Sample records for variable x-ray emission

  1. A Study of Nonthermal X-Ray and Radio Emission from the O Star 9 Sgr

    NASA Technical Reports Server (NTRS)

    Waldron, Wayne L.; Corcoran, Michael F.; Drake, Stephen A.

    1999-01-01

    The observed X-ray and highly variable nonthermal radio emission from OB stars has eluded explanation for more than 18 years. The most favorable model of X-ray production in these stars (shocks) predicts both nonthermal radio and X-ray emission. The nonthermal X-ray emission should occur above 2 keV and the variability of this X-ray component should also be comparable to the observed radio variability. To test this scenario, we proposed an ASC/VLA monitoring program to observe the OB star, 9 Sgr, a well known nonthermal, variable radio source and a strong X-ray source. We requested 625 ks ASCA observations with a temporal spacing of approximately 4 days which corresponds to the time required for a density disturbance to propagate to the 6 cm radio free-free photosphere. The X-ray observations were coordinated with 5 multi-wavelength VLA observations. These observations represent the first systematic attempt to investigate the relationship between the X-ray and radio emission in OB stars.

  2. The Secret Lives of Cepheids: δ Cep—The Prototype of a New Class of Pulsating X-Ray Variable Stars

    NASA Astrophysics Data System (ADS)

    Engle, Scott G.; Guinan, Edward F.; Harper, Graham M.; Cuntz, Manfred; Remage Evans, Nancy; Neilson, Hilding R.; Fawzy, Diaa E.

    2017-03-01

    From our Secret Lives of Cepheids program, the prototype Classical Cepheid, δ Cep, is found to be an X-ray source with periodic pulsation-modulated X-ray variations. This finding complements our earlier reported phase-dependent FUV-UV emissions of the star that increase ˜10-20 times with highest fluxes at ˜ 0.90{--}0.95φ , just prior to maximum brightness. Previously δ Cep was found as potentially X-ray variable, using XMM-Newton observations. Additional phase-constrained data were secured with Chandra near X-ray emission peak, to determine if the emission and variability were pulsation-phase-specific to δ Cep and not transient or due to a possible coronally active, cool companion. The Chandra data were combined with prior XMM-Newton observations, and were found to very closely match the previously observed X-ray behavior. From the combined data set, a ˜4 increase in X-ray flux is measured, reaching a peak {L}{{X}} = 1.7 × 1029 erg s-1 near 0.45ϕ. The precise X-ray flux phasing with the star’s pulsation indicates that the emissions arise from the Cepheid and not from a companion. However, it is puzzling that the maximum X-ray flux occurs ˜0.5ϕ (˜3 days) later than the FUV-UV maximum. There are several other potential Cepheid X-ray detections with properties similar to δ Cep, and comparable X-ray variability is indicated for two other Cepheids: β Dor and V473 Lyr. X-ray generating mechanisms in δ Cep and other Cepheids are discussed. If additional Cepheids are confirmed to show phased X-ray variations, then δ Cep will be the prototype of a new class of pulsation-induced X-ray variables.

  3. Exploring the Hard and Soft X-ray Emission of Magnetic Cataclysmic Variables

    NASA Astrophysics Data System (ADS)

    de Martino, D.; Anzolin, G.; Bonnet-Bidaud, J.-M.; Falanga, M.; Matt, G.; Mouchet, M.; Mukai, K.; Masetti, N.

    2009-05-01

    A non-negligible fraction of galactic hard (>20 keV) X-ray sources were identified as CVs of the magnetic Intermediate Polar type in INTEGRAL, SWIFT and RXTE surveys, that suggests a still hidden but potentially important population of faint hard X-ray sources. Simbol-X has the unique potential to simultaneously characterize their variable and complex soft and hard X-ray emission thus allowing to understand their putative role in galactic populations of X-ray sources.

  4. X-Rays from Saturn and its Rings

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Anil; Elsner, Ron F.; Waite, J. Hunter; Gladstone, G. Randall; Cravens, Tom E.; Ford, Peter G.

    2005-01-01

    In January 2004 Saturn was observed by Chandra ACIS-S in two exposures, 00:06 to 11:00 UT on 20 January and 14:32 UT on 26 January to 01:13 UT on 27 January. Each continuous observation lasted for about one full Saturn rotation. These observations detected an X-ray flare from the Saturn's disk and indicate that the entire Saturnian X-ray emission is highly variable -- a factor of $\\sim$4 variability in brightness in a week time. The Saturn X-ray flare has a time and magnitude matching feature with the solar X-ray flare, which suggests that the disk X-ray emission of Saturn is governed by processes happening on the Sun. These observations also unambiguously detected X-rays from Saturn's rings. The X-ray emissions from rings are present mainly in the 0.45-0.6 keV band centered on the atomic OK$\\alpha$ fluorescence line at 525 eV: indicating the production of X-rays due to oxygen atoms in the water icy rings. The characteristics of X-rays from Saturn's polar region appear to be statistically consistent with those from its disk X-rays, suggesting that X-ray emission from the polar cap region might be an extension of the Saturn disk X-ray emission.

  5. Variability of the symbiotic X-ray binary GX 1+4. Enhanced activity near periastron passage

    NASA Astrophysics Data System (ADS)

    Iłkiewicz, Krystian; Mikołajewska, Joanna; Monard, Berto

    2017-05-01

    Context. GX 1+4 belongs to a rare class of X-ray binaries with red giant donors, symbiotic X-ray binaries. It has a history of complicated variability on multiple timescales in the optical light and X-rays. The nature of this variability remains poorly understood. Aims: We aim to study variability of GX 1+4 on long timescale in X-ray and optical bands. Methods: We took X-ray observations from the INTEGRAL Soft Gamma-Ray Imager and RXTE All Sky Monitor. Optical observations were made with the INTEGRAL Optical Monitoring Camera. Results: The variability of GX 1+4 both in optical light and hard X-ray emission (>17 keV) is dominated by 50-70 d quasi-periodic changes. The amplitude of this variability is highest during the periastron passage, while during the potential neutron star eclipse the system is always at minimum. This confirms the 1161 d orbital period that has had been proposed for the system based on radial velocity curve. Neither the quasi-periodic variability or the orbital period are detected in soft X-ray emission (1.3-12.2 keV), where the binary shows no apparent periodicity.

  6. Characterization of the Infrared/X-ray sub-second variability for the black-hole transient GX 339-4

    NASA Astrophysics Data System (ADS)

    Vincentelli, F. M.; Casella, P.; Maccarone, T. J.; Uttley, P.; Gandhi, P.; Belloni, T.; De Marco, B.; Russell, D. M.; Stella, L.; O'Brien, K.

    2018-03-01

    We present a detailed analysis of the X-ray/IR fast variability of the Black-Hole Transient GX 339-4 during its low/hard state in August 2008. Thanks to simultaneous high time-resolution observations made with the VLT and RXTE, we performed the first characterisation of the sub-second variability in the near-infrared band - and of its correlation with the X-rays - for a low-mass X-ray binary, using both time- and frequency-domain techniques. We found a power-law correlation between the X-ray and infrared fluxes when measured on timescales of 16 seconds, with a marginally variable slope, steeper than the one found on timescales of days at similar flux levels. We suggest the variable slope - if confirmed - could be due to the infrared flux being a non-constant combination of both optically thin and optically thick synchrotron emission from the jet, as a result of a variable self-absorption break. From cross spectral analysis we found an approximately constant infrared time lag of ≈0.1s, and a very high coherence of ˜90 per cent on timescales of tens of seconds, slowly decreasing toward higher frequencies. Finally, we report on the first detection of a linear rms-flux relation in the emission from a low-mass X-ray binary jet, on timescales where little correlation is found between the X-rays and the jet emission itself. This suggests that either the inflow variations and jet IR emission are coupled by a non-linear or time-variable transform, or that the IR rms-flux relation is not transferred from the inflow to the jet, but is an intrinsic property of emission processes in the jet.

  7. Characterization of the infrared/X-ray subsecond variability for the black hole transient GX 339-4

    NASA Astrophysics Data System (ADS)

    Vincentelli, F. M.; Casella, P.; Maccarone, T. J.; Uttley, P.; Gandhi, P.; Belloni, T.; De Marco, B.; Russell, D. M.; Stella, L.; O'Brien, K.

    2018-07-01

    We present a detailed analysis of the X-ray/IR fast variability of the Black-Hole Transient GX 339-4 during its low/hard state in 2008 August. Thanks to simultaneous high time resolution observations made with the VLT and RXTE, we performed the first characterization of the subsecond variability in the near-infrared band - and of its correlation with the X-rays - for a low-mass X-ray binary, using both time- and frequency-domain techniques. We found a power-law correlation between the X-ray and infrared fluxes when measured on time-scales of 16 s, with a marginally variable slope, steeper than the one found on time-scales of days at similar flux levels. We suggest the variable slope - if confirmed - could be due to the infrared flux being a non-constant combination of both optically thin and optically thick synchrotron emission from the jet, as a result of a variable self-absorption break. From cross spectral analysis, we found an approximately constant infrared time lag of ≈0.1 s, and a very high coherence of ˜90 per cent on time-scales of tens of seconds, slowly decreasing towards higher frequencies. Finally, we report on the first detection of a linear rms-flux relation in the emission from a low-mass X-ray binary jet, on time-scales where little correlation is found between the X-rays and the jet emission itself. This suggests that either the inflow variations and jet IR emission are coupled by a non-linear or time-variable transform, or that the IR rms-flux relation is not transferred from the inflow to the jet, but is an intrinsic property of emission processes in the jet.

  8. Time Resolved X-Ray Spectral Analysis of Class II YSOs in NGC 2264 During Optical Dips and Bursts

    NASA Astrophysics Data System (ADS)

    Guarcello, Mario Giuseppe; Flaccomio, Ettore; Micela, Giuseppina; Argiroffi, Costanza; Venuti, Laura

    2016-07-01

    Pre-Main Sequence stars are variable sources. The main mechanisms responsible for their variability are variable extinction, unsteady accretion, and rotational modulation of both hot and dark photospheric spots and X-ray active regions. In stars with disks this variability is thus related to the morphology of the inner circumstellar region (<0.1 AU) and that of photosphere and corona, all impossible to be spatially resolved with present day techniques. This has been the main motivations of the Coordinated Synoptic Investigation of NGC2264, a set of simultaneous observations of NGC2264 with 15 different telescopes.We analyze the X-ray spectral properties of stars with disks extracted during optical bursts and dips in order to unveil the nature of these phenomena. Stars are analyzed in two different samples. In stars with variable extinction a simultaneous increase of optical extinction and X-ray absorption is searched during the optical dips; in stars with accretion bursts we search for soft X-ray emission and increasing X-ray absorption during the bursts. In 9/33 stars with variable extinction we observe simultaneous increase of X-ray absorption and optical extinction. In seven dips it is possible to calculate the NH/AV ratio in order to infer the composition of the obscuring material. In 5/27 stars with optical accretion bursts, we observe soft X-ray emission during the bursts that we associate to the emission of accreting gas. It is not surprising that these properties are not observed in all the stars with dips and bursts since favorable geometric configurations are required. The observed variable absorption during the dips is mainly due to dust-free material in accretion streams. In stars with accretion bursts we observe in average a larger soft X-ray spectral component not observed in non accreting stars. This indicates that this soft X-ray emission arises from the accretion shocks.

  9. X-Ray Emission for the Saturnian System

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Anil; Elsner, Ron F.; Waite, J. Hunter; Gladstone, G. Randall; Branduardi-Raymont, Graziella; Cravens, Tom E.; Ford, Peter G.

    2005-01-01

    Early attempts to detect X-ray emission from Saturn with Einstein (in December 1979) and ROSAT (in April 1992) were negative and marginal, respectively. Saturnian X-rays were unambiguously detected by XMM-Newton in September 2002 and by the Chandra X-ray Observatory in April 2003. These earlier X-ray observations of Saturn revealed emissions only from its non-auroral disk. In January 2004, Saturn was observed by the Advanced CCD Imaging Spectrometer of the Chandra observatory in two exposures on 20 and 26-27 January; each continuous observation lasted for about one full Saturn rotation. These new observations detected an X-ray flare at Saturn, and show that the Saturnian X-ray emission is highly variable - a factor of 4 variability in brightness over one week. These observations also discovered X-rays from Saturn's rings. The X-ray spectrum of the rings is dominated by emission in the 0.49-0.63 keV band with peak flux near the atomic oxygen K(lpha) fluorescence line at 525 eV. In addition, there is a hint of auroral emission from Saturn's south pole. But unlike Jupiter, X-rays from Saturn's polar region have characteristics similar to those from its disk and that they vary in brightness inversely to the FUV aurora observed by the Hubble Space Telescope. These exciting results obtained from Chandra observations will be presented and discussed.

  10. A Coordinated X-Ray and Optical Campaign of the Nearest Massive Eclipsing Binary, Delta Orionis Aa. II. X-Ray Variability

    NASA Technical Reports Server (NTRS)

    Nichols, J.; Huenemoerder, D. P.; Corcoran, M. F.; Waldron, W.; Naze, Y.; Pollock, A. M. T.; Moffat, A. F. J.; Lauer, J.; Shenar, T.; Russell, C. M. P.; hide

    2015-01-01

    We present time-resolved and phase-resolved variability studies of an extensive X-ray high-resolution spectral data set of the delta Ori Aa binary system. The four observations, obtained with Chandra ACIS (Advanced CCD Imaging Spectrometer) HETGS (High Energy Transmission Grating), have a total exposure time approximately equal to 479 kiloseconds and provide nearly complete binary phase coverage. Variability of the total X-ray flux in the range of 5-25 angstroms is confirmed, with a maximum amplitude of about plus or minus15 percent within a single approximately equal to125 kiloseconds observation. Periods of 4.76 and 2.04 days are found in the total X-ray flux, as well as an apparent overall increase in the flux level throughout the nine-day observational campaign. Using 40 kiloseconds contiguous spectra derived from the original observations, we investigate the variability of emission line parameters and ratios. Several emission lines are shown to be variable, including S (sub XV), Si (sub XIII), and Ne (sub IX). For the first time, variations of the X-ray emission line widths as a function of the binary phase are found in a binary system, with the smallest widths at phi = 0.0 when the secondary delta Ori Aa2 is at the inferior conjunction. Using 3D hydrodynamic modeling of the interacting winds, we relate the emission line width variability to the presence of a wind cavity created by a wind-wind collision, which is effectively void of embedded wind shocks and is carved out of the X-ray-producing primary wind, thus producing phase-locked X-ray variability.

  11. A Coordinated X-Ray and Optical Campaign of the Nearest Massive Eclipsing Binary, δ Orionis Aa. II. X-Ray Variability

    NASA Astrophysics Data System (ADS)

    Nichols, J.; Huenemoerder, D. P.; Corcoran, M. F.; Waldron, W.; Nazé, Y.; Pollock, A. M. T.; Moffat, A. F. J.; Lauer, J.; Shenar, T.; Russell, C. M. P.; Richardson, N. D.; Pablo, H.; Evans, N. R.; Hamaguchi, K.; Gull, T.; Hamann, W.-R.; Oskinova, L.; Ignace, R.; Hoffman, Jennifer L.; Hole, K. T.; Lomax, J. R.

    2015-08-01

    We present time-resolved and phase-resolved variability studies of an extensive X-ray high-resolution spectral data set of the δ Ori Aa binary system. The four observations, obtained with Chandra ACIS HETGS, have a total exposure time of ≈ 479 ks and provide nearly complete binary phase coverage. Variability of the total X-ray flux in the range of 5-25 Å is confirmed, with a maximum amplitude of about ±15% within a single ≈ 125 ks observation. Periods of 4.76 and 2.04 days are found in the total X-ray flux, as well as an apparent overall increase in the flux level throughout the nine-day observational campaign. Using 40 ks contiguous spectra derived from the original observations, we investigate the variability of emission line parameters and ratios. Several emission lines are shown to be variable, including S xv, Si xiii, and Ne ix. For the first time, variations of the X-ray emission line widths as a function of the binary phase are found in a binary system, with the smallest widths at ϕ = 0.0 when the secondary δ Ori Aa2 is at the inferior conjunction. Using 3D hydrodynamic modeling of the interacting winds, we relate the emission line width variability to the presence of a wind cavity created by a wind-wind collision, which is effectively void of embedded wind shocks and is carved out of the X-ray-producing primary wind, thus producing phase-locked X-ray variability. Based on data from the Chandra X-ray Observatory and the MOST satellite, a Canadian Space Agency mission, jointly operated by Dynacon Inc., the University of Toronto Institute of Aerospace Studies, and the University of British Columbia, with the assistance of the University of Vienna.

  12. First Detection of Phase-dependent Colliding Wind X-ray Emission outside the Milky Way

    NASA Technical Reports Server (NTRS)

    Naze, Yael; Koenigsberger, Gloria; Moffat, Anthony F. J.

    2007-01-01

    After having reported the detection of X-rays emitted by the peculiar system HD 5980, we assess here the origin of this high-energy emission from additional X-ray observations obtained with XMM-Newton. This research provides the first detection of apparently periodic X-ray emission from hot gas produced by the collision of winds in an evolved massive binary outside the Milky Way. It also provides the first X-ray monitoring of a Luminous Blue Variable only years after its eruption and shows that the source of the X-rays is not associated with the ejecta.

  13. X-ray emitting class I protostars in the Serpens dark cloud

    NASA Astrophysics Data System (ADS)

    Preibisch, T.

    2004-12-01

    We analyze a set of three individual XMM-Newton X-ray observation of the Serpens dark cloud. In addition to the 45 sources already reported in the analysis of the first of these XMM-Newton observations by Preibisch (\\cite{Preibisch2003), the complete combined data set leads to the detection of X-ray emission from four of the 19 known class I protostars in the region. The set of three observations allows us to study the variability of the sources on timescales from minutes to several months. The lightcurves of two of the four X-ray detected class I protostars show evidence for significant variability; the data suggest at least four flare-like events on these objects. This relatively high level of variability in the X-ray emission from the class I protostars is in qualitative agreement with the result by Imanishi et al. (\\cite{Imanishi2001}), who found that the class I protostars in the ρ Ophiuchi dark cloud show a higher level of variability than that of more evolved class II and class III young stellar objects. This may support non-coronal X-ray emission mechanisms for class I protostars and is in agreement with the predictions of models that assume magnetic interactions between the protostar and its surrounding disk as a source of high-energy emission. We also find a strong variation (by a factor of ˜10) in the X-ray luminosity of the class II object EC 74 between the three observations, which may be explained by a long duration flare or by rotational modulation. Finally, we find no evidence for X-ray emission from the five class 0 protostars in the region.

  14. A Coordinated X-Ray and Optical Campaign of the Nearby Massive Binary Sigma Orionis Aa. II; X-Ray Variability

    NASA Technical Reports Server (NTRS)

    Nichols, J.; Huenemoerder, D. P.; Corcoran, M. F.; Waldron, W.; Naze, Y; Pollock, A. M. T.; Moffat, A. F. J.; Lauer, J.; Shenar, T.; Russell, C. M. P.; hide

    2015-01-01

    We present time-resolved and phase-resolved variability studies of an extensive X-ray high-resolution gratings spectral dataset of the Sigma Ori Aa binary system. The four observations, obtained with Chandra ACIS HETGS, have a total exposure time of approximately 479 kiloseconds and provide nearly complete binary phase coverage. Variability of the total X-ray flux in the range 5-25 angstroms is confirmed, with maximum amplitude of about plus or minus 15 percent within a single approximately 125 kiloseconds observation. Periods of 4.76 days and 2.04 days are found in the total X-ray flux, as well as an apparent overall increase in flux level throughout the 9-day observational campaign. Using 40 kiloseconds contiguous spectra derived from the original observations, we investigate variability of emission line parameters and ratios. Several emission lines are shown to be variable, including S XV, Si XIII, and Ne IX. For the first time, variations of the X-ray emission line widths as a function of the binary phase are found in a binary system, with the smallest widths at phi equals 0.0 when the secondary Aa2 is at inferior conjunction. We use the results of an SPH radiative transfer code model, customized for this project, to relate the presence of a low density cavity in the primary stellar wind embedded shock that is associated with the secondary star to the emission line width variability.

  15. The X-ray spectrum and time variability of narrow emission line galaxies

    NASA Technical Reports Server (NTRS)

    Mushotzky, R.

    1981-01-01

    X-ray spectral and temporal observations are reported for six narrow emission line galaxies (NELGs), all of which are fitted by power-law X-ray spectra of energy slope 0.8 and have column densities in the line of sight greater than 1 x 10 to the 22nd atoms/sq cm. Three of the objects, NGC 526a, NGC 2110 and MCG-5-23-16 are variable in their X-ray flux, and the latter two, along with NGC 5506 and NGC 7582, showed detectable variability in at least one observation. The measured X-ray properties of these NELGs, which also included NGC 2992, strongly resemble those of previously-measured type 1 Seyferts of the same X-ray luminosity and lead to the conclusion of great similarity between the NELGs and low-luminosity type 1 Seyferts. The implications of these observations for the optical line-emitting region structure of these galaxies are discussed.

  16. Spectroscopic follow-up of variability-selected active galactic nuclei in the Chandra Deep Field South

    NASA Astrophysics Data System (ADS)

    Boutsia, K.; Leibundgut, B.; Trevese, D.; Vagnetti, F.

    2009-04-01

    Context: Supermassive black holes with masses of 10^5-109 M⊙ are believed to inhabit most, if not all, nuclear regions of galaxies, and both observational evidence and theoretical models suggest a scenario where galaxy and black hole evolution are tightly related. Luminous AGNs are usually selected by their non-stellar colours or their X-ray emission. Colour selection cannot be used to select low-luminosity AGNs, since their emission is dominated by the host galaxy. Objects with low X-ray to optical ratio escape even the deepest X-ray surveys performed so far. In a previous study we presented a sample of candidates selected through optical variability in the Chandra Deep Field South, where repeated optical observations were performed in the framework of the STRESS supernova survey. Aims: The analysis is devoted to breaking down the sample in AGNs, starburst galaxies, and low-ionisation narrow-emission line objects, to providing new information about the possible dependence of the emission mechanisms on nuclear luminosity and black-hole mass, and eventually studying the evolution in cosmic time of the different populations. Methods: We obtained new optical spectroscopy for a sample of variability selected candidates with the ESO NTT telescope. We analysed the new spectra, together with those existing in the literature and studied the distribution of the objects in U-B and B-V colours, optical and X-ray luminosity, and variability amplitude. Results: A large fraction (17/27) of the observed candidates are broad-line luminous AGNs, confirming the efficiency of variability in detecting quasars. We detect: i) extended objects which would have escaped the colour selection and ii) objects of very low X-ray to optical ratio, in a few cases without any X-ray detection at all. Several objects resulted to be narrow-emission line galaxies where variability indicates nuclear activity, while no emission lines were detected in others. Some of these galaxies have variability and X-ray to optical ratio close to active galactic nuclei, while others have much lower variability and X-ray to optical ratio. This result can be explained by the dilution of the nuclear light due to the host galaxy. Conclusions: Our results demonstrate the effectiveness of supernova search programmes to detect large samples of low-luminosity AGNs. A sizable fraction of the AGN in our variability sample had escaped X-ray detection (5/47) and/or colour selection (9/48). Spectroscopic follow-up to fainter flux limits is strongly encouraged. Based on observations collected at the European Southern Observatory, Chile, 080.B-0187(A).

  17. Rapid x-ray variability from the Seyfert 1 galaxy NGC 4051

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, F.E.; Holt, S.S.; Mushotzky, R.F.

    1983-06-15

    Strong variable x-ray emission from the nearby low-luminosity Seyfert 1 galaxy NGC 4051 has been discovered during observations with the imaging proportional counter (IPC) of the Einstein Observatory. During one 2304 s observation, the x-ray flux more than doubled in an approximately linear fashion, and a 70% increase for 150 s was seen during another 968 s observation. We present evidence that the x-ray spectrum of NGC 4051 is unusually soft compared with Seyfert 1 galaxies or OSOs. The emission mechanism is probably not synchrotron or synchrotron self-Compton, but the emission can be plausibly explained by various black hole accretionmore » models.« less

  18. X-ray studies of coeval star samples. II - The Pleiades cluster as observed with the Einstein Observatory

    NASA Technical Reports Server (NTRS)

    Micela, G.; Sciortino, S.; Vaiana, G. S.; Harnden, F. R., Jr.; Rosner, R.

    1990-01-01

    Coronal X-ray emission of the Pleiades stars is investigated, and maximum likelihood, integral X-ray luminosity functions are computed for Pleiades members in selected color-index ranges. A detailed search is conducted for long-term variability in the X-ray emission of those stars observed more than once. An overall comparison of the survey results with those of previous surveys confirms the ubiquity of X-ray emission in the Pleiades cluster stars and its higher rate of emission with respect to older stars. It is found that the X-ray emission from dA and early dF stars cannot be proven to be dissimilar to that of Hyades and field stars of the same spectral type. The Pleiades cluster members show a real rise of the X-ray luminosity from dA stars to early dF stars. X-ray emission for the young, solarlike Pleiades stars is about two orders of magnitude more intense than for the nearby solarlike stars.

  19. Complex UV/X-ray variability of 1H 0707-495

    NASA Astrophysics Data System (ADS)

    Pawar, P. K.; Dewangan, G. C.; Papadakis, I. E.; Patil, M. K.; Pal, Main; Kembhavi, A. K.

    2017-12-01

    We study the relationship between the UV and X-ray variability of the narrow-line Seyfert 1 galaxy 1H 0707-495. Using a year-long Swift monitoring and four long XMM-Newton observations, we perform cross-correlation analyses of the UV and X-ray light curves, on both long and short time-scales. We also perform time-resolved X-ray spectroscopy on 1-2 ks scale, and study the relationship between the UV emission and the X-ray spectral components - soft X-ray excess and a power law. We find that the UV and X-ray variations anticorrelate on short, and possibly on long time-scales as well. Our results rule out reprocessing as the dominant mechanism for the UV variability, as well as the inward propagating fluctuations in the accretion rate. Absence of a positive correlation between the photon index and the UV flux suggests that the observed UV emission is unlikely to be the seed photons for the thermal Comptonization. We find a strong correlation between the continuum flux and the soft-excess temperature which implies that the soft excess is most likely the reprocessed X-ray emission in the inner accretion disc. Strong X-ray heating of the innermost regions in the disc, due to gravitational light bending, appears to be an important effect in 1H 0707-495, giving rise to a significant fraction of the soft excess as reprocessed thermal emission. We also find indications for a non-static, dynamic X-ray corona, where either the size or height (or both) vary with time.

  20. Complex optical/UV and X-ray variability of the Seyfert 1 galaxy 1H 0419-577

    NASA Astrophysics Data System (ADS)

    Pal, Main; Dewangan, Gulab C.; Kembhavi, Ajit K.; Misra, Ranjeev; Naik, Sachindra

    2018-01-01

    We present detailed broad-band UV/optical to X-ray spectral variability of the Seyfert 1 galaxy 1H 0419-577 using six XMM-Newton observations performed during 2002-2003. These observations covered a large amplitude variability event in which the soft X-ray (0.3-2 keV) count rate increased by a factor of ∼4 in six months. The X-ray spectra during the variability are well described by a model consisting of a primary power law, blurred and distant reflection. The 2-10 keV power-law flux varied by a factor of ∼7 while the 0.3-2 keV soft X-ray excess flux derived from the blurred reflection component varied only by a factor of ∼2. The variability event was also observed in the optical and UV bands but the variability amplitudes were only at the 6-10 per cent level. The variations in the optical and UV bands appear to follow the variations in the X-ray band. During the rising phase, the optical bands appear to lag behind the UV band but during the declining phase, the optical bands appear to lead the UV band. Such behaviour is not expected in the reprocessing models where the optical/UV emission is the result of reprocessing of X-ray emission in the accretion disc. The delayed contribution of the broad emission lines in the UV band or the changes in the accretion disc/corona geometry combined with X-ray reprocessing may give rise to the observed behaviour of the variations.

  1. CSI 2264: Simultaneous optical and X-ray variability in pre-main sequence stars. I. Time resolved X-ray spectral analysis during optical dips and accretion bursts in stars with disks

    NASA Astrophysics Data System (ADS)

    Guarcello, M. G.; Flaccomio, E.; Micela, G.; Argiroffi, C.; Sciortino, S.; Venuti, L.; Stauffer, J.; Rebull, L.; Cody, A. M.

    2017-06-01

    Context. Pre-main sequence stars are variable sources. The main mechanisms responsible for their variability are variable extinction, unsteady accretion, and rotational modulation of both hot and dark photospheric spots and X-ray-active regions. In stars with disks, this variability is related to the morphology of the inner circumstellar region (≤0.1 AU) and that of the photosphere and corona, all impossible to be spatially resolved with present-day techniques. This has been the main motivation for the Coordinated Synoptic Investigation of NGC 2264, a set of simultaneous observations of NGC 2264 with 15 different telescopes. Aims: In this paper, we focus on the stars with disks. We analyze the X-ray spectral properties extracted during optical bursts and dips in order to unveil the nature of these phenomena. Stars without disks are studied in a companion paper. Methods: We analyze simultaneous CoRoT and Chandra/ACIS-I observations to search for coherent optical and X-ray flux variability in stars with disks. Then, stars are analyzed in two different samples. In stars with variable extinction, we look for a simultaneous increase of optical extinction and X-ray absorption during the optical dips; in stars with accretion bursts, we search for soft X-ray emission and increasing X-ray absorption during the bursts. Results: We find evidence for coherent optical and X-ray flux variability among the stars with variable extinction. In 9 of the 24 stars with optical dips, we observe a simultaneous increase of X-ray absorption and optical extinction. In seven dips, it is possible to calculate the NH/AV ratio in order to infer the composition of the obscuring material. In 5 of the 20 stars with optical accretion bursts, we observe increasing soft X-ray emission during the bursts that we associate to the emission of accreting gas. It is not surprising that these properties are not observed in all the stars with dips and bursts, since favorable geometric configurations are required. Conclusions: The observed variable absorption during the dips is mainly due to dust-free material in accretion streams. In stars with accretion bursts, we observe, on average, a larger soft X-ray spectral component not observed in non-accreting stars.

  2. Aurora and Non-Auroral X-ray Emissions from Jupiter: A Comparative View

    NASA Technical Reports Server (NTRS)

    Bhardwal, Anil; Elsner, Ron; Gladstone, Randy; Waite, Hunter, Jr.; Lugaz, Noe; Cravens, Tom; Branduardi-Raymont, Graziella; Ramsay, Gavin; Soria, Rob; Ford, Peter

    2004-01-01

    Jovian X-rays can be broadly classified into two categories: (1) auroral emission, which is confined to high-latitudes (approximately greater than 60 deg.) at both polar regions, and (2) dayglow emission, which originates from the sunlit low-latitude (approximately less than 50 deg.) regions of the disk (hereafter called disk emissions). Recent X-ray observations of Jupiter by chandra and XMM-Newton have shown that these two types of X-ray emission from Jupiter have different morphological, temporal, and spectral characteristics. In particular: 1) contrary to the auroral X-rays, which are concentrated in a spot in the north and in a band that runs half-way across the planet in the south, the low-latitude X-ray disk is almost uniform; 2) unlike the approximately 40 plus or minus 20-min periodic oscillations seen in the auroral X-ray emissions, the disk emissions do not show any periodic oscillations; 3) the disk emission is harder and extends to higher energies than the auroral spectrum; and 4) the disk X-ray emission show time variability similar to that seen in solar X-rays. These differences and features imply that the processes producing X-rays are different at these two latitude regions on Jupiter. We will present the details of these and other features that suggest the differences between these two classes of X-ray emissions from Jupiter, and discuss the current scenario of the production mechanism of them.

  3. X-ray studies of coeval star samples. II. The Pleiades cluster as observed with the Einstein Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Micela, G.; Sciortino, S.; Vaiana, G.S.

    1990-01-01

    Coronal X-ray emission of the Pleiades stars is investigated, and maximum likelihood, integral X-ray luminosity functions are computed for Pleiades members in selected color-index ranges. A detailed search is conducted for long-term variability in the X-ray emission of those stars observed more than once. An overall comparison of the survey results with those of previous surveys confirms the ubiquity of X-ray emission in the Pleiades cluster stars and its higher rate of emission with respect to older stars. It is found that the X-ray emission from dA and early dF stars cannot be proven to be dissimilar to that ofmore » Hyades and field stars of the same spectral type. The Pleiades cluster members show a real rise of the X-ray luminosity from dA stars to early dF stars. X-ray emission for the young, solarlike Pleiades stars is about two orders of magnitude more intense than for the nearby solarlike stars. 77 refs.« less

  4. Probing Galactic Center Cosmic-Rays in the X-ray Regime

    NASA Astrophysics Data System (ADS)

    Zhang, Shuo; Baganoff, Frederick K.; Bulbul, Esra; Miller, Eric D.; Bautz, Mark W.

    2017-08-01

    The central few hundred parsecs of the Galaxy harbors 5-10% of the molecular gas mass of the entire Milky Way. This central molecular zone exhibits 6.4 keV Fe Kα line and continuum X-ray emission with time-variability. The time-variable X-ray emission from the gas clouds is best explained by light echoes of past X-ray outbursts from the central supermassive black hole Sgr A*. However,MeV-GeV cosmic-ray particles may also contribute to a constant X-ray emission component from the clouds, through collisional ionization and bremsstrahlung. Sgr B2 is the densest and most massive cloud in the central molecular zone. It is the only known gas cloud whose X-ray emission has kept fading over the past decade and will soon reach a constant X-ray level in 2017/2018, and thus serves as the best probe for MeV-GeV particles in the central 100 pc of the Galaxy. At the same time, the Fe Kα emission has also been discovered from molecular structures beyond the central molecular zone, extening to ~1 kpc from the Galactic center. The X-ray reflection scenario meets challenges this far from the Galactic center, while the MeV-GeV cosmic-ray electrons serve as a more natural explanation. Our studies on Sgr B2 and the large-scale moleuclar structures will for the first time constrain the MeV-GeV particles in the Galactic center, and point to their origin: whether they rise from particle acceleration or dark matter annihilation.

  5. X-Ray Emissions from Accreting White Dwarfs: A Review

    NASA Technical Reports Server (NTRS)

    Mukai, K.

    2017-01-01

    Interacting binaries in which a white dwarf accretes material from a companion-cataclysmic variables (CVs) in which the mass donor is a Roche-lobe filling star on or near the main sequence, and symbiotic stars in which the mass donor is a late type giant-are relatively commonplace. They display a wide range of behaviors in the optical, X-rays, and other wavelengths, which still often baffle observers and theorists alike. Here I review the existing body of research on X-ray emissions from these objects for the benefits of both experts and newcomers to the field. I provide introductions to the past and current X-ray observatories, the types of known X-ray emissions from these objects, and the data analysis techniques relevant to this field. I then summarize of our knowledge regarding the X-ray emissions from magnetic CVs, non-magnetic CVs and symbiotic stars, and novae in eruption. I also discuss space density and the X-ray luminosity functions of these binaries and their contribution to the integrated X-ray emission from the Galaxy. I then discuss open questions and future prospects.

  6. A high-density relativistic reflection origin for the soft and hard X-ray excess emission from Mrk 1044

    NASA Astrophysics Data System (ADS)

    Mallick, L.; Alston, W. N.; Parker, M. L.; Fabian, A. C.; Pinto, C.; Dewangan, G. C.; Markowitz, A.; Gandhi, P.; Kembhavi, A. K.; Misra, R.

    2018-06-01

    We present the first results from a detailed spectral-timing analysis of a long (˜130 ks) XMM-Newton observation and quasi-simultaneous NuSTAR and Swift observations of the highly-accreting narrow-line Seyfert 1 galaxy Mrk 1044. The broadband (0.3-50 keV) spectrum reveals the presence of a strong soft X-ray excess emission below ˜1.5 keV, iron Kα emission complex at ˜6 -7 keV and a `Compton hump' at ˜15 -30 keV. We find that the relativistic reflection from a high-density accretion disc with a broken power-law emissivity profile can simultaneously explain the soft X-ray excess, highly ionized broad iron line and the Compton hump. At low frequencies ([2 - 6] × 10-5 Hz), the power-law continuum dominated 1.5-5 keV band lags behind the reflection dominated 0.3-1 keV band, which is explained with a combination of propagation fluctuation and Comptonization processes, while at higher frequencies ([1 - 2] × 10-4 Hz), we detect a soft lag which is interpreted as a signature of X-ray reverberation from the accretion disc. The fractional root-mean-squared (rms) variability of the source decreases with energy and is well described by two variable components: a less variable relativistic disc reflection and a more variable direct coronal emission. Our combined spectral-timing analyses suggest that the observed broadband X-ray variability of Mrk 1044 is mainly driven by variations in the location or geometry of the optically thin, hot corona.

  7. X-ray stars observed in LAMOST spectral survey

    NASA Astrophysics Data System (ADS)

    Lu, Hong-peng; Zhang, Li-yun; Han, Xianming L.; Shi, Jianrong

    2018-05-01

    X-ray stars have been studied since the beginning of X-ray astronomy. Investigating and studying the chromospheric activity from X-ray stellar optical spectra is highly significant in providing insights into stellar magnetic activity. The big data of LAMOST survey provides an opportunity for researching stellar optical spectroscopic properties of X-ray stars. We inferred the physical properties of X-ray stellar sources from the analysis of LAMOST spectra. First, we cross-matched the X-ray stellar catalogue (12254 X-ray stars) from ARXA with LAMOST data release 3 (DR3), and obtained 984 good spectra from 713 X-ray sources. We then visually inspected and assigned spectral type to each spectrum and calculated the equivalent width (EW) of Hα line using the Hammer spectral typing facility. Based on the EW of Hα line, we found 203 spectra of 145 X-ray sources with Hα emission above the continuum. For these spectra we also measured the EWs of Hβ, Hγ, Hδ and Ca ii IRT lines of these spectra. After removing novae, planetary nebulae and OB-type stars, we found there are 127 X-ray late-type stars with Hα line emission. By using our spectra and results from the literature, we found 53 X-ray stars showing Hα variability; these objects are Classical T Tauri stars (CTTs), cataclysmic variables (CVs) or chromospheric activity stars. We also found 18 X-ray stars showing obvious emissions in the Ca ii IRT lines. Of the 18 X-ray stars, 16 are CTTs and 2 are CVs. Finally, we discussed the relationships between the EW of Hα line and X-ray flux.

  8. Correlated fast X-ray and optical variability in the black-hole candidate XTE J1118+480.

    PubMed

    Kanbach, G; Straubmeier, C; Spruit, H C; Belloni, T

    2001-11-08

    Black holes become visible when they accrete gas, a common source of which is a close stellar companion. The standard theory for this process (invoking a 'thin accretion disk') does not explain some spectacular phenomena associated with these systems, such as their X-ray variability and relativistic outflows, indicating some lack of understanding of the actual physical conditions. Simultaneous observations at multiple wavelengths can provide strong constraints on these conditions. Here we report simultaneous high-time-resolution X-ray and optical observations of the transient source XTE J1118+480, which show a strong but puzzling correlation between the emissions. The optical emission rises suddenly following an increase in the X-ray output, but with a dip 2-5 seconds in advance of the X-rays. This result is not easy to understand within the simplest model of the optical emission, where the light comes from reprocessed X-rays. It is probably more consistent with an earlier suggestion that the optical light is cyclosynchrotron emission that originates in a region about 20,000 km from the black hole. We propose that the time dependence is evidence for a relatively slow (<0.1c), magnetically controlled outflow.

  9. Discovery of X-Ray Emission from the Galactic Supernova Remnant G32.8-0.1 with Suzaku

    NASA Astrophysics Data System (ADS)

    Bamba, Aya; Terada, Yukikatsu; Hewitt, John; Petre, Robert; Angelini, Lorella; Safi-Harb, Samar; Zhou, Ping; Bocchino, Fabrizio; Sawada, Makoto

    2016-02-01

    We present the first dedicated X-ray study of the supernova remnant (SNR) G32.8-0.1 (Kes 78) with Suzaku. X-ray emission from the whole SNR shell has been detected for the first time. The X-ray morphology is well correlated with the emission from the radio shell, while anti-correlated with the molecular cloud found in the SNR field. The X-ray spectrum shows not only conventional low-temperature (kT ˜ 0.6 keV) thermal emission in a non-equilibrium ionization state, but also a very high-temperature (kT ˜ 3.4 keV) component with a very low ionization timescale (˜2.7 × 109 cm-3 s), or a hard nonthermal component with a photon index Γ ˜ 2.3. The average density of the low-temperature plasma is rather low, of the order of 10-3-10-2 cm-3, implying that this SNR is expanding into a low-density cavity. We discuss the X-ray emission of the SNR, also detected in TeV with H.E.S.S., together with multi-wavelength studies of the remnant and other gamma-ray emitting SNRs, such as W28 and RCW 86. Analysis of a time-variable source, 2XMM J185114.3-000004, found in the northern part of the SNR, is also reported for the first time. Rapid time variability and a heavily absorbed hard-X-ray spectrum suggest that this source could be a new supergiant fast X-ray transient.

  10. Discovery of X-Ray Emission from the Galactic Supernova Remnant G32.8-0.1 with Suzaku

    NASA Technical Reports Server (NTRS)

    Bamba, Aya; Terada, Yukikatsu; Hewitt, John; Petre, Robert; Angelini, Lorella; Safi-Harb, Samar; Zhou, Ping; Bocchino, Fabrizio; Sawada, Makoto

    2016-01-01

    We present the first dedicated X-ray study of the supernova remnant (SNR) G32.8-0.1 (Kes 78) with Suzaku. X-ray emission from the whole SNR shell has been detected for the first time. The X-ray morphology is well correlated with the emission from the radio shell, while anti-correlated with the molecular cloud found in the SNR field. The X-ray spectrum shows not only conventional low-temperature (kT approximately 0.6 kiloelectronvolts) thermal emission in a nonequilibrium ionization state, but also a very high-temperature (approximately 3.4 kiloelectronvolts) component with a very low ionization timescale (approximately 2.7 times 10 (sup 9) per cubic centimeter per second), or a hard nonthermal component with a photon index Gamma approximately equal to 2.3. The average density of the low-temperature plasma is rather low, of the order of 10 (sup -3) - 10 (sup -2) per cubic centimeter, implying that this SNR is expanding into a low-density cavity. We discuss the X-ray emission of the SNR, also detected in teraelectronvolts with H.E.S.S. (High Energy Stereoscopic System), together with multi-wavelength studies of the remnant and other gamma-ray emitting SNRs, such as W28 and RCW 86. Analysis of a time-variable source, 2XMM J185114.3-000004, found in the northern part of the SNR, is also reported for the first time. Rapid time variability and a heavily absorbed hard-X-ray spectrum suggest that this source could be a new supergiant fast X-ray transient.

  11. The broad-band x ray spectral variability of Mkn 841

    NASA Technical Reports Server (NTRS)

    George, I. M.; Nandra, K.; Fabian, A. C.; Turner, T. J.; Done, C.; Day, C. S. R.

    1992-01-01

    The results of a detailed spectral analysis of four X-ray observations of the luminous Seyfert 1.5 galaxy Mkn 841 performed using the EXOSAT and Ginga satellites over the period June 1984 to July 1990 are reported. Preliminary results from a short ROSAT PSPC observation of Mkn 841 in July 1990 are also presented. Variability is apparent in both the soft (0.1-1.0 keV) and medium (1-20 keV) energy bands. Above 1 keV, the spectra are adequately modelled by a power-law with a strong emission line of equivalent width approximately 450 eV. The energy of the line (approximately 6.4 keV) is indicative of K-shell fluorescence from neutral iron, leading to the interpretation that the line arises via X-ray illumination of cold material surrounding the source. In addition to the flux variability, the continuum shape also changes in a dramatic fashion, with variations in the apparent photon index Delta(Gamma) approximately 0.6. The large equivalent width of the emission line clearly indicates a strongly enhanced reflection component in the source, compared to other Seyferts observed with Ginga. The spectral changes are interpreted in terms of a variable power-law continuum superimposed on a flatter reflection component. For one Ginga observation, the reflected flux appears to dominate the medium energy X-ray emission, resulting in an unusually flat slope (Gamma approximately 1.0). The soft X-ray excess is found to be highly variable by a factor approximately 10. These variations are not correlated with the hard flux, but it seems likely that the soft component arises via reprocessing of the hard X-rays. We find no evidence for intrinsic absorption, with the equivalent hydrogen column density constrained to be less than or equal to few x 10(exp 20) cm(exp -2). The implications of these results for physical models for the emission regions in this and other X-ray bright Seyferts are briefly discussed.

  12. Polarization and long-term variability of Sgr A* X-ray echo

    NASA Astrophysics Data System (ADS)

    Churazov, E.; Khabibullin, I.; Ponti, G.; Sunyaev, R.

    2017-06-01

    We use a model of the molecular gas distribution within ˜100 pc from the centre of the Milky Way (Kruijssen, Dale & Longmore) to simulate time evolution and polarization properties of the reflected X-ray emission, associated with the past outbursts from Sgr A*. While this model is too simple to describe the complexity of the true gas distribution, it illustrates the importance and power of long-term observations of the reflected emission. We show that the variable part of X-ray emission observed by Chandra and XMM-Newton from prominent molecular clouds is well described by a pure reflection model, providing strong support of the reflection scenario. While the identification of Sgr A* as a primary source for this reflected emission is already a very appealing hypothesis, a decisive test of this model can be provided by future X-ray polarimetric observations, which will allow placing constraints on the location of the primary source. In addition, X-ray polarimeters (like, e.g. XIPE) have sufficient sensitivity to constrain the line-of-sight positions of molecular complexes, removing major uncertainty in the model.

  13. The broad-band X-ray spectral variability of Mrk 841

    NASA Technical Reports Server (NTRS)

    George, I. M.; Nandra, K.; Fabian, A. C.; Turner, T. J.; Done, C.; Day, C. S. R.

    1993-01-01

    A detailed spectral analysis of five X-ray observations of Mrk 841 with the EXOSAT, Ginga, and ROSAT satellites is reported. Variability is apparent in both the soft (0.1-1.0 keV) and medium (1-20 keV) energy bands. Above, 1 keV, the spectra are adequately modeled by a power law with a strong emission line of equivalent width 450 eV. The large equivalent width of the emission line indicates a strongly enhanced reflection component of the source compared with other Seyferts observed with Ginga. The implications of the results of the analysis for physical models of the emission regions in this and other X-ray bright Seyferts are briefly examined.

  14. X-ray Variability In Extragalactic Jets as Seen by Chandra

    NASA Astrophysics Data System (ADS)

    Trevor, Max; Meyer, Eileen; Georganopoulos, Markos; Aubin, Sam; Hewitt, Jennifer; DeNigris, Natalie; Whitley, Kevin

    2018-01-01

    The unrivaled spatial resolution of Chandra has lead to the detection of over 100 extragalactic jetsemitting X-rays on kiloparsec scales, far from the central AGN. These jets are understood to be powerful redistributors of energy on galactic and extragalactic scales, with important effects on galaxy evolution and cluster heating. However, we lack an understanding of many important jet properties, including the particle makeup, particle acceleration characteristics, and total energy content, and even how fast the jet is at kpc scales. In the most powerful jets, a persistently open question is the nature of the emission mechanism for the Chandra-observed X-rays. While inverse Compton upscattering of CMB photons (IC/CMB) by a still-relativistic jet is widely adopted, our group has very recently ruled it out in several cases, suggesting that the X-rays from powerful sources, like the low-power jets, have a synchrotron origin, albeit one with unknown origins, requiring in-situ lepton acceleration at least up to 100 TeV. A very efficient way to extend this result to many more sources is to check for variability of the large scale jet X-ray emission, something that is definitively not expected in the case of IC/CMB due to the extremely long cooling times of the electrons responsible for the emission, but it is plausible if the X-rays are of synchrotron nature. Based on previously published observations of X-ray variability in the jets of M87 and Pictor A, as well as preliminary results suggesting variability in two more powerful jets, we have examined archival observations of over 40 jets which have been imaged twice or more with Chandra for variability, with timescales of a few to nearly 14 years. This analysis has two main goals, namely (i) to confirm a synchrotron origin for the X-rays in powerful sources, as variability is inconsistent with the competing IC/CMB model and (ii) to use the timescales and characteristics (e.g., spectral changes) of any detected X-ray variability to place limits on the emitting region size and magnetic field.

  15. Millimeter, microwave, hard X-ray, and soft X-ray observations of energetic electron populations in solar flares

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.; White, S. M.; Gopalswamy, N.; Lim, J.

    1994-01-01

    We present comparisons of multiwavelength data for a number of solar flares observed during the major campaign of 1991 June. The different wavelengths are diagnostics of energetic electrons in different energy ranges: soft X-rays are produced by electrons with energies typically below 10 keV, hard X-rays by electrons with energies in the range 10-200 keV, microwaves by electrons in the range 100 keV-1 MeV, and millimeter-wavelength emission by electrons with energies of 0.5 MeV and above. The flares in the 1991 June active period were remarkable in two ways: all have very high turnover frequencies in their microwave spectra, and very soft hard X-ray spectra. The sensitivity of the microwave and millimeter data permit us to study the more energetic (greater than 0.3 MeV) electrons even in small flares, where their high-energy bremsstrahlung is too weak for present detectors. The millimeter data show delays in the onset of emission with respect to the emissions associated with lower energy electrons and differences in time profiles, energy spectral indices incompatible with those implied by the hard X-ray data, and a range of variability of the peak flux in the impulsive phase when compared with the peak hard X-ray flux which is two orders of magnitude larger than the corresponding variability in the peak microwave flux. All these results suggest that the hard X-ray-emitting electrons and those at higher energies which produce millimeter emission must be regarded as separate populations. This has implications for the well-known 'number problem' found previously when comparing the numbers of non thermal electrons required to produce the hard X-ray and radio emissions.

  16. A ROSAT Survey of Contact Binary Stars

    NASA Astrophysics Data System (ADS)

    Geske, M. T.; Gettel, S. J.; McKay, T. A.

    2006-01-01

    Contact binary stars are common variable stars that are all believed to emit relatively large fluxes of X-rays. In this work we combine a large new sample of contact binary stars derived from the ROTSE-I telescope with X-ray data from the ROSAT All Sky Survey (RASS) to estimate the X-ray volume emissivity of contact binary stars in the Galaxy. We obtained X-ray fluxes for 140 contact binaries from the RASS, as well as two additional stars observed by the XMM-Newton observatory. From these data we confirm the emission of X-rays from all contact binary systems, with typical luminosities of approximately 1.0×1030 ergs s-1. Combining calculated luminosities with an estimated contact binary space density, we find that contact binaries do not have strong enough X-ray emission to account for a significant portion of the Galactic X-ray background.

  17. Short time variability of solar corona during recent solar cycle minimum

    NASA Astrophysics Data System (ADS)

    Siarkowski, Marek; Gryciuk, Magdalena; Gburek, Szymon; Sylwester, Janusz; Sylwester, Barbara; Kepa, Anna; Buczkowska, Agnieszka; Kowalinski, Miroslaw

    Sphinx is the X-ray spectrophotometer designed to measure X-ray emission from the Sun in the energy range between 0.8 keV and 15 keV. The instrument is placed onboard Russian KORONAS-PHOTON satellite launched on January 30, 2009. In this paper we present the observations of coronal emission obtained between March-April and August-September 2009, i.e. the times towards the end of the last, very prolonged and deep minimum of solar activity. Prompt analysis of SphinX spectra reveal the variability of the average coronal plasma charac-teristics like the temperature and emission measure. These data are used to compare SphinX and GOES measurements, for selected times. Examples of many sub/microflare events with maxima of the X-ray flux, observed much below the GOES sensitivity threshold level will be presented.

  18. X-ray Observations of the Bright Old Nova V603 Aquilae

    NASA Technical Reports Server (NTRS)

    Mukai, K.; Orio, M.

    2004-01-01

    We report on our Chandra and RXTE observations of the bright old nova, V603 Aql, performed in 2001 April, supplemented by our analysis of archival X-ray data on this object. We find that the RXTE data are contaminated by the Galactic Ridge X-ray emission. After accounting for this effect, we find a high level of aperiodic variability in the RXTE data, at a level consistent with the uncontaminated Chandra data. The Chandra HETG spectrum clearly originates in a multi-temperature plasma. We constrain the possible emission measure distribution of the plasma through a combination of global and local fits. The X-ray luminosity and the spectral shape of V603 Aql resemble those of SS Cyg in transition between quiescence and outburst. The fact that the X-ray flux variability is only weakly energy dependent can be interpreted by supposing that the variability is due to changes in the maximum temperature of the plasma. The plasma density is likely to be high, and the emission region is likely to be compact. Finally, the apparent overabundance of Ne is consistent with V603 Aql being a young system.

  19. Hydrodynamical Simulations of the Jet in the Symbiotic Star MWC 560. 3; Application to X-ray Jets in Symbiotic Stars

    NASA Technical Reports Server (NTRS)

    Stute, Matthias; Sahai, Raghvendra

    2007-01-01

    In Papers I and II in this series, we presented hydrodynamical simulations of jet models with parameters representative of the symbiotic system MWC 560. These were simulations of a pulsed, initially underdense jet in a high-density ambient medium. Since the pulsed emission of the jet creates internal shocks and since the jet velocity is very high, the jet bow shock and the internal shocks are heated to high temperatures and should therefore emit X-ray radiation. In this paper, we investigate in detail the X-ray properties of the jets in our models. We have focused our study on the total X-ray luminosity and its temporal variability, the resulting spectra, and the spatial distribution of the emission. Temperature and density maps from our hydrodynamical simulations with radiative cooling presented in the second paper are used, together with emissivities calculated with the atomic database ATOMDB. The jets in our models show extended and variable X-ray emission, which can be characterized as a sum of hot and warm components with temperatures that are consistent with observations of CH Cyg and R Aqr. The X-ray spectra of our model jets show emission-line features that correspond to observed features in the spectra of CH Cyg. The innermost parts of our pulsed jets show iron line emission in the 6.4-6.7 keV range, which may explain such emission from the central source in R Aqr. We conclude that MWC 560 should be detectable with Chandra or XMM-Newton, and such X-ray observations will prove crucial for understanding jets in symbiotic stars.

  20. Modulated high-energy gamma-ray emission from the microquasar Cygnus X-3.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Celik, O; Chaty, S; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Conrad, J; Corbel, S; Corbet, R; Dermer, C D; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Dubois, R; Dubus, G; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Fortin, P; Frailis, M; Fusco, P; Gargano, F; Gehrels, N; Germani, S; Giavitto, G; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hill, A B; Hjalmarsdotter, L; Horan, D; Hughes, R E; Jackson, M S; Jóhannesson, G; Johnson, A S; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Koerding, E; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Marchand, L; Marelli, M; Max-Moerbeck, W; Mazziotta, M N; McColl, N; McEnery, J E; Meurer, C; Michelson, P F; Migliari, S; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Ong, R A; Ormes, J F; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Pooley, G; Porter, T A; Pottschmidt, K; Rainò, S; Rando, R; Ray, P S; Razzano, M; Rea, N; Readhead, A; Reimer, A; Reimer, O; Richards, J L; Rochester, L S; Rodriguez, J; Rodriguez, A Y; Romani, R W; Ryde, F; Sadrozinski, H F-W; Sander, A; Saz Parkinson, P M; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spinelli, P; Starck, J-L; Stevenson, M; Strickman, M S; Suson, D J; Takahashi, H; Tanaka, T; Thayer, J B; Thompson, D J; Tibaldo, L; Tomsick, J A; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wang, P; Wilms, J; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M

    2009-12-11

    Microquasars are accreting black holes or neutron stars in binary systems with associated relativistic jets. Despite their frequent outburst activity, they have never been unambiguously detected emitting high-energy gamma rays. The Fermi Large Area Telescope (LAT) has detected a variable high-energy source coinciding with the position of the x-ray binary and microquasar Cygnus X-3. Its identification with Cygnus X-3 is secured by the detection of its orbital period in gamma rays, as well as the correlation of the LAT flux with radio emission from the relativistic jets of Cygnus X-3. The gamma-ray emission probably originates from within the binary system, opening new areas in which to study the formation of relativistic jets.

  1. Variability in the x-ray emission of H0538+608: An unusual AM Her-type cataclysmic variable. Thesis, Final Report

    NASA Technical Reports Server (NTRS)

    Catelli, Jennifer

    1992-01-01

    The x-ray emissions of AM Herculis-type object H0538+608 were observed using the ROSAT satellite. Evidence was found for a highly varying soft x-ray component with a much lower intensity than is typical for this class. The spectrum was well fit by a thermal bremsstrahlung model (exponential plus gaunt factor) of 35 +/- 5 KeV plus a 0.05 +/- 0.01 KeV blackbody component, with absorption by interstellar medium with a neutral hydrogen column density of log N(sub H) (atoms/sq cm) = 20.2. No obvious periodic variations were found. There was very little correlation between the hard and soft x-ray bands.

  2. X-Ray Emission from the Soft X-Ray Transient Aquila X-1

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1998-01-01

    Aquila X-1 is the most prolific of soft X-ray transients. It is believed to contain a rapidly spinning neutron star sporadically accreting near the Eddington limit from a low-mass companion star. The interest in studying the repeated X-ray outbursts from Aquila X-1 is twofold: (1) studying the relation between optical, soft and hard X-ray emission during the outburst onset, development and decay; (2) relating the spectral component to thermal and non-thermal processes occurring near the magnetosphere and in the boundary layer of a time-variable accretion disk. Our investigation is based on the BATSE monitoring of Aquila X-1 performed by our group. We observed Aquila X-1 in 1997 and re-analyzed archival information obtained in April 1994 during a period of extraordinary outbursting activity of the source in the hard X-ray range. Our results allow, for the first time for this important source, to obtain simultaneous spectral information from 2 keV to 200 keV. A black body (T = 0.8 keV) plus a broken power-law spectrum describe accurately the 1994 spectrum. Substantial hard X-ray emission is evident in the data, confirming that the accretion phase during sub-Eddington limit episodes is capable of producing energetic hard emission near 5 x 10(exp 35) ergs(exp -1). A preliminary paper summarizes our results, and a more comprehensive account is being written. We performed a theoretical analysis of possible emission mechanisms, and confirmed that a non-thermal emission mechanism triggered in a highly sheared magnetosphere at the accretion disk inner boundary can explain the hard X-ray emission. An anticorrelation between soft and hard X-ray emission is indeed prominently observed as predicted by this model.

  3. Hercules X-1: Spectral Variability of an X-Ray Pulsar in a Stellar Binary System. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Pravdo, S. H.

    1976-01-01

    A cosmic X-ray spectroscopy experiment onboard the Orbiting Solar Observatory 8 (OSO-8), observed Her x-1 continuously for approximately 8 days. Spectral-temporal correlations of the X-ray emission were obtained. The major results concern observations of: (1) iron band emission, (2) spectral hardening (increase in effective x-ray temperature) within the X-ray pulse, and (3) a transition from an X-ray low state to a high state. The spectrum obtained prior to the high state can be interpreted as reflected emission from a hot coronal gas surrounding an accretion disk, which itself shields the primary X-ray source from the line of sight during the low state. The spectral hardening within the X-ray pulse was indicative of the beaming mechanism at the neutron star surface. The hardest spectrum by pulse phase was identified with the line of sight close to the Her x-1 magnetic dipole axis, and the X-ray pencil beam become harder with decreasing angle between the line of sight and the dipole axis.

  4. Search for very high-energy gamma-ray emission from the microquasar Cygnus X-1 with the MAGIC telescopes

    NASA Astrophysics Data System (ADS)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Arcaro, C.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Bhattacharyya, W.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; da Vela, P.; Dazzi, F.; de Angelis, A.; de Lotto, B.; de Oña Wilhelmi, E.; di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hassan, T.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Ishio, K.; Konno, Y.; Kubo, H.; Kushida, J.; Kuveždić, D.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; Maggio, C.; Majumdar, P.; Makariev, M.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Minev, M.; Mirzoyan, R.; Moralejo, A.; Moreno, V.; Moretti, E.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Ninci, D.; Nishijima, K.; Noda, K.; Nogués, L.; Paiano, S.; Palacio, J.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Righi, C.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Sitarek, J.; Šnidarić, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Torres-Albà, N.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Zarić, D.; MAGIC Collaboration; Bosch-Ramon, V.; Pooley, G. G.; Trushkin, S. A.; Zanin, R.

    2017-12-01

    The microquasar Cygnus X-1 displays the two typical soft and hard X-ray states of a black hole transient. During the latter, Cygnus X-1 shows a one-sided relativistic radio-jet. Recent detection of the system in the high energy (HE; E ≳ 60 MeV) gamma-ray range with Fermi-LAT associates this emission with the outflow. Former MAGIC observations revealed a hint of flaring activity in the very high-energy (VHE; E ≳ 100 GeV) regime during this X-ray state. We analyse ∼97 h of Cygnus X-1 data taken with the MAGIC telescopes between July 2007 and October 2014. To shed light on the correlation between hard X-ray and VHE gamma rays as previously suggested, we study each main X-ray state separately. We perform an orbital phase-folded analysis to look for variability in the VHE band. Additionally, to place this variability behaviour in a multiwavelength context, we compare our results with Fermi-LAT, AGILE, Swift-BAT, MAXI, RXTE-ASM, AMI and RATAN-600 data. We do not detect Cygnus X-1 in the VHE regime. We establish upper limits for each X-ray state, assuming a power-law distribution with photon index Γ = 3.2. For steady emission in the hard and soft X-ray states, we set integral upper limits at 95 per cent confidence level for energies above 200 GeV at 2.6 × 10-12 photons cm-2 s-1 and 1.0 × 10-11 photons cm-2 s-1, respectively. We rule out steady VHE gamma-ray emission above this energy range, at the level of the MAGIC sensitivity, originating in the interaction between the relativistic jet and the surrounding medium, while the emission above this flux level produced inside the binary still remains a valid possibility.

  5. Is there a UV/X-ray connection in IRAS 13224-3809?

    NASA Astrophysics Data System (ADS)

    Buisson, D. J. K.; Lohfink, A. M.; Alston, W. N.; Cackett, E. M.; Chiang, C.-Y.; Dauser, T.; De Marco, B.; Fabian, A. C.; Gallo, L. C.; García, J. A.; Jiang, J.; Kara, E.; Middleton, M. J.; Miniutti, G.; Parker, M. L.; Pinto, C.; Uttley, P.; Walton, D. J.; Wilkins, D. R.

    2018-04-01

    We present results from the optical, ultraviolet, and X-ray monitoring of the NLS1 galaxy IRAS 13224-3809 taken with Swift and XMM-Newton during 2016. IRAS 13224-3809 is the most variable bright AGN in the X-ray sky and shows strong X-ray reflection, implying that the X-rays strongly illuminate the inner disc. Therefore, it is a good candidate to study the relationship between coronal X-ray and disc UV emission. However, we find no correlation between the X-ray and UV flux over the available ˜40 d monitoring, despite the presence of strong X-ray variability and the variable part of the UV spectrum being consistent with irradiation of a standard thin disc. This means either that the X-ray flux which irradiates the UV emitting outer disc does not correlate with the X-ray flux in our line of sight and/or that another process drives the majority of the UV variability. The former case may be due to changes in coronal geometry, absorption or scattering between the corona and the disc.

  6. A Pulsating X-Ray Hot Spot on Jupiter

    NASA Technical Reports Server (NTRS)

    Gladstone, G. R.; Waite, J. H.; Grodent, D. C.; Crary, F. J.; Elsner, R. F.; Weisskopf, M. C.; Majeed, T.; Lewis, W. S.; Jahn, J.-M.; Bhardwaj, A.; hide

    2001-01-01

    Previous observations of jovian auroral x-ray emissions provided limited spectral information and extensive but low spatial resolution images. These emissions have been thought to result from charge exchange and excitation of energetic sulfur and oxygen ions precipitating from the outer edge of the Io Plasma Torus; bremsstrahlung emission from precipitating energetic electrons is too inefficient to produce the x-ray emissions. However, new high spatial resolution observations demonstrate that most of Jupiter's northern auroral x-rays come from a hot spot located much further north than the footprint of the Io Plasma Torus and which is even poleward of the main ultraviolet auroral oval. The hot spot appears fixed in magnetic latitude and longitude and occurs in a region where anomalous infrared and ultraviolet emissions have also been observed. Interestingly, the hot spot x-rays pulsate with an approximately 40-minute period, a period similar to that reported for high-latitude radio and energetic electron bursts observed by near-Jupiter spacecraft. These results invalidate the idea that jovian x-ray emissions are mainly excited by steady precipitation of energetic heavy ions from the region of the Io Plasma Torus. Instead, the x-rays appear to result from currently unexplained processes in the outer magnetosphere that produce highly localized and highly variable emissions over an extremely wide range of wavelengths.

  7. Investigation relative to the Roentgen Satellite (ROSAT)

    NASA Technical Reports Server (NTRS)

    Elvis, Martin S.; Primini, Francis A.; Fabbiano, Guiseppina; Harris, Daniel E.; Jones-Foreman, Christine; Trinchieri, Ginevra; Golub, Leon; Bookbinder, Jay; Seward, Frederick D.; Zombeck, Martin V.

    1994-01-01

    Reports include: High Resolution Observations of the Central Region of M31; The X-ray Emission of Low-X-ray-Luminosity Early-Type Galaxies: Gas Versus Compact Sources; Interaction Between Cluster Gas and Radio Features of Cygnus A; Hot Gas and Dark Halos in Early-Type Galaxies; A Gravitational Lens in X-rays - 0957+461; How Massive are Early-Type Galaxies?; Three Crab-Like SNR in the Large Magellanic Cloud; and Soft X-ray Emission from Boundary Layers in Cataclysmic Variables. Papers submitted to the Astrophysical Journal are attached.

  8. X-ray diagnostics of massive star winds

    NASA Astrophysics Data System (ADS)

    Oskinova, L. M.; Ignace, R.; Huenemoerder, D. P.

    2017-11-01

    Observations with powerful X-ray telescopes, such as XMM-Newton and Chandra, significantly advance our understanding of massive stars. Nearly all early-type stars are X-ray sources. Studies of their X-ray emission provide important diagnostics of stellar winds. High-resolution X-ray spectra of O-type stars are well explained when stellar wind clumping is taking into account, providing further support to a modern picture of stellar winds as non-stationary, inhomogeneous outflows. X-ray variability is detected from such winds, on time scales likely associated with stellar rotation. High-resolution X-ray spectroscopy indicates that the winds of late O-type stars are predominantly in a hot phase. Consequently, X-rays provide the best observational window to study these winds. X-ray spectroscopy of evolved, Wolf-Rayet type, stars allows to probe their powerful metal enhanced winds, while the mechanisms responsible for the X-ray emission of these stars are not yet understood.

  9. The Lunar X-ray Observatory (LXO)/Magnetosheath Explorer in X-Rays (MagEX)

    NASA Technical Reports Server (NTRS)

    Collier, M.R.; Abbey, T.F.; Bannister, N.P.; Carter, J.A.; Choi, M.; Cravens, T.; Evans, M.; Fraser, G.W.; Hills, H.K.; Kuntz, K.; hide

    2009-01-01

    X-ray observations of solar wind charge exchange (SWCX) emission, a nuisance to astrophysicists, will dramatically enhance our ability to determine the structure and variability of the Earth's magnetosheath. Such observations could be made from the lunar surface or an Earth-orbiting spacecraft and will resolve key controversies about magnetopause physics as well as better characterize SWCX emission with the aim of avoiding or removing it from astrophysical observations.

  10. Multiwavelength variability properties of Fermi blazar S5 0716+714

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, N. H.; Bai, J. M.; Liu, H. T.

    S5 0716+714 is a typical BL Lacertae object. In this paper we present the analysis and results of long-term simultaneous observations in the radio, near-infrared, optical, X-ray, and γ-ray bands, together with our own photometric observations for this source. The light curves show that the variability amplitudes in γ-ray and optical bands are larger than those in the hard X-ray and radio bands and that the spectral energy distribution (SED) peaks move to shorter wavelengths when the source becomes brighter, which is similar to other blazars, i.e., more variable at wavelengths shorter than the SED peak frequencies. Analysis shows thatmore » the characteristic variability timescales in the 14.5 GHz, the optical, the X-ray, and the γ-ray bands are comparable to each other. The variations of the hard X-ray and 14.5 GHz emissions are correlated with zero lag, and so are the V band and γ-ray variations, which are consistent with the leptonic models. Coincidences of γ-ray and optical flares with a dramatic change of the optical polarization are detected. Hadronic models do not have the same natural explanation for these observations as the leptonic models. A strong optical flare correlating a γ-ray flare whose peak flux is lower than the average flux is detected. The leptonic model can explain this variability phenomenon through simultaneous SED modeling. Different leptonic models are distinguished by average SED modeling. The synchrotron plus synchrotron self-Compton (SSC) model is ruled out because of the extreme input parameters. Scattering of external seed photons, such as the hot-dust or broad-line region emission, and the SSC process are probably both needed to explain the γ-ray emission of S5 0716+714.« less

  11. High flux femtosecond x-ray emission from the electron-hose instability in laser wakefield accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, C. F.; Zhao, T. Z.; Behm, K.

    Here, bright and ultrashort duration x-ray pulses can be produced by through betatron oscillations of electrons during laser wakefield acceleration (LWFA). Our experimental measurements using the Hercules laser system demonstrate a dramatic increase in x-ray flux for interaction distances beyond the depletion/dephasing lengths, where the initial electron bunch injected into the first wake bucket catches up with the laser pulse front and the laser pulse depletes. A transition from an LWFA regime to a beam-driven plasma wakefield acceleration regime consequently occurs. The drive electron bunch is susceptible to the electron-hose instability and rapidly develops large amplitude oscillations in its tail,more » which leads to greatly enhanced x-ray radiation emission. We measure the x-ray flux as a function of acceleration length using a variable length gas cell. 3D particle-in-cell simulations using a Monte Carlo synchrotron x-ray emission algorithm elucidate the time-dependent variations in the radiation emission processes.« less

  12. High flux femtosecond x-ray emission from the electron-hose instability in laser wakefield accelerators

    NASA Astrophysics Data System (ADS)

    Dong, C. F.; Zhao, T. Z.; Behm, K.; Cummings, P. G.; Nees, J.; Maksimchuk, A.; Yanovsky, V.; Krushelnick, K.; Thomas, A. G. R.

    2018-04-01

    Bright and ultrashort duration x-ray pulses can be produced by through betatron oscillations of electrons during laser wakefield acceleration (LWFA). Our experimental measurements using the Hercules laser system demonstrate a dramatic increase in x-ray flux for interaction distances beyond the depletion/dephasing lengths, where the initial electron bunch injected into the first wake bucket catches up with the laser pulse front and the laser pulse depletes. A transition from an LWFA regime to a beam-driven plasma wakefield acceleration regime consequently occurs. The drive electron bunch is susceptible to the electron-hose instability and rapidly develops large amplitude oscillations in its tail, which leads to greatly enhanced x-ray radiation emission. We measure the x-ray flux as a function of acceleration length using a variable length gas cell. 3D particle-in-cell simulations using a Monte Carlo synchrotron x-ray emission algorithm elucidate the time-dependent variations in the radiation emission processes.

  13. High flux femtosecond x-ray emission from the electron-hose instability in laser wakefield accelerators

    DOE PAGES

    Dong, C. F.; Zhao, T. Z.; Behm, K.; ...

    2018-04-24

    Here, bright and ultrashort duration x-ray pulses can be produced by through betatron oscillations of electrons during laser wakefield acceleration (LWFA). Our experimental measurements using the Hercules laser system demonstrate a dramatic increase in x-ray flux for interaction distances beyond the depletion/dephasing lengths, where the initial electron bunch injected into the first wake bucket catches up with the laser pulse front and the laser pulse depletes. A transition from an LWFA regime to a beam-driven plasma wakefield acceleration regime consequently occurs. The drive electron bunch is susceptible to the electron-hose instability and rapidly develops large amplitude oscillations in its tail,more » which leads to greatly enhanced x-ray radiation emission. We measure the x-ray flux as a function of acceleration length using a variable length gas cell. 3D particle-in-cell simulations using a Monte Carlo synchrotron x-ray emission algorithm elucidate the time-dependent variations in the radiation emission processes.« less

  14. Rapidly variable relatvistic absorption

    NASA Astrophysics Data System (ADS)

    Parker, M.; Pinto, C.; Fabian, A.; Lohfink, A.; Buisson, D.; Alston, W.; Jiang, J.

    2017-10-01

    I will present results from the 1.5Ms XMM-Newton observing campaign on the most X-ray variable AGN, IRAS 13224-3809. We find a series of nine absorption lines with a velocity of 0.24c from an ultra-fast outflow. For the first time, we are able to see extremely rapid variability of the UFO features, and can link this to the X-ray variability from the inner accretion disk. We find a clear flux dependence of the outflow features, suggesting that the wind is ionized by increasing X-ray emission.

  15. Chandra Observation of an X-ray Flare at Saturn: Evidence for Direct Solar Control on Saturn's Disk X-ray Emissions

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Anil; Elsner, Ronald F.; Waite, J. Hunter, Jr.; Gladstone, G. Randall; Cravens, Thomas E.; Ford, Peter G.

    2005-01-01

    Saturn was observed by Chandra ACIS-S on 20 and 26-27 January 2004 for one full Saturn rotation (10.7 hr) at each epoch. We report here the first observation of an X-ray flare from Saturn s non-auroral (low-latitude) disk, which is seen in direct response to an M6-class flare emanating from a sunspot that was clearly visible from both Saturn and Earth. Saturn s X-ray emissions are found to be highly variable on time scales of tens of minutes to weeks. Unlike Jupiter, X-rays from Saturn s polar (auroral) region have characteristics similar to those from its disk and varies in brightness inversely to the FUV auroral emissions observed by the Hubble Space Telescope. This report establishes that disk X-ray emissions of the giant planets Saturn and Jupiter are directly regulated by processes happening on the Sun. We suggest that these emissions could be monitored to study X-ray flaring from solar active regions when they are on the far side and not visible to Near-Earth space weather satellites.

  16. Simultaneous broadband observations and high-resolution X-ray spectroscopy of the transitional millisecond pulsar PSR J1023+0038

    NASA Astrophysics Data System (ADS)

    Coti Zelati, F.; Campana, S.; Braito, V.; Baglio, M. C.; D'Avanzo, P.; Rea, N.; Torres, D. F.

    2018-03-01

    We report on the first simultaneous XMM-Newton, NuSTAR, and Swift observations of the transitional millisecond pulsar PSR J1023+0038 in the X-ray active state. Our multi-wavelength campaign allowed us to investigate with unprecedented detail possible spectral variability over a broad energy range in the X-rays, as well as correlations and lags among emissions in different bands. The soft and hard X-ray emissions are significantly correlated, with no lags between the two bands. On the other hand, the X-ray emission does not correlate with the UV emission. We refine our model for the observed mode switching in terms of rapid transitions between a weak propeller regime and a rotation-powered radio pulsar state, and report on a detailed high-resolution X-ray spectroscopy using all XMM-Newton Reflection Grating Spectrometer data acquired since 2013. We discuss our results in the context of the recent discoveries on the system and of the state of the art simulations on transitional millisecond pulsars, and show how the properties of the narrow emission lines in the soft X-ray spectrum are consistent with an origin within the accretion disc.

  17. Multiwavelength observations of the γ-ray-emitting narrow-line Seyfert 1 PMN J0948+0022 in 2011

    DOE PAGES

    D'Ammando, F.; Larsson, J.; Orienti, M.; ...

    2014-01-28

    Here, we report on radio-to-γ-ray observations during 2011 May–September of PMN J0948+0022, the first narrow-line Seyfert 1 (NLSy1) galaxy detected in γ-rays by Fermi-Large Area Telescope. Strong variability was observed in γ-rays, with two flaring periods peaking on 2011 June 20 and July 28. The variability observed in optical and near-infrared seems to have no counterpart in γ-rays. The difference in behaviour could be related to a bending and inhomogeneous jet or a turbulent extreme multicell scenario. The radio spectra showed a variability pattern typical of relativistic jets. The XMM spectrum shows that the emission from the jet dominates abovemore » ~2 keV, while a soft X-ray excess is evident in the low-energy part of the X-ray spectrum. Models where the soft emission is partly produced by blurred reflection or Comptonization of the thermal disc emission provide good fits to the data. The X-ray spectral slope is similar to that found in radio-quiet NLSy1, suggesting that a standard accretion disc is present, as expected from the high accretion rate. Except for the soft X-ray excess, unusual in jet-dominated active galactic nuclei, PMN J0948+0022, shows all characteristics of the blazar class.« less

  18. Accretion states in X-ray binaries and their connection to GeV emission

    NASA Astrophysics Data System (ADS)

    Koerding, Elmar

    Accretion onto compact objects is intrinsically a multi-wavelength phenomenon: it shows emis-sion components visible from the radio to GeV bands. In X-ray binaries one can well observe the evolution of a single source under changes of the accretion rate and thus study the interplay between the different emission components.I will introduce the phenomenology of X-ray bina-ries and their accretion states and present our current understanding of the interplay between the optically thin and optically thick part of the accretion flow and the jet.The recent detection of the Fermi Large Area Telescope of a variable high-energy source coinciding with the position of the x-ray binary Cygnus X-3 will be presented. Its identification with Cygnus X-3 has been secured by the detection of its orbital period in gamma rays, as well as the correlation of the LAT flux with radio emission from the relativistic jets of Cygnus X-3. This will be interpreted in the context of the accretion states of the X-ray binary.

  19. Radio/X-ray monitoring of the broad-line radio galaxy 3C 382. High-energy view with XMM-Newtonand NuSTAR

    NASA Astrophysics Data System (ADS)

    Ursini, F.; Petrucci, P.-O.; Matt, G.; Bianchi, S.; Cappi, M.; Dadina, M.; Grandi, P.; Torresi, E.; Ballantyne, D. R.; De Marco, B.; De Rosa, A.; Giroletti, M.; Malzac, J.; Marinucci, A.; Middei, R.; Ponti, G.; Tortosa, A.

    2018-05-01

    We present the analysis of five joint XMM-Newton/NuSTARobservations, 20 ks each and separated by 12 days, of the broad-line radio galaxy 3C 382. The data were obtained as part of a campaign performed in September-October 2016 simultaneously with VLBA. The radio data and their relation with the X-ray ones will be discussed in a following paper. The source exhibits a moderate flux variability in the UV/X-ray bands, and a limited spectral variability especially in the soft X-ray band. In agreement with past observations, we find the presence of a warm absorber, an iron Kα line with no associated Compton reflection hump, and a variable soft excess well described by a thermal Comptonization component. The data are consistent with a "two-corona" scenario, in which the UV emission and soft excess are produced by a warm (kT ≃ 0.6 keV), optically thick (τ ≃ 20) corona consistent with being a slab fully covering a nearly passive accretion disc, while the hard X-ray emission is due to a hot corona intercepting roughly 10% of the soft emission. These results are remarkably similar to those generally found in radio-quiet Seyferts, thus suggesting a common accretion mechanism.

  20. The x ray halo of AM Her

    NASA Technical Reports Server (NTRS)

    Catura, Richard C.

    1993-01-01

    The objective of this research was to study the halo surrounding the ROSAT image of the cataclysmic variable AM Her that is formed by scattering of x-rays by interstellar dust grains. AM Her was in a low state of x-ray emission during the 14,400 sec observation and thus an insufficient number of counts were obtained to detect the x-ray halo.

  1. Studies of BL Lacertae objects with the Einstein Observatory - The soft X-ray spectra of OJ 287 and PKS 0735+178

    NASA Technical Reports Server (NTRS)

    Madejski, Greg M.; Schwartz, Daniel A.

    1988-01-01

    Accurate, soft X-ray spectra of two BL Lac objects, OJ 287 and PKS 0735+178, are presented. The X-ray spectra are well described by a power-law model with a low-energy cutoff consistent with photoelectric absorption within the Galaxy. The best-fit values of the energy spectral index in the 0.2-4.0 keV band are 0.91 and 0.76 respectively. The X-ray flux from OJ 287 is variable by a ratio of three from low to high state; PKS 0735+178 shows no indication of X-ray variability. The X-ray emission in OJ 287 is interpreted to be due to the synchrotron process from a volume common with either a beamed radio component or a stationary optical component. In PKS 0735+178, where the X-ray emission is most likely due to the Compton process operating in one of the VLBI radio components. The synchrotron self-Compton process with modest kinematic Doppler factors predicts the measured X-ray flux from PKS 0735+178 and lower than the measured flux in OJ 287.

  2. HEAO Science Symposium

    NASA Technical Reports Server (NTRS)

    Dailey, C. (Editor); Johnson, W. (Editor)

    1979-01-01

    Scientific results from the early analysis of data from the HEAO 1 mission are presented. Development of astronomical catalogs and maps, X-ray variability, extragalactic astronomy, X-ray iron line emission, and optical identification and spectroscopy of X-ray sources are among the topics discussed. Results from HEAO 2 imaging and nonimaging instruments are included.

  3. Characterizing X-Ray and Radio Emission in the Black Hole X-Ray Binary V404 Cygni During Quiescence

    NASA Technical Reports Server (NTRS)

    Rana, Vikram; Loh, Alan; Corbel, Stephane; Tomsick, John A.; Chakrabarty, Deepto; Walton, Dominic J.; Barret, Didier; Boggs, Steven E.; Christensen, Finn E.; Craig, William; hide

    2016-01-01

    We present results from multi-wavelength simultaneous X-ray and radio observations of the black hole X-ray binary V404 Cyg in quiescence. Our coverage with NuSTAR provides the very first opportunity to study the X-ray spectrum of V404 Cyg at energies above 10 keV. The unabsorbed broadband (0.3-30 keV) quiescent luminosity of the source is 8.9 x 10(exp 32) erg per sec for a distance of 2.4 kpc. The source shows clear variability on short timescales (an hour to a couple of hours) in the radio, soft X-ray, and hard X-ray bands in the form of multiple flares. The broadband X-ray spectra obtained from XMM-Newton and NuSTAR can be characterized with a power-law model having a photon index of gamma = 2.12 +/- 0.07 (90% confidence errors); however, residuals at high energies indicate spectral curvature significant at a 3 sigma confidence level with the e-folding energy of the cutoff as 20(sub -7)(sup +20) keV. Such curvature can be explained using synchrotron emission from the base of a jet outflow. Radio observations using the VLA reveal that the spectral index evolves on very fast timescales (as short as 10 minutes), switching between optically thick and thin synchrotron emission, possibly due to instabilities in the compact jet or stochastic instabilities in the accretion rate. We explore different scenarios to explain this very fast variability.

  4. X-Ray Flare Candidates in Short Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Margutti, R.; Chincarini, G.; Granot, J.; Guidorzi, C.; Berger, E.; Bernardini, M. G.; Geherls, N.; Soderberg, A. M.; Stamatikos, M.; Zaninoni, E.

    2012-01-01

    We present the first systematic study of X-ray flare candidates in short gamma-ray bursts (SGRBs) exploiting the large 6-year Swift database with the aim to constrain the physical nature of such fluctuations. We find that flare candidates appear in different types of SGRB host galaxy environments and show no clear correlation with the X-ray afterglow lifetime; flare candidates are detected both in SGRBs with a bright extended emission in the soft gamma-rays and in SGRBs which do not show such component. We furthermore show that SGRB X-ray flare candidates only partially share the set of observational properties of long GRB (LGRB) flares. In particular, the main parameter driving the duration evolution of X-ray variability episodes in both classes is found to be the elapsed time from the explosion, with very limited dependence on the different progenitors, environments, central engine life-times, prompt variability time-scales and energy budgets. On the contrary, SGRB flare candidates significantly differ from LGRB flares in terms of peak luminosity, isotropic energy, flare-to-prompt luminosity ratio and relative variability flux. However, these differences disappear when the central engine time-scales and energy budget are accounted for, suggesting that (i) flare candidates and prompt pulses in SGRBs likely have a common origin; (ii) similar dissipation and/or emission mechanisms are responsible for the prompt and flare emission in long and short GRBs, with SGRBs being less energetic albeit faster evolving versions of the long class. Finally, we show that in strict analogy to the SGRB prompt emission, flares candidates fall off the lag-luminosity relation defined by LGRBs, thus strengthening the SGRB flare-prompt pulse connection.

  5. A Comparative View of X-rays from the Solar System

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Anil; Elsner, Ron; Gladstone, Randy; Cravens, Tom; Waite, Hunter; Branduardi-Raymont, Graziella; Ostgaard, Nikolai; Dennerl, Konrad; Lisse, Carey; Kharchenko, Vasili

    2005-01-01

    With the advent of sophisticated X-ray observatories, viz., Chandra and XMM-Newton, the field of planetary X-ray astronomy is advancing at a faster pace. Several new solar system objects are now know to shine in X-rays at energies generally below 2 keV. Jupiter, Saturn, and Earth, all three magnetized planets, have been observed by Chandra and XMM-Newton. At Jupiter, both auroral and non-auroral disk X-ray emissions have been observed. The first soft X-ray observation of Earth's aurora by Chandra shows that it is highly variable. X-rays have been detected from Saturn's disk, but no convincing evidence of X-ray aurora has been seen. Several comets have been observed in X-rays by Chandra and XMM-Newton. Cometary X-rays are produced due to change exchange of solar wind ions with cold cometary neutrals. Soft X-rays have also been observed from Venus, Mars, Moon, Io, Europa, Io plasma torus, and heliosphere. The non-auroral X-ray emissions from Jupiter, Saturn, and Earth, and those from sunlit disk of Mars, Venus, and Moon are produced due to scattering of solar X-rays. The spectral characteristics of X-ray emission from comets, heliosphere, darkside of Moon, and Martian halo are quite similar, but they appear to be quite different from those of Jovian auroral X-rays. The X- ray aurora on Earth is generated by electron bremsstrahlung and on Jupiter by precipitation of highly-ionized energetic heavy ions. In this paper we will present a comparative overview of X-ray emission from different solar system objects and make an attempt to synthesize a coherent picture.

  6. A Long Decay of X-Ray Flux and Spectral Evolution in the Supersoft Active Galactic Nucleus GSN 069

    NASA Astrophysics Data System (ADS)

    Shu, X. W.; Wang, S. S.; Dou, L. M.; Jiang, N.; Wang, J. X.; Wang, T. G.

    2018-04-01

    GSN 069 is an optically identified very low-mass active galactic nuclei (AGN) that shows supersoft X-ray emission. The source is known to exhibit a huge X-ray outburst, with flux increased by more than a factor of ∼240 compared to the quiescence state. We report its long-term evolution in the X-ray flux and spectral variations over a timescale of ∼decade, using both new and archival X-ray observations from the XMM-Newton and Swift. The new Swift observations detected the source in its lowest level of X-ray activity since the outburst, a factor of ∼4 lower in the 0.2–2 keV flux than that obtained with the XMM-Newton observations nearly eight years ago. Combining with the historical X-ray measurements, we find that the X-ray flux is decreasing slowly. There seemed to be spectral softening associated with the drop of X-ray flux. In addition, we find evidence for the presence of a weak, variable, hard X-ray component, in addition to the dominant thermal blackbody emission reported before. The long decay of X-ray flux and spectral evolution, as well as the supersoft X-ray spectra, suggest that the source could be a tidal disruption event (TDE), though a highly variable AGN cannot be fully ruled out. Further continued X-ray monitoring would be required to test the TDE interpretation, by better determining the flux evolution in the decay phase.

  7. An X-ray survey of variable radio bright quasars

    NASA Technical Reports Server (NTRS)

    Henriksen, M. J.; Marshall, F. E.; Mushotzky, R. F.

    1984-01-01

    A sample consisting primarily of radio bright quasars was observed in X-rays with the Einstein Observatory for times ranging from 1500 to 5000 seconds. Detected sources had luminosities ranging from 0.2 to 41.0 x 10 to the 45th power ergs/sec in the 0.5 to 4.5 keV band. Three of the fourteen objects which were reobserved showed flux increases greater than a factor of two on a time scale greater than six months. No variability was detected during the individual observations. The optical and X-ray luminosities are correlated, which suggests a common origin. However, the relationship (L sub x is approximately L sub op to the (.89 + or - .15)) found for historic radio variables may be significantly different than that reported for other radio bright sources. Some of the observed X-ray fluxes were substantially below the predicted self-Compton flux, assuming incoherent synchrotron emission and using VLBI results to constrain the size of the emission region, which suggests relativistic expansion in these sources. Normal CIV emission in two of the sources with an overpredicted Compton component suggests that although they, like BL Lac objects, have highly relativistic material apparently moving at small angle to the line of sight, they have a smaller fraction of the continuum component in the beam.

  8. Probing the X-ray Emission from the Massive Star Cluster Westerlund 2

    NASA Astrophysics Data System (ADS)

    Lopez, Laura

    2017-09-01

    We propose a 300 ks Chandra ACIS-I observation of the massive star cluster Westerlund 2 (Wd2). This region is teeming with high-energy emission from a variety of sources: colliding wind binaries, OB and Wolf-Rayet stars, two young pulsars, and an unidentified source of very high-energy (VHE) gamma-rays. Our Chandra program is designed to achieve several goals: 1) to take a complete census of Wd2 X-ray point sources and monitor variability; 2) to probe the conditions of the colliding winds in the binary WR 20a; 3) to search for an X-ray counterpart of the VHE gamma-rays; 4) to identify diffuse X-ray emission; 5) to compare results to other massive star clusters observed by Chandra. Only Chandra has the spatial resolution and sensitivity necessary for our proposed analyses.

  9. Response of the upper atmosphere to variations in the solar soft x-ray irradiance. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Bailey, Scott Martin

    1995-01-01

    Terrestrial far ultraviolet (FUV) airglow emissions have been suggested as a means for remote sensing the structure of the upper atmosphere. The energy which leads to the excitation of FUV airglow emissions is solar irradiance at extreme ultraviolet (EUV) and soft x-ray wavelengths. Solar irradiance at these wavelengths is known to be highly variable; studies of nitric oxide (NO) in the lower thermosphere have suggested a variability of more than an order of magnitude in the solar soft x-ray irradiance. To properly interpret the FUV airflow, the magnitude of the solar energy deposition must be known. Previous analyses have used the electron impact excited Lyman-Birge-Hopfield (LBH) bands of N2 to infer the flux of photoelectrons in the atmosphere and thus to infer the magnitude of the solar irradiance. This dissertation presents the first simultaneous measurements of the FUV airglow, the major atmospheric constituent densities, and the solar EUV and soft x-ray irradiances. The measurements were made on three flights of an identical sounding rocket payload at different levels of solar activity. The linear response in brightness of the LBH bands to variations in solar irradiance is demonstrated. In addition to the N2 LBH bands, atomic oxygen lines at 135.6 and 130.4 nm are also studied. Unlike the LBH bands, these emissions undergo radiative transfer effects in the atmosphere. The OI emission at 135.6 nm is found to be well modeled using a radiative transfer calculation and the known excitation processes. Unfortunately, the assumed processes leading to OI 130.4 nm excitation are found to be insufficient to reproduce the observed variability of this emission. Production of NO in the atmosphere is examined; it is shown that a lower than previously reported variability in the solar soft x-ray irradiance is required to explain the variability of NO.

  10. X-Ray Variability of BL Lac Objects

    NASA Astrophysics Data System (ADS)

    McHardy, Ian

    I present an overview of the X-ray temporal and spectral variability of BL Lacs on both short and long timescales. The previously observed behaviour of short (~days) flares superimposed on a relatively steady `quiescent' level is still broadly correct. However, for the brighter BL Lacs, the well sampled lightcurves from the RXTE ASM show that the `quiescent' level also varies considerably on timescales of ~100 days in a manner similar to that seen in Optically Violently Variable Quasars (OVVs) such as 3C279 and 3C273. Possible reasons for this behaviour are discussed. For the large majority of BL Lacs the soft and medium energy X-ray bands are dominated by synchrotron emission and, unlike the case of OVVs, the emission mechanism is not in doubt. Most interest then centres on the structure of the emitting region, and the electron acceleration processes, particularly during outbursts. That structure, and the acceleration processes, can be investigated by consideration of the spectral variability during flares, which is not simple. I review the observations of spectral variability and consider the evidence for and against homogeneous models. I also briefly compare the X-ray spectral variability of BL Lacs with that of OVVs such as 3C273.

  11. X-Ray Spectral Variability Signatures of Flares in BL Lac Objects

    NASA Technical Reports Server (NTRS)

    Boettcher, Markus; Chiang, James; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We are presenting a detailed parameter study of the time-dependent electron injection and kinematics and the self-consistent radiation transport in jets of intermediate and low-frequency peaked BL Lac objects. Using a time-dependent, combined synchrotron-self-Compton and external-Compton jet model, we study the influence of variations of several essential model parameters, such as the electron injection compactness, the relative contribution of synchrotron to external soft photons to the soft photon compactness, the electron- injection spectral index, and the details of the time profiles of the electron injection episodes giving rise to flaring activity. In the analysis of our results, we focus on the expected X-ray spectral variability signatures in a region of parameter space particularly well suited to reproduce the broadband spectral energy distributions of intermediate and low-frequency peaked BL Lac objects. We demonstrate that SSC- and external-Compton dominated models for the gamma-ray emission from blazars are producing significantly different signatures in the X-ray variability, in particular in the soft X-ray light curves and the spectral hysteresis at soft X-ray energies, which can be used as a powerful diagnostic to unveil the nature of the high-energy emission from BL Lac objects.

  12. X-rays from the radio halo of Virgo A = M87

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The purpose of this study is to investigate in more detail the associated X-ray and radio emission in the Virgo A halo discovered by SGF. Improved Einstein HRI data and new radio maps obtained with the Very Large Array are described and the relation between the X-ray and radio structures is carefully examined. Several possible explanations are presented for the X-ray emission. The inverse compton model is found to be viable only if the magnetic field is variable and substantially weaker than the equipartition value. The principal alternative is excess thermal X-rays due to compression of the intracluster medium by the radio lobe. In either case, the association of such prominent radio and X-ray structures is unique among known radio galaxies.

  13. X-Ray Study of Variable Gamma-Ray Pulsar PSR J2021+4026

    NASA Astrophysics Data System (ADS)

    Wang, H. H.; Takata, J.; Hu, C.-P.; Lin, L. C. C.; Zhao, J.

    2018-04-01

    PSR J2021+4026 showed a sudden decrease in the gamma-ray emission at the glitch that occurred around 2011 October 16, and a relaxation of the flux to the pre-glitch state at around 2014 December. We report X-ray analysis results of the data observed by XMM-Newton on 2015 December 20 in the post-relaxation state. To examine any change in the X-ray emission, we compare the properties of the pulse profiles and spectra at the low gamma-ray flux state and at the post-relaxation state. The phase-averaged spectra for both states can be well described by a power-law component plus a blackbody component. The former is dominated by unpulsed emission and probably originated from the pulsar wind nebula as reported by Hui et al. The emission property of the blackbody component is consistent with the emission from the polar cap heated by the back-flow bombardment of the high-energy electrons or positrons that were accelerated in the magnetosphere. We found no significant change in the X-ray emission properties between two states. We suggest that the change of the X-ray luminosity is at an order of ∼4%, which is difficult to measure with the current observations. We model the observed X-ray light curve with the heated polar cap emission, and we speculate that the observed large pulsed fraction is owing to asymmetric magnetospheric structure.

  14. First Search for an X-Ray-Optical Reverberation Signal in an Ultraluminous X-Ray Source

    NASA Technical Reports Server (NTRS)

    Pasham, Dheeraj R.; Strohmayer, Tod E.; Cenko, S. Bradley; Trippe, Margaret L.; Mushotzky, Richard F.; Gandhi, Poshak

    2016-01-01

    Using simultaneous optical (VLT/FORS2) and X-ray (XMM-Newton) data of NGC 5408, we present the first ever attempt to search for a reverberation signal in an ultraluminous X-ray source (NGC 5408 X-1). The idea is similar to active galactic nucleus broad line reverberation mapping where a lag measurement between the X-ray and the optical flux combined with a Keplerian velocity estimate should enable us to weigh the central compact object. We find that although NGC 5408 X-1's X-rays are variable on a timescale of a few hundred seconds (rms of 9.0 +/- 0.5%), the optical emission does not show any statistically significant variations. We set a 3s upper limit on the rms optical variability of 3.3%. The ratio of the X-ray to the optical variability is an indicator of X-ray reprocessing efficiency. In X-ray binaries, this ratio is roughly 5. Assuming a similar ratio for NGC 5408 X-1, the expected rms optical variability is approximately equal to 2%, which is still a factor of roughly two lower than what was possible with the VLT observations in this study. We find marginal evidence (3 sigma) for optical variability on an approximately 24 hr timescale. Our results demonstrate that such measurements can be made, but photometric conditions, low sky background levels, and longer simultaneous observations will be required to reach optical variability levels similar to those of X-ray binaries.

  15. An X-ray Investigation of the NGC 346 Field. 1; The LBV HD 5980 and the NGC 346 Cluster

    NASA Technical Reports Server (NTRS)

    Naze, Y.; Hartwell, J. M.; Stevens, I. R.; Corcoran, M. F.; Chu, Y.-H.; Koenigsberger, G.; Moffat, A. F. J.; Niemela, V. S.

    2002-01-01

    We present results from a Chandra observation of the NGC 346 star formation region, which contains numerous massive stars, and is related to N66, the largest H(II) region of the SMC (Small Magellanic Cloud). In this first paper, we will focus on the characteristics of the main objects of the field. The NGC 346 cluster itself shows only relatively faint X-ray emission (with L((sub X)(sup unabs)) is approximately 1.5 x 10(exp 34) erg s(exp -1), tightly correlated with the core of the cluster. In the field also lies HD 5980, a LBV (Luminous Blue Variable) star in a binary (or triple system) that is detected for the first time at X-ray energies. The star is X-ray bright, with an unabsorbed luminosity of L((sub X)(sup unabs)) is approximately 1.7 x 10(exp 34) erg s(exp -1), but needs to be monitored further to investigate its X-ray variability over a complete orbital cycle. The high X-ray luminosity may be associated either with colliding winds in the binary system or with the 1994 eruption. HD 5980 is surrounded by a region of diffuse X-ray emission, which may be a superimposed supernova remnant.

  16. Chandra Observations of the Eclipsing Wolf-Rayet Binary CQ CepOver a Full Orbital Cycle

    NASA Astrophysics Data System (ADS)

    Skinner, Steve L.; Guedel, Manuel; Schmutz, Werner; Zhekov, Svetozar

    2018-06-01

    We present results of Chandra X-ray observations and simultaneous optical light curves of the short-period (1.64 d) eclipsing WN6+O9 binary system CQ Cep obtained in 2013 and 2017 covering a full binary orbit. Our primary objective was to compare the observed X-ray properties with colliding wind shock theory, which predicts that the hottest shock plasma (T > 20 MK) will form on or near the line-of-centers between the stars. Thus, X-ray variability is expected during eclipses when the hottest plasma is occulted. The X-ray spectrum is strikingly similar to apparently single WN6 stars such as WR 134 and spectral lines reveal plasma over a broad range of temperatures T ~ 4 - 40 MK. Both primary and secondary optical eclipses were clearly detected and provide an accurate orbital period determination (P = 1.6412 d). The X-ray emission remained remarkably steady throughout the orbit and statistical tests give a low probability of variability. The lack of significant X-ray variabililty during eclipses indicates that the X-ray emission is not confined along the line-of-centers but is extended on larger spatial scales, contrary to colliding wind predictions.

  17. Resolving the Large Scale Spectral Variability of the Luminous Seyfert 1 Galaxy 1H 0419-577: Evidence for a New Emission Component and Absorption by Cold Dense Matter

    NASA Technical Reports Server (NTRS)

    Pounds, K. A.; Reeves, J. N.; Page, K. L.; OBrien, P. T.

    2004-01-01

    An XMM-Newton observation of the luminous Seyfert 1 galaxy 1H 0419-577 in September 2002, when the source was in an extreme low-flux state, found a very hard X-ray spectrum at 1-10 keV with a strong soft excess below -1 keV. Comparison with an earlier XMM-Newton observation when 1H 0419-577 was X-ray bright indicated the dominant spectral variability was due to a steep power law or cool Comptonised thermal emission. Four further XMM-Newton observations, with 1H 0419-577 in intermediate flux states, now support that conclusion, while we also find the variable emission component in intermediate state difference spectra to be strongly modified by absorption in low ionisation matter. The variable soft excess then appears to be an artefact of absorption of the underlying continuum while the core soft emission can be attributed to re- combination in an extended region of more highly ionised gas. We note the wider implications of finding substantial cold dense matter overlying (or embedded in) the X-ray continuum source in a luminous Seyfert 1 galaxy.

  18. A Search for X-Ray Evidence of a Compact Companion to the Unusual Wolf-Rayet Star HD 50896 (EZ CMa)

    NASA Technical Reports Server (NTRS)

    Skinner, Stephen L.; Itoh, Masayuki; Nagase, Fumiaki

    1998-01-01

    We analyze results of a approx.25 ksec ASCA X-ray observation of the unusual Wolf-Rayet star HD 50896 (= EZ CMa). This WN5 star shows optical and ultraviolet variability at a 3.766 day period, which has been interpreted as a possible signature of a compact companion. Our objective was to search for evidence of hard X-rays (greater than or equal to 5 keV) which could be present if the WN5 wind is accreting onto a compact object. The ASCA spectra are dominated by emission below 5 keV and show no significant emission in the harder 5-10 keV range. Weak emission lines are present, and the X-rays arise in an optically thin plasma which spans a range of temperatures from less than or equal to 0.4 keV up to at least approx. 2 keV. Excess X-ray absorption above the interstellar value is present, but the column density is no larger than N(sub H) approx. 10(exp 22)/sq cm. The absorption-corrected X-ray luminosity L(sub x)(0.5 - 10 keV) = 10(exp 32.85) erg/s gives L(sub x)/ L(sub bol) approx. 10(exp -6), a value that is typical of WN stars. No X-ray variability was detected. Our main conclusion is that the X-ray properties of HD 50896 are inconsistent with the behavior expected for wind accretion onto a neutron star or black hole companion. Alternative models based on wind shocks can explain most aspects of the X-ray behavior, and we argue that the hotter plasma near approx. 2 keV could be due to the WR wind shocking onto a normal (nondegenerate) companion.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Long; Zhang, Shu; Chen, YuPeng

    Type I X-ray bursts on the surface of a neutron star are a unique probe into accretion in X-ray binary systems. However, we know little about the feedback of the burst emission on accretion. Hard X-ray shortages and enhancements of the persistent emission at soft X-rays have been observed. To put these findings in context with the aim of understanding the possible mechanism underneath, we investigated 68 bursts seen by the Rossi X-ray Timing Explorer from the clocked burster GS 1826-238. We diagnosed jointly the burst influence of both soft and hard X-rays, and we found that the observations canmore » be described by the CompTT model with variable normalization, electron temperature, and optical depth. Putting these results in a scenario of coronal Compton cooling via the burst emission would lead to a shortage of cooling power, which may suggest that additional considerations, like the influence of the burst on corona formation, should be accounted for as well.« less

  20. INVERSE COMPTON X-RAY EMISSION FROM TeV BLAZAR MRK 421 DURING A HISTORICAL LOW-FLUX STATE OBSERVED WITH NuSTAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kataoka, Jun; Stawarz, Łukasz, E-mail: kataoka.jun@waseda.jp

    2016-08-10

    We report on the detection of excess hard X-ray emission from the TeV BL Lac object Mrk 421 during the historical low-flux state of the source in 2013 January. Nuclear Spectroscopic Telescope Array observations were conducted four times between MJD 56294 and MJD 56312 with a total exposure of 80.9 ks. The source flux in the 3–40 keV range was nearly constant, except for MJD 56307 when the average flux level increased by a factor of three. Throughout the exposure, the X-ray spectra of Mrk 421 were well represented by a steep power-law model with a photon index of Γmore » ≃ 3.1, although a significant excess was noted above 20 keV in the MJD 56302 data when the source was in its faintest state. Moreover, Mrk 421 was detected at more than the 4 σ level in the 40–79 keV count maps for both MJD 56307 and MJD 56302 but not during the remaining two observations. The detected excess hard X-ray emission connects smoothly with the extrapolation of the high-energy γ -ray continuum of the blazar constrained by Fermi -LAT during source quiescence. These findings indicate that while the overall X-ray spectrum of Mrk 421 is dominated by the highest-energy tail of the synchrotron continuum, the variable excess hard X-ray emission above 20 keV (on the timescale of a week) is related to the inverse Compton emission component. We discuss the resulting constraints on the variability and spectral properties of the low-energy segment of the electron energy distribution in the source.« less

  1. The X-Ray Time Variability and Spectrum of Gamma-Cassiopeiae X:0053+604

    NASA Astrophysics Data System (ADS)

    Parmar, A. N.; Israel, G. L.; Stella, L.; White, N. E.

    1993-08-01

    A 30 h duration EXOSAT observation made in 1985 December is used to examine the X-ray time variability and spectrum of the Be star γ Cassiopeiae (X 0053+604). We find that the X-ray lightcurve is dominated by irregular energy-independent flaring on time-scales ≳ 100 s. This flaring markedly decreases the sensitivity to any periodic signals. We find no evidence for the 6000 5 oscillations reported by Frontera et al. (1987) from an earlier EXOSAT observation. We suggest that these arise from statistical fluctuations in the red noise power. The X-ray spectrum of γ Cas can either be modeled by thermal emission from an optically thin plasma with a temperature of 12 keV, or by a cut-off power-law model with a narrow iron line at an energy of 6.67 keV. The origin of the X-ray emission in this system remains open since its spectral and temporal properties are consistent with both an acereting neutron star and a white dwarf while its high temperature argues against a coronal mechanism.

  2. High energy variability of 3C 273 during the AGILE multiwavelength campaign of December 2007-January 2008

    NASA Astrophysics Data System (ADS)

    Pacciani, L.; Donnarumma, I.; Vittorini, V.; D'Ammando, F.; Fiocchi, M. T.; Impiombato, D.; Stratta, G.; Verrecchia, F.; Bulgarelli, A.; Chen, A. W.; Giuliani, A.; Longo, F.; Pucella, G.; Vercellone, S.; Tavani, M.; Argan, A.; Barbiellini, G.; Boffelli, F.; Caraveo, P. A.; Cattaneo, P. W.; Cocco, V.; Costa, E.; Del Monte, E.; Di Cocco, G.; Evangelista, Y.; Feroci, M.; Froysland, T.; Fuschino, F.; Galli, M.; Gianotti, F.; Labanti, C.; Lapshov, I.; Lazzarotto, F.; Lipari, P.; Marisaldi, M.; Mereghetti, S.; Morselli, A.; Pellizzoni, A.; Perotti, F.; Picozza, P.; Prest, M.; Rapisarda, M.; Soffitta, P.; Trifoglio, M.; Tosti, G.; Trois, A.; Vallazza, E.; Zanello, D.; Antonelli, L. A.; Colafrancesco, S.; Cutini, S.; Gasparrini, D.; Giommi, P.; Pittori, C.; Salotti, L.

    2009-01-01

    Context: We report the results of a 3-week multi-wavelength campaign targeting the flat spectrum radio quasar 3C 273 carried out with the AGILE gamma-ray mission, covering the 30 MeV-50 GeV and 18-60 keV, the REM observatory (covering the near-IR and optical), Swift (near-UV/Optical, 0.2-10 keV and 15-50 keV), INTEGRAL (3-200 keV) and Rossi XTE (2-12 keV). This is the first observational campaign including gamma-ray data, after the last EGRET observations, more than 8 years ago. Aims: This campaign has been organized by the AGILE team with the aim of observing, studying and modelling the broad band energy spectrum of the source, and its variability on a week timescale, testing the emission models describing the spectral energy distribution of this source. Methods: Our study was carried out using simultaneous light curves of the source flux from all the involved instruments, in the different energy ranges, to search for correlated variability. Then a time-resolved spectral energy distribution was used for a detailed physical modelling of the emission mechanisms. Results: The source was detected in gamma-rays only in the second week of our campaign, with a flux comparable to the level detected by EGRET in June 1991. We found an indication of a possible anti-correlation between the emission at gamma-rays and at soft and hard X-rays, supported by the complete set of instruments. Instead, optical data do not show short term variability, as expected for this source. Only in two preceding EGRET observations (in 1993 and 1997) 3C 273 showed intra-observation variability in gamma-rays. In the 1997 observation, flux variation in gamma-rays was associated with a synchrotron flare. The energy-density spectrum with almost simultaneous data partially covers the regions of synchrotron emission, the big blue bump, and the inverse-Compton. We adopted a leptonic model to explain the hard X/gamma-ray emissions, although from our analysis hadronic models cannot be ruled out. In the adopted model, the soft X-ray emission is consistent with combined synchrotron-self Compton and external Compton mechanisms, while hard X and gamma-ray emissions are compatible with external Compton from thermal photons of the disk. Under this model, the time evolution of the spectral energy distribution is well interpreted and modelled in terms of an acceleration episode of the electron population, leading to a shift in the inverse Compton peak towards higher energies.

  3. X-ray Spectral Formation In High-mass X-ray Binaries: The Case Of Vela X-1

    NASA Astrophysics Data System (ADS)

    Akiyama, Shizuka; Mauche, C. W.; Liedahl, D. A.; Plewa, T.

    2007-05-01

    We are working to develop improved models of radiatively-driven mass flows in the presence of an X-ray source -- such as in X-ray binaries, cataclysmic variables, and active galactic nuclei -- in order to infer the physical properties that determine the X-ray spectra of such systems. The models integrate a three-dimensional time-dependent hydrodynamics capability (FLASH); a comprehensive and uniform set of atomic data, improved calculations of the line force multiplier that account for X-ray photoionization and non-LTE population kinetics, and X-ray emission-line models appropriate to X-ray photoionized plasmas (HULLAC); and a Monte Carlo radiation transport code that simulates Compton scattering and recombination cascades following photoionization. As a test bed, we have simulated a high-mass X-ray binary with parameters appropriate to Vela X-1. While the orbital and stellar parameters of this system are well constrained, the physics of X-ray spectral formation is less well understood because the canonical analytical wind velocity profile of OB stars does not account for the dynamical and radiative feedback effects due to the rotation of the system and to the irradiation of the stellar wind by X-rays from the neutron star. We discuss the dynamical wind structure of Vela X-1 as determined by the FLASH simulation, where in the binary the X-ray emission features originate, and how the spatial and spectral properties of the X-ray emission features are modified by Compton scattering, photoabsorption, and fluorescent emission. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  4. Multiwavelength Rapid Variability in XTE J1118+480

    NASA Astrophysics Data System (ADS)

    Hynes, R. I.; Haswell, C. A.; Chaty, S.; Cui, W.; Shrader, C. R.

    2000-10-01

    The black hole candidate XTE J1118+480 has been in an unusual low-state outburst since January 2000. It has exhibited large amplitude rapid variability on timescales of tens of seconds and less at all wavelengths with a sufficient count rate to detect such variability. We will compare X-ray data with simultaneous (UV) and contemporaneous (UV--IR) data. Very similar power density spectra are seen at X-ray and UV wavelengths, with a prominent low-frequency QPO at ~0.1 Hz, evolving with time. Simultaneous X-ray and UV lightcurves are well correlated down to timescales of seconds. The correlated variability could arise either from reprocessing of X-ray variations by the disc or companion star, or from a component of emission originating in the X-ray production region, likely close to the compact object. Possible lags between the wavebands will constrain explanations. This presentation is funded by the Leverhulme Trust.

  5. A time dependent approach to model X-ray and γ-ray light curves of Mrk 421 observed during the flare in February 2010

    NASA Astrophysics Data System (ADS)

    Singh, K. K.; Sahayanathan, S.; Sinha, A.; Bhatt, N.; Tickoo, A. K.; Yadav, K. K.; Rannot, R. C.; Chandra, P.; Venugopal, K.; Marandi, P.; Kumar, N.; Goyal, H. C.; Goyal, A.; Agarwal, N. K.; Kothari, M.; Chanchalani, K.; Dhar, V. K.; Chouhan, N.; Bhat, C. K.; Koul, M. K.; Koul, R.

    2017-07-01

    Strong X-ray and γ-ray flares have been detected in February 2010 from the high synchrotron peaked blazar Mrk 421 (z = 0.031). With the motivation of understanding the physics involved in this flaring activity, we study the variability of the source in X-ray and γ-ray energy bands during the period February 10-23, 2010 (MJD 55237-55250). We use near simultaneous X-ray data collected by MAXI, Swift-XRT and γ-ray data collected by Fermi-LAT and TACTIC along with the optical V-band observations by SPOLat Steward Observatory. We observe that the variation in the one day averaged flux from the source during the flare is characterized by fast rise and slow decay. Besides, the TeV γ-ray flux shows a strong correlation with the X-ray flux, suggesting the former to be an outcome of synchrotron self Compton emission process. To model the observed X-ray and γ-ray light curves, we numerically solve the kinetic equation describing the evolution of particle distribution in the emission region. The injection of particle distribution into the emission region, from the putative acceleration region, is assumed to be a time dependent power law. The synchrotron and synchrotron self Compton emission from the evolving particle distribution in the emission region are used to reproduce the X-ray and γ-ray flares successfully. Our study suggests that the flaring activity of Mrk 421 can be an outcome of an efficient acceleration process associated with the increase in underlying non-thermal particle distribution.

  6. Resolving the Large Scale Spectral Variability of the Luminous Seyfert 1 Galaxy 1H 0419-577

    NASA Technical Reports Server (NTRS)

    Pounds, K. A.; Reeves, J. N.; Page, K. L.; OBrien, P. T.

    2004-01-01

    An XMM-Newton observation of the luminous Seyfert 1 galaxy 1H 0419-577 in September 2002, when the source was in an extreme low-flux state, found a very hard X-ray spectrum at 1-10 keV with a strong soft excess below approximately 1 keV. Comparison with an earlier XMM-Newton observation when 1H 0419-577 was X-ray bright indicated the dominant spectral variability was due to a steep power law or cool Comptonized thermal emission. Four further XMM-Newton observations, with 1H 0419-577 in intermediate flux states, now support that conclusion, while we also find the variable emission component in intermediate state difference spectra to be strongly modified by absorption in low ionisation matter. The variable soft excess is seen to be an artefact of absorption of the underlying continuum while the core soft emission is attributed to recombination in an extended region of more highly ionised gas. This new analysis underlines the importance of fully accounting for absorption in characterizing AGN X-ray spectra.

  7. Broadband spectral study of the jet-disc emission in the radio-loud narrow-line Seyfert 1 galaxy 1H 0323+342

    NASA Astrophysics Data System (ADS)

    Ghosh, Ritesh; Dewangan, Gulab C.; Mallick, Labani; Raychaudhuri, Biplab

    2018-06-01

    We present a broadband spectral study of the radio-loud narrow-line Seyfert 1 galaxy 1H 0323+342 based on multi-epoch observations performed with NuSTAR on 2014 March 15, and two simultaneous observations performed with Suzaku and Swift on 2009 July 26 and 2013 March 1. We found the presence of a strong soft X-ray excess emission, a broad but weak Fe line and hard X-ray excess emission. We used the blurred reflection (relxill) and the intrinsic disc Comptonization (optxagnf), two physically motivated models, to describe the broadband spectra and to disentangle the disk/corona and jet emission. The relxill model is mainly constrained by the strong soft X-ray excess although the model failed to predict this excess when fitted above 3{keV} and extrapolated to lower energies. The joint spectral analysis of the three datasets above 3{keV} with this model resulted in a high black hole spin (a > 0.9) and moderate reflection fraction R ˜ 0.5. The optxagnf model fitted to the two simultaneous datasets resulted in an excess emission in the UV band. The simultaneous UV-to-hard X-ray spectra of 1H 0323+342 are best described by a model consisting of a primary X-ray power-law continuum with Γ ˜ 1.8, a blurred reflection component with R ˜ 0.5, Comptonised disk emission as the soft X-ray excess, optical/UV emission from a standard accretion disk around a black hole of mass ˜107M⊙ and a steep power law (Γ ˜ 3 - 3.5) component, most likely the jet emission in the UV band. The fractional RMS variability spectra suggest that both the soft excess and the powerlaw component are variable in nature.

  8. The 2009 multiwavelength campaign on Mrk 421: Variability and correlation studies

    DOE PAGES

    Aleksić, J.; Ansoldi, S.; Antonelli, L. A.; ...

    2015-04-17

    We perform an extensive characterization of the broadband emission of Mrk 421, as well as its temporal evolution, during the non-flaring (low) state. The high brightness and nearby location (z = 0.031) of Mrk 421 make it an excellent laboratory to study blazar emission. The goal is to learn about the physical processes responsible for the typical emission of Mrk 421, which might also be extended to other blazars that are located farther away and hence are more difficult to study. We performed a 4.5-month multi-instrument campaign on Mrk 421 between January 2009 and June 2009, which included VLBA, F-GAMMA,more » GASP-WEBT, Swift, RXTE, Fermi-LAT, MAGIC, and Whipple, among other instruments and collaborations. This extensive radio to very-high-energy (VHE; E> 100 GeV) γ-ray dataset provides excellent temporal and energy coverage, which allows detailed studies of the evolution of the broadband spectral energy distribution. As a result, Mrk421 was found in its typical (non-flaring) activity state, with a VHE flux of about half that of the Crab Nebula, yet the light curves show significant variability at all wavelengths, the highest variability being in the X-rays. We determined the power spectral densities (PSD) at most wavelengths and found that all PSDs can be described by power-laws without a break, and with indices consistent with pink/red-noise behavior. We observed a harder-when-brighter behavior in the X-ray spectra and measured a positive correlation between VHE and X-ray fluxes with zero time lag. Such characteristics have been reported many times during flaring activity, but here they are reported for the first time in the non-flaring state. We also observed an overall anti-correlation between optical/UV and X-rays extending over the duration of the campaign. In conclusion, the harder-when-brighter behavior in the X-ray spectra and the measured positive X-ray/VHE correlation during the 2009 multi-wavelength campaign suggests that the physical processes dominating the emission during non-flaring states have similarities with those occurring during flaring activity. In particular, this observation supports leptonic scenarios as being responsible for the emission of Mrk 421 during non-flaring activity. Such a temporally extended X-ray/VHE correlation is not driven by any single flaring event, and hence is difficult to explain within the standard hadronic scenarios. Furthermore, the highest variability is observed in the X-ray band, which, within the one-zone synchrotron self-Compton scenario, indicates that the electron energy distribution is most variable at the highest energies.« less

  9. Continued Analysis of EUVE Solar System Observations

    NASA Technical Reports Server (NTRS)

    Gladstone, G. Randall

    2001-01-01

    This is the final report for this project. We proposed to continue our work on extracting important results from the EUVE (Extreme UltraViolet Explorer) archive of lunar and jovian system observations. In particular, we planned to: (1) produce several monochromatic images of the Moon at the wavelengths of the brightest solar EUV emission lines; (2) search for evidence of soft X-ray emissions from the Moon and/or X-ray fluorescence at specific EUV wavelengths; (3) search for localized EUV and soft X-ray emissions associated with each of the Galilean satellites; (4) search for correlations between localized Io Plasma Torus (IPT) brightness and volcanic activity on Io; (5) search for soft X-ray emissions from Jupiter; and (6) determine the long term variability of He 58.4 nm emissions from Jupiter, and relate these to solar variability. However, the ADP review panel suggested that the work concentrate on the Jupiter/IPT observations, and provided half the requested funding. Thus we have performed no work on the first two tasks, and instead concentrated on the last three. In addition we used funds from this project to support reduction and analysis of EUVE observations of Venus. While this was not part of the original statement of work, it is entirely in keeping with extracting important results from EUVE solar system observations.

  10. X ray emission from Wolf-Rayet stars with recurrent dust formation

    NASA Technical Reports Server (NTRS)

    Rawley, Gayle L.

    1993-01-01

    We were granted a ROSAT observation of the Wolf-Rayet star WR 137 (equals HD 192641) to test a proposed mechanism for producing the infrared variability reported by Williams et al. (1987). These studies showed one clear infrared outburst preceded by what may be the dimming of a previous outburst. The recurrent dust formation model was put forward by Williams et al. (1990) to account for similar variability seen in WR 140, which varies in both the infrared and X-ray bands. The detected X-ray flux from WR 140 was observed to decrease from its normally high (for Wolf-Rayet stars) level as the infrared flux increased. Observation of two apparently-periodic infrared outbursts led to the hypothesis that WR 140 had an O star companion in an eccentric orbit, and that the increase in infrared flux came from a dust formation episode triggered by the compression of the O star and Wolf-Rayet star winds. The absorption of the X-rays by the increased material explained the decrease in flux at those wavelengths. If the infrared variability in WR 137 were caused by a similar interaction of the Wolf-Rayet star with a companion, we might expect that WR 137 would show corresponding X-ray variability and an X-ray luminosity somewhat higher than typical WC stars, as well as a phase-dependent non-thermal X-ray spectrum. Our goals in this study were to obtain luminosity estimates from our counting rates for comparison with previous observations of WR 137 and other WC class stars, especially WR 140; to compare the luminosity with the IR lightcurve; and to characterize the spectral shape of the X-ray emission, including the column density.

  11. Observation of Gamma-Ray Emission from the Galaxy M87 above 250 GeV with VERITAS

    NASA Astrophysics Data System (ADS)

    Acciari, V. A.; Beilicke, M.; Blaylock, G.; Bradbury, S. M.; Buckley, J. H.; Bugaev, V.; Butt, Y.; Celik, O.; Cesarini, A.; Ciupik, L.; Cogan, P.; Colin, P.; Cui, W.; Daniel, M. K.; Duke, C.; Ergin, T.; Falcone, A. D.; Fegan, S. J.; Finley, J. P.; Finnegan, G.; Fortin, P.; Fortson, L. F.; Gibbs, K.; Gillanders, G. H.; Grube, J.; Guenette, R.; Gyuk, G.; Hanna, D.; Hays, E.; Holder, J.; Horan, D.; Hughes, S. B.; Hui, M. C.; Humensky, T. B.; Imran, A.; Kaaret, P.; Kertzman, M.; Kieda, D. B.; Kildea, J.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; Lang, M. J.; LeBohec, S.; Lee, K.; Maier, G.; McCann, A.; McCutcheon, M.; Millis, J.; Moriarty, P.; Mukherjee, R.; Nagai, T.; Ong, R. A.; Pandel, D.; Perkins, J. S.; Pohl, M.; Quinn, J.; Ragan, K.; Reynolds, P. T.; Rose, H. J.; Schroedter, M.; Sembroski, G. H.; Smith, A. W.; Steele, D.; Swordy, S. P.; Syson, A.; Toner, J. A.; Valcarcel, L.; Vassiliev, V. V.; Wakely, S. P.; Ward, J. E.; Weekes, T. C.; Weinstein, A.; White, R. J.; Williams, D. A.; Wissel, S. A.; Wood, M. D.; Zitzer, B.

    2008-05-01

    The multiwavelength observation of the nearby radio galaxy M87 provides a unique opportunity to study in detail processes occurring in active galactic nuclei from radio waves to TeV γ-rays. Here we report the detection of γ-ray emission above 250 GeV from M87 in spring 2007 with the VERITAS atmospheric Cerenkov telescope array and discuss its correlation with the X-ray emission. The γ-ray emission is measured to be pointlike with an intrinsic source radius less than 4.5'. The differential energy spectrum is fitted well by a power-law function: dΦ/dE = (7.4 +/- 1.3stat +/- 1.5sys)(E/TeV)(- 2.31 +/- 0.17stat +/- 0.2sys) 10-9 m-2 s-1 TeV-1. We show strong evidence for a year-scale correlation between the γ-ray flux reported by TeV experiments and the X-ray emission measured by the ASM RXTE observatory, and discuss the possible short-timescale variability. These results imply that the γ-ray emission from M87 is more likely associated with the core of the galaxy than with other bright X-ray features in the jet. Corresponding author: .

  12. Determination of Differential Emission Measure Distribution of Coronal Structures Observed by SphinX During Recent Minimum of Solar Activity

    NASA Astrophysics Data System (ADS)

    Kepa, Anna; Gburek, Szymon; Siarkowski, Marek; Sylwester, Barbara; Sylwester, Janusz; Kowalinski, Miroslaw

    SphinX is a high-sensitivity soft X-ray spectrophotometer which measures soft X-ray spectra in the energy range between 0.8 keV and 15 keV. From February to November 2009 the instrument has observed unusually quiet solar coronal emission as well as a number of weak solar flares. Based on SphinX spectra it is possible to study the differential emission measure distributions (DEM) in the temperature range roughly between 1 MK and 10 MK. The aim of the present study is to unveil DEM plasma distributions for selected activity conditions and analyze their variability.

  13. Boundary layers in cataclysmic variables: The HEAO-1 X-ray constraints

    NASA Technical Reports Server (NTRS)

    Jensen, K. A.

    1983-01-01

    The predictions of the boundary layer model for the X-ray emission from novae are summarized. A discrepancy between observations and theory in the X-ray observations is found. Constraints on the nature of the boundary layers in novae, based on the lack of detections of novae in the HEAO-1 soft X-ray survey are provided. Temperature and column densities for optically thick boundary layers in novae are estimated.

  14. A Chandra X-ray census of the interacting binaries in old open clusters - NGC 188

    NASA Astrophysics Data System (ADS)

    Vats, Smriti; Van Den Berg, Maureen

    2017-01-01

    We present a new X-ray study of NGC 188, one of the oldest open clusters known in the Milky Way (7 Gyr). Our X-ray observation using the Chandra X-ray Observatory is aimed at uncovering the population of close interacting binaries in the cluster. We detect 84 X-ray sources with a limiting X-ray luminosity, LX ~ 4×1029 erg s-1 (0.3-7 keV), of which 28 are within the half-mass radius. Of these, 13 are proper-motion or radial-velocity cluster members, wherein we identify a mix of active binaries (ABs) and blue straggler stars (BSSs). We also identify one tentative cataclysmic variable (CV) candidate which is a known short-period photometric variable, but whose membership to NGC 188 is unknown. We have compared the X-ray luminosity per unit of cluster mass (i.e. the X-ray emissivity) of NGC 188 with those of other old Galactic open clusters and dense globular clusters (47 Tuc, NGC 6397). Our findings confirm the earlier result that old open clusters have higher X-ray emissivities than the globular clusters (LX ≥1×1030 erg s-1). This may be explained by dynamical encounters in globulars, which could have a net effect of destroying binaries, or the typically higher metallicities of open clusters. We find one intriguing X-ray source in NGC 188 that is a BSS and cluster member, whose X-ray luminosity cannot be explained by its currently understood binary configuration. Its X-ray detection invokes the need for a third companion in the system.

  15. INVESTIGATING BROADBAND VARIABILITY OF THE TeV BLAZAR 1ES 1959+650

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aliu, E.; Archambault, S.; Arlen, T.

    We summarize broadband observations of the TeV-emitting blazar 1ES 1959+650, including optical R-band observations by the robotic telescopes Super-LOTIS and iTelescope, UV observations by Swift Ultraviolet and Optical Telescope, X-ray observations by the Swift X-ray Telescope, high-energy gamma-ray observations with the Fermi Large Area Telescope, and very-high-energy (VHE) gamma-ray observations by VERITAS above 315 GeV, all taken between 2012 April 17 and 2012 June 1 (MJD 56034 and 56079). The contemporaneous variability of the broadband spectral energy distribution is explored in the context of a simple synchrotron self Compton (SSC) model. In the SSC emission scenario, we find that themore » parameters required to represent the high state are significantly different than those in the low state. Motivated by possible evidence of gas in the vicinity of the blazar, we also investigate a reflected emission model to describe the observed variability pattern. This model assumes that the non-thermal emission from the jet is reflected by a nearby cloud of gas, allowing the reflected emission to re-enter the blob and produce an elevated gamma-ray state with no simultaneous elevated synchrotron flux. The model applied here, although not required to explain the observed variability pattern, represents one possible scenario which can describe the observations. As applied to an elevated VHE state of 66% of the Crab Nebula flux, observed on a single night during the observation period, the reflected emission scenario does not support a purely leptonic non-thermal emission mechanism. The reflected emission model does, however, predict a reflected photon field with sufficient energy to enable elevated gamma-ray emission via pion production with protons of energies between 10 and 100 TeV.« less

  16. INVESTIGATING BROADBAND VARIABILITY OF THE TeV BLAZAR 1ES 1959+650

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aliu, E.; Archambault, S.; Arlen, T.

    We summarize broadband observations of the TeV-emitting blazar 1ES 1959+650, including optical R-band observations by the robotic telescopes Super-LOTIS and iTelescope, UV observations by Swift Ultraviolet and Optical Telescope, X-ray observations by the Swift X-ray Telescope, high-energy gamma-ray observations with the Fermi Large Area Telescope, and very-high-energy (VHE) gamma-ray observations by VERITAS above 315 GeV, all taken between 2012 April 17 and 2012 June 1 (MJD 56034 and 56079). The contemporaneous variability of the broadband spectral energy distribution is explored in the context of a simple synchrotron self Compton (SSC) model. In the SSC emission scenario, we find that themore » parameters required to represent the high state are significantly different than those in the low state. Motivated by possible evidence of gas in the vicinity of the blazar, we also investigate a reflected emission model to describe the observed variability pattern. This model assumes that the non-thermal emission from the jet is reflected by a nearby cloud of gas, allowing the reflected emission to re-enter the blob and produce an elevated gamma-ray state with no simultaneous elevated synchrotron flux. The model applied here, although not required to explain the observed variability pattern, represents one possible scenario which can describe the observations. As applied to an elevated VHE state of 66% of the Crab Nebula flux, observed on a single night during the observation period, the reflected emission scenario does not support a purely leptonic non-thermal emission mechanism. The reflected emission model does, however, predict a reflected photon field with sufficient energy to enable elevated gamma-ray emission via pion production with protons of energies between 10 and 100 TeV.« less

  17. A multi-wavelength study of pre-main sequence stars in the Taurus-Auriga star-forming region

    NASA Astrophysics Data System (ADS)

    Guenther, E. W.; Stelzer, B.; Neuhäuser, R.; Hillwig, T. C.; Durisen, R. H.; Menten, K. M.; Greimel, R.; Barwig, H.; Englhauser, J.; Robb, R. M.

    2000-05-01

    Although many lowmass pre-main sequence stars are strong X-ray sources, the origin of the X-ray emission is not well known. Since these objects are variable at all frequencies, simultaneous observations in X-rays and in other wavelengths are able to constrain the properties of the X-ray emitting regions. In this paper, we report quasi-simultaneous observations in X-rays, the optical, and the radio regime for classical and weak-line T Tauri stars from the Taurus-Auriga star-forming region. We find that all detected T Tauri stars show significant night-to-night variations of the X-ray emission. For three of the stars, FM Tau and CW Tau, both classical T Tauri stars, and V773 Tau, a weak-line T Tauri star, the variations are especially large. From observations taken simultaneously, we also find that there is some correspondence between the strength of Hα and the X-ray brightness in V773 Tau. The lack of a strong correlation leads us to conclude that the X-ray emission of V773 Tau is not a superposition of flares. However, we suggest that a weak correlation occurs because chromospherically active regions and regions of strong X-ray emission are generally related. V773 Tau was detected at 8.46 GHz as a weakly circularly polarised but highly variable source. We also find that the X-ray emission and the equivalent width of Hα remained unchanged, while large variations of the flux density in the radio regime were observed. This clearly indicates that the emitting regions are different. Using optical spectroscopy we detected a flare in Hα and event which showed a flare-like light-curve of the continuum brightness in FM Tau. However, ROSAT did not observe the field at the times of these flares. Nevertheless, an interesting X-ray event was observed in V773 Tau, during which the flux increased for about 8 hours and then decreased back to the same level in 5 hours. We interpret this as a long-duration event similar to those seen on the sun and other active stars. In the course of the observations, we discovered a new weak-line T Tauri star, GSC-1839-5674. Results are also presented for several other stars in the ROSAT field.

  18. XMM-Newton studies of the supernova remnant G350.0-2.0

    NASA Astrophysics Data System (ADS)

    Karpova, A.; Shternin, P.; Zyuzin, D.; Danilenko, A.; Shibanov, Yu.

    2016-11-01

    We report the results of XMM-Newton observations of the Galactic mixed-morphology supernova remnant G350.0-2.0. Diffuse thermal X-ray emission fills the north-western part of the remnant surrounded by radio shell-like structures. We did not detect any X-ray counterpart of the latter structures, but found several bright blobs within the diffuse emission. The X-ray spectrum of the most part of the remnant can be described by a collisionally ionized plasma model VAPEC with solar abundances and a temperature of ≈0.8 keV. The solar abundances of plasma indicate that the X-ray emission comes from the shocked interstellar material. The overabundance of Fe was found in some of the bright blobs. We also analysed the brightest point-like X-ray source 1RXS J172653.4-382157 projected on the extended emission. Its spectrum is well described by the two-temperature optically thin thermal plasma model MEKAL typical for cataclysmic variable stars. The cataclysmic variable source nature is supported by the presence of a faint (g ≈ 21) optical source with non-stellar spectral energy distribution at the X-ray position of 1RXS J172653.4-382157. It was detected with the XMM-Newton optical/UV monitor in the U filter and was also found in the archival Hα and optical/near-infrared broad-band sky survey images. On the other hand, the X-ray spectrum is also described by the power law plus thermal component model typical for a rotation powered pulsar. Therefore, the pulsar interpretation of the source cannot be excluded. For this source, we derived the upper limit for the pulsed fraction of 27 per cent.

  19. NuSTAR Detection of High-Energy X-Ray Emission and Rapid Variability from Sagittarius A(star) Flares

    NASA Technical Reports Server (NTRS)

    Barriere, Nicolas M.; Tomsick, John A.; Baganoff, Frederick K.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Dexter, Jason; Grefenstette, Brian; Hailey, Charles J.; Zhang, William W.

    2014-01-01

    Sagittarius A(star) harbors the supermassive black hole that lies at the dynamical center of our Galaxy. Sagittarius A(star) spends most of its time in a low luminosity emission state but flares frequently in the infrared and X-ray, increasing up to a few hundred fold in brightness for up to a few hours at a time. The physical processes giving rise to the X-ray flares are uncertain. Here we report the detection with the NuSTAR observatory in Summer and Fall 2012 of four low to medium amplitude X-ray flares to energies up to 79 keV. For the first time, we clearly see that the power-law spectrum of Sagittarius A(star) X-ray flares extends to high energy, with no evidence for a cut off. Although the photon index of the absorbed power-law fits are in agreement with past observations, we find a difference between the photon index of two of the flares (significant at the 95% confidence level). The spectra of the two brightest flares (approx. 55 times quiescence in the 2- 10 keV band) are compared to simple physical models in an attempt to identify the main X-ray emission mechanism, but the data do not allow us to significantly discriminate between them. However, we confirm the previous finding that the parameters obtained with synchrotron models are, for the X-ray emission, physically more reasonable than those obtained with inverse-Compton models. One flare exhibits large and rapid (less than 100 s) variability, which, considering the total energy radiated, constrains the location of the flaring region to be within approx. 10 Schwarzschild radii of the black hole.

  20. Identification of Hard X-ray Sources in Galactic Globular Clusters: Simbol-X Simulations

    NASA Astrophysics Data System (ADS)

    Servillat, M.

    2009-05-01

    Globular clusters harbour an excess of X-ray sources compared to the number of X-ray sources in the Galactic plane. It has been proposed that many of these X-ray sources are cataclysmic variables that have an intermediate magnetic field, i.e. intermediate polars, which remains to be confirmed and understood. We present here several methods to identify intermediate polars in globular clusters from multiwavelength analysis. First, we report on XMM-Newton, Chandra and HST observations of the very dense Galactic globular cluster NGC 2808. By comparing UV and X-ray properties of the cataclysmic variable candidates, the fraction of intermediate polars in this cluster can be estimated. We also present the optical spectra of two cataclysmic variables in the globular cluster M 22. The HeII (4868 Å) emission line in these spectra could be related to the presence of a magnetic field in these objects. Simulations of Simbol-X observations indicate that the angular resolution is sufficient to study X-ray sources in the core of close, less dense globular clusters, such as M 22. The sensitivity of Simbol-X in an extended energy band up to 80 keV will allow us to discriminate between hard X-ray sources (such as magnetic cataclysmic variables) and soft X-ray sources (such as chromospherically active binaries).

  1. Possible Accretion Disk Origin of the Emission Variability of a Blazar Jet

    NASA Astrophysics Data System (ADS)

    Chatterjee, Ritaban; Roychowdhury, Agniva; Chandra, Sunil; Sinha, Atreyee

    2018-06-01

    We analyze X-ray light curves of the blazar Mrk 421 obtained from the Soft X-ray Imaging Telescope (SXT) and the Large Area X-ray Proportional Counter (LAXPC) instrument on board the Indian space telescope AstroSat and archival observations from Swift. We show that the X-ray power spectral density (PSD) is a piece-wise power-law with a break; i.e., the index becomes more negative below a characteristic “break timescale.” Galactic black hole (BH) X-ray binaries and Seyfert galaxies exhibit a similar characteristic timescale in their X-ray variability that is proportional to their respective BH mass. X-rays in these objects are produced in the accretion disk or corona. Hence, such a timescale is believed to be linked to the properties of the accretion flow. Any relation observed between events in the accretion disk and those in the jet can be used to characterize the disk–jet connection. However, evidence of such a link has been scarce and indirect. Mrk 421 is a BL Lac object that has a prominent jet pointed toward us and a weak disk emission, and it is assumed that most of its X-rays are generated in the jet. Hence, the existence of the break in its X-ray PSD may indicate that changes in the accretion disk, which may be the source of the break timescale, are translating into the jet where the X-rays are produced.

  2. The disc-jet symbiosis emerges: modelling the emission of Sagittarius A* with electron thermodynamics

    NASA Astrophysics Data System (ADS)

    Ressler, S. M.; Tchekhovskoy, A.; Quataert, E.; Gammie, C. F.

    2017-05-01

    We calculate the radiative properties of Sagittarius A* - spectral energy distribution, variability and radio-infrared images - using the first 3D, physically motivated black hole accretion models that directly evolve the electron thermodynamics in general relativistic MHD simulations. These models reproduce the coupled disc-jet structure for the emission favoured by previous phenomenological analytic and numerical works. More specifically, we find that the low frequency radio emission is dominated by emission from a polar outflow while the emission above 100 GHz is dominated by the inner region of the accretion disc. The latter produces time variable near-infrared (NIR) and X-ray emission, with frequent flaring events (including IR flares without corresponding X-ray flares and IR flares with weak X-ray flares). The photon ring is clearly visible at 230 GHz and 2 μm, which is encouraging for future horizon-scale observations. We also show that anisotropic electron thermal conduction along magnetic field lines has a negligible effect on the radiative properties of our model. We conclude by noting limitations of our current generation of first-principles models, particularly that the outflow is closer to adiabatic than isothermal and thus underpredicts the low frequency radio emission.

  3. Wide-Range Multiwavelength Observations of Northern TeV Blazars With MAGIC / HESS, Suzaku And KVA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashida, M.; /Munich, Max Planck Inst.; Rugamer, S.

    2007-11-14

    We have conducted multiwavelength observations of several northern TeV blazars employing the ground-based {gamma}-ray observatories MAGIC and HESS, the optical KVA telescope, and the Suzaku X-ray satellite. The data taken in 2006 establish measurements of the contemporaneous spectral energy distributions of the rapidly variable blazar emission over a wide range of frequencies. Results allow us to test leptonic and hadronic emission and particle acceleration models which predict different correlations between the optical, X-ray, and very high energy {gamma}-ray emissions. In this presentation, we report on the highlights of the results of these observations.

  4. What Can Simbol-X Do for Gamma-ray Binaries?

    NASA Astrophysics Data System (ADS)

    Cerutti, B.; Dubus, G.; Henri, G.; Hill, A. B.; Szostek, A.

    2009-05-01

    Gamma-ray binaries have been uncovered as a new class of Galactic objects in the very high energy sky (>100 GeV). The three systems known today have hard X-ray spectra (photon index ~1.5), extended radio emission and a high luminosity in gamma-rays. Recent monitoring campaigns of LSI +61°303 in X-rays have confirmed variability in these systems and revealed a spectral hardening with increasing flux. In a generic one-zone leptonic model, the cooling of relativistic electrons accounts for the main spectral and temporal features observed at high energy. Persistent hard X-ray emission is expected to extend well beyond 10 keV. We explain how Simbol-X will constrain the existing models in connection with Fermi Space Telescope measurements. Because of its unprecedented sensitivity in hard X-rays, Simbol-X will also play a role in the discovery of new gamma-ray binaries, giving new insights into the evolution of compact binaries.

  5. INTEGRAL and XMM-Newton observations of the puzzling binary system LSI +61 303

    NASA Astrophysics Data System (ADS)

    Chernyakova, Masha; Neronov, A.; Walter, R.

    LSI +61° 303 is one of the few X-ray binaries with Be star companion from which both radio and high-energy gamma-ray emission have been observed. We present XMM-Newton and INTE- GRAL observations which reveal variability of the X-ray spectral index of the system. The X-ray spectrum is hard (photon index Γ ≃ 1.5) during the orbital phases of both high and low X-ray flux. However, the spectrum softens at the moment of transition from high to low X-ray state. The spectrum of the system in the hard X-ray band does not reveal the presence of a cut-off (or, at least a spectral break) at 10-60 keV energies, expected if the compact object is an accreting neu- tron star. The observed spectrum and spectral variability can be explained if the compact object in the system is a rotation powered pulsar. In this case the recently found X-ray spectral variability of the system on the several kiloseconds time scale can be explained by the clumpy structure of the Be star disk.

  6. The Causal Connection Between Disc and Power-Law Variability in Hard State Black Hole X-Ray Binaries

    NASA Technical Reports Server (NTRS)

    Uttley, P.; Wilkinson, T.; Cassatella, P.; Wilms, J.; Pottschimdt, K.; Hanke, M.; Boeck, M.

    2010-01-01

    We use the XMM-Newton EPIC-pn instrument in timing mode to extend spectral time-lag studies of hard state black hole X-ray binaries into the soft X-ray band. \\Ve show that variations of the disc blackbody emission substantially lead variations in the power-law emission, by tenths of a second on variability time-scales of seconds or longer. The large lags cannot be explained by Compton scattering but are consistent with time-delays due to viscous propagation of mass accretion fluctuations in the disc. However, on time-scales less than a second the disc lags the power-law variations by a few ms, consistent with the disc variations being dominated by X-ray heating by the power-law, with the short lag corresponding to the light-travel time between the power-law emitting region and the disc. Our results indicate that instabilities in the accretion disc are responsible for continuum variability on time-scales of seconds or longer and probably also on shorter time-scales.

  7. Long-term optical and X-ray variability of the Be/X-ray binary H 1145-619: Discovery of an ongoing retrograde density wave

    NASA Astrophysics Data System (ADS)

    Alfonso-Garzón, J.; Fabregat, J.; Reig, P.; Kajava, J. J. E.; Sánchez-Fernández, C.; Townsend, L. J.; Mas-Hesse, J. M.; Crawford, S. M.; Kretschmar, P.; Coe, M. J.

    2017-11-01

    Context. Multiwavelength monitoring of Be/X-ray binaries is crucial to understand the mechanisms producing their outbursts. H 1145-619 is one of these systems, which has recently displayed X-ray activity. Aims: We investigate the correlation between the optical emission and X-ray activity to predict the occurrence of new X-ray outbursts from the inferred state of the circumstellar disc. Methods: We have performed a multiwavelength study of H 1145-619 from 1973 to 2017 and present here a global analysis of its variability over the last 40 yr. We used optical spectra from the SAAO, SMARTS, and SALT telescopes and optical photometry from the Optical Monitoring Camera (OMC) onboard INTEGRAL and from the All Sky Automated Survey (ASAS). We also used X-ray observations from INTEGRAL/JEM-X, and IBIS to generate the light curves and combined them with Swift/XRT to extract the X-ray spectra. In addition, we compiled archival observations and measurements from the literature to complement these data. Results: Comparing the evolution of the optical continuum emission with the Hα line variability, we identified three different patterns of optical variability: first, global increases and decreases of the optical brightness, observed from 1982 to 1994 and from 2009 to 2017, which can be explained by the dissipation and replenishment of the circumstellar disc; second, superorbital variations with a period of Psuperorb ≈ 590 days, observed in 2002-2009, which seems to be related to the circumstellar disc; and third, optical outbursts, observed in 1998-1999 and 2002-2005, which we interpret as mass ejections from the Be star. We discovered the presence of a retrograde one-armed density wave, which appeared in 2016 and is still present in the circumstellar disc. Conclusions: We carried out the most complete long-term optical study of the Be/X-ray binary H 1145-619 in correlation with its X-ray activity. For the first time, we found the presence of a retrograde density perturbation in the circumstellar disc of a Be/X-ray binary.

  8. Investigating broadband variability of the TeV blazar 1ES 1959+650

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aliu, E.; Archambault, S.; Arlen, T.

    We summarize broadband observations of the TeV-emitting blazar 1ES 1959 650, including optical R-band observations by the robotic telescopes Super-LOTIS and iTelescope, UV observations by Swift UVOT, X-ray observations by the Swift X-ray Telescope, high-energy gamma-ray observations with the Fermi Large Area Telescope, and very-high-energy (VHE) gamma-ray observations by VERITAS above 315 GeV, all taken between 2012 April 17 and 2012 June 1 (MJD 56034 and 56079). The contemporaneous variability of the broadband spectral energy distribution is explored in the context of a simple synchrotron self Compton (SSC) model. In the SSC emission scenario, we find that the parameters requiredmore » to represent the high state are significantly different than those in the low state. Motivated by possible evidence of gas in the vicinity of the blazar, we also investigate a reflected emission model to describe the observed variability pattern. This model assumes that the non-thermal emission from the jet is reflected by a nearby cloud of gas, allowing the reflected emission to re-enter the blob and produce an elevated gamma-ray state with no simultaneous elevated synchrotron flux. The model applied here, although not required to explain the observed variability pattern, represents one possible scenario which can describe the observations. As applied to an elevated VHE state of 66% of the Crab Nebula flux, observed on a single night during the observation period, the reflected emission scenario does not support a purely leptonic non-thermal emission mechanism. The reflected model does, however, predict a reflected photon field with sufficient energy to enable elevated gamma-ray emission via pion production with protons of energies between 10 and 100 TeV.« less

  9. Investigating broadband variability of the TeV blazar 1ES 1959+650

    DOE PAGES

    Aliu, E.; Archambault, S.; Arlen, T.; ...

    2014-12-03

    We summarize broadband observations of the TeV-emitting blazar 1ES 1959 650, including optical R-band observations by the robotic telescopes Super-LOTIS and iTelescope, UV observations by Swift UVOT, X-ray observations by the Swift X-ray Telescope, high-energy gamma-ray observations with the Fermi Large Area Telescope, and very-high-energy (VHE) gamma-ray observations by VERITAS above 315 GeV, all taken between 2012 April 17 and 2012 June 1 (MJD 56034 and 56079). The contemporaneous variability of the broadband spectral energy distribution is explored in the context of a simple synchrotron self Compton (SSC) model. In the SSC emission scenario, we find that the parameters requiredmore » to represent the high state are significantly different than those in the low state. Motivated by possible evidence of gas in the vicinity of the blazar, we also investigate a reflected emission model to describe the observed variability pattern. This model assumes that the non-thermal emission from the jet is reflected by a nearby cloud of gas, allowing the reflected emission to re-enter the blob and produce an elevated gamma-ray state with no simultaneous elevated synchrotron flux. The model applied here, although not required to explain the observed variability pattern, represents one possible scenario which can describe the observations. As applied to an elevated VHE state of 66% of the Crab Nebula flux, observed on a single night during the observation period, the reflected emission scenario does not support a purely leptonic non-thermal emission mechanism. The reflected model does, however, predict a reflected photon field with sufficient energy to enable elevated gamma-ray emission via pion production with protons of energies between 10 and 100 TeV.« less

  10. The White Dwarf Mass and the Accretion Rate of Recurrent Novae: An X-ray Perspective

    NASA Technical Reports Server (NTRS)

    Mukai, Koji; Sokoloski, Jennifer L.; Nelson, Thomas; Luna, Gerardo J. M.

    2011-01-01

    We present recent results of quiescent X-ray observations of recurrent novae (RNe) and related objects. Several RNe are luminous hard X-ray sources in quiescence, consistent with accretion onto a near Chandrasekhar mass white dwarf. Detection of similar hard X-ray emissions in old novae and other cataclysmic variables may lead to identification of additional RN candidates. On the other hand, other RNe are found to be comparatively hard X-ray faint. We present several scenarios that may explain this dichotomy, which should be explored further.

  11. Variable soft X-ray excesses in active galactic nuclei from nonthermal electron-positron pair cascades

    NASA Technical Reports Server (NTRS)

    Zdziarski, Andrzej A.; Coppi, Paolo S.

    1991-01-01

    In the present study of the formation of steep soft X-ray excesses that are superposed on flatter, hard X-ray power-law spectra in nonthermal electron-positron pair cascade sources, the soft excess in pair-cascade AGN models appears as a steep power law superposed on the tail of the UV bump and the flat nonthermal (hard X-ray) power law. The model-parameter space in which an excess in soft X-rays is visible is ascertained, and the time-variability of soft excesses in pair cascade models is examined. It is established that the parameter space in which soft excesses appear encompasses the range of preferred input parameters for a recently development Compton reflection model of UV and X-ray emission from the central engine of an AGN.

  12. Suzaku observations of γ-ray bright radio galaxies: Origin of the x-ray emission and broadband modeling

    DOE PAGES

    Fukazawa, Yasushi; Finke, Justin; Stawarz, Łukasz; ...

    2014-12-24

    Here, we performed a systematic X-ray study of eight nearby γ-ray bright radio galaxies with Suzaku in order to understand the origins of their X-ray emissions. The Suzaku spectra for five of those have been presented previously, while the remaining three (M87, PKS 0625–354, and 3C 78) are presented here for the first time. Based on the Fe-K line strength, X-ray variability, and X-ray power-law photon indices, and using additional information on the [O III] line emission, we argue for a jet origin of the observed X-ray emission in these three sources. We also analyzed five years of Fermi Largemore » Area Telescope (LAT) GeV gamma-ray data on PKS 0625–354 and 3C 78 to understand these sources within the blazar paradigm. We found significant γ-ray variability in the former object. Overall, we note that the Suzaku spectra for both PKS 0625–354 and 3C 78 are rather soft, while the LAT spectra are unusually hard when compared with other γ-ray detected low-power (FR I) radio galaxies. We demonstrate that the constructed broadband spectral energy distributions of PKS 0625–354 and 3C 78 are well described by a one-zone synchrotron/synchrotron self-Compton model. The results of the modeling indicate lower bulk Lorentz factors compared to those typically found in other BL Lacertae (BL Lac) objects, but consistent with the values inferred from modeling other LAT-detected FR I radio galaxies. Interestingly, the modeling also implies very high peak (~10 16 Hz) synchrotron frequencies in the two analyzed sources, contrary to previously suggested scenarios for Fanaroff-Riley (FR) type I/BL Lac unification. Finally, we discuss the implications of our findings in the context of the FR I/BL Lac unification schemes.« less

  13. A Temporal Correlation in Quiescent Gamma-Ray Burst Prompt Emission: Evidence for Prognitor Memory

    NASA Astrophysics Data System (ADS)

    Patton, Thomas L.; Giblin, Timothy; Hakkila, Jon E.

    2018-06-01

    In spite of the insight gained into the nature of the Gamma-Ray Bursts (GRB) from early and late-time X-Ray observations in the Swift era, GRB prompt emission continues to provide clues and new insight into the activity of the central engine. A comprehensive understanding of all emission components observed in GRBs, from the traditional prompt GRB emission to the long lived X-Ray and optical decay super- imposed with late-time flaring activity, currently remains allusive. Using data from the Swift Burst Alert Telescope (BAT), we've identified and measured durations observed in GRBs that exhibit multi-episodic prompt emission behavior. Duration analysis of the burst attributes revealed no significant correlations between emissions and quiet time durations. This variability allows us to extrapolate that the central engine is constantly active.

  14. Multiwavelength Observations of Markarian 421 During a TeV/X-Ray Flare

    NASA Technical Reports Server (NTRS)

    Bertsch, D. L.; Bruhweiler, F.; Macomb, D. J.; Cheng, K.-P.; Carter-Lewis, D. A.; Akerlof, C. W.; Aller, H. D.; Aller, M. F.; Buckley, J. H.; Cawley, M. F.

    1995-01-01

    A TeV flare from the BL Lac object Mrk 421 was detected in May of 1994 by the Whipple Observatory air Cherenkov experiment during which the flux above 250 GeV increased by nearly an order of magnitude over a 2-day period. Contemporaneous observations by ASCA showed the X-ray flux to be in a very high state. We present these results, combined with the first ever simultaneous or nearly simultaneous observations at GeV gamma-ray, UV, IR, mm, and radio energies for this nearest BL Lac object. While the GeV gamma-ray flux increased slightly, there is little evidence for variability comparable to that seen at TeV and X-ray energies. Other wavelengths show even less variability. This provides important constraints on the emission mechanisms at work. We present the multiwavelength spectrum of this gamma-ray blazar for both quiescent and flaring states and discuss the data in terms of current models of blazar emission.

  15. The Vital Infrared to X-ray Link in the Sgr A* Accretion Flow

    NASA Astrophysics Data System (ADS)

    Fazio, Giovanni; Ashby, Matthew; Baganoff, Frederick; Becklin, Eric; Boyce, Hope; Carey, Sean; Gammie, Charles; Ghez, Andrea; Glaccum, William; Gurwell, Mark; Haggard, Daryl; Herrero-Illana, Ruben; Hora, Joseph; Ingalls, James; Lowrance, Patrick; Markoff, Sera; Marrone, Daniel; Morris, Mark; Narayan, Ramesh; Neilsen, Joseph; Ponti, Gabriele; Smith, Howard; Willner, Steven; Witzel, Gunther

    2018-05-01

    Black hole accretion drives extreme astrophysical phenomena in the universe. Sgr A*, the radiating counterpart of the nearest supermassive black hole, is highly variable, but sparse data and short observations have left its emission physics in question. Despite enormous advances in accretion models, physical description of the interacting radiation mechanisms is incomplete. The X-ray emission mechanism in particular remains unknown. Because the necessary information is contained in the time-dependent relation between X-ray and infrared emission, we have begun monitoring Sgr A* simultaneously with Chandra in X-rays and with Spitzer in the infrared. Defining the X-ray to infrared flux density ratio will allow the entire energy distribution to be understood. We therefore request two new 24-hour epochs of Spitzer monitoring at 4.5 microns simultaneous with Chandra time already approved. This will increase the exposure time for X-ray flares where the NIR state is known, moving us out of the realm of small-number statistics and enabling diagnostics of the true X-ray/IR ratio. Under current NASA plans, this will be the last chance for these valuable Spitzer+Chandra observations.

  16. A transient radio jet in an erupting dwarf nova.

    PubMed

    Körding, Elmar; Rupen, Michael; Knigge, Christian; Fender, Rob; Dhawan, Vivek; Templeton, Matthew; Muxlow, Tom

    2008-06-06

    Astrophysical jets seem to occur in nearly all types of accreting objects, from supermassive black holes to young stellar objects. On the basis of x-ray binaries, a unified scenario describing the disc/jet coupling has evolved and been extended to many accreting objects. The only major exceptions are thought to be cataclysmic variables: Dwarf novae, weakly accreting white dwarfs, show similar outburst behavior to x-ray binaries, but no jet has yet been detected. Here we present radio observations of a dwarf nova in outburst showing variable flat-spectrum radio emission that is best explained as synchrotron emission originating in a transient jet. Both the inferred jet power and the relation to the outburst cycle are analogous to those seen in x-ray binaries, suggesting that the disc/jet coupling mechanism is ubiquitous.

  17. Clumpy wind accretion in Supergiant X-ray Binaries

    NASA Astrophysics Data System (ADS)

    El Mellah, I.; Sundqvist, J. O.; Keppens, R.

    2017-12-01

    Supergiant X-ray binaries (\\sgx) contain a neutron star (NS) orbiting a Supergiant O/B star. The fraction of the dense and fast line-driven wind from the stellar companion which is accreted by the NS is responsible for most of the X-ray emission from those system. Classic \\sgx display photometric variability of their hard X-ray emission, typically from a few 10^{35} to a few 10^{37}erg\\cdots^{-1}. Inhomogeneities (\\aka clumps) in the wind from the star are expected to play a role in this time variability. We run 3D hydrodynamical (HD) finite volume simulations to follow the accretion of the inhomogeneous stellar wind by the NS over almost 3 orders of magnitude. To model the unperturbed wind far upstream the NS, we use recent simulations which managed to resolve its micro-structure. We observe the formation of a Bondi-Hoyle-Lyttleton (BHL) like bow shock around the accretor and follow the clumps as they cross it, down to the NS magnetosphere. Compared to previous estimations discarding the HD effects, we measure lower time variability due to both the damping effect of the shock and the necessity to evacuate angular momentum to enable accretion. We also compute the associated time-variable column density and compare it to recent observations in Vela X-1.

  18. A Comparison of the X-Ray Emission from Tidal Disruption Events with those of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Auchettl, Katie; Ramirez-Ruiz, Enrico; Guillochon, James

    2018-01-01

    One of the main challenges of current tidal disruption events (TDEs) studies is that emission arising from active galactic nucleus (AGN) activity may potentially mimic the expected X-ray emission of a TDE. Here we compare the X-ray properties of TDEs and AGNs to determine a set of characteristics that would allow us to discriminate between flares arising from these two objects. We find that at peak, TDEs are brighter than AGNs found at similar redshifts. However, compared to pre-flare upper limits, highly variable AGNs can produce flares of a similar order of magnitude as those seen from X-ray TDEs. Nevertheless, TDEs decay significantly more monotonically, and their emission exhibits little variation in spectral hardness as a function of time. We also find that X-ray TDEs are less absorbed, and their emission is much softer than the emission detected from AGNs found at similar redshifts. We derive the X-ray luminosity function (LF) for X-ray TDEs using the events from Auchettl et al. Interestingly, our X-ray LF closely matches the theoretically derived LF by Milosavljević et al., which assumes a higher TDE rate currently estimated from observations. Using our results and the results of Stone & Metzger, we estimate a TDE rate of (0.7–4.7) × 10‑4 year‑1 per galaxy, higher than current observational estimates. We find that TDEs can contribute significantly to the LF of AGNs for z ≲ 0.4, while there is no evidence that TDEs influence the growth of 106–7 M ⊙ BHs. However, BHs < 106 M ⊙ can grow from TDEs arising from super-Eddington accretion without contributing significantly to the observed AGN LF at z = 0.

  19. UNVEILING THE PHYSICS OF LOW-LUMINOSITY AGNs THROUGH X-RAY VARIABILITY: LINER VERSUS SEYFERT 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernández-García, L.; Masegosa, J.; Márquez, I.

    X-ray variability is very common in active galactic nuclei (AGNs), but these variations may not occur similarly in different families of AGNs. We aim to disentangle the structure of low-ionization nuclear emission-line regions (LINERs) compared to Seyfert 2s by the study of their spectral properties and X-ray variations. We assembled the X-ray spectral parameters and variability patterns, which were obtained from simultaneous spectral fittings. Major differences are observed in the X-ray luminosities and the Eddington ratios, which are higher in Seyfert 2s. Short-term X-ray variations were not detected, while long-term changes are common in LINERs and Seyfert 2s. Compton-thick sourcesmore » generally do not show variations, most probably because the AGN is not accesible in the 0.5–10 keV energy band. The changes are mostly related to variations in the nuclear continuum, but other patterns of variability show that variations in the absorbers and at soft energies can be present in a few cases. We conclude that the X-ray variations may occur similarly in LINERs and Seyfert 2s, i.e., they are related to the nuclear continuum, although they might have different accretion mechanisms. Variations at UV frequencies are detected in LINER nuclei but not in Seyfert 2s. This is suggestive of at least some LINERs having an unobstructed view of the inner disk where the UV emission might take place, with UV variations being common in them. This result might be compatible with the disappeareance of the torus and/or the broad-line region in at least some LINERs.« less

  20. Swift AND Fermi observations of x-ray flares: The case of late internal shock

    DOE PAGES

    Troja, Eleonora; Piro, Luigi; Vasileiou, Vlasios; ...

    2015-04-07

    Simultaneous Swift and Fermi observations of gamma-ray bursts (GRBs) offer a unique broadband view of their afterglow emission, spanning more than 10 decades in energy. We present the sample of X-ray flares observed by both Swift and Fermi during the first three years of Fermi operations. While bright in the X-ray band, X-ray flares are often undetected at lower (optical), and higher (MeV to GeV) energies. We show that this disfavors synchrotron self-Compton processes as the origin of the observed X-ray emission. We compare the broadband properties of X-ray flares with the standard late internal shock model, and find thatmore » in this scenario, X-ray flares can be produced by a late-time relativistic (Γ > 50) outflow at radii R ~ 10 13-10 14 cm. As a result, this conclusion holds only if the variability timescale is significantly shorter than the observed flare duration, and implies that X-ray flares can directly probe the activity of the GRB central engine.« less

  1. Swift and Fermi Observations of X-Ray Flares: The Case of Late Internal Shock

    NASA Technical Reports Server (NTRS)

    Troja, E.; Piro, L.; Vasileiou, V.; Omodei, N.; Burgess, J. M.; Cutini, S.; Connaughton, V.; McEnery, J. E.

    2015-01-01

    Simultaneous Swift and Fermi observations of gamma-ray bursts (GRBs) offer a unique broadband view of their afterglow emission, spanning more than 10 decades in energy. We present the sample of X-ray flares observed by both Swift and Fermi during the first three years of Fermi operations. While bright in the X-ray band, X-ray flares are often undetected at lower (optical), and higher (MeV to GeV) energies. We show that this disfavors synchrotron self-Compton processes as the origin of the observed X-ray emission. We compare the broadband properties of X-ray flares with the standard late internal shock model, and find that in this scenario, X-ray flares can be produced by a late-time relativistic (gamma greater than 50) outflow at radii R approximately 10(exp 13) - 10(exp 14) cm. This conclusion holds only if the variability timescale is significantly shorter than the observed flare duration, and implies that X-ray flares can directly probe the activity of the GRB central engine.

  2. SWIFT AND FERMI OBSERVATIONS OF X-RAY FLARES: THE CASE OF LATE INTERNAL SHOCK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troja, E.; Piro, L.; Vasileiou, V.

    2015-04-10

    Simultaneous Swift and Fermi observations of gamma-ray bursts (GRBs) offer a unique broadband view of their afterglow emission, spanning more than 10 decades in energy. We present the sample of X-ray flares observed by both Swift and Fermi during the first three years of Fermi operations. While bright in the X-ray band, X-ray flares are often undetected at lower (optical), and higher (MeV to GeV) energies. We show that this disfavors synchrotron self-Compton processes as the origin of the observed X-ray emission. We compare the broadband properties of X-ray flares with the standard late internal shock model, and find thatmore » in this scenario, X-ray flares can be produced by a late-time relativistic (Γ > 50) outflow at radii R ∼ 10{sup 13}-10{sup 14} cm. This conclusion holds only if the variability timescale is significantly shorter than the observed flare duration, and implies that X-ray flares can directly probe the activity of the GRB central engine.« less

  3. X-Ray Emission from Active Galactic Nuclei with Intermediate-Mass Black Holes

    NASA Astrophysics Data System (ADS)

    Dewangan, G. C.; Mathur, S.; Griffiths, R. E.; Rao, A. R.

    2008-12-01

    We present a systematic X-ray study of eight active galactic nuclei (AGNs) with intermediate-mass black holes (MBH ~ 8-95 × 104 M⊙) based on 12 XMM-Newton observations. The sample includes the two prototype AGNs in this class—NGC 4395 and POX 52 and six other AGNs discovered with the Sloan Digitized Sky Survey. These AGNs show some of the strongest X-ray variability, with the normalized excess variances being the largest and the power density break timescales being the shortest observed among radio-quiet AGNs. The excess-variance-luminosity correlation appears to depend on both the BH mass and the Eddington luminosity ratio. The break timescale-black hole mass relations for AGN with IMBHs are consistent with that observed for massive AGNs. We find that the FWHM of the Hβ/Hα line is uncorrelated with the BH mass, but shows strong anticorrelation with the Eddington luminosity ratio. Four AGNs show clear evidence for soft X-ray excess emission (kTin ~ 150-200 eV). X-ray spectra of three other AGNs are consistent with the presence of the soft excess emission. NGC 4395 with lowest L/LEdd lacks the soft excess emission. Evidently small black mass is not the primary driver of strong soft X-ray excess emission from AGNs. The X-ray spectral properties and optical-to-X-ray spectral energy distributions of these AGNs are similar to those of Seyfert 1 galaxies. The observed X-ray/UV properties of AGNs with IMBHs are consistent with these AGNs being low-mass extensions of more massive AGNs, those with high Eddington luminosity ratio looking more like narrow-line Seyfert 1 s and those with low L/LEdd looking more like broad-line Seyfert 1 galaxies.

  4. X-Ray Variability in M87

    NASA Technical Reports Server (NTRS)

    Harris, Daniel E.; Biretta, J. A.; Junor, W.

    2000-01-01

    We present the evidence for X-ray variability from the core and from knot A in the M87 jet based on data from two observations with the Einstein Observatory High Resolution Imager (HRI) and three observations with the ROSAT HRI. The core intensity showed a 16% increase in 17 months ('79-'80); a 12% increase in the 3 years '92 to '95; and a 17% drop in the last half of 1995. The intensity of knot A appears to have decreased by 16% between 92Jun and 95Dec. Although the core variability is consistent with general expectations for AGB nuclei, the changes in knot A provide constraints on the x-ray emission process and geometry. Thus we predict that the x-ray morphology of knot A will differ significantly from the radio and optical structure.

  5. Gamma-Ray Emission from the Broad-Line Radio Galaxy 3C 111

    NASA Technical Reports Server (NTRS)

    Hartman, Robert C.; Kadler, M.; Tueller, Jack

    2008-01-01

    The broad-line radio galaxy 3C 111 has been suggested as the counterpart of the y-ray source 3EG J0416+3650. While 3C 111 meets most of the criteria for a high-probability identification, like a bright flat-spectrum radio core and a blazar-like broadband SED, in the Third EGRET Catalog, the large positional offset of about 1.5' put 3C 111 outside the 99% probability region for 3EG J0416+3650, making this association questionable. We present a re-analysis of all available archival data for 3C 111 from the EGRET archives, resulting in detection of variable hard-spectrum high-energy gamma-ray emission above 1000 MeV from a position close to the nominal position of 3C 111, in three separate viewing periods (VPs), at a 3sigma level in each. A second variable hard-spectrum source is present nearby. At >100 MeV, one variable soft-spectrum source seems to account for most of the EGRET-detected emission of 3EG J0416+3650. A follow-up Swift UVOT/XRT observation reveals one moderately bright X-ray source in the error box of 3EG J0416+3650, but because of the large EGRET position uncertainty, it is not certain that the X-ray and gamma-ray sources are associated. Another Swift observation near the second (unidentified) hard gamma-ray source detected no X-ray source nearby.

  6. X-RAY EMISSION FROM THE FU ORIONIS STAR V1735 CYGNI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skinner, Stephen L.; Sokal, Kimberly R.; Guedel, Manuel

    2009-05-01

    The variable star V1735 Cyg (=Elias 1-12) lies in the IC 5146 dark cloud and is a member of the class of FU Orionis objects whose dramatic optical brightenings are thought to be linked to episodic accretion. We report the first X-ray detections of V1735 Cyg and a deeply embedded class I protostar lying 24'' to its northeast. X-ray spectra obtained with EPIC on XMM-Newton reveal very high-temperature plasma (kT > 5 keV) in both objects, but no large flares. Such hard X-ray emission is not anticipated from accretion shocks and is a signature of magnetic processes. We place thesemore » new results into the context of what is presently known about the X-ray properties of FU Orionis stars and other accreting young stellar objects.« less

  7. Identification of two hard X-ray emitting Be stars using the HEAO 1 scanning modulation collimator

    NASA Technical Reports Server (NTRS)

    Steiner, J. E.; Ferrara, A.; Garcia, M.; Patterson, J.; Schwartz, D. A.; Warwick, R. S.; Watson, M. G.; Mcclintock, J. E.

    1984-01-01

    Using precise positions from the HEAO 1 Scanning Modulation Collimator experiment, two hard X-ray sources, 4U 0728 - 25 = 3A 0726 - 260 and 4U 2206 + 54 = 3A 2206 + 543, are identified with early-type stars. In both cases broad (10 A FWHM) H-alpha emission is detected. The UBV colors suggest that the optical counterparts are main-sequence B0-B2 stars at 2-6 kpc, implying a mean X-ray luminosity of order 10 to the 35th ergs/sq cm s (2-10 keV). The X-ray emission in both cases is highly variable, and it is suggested that they belong to the class of X-ray emitting Be stars, containing a neutron star in a widely separated binary system.

  8. Boundary layers in cataclysmic variables - The HEAO 1 X-ray constraints

    NASA Technical Reports Server (NTRS)

    Jensen, K. A.

    1984-01-01

    The predictions of the boundary layer model for the X-ray emission from novae are summarized. A discrepancy between observations and theory in the X-ray observations is found. Constraints on the nature of the boundary layers in novae, based on the lack of detections of novae in the HEAO-1 soft X-ray survey are provided. Temperature and column densities for optically thick boundary layers in novae are estimated. Previously announced in STAR as N84-13046

  9. The Nearest Neutron Stars

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.

    1996-01-01

    Extreme Ultraviolet Explorer (EUVE) satellite observations of the Pulsar PSR J0437-4715, the Seyfert Galaxy RX J0437.4-4711, and the Geminga Pulsar are reported on. The main purpose of the PSR J0437-4715 investigation was to examine its soft X-ray flux. The 20 day EUVE observation of RX J0437.4-4711 constitutes a uniformly sampled soft X-ray light curve of a highly variable Seyfert galaxy whose power spectrum can be examined on timescales from 3 hrs. to several days. A unique aspect of the EUVE observation of RX J0437.4-4711 is its long light curve which we have used to measure the power spectrum of soft X-ray variability at low frequencies. Approximately 2100 counts were detected for the Geminga pulsar in a period of 251,000 s by the EUVE Deep Survey instrument. Geminga presents an unusually difficult problem because its multicomponent X-ray spectrum and pulse profile are indicative of a complex distribution of surface emission, and possibly a contribution from nonthermal emission as well.

  10. Infrared studies of galactic center x-ray sources

    NASA Astrophysics Data System (ADS)

    DeWitt, Curtis

    In this dissertation I use a variety of approaches to discover the nature of a subset of the nearly 10,000 X-ray point sources in the 2° x 0.8° region around the Galactic Center. I produced a JHK s source catalog of the 170 x170 region around Sgr A* an area containing 4339 of these X-ray sources, with the ISPI camera on the CTIO 4-m telescope. I cross-correlated the Chandra and ISPI catalogs to find potential near-infrared (NIR) counterparts to the X-ray sources. The extreme NIR source crowding in the field means that it is not possible to establish the authenticity of the matches with astrometry and photometry alone. I found 2137 IR/X-ray astrometrically matched sources; statistically I calculated that my catalog contains 289+/-13 true matches to soft X-ray sources and 154 +/- 39 matches to hard X-ray sources. However, the fraction of matches to hard sources that are spurious is 90%, compared to 40% for soft source matches, making the hard source NIR matches particularly challenging for spectroscopic follow-up. I statistically investigated the parameter space of matched sources and identified a set of 98 NIR matches to hard X-ray sources with reddenings consistent with the GC distance which have a 45% probability of being true counterparts. I created two additional photometric catalogs of the GC region to investigate the variability of X-ray counterparts over a time baseline of several years. I found 48 variable NIR sources matched to X-ray sources, with 2 spectroscopically confirmed to be true counterparts (1 in previous literature and one in this study). I took spectra of 46 of my best candidates for counterparts to X-ray sources toward the GC, and spectroscopically confirmed 4 sources as the authentic physical counterpart on the basis of emission lines in the H and K band spectra. These sources include a Be high mass X-ray binary located 16 pc in projection away from Sgr A*; a hard X-ray symbiotic binary located 22 pc in projection from Sgr A*; an O-type supergiant at an distance of 3.7 kpc; and an O star at the Galactic Center distance. I also identified 3 foreground X-ray source counterparts within a distance of 1 kpc which do not show obvious emission features in their spectra. However, on the basis of the low surface density of unreddened sources along the line-of-sight to the Galactic Center and our previous statistical analysis (DeWitt et al., 2010), these can be securely identified as the true counterparts to their coincident X-ray point sources. Lastly, I used the results of my matching simulations to infer the presence of 7+/-2 true counterparts within a set of late type giants that I observed without detectable emission features. I conclude from this work that the probable excess in red giant X-ray counterparts without emission lines needs to be confirmed both with larger samples of spectroscopically surveyed counterparts and more advanced statistical simulations of the match authenticity. Also, the nature of the compact object in two of my counterpart discoveries, the Be HMXB and the symbiotic binary, can be strongly constrained with X-ray spectral fitting. Lastly, I conclude that spectroscopic surveys for new X-ray source counterparts in the GC may be able to increase their efficiency by specifically targeting photometric variables and very close astrometric matches of IR/X-ray sources.

  11. What can be Learned from X-Ray Spectroscopy Concerning Hot Gas in the Local Bubble and Charge Exchange Processes

    NASA Technical Reports Server (NTRS)

    Snowden, Steven L.

    2007-01-01

    Solar wind charge exchange produces diffuse X-ray emission with a variable surface brightness comparable to that of the cosmic background. While the temporal variation of the charge exchange emission allows some separation of the components, there remains a great deal of uncertainty as to the zero level of both. Because the production mechanisms of the two components are considerably different, their spectra would provide critical diagnostics to the understanding of both. However, current X-ray observatories are very limited in both spectral resolution and sensitivity in the critical soft X-ray (less than 1.0 keV) energy range. Non-dispersive high-resolution spectrometers, such as the calorimeter proposed for the Spectrum Roentgen Gamma mission, will be extremely useful in distinguishing the cascade emission of charge exchange from the spectra of thermal bremsstrahlung cosmic plasmas.

  12. ANS hard X-ray experiment development program. [emission from X-ray sources

    NASA Technical Reports Server (NTRS)

    Parsignault, D.; Gursky, H.; Frank, R.; Kubierschky, K.; Austin, G.; Paganetti, R.; Bawdekar, V.

    1974-01-01

    The hard X-ray (HXX) experiment is one of three experiments included in the Dutch Astronomical Netherlands Satellite, which was launched into orbit on 30 August 1974. The overall objective of the HXX experiment is the detailed study of the emission from known X-ray sources over the energy range 1.5-30keV. The instrument is capable of the following measurements: (1) spectral content over the full energy range with an energy resolution of approximately 20% and time resolution down to 4 seconds; (2) source time variability down to 4 milliseconds; (3) silicon emission lines at 1.86 and 2.00keV; (4) source location to a limit of one arc minute in ecliptic latitude; and (5) spatial structure with angular resolution of the arc minutes. Scientific aspects of experiment, engineering design and implementation of the experiment, and program history are included.

  13. Bright radio emission from an ultraluminous stellar-mass microquasar in M 31.

    PubMed

    Middleton, Matthew J; Miller-Jones, James C A; Markoff, Sera; Fender, Rob; Henze, Martin; Hurley-Walker, Natasha; Scaife, Anna M M; Roberts, Timothy P; Walton, Dominic; Carpenter, John; Macquart, Jean-Pierre; Bower, Geoffrey C; Gurwell, Mark; Pietsch, Wolfgang; Haberl, Frank; Harris, Jonathan; Daniel, Michael; Miah, Junayd; Done, Chris; Morgan, John S; Dickinson, Hugh; Charles, Phil; Burwitz, Vadim; Della Valle, Massimo; Freyberg, Michael; Greiner, Jochen; Hernanz, Margarita; Hartmann, Dieter H; Hatzidimitriou, Despina; Riffeser, Arno; Sala, Gloria; Seitz, Stella; Reig, Pablo; Rau, Arne; Orio, Marina; Titterington, David; Grainge, Keith

    2013-01-10

    A subset of ultraluminous X-ray sources (those with luminosities of less than 10(40) erg s(-1); ref. 1) are thought to be powered by the accretion of gas onto black holes with masses of ∼5-20M cicled dot, probably by means of an accretion disk. The X-ray and radio emission are coupled in such Galactic sources; the radio emission originates in a relativistic jet thought to be launched from the innermost regions near the black hole, with the most powerful emission occurring when the rate of infalling matter approaches a theoretical maximum (the Eddington limit). Only four such maximal sources are known in the Milky Way, and the absorption of soft X-rays in the interstellar medium hinders the determination of the causal sequence of events that leads to the ejection of the jet. Here we report radio and X-ray observations of a bright new X-ray source in the nearby galaxy M 31, whose peak luminosity exceeded 10(39) erg s(-1). The radio luminosity is extremely high and shows variability on a timescale of tens of minutes, arguing that the source is highly compact and powered by accretion close to the Eddington limit onto a black hole of stellar mass. Continued radio and X-ray monitoring of such sources should reveal the causal relationship between the accretion flow and the powerful jet emission.

  14. X-ray signatures: New time scales and spectral features

    NASA Technical Reports Server (NTRS)

    Boldt, E. A.

    1977-01-01

    The millisecond bursts from Cyg X-1 are investigated and the overall chaotic variability for the bulk of the Cyg X-1 emission is compared to that of Sco X-1, showing that the essential character is remarkably similar (i.e. shot noise) although the fundamental time scales involved differ widely, from a fraction of a second (for Cyg X-1) to a fraction of a day (for Sco X-1). Recent OSO-8 observations of spectra features attributable to iron are reviewed. In particular, line emission is discussed within the context of a model for thermal radiation by a hot evolved gas in systems as different as supernova remnants and clusters of galaxies. Newly observed spectral structure in the emission from the X-ray pulsar Her X-1 is reported.

  15. Unveiling the physics of AGN through X-ray variability

    NASA Astrophysics Data System (ADS)

    Hernández-García, L.; González-Martín, O.; Masegosa, J.; Márquez, I.

    2017-03-01

    Although variability is a general property characterizing active galactic nuclei (AGN), it is not well established whether the changes occur in the same way in every nuclei. The main purpose of this work is to study the X-ray variability pattern(s) in AGN selected at optical wavelengths in a large sample, including low ionization nuclear emission line regions (LINERs) and type 1.8, 1.9, and 2 Seyferts, using the public archives in Chandra and/or XMM-Newton. Spectra of the same source gathered at different epochs were simultaneously fitted to study long term variations; the variability patterns were studied allowing different parameters to vary during the spectral fit. Whenever possible, short term variations from the analysis of the light curves and long term UV flux variability were studied. Variations at X-rays in timescales of months/years are very common in all AGN families but short term variations are only found in type 1.8 and 1.9 Seyferts. The main driver of the long term X-ray variations seems to be related to changes in the nuclear power. Other variability patterns cannot be discarded in a few cases. We discuss the geometry and physics of AGN through the X-ray variability analysis.

  16. Pulsars as Calibration Tools and X-Ray Observations of Spider Pulsars

    NASA Astrophysics Data System (ADS)

    Gentile, Peter Anthony

    We present the polarization pulse profiles for 29 pulsars observed with the Arecibo Observatory by the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) timing project at 2.1 GHz, 1.4 GHz, and 430 MHz. These profiles represent the most sensitive polarimetric millisecond pulsar profiles to date, revealing the existence of microcomponents (that is, pulse components with peak intensities much lower than the total pulse peak intensity). Although microcomponents have been detected in some pulsars previously, we are able to detect new microcomponents for PSRs B1937+21, J1713+0747, and J2234+0944. We also present rotation measures for 28 of these pulsars, determined independently at different observation frequencies and epochs, and find the Galactic magnetic fields derived from these rotation measures to be consistent with current models. These polarization profiles were made using measurement equation template matching, which allows us to generate the polarimetric response of the Arecibo Observatory on an epoch-by-epoch basis. We use this method to describe its time variability, and find that the polarimetric responses of the Arecibo Observatory's 1.4 and 2.1 GHz receivers varies significantly with time. We then describe the first X-ray observations of five short orbital period (PB < 1 day), gamma-ray emitting, binary millisecond pulsars. Four of these--PSRs J0023+0923, J1124-3653, J1810+1744, and J2256-1024--are "black-widow" pulsars, with degenerate companions of mass 0.1 solar mass, three of which exhibit radio eclipses. The fifth source, PSR J2215+5135, is an eclipsing "redback" with a near Roche-lobe filling 0.2 solar mass non-degenerate companion. Data were taken using the Chandra X-Ray Observatory and covered a full binary orbit for each pulsar. Two pulsars, PSRs J2215+5135 and J2256-1024, show significant orbital variability while PSR J1124-3653 shows marginal orbital variability. The lightcurves for these three pulsars have X-ray flux minima coinciding with the phases of the radio eclipses. This phenomenon is consistent with an intrabinary shock emission interpretation for the X-rays. The other two pulsars, PSRs J0023+0923 and J1810+1744, are fainter and do not demonstrate variability at a level we can detect in these data. All five spectra are fit with three separate models: a power-law model, a blackbody model, and a combined model with both power-law and blackbody components. The preferred spectral fits yield power-law indices that range from 1.3 to 3.2 and blackbody temperatures in the hundreds of eV. The spectrum for PSR J2215+5135 shows a significant hard X-ray component, with a large number of counts above 2 keV, which is additional evidence for the presence of intrabinary shock emission. This is similar to what has been detected in the low-mass X-ray binary to MSP transition object PSR J1023+0038. We also describe X-Ray observations of three "redback" pulsars taken with the XMM-Newton X-Ray telescope, and cover at least one orbit for each source. We had previously analyzed data for one of these sources, PSR J2215+5135, taken with the Chandra X-Ray Observatory . These new observations also show orbital variability in PSR J2215+5135's X-Ray lightcurve, including an X-Ray minimum near superior conjunction, and the increased sensitivity allows us to see two clear features away from superior conjunction. For the other two sources, PSRs J1622-0315 and J1908+2105, we do not detect enough counts to constrain the X-Ray orbital variability. The spectra for each of these sources showed significant hard X-Ray emission, and were therefore not well described by thermal models. We report power-law indices from these fits in the range of 1.28 to 2.0. These spectral properties are consistent with intrabinary shock emission.

  17. Investigating powerful jets in radio-loud narrow-line Seyfert 1s

    DOE PAGES

    Orienti, M.; D'Ammando, F.; Larsson, J.; ...

    2015-09-14

    Here, we report results on multiband observations from radio to γ-rays of the two radio-loud narrow-line Seyfert 1 (NLSy1) galaxies PKS 2004-447 and J1548+3511. Furthermore, both sources show a core–jet structure on parsec scale, while they are unresolved at the arcsecond scale. The high core dominance and the high variability brightness temperature make these NLSy1 galaxies good γ-ray source candidates. Fermi-Large Area Telescope detected γ-ray emission only from PKS 2004-447, with a γ-ray luminosity comparable to that observed in blazars. There was no γ-ray emission observed for J1548+3511. Both sources are variable in X-rays. J1548+3511 shows a hardening of themore » spectrum during high activity states, while PKS 2004-447 has no spectral variability. A spectral steepening likely related to the soft excess is hinted below 2 keV for J1548+3511, while the X-ray spectra of PKS 2004-447 collected by XMM–Newton in 2012 are described by a single power law without significant soft excess. No additional absorption above the Galactic column density or the presence of an Fe line is detected in the X-ray spectra of both sources.« less

  18. A year-long AGILE observation of Cygnus X-1 in hard spectral state

    NASA Astrophysics Data System (ADS)

    Del Monte, E.; Feroci, M.; Evangelista, Y.; Costa, E.; Donnarumma, I.; Lapshov, I.; Lazzarotto, F.; Pacciani, L.; Rapisarda, M.; Soffitta, P.; Argan, A.; Barbiellini, G.; Boffelli, F.; Bulgarelli, A.; Caraveo, P.; Cattaneo, P. W.; Chen, A.; D'Ammando, F.; Di Cocco, G.; Fuschino, F.; Galli, M.; Gianotti, F.; Giuliani, A.; Labanti, C.; Lipari, P.; Longo, F.; Marisaldi, M.; Mereghetti, S.; Moretti, E.; Morselli, A.; Pellizzoni, A.; Perotti, F.; Piano, G.; Picozza, P.; Pilia, M.; Prest, M.; Pucella, G.; Rappoldi, A.; Sabatini, S.; Striani, E.; Tavani, M.; Trifoglio, M.; Trois, A.; Vallazza, E.; Vercellone, S.; Vittorini, V.; Zambra, A.; Antonelli, L. A.; Cutini, S.; Pittori, C.; Preger, B.; Santolamazza, P.; Verrecchia, F.; Giommi, P.; Salotti, L.

    2010-09-01

    Context. Cygnus X-1 (Cyg X-1) is a high mass X-ray binary system, known to be a black hole candidate and one of the brightest sources in the X-ray sky, which shows both variability on all timescales and frequent flares. The source spends most of the time in a hard spectral state, dominated by a power-law emission, with occasional transitions to the soft and intermediate states, where a strong blackbody component emerges. Aims: We present the observation of Cyg X-1 in a hard spectral state performed during the AGILE science verification phase and observing cycle 1 in hard X-rays (with SuperAGILE) and gamma rays (with the gamma ray imaging detector) and lasting for about 160 days with a live time of ~6 Ms. Methods: We investigated the variability of Cyg X-1 in hard X-rays on different timescales, from ~300 s up to one day, and we applied different tools of timing analysis, such as the autocorrelation function, the first-order structure function, and the Lomb-Scargle periodogram, to our data (from SuperAGILE) and to the simultaneous data in soft X-rays (from RXTE/ASM). We concluded our investigation with a search for emission in the energy range above 100 MeV with the maximum likelihood technique. Results: In the hard X-ray band, the flux of Cyg X-1 shows its typical erratic fluctuations on all timescales with variations of about a factor of two that do not significantly affect the shape of the energy spectrum. From the first-order structure function, we find that the X-ray emission of Cyg X-1 is characterized by antipersistence (anticorrelation in the time series, with an increase in the emission likely followed by a decrease), indicative of a negative feedback mechanism at work. In the gamma ray data a statistically significant point-like source at the position of Cyg X-1 is not found, and the upper limit on the flux is 5 × 10-8 ph cm-2 s-1 over the whole observation (160 days). Finally we compared our upper limit in gamma rays with the expectation of various models of the Cyg X-1 emission, both of hadronic and leptonic origin, in the GeV-TeV band. Conclusions: The time history of Cyg X-1 in the hard X-ray band over 13 months (not continuous) is shown. Different analysis tools do not provide fully converging results of the characteristic timescales in the system, suggesting that the timescales found in the structure function are not intrinsic to the physics of the source. While Cyg X-1 is not detected in gamma rays, our upper limit is a factor of two lower than the EGRET one and is compatible with the extrapolation of the flux measured by COMPTEL in the same spectral state.

  19. On the X-ray spectra of luminous, inhomogeneous accretion flows

    NASA Astrophysics Data System (ADS)

    Merloni, A.; Malzac, J.; Fabian, A. C.; Ross, R. R.

    2006-08-01

    We discuss the expected X-ray spectral and variability properties of black hole accretion discs at high luminosity, under the hypothesis that radiation-pressure-dominated discs are subject to violent clumping instabilities and, as a result, have a highly inhomogeneous two-phase structure. After deriving the full accretion disc solutions explicitly in terms of the parameters of the model, we study their radiative properties both with a simple two-zone model, treatable analytically, and with radiative transfer simulations which account simultaneously for energy balance and Comptonization in the hot phase, together with reflection, reprocessing, ionization and thermal balance in the cold phase. We show that, if not only the density, but also the heating rate within these flows is inhomogeneous, then complex reflection-dominated spectra can be obtained for a high enough covering fraction of the cold phase. In general, large reflection components in the observed X-ray spectra should be associated with strong soft excesses, resulting from the combined emission of ionized atomic emission lines. The variability properties of such systems are such that, even when contributing to a large fraction of the hard X-ray spectrum, the reflection component is less variable than the power-law-like emission originating from the hot Comptonizing phase, in agreement with what is observed in many Narrow Line Seyfert 1 galaxies and bright Seyfert 1. Our model falls within the family of those trying to explain the complex X-ray spectra of bright AGN with ionized reflection, but presents an alternative, specific, physically motivated, geometrical set-up for the complex multiphase structure of the inner regions of near-Eddington accretion flows.

  20. In-depth study of long-term variability in the X-ray emission of the Be/X-ray binary system AX J0049.4-7323

    NASA Astrophysics Data System (ADS)

    Ducci, L.; Romano, P.; Malacaria, C.; Ji, L.; Bozzo, E.; Santangelo, A.

    2018-06-01

    AX J0049.4-7323 is a Be/X-ray binary in the Small Magellanic Cloud hosting a 750 s pulsar which has been observed over the last 17 years by several X-ray telescopes. Despite numerous observations, little is known about its X-ray behaviour. Therefore, we coherently analysed archival Swift, Chandra, XMM-Newton, RXTE, and INTEGRAL data, and we compared them with already published ASCA data, to study its X-ray long-term spectral and flux variability. AX J0049.4-7323 shows a high X-ray variability, spanning more than three orders of magnitudes, from L ≈ 1.6 × 1037 erg s-1 (0.3-8 keV, d = 62 kpc) down to L ≈ 8 × 1033 erg s-1. RXTE, Chandra, Swift, and ASCA observed, in addition to the expected enhancement of X-ray luminosity at periastron, flux variations by a factor of 270 with peak luminosities of ≈2.1 × 1036 erg s-1 far from periastron. These properties are difficult to reconcile with the typical long-term variability of Be/XRBs, traditionally interpreted in terms of type I and type II outbursts. The study of AX J0049.4-7323 is complemented with a spectral analysis of Swift, Chandra, and XMM-Newton data which showed a softening trend when the emission becomes fainter, and an analysis of optical/UV data collected by the UVOT telescope on board Swift. In addition, we measured a secular spin-up rate of Ṗ = (-3.00 ± 0.12) × 10-3 s day-1, which suggests that the pulsar has not yet achieved its equilibrium period. Assuming spherical accretion, we estimated an upper limit for the magnetic field strength of the pulsar of ≈3 × 1012 G.

  1. Spectroscopic classification of X-ray sources in the Galactic Bulge Survey

    NASA Astrophysics Data System (ADS)

    Wevers, T.; Torres, M. A. P.; Jonker, P. G.; Nelemans, G.; Heinke, C.; Mata Sánchez, D.; Johnson, C. B.; Gazer, R.; Steeghs, D. T. H.; Maccarone, T. J.; Hynes, R. I.; Casares, J.; Udalski, A.; Wetuski, J.; Britt, C. T.; Kostrzewa-Rutkowska, Z.; Wyrzykowski, Ł.

    2017-10-01

    We present the classification of 26 optical counterparts to X-ray sources discovered in the Galactic Bulge Survey. We use (time-resolved) photometric and spectroscopic observations to classify the X-ray sources based on their multiwavelength properties. We find a variety of source classes, spanning different phases of stellar/binary evolution. We classify CX21 as a quiescent cataclysmic variable (CV) below the period gap, and CX118 as a high accretion rate (nova-like) CV. CXB12 displays excess UV emission, and could contain a compact object with a giant star companion, making it a candidate symbiotic binary or quiescent low-mass X-ray binary (although other scenarios cannot be ruled out). CXB34 is a magnetic CV (polar) that shows photometric evidence for a change in accretion state. The magnetic classification is based on the detection of X-ray pulsations with a period of 81 ± 2 min. CXB42 is identified as a young stellar object, namely a weak-lined T Tauri star exhibiting (to date unexplained) UX Ori-like photometric variability. The optical spectrum of CXB43 contains two (resolved) unidentified double-peaked emission lines. No known scenario, such as an active galactic nucleus or symbiotic binary, can easily explain its characteristics. We additionally classify 20 objects as likely active stars based on optical spectroscopy, their X-ray to optical flux ratios and photometric variability. In four cases we identify the sources as binary stars.

  2. Low- to Middle-Latitude X-Ray Emission from Jupiter

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Anil; Elsner, Ronald F.; Gladstone, G. Randall; Waite, J. Hunter, Jr.; Branduardi-Raymont, Graziella; Cravens, Thomas E.; Ford, Peter G.

    2006-01-01

    The Chandra X-ray Observatory (CXO) observed Jupiter during the period 24-26 February 2003 for approx. 40 hours (4 Jupiter rotations), using both the spectroscopy array of the Advanced CCD Imaging Spectrometer (ACIS-S) and the imaging array of the High-Resolution Camera (HRC-I). Two ACIS-S exposures, each -8.5 hours long, were separated by an HRC-I exposure of approx. 20 hours. The low- to middle-latitude nonauroral disk X-ray emission is much more spatially uniform than the auroral emission. However, the low- to middle-latitude X-ray count rate shows a small but statistically significant hour angle dependence and depends on surface magnetic field strength. In addition, the X-ray spectra from regions corresponding to 3-5 gauss and 5-7 gauss surface fields show significant differences in the energy band 1.26-1.38 keV, perhaps partly due to line emission occurring in the 3-5 gauss region but not the 5-7 gauss region. A similar correlation of surface magnetic field strength with count rate is found for the 18 December 2000 HRC-I data, at a time when solar activity was high. The low- to middle-latitude disk X-ray count rate observed by the HRC-I in the February 2003 observation is about 50% of that observed in December 2000, roughly consistent with a decrease in the solar activity index (F10.7 cm flux) by a similar amount over the same time period. The low- to middle-latitude X-ray emission does not show any oscillations similar to the approx. 45 min oscillations sometimes seen from the northern auroral zone. The temporal variation in Jupiter's nonauroral X-ray emission exhibits similarities to variations in solar X-ray flux observed by GOES and TIMED/SEE. The two ACIS-S 0.3-2.0 keV low- to middle-latitude X-ray spectra are harder than the auroral spectrum and are different from each other at energies above 0.7 keV, showing variability in Jupiter's nonauroral X-ray emission on a timescale of a day. The 0.3-2.0 keV X-ray power emitted at low to middle latitudes is 0.21 GW and 0.39 GW for the first and second ACIS-S exposures, respectively. We suggest that X-ray emission from Jupiter's disk may be largely generated by the scattering and fluorescence of solar X rays in its upper atmosphere, especially at times of high incident solar X-ray flux. However, the dependence of count rate on surface magnetic-field strength may indicate the presence of some secondary component, possibly ion precipitation from radiation belts close to the planet.

  3. The X-Ray Variability of Sagittarius A*

    NASA Astrophysics Data System (ADS)

    Neilsen, Joseph; Nowak, Michael; Gammie, Charles F.; Dexter, Jason; Markoff, Sera; Haggard, Daryl; Nayakshin, Sergei; Wang, Q. Daniel; Grosso, Nicolas; Porquet, Delphine; Tomsick, John; Degenaar, Nathalie; Fragile, P. Christopher; Wijnands, Rudy; Miller, Jon M.; Baganoff, Frederick K.

    2015-01-01

    Over the last decade, X-ray observations of Sgr A* have revealed a black hole in a deep sleep, punctuated roughly once per day by brief ares. The extreme X-ray faintness of this supermassive black hole has been a long-standing puzzle in black hole accretion. To study the accretion processes in the Galactic Center, Chandra (in concert with numerous ground- and space-based observatories) undertook a 3 Ms campaign on Sgr A* in 2012. With its excellent observing cadence, sensitivity, and spectral resolution, this Chandra X-ray Visionary Project (XVP) provides an unprecedented opportunity to study the behavior of our closest supermassive black hole. We present a progress report from our ongoing study of X-ray flares, including one of the brightest flares ever seen from Sgr A*. Focusing on the statistics of the flares, the quiescent emission, and the relationship between the X-ray and the infrared, we discuss the physical implications of X-ray variability in the Galactic Center.

  4. A Chandra Study of the Stellar X-Ray Emissivity of Globular Clusters in the M31 Bulge

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-jie; Li, Zhiyuan

    2018-03-01

    The X-ray emissivity (i.e., luminosity per unit stellar mass) of globular clusters (GCs) is an important indicator of their dynamical evolution history. Based on deep archival Chandra observations, we report a stacking analysis of 44 GCs with 0.5–8 keV luminosities L X ≲ 1035 erg s‑1 in the M31 bulge, which are supposed to be dominated by cataclysmic variables (CVs) and coronally active binaries (ABs). We obtain a significant detection at the 5σ level in 0.5–8 keV band. The average X-ray luminosity per GC and the average X-ray emissivity are determined to be 5.3 ± 1.6 × 1033 erg s‑1 and 13.2 ± 4.3 × 1027 erg s‑1 {M}ȯ -1, respectively. Both of these values are consistent with those of Milky Way GCs. Moreover, the measured emissivity of M31 GCs is also consistent with that of the Milky Way field stars. Massive GCs have X-ray luminosities that are marginally higher than those of less massive ones. Massive GCs also show a lower emissivity (5.0+/- 2.5× {10}27 {erg} {{{s}}}-1 {M}ȯ -1) than less massive ones (26.5+/- 14.3× {10}27 {erg} {{{s}}}-1 {M}ȯ -1), which is consistent with the scenario that the (progenitors of) CVs and ABs were more efficiently destroyed via stellar encounters in the more massive GCs. No dependence of the X-ray emissivity on GC color or on the projected galactocentric distance of GCs is found.

  5. PROBING WOLF–RAYET WINDS: CHANDRA/HETG X-RAY SPECTRA OF WR 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huenemoerder, David P.; Schulz, N. S.; Gayley, K. G.

    With a deep Chandra/HETGS exposure of WR 6, we have resolved emission lines whose profiles show that the X-rays originate from a uniformly expanding spherical wind of high X-ray-continuum optical depth. The presence of strong helium-like forbidden lines places the source of X-ray emission at tens to hundreds of stellar radii from the photosphere. Variability was present in X-rays and simultaneous optical photometry, but neither were correlated with the known period of the system or with each other. An enhanced abundance of sodium revealed nuclear-processed material, a quantity related to the evolutionary state of the star. The characterization of themore » extent and nature of the hot plasma in WR 6 will help to pave the way to a more fundamental theoretical understanding of the winds and evolution of massive stars.« less

  6. Chandra Observations of Magnetic White Dwarfs and Their Theoretical Implications

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.; Noble, M.; Porter, J. G.; Winget, D. E.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Observations of cool DA and DB white dwarfs have not yet been successful in detecting coronal X-ray emission but observations of late-type dwarfs and giants show that coronae are common for these stars. To produce coronal X-rays, a star must have dynamo-generated surface magnetic fields and a well-developed convection zone. There is strong observational evidence that the DA star LHS 1038 and the DB star GD 358 have weak and variable surface magnetic fields. Since these fields are likely to be generated by dynamo action and since both stars have well-developed convection zones, theory predicts detectable levels of coronal X-rays from these white dwarfs. However, we present analysis of Chandra observations of both stars showing no detectable X-ray emission. The derived upper limits for the X-ray fluxes provide strong constraints on theories of formation of coronae around magnetic white dwarfs.

  7. Near-infrared Variability of Obscured and Unobscured X-Ray-selected AGNs in the COSMOS Field

    NASA Astrophysics Data System (ADS)

    Sánchez, P.; Lira, P.; Cartier, R.; Pérez, V.; Miranda, N.; Yovaniniz, C.; Arévalo, P.; Milvang-Jensen, B.; Fynbo, J.; Dunlop, J.; Coppi, P.; Marchesi, S.

    2017-11-01

    We present our statistical study of near-infrared (NIR) variability of X-ray-selected active galactic nuclei (AGNs) in the COSMOS field, using UltraVISTA data. This is the largest sample of AGN light curves in YJHKs bands, making it possible to have a global description of the nature of AGNs for a large range of redshifts and for different levels of obscuration. To characterize the variability properties of the sources, we computed the structure function. Our results show that there is an anticorrelation between the structure function A parameter (variability amplitude) and the wavelength of emission and a weak anticorrelation between A and the bolometric luminosity. We find that broad-line (BL) AGNs have a considerably larger fraction of variable sources than narrow-line (NL) AGNs and that they have different distributions of the A parameter. We find evidence that suggests that most of the low-luminosity variable NL sources correspond to BL AGNs, where the host galaxy could be damping the variability signal. For high-luminosity variable NL sources, we propose that they can be examples of “true type II” AGNs or BL AGNs with limited spectral coverage, which results in missing the BL emission. We also find that the fraction of variable sources classified as unobscured in the X-ray is smaller than the fraction of variable sources unobscured in the optical range. We present evidence that this is related to the differences in the origin of the obscuration in the optical and X-ray regimes.

  8. Discovery of X-ray pulsations in the Be/X-ray binary IGR J06074+2205

    NASA Astrophysics Data System (ADS)

    Reig, P.; Zezas, A.

    2018-05-01

    Context. IGR J06074+2205 is a poorly studied X-ray source with a Be star companion. It has been proposed to belong to the group of Be/X-ray binaries (BeXBs). In BeXBs, accretion onto the neutron star occurs via the transfer of material from the Be star's circumstellar disk. Thus, in the absence of the disk, no X-ray should be detected. Aims: The main goal of this work is to study the quiescent X-ray emission of IGR J06074+2205 during a disk-loss episode. Methods: We obtained light curves at different energy bands and a spectrum covering the energy range 0.4-12 keV. We used Fourier analysis to study the aperiodic variability and epoch folding methods to study the periodic variability. Model fitting to the energy spectrum allowed us to identify the possible physical processes that generated the X-rays. Results: We show that at the time of the XMM-Newton observation, the decretion disk around the Be star had vanished. Still, accretion appears as the source of energy that powers the high-energy radiation in IGR J06074+2205. We report the discovery of X-ray pulsations with a pulse period of 373.2 s and a pulse fraction of 50%. The 0.4-12 keV spectrum is well described by an absorbed power law and blackbody components with the best fitting parameters: NH = (6.2 ± 0.5) × 1021 cm-2, kTbb = 1.16 ± 0.03 keV, and Γ = 1.5 ± 0.1. The absorbed X-ray luminosity is LX = 1.4 × 1034 erg s-1 assuming a distance of 4.5 kpc. Conclusions: The detection of X-ray pulsations confirms the nature of IGR J06074+2205 as a BeXB. We discuss various scenarios to explain the quiescent X-ray emission of this pulsar. We rule out cooling of the neutron star surface and magnetospheric emission and conclude that accretion is the most likely scenario. The origin of the accreted material remains an open question.

  9. IGR J17329-2731: The birth of a symbiotic X-ray binary

    NASA Astrophysics Data System (ADS)

    Bozzo, E.; Bahramian, A.; Ferrigno, C.; Sanna, A.; Strader, J.; Lewis, F.; Russell, D. M.; di Salvo, T.; Burderi, L.; Riggio, A.; Papitto, A.; Gandhi, P.; Romano, P.

    2018-05-01

    We report on the results of the multiwavelength campaign carried out after the discovery of the INTEGRAL transient IGR J17329-2731. The optical data collected with the SOAR telescope allowed us to identify the donor star in this system as a late M giant at a distance of 2.7-1.2+3.4 kpc. The data collected quasi-simultaneously with XMM-Newton and NuSTAR showed the presence of a modulation with a period of 6680 ± 3 s in the X-ray light curves of the source. This unveils that the compact object hosted in this system is a slowly rotating neutron star. The broadband X-ray spectrum showed the presence of a strong absorption (≫1023 cm-2) and prominent emission lines at 6.4 keV, and 7.1 keV. These features are usually found in wind-fed systems, in which the emission lines result from the fluorescence of the X-rays from the accreting compact object on the surrounding stellar wind. The presence of a strong absorption line around 21 keV in the spectrum suggests a cyclotron origin, thus allowing us to estimate the neutron star magnetic field as 2.4 × 1012 G. All evidencethus suggests IGR J17329-2731 is a symbiotic X-ray binary. As no X-ray emission was ever observed from the location of IGR J17329-2731 by INTEGRAL (or other X-ray facilities) during the past 15 yr in orbit and considering that symbiotic X-ray binaries are known to be variable but persistent X-ray sources, we concluded that INTEGRAL caught the first detectable X-ray emission from IGR J17329-2731 when the source shined as a symbiotic X-ray binary. The Swift XRT monitoring performed up to 3 months after the discovery of the source, showed that it maintained a relatively stable X-ray flux and spectral properties.

  10. Pulse-phase dependence of emission lines in the X-ray pulsar 4U 1626-67

    NASA Astrophysics Data System (ADS)

    Beri, Aru; Paul, Biswajit; Dewangan, Gulab C.

    2015-07-01

    We present results from a pulse-phase-resolved spectroscopy of the complex emission lines around 1 keV in the unique accretion-powered X-ray pulsar 4U 1626-67, using the observation made with XMM-Newton in 2003. In this source, the redshifted and blueshifted emission lines and the linewidths measured earlier with Chandra suggest their accretion-disc origin. Another possible signature of lines produced in the accretion disc can be a modulation of the line strength with the pulse phase. We have found that the line fluxes have pulse-phase dependence, making 4U 1626-67 only the second pulsar after Hercules X-1 to show such variability. The O VII line at 0.568 keV from 4U 1626-67 varied by a factor of ˜4, stronger than the continuum variability, which supports the accretion-disc origin. The line flux variability can appear due to variable illumination of the accretion disc by the pulsar or, more likely, a warp-like structure in the accretion disc. We also discuss some further possible diagnostics of the accretion disc in 4U 1626-67 with pulse-phase-resolved emission-line spectroscopy.

  11. Extreme Radio Flares and Associated X-Ray Variability from Young Stellar Objects in the Orion Nebula Cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forbrich, Jan; Reid, Mark J.; Wolk, Scott J.

    Young stellar objects are known to exhibit strong radio variability on timescales of weeks to months, and a few reports have documented extreme radio flares with at least an order of magnitude change in flux density on timescales of hours to days. However, there have been few constraints on the occurrence rate of such radio flares or on the correlation with pre-main sequence X-ray flares, although such correlations are known for the Sun and nearby active stars. Here we report simultaneous deep VLA radio and Chandra X-ray observations of the Orion Nebula Cluster, targeting hundreds of sources to look formore » the occurrence rate of extreme radio variability and potential correlation with the most extreme X-ray variability. We identify 13 radio sources with extreme radio variability, with some showing an order of magnitude change in flux density in less than 30 minutes. All of these sources show X-ray emission and variability, but we find clear correlations with extreme radio flaring only on timescales <1 hr. Strong X-ray variability does not predict the extreme radio sources and vice versa. Radio flares thus provide us with a new perspective on high-energy processes in YSOs and the irradiation of their protoplanetary disks. Finally, our results highlight implications for interferometric imaging of sources violating the constant-sky assumption.« less

  12. CHANDRA OBSERVATIONS OF COMETS C/2012 S1 (ISON) AND C/2011 L4 (PanSTARRS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snios, Bradford; Kharchenko, Vasili; Lisse, Carey M.

    2016-02-20

    We present our results on the Chandra X-ray Observatory Advanced CCD Imaging Spectrometer (ACIS) observations of the bright Oort Cloud comets C/2012 S1 (ISON) and C/2011 L4 (PanSTARRS). ISON was observed between 2013 October 31–November 06 during variable speed solar wind (SW), and PanSTARRS was observed between 2013 April 17–23 during fast SW. ISON produced an extended parabolic X-ray morphology consistent with a collisionally thick coma, while PanSTARRS demonstrated only a diffuse X-ray-emitting region. We consider these emissions to be from charge exchange (CX) and model each comet's emission spectrum from first principles accordingly. Our model agrees with the observationalmore » spectra and also generates composition ratios for heavy, highly charged SW ions interacting with the cometary atmosphere. We compare our derived SW ion compositions to observational data and find a strong agreement between them. These results further demonstrate the utility of CX emissions as a remote diagnostics tool of both astrophysical plasma interaction and SW composition. In addition, we observe potential soft X-ray emissions via ACIS around 0.2 keV from both comets that are correlated in intensity to the hard X-ray emissions between 0.4–1.0 keV. We fit our CX model to these emissions, but our lack of a unique solution at low energies makes it impossible to conclude if they are cometary CX in origin. Finally, we discuss probable emission mechanism sources for the soft X-rays and explore new opportunities these findings present in understanding cometary emission processes via Chandra.« less

  13. Watching a Black Hole Feed: Sgr A* in the X-ray and Infrared

    NASA Astrophysics Data System (ADS)

    Fazio, Giovanni

    2017-09-01

    Black hole accretion drives extreme astrophysical phenomena in the universe. Sgr A*, the nearest supermassive black hole, is highly variable, but sparse data and short observations preclude determination of its emission physics. Despite enormous advances in accretion models in recent years, even the radiation mechanisms of Sgr A* are still unknown. Because the needed information is encoded in the time-dependent relationship between X-ray and IR emission, we propose four new epochs of Chandra monitoring with Spitzer at 4.5 microns. This will double the exposure time for X-ray flares where the NIR state is known, moving us out of the realm of small-number statistics and enabling diagnostics of the true X-ray/IR relationship. This will be the final chance for Chandra+Spitzer observations.

  14. The Geminga Pulsar: Soft X-Ray Variability and an EUVE Observation

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Martin, Christopher; Marshall, Herman L.; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    We observed the Geminga pulsar with the EUVE satellite, detecting pulsed emission in the Deep Survey imager. Joint spectral fits of the EUVE flux with ROSAT PSPC data are consistent with thermal plus power-law models in which the thermal component makes the dominant contribution to the soft X-ray flux seen by EUVE and ROSAT. The data are consistent with blackbody emission of T = (4 - 6) x 10(exp 5) K over most of the surface of the star at the measured parallax distance of 160 pc. Although model atmospheres are more realistic, and can fit the data with effective temperatures a factor of 2 lower, current data would not discriminate between these and blackbody models. We also find evidence for variability of Geminga's soft X-ray pulse shape. Narrow dips in the light curve that were present in 1991 had largely disappeared in 1993/1994, causing the pulsed fraction to decline from 32% to 18%. If the dips are attributed to cyclotron resonance scattering by an e1 plasma on closed magnetic field lines, then the process that resupplies that plasma must be variable.

  15. The Geminga Pulsar: Soft X-Ray Variability and an EUVE Observation

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Martin, Christopher; Marshall, Herman L.

    1996-01-01

    We observed the Geminga pulsar with the EUVE satellite, detecting pulsed emission in the Deep Survey imager. Joint spectral fits of the EUVE flux with ROSAT PSPC data are consistent with thermal plus power-law models in which the thermal component makes the dominant contribution to the soft X-ray flux seen by EUVE and ROSAT. The data are consistent with blackbody emission of T = (4-6) x 10(exp 5) K over most of the surface of the star at the measured parallax distance of 160 pc. Although model atmospheres are more realistic, and can fit the data with effective temperatures a factor of 2 lower, current data would not discriminate between these and blackbody models. We also find evidence for variability of Geminga's soft X-ray pulse shape. Narrow dips in the light curve that were present in 1991 had largely disappeared in 1993/1994, causing the pulsed fraction to decline from 32% to 18%. If the dips are attributed to cyclotron resonance scattering by an e(+/-) plasma on closed magnetic field lines, then the process that resupplies that plasma must be variable.

  16. Low- to Mid-Latitude X-Ray Emission from Jupiter

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Anil; Elsner, Ronald F.; Gladstone, G. Randall; Waite, J. Hunter, Jr.; Branduardi-Raymont, Graziella; Cravens, Thomas E.; Ford, Peter

    2006-01-01

    The Chandra X-ray Observatory (CXO) observed Jupiter during the period 2003 February 24-26 for approx.40 hours (4 Jupiter rotations), using both the spectroscopy array of the Advanced CCD Imaging Spectrometer (ACIS-S) and the imaging array of the High-Resolution Camera (HRC-I). Two ACIS-S exposures, each approx.8.5 hr long, were separated by an HRC-I exposure of approx.20 hr. The low- to mid-latitude non-auroral disk X-ray emission is much more spatially uniform than the auroral emission. However, the low- to mid-latitude X-ray count rate shows a small but statistically significant hour angle dependence, and is higher in regions of relatively low surface magnetic field strength, confirming ROSAT results. In addition, the spectrum from the low surface field region shows an enhancement in the energy band 1.14- 1.38 keV, perhaps partly due to line emission from that region. Correlation of surface magnetic field strength with count rate is not found for the 2000 December HRC-I data, at a time when solar activity was high. The low- to mid-latitude disk X-ray count rate observed by the HRC-I in the 2003 February observation is about 50% of that observed in 2000 December, roughly consistent with a decrease in the solar activity index (F10.7 cm flux) by a similar amount over the same time period. The low- to mid-latitude X-ray emission does not show any oscillations similar to the -45 minute oscillations sometimes seen from the northern auroral zone. The temporal variation in Jupiter's non-auroral X-ray emission exhibits similarities to variations in solar X-ray flux observed by GOES and TIMED/SEE. The two ACIS-S 0.3-2 keV low- to mid-latitude X-ray spectra are harder than the auroral spectrum, and are different from each other at energies above 0.7 keV, showing variability in Jupiter s non-auroral X-ray emission on a time scale of a day. The 0.3-2.0 keV X-ray power emitted at low- to mid-latitudes is 0.21 GW and 0.39 GW for the first and second ACIS-S exposures, respectively. We suggest that X-ray emission from Jupiter's disk may be largely generated by solar X-rays resonantly and fluorescently scattered in its upper atmosphere, especially at times of high incident solar X-ray flux. However, the correlation of higher count rate with low surface magnetic-field strength indicates the presence of some secondary component, possibly ion precipitation from radiation belts closer to the planet than elsewhere at low- to mid-latitudes.

  17. Global X-ray Spectral Variation of Eta Carinae through the 2003 X-ray Minimum

    NASA Technical Reports Server (NTRS)

    Hamaguchi, K.; Corcoran, M. F.; White, N. E.; Gull, T.; Damineli, A.; Davidson, K.

    2006-01-01

    We report on the results of the X-ray observing campaign of the massive, evolved star Eta Carinae in 2003 around its recent X-ray Minimum, mainly using data from the XMM-Newton observatory. These imaging observations show that the hard X-ray source associated with the Eta Carinae system does not completely disappear in any of the observations during the Minimum. The variation of the spectral shape revealed two emission components. One newly discovered component did not exhibit any variation on kilo-second to year-long timescales, in a combined analysis with earlier ASCA and ROSAT data, and might represent the collision of a high speed outflow from Eta Carinae with ambient gas clouds. The other emission component was strongly variable in flux but the temperature of the hottest plasma did not vary significantly at any orbital phase. Absorption to the hard emission, was about a factor of three larger than the absorption determined from the cutoff of the soft emission, and reached a maximum of approx.4 x 10(exp 23)/sq cm before the Minimum. The thermal Fe\\rm XXV emission line showed significant excesses on both the red and blue sides of the line outside the Minimum and exhibited a large redward excess during the Minimum. This variation in the line profile probably requires an abrupt change in ionization balance in the shocked gas.

  18. HD 63021: An Ae Star with X-Ray Flux

    NASA Astrophysics Data System (ADS)

    Whelan, David G.; Labadie-Bartz, Jon; Chojnowski, S. Drew; Daglen, James; Hudson, Ken

    2018-05-01

    Balmer and Fe II (42) multiplet emission were discovered in a spectrum of HD 63021 on 10 April (UTC), 2018. Subsequent observations revealed variability in both photospheric absorption lines and Balmer line emission. In addition, it is an X-ray source, with a luminosity that is consistent with either a very strong stellar wind, or else the presence of a compact binary companion. Spectroscopic and photometric followup are planned to determine the nature of this source.

  19. Comparison of the X-Ray and Radio Light Curves of Quasar PKS 1510--089

    NASA Technical Reports Server (NTRS)

    Aller, M. F.; Marscher, A. P.; Marchenko-Jorstad, S. G.; McHardy, I. M.; Aller, H. D.

    1998-01-01

    We present results for the X-ray-bright superluminal AGN PKS 1510-089 (z=0.36) monitored weekly with the Rossi X-Ray Timing Explorer for the past four years in order to study the origin of X-ray emission from this extremely variable blazer. These RXTE data are compared with weekly cm-band flux and polarization observations from the Michigan Diameter telescope, to identify correlated activity and associated frequency-dependent time delays for constraining X-ray emission models; and bimonthly 7mm VLBA total and linearly polarized intensity imaging to identify temporal associations between X-ray events and the ejection of superluminal components and disturbances in the magnetic field, to test if the X-ray energy release is related to changes in the inner jet flow. Both the X-ray (2-20 keV) and radio flux are highly variable on timescales of weeks. The VLBA mas structure is dominated by a bright core with a weak jet; both the ejection of very fast superluminal knots and changes in the fractional polarization and EVPA of the core on timescales of one to four months are identified. Two outbursts in 1997 are well-resolved in both the centimeter and X-ray bands. Both the strong temporal association and the similar outburst shape support a causal relation, and a discrete cross-correlation analysis identifies that the X-ray lags the radio by 16 days during the bursts. Starting in 1998 the behavior changes: the correlation is weaker with the X-ray possibly leading the radio by six days. During the full time window there is a correlation between bands as expected if the radio photons are upscattered to X-ray energies. The time correlations and difference between the flat X-ray spectral index (0.0 <= alpha <= 0.5 where F(sub v) is proportional to v(exp -alpha)), and the mm-wave synchrotron spectrum (alpha = 0.8) are discussed within the framework of viable SSC models.

  20. X-Ray Spectroscopy of the Nearby, Classical T Tauri Star TW Hydrae

    NASA Astrophysics Data System (ADS)

    Kastner, Joel H.; Huenemoerder, David P.; Schulz, Norbert S.; Weintraub, David A.

    1999-11-01

    We present ASCA and ROSAT X-ray observations of the classical T Tauri star TW Hya, the namesake of a small association that, at a distance of ~50 pc, represents the nearest known region of recent star formation. Analysis of ASCA and ROSAT spectra indicates characteristic temperatures of ~1.7 and ~9.7 MK for the X-ray-emitting region(s) of TW Hya, with emission lines of highly ionized Fe dominating the spectrum at energies of ~1 keV. The X-ray data show variations in X-ray flux on timescales of <~1 hr as well as indications of changes in the X-ray-absorbing column on timescales of several years, suggesting that flares and variable obscuration are responsible for the large-amplitude optical variability of TW Hya on short and long timescales, respectively. Comparison with model calculations suggests that TW Hya produces sufficient hard X-ray flux to produce significant ionization of molecular gas within its circumstellar disk; such X-ray ionization may regulate both protoplanetary accretion and protoplanetary chemistry.

  1. The X-ray Spectral Evolution of eta Carinae as Seen by ASCA

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.; Fredericks, A. C.; Petre, R.; Swank, J. H.; Drake, S. A.; White, Nicholas E. (Technical Monitor)

    2000-01-01

    Using data from the ASCA X-ray observatory, we examine the variations in the X-ray spectrum of the supermassive star nu Carinae with an unprecedented combination of spatial and spectral resolution. We include data taken during the recent X-ray eclipse in 1997-1998, after recovery from the eclipse, and during and after an X-ray flare. We show that the eclipse variation in the X-ray spectrum is apparently confined to a decrease in the emission measure of the source. We compare our results with a simple colliding wind binary model and find that the observed spectral variations are only consistent, with the binary model if there is significant high-temperature emission far from the star and/or a substantial change in the temperature distribution of the hot plasma. If contamination in the 2-10 keV band is important, the observed eclipse spectrum requires an absorbing column in excess of 10(exp 24)/sq cm for consistency with the binary model, which may indicate an increase in the first derivative of M from nu Carinae near the time of periastron passage. The flare spectra are consistent with the variability seen in nearly simultaneous RXTE observations and thus confirm that nu Carinae itself is the source of the flare emission. The variation in the spectrum during the flare seems confined to a change in the source emission measure. By comparing 2 observations obtained at the same phase in different X-ray cycles, we find that the current, X-ray brightness of the source is slightly higher than the brightness of the source during the last cycle perhaps indicative of a long-term increase in the first derivative of M, not associated with the X-ray cycle.

  2. An X-ray survey of nine historical novae. [HEAO 2 observations

    NASA Technical Reports Server (NTRS)

    Becker, R. H.; Marshall, F. E.

    1980-01-01

    The Einstein Observatory imaging proportional counter was used to search for X-ray emission from nine nearby historical novae. Six of the novae were detected with estimated X-ray intensities between .1 to 4 keV of 10 to the -13th power to 10 to the -11th power ergs/sq cm-s, comparable to the intensities of previously detected cataclysmic variables. The X-ray intensity of one of the novae, V603 Aql, varies over times of several hundred seconds. The data suggest a correlation between the decay rate of the historical outburst and the current X-ray luminosity. Alternatively, the X-ray luminosity may be related to the inclination of the binary system.

  3. Optical/UV-to-X-Ray Echoes from the Tidal Disruption Flare ASASSN-14li

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasham, Dheeraj R.; Sadowski, Aleksander; Cenko, S. Bradley

    We carried out the first multi-wavelength (optical/UV and X-ray) photometric reverberation mapping of a tidal disruption flare (TDF) ASASSN-14li. We find that its X-ray variations are correlated with and lag the optical/UV fluctuations by 32 ± 4 days. Based on the direction and the magnitude of the X-ray time lag, we rule out X-ray reprocessing and direct emission from a standard circular thin disk as the dominant source of its optical/UV emission. The lag magnitude also rules out an AGN disk-driven instability as the origin of ASASSN-14li and thus strongly supports the tidal disruption picture for this event and similarmore » objects. We suggest that the majority of the optical/UV emission likely originates from debris stream self-interactions. Perturbations at the self-interaction sites produce optical/UV variability and travel down to the black hole where they modulate the X-rays. The time lag between the optical/UV and the X-rays variations thus correspond to the time taken by these fluctuations to travel from the self-interaction site to close to the black hole. We further discuss these time lags within the context of the three variants of the self-interaction model. High-cadence monitoring observations of future TDFs will be sensitive enough to detect these echoes and would allow us to establish the origin of optical/UV emission in TDFs in general.« less

  4. Solar flare hard and soft x ray relationship determined from SMM HXRBS and BCS data

    NASA Technical Reports Server (NTRS)

    Toot, G. David

    1989-01-01

    The exact nature of the solar flare process is still somewhat a mystery. A key element to understanding flares if the relationship between the hard x rays emitted by the most energetic portions of the flare and the soft x rays from other areas and times. This relationship was studied by comparing hard x ray light curved from the Hard X-Ray Burst Spectrometer (HXRBS) with the soft x ray light curve and its derivation from the Bent Crystal Spectrometer (BCS) which is part of the X-Ray Polychrometer (XRP), these instruments being on the Solar Maximum Mission spacecraft (SMM). Data sample was taken from flares observed with the above instruments during 1980, the peak of the previous maximum of solar activity. Flares were chosen based on complete coverage of the event by several instruments. The HXRBS data covers the x ray spectrum from about 25 keV to about 440 keV in 15 spectral channels, while the BCS data used covers a region of the Spectrum around 3 angstroms including emission from the Ca XIX ion. Both sets of data were summed over their spectral ranges and plotted against time at a maximum time resolution of around 3 seconds. The most popular theory of flares holds that a beam of electrons produces the hard x rays by bremsstrahlung while the soft x rays are the thermal response to this energy deposition. The question is whether the rate of change of soft x ray emission might reflect the variability of the electron beam and hence the variability of the hard x rays. To address this, we took the time derivative of the soft x ray light curve and compared it to the hard flares, 12 of them showed very closed agreement between the soft x ray derivative and the hard x ray light curve. The other five did not show this behavior but were similar to each other in general soft x ray behavior. Efforts to determine basic differences between the two kinds of flares continue. In addition the behavior of soft x ray temperature of flares was examined.

  5. Solar flare hard and soft X ray relationship determined from SMM HXRBS and BCS data

    NASA Astrophysics Data System (ADS)

    Toot, G. David

    1989-09-01

    The exact nature of the solar flare process is still somewhat a mystery. A key element to understanding flares if the relationship between the hard x rays emitted by the most energetic portions of the flare and the soft x rays from other areas and times. This relationship was studied by comparing hard x ray light curved from the Hard X-Ray Burst Spectrometer (HXRBS) with the soft x ray light curve and its derivation from the Bent Crystal Spectrometer (BCS) which is part of the X-Ray Polychrometer (XRP), these instruments being on the Solar Maximum Mission spacecraft (SMM). Data sample was taken from flares observed with the above instruments during 1980, the peak of the previous maximum of solar activity. Flares were chosen based on complete coverage of the event by several instruments. The HXRBS data covers the x ray spectrum from about 25 keV to about 440 keV in 15 spectral channels, while the BCS data used covers a region of the Spectrum around 3 angstroms including emission from the Ca XIX ion. Both sets of data were summed over their spectral ranges and plotted against time at a maximum time resolution of around 3 seconds. The most popular theory of flares holds that a beam of electrons produces the hard x rays by bremsstrahlung while the soft x rays are the thermal response to this energy deposition. The question is whether the rate of change of soft x ray emission might reflect the variability of the electron beam and hence the variability of the hard x rays. To address this, we took the time derivative of the soft x ray light curve and compared it to the hard flares, 12 of them showed very closed agreement between the soft x ray derivative and the hard x ray light curve. The other five did not show this behavior but were similar to each other in general soft x ray behavior. Efforts to determine basic differences between the two kinds of flares continue. In addition the behavior of soft x ray temperature of flares was examined.

  6. HIgh-speed flickering and jet formation in GRS 1915+105

    NASA Astrophysics Data System (ADS)

    Lasso Cabrera, Nestor M.

    In this dissertation we study the different phenomena of accretion and relativistic jet formation observed in the microquasar GRS 1915+105. Our final goal is to understand the processes producing the relativistic outflows, as well as their relation with the inflow mechanisms. Initially, we analyze X-ray emission (RXTE PCA and HEXTE) from GRS 1915+105 during and after an X-ray/radio plateau epoch. The high signal-to-noise levels in our observations allow the first published measurement of quasi-periodic oscillations (QPO) RMS values using RXTE/HEXTE data. We find that the spectral energy distribution of the QPO strongly indicates an origin in the hard non-thermal emission component, suggesting a second spectral component to the hard non-thermal X-ray emission. Given the association of the QPOs with the observed jet activity in GRS 1915+105, we suggest that this additional non-thermal X-ray spectral component may be directly linked to the relativistic jet formation process. We also analyze simultaneous X-ray (RXTE/PCA) and near-IR (Palomar 200-inch) observations from the microquasar GRS 1915+105 during two similar low/hard state epochs and two different high X-ray variability epochs -- X-ray classes alpha and beta. The X-ray to IR cross-correlation function (CCF) shows that both low/hard state observations as well as the class beta observations present little or null interaction between the X-ray and IR fluxes, while the class alpha observations present a strong correlation between the X-ray (inner accretion disk) and the IR (compact jet) light curves. We also use the X-ray to IR CCF to study the relative evolution of the two signals and find no significant evolutionary track in any of the epochs. Simulated IR light curves confirm the results of the CCF, showing a flickering IR emission during the class beta high X-ray variability period that strengthens ˜10 s after every X-ray subflare. The existence of a flickering IR emission with frequencies in the range 0.1 to 0.3 Hz that is strongly correlated with the X-ray emission allow us to place the origin of the IR emission in a synchrotron emitting relativistic jet with the IR launch site located at ˜0.02 AU from the accretion disk. These results will be especially relevant for constraining the current models of relativistic jet production in GRS 1915+105 and other microquasars. The second part of this work is dedicated to overcoming the limitation in the acquisition of high time resolution infrared data of microquasars. We introduce the Canarias InfraRed Camera Experiment (CIRCE), a new IR instrument for the 10-meter Gran Telescopio Canarias (GTC). Among other properties, CIRCE is specifically designed for the observation of relativistic jet events in microquasars, and along with the capabilities of the GTC, will enable us to observe any microquasar in the J, H, and K IR bands, with a time resolution of ˜12 Hz and a signal-to-noise level never achieved before. We plan to use CIRCE in the future to confirm the final results of the jet production study of this dissertation. We present the electronics design of CIRCE, including the housekeeping electronics, the Logic Control Unit (LCU), and the readout electronics. We also present the result of the analysis of the image quality tests performed on the CIRCE optical system.

  7. A deep X-ray view of the bare AGN Ark 120. III. X-ray timing analysis and multiwavelength variability

    NASA Astrophysics Data System (ADS)

    Lobban, A. P.; Porquet, D.; Reeves, J. N.; Markowitz, A.; Nardini, E.; Grosso, N.

    2018-03-01

    We present the spectral/timing properties of the bare Seyfert galaxy Ark 120 through a deep ˜420 ks XMM-Newton campaign plus recent NuSTAR observations and a ˜6-month Swift monitoring campaign. We investigate the spectral decomposition through fractional rms, covariance and difference spectra, finding the mid- to long-time-scale (˜day-year) variability to be dominated by a relatively smooth, steep component, peaking in the soft X-ray band. Additionally, we find evidence for variable Fe K emission redward of the Fe Kα core on long time-scales, consistent with previous findings. We detect a clearly defined power spectrum which we model with a power law with a slope of α ˜ 1.9. By extending the power spectrum to lower frequencies through the inclusion of Swift and Rossi X-ray Timing Explorer data, we find tentative evidence of a high-frequency break, consistent with existing scaling relations. We also explore frequency-dependent Fourier time lags, detecting a negative (`soft') lag for the first time in this source with the 0.3-1 keV band lagging behind the 1-4 keV band with a time delay, τ, of ˜900 s. Finally, we analyse the variability in the optical and ultraviolet (UV) bands using the Optical/UV Monitor onboard XMM-Newton and the Ultra-Violet/Optical Telescope onboard Swift and search for time-dependent correlations between the optical/UV/X-ray bands. We find tentative evidence for the U-band emission lagging behind the X-rays with a time delay of τ = 2.4 ± 1.8 d, which we discuss in the context of disc reprocessing.

  8. Steep Hard-X-ray Spectra Indicate Extremely High Accretion Rates in Weak Emission-Line Quasars

    NASA Astrophysics Data System (ADS)

    Marlar, Andrea; Shemmer, Ohad; Anderson, Scott F.; Brandt, W. Niel; Diamond-Stanic, Aleksandar M.; Fan, Xiaohui; Luo, Bin; Plotkin, Richard; Richards, Gordon T.; Schneider, Donald P.; Wu, Jianfeng

    2018-06-01

    We present XMM-Newton imaging spectroscopy of ten weak emission-line quasars (WLQs) at 0.928 ≤ z ≤ 3.767, six of which are radio quiet and four which are radio intermediate. The new X-ray data enabled us to measure the hard-X-ray power-law photon index (Γ) in each source with relatively high accuracy. These measurements allowed us to confirm previous reports that WLQs have steeper X-ray spectra, therefore indicating higher accretion rates with respect to "typical" quasars. A comparison between the Γ values of our radio-quiet WLQs and those of a carefully-selected, uniform sample of 84 quasars shows that the first are significantly higher, at the ≥ 3σ level. Collectively, the four radio-intermediate WLQs have lower Γ values with respect to the six radio-quiet WLQs, as may be expected if the spectra of the first group are contaminated by X-ray emission from a jet. These results suggest that, in the absence of significant jet emission along our line of sight, WLQs constitute the extreme high end of the accretion rate distribution in quasars. We detect soft excess emission in our lowest-redshift radio-quiet WLQ, in agreement with previous findings suggesting that the prominence of this feature is associated with a high accretion rate. We have not detected signatures of Compton reflection, Fe Kα lines, or strong variability between two X-ray epochs in any of our WLQs.

  9. RXTE, VLBA, Optical, and Radio Monitoring of the Quasars 3C 279, PKS 1510--089, and 3C 273

    NASA Technical Reports Server (NTRS)

    Marscher, A. P.; Jorstad, S. G.; Aller, M. F.; McHardy, I. M.; Balonek, T. J.

    2001-01-01

    We are continuing our combined RXTE X-ray, VLBA imaging (at 43 GHz), optical (several observatories), and radio (University of Michigan Radio Astronomy Observatory) monitoring of the quasars 3C 279 and PKS 1510-089, and have started similar monitoring of 3C 273. X-ray flares in 3C 279 and PKS 1510-089 are associated with ejections of superluminal components. In addition, there is a close connection between the optical and X-ray variability of 3C 279. There is a strong correlation between the 14.5 GHz and X-ray variability of PKS 1510-089 in 1997 and 1998 (with the radio leading the X-ray) that becomes weaker in subsequent years. X-ray fluctuations occur on a variety of timescales in 3C 273, with a major prolonged outburst in mid-2001. The lead author will discuss the correlations in terms of inverse Compton models for the X-ray emission coupled with synchrotron models for the lower-frequency radiation. Synchrotron self-Compton models can explain the "reverse" time lag in PKS 1510-089 is well as the variable correlation between the X-ray variations and those at lower frequencies in this object and in 3C 279.

  10. Planetary X-ray studies: past, present and future

    NASA Astrophysics Data System (ADS)

    Branduardi-Raymont, Graziella

    2016-07-01

    Our solar system is a fascinating physics laboratory and X-ray observations are now firmly established as a powerful diagnostic tool of the multiple processes taking place in it. The science that X-rays reveal encompasses solar, space plasma and planetary physics, and the response of bodies in the solar system to the impact of the Sun's activity. This talk will review what we know from past observations and what we expect to learn in the short, medium and long term. Observations with Chandra and XMM-Newton have demonstrated that the origin of Jupiter's bright soft X-ray aurorae lies in the Charge eXchange (CX) process, likely to involve the interaction with atmospheric neutrals of local magnetospheric ions, as well as those carried in the solar wind. At higher energies electron bremsstrahlung is thought to be the X-ray emitting mechanism, while the whole planetary disk acts as a mirror for the solar X-ray flux via Thomson and fluorescent scattering. This 'X-ray mirror' phenomenon is all that is observed from Saturn's disk, which otherwise lacks X-ray auroral features. The Earth's X-ray aurora is bright and variable and mostly due to electron bremsstrahlung and line emission from atmospheric species. Un-magnetised planets, Venus and Mars, do not show X-ray aurorae but display the interesting combination of mirroring the solar X-ray flux and producing X-rays by Solar Wind Charge eXchange (SWCX) in their exospheres. These processes respond to different solar stimulation (photons and solar wind plasma respectively) hence their relative contributions are seen to vary according to the Sun's output. Present and future of planetary X-ray studies are very bright. We are preparing for the arrival of the Juno mission at Jupiter this summer and for coordinated observations with Chandra and XMM-Newton on the approach and later during Juno's orbital phase. These will allow direct correlation of the local plasma conditions with the X-ray emissions and the establishment of the relative contributions of different processes. SWCX X-ray emission from the Earth's exosphere is turning from unwanted variable background in astrophysical observations to a novel and global diagnostic tool for investigating solar-terrestrial interactions: this underpins the development of the ESA-CAS joint mission SMILE (Solar Wind Magnetosphere Ionosphere Link Explorer) due for launch in 2021. On the longer term ATHENA (Advanced Telescope for High ENergy Astrophysics, launch 2028) will provide planetary targets with vastly improved X-ray sensitivity on that currently afforded by XMM-Newton.

  11. Time Domain Astrochemistry in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Cleeves, Lauren Ilsedore

    2018-01-01

    The chemistry of protoplanetary disks sets the initial composition of newly formed planets and may regulate the efficiency by which planets form. Disk chemical abundances typically evolve over timescales spanning thousands if not millions of years. Consequently, it was a surprise when ALMA observations taken over the course of a single year showed significantly variable emission in H13CO+ relative to the otherwise constant thermal dust emission in the IM Lup protoplanetary disk. HCO+ is a known X-ray sensitive molecule, and by using simple time-evolving chemical models including stellar activity, we demonstrate that stellar X-ray flares are a viable explanation for the observed H13CO+ variability. If this link between chemistry and stellar activity is confirmed, simultaneous observations can provide a new tool to measure (and potentially map) fundamental disk parameters, such as electron density, as the light from X-ray flares propagates across the disk.

  12. The Multi-component X-ray Emission of 3C 273

    NASA Astrophysics Data System (ADS)

    Soldi, S.; Türler, M.; Paltani, S.; Courvoisier, T. J.-L.

    2009-05-01

    3C 273 is the brightest quasar in the sky and among the most extensively observed and studied AGN, therefore one of the most suitable targets for a long-term, multi-frequency study. The superposition of a thermal Comptonisation component, similar to that observed in Seyfert galaxies, and of a non-thermal component, related to the jet emission, seems to explain some of the spectral and timing properties of the X-ray emission of 3C 273. Yet, during some observations this dichotomy has not been observed and the variability properties could also be consistent with a single-component scenario, characterised by two parameters varying independently. In order to understand the nature of the X-ray emission in 3C 273, a series of observations up to 80-100 keV, possibly catching the source in different flux states, are essential. Simbol-X will be able to study the emission of 3C 273 in the broad 0.5-80 keV band with high sensitivity, allowing us to disentangle the emission from different spectral components, with 20-30 ks long observations. In addition, the shape and the origin of the high-energy emission of this quasar will be further constrained thanks to the AGILE and Fermi satellites, monitoring the γ-ray sky in the MeV-GeV energy domain.

  13. Detection of potential periodicities in the unique hard X-ray source Swift J0042.6+4112, dominating the hard X-ray emission in M31

    NASA Astrophysics Data System (ADS)

    Yukita, Mihoko; Tzanavaris, Panayiotis; Corbet, Robin; Ptak, Andrew; Hornschemeier, Ann; Pottschmidt, Katja; Ballhausen, Ralf; Enoto, Teruaki; Antoniou, Vallia; Lehmer, Bret; Maccarone, Thomas J.; Wik, Daniel; Williams, Ben; Zezas, Andreas

    2018-01-01

    Recent NuSTAR-Swift observations revealed that a single resolved X-ray source, Swift J0042.6+4112, with Lx of a few times 1038 erg/s dominates the hard X-ray emission from the Andromeda galaxy. HST-based stellar population synthesis modeling combined with the 0.5-50 keV spectral shape suggests that this might be an X-ray pulsar with an intermediate- (or low-) mass donor. Here we further explore the alternative scenario of a symbiotic or ultracompact X-ray binary, based on long-term variability from Swift observations between 2005 and 2016. We find that the soft (0.3-8.0 keV) X-ray flux varies within a factor of 4 but does not exhibit transient behavior. Its power spectrum suggests a 6.1-day period. Additionally, we find a strong 3s-period candidate from both NuSTAR and XMM observations taken in 2017. If interpreted as an orbital and spin period respectively, the source's temporal behavior would not support either the symbiotic or the ultracompact X-ray binary scenario. Rather, it is more consistent with an accreting pulsar with a higher mass donor.

  14. A Multiwavelength View of the TeV Blazar Markarian 421: Correlated Variability, Flaring, and Spectral Evolution

    NASA Astrophysics Data System (ADS)

    Błażejowski, M.; Blaylock, G.; Bond, I. H.; Bradbury, S. M.; Buckley, J. H.; Carter-Lewis, D. A.; Celik, O.; Cogan, P.; Cui, W.; Daniel, M.; Duke, C.; Falcone, A.; Fegan, D. J.; Fegan, S. J.; Finley, J. P.; Fortson, L.; Gammell, S.; Gibbs, K.; Gillanders, G. G.; Grube, J.; Gutierrez, K.; Hall, J.; Hanna, D.; Holder, J.; Horan, D.; Humensky, B.; Kenny, G.; Kertzman, M.; Kieda, D.; Kildea, J.; Knapp, J.; Kosack, K.; Krawczynski, H.; Krennrich, F.; Lang, M.; LeBohec, S.; Linton, E.; Lloyd-Evans, J.; Maier, G.; Mendoza, D.; Milovanovic, A.; Moriarty, P.; Nagai, T. N.; Ong, R. A.; Power-Mooney, B.; Quinn, J.; Quinn, M.; Ragan, K.; Reynolds, P. T.; Rebillot, P.; Rose, H. J.; Schroedter, M.; Sembroski, G. H.; Swordy, S. P.; Syson, A.; Valcarel, L.; Vassiliev, V. V.; Wakely, S. P.; Walker, G.; Weekes, T. C.; White, R.; Zweerink, J.; VERITAS Collaboration; Mochejska, B.; Smith, B.; Aller, M.; Aller, H.; Teräsranta, H.; Boltwood, P.; Sadun, A.; Stanek, K.; Adams, E.; Foster, J.; Hartman, J.; Lai, K.; Böttcher, M.; Reimer, A.; Jung, I.

    2005-09-01

    We report results from an intensive multiwavelength monitoring campaign on the TeV blazar Mrk 421 over the period of 2003-2004. The source was observed simultaneously at TeV energies with the Whipple 10 m telescope and at X-ray energies with the Rossi X-Ray Timing Explorer (RXTE) during each clear night within the Whipple observing windows. Supporting observations were also frequently carried out at optical and radio wavelengths to provide simultaneous or contemporaneous coverages. The large amount of simultaneous data has allowed us to examine the variability of Mrk 421 in detail, including cross-band correlation and broadband spectral variability, over a wide range of flux. The variabilities are generally correlated between the X-ray and gamma-ray bands, although the correlation appears to be fairly loose. The light curves show the presence of flares with varying amplitudes on a wide range of timescales at both X-ray and TeV energies. Of particular interest is the presence of TeV flares that have no coincident counterparts at longer wavelengths, because the phenomenon seems difficult to understand in the context of the proposed emission models for TeV blazars. We have also found that the TeV flux reached its peak days before the X-ray flux did during a giant flare (or outburst) in 2004 (with the peak flux reaching ~135 mcrab in X-rays, as seen by the RXTE ASM, and ~3 crab in gamma rays). Such a difference in the development of the flare presents a further challenge to both the leptonic and hadronic emission models. Mrk 421 varied much less at optical and radio wavelengths. Surprisingly, the normalized variability amplitude in the optical seems to be comparable to that in the radio, perhaps suggesting the presence of different populations of emitting electrons in the jet. The spectral energy distribution of Mrk 421 is seen to vary with flux, with the two characteristic peaks moving toward higher energies at higher fluxes. We have failed to fit the measured spectral energy distributions (SEDs) with a one-zone synchrotron self-Compton model; introducing additional zones greatly improves the fits. We have derived constraints on the physical properties of the X-ray/gamma-ray flaring regions from the observed variability (and SED) of the source. The implications of the results are discussed.

  15. X-ray and optical observations of the ultrashort period dwarf nova SW Ursae Majoris - A likely new DQ Herculis star

    NASA Technical Reports Server (NTRS)

    Shafter, A. W.; Szkody, P.; Thorstensen, J. R.

    1986-01-01

    Time-resolved X-ray and optical photometric and optical spectroscopic observations of the ultrashort period cataclysmic variable SW UMa are reported. The spectroscopic observations reveal the presence of an s-wave component which is almost in phase with the extreme line wings and presumably the white dwarf. This very unusual phasing in conjunction with the available optical and X-ray data seems to indicate that a region of enhanced emission exists on the opposite side of the disk from the expected location of the hot spot. The photometric observations reveal the presence of a hump in the light curve occurring at an orbital phase which is consistent with the phase at which the region of enhanced line emission is most favorably seen. Changes in the hump amplitude are seen from night to night, and a 15.9 min periodicity is evident in the light curve. The optical and X-ray periodicities suggest that SW UMa is a member of the DQ Her class of cataclysmic variables.

  16. Radio Videos of Orion Protostars (with X-ray Colors!)

    NASA Astrophysics Data System (ADS)

    Forbrich, Jan; Wolk, Scott; Menten, Karl; Reid, Mark; Osten, Rachel

    2013-07-01

    High-energy processes in Young Stellar Objects (YSOs) can be observed both in X-rays and in the centimetric radio wavelength range. While the past decade has brought a lot of progress in the field of X-ray observations of YSOs, (proto)stellar centimetric radio astronomy has only recently begun to catch up with the advent of the newly expanded Karl G. Jansky Very Large Array (JVLA). The enhanced sensitivity is fundamentally improving our understanding of YSO radio properties by providing unprecedented sensitivity and thus spectral as well as temporal resolution. As a result, it is becoming easier to disentangle coronal-type nonthermal radio emission emanating from the immediate vicinity of YSOs from thermal emission on larger spatial scales, for example ionized material at the base of outflows. Of particular interest is the correlation of the by now relatively well-characterized X-ray flaring variability with the nonthermal radio variability. We present first results of multi-epoch simultaneous observations using Chandra and the JVLA, targeting the Orion Nebula Cluster and highlighting the capabilities of the JVLA for radio continuum observations of YSOs.

  17. Extremes of the jet–accretion power relation of blazars, as explored by NuSTAR

    DOE PAGES

    Sbarrato, T.; Ghisellini, G.; Tagliaferri, G.; ...

    2016-07-18

    Hard X-ray observations are crucial to study the non-thermal jet emission from high-redshift, powerful blazars. We observed two bright z > 2 flat spectrum radio quasars (FSRQs) in hard X-rays to explore the details of their relativistic jets and their possible variability. S5 0014+81 (at z = 3.366) and B0222+185 (at z=2.690) have been observed twice by the Nuclear Spectroscopic Telescope Array (NuSTAR) simultaneously with Swift/XRT, showing different variability behaviors. We found that NuSTAR is instrumental to explore the variability of powerful high-redshift blazars, even when no gamma-ray emission is detected. The two sources have proven to have respectively themore » most luminous accretion disk and the most powerful jet among known blazars. Furthermore, thanks to these properties, they are located at the extreme end of the jet-accretion disk relation previously found for gamma-ray detected blazars, to which they are consistent.« less

  18. Extremes of the jet–accretion power relation of blazars, as explored by NuSTAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sbarrato, T.; Ghisellini, G.; Tagliaferri, G.

    Hard X-ray observations are crucial to study the non-thermal jet emission from high-redshift, powerful blazars. We observed two bright z > 2 flat spectrum radio quasars (FSRQs) in hard X-rays to explore the details of their relativistic jets and their possible variability. S5 0014+81 (at z = 3.366) and B0222+185 (at z=2.690) have been observed twice by the Nuclear Spectroscopic Telescope Array (NuSTAR) simultaneously with Swift/XRT, showing different variability behaviors. We found that NuSTAR is instrumental to explore the variability of powerful high-redshift blazars, even when no gamma-ray emission is detected. The two sources have proven to have respectively themore » most luminous accretion disk and the most powerful jet among known blazars. Furthermore, thanks to these properties, they are located at the extreme end of the jet-accretion disk relation previously found for gamma-ray detected blazars, to which they are consistent.« less

  19. Coronal energy distribution and X-ray activity in the small scale magnetic field of the quiet sun

    NASA Technical Reports Server (NTRS)

    Habbal, S. R.

    1992-01-01

    The energy distribution in the small-scale magnetic field that pervades the solar surface, and its relationship to X-ray/coronal activity are discussed. The observed emission from the small scale structures, at temperatures characteristic of the chromosphere, transition region and corona, emanates from the boundaries of supergranular cells, within coronal bright points. This emission is characterized by a strong temporal and spatial variability with no definite pattern. The analysis of simultaneous, multiwavelength EUV observations shows that the spatial density of the enhanced as well as variable emission from the small scale structures exhibits a pronounced temperature dependence with significant maxima at 100,000 and 1,000,000 K. Within the limits of the spatial (1-5 arcsec) and temporal (1-5 min) resolution of data available at present, the observed variability in the small scale structure cannot account for the coroal heating of the quiet sun. The characteristics of their emission are more likely to be an indicator of the coronal heating mechanisms.

  20. Gamma-ray emission from Cataclysmic variables. 1: The Compton EGRET survey

    NASA Technical Reports Server (NTRS)

    Schlegel, Eric M.; Barrett, Paul E.; De Jager, O. C.; Chanmugam, G.; Hunter, S.; Mattox, J.

    1995-01-01

    We report the results of the first gamma-ray survey of cataclysmic variables (CVs) using observations obtained with the Energetic Gamma Ray Experiment Telescope (EGRET) instrument on the Compton Observatory. We briefly describe the theoretical models that are applicable to gamma-ray emission from CVs. These models are particularly relevant to magnetic CVs containing asynchronously rotating white dwarfs. No magnetic CV was detected with an upper limit on the flux at 1 GeV of approximately 2 x 10(exp -8)/sq cm/sec, which corresponds to an upper limit on the gamma-ray luminosity of approximately 10(exp 31) ergs/sec, assuming a typical CV distance of 100 pc.

  1. Discovery of a Time Lag between the Soft X-Ray and Radio Emission of the Tidal Disruption Flare ASASSN-14li: Evidence for Linear Disk–Jet Coupling

    NASA Astrophysics Data System (ADS)

    Pasham, Dheeraj R.; van Velzen, Sjoert

    2018-03-01

    The tidal disruption of a star by a supermassive black hole can result in transient radio emission. The electrons producing these synchrotron radio flares could either be accelerated inside a relativistic jet or externally by shocks resulting from an outflow interacting with the circumnuclear medium. Until now, evidence for the internal emission mechanism has been lacking; nearly all tidal disruption flare studies have adopted the external shock model to explain the observed properties of radio flares. Here we report a result that presents a challenge to external emission models: we discovered a cross-correlation between the soft X-ray (0.3–1 keV) and 16 GHz radio flux of the tidal disruption flare ASASSN-14li. Variability features in the X-ray light curve appear again in the radio light curve, but after a time lag of {12}-5+6 days. This demonstrates that the soft X-ray-emitting accretion disk regulates the radio emission. This coupling appears to be inconsistent with all previous external emission models for this source but is naturally explained if the radio emission originates from a freely expanding jet. We show that emission internal to an adiabatically expanding jet can also reproduce the observed evolution of the radio spectral energy distribution. Furthermore, both the correlation between X-ray and radio luminosity as well as our radio spectral modeling imply an approximately linear coupling between the accretion rate and jet power.

  2. Six Years of Monitoring of the Sgr B2 Molecular Cloud with INTEGRAL

    NASA Astrophysics Data System (ADS)

    Terrier, R.; Bélanger, G.; Ponti, G.; Trap, G.; Goldwurm, A.; Decourchelle, A.

    2009-05-01

    Several molecular clouds around the Galactic Centre (GC) emit strong neutral iron fluorescence line at 6.4 keV, as well as hard X-ray emission up to 100 keV. The origin of this emission has long been a matter of controversy: irradiation by low energy cosmic ray electrons or X-rays emitted by a nearby flaring source in the central region. A recent evidence for time variability in the iron line intensity that has been detected in the Sgr B2 cloud favors the reflexion scenario. We present here the data obtained after 6 years of INTEGRAL monitoring of the GC. In particular, we show a lightcurve of Sgr B2 that reveals a decrease in the hard X-ray flux over the last years and discuss its implications. We finally discuss perspectives with Simbol-X.

  3. XMMSL1 J074008.2-853927: a tidal disruption event with thermal and non-thermal components

    NASA Astrophysics Data System (ADS)

    Saxton, R. D.; Read, A. M.; Komossa, S.; Lira, P.; Alexander, K. D.; Wieringa, M. H.

    2017-02-01

    Aims: We study X-ray bright tidal disruption events (TDE), close to the peak of their emission, with the intention of understanding the evolution of their light curves and spectra. Methods: Candidate TDE are identified by searching for soft X-ray flares from non-active galaxies in recent XMM-Newton slew data. Results: In April 2014, X-ray emission was detected from the galaxy XMMSL1 J074008.2-853927 (a.k.a. 2MASX 07400785-8539307), a factor 20 times higher than an upper limit from 20 years earlier. Both the X-ray and UV flux subsequently fell, by factors of 70 and 12 respectively. The bolometric luminosity peaked at Lbol 2 × 1044 ergs s-1 with a spectrum that may be modelled with thermal emission in the UV band, a power-law with Γ 2 dominating in the X-ray band above 2 keV and a soft X-ray excess with an effective temperature of 86 eV. Rapid variability locates the X-ray emission to within <73 Rg of the nuclear black hole. Radio emission of flux density 1 mJy, peaking at 1.5 GHz was detected 21 months after discovery. Optical spectra indicate that the galaxy, at a distance of 73 Mpc (z = 0.0173), underwent a starburst 2 Gyr ago and is now quiescent. We consider a tidal disruption event to be the most likely cause of the flare. If this proves to be correct then this is a very clean example of a disruption exhibiting both thermal and non-thermal radiation. Data for this object are available within the Open TDE Catalog at http://https://tde.space/tde/XMMSL1 J0740-85

  4. Observing the Fast X-ray Spectral Variability of NLS1 1H1934-063 with XMM-Newton and NuSTAR

    NASA Astrophysics Data System (ADS)

    Frederick, Sara; Kara, Erin; Reynolds, Christopher S.

    2017-08-01

    The most variable active galactic nuclei (AGN), taken together, are a compelling wellspring of interesting accretion-related phenomena. They can exhibit dramatic variability in the X-ray band on a range of timescales down to a few minutes. We present the exemplifying case study of 1H1934-063 (z = 0.0102), a narrow-line Seyfert I (NLS1) that is among the most variable AGN ever observed with XMM-Newton. We present spectral and temporal analyses of a concurrent XMM-Newton and NuSTAR observation taken in 2015 and lasting 120 ks, during which the source exhibited a steep (factor of 1.5) plummet and subsequent full recovery of flux that we explore in detail here. Combined spectral and timing results point to a dramatic change in the continuum on timescales as short as a few ks. Similar to other highly variable Seyfert 1s, this AGN is quite X-ray bright and displays strong reflection spectral features. We find agreement with a change in the continuum, and we rule out absorption as the cause for this dramatic variability observed even at NuSTAR energies. We compare detailed time-resolved spectral fitting with Fourier-based timing analysis in order to constrain coronal geometry, dynamics, and emission/absorption processes dictating the nature of this variability. We also announce the discovery of a Fe-K time lag between the hard X-ray continuum emission (1 - 4 keV) and its relativistically-blurred reflection off the inner accretion flow (0.3 - 1 keV).

  5. Space Telescope and Optical Reverberation Mapping Project. VII. Understanding the Ultraviolet Anomaly in NGC 5548 with X-Ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Mathur, S.; Gupta, A.; Page, K.; Pogge, R. W.; Krongold, Y.; Goad, M. R.; Adams, S. M.; Anderson, M. D.; Arévalo, P.; Barth, A. J.; Bazhaw, C.; Beatty, T. G.; Bentz, M. C.; Bigley, A.; Bisogni, S.; Borman, G. A.; Boroson, T. A.; Bottorff, M. C.; Brandt, W. N.; Breeveld, A. A.; Brown, J. E.; Brown, J. S.; Cackett, E. M.; Canalizo, G.; Carini, M. T.; Clubb, K. I.; Comerford, J. M.; Coker, C. T.; Corsini, E. M.; Crenshaw, D. M.; Croft, S.; Croxall, K. V.; Dalla Bontà, E.; Deason, A. J.; Denney, K. D.; De Lorenzo-Cáceres, A.; De Rosa, G.; Dietrich, M.; Edelson, R.; Ely, J.; Eracleous, M.; Evans, P. A.; Fausnaugh, M. M.; Ferland, G. J.; Filippenko, A. V.; Flatland, K.; Fox, O. D.; Gates, E. L.; Gehrels, N.; Geier, S.; Gelbord, J. M.; Gorjian, V.; Greene, J. E.; Grier, C. J.; Grupe, D.; Hall, P. B.; Henderson, C. B.; Hicks, S.; Holmbeck, E.; Holoien, T. W.-S.; Horenstein, D.; Horne, Keith; Hutchison, T.; Im, M.; Jensen, J. J.; Johnson, C. A.; Joner, M. D.; Jones, J.; Kaastra, J.; Kaspi, S.; Kelly, B. C.; Kelly, P. L.; Kennea, J. A.; Kim, M.; Kim, S.; Kim, S. C.; King, A.; Klimanov, S. A.; Kochanek, C. S.; Korista, K. T.; Kriss, G. A.; Lau, M. W.; Lee, J. C.; Leonard, D. C.; Li, M.; Lira, P.; Ma, Z.; MacInnis, F.; Manne-Nicholas, E. R.; Malkan, M. A.; Mauerhan, J. C.; McGurk, R.; McHardy, I. M.; Montouri, C.; Morelli, L.; Mosquera, A.; Mudd, D.; Muller-Sanchez, F.; Musso, R.; Nazarov, S. V.; Netzer, H.; Nguyen, M. L.; Norris, R. P.; Nousek, J. A.; Ochner, P.; Okhmat, D. N.; Ou-Yang, B.; Pancoast, A.; Papadakis, I.; Parks, J. R.; Pei, L.; Peterson, B. M.; Pizzella, A.; Poleski, R.; Pott, J.-U.; Rafter, S. E.; Rix, H.-W.; Runnoe, J.; Saylor, D. A.; Schimoia, J. S.; Schnülle, K.; Sergeev, S. G.; Shappee, B. J.; Shivvers, I.; Siegel, M.; Simonian, G. V.; Siviero, A.; Skielboe, A.; Somers, G.; Spencer, M.; Starkey, D.; Stevens, D. J.; Sung, H.-I.; Tayar, J.; Tejos, N.; Turner, C. S.; Uttley, P.; Van Saders, J.; Vestergaard, M.; Vican, L.; Villanueva, S., Jr.; Villforth, C.; Weiss, Y.; Woo, J.-H.; Yan, H.; Young, S.; Yuk, H.; Zheng, W.; Zhu, W.; Zu, Y.

    2017-09-01

    During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the continuum and emission-line variability became decorrelated during the second half of the six-month-long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide the Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. This model simultaneously explains all three observations: the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly.

  6. MULTI-WAVELENGTH STUDY OF HESS J1741–302

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hare, Jeremy; Rangelov, Blagoy; Sonbas, Eda

    2016-01-10

    We present the results of two Chandra X-ray Observatory (CXO) observations of TeV γ-ray source HESS J1741–302. We investigate whether there is any connection between HESS J1741−302 and the sources seen at lower energies. One of the brightest X-ray sources in the HESS J1741–302 field, CXOU J174112.1−302908, appears to be associated with a low-mass star (possibly representing a quiescent low-mass X-ray binary or cataclysmic variable (CV)), hence, it is unlikely to be a source of TeV γ-rays. In the same field we have potentially detected X-rays from WR 98a, which is likely to be a colliding wind binary with massive stars. Nomore » TeV emission has been reported so far from such systems although predictions have been made. Finally, we found that the previously reported Suzaku source, Suzaku J1740.5–3014 (which is not covered by the CXO observations), appears to be a hard X-ray source detected by INTERGAL ISGRI, which supports the magnetized CV classification but makes its association with the TeV emission unlikely. The young pulsar PSR B1737–30, so far undetected in X-rays and projected on the sky near the CV, may be the contributor of relativistic particles responsible for the TeV emission.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balman, Şölen; Godon, Patrick; Sion, Edward M., E-mail: solen@astroa.physics.metu.edu.tr, E-mail: patrick.godon@villanova.edu, E-mail: edward.sion@villanova.edu

    We present a total of ∼45 ks (3 × 15 ks) of Swift X-Ray Telescope (XRT) observations for three nonmagnetic nova-like (NL) cataclysmic variables (CVs; MV Lyr, BZ Cam, V592 Cas) in order to study characteristics of boundary layers (BLs) in CVs. The nonmagnetic NLs are found mostly in a state of high mass accretion rate (≥1 × 10{sup –9} M {sub ☉} yr{sup –1}), and some show occasional low states. Using the XRT data, we find optically thin multiple-temperature cooling flow type emission spectra with X-ray temperatures (kT {sub max}) of 21-50 keV. These hard X-ray-emitting BLs diverge frommore » simple isobaric cooling flows, indicating X-ray temperatures that are of virial values in the disk. In addition, we detect power-law emission components from MV Lyr and BZ Cam and plausibly from V592 Cas, which may be a result of the Compton scattering of the optically thin emission from the fast wind outflows in these systems and/or Compton upscattering of the soft disk photons. The X-ray luminosities of the (multitemperature) thermal plasma emission in the 0.1-50.0 keV range are (0.9-5.0) × 10{sup 32} erg s{sup –1}. The ratio of the X-ray and disk luminosities (calculated from the UV-optical wavelengths) yields an efficiency (L{sub x} /L {sub disk}) ∼ 0.01-0.001. Given this non-radiative ratio for the X-ray-emitting BLs with no significant optically thick blackbody emission in the soft X-rays (consistent with ROSAT observations), together with the high/virial X-ray temperatures, we suggest that high-state NL systems may have optically thin BLs merged with ADAF-like flows and/or X-ray coronae. In addition, we note that the axisymmetric bipolar and/or rotation-dominated fast-wind outflows detected in these three NLs (particularly BZ Cam and V592 Cas) or some other NL may also be explained in the context of ADAF-like BL regions.« less

  8. The complete Einstein Observatory X-ray survey of the Orion Nebula region.

    NASA Technical Reports Server (NTRS)

    Gagne, Marc; Caillault, Jean-Pierre

    1994-01-01

    We have analyzed archival Einstein Observatory images of a roughly 4.5 square degree region centered on the Orion Nebula. In all, 245 distinct X-ray sources have been detected in six High Resolution Imager (HRI) and 17 Imaging Proportional Counter (IPC) observations. An optical database of over 2700 stars has been assembled to search for candidate counterparts to the X-ray sources. Roughly half the X-ray sources are identified with a single Orion Nebula cluster member. The 10 main-sequence O6-B5 cluster stars detected in Orion have X-ray activity levels comparable to field O and B stars. X-ray emission has also been detected in the direction of four main-sequence late-B and early-A type stars. Since the mechanisms producing X-rays in late-type coronae and early-type winds cannot operate in the late-B and early-A type atmospheres, we argue that the observed X-rays, with L(sub X) approximately = 3 x 10(exp 30) ergs/s, are probably produced in the coronae of unseen late-type binary companions. Over 100 X-ray sources have been associated with late-type pre-main sequence stars. The upper envelope of X-ray activity rises sharply from mid-F to late-G, with L(sub x)/L(sub bol) in the range 10(exp -4) to 2 x 10(exp -3) for stars later than approximately G7. We have looked for variability of the late-type cluster members on timescales of a day to a year and find that 1/4 of the stars show significantly variable X-ray emission. A handful of the late-type stars have published rotational periods and spectroscopic rotational velocities; however, we see no correlation between X-ray activity and rotation. Thus, for this sample of pre-main-sequence stars, the large dispersion in X-ray activity does not appear to be caused by the dispersion in rotation, in contrast with results obtained for low-mass main-sequence stars in the Pleiades and pre-main-sequence stars in Taurus-Auriga.

  9. Chandra X-ray Grating Spectrometry of Eta Carinae near X-ray Minimum: I. Variability of the Sulfur and Silicon Emission Lines

    NASA Technical Reports Server (NTRS)

    Henley, D. B.; Corcoran, M. F.; Pittard, J. M.; Stevens, I. R.; Hamaguchi, K.; Gull, T. R.

    2008-01-01

    We report on variations in important X-ray emission lines in a series of Chandra grating spectra of the supermassive colliding wind binary star eta Car, including key phases around the X-ray minimum/periastron passage in 2003.5. The X-rays arise from the collision of the slow, dense wind of eta Car with the fast, low-density wind of an otherwise hidden companion star. The X-ray emission lines provide the only direct measure of the flow dynamics of the companion's wind along the wind-wind collision zone. We concentrate here on the silicon and sulfur lines, which are the strongest and best resolved lines in the X-ray spectra. Most of the line profiles can be adequately fit with symmetric Gaussians with little significant skewness. Both the silicon and sulfur lines show significant velocity shifts and correlated increases in line widths through the observations. The R = forbidden-to-intercombination ratio from the Si XIII and S XV triplets is near or above the low-density limit in all observations, suggesting that the line-forming region is > 1.6 stellar radii from the companion star, and that the emitting plasma may be in a non-equilibrium state. We show that simple geometrical models cannot simultaneously fit both the observed centroid variations and changes in line width as a function of phase. We show that the observed profiles can be fitted with synthetic profiles with a reasonable model of the emissivity along the wind-wind collision boundary. We use this analysis to help constrain the line formation region as a function of orbital phase, and the orbital geometry. Subject headings: X-rays: stars -stars: early-type-stars: individual (q Car)

  10. Variable X-ray Emission from FU Orionis

    NASA Astrophysics Data System (ADS)

    Skinner, Steve L.; Guedel, M.; Briggs, K. R.; Lamzin, S. A.; Sokal, K. R.

    2009-05-01

    FU Orionis is the prototype of a small but remarkable class of pre-main sequence stars ('FUors') that have undergone large optical outbursts thought to be linked to episodic accretion. FU Ori increased in optical brightness by about 6 mag in 1936-37 and is still in slow decline. Because of their high accretion rates, FUors are good candidates for exploring potential effects of accretion on X-ray emission. A recently completed survey of FUors with XMM-Newton detected X-rays from FU Ori and V1735 Cyg. We present new results from a sensitive 99 ksec (1.15 day) follow-up X-ray observation of FU Ori with Chandra. The Chandra ACIS-S CCD spectrum confirms the presence of a cool plasma component (kT < 1 keV) viewed under moderate absorption and a much hotter component (kT > 3 keV), viewed under high absorption, in accord with previous XMM results. The uninterrupted Chandra light curve shows that the hot component is slowly variable on a timescale of one day, but no variability is detected in the cool component. The slow variability and high plasma temperature point to a magnetic origin for the hot component, but other mechanisms (including accretion) may be responsible for the cool non-variable component. We will discuss these new results in the context of what is known about FU Ori from previous observations, including XMM (Skinner et al. 2006, ApJ, 643, 995) and HST (Kravtsova et al. 2007, Ast. Ltrs., 33, 755).

  11. Energy distribution of relativistic electrons in the kiloparsec scale jet of M 87 with Chandra

    NASA Astrophysics Data System (ADS)

    Sun, Xiao-Na; Yang, Rui-Zhi; Rieger, Frank M.; Liu, Ruo-Yu; Aharonian, Felix

    2018-05-01

    The X-ray emission from the jets in active galactic nuclei (AGN) carries important information on the distributions of relativistic electrons and magnetic fields on large scales. We reanalysed archival Chandra observations on the jet of M 87 from 2000 to 2016 with a total exposure of 1460 kiloseconds to explore the X-ray emission characteristics along the jet. We investigated the variability behaviours of the nucleus and the inner jet component HST-1, and confirm indications for day-scale X-ray variability in the nucleus contemporaneous to the 2010 high TeV γ-ray state. HST-1 shows a general decline in X-ray flux over the last few years consistent with its synchrotron interpretation. We extracted the X-ray spectra for the nucleus and all knots in the jet, showing that they are compatible with a single power law within the X-ray band. There are indications that the resultant X-ray photon index exhibit a trend, with slight but significant index variations ranging from ≃ 2.2 (e.g. in knot D) to ≃ 2.4-2.6 (in the outer knots F, A, and B). When viewed in a multiwavelength context, a more complex situation can be seen. Fitting the radio to X-ray spectral energy distributions (SEDs) assuming a synchrotron origin, we show that a broken power-law electron spectrum with break energy Eb around 1 (300 μG/B)1/2 TeV allows a satisfactory description of the multiband SEDs for most of the knots. However, in the case of knots B, C, and D we find indications that an additional high-energy component is needed to adequately reproduce the broad-band SEDs. We discuss the implications and suggest that a stratified jet model may account for the differences.

  12. The ever-surprising blazar OJ 287: multi-wavelength study and appearance of a new component in X-rays

    NASA Astrophysics Data System (ADS)

    Kushwaha, Pankaj; Gupta, Alok C.; Wiita, Paul J.; Pal, Main; Gaur, Haritma; de Gouveia Dal Pino, E. M.; Kurtanidze, O. M.; Semkov, E.; Damljanovic, G.; Hu, S. M.; Uemura, M.; Vince, O.; Darriba, A.; Gu, M. F.; Bachev, R.; Chen, Xu; Itoh, R.; Kawabata, M.; Kurtanidze, S. O.; Nakaoka, T.; Nikolashvili, M. G.; Sigua, L. A.; Strigachev, A.; Zhang, Z.

    2018-06-01

    We present a multi-wavelength spectral and temporal investigation of OJ 287 emission during its strong optical-to-X-ray activity between July 2016 - July 2017. The daily γ-ray fluxes from Fermi-LAT are consistent with no variability. The strong optical-to-X-ray variability is accompanied by a change in power-law spectral index of the X-ray spectrum from <2 to >2, with variations often associated with changes in optical polarization properties. Cross-correlations between optical-to-X-ray emission during four continuous segments show simultaneous optical-ultraviolet (UV) variations while the X-ray and UV/optical are simultaneous only during the middle two segments. In the first segment, the results suggest X-rays lag the optical/UV, while in the last segment X-rays lead by ˜ 5-6 days. The last segment also shows a systematic trend with variations appearing first at higher energies followed by lower energy ones. The LAT spectrum before the VHE activity is similar to preceding quiescent state spectrum while it hardens during VHE activity period and is consistent with the extrapolated VHE spectrum during the latter. Overall, the broadband spectral energy distributions (SEDs) during high activity periods are a combination of a typical OJ 287 SED and an HBL SED, and can be explained in a two-zone leptonic model, with the second zone located at parsec scales, beyond the broad line region, being responsible for the HBL-like spectrum. The change of polarization properties from systematic to chaotic and back to systematic, before, during and after the VHE activity, suggest dynamic roles for magnetic fields and turbulence.

  13. A Suzaku X-ray Observation of One Orbit of the Supergiant Fast X-ray Transient IGR J16479-4514

    NASA Technical Reports Server (NTRS)

    Sidoli, L.; Esposito, P.; Sguera, V.; Bodaghee, A.; Tomsick, J. A.; Pottschmidt, K.; Rodriguez, J.; Ramano, P.; Wilms, J.

    2013-01-01

    We report on a 250 ks long X-ray observation of the supergiant fast X-ray transient (SFXT) IGR J16479-4514 performed with Suzaku in 2012 February. During this observation, about 80% of the short orbital period (P(sub orb) approximates 3.32 days) was covered as continuously as possible for the first time. The source light curve displays variability of more than two orders of magnitude, starting with a very low emission state (10(exp -13) erg / sq cm/s; 1-10 keV) lasting the first 46 ks, consistent with being due to the X-ray eclipse by the supergiant companion. The transition to the uneclipsed X-ray emission is energy dependent. Outside the eclipse, the source spends most of the time at a level of 6-7X10)(exp-12) erg/sq. cm/s) punctuated by two structured faint flares with a duration of about 10 and 15 ks, respectively, reaching a peak flux of 3-4X10(exp -11) erg/sq. cm./S, separated by about 0.2 in orbital phase. Remarkably, the first faint flare occurs at a similar orbital phase of the bright flares previously observed in the system. This indicates the presence of a phase-locked large scale structure in the supergiant wind, driving a higher accretion rate onto the compact object. The average X-ray spectrum is hard and highly absorbed, with a column density, NH, of 10*exp 23)/sq cm, clearly in excess of the interstellar absorption. There is no evidence for variability of the absorbing column density, except that during the eclipse, where a less absorbed X-ray spectrum is observed. A narrow Fe K-alpha emission line at 6.4 keV is viewed along the whole orbit, with an intensity which correlates with the continuum emission above 7 keV. The scattered component visible during the X-ray eclipse allowed us to directly probe the wind density at the orbital separation, resulting in rho(sub w)=7X10(exp -14) g/cubic cm. Assuming a spherical geometry for the supergiant wind, the derived wind density translates into a ratio M(sub w)/v(sub infinity) = 7X10(exp -17) Solar M/km which, assuming terminal velocities in a large range 500-3000 km/s, implies an accretion luminosity two orders of magnitude higher than that observed. As a consequence, a mechanism should be at work reducing the mass accretion rate. Different possibilities are discussed.

  14. The response of relativistic outflowing gas to the inner accretion disk of a black hole.

    PubMed

    Parker, Michael L; Pinto, Ciro; Fabian, Andrew C; Lohfink, Anne; Buisson, Douglas J K; Alston, William N; Kara, Erin; Cackett, Edward M; Chiang, Chia-Ying; Dauser, Thomas; De Marco, Barbara; Gallo, Luigi C; Garcia, Javier; Harrison, Fiona A; King, Ashley L; Middleton, Matthew J; Miller, Jon M; Miniutti, Giovanni; Reynolds, Christopher S; Uttley, Phil; Vasudevan, Ranjan; Walton, Dominic J; Wilkins, Daniel R; Zoghbi, Abderahmen

    2017-03-01

    The brightness of an active galactic nucleus is set by the gas falling onto it from the galaxy, and the gas infall rate is regulated by the brightness of the active galactic nucleus; this feedback loop is the process by which supermassive black holes in the centres of galaxies may moderate the growth of their hosts. Gas outflows (in the form of disk winds) release huge quantities of energy into the interstellar medium, potentially clearing the surrounding gas. The most extreme (in terms of speed and energy) of these-the ultrafast outflows-are the subset of X-ray-detected outflows with velocities higher than 10,000 kilometres per second, believed to originate in relativistic (that is, near the speed of light) disk winds a few hundred gravitational radii from the black hole. The absorption features produced by these outflows are variable, but no clear link has been found between the behaviour of the X-ray continuum and the velocity or optical depth of the outflows, owing to the long timescales of quasar variability. Here we report the observation of multiple absorption lines from an extreme ultrafast gas flow in the X-ray spectrum of the active galactic nucleus IRAS 13224-3809, at 0.236 ± 0.006 times the speed of light (71,000 kilometres per second), where the absorption is strongly anti-correlated with the emission of X-rays from the inner regions of the accretion disk. If the gas flow is identified as a genuine outflow then it is in the fastest five per cent of such winds, and its variability is hundreds of times faster than in other variable winds, allowing us to observe in hours what would take months in a quasar. We find X-ray spectral signatures of the wind simultaneously in both low- and high-energy detectors, suggesting a single ionized outflow, linking the low- and high-energy absorption lines. That this disk wind is responding to the emission from the inner accretion disk demonstrates a connection between accretion processes occurring on very different scales: the X-ray emission from within a few gravitational radii of the black hole ionizing the disk wind hundreds of gravitational radii further away as the X-ray flux rises.

  15. Variability in the high energy gamma ray emission from Cyg X-3 over a two-year period (1983 - 1984) at E 4 x 10(11) eV

    NASA Technical Reports Server (NTRS)

    Cawley, M. F.; Fegan, D. J.; Gibbs, K.; Gorham, P. W.; Lamb, R. C.; Liebing, D. F.; Porter, N. A.; Stenger, V. J.; Weekes, T. C.; Williams, R. J.

    1985-01-01

    Cygnus X-3 is observed to emit gamma rays with energies in excess of 4 x 10 to the 11th power eV during two out of 9 observational categories over an 18 month time span. The emissions are observed at the 0.6 phase of the characteristic 4.8 hr light curve for this binary system. We estimate a peak flux at phase 0.6 of 5 x 10 to the minus 10th power photons cm-2s-1 at a software threshold of 8 x 10 to the 11th power eV for Oct/Nov 1983. A flux for the June 84 effect cannot be reliably calculated at present due to lack of Monte Carlo simulations for the energy range and spectral region. For the other 7 observational categories the observations are consistent with zero source emission. The light curve would appear to be variable on a time scale of a couple of weeks at these categories. Selection of compact images in accordance with Monte Carlo simulations combined with empirical optimization techniques have led to an enriched gamma ray light curve for the Oct/Nov 1983 data. Selection on the basis of shower orientation, however, has not led to any notable enhancement of the gamma ray content. Individual Cherenko images can be reliably sorted on an event by event basis into either proton-induced or photon-induced showers.

  16. Suzaku Observation of Strong Fluorescent Iron Line Emission from the Young Stellar Object V1647 Ori during Its New X-ray Outburst

    NASA Technical Reports Server (NTRS)

    Hamaguchi, Kenji; Grosso, Nicolas; Kastner, Joel H.; Weintraub, David A.; Richmond, Michael

    2009-01-01

    The Suzaku X-ray satellite observed the young stellar object V1647 Ori on 2008 October 8 during the new mass accretion outburst reported in August 2008. During the 87 ksec observation with a net exposure of 40 ks, V1647 Ori showed a. high level of X-ray emission with a gradual decrease in flux by a factor of 5 and then displayed an abrupt flux increase by an order of magnitude. Such enhanced X-ray variability was also seen in XMM-Newton observations in 2004 and 2005 during the 2003-2005 outburst, but has rarely been observed for other young stellar objects. The spectrum clearly displays emission from Helium-like iron, which is a signature of hot plasma (kT approx.5 keV). It also shows a fluorescent iron Ka line with a remarkably large equivalent width of approx. 600 eV. Such a, large equivalent width indicates that a part of the incident X-ray emission that irradiates the circumstellar material and/or the stellar surface is hidden from our line of sight. XMM-Newton spectra during the 2003-2005 outburst did not show a strong fluorescent iron Ka line ; so that the structure of the circumstellar gas very close to the stellar core that absorbs and re-emits X-ray emission from the central object may have changed in between 2005 and 2008. This phenomenon may be related to changes in the infrared morphology of McNeil's nebula between 2004 and 2008.

  17. Observations of Cygnus X-3 above 10(15) eV from 1979 - 1984

    NASA Technical Reports Server (NTRS)

    Lambert, A.; Lloyd-Evans, J.; Perrett, J. C.; Reid, R. J. O.; Watson, A. A.; West, A. A.

    1985-01-01

    The ultra high energy gamma-ray source, cygnus X-3, has been observed more or less continuously with an array sensitive to 10 to the 15th power ev primaries between 1 Jan. 1979 and 31 Dec. 1984. There is evidence for time variability in the phase of gamma-ray emission over this period.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mineo, S.; Rappaport, S.; Levine, A.

    We present a comprehensive study of the total X-ray emission from the colliding galaxy pair NGC 2207/IC 2163, based on Chandra, Spitzer, and GALEX data. We detect 28 ultraluminous X-ray sources (ULXs), 7 of which were not detected previously because of X-ray variability. Twelve sources show significant long-term variability, with no correlated spectral changes. Seven sources are transient candidates. One ULX coincides with an extremely blue star cluster (B – V = –0.7). We confirm that the global relation between the number and luminosity of ULXs and the integrated star-formation rate (SFR) of the host galaxy also holds on local scales. We investigatemore » the effects of dust extinction and age on the X-ray binary (XRB) population on subgalactic scales. The distributions of N {sub X} and L {sub X} are peaked at L {sub IR}/L {sub NUV} ∼ 1, which may be associated with an age of ∼10 Myr for the underlying stellar population. We find that approximately one-third of the XRBs are located in close proximity to young star complexes. The luminosity function of the XRBs is consistent with that typical for high-mass XRBs and appears unaffected by variability. We disentangle and compare the X-ray diffuse spectrum with that of the bright XRBs. The hot interstellar medium dominates the diffuse X-ray emission at E ≲ 1 keV and has a temperature kT=0.28{sub −0.04}{sup +0.05} keV and intrinsic 0.5-2 keV luminosity of 7.9×10{sup 40} erg s{sup −1}, a factor of ∼2.3 higher than the average thermal luminosity produced per unit SFR in local star-forming galaxies. The total X-ray output of NGC 2207/IC 2163 is 1.5×10{sup 41} erg s{sup −1}, and the corresponding total integrated SFR is 23.7 M {sub ☉} yr{sup –1}.« less

  19. NuSTAR and multifrequency study of the two high-redshift blazars S5 0836+710 and PKS 2149-303

    DOE PAGES

    Tagliaferri, Gianpiero; Ghisellini, G.; Perri, M.; ...

    2015-07-09

    Powerful blazars are flat-spectrum radio quasars whose emission is dominated by a Compton component peaking between a few hundred keV and a few hundred MeV. We observed two bright blazars, PKS 2149–306 at redshift z = 2.345 and S5 0836+710 at z = 2.172, in the hard X-ray band with the Nuclear Spectroscopic Telescope Array satellite. Simultaneous soft-X-rays and UV–optical observations were performed with the Swift satellite, while near-infrared (near-IR) data were obtained with the Rapid Eye Mount telescope. To study their variability, we repeated these observations for both sources on a timescale of a few months. While no fastmore » variability was detected during a single observation, both sources were variable in the X-ray band, up to 50%, between the two observations, with larger variability at higher energies. No variability was detected in the optical/NIR band. These data, together with Fermi-Large Area Telescope, Wide-field Infrared Survey Explorer, and other literature data, are then used to study the overall spectral energy distributions (SEDs) of these blazars. Although the jet nonthermal emission dominates the SED, it leaves the UV band unhidden, allowing us to detect the thermal emission of the disk and to estimate the black hole mass. The nonthermal emission is well reproduced by a one-zone leptonic model by the synchrotron, self-Compton, and external Compton processes. Our data are better reproduced if we assume that the location of the dissipation region of the jet, R diss, is in between the torus and the broad-line region. As a result, the observed variability is explained by changing a minimum number of model parameters by a very small amount.« less

  20. NuSTAR AND MULTIFREQUENCY STUDY OF THE TWO HIGH-REDSHIFT BLAZARS S5 0836+710 AND PKS 2149–306

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tagliaferri, G.; Ghisellini, G.; Covino, S.

    Powerful blazars are flat-spectrum radio quasars whose emission is dominated by a Compton component peaking between a few hundred keV and a few hundred MeV. We observed two bright blazars, PKS 2149–306 at redshift z = 2.345 and S5 0836+710 at z = 2.172, in the hard X-ray band with the Nuclear Spectroscopic Telescope Array satellite. Simultaneous soft-X-rays and UV–optical observations were performed with the Swift satellite, while near-infrared (near-IR) data were obtained with the Rapid Eye Mount telescope. To study their variability, we repeated these observations for both sources on a timescale of a few months. While no fastmore » variability was detected during a single observation, both sources were variable in the X-ray band, up to 50%, between the two observations, with larger variability at higher energies. No variability was detected in the optical/NIR band. These data, together with Fermi-Large Area Telescope, Wide-field Infrared Survey Explorer, and other literature data, are then used to study the overall spectral energy distributions (SEDs) of these blazars. Although the jet nonthermal emission dominates the SED, it leaves the UV band unhidden, allowing us to detect the thermal emission of the disk and to estimate the black hole mass. The nonthermal emission is well reproduced by a one-zone leptonic model by the synchrotron, self-Compton, and external Compton processes. Our data are better reproduced if we assume that the location of the dissipation region of the jet, R{sub diss}, is in between the torus and the broad-line region. The observed variability is explained by changing a minimum number of model parameters by a very small amount.« less

  1. NuSTAR and multifrequency study of the two high-redshift blazars S5 0836+710 and PKS 2149-303

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tagliaferri, Gianpiero; Ghisellini, G.; Perri, M.

    Powerful blazars are flat-spectrum radio quasars whose emission is dominated by a Compton component peaking between a few hundred keV and a few hundred MeV. We observed two bright blazars, PKS 2149–306 at redshift z = 2.345 and S5 0836+710 at z = 2.172, in the hard X-ray band with the Nuclear Spectroscopic Telescope Array satellite. Simultaneous soft-X-rays and UV–optical observations were performed with the Swift satellite, while near-infrared (near-IR) data were obtained with the Rapid Eye Mount telescope. To study their variability, we repeated these observations for both sources on a timescale of a few months. While no fastmore » variability was detected during a single observation, both sources were variable in the X-ray band, up to 50%, between the two observations, with larger variability at higher energies. No variability was detected in the optical/NIR band. These data, together with Fermi-Large Area Telescope, Wide-field Infrared Survey Explorer, and other literature data, are then used to study the overall spectral energy distributions (SEDs) of these blazars. Although the jet nonthermal emission dominates the SED, it leaves the UV band unhidden, allowing us to detect the thermal emission of the disk and to estimate the black hole mass. The nonthermal emission is well reproduced by a one-zone leptonic model by the synchrotron, self-Compton, and external Compton processes. Our data are better reproduced if we assume that the location of the dissipation region of the jet, R diss, is in between the torus and the broad-line region. As a result, the observed variability is explained by changing a minimum number of model parameters by a very small amount.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghiringhelli, G.; Piazzalunga, A.; Dallera, C.

    We present a 5 m long spectrometer for soft x rays to be used at a synchrotron radiation beamline for resonant x-ray emission spectroscopy and resonant inelastic x-ray scattering in the 400-1600 eV energy range. It is based on a variable line spacing spherical grating (average groove density of 3200 mm{sup -1}, R=58.55 m) and a charge coupled device two dimensional detector. With an x-ray spot on the sample of 10 {mu}m, the targeted resolving power is higher than 10 000 at all energies below 1100 eV and better than 7000 at 1500 eV. The off-line tests made with Almore » and Mg K{alpha}{sub 1,2} fluorescence emissions indicate that the spectrometer can actually work at 12 000 and 17 000 resolving power at the L{sub 3} edges of Cu (930 eV) and of Ti (470 eV), respectively. SAXES (superadvanced x-ray emission spectrometer) is mounted on a rotating platform allowing to vary the scattering angle from 25 degree sign to 130 degree sign . The spectrometer will be operational at the ADRESS (advanced resonant spectroscopies) beamline of the Swiss Light Source from 2007.« less

  3. Detection of X-ray flares from AX J1714.1-3912, the unidentified source near RX J1713.7-3946

    NASA Astrophysics Data System (ADS)

    Miceli, Marco; Bamba, Aya

    2018-04-01

    Context. Molecular clouds are predicted to emit nonthermal X-rays when they are close to particle-accelerating supernova remnants (SNRs), and the hard X-ray source AX J1714.1-3912, near the SNR RX J1713.7-3946, has long been considered a candidate for diffuse nonthermal emission associated with cosmic rays diffusing from the remnant to a closeby molecular cloud. Aim. We aim at ascertaining the nature of this source by analyzing two dedicated X-ray observations performed with Suzaku and Chandra. Methods: We extracted images from the data in various energy bands, spectra, and light curves and studied the long-term evolution of the X-ray emission on the basis of the 4.5 yr time separation between the two observations. Results: We found that there is no diffuse emission associated with AX J1714.1-3912, which is instead the point-like source CXOU J171343.9-391205. We discovered rapid time variability (timescale 103 s), together with a high intrinsic absorption and a hard nonthermal spectrum (power law with photon index Γ 1.4). We also found that the X-ray flux of the source drops down by 1-2 orders of magnitude on a timescale of a few years. Conclusions: Our results suggest a possible association between AX J1714.1-3912 and a previously unknown supergiant fast X-ray transient, although further follow-up observations are necessary to prove this association definitively.

  4. Simultaneous multi-wavelength campaign on PKS 2005-489 in a high state

    DOE PAGES

    Abramowski, A.

    2011-09-01

    The high-frequency peaked BL Lac object PKS 2005-489 was the target of amulti-wavelength campaignwith simultaneous observations in the TeV γ-ray (H.E.S.S.), GeV γ-ray (Fermi/LAT), X-ray (RXTE, Swift), UV (Swift) and optical (ATOM, Swift) bands. This campaign was carried out during a high flux state in the synchrotron regime. The flux in the optical and X-ray bands reached the level of the historical maxima. The hard GeV spectrum observed with Fermi/LAT connects well to the very high energy (VHE, E> 100 GeV) spectrum measured with H.E.S.S. with a peak energy between ~ 5 and 500 GeV. Compared to observations with contemporaneousmore » coverage in the VHE and X-ray bands in 2004, the X-ray flux was ~ 50 times higher during the 2009 campaign while the TeV γ-ray flux shows marginal variation over the years. The spectral energy distribution during this multi-wavelength campaign was fit by a one zone synchrotron self-Compton model with a well determined cutoff in X-rays. The parameters of a one zone SSC model are inconsistent with variability time scales. The variability behaviour over years with the large changes in synchrotron emission and small changes in the inverse Compton emission does not warrant an interpretation within a one-zone SSC model despite an apparently satisfying fit to the broadband data in 2009.« less

  5. CTIO, ROSAT HRI, and Chandra ACIS Observations of the Archetypical Mixed-morphology Supernova Remnant W28 (G6.4–0.1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pannuti, Thomas G.; Kosakowski, Alekzander R.; Ernst, Sonny

    We present a joint analysis of optical emission-line and X-ray observations of the archetypical Galactic mixed-morphology supernova remnant (MMSNR) W28 (G6.4–0.1). MMSNRs comprise a class of sources whose shell-like radio morphology contrasts with a filled center in X-rays; the origin of these contrasting morphologies remains uncertain. Our CTIO images reveal enhanced [S ii] emission relative to H α along the northern and eastern rims of W28. Hydroxyl (OH) masers are detected along these same rims, supporting prior studies suggesting that W28 is interacting with molecular clouds at these locations, as observed for several other MMSNRs. Our ROSAT HRI mosaic ofmore » W28 provides almost complete coverage of the supernova remnant (SNR). The X-ray and radio emission is generally anti-correlated, except for the luminous northeastern rim, which is prominent in both bands. Our Chandra observation sampled the X-ray-luminous central diffuse emission. Spectra extracted from the bright central peak and from nearby annular regions are best fit with two overionized recombining plasma models. We also find that while the X-ray emission from the central peak is dominated by swept-up material, that from the surrounding regions shows evidence for oxygen-rich ejecta, suggesting that W28 was produced by a massive progenitor. We also analyze the X-ray properties of two X-ray sources (CXOU J175857.55−233400.3 and 3XMM J180058.5–232735) projected into the interior of W28 and conclude that neither is a neutron star associated with the SNR. The former is likely to be a foreground cataclysmic variable or a quiescent low-mass X-ray-binary, while the latter is likely to be a coronally active main-sequence star.« less

  6. A detailed X-ray investigation of ζ Puppis. IV. Further characterization of the variability

    NASA Astrophysics Data System (ADS)

    Nazé, Yaël; Ramiaramanantsoa, Tahina; Stevens, Ian R.; Howarth, Ian D.; Moffat, Anthony F. J.

    2018-01-01

    Context. One of the optically brightest and closest massive stars, ζ Pup, is also a bright X-ray source. Previously, its X-ray emission was found to be variable with light curves harbouring "trends" with a typical timescale longer than the exposure length, i.e. >1 d. The origin of these changes was proposed to be linked to large-scale structures in the wind of ζ Pup, but further characterization of the variability at high energies was needed to investigate this scenario. Aims: Since the previous papers of this series, a number of new X-ray observations have become available. Furthermore, a cyclic behaviour with a 1.78 d period was identified in long optical photometric runs, which is thought to be associated with the launching mechanism of large-scale wind structures. Methods: We analysed these new X-ray data, revisited the old data, and compared the X-ray light curves with the optical data, notably those taken simultaneously. Results: The behaviour of ζ Pup in X-rays cannot be explained in terms of a perfect clock because the amplitude and shape of its variations change with time. For example, ζ Pup was much more strongly variable between 2007 and 2011 than before and after this interval. Comparing the X-ray spectra of the star at maximum and minimum brightness yields no compelling difference beyond the overall flux change: the temperatures, absorptions, and line shapes seem to remain constant, well within errors. The only common feature between X-ray datasets is that the variation amplitudes appear maximum in the medium (0.6-1.2 keV) energy band. Finally, no clear and coherent correlation can be found between simultaneous X-ray and optical data. Only a subgroup of observations may be combined coherently with the optical period of 1.78 d, although the simultaneous optical behaviour is unknown. Conclusions: The currently available data do not reveal any obvious, permanent, and direct correlation between X-ray and optical variations. The origin of the X-ray variability therefore still needs to be ascertained, highlighting the need for long-term monitoring in multiwavelengths, i.e. X-ray, UV, and optical.

  7. X-ray microlensing in the quadruply lensed quasar Q2237+0305

    NASA Astrophysics Data System (ADS)

    Zimmer, F.; Schmidt, R. W.; Wambsganss, J.

    2011-05-01

    We use archival data of NASA's Chandra X-ray telescope to compile an X-ray light curve of all four images of the quadruply lensed quasar Q2237+0305 (zQ= 1.695) from 2006 January to 2007 January. We fit simulated point spread functions to the four individual quasar images using Cash's C-statistic to account for the Poissonian nature of the X-ray signal. The quasar images display strong flux variations up to a factor of ˜4 within one month. We can disentangle the intrinsic quasar variability from flux variations due to gravitational microlensing by looking at the flux ratios of the individual quasar images. Doing this, we find evidence for microlensing in image A. In particular, the time sequence of the flux ratio A/B in the X-ray regime correlates with the corresponding sequence in the optical monitoring by OGLE in the V band. The amplitudes in the X-ray light curve are larger. For the most prominent peak, the increase of the X-ray ratio A/B is larger by a factor of ˜1.6 compared to the signal in the optical. In agreement with theory and other observations of multiply-imaged quasars, this suggests that the X-ray emission region of this quasar is significantly smaller than the optical emission region.

  8. The Peculiar Radio-loud Narrow Line Seyfert 1 Galaxy 1H 0323+342

    NASA Astrophysics Data System (ADS)

    Paliya, Vaidehi S.; Sahayanathan, S.; Parker, M. L.; Fabian, A. C.; Stalin, C. S.; Anjum, Ayesha; Pandey, S. B.

    2014-07-01

    We present a multiwavelength study of the radio-loud narrow-line Seyfert 1 galaxy (NLSy1) 1H 0323+342, detected by the Fermi Gamma-Ray Space Telescope. Multiband light curves show many orphan X-ray and optical flares having no corresponding γ-ray counterparts. Such anomalous variability behavior can be due to different locations of the emission region from the central source. During a large flare, a γ-ray flux doubling timescale as small as ~3 hr is noticed. We built spectral energy distributions (SEDs) during different activity states and modeled them using a one-zone leptonic model. The shape of the optical/UV component of the SEDs is dominated by accretion disk emission in all the activity states. In the X-ray band, significant thermal emission from the hot corona is inferred during quiescent and first flaring states; however, during subsequent flares, the nonthermal jet component dominates. The γ-ray emission in all the states can be well explained by inverse-Compton scattering of accretion disk photons reprocessed by the broad-line region. The source showed violent intra-night optical variability, coinciding with one of the high γ-ray activity states. An analysis of the overall X-ray spectrum fitted with an absorbed power-law plus relativistic reflection component hints at the presence of an Fe Kα line and returns a high black hole spin value of a = 0.96 ± 0.14. We argue that 1H 0323+342 possesses dual characteristics, akin to both flat-spectrum radio quasars (FSRQs) and radio-quiet NLSy1 galaxies, though at a low jet power regime compared to powerful FSRQs.

  9. X-ray observations of black widow pulsars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gentile, P. A.; McLaughlin, M. A.; Roberts, M. S. E.

    2014-03-10

    We describe the first X-ray observations of five short orbital period (P{sub B} < 1 day), γ-ray emitting, binary millisecond pulsars (MSPs). Four of these—PSRs J0023+0923, J1124–3653, J1810+1744, and J2256–1024—are 'black-widow' pulsars, with degenerate companions of mass <<0.1 M {sub ☉}, three of which exhibit radio eclipses. The fifth source, PSR J2215+5135, is an eclipsing 'redback' with a near Roche-lobe filling ∼0.2 solar mass non-degenerate companion. Data were taken using the Chandra X-Ray Observatory and covered a full binary orbit for each pulsar. Two pulsars, PSRs J2215+5135 and J2256–1024, show significant orbital variability while PSR J1124–3653 shows marginal orbital variability.more » The lightcurves for these three pulsars have X-ray flux minima coinciding with the phases of the radio eclipses. This phenomenon is consistent with an intrabinary shock emission interpretation for the X-rays. The other two pulsars, PSRs J0023+0923 and J1810+1744, are fainter and do not demonstrate variability at a level we can detect in these data. All five spectra are fit with three separate models: a power-law model, a blackbody model, and a combined model with both power-law and blackbody components. The preferred spectral fits yield power-law indices that range from 1.3 to 3.2 and blackbody temperatures in the hundreds of eV. The spectrum for PSR J2215+5135 shows a significant hard X-ray component, with a large number of counts above 2 keV, which is additional evidence for the presence of intrabinary shock emission. This is similar to what has been detected in the low-mass X-ray binary to MSP transition object PSR J1023+0038.« less

  10. Starspot variability as an X-ray radiation proxy

    NASA Astrophysics Data System (ADS)

    Arkhypov, Oleksiy V.; Khodachenko, Maxim L.; Lammer, Helmut; Güdel, Manuel; Lüftinger, Teresa; Johnstone, Colin P.

    2018-05-01

    Stellar X-ray emission plays an important role in the study of exoplanets as a proxy for stellar winds and as a basis for the prediction of extreme ultraviolet (EUV) flux, unavailable for direct measurements, which in their turn are important factors for the mass-loss of planetary atmospheres. Unfortunately, the detection thresholds limit the number of stars with the directly measured X-ray fluxes. At the same time, the known connection between the sunspots and X-ray sources allows using of the starspot variability as an accessible proxy for the stellar X-ray emission. To realize this approach, we analysed the light curves of 1729 main-sequence stars with rotation periods 0.5 < P < 30 d and effective temperatures 3236 < Teff < 7166 K observed by the Kepler mission. It was found that the squared amplitude of the first rotational harmonic of a stellar light curve may be used as a kind of activity index. This averaged index revealed practically the same relation with the Rossby number as that in the case of the X-ray to bolometric luminosity ratio Rx. As a result, the regressions for stellar X-ray luminosity Lx(P, Teff) and its related EUV analogue LEUV were obtained for the main-sequence stars. It was shown that these regressions allow prediction of average (over the considered stars) values of log (Lx) and log (LEUV) with typical errors of 0.26 and 0.22 dex, respectively. This, however, does not include the activity variations in particular stars related to their individual magnetic activity cycles.

  11. OPTICAL PROPERTIES OF THE ULTRALUMINOUS X-RAY SOURCE HOLMBERG IX X-1 AND ITS STELLAR ENVIRONMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grise, F.; Kaaret, P.; Pakull, M. W.

    2011-06-10

    Holmberg IX X-1 is an archetypal ultraluminous X-ray source (ULX). Here we study the properties of the optical counterpart and of its stellar environment using optical data from SUBARU/Faint Object Camera and Spectrograph, GEMINI/GMOS-N and Hubble Space Telescope (HST)/Advanced Camera for Surveys, as well as simultaneous Chandra X-ray data. The V {approx} 22.6 spectroscopically identified optical counterpart is part of a loose cluster with an age {approx}< 20 Myr. Consequently, the mass upper limit on individual stars in the association is about 20 M{sub sun}. The counterpart is more luminous than the other stars of the association, suggesting a non-negligiblemore » optical contribution from the accretion disk. An observed UV excess also points to non-stellar light similar to X-ray active low-mass X-ray binaries. A broad He II {lambda}4686 emission line identified in the optical spectrum of the ULX further suggests optical light from X-ray reprocessing in the accretion disk. Using stellar evolutionary tracks, we have constrained the mass of the counterpart to be {approx}> 10 M{sub sun}, even if the accretion disk contributes significantly to the optical luminosity. Comparison of the photometric properties of the counterpart with binary models show that the donor may be more massive, {approx}> 25 M{sub sun}, with the ULX system likely undergoing case AB mass transfer. Finally, the counterpart exhibits photometric variability of 0.14 mag between two HST observations separated by 50 days which could be due to ellipsoidal variations and/or disk reprocessing of variable X-ray emission.« less

  12. Second ROSAT all-sky survey (2RXS) source catalogue

    NASA Astrophysics Data System (ADS)

    Boller, Th.; Freyberg, M. J.; Trümper, J.; Haberl, F.; Voges, W.; Nandra, K.

    2016-04-01

    Aims: We present the second ROSAT all-sky survey source catalogue, hereafter referred to as the 2RXS catalogue. This is the second publicly released ROSAT catalogue of point-like sources obtained from the ROSAT all-sky survey (RASS) observations performed with the position-sensitive proportional counter (PSPC) between June 1990 and August 1991, and is an extended and revised version of the bright and faint source catalogues. Methods: We used the latest version of the RASS processing to produce overlapping X-ray images of 6.4° × 6.4° sky regions. To create a source catalogue, a likelihood-based detection algorithm was applied to these, which accounts for the variable point-spread function (PSF) across the PSPC field of view. Improvements in the background determination compared to 1RXS were also implemented. X-ray control images showing the source and background extraction regions were generated, which were visually inspected. Simulations were performed to assess the spurious source content of the 2RXS catalogue. X-ray spectra and light curves were extracted for the 2RXS sources, with spectral and variability parameters derived from these products. Results: We obtained about 135 000 X-ray detections in the 0.1-2.4 keV energy band down to a likelihood threshold of 6.5, as adopted in the 1RXS faint source catalogue. Our simulations show that the expected spurious content of the catalogue is a strong function of detection likelihood, and the full catalogue is expected to contain about 30% spurious detections. A more conservative likelihood threshold of 9, on the other hand, yields about 71 000 detections with a 5% spurious fraction. We recommend thresholds appropriate to the scientific application. X-ray images and overlaid X-ray contour lines provide an additional user product to evaluate the detections visually, and we performed our own visual inspections to flag uncertain detections. Intra-day variability in the X-ray light curves was quantified based on the normalised excess variance and a maximum amplitude variability analysis. X-ray spectral fits were performed using three basic models, a power law, a thermal plasma emission model, and black-body emission. Thirty-two large extended regions with diffuse emission and embedded point sources were identified and excluded from the present analysis. Conclusions: The 2RXS catalogue provides the deepest and cleanest X-ray all-sky survey catalogue in advance of eROSITA. The catalogue is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/588/A103

  13. Coordinated NuSTAR and Swift observations of SU Lyncis: a hard X-ray bright symbiotic star with weak optical signatures

    NASA Astrophysics Data System (ADS)

    Lopes de Oliveira, Raimundo; Mukai, Koji; Luna, Gerardo Juan Manuel; Sokoloski, Jennifer; Nelson, Thomas; Lucy, Adrian B.

    2018-01-01

    The variable M giant SU Lyncis was recently identified as the optical counterpart of a hard, thermal X-ray source. Also considering the fact that the star displays weak high-excitation emission, it was classified as a symbiotic system purely powered by accretion without accompanying nuclear fusion. This discovery revealed the existence of a subclass of symbiotics which is "invisible" to optical surveys and thus underestimated since these surveys favour the identification of systems with more intense emission lines that arise when shell-burning is present. At the same time, this discovery opens up a new window to investigate accretion and evolution of symbiotic systems. Here we report on the X-ray and UV properties of SU Lyncis derived from simultaneous NuSTAR and Swift observations. The investigation is focused on the strong photometric variability in UV and on the X-ray spectral characterization, which is associated with a hot thermal plasma with sub-solar abundance and suffering the effects of a relatively dense local absorber. The results are discussed in the context of the accretion geometry and mass of the white dwarf, and the imposed limits to the reflection fraction.

  14. Suzaku Observations of Luminous Quasars: Revealing the Nature of High-Energy Blazar Emission in Low-level activity States

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2010-05-21

    We present the results from the Suzaku X-ray observations of five flat-spectrum radio quasars (FSRQs), namely PKS 0208–512, Q 0827+243, PKS 1127–145, PKS 1510–089, and 3C 454.3. Here, all these sources were additionally monitored simultaneously or quasi-simultaneously by the Fermi satellite in gamma rays and the Swift UVOT in the UV and optical bands, respectively. Here, we constructed their broadband spectra covering the frequency range from 10 14 Hz up to 10 25 Hz, and those reveal the nature of high-energy emission of luminous blazars in their low-activity states. The analyzed X-ray spectra are well fitted by a power-law modelmore » with photoelectric absorption. In the case of PKS 0208–512, PKS 1127–145, and 3C 454.3, the X-ray continuum showed indication of hardening at low energies. Moreover, when compared with the previous X-ray observations, we see a significantly increasing contribution of low-energy photons to the total X-ray fluxes when the sources are getting fainter. The same behavior can be noted in the Suzaku data alone. A likely explanation involves a variable, flat-spectrum component produced via inverse-Compton emission, plus an additional, possibly steady soft X-ray component prominent when the source gets fainter. This soft X-ray excess is represented either by a steep power-law (photon indices Γ ~ 3-5) or a blackbody-type emission with temperatures kT ~ 0.1-0.2 keV. We model the broadband spectra of the five observed FSRQs using synchrotron self-Compton and/or external-Compton radiation models. Lastly, our modeling suggests that the difference between the low- and high-activity states in luminous blazars is due to the different total kinetic power of the jet, most likely related to varying bulk Lorentz factor of the outflow within the blazar emission zone.« less

  15. Eleven years of monitoring the Seyfert 1 Mrk 335 with Swift: Characterizing the X-ray and UV/optical variability

    NASA Astrophysics Data System (ADS)

    Gallo, L. C.; Blue, D. M.; Grupe, D.; Komossa, S.; Wilkins, D. R.

    2018-05-01

    The narrow-line Seyfert 1 galaxy (NLS1) Mrk 335 has been continuously monitored with Swift since May 2007 when it fell into a long-lasting, X-ray low-flux interval. Results from the nearly 11 years of monitoring are presented here. Structure functions are used to measure the UV-optical and X-ray power spectra. The X-ray structure function measured between 10 - 100 days is consistent with the flat, low-frequency part of the power spectrum measured previously in Mrk 335. The UV-optical structure functions of Mrk 335 are comparable with those of other Seyfert 1 galaxies and of Mrk 335 itself when it was in a normal bright state. There is no indication that the current X-ray low-flux state is attributed to changes in the accretion disc structure of Mrk 335. The characteristic timescales measured in the structure functions can be attributed to thermal (for the UV) and dynamic (for the optical) timescales in a standard accretion disc. The high-quality UVW2 (˜1800 Å in the source frame) structure function appears to have two breaks and two different slopes between 10 - 160 days. Correlations between the X-ray and other bands are not highly significant when considering the entire 11-year light curves, but more significant behaviour is present when considering segments of the light curves. A correlation between the X-ray and UVW2 in 2014 (Year-8) may be predominately caused by an giant X-ray flare that was interpreted as jet-like emission. In 2008 (Year-2), possible lags between the UVW2 emission and other UV-optical waveband may be consistent with reprocessing of X-ray or UV emission in the accretion disc.

  16. The massive binary CPD - 41° 7742. II. Optical light curve and X-ray observations

    NASA Astrophysics Data System (ADS)

    Sana, H.; Antokhina, E.; Royer, P.; Manfroid, J.; Gosset, E.; Rauw, G.; Vreux, J.-M.

    2005-10-01

    In the first paper of this series, we presented a detailed high-resolution spectroscopic study of CPD - 41° 7742, deriving for the first time an orbital solution for both components of the system. In this second paper, we focus on the analysis of the optical light curve and on recent XMM-Newton X-ray observations. In the optical, the system presents two eclipses, yielding an inclination i˜77°. Combining the constraints from the photometry with the results of our previous work, we derive the absolute parameters of the system. We confirm that the two components of CPD - 41° 7742 are main sequence stars (O9 V + B1-1.5 V) with masses (M_1˜18 M⊙ and M_2˜10 M⊙) and respective radii (R_1˜7.5 R⊙ and R_2˜5.4 R⊙) close to the typical values expected for such stars. We also report an unprecedented set of X-ray observations that almost uniformly cover the 2.44-day orbital cycle. The X-ray emission from CPD - 41° 7742 is well described by a two-temperature thermal plasma model with energies close to 0.6 and 1.0 keV, thus slightly harder than typical early-type emission. The X-ray light curve shows clear signs of variability. The emission level is higher when the primary is in front of the secondary. During the high emission state, the system shows a drop of its X-ray emission that almost exactly matches the optical eclipse. We interpret the main features of the X-ray light curve as the signature of a wind-photosphere interaction, in which the overwhelming primary O9 star wind crashes into the secondary surface. Alternatively the light curve could result from a wind-wind interaction zone located near the secondary star surface. As a support to our interpretation, we provide a phenomenological geometric model that qualitatively reproduces the observed modulations of the X-ray emission.

  17. An X-ray survey of the central molecular zone: Variability of the Fe Kα emission line

    NASA Astrophysics Data System (ADS)

    Terrier, R.; Clavel, M.; Soldi, S.; Goldwurm, A.; Ponti, G.; Morris, M. R.; Chuard, D.

    2018-05-01

    There is now abundant evidence that the luminosity of the Galactic super-massive black hole (SMBH) has not always been as low as it is nowadays. The observation of varying non-thermal diffuse X-ray emission in molecular complexes in the central 300 pc has been interpreted as delayed reflection of a past illumination by bright outbursts of the SMBH. The observation of different variability timescales of the reflected emission in the Sgr A molecular complex can be well explained if the X-ray emission of at least two distinct and relatively short events (i.e. about 10 yr or less) is currently propagating through the region. The number of such events or the presence of a long-duration illumination are open questions. Variability of the reflected emission all over of the central 300 pc, in particular in the 6.4 keV Fe Kα line, can bring strong constraints. To do so we performed a deep scan of the inner 300 pc with XMM-Newton in 2012. Together with all the archive data taken over the course of the mission, and in particular a similar albeit more shallow scan performed in 2000-2001, this allows for a detailed study of variability of the 6.4 keV line emission in the region, which we present here. We show that the overall 6.4 keV emission does not strongly vary on average, but variations are very pronounced on smaller scales. In particular, most regions showing bright reflection emission in 2000-2001 significantly decrease by 2012. We discuss those regions and present newly illuminated features. The absence of bright steady emission argues against the presence of an echo from an event of multi-centennial duration and most, if not all, of the emission can likely be explained by a limited number of relatively short (i.e. up to 10 yr) events. Images of the Fe Kα emission as FITS files are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A102

  18. Exploring Black Hole Accretion in Active Galactic Nuclei with Simbol-X

    NASA Astrophysics Data System (ADS)

    Goosmann, R. W.; Dovčiak, M.; Mouchet, M.; Czerny, B.; Karas, V.; Gonçalves, A.

    2009-05-01

    A major goal of the Simbol-X mission is to improve our knowledge about black hole accretion. By opening up the X-ray window above 10 keV with unprecedented sensitivity and resolution we obtain new constraints on the X-ray spectral and variability properties of active galactic nuclei. To interpret the future data, detailed X-ray modeling of the dynamics and radiation processes in the black hole vicinity is required. Relativistic effects must be taken into account, which then allow to constrain the fundamental black hole parameters and the emission pattern of the accretion disk from the spectra that will be obtained with Simbol-X.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laycock, Silas; Cappallo, Rigel; Oram, Kathleen

    We report the discovery of a large amplitude (factor of ∼100) X-ray transient (IC 10 X-2, CXOU J002020.99+591758.6) in the nearby dwarf starburst galaxy IC 10 during our Chandra monitoring project. Based on the X-ray timing and spectral properties, and an optical counterpart observed with Gemini, the system is a high-mass X-ray binary consisting of a luminous blue supergiant and a neutron star. The highest measured luminosity of the source was 1.8 × 10{sup 37} erg s{sup –1}during an outburst in 2003. Observations before, during, and after a second outburst in 2010 constrain the outburst duration to be less thanmore » 3 months (with no lower limit). The X-ray spectrum is a hard power law (Γ = 0.3) with fitted column density (N{sub H} = 6.3 × 10{sup 21} atom cm{sup –2}), consistent with the established absorption to sources in IC 10. The optical spectrum shows hydrogen Balmer lines strongly in emission at the correct blueshift (-340 km s{sup –1}) for IC 10. The N III triplet emission feature is seen, accompanied by He II [4686] weakly in emission. Together these features classify the star as a luminous blue supergiant of the OBN subclass, characterized by enhanced nitrogen abundance. Emission lines of He I are seen, at similar strength to Hβ. A complex of Fe II permitted and forbidden emission lines are seen, as in B[e] stars. The system closely resembles galactic supergiant fast X-ray transients, in terms of its hard spectrum, variability amplitude, and blue supergiant primary.« less

  20. Space Telescope and Optical Reverberation Mapping Project. VII. Understanding the Ultraviolet Anomaly in NGC 5548 with X-Ray Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathur, S.; Gupta, A.; Page, K.

    During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the continuum and emission-line variability became decorrelated during the second half of the six-month-long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide themore » Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. In conclusion, this model simultaneously explains all three observations: the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly.« less

  1. Space Telescope and Optical Reverberation Mapping Project. VII. Understanding the Ultraviolet Anomaly in NGC 5548 with X-Ray Spectroscopy

    DOE PAGES

    Mathur, S.; Gupta, A.; Page, K.; ...

    2017-08-31

    During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the continuum and emission-line variability became decorrelated during the second half of the six-month-long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide themore » Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. In conclusion, this model simultaneously explains all three observations: the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly.« less

  2. Space Telescope and Optical Reverberation Mapping Project. VII. Understanding the Ultraviolet Anomaly in NGC 5548 with X-Ray Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathur, S.; Pogge, R. W.; Adams, S. M.

    During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the continuum and emission-line variability became decorrelated during the second half of the six-month-long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide themore » Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. This model simultaneously explains all three observations: the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly.« less

  3. Heating the Primordial Soup: X-raying the Circumstellar Disk of T Cha

    NASA Astrophysics Data System (ADS)

    Principe, David; Huenemoerder, D.; Kastner, J. H.; Bessell, M. S.; Sacco, G.

    2014-01-01

    The classical T Tauri Star (cTTS) T Chamaeleontis (T Cha) presents a unique opportunity to probe pre-main sequence star-disk interactions and late-stage circumstellar disk evolution. T Cha is the only known example of a nearly edge-on, actively accreting star/disk system within ~110 pc, and furthermore may be orbited by a low-mass companion or massive planet that has cleared an inner hole in its disk. The star is characterized by strong variability in the optical 3 magnitudes in the V band) as well as large and variable extinction (AV in the range of 1-5). Like most cTTS, T Cha is also a luminous X-ray source. We present preliminary results of two observations (totaling 150 ks) of T Cha with Chandra’s HETGS. Our motivations are to (a) determine the intrinsic X-ray spectrum of T Cha, so as to establish whether its X-ray emission can be attributed to accretion shocks, coronal emission, or a combination; (b) investigate whether its X-ray flux exhibits modulation that may be related to the stellar rotational period 3.3 days); and (c) take advantage of the nearly-edge-on disk viewing geometry to model the spectrum of X-rays absorbed by the gaseous disk orbiting T Cha. These results will serve as much-needed input to models of magnetospheric accretion and irradiated, planet-forming disks. This research is supported via award number GO3-14022X to RIT issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA under contract NAS803060. Additional support is provided by National Science Foundation grant AST-1108950 to RIT.

  4. X-Ray Modeling of the Intrinsic Absorption in NGC 4151

    NASA Astrophysics Data System (ADS)

    Denes Couto, Jullianna; Kraemer, Steven; Turner, T. Jane; Crenshaw, D. Michael

    2017-01-01

    We have investigated the relationship between the long term X-ray spectral variability in the Seyfert 1.5 galaxy NGC 4151 and its intrinsic absorption, by comparing our 2014 simultaneous ultraviolet/X-Ray observations taken with Hubble STIS Echelle and Chandra HETGS with archival observations from Chandra, XMM-Newton and Suzaku. The observations were divided into "high" and "low" states, with the low states showing strong and unabsorbed extended emission at energies below 2 keV. Our X-ray model consists of a broken powerlaw, neutral reflection and the two dominant absorption components identified by Kraemer et al (2005), X-High and D+Ea, which are present in all epochs. The model fittings suggest that the absorbers are very stable, with the principal changes in the intrinsic absorption resulting from variations in the ionization state of the gas in response to the variable strength of the ionizing continuum. However, the low states show evidence of larger column densities in one or both of the absorbers. Among plausible explanations for the column increase, we discuss the possibility of an expanding/contracting X-ray corona. X-High is consistent with being part of a magnetohydrodynamic (MHD) wind, while D+Ea is possibly radiatively driven, which suggests that at a sufficiently large radial distance there could be a break point between MHD-dominated and radiatively driven outflows. Preliminary results on the analysis of the AGN mass outflow rates and kinematics of the ionized gas in the extended emission region of NGC 4151 will also be presented.

  5. The Fe K Line Region Of η Carinae Around The X-ray Minima

    NASA Astrophysics Data System (ADS)

    Leyder, Jean-Christophe; Corcoran, M. F.; Henley, D. B.; Hamaguchi, K.; Ishibashi, K.; Pittard, J.

    2011-09-01

    We studied the Fe K line region of η Carinae with high-resolution X-ray Chandra grating spectra, using observations covering key phases around the last two X-ray minima (i.e. in 2003.5 and 2009). The line centroids are slightly redshifted, as opposed to the blueshifted lines observed at lower X-ray energies. This is the first observational evidence that the plasma producing the iron line emission is dynamically distinct from the plasma responsible for K-shell emission at lower energies, and is in agreement with the general colliding wind shock model. Gaussian modeling of the Fe XXV K-shell triplet blend shows apparent variations in centroid velocity, which are difficult to interpret as orbital motion of the companion star. Significant variability in the doppler broadening of the Fe K fluorescence emission line at 6.4 keV suggests that the formation of this line occurs in the wind of η Carinae at some particular phases. Of particular interest is the presence of a red wing in the profile of the Fe XXV triplet. This emission probably arises from iron in ionization states below Fe XXIV. Different mechanisms that might explain this emission will be discussed, e.g. an extremely bright, relatively cool, and heavily absorbed equilibrium plasma; emission from unshocked photoionized wind material; or assuming a fraction of the thermal plasma is not in ionization equilibrium.

  6. XMM-Newton Observations of NGC 253: Resolving the Emission Components in the Disk and Nuclear Area

    NASA Technical Reports Server (NTRS)

    Pietsch, W.; Borozdin, K. N.; Branduardi-Raymont, G.; Cappi, M.; Ehle, M.; Ferrando, P.; Freyberg, M. J.; Kahn, S. M.; Ponman, T. J.; Ptak, A.

    2000-01-01

    We describe the first XMM-Newton observations of the starburst galaxy NGC 253. As known from previous X-ray observations, NGC 253 shows a mixture of extended (disk and halo) and point-source emission. The high XMM-Newton throughput allows for the first time a detailed investigation of the spatial, spectral and variability properties of these components simultaneously. We detect a bright X-ray transient approx. 70 sec SSW of the nucleus and show the spectrum and light curve of the brightest point source (approx. 30 sec S of the nucleus, most likely a black-hole X-ray binary, BHXRB). The unprecedented combination of RGS and EPIC also sheds new light on the emission of the complex nuclear region, the X-ray plume and the disk diffuse emission. In particular, EPIC images reveal that the limb-brightening of the plume is mostly seen in higher ionization emission lines, while in the lower ionization lines, and below 0.5 keV, the plume is more homo- geneously structured, pointing to new interpretations as to the make up of the starburst-driven outflow. Assuming that type IIa supernova remnants (SNRs) are mostly responsible for the E greater than 4 keV emission, the detection with EPIC of the 6.7 keV line allows us to estimate a supernova rate within the nuclear starburst of 0.2 /yr.

  7. An X-ray survey of the Central Molecular Zone: variability of the Fe K emission line

    NASA Astrophysics Data System (ADS)

    Terrier, R.; Clavel, M.

    2017-10-01

    The observation of varying non-thermal diffuse X-ray emission molecular complexes in the central 300 pc has been interpreted as delayed reflection of a past illumination by bright outbursts of the Galactic SMBH. Determining its light curve over the past centuries requires a detailed knowledge of the gas distribution, which is still lacking. Nevertheless, variability of the reflected emission all over of the central 300 pc, in particular in the 6.4 keV Fe K line, can bring strong constraints. Thanks to a deep scan of the inner 300 pc with XMM in 2012 and to a similar albeit more shallow scan performed in 2000-2001, we performed a detailed study of variability of the 6.4 keV line emission in the region, which we present here. We show that the overall 6.4 keV emission does not strongly vary on average, but variations are very pronounced on smaller scales. The absence of bright steady emission argues against the presence of an echo from an event of multi-centennial duration and most, if not all, of the emission can likely be explained by a limited number of relatively short (i.e. up to 10 years) events.

  8. Swift Monitoring of NGC 4151: Evidence for a Second X-Ray/UV Reprocessing

    NASA Astrophysics Data System (ADS)

    Edelson, R.; Gelbord, J.; Cackett, E.; Connolly, S.; Done, C.; Fausnaugh, M.; Gardner, E.; Gehrels, N.; Goad, M.; Horne, K.; McHardy, I.; Peterson, B. M.; Vaughan, S.; Vestergaard, M.; Breeveld, A.; Barth, A. J.; Bentz, M.; Bottorff, M.; Brandt, W. N.; Crawford, S. M.; Dalla Bontà, E.; Emmanoulopoulos, D.; Evans, P.; Figuera Jaimes, R.; Filippenko, A. V.; Ferland, G.; Grupe, D.; Joner, M.; Kennea, J.; Korista, K. T.; Krimm, H. A.; Kriss, G.; Leonard, D. C.; Mathur, S.; Netzer, H.; Nousek, J.; Page, K.; Romero-Colmenero, E.; Siegel, M.; Starkey, D. A.; Treu, T.; Vogler, H. A.; Winkler, H.; Zheng, W.

    2017-05-01

    Swift monitoring of NGC 4151 with an ˜6 hr sampling over a total of 69 days in early 2016 is used to construct light curves covering five bands in the X-rays (0.3-50 keV) and six in the ultraviolet (UV)/optical (1900-5500 Å). The three hardest X-ray bands (>2.5 keV) are all strongly correlated with no measurable interband lag, while the two softer bands show lower variability and weaker correlations. The UV/optical bands are significantly correlated with the X-rays, lagging ˜3-4 days behind the hard X-rays. The variability within the UV/optical bands is also strongly correlated, with the UV appearing to lead the optical by ˜0.5-1 days. This combination of ≳3 day lags between the X-rays and UV and ≲1 day lags within the UV/optical appears to rule out the “lamp-post” reprocessing model in which a hot, X-ray emitting corona directly illuminates the accretion disk, which then reprocesses the energy in the UV/optical. Instead, these results appear consistent with the Gardner & Done picture in which two separate reprocessings occur: first, emission from the corona illuminates an extreme-UV-emitting toroidal component that shields the disk from the corona; this then heats the extreme-UV component, which illuminates the disk and drives its variability.

  9. Mrk 421 after the Giant X-Ray Outburst in 2013

    NASA Astrophysics Data System (ADS)

    Kapanadze, B.; Dorner, D.; Romano, P.; Vercellone, S.; Kapanadze, S.; Tabagari, L.

    2017-10-01

    We present the results of the Swift observations of the nearby BL Lac object Mrk 421 during 2013 November-2015 June. The source exhibited a strong long-term variability in the 0.3-10 keV band, with a maximum-to-minimum flux ratio of 13, and underwent X-ray flares by a factor of 1.8-5.2 on timescales of a few weeks or shorter. The source showed 48 instances of intraday flux variability in this period, which sometimes was observed within the 1 ks observational run. It was characterized by fractional amplitudes of 1.5(0.3)%-38.6(0.4)% and flux doubling/halving times of 2.6-20.1 hr. The X-ray flux showed a lack of correlation with the TeV flux on some occasions (strong TeV flares were not accompanied by comparable X-ray activity and vice versa), indicating that the high-energy emission in Mrk 421 was generated from an emission region more complex than a single zone. The best fits of the 0.3-10 keV spectra were mainly obtained using the log-parabola model, showing a strong spectral variability that generally followed a “harder-when-brighter” trend. The position of the synchrotron spectral energy distribution peak showed an extreme range from a few eV to ˜10 keV that happens rarely in blazars.

  10. Ionized Absorbers in Active Galactic Nuclei and Very Steap Soft X-Ray Quasars

    NASA Technical Reports Server (NTRS)

    Fiore, Fabrizio; White, Nicholas (Technical Monitor)

    2000-01-01

    Steep soft X-ray (0.1-2 keV) quasars share several unusual properties: narrow Balmer lines, strong Fe II emission, large and fast X-ray variability, and a rather steep 2-10 keV spectrum. These intriguing objects have been suggested to be the analogues of Galactic black hole candidates in the high, soft state. We present here results from ASCA observations for two of these quasars: NAB 0205 + 024 and PG 1244 + 026. Both objects show similar variations (factor of approximately 2 in 10 ks), despite a factor of approximately 10 difference in the 0.5-10 keV luminosity (7.3 x 10(exp 43) erg/s for PG 1244 + 026 and 6.4 x 10(exp 44) erg/s for NAB 0205 + 024, assuming isotropic emission, H(sub 0) = 50.0 and q(sub 0) = 0.0). The X-ray continuum of the two quasars flattens by 0.5-1 going from the 0.1-2 keV band towards higher energies, strengthening recent results on another half-dozen steep soft X-ray active galactic nuclei. PG 1244 + 026 shows a significant feature in the '1-keV' region, which can be described either as a broad emission line centered at 0.95 keV (quasar frame) or as edge or line absorption at 1.17 (1.22) keV. The line emission could be a result of reflection from a highly ionized accretion disc, in line with the view that steep soft X-ray quasars are emitting close to the Eddington luminosity. Photoelectric edge absorption or resonant line absorption could be produced by gas outflowing at a large velocity (0.3-0.6 c).

  11. The optical counterpart of GX 339-4, a possible black hole X-ray source

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.

    1979-01-01

    Optical studies of the galactic X-ray source GX 339-4 (4U 1658-48), which led to its recent identification as reported by Doxsey et al. (1979), are presented. Reddening and distance estimates are given, as well as evidence for optical variability on differing time scales. The emission-line spectra and UBV photometry suggest that GX 339-4 may be at about 8 kpc and have a main-sequence B star binary companion. Both the optical spectrum and optical/X-ray luminosity ratio for GX 339-4 may be similar to Cir X-1.

  12. Fermi-LAT and Suzaku observations of the radio galaxy Centaurus B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsuta, J.; Tanaka, Y. T.; Stawarz, Ł.

    2013-01-28

    Centaurus B is a nearby radio galaxy positioned in the southern hemisphere close to the Galactic plane. Here, in this work, we present a detailed analysis of about 43 months of accumulated Fermi-LAT data of the γ-ray counterpart of the source initially reported in the 2nd Fermi-LAT catalog, and of newly acquired Suzaku X-ray data. We confirm its detection at GeV photon energies and analyze the extension and variability of the γ-ray source in the LAT dataset, in which it appears as a steady γ-ray emitter. The X-ray core of Centaurus B is detected as a bright source of amore » continuum radiation. We do not detect, however, any diffuse X-ray emission from the known radio lobes, with the provided upper limit only marginally consistent with the previously claimed ASCA flux. Two scenarios that connect the X-ray and γ-ray properties are considered. In the first one, we assume that the diffuse non-thermal X-ray emission component is not significantly below the derived Suzaku upper limit. In this case, modeling the inverse-Compton emission shows that the observed γ-ray flux of the source may in principle be produced within the lobes. This association would imply that efficient in-situ acceleration of the radiating electrons is occurring and that the lobes are dominated by the pressure from the relativistic particles. In the second scenario, with the diffuse X-ray emission well below the Suzaku upper limits, the lobes in the system are instead dominated by the magnetic pressure. In this case, the observed γ-ray flux is not likely to be produced within the lobes, but instead within the nuclear parts of the jet. In conclusion, by means of synchrotron self-Compton modeling, we show that this possibility could be consistent with the broad-band data collected for the unresolved core of Centaurus B, including the newly derived Suzaku spectrum.« less

  13. The X-ray spectra of the BL Lacertae objects PKS 0548 - 322 and 3C 66A

    NASA Technical Reports Server (NTRS)

    Maccacaro, T.; Maccagni, D.; Tarenghi, M.

    1983-01-01

    Einstein Observatory simultaneous imaging proportional counter and monitor proportional counter data are combined in order to derive the energy spectra of the BL Lac objects PKS 0548-322 and 3C 66A between 0.2 and 10 keV. While the latter is found to be variable in both intensity and spectral shape, the former, although constant in the present data, is found to have experienced a spectrum variation in view of results from other experiments. Attention is given to the implications of flux and spectral variability in BL Lac objects for models of X-ray emission mechanisms. It is suggested that the wide spread of the spectral index distribution is due to the detection of the highly variable synchrotron-produced X-rays that are generally undetected in QSOs.

  14. Time dependent radiation spectra from jets of microquasars

    NASA Astrophysics Data System (ADS)

    Gupta, Swati

    X-ray binary systems in our galaxy exhibiting relativistic jets (microquasars) present one of the most recent additions to the field of high energy astrophysics. Jet models of high energy emission from these sources have created significant interest lately with detailed spectral and timing studies of the X-ray emission from microquasars, and their recent establishment as a new distinctive class of g-ray emitting sources after the detection of very - high-energy (VHE) g-rays from the microquasars LS 5039 and LS I +61° 303. This dissertation presents a study of radiation signatures from a leptonic jet model, based on time-dependent electron injection and acceleration, followed by their subsequent adiabatic and radiative cooling. The radiation mechanisms included are synchrotron, synchrotron self Compton and external Compton with soft photons provided by the companion star and the accretion disk. Compton scattering is treated both in the Thomson and the Klein-Nishina regimes, thus making the model applicable to microquasars that are candidates for VHE g-ray emission as well. An analytical solution to the electron kinetic equation is introduced for the Thomson regime treatment, while a numerical approach is adopted for the Klein-Nishina regime. Predictions regarding rapid flux and spectral variability signatures in the form of spectral hysteresis in the X-ray hardness intensity diagrams are made, which should be testable with monitoring observations using Chandra and/or XMM - Newton . Detections of such variability would help in distinguishing between various competing models for the high energy emission from these sources. Our results show that the shape and orientation of the hysteresis loops would allow identification of the dominant emission components as well as quantify physical parameters like the magnetic field, spectral index, Doppler boosting factor etc. The model is applied to available broadband observations of the two microquasars that have been very recently detected in VHE g-rays, namely LSI +61° 303 and LS 5039. In the case of LS I +61° 303, we explain the observed orbital modulation of the VHE g-ray emission solely by the geometrical effect of changes in the relative orientation of the stellar companion with respect to the compact object affecting the position and depth of the gg absorption trough. For LS 5039, our results imply that an orbital modulation of the velocity of the stellar wind in addition to gg absorption effects may be necessary to explain the orbital variability of the VHE g-ray emission.

  15. Eclipse and Collapse of the Colliding Wind X-ray Emission from Eta Carinae

    NASA Technical Reports Server (NTRS)

    Hamaguchi, Kenji; Corcoran, Michael F.

    2012-01-01

    X-ray emission from the massive stellar binary system, Eta Carinae, drops strongly around periastron passage; the event is called the X-ray minimum. We launched a focused observing campaign in early 2009 to understand the mechanism of causing the X-ray minimum. During the campaign, hard X-ray emission (<10 keV) from Eta Carinae declined as in the previous minimum, though it recovered a month earlier. Extremely hard X-ray emission between 15-25 keV, closely monitored for the first time with the Suzaku HXD/PIN, decreased similarly to the hard X-rays, but it reached minimum only after hard X-ray emission from the star had already began to recover. This indicates that the X-ray minimum is produced by two composite mechanisms: the thick primary wind first obscured the hard, 2-10 keV thermal X-ray emission from the wind-wind collision (WWC) plasma; the WWC activity then decays as the two stars reach periastron.

  16. Gamma-ray and X-ray emission from the Galactic centre: hints on the nuclear star cluster formation history

    NASA Astrophysics Data System (ADS)

    Arca-Sedda, Manuel; Kocsis, Bence; Brandt, Timothy D.

    2018-06-01

    The Milky Way centre exhibits an intense flux in the gamma and X-ray bands, whose origin is partly ascribed to the possible presence of a large population of millisecond pulsars (MSPs) and cataclysmic variables (CVs), respectively. However, the number of sources required to generate such an excess is much larger than what is expected from in situ star formation and evolution, opening a series of questions about the formation history of the Galactic nucleus. In this paper we make use of direct N-body simulations to investigate whether these sources could have been brought to the Galactic centre by a population of star clusters that underwent orbital decay and formed the Galactic nuclear star cluster (NSC). Our results suggest that the gamma ray emission is compatible with a population of MSPs that were mass segregated in their parent clusters, while the X-ray emission is consistent with a population of CVs born via dynamical interactions in dense star clusters. Combining observations with our modelling, we explore how the observed γ ray flux can be related to different NSC formation scenarios. Finally, we show that the high-energy emission coming from the galactic central regions can be used to detect black holes heavier than 105M⊙ in nearby dwarf galaxies.

  17. GRB 120422A: a Low-Luminosity Gamma-Ray Burst Driven by a Central Engine

    NASA Technical Reports Server (NTRS)

    Zhang, Bin-Bin; Fan, Yi-Zhong; Shen, Rong-Feng; Xu, Dong; Zhang, Fu-Wen; Wei, Da-Ming; Burrows, David N.; Zhang, Bing; Gehrels, Neil

    2012-01-01

    GRB 120422A is a low-luminosity gamma-ray burst (GRB) associated with a bright supernova, which distinguishesitself by its relatively short T(sub 90) (approximately 5 s) and an energetic and steep-decaying X-ray tail. We analyze the Swift BurstAlert Telescope and X-ray Telescope data and discuss the physical implications. We show that the steep declineearly in the X-ray light curve can be interpreted as the curvature tail of a late emission episode around 58-86 s,with a curved instantaneous spectrum at the end of the emission episode. Together with the main activity in thefirst 20 s and the weak emission from 40 s to 60 s, the prompt emission is variable, which points to a centralengine origin in contrast to a shock-breakout origin, which is used to interpret some other nearby low-luminosity supernova GRBs. Both the curvature effect model and interpreting the early shallow decay as the coasting externalforward shock emission in a wind medium provide a constraint on the bulk Lorentz factor to be around several.Comparing the properties ofGRB 120422A and other supernova GRBs,we find that themain criterion to distinguish engine-driven GRBs from shock-breakout GRBs is the time-averaged -ray luminosity. Engine-driven GRBs likelyhave a luminosity above approximately 10(sup 48) erg s(sup -1).

  18. Multiband variability studies and novel broadband SED modeling of Mrk 501 in 2009

    NASA Astrophysics Data System (ADS)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Babic, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Buson, S.; Carosi, A.; Chatterjee, A.; Clavero, R.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Giammaria, P.; Godinović, N.; González Muñoz, A.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hanabata, Y.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; López-Coto, R.; Majumdar, P.; Makariev, M.; Mallot, K.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Overkemping, A.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Rodriguez Garcia, J.; Saito, T.; Satalecka, K.; Schröder, S.; Schultz, C.; Schweizer, T.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Stamerra, A.; Steinbring, T.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Thaele, J.; Torres, D. F.; Toyama, T.; Treves, A.; Vanzo, G.; Verguilov, V.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zanin, R.; Abeysekara, A. U.; Archambault, S.; Archer, A.; Benbow, W.; Bird, R.; Buchovecky, M.; Buckley, J. H.; Bugaev, V.; Connolly, M. P.; Cui, W.; Dickinson, H. J.; Falcone, A.; Feng, Q.; Finley, J. P.; Fleischhack, H.; Flinders, A.; Fortson, L.; Gillanders, G. H.; Griffin, S.; Grube, J.; Hütten, M.; Hanna, D.; Holder, J.; Humensky, T. B.; Kaaret, P.; Kar, P.; Kelley-Hoskins, N.; Kertzman, M.; Kieda, D.; Krause, M.; Krennrich, F.; Lang, M. J.; Maier, G.; McCann, A.; Moriarty, P.; Mukherjee, R.; Nieto, D.; O'Brien, S.; Ong, R. A.; Otte, N.; Park, N.; Perkins, J.; Pichel, A.; Pohl, M.; Popkow, A.; Pueschel, E.; Quinn, J.; Ragan, K.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Rovero, A. C.; Rulten, C.; Sadeh, I.; Santander, M.; Sembroski, G. H.; Shahinyan, K.; Telezhinsky, I.; Tucci, J. V.; Tyler, J.; Wakely, S. P.; Weinstein, A.; Wilcox, P.; Wilhelm, A.; Williams, D. A.; Zitzer, B.; Razzaque, S.; Villata, M.; Raiteri, C. M.; Aller, H. D.; Aller, M. F.; Larionov, V. M.; Arkharov, A. A.; Blinov, D. A.; Efimova, N. V.; Grishina, T. S.; Hagen-Thorn, V. A.; Kopatskaya, E. N.; Larionova, L. V.; Larionova, E. G.; Morozova, D. A.; Troitsky, I. S.; Ligustri, R.; Calcidese, P.; Berdyugin, A.; Kurtanidze, O. M.; Nikolashvili, M. G.; Kimeridze, G. N.; Sigua, L. A.; Kurtanidze, S. O.; Chigladze, R. A.; Chen, W. P.; Koptelova, E.; Sakamoto, T.; Sadun, A. C.; Moody, J. W.; Pace, C.; Pearson, R.; Yatsu, Y.; Mori, Y.; Carraminyana, A.; Carrasco, L.; de la Fuente, E.; Norris, J. P.; Smith, P. S.; Wehrle, A.; Gurwell, M. A.; Zook, A.; Pagani, C.; Perri, M.; Capalbi, M.; Cesarini, A.; Krimm, H. A.; Kovalev, Y. Y.; Kovalev, Yu. A.; Ros, E.; Pushkarev, A. B.; Lister, M. L.; Sokolovsky, K. V.; Kadler, M.; Piner, G.; Lähteenmäki, A.; Tornikoski, M.; Angelakis, E.; Krichbaum, T. P.; Nestoras, I.; Fuhrmann, L.; Zensus, J. A.; Cassaro, P.; Orlati, A.; Maccaferri, G.; Leto, P.; Giroletti, M.; Richards, J. L.; Max-Moerbeck, W.; Readhead, A. C. S.

    2017-07-01

    Context. We present an extensive study of the BL Lac object Mrk 501 based on a data set collected during the multi-instrument campaign spanning from 2009 March 15 to 2009 August 1, which includes, among other instruments, MAGIC, VERITAS, Whipple 10 m, and Fermi-LAT to cover the γ-ray range from 0.1 GeV to 20 TeV; RXTE and Swift to cover wavelengths from UV tohard X-rays; and GASP-WEBT, which provides coverage of radio and optical wavelengths. Optical polarization measurements were provided for a fraction of the campaign by the Steward and St. Petersburg observatories. We evaluate the variability of the source and interband correlations, the γ-ray flaring activity occurring in May 2009, and interpret the results within two synchrotron self-Compton (SSC) scenarios. Aims: The multiband variability observed during the full campaign is addressed in terms of the fractional variability, and the possible correlations are studied by calculating the discrete correlation function for each pair of energy bands where the significance was evaluated with dedicated Monte Carlo simulations. The space of SSC model parameters is probed following a dedicated grid-scan strategy, allowing for a wide range of models to be tested and offering a study of the degeneracy of model-to-data agreement in the individual model parameters, hence providing a less biased interpretation than the "single-curve SSC model adjustment" typically reported in the literature. Methods: We find an increase in the fractional variability with energy, while no significant interband correlations of flux changes are found on the basis of the acquired data set. The SSC model grid-scan shows that the flaring activity around May 22 cannot be modeled adequately with a one-zone SSC scenario (using an electron energy distribution with two breaks), while it can be suitably described within a two (independent) zone SSC scenario. Here, one zone is responsible for the quiescent emission from the averaged 4.5-month observing period, while the other one, which is spatially separated from the first, dominates the flaring emission occurring at X-rays and very-high-energy (>100 GeV, VHE) γ rays. The flaring activity from May 1, which coincides with a rotation of the electric vector polarization angle (EVPA), cannot be satisfactorily reproduced by either a one-zone or a two-independent-zone SSC model, yet this is partially affected by the lack of strictly simultaneous observations and the presence of large flux changes on sub-hour timescales (detected at VHE γ rays). Results: The higher variability in the VHE emission and lack of correlation with the X-ray emission indicate that, at least during the 4.5-month observing campaign in 2009, the highest energy (and most variable) electrons that are responsible for the VHE γ rays do not make a dominant contribution to the 1 keV emission. Alternatively, there could be a very variable component contributing to the VHE γ-ray emission in addition to that coming from the SSC scenario. The studies with our dedicated SSC grid-scan show that there is some degeneracy in both the one-zone and the two-zone SSC scenarios probed, with several combinations of model parameters yielding a similar model-to-data agreement, and some parameters better constrained than others. The observed γ-ray flaring activity, with the EVPA rotation coincident with the first γ-ray flare, resembles those reported previously for low frequency peaked blazars, hence suggesting that there are many similarities in the flaring mechanisms of blazars with different jet properties.

  19. Rejuvenation of the Innocent Bystander: Results from a Pilot X-ray Study of Dwarf Carbon Stars

    NASA Astrophysics Data System (ADS)

    Mazzoni, Fernando; Montez, Rodolfo; Green, Paul

    2018-01-01

    We present the results of a pilot study by the Chandra X-ray Observatory of X-ray emission from dwarf Carbon (dC) stars. Carbon stars were thought to be exclusively AGB stars but main sequence dwarfs showing carbon molecular bands appear to be the dominant variety. The existence of dC stars is surprising since dwarf stars cannot intrinsically produce carbon as an AGB star can. It is hypothesized that dC stars are polluted by an evolved companion star. Evidence of past pollution can appear in X-ray emission where increased coronal activity (“spin-up”) or mass accretion via a disk can be detected. Using the Chandra X-ray Observatory we detected X-ray photons in the vicinity of all the dC stars in our a pilot sample. For each detection we characterized the X-ray emission and compared to the emission expected from potential emission scenarios. Although the process that produces the X-ray emission from dC stars is presently unclear and our pilot sample is small, our results suggest that X-ray emission might be a universal characteristic of dC stars. Further examination of the X-ray emission plus future X-ray and multiwavelength observations will help us better understand the nature of these intriguing stars.

  20. Search for correlated UV and x ray absorption of NGC 3516

    NASA Technical Reports Server (NTRS)

    Martin, Christopher; Halpern, Jules P.; Kolman, Michiel

    1991-01-01

    NGC 3516, a low-luminosity Seyfert galaxy, is one of a small fraction of Seyfert galaxies that exhibit broad absorption in a resonance line. In order to determine whether the UV and x ray absorption in NGC 3516 are related, 5 IUE observations were obtained, quasi-simultaneously with 4 Ginga observations. The results are presented and discussed. The following subject areas are covered: short-term UV variability; emission lines; galactic absorption lines; the C IV, N V, and Si IV absorption features; lower limit on the carbon column density; estimate of the distance from the absorber to the continuum source; variability in the continuum and absorption; a comparison with BAL QSO's; and the x ray-UV connection.

  1. Radio to gamma-ray variability study of blazar S5 0716+714

    DOE PAGES

    Rani, B.; Krichbaum, T. P.; Fuhrmann, L.; ...

    2013-03-13

    In this paper, we present the results of a series of radio, optical, X-ray, and γ-ray observations of the BL Lac object S50716+714 carried out between April 2007 and January 2011. The multifrequency observations were obtained using several ground- and space-based facilities. The intense optical monitoring of the source reveals faster repetitive variations superimposed on a long-term variability trend on a time scale of ~350 days. Episodes of fast variability recur on time scales of ~60-70 days. The intense and simultaneous activity at optical and γ-ray frequencies favors the synchrotron self-Compton mechanism for the production of the high-energy emission. Twomore » major low-peaking radio flares were observed during this high optical/γ-ray activity period. The radio flares are characterized by a rising and a decaying stage and agrees with the formation of a shock and its evolution. We found that the evolution of the radio flares requires a geometrical variation in addition to intrinsic variations of the source. Different estimates yield robust and self-consistent lower limits of δ ≥ 20 and equipartition magnetic field B eq ≥ 0.36 G. Causality arguments constrain the size of emission region θ ≤ 0.004 mas. We found a significant correlation between flux variations at radio frequencies with those at optical and γ-rays. Theoptical/GeV flux variations lead the radio variability by ~65 days. The longer time delays between low-peaking radio outbursts and optical flares imply that optical flares are the precursors of radio ones. An orphan X-ray flare challenges the simple, one-zone emission models, rendering them too simple. Finally, here we also describe the spectral energy distribution modeling of the source from simultaneous data taken through different activity periods.« less

  2. Chandra Observations of Magnetic White Dwarfs and their Theoretical Implications

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.; Noble, M.; Porter, J. G.; Winget, D. E.

    2003-01-01

    Observations of cool DA and DB white dwarfs have not yet been successful in detecting coronal X-ray emission, but observations of late-type dwarfs and giants show that coronae are common for these stars. To produce coronal X-rays, a star must have dynamo-generated surface magnetic fields and a well-developed convection zone. There is some observational evidence that the DA star LHS 1038 and the DB star GD 358 have weak and variable surface magnetic fields. It has been suggested that such fields can be generated by dynamo action, and since both stars have well-developed convection zones, theory predicts detectable levels of coronal X-rays from these white dwarfs. However, we present analysis of Chandra observations of both stars showing no detectable X-ray emission. The derived upper limits for the X-ray fluxes provide strong constraints on theories of formation of coronae around magnetic white dwarfs. Another important implication of our negative Chandra observations is the possibility that the magnetic fields of LHS 1038 and GD 358 are fossil fields.

  3. The correlation of solar flare hard X-ray bursts with Doppler blueshifted soft X-ray flare emission

    NASA Technical Reports Server (NTRS)

    Bentley, R. D.; Doschek, G. A.; Simnett, G. M.; Rilee, M. L.; Mariska, J. T.; Culhane, J. L.; Kosugi, T.; Watanabe, T.

    1994-01-01

    We have investigated the temporal correlation between hard X-ray bursts and the intensity of Doppler blueshifted soft X-ray spectral line emission. We find a strong correlation for many events that have intense blueshifted spectral signatures and some correlation in events with modest blueshifts. The onset of hard X-rays frequently coincides to within a few seconds with the onset of blueshifted emission. The peak intensity of blueshifted emission is frequently close in time to the peak of the hard X-ray emission. Decay rates of the blueshifted and hard X-ray emission are similar, with the decay of the blueshifted emission tending to lag behind the hard X-ray emission in some cases. There are, however, exceptions to these conclusions, and, therefore, the results should not be generalized to all flares. Most of the data for this work were obtained from instruments flown on the Japanese Yohkoh solar spacecraft.

  4. Delta Ori Phase-Dependent Variability from Chandra and MOST Campaign

    NASA Astrophysics Data System (ADS)

    Nichols, Joy; Naze, Yael; Moffatt, Anthony F. J.; Corcoran, Michael; Richardson, Noel; Williams, S.; Pollock, A. M. T.; Ignace, Richard; Hole, T.; Waldron, W.; Evans, Nancy Remage; MOST Collaboration

    2013-06-01

    We report preliminary results from variability analysis of delta Ori in Chandra high-resolution X-ray spectroscopy and concurrent MOST high-precision optical photometry. With nearly complete phase coverage of the 5-day eclipsing binary orbit, it is possible to measure directly radial velocity and flux variations as a function of phase, leading to a mapping of the stellar wind distribution for the massive primary star. The phase dependence of the X-ray overall intensity and the comparative behavior of the emission lines are also presented.

  5. Multiwavelength observations of Mrk 501 in 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleksic, J.; Ansoldi, S.; Antonelli, L. A.

    2015-01-01

    Context. Blazars are variable sources on various timescales over a broad energy range spanning from radio to very high energy (>100 GeV, hereafter VHE). Mrk 501 is one of the brightest blazars at TeV energies and has been extensively studied since its first VHE detection in 1996. However, most of the γ-ray studies performed on Mrk 501 during the past years relate to flaring activity, when the source detection and characterization with the available γ-ray instrumentation was easier toperform. Aims. Our goal is to characterize the source γ-ray emission in detail, together with the radio-to-X-ray emission, during the non-flaring (low)more » activity, which is less often studied than the occasional flaring (high) activity. Methods. We organized a multiwavelength (MW) campaign on Mrk 501 between March and May 2008. This multi-instrument effort included the most sensitive VHE γ-ray instruments in the northern hemisphere, namely the imaging atmospheric Cherenkov telescopes MAGIC and VERITAS, as well as Swift, RXTE, the F-GAMMA, GASP-WEBT, and other collaborations and instruments. This provided extensive energy and temporal coverage of Mrk 501 throughout the entire campaign. Results. Mrk 501 was found to be in a low state of activity during the campaign, with a VHE flux in the range of 10%–20% of the Crab nebula flux. Nevertheless, significant flux variations were detected with various instruments, with a trend of increasing variability with energy and a tentative correlation between the X-ray and VHE fluxes. The broadband spectral energy distribution during the two different emission states of the campaign can be adequately described within the homogeneous one-zone synchrotron self-Compton model, with the (slightly) higher state described by an increase in the electron number density. Conclusions. The one-zone SSC model can adequately describe the broadband spectral energy distribution of the source during the two months covered by the MW campaign. This agrees with previous studies of the broadband emission of this source during flaring and non-flaring states. We report for the first time a tentative X-ray-to-VHE correlation during such a low VHE activity. Although marginally significant, this positive correlation between X-ray and VHE, which has been reported many times during flaring activity, suggests that the mechanisms that dominate the X-ray/VHE emission during non-flaring-activity are not substantially different from those that are responsible for the emission during flaring activity.« less

  6. NTT, Spitzer, and Chandra Spectroscopy of SDSSJ095209.56+214313.3: The Most Luminous Coronal-line Supernova Ever Observed, or a Stellar Tidal Disruption Event?

    NASA Astrophysics Data System (ADS)

    Komossa, S.; Zhou, H.; Rau, A.; Dopita, M.; Gal-Yam, A.; Greiner, J.; Zuther, J.; Salvato, M.; Xu, D.; Lu, H.; Saxton, R.; Ajello, M.

    2009-08-01

    The galaxy SDSSJ095209.56+214313.3 (SDSSJ0952+2143 hereafter) showed remarkable emission-line and continuum properties and strong emission-line variability first reported in 2008 (Paper I). The spectral properties and low-energy variability are the consequence of a powerful high-energy flare which was itself not observed directly. Here we report follow-up optical, near-infrared (NIR), mid-infrared (MIR), and X-ray observations of SDSSJ0952+2143. We discuss outburst scenarios in terms of stellar tidal disruption by a supermassive black hole, peculiar variability of an active galactic nucleus (AGN), and a supernova (SN) explosion, and possible links between these scenarios and mechanisms. The optical spectrum of SDSSJ0952+2143 exhibits several peculiarities: an exceptionally high ratio of [Fe VII] transitions over [O III], a dramatic decrease by a factor of 10 of the highest-ionization coronal lines, a very unusual and variable Balmer line profile including a triple-peaked narrow component with two unresolved horns, and a large Balmer decrement. The MIR emission measured with the Spitzer IRS in the narrow 10-20 μm band is extraordinarily luminous and amounts to L 10-20 μm = 3.5 × 1043 erg s-1. The IRS spectrum shows a bump around ~11 μm and an increase toward longer wavelengths, reminiscent of silicate emission. The strong MIR excess over the NIR implies the dominance of relatively cold dust. The pre- and post-flare NIR host galaxy colors indicate a nonactive galaxy. The X-ray luminosity of L x,0.1-10 keV = 1041 erg s-1 measured with Chandra is below that typically observed in AGNs. Similarities of SDSSJ0952+2143 with some extreme SNe suggest the explosion of a SN of Type IIn. However, an extreme accretion event in a low-luminosity AGN or inactive galaxy, especially stellar tidal disruption, remain possibilities, which could potentially produce a very similar emission-line response. If indeed a SN, SDSSJ0952+2143 is one of the most distant X-ray- and MIR-detected SNe known so far, the most MIR luminous, and one of the most X-ray luminous. It is also by far the most luminous (>1040 erg s-1) in high-ionization coronal lines, exceeding previous SNe by at least a factor of 100.

  7. The BL LAC phenomenon: X-ray observations of transition objects and determination of the x-ray spectrum of a complete sample of flat-spectrum radio sources

    NASA Technical Reports Server (NTRS)

    Worrall, Diana M.

    1994-01-01

    This report summarizes the activities related to two ROSAT investigations: (1) x-ray properties of radio galaxies thought to contain BL Lac type nuclei; and (2) x-ray spectra of a complete sample of flat-spectrum radio sources. The following papers describing the research are provided as attachments: Multiple X-ray Emission Components in Low Power Radio Galaxies; New X-ray Results on Radio Galaxies; Analysis Techniques for a Multiwavelength Study of Radio Galaxies; Separation of X-ray Emission Components in Radio Galaxies; X-ray Emission in Powerful Radio Galaxies and Quasars; Extended and Compact X-ray Emission in Powerful Radio Galaxies; and X-ray Spectra of a Complete Sample of Extragalactic Core-dominated Radio Sources.

  8. Revealing structure within the coronae of Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Wilkins, D.

    2017-10-01

    Detailed analysis of the reflection and reverberation of X-rays from the innermost regions of AGN accretion discs reveals the structure and processes that produce the intense continuum emission and the extreme variability we see, right down to the innermost stable orbit and event horizon of the black hole. Observations of Seyfert galaxies spanning more than a decade have enabled measurement of the geometry of the corona and how it evolves, leading to orders of magnitude of variability. They reveal processes the corona undergoes during transient events, notably the collimation and ejection of the corona during X-ray flares, reminiscent of the aborted launching of a jet. Recent reverberation studies, including those of the Seyfert galaxy I Zwicky 1 with XMM-Newton, are revealing structures within the corona for the first time. A persistent collimated core is found, akin to the base of a jet embedded in the innermost regions. The evolution of both the collimated and extended portions point to the mechanisms powering the X-ray emission and variability. This gives us important constraints on the processes by which energy is liberated from black hole accretion flows and by which jets are launched, allowing us to understand how these extreme objects are powered.

  9. Optical spectroscopy of the Be/X-ray binary V850 Centauri/GX 304-1 during faint X-ray periodical activity

    NASA Astrophysics Data System (ADS)

    Malacaria, C.; Kollatschny, W.; Whelan, E.; Santangelo, A.; Klochkov, D.; McBride, V.; Ducci, L.

    2017-07-01

    Context. Be/X-ray binaries (BeXRBs) are the most populous class of high-mass X-ray binaries. Their X-ray duty cycle is tightly related to the optical companion wind activity, which in turn can be studied through dedicated optical spectroscopic observations. Aims: We study optical spectral features of the Be circumstellar disk to test their long-term variability and their relation with the X-ray activity. Special attention has been given to the Hα emission line, one of the best tracers of the disk conditions. Methods: We obtained optical broadband medium resolution spectra from a dedicated campaign with the Anglo-Australian Telescope and the Southern African Large Telescope in 2014-2015. Data span over one entire binary orbit, and cover both X-ray quiescent and moderately active periods. We used Balmer emission lines to follow the evolution of the circumstellar disk. Results: We observe prominent spectral features, like double-peaked Hα and Hβ emission lines. The HαV/R ratio significantly changes over a timescale of about one year. Our observations are consistent with a system observed at a large inclination angle (I ≳ 60°). The derived circumstellar disk size shows that the disk evolves from a configuration that prevents accretion onto the neutron star, to one that allows only moderate accretion. This is in agreement with the contemporary observed X-ray activity. Our results are interpreted within the context of inefficient tidal truncation of the circumstellar disk, as expected for this source's binary configuration. We derived the Hβ-emitting region size, which is equal to about half of the corresponding Hα-emitting disk, and constrain the luminosity class of V850 Cen as III-V, consistent with the previously proposed class.

  10. The X-Ray Modulation of PSR J2032+4127/MT91 213 during the Periastron Passage in 2017

    NASA Astrophysics Data System (ADS)

    Li, K. L.; Takata, J.; Ng, C. W.; Kong, A. K. H.; Tam, P. H. T.; Hui, C. Y.; Cheng, K. S.

    2018-04-01

    We present the Neil Gehrels Swift Observatory (Swift), Fermi Large Area Telescope (Fermi-LAT), and Karl G. Jansky Very Large Array (VLA) observations of the γ-ray binary PSR J2032+4127/MT91 213, of which the periastron passage recently occurred in 2017 November. In the Swift X-ray light curve, the flux was steadily increasing before 2017 mid-October, however, a sharp X-ray dip on a weekly timescale is seen during the periastron passage, followed by a post-periastron X-ray flare lasting for ∼20 days. We suggest that the X-ray dip is caused by (i) an increase of the magnetization parameter at the shock, and (ii) the suppression due to the Doppler boosting effect. The 20-day post-periastron flare could be a consequence of the Be stellar disk passage by the pulsar. An orbital GeV modulation is also expected in our model; however, no significant variability is seen in the Fermi-LAT light curve. We suspect that the GeV emission from the interaction between the binary’s members is hidden behind the bright magnetospheric emission of the pulsar. The pulsar gating technique would be useful to remove the magnetospheric emission and recover the predicted GeV modulation, if an accurate radio timing solution over the periastron passage is provided in the future.

  11. Broadband study of blazar 1ES 1959+650 during flaring state in 2016

    NASA Astrophysics Data System (ADS)

    Patel, S. R.; Shukla, A.; Chitnis, V. R.; Dorner, D.; Mannheim, K.; Acharya, B. S.; Nagare, B. J.

    2018-03-01

    Aims: The nearby TeV blazar 1ES 1959+650 (z = 0.047) was reported to be in flaring state during June-July 2016 by Fermi-LAT, FACT, MAGIC and VERITAS collaborations. We studied the spectral energy distributions (SEDs) in different states of the flare during MJD 57530-57589 using simultaneous multiwaveband data with the aim of understanding the possible broadband emission scenario during the flare. Methods: The UV-optical and X-ray data from UVOT and XRT respectively on board Swift and high energy γ-ray data from Fermi-LAT were used to generate multiwaveband lightcurves as well as to obtain high flux states and quiescent state SEDs. The correlation and lag between different energy bands was quantified using discrete correlation function. The synchrotron self-Compton (SSC) model was used to reproduce the observed SEDs during flaring and quiescent states of the source. Results: A good correlation is seen between X-ray and high energy γ-ray fluxes. The spectral hardening with increase in the flux is seen in X-ray band. The power law index vs. flux plot in γ-ray band indicates the different emission regions for 0.1-3 GeV and 3-300 GeV energy photons. Two zone SSC model satisfactorily fits the observed broadband SEDs. The inner zone is mainly responsible for producing synchrotron peak and high energy γ-ray part of the SED in all states. The second zone is mainly required to produce less variable optical-UV and low energy γ-ray emission. Conclusions: Conventional single zone SSC model does not satisfactorily explain broadband emission during observation period considered. There is an indication of two emission zones in the jet which are responsible for producing broadband emission from optical to high energy γ-rays.

  12. RXTE and BeppoSAX Observations of MCG-5-23-16: Reflection From Distant Cold Material

    NASA Technical Reports Server (NTRS)

    Mattson, B. J.; Weaver, K. A.

    2003-01-01

    We examine the spectral variability of the Seyfert 1.9 galaxy MCG-5-23-16 using RXTE and BeppoSAX observations spanning 2 years from April 1996 to April 1998. During the first year the X-ray source brightens by a factor of approximately 25% on timescales of days to months. During this time, the reprocessed continuum emission seen with RXTE does not respond measurably to the continuum increase. However, by the end of the second year during the BeppoSAX