, and a conclusion that the application of the Riemann integral to obtain pressure-density states along the release adiabats of minerals in shock experiments is valid are made.

  11. Effect of polymer viscosity on physicochemical properties and ocular tolerance of FB-loaded PLGA nanospheres.

    PubMed

    Araújo, J; Vega, E; Lopes, C; Egea, M A; Garcia, M L; Souto, E B

    2009-08-01

    Poly(lactide-co-glycolide) acid (PLGA) nanospheres incorporating flurbiprofen (FB) were produced by the solvent displacement technique, for ocular applications aiming to avoid/minimize inflammation induced by surgical trauma. In this work, a PLGA of low viscosity has been tested and the results obtained were compared with those previously reported by Vega et al. The physicochemical properties of the developed formulations were evaluated by measuring particle size, zeta potential and FB entrapment efficiency, showing no significant differences. Release studies demonstrated that the formulation produced with PLGA of higher viscosity revealed a slower drug release rate. Stability analysis, for a period of 75 days, was performed using three complementary methods: (i) turbidity experiments using a Turbiscan optical analyzer, (ii) particle size measurements, and (iii) zeta potential analysis. The results revealed long-term physicochemical stability suitability for ophthalmic use, being independent from the polymer viscosity. The ocular tolerance was assessed by an alternative in vitro method to animal experimentation, the HET-CAM. For all developed formulations no ocular irritancy has been detected.

  12. Fractional time-dependent apparent viscosity model for semisolid foodstuffs

    NASA Astrophysics Data System (ADS)

    Yang, Xu; Chen, Wen; Sun, HongGuang

    2017-10-01

    The difficulty in the description of thixotropic behaviors in semisolid foodstuffs is the time dependent nature of apparent viscosity under constant shear rate. In this study, we propose a novel theoretical model via fractional derivative to address the high demand by industries. The present model adopts the critical parameter of fractional derivative order α to describe the corresponding time-dependent thixotropic behavior. More interestingly, the parameter α provides a quantitative insight into discriminating foodstuffs. With the re-exploration of three groups of experimental data (tehineh, balangu, and natillas), the proposed methodology is validated in good applicability and efficiency. The results show that the present fractional apparent viscosity model performs successfully for tested foodstuffs in the shear rate range of 50-150 s^{ - 1}. The fractional order α decreases with the increase of temperature at low temperature, below 50 °C, but increases with growing shear rate. While the ideal initial viscosity k decreases with the increase of temperature, shear rate, and ingredient content. It is observed that the magnitude of α is capable of characterizing the thixotropy of semisolid foodstuffs.

  13. Fluid Viscosity Affects the Fragmentation and Inertial Cavitation Threshold of Lipid-Encapsulated Microbubbles.

    PubMed

    Helfield, Brandon; Black, John J; Qin, Bin; Pacella, John; Chen, Xucai; Villanueva, Flordeliza S

    2016-03-01

    Ultrasound and microbubble optimization studies for therapeutic applications are often conducted in water/saline, with a fluid viscosity of 1 cP. In an in vivo context, microbubbles are situated in blood, a more viscous fluid (∼4 cP). In this study, ultrahigh-speed microscopy and passive cavitation approaches were employed to investigate the effect of fluid viscosity on microbubble behavior at 1 MHz subject to high pressures (0.25-2 MPa). The propensity for individual microbubble (n = 220) fragmentation was found to significantly decrease in 4-cP fluid compared with 1-cP fluid, despite achieving similar maximum radial excursions. Microbubble populations diluted in 4-cP fluid exhibited decreased wideband emissions (up to 10.2 times), and increasingly distinct harmonic emission peaks (e.g., ultraharmonic) with increasing pressure, compared with those in 1-cP fluid. These results suggest that in vitro studies should consider an evaluation using physiologic viscosity perfusate before transitioning to in vivo evaluations. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  14. On the nonlinear interfacial instability of rotating core-annular flow

    NASA Technical Reports Server (NTRS)

    Coward, Aidrian V.; Hall, Philip

    1993-01-01

    The interfacial stability of rotating core-annular flows is investigated. The linear and nonlinear effects are considered for the case when the annular region is very thin. Both asymptotic and numerical methods are used to solve the flow in the core and film regions which are coupled by a difference in viscosity and density. The long-term behavior of the fluid-fluid interface is determined by deriving its nonlinear evolution in the form of a modified Kuramoto-Sivashinsky equation. We obtain a generalization of this equation to three dimensions. The flows considered are applicable to a wide array of physical problems where liquid films are used to lubricate higher or lower viscosity core fluids, for which a concentric arrangement is desired. Linearized solutions show that the effects of density and viscosity stratification are crucial to the stability of the interface. Rotation generally destabilizes non-axisymmetric disturbances to the interface, whereas the centripetal forces tend to stabilize flows in which the film contains the heavier fluid. Nonlinear affects allow finite amplitude helically travelling waves to exist when the fluids have different viscosities.

  15. Constraints on lateral variations in upper mantle viscosity from Lake Bonneville shorelines

    NASA Astrophysics Data System (ADS)

    Austermann, Jacqueline; Chen, Christine; Lau, Harriet C. P.

    2017-04-01

    Lake Bonneville is an extinct pluvial lake that formed and catastrophically drained at the onset of the last deglaciation (˜ 20 - 18ka). With a volume of just over 10 000 km3 this lake was comparable in size to present-day Lake Michigan. During its existence the excess load of water stored in Lake Bonneville depressed the crust and upper mantle. After the drainage of the lake this area rebounded by up to 75 m, which is recorded in the paleoshorelines around the lake periphery and on islands within the lake. The rebound pattern has been used to infer the lithospheric thickness and upper mantle viscosity structure of the area (e.g. Bill et al., 1994). In agreement with the tectonic history of the Basin and Range area, the deformed shorelines point to a thin lithosphere (< 30km) and low upper mantle viscosity (˜ 1019 Pa s). This differs from the upper mantle viscosity inferred from post-glacial data in cratonic regions (e.g., Hudson Bay, Fennoscandia), which is one to two orders of magnitude larger (˜ 5 × 1020 Pa s). Direct constraints on the lateral variability of mantle viscosity are invaluable but in order to utilize such constraints it is important to consider the sensitivity range of different observations before comparing the inferred viscosities. In this study we revisit the earlier inversions of shoreline elevations for mantle and lithospheric structure with an updated dataset of paleoshoreline elevations by Chen and Maloof (2017). We construct depth-dependent sensitivity kernels for the lake rebound and compare them to kernels associated with the rebound from glacial ice sheets over Canada and Scandinavia. This comparison along with the inferred viscosities allows us to evaluate the degree to which lateral viscosity variations are required. We additionally compare our results to estimates of lateral viscosity variations based on perturbations in seismic shear wave speed in the respective areas in order to assess the consistency of our results with independent data. The paleoshorelines of Lake Bonneville have been deflected by not only rebound post-drainage, but also the longer-term subsidence of the Laurentide peripheral bulge. The lake was located on the distal flank of the peripheral bulge of the Laurentide Ice Sheet and after its collapse the peripheral bulge subsided leading to an additional northeast trending tilt in shoreline elevations. We show that the degree of tilt is not only sensitive to shallow mantle structure but has also sensitivity in the upper half of the lower mantle, in contrast to the lake rebound pattern. We independently invert the degree of tilt for mantle viscosity and examine its trade-off with uncertainties in the ice history.

  16. Convection in the Rayleigh-Bénard flow with all fluid properties variable

    NASA Astrophysics Data System (ADS)

    Sassos, Athanasios; Pantokratoras, Asterios

    2011-10-01

    In the present paper, the effect of variable fluid properties (density, viscosity, thermal conductivity and specific heat) on the convection in the classical Rayleigh-Bénard problem is investigated. The investigation concerns water, air, and engine oil by taking into account the variation of fluid properties with temperature. The results are obtained by numerically solving the governing equations, using the SIMPLE algorithm and covering large temperature differences. It is found that the critical Rayleigh number increases as the temperature difference increases considering all fluid properties variable. However, when the fluid properties are kept constant, calculated at the mean temperature, and only density is considered variable, the critical Rayleigh number either decreases or remains constant.

  17. Solitary traveling wave solutions of pressure equation of bubbly liquids with examination for viscosity and heat transfer

    NASA Astrophysics Data System (ADS)

    Khater, Mostafa M. A.; Seadawy, Aly R.; Lu, Dianchen

    2018-03-01

    In this research, we investigate one of the most popular model in nature and also industrial which is the pressure equation of bubbly liquids with examination for viscosity and heat transfer which has many application in nature and engineering. Understanding the physical meaning of exact and solitary traveling wave solutions for this equation gives the researchers in this field a great clear vision of the pressure waves in a mixture liquid and gas bubbles taking into consideration the viscosity of liquid and the heat transfer and also dynamics of contrast agents in the blood flow at ultrasonic researches. To achieve our goal, we apply three different methods which are extended tanh-function method, extended simple equation method and a new auxiliary equation method on this equation. We obtained exact and solitary traveling wave solutions and we also discuss the similarity and difference between these three method and make a comparison between results that we obtained with another results that obtained with the different researchers using different methods. All of these results and discussion explained the fact that our new auxiliary equation method is considered to be the most general, powerful and the most result-oriented. These kinds of solutions and discussion allow for the understanding of the phenomenon and its intrinsic properties as well as the ease of way of application and its applicability to other phenomena.

  18. Possible ambiguities when testing viscosity in compendial monographs - characterisation of grades of cellulose ethers.

    PubMed

    Doelker, E

    2010-10-01

    The European Pharmacopoeia (Ph. Eur.) monographs for the water-soluble cellulose ethers require viscosity determination, either in the "Tests" section or in the non-mandatory "Functionality-related characteristics" section. Although the derivatives are chemically closely related and used for similar applications, the viscosity tests strongly differ. Some monographs generically speak of the rotating viscometer method (2.2.10) and a fixed shear rate (e.g. 10 s-1), which would necessitate an absolute measuring system, while others recommend the capillary viscometer method for product grades of less than 600 mPa∙s and the rotating viscometer method and given operating conditions for grades of higher nominal viscosity. Viscometer methods also differ between the United States Pharmacopeia/National Formulary (USP/NF) and the Japanese Pharmacopoeia (JP) monographs. In addition, for some cellulose ethers the tests sometimes diverge from one pharmacopoeia to the other, although the three compendiums are in a harmonisation process. But the main issue is that the viscometer methods originally employed by the product manufacturers are often not those described in the corresponding monographs and generally vary from one manufacturer to the other. The aim of this study was therefore to investigate whether such a situation could invalidate the present pharmacopoeial requirements. 2 per cent solutions of several viscosity grades of hydroxyethylcellulose, hypromellose and methylcellulose were prepared and their (apparent) viscosity determined using both relative and absolute viscometer methods. The viscometer method used not only affects the measured viscosity but experimental values generally do not correspond to the product nominal viscosities. It emerges that, in contrast to Newtonian solutions (i.e. those of grades of up to ca. 50 mPa∙s nominal viscosity), some of the viscometer methods currently specified in the monographs are not able unambiguously to characterise the grades exhibiting non-Newtonian behaviour. It is also concluded that, unless the various manufacturers redefine their product viscosity grades using a single compendial test, two strategies could be adopted, both based on the operating conditions specified in the labeling (i.e those of the manufacturer), the test appearing either in the mandatory section if this is acceptable to the pharmacopoeia (like in some USP/NF monographs) or, for the Ph. Eur., in the "Functionality-related characteristics" section.

  19. Numerical Simulation Analysis of High-precision Dispensing Needles for Solid-liquid Two-phase Grinding

    NASA Astrophysics Data System (ADS)

    Li, Junye; Hu, Jinglei; Wang, Binyu; Sheng, Liang; Zhang, Xinming

    2018-03-01

    In order to investigate the effect of abrasive flow polishing surface variable diameter pipe parts, with high precision dispensing needles as the research object, the numerical simulation of the process of polishing high precision dispensing needle was carried out. Analysis of different volume fraction conditions, the distribution of the dynamic pressure and the turbulence viscosity of the abrasive flow field in the high precision dispensing needle, through comparative analysis, the effectiveness of the abrasive grain polishing high precision dispensing needle was studied, controlling the volume fraction of silicon carbide can change the viscosity characteristics of the abrasive flow during the polishing process, so that the polishing quality of the abrasive grains can be controlled.

  20. Systematic errors in transport calculations of shear viscosity using the Green-Kubo formalism

    NASA Astrophysics Data System (ADS)

    Rose, J. B.; Torres-Rincon, J. M.; Oliinychenko, D.; Schäfer, A.; Petersen, H.

    2018-05-01

    The purpose of this study is to provide a reproducible framework in the use of the Green-Kubo formalism to extract transport coefficients. More specifically, in the case of shear viscosity, we investigate the limitations and technical details of fitting the auto-correlation function to a decaying exponential. This fitting procedure is found to be applicable for systems interacting both through constant and energy-dependent cross-sections, although this is only true for sufficiently dilute systems in the latter case. We find that the optimal fit technique consists in simultaneously fixing the intercept of the correlation function and use a fitting interval constrained by the relative error on the correlation function. The formalism is then applied to the full hadron gas, for which we obtain the shear viscosity to entropy ratio.

  1. Matrix Characterization and Development for the Vacuum Assisted Resin Transfer Molding Process

    NASA Technical Reports Server (NTRS)

    Grimsley, B. W.; Hubert, P.; Hou, T. H.; Cano, R. J.; Loos, A. C.; Pipes, R. B.

    2001-01-01

    The curing kinetics and viscosity of an epoxy resin system, SI-ZG-5A, have been characterized for application in the vacuum assisted resin transfer molding (VARTM) process. Impregnation of a typical carbon fiber perform provided the test bed for the characterization. Process simulations were carried out using the process model, COMPRO, to examine heat transfer and curing kinetics for a fully impregnated panel, neglecting resin flow. The predicted viscosity profile and final degree of cure were found to be in good agreement with experimental observations.

  2. Optimization of Fermentation Conditions and Rheological Properties of Exopolysaccharide Produced by Deep-Sea Bacterium Zunongwangia profunda SM-A87

    PubMed Central

    Liu, Sheng-Bo; Qiao, Li-Ping; He, Hai-Lun; Zhang, Qian; Chen, Xiu-Lan; Zhou, Wei-Zhi; Zhou, Bai-Cheng; Zhang, Yu-Zhong

    2011-01-01

    Zunongwangia profunda SM-A87 isolated from deep-sea sediment can secrete large quantity of exopolysaccharide (EPS). Response surface methodology was applied to optimize the culture conditions for EPS production. Single-factor experiment showed that lactose was the best carbon source. Based on the Plackett–Burman design, lactose, peptone and temperature were selected as significant variables, which were further optimized by the steepest ascent (descent) method and central composite design. The optimal culture conditions for EPS production and broth viscosity were determined as 32.21 g/L lactose, 8.87 g/L peptone and an incubation temperature of 9.8°C. Under these conditions, the maximum EPS yield and broth viscosity were 8.90 g/L and 6551 mPa•s, respectively, which is the first report of such high yield of EPS from a marine bacterium. The aqueous solution of the EPS displayed high viscosity, interesting shearing thinning property and great tolerance to high temperature, a wide range of pH, and high salinity. PMID:22096500

  3. Fluid flow characteristics during polymer flooding

    NASA Astrophysics Data System (ADS)

    Yao, S. L.; Dou, H. E.; Wu, M.; Zhang, H. J.

    2018-05-01

    At present the main problems of polymer flooding is the high injection pressure which could not guarantee the later injection. In this paper the analyses of polymer’s physical properties and its solution’s variable movement characteristics in porous media reveal the inevitable trend of decrease in injection capacity and liquid production due to the increase of fluid viscosity and flow rate with more flow resistance. The injection rate makes the primary contribution to the active viscosity of the polymer solution in porous media. The higher injection rate, the greater shearing degradation and the more the viscosity loss. Besides the quantitative variation, the rate also changes qualitatively as that the injection rate demonstrates composite change of injection intensity and density. Due to the different adjustment function of the polymer solution on its injection profile, there should be different adjustment model of rates in such stages. Here in combination of the on-site recognitions, several conclusions and recommendations are made based on the study of the injection pattern adjustment during polymer flooding to improve the pressure distribution system, which would be a meaningful reference for extensive polymer flooding in the petroleum industry.

  4. Sustainable Engineering and Improved Recycling of PET for High-Value Applications: Transforming Linear PET to Lightly Branched PET with a Novel, Scalable Process

    NASA Astrophysics Data System (ADS)

    Pierre, Cynthia; Torkelson, John

    2009-03-01

    A major challenge for the most effective recycling of poly(ethylene terephthalate) concerns the fact that initial melt processing of PET into a product leads to substantial degradation of molecular weight. Thus, recycled PET has insufficient melt viscosity for reuse in high-value applications such as melt-blowing of PET bottles. Academic and industrial research has tried to remedy this situation by synthesis and use of ``chain extenders'' that can lead to branched PET (with higher melt viscosity than the linear recycled PET) via condensation reactions with functional groups on the PET. Here we show that simple processing of PET via solid-state shear pulverization (SSSP) leads to enhanced PET melt viscosity without need for chemical additives. We hypothesize that this branching results from low levels of chain scission accompanying SSSP, leading to formation of polymeric radicals that participate in chain transfer and combination reactions with other PET chains and thereby to in situ branch formation. The pulverized PET exhibits vastly enhanced crystallization kinetics, eliminating the need to employ cold crystallization to achieve maximum PET crystallinity. Results of SSSP processing of PET will be compared to results obtained with poly(butylene terephthalate).

  5. The viscosity of pāhoehoe lava: In situ syn-eruptive measurements from Kilauea, Hawaii

    NASA Astrophysics Data System (ADS)

    Chevrel, Magdalena Oryaëlle; Harris, Andrew J. L.; James, Mike R.; Calabrò, Laura; Gurioli, Lucia; Pinkerton, Harry

    2018-07-01

    Viscosity is one of the most important physical properties controlling lava flow dynamics. Usually, viscosity is measured in the laboratory where key parameters can be controlled but can never reproduce the natural environment and original state of the lava in terms of crystal and bubble contents, dissolved volatiles, and oxygen fugacity. The most promising approach for quantifying the rheology of molten lava in its natural state is therefore to carry out direct field measurements by inserting a viscometer into the lava while it is flowing. Such in-situ syn-eruptive viscosity measurements are notoriously difficult to perform due to the lack of appropriate instrumentation and the difficulty of working on or near an active lava flow. In the field, rotational viscometer measurements are of particular value as they have the potential to measure the properties of the flow interior rather than an integration of the viscosity of the viscoelastic crust + flow interior. To our knowledge only one field rotational viscometer is available, but logistical constraints have meant that it has not been used for 20 yr. Here, we describe new viscosity measurements made using the refurbished version of this custom-built rotational viscometer, as performed on active pāhoehoe lobes from the 61G lava flow of Kilauea's Pu'u 'Ō'ō eruption in 2016. We successfully measured a viscosity of ∼380 Pa s at strain-rates between 1.6 and 5 s-1 and at 1144 °C. Additionally, synchronous lava sampling allowed us to provide detailed textural and chemical characterization of quenched samples. Application of current physico-chemical models based on this characterization (16 ± 4 vol.% crystals; 50 ± 6 vol.% vesicles), gave viscosity estimates that were approximately compatible with the measured values, highlighting the sensitivity of model-based viscosity estimates on the effect of deformable bubbles. Our measurements also agree on the range of viscosities in comparison to previous field experiments on Hawaiian lavas. Conversely, direct comparison with sub-liquidus rheological laboratory measurements on natural lavas was unsuccessful because recreating field conditions (in particular volatile and bubble content) is so far inaccessible in the laboratory. Our work shows the value of field rotational viscometry fully-integrated with sample characterization to quantify three-phase lava viscosity. Finally, this work suggests the need for the development of a more versatile instrument capable of recording precise measurements at low torque and low strain rate, and with synchronous temperature measurements.

  6. Coupled kinetic equations for fermions and bosons in the relaxation-time approximation

    NASA Astrophysics Data System (ADS)

    Florkowski, Wojciech; Maksymiuk, Ewa; Ryblewski, Radoslaw

    2018-02-01

    Kinetic equations for fermions and bosons are solved numerically in the relaxation-time approximation for the case of one-dimensional boost-invariant geometry. Fermions are massive and carry baryon number, while bosons are massless. The conservation laws for the baryon number, energy, and momentum lead to two Landau matching conditions, which specify the coupling between the fermionic and bosonic sectors and determine the proper-time dependence of the effective temperature and baryon chemical potential of the system. The numerical results illustrate how a nonequilibrium mixture of fermions and bosons approaches hydrodynamic regime described by the Navier-Stokes equations with appropriate forms of the kinetic coefficients. The shear viscosity of a mixture is the sum of the shear viscosities of fermion and boson components, while the bulk viscosity is given by the formula known for a gas of fermions, however, with the thermodynamic variables characterising the mixture. Thus, we find that massless bosons contribute in a nontrivial way to the bulk viscosity of a mixture, provided fermions are massive. We further observe the hydrodynamization effect, which takes place earlier in the shear sector than in the bulk one. The numerical studies of the ratio of the longitudinal and transverse pressures show, to a good approximation, that it depends on the ratio of the relaxation and proper times only. This behavior is connected with the existence of an attractor solution for conformal systems.

  7. The fluid-dynamics of bubble-bearing magmas

    NASA Astrophysics Data System (ADS)

    colucci, simone; papale, paolo; montagna, chiara

    2014-05-01

    The rheological properties of a fluid establish how the shear stress, τ, is related to the shear strain-rate, γ . The simplest constitutive equation is represented by the linear relationship τ = μγ, where the viscosity parameter, μ, is independent of strain-rate and the velocity profile is parabolic. Fluids with such a flow curve are called Newtonian. Many fluids, though, exhibit non-Newtonian rheology, typically arising in magmas from the presence of a dispersed phase of either crystals or bubbles. In this case it is not possible to define a strain-rate-independent viscosity and the velocity profile is complex. In this work we extend the 1D, steady, isothermal, multiphase non-homogeneous magma ascent model of Papale (2001) to 1.5D including the Non-Newtonian rheology of the bubble-bearing magma. We describe such rheology in terms of an apparent viscosity, η, which is the ratio of stress to strain-rate (η = τ/γ) and varies with strain-rate across the conduit radius. In this way we calculate a depth-dependent Non-newtonian velocity profile across the radius along with shear strain-rate and viscosity distributions. The evolution of the velocity profile can now be studied in order to investigate processes which occur close to the conduit wall, such as fragmentation. Moreover, the model can quantify the effects of the Non-Newtonian rheology on conduit flow dynamics, in terms of flow variables (e.g. velocity, pressure).

  8. Quality by design approach of a pharmaceutical gel manufacturing process, part 1: determination of the design space.

    PubMed

    Rosas, Juan G; Blanco, Marcel; González, Josep M; Alcalá, Manel

    2011-10-01

    This work was conducted in the framework of a quality by design project involving the production of a pharmaceutical gel. Preliminary work included the identification of the quality target product profiles (QTPPs) from historical values for previously manufactured batches, as well as the critical quality attributes for the process (viscosity and pH), which were used to construct a D-optimal experimental design. The experimental design comprised 13 gel batches, three of which were replicates at the domain center intended to assess the reproducibility of the target process. The viscosity and pH models established exhibited very high linearity and negligible lack of fit (LOF). Thus, R(2) was 0.996 for viscosity and 0.975 for pH, and LOF was 0.53 for the former parameter and 0.84 for the latter. The process proved reproducible at the domain center. Water content and temperature were the most influential factors for viscosity, and water content and acid neutralized fraction were the most influential factors for pH. A desirability function was used to find the best compromise to optimize the QTPPs. The body of information was used to identify and define the design space for the process. A model capable of combining the two response variables into a single one was constructed to facilitate monitoring of the process. Copyright © 2011 Wiley-Liss, Inc.

  9. Effects of comprehensive function of factors on retention behavior of microparticles in gravitational field-flow fractionation.

    PubMed

    Guo, Shuang; Qiu, Bai-Ling; Zhu, Chen-Qi; Yang, Ya-Ya Gao; Wu, Di; Liang, Qi-Hui; Han, Nan-Yin

    2016-09-15

    Gravitational field-flow fractionation (GrFFF) is a useful technique for separation and characterization for micrometer-sized particles. Elution behavior of micrometer-sized particles in GrFFF was researched in this study. Particles in GrFFF channel are subject to hydrodynamic lift forces (HLF), fluid inertial forces and gravity, which drive them to different velocities by carrier flow, resulting in a size-based separation. Effects of ionic strength, flow rate and viscosity as well as methanol were investigated using polystyrene latex beads as model particles. This study is devoted to experimental verification of the effect of every factor and their comprehensive function. All experiments were performed to show isolated influence of every variable factor. The orthogonal design test was used to evaluate various factors comprehensively. Results suggested that retention ratio of particles increases with increasing flow rate or the viscosity of carrier liquid by adjusting external forces acting on particles. In addition, retention ratio increases as ionic strength decreases because of decreased electrostatic repulsion between particles and channel accumulation wall. As far as methanol, there is no general trend due to the change of both density and viscosity. On the basis of orthogonal design test it was found that viscosity of carrier liquid plays a significant role in determining resolution of micrometer-sized particles in GrFFF. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Transonic aeroelastic analysis of launch vehicle configurations. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Filgueirasdeazevedo, Joao Luiz

    1988-01-01

    A numerical study of the aeroelastic stability of typical launch vehicle configurations in transonic flight is performed. Recent computational fluid dynamics techniques are used to simulate the transonic aerodynamic flow fields, as opposed to relying on experimental data for the unsteady aerodynamic pressures. The flow solver is coupled to an appropriate structural representation of the vehicle. The aerodynamic formulation is based on the thin layer approximation to the Reynolds-Averaged Navier-Stokes equations, where the account for turbulent mixing is done by the two-layer Baldwin and Lomax algebraic eddy viscosity model. The structural-dynamic equations are developed considering free-free flexural vibration of an elongated beam with variable properties and are cast in modal form. Aeroelastic analyses are performed by integrating simultaneously in the two sets of equations. By tracing the growth or decay of a perturbed oscillation, the aeroelastic stability of a given constant configuration can be ascertained. The method is described in detail, and results that indicate its application are presented. Applications include some validation cases for the algorithm developed, as well as the study of configurations known to have presented flutter programs in the past.

  11. Plasma etching of polymers like SU8 and BCB

    NASA Astrophysics Data System (ADS)

    Mischke, Helge; Gruetzner, Gabi; Shaw, Mark

    2003-01-01

    Polymers with high viscosity, like SU8 and BCB, play a dominant role in MEMS application. Their behavior in a well defined etching plasma environment in a RIE mode was investigated. The 40.68 MHz driven bottom electrode generates higher etch rates combined with much lower bias voltages by a factor of ten or a higher efficiency of the plasma with lower damaging of the probe material. The goal was to obtain a well-defined process for the removal and structuring of SU8 and BCB using fluorine/oxygen chemistry, defined using variables like electron density and collision rate. The plasma parameters are measured and varied using a production proven technology called SEERS (Self Excited Electron Resonance Spectroscopy). Depending on application and on Polymer several metals are possible (e.g., gold, aluminum). The characteristic of SU8 and BCB was examined in the case of patterning by dry etching in a CF4/O2 chemistry. Etch profile and etch rate correlate surprisingly well with plasma parameters like electron density and electron collision rate, thus allowing to define to adjust etch structure in situ with the help of plasma parameters.

  12. A capillary viscometer designed for the characterization of biocompatible ferrofluids

    NASA Astrophysics Data System (ADS)

    Nowak, J.; Odenbach, S.

    2016-08-01

    Suspensions of magnetic nanoparticles are receiving a growing interest in biomedical research. These ferrofluids can, e.g., be used for the treatment of cancer, making use of the drug targeting principle or using an artificially induced heating. To enable a safe application the basic properties of the ferrofluids have to be well understood, including the viscosity of the fluids if an external magnetic field is applied. It is well known that the viscosity of ferrofluids rises if a magnetic field is applied, where the rise depends on shear rate and magnetic field strength. In case of biocompatible ferrofluids such investigations proved to be rather complicated as the experimental setup should be close to the actual application to allow justified predictions of the effects which have to be expected. Thus a capillary viscometer, providing a flow situation comparable to the flow in a blood vessel, has been designed. The glass capillary is exchangeable and different inner diameters can be used. The range of the shear rates has been adapted to the range found in the human organism. The application of an external magnetic field is enabled with two different coil setups covering the ranges of magnetic field strengths required on the one hand for a theoretical understanding of particle interaction and resulting changes in viscosity and on the other hand for values necessary for a potential biomedical application. The results show that the newly designed capillary viscometer is suitable to measure the magnetoviscous effect in biocompatible ferrofluids and that the results appear to be consistent with data measured with rotational rheometry. In addition, a strong change of the flow behaviour of a biocompatible ferrofluid was proven for ranges of the shear rate and the magnetic field strength expected for a potential biomedical application.

  13. Coarse grained modeling of transport properties in monoclonal antibody solution

    NASA Astrophysics Data System (ADS)

    Swan, James; Wang, Gang

    Monoclonal antibodies and their derivatives represent the fastest growing segment of the bio pharmaceutical industry. For many applications such as novel cancer therapies, high concentration, sub-cutaneous injections of these protein solutions are desired. However, depending on the peptide sequence within the antibody, such high concentration formulations can be too viscous to inject via human derived force alone. Understanding how heterogenous charge distribution and hydrophobicity within the antibodies leads to high viscosities is crucial to their future application. In this talk, we explore a coarse grained computational model of therapeutically relevant monoclonal antibodies that accounts for electrostatic, dispersion and hydrodynamic interactions between suspended antibodies to predict assembly and transport properties in concentrated antibody solutions. We explain the high viscosities observed in many experimental studies of the same biologics.

  14. Aerial application equipment for herbicidal drift reduction.

    Treesearch

    1976-01-01

    This publication provides silviculturists and managers of utility rights-of-way with a description and evaluation of available helicopter spray application equipment. Modified conventional equipment will reduce drift of sprays in normal carriers and apply various high-viscosity sprays. Specialized spray systems have found limited use in forestry; they are more commonly...

  15. Viscosity negatively affects the nutritional value of blue lupin seeds for broilers.

    PubMed

    Konieczka, P; Smulikowska, S

    2018-06-01

    This study examines the impact of Lupinus angustifolius variety (C) and inclusion level (L) in broiler diets on the nutritional value, viscosity of ileal digesta and activity of gut microbiota. The experiment was conducted on 154 female 21-day-old broilers, allocated to 11 groups (kept individually). A reference lupin-free diet and 10 test diets containing one of five lupin seeds; Kadryl, Regent, Dalbor, Bojar and Tango, mixed with the reference diet at a ratio of 25 : 75 or 32 : 68 dry matter (DM) (low or high level of inclusion) were prepared. Diets were fed for 6 days, excreta were collected over last 4 days. Apparent metabolizable energy corrected to zero N balance (AMEN) of diets and AMEN of lupin seeds were calculated. Birds were sacrificed, ileal and caecal digesta were pooled by segments from two birds, and the activity of bacterial enzymes was determined. The ileal digesta viscosity was measured immediately (ileal viscosity immediate (IVI)) or after 6 days storage at -18°C (ileal viscosity frozen). AMEN of test diets were lower than the reference diet. Lupin AMEN values ranged from 6.04 MJ/kg DM for Regent at high level to 9.25 MJ/kg DM for Bojar at low level. High inclusion level numerically decreased AMEN value in all cultivars, except for Kadryl, for which it increased (significant C×L interaction). The IVI value was 2.6 mPa·s in the reference group, but ranged from 6.3 to 21.7 mPa·s in lupin-fed birds. It increased significantly with level for Regent, Dalbor and Tango but not for the other two cultivars (significant C×L interaction). There was a negative correlation between IVI and: apparent total tract N retention, fat digestibility from test diets, AMEN of diets and lupins. Ileal viscosity immediate was positively correlated with the activity of ileal α- and β-glucosidase and negatively with ileal α-galactosidase and caecal α-glucosidase. Ileal viscosity frozen ranged from 3.2 to 5 mPa·s and it was not correlated with lupins AMEN. This suggests that the digesta viscosity caused by narrow-leafed lupin is detrimental to its nutritional value and interfere with the gut microbial activity. In addition, the lupins viscosity was measured by two in vitro methods: the water extract viscosity (WEV) method and after incubation in conditions imitating in vivo digestion (enzyme-treated extract viscosity (EEV)). In vivo viscosity was weakly reflected by in vitro measurements as there was no correlation between IVI and WEV or EEV. Overall, findings suggest that the different cultivars of narrow-leafed lupin may have different value for practical application in broiler diets.

  16. Study on viscosity of conventional and polymer modified asphalt binders in steady and dynamic shear domain

    NASA Astrophysics Data System (ADS)

    Saboo, Nikhil; Singh, Bhupendra; Kumar, Praveen; Vikram, Durgesh

    2018-02-01

    This study focuses on evaluating the flow behavior of conventional and polymer modified asphalt binders in steady- and dynamic-shear domain, for a temperature range of 20-70 °C, using a Dynamic Shear Rheometer (DSR). Steady-shear viscosity and frequency sweep tests were carried out on two conventional (VG 10 and VG 30) and two polymer (SBS and EVA) modified asphalt binders. Applicability of the Cox-Merz principle was evaluated and complex viscosity master curves were analyzed at five different reference temperatures. Cross model was used to simulate the complex viscosity master curves at different temperatures. It was found that asphalt binders exhibited shear-thinning behavior at all the test temperatures. The critical shear rate increased with increase in temperature and was found to be lowest for plastomeric modified asphalt binder. The Cox-Merz principle was found to be valid in the zero-shear viscosity (ZSV) domain and deviated at higher frequency/shear rate for all the binders. Results from the study indicated that the ratio of ZSV can be successfully used as shift factors for construction of master curves at different reference temperatures. Cross model was found to be suitable in simulating the complex viscosity master curves at all the test temperatures. Analysis of model parameters indicated that a strong relationship exists between ZSV and the critical shear rate. ZSV and critical shear rate varied exponentially with temperature. This relationship was used to propose a simple equation for assessing the shift factors for construction of master curves.

  17. Infrared and Ultraviolet Spectroscopy of Gas-Phase Imidazolium and Pyridinium Ionic Liquids.

    NASA Astrophysics Data System (ADS)

    Young, Justin W.; Booth, Ryan S.; Annesley, Christopher; Stearns, Jaime A.

    2015-06-01

    Ionic liquids (ILs) are a highly variable and potentially game-changing class of molecules for a number of Air Force applications such as satellite propulsion, but the complex nature of IL structure and intermolecular interactions makes it difficult to adequately predict structure-property relationships in order to make new IL-based technology a reality. For example, methylation of imidazolium ionic liquids leads to a substantial increase in viscosity but the underlying physical mechanism is not understood. In addition, the role of hydrogen bonding in ILs, and especially its relationship to macroscopic properties, is a matter of ongoing research. Here we describe the gas-phase spectroscopy of a series of imidazolium- and pyridinium-based ILs, using a combination of infrared spectroscopy and density functional theory to establish the intermolecular interactions present in various ILs, to assess how well they are described by theory, and to relate microscopic structure to macroscopic properties.

  18. Studies on Hot-Melt Prepregging on PRM-II-50 Polyimide Resin with Graphite Fibers

    NASA Technical Reports Server (NTRS)

    Shin, E. Eugene; Sutter, James K.; Juhas, John; Veverka, Adrienne; Klans, Ojars; Inghram, Linda; Scheiman, Dan; Papadopoulos, Demetrios; Zoha, John; Bubnick, Jim

    2004-01-01

    A second generation PMR (in situ Polymerization of Monomer Reactants) polyimide resin PMR-II-50, has been considered for high temperature and high stiffness space propulsion composites applications for its improved high temperature performance. As part of composite processing optimization, two commercial prepregging methods: solution vs. hot-melt processes were investigated with M40J fabrics from Toray. In a previous study a systematic chemical, physical, thermal and mechanical characterization of these composites indicated the poor resin-fiber interfacial wetting, especially for the hot-melt process, resulted in poor composite quality. In order to improve the interfacial wetting, optimization of the resin viscosity and process variables were attempted in a commercial hot-melt prepregging line. In addition to presenting the results from the prepreg quality optimization trials, the combined effects of the prepregging method and two different composite cure methods, i.e. hot press vs. autoclave on composite quality and properties are discussed.

  19. Studies on Hot-Melt Prepregging of PMR-II-50 Polyimide Resin with Graphite Fibers

    NASA Technical Reports Server (NTRS)

    Shin, E. Eugene; Sutter, James K.; Juhas, John; Veverka, Adrienne; Klans, Ojars; Inghram, Linda; Scheiman, Dan; Papadopoulos, Demetrios; Zoha, John; Bubnick, Jim

    2003-01-01

    A Second generation PMR (in situ Polymerization of Monomer Reactants) polyimide resin, PMR-II-50, has been considered for high temperature and high stiffness space propulsion composites applications for its improved high temperature performance. As part of composite processing optimization, two commercial prepregging methods: solution vs. hot-melt processes were investigated with M40J fabrics from Toray. In a previous study a systematic chemical, physical, thermal and mechanical characterization of these composites indicated that poor resin-fiber interfacial wetting, especially for the hot-melt process, resulted in poor composite quality. In order to improve the interfacial wetting, optimization of the resin viscosity and process variables were attempted in a commercial hot-melt prepregging line. In addition to presenting the results from the prepreg quality optimization trials, the combined effects of the prepregging method and two different composite cure methods, i.e., hot press vs. autoclave on composite quality and properties are discussed.

  20. Optimizing Double-Network Hydrogel for Biomedical Soft Robots.

    PubMed

    Banerjee, Hritwick; Ren, Hongliang

    2017-09-01

    Double-network hydrogel with standardized chemical parameters demonstrates a reasonable and viable alternative to silicone in soft robotic fabrication due to its biocompatibility, comparable mechanical properties, and customizability through the alterations of key variables. The most viable hydrogel sample in our article shows tensile strain of 851% and maximum tensile strength of 0.273 MPa. The elasticity and strength range of this hydrogel can be customized according to application requirements by simple alterations in the recipe. Furthermore, we incorporated Agar/PAM hydrogel into our highly constrained soft pneumatic actuator (SPA) design and eventually produced SPAs with escalated capabilities, such as larger range of motion, higher force output, and power efficiency. Incorporating SPAs made of Agar/PAM hydrogel resulted in low viscosity, thermos-reversibility, and ultralow elasticity, which we believe can help to combine with the other functions of hydrogel, tailoring a better solution for fabricating biocompatible soft robots.

  1. Drug marker absorption in relation to pellet size, gastric motility and viscous meals in humans

    NASA Technical Reports Server (NTRS)

    Rhie, J. K.; Hayashi, Y.; Welage, L. S.; Frens, J.; Wald, R. J.; Barnett, J. L.; Amidon, G. E.; Putcha, L.; Amidon, G. L.

    1998-01-01

    PURPOSE: The objective of this study was to evaluate drug marker absorption in relation to the gastric emptying (GE) of 0.7 mm and 3.6 mm enteric coated pellets as a function of viscosity and the underlying gastric motility. METHODS: Twelve subjects were evaluated in a 3-way crossover study. 0.7 mm caffeine and 3.6 mm acetaminophen enteric coated pellets were concurrently administered with a viscous caloric meal at the levels of 4000, 6000 and 8000 cP. Gastric motility was simultaneously measured with antral manometry and compared to time events in the plasma profiles of the drug markers. RESULTS: Caffeine, from the 0.7 mm pellets, was observed significantly earlier in the plasma than acetaminophen, from the 3.6 mm pellets, at all levels of viscosity. Motility related size differentiated GE was consistently observed at all viscosity levels, however, less variability was observed with the 4000 cP meal. Specifically, the onset of absorption from the of 3.6 mm pellets correlated with the onset of Phase II fasted state contractions (r = 0.929, p < 0.01). CONCLUSIONS: The timeframe of drug marker absorption and the onset of motility events were not altered within the range of viscosities evaluated. Rather, the differences in drug marker profiles from the non-digestible solids were most likely the result of the interaction between viscosity and motility influencing antral flow dynamics. The administration of the two sizes of pellets and a viscous caloric meal with subsequent monitoring of drug marker profiles is useful as a reference to assess the influence of motility patterns on the absorption profile of orally administered agents.

  2. Flow pattern changes influenced by variation of viscosities of a heterogeneous gas-liquid mixture flow in a vertical channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keska, Jerry K.; Hincapie, Juan; Jones, Richard

    In the steady-state flow of a heterogeneous mixture such as an air-liquid mixture, the velocity and void fraction are space- and time-dependent parameters. These parameters are the most fundamental in the analysis and description of a multiphase flow. The determination of flow patterns in an objective way is extremely critical, since this is directly related to sudden changes in spatial and temporal changes of the random like characteristic of concentration. Flow patterns can be described by concentration signals in time, amplitude, and frequency domains. Despite the vital importance and countless attempts to solve or incorporate the flow pattern phenomena intomore » multiphase models, it has still been a very challenging topic in the scientific community since the 1940's and has not yet reached a satisfactory solution. This paper reports the experimental results of the impact of fluid viscosity on flow patterns for two-phase flow. Two-phase flow was created in laboratory equipment using air and liquid as phase medium. The liquid properties were changed by using variable concentrations of glycerol in water mixture which generated a wide-range of dynamic viscosities ranging from 1 to 1060 MPa s. The in situ spatial concentration vs. liquid viscosity and airflow velocity of two-phase flow in a vertical ID=50.8 mm pipe were measured using two concomitant computer-aided measurement systems. After acquiring data, the in situ special concentration signals were analyzed in time (spatial concentration and RMS of spatial concentration vs. time), amplitude (PDF and CPDF), and frequency (PSD and CPSD) domains that documented broad flow pattern changes caused by the fluid viscosity and air velocity changes. (author)« less

  3. A 3D Finite Element Model with Improved Spatial Resolution to Investigate the Effect of Varying Viscosity on Antarctica

    NASA Astrophysics Data System (ADS)

    Blank, B.; van der Wal, W.; Pappa, F.; Ebbing, J.

    2017-12-01

    B. Blank1, H. Hu1, W. van der Wal1, F Pappa2, J. Ebbing21Delft University of Technology 2Christian-Albrechts-University of KielSince the beginning of the 2000's time-variable gravity data from GRACE has proved to be an effective method for mapping ice mass loss in Antarctica. However, Glacial Isostatic Adjustment (GIA) models are required to correct for GIA induced mass changes. While most GIA models have adopted an Earth model that only varies radially in parameters, it has long been clear that the Earth structure also varies with longitude and latitude. For this study a new global 3D GIA model has been developed within the finite element software package ABAQUS, which can be modified to operate on a spatial resolution down to 50 km locally. The model is being benchmarked against normal model models for surface loading. It will be used to investigate the effects of a 3D varying lithosphere and upper asthenosphere in Antarctica. Viscosity which will be computed from temperature estimates with laboratory based flow laws. A new 3D temperature map of the Antarctic lithosphere has been developed within ESA's GOCE+ project based on seismic data as well as on GOCE and GRACE inferred gravity gradients. Output from the GIA model with this new temperature estimates will be compared to that of 1D viscosity profiles and other recent 3D viscosity models based on seismic data. From these side to side comparisons we want to investigate the influence of the viscosity map on uplift rates and horizontal movement. Finally the results can be compared to GPS measurement to investigate the validity of all models.

  4. Stability of miscible core?annular flows with viscosity stratification

    NASA Astrophysics Data System (ADS)

    Selvam, B.; Merk, S.; Govindarajan, Rama; Meiburg, E.

    The linear stability of variable viscosity, miscible core-annular flows is investigated. Consistent with pipe flow of a single fluid, the flow is stable at any Reynolds number when the magnitude of the viscosity ratio is less than a critical value. This is in contrast to the immiscible case without interfacial tension, which is unstable at any viscosity ratio. Beyond the critical value of the viscosity ratio, the flow can be unstable even when the more viscous fluid is in the core. This is in contrast to plane channel flows with finite interface thickness, which are always stabilized relative to single fluid flow when the less viscous fluid is in contact with the wall. If the more viscous fluid occupies the core, the axisymmetric mode usually dominates over the corkscrew mode. It is demonstrated that, for a less viscous core, the corkscrew mode is inviscidly unstable, whereas the axisymmetric mode is unstable for small Reynolds numbers at high Schmidt numbers. For the parameters under consideration, the switchover occurs at an intermediate Schmidt number of about 500. The occurrence of inviscid instability for the corkscrew mode is shown to be consistent with the Rayleigh criterion for pipe flows. In some parameter ranges, the miscible flow is seen to be more unstable than its immiscible counterpart, and the physical reasons for this behaviour are discussed.A detailed parametric study shows that increasing the interface thickness has a uniformly stabilizing effect. The flow is least stable when the interface between the two fluids is located at approximately 0.6 times the tube radius. Unlike for channel flow, there is no sudden change in the stability with radial location of the interface. The instability originates mainly in the less viscous fluid, close to the interface.

  5. Effects of age, gender, bolus condition, viscosity, and volume on pharyngeal and upper esophageal sphincter pressure and temporal measurements during swallowing.

    PubMed

    Butler, Susan G; Stuart, Andrew; Castell, Donald; Russell, Gregory B; Koch, Kenneth; Kemp, Shannon

    2009-02-01

    The purpose of this study was to determine the effects of trial (i.e., Trial 1 vs. Trial 2); viscosity (i.e., saliva, thin, nectar-thick, honey-thick, and pudding-thick water); volume (i.e., 5 mL vs. 10 mL); age (i.e., young vs. older adults); and gender on pharyngeal (i.e., upper and lower) and upper esophageal sphincter (UES) pressures, durations, and onsets (i.e., onset of upper pharyngeal pressures relative to onsets of UES relaxations and onset of lower relative to upper pharyngeal pressures). Twenty-three young adults (M=30 years) and 21 older healthy adults (M=75 years) participated. Measurements were acquired with a 2.1-mm catheter during simultaneous manometric and endoscopic swallowing assessment. Participants contributed 18 swallows, affording a study total of 792 swallows for analyses. There was no significant effect of trial on any measurement of pressure, duration, and onset (ps=.63, .39, and .71, respectively). It was found that viscosity, volume, age, and gender affected pressure, duration, and onset measurements (e.g., onset of upper pharyngeal pressures relative to onsets of UES relaxations) but in varying degrees relative to the location in the pharynx or UES and the type of measurement (e.g., pressure, onset). Manometric measurements vary with respect to age, gender, and bolus variables and interactions of each. Consideration of these variables is paramount in understanding normal and pathological swallowing if manometry is to develop as a quantitative adjunct to videofluoroscopic and endoscopic swallowing tools.

  6. Assessment of passive knee stiffness and viscosity in individuals with spinal cord injury using pendulum test.

    PubMed

    Joghtaei, Mahmoud; Arab, Amir Massoud; Hashemi-Nasl, Hamed; Joghataei, Mohammad Taghi; Tokhi, Mohammad Osman

    2015-03-01

    Stiffness and viscosity represent passive resistances to joint motion related with the structural properties of the joint tissue and of the musculotendinous complex. Both parameters can be affected in patients with spinal cord injury (SCI). The purpose of this study was to measure passive knee stiffness and viscosity in patients with SCI with paraplegia and healthy subjects using Wartenberg pendulum test. Non-experimental, cross-sectional, case-control design. An outpatient physical therapy clinic, University of social welfare and Rehabilitation Science, Iran. A sample of convenience sample of 30 subjects participated in the study. Subjects were categorized into two groups: individuals with paraplegic SCI (n = 15, age: 34.60 ± 9.18 years) and 15 able-bodied individuals as control group (n = 15, age: 30.66 ± 11.13 years). Not applicable. Passive pendulum test of Wartenberg was used to measure passive viscous-elastic parameters of the knee (stiffness, viscosity) in all subjects. Statistical analysis (independent t-test) revealed significant difference in the joint stiffness between healthy subjects and those with paraplegic SCI (P = 0.01). However, no significant difference was found in the viscosity between two groups (P = 0.17). Except for first peak flexion angle, all other displacement kinematic parameters exhibited no statistically significant difference between normal subjects and subjects with SCI. Patients with SCI have significantly greater joint stiffness compared to able-bodied subjects.

  7. Weak Interactions Govern the Viscosity of Concentrated Antibody Solutions: High-Throughput Analysis Using the Diffusion Interaction Parameter

    PubMed Central

    Connolly, Brian D.; Petry, Chris; Yadav, Sandeep; Demeule, Barthélemy; Ciaccio, Natalie; Moore, Jamie M.R.; Shire, Steven J.; Gokarn, Yatin R.

    2012-01-01

    Weak protein-protein interactions are thought to modulate the viscoelastic properties of concentrated antibody solutions. Predicting the viscoelastic behavior of concentrated antibodies from their dilute solution behavior is of significant interest and remains a challenge. Here, we show that the diffusion interaction parameter (kD), a component of the osmotic second virial coefficient (B2) that is amenable to high-throughput measurement in dilute solutions, correlates well with the viscosity of concentrated monoclonal antibody (mAb) solutions. We measured the kD of 29 different mAbs (IgG1 and IgG4) in four different solvent conditions (low and high ion normality) and found a linear dependence between kD and the exponential coefficient that describes the viscosity concentration profiles (|R| ≥ 0.9). Through experimentally measured effective charge measurements, under low ion normality where the electroviscous effect can dominate, we show that the mAb solution viscosity is poorly correlated with the mAb net charge (|R| ≤ 0.6). With this large data set, our results provide compelling evidence in support of weak intermolecular interactions, in contrast to the notion that the electroviscous effect is important in governing the viscoelastic behavior of concentrated mAb solutions. Our approach is particularly applicable as a screening tool for selecting mAbs with desirable viscosity properties early during lead candidate selection. PMID:22828333

  8. Influence of Frequency-Dependent Dielectric Loss on Electrorheology of Surface Modified ZnO Nanofluids

    NASA Astrophysics Data System (ADS)

    Zaid, H. M.; Adil, M.; Lee, KC; Latiff, N. R. A.

    2018-05-01

    The shear dependent viscosity change in dielectric nanofluids under the applied electric field, provide potentials for prospect applications especially in enhanced oil recovery. When nanofluids are activated by an applied electric field, it behaves as a non-Newtonian fluid under electrorheological effect (ER) by creating the chains of nanoparticles. In this research, the effect of dielectric loss on the electrorheological characteristic of dielectric nanofluids (NFs) was studied, corresponding to the applied frequency of 167 and 18.8 MHz. For this purpose, electrorheological characteristics of ZnO (55.7 and 117.1 nm) nanofluids with various nanoparticles (NPs) concentration (0.1, 0.05, 0.01 wt. %) were measured. The measurement was done via solenoid based EM transmitter under salt water as a propagation medium. The result shows that the applied electric field caused an apparent increase on the relative viscosity of ZnO NFs due to electrorheological effect. However, the relative viscosity shows a higher increment at 167 MHz due to the greater dielectric loss, compared to 18.8 MHz. The high dielectric loss allows the dipole moments to rotationally polarize at the interfaces of nanoparticles, which create stronger chains that align with the applied electric field. Additionally, the relative viscosity demonstrated an increment with the increase in particle size of ZnO nanoparticles from 55.7 to 117.1 nm. While the viscosity of nanofluid also indicated the high dependence on particle loading.

  9. Chitooligosaccharide: An evaluation of physicochemical and biological properties with the proposition for determination of thermal degradation products.

    PubMed

    Phil, Lucas; Naveed, Muhammad; Mohammad, Imran Shair; Bo, Li; Bin, Di

    2018-06-01

    Being the most versatile biopolymer, chitooligosaccharide/chitosan oligosaccharide (COS) has been extensively studied for a range of exceptional biological activities and potential developments of novel medical devices and systems in biomedical and pharmaceutical fields. While possessing intrinsic biocompatibility, mucoadhesiveness, and non-toxicity it gained more interests in the biomedical development of novel systems, devices, and pharmaceutical formulations. The bioactive relativity of chitosan and COS are of highly significant and thus explored in this paper while highlighting its multiple biological activities and promising biomedical applications. More emphasis is on the molecular weight, degree of acetylation/deacetylation, degree of polymerization and reactive groups in relation to chitin and chitosan. Despite COS wide acceptance and utilization, the associated viscosity and instability are crucial factors that posed a great challenge to researchers. The apparent reason attributed to instability and viscosity could be the presence intrinsic variable oligomers within COS. Due to lack of data on safety and impurity analysis of thermal exposure of COS, we hypothesized that different molecules could be generated with thermal treatment of COS, thus finally suggested a prospective determination of thermal degradation product(s)in COS. Hence the aim of this paper is to highlight COS physicochemical and biological significance with reference to its recent developments and propose a further chemical analysis thermal treated COS. This could trigger future researchers for possible isolation and characterization of distinct biomolecules from COS. Copyright © 2018. Published by Elsevier Masson SAS.

  10. Impact of Viscous Droplets on Superamphiphobic Surfaces

    NASA Astrophysics Data System (ADS)

    Zhao, Binyu; Chen, Longquan; Deng, Xu

    2016-11-01

    Superamphiphobic coating is promising for various applications in industry, e.g. self-cleaning windows, where the impingement of droplets on surfaces is commonly encountered. In this work, we experimentally investigated the impact of droplets with similar surface tension (63-72 mN/m) but much different viscosity (1-150 mPa s) on superamphiphobic surfaces. We found that droplets can rebound from the superamphiphobic surfaces when the impact velocity is larger than a critical value, which linearly increases with the liquid viscosity. Droplet with higher viscosity spreads, retracts slower, and eventually rebounds lower and fewer times than that of low viscous droplet. These findings have important implications for surface engineers to use superamphiphobic coatings. Furthermore, we measured the maximum spreading factors for droplet impact on superamphiphobic surfaces and proposed a simple model based on energy conversation to describe its relationship to the Weber number and Reynolds number.

  11. Viscosity of NaCl and other solutions up to 350{sup 0}C and 50 MPa pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, S.L.; Ozbek, H.; Igbene, A.

    1980-11-01

    Experimental values for the viscosity of sodium chloride solutions are critically reviewed for application to geothermal energy. Data published recently by Kestin, Los, Pepinov, and Semenyuk as well as earlier data are included. A theoretically based equation for calculating relative viscosity was developed, and used to generate tables of smoothed values over the ranges 20{sup 0}C to 350{sup 0}C, 0 to 5 m and pressures up to 50 MPa. The equation reproduces selected data to an average of better than 2 percent over the entire range of temperatures and pressures. Selected tables of data are included for KCl up tomore » 150{sup 0}C, CaCl{sub 2} solutions up to 100{sup 0}C, and for mixtures of NaCl with KCl and CaCl{sub 2}. Recommendations are given for additional data needs.« less

  12. Screening for High Conductivity/Low Viscosity Ionic Liquids Using Product Descriptors.

    PubMed

    Martin, Shawn; Pratt, Harry D; Anderson, Travis M

    2017-07-01

    We seek to optimize Ionic liquids (ILs) for application to redox flow batteries. As part of this effort, we have developed a computational method for suggesting ILs with high conductivity and low viscosity. Since ILs consist of cation-anion pairs, we consider a method for treating ILs as pairs using product descriptors for QSPRs, a concept borrowed from the prediction of protein-protein interactions in bioinformatics. We demonstrate the method by predicting electrical conductivity, viscosity, and melting point on a dataset taken from the ILThermo database on June 18 th , 2014. The dataset consists of 4,329 measurements taken from 165 ILs made up of 72 cations and 34 anions. We benchmark our QSPRs on the known values in the dataset then extend our predictions to screen all 2,448 possible cation-anion pairs in the dataset. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The viscosity of the refrigerant 1,1-difluoroethane along the saturation line

    NASA Astrophysics Data System (ADS)

    van der Gulik, P. S.

    1993-07-01

    The viscosity coefficient of the refrigerant R152a (1,1-difluoroethane) has been measured along the saturation line both in the saturated liquid and in the saturated vapor. The data have been obtained every 10 K from 243 up to 393 K by means of a vibrating-wire viscometer using the free damped oscillation method. The density along the saturation line was calculated from the equation of state given by Tamatsu et al. with application of the saturated vapor-pressure correlation given by Higashi et al. An interesting result is that in the neighborhood of the critical point, the kinematic viscosity of the saturated liquid seems to coincide with that of the saturated vapor. The results for the saturated liquid are in satisfying agreement with those of Kumagai and Takahashi and of Phillips and Murphy. A comparison of the saturatedvaport data with the unsaturated-vapor data of Takahashi et al. shows some discrepancies.

  14. Treatment of Viscosity in the Shock Waves Observed After Two Consecutive Coronal Mass Ejection Activities CME08/03/2012 and CME15/03/2012

    NASA Astrophysics Data System (ADS)

    Cavus, Huseyin

    2016-11-01

    A coronal mass ejection (CME) is one of the most the powerful activities of the Sun. There is a possibility to produce shocks in the interplanetary medium after CMEs. Shock waves can be observed when the solar wind changes its velocity from being supersonic nature to being subsonic nature. The investigations of such activities have a central place in space weather purposes, since; the interaction of shocks with viscosity is one of the most important problems in the supersonic and compressible gas flow regime (Blazek in Computational fluid dynamics: principles and applications. Elsevier, Amsterdam 2001). The main aim of present work is to achieve a search for the viscosity effects in the shocks occurred after two consecutive coronal mass ejection activities in 2012 (i.e. CME08/03/2012 and CME15/03/2012).

  15. Screening for High Conductivity/Low Viscosity Ionic Liquids Using Product Descriptors

    DOE PAGES

    Martin, Shawn; Pratt, III, Harry D.; Anderson, Travis M.

    2017-02-21

    We seek to optimize Ionic liquids (ILs) for application to redox flow batteries. As part of this effort, we have developed a computational method for suggesting ILs with high conductivity and low viscosity. Since ILs consist of cation-anion pairs, we consider a method for treating ILs as pairs using product descriptors for QSPRs, a concept borrowed from the prediction of protein-protein interactions in bioinformatics. We demonstrate the method by predicting electrical conductivity, viscosity, and melting point on a dataset taken from the ILThermo database on June 18th, 2014. The dataset consists of 4,329 measurements taken from 165 ILs made upmore » of 72 cations and 34 anions. In conclusion, we benchmark our QSPRs on the known values in the dataset then extend our predictions to screen all 2,448 possible cation-anion pairs in the dataset.« less

  16. Transport properties of nonelectrolyte liquid mixtures—IV. Viscosity coefficients for benzene, perdeuterobenzene, hexafluorobenzene, and an equimolar mixture of benzene + hexafluorobenzene from 25 to 100°c at pressures up to the freezing pressure

    NASA Astrophysics Data System (ADS)

    Dymond, J. H.; Robertson, J.; Isdale, J. D.

    1981-09-01

    Viscosity coefficient measurements made with an estimated accuracy of ±2% using a self-centering falling body viscometer are reported for benzene, perdeuterobenzene, hexafluorobenzene and an equimolar mixture of benzene + hexafluorobenzene at 25, 50, 75 and 100°C at pressures up to the freezing pressure. The data for each liquid at different temperatures and pressures are correlated very satisfactorily by a graphical method based on plots of 9.118×107 ηV 2/3/(MRT)1/2 versus logV, and are reproduced to within the experimental uncertainty by a free-volume form of equation. Application of the empirical Grunberg and Nissan equation to the mixture viscosity coefficient data shows that the characteristic constant G is practically temperature- and pressure-independent for this system.

  17. Screening for High Conductivity/Low Viscosity Ionic Liquids Using Product Descriptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Shawn; Pratt, III, Harry D.; Anderson, Travis M.

    We seek to optimize Ionic liquids (ILs) for application to redox flow batteries. As part of this effort, we have developed a computational method for suggesting ILs with high conductivity and low viscosity. Since ILs consist of cation-anion pairs, we consider a method for treating ILs as pairs using product descriptors for QSPRs, a concept borrowed from the prediction of protein-protein interactions in bioinformatics. We demonstrate the method by predicting electrical conductivity, viscosity, and melting point on a dataset taken from the ILThermo database on June 18th, 2014. The dataset consists of 4,329 measurements taken from 165 ILs made upmore » of 72 cations and 34 anions. In conclusion, we benchmark our QSPRs on the known values in the dataset then extend our predictions to screen all 2,448 possible cation-anion pairs in the dataset.« less

  18. Comparison and experimental validation of two potential resonant viscosity sensors in the kilohertz range

    NASA Astrophysics Data System (ADS)

    Lemaire, Etienne; Heinisch, Martin; Caillard, Benjamin; Jakoby, Bernhard; Dufour, Isabelle

    2013-08-01

    Oscillating microstructures are well established and find application in many fields. These include force sensors, e.g. AFM micro-cantilevers or accelerometers based on resonant suspended plates. This contribution presents two vibrating mechanical structures acting as force sensors in liquid media in order to measure hydrodynamic interactions. Rectangular cross section microcantilevers as well as circular cross section wires are investigated. Each structure features specific benefits, which are discussed in detail. Furthermore, their mechanical parameters and their deflection in liquids are characterized. Finally, an inverse analytical model is applied to calculate the complex viscosity near the resonant frequency for both types of structures. With this approach it is possible to determine rheological parameters in the kilohertz range in situ within a few seconds. The monitoring of the complex viscosity of yogurt during the fermentation process is used as a proof of concept to qualify at least one of the two sensors in opaque mixtures.

  19. 3-D foam adhesive deposition

    NASA Technical Reports Server (NTRS)

    Lemons, C. R.; Salmassy, O. K.

    1976-01-01

    Bonding method, which reduces amount and weight of adhesive, is applicable to foam-filled honeycomb constructions. Novel features of process include temperature-viscosity control and removal of excess adhesive by transfer to cellophane film.

  20. Re-examining the applications of amylase in the sugar industry: Conquering the control of insoluble and soluble starch

    USDA-ARS?s Scientific Manuscript database

    The new knowledge that there is markedly more insoluble starch than previously considered in products across both the sugarcane factory and refinery has processing implications. Processing parameters such as viscosity and filtration are implicated, as well as the application of '-amylases in the fa...

  1. Various continuum approaches for studying shock wave structure in carbon dioxide

    NASA Astrophysics Data System (ADS)

    Alekseev, I. V.; Kosareva, A. A.; Kustova, E. V.; Nagnibeda, E. A.

    2018-05-01

    Shock wave structure in carbon dioxide is studied using different continuum models within the framework of one-temperature thermal equilibrium flow description. Navier-Stokes and Euler equations as well as commonly used Rankine-Hugoniot equations with different specific heat ratios are used to find the gas-dynamic parameters behind the shock wave. The accuracy of the Rankine-Hugoniot relations in polyatomic gases is assessed, and it is shown that they give a considerable error in the predicted values of fluid-dynamic variables. The effect of bulk viscosity on the shock wave structure in CO2 is evaluated. Taking into account bulk viscosity yields a significant increase in the shock wave width; for the complete model, the shock wave thickness varies non-monotonically with the Mach number.

  2. Saffman-Taylor Instability and the Inner Splitting Mechanism

    NASA Astrophysics Data System (ADS)

    Oliveira, Rafael; Meiburg, Eckart

    2017-11-01

    The classical miscible displacement experiments of Wooding (1969) exhibit an inner splitting phenomenon that remained unexplained for over 40 years. 3D Navier-Stokes simulations presented in, were the first ones to reproduce these experimental observations numerically, and to demonstrate that they are linked to concentrated streamwise vortices. The origin of these concentrated streamwise vortices remained a mystery, however. The current investigation, published at, finally resolves this long-standing issue. Towards this end, we compare 3D Navier-Stokes simulation results for neutrally buoyant, viscously unstable displacements and gravitationally unstable, constant viscosity ones. Only the former exhibit the generation of streamwise vorticity. The simulation results present conclusive evidence that it is caused by the lateral displacement of the more viscous fluid by the less viscous one, with the variable viscosity terms playing a dominant role.

  3. The assessment of nanofluid in a Von Karman flow with temperature relied viscosity

    NASA Astrophysics Data System (ADS)

    Tanveer, Anum; Salahuddin, T.; Khan, Mumtaz; Alshomrani, Ali Saleh; Malik, M. Y.

    2018-06-01

    This work endeavor to study the heat and mass transfer viscous nanofluid features in a Von Karman flow invoking the variable viscosity mechanism. Moreover, we have extended our study in view of heat generation and uniform suction effects. The flow triggering non-linear partial differential equations are inscribed in the non-dimensional form by manipulating suitable transformations. The resulting non-linear ordinary differential equations are solved numerically via implicit finite difference scheme in conjecture with the Newton's linearization scheme afterwards. The sought solutions are plotted graphically to present comparison between MATLAB routine bvp4c and implicit finite difference schemes. Impact of different parameters on the concentration/temperature/velocity profiles are highlighted. Further Nusselt number, skin friction and Sherwood number characteristics are discussed for better exposition.

  4. Bulk Viscous Anisotropic Cosmological Models with Variable G and Λ

    NASA Astrophysics Data System (ADS)

    Pradhan, Anirudh; Yadav, Vinod Kumar; Dolgov, A.

    The Einstein field equations with bulk viscosity and variable G and Λ for Bianchi-type universes are studied under the assumption of a power-law time variation of the expansion factor, achieved via a suitable power-law assumption for the Hubble parameter suggested by M. S. Berman. All the models have a power-law variation of pressure and density and are singular at the epoch t = 0. The variation of G(t) as (1)/(t) and Λ(t) as (1)/(t2) is consistent with these models.

  5. The Stability and Interfacial Motion of Multi-layer Radial Porous Media and Hele-Shaw Flows

    NASA Astrophysics Data System (ADS)

    Gin, Craig; Daripa, Prabir

    2017-11-01

    In this talk, we will discuss viscous fingering instabilities of multi-layer immiscible porous media flows within the Hele-Shaw model in a radial flow geometry. We study the motion of the interfaces for flows with both constant and variable viscosity fluids. We consider the effects of using a variable injection rate on multi-layer flows. We also present a numerical approach to simulating the interface motion within linear theory using the method of eigenfunction expansion. We compare these results with fully non-linear simulations.

  6. The nonconvex multi-dimensional Riemann problem for Hamilton-Jacobi equations

    NASA Technical Reports Server (NTRS)

    Bardi, Martino; Osher, Stanley

    1991-01-01

    Simple inequalities are presented for the viscosity solution of a Hamilton-Jacobi equation in N space dimensions when neither the initial data nor the Hamiltonian need be convex (or concave). The initial data are uniformly Lipschitz and can be written as the sum of a convex function in a group of variables and a concave function in the remaining variables, therefore including the nonconvex Riemann problem. The inequalities become equalities wherever a 'maxmin' equals a 'minmax', and thus a representation formula for this problem is obtained, generalizing the classical Hopi formulas.

  7. Rheology and stability kinetics of bare silicon nanoparticle inks for low-cost direct printing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    More, Priyesh V.; Jeong, Sunho; Seo, Yeong-Hui

    2013-12-16

    Highly dispersed and stable silicon nanoparticles ink is formulated for its application in direct printing or printable electronics. These dispersions are prepared from free-standing silicon nanoparticles which are not capped with any organic ligand, making it suitable for electronic applications. Silicon nanoparticles dispersions are prepared by suspending the nanoparticles in benzonitrile or ethanol by using polypropylene glycol (PPG) as a binder. All the samples show typical shear thinning behavior while the dispersion samples show low viscosities signifying good quality dispersion. Such thinning behavior favors in fabrication of dense films with spin-coating or patterns with drop casting. The dispersion stability ismore » monitored by turbiscan measurements showing good stability for one week. A low-cost direct printing method for dispersion samples is also demonstrated to obtain micro-sized patterns. Low electrical resistivity of resulting patterns, adjustable viscosity and good stability makes these silicon nanoparticles dispersions highly applicable for direct printing process.« less

  8. Application of high-pressure homogenization on gums.

    PubMed

    Belmiro, Ricardo Henrique; Tribst, Alline Artigiani Lima; Cristianini, Marcelo

    2018-04-01

    High-pressure homogenization (HPH) is an emerging process during which a fluid product is pumped by pressure intensifiers, forcing it to flow through a narrow gap, usually measured in the order of micrometers. Gums are polysaccharides from vegetal, animal or microbial origin and are widely employed in food and chemical industries as thickeners, stabilizers, gelling agents and emulsifiers. The choice of a specific gum depends on its application and purpose because each form of gum has particular values with respect to viscosity, intrinsic viscosity, stability, and emulsifying and gelling properties, with these parameters being determined by its structure. HPH is able to alter those properties positively by inducing changes in the original polymer, allowing for new applications and improvements with respect to the technical properties of gums. This review highlights the most important advances when this process is applied to change polysaccharides from distinct sources and molecular structures, as well as the future challenges that remain. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. Mixed ionic liquid as electrolyte for lithium batteries

    NASA Astrophysics Data System (ADS)

    Diaw, M.; Chagnes, A.; Carré, B.; Willmann, P.; Lemordant, D.

    Ionic liquids like 1-butyl-3-methylimidazolium tetrafluoroborate (IMIBF 4) or hexafluorophosphate (IMIPF 6) and 1-butyl-4-methylpyridinium tetrafluoroborate (PyBF 4) were mixed with organic solvents such as butyrolactone (BL) and acetonitrile (ACN). A lithium salt (LiBF 4 or LiPF 6) was added to these mixtures for possible application in the field of energy storage (batteries or supercapacitors). Viscosities, conductivities and electrochemical windows at a Pt electrode of these electrolytes were investigated. All studied electrolytes are stable toward oxidation and exhibit a vitreous phase transition, which has been determined by application of the VTF theory to conductivity measurements. Mixtures containing the BF 4- anion exhibit the lowest viscosity and the highest conductivity. Two mixtures have been optimized in terms of conductivity: BL/IMIBF 4 (60/40, v/v) and ACN/IMIBF 4 (70/30, v/v).

  10. Human albumin solders for clinical application during laser tissue welding.

    PubMed

    Poppas, D P; Wright, E J; Guthrie, P D; Shlahet, L T; Retik, A B

    1996-01-01

    Fifty percent human albumin solder significantly improves weld strength when compared to lower concentrations [Wright et al., ASLMS meeting, April, 1995]. We developed a method for preparing 50% human albumin that may be considered compatible for clinical applications. Fifty percent human albumin solder was prepared from 25% commercially available human albumin using a lyophilization technique. Assessment of sterility, viscosity, pH, and peak absorption wavelength were performed. This report describes the methodology used to prepare a 50% human albumin solder that is compatible with clinical use. Maintenance of the structural integrity of the albumin was confirmed by polyacrylamide gel electrophoresis. This solder preparation can be used alone or with the addition of exogenous chromophores. The final product is sterile, incorporates viral free protocols, maintains high viscosity, and can be applied easily during open or laparoscopic procedures.

  11. Amphiphilic nanoparticles suppress droplet break-up in a concentrated emulsion flowing through a narrow constriction

    PubMed Central

    Gai, Ya; Kim, Minkyu; Pan, Ming; Tang, Sindy K. Y.

    2017-01-01

    This paper describes the break-up behavior of a concentrated emulsion comprising drops stabilized by amphiphilic silica nanoparticles flowing in a tapered microchannel. Such geometry is often used in serial droplet interrogation and sorting processes in droplet microfluidics applications. When exposed to high viscous stresses, drops can undergo break-up and compromise their physical integrity. As these drops are used as micro-reactors, such compromise leads to a loss in the accuracy of droplet-based assays. Here, we show droplet break-up is suppressed by replacing the fluoro-surfactant similar to the one commonly used in current droplet microfluidics applications with amphiphilic nanoparticles as droplet stabilizer. We identify parameters that influence the break-up of these drops and demonstrate that break-up probability increases with increasing capillary number and confinement, decreasing nanoparticle size, and is insensitive to viscosity ratio within the range tested. Practically, our results reveal two key advantages of nanoparticles with direct applications to droplet microfluidics. First, replacing surfactants with nanoparticles suppresses break-up and increases the throughput of the serial interrogation process to 3 times higher than that in surfactant system under similar flow conditions. Second, the insensitivity of break-up to droplet viscosity makes it possible to process samples having different composition and viscosities without having to change the channel and droplet geometry in order to maintain the same degree of break-up and corresponding assay accuracy. PMID:28652887

  12. The variable influence of P 2O 5 on the viscosity of melts of differing alkali/aluminium ratio: Implications for the structural role of phosphorus in silicate melts

    NASA Astrophysics Data System (ADS)

    Toplis, M. J.; Dingwell, D. B.

    1996-11-01

    The shear viscosities of forty melts in the system Na 2OAl 2O 3SiO 2P 2O 5 have been determined in the temperature range 1652-1052°C using the concentric cylinder method. Six P-free compositions containing ˜67 mol% SiO 2 varying in molar Na/(Na + Al) from 0.70 (peralkaline) to 0.44 (peraluminous) were studied, to each of which successive additions of up to 7 mol% (13 wt%) P 2O 5 were made. At a fixed temperature, viscosities in the P-free system show a maximum, not at the 'charge-balanced' metaluminous composition ( Na/(Na + Al) = 0.50 ), but at Na/(Na + Al) = 0.47 . Addition of P to peralkaline melts results in an increase in viscosity. With progressive additions of P to mildly peralkaline melts ( Na/(Na + Al) < 0.60 ), there is a maximum in melt viscosity that occurs at lower P content as the peralkalinity of the melt decreases. In contrast, the addition of P to the metaluminous and peraluminous melts causes a decrease in melt viscosity. The magnitude of this decrease is identical for the metaluminous, and mildly peraluminous ( Na/(Na + Al) = 0.47 ) compositions, but smaller for the most peraluminous melt ( Na/(Na + Al) = 0.44 ). The following inferences are made from the present viscosity data, together with spectroscopic data from the literature: (1) At the metaluminous join in the P-free system, not all the Al is present as a charge-balanced network-former. Between the metaluminous join and the viscosity maximum the incorporation of a small proportion of Al (3% relative) in a charge-balancing role (for Al IV) could explain the observations. (2) The addition of P to peralkaline melts results in the formation of Na phosphate complexes which, upon exhaustion of excess Na, have the stoichiometry of extended metaphosphate chains with Na/P ratios that tend to 1 as the metaluminous ioin is approached. (3) Estimates of the relative effects of Na and Al phosphate melt complexes on viscosity are consistent with the formation of both NaPO 3 and AlPO 4 melt complexes upon addition of P to metaluminous melts. (4) In the most peraluminous melts studied, P is inferred to interact with both excess Al and network-forming aluminates, suggesting that these two species have similar energetic stabilities. Given that many granites lie close to the metaluminous join in composition, the results of this study have implications for the physical and chemical evolution of such natural systems.

  13. High viscosity environments: an unexpected route to obtain true atomic resolution with atomic force microscopy.

    PubMed

    Weber, Stefan A L; Kilpatrick, Jason I; Brosnan, Timothy M; Jarvis, Suzanne P; Rodriguez, Brian J

    2014-05-02

    Atomic force microscopy (AFM) is widely used in liquid environments, where true atomic resolution at the solid-liquid interface can now be routinely achieved. It is generally expected that AFM operation in more viscous environments results in an increased noise contribution from the thermal motion of the cantilever, thereby reducing the signal-to-noise ratio (SNR). Thus, viscous fluids such as ionic and organic liquids have been generally avoided for high-resolution AFM studies despite their relevance to, e.g. energy applications. Here, we investigate the thermal noise limitations of dynamic AFM operation in both low and high viscosity environments theoretically, deriving expressions for the amplitude, phase and frequency noise resulting from the thermal motion of the cantilever, thereby defining the performance limits of amplitude modulation, phase modulation and frequency modulation AFM. We show that the assumption of a reduced SNR in viscous environments is not inherent to the technique and demonstrate that SNR values comparable to ultra-high vacuum systems can be obtained in high viscosity environments under certain conditions. Finally, we have obtained true atomic resolution images of highly ordered pyrolytic graphite and mica surfaces, thus revealing the potential of high-resolution imaging in high viscosity environments.

  14. Reversible cluster formation in concentrated monoclonal antibody solutions

    NASA Astrophysics Data System (ADS)

    Godfrin, P. Douglas; Porcar, Lionel; Falus, Peter; Zarraga, Isidro; Wagner, Norm; Liu, Yun

    2015-03-01

    Protein cluster formation in solution is of fundamental interest for both academic research and industrial applications. Recently, industrial scientists are also exploring the effect of reversible cluster formation on biopharmaceutical processing and delivery. However, despite of its importance, the understanding of protein clusters at concentrated solutions remains scientifically very challenging. Using the neutron spin echo technique to study the short time dynamics of proteins in solutions, we have recently systematically studied cluster formation in a few monoclonal antibody (mAb) solutions and their relation with solution viscosity. We show that the existence of anisotropic attraction can cause the formation of finite sized clusters, which increases the solution viscosity. Interestingly, once clusters form at relatively low concentrations, the average size of clusters in solutions remains almost constant over a wide range of concentrations similar to that of micelle formation. For a different mAb we have also investigated, the attraction is mostly induced by hydrophobic patches. As a result, these mAbs form large clusters with loosely linked proteins. In both cases, the formation of clusters all increases the solution viscosity substantially. However, due to different physics origins of cluster formation, solutions viscosities for these two different types of mAbs need to be controlled by different ways.

  15. High viscosity environments: an unexpected route to obtain true atomic resolution with atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Weber, Stefan A. L.; Kilpatrick, Jason I.; Brosnan, Timothy M.; Jarvis, Suzanne P.; Rodriguez, Brian J.

    2014-05-01

    Atomic force microscopy (AFM) is widely used in liquid environments, where true atomic resolution at the solid-liquid interface can now be routinely achieved. It is generally expected that AFM operation in more viscous environments results in an increased noise contribution from the thermal motion of the cantilever, thereby reducing the signal-to-noise ratio (SNR). Thus, viscous fluids such as ionic and organic liquids have been generally avoided for high-resolution AFM studies despite their relevance to, e.g. energy applications. Here, we investigate the thermal noise limitations of dynamic AFM operation in both low and high viscosity environments theoretically, deriving expressions for the amplitude, phase and frequency noise resulting from the thermal motion of the cantilever, thereby defining the performance limits of amplitude modulation, phase modulation and frequency modulation AFM. We show that the assumption of a reduced SNR in viscous environments is not inherent to the technique and demonstrate that SNR values comparable to ultra-high vacuum systems can be obtained in high viscosity environments under certain conditions. Finally, we have obtained true atomic resolution images of highly ordered pyrolytic graphite and mica surfaces, thus revealing the potential of high-resolution imaging in high viscosity environments.

  16. Accuracy and Precision of Silicon Based Impression Media for Quantitative Areal Texture Analysis

    PubMed Central

    Goodall, Robert H.; Darras, Laurent P.; Purnell, Mark A.

    2015-01-01

    Areal surface texture analysis is becoming widespread across a diverse range of applications, from engineering to ecology. In many studies silicon based impression media are used to replicate surfaces, and the fidelity of replication defines the quality of data collected. However, while different investigators have used different impression media, the fidelity of surface replication has not been subjected to quantitative analysis based on areal texture data. Here we present the results of an analysis of the accuracy and precision with which different silicon based impression media of varying composition and viscosity replicate rough and smooth surfaces. Both accuracy and precision vary greatly between different media. High viscosity media tested show very low accuracy and precision, and most other compounds showed either the same pattern, or low accuracy and high precision, or low precision and high accuracy. Of the media tested, mid viscosity President Jet Regular Body and low viscosity President Jet Light Body (Coltène Whaledent) are the only compounds to show high levels of accuracy and precision on both surface types. Our results show that data acquired from different impression media are not comparable, supporting calls for greater standardisation of methods in areal texture analysis. PMID:25991505

  17. Nanostructured systems for enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Altunina, L. K.; Kuvshinov, V. A.; Kuvshinov, I. V.

    2015-10-01

    The reservoir energy or that of the injected heat carrier was used to generate in situ intelligent chemical systems—nanostructured gels, sols and oil-displacing surfactants systems, preserving for a long time in the reservoir a complex of the properties being optimal for oil displacement. The results of field tests and commercial application of physicochemical technologies using nanostructured systems for enhanced oil recovery in oilfields with difficult-to-recover reserves, including deposits of high-viscosity oils, have been presented. Field tests of new "cold" technologies on the deposit of high-viscosity oil in Usinskoye oilfield proved their high efficiency.

  18. ADMiER-ing thin but complex fluids

    NASA Astrophysics Data System (ADS)

    McDonnell, Amarin G.; Bhattacharjee, Pradipto K.; Pan, Sharadwata; Hill, David; Danquah, Michael K.; Friend, James R.; Yeo, Leslie Y.; Prabhakar, Ranganathan

    2011-12-01

    The Acoustics Driven Microfluidic Extensional Rheometer (ADMiER) utilises micro litre volumes of liquid, with viscosities as low as that of water, to create valid and observable extensional flows, liquid bridges that pinch off due to capillary forces in this case. ADMiER allows the study fluids that have been beyond conventional methods and also study more subtle fluid properties. We can observe polymeric fluids with solvent viscosities far below those previously testable, accentuating elastic effects. Also, it has enabled the testing of aqueous solutions of living motile particles, which significantly change fluid properties, opening up the potential for diagnostic applications.

  19. Feasibility study of a cosmetic cream added with aqueous extract and oil from date (Phoenix dactylifera L.) fruit seed using experimental design.

    PubMed

    Lecheb, Fatma; Benamara, Salem

    2015-01-01

    This article reports on the feasibility study of a cosmetic cream added with aqueous extract and oil from date (Phoenix dactylifera L.) fruit seed using experimental design. First, the mixture design was applied to optimize the cosmetic formula. The responses (dependent variables) were the spreadability (YSp) and viscosity (YVis), the factors (independent variables) being the weight proportions of the fatty phase (X1), the aqueous date seed extract (X2), and the beeswax (X3). Second, the cosmetic stability study was conducted by applying a full factorial design. Here, three responses were considered [spreadability (Sp), viscosity (Vis), and peroxide index (PI)], the independent variables being the concentration of the date seed oil (DSO) (x1), storage temperature (x2), and storage time (x3). Results showed that in the case of mixture design, the second-order polynomial equations correctly described experimental data. Globally, results show that there is a relatively wide composition range to ensure a suitable cosmetic cream from the point of view of Sp and Vis. Regarding the cosmetic stability, the storage time was found to be the most influential factor on both Vis and PI, which are considered here as indicators of physical and chemical stability of the emulsion, respectively. Finally, the elaborated and commercial cosmetics were compared in terms of pH, Sp, and centrifugation test (Ct).

  20. Thermophysical Properties Measurement of High-Temperature Liquids Under Microgravity Conditions in Controlled Atmospheric Conditions

    NASA Technical Reports Server (NTRS)

    Watanabe, Masahito; Ozawa, Shumpei; Mizuno, Akotoshi; Hibiya, Taketoshi; Kawauchi, Hiroya; Murai, Kentaro; Takahashi, Suguru

    2012-01-01

    Microgravity conditions have advantages of measurement of surface tension and viscosity of metallic liquids by the oscillating drop method with an electromagnetic levitation (EML) device. Thus, we are preparing the experiments of thermophysical properties measurements using the Materials-Science Laboratories ElectroMagnetic-Levitator (MSL-EML) facilities in the international Space station (ISS). Recently, it has been identified that dependence of surface tension on oxygen partial pressure (Po2) must be considered for industrial application of surface tension values. Effect of Po2 on surface tension would apparently change viscosity from the damping oscillation model. Therefore, surface tension and viscosity must be measured simultaneously in the same atmospheric conditions. Moreover, effect of the electromagnetic force (EMF) on the surface oscillations must be clarified to obtain the ideal surface oscillation because the EMF works as the external force on the oscillating liquid droplets, so extensive EMF makes apparently the viscosity values large. In our group, using the parabolic flight levitation experimental facilities (PFLEX) the effect of Po2 and external EMF on surface oscillation of levitated liquid droplets was systematically investigated for the precise measurements of surface tension and viscosity of high temperature liquids for future ISS experiments. We performed the observation of surface oscillations of levitated liquid alloys using PFLEX on board flight experiments by Gulfstream II (G-II) airplane operated by DAS. These observations were performed under the controlled Po2 and also under the suitable EMF conditions. In these experiments, we obtained the density, the viscosity and the surface tension values of liquid Cu. From these results, we discuss about as same as reported data, and also obtained the difference of surface oscillations with the change of the EMF conditions.

  1. Impact of Types of Moisturizer and Humidity on the Residual Weight and Viscosity of Liquid and Gel Oral Moisturizers.

    PubMed

    Murakami, Mamoru; Nishi, Yasuhiro; Fujishima, Kei; Nishio, Misaki; Minemoto, Yoko; Kanie, Takahito; Nishimura, Masahiro

    2016-10-01

    Oral moisturizers need to be selected based on their material properties. The purpose of this study was to investigate the effects of moisturizer type and humidity on the residual weight and viscosity of oral moisturizers. The weight and viscosity of 17 oral moisturizers (7 liquid and 10 gel) at baseline and after 8 hours were measured using an incubator maintained at 37°C at either 85% or 40% relative humidity (RH). The rate of change in weight (RCW) and the rate of change in viscosity (RCV) were calculated. Data were analyzed with two-way analysis of variance (ANOVA) and Scheffe's test to evaluate the effect of the type of moisturizer (liquid or gel) and humidity (85% or 40% RH) on RCW and RCV. Pearson's correlation coefficient was used to evaluate the relationship between RCW and RCV. Two-way ANOVA results indicated that the type of moisturizer and RH had a significant effect on RCW and RCV (p < 0.05); however, the interaction between them was not significant. The results of multiple comparisons showed that gel moisturizers had a significantly lower RCW and higher RCV than liquid moisturizers (p < 0.05). The RCW and RCV at 40% RH were significantly higher than those at 85% RH (p < 0.05). There was no correlation between RCW and RCV in the liquid moisturizer group, but a significant negative correlation was found in the gel moisturizer group (pp = 0.01). Because viscosity of gel moisturizers increases as weight decreases, selecting gel moisturizers with a minimal change in weight and viscosity would be preferable in the case of a long-time application and severe dry mouth. © 2015 by the American College of Prosthodontists.

  2. Effect of Bleaching Gel Viscosity on Tooth Whitening Efficacy and Pulp Chamber Penetration: An In Vitro Study.

    PubMed

    Kwon, S R; Pallavi, Fnu; Shi, Y; Oyoyo, U; Mohraz, A; Li, Y

    Whitening efficacy has been related to hydrogen peroxide (HP) diffusion into tooth structure. However, little information is available relating rheological properties to whitening efficacy. The purpose was to evaluate the whitening efficacy and HP penetration level of a 10% HP gel at three different viscosities and to compare them to a strip delivery system. Extracted molars (n=120) were randomly assigned into five groups (n=24/ group): NC_MED (negative control; median): medium viscosity gel without HP; LOW: 10% HP gel (low viscosity experimental gel, Ultradent Products Inc); MED: 10% HP gel (medium viscosity experimental gel, Ultradent); HIGH: 10% HP gel (high viscosity gel, Ultradent); and CWS: Crest 3D Whitestrips 1-Hour Express (Procter & Gamble). All teeth were subjected to five 60-minute whitening sessions. Instrumental color measurements were performed at baseline (T 0 ), and 1-day after each application (T 1 -T 5 ), and 1-month after whitening (T 6 ). HP penetration was estimated with leucocrystal violet and horseradish peroxidase. A Kruskal-Wallis test and post hoc Bonferroni test were performed to assess the difference in tooth color change and HP penetration among the groups (α=0.05). Hydrogen peroxide penetration levels and overall color changes at T 6 were 0.24 μg/mL / 2.80; 0.48 μg/mL / 8.48; 0.44 μg/mL / 7.72; 0.35 μg/mL / 8.49; 0.36 μg/mL / 7.30 for groups NC, LOW, MED, HIGH, and CWS, respectively. There was a significant difference for HP penetration, while there was no significant difference among the four experimental groups for tooth color change. Rheological properties should be considered when developing new whitening formulations.

  3. Low Melt Viscosity Resins for Resin Transfer Molding

    NASA Technical Reports Server (NTRS)

    Harris, Frank W.

    2002-01-01

    In recent years, resin transfer molding (RTM) has become one of the methods of choice for high performance composites. Its cost effectiveness and ease of fabrication are major advantages of RTM. RTM process usually requires resins with very low melt viscosity (less than 10 Poise). The optimum RTM resins also need to display high thennal-oxidative stability, high glass transition temperature (T(sub g)), and good toughness. The traditional PMR-type polyimides (e.g. PMR-15) do not fit this requirement, because the viscosities are too high and the nadic endcap cures too fast. High T(sub g), low-melt viscosity resins are highly desirable for aerospace applications and NASA s Reusable Launch Vehicle (RLV) program. The objective of this work is to prepare low-melt viscosity polyimide resins for RTM or resin film infusion (RFI) processes. The approach involves the synthesis of phenylethynyl-terminated imide oligomers. These materials have been designed to minimize their melt viscosity so that they can be readily processed. During the cure, the oligomers undergo both chain extension and crosslinking via the thermal polymerization of the phenylethynyl groups. The Phenylethynyl endcap is preferred over the nadic group due to its high curing temperature, which provides broader processing windows. This work involved the synthesis and polymerization of oligomers containing zig-zag backbones and twisted biphenyl structures. Some A-B type precursors which possessed both nitro and anhydride functionality, or both nitro and amine functionality, were also synthesized in order to obtain the well defined oligomers. The resulting zig-zag structured oligomers were then end-capped with 4-phenylethynylphthalic anhydride (PEPA) for further cure. The properties of these novel imide oligomers are evaluated.

  4. Numerical study of the effects of contact angle and viscosity ratio on the dynamics of snap-off through porous media

    NASA Astrophysics Data System (ADS)

    Starnoni, Michele; Pokrajac, Dubravka

    2018-01-01

    Snap-off is a pore-scale mechanism occurring in porous media in which a bubble of non-wetting phase displacing a wetting phase, and vice-versa, can break-up into ganglia when passing through a constriction. This mechanism is very important in foam generation processes, enhanced oil recovery techniques and capillary trapping of CO2 during its geological storage. In the present study, the effects of contact angle and viscosity ratio on the dynamics of snap-off are examined by simulating drainage in a single pore-throat constriction of variable cross-section, and for different pore-throat geometries. To model the flow, we developed a CFD code based on the Finite Volume method. The Volume-of-fluid method is used to track the interfaces. Results show that the threshold contact angle for snap-off, i.e. snap-off occurs only for contact angles smaller than the threshold, increases from a value of 28° for a circular cross-section to 30-34° for a square cross-section and up to 40° for a triangular one. For a throat of square cross-section, increasing the viscosity of the injected phase results in a drop in the threshold contact angle from a value of 30° when the viscosity ratio μ bar is equal to 1 to 26° when μ bar = 20 and down to 24° when μ bar = 20 .

  5. Terahertz spectroscopy properties of the selected engine oils

    NASA Astrophysics Data System (ADS)

    Zhu, Shouming; Zhao, Kun; Lu, Tian; Zhao, Songqing; Zhou, Qingli; Shi, Yulei; Zhao, Dongmei; Zhang, Cunlin

    2010-11-01

    Engine oil, most of which is extracted from petroleum, consist of complex mixtures of hydrocarbons of molecular weights in the range of 250-1000. Variable amounts of different additives are put into them to inhibit oxidation, improve the viscosity index, decrease the fluidity point and avoid foaming or settling of solid particles among others. Terahertz (THz) spectroscopy contains rich physical, chemical, and structural information of the materials. Most low-frequency vibrational and rotational spectra of many petrochemicals lie in this frequency range. In recent years, much attention has been paid to the THz spectroscopic studies of petroleum products. In this paper, the optical properties and spectroscopy of selected kinds of engine oil consisting of shell HELIX 10W-40, Mobilube GX 80W-90, GEELY ENGINE OIL SG 10W-30, SMA engine oil SG 5W-30, SMA engine oil SG 10W-30, SMA engine oil SG 75W-90 have been studied by the terahertz time-domain spectroscopy (THz-TDS) in the spectral range of 0.6-2.5 THz. Engine oil with different viscosities in the terahertz spectrum has certain regularity. In the THz-TDS, with the increase of viscosity, time delay is greater and with the increase of viscosity, refractive indexes also grow and their rank is extremely regular. The specific kinds of engine oil can be identified according to their different spectral features in the THz range. The THz-TDS technology has potentially significant impact on the engine oil analysis.

  6. Rise of a variable-viscosity fluid in a steadily spreading wedge-shaped conduit with accreting walls

    USGS Publications Warehouse

    Lachenbruch, Arthur H.; Nathenson, Manuel

    1976-01-01

    Relatively rigid plates making up the outer 50 to 100 km of the Earth are steadily separating from one another along narrow globe-circling zones of submarine volcanism, the oceanic spreading centers. Continuity requires that the viscous underlying material rise beneath spreading centers and accrete onto the steadily diverging plates. It is likely that during the rise the viscosity changes systematically and that the viscous tractions exerted on the plates contribute to the unique pattern of submarine mountains and earthquake faults observed at spreading centers. The process is modeled by viscous creep in a wedge-shaped conduit (with apex at the sea floor) in which the viscosity varies as rm where r is distance from the apex and m is a parameter. For these conditions, the governing differential equations take a simple form. The solution for the velocity is independent of r and of the sign of m. As viscous stresses vary as rm-1, the pattern of stress on the conduit wall is sensitive to viscosity variation. For negative m, the viscous pressure along the base of the conduit is quite uniform; for positive m, it falls toward zero in the axial region as the conduit base widens. For small opening angles, viscous forces push the plates apart, and for large ones, they oppose plate separation. Though highly idealized, the solution provides a tool for investigating tectonic processes at spreading centers.

  7. Water-extractable and water-unextractable arabinoxylans affect gluten agglomeration behavior during wheat flour gluten-starch separation.

    PubMed

    Frederix, Sofie A; Van Hoeymissen, Klaartje E; Courtin, Christophe M; Delcour, Jan A

    2004-12-29

    Water-extractable arabinoxylan (WE-AX) of variable molecular weight (MW) and water-unextractable arabinoxylan (WU-AX) were added to wheat flour to study their effect on gluten agglomeration in a dough and batter gluten-starch separation process with recovery of gluten from the batter with a set of vibrating sieves (400, 250, and 125 microm). Low MW WE-AX had almost no impact on the distribution of the gluten on the different sieves. High MW WE-AX decreased yields of the largest (400 microm sieve) gluten aggregates, more than their medium MW counterparts, indicating the importance of AX MW for their effect on gluten interactions. Correlations between the total level of gluten protein recovered on the three sieves and the batter extract viscosity as well as between the proportion of gluten protein recovered on the 400 microm sieve to that on the three sieves and the batter extract viscosity pointed to the importance of viscosity as an indicator for gluten agglomeration, as did the fact that another viscosity increasing plant polysaccharide (guar gum) also negatively influenced gluten agglomeration. However, the obtained data cannot rule out that AX and guar gum also exert steric effects on gluten agglomeration. WU-AX, present as discrete cell wall fragments, had a negative impact on the level of large gluten aggregates. Taken together, the results show that both native WE-AX and WU-AX detrimentally impact gluten agglomeration.

  8. User`s guide for UTCHEM-5.32m a three dimensional chemical flood simulator. Final report, September 30, 1992--December 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-07-01

    UTCHEM is a three-dimensional chemical flooding simulator. The solution scheme is analogous to IMPES, where pressure is solved for implicitly, but concentrations rather than saturations are then solved for explicitly. Phase saturations and concentrations are then solved in a flash routine. An energy balance equation is solved explicitly for reservoir temperature. The energy balance equation includes heat flow between the reservoir and the over-and under-burden rocks. The major physical phenomena modeled in the simulator are: dispersion; dilution effects; adsorption; interfacial tension; relative permeability; capillary trapping; cation exchange; phase density; compositional phase viscosity; phase behavior (pseudoquaternary); aqueous reactions; partitioning of chemicalmore » species between oil and water; dissolution/precipitation; cation exchange reactions involving more than two cations; in-situ generation of surfactant from acidic crude oil; pH dependent adsorption; polymer properties: shear thinning viscosity; inaccessible pore volume; permeability reduction; adsorption; gel properties: viscosity; permeability reduction; adsorption; tracer properties: partitioning; adsorption; radioactive decay; reaction (ester hydrolization); temperature dependent properties: viscosity; tracer reaction; gel reactions The following options are available with UTCHEM: isothermal or non-isothermal conditions, a constant or variable time-step, constant pressure or constant rate well conditions, horizontal and vertical wells, and a radial or Cartesian geometry. Please refer to the dissertation {open_quotes}Field Scale Simulation of Chemical Flooding{close_quotes} by Naji Saad, August, 1989, for a more detailed discussion of the UTCHEM simulator and its formulation.« less

  9. Optimizing gelling parameters of gellan gum for fibrocartilage tissue engineering.

    PubMed

    Lee, Haeyeon; Fisher, Stephanie; Kallos, Michael S; Hunter, Christopher J

    2011-08-01

    Gellan gum is an attractive biomaterial for fibrocartilage tissue engineering applications because it is cell compatible, can be injected into a defect, and gels at body temperature. However, the gelling parameters of gellan gum have not yet been fully optimized. The aim of this study was to investigate the mechanics, degradation, gelling temperature, and viscosity of low acyl and low/high acyl gellan gum blends. Dynamic mechanical analysis showed that increased concentrations of low acyl gellan gum resulted in increased stiffness and the addition of high acyl gellan gum resulted in greatly decreased stiffness. Degradation studies showed that low acyl gellan gum was more stable than low/high acyl gellan gum blends. Gelling temperature studies showed that increased concentrations of low acyl gellan gum and CaCl₂ increased gelling temperature and low acyl gellan gum concentrations below 2% (w/v) would be most suitable for cell encapsulation. Gellan gum blends were generally found to have a higher gelling temperature than low acyl gellan gum. Viscosity studies showed that increased concentrations of low acyl gellan gum increased viscosity. Our results suggest that 2% (w/v) low acyl gellan gum would have the most appropriate mechanics, degradation, and gelling temperature for use in fibrocartilage tissue engineering applications. Copyright © 2011 Wiley Periodicals, Inc.

  10. Determination of femto Newton forces and fluid viscosity using optical tweezers: application to Leishmania amazonensis

    NASA Astrophysics Data System (ADS)

    Fontes, Adriana; Giorgio, Selma; de Castro, Archimedes B., Jr.; Neto, Vivaldo M.; Pozzo, Liliana d. Y.; Marques, Gustavo P.; Barbosa, Luiz C.; Cesar, Carlos L.

    2005-03-01

    The objective of this research is to use the displacements of a polystyrene microsphere trapped by an optical tweezers (OT) as a force transducer in mechanical measurements in life sciences. To do this we compared the theoretical optical and hydrodynamic models with experimental data under a broad variation of parameters such as fluid viscosity, refractive index, drag velocity and wall proximities. The laser power was measured after the objective with an integration sphere because normal power meters do not provide an accurate measurement for beam with high numerical apertures. With this careful laser power determination the plot of the optical force (calculated by the particle displacement) versus hydrodynamic force (calculated by the drag velocity) under very different conditions shows an almost 45 degrees straight line. This means that hydrodynamic models can be used to calibrate optical forces and vice-versa. With this calibration we observed the forces of polystyrene bead attached to the protozoa Leishmania amazonensis, responsible for a serious tropical disease. The force range is from 200 femto Newtons to 4 pico Newtons and these experiments shows that OT can be used for infection mechanism and chemotaxis studies in parasites. The other application was to use the optical force to measure viscosities of few microliters sample. Our result shows 5% accuracy measurements.

  11. SEAWAT Version 4: A Computer Program for Simulation of Multi-Species Solute and Heat Transport

    USGS Publications Warehouse

    Langevin, Christian D.; Thorne, Daniel T.; Dausman, Alyssa M.; Sukop, Michael C.; Guo, Weixing

    2008-01-01

    The SEAWAT program is a coupled version of MODFLOW and MT3DMS designed to simulate three-dimensional, variable-density, saturated ground-water flow. Flexible equations were added to the program to allow fluid density to be calculated as a function of one or more MT3DMS species. Fluid density may also be calculated as a function of fluid pressure. The effect of fluid viscosity variations on ground-water flow was included as an option. Fluid viscosity can be calculated as a function of one or more MT3DMS species, and the program includes additional functions for representing the dependence on temperature. Although MT3DMS and SEAWAT are not explicitly designed to simulate heat transport, temperature can be simulated as one of the species by entering appropriate transport coefficients. For example, the process of heat conduction is mathematically analogous to Fickian diffusion. Heat conduction can be represented in SEAWAT by assigning a thermal diffusivity for the temperature species (instead of a molecular diffusion coefficient for a solute species). Heat exchange with the solid matrix can be treated in a similar manner by using the mathematically equivalent process of solute sorption. By combining flexible equations for fluid density and viscosity with multi-species transport, SEAWAT Version 4 represents variable-density ground-water flow coupled with multi-species solute and heat transport. SEAWAT Version 4 is based on MODFLOW-2000 and MT3DMS and retains all of the functionality of SEAWAT-2000. SEAWAT Version 4 also supports new simulation options for coupling flow and transport, and for representing constant-head boundaries. In previous versions of SEAWAT, the flow equation was solved for every transport timestep, regardless of whether or not there was a large change in fluid density. A new option was implemented in SEAWAT Version 4 that allows users to control how often the flow field is updated. New options were also implemented for representing constant-head boundaries with the Time-Variant Constant-Head (CHD) Package. These options allow for increased flexibility when using CHD flow boundaries with the zero-dispersive flux solute boundaries implemented by MT3DMS at constant-head cells. This report contains revised input instructions for the MT3DMS Dispersion (DSP) Package, Variable-Density Flow (VDF) Package, Viscosity (VSC) Package, and CHD Package. The report concludes with seven cases of an example problem designed to highlight many of the new features.

  12. Solution dynamics of synthetic and natural polyelectrolytes

    NASA Astrophysics Data System (ADS)

    Krause, Wendy E.

    Polyelectrolytes are abundant in nature and essential to life, and used extensively in industry. This work discussed two polyelectrolytes: sodium poly(2-acrylamido-2-methylpropanesulfonate) (NaPAMS), synthetic polyelectrolyte, and sodium hyaluronate (NaHA), a glycosaminoglycan. Rheological data of NaPAMS solutions of variable chain length and concentration were reported. A strong dependence of viscosity eta on chain length: eta ˜ M2.4 was found. The comparison of the rheological data with two proposed scaling theories (Dobrynin 1995, Witten 1987) forces the conclusion that neither theory is correct. A possible interpretation of the viscosity data falling between the predictions of the two scaling theories is that some chain rigidity may persist beyond the correlation length. A sample model for the conductivity of semidilute polyelectrolytes with no added salt was presented. The model correctly describes the logarithmic decrease of specific conductance observed for many polyelectrolytes at low concentration (below ca. 10-2M), and is in good agreement with data from NaPAMS solutions. NaHA in phosphate buffered saline behaves as a typical polyelectrolyte in the high-salt limit, as Newtonian viscosities are observed over a wide range of shear rates. There is no evidence of intermolecular hydrogen bonding causing gel formation in NaHA solutions without protein present. The viscosity of 3 mg/mL NaHA was measured in the presence of the selected anti-inflammatory agents. Of the seven additives investigated only (D)-penicillamine significantly altered the rheology of HA. (D)-Penicillamine dramatically reduced the viscosity of HA, probably by disrupting intramolecular hydrogen bonding. The plasma proteins albumin and gamma-globulins bind to HA in solution to form a weak reversible gel. The rheology and osmotic pressure of the simple model for synovial fluid, consisting of 3mg/mL NaHA, 11 mg/mL albumin, and 7 mg/mL gamma-globulins in phosphate buffered saline, were studied in the presence and absence of the seven selected anti-inflammatory agents. Only hydroxychloroquine (HCQ) and (D)-penicillamine strongly influence the theology of the synovial fluid model. HCQ reduces the viscosity of the model solution as well as the model's viscoelasticity. (D)-Penicillamine also reduces the viscosity of the synovial fluid model, but has little effect on the viscoelasticity of the solution. None of the additives effected the osmotic pressure of the synovial fluid model.

  13. Generalized Scaling and the Master Variable for Brownian Magnetic Nanoparticle Dynamics

    PubMed Central

    Reeves, Daniel B.; Shi, Yipeng; Weaver, John B.

    2016-01-01

    Understanding the dynamics of magnetic particles can help to advance several biomedical nanotechnologies. Previously, scaling relationships have been used in magnetic spectroscopy of nanoparticle Brownian motion (MSB) to measure biologically relevant properties (e.g., temperature, viscosity, bound state) surrounding nanoparticles in vivo. Those scaling relationships can be generalized with the introduction of a master variable found from non-dimensionalizing the dynamical Langevin equation. The variable encapsulates the dynamical variables of the surroundings and additionally includes the particles’ size distribution and moment and the applied field’s amplitude and frequency. From an applied perspective, the master variable allows tuning to an optimal MSB biosensing sensitivity range by manipulating both frequency and field amplitude. Calculation of magnetization harmonics in an oscillating applied field is also possible with an approximate closed-form solution in terms of the master variable and a single free parameter. PMID:26959493

  14. Unsteady Convection Flow and Heat Transfer over a Vertical Stretching Surface

    PubMed Central

    Cai, Wenli; Su, Ning; Liu, Xiangdong

    2014-01-01

    This paper investigates the effect of thermal radiation on unsteady convection flow and heat transfer over a vertical permeable stretching surface in porous medium, where the effects of temperature dependent viscosity and thermal conductivity are also considered. By using a similarity transformation, the governing time-dependent boundary layer equations for momentum and thermal energy are first transformed into coupled, non-linear ordinary differential equations with variable coefficients. Numerical solutions to these equations subject to appropriate boundary conditions are obtained by the numerical shooting technique with fourth-fifth order Runge-Kutta scheme. Numerical results show that as viscosity variation parameter increases both the absolute value of the surface friction coefficient and the absolute value of the surface temperature gradient increase whereas the temperature decreases slightly. With the increase of viscosity variation parameter, the velocity decreases near the sheet surface but increases far away from the surface of the sheet in the boundary layer. The increase in permeability parameter leads to the decrease in both the temperature and the absolute value of the surface friction coefficient, and the increase in both the velocity and the absolute value of the surface temperature gradient. PMID:25264737

  15. Physical Properties of AZ91D Measured Using the Draining Crucible Method: Effect of SF6

    NASA Astrophysics Data System (ADS)

    Roach, Steven J.; Henein, Hani

    2012-03-01

    The draining crucible (DC) technique was used for measurements on AZ91D under Ar and SF6. The DC technique is a new method developed to simultaneously measure the physical properties of fluids, the density, surface tension, and viscosity. Based on the relationship between the height of a metal in a crucible and the outgoing flow rate, a multi-variable regression is used to calculate the values of these fluid properties. Experiments performed with AZ91D at temperatures from 923 K to 1173 K indicate that under argon, the surface tension (N · m-1) and density (kg · m-3) are [0.63 - 2.13 × 10-4 ( T - T L)] and [1656 - 0.158 ( T - T L)], respectively. The viscosity (Pa · s) has been determined to be [1.455 × 10-3 - 1.209 × 10-5 ( T - T L)] over the temperature range from 921 K to 967 K superheat. Above 967 K, the viscosity of the alloy under argon seems to be constant at (2.66 × 10-4 ± 8.67 × 10-5) Pa · s. SF6 reduces the surface tension of AZ91D.

  16. Unsteady convection flow and heat transfer over a vertical stretching surface.

    PubMed

    Cai, Wenli; Su, Ning; Liu, Xiangdong

    2014-01-01

    This paper investigates the effect of thermal radiation on unsteady convection flow and heat transfer over a vertical permeable stretching surface in porous medium, where the effects of temperature dependent viscosity and thermal conductivity are also considered. By using a similarity transformation, the governing time-dependent boundary layer equations for momentum and thermal energy are first transformed into coupled, non-linear ordinary differential equations with variable coefficients. Numerical solutions to these equations subject to appropriate boundary conditions are obtained by the numerical shooting technique with fourth-fifth order Runge-Kutta scheme. Numerical results show that as viscosity variation parameter increases both the absolute value of the surface friction coefficient and the absolute value of the surface temperature gradient increase whereas the temperature decreases slightly. With the increase of viscosity variation parameter, the velocity decreases near the sheet surface but increases far away from the surface of the sheet in the boundary layer. The increase in permeability parameter leads to the decrease in both the temperature and the absolute value of the surface friction coefficient, and the increase in both the velocity and the absolute value of the surface temperature gradient.

  17. Optimization of physico-chemical properties of gelatin extracted from fish skin of rainbow trout (Onchorhynchus mykiss).

    PubMed

    Tabarestani, H Shahiri; Maghsoudlou, Y; Motamedzadegan, A; Mahoonak, A R Sadeghi

    2010-08-01

    Physico-chemical properties of gelatin extracted from rainbow trout (Onchorhynchus mykiss) skin were optimized using response surface methodology (RSM). Central rotatable composite design was applied to study the combined effects of NaOH concentration (0.01-0.21 N), acetic acid concentration (0.01-0.21 N) and pre-treatment time (1-3h) on yield, molecular weight distribution, gel strength, viscosity and melting point of gelatin. Regression models were developed to predict the variables. Predict values of multiple response at optimal condition were that yield=9.36%, alpha(1)/alpha(2) chain ratio=1.76, beta chain percent=32.81, gel strength=459 g, viscosity=3.2 mPa s and melting point=20.4 degrees C. The optimal condition was obtained using 0.19 N NaOH and 0.121 N acetic acid for 3h. The results showed that the concentration of H(+) during pre-treatment had significant effect on molecular weight distribution, melting point and gel strength. The concentration of OH(-) had significant effect on viscosity and for extraction yield, pretreatment time was the critical factor. (c) 2010 Elsevier Ltd. All rights reserved.

  18. Formulation of multiparticulate systems as lyophilised orally disintegrating tablets.

    PubMed

    Alhusban, Farhan; Perrie, Yvonne; Mohammed, Afzal R

    2011-11-01

    The current study aimed to exploit the electrostatic associative interaction between carrageenan and gelatin to optimise a formulation of lyophilised orally disintegrating tablets (ODTs) suitable for multiparticulate delivery. A central composite face centred (CCF) design was applied to study the influence of formulation variables (gelatin, carrageenan and alanine concentrations) on the crucial responses of the formulation (disintegration time, hardness, viscosity and pH). The disintegration time and viscosity were controlled by the associative interaction between gelatin and carrageenan upon hydration which forms a strong complex that increases the viscosity of the stock solution and forms tablet with higher resistant to disintegration in aqueous medium. Therefore, the levels of carrageenan, gelatin and their interaction in the formulation were the significant factors. In terms of hardness, increasing gelatin and alanine concentration was the most effective way to improve tablet hardness. Accordingly, optimum concentrations of these excipients were needed to find the best balance that fulfilled all formulation requirements. The revised model showed high degree of predictability and optimisation reliability and therefore was successful in developing an ODT formulation with optimised properties that were able deliver enteric coated multiparticulates of omeprazole without compromising their functionality. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Assessment of passive knee stiffness and viscosity in individuals with spinal cord injury using pendulum test

    PubMed Central

    Joghtaei, Mahmoud; Arab, Amir Massoud; Hashemi-Nasl, Hamed; Joghataei, Mohammad Taghi; Tokhi, Mohammad Osman

    2015-01-01

    Objective Stiffness and viscosity represent passive resistances to joint motion related with the structural properties of the joint tissue and of the musculotendinous complex. Both parameters can be affected in patients with spinal cord injury (SCI). The purpose of this study was to measure passive knee stiffness and viscosity in patients with SCI with paraplegia and healthy subjects using Wartenberg pendulum test. Design Non-experimental, cross-sectional, case–control design. Setting An outpatient physical therapy clinic, University of social welfare and Rehabilitation Science, Iran. Patients A sample of convenience sample of 30 subjects participated in the study. Subjects were categorized into two groups: individuals with paraplegic SCI (n = 15, age: 34.60 ± 9.18 years) and 15 able-bodied individuals as control group (n = 15, age: 30.66 ± 11.13 years). Interventions Not applicable. Main measures Passive pendulum test of Wartenberg was used to measure passive viscous-elastic parameters of the knee (stiffness, viscosity) in all subjects. Results Statistical analysis (independent t-test) revealed significant difference in the joint stiffness between healthy subjects and those with paraplegic SCI (P = 0.01). However, no significant difference was found in the viscosity between two groups (P = 0.17). Except for first peak flexion angle, all other displacement kinematic parameters exhibited no statistically significant difference between normal subjects and subjects with SCI. Conclusions Patients with SCI have significantly greater joint stiffness compared to able-bodied subjects. PMID:25437824

  20. Novel acyloxy derivatives of branched mono- and polyol esters of sal fat: multiviscosity grade lubricant base stocks.

    PubMed

    Kamalakar, Kotte; Sai Manoj, Gorantla N V T; Prasad, Rachapudi B N; Karuna, Mallampalli S L

    2014-12-10

    Sal fat, a nontraditional seed oil, was chemically modified to obtain base stocks with a wide range of specifications that can replace mineral oil base stocks. Sal fatty acids were enriched to 72.6% unsaturation using urea adduct method and reacted with branched mono alcohol, 2-ethylhexanol (2-EtH), and polyols namely neopentyl glycol (NPG) and trimethylolpropane (TMP) to obtain corresponding esters. The esters were hydroxylated and then acylated using propionic, butyric, and hexanoic anhydrides to obtain corresponding acylated derivatives. The acylated TMP esters exhibited very high viscosities (427.35-471.93 cSt at 40 °C) similar to those of BS 150 mineral oil base stock range, ISO VG 460, while the acylated NPG esters (268.81-318.84 cSt at 40 °C) and 2-EtH esters viscosities (20.94-24.44 cSt at 40 °C) exhibited viscosities in the range of ISO VG 320 and 22 respectively with good viscosity indices. Acylated NPG esters were found suitable for high temperature and acylated 2-ethylhexyl esters for low viscosity grade industrial applications. It was observed that the thermo-oxidative stabilities of all acylated products were found better compared to other vegetable oil based base stocks. Overall, all the sal fat based lubricant base stocks are promising candidates with a wide range of properties, which can replace most of the mineral oil base stocks with appropriate formulations.

  1. Cassava starch as a stabilizer of soy-based beverages.

    PubMed

    Drunkler, Northon Lee; Leite, Rodrigo Santos; Mandarino, José Marcos Gontijo; Ida, Elza Iouko; Demiate, Ivo Mottin

    2012-10-01

    Soy-based beverages are presented as healthy food alternatives for human nutrition. Cassava (Manihot esculenta, Crantz) starch is relatively inexpensive, widely available in Brazil and is broadly used by the food industry due to its desired properties that result from pasting. The objective of this study was to develop soy-based beverages with good sensory quality using native cassava starch as a stabilizer and maintaining the nutritional value that makes this product a functional food. The developed formulations featured a range of cassava starch and soybean extract concentrations, which were tested in a 2² experimental design with three central points. The results of sensory analysis showed that the studied variables (cassava starch and soybean extract concentrations) did not have a significant effect with respect to a 5% probability level. When considering the apparent viscosity, on the other hand, the variables had a significant effect: the increase in soybean extract and cassava starch concentrations caused an increase in the viscosity of the final product. The profile of isoflavones in the tested formulations was similar to the profiles reported in other papers, with a predominance of the conjugated glycosides over the aglycone forms.

  2. Quantification of hardness, elasticity and viscosity of the skin of patients with systemic sclerosis using a novel sensing device (Vesmeter): a proposal for a new outcome measurement procedure.

    PubMed

    Kuwahara, Y; Shima, Y; Shirayama, D; Kawai, M; Hagihara, K; Hirano, T; Arimitsu, J; Ogata, A; Tanaka, T; Kawase, I

    2008-07-01

    No objective method to measure skin involvement in SSc has been established. We developed a novel method using a computer-linked device to simultaneously quantify physical properties of the skin such as hardness, elasticity and viscosity. Skin hardness was calculated by measuring the depth of an indenter pressed onto the skin. The Voigt model was used to calculate skin elasticity, viscosity, visco-elastic ratio and relaxation time by analysing the waveform of skin surface behaviour. The results were compared with the modified Rodnan skin score (mRSS) obtained at 17 sites on the bodies of 20 SSc patients and 20 healthy controls. A functional assessment questionnaire was administered to determine how skin hardness represents a patient's disability. We also examined intra- and inter-observer variability to determine the reliability of this method. The crude hardness obtained with this device correlated well with the standard hardness specified by the American Society for Testing and Materials (ASTM, r = 0.957). A close relationship between hardness and total mRSS was also observed (r = 0.832). Skin elasticity correlated positively, and relaxation time negatively with mRSS. Functional disability correlated more closely with skin hardness (r = 0.643) than with mRSS (r = 0.517). Intra- and inter-observer variabilities were 7.63 and 19.76%, respectively, which were lower than those reported for mRSS. Increases in hardness and elasticity as well as shortening of relaxation time constitute objective characteristics of skin involvement in SSc. The system devised by us proved to be able to assess skin abnormalities of SSc with high reliability.

  3. Heat transfer analysis on peristaltically induced motion of particle-fluid suspension with variable viscosity: Clot blood model.

    PubMed

    Bhatti, M M; Zeeshan, A; Ellahi, R

    2016-12-01

    In this article, heat transfer analysis on clot blood model of the particle-fluid suspension through a non-uniform annulus has been investigated. The blood propagating along the whole length of the annulus was induced by peristaltic motion. The effects of variable viscosity and slip condition are also taken into account. The governing flow problem is modeled using lubrication approach by taking the assumption of long wavelength and creeping flow regime. The resulting equation for fluid phase and particle phase is solved analytically and closed form solutions are obtained. The physical impact of all the emerging parameters is discussed mathematically and graphically. Particularly, we considered the effects of particle volume fraction, slip parameter, the maximum height of clot, viscosity parameter, average volume flow rate, Prandtl number, Eckert number and fluid parameter on temperature profile, pressure rise and friction forces for outer and inner tube. Numerical computations have been used to determine the behavior of pressure rise and friction along the whole length of the annulus. The present study is also presented for an endoscope as a special case of our study. It is observed that greater influence of clot tends to rise the pressure rise significantly. It is also found that temperature profile increases due to the enhancement in Prandtl number, Eckert number, and fluid parameter. The present study reveals that friction forces for outer tube have higher magnitude as compared to the friction forces for an inner tube. In fact, the results for present study can also be reduced to the Newtonian fluid by taking ζ → ∞. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Rheology of arc dacite lavas: experimental determination at low strain rates

    NASA Astrophysics Data System (ADS)

    Avard, Geoffroy; Whittington, Alan G.

    2012-07-01

    Andesitic-dacitic volcanoes exhibit a large variety of eruption styles, including explosive eruptions, endogenous and exogenous dome growth, and kilometer-long lava flows. The rheology of these lavas can be investigated through field observations of flow and dome morphology, but this approach integrates the properties of lava over a wide range of temperatures. Another approach is through laboratory experiments; however, previous studies have used higher shear stresses and strain rates than are appropriate to lava flows. We measured the apparent viscosity of several lavas from Santiaguito and Bezymianny volcanoes by uniaxial compression, between 1,109 and 1,315 K, at low shear stress (0.085 to 0.42 MPa), low strain rate (between 1.1 × 10-8 and 1.9 × 10-5 s-1), and up to 43.7 % total deformation. The results show a strong variability of the apparent viscosity between different samples, which can be ascribed to differences in initial porosity and crystallinity. Deformation occurs primarily by compaction, with some cracking and/or vesicle coalescence. Our experiments yield apparent viscosities more than 1 order of magnitude lower than predicted by models based on experiments at higher strain rates. At lava flow conditions, no evidence of a yield strength is observed, and the apparent viscosity is best approached by a strain rate- and temperature-dependent power law equation. The best fit for Santiaguito lava, for temperatures between 1,164 and 1,226 K and strain rates lower than 1.8 × 10-4 s-1, is log {η_{{app}}} = - 0.738 + 9.24 × {10^3}{/}T(K) - 0.654 \\cdot log dot{\\varepsilon } where η app is apparent viscosity and dot{\\varepsilon } is strain rate. This equation also reproduced 45 data for a sample from Bezymianny with a root mean square deviation of 0.19 log unit Pa s. Applying the rheological model to lava flow conditions at Santiaguito yields calculated apparent viscosities that are in reasonable agreement with field observations and suggests that internal shear heating may be significant ongoing heat source within these flows, enabling highly viscous lava to travel long distances.

  5. Environmentally friendly and biobased lubricants

    USDA-ARS?s Scientific Manuscript database

    Biobased and environmentally friendly lubricants are finding applications in many areas ranging from hydraulic fluids to grease. They offer excellent biodegradability and very low ecotoxicity; high viscosity index; improved tribological properties; lower volatility and flash points relative to petro...

  6. NATURAMA G3 A-5

    EPA Pesticide Factsheets

    Technical product bulletin: this surface washing agent, used in oil spill cleanups, may be applied by any method (drum pump, pressurized spray applicator, brush, or aqueous wash tank) depending on surface and the type and viscosity of oil/contamination.

  7. Effect of chemical modification on tribological properties

    USDA-ARS?s Scientific Manuscript database

    Biobased ingredients possess a number of properties that makes them very desirable for applications in lubricant formulations. These include: excellent boundary properties, high viscosity index, low volatility, low traction coefficient, renewability, and biodegradability. Biobased ingredients also h...

  8. Finite amplitude effects on drop levitation for material properties measurement

    NASA Astrophysics Data System (ADS)

    Ansari Hosseinzadeh, Vahideh; Holt, R. Glynn

    2017-05-01

    The method of exciting shape oscillation of drops to extract material properties has a long history, which is most often coupled with the technique of acoustic levitation to achieve non-contact manipulation of the drop sample. We revisit this method with application to the inference of bulk shear viscosity and surface tension. The literature is replete with references to a "10% oscillation amplitude" as a sufficient condition for the application of Lamb's analytical expressions for the shape oscillations of viscous liquids. Our results show that even a 10% oscillation amplitude leads to dynamic effects which render Lamb's results inapplicable. By comparison with samples of known viscosity and surface tension, we illustrate the complicating finite-amplitude effects (mode-splitting and excess dissipation associated with vorticity) that can occur and then show that sufficiently small oscillations allow us to recover the correct material properties using Lamb's formula.

  9. An expanded model and application of the combined effect of crystal-size distribution and crystal shape on the relative viscosity of magmas

    NASA Astrophysics Data System (ADS)

    Klein, Johannes; Mueller, Sebastian P.; Helo, Christoph; Schweitzer, Silja; Gurioli, Lucia; Castro, Jonathan M.

    2018-05-01

    This study examines the combined effect of crystal-size distributions (CSD) and crystal shape on the rheology of vesicle free magmatic suspensions and provides the first practical application of an empirical model to estimate the relative effect of crystal content and CSD's on the viscosity of magma directly from textural image analysis of natural rock samples in the form of a user-friendly texture-rheology spreadsheet calculator. We extend and apply established relationships between the maximum packing fraction ϕm of a crystal bearing suspension and both its rheological properties and the polydispersity γ of a CSD. By using analogue rotational rheometric experiments with glass fibres and glass flakes in silicone oil acting as magma equivalent, this study also provides new insights in the relationship between ϕm and the aspect ratio rp of suspended particles.

  10. Recycling cellulase towards industrial application of enzyme treatment on hardwood kraft-based dissolving pulp.

    PubMed

    Wang, Qiang; Liu, Shanshan; Yang, Guihua; Chen, Jiachuan; Ji, Xingxiang; Ni, Yonghao

    2016-07-01

    Cost-effectiveness is vital for enzymatic treatment of dissolving pulp towards industrial application. The strategy of cellulase recycling with fresh cellulase addition was demonstrated in this work to activate the dissolving pulp, i.e. decreasing viscosity and increasing Fock reactivity. Results showed that 48.8-35.1% of cellulase activity can be recovered from the filtered liquor in five recycle rounds, which can be reused for enzymatic treatment of dissolving pulp. As a result, the recycling cellulase with addition fresh cellulase of 1mg/g led to the pulp of viscosity 470mL/g and Fock reactivity 80%, which is comparable with cellulase charge of 2mg/g. Other pulp properties such as alpha-cellulose, alkaline solubility and molecular weight distribution were also determined. Additionally, a zero-release of recycling cellulase treatment was proposed to integrate into the dissolving pulp production process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Influence of the Structural Dichotomy of Antarctic Lithosphere on Regional Glacial-Isostatic Adjustment

    NASA Astrophysics Data System (ADS)

    Klemann, V.; Rau, D.; Martinec, Z.; Wolf, D.

    2009-05-01

    The strong structural dichotomy between East and West Antarctica is related to the West Antarctic Rift. The rheological implications are a reduction of the elastic-lithosphere thickness by a factor of more than 2 from East to West Antarctica as well as a strongly reduced mantle viscosity below West Antarctica and the Antarctic Peninsula. For modelling glacial-isostatic adjustment, we use a global viscoelastic earth model and apply the spectral finite-element method for the solution of the field equations. Ice models ICE-5G and IJ05 are used for parameterizing the last Pleistocene deglaciation. Lateral viscosity variations in the upper mantle are derived from variations in seismic velocity by applying scaling laws. Considering also lateral variations in the lithosphere structure, we study the implications of lateral variability on the glacial-isostatic adjustment of Antarctica.

  12. Thermal shaft effects on load-carrying capacity of a fully coupled, variable-properties cryogenic journal bearing

    NASA Technical Reports Server (NTRS)

    Braun, M. J.; Wheeler, R. L., III; Hendricks, R. C.

    1986-01-01

    The purpose of this work was to perform a rather complete analysis for a cryogenic (oxygen) journal bearing. The Reynolds equation required coupling and simultaneous solution with the fluid energy equation. To correctly account for the changes in the fluid viscosity, the fluid energy equation was coupled with the shaft and bearing heat conduction energy equations. The effects of pressure and temperature on the density, viscosity, and load-carrying capacity were further discussed as analysis parameters, with respect to relative eccentricity and the angular velocity. The isothermal fluid case and the adiabatic fluid case represented the limiting boundaries. The discussion was further extrapolated to study the Sommerfeld number dependency on the fluid Nusselt number and its consequence on possible total loss of load-carrying capacity and/or seizure (catastrophic failure).

  13. Transport properties of nonelectrolyte liquid mixtures—VI. Viscosimetric study of binary mixtures of hexafluorobenzene with aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Dymond, J. H.; Robertson, J.

    1985-01-01

    Viscosity coefficients for binary mixtures of hexafluorobenzene with benzene, toluene, para-xylene, and mesitylene have been measured along the saturation line at temperatures from 15 to 120°C using specially designed capillary viscometers. Densities were measured using a pyknometer and volume-change apparatus. Deviations of the viscosities from a rectilinear dependence on mole fraction are consistent with enhanced interactions between unlike species, which increase with increasing number of methyl groups on the aromatic hydrocarbon and decrease with increasing temperature. The application of the Grunberg and Nissan equation, the Hildebrand equation, and energy of activation theories to these results is examined.

  14. Real-time synchronous measurement of curing characteristics and polymerization stress in bone cements with a cantilever-beam based instrument

    NASA Astrophysics Data System (ADS)

    Palagummi, Sri Vikram; Landis, Forrest A.; Chiang, Martin Y. M.

    2018-03-01

    An instrumentation capable of simultaneously determining degree of conversion (DC), polymerization stress (PS), and polymerization exotherm (PE) in real time was introduced to self-curing bone cements. This comprises the combination of an in situ high-speed near-infrared spectrometer, a cantilever-beam instrument with compliance-variable feature, and a microprobe thermocouple. Two polymethylmethacrylate-based commercial bone cements, containing essentially the same raw materials but differ in their viscosity for orthopedic applications, were used to demonstrate the applicability of the instrumentation. The results show that for both the cements studied the final DC was marginally different, the final PS was different at the low compliance, the peak of the PE was similar, and their polymerization rates were significantly different. Systematic variation of instrumental compliance for testing reveals differences in the characteristics of PS profiles of both the cements. This emphasizes the importance of instrumental compliance in obtaining an accurate understanding of PS evaluation. Finally, the key advantage for the simultaneous measurements is that these polymerization properties can be correlated directly, thus providing higher measurement confidence and enables a more in-depth understanding of the network formation process.

  15. The failure of 1D seismic model fitting to constrain lower mantle composition

    NASA Astrophysics Data System (ADS)

    Houser, C. T.; Hernlund, J. W.; Valencia-Cardona, J. J.; Wentzcovitch, R.

    2017-12-01

    Tests of lower mantle composition models often compare mineral physics data bearing on the elasticity and density of lower mantle phases to the average seismic velocity profile determined by seismology, such a PREM or ak135. We demonstrate why such comparisons between mineralogy and seismology are an inadequate method for definitive discrimination between different scenarios. One issue is that the seismic velocity is more sensitive to temperature than composition for most lower mantle minerals. In practice, this allows one the freedom to choose the geotherm that brings the predicted seismic and density data into agreement with observations. It is commonly assumed that the temperature profile should be adiabatic, however, such a profile presupposes a particular state of the mantle and is only applicable in the absence of layering, buoyancy fluctuations, compositional segregation, and rheological complexities. The mantle temperature should depend on the composition since the latter influences the viscosity of rocks. However, the precise relation between composition, viscosity, and heat transfer would need to be specified, but unfortunately remains highly uncertain. If the mantle contains a mixture of domains with multiple bulk compositions, then the 1D seismic profile comparison is inherently non-unique. Rocks with different bulk composition likely have different isotopic abundances, and can exhibit differing degrees of internal heating and therefore distinct temperatures. Different composition domains can also exhibit variable densities, and tend to congregate at different depths in ways that also affect their thermal evolution and temperature. Therefore, fitting a 1D seismic model alone is an inadequate tool to evaluate lower mantle composition.

  16. Design and Implementation of an Electronic Front-End Based on Square Wave Excitation for Ultrasonic Torsional Guided Wave Viscosity Sensor

    PubMed Central

    Rabani, Amir

    2016-01-01

    The market for process instruments generally requires low cost devices that are robust, small in size, portable, and usable in-plant. Ultrasonic torsional guided wave sensors have received much attention by researchers for measurement of viscosity and/or density of fluids in recent years. The supporting electronic systems for these sensors providing many different settings of sine-wave signals are bulky and expensive. In contrast, a system based on bursts of square waves instead of sine waves would have a considerable advantage in that respect and could be built using simple integrated circuits at a cost that is orders of magnitude lower than for a windowed sine wave device. This paper explores the possibility of using square wave bursts as the driving signal source for the ultrasonic torsional guided wave viscosity sensor. A simple design of a compact and fully automatic analogue square wave front-end for the sensor is also proposed. The successful operation of the system is demonstrated by using the sensor for measuring the viscosity in a representative fluid. This work provides the basis for design and manufacture of low cost compact standalone ultrasonic guided wave sensors and enlightens the possibility of using coded excitation techniques utilising square wave sequences in such applications. PMID:27754324

  17. Ultraviolet light-responsive photorheological fluids: as a new class of smart fluids

    NASA Astrophysics Data System (ADS)

    Cho, Min-Young; Kim, Ji-Sik; Choi, Hyoung Jin; Choi, Seung-Bok; Kim, Gi-Woo

    2017-05-01

    We present a comprehensive introduction to the photorheological (PR) fluids whose rheological behavior can be changed by ultraviolet (UV) light with a wavelength of 365 nm. When the PR fluid was exposed to UV light, the viscosity of the fluid decreased, while the viscosity recovered to its initial value when UV light was turned off, indicating that the viscosity of these types of fluids can be reversible and tunable by UV light. Contrary to conventional smart fluids, such as electrorheological and magnetorheological fluids, PR fluid does not suffer from a phase splitting problem because it exists in a single-phase solution. Additionally, the PR fluid does not require any contact component, such as electrodes, and electric wires that are essential components for conventional smart fluids. In this work, the PR fluids were synthesized by doping lecithin/sodium deoxycholate reverse micelles with a photo-chromic spiropyran compound. It is demonstrated that the viscosity changes of PR fluids can be induced by UV light, and their rheological properties are examined in detail. In addition, an example of tailoring rheological properties using photoluminescence was introduced for improved response time. One of the potential applications, such as microfluidic flow control using the PR fluids, is also briefly presented.

  18. Comparative study between the radiopacity levels of high viscosity and of flowable composite resins, using digital imaging.

    PubMed

    Arita, Emiko S; Silveira, Gilson P; Cortes, Arthur R; Brucoli, Henrique C

    2012-01-01

    The development of countless types and trends of high viscosite and flowable composite resins, with different physical and chemical properties applicable to their broad use in dental clinics calls for further studies regarding their radiopacity level. The aim of this study was to evaluate the radiopacity levels of high viscosity and the flowable composite resins, using digital imaging. 96 composite resin discs 5 mm in diameter and 3 mm thick were radiographed and analyzed. The image acquisition system used was the Digora® Phosphor Storage System and the images were analyzed with the Digora software for Windows. The exposure conditions were: 70 kVp, 8 mA, and 0.2 s. The focal distance was 40 cm. The image densities were obtained with the pixel values of the materials in the digital image. Most of the high viscosity composite resins presented higher radiopacity levels than the flowable composite resins, with statistically significant differences between the trends and groups analyzed (P < 0.05). Among the high viscosity composite resins, Tetric®Ceram presented the highest radiopacity levels and Glacier® presented the lowest. Among the flowable composite resins, Tetric®Flow presented the highest radiopacity levels and Wave® presented the lowest.

  19. Pore Size Control in Aluminium Foam by Standardizing Bubble Rise Velocity and Melt Viscosity

    NASA Astrophysics Data System (ADS)

    Avinash, G.; Harika, V.; Sandeepika, Ch; Gupta, N.

    2018-03-01

    In recent years, aluminium foams have found use in a wide range of applications. The properties of these foams, as good structural strength with light weight have made them as a promising structural material for aerospace industry. Foaming techniques (direct and indirect) are used to produce these foams. Direct foaming involves blowing of gas to create gas bubbles in the melt whereas indirect foaming technique uses blowing agents as metallic hydrides, which create hydrogen bubbles. Porosity and its distribution in foams directly affect its properties. This demands for more theoretical studies, to control such cellular structure and hence properties. In present work, we have studied the effect of gas bubble rise velocity and melt viscosity, on pore size and its distribution in aluminium foam. A 15 PPI aluminium foam, prepared using indirect foaming technique having porosity ~86 % was used for study. In order to obtain metal foam, the bubble must not escape from the melt and should get entrapped during solidification. Our calculations suggest that bubble rise velocity and melt viscosity are responsible for vertical displacement of bubble in the melt. It is observed that melt viscosity opposes bubble rise velocity and help the bubbles to stay in the melt, resulting in porous structure.

  20. Design and Implementation of an Electronic Front-End Based on Square Wave Excitation for Ultrasonic Torsional Guided Wave Viscosity Sensor.

    PubMed

    Rabani, Amir

    2016-10-12

    The market for process instruments generally requires low cost devices that are robust, small in size, portable, and usable in-plant. Ultrasonic torsional guided wave sensors have received much attention by researchers for measurement of viscosity and/or density of fluids in recent years. The supporting electronic systems for these sensors providing many different settings of sine-wave signals are bulky and expensive. In contrast, a system based on bursts of square waves instead of sine waves would have a considerable advantage in that respect and could be built using simple integrated circuits at a cost that is orders of magnitude lower than for a windowed sine wave device. This paper explores the possibility of using square wave bursts as the driving signal source for the ultrasonic torsional guided wave viscosity sensor. A simple design of a compact and fully automatic analogue square wave front-end for the sensor is also proposed. The successful operation of the system is demonstrated by using the sensor for measuring the viscosity in a representative fluid. This work provides the basis for design and manufacture of low cost compact standalone ultrasonic guided wave sensors and enlightens the possibility of using coded excitation techniques utilising square wave sequences in such applications.

  1. Observations of instability, hysteresis, and oscillation in low-Reynolds-number flow past polymer gels.

    PubMed

    Eggert, Matthew D; Kumar, Satish

    2004-10-01

    We perform a set of experiments to study the nonlinear nature of an instability that arises in low-Reynolds-number flow past polymer gels. A layer of a viscous liquid is placed on a polydimethylsiloxane (PDMS) gel in a parallel-plate rheometer which is operated in stress-controlled mode. As the shear stress on the top plate increases, the apparent viscosity stays relatively constant until a transition stress where it sharply increases. If the stress is held at a level slightly above the transition stress, the apparent viscosity oscillates with time. If the stress is increased to a value above the transition stress and then decreased back to zero, the apparent viscosity shows hysteretic behavior. If the stress is instead decreased to a constant value and held there, the apparent viscosity is different from its pretransition value and exhibits sustained oscillations. This can happen even if the stress is held at values below the transition stress. Our observations suggest that the instability studied here is subcritical and leads to a flow that is oscillatory and far from viscometric. The phenomena reported here may be useful in applications such as microfluidics, membrane separations, and polymer processing. They may also provide insight into the rheological behavior of complex fluids that undergo flow-induced gelation.

  2. Local equilibrium solutions in simple anisotropic cosmological models, as described by relativistic fluid dynamics

    NASA Astrophysics Data System (ADS)

    Shogin, Dmitry; Amund Amundsen, Per

    2016-10-01

    We test the physical relevance of the full and the truncated versions of the Israel-Stewart (IS) theory of irreversible thermodynamics in a cosmological setting. Using a dynamical systems method, we determine the asymptotic future of plane symmetric Bianchi type I spacetimes with a viscous mathematical fluid, keeping track of the magnitude of the relative dissipative fluxes, which determines the applicability of the IS theory. We consider the situations where the dissipative mechanisms of shear and bulk viscosity are involved separately and simultaneously. It is demonstrated that the only case in the given model when the fluid asymptotically approaches local thermal equilibrium, and the underlying assumptions of the IS theory are therefore not violated, is that of a dissipative fluid with vanishing bulk viscosity. The truncated IS equations for shear viscosity are found to produce solutions which manifest pathological dynamical features and, in addition, to be strongly sensitive to the choice of initial conditions. Since these features are observed already in the case of an oversimplified mathematical fluid model, we have no reason to assume that the truncation of the IS transport equations will produce relevant results for physically more realistic fluids. The possible role of bulk and shear viscosity in cosmological evolution is also discussed.

  3. Application of simultaneous saccharification and fermentation (SSF) from viscosity reducing of raw sweet potato for bioethanol production at laboratory, pilot and industrial scales.

    PubMed

    Zhang, Liang; Zhao, Hai; Gan, Mingzhe; Jin, Yanlin; Gao, Xiaofeng; Chen, Qian; Guan, Jiafa; Wang, Zhongyan

    2011-03-01

    The aim of this work was to research a bioprocess for bioethanol production from raw sweet potato by Saccharomyces cerevisiae at laboratory, pilot and industrial scales. The fermentation mode, inoculum size and pressure from different gases were determined in laboratory. The maximum ethanol concentration, average ethanol productivity rate and yield of ethanol after fermentation in laboratory scale (128.51 g/L, 4.76 g/L/h and 91.4%) were satisfactory with small decrease at pilot scale (109.06 g/L, 4.89 g/L/h and 91.24%) and industrial scale (97.94 g/L, 4.19 g/L/h and 91.27%). When scaled up, the viscosity caused resistance to fermentation parameters, 1.56 AUG/g (sweet potato mash) of xylanase decreased the viscosity from approximately 30000 to 500 cp. Overall, sweet potato is a attractive feedstock for be bioethanol production from both the economic standpoints and environmentally friendly. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Generation of digitized microfluidic filling flow by vent control.

    PubMed

    Yoon, Junghyo; Lee, Eundoo; Kim, Jaehoon; Han, Sewoon; Chung, Seok

    2017-06-15

    Quantitative microfluidic point-of-care testing has been translated into clinical applications to support a prompt decision on patient treatment. A nanointerstice-driven filling technique has been developed to realize the fast and robust filling of microfluidic channels with liquid samples, but it has failed to provide a consistent filling time owing to the wide variation in liquid viscosity, resulting in an increase in quantification errors. There is a strong demand for simple and quick flow control to ensure accurate quantification, without a serious increase in system complexity. A new control mechanism employing two-beam refraction and one solenoid valve was developed and found to successfully generate digitized filling flow, completely free from errors due to changes in viscosity. The validity of digitized filling flow was evaluated by the immunoassay, using liquids with a wide range of viscosity. This digitized microfluidic filling flow is a novel approach that could be applied in conventional microfluidic point-of-care testing. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Influence of processing parameters on pore structure of 3D porous chitosan-alginate polyelectrolyte complex scaffolds.

    PubMed

    Florczyk, Stephen J; Kim, Dae-Joon; Wood, David L; Zhang, Miqin

    2011-09-15

    Fabrication of porous polymeric scaffolds with controlled structure can be challenging. In this study, we investigated the influence of key experimental parameters on the structures and mechanical properties of resultant porous chitosan-alginate (CA) polyelectrolyte complex (PEC) scaffolds, and on proliferation of MG-63 osteoblast-like cells, targeted at bone tissue engineering. We demonstrated that the porous structure is largely affected by the solution viscosity, which can be regulated by the acetic acid and alginate concentrations. We found that the CA PEC solutions with viscosity below 300 Pa.s yielded scaffolds of uniform pore structure and that more neutral pH promoted more complete complexation of chitosan and alginate, yielding stiffer scaffolds. CA PEC scaffolds produced from solutions with viscosities below 300 Pa.s also showed enhanced cell proliferation compared with other samples. By controlling the key experimental parameters identified in this study, CA PEC scaffolds of different structures can be made to suit various tissue engineering applications. Copyright © 2011 Wiley Periodicals, Inc.

  6. Thermodynamic and acoustical properties of mixtures p-anisaldehyde—alkanols (C1-C4)—2-methyl-1-propanol at 303.15 K

    NASA Astrophysics Data System (ADS)

    Saini, Balwinder; Kumar, Ashwani; Rani, Ruby; Bamezai, Rajinder K.

    2016-07-01

    The density, viscosity and speed of sound of pure p-anisaldehyde and some alkanols, for example, methanol, ethanol, propan-1-ol, propan-2-ol, butan-1-ol, butan-2-ol, 2-methylpropan-1-ol, and the binary mixtures of p-anisaldehyde with these alkanols were measured over the entire composition range at 303.15 K. From the experimental data, various thermodynamic parameters such as excess molar volume ( V E), excess Gibbs free energy of activation (Δ G*E), and deviation parameters like viscosity (Δη), speed of sound (Δ u), isentropic compressibility (Δκs), are calculated. The excess as well as deviation parameters are fitted to Redlich—Kister equation. Additionally, the viscosity data for the systems has been used to correlate the application of empirical relation given by Grunberg and Nissan, Katti and Chaudhari, and Hind et al. The results are discussed in terms of specific interactions present in the mixtures.

  7. Resin additive improves performance of high-temperature hydrocarbon lubricants

    NASA Technical Reports Server (NTRS)

    Johnson, R. L.; Loomis, W. R.

    1971-01-01

    Paraffinic resins, in high temperature applications, improve strength of thin lubricant film in Hertzian contacts even though they do not increase bulk oil viscosity. Use of resin circumvents corrosivity and high volatility problems inherent with many chemical additives.

  8. Incorporating the transverse profile of the wearing course into the control of the hot in-place recycling of asphalt concrete

    NASA Astrophysics Data System (ADS)

    Makowska, Michalina; Huuskonen-Snicker, Eeva; Alanaatu, Pauli; Aromaa, Kalle; Savarnya, Abhishek; Pellinen, Terhi; Das, Animesh

    2018-05-01

    The hot in-place recycling (HIR) of asphalt concrete (AC) is one of the least CO2 emissive reuse techniques. It allows for 100% reuse of material in-situ in the same application, at a reduced need for the material transport to and back from the construction site, as well as the reduced price in comparison with the fresh wearing course overlay. Finland uses the technique predominantly to fill wheel path ruts caused by the studded tire abrasion, to retain structural capacity and prevent hydroplaning. During the HIR process, the aged AC material is heated up in-situ, milled to the approximate depth of 40 mm, blended with fresh AC admixture and rejuvenator. However, the amount of the aged material and the amount of the aged bitumen that undergoes rejuvenation depends on the pavement transverse profile. The rut depth, width and shape determine the minimum volume of admixture necessary for refill during the process in order to retain the structural capacity, as well as the amount of the aged binder requiring rejuvenation. In favor of achieving homogenous rheological properties in the final product, the proportion between the aged binder and the fresh binder should be controlled, as it influences the required amount of rejuvenator. Therefore, the rut cross-sectional area and furthermore, the rut volume is one of the previously unrecognized or ignored major variables of the hot in-place recycling process in Finland that should be incorporated to the HIR process control. This article demonstrates the methodology of incorporating the transverse road profile measurements by 17 vehicle-mounted laser sensors into the calculation of required rejuvenator amounts. This can be done during the procurement preparation phase or during the paving work as a continuous in-situ process control. In the rheological optimization the apparent Newtonian viscosity concept and the rotational viscosity are utilized in the viscosity based blending equation, which then allows the use of oily rejuvenators. The method reduces the need for aged pavement sampling compared with the determination of the calibration curve between rejuvenator concentration and the rheological response. Additionally, the apparent Newtonian viscosity corrects the complex viscosity by the phase angle derived correction factor, opening a previously unexplored opportunity of targeting desired viscoelastic characteristics. The approach is less sensitive to the frequencies and temperatures at which the shear measurements are conducted. This makes proposed calculative method of the desired proportioning of the aged binder, the fresh binder and the rejuvenator a promising tool for the industry. The combined algorithm presented allows for: the discrimination of sites where HIR type maintenance of pavement in question would result in a substandard product; the choice of the most promising material combination of the admixture and rejuvenator, as well as for the adjustment of the admixture and rejuvenator amount in-place.

  9. A compositional tipping point governing the mobilization and eruption style of rhyolitic magma

    NASA Astrophysics Data System (ADS)

    di Genova, D.; Kolzenburg, S.; Wiesmaier, S.; Dallanave, E.; Neuville, D. R.; Hess, K. U.; Dingwell, D. B.

    2017-12-01

    The most viscous volcanic melts and the largest explosive eruptions on our planet consist of calcalkaline rhyolites. These eruptions have the potential to influence global climate. The eruptive products are commonly very crystal-poor and highly degassed, yet the magma is mostly stored as crystal mushes containing small amounts of interstitial melt with elevated water content. It is unclear how magma mushes are mobilized to create large batches of eruptible crystal-free magma. Further, rhyolitic eruptions can switch repeatedly between effusive and explosive eruption styles and this transition is difficult to attribute to the rheological effects of water content or crystallinity. Here we measure the viscosity of a series of melts spanning the compositional range of the Yellowstone volcanic system and find that in a narrow compositional zone, melt viscosity increases by up to two orders of magnitude. These viscosity variations are not predicted by current viscosity models and result from melt structure reorganization, as confirmed by Raman spectroscopy. We identify a critical compositional tipping point, independently documented in the global geochemical record of rhyolites, at which rhyolitic melts fluidize or stiffen and that clearly separates effusive from explosive deposits worldwide. This correlation between melt structure, viscosity and eruptive behaviour holds despite the variable water content and other parameters, such as temperature, that are inherent in natural eruptions. Thermodynamic modelling demonstrates how the observed subtle compositional changes that result in fluidization or stiffening of the melt can be induced by crystal growth from the melt or variation in oxygen fugacity. However, the rheological effects of water and crystal content alone cannot explain the correlation between composition and eruptive style. We conclude that the composition of calcalkaline rhyolites is decisive in determining the mobilization and eruption dynamics of Earth’s largest volcanic systems, resulting in a better understanding of how the melt structure controls volcanic processes.

  10. Experiments on the rheology of vesicle-bearing magmas

    NASA Astrophysics Data System (ADS)

    Vona, Alessandro; Ryan, Amy G.; Russell, James K.; Romano, Claudia

    2016-04-01

    We present a series of high temperature uniaxial deformation experiments designed to investigate the effect of bubbles on the magma bulk viscosity. Starting materials having variable vesicularity (φ = 0 - 66%) were synthesized by high-temperature foaming (T = 900 - 1050 ° C and P = 1 bar) of cores of natural rhyolitic obsidian from Hrafntinnuhryggur, Krafla, Iceland. These cores were subsequently deformed using a high-temperature uniaxial press at dry atmospheric conditions. Each experiment involved deforming vesicle-bearing cores isothermally (T = 750 ° C), at constant displacement rates (strain rates between 0.5-1 x 10-4 s-1), and to total strains (ɛ) of 10-40%. The viscosity of the bubble-free melt (η0) was measured by micropenetration and parallel plate methods and establishes a baseline for comparing data derived from experiments on vesicle rich cores. At the experimental conditions, the presence of vesicles has a major impact on the rheological response, producing a marked decrease of bulk viscosity (maximum decrease of 2 log units Pa s) that is best described by a two-parameter empirical equation: log ηBulk = log η0 - 1.47 * [φ/(1-φ)]0.48. Our model provides a means to compare the diverse behaviour of vesicle-bearing melts reported in the literature and reflecting material properties (e.g., analogue vs. natural), geometry and distribution of pores (e.g. foamed/natural vs. unconsolidated/sintered materials), and flow regime. Lastly, we apply principles of Maxwell relaxation theory, combined with our parameterization of bubble-melt rheology, to map the potential onset of non-Newtonian behaviour (strain localization) in vesiculated magmas and lavas as a function of melt viscosity, vesicularity, strain rate, and geological condition. Increasing vesicularity in magmas can initiate non-Newtonian behaviour at constant strain rates. Lower melt viscosity sustains homogeneous Newtonian flow in vesiculated magmas even at relatively high strain rates.

  11. A compositional tipping point governing the mobilization and eruption style of rhyolitic magma.

    PubMed

    Di Genova, D; Kolzenburg, S; Wiesmaier, S; Dallanave, E; Neuville, D R; Hess, K U; Dingwell, D B

    2017-12-13

    The most viscous volcanic melts and the largest explosive eruptions on our planet consist of calcalkaline rhyolites. These eruptions have the potential to influence global climate. The eruptive products are commonly very crystal-poor and highly degassed, yet the magma is mostly stored as crystal mushes containing small amounts of interstitial melt with elevated water content. It is unclear how magma mushes are mobilized to create large batches of eruptible crystal-free magma. Further, rhyolitic eruptions can switch repeatedly between effusive and explosive eruption styles and this transition is difficult to attribute to the rheological effects of water content or crystallinity. Here we measure the viscosity of a series of melts spanning the compositional range of the Yellowstone volcanic system and find that in a narrow compositional zone, melt viscosity increases by up to two orders of magnitude. These viscosity variations are not predicted by current viscosity models and result from melt structure reorganization, as confirmed by Raman spectroscopy. We identify a critical compositional tipping point, independently documented in the global geochemical record of rhyolites, at which rhyolitic melts fluidize or stiffen and that clearly separates effusive from explosive deposits worldwide. This correlation between melt structure, viscosity and eruptive behaviour holds despite the variable water content and other parameters, such as temperature, that are inherent in natural eruptions. Thermodynamic modelling demonstrates how the observed subtle compositional changes that result in fluidization or stiffening of the melt can be induced by crystal growth from the melt or variation in oxygen fugacity. However, the rheological effects of water and crystal content alone cannot explain the correlation between composition and eruptive style. We conclude that the composition of calcalkaline rhyolites is decisive in determining the mobilization and eruption dynamics of Earth's largest volcanic systems, resulting in a better understanding of how the melt structure controls volcanic processes.

  12. Mixing Silicate Melts with High Viscosity Contrast by Chaotic Dynamics: Results from a New Experimental Device

    NASA Astrophysics Data System (ADS)

    de Campos, Cristina; Perugini, Diego; Ertel-Ingrisch, Werner; Dingwell, Donald B.; Poli, Giampiero

    2010-05-01

    A new experimental device has been developed to perform chaotic mixing between high viscosity melts under controlled fluid-dynamic conditions. The apparatus is based on the Journal Bearing System (JBS). It consists of an outer cylinder hosting the melts of interest and an inner cylinder, which is eccentrically located. Both cylinders can be independently moved to generate chaotic streamlines in the mixing system. Two experiments were performed using as end-members different proportions of a peralkaline haplogranite and a mafic melt, corresponding to the 1 atm eutectic composition in the An-Di binary system. The two melts were stirred together in the JBS for ca. two hours, at 1,400° C and under laminar fluid dynamic condition (Re of the order of 10-7). The viscosity ratio between the two melts, at the beginning of the experiment, was of the order of 103. Optical analyses of experimental samples revealed, at short length scale (of the order of μm), a complex pattern of mixed structures. These consisted of an intimate distribution of filaments; a complex inter-fingering of the two melts. Such features are typically observed in rocks thought to be produced by magma mixing processes. Stretching and folding dynamics between the melts induced chaotic flow fields and generated wide compositional interfaces. In this way, chemical diffusion processes become more efficient, producing melts with highly heterogeneous compositions. A remarkable modulation of compositional fields has been obtained by performing short time-scale experiments and using melts with a high viscosity ratio. This indicates that chaotic mixing of magmas can be a very efficient process in modulating compositional variability in igneous systems, especially under high viscosity ratios and laminar fluid-dynamic regimes. Our experimental device may replicate magma mixing features, observed in natural rocks, and therefore open new frontiers in the study of this important petrologic and volcanological process.

  13. Bio-mathematical analysis for the peristaltic flow of single wall carbon nanotubes under the impact of variable viscosity and wall properties.

    PubMed

    Shahzadi, Iqra; Sadaf, Hina; Nadeem, Sohail; Saleem, Anber

    2017-02-01

    The main objective of this paper is to study the Bio-mathematical analysis for the peristaltic flow of single wall carbon nanotubes under the impact of variable viscosity and wall properties. The right and the left walls of the curved channel possess sinusoidal wave that is travelling along the outer boundary. The features of the peristaltic motion are determined by using long wavelength and low Reynolds number approximation. Exact solutions are determined for the axial velocity and for the temperature profile. Graphical results have been presented for velocity profile, temperature and stream function for various physical parameters of interest. Symmetry of the curved channel is disturbed for smaller values of the curvature parameter. It is found that the altitude of the velocity profile increases for larger values of variable viscosity parameter for both the cases (pure blood as well as single wall carbon nanotubes). It is detected that velocity profile increases with increasing values of rigidity parameter. It is due to the fact that an increase in rigidity parameter decreases tension in the walls of the blood vessels which speeds up the blood flow for pure blood as well as single wall carbon nanotubes. Increase in Grashof number decreases the fluid velocity. This is due to the reason that viscous forces play a prominent role that's why increase in Grashof number decreases the velocity profile. It is also found that temperature drops for increasing values of nanoparticle volume fraction. Basically, higher thermal conductivity of the nanoparticles plays a key role for quick heat dissipation, and this justifies the use of the single wall carbon nanotubes in different situations as a coolant. Exact solutions are calculated for the temperature and the velocity profile. Symmetry of the curved channel is destroyed due to the curvedness for velocity, temperature and contour plots. Addition of single wall carbon nanotubes shows a decrease in fluid temperature. Trapping phenomena show that the size of the trapped bolus is smaller for pure blood case as compared to the single wall carbon nanotubes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Estimation Of Rheological Law By Inverse Method From Flow And Temperature Measurements With An Extrusion Die

    NASA Astrophysics Data System (ADS)

    Pujos, Cyril; Regnier, Nicolas; Mousseau, Pierre; Defaye, Guy; Jarny, Yvon

    2007-05-01

    Simulation quality is determined by the knowledge of the parameters of the model. Yet the rheological models for polymer are often not very accurate, since the viscosity measurements are made under approximations as homogeneous temperature and empirical corrections as Bagley one. Furthermore rheological behaviors are often traduced by mathematical laws as the Cross or the Carreau-Yasuda ones, whose parameters are fitted from viscosity values, obtained with corrected experimental data, and not appropriate for each polymer. To correct these defaults, a table-like rheological model is proposed. This choice makes easier the estimation of model parameters, since each parameter has the same order of magnitude. As the mathematical shape of the model is not imposed, the estimation process is appropriate for each polymer. The proposed method consists in minimizing the quadratic norm of the difference between calculated variables and measured data. In this study an extrusion die is simulated, in order to provide us temperature along the extrusion channel, pressure and flow references. These data allow to characterize thermal transfers and flow phenomena, in which the viscosity is implied. Furthermore the different natures of data allow to estimate viscosity for a large range of shear rates. The estimated rheological model improves the agreement between measurements and simulation: for numerical cases, the error on the flow becomes less than 0.1% for non-Newtonian rheology. This method couples measurements and simulation, constitutes a very accurate mean of rheology determination, and allows to improve the prediction abilities of the model.

  15. A new method to simulate the effects of viscous fingering on miscible displacement processes in porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vossoughi, S.; Green, D.W.; Smith, J.E.

    Dispersion and viscous fingering are important parameters in miscible displacement. Effects of dispersion on concentration profiles in porous media can be simulated when the viscosity ratio is favorable. The capability to simulate viscous fingering is limited. This paper presents a new method to simulate effects of viscous fingering on miscible displacement processes in porous media. The method is based on the numerical solution of a general form of the convection-dispersion equation. In this equation the convection term is represented by a fractional flow function. The fractional flow function is derived from Darcy's law by using a concentration-dependent average viscosity andmore » relative flow area to each fluid at any point in the bed. The method was extended to the description of a polymer flood by including retention and inaccessible PV. A Langmuir-type model for polymer retention in the rock was used. The resulting convection-dispersion equation for displacement by polymer was solved numerically by the use of a finite-element method with linear basis functions and Crank-Nicholson derivative approximation. History matches were performed on four sets of laboratory data to verify the model: (1) an unfavorable viscosity ratio displacement, (2) stable displacement of glycerol by polymer solution, (3) unstable displacement of brine by a slug of polymer solution, and (4) a favorable viscosity ratio displacement. In general, computed results from the model matched laboratory data closely. Good agreement of the model with experiments over a significant range of variables lends support to the analysis.« less

  16. The tidally averaged momentum balance in a partially and periodically stratified estuary

    USGS Publications Warehouse

    Stacey, M.T.; Brennan, Matthew L.; Burau, J.R.; Monismith, Stephen G.

    2010-01-01

    Observations of turbulent stresses and mean velocities over an entire spring-neap cycle are used to evaluate the dynamics of tidally averaged flows in a partially stratified estuarine channel. In a depth-averaged sense, the net flow in this channel is up estuary due to interaction of tidal forcing with the geometry of the larger basin. The depth-variable tidally averaged flow has the form of an estuarine exchange flow (downstream at the surface, upstream at depth) and varies in response to the neap-spring transition. The weakening of the tidally averaged exchange during the spring tides appears to be a result of decreased stratification on the tidal time scale rather than changes in bed stress. The dynamics of the estuarine exchange flow are defined by a balance between the vertical divergence of the tidally averaged turbulent stress and the tidally averaged pressure gradient in the lower water column. In the upper water column, tidal stresses are important contributors, particularly during the neap tides. The usefulness of an effective eddy viscosity in the tidally averaged momentum equation is explored, and it is seen that the effective eddy viscosity on the subtidal time scale would need to be negative to close the momentum balance. This is due to the dominant contribution of tidally varying turbulent momentum fluxes, which have no specific relation to the subtidal circulation. Using a water column model, the validity of an effective eddy viscosity is explored; for periodically stratified water columns, a negative effective viscosity is required. ?? 2010 American Meteorological Society.

  17. Plasma volume and blood viscosity during 4 h sitting in a dry environment: effect of prehydration.

    PubMed

    Doi, Tatsuya; Sakurai, Masao; Hamada, Koichiro; Matsumoto, Keitaro; Yanagisawa, Kae; Kikuchi, Noriaki; Morimoto, Taketoshi; Greenleaf, John E

    2004-06-01

    Deep vein thrombosis and pulmonary thromboembolism are potential problems for travelers, including those who fly. We hypothesized that prehydration with an electrolyte-glucose beverage (EGB) would be better than water for maintaining body fluid balance and preventing increased blood viscosity in immobilized men. There were 12 healthy men (24-38 yr) who participated in crossover trials of prehydration using EGB and H2O as well as a control condition (Con) with no prehydration. Fluid intake was set at 6 ml x kg(-1) body weight (mean 418 ml). For each trial, subjects sat for 4 h at a dry-bulb temperature of 23.0-23.5 degrees C and a relative humidity of 18-36%. Plasma volume (PV) and whole blood viscosity (Bvis) were determined every hour; routine laboratory hematological tests, urine volume, and body weight were recorded at 2 h and 4 h. For Con, subjects lost approximately 110 ml h(-1); at 2 h, PV had decreased significantly by 3.4%, and Bvis had increased significantly by 9.3%, with no further change at 4 h. For prehydration, retention of the consumed fluid at 2 h was significantly higher for EGB (57%) than for H2O (38%), while both drinks prevented significant change in PV and Bvis. There were no significant differences between trials in coagulation variables, but Bvis measured at higher shear rates for EGB were significantly attenuated compared with Con. EGB and water prevented the increase of blood viscosity that occurred without prehydration. EGB was better than water for maintaining body fluid balance and preventing hypovolemia.

  18. Human telomere sequence DNA in water-free and high-viscosity solvents: G-quadruplex folding governed by Kramers rate theory.

    PubMed

    Lannan, Ford M; Mamajanov, Irena; Hud, Nicholas V

    2012-09-19

    Structures formed by human telomere sequence (HTS) DNA are of interest due to the implication of telomeres in the aging process and cancer. We present studies of HTS DNA folding in an anhydrous, high viscosity deep eutectic solvent (DES) comprised of choline choride and urea. In this solvent, the HTS DNA forms a G-quadruplex with the parallel-stranded ("propeller") fold, consistent with observations that reduced water activity favors the parallel fold, whereas alternative folds are favored at high water activity. Surprisingly, adoption of the parallel structure by HTS DNA in the DES, after thermal denaturation and quick cooling to room temperature, requires several months, as opposed to less than 2 min in an aqueous solution. This extended folding time in the DES is, in part, due to HTS DNA becoming kinetically trapped in a folded state that is apparently not accessed in lower viscosity solvents. A comparison of times required for the G-quadruplex to convert from its aqueous-preferred folded state to its parallel fold also reveals a dependence on solvent viscosity that is consistent with Kramers rate theory, which predicts that diffusion-controlled transitions will slow proportionally with solvent friction. These results provide an enhanced view of a G-quadruplex folding funnel and highlight the necessity to consider solvent viscosity in studies of G-quadruplex formation in vitro and in vivo. Additionally, the solvents and analyses presented here should prove valuable for understanding the folding of many other nucleic acids and potentially have applications in DNA-based nanotechnology where time-dependent structures are desired.

  19. Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension

    NASA Technical Reports Server (NTRS)

    Wang, N.; Ingber, D. E.

    1994-01-01

    We have investigated how extracellular matrix (ECM) alters the mechanical properties of the cytoskeleton (CSK). Mechanical stresses were applied to integrin receptors on the apical surfaces of adherent endothelial cells using RGD-coated ferromagnetic microbeads (5.5-microns diameter) in conjunction with a magnetic twisting device. Increasing the number of basal cell-ECM contacts by raising the fibronectin (FN) coating density from 10 to 500 ng/cm2 promoted cell spreading by fivefold and increased CSK stiffness, apparent viscosity, and permanent deformation all by more than twofold, as measured in response to maximal stress (40 dyne/cm2). When the applied stress was increased from 7 to 40 dyne/cm2, the stiffness and apparent viscosity of the CSK increased in parallel, although cell shape, ECM contacts, nor permanent deformation was altered. Application of the same stresses over a lower number ECM contacts using smaller beads (1.4-microns diameter) resulted in decreased CSK stiffness and apparent viscosity, confirming that this technique probes into the depth of the CSK and not just the cortical membrane. When magnetic measurements were carried out using cells whose membranes were disrupted and ATP stores depleted using saponin, CSK stiffness and apparent viscosity were found to rise by approximately 20%, whereas permanent deformation decreased by more than half. Addition of ATP (250 microM) under conditions that promote CSK tension generation in membrane-permeabilized cells resulted in decreases in CSK stiffness and apparent viscosity that could be detected within 2 min after ATP addition, before any measurable change in cell size.(ABSTRACT TRUNCATED AT 250 WORDS).

  20. Ultrasonication effects on thermal and rheological properties of carbon nanotube suspensions

    PubMed Central

    2012-01-01

    The preparation of nanofluids is very important to their thermophysical properties. Nanofluids with the same nanoparticles and base fluids can behave differently due to different nanofluid preparation methods. The agglomerate sizes in nanofluids can significantly impact the thermal conductivity and viscosity of nanofluids and lead to a different heat transfer performance. Ultrasonication is a common way to break up agglomerates and promote dispersion of nanoparticles into base fluids. However, research reports of sonication effects on nanofluid properties are limited in the open literature. In this work, sonication effects on thermal conductivity and viscosity of carbon nanotubes (0.5 wt%) in an ethylene glycol-based nanofluid are investigated. The corresponding effects on the agglomerate sizes and the carbon nanotube lengths are observed. It is found that with an increased sonication time/energy, the thermal conductivity of the nanofluids increases nonlinearly, with the maximum enhancement of 23% at sonication time of 1,355 min. However, the viscosity of nanofluids increases to the maximum at sonication time of 40 min, then decreases, finally approaching the viscosity of the pure base fluid at a sonication time of 1,355 min. It is also observed that the sonication process not only reduces the agglomerate sizes but also decreases the length of carbon nanotubes. Over the current experimental range, the reduction in agglomerate size is more significant than the reduction of the carbon nanotube length. Hence, the maximum thermal conductivity enhancement and minimum viscosity increase are obtained using a lengthy sonication, which may have implications on application. PMID:22333487

  1. Viscosity of aqueous and cyanate ester suspensions containing alumina nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawler, Katherine

    2009-01-01

    The viscosities of both aqueous and cyanate ester monomer (BECy) based suspensions of alumina nanoparticle were studied. The applications for these suspensions are different: aqueous suspensions of alumina nanoparticles are used in the production of technical ceramics made by slip casting or tape casting, and the BECy based suspensions are being developed for use in an injection-type composite repair resin. In the case of aqueous suspensions, it is advantageous to achieve a high solids content with low viscosity in order to produce a high quality product. The addition of a dispersant is useful so that higher solids content suspensions canmore » be used with lower viscosities. For BECy suspensions, the addition of nanoparticles to the BECy resin is expected to enhance the mechanical properties of the cured composite. The addition of saccharides to aqueous suspensions leads to viscosity reduction. Through DSC measurements it was found that the saccharide molecules formed a solution with water and this resulted in lowering the melting temperature of the free water according to classic freezing point depression. Saccharides also lowered the melting temperature of the bound water, but this followed a different rule. The shear thinning and melting behaviors of the suspensions were used to develop a model based on fractal-type agglomeration. It is believed that the structure of the particle flocs in these suspensions changes with the addition of saccharides which leads to the resultant viscosity decrease. The viscosity of the BECy suspensions increased with solids content, and the viscosity increase was greater than predicted by the classical Einstein equation for dilute suspensions. Instead, the Mooney equation fits the viscosity behavior well from 0-20 vol% solids. The viscosity reduction achieved at high particle loadings by the addition of benzoic acid was also investigated by NMR. It appears that the benzoic acid interacts with the surface of the alumina particle which may be the cause of the viscosity reduction. The flow behavior of alumina particles in water and BECy is markedly different. Aqueous alumina suspensions are shear thinning at all alumina loadings and capable of 50 vol% loading before losing fluidity whereas BECy/alumina suspensions show Newtonian behavior up to 5 vol%, and above 5 vol% show shear thinning at all shear rates. Highly loaded suspensions (i.e. 20vol% alumina) exhibit shear thinning at low and moderate shear rates and shear thickening at higher shear rates. The maximum particle loading for a fluid suspension, in this case, appears to be about 20 vol%. The difference in the viscosity of these suspensions must be related to the solvent-particle interactions for each system. The reason is not exactly known, but there are some notable differences between BECy and water. Water molecules are {approx}0.28 nm in length and highly hydrogen bonded with a low viscosity (1 mPa's) whereas in the cyanate ester (BECy) system, the solvent molecule is about 1.2 nm, in the largest dimension, with surfaces of varied charge distribution throughout the molecule. The viscosity of the monomer is also reasonably low for organic polymer precursor, about 7 mPa's. Nanoparticles in water tend to agglomerate and form flocs which are broken with the shear force applied during viscosity measurement. The particle-particle interaction is very important in this system. In BECy, the particles appear to be well dispersed and not as interactive. The solvent-particle interaction appears to be most important. It is not known exactly how the alumina particles interact with the monomer, but NMR suggests hydrogen bonding. These hydrogen bonds between the particle and monomer could very well affect the viscosity. A conclusion that can be reached in this work is that the presence of hydroxyl groups on the surface of the alumina particles is significant and seems to affect the interactions between other particles and the solvent. Thus, the hydrogen bonding between particles, particle/additive and/or particle/solvent dictates the behavior of nanosized alumina particle suspensions. The addition of dispersants can change the particle interactions and hence reduce the suspension viscosity. This was demonstrated with saccharides in the aqueous system and with benzoic acid in suspensions with BECy.« less

  2. Modified two-step emulsion solvent evaporation technique for fabricating biodegradable rod-shaped particles in the submicron size range.

    PubMed

    Safari, Hanieh; Adili, Reheman; Holinstat, Michael; Eniola-Adefeso, Omolola

    2018-05-15

    Though the emulsion solvent evaporation (ESE) technique has been previously modified to produce rod-shaped particles, it cannot generate small-sized rods for drug delivery applications due to the inherent coupling and contradicting requirements for the formation versus stretching of droplets. The separation of the droplet formation from the stretching step should enable the creation of submicron droplets that are then stretched in the second stage by manipulation of the system viscosity along with the surface-active molecule and oil-phase solvent. A two-step ESE protocol is evaluated where oil droplets are formed at low viscosity followed by a step increase in the aqueous phase viscosity to stretch droplets. Different surface-active molecules and oil phase solvents were evaluated to optimize the yield of biodegradable PLGA rods. Rods were assessed for drug loading via an imaging agent and vascular-targeted delivery application via blood flow adhesion assays. The two-step ESE method generated PLGA rods with major and minor axis down to 3.2 µm and 700 nm, respectively. Chloroform and sodium metaphosphate was the optimal solvent and surface-active molecule, respectively, for submicron rod fabrication. Rods demonstrated faster release of Nile Red compared to spheres and successfully targeted an inflamed endothelium under shear flow in vitro and in vivo. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierson, Stephen A.; Nacham, Omprakash; Clark, Kevin D.

    Magnetic ionic liquids (MILs) are distinguished from traditional ionic liquids (ILs) by the incorporation of a paramagnetic component within their chemical structure. Hydrophobic MILs are novel solvents that can be used in many applications, including liquid–liquid extraction (LLE) and catalysis. Low viscosity and low water solubility are essential features that determine their feasibility in LLE. Here, we synthesized extremely hydrophobic MILs by using transition and rare earth metal hexafluoroacetylacetonate chelated anions paired with the trihexyl(tetradecyl)phosphonium ([P 66614 +]) cation. Hydrophobic MILs exhibiting water solubilities less than 0.01% (v/v) were synthesized in a rapid two-step procedure. Furthermore, the viscosities of themore » MILs are among some of the lowest ever reported for hydrophobic MILs (276.5–927.9 centipoise (cP) at 23.7 °C) dramatically improving the ease of handling these liquids. For the first time, the magnetic properties of MILs possessing hexafluoroacetylacetonate chelated metal anions synthesized in this study are reported using a superconducting quantum interference device (SQUID) magnetometer. We also achieved an effective magnetic moments (μ eff) as high as 9.7 and 7.7 Bohr magnetons (μ B) by incorporating high spin dysprosium and gadolinium ions, respectively, into the anion component of the MIL. The low viscosity, high hydrophobicity, and large magnetic susceptibility of these MILs make them highly attractive and promising solvents for separations and purification, liquid electrochromic materials, catalytic studies, as well as microfluidic applications.« less

  4. Improved biobased lubricants from chemically modified vegetable oils

    USDA-ARS?s Scientific Manuscript database

    Vegetable oils possess a number of desirable properties for lubricant application such as excellent boundary properties, high viscosity index, low volatility, low traction coefficient, renewability, and biodegradability. Unfortunately, they also have a number of weaknesses that make them less desira...

  5. Explicit expressions of self-diffusion coefficient, shear viscosity, and the Stokes-Einstein relation for binary mixtures of Lennard-Jones liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohtori, Norikazu, E-mail: ohtori@chem.sc.niigata-u.ac.jp; Ishii, Yoshiki

    Explicit expressions of the self-diffusion coefficient, D{sub i}, and shear viscosity, η{sub sv}, are presented for Lennard-Jones (LJ) binary mixtures in the liquid states along the saturated vapor line. The variables necessary for the expressions were derived from dimensional analysis of the properties: atomic mass, number density, packing fraction, temperature, and the size and energy parameters used in the LJ potential. The unknown dependence of the properties on each variable was determined by molecular dynamics (MD) calculations for an equimolar mixture of Ar and Kr at the temperature of 140 K and density of 1676 kg m{sup −3}. The scalingmore » equations obtained by multiplying all the single-variable dependences can well express D{sub i} and η{sub sv} evaluated by the MD simulation for a whole range of compositions and temperatures without any significant coupling between the variables. The equation for D{sub i} can also explain the dual atomic-mass dependence, i.e., the average-mass and the individual-mass dependence; the latter accounts for the “isotope effect” on D{sub i}. The Stokes-Einstein (SE) relation obtained from these equations is fully consistent with the SE relation for pure LJ liquids and that for infinitely dilute solutions. The main differences from the original SE relation are the presence of dependence on the individual mass and on the individual energy parameter. In addition, the packing-fraction dependence turned out to bridge another gap between the present and original SE relations as well as unifying the SE relation between pure liquids and infinitely dilute solutions.« less

  6. Ionic liquid stationary phases for gas chromatography.

    PubMed

    Poole, Colin F; Poole, Salwa K

    2011-04-01

    This article provides a summary of the development of ionic liquids as stationary phases for gas chromatography beginning with early work on packed columns that established details of the retention mechanism and established working methods to characterize selectivity differences compared with molecular stationary phases through the modern development of multi-centered cation and cross-linked ionic liquids for high-temperature applications in capillary gas chromatography. Since there are many reviews on ionic liquids dealing with all aspects of their chemical and physical properties, the emphasis in this article is placed on the role of gas chromatography played in the design of ionic liquids of low melting point, high thermal stability, high viscosity, and variable selectivity for separations. Ionic liquids provide unprecedented opportunities for extending the selectivity range and temperature-operating range of columns for gas chromatography, an area of separation science that has otherwise been almost stagnant for over a decade. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Divergent expansion, Borel summability and three-dimensional Navier-Stokes equation.

    PubMed

    Costin, Ovidiu; Luo, Guo; Tanveer, Saleh

    2008-08-13

    We describe how the Borel summability of a divergent asymptotic expansion can be expanded and applied to nonlinear partial differential equations (PDEs). While Borel summation does not apply for non-analytic initial data, the present approach generates an integral equation (IE) applicable to much more general data. We apply these concepts to the three-dimensional Navier-Stokes (NS) system and show how the IE approach can give rise to local existence proofs. In this approach, the global existence problem in three-dimensional NS systems, for specific initial condition and viscosity, becomes a problem of asymptotics in the variable p (dual to 1/t or some positive power of 1/t). Furthermore, the errors in numerical computations in the associated IE can be controlled rigorously, which is very important for nonlinear PDEs such as NS when solutions are not known to exist globally.Moreover, computation of the solution of the IE over an interval [0,p0] provides sharper control of its p-->infinity behaviour. Preliminary numerical computations give encouraging results.

  8. Density separation as a strategy to reduce the enzyme load of preharvest sprouted wheat and enhance its bread making quality.

    PubMed

    Olaerts, Heleen; De Bondt, Yamina; Courtin, Christophe M

    2018-02-15

    As preharvest sprouting of wheat impairs its use in food applications, postharvest solutions for this problem are required. Due to the high kernel to kernel variability in enzyme activity in a batch of sprouted wheat, the potential of eliminating severely sprouted kernels based on density differences in NaCl solutions was evaluated. Compared to higher density kernels, lower density kernels displayed higher α-amylase, endoxylanase, and peptidase activities as well as signs of (incipient) protein, β-glucan and arabinoxylan breakdown. By discarding lower density kernels of mildly and severely sprouted wheat batches (11% and 16%, respectively), density separation increased flour FN of the batch from 280 to 345s and from 135 to 170s and increased RVA viscosity. This in turn improved dough handling, bread crumb texture and crust color. These data indicate that density separation is a powerful technique to increase the quality of a batch of sprouted wheat. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Alfven seismic vibrations of crustal solid-state plasma in quaking paramagnetic neutron star

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bastrukov, S.; Xu, R.-X.; Molodtsova, I.

    2010-11-15

    Magneto-solid-mechanical model of two-component, core-crust, paramagnetic neutron star responding to quake-induced perturbation by differentially rotational, torsional, oscillations of crustal electron-nuclear solid-state plasma about axis of magnetic field frozen in the immobile paramagnetic core is developed. Particular attention is given to the node-free torsional crust-against-core vibrations under combined action of Lorentz magnetic and Hooke's elastic forces; the damping is attributed to Newtonian force of shear viscose stresses in crustal solid-state plasma. The spectral formulas for the frequency and lifetime of this toroidal mode are derived in analytic form and discussed in the context of quasiperiodic oscillations of the x-ray outburst fluxmore » from quaking magnetars. The application of obtained theoretical spectra to modal analysis of available data on frequencies of oscillating outburst emission suggests that detected variability is the manifestation of crustal Alfven's seismic vibrations restored by Lorentz force of magnetic field stresses.« less

  10. Estimating intercellular surface tension by laser-induced cell fusion.

    PubMed

    Fujita, Masashi; Onami, Shuichi

    2011-12-01

    Intercellular surface tension is a key variable in understanding cellular mechanics. However, conventional methods are not well suited for measuring the absolute magnitude of intercellular surface tension because these methods require determination of the effective viscosity of the whole cell, a quantity that is difficult to measure. In this study, we present a novel method for estimating the intercellular surface tension at single-cell resolution. This method exploits the cytoplasmic flow that accompanies laser-induced cell fusion when the pressure difference between cells is large. Because the cytoplasmic viscosity can be measured using well-established technology, this method can be used to estimate the absolute magnitudes of tension. We applied this method to two-cell-stage embryos of the nematode Caenorhabditis elegans and estimated the intercellular surface tension to be in the 30-90 µN m(-1) range. Our estimate was in close agreement with cell-medium surface tensions measured at single-cell resolution.

  11. Structure and properties of stir-cast zinc alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LeHuy, H.; Blain J.; Masounave, J.

    Stir casting (or rheocasting) of ZA-27 zinc alloys was investigated experimentally. By vigorously agitating the alloys during cooling, the dendrites that were forming were fragmented giving a unique structure composed of spherical and rosette shaped particles suspended in the remaining liquid. Under high shear rates ({center dot}{gamma} = 300s{sup {minus}1} or more) the slurries with primary particle concentrations as high as 60% displayed viscosities as low as 20 poises and could easily be casted. The effects of processing variables such as shearing and cooling rates and casting temperatures were studied. Their relative importance on the rheological and microstructural behavior ofmore » the stir cast alloys are discussed. Results from viscosity measurements on slurries show that non-dendritical ZA-27 alloys obey a power law fluid model. Finally, results from mechanical and compressive studies carried out on solidified slurries are discussed and compared to conventional casted and wrought alloy properties.« less

  12. Thermophysical properties of liquid Ni around the melting temperature from molecular dynamics simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozas, R. E.; Department of Physics, University of Bío-Bío, Av. Collao 1202, P.O. Box 5C, Concepción; Demiraǧ, A. D.

    Thermophysical properties of liquid nickel (Ni) around the melting temperature are investigated by means of classical molecular dynamics (MD) simulation, using three different embedded atom method potentials to model the interactions between the Ni atoms. Melting temperature, enthalpy, static structure factor, self-diffusion coefficient, shear viscosity, and thermal diffusivity are compared to recent experimental results. Using ab initio MD simulation, we also determine the static structure factor and the mean-squared displacement at the experimental melting point. For most of the properties, excellent agreement is found between experiment and simulation, provided the comparison relative to the corresponding melting temperature. We discuss themore » validity of the Hansen-Verlet criterion for the static structure factor as well as the Stokes-Einstein relation between self-diffusion coefficient and shear viscosity. The thermal diffusivity is extracted from the autocorrelation function of a wavenumber-dependent temperature fluctuation variable.« less

  13. Phase space analysis for anisotropic universe with nonlinear bulk viscosity

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Mumtaz, Saadia

    2018-06-01

    In this paper, we discuss phase space analysis of locally rotationally symmetric Bianchi type I universe model by taking a noninteracting mixture of dust like and viscous radiation like fluid whose viscous pressure satisfies a nonlinear version of the Israel-Stewart transport equation. An autonomous system of equations is established by defining normalized dimensionless variables. In order to investigate stability of the system, we evaluate corresponding critical points for different values of the parameters. We also compute power-law scale factor whose behavior indicates different phases of the universe model. It is found that our analysis does not provide a complete immune from fine-tuning because the exponentially expanding solution occurs only for a particular range of parameters. We conclude that stable solutions exist in the presence of nonlinear model for bulk viscosity with different choices of the constant parameter m for anisotropic universe.

  14. The three-dimensional steady radial expansion of a viscous gas from a sonic source into a vacuum.

    NASA Technical Reports Server (NTRS)

    Bush, W. B.; Rosen, R.

    1971-01-01

    The three-dimensional steady radial expansion of a viscous, heat-conducting, compressible fluid from a spherical sonic source into a vacuum is analyzed using the Navier-Stokes equations as a basis. It is assumed that the model fluid is a perfect gas having constant specific heats, a constant Prandtl number of order unity, and viscosity coefficients varying as a power of the absolute temperature. Limiting forms for the flow variable solutions are studied for the Reynolds number based on the sonic source conditions, going to infinity and the Newtonian parameter both fixed and going to zero. For the case of the viscosity-temperature exponent between .5 and 1, it is shown that the velocity as well as the pressure approach zero as the radial distance goes to infinity. The formulations of the distinct regions that span the domain extending from the sonic source to the vacuum are presented.

  15. The effect of pulsed IR-light on the rheological parameters of blood in vitro.

    PubMed

    Nawrocka-Bogusz, Honorata; Marcinkowska-Gapińska, Anna

    2014-01-01

    In this study we attempted to assess the effect of light of 855 nm wavelength (IR-light) on the rheological parameters of blood in vitro. As an anticoagulant, heparin was used. The source of IR-light was an applicator connected to the special generator--Viofor JPS®. The blood samples were irradiated for 30 min. During the irradiation the energy density was growing at twelve-second intervals starting from 1.06 J/cm2 to 8.46 J/cm2, then the energy density dropped to the initial value; the process was repeated cyclically. The study of blood viscosity was carried out with a Contraves LS40 oscillatory-rotational rheometer, with a decreasing shearing rate from 100 to 0.01 s⁻¹ over 5 min (flow curve) and applying constant frequency oscillations f=0.5 Hz with decreasing shear amplitude ˙γ0 (viscoelasticity measurements). The analysis of the results of rotational measurements was based on the assessment of hematocrit, plasma viscosity, whole blood viscosity at four selected shear rates and on the basis of the numerical values of parameters from Quemada's rheological model: k0 (indicating red cell aggregability), k∞ (indicating red cell rigidity) and ˙γc (the value of the shear rate for which the rouleaux formation begins). In oscillatory experiments we estimated viscous and elastic components of the complex blood viscosity in the same groups of patients. We observed a decrease of the viscous component of complex viscosity (η') at ˙γ0=0.2 s⁻¹, while other rheological parameters, k0, k∞, and relative blood viscosity at selected shear rates showed only a weak tendency towards smaller values after irradiation. The IR-light effect on the rheological properties of blood in vitro turned out to be rather neutral in the studied group of patients.

  16. Confort 15 model of conduit dynamics: applications to Pantelleria Green Tuff and Etna 122 BC eruptions

    NASA Astrophysics Data System (ADS)

    Campagnola, S.; Romano, C.; Mastin, L. G.; Vona, A.

    2016-06-01

    Numerical simulations are useful tools to illustrate how flow parameters and physical processes may affect eruption dynamics of volcanoes. In this paper, we present an updated version of the Conflow model, an open-source numerical model for flow in eruptive conduits during steady-state pyroclastic eruptions (Mastin and Ghiorso in A numerical program for steady-state flow of magma-gas mixtures through vertical eruptive conduits. U.S. Geological Survey Open File Report 00-209, 2000). In the modified version, called Confort 15, the rheological constraints are improved, incorporating the most recent constitutive equations of both the liquid viscosity and crystal-bearing rheology. This allows all natural magma compositions, including the peralkaline melts excluded in the original version, to be investigated. The crystal-bearing rheology is improved by computing the effect of strain rate and crystal shape on the rheology of natural magmatic suspensions and expanding the crystal content range in which rheology can be modeled compared to the original version ( Conflow is applicable to magmatic mixtures with up to 30 vol% crystal content). Moreover, volcanological studies of the juvenile products (crystal and vesicle size distribution) of the investigated eruption are directly incorporated into the modeling procedure. Vesicle number densities derived from textural analyses are used to calculate, through Toramaru equations, maximum decompression rates experienced during ascent. Finally, both degassing under equilibrium and disequilibrium conditions are considered. This allows considerations on the effect of different fragmentation criteria on the conduit flow analyses, the maximum volume fraction criterion ("porosity criterion"), the brittle fragmentation criterion and the overpressure fragmentation criterion. Simulations of the pantelleritic and trachytic phases of the Green Tuff (Pantelleria) and of the Plinian Etna 122 BC eruptions are performed to test the upgrades in the Confort 15 modeling. Conflow and Confort 15 numerical results are compared analyzing the effect of viscosity, decompression rate, temperature, fragmentation criteria (critical strain rate, porosity and overpressure criteria) and equilibrium versus disequilibrium degassing in the magma flow along volcanic conduits. The equilibrium simulation results indicate that an increase in viscosity, a faster decompression rate, a decrease in temperature or the application of the porosity criterion in place of the strain rate one produces a deepening in fragmentation depth. Initial velocity and mass flux of the mixture are directly correlated with each other, inversely proportional to an increase in viscosity, except for the case in which a faster decompression rate is assumed. Taking into account up-to-date viscosity parameterization or input faster decompression rate, a much larger decrease in the average pressure along the conduit compared to previous studies is recorded, enhancing water exsolution and degassing. Disequilibrium degassing initiates only at very shallow conditions near the surface. Brittle fragmentation (i.e., depending on the strain rate criterion) in the pantelleritic Green Tuff eruption simulations is mainly a function of the initial temperature. In the case of the Etna 122 BC Plinian eruption, the viscosity strongly affects the magma ascent dynamics along the conduit. Using Confort 15, and therefore incorporating the most recent constitutive rheological parameterizations, we could calculate the mixture viscosity increase due to the presence of microlites. Results show that these seemingly low-viscosity magmas can explosively fragment in a brittle manner. Mass fluxes resulting from simulations which better represent the natural case (i.e., microlite-bearing) are consistent with values found in the literature for Plinian eruptions (~106 kg/s). The disequilibrium simulations, both for Green Tuff and Etna 122 BC eruptions, indicate that overpressure sufficient for fragmentation (if present) occurs only at very shallow conditions near the surface.

  17. Pharmaceutical applications of in vivo EPR

    NASA Astrophysics Data System (ADS)

    Mäder, Karsten

    1998-07-01

    The aim of this article is to discuss the applications of in vivo EPR in the field of pharmacy. In addition to direct detection of free radical metabolites and measurement of oxygen, EPR can be used to characterize the mechanisms of drug release from biodegradable polymers. Unique information about drug concentration, the microenvironment (viscosity, polarity, pH) and biodistribution (by localized measurement or EPR Imaging) can be obtained.

  18. Classical and Quantum Thermal Physics

    NASA Astrophysics Data System (ADS)

    Prasad, R.

    2016-11-01

    List of figures; List of tables; Preface; Acknowledgement; Dedication; 1. The kinetic theory of gases; 2. Ideal to real gas, viscosity, conductivity and diffusion; 3. Thermodynamics: definitions and Zeroth law; 4. First Law of Thermodynamics and some of its applications; 5. Second Law of Thermodynamics and some of its applications; 6. TdS equations and their applications; 7. Thermodynamic functions, potentials, Maxwell equations, the Third Law and equilibrium; 8. Some applications of thermodynamics to problems of physics and engineering; 9. Application of thermodynamics to chemical reactions; 10. Quantum thermodynamics; 11. Some applications of quantum thermodynamics; 12. Introduction to the thermodynamics of irreversible processes; Index.

  19. Scaling of hydrodynamics and swimming kinematics of shelled Antarctic sea butterfly

    NASA Astrophysics Data System (ADS)

    Adhikari, Deepak; Webster, Donald; Yen, Jeannette

    2016-11-01

    A portable tomographic PIV system was used to study fluid dynamics and kinematics of pteropods (aquatic snails nicknamed 'sea butterflies') in Antarctica. These pteropods (Limacina helicina antarctica) swim with a pair of parapodia (or "wings") via a unique flapping propulsion mechanism that incorporates similar techniques as observed in small flying insects. The swimming velocity is typically 14 - 30 mm/s for pteropod size ranging 1.5 - 5 mm, and the pteropod shell pitches forward-and-backward at 1.9 - 3 Hz. It has been shown that pitching motion of the shell effectively positions the parapodia such that they flap downwards during both power and recovery strokes. The non-dimensional variables characterizing the motion of swimming pteropods are flapping, translating, and pitching Reynolds numbers (i.e. Ref, ReU, and ReΩ) . We found that the relationship between these Reynolds numbers show an existence of a critical ReΩ, below which pteropods fail to swim successfully. We explore the importance of this critical ReΩ by changing the viscosity of the seawater using methylcellulose. At higher viscosity, our results indicate that pteropods do not swim with optimal propulsion efficiency. Finally, we examine the wake signature of swimming pteropod, consisting of a pair of vortex rings, in the modified viscosity environment.

  20. Convolute laminations — a theoretical analysis: example of a Pennsylvanian sandstone

    NASA Astrophysics Data System (ADS)

    Visher, Glenn S.; Cunningham, Russ D.

    1981-03-01

    Data from an outcropping laminated interval were collected and analyzed to test the applicability of a theoretical model describing instability of layered systems. Rayleigh—Taylor wave perturbations result at the interface between fluids of contrasting density, viscosity, and thickness. In the special case where reverse density and viscosity interlaminations are developed, the deformation response produces a single wave with predictable amplitudes, wavelengths, and amplification rates. Physical measurements from both the outcropping section and modern sediments suggest the usefulness of the model for the interpretation of convolute laminations. Internal characteristics of the stratigraphic interval, and the developmental sequence of convoluted beds, are used to document the developmental history of these structures.

  1. Hyaluronic acid: its role in voice.

    PubMed

    Ward, P Daniel; Thibeault, Susan L; Gray, Steven D

    2002-09-01

    The extracellular matrix (ECM), once regarded simply as a structural scaffold, is now recognized as an important modulator of cellular behavior and function. One component that plays a prominent role in this process is hyaluronic acid (HA)--a molecule found in many different tissues. Research into the roles of HA indicates that it plays a key role in tissue viscosity, shock absorption, and space filling. Specifically, research into the role of HA in laryngology indicates that it has profound effects on the structure and viscosity of vocal folds. This article provides an introduction to the structure and biological functions of HA and its importance in voice. In addition, an overview of the pharmaceutical applications of HA is discussed.

  2. Transparent Nanoporous Glass-Polymer Composite for U.S. Army Applications

    DTIC Science & Technology

    2008-10-01

    a nitrogen environment until infiltration and polymerization. Infiltration and curing procedures varied for each of the prepolymers . Samples...manufacturing a nanocomposite from nanoporous glass was first tested by infiltrating Vycor glass with various prepolymers (MMA, IBA, and a low-viscosity

  3. Uniqueness of solutions for Keller-Segel system of porous medium type coupled to fluid equations

    NASA Astrophysics Data System (ADS)

    Bae, Hantaek; Kang, Kyungkeun; Kim, Seick

    2018-04-01

    We prove the uniqueness of Hölder continuous weak solutions via duality argument and vanishing viscosity method for the Keller-Segel system of porous medium type equations coupled to the Stokes system in dimensions three. An important step is the estimate of the Green function of parabolic equations with lower order terms of variable coefficients, which seems to be of independent interest.

  4. Comparison of polynomial and neural fuzzy models as applied to the ethanolamine pulping of vine shoots.

    PubMed

    Jiménez, L; Angulo, V; Caparrós, S; Ariza, J

    2007-12-01

    The influence of operational variables in the pulping of vine shoots by use of ethanolamine [viz. temperature (155-185 degrees C), cooking time (30-90min) and ethanolamine concentration (50-70% v/v)] on the properties of the resulting pulp (viz. yield, kappa index, viscosity and drainability) was studied. A central composite factorial design was used in conjunction with the software BMDP and ANFIS Edit Matlab 6.5 to develop polynomial and fuzzy neural models that reproduced the experimental results of the dependent variables with errors less than 10%. Both types of models are therefore effective with a view to simulating the ethanolamine pulping process. Based on the proposed equations, the best choice is to use values of the operational valuables resulting in near-optimal pulp properties while saving energy and immobilized capital on industrial facilities by using lower temperatures and shorter processing times. One combination leading to near-optimal properties with reduced costs is using a temperature of 180 degrees C and an ethanolamine concentration of 60% for 60min, to obtain pulp with a viscosity of 6.13% lower than the maximum value (932.8ml/g) and a drainability of 5.49% lower than the maximum value (71 (o)SR).

  5. Ultrasound assisted enzymatic depolymerization of aqueous guar gum solution.

    PubMed

    Prajapat, Amrutlal L; Subhedar, Preeti B; Gogate, Parag R

    2016-03-01

    The present work investigates the effectiveness of application of low intensity ultrasonic irradiation for the intensification of enzymatic depolymerization of aqueous guar gum solution. The extent of depolymerization of guar gum has been analyzed in terms of intrinsic viscosity reduction. The effect of ultrasonic irradiation on the kinetic and thermodynamic parameters related to the enzyme activity as well as the intrinsic viscosity reduction of guar gum using enzymatic approach has been evaluated. The kinetic rate constant has been found to increase with an increase in the temperature and cellulase loading. It has been observed that application of ultrasound not only enhances the extent of depolymerization but also reduces the time of depolymerization as compared to conventional enzymatic degradation technique. In the presence of cellulase enzyme, the maximum extent of depolymerization of guar gum has been observed at 60 W of ultrasonic rated power and ultrasonic treatment time of 30 min. The effect of ultrasound on the kinetic and thermodynamic parameters as well as the molecular structure of cellulase enzyme was evaluated with the help of the chemical reaction kinetics model and fluorescence spectroscopy. Application of ultrasound resulted in a reduction in the thermodynamic parameters of activation energy (Ea), enthalpy (ΔH), entropy (ΔS) and free energy (ΔG) by 47%, 50%, 65% and 1.97%, respectively. The changes in the chemical structure of guar gum treated using ultrasound assisted enzymatic approach in comparison to the native guar gum were also characterized by FTIR. The results revealed that enzymatic depolymerization of guar gum resulted in a polysaccharide with low degree of polymerization, viscosity and consistency index without any change in the core chemical structure which could make it useful for incorporation in food products. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Tearing mode dynamics and locking in the presence of external magnetic perturbations

    NASA Astrophysics Data System (ADS)

    Fridström, R.; Munaretto, S.; Frassinetti, L.; Chapman, B. E.; Brunsell, P. R.; Sarff, J. S.

    2016-06-01

    In normal operation, Madison Symmetric Torus (MST) [R. N. Dexter et al., Fusion Technol. 19, 131 (1991)] reversed-field pinch plasmas exhibit several rotating tearing modes (TMs). Application of a resonant magnetic perturbation (RMP) results in braking of mode rotation and, if the perturbation amplitude is sufficiently high, in a wall-locked state. The coils that produce the magnetic perturbation in MST give rise to RMPs with several toroidal harmonics. As a result, simultaneous deceleration of all modes is observed. The measured TM dynamics is shown to be in qualitative agreement with a magnetohydrodynamical model of the RMP interaction with the TM [R. Fitzpatrick, Nucl. Fusion 33, 1049 (1993)] adapted to MST. To correctly model the TM dynamics, the electromagnetic torque acting on several TMs is included. Quantitative agreement of the TM slowing-down time was obtained for a kinematic viscosity in the order of νki n≈10 -20 m2/s. Analysis of discharges with different plasma densities shows an increase of the locking threshold with increasing density. Modeling results show good agreement with the experimental trend, assuming a density-independent kinematic viscosity. Comparison of the viscosity estimates in this paper to those made previously with other techniques in MST plasmas suggests the possibility that the RMP technique may allow for estimates of the viscosity over a broad range of plasmas in MST and other devices.

  7. Acoustic, Thermal and Molecular Interactions of Polyethylene Glycol (2000, 3000, 6000)

    NASA Astrophysics Data System (ADS)

    Venkatramanan, K.; Padmanaban, R.; Arumugam, V.

    Polyethylene Glycol (PEG) is a condensation polymer of ethylene oxide and water. PEG find its application as emulsifying agents, detergents, soaps, plasticizers, ointments, etc. Though the chemical and physical properties of PEG are known, still because of their uses in day to day life, it becomes necessary to study few physical properties like ultrasonic velocity, viscosity and hence adiabatic compressibility, free length, etc. In the present study, an attempt has been made to compute the activation energy and hence to analyse the molecular interactions of aqueous solutions of Polyethylene Glycol of molar mass 2000, 3000 and 6000 at different concentrations (2%, 4%, 6%, 8% and 10%) at different temperatures (303K, 308K, 313K, 318K) by determining relative viscosity, ultrasonic velocity and density. Various parameters like adiabatic compressibility, viscous relaxation time, inter molecular free length, free volume, internal pressure, etc are calculated at 303K and the results are discussed in the light of polymer-solvent interaction. This study helps to understand the behavior of macro-molecules with respect to changing concentration and temperature. Furthermore, viscosity and activation energy results are correlated to understand the increased entanglement of the polymer chains due to the increase in the concentration of a polymer solution that leads to an increase in viscosity and an increase in the activation energy of viscous flow.

  8. In situ evaluation of density, viscosity, and thickness of adsorbed soft layers by combined surface acoustic wave and surface plasmon resonance.

    PubMed

    Francis, Laurent A; Friedt, Jean-Michel; Zhou, Cheng; Bertrand, Patrick

    2006-06-15

    We show the theoretical and experimental combination of acoustic and optical methods for the in situ quantitative evaluation of the density, the viscosity, and the thickness of soft layers adsorbed on chemically tailored metal surfaces. For the highest sensitivity and an operation in liquids, a Love mode surface acoustic wave (SAW) sensor with a hydrophobized gold-coated sensing area is the acoustic method, while surface plasmon resonance (SPR) on the same gold surface as the optical method is monitored simultaneously in a single setup for the real-time and label-free measurement of the parameters of adsorbed soft layers, which means for layers with a predominant viscous behavior. A general mathematical modeling in equivalent viscoelastic transmission lines is presented to determine the correlation between experimental SAW signal shifts and the waveguide structure including the presence of the adsorbed layer and the supporting liquid from which it segregates. A methodology is presented to identify from SAW and SPR simulations the parameters representatives of the soft layer. During the absorption of a soft layer, thickness or viscosity changes are observed in the experimental ratio of the SAW signal attenuation to the SAW signal phase and are correlated with the theoretical model. As application example, the simulation method is applied to study the thermal behavior of physisorbed PNIPAAm, a polymer whose conformation is sensitive to temperature, under a cycling variation of temperature between 20 and 40 degrees C. Under the assumption of the bulk density and the bulk refractive index of PNIPAAm, thickness and viscosity of the film are obtained from simulations; the viscosity is correlated to the solvent content of the physisorbed layer.

  9. Synthesis of Polyformate Esters of Vegetable Oils: Milkweed, Pennycress, and Soy.

    PubMed

    Harry-O'kuru, Rogers E; Biresaw, Girma; Tisserat, Brent; Evangelista, Roque

    2016-01-01

    In a previous study of the characteristics of acyl derivatives of polyhydroxy milkweed oil (PHMWO), it was observed that the densities and viscosities of the respective derivatives decreased with increased chain length of the substituent acyl group. Thus from the polyhydroxy starting material, attenuation in viscosity of the derivatives relative to PHMWO was found in the order: PHMWO ≫ PAcMWE ≫ PBuMWE ≫ PPMWE (2332 : 1733 : 926.2 : 489.4 cSt, resp., at 40°C), where PAcMWE, PBuMWE, and PPMWE were the polyacetyl, polybutyroyl, and polypentanoyl ester derivatives, respectively. In an analogous manner, the densities also decreased as the chain length increased although not as precipitously compared to the viscosity drop. By inference, derivatives of vegetable oils with short chain length substituents on the triglyceride would be attractive in lubricant applications in view of their higher densities and possibly higher viscosity indices. Pursuant to this, we have explored the syntheses of formyl esters of three vegetable oils in order to examine the optimal density, viscosity, and related physical characteristics in relation to their suitability as lubricant candidates. In the absence of ready availability of formic anhydride, we opted to employ the epoxidized vegetable oils as substrates for formyl ester generation using glacial formic acid. The epoxy ring-opening process was smooth but was apparently followed by a simultaneous condensation reaction of the putative α-hydroxy formyl intermediate to yield vicinal diformyl esters from the oxirane. All three polyformyl esters milkweed, soy, and pennycress derivatives exhibited low coefficient of friction and a correspondingly much lower wear scar in the 4-ball antiwear test compared to the longer chain acyl analogues earlier studied.

  10. Strong synergistic effects in PLA/PCL blends: Impact of PLA matrix viscosity.

    PubMed

    Ostafinska, Aleksandra; Fortelný, Ivan; Hodan, Jiří; Krejčíková, Sabina; Nevoralová, Martina; Kredatusová, Jana; Kruliš, Zdeněk; Kotek, Jiří; Šlouf, Miroslav

    2017-05-01

    Blends of two biodegradable polymers, poly(lactic acid) (PLA) and poly(ϵ-caprolactone) (PCL), with strong synergistic improvement in mechanical performance were prepared by melt-mixing using the optimized composition (80/20) and the optimized preparation procedure (a melt-mixing followed by a compression molding) according to our previous study. Three different PLA polymers were employed, whose viscosity decreased in the following order: PLC ≈ PLA1 > PLA2 > PLA3. The blends with the highest viscosity matrix (PLA1/PCL) exhibited the smallest PCL particles (d∼0.6μm), an elastic-plastic stable fracture (as determined from instrumented impact testing) and the strongest synergistic improvement in toughness (>16× with respect to pure PLA, exceeding even the toughness of pure PCL). According to the available literature, this was the highest toughness improvement in non-compatiblized PLA/PCL blends ever achieved. The decrease in the matrix viscosity resulted in an increase in the average PCL particle size and a dramatic decrease in the overall toughness: the completely stable fracture (for PLA1/PCL) changed to the stable fracture followed by unstable crack propagation (for PLA2/PCL) and finally to the completely brittle fracture (for PLA3/PCL). The stiffness of all blends remained at well acceptable level, slightly above the theoretical predictions based on the equivalent box model. Despite several previous studies, the results confirmed that PLA and PCL could behave as compatible polymers, but the final PLA/PCL toughness is extremely sensitive to the PCL particle size distribution, which is influenced by both processing conditions and PLA viscosity. PLA/PCL blends with high stiffness (due to PLA) and toughness (due to PCL) are very promising materials for medical applications, namely for the bone tissue engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Synthesis of Polyformate Esters of Vegetable Oils: Milkweed, Pennycress, and Soy

    PubMed Central

    Harry-O'kuru, Rogers E.; Biresaw, Girma; Tisserat, Brent; Evangelista, Roque

    2016-01-01

    In a previous study of the characteristics of acyl derivatives of polyhydroxy milkweed oil (PHMWO), it was observed that the densities and viscosities of the respective derivatives decreased with increased chain length of the substituent acyl group. Thus from the polyhydroxy starting material, attenuation in viscosity of the derivatives relative to PHMWO was found in the order: PHMWO ≫ PAcMWE ≫ PBuMWE ≫ PPMWE (2332 : 1733 : 926.2 : 489.4 cSt, resp., at 40°C), where PAcMWE, PBuMWE, and PPMWE were the polyacetyl, polybutyroyl, and polypentanoyl ester derivatives, respectively. In an analogous manner, the densities also decreased as the chain length increased although not as precipitously compared to the viscosity drop. By inference, derivatives of vegetable oils with short chain length substituents on the triglyceride would be attractive in lubricant applications in view of their higher densities and possibly higher viscosity indices. Pursuant to this, we have explored the syntheses of formyl esters of three vegetable oils in order to examine the optimal density, viscosity, and related physical characteristics in relation to their suitability as lubricant candidates. In the absence of ready availability of formic anhydride, we opted to employ the epoxidized vegetable oils as substrates for formyl ester generation using glacial formic acid. The epoxy ring-opening process was smooth but was apparently followed by a simultaneous condensation reaction of the putative α-hydroxy formyl intermediate to yield vicinal diformyl esters from the oxirane. All three polyformyl esters milkweed, soy, and pennycress derivatives exhibited low coefficient of friction and a correspondingly much lower wear scar in the 4-ball antiwear test compared to the longer chain acyl analogues earlier studied. PMID:26955488

  12. Numerical studies on convective stability and flow pattern in three-dimensional spherical mantle of terrestrial planets

    NASA Astrophysics Data System (ADS)

    Yanagisawa, Takatoshi; Kameyama, Masanori; Ogawa, Masaki

    2016-09-01

    We explore thermal convection of a fluid with a temperature-dependent viscosity in a basally heated 3-D spherical shell using linear stability analyses and numerical experiments, while considering the application of our results to terrestrial planets. The inner to outer radius ratio of the shell f assumed in the linear stability analyses is in the range of 0.11-0.88. The critical Rayleigh number Rc for the onset of thermal convection decreases by two orders of magnitude as f increases from 0.11 to 0.88, when the viscosity depends sensitively on the temperature, as is the case for real mantle materials. Numerical simulations carried out in the range of f = 0.11-0.55 show that a thermal boundary layer (TBL) develops both along the surface and bottom boundaries to induce cold and hot plumes, respectively, when f is 0.33 or larger. However, for smaller f values, a TBL develops only on the bottom boundary. Convection occurs in the stagnant-lid regime where the root mean square velocity on the surface boundary is less than 1 per cent of its maximum at depth, when the ratio of the viscosity at the surface boundary to that at the bottom boundary exceeds a threshold that depends on f. The threshold decreases from 106.5 at f = 0.11 to 104 at f = 0.55. If the viscosity at the base of the convecting mantle is 1020-1021 Pa s, the Rayleigh number exceeds Rc for Mars, Venus and the Earth, but does not for the Moon and Mercury; convection is unlikely to occur in the latter planets unless the mantle viscosity is much lower than 1020 Pa s and/or the mantle contains a strong internal heat source.

  13. Urea modified cottonseed protein adhesive for wood composite products

    USDA-ARS?s Scientific Manuscript database

    Cottonseed protein has the potential to be used as renewable and environmentally friendly adhesives in wood products industry. However, the industry application was limited by its low mechanical properties, low water resistance and viscosity. In this work, urea modified cottonseed protein adhesive w...

  14. Phosphate fertilization changes the characteristics of 'Maçã' banana starch.

    PubMed

    Mesquita, Camila de Barros; Garcia, Émerson Loli; Bolfarini, Ana Carolina Batista; Leonel, Sarita; Franco, Célia Maria L; Leonel, Magali

    2018-06-01

    The unripe banana has been studied as a potential source of starch for use in various applications. Considering the importance of phosphorus in the biosynthesis of the starch and also the interference of this mineral in starch properties, in this study it was evaluated the effect of rates of phosphate fertilizer applied in the cultivation of 'Maçã' banana on the characteristics of the starch. Starches extracted from fruits from different treatments were analyzed for morphological characteristics, X-ray diffraction pattern, relative crystallinity, granule size, amylose, resistant starch and phosphorus levels, as well as, for pasting and thermal properties. Results showed that the phosphate fertilization has interference on the characteristics of the banana starch led to increase of phosphorus content and size of the granules, reduction of crystallinity and resistant starch content, decrease of viscosity peak, breakdown, final viscosity, setback, transitions temperatures and enthalpy. These changes caused by phosphate fertilizer conditions can be increase the applications of the 'Maçã' banana starch. Copyright © 2018. Published by Elsevier B.V.

  15. Application of Sodium Ligno Sulphonate as Surfactant in Enhanced Oil Recovery and Its Feasibility Test for TPN 008 Oil

    NASA Astrophysics Data System (ADS)

    Prakoso, N. I.; Rochmadi; Purwono, S.

    2018-04-01

    One of enhanced oil recovery (EOR) methods is using surfactants to reduce the interfacial tension between the injected fluid and the oil in old reservoir. The most important principle in enhanced oil recovery process is the dynamic interaction of surfactants with crude oil. Sodium ligno sulphonate (SLS) is a commercial surfactant and already synthesized from palm solid waste by another researcher. This work aimed to apply SLS as a surfactant for EOR especially in TPN 008 oil from Pertamina Indonesia. In its application as an EOR’s surfactant, SLS shall be passed feasibility test like IFT, thermal stability, compatibility, filtration, molecular weight, density, viscosity and pH tests. The feasibility test is very important for a preliminary test prior to another advanced test. The results demonstrated that 1% SLS solution in formation water (TPN 008) had 0.254 mN/M IFT value and was also great in thermal stability, compatibility, filtration, molecular weight, viscosity and pH test.

  16. Development of aircraft lavatory compartments with improved fire resistance characteristics. Phase 4: Sandwich panel decorative ink development

    NASA Technical Reports Server (NTRS)

    Jayarajan, A.; Johnson, G. A.; Korver, G. L.; Anderson, R. A.

    1983-01-01

    Five chemically different resin systems with improved fire resistance properties were studied for a possible screenprinting ink application. Fire resistance is hereby defined as the cured ink possessing improvements in flammability, smoke emission, and thermal stability. The developed ink is for application to polyvinyl fluoride film. Only clear inks without pigments were considered. Five formulations were evaluated compared with KC4900 clear acrylic ink, which was used as a baseline. The tests used in the screening evaluation included viscosity, smoke and toxic gas emission, limiting oxygen index (LOI), and polyvinyl fluoride film (PVF) printability. A chlorofluorocarbon resin (FPC461) was selected for optimization studies. The parameters for optimization included screenprinting process performance, quality of coating, and flammability of screenprinted 0.051-mm (0.002-in.) white Tedlar. The quality of the screenprinted coating on Tedlar is dependent on viscosity, curing time, adhesion to polyvinyl fluoride film, drying time (both inscreen and as an applied film), and silk screen mesh material and porosity.

  17. Benchmarking FEniCS for mantle convection simulations

    NASA Astrophysics Data System (ADS)

    Vynnytska, L.; Rognes, M. E.; Clark, S. R.

    2013-01-01

    This paper evaluates the usability of the FEniCS Project for mantle convection simulations by numerical comparison to three established benchmarks. The benchmark problems all concern convection processes in an incompressible fluid induced by temperature or composition variations, and cover three cases: (i) steady-state convection with depth- and temperature-dependent viscosity, (ii) time-dependent convection with constant viscosity and internal heating, and (iii) a Rayleigh-Taylor instability. These problems are modeled by the Stokes equations for the fluid and advection-diffusion equations for the temperature and composition. The FEniCS Project provides a novel platform for the automated solution of differential equations by finite element methods. In particular, it offers a significant flexibility with regard to modeling and numerical discretization choices; we have here used a discontinuous Galerkin method for the numerical solution of the advection-diffusion equations. Our numerical results are in agreement with the benchmarks, and demonstrate the applicability of both the discontinuous Galerkin method and FEniCS for such applications.

  18. Study of drug concentration effects on in vitro lipolysis kinetics in medium-chain triglycerides by considering oil viscosity and surface tension.

    PubMed

    Arnold, Yvonne Elisabeth; Imanidis, Georgios; Kuentz, Martin

    2011-10-09

    Simple oil formulations are widely used in oral drug delivery and the fate of these systems is governed mainly by the dispersion and digestion process. The current work aimed to study concentration effects of six poorly water-soluble drugs on the in vitro lipolysis rate of medium-chain triglycerides. The results were compared with drug effects on oil viscosity and surface tension. First the different drugs were characterized by molecular modeling and their influence on physical oil properties was assessed. Herein capillary viscosimetry was employed as well as dynamic surface tensiometry. Subsequently, an apparent in vitro lipolysis rate was determined in biorelevant medium using an automated pH stat titrator linked to a thermo-controlled vessel. The different drugs exhibited varying effects on oil viscosity and surface tension. However, all drugs significantly lowered the apparent lipolysis rate of the oil. This effect was very similar among the different compounds with exception of orlistat, which practically blocked lipolysis because of a potent direct inhibition. The other drugs affected lipolysis kinetics most likely by different mechanism(s). In light of the obtained results, a drug effect on oil viscosity or surface tension appeared to play a minor role in reducing the lipolysis rate. The lipolysis kinetics was further not affected by the drug load, which was deemed advantageous from a pharmaceutical viewpoint. Different dose strengths are therefore not assumed to alter lipolysis kinetics, which is beneficial for limiting the variability of in vivo drug release. Further studies of drug solubility kinetics in the evolving digestion phases are, however, needed to finally assess potential effects of dosage strength in simple oil formulations. Copyright © 2011. Published by Elsevier B.V.

  19. Morphogenetic Implications of Peristalsis-Driven Fluid Flow in the Embryonic Lung

    PubMed Central

    Bokka, Kishore K.; Jesudason, Edwin C.; Lozoya, Oswaldo A.; Guilak, Farshid; Warburton, David; Lubkin, Sharon R.

    2015-01-01

    Epithelial organs are almost universally secretory. The lung secretes mucus of extremely variable consistency. In the early prenatal period, the secretions are of largely unknown composition, consistency, and flow rates. In addition to net outflow from secretion, the embryonic lung exhibits transient reversing flows from peristalsis. Airway peristalsis (AP) begins as soon as the smooth muscle forms, and persists until birth. Since the prenatal lung is liquid-filled, smooth muscle action can transport fluid far from the immediately adjacent tissues. The sensation of internal fluid flows has been shown to have potent morphogenetic effects, as has the transport of morphogens. We hypothesize that these effects play an important role in lung morphogenesis. To test these hypotheses in a quantitative framework, we analyzed the fluid-structure interactions between embryonic tissues and lumen fluid resulting from peristaltic waves that partially occlude the airway. We found that if the airway is closed, fluid transport is minimal; by contrast, if the trachea is open, shear rates can be very high, particularly at the stenosis. We performed a parametric analysis of flow characteristics' dependence on tissue stiffnesses, smooth muscle force, geometry, and fluid viscosity, and found that most of these relationships are governed by simple ratios. We measured the viscosity of prenatal lung fluid with passive bead microrheology. This paper reports the first measurements of the viscosity of embryonic lung lumen fluid. In the range tested, lumen fluid can be considered Newtonian, with a viscosity of 0.016 ± 0.008 Pa-s. We analyzed the interaction between the internal flows and diffusion and conclude that AP has a strong effect on flow sensing away from the tip and on transport of morphogens. These effects may be the intermediate mechanisms for the enhancement of branching seen in occluded embryonic lungs. PMID:26147967

  20. The physical properties of generic latanoprost ophthalmic solutions are not identical.

    PubMed

    Kolko, Miriam; Koch Jensen, Peter

    2017-06-01

    To compare various characteristics of Xalatan ® and five generic latanoprost ophthalmic solutions. Drop size, volume, pH values, buffer capacity, viscosity, hardness of bottles and costs were determined. Drop sizes were measured in triplicates by micropipettes, and the number of drops counted in three separate bottles of each generic product was determined. pH values were measured in triplicates by a calibrated pH meter. Buffer capacity was exploited by titrating known quantities of strong base into 2.5 ml of each brand and interpolated to neutral pH. Kinematic viscosity was determined by linear regression of timed gravity flow from a vertical syringe through a 21-G cannula. The hardness of the bottles was evaluated by gradually increasing tension on a hook placed around each bottle until a drop was expelled reading the tension on an attached spring scale. Drop sizes and the number of drops in the bottles varied significantly between the generic drugs. The control value of pH in the brand version (Xalatan ® ) was markedly lower compared to the generic latanoprost products. Titration of Xalatan ® to neutrality required substantially more NaOH compared to the generic latanoprost products. Finally, the viscosity revealed a significant variability between brands. Remarkable differences were found in bottle shapes, bottle hardness and costs of the latanoprost generics. Generic latanoprost eye drops should not be considered identical to the original brand version as regards to drop size, volumes, pH values, buffer capacity, viscosity, hardness of bottles and costs. It is likely that these issues affect compliance and intraocular pressure (IOP)-lowering effect. Therefore, re-evaluation of the requirements for introducing generic eye drops seems reasonable. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  1. Earthquake Cycle Simulations with Rate-and-State Friction and Linear and Nonlinear Viscoelasticity

    NASA Astrophysics Data System (ADS)

    Allison, K. L.; Dunham, E. M.

    2016-12-01

    We have implemented a parallel code that simultaneously models both rate-and-state friction on a strike-slip fault and off-fault viscoelastic deformation throughout the earthquake cycle in 2D. Because we allow fault slip to evolve with a rate-and-state friction law and do not impose the depth of the brittle-to-ductile transition, we are able to address: the physical processes limiting the depth of large ruptures (with hazard implications); the degree of strain localization with depth; the relative partitioning of fault slip and viscous deformation in the brittle-to-ductile transition zone; and the relative contributions of afterslip and viscous flow to postseismic surface deformation. The method uses a discretization that accommodates variable off-fault material properties, depth-dependent frictional properties, and linear and nonlinear viscoelastic rheologies. All phases of the earthquake cycle are modeled, allowing the model to spontaneously generate earthquakes, and to capture afterslip and postseismic viscous flow. We compare the effects of a linear Maxwell rheology, often used in geodetic models, with those of a nonlinear power law rheology, which laboratory data indicates more accurately represents the lower crust and upper mantle. The viscosity of the Maxwell rheology is set by power law rheological parameters with an assumed a geotherm and strain rate, producing a viscosity that exponentially decays with depth and is constant in time. In contrast, the power law rheology will evolve an effective viscosity that is a function of the temperature profile and the stress state, and therefore varies both spatially and temporally. We will also integrate the energy equation for the thermomechanical problem, capturing frictional heat generation on the fault and off-fault viscous shear heating, and allowing these in turn to alter the effective viscosity.

  2. Thermal History and Mantle Dynamics of Venus

    NASA Technical Reports Server (NTRS)

    Hsui, Albert T.

    1997-01-01

    One objective of this research proposal is to develop a 3-D thermal history model for Venus. The basis of our study is a finite-element computer model to simulate thermal convection of fluids with highly temperature- and pressure-dependent viscosities in a three-dimensional spherical shell. A three-dimensional model for thermal history studies is necessary for the following reasons. To study planetary thermal evolution, one needs to consider global heat budgets of a planet throughout its evolution history. Hence, three-dimensional models are necessary. This is in contrasts to studies of some local phenomena or local structures where models of lower dimensions may be sufficient. There are different approaches to treat three-dimensional thermal convection problems. Each approach has its own advantages and disadvantages. Therefore, the choice of the various approaches is subjective and dependent on the problem addressed. In our case, we are interested in the effects of viscosities that are highly temperature dependent and that their magnitudes within the computing domain can vary over many orders of magnitude. In order to resolve the rapid change of viscosities, small grid spacings are often necessary. To optimize the amount of computing, variable grids become desirable. Thus, the finite-element numerical approach is chosen for its ability to place grid elements of different sizes over the complete computational domain. For this research proposal, we did not start from scratch and develop the finite element codes from the beginning. Instead, we adopted a finite-element model developed by Baumgardner, a collaborator of this research proposal, for three-dimensional thermal convection with constant viscosity. Over the duration supported by this research proposal, a significant amount of advancements have been accomplished.

  3. Influence of Medium Viscosity and Intracellular Environment on the Magnetization of Superparamagnetic Nanoparticles in Silk Fibroin Solutions and 3T3 Mouse Fibroblast Cell Cultures.

    PubMed

    Urbano Bojorge, Ana Lorena; Casanova Carvajal, Oscar Ernesto; Félix González, Nazario; García, Laura Fernandez; Madurga, Rodrigo; Sanchez, Santiago; Aznar, Elena; Ramos, Milagros; Serrano Olmedo, José Javier

    2018-06-27

    Biomedical applications based on the magnetic properties of superparamagnetic iron oxide nanoparticles may be altered by the mechanical attachment or cellular uptake of these nanoparticles. When nanoparticles interact with living cells, nanoparticles are captured and internalized into intracellular compartments. Consequently, the magnetic behavior of the nanoparticles is modified. In this paper, we investigated the change in the magnetic response of 14 nm magnetic nanoparticles (Fe3O4) in solutions, both as a stable liquid suspension (one of them mimicking the cellular cytoplasm) and when associated with cells. The field-dependent magnetization curves from inert fluids and cell cultures were determined by using a MicroMagTM 2900 alternating gradient magnetometer (AGM system). The equipment was adapted to measure liquid samples because it was originally designed only for solids. In order to achieve this goal, custom sample holders were manufactured. Likewise, the nuclear magnetic relaxation dispersion (NMRD) profiles for the inert fluid were also measured by fast field cycling NMR relaxometry (FFCNMR). The results show that superparamagnetic iron oxide nanoparticles magnetization in inert fluids was affected by the carrier liquid viscosity and the concentration. In cell cultures, the mechanical attachment or confinement of superparamagnetic iron oxide naoparticles inside cells accounted for the change in the dynamic magnetic behavior of the nanoparticles. Nevertheless, the magnetization value in cell cultures was slightly lower than that of the fluid simulating the viscosity of cytoplasm, suggesting that magnetization loss was not only due to medium viscosity but also to a reduction in the mechanical degrees of freedom of superparamagnetic iron oxide nanoparticles rotation and translation inside cells. The findings presented here provide information on the loss of magnetic properties when nanoparticles are suspended in viscous fluids or internalized in cells. This information could be exploited to improve biomedical applications based on magnetic properties as magnetic hyperthermia, contrast agents and drug delivery. . © 2018 IOP Publishing Ltd.

  4. Role of field-induced nanostructures, zippering and size polydispersity on effective thermal transport in magnetic fluids without significant viscosity enhancement

    NASA Astrophysics Data System (ADS)

    Vinod, Sithara; Philip, John

    2017-12-01

    Magnetic nanofluids or ferrofluids exhibit extraordinary field dependant tunable thermal conductivity (k), which make them potential candidates for microelectronic cooling applications. However, the associated viscosity enhancement under an external stimulus is undesirable for practical applications. Further, the exact mechanism of heat transport and the role of field induced nanostructures on thermal transport is not clearly understood. In this paper, through systematic thermal, rheological and microscopic studies in 'model ferrofluids', we demonstrate for the first time, the conditions to achieve very high thermal conductivity to viscosity ratio. Highly stable ferrofluids with similar crystallite size, base fluid, capping agent and magnetic properties, but with slightly different size distributions, are synthesized and characterized by X-ray diffraction, small angle X-ray scattering, transmission electron microscopy, dynamic light scattering, vibrating sample magnetometer, Fourier transform infrared spectroscopy and thermo-gravimetry. The average hydrodynamic diameters of the particles were 11.7 and 10.1 nm and the polydispersity indices (σ), were 0.226 and 0.151, respectively. We observe that the system with smaller polydispersity (σ = 0.151) gives larger k enhancement (130% for 150 G) as compared to the one with σ = 0.226 (73% for 80 G). Further, our results show that dispersions without larger aggregates and with high density interfacial capping (with surfactant) can provide very high enhancement in thermal conductivity, with insignificant viscosity enhancement, due to minimal interfacial losses. We also provide experimental evidence for the effective heat conduction (parallel mode) through a large number of space filling linear aggregates with high aspect ratio. Microscopic studies reveal that the larger particles act as nucleating sites and facilitate lateral aggregation (zippering) of linear chains that considerably reduces the number density of space filling linear aggregates. Our findings are very useful for optimizing the heat transfer properties of magnetic fluids (and also in composite systems consisting of CNT, graphene etc.) for the development of next generation microelectronic cooling technologies, thermal energy harvesting and magnetic fluid based therapeutics.

  5. A review of design and modeling of magnetorheological valve

    NASA Astrophysics Data System (ADS)

    Abd Fatah, Abdul Yasser; Mazlan, Saiful Amri; Koga, Tsuyoshi; Zamzuri, Hairi; Zeinali, Mohammadjavad; Imaduddin, Fitrian

    2015-01-01

    Following recent rapid development of researches in utilizing Magnetorheological (MR) fluid, a smart material that can be magnetically controlled to change its apparent viscosity instantaneously, a lot of applications have been established to exploit the benefits and advantages of using the MR fluid. One of the most important applications for MR fluid in devices is the MR valve, where it uses the popular flow or valve mode among the available working modes for MR fluid. As such, MR valve is widely applied in a lot of hydraulic actuation and vibration reduction devices, among them are dampers, actuators and shock absorbers. This paper presents a review on MR valve, discusses on several design configurations and the mathematical modeling for the MR valve. Therefore, this review paper classifies the MR valve based on the coil configuration and geometrical arrangement of the valve, and focusing on four different mathematical models for MR valve: Bingham plastic, Herschel-Bulkley, bi-viscous and Herschel-Bulkley with pre-yield viscosity (HBPV) models for calculating yield stress and pressure drop in the MR valve. Design challenges and opportunities for application of MR fluid and MR valve are also highlighted in this review. Hopefully, this review paper can provide basic knowledge on design and modeling of MR valve, complementing other reviews on MR fluid, its applications and technologies.

  6. A finite element solution algorithm for the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Baker, A. J.

    1974-01-01

    A finite element solution algorithm is established for the two-dimensional Navier-Stokes equations governing the steady-state kinematics and thermodynamics of a variable viscosity, compressible multiple-species fluid. For an incompressible fluid, the motion may be transient as well. The primitive dependent variables are replaced by a vorticity-streamfunction description valid in domains spanned by rectangular, cylindrical and spherical coordinate systems. Use of derived variables provides a uniformly elliptic partial differential equation description for the Navier-Stokes system, and for which the finite element algorithm is established. Explicit non-linearity is accepted by the theory, since no psuedo-variational principles are employed, and there is no requirement for either computational mesh or solution domain closure regularity. Boundary condition constraints on the normal flux and tangential distribution of all computational variables, as well as velocity, are routinely piecewise enforceable on domain closure segments arbitrarily oriented with respect to a global reference frame.

  7. Temperature Variations in Lubricating Films Induced by Viscous Dissipation

    NASA Astrophysics Data System (ADS)

    Mozaffari, Farshad; Metcalfe, Ralph

    2015-11-01

    We have studied temperature distributions of lubricating films. The study has applications in tribology where temperature-reduced viscosity decreases load carrying capacity of bearings, or degrades elastomeric seals. The viscosity- temperature dependency is modeled according to ASTM D341-09. We have modeled the film temperature distribution by our finite element program. The program is made up of three modules: the first one solves the general form of Reynolds equation for the film pressure and velocity gradients. The other two solve the energy equation for the film and its solid boundary temperature distributions. The modules are numerically coupled and iteratively converged to the solutions. We have shown that the temperature distribution in the film is strongly coupled with the thermal response at the boundary. In addition, only thermal diffusion across film thickness is dominant. Moreover, thermal diffusion in the lateral directions, as well as all the convection terms, are negligible. The approximation reduces the energy equation to an ordinary differential equation, which significantly simplifies the modeling of temperature -viscosity effects in thin films. Supported by Kalsi Engineering, Inc.

  8. Boundary layers at the interface of two different shear flows

    NASA Astrophysics Data System (ADS)

    Weidman, Patrick D.; Wang, C. Y.

    2018-05-01

    We present solutions for the boundary layer between two uniform shear flows flowing in the same direction. In the upper layer, the flow has shear strength a, fluid density ρ1, and kinematic viscosity ν1, while the lower layer has shear strength b, fluid density ρ2, and kinematic viscosity ν2. Similarity transformations reduce the boundary-layer equations to a pair of ordinary differential equations governed by three dimensionless parameters: the shear strength ratio γ = b/a, the density ratio ρ = ρ2/ρ1, and the viscosity ratio ν = ν2/ν1. Further analysis shows that an affine transformation reduces this multi-parameter problem to a single ordinary differential equation which may be efficiently integrated as an initial-value problem. Solutions of the original boundary-value problem are shown to agree with the initial-value integrations, but additional dual and quadruple solutions are found using this method. We argue on physical grounds and through bifurcation analysis that these additional solutions are not tenable. The present problem is applicable to the trailing edge flow over a thin airfoil with camber.

  9. Impact cratering in viscous targets - Laboratory experiments

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Fink, J.; Snyder, D. B.; Gault, D. E.; Guest, J. E.; Schultz, P. H.

    1980-01-01

    To determine the effects of target yield strength and viscosity on the formation and morphology of Martian multilobed, slosh and rampart-type impact craters, 75 experiments in which target properties and impact energies were varied were carried out for high-speed motion picture observation in keeping with the following sequence: (1) projectile initial impact; (2) crater excavation and rise of ejecta plume; (3) formation of a transient central mound which generates a surge of material upon collapse that can partly override the plume deposit; and (4) oscillation of the central mound with progressively smaller surges of material leaving the crater. A dimensional analysis of the experimental results indicates that the dimensions of the central mound are proportional to (1) the energy of the impacting projectile and (2) to the inverse of both the yield strength and viscosity of the target material, and it is determined that extrapolation of these results to large Martian craters requires an effective surface layer viscosity of less than 10 to the 10th poise. These results may also be applicable to impacts on outer planet satellites composed of ice-silicate mixtures.

  10. Transport coefficients of Lennard-Jones fluids: A molecular-dynamics and effective-hard-sphere treatment

    NASA Astrophysics Data System (ADS)

    Heyes, David M.

    1988-04-01

    This study evaluates the shear viscosity, self-diffusion coefficient, and thermal conductivity of the Lennard-Jones (LJ) fluid over essentially the entire fluid range by molecular-dynamics (MD) computer simulation. The Green-Kubo (GK) method is mainly used. In addition, for shear viscosity, homogeneous shear nonequilibrium MD (NEMD) is also employed and compared with experimental data on argon along isotherms. Reasonable agreement between GK, NEMD, and experiment is found. Hard-sphere MD modified Chapman-Enskog expressions for these transport coefficients are tested with use of a temperature-dependent effective hard-sphere diameter. Excellent agreement is found for shear viscosity. The thermal conductivity and, more so, self-diffusion coefficient is less successful in this respect. This behavior is attributed to the attractive part to the LJ potential and its soft repulsive core. Expressions for the constant-volume and -pressure activation energies for these transport coefficients are derived solely in terms of the thermodynamic properties of the LJ fluid. Also similar expressions for the activation volumes are given, which should have a wider range of applications than just for the LJ system.

  11. Altruism Can Proliferate through Population Viscosity despite High Random Gene Flow

    PubMed Central

    Schonmann, Roberto H.; Vicente, Renato; Caticha, Nestor

    2013-01-01

    The ways in which natural selection can allow the proliferation of cooperative behavior have long been seen as a central problem in evolutionary biology. Most of the literature has focused on interactions between pairs of individuals and on linear public goods games. This emphasis has led to the conclusion that even modest levels of migration would pose a serious problem to the spread of altruism through population viscosity in group structured populations. Here we challenge this conclusion, by analyzing evolution in a framework which allows for complex group interactions and random migration among groups. We conclude that contingent forms of strong altruism that benefits equally all group members, regardless of kinship and without greenbeard effects, can spread when rare under realistic group sizes and levels of migration, due to the assortment of genes resulting only from population viscosity. Our analysis combines group-centric and gene-centric perspectives, allows for arbitrary strength of selection, and leads to extensions of Hamilton’s rule for the spread of altruistic alleles, applicable under broad conditions. PMID:23991035

  12. Bonding Strength Properties of Adhesively-Timber Joint with Thixotropic and Room Temperature Cured Epoxy Based Adhesive Reinforced with Nano- and Micro-particles

    NASA Astrophysics Data System (ADS)

    Ahmad, Z.; Ansell, M. P.; Smedley, D.

    2011-02-01

    This research work is concerned with in situ bonded-in timber connection using pultruded rod; where the manufacturing of such joint requires adhesive which can produce thick glue-lines and does not allow any use of pressure and heat. Four types of thixotropic (for ease application) and room temperature cured epoxy based were used namely CB10TSS (regarded as standards adhesive), Nanopox (modification of CB10TSS with addition of nanosilica), Albipox (modification of CB10TSS with addition of liquid rubber) and Timberset (an epoxy-based adhesive with addition of micro-size ceramic particles). The quality of the adhesive bonds was accessed using block shear test in accordance with ASTM D905. The bond strength depends on how good the adhesive wet the timber surface. Therefore the viscosity and contact angle was also measured. The nano- and microfiller additions increased the bond strength significantly. The viscosity correlates well with contact angle measurements where lower viscosities are associated with lower contact angles. However contact angle contradicts with measured strength and wettability.

  13. Fluorescent BODIPY Rotor: Viscometer for Cellular Organelles and Membrane-Mimicking Vesicles

    NASA Astrophysics Data System (ADS)

    Kimball, J.; Raut, S.; Fudala, R.; Doan, H.; Maliwal, B.; Sabnis, N.; Lacko, A.; Gryczynski, I.; Dzyuba, S.; Gryczynski, Z.

    2015-03-01

    Many cellular processes, such as mass and signal transport, metabolism and protein-protein interactions are governed in part by diffusion, and thus affected by their local microviscosity. Changes in this microviscosity has also been linked to various diseases, including atherosclerosis, Alzheimer's disease and diabetes. Therefore, directly measuring the heterogeneous viscosity of cellular constitutes can lead to greater understanding of these processes. To this effect, a novel homodiemeric BODIPY dye was evaluated as a fluorescent rotor probe for this application. A linear dependence on viscosity in the range of typical cellular microviscosity was established for steady-state and time-resolved properties of the dye. It was then embedded in vitro to membrane-mimicking lipid vesicles (DPPC, POPC, and POPC plus cholesterol) and results indicated it to be a viable sensor for lifetime-based determination of microviscosity. The BODIPY dye was lastly endocytosed by SKOV3 cells and Fluorescence Lifetime Imaging Microscopy (FLIM) was performed, successfully mapping the viscosity of internal cell components. This work was supported by the NIH Grant R01EB12003, the NSF Grant CBET-1264608, and the INFOR Grant from TCU.

  14. Experimental investigation, model development and sensitivity analysis of rheological behavior of ZnO/10W40 nano-lubricants for automotive applications

    NASA Astrophysics Data System (ADS)

    Hemmat Esfe, Mohammad; Saedodin, Seyfolah; Rejvani, Mousa; Shahram, Jalal

    2017-06-01

    In the present study, rheological behavior of ZnO/10W40 nano-lubricant is investigated by an experimental approach. Firstly, ZnO nanoparticles of 10-30 nm were dispersed in 10W40 engine oil with solid volume fractions of 0.25-2%, then the viscosity of the composed nano-lubricant was measured in temperature ranges of 5-55 °C and in various shear rates. From analyzing the results, it was revealed that both of the base oil and nano-lubricants are non-Newtonian fluids which exhibit shear thinning behavior. Sensitivity of viscosity to the solid volume fraction enhancement was calculated by a new correlation which was proposed in terms of solid volume fraction and temperature. In order to attain an accurate model by which experimental data are predicted, an artificial neural network (ANN) with a hidden layer and 5 neurons was designed. This model was considerably accurate in predicting experimental data of dynamic viscosity as R-squared and average absolute relative deviation (AARD %) were respectively 0.9999 and 0.0502.

  15. Experimental and Molecular Modeling Evaluation of the Physicochemical Properties of Proline-Based Deep Eutectic Solvents.

    PubMed

    van den Bruinhorst, Adriaan; Spyriouni, Theodora; Hill, Jörg-Rüdiger; Kroon, Maaike C

    2018-01-11

    The liquid range and applicability of deep eutectic solvents (DESs) are determined by their physicochemical properties. In this work, the physicochemical properties of glycolic acid:proline and malic acid:proline were evaluated experimentally and with MD simulations at five different ratios. Both DESs exhibited esterification upon preparation, which affected the viscosity in particular. In order to minimize oligomer formation and water release, three different experimental preparation methods were explored, but none could prevent esterification. The experimental and calculated densities of the DESs were found to be in good agreement. The measured and modeled glass transition temperature showed similar trends with composition, as did the experimental viscosity and the calculated diffusivities. The MD simulations provided additional insight at the atomistic level, showing that at acid-rich compositions, the acid-acid hydrogen bonding (HB) interactions prevail. Malic acid-based DESs show stronger acid-acid HB interactions than glycolic acid-based ones, possibly explaining its extreme viscosity. Upon the addition of proline, the interspecies interactions become predominant, confirming the formation of the widely assumed HB network between the DESs constituents in the liquid phase.

  16. Assessment of structural heterogeneity and viscosity in the cervix using shear wave elasticity imaging: initial results from a Rhesus macaque model

    PubMed Central

    Rosado-Mendez, Ivan M.; Palmeri, Mark L.; Drehfal, Lindsey C.; Guerrero, Quinton W.; Simmons, Heather; Feltovich, Helen; Hall, Timothy J.

    2016-01-01

    Shear Wave Elasticity Imaging (SWEI) shows promise for evaluating the pregnant cervix. Changes in shear wave group velocity have been attributed exclusively to changes in stiffness. This assumes homogeneity within the region of interest and purely elastic tissue behavior. However, the cervix is structurally/microstructurally heterogeneous and viscoelastic. We therefore developed strategies to investigate these complex tissue properties. SWEI was performed ex vivo on 14 unripened and 13 misoprostol-ripened cervix specimens from Rhesus macaques. After application of tests of significant and uniform shear wave displacement, as well as reliability of estimates, group velocity decreased significantly from the distal (vaginal) to proximal (uterine) end of unripened, but not ripened, specimens. Viscosity was quantified by the slope of the phase velocity vs. frequency. Dispersion was observed in both groups (median 5.5 m/s/kHz, interquartile range: 1.5–12.0 m/s/kHz), also decreasing towards the proximal cervix. This work suggests that comprehensive assessment of complex tissues such as cervix requires consideration of structural heterogeneity and viscosity. PMID:28189282

  17. Salinity effects during immiscible displacement in porous media: electrokinetic stabilization of viscous fingering

    NASA Astrophysics Data System (ADS)

    Mirzadeh, Mohammad; Bazant, Martin

    2017-11-01

    Interfacial instabilities are ubiquitous in Fluid Mechanics and have been one of the main the subjects of pattern formation. However, these instabilities could lead to inefficiencies which are undesired in many applications. For instance, viscous fingering results in residual trapping of oil during secondary recovery when a low-viscosity fluid, e.g. water, is used for injection. In their seminal work, Saffman and Taylor showed that the onset of this instability is controlled by the viscosity ratio of the two fluids. However, other physiochemical processes could enhance or suppress viscous fingering. Here we consider the role of salinity effects on the front stability. Our recent theory suggests that viscous fingering could be controlled, and even suppressed, by appropriately injecting electric currents. However, even in the absence of any external currents, strong electrokinetic coupling (present in small pores when the electric double layers overlap) can reduce viscous fingering by increasing the ``effective viscosity'' of the injected fluid. These findings suggest that it might be possible to improve extraction efficiencies by appropriately controlling the salt concentration of the injected fluid.

  18. Leveraging Internal Viscous Flow to Extend the Capabilities of Beam-Shaped Soft Robotic Actuators.

    PubMed

    Matia, Yoav; Elimelech, Tsah; Gat, Amir D

    2017-06-01

    Elastic deformation of beam-shaped structures due to embedded fluidic networks (EFNs) is mainly studied in the context of soft actuators and soft robotic applications. Currently, the effects of viscosity are not examined in such configurations. In this work, we introduce an internal viscous flow and present the extended range of actuation modes enabled by viscosity. We analyze the interaction between elastic deflection of a slender beam and viscous flow in a long serpentine channel embedded within the beam. The embedded network is positioned asymmetrically with regard to the neutral plane and thus pressure within the channel creates a local moment deforming the beam. Under assumptions of creeping flow and small deflections, we obtain a fourth-order integro-differential equation governing the time-dependent deflection field. This relation enables the design of complex time-varying deformation patterns of beams with EFNs. Leveraging viscosity allows to extend the capabilities of beam-shaped actuators such as creation of inertia-like standing and moving wave solutions in configurations with negligible inertia and limiting deformation to a small section of the actuator. The results are illustrated experimentally.

  19. Conditions of viscosity measurement for detecting irradiated peppers

    NASA Astrophysics Data System (ADS)

    Hayashi, Toru; Todoriki, Setsuko; Okadome, Hiroshi; Kohyama, Kaoru

    1995-04-01

    Viscosity of gelatinized suspensions of black and white peppers decreased depending upon dose. The viscosity was influenced by gelatinization and viscosity measurement conditions. The difference between unirradiated pepper and an irradiated one was larger at a higher pH and temperature for gelatinization. A viscosity parameter normalized with the starch content of pepper sample and the viscosity of a 5% suspension of corn starch could get rid of the influence of the conditions for viscosity measurement such as a type of viscometer, shear rate and temperature.

  20. Including fluid shear viscosity in a structural acoustic finite element model using a scalar fluid representation

    PubMed Central

    Cheng, Lei; Li, Yizeng; Grosh, Karl

    2013-01-01

    An approximate boundary condition is developed in this paper to model fluid shear viscosity at boundaries of coupled fluid-structure system. The effect of shear viscosity is approximated by a correction term to the inviscid boundary condition, written in terms of second order in-plane derivatives of pressure. Both thin and thick viscous boundary layer approximations are formulated; the latter subsumes the former. These approximations are used to develop a variational formation, upon which a viscous finite element method (FEM) model is based, requiring only minor modifications to the boundary integral contributions of an existing inviscid FEM model. Since this FEM formulation has only one degree of freedom for pressure, it holds a great computational advantage over the conventional viscous FEM formulation which requires discretization of the full set of linearized Navier-Stokes equations. The results from thick viscous boundary layer approximation are found to be in good agreement with the prediction from a Navier-Stokes model. When applicable, thin viscous boundary layer approximation also gives accurate results with computational simplicity compared to the thick boundary layer formulation. Direct comparison of simulation results using the boundary layer approximations and a full, linearized Navier-Stokes model are made and used to evaluate the accuracy of the approximate technique. Guidelines are given for the parameter ranges over which the accurate application of the thick and thin boundary approximations can be used for a fluid-structure interaction problem. PMID:23729844

  1. Novel 1H low field nuclear magnetic resonance applications for the field of biodiesel

    PubMed Central

    2013-01-01

    Background Biodiesel production has increased dramatically over the last decade, raising the need for new rapid and non-destructive analytical tools and technologies. 1H Low Field Nuclear Magnetic Resonance (LF-NMR) applications, which offer great potential to the field of biodiesel, have been developed by the Phyto Lipid Biotechnology Lab research team in the last few years. Results Supervised and un-supervised chemometric tools are suggested for screening new alternative biodiesel feedstocks according to oil content and viscosity. The tools allowed assignment into viscosity groups of biodiesel-petrodiesel samples whose viscosity is unknown, and uncovered biodiesel samples that have residues of unreacted acylglycerol and/or methanol, and poorly separated and cleaned glycerol and water. In the case of composite materials, relaxation time distribution, and cross-correlation methods were successfully applied to differentiate components. Continuous distributed methods were also applied to calculate the yield of the transesterification reaction, and thus monitor the progress of the common and in-situ transesterification reactions, offering a tool for optimization of reaction parameters. Conclusions Comprehensive applied tools are detailed for the characterization of new alternative biodiesel resources in their whole conformation, monitoring of the biodiesel transesterification reaction, and quality evaluation of the final product, using a non-invasive and non-destructive technology that is new to the biodiesel research area. A new integrated computational-experimental approach for analysis of 1H LF-NMR relaxometry data is also presented, suggesting improved solution stability and peak resolution. PMID:23590829

  2. Viscosity, conductivity, and electrochemical property of dicyanamide ionic liquids

    NASA Astrophysics Data System (ADS)

    Yuan, Wen-Li; Yang, Xiao; He, Ling; Xue, Ying; Qin, Song; Tao, Guo-Hong

    2018-03-01

    The instructive structure-property relationships of ionic liquids (ILs) can be put to task-specific design of new functionalized ILs. The dicyanamide (DCA) ILs are typical CHN type ILs which are halogen free, chemical stable, low-viscous and fuel-rich. The transport properties of DCA ionic liquids are significant for their applications as solvents, electrolytes and hypergolic propellants. This work systematically investigates several important transport properties of four DCA ILs ([C4mim][N(CN)2], [C4m2im][N(CN)2], N4442[N(CN)2], and N8444[N(CN)2]) including viscosity, conductivity, and electrochemical property at different temperatures. The melting points, temperature-dependent viscosities and conductivities reveal the structure-activity relationship of four DCA ILs. From the Walden plots, the imidazolium cations exhibit stronger cation–anion attraction than the ammonium cations. DCA ILs have relatively high values of electrochemical windows (EWs), which indicates that the DCA ILs are potential candidates for electrolytes in electrochemical applications. The cyclic voltammograms of Eu(III) in these DCA ILs at GC working electrode at various temperatures 303–333 K consists of quasi-reversible waves. The electrochemical properties of the DCA ILs are also dominated by the cationic structures. The current intensity (ip), the diffusion coefficients (Do), the charge transfer rate constants (ks) of Eu(III) in DCA ILs all increased with the molar conductivities increased. The cationic structure-transport property relationships of DCA ILs were constructed for designing novel functionalized ILs to fulfill specific demands.

  3. Including fluid shear viscosity in a structural acoustic finite element model using a scalar fluid representation.

    PubMed

    Cheng, Lei; Li, Yizeng; Grosh, Karl

    2013-08-15

    An approximate boundary condition is developed in this paper to model fluid shear viscosity at boundaries of coupled fluid-structure system. The effect of shear viscosity is approximated by a correction term to the inviscid boundary condition, written in terms of second order in-plane derivatives of pressure. Both thin and thick viscous boundary layer approximations are formulated; the latter subsumes the former. These approximations are used to develop a variational formation, upon which a viscous finite element method (FEM) model is based, requiring only minor modifications to the boundary integral contributions of an existing inviscid FEM model. Since this FEM formulation has only one degree of freedom for pressure, it holds a great computational advantage over the conventional viscous FEM formulation which requires discretization of the full set of linearized Navier-Stokes equations. The results from thick viscous boundary layer approximation are found to be in good agreement with the prediction from a Navier-Stokes model. When applicable, thin viscous boundary layer approximation also gives accurate results with computational simplicity compared to the thick boundary layer formulation. Direct comparison of simulation results using the boundary layer approximations and a full, linearized Navier-Stokes model are made and used to evaluate the accuracy of the approximate technique. Guidelines are given for the parameter ranges over which the accurate application of the thick and thin boundary approximations can be used for a fluid-structure interaction problem.

  4. Viscosity, Conductivity, and Electrochemical Property of Dicyanamide Ionic Liquids

    PubMed Central

    Yuan, Wen-Li; Yang, Xiao; He, Ling; Xue, Ying; Qin, Song; Tao, Guo-Hong

    2018-01-01

    The instructive structure-property relationships of ionic liquids (ILs) can be put to task-specific design of new functionalized ILs. The dicyanamide (DCA) ILs are typical CHN type ILs which are halogen free, chemical stable, low-viscous, and fuel-rich. The transport properties of DCA ionic liquids are significant for their applications as solvents, electrolytes, and hypergolic propellants. This work systematically investigates several important transport properties of four DCA ILs ([C4mim][N(CN)2], [C4m2im][N(CN)2], N4442[N(CN)2], and N8444[N(CN)2]) including viscosity, conductivity, and electrochemical property at different temperatures. The melting points, temperature-dependent viscosities and conductivities reveal the structure-activity relationship of four DCA ILs. From the Walden plots, the imidazolium cations exhibit stronger cation–anion attraction than the ammonium cations. DCA ILs have relatively high values of electrochemical windows (EWs), which indicates that the DCA ILs are potential candidates for electrolytes in electrochemical applications. The cyclic voltammograms of Eu(III) in these DCA ILs at GC working electrode at various temperatures 303–333 K consists of quasi-reversible waves. The electrochemical properties of the DCA ILs are also dominated by the cationic structures. The current intensity (ip), the diffusion coefficients (Do), the charge transfer rate constants (ks) of Eu(III) in DCA ILs all increased with the molar conductivities increased. The cationic structure-transport property relationships of DCA ILs were constructed for designing novel functionalized ILs to fulfill specific demands. PMID:29600245

  5. 46 CFR 153.2 - Definitions and acronyms.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... viscosity NLS includes high viscosity Category B NLS and high viscosity Category C NLS. High viscosity Category B NLS means any Category B NLS having a viscosity of at least 25 mPa.s at 20 °C and at least 25 mPa.s at the time it is unloaded. High viscosity Category C NLS means any Category C NLS having a...

  6. 46 CFR 153.2 - Definitions and acronyms.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... viscosity NLS includes high viscosity Category B NLS and high viscosity Category C NLS. High viscosity Category B NLS means any Category B NLS having a viscosity of at least 25 mPa.s at 20 °C and at least 25 mPa.s at the time it is unloaded. High viscosity Category C NLS means any Category C NLS having a...

  7. Applications of Taylor-Galerkin finite element method to compressible internal flow problems

    NASA Technical Reports Server (NTRS)

    Sohn, Jeong L.; Kim, Yongmo; Chung, T. J.

    1989-01-01

    A two-step Taylor-Galerkin finite element method with Lapidus' artificial viscosity scheme is applied to several test cases for internal compressible inviscid flow problems. Investigations for the effect of supersonic/subsonic inlet and outlet boundary conditions on computational results are particularly emphasized.

  8. Flow properties of suspensions rich in solids

    NASA Technical Reports Server (NTRS)

    Armstrong, W. P.; Gay, E. C.; Nelson, P. A.

    1969-01-01

    Mathematical evaluation of flow properties of fluids carrying high concentrations of solids in suspension relates suspension viscosity to physical properties of the solids and liquids, and provides a means for predicting flow behavior. A technique for calculating a suspensions flow rates is applicable to the design of pipelines.

  9. Evaluation of Fuel Character Effects on J79 Engine Combustion System

    DTIC Science & Technology

    1979-06-01

    A. Overall Engine Description The J79 engine is a lightweight, high-thrust, axial - flow turbojet engine with variable afterburner thrust. This engine...thimbles are arranged to provide flow patterns for flame stabilization in the primary zone and mixing and turbine inlet temperature profile control at...measured with stainard )S𔃾Z orifices- Fuel flow races uere measured with calibrated turbine flotaMcers corrected for the density aan viscosity of each

  10. PH Sensitive Polymers for Improving Reservoir Sweep and Conformance Control in Chemical Flooring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukul Sharma; Steven Bryant; Chun Huh

    There is an increasing opportunity to recover bypassed oil from depleted, mature oilfields in the US. The recovery factor in many reservoirs is low due to inefficient displacement of the oil by injected fluids (typically water). The use of chemical flooding methods to increase recovery efficiencies is severely constrained by the inability of the injected chemicals to contact the bypassed oil. Low sweep efficiencies are the primary cause of low oil recoveries observed in the field in chemical flooding operations even when lab studies indicate high oil recovery efficiency. Any technology that increases the ability of chemical flooding agents tomore » better contact the remaining oil and reduce the amount of water produced in conjunction with the produced oil will have a significant impact on the cost of producing oil domestically in the US. This translates directly into additional economically recoverable reserves, which extends the economic lives of marginal and mature wells. The objective of this research project was to develop a low-cost, pH-triggered polymer for use in IOR processes to improve reservoir sweep efficiency and reservoir conformance in chemical flooding. Rheological measurements made on the polymer solution, clearly show that it has a low viscosity at low pH and exhibits a sudden increase in viscosity (by 2 orders of magnitude or more) at a pH of 3.5 to 4. This implies that the polymer would preferentially flow into zones containing water since the effective permeability to water is highest in these zones. As the pH of the zone increases due to the buffering capacity of the reservoir rock, the polymer solution undergoes a liquid to gel transition causing a sharp increase in the viscosity of the polymer solution in these zones. This allows operationally robust, in-depth conformance treatment of such water bearing zones and better mobility control. The rheological properties of HPAM solutions were measured. These include: steady-shear viscosity and viscoelastic behavior as functions of pH; shear rate; polymer concentration; salinity, including divalent ion effects; polymer molecular weight; and degree of hydrolysis. A comprehensive rheological model was developed for HPAM solution rheology in terms of: shear rate; pH; polymer concentration; and salinity, so that the spatial and temporal changes in viscosity during the polymer flow in the reservoir can be accurately modeled. A series of acid coreflood experiments were conducted to understand the geochemical reactions relevant for both the near-wellbore injection profile control and for conformance control applications. These experiments showed that the use hydrochloric acid as a pre-flush is not viable because of the high reaction rate with the rock. The use of citric acid as a pre-flush was found to be quite effective. This weak acid has a slow rate of reaction with the rock and can buffer the pH to below 3.5 for extended periods of time. With the citric acid pre-flush the polymer could be efficiently propagated through the core in a low pH environment i.e. at a low viscosity. The transport of various HPAM solutions was studied in sandstones, in terms of permeability reduction, mobility reduction, adsorption and inaccessible pore volume with different process variables: injection pH, polymer concentration, polymer molecular weight, salinity, degree of hydrolysis, and flow rate. Measurements of polymer effluent profiles and tracer tests show that the polymer retention increases at the lower pH. A new simulation capability to model the deep-penetrating mobility control or conformance control using pH-sensitive polymer was developed. The core flood acid injection experiments were history matched to estimate geochemical reaction rates. Preliminary scale-up simulations employing linear and radial geometry floods in 2-layer reservoir models were conducted. It is clearly shown that the injection rate of pH-sensitive polymer solutions can be significantly increased by injecting it at a pH below 3.5 (at a fixed bottom-hole pressure). This improvement in injectivity by a factor of 2 to 10 can have a significant impact on the economics of chemical flooding and conformance control applications. Simulation tools and experimental data presented in this report help to design and implement such polymer injection projects.« less

  11. Quantification of bulk solution limits for liquid and interfacial transport in nanoconfinements.

    PubMed

    Kelly, Shaina; Balhoff, Matthew T; Torres-Verdín, Carlos

    2015-02-24

    Liquid imbibition, the capillary-pressure-driven flow of a liquid into a gas, provides a mechanism for studying the effects of solid-liquid and solid-liquid-gas interfaces on nanoscale transport. Deviations from the classic Washburn equation for imbibition are generally observed for nanoscale imbibition, but the identification of the origin of these irregularities in terms of transport variables varies greatly among investigators. We present an experimental method and corresponding image and data analysis scheme that enable the determination of independent effective values of nanoscale capillary pressure, liquid viscosity, and interfacial gas partitioning coefficients, all critical transport variables, from imbibition within nanochannels. Experiments documented herein are performed within two-dimensional siliceous nanochannels of varying size and as small as 30 nm × 60 nm in cross section. The wetting fluid used is the organic solvent isopropanol and the nonwetting fluid is air, but investigations are not limited to these fluids. Optical data of dynamic flow are rare in geometries that are nanoscale in two dimensions due to the limited resolution of optical microscopy. We are able to capture tracer-free liquid imbibition with reflected differential interference contrast microscopy. Results with isopropanol show a significant departure from bulk transport values in the nanochannels: reduced capillary pressures, increased liquid viscosity, and nonconstant interfacial mass-transfer coefficients. The findings equate to the nucleation of structured, quasi-crystalline boundary layers consistently ∼10-25 nm in extent. This length is far thicker than the boundary layer range prescribed by long-range intermolecular force interactions. Slower but linear imbibition in some experimental cases suggests that structured boundary layers may inhibit viscous drag at confinement walls for critical nanochannel dimensions. Probing the effects of nanoconfinement on the definitions of capillary pressure, viscosity, and interfacial mass transfer is critical in determining and improving the functionality and fluid transport efficacy of geological, biological, and synthetic nanoporous media and materials.

  12. Continuous microcellular foaming of polylactic acid/natural fiber composites

    NASA Astrophysics Data System (ADS)

    Diaz-Acosta, Carlos A.

    Poly(lactic acid) (PLA), a biodegradable thermoplastic derived from renewable resources, stands out as a substitute to petroleum-based plastics. In spite of its excellent properties, commercial applications are limited because PLA is more expensive and more brittle than traditional petroleum-based resins. PLA can be blended with cellulosic fibers to reduce material cost. However, the lowered cost comes at the expense of flexibility and impact strength, which can be enhanced through the production of microcellular structures in the composite. Microcellular foaming uses inert gases (e.g., carbon dioxide) as physical blowing agents to make cellular structures with bubble sizes of less than 10 microm and cell-population densities (number of bubbles per unit volume) greater than 109 cells/cm³. These unique characteristics result in a significant increase in toughness and elongation at break (ductility) compared with unfoamed parts because the presence of small bubbles can blunt the crack-tips increasing the energy needed to propagate the crack. Microcellular foams have been produced through a two step batch process. First, large amounts of gas are dissolved in the solid plastic under high pressure (sorption process) to form a single-phase solution. Second, a thermodynamic instability (sudden drop in solubility) triggers cell nucleation and growth as the gas diffuses out of the plastic. Batch production of microcellular PLA has addressed some of the drawbacks of PLA. Unfortunately, the batch foaming process is not likely to be implemented in the industrial production of foams because it is not cost-effective. This study investigated the continuous microcellular foaming process of PLA and PLA/wood-fiber composites. The effects of the processing temperature and material compositions on the melt viscosity, pressure drop rate, and cell-population density were examined in order to understand the nucleation mechanisms in neat and filled PLA foams. The results indicated that the processing temperature had a strong effect of the rheology of the melt and cell morphology. Processing at a lower temperature significantly increased the cell nucleation rate of neat PLA (amorphous and semi-crystalline) because of the fact that a high melt viscosity induced a high pressure drop rate in the polymer/gas solution. The presence of nanoclay did not affect the homogeneous nucleation but increased the heterogeneous nucleation, allowing both nucleation mechanisms to occur during the foaming process. The effect of wood-flour (0-30 wt.%) and rheology modifier contents on the melt viscosity and cell morphology of microcellular foamed composites was investigated. The viscosity of the melt increased with wood-flour content and decreased with rheology modifier content, affecting the processing conditions (i.e., pressure drop and pressure drop rate) and foamability of the composites. Matching the viscosity of the composites with that of neat PLA resulted in the best cell morphologies. Physico-mechanical characterization of microcellular foamed PLA as a function of cell morphology was performed to establish process-morphology-property relationships. The processing variables, i.e., amount of gas injected, flow rate, and processing temperature affected the development of the cellular structure and mechanical properties of the foams.

  13. The role of bulk viscosity on the decay of compressible, homogeneous, isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Johnsen, Eric; Pan, Shaowu

    2016-11-01

    The practice of neglecting bulk viscosity in studies of compressible turbulence is widespread. While exact for monatomic gases and unlikely to strongly affect the dynamics of fluids whose bulk-to-shear viscosity ratio is small and/or of weakly compressible turbulence, this assumption is not justifiable for compressible, turbulent flows of gases whose bulk viscosity is orders of magnitude larger than their shear viscosities (e.g., CO2). To understand the mechanisms by which bulk viscosity and the associated phenomena affect compressible turbulence, we conduct DNS of freely decaying compressible, homogeneous, isotropic turbulence for ratios of bulk-to-shear viscosity ranging from 0-1000. Our simulations demonstrate that bulk viscosity increases the decay rate of turbulent kinetic energy; while enstrophy exhibits little sensitivity to bulk viscosity, dilatation is reduced by an order of magnitude within the two eddy turnover time. Via a Helmholtz decomposition of the flow, we determined that bulk viscosity damps the dilatational velocity and reduces dilatational-solenoidal exchanges, as well as pressure-dilatation coupling. In short, bulk viscosity renders compressible turbulence incompressible by reducing energy transfer between translational and internal modes.

  14. Effect of Silk Protein Processing on Drug Delivery from Silk Films

    PubMed Central

    Pritchard, Eleanor M.; Hu, Xiao; Finley, Violet; Kuo, Catherine K.; Kaplan, David L.

    2013-01-01

    Sericin removal from the core fibroin protein of silkworm silk is a critical first step in the use of silk for biomaterial-related applications, but degumming can affect silk biomaterial properties, including molecular weight, viscosity, diffusivity and degradation behavior. Increasing the degumming time (10, 30, 60 and 90 min) decreases the average molecular weight of silk protein in solution, silk solution viscosity, and silk film glass transition temperature, and increases the rate of degradation of silk film by protease. Model compounds spanning a range of physical-chemical properties generally showed an inverse relationship between degumming time and release rate through a varied degumming time silk coating. Degumming provides a useful control point to manipulate silk’s material properties. PMID:23349062

  15. Effects of pressure distribution on parallel circular porous plates with combined effect of piezo-viscous dependency and non-Newtonian couple stress fluid

    NASA Astrophysics Data System (ADS)

    Vijayakumar, B.; Kesavan, Sundarammal

    2018-04-01

    Piezo-viscous effect i.e., Viscosity-pressure dependency has an important part in the applications of fluid flows like fluid lubrication, micro fluidics and geophysics. In this paper, the joint effects of piezo-viscous dependency and non-Newtonian couple stresses on the performance of circular porous plate’s squeeze film bearing have been studied. The results for pressure with various values of viscosity-pressure parameters are numerically calculated and compared with iso-viscous couple stress and Newtonian lubricants. Due to piezo-viscous effect, the pressure with piezo-viscous Non-Newtonian is significantly higher than the pressure with iso-viscous Newtonian and iso-viscous Non-Newtonian fluid.

  16. An Interpretation of the Laminar-Turbulent Transition Startup against the Consideration of the Transverse Viscosity Factor

    NASA Astrophysics Data System (ADS)

    Kolodezhnov, V. N.

    2018-03-01

    This paper proposes a rheological model of a fluid having the Newtonian model applicability limit and a potential for further “addition” of the transverse viscosity factor. The dynamic equations for a fluid that has such rheological model are discussed, the analysis of which demonstrates the possibility of “generating” the cross stream velocity components. The transition to the dimensionless notation introduces four dimensionless complexes of local characterization for the transition conditions in the neighborhood of the flow region point in question. Based on such dimensionless complexes and using the known experimental data, the empiric conditions of “generating” the cross stream velocity components and starting the laminar-turbulent transition are proposed.

  17. Olivine-hosted melt inclusions record efficient mixing of mantle melts in continental flood basalt provinces

    NASA Astrophysics Data System (ADS)

    Jennings, E. S.; Gibson, S. A.; Maclennan, J.; Heinonen, J. S.

    2017-12-01

    Primitive melt inclusions trapped in various minerals found in global ridge settings have been shown to record highly variable magmatic compositions. Mantle melting is expected to be near-fractional, producing a wide range of melt compositions that must accumulate and mix in crustal magma chambers. In primitive rocks, the melt inclusion variability observed in major, trace and isotope geochemistry is consistent to the first order with partial melting of variably depleted mantle, and indicate that the host phases began to crystallise prior to the completion of melt aggregation and mixing. We present new major and trace element data from a large number of rehomogenised olivine-hosted melt inclusions from the Cretaceous Paraná-Etendeka and Jurassic Karoo continental flood basalt (CFB) provinces [1]. We show that the major element chemistry of the melt inclusions can be severely disrupted by the rehomogenisation process and, as a consequence, their initial compositions cannot easily be back-calculated. However, despite the age of the samples, the trace element geochemistry of the melt inclusions is well-preserved. Despite coming from near-liquidus olivines from primitive picrites and ferropicrites, the inclusions are remarkably homogeneous; none of the anticipated variability in incompatible trace element compositions is observed. When considered alongside literature data, it appears that variability in primitive melts - as recorded by melt inclusions - is low in CFBs and OIBs relative to ridge settings, e.g. Iceland. We suggest that the tectonic setting imposes a control on the mixing of mantle melts: hot, plume-derived melts generated beneath relatively thick lithosphere may be prone to efficient mixing, perhaps due to their low viscosity, long transport pathways, and/or a superliquidus emplacement temperature [1]. This interpretation is supported by the almost non-existent variability of olivine-hosted inclusions from ferropicrite samples: these magmas represents the deepest, hottest and lowest viscosity magma of all the samples considered. [1] Jennings E. S., Gibson S. A., Maclennan J. and Heinonen J. S. (2017) Deep mixing of mantle melts beneath continental flood basalt provinces: Constraints from olivine-hosted melt inclusions in primitive magmas. Geochimica et Cosmochimica Acta 196, 36-57.

  18. Nonlinear and parallel algorithms for finite element discretizations of the incompressible Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Arteaga, Santiago Egido

    1998-12-01

    The steady-state Navier-Stokes equations are of considerable interest because they are used to model numerous common physical phenomena. The applications encountered in practice often involve small viscosities and complicated domain geometries, and they result in challenging problems in spite of the vast attention that has been dedicated to them. In this thesis we examine methods for computing the numerical solution of the primitive variable formulation of the incompressible equations on distributed memory parallel computers. We use the Galerkin method to discretize the differential equations, although most results are stated so that they apply also to stabilized methods. We also reformulate some classical results in a single framework and discuss some issues frequently dismissed in the literature, such as the implementation of pressure space basis and non- homogeneous boundary values. We consider three nonlinear methods: Newton's method, Oseen's (or Picard) iteration, and sequences of Stokes problems. All these iterative nonlinear methods require solving a linear system at every step. Newton's method has quadratic convergence while that of the others is only linear; however, we obtain theoretical bounds showing that Oseen's iteration is more robust, and we confirm it experimentally. In addition, although Oseen's iteration usually requires more iterations than Newton's method, the linear systems it generates tend to be simpler and its overall costs (in CPU time) are lower. The Stokes problems result in linear systems which are easier to solve, but its convergence is much slower, so that it is competitive only for large viscosities. Inexact versions of these methods are studied, and we explain why the best timings are obtained using relatively modest error tolerances in solving the corresponding linear systems. We also present a new damping optimization strategy based on the quadratic nature of the Navier-Stokes equations, which improves the robustness of all the linearization strategies considered and whose computational cost is negligible. The algebraic properties of these systems depend on both the discretization and nonlinear method used. We study in detail the positive definiteness and skewsymmetry of the advection submatrices (essentially, convection-diffusion problems). We propose a discretization based on a new trilinear form for Newton's method. We solve the linear systems using three Krylov subspace methods, GMRES, QMR and TFQMR, and compare the advantages of each. Our emphasis is on parallel algorithms, and so we consider preconditioners suitable for parallel computers such as line variants of the Jacobi and Gauss- Seidel methods, alternating direction implicit methods, and Chebyshev and least squares polynomial preconditioners. These work well for moderate viscosities (moderate Reynolds number). For small viscosities we show that effective parallel solution of the advection subproblem is a critical factor to improve performance. Implementation details on a CM-5 are presented.

  19. A Non-Arrhenian Viscosity Model for Natural Silicate Melts with Applications to Volcanology

    NASA Astrophysics Data System (ADS)

    Russell, J. K.; Giordano, D.; Dingwell, D. B.

    2005-12-01

    Silicate melt viscosity is the most important physical property in volcanic systems. It governs styles and rates of flow, velocity distributions in flowing magma, rates of vesiculation, and, ultimately, sets limits on coherent(vs. fragmented or disrupted) flow. The prediction of melt viscosity over the range of conditions found on terrestrial planets remains a challenge. However, the extraordinary increase in number and quality of published measurements of melt viscosity suggests the possibility of new models. Here we review the attributes of previous models for silicate melt viscosity and, then, present a new predictive model natural silicate melts. The importance of silicate melt viscosity was recognized early [1] and culminated in 2 models for predicting silicate melt viscosity [2,3]. These models used an Arrhenian T-dependence; they were limited by a limited experimental database dominated by high-T measurements. Subsequent models have aimed to: i) extend the compositional range of Arrhenian T-dependent models [4,5]; ii) to develop non-Arrhenian models for limited ranges of composition [6,7,8], iii) to develop new strategies for modelling the composition and T-dependence of viscosity [9,10,11], and, finally, to create chemical models for the non-Arrhenian T-dependence of natural melts [12]. We present a multicomponent model for the compositional and T dependence of silicate melt viscosity based on data spanning a wide range of anhydrous melt compositions. The experimental data include micropenetration and concentric cylinder viscometry measurements covering a viscosity range of 10-1 to 1012 Pa s and a T-range from 700 to 1650°C. These published data provide a high- quality database comprising ~ 800 experimental data on 44 well-characterized melt compositions. Our model uses the Adam-Gibbs equation to capture T-dependence: log η = A + B/[T · log (T/C)] where A, B, and C are adjustable parameters that vary for different melt compositions. We assume that all silicate melts converge to a common, but unknown, high-T limit (e.g., A) and that all compositional dependence is accommodated for by B and C. We adopt a linear compositional dependence for B and C: B = σi=1..n [xi βi] C = σi=1..n [xi γi] where xi's are the mole fractions of oxide components (n=8) and βi and γi are adjustable parameters. The model, therefore, comprises 2 · n+1 adjustable parameters which are optimized for against the experimental database including a common value of A and compositional coefficeints for B and C. The new model reproduces the original database to within experimental uncertainty and can predict the viscosity of silicate melts across the full range of conditions found in Nature. References Cited: [1] Friedman et al., 1963. J Geophys Res 68, 6523-6535. [2] Bottinga Y & Weill D 1972. Am J Sci 272, 438- 475. [3] Shaw HR 1972. Am J Sci 272, 438- 475. [4] Persikov ES 1991. Adv Phys Geochem 9, 1-40. [5] Prusevich AA 1988. Geol Geofiz 29, 67-69. [6] Baker DR 1996. Am Min 81, 126-134. [7] Hess KU & Dingwell DB 1996. Am Min 81, 1297- 1300. [8] Zhang, et al. 2003. Am min 88, 1741- 1752. [9] Russell et al. 2002. Eur J Min 14, 417-428. [10] Russell et al. 2003. Am Min 8, 1390- 1394. [11] Russell JK & Giordano D In Press. Geochim Cosmochim Acta. [12] Giordano D & Dingwell DB 2003. Earth Planet. Sci. Lett. 208, 337-349.

  20. Blood viscosity monitoring during cardiopulmonary bypass based on pressure-flow characteristics of a Newtonian fluid.

    PubMed

    Okahara, Shigeyuki; Zu Soh; Takahashi, Shinya; Sueda, Taijiro; Tsuji, Toshio

    2016-08-01

    We proposed a blood viscosity estimation method based on pressure-flow characteristics of oxygenators used during cardiopulmonary bypass (CPB) in a previous study that showed the estimated viscosity to correlate well with the measured viscosity. However, the determination of the parameters included in the method required the use of blood, thereby leading to high cost of calibration. Therefore, in this study we propose a new method to monitor blood viscosity, which approximates the pressure-flow characteristics of blood considered as a non-Newtonian fluid with characteristics of a Newtonian fluid by using the parameters derived from glycerin solution to enable ease of acquisition. Because parameters used in the estimation method are based on fluid types, bovine blood parameters were used to calculate estimated viscosity (ηe), and glycerin parameters were used to estimate deemed viscosity (ηdeem). Three samples of whole bovine blood with different hematocrit levels (21.8%, 31.0%, and 39.8%) were prepared and perfused into the oxygenator. As the temperature changed from 37 °C to 27 °C, the oxygenator mean inlet pressure and outlet pressure were recorded for flows of 2 L/min and 4 L/min, and the viscosity was estimated. The value of deemed viscosity calculated with the glycerin parameters was lower than estimated viscosity calculated with bovine blood parameters by 20-33% at 21.8% hematocrit, 12-27% at 31.0% hematocrit, and 10-15% at 39.8% hematocrit. Furthermore, deemed viscosity was lower than estimated viscosity by 10-30% at 2 L/min and 30-40% at 4 L/min. Nevertheless, estimated and deemed viscosities varied with a similar slope. Therefore, this shows that deemed viscosity achieved using glycerin parameters may be capable of successfully monitoring relative viscosity changes of blood in a perfusing oxygenator.

Top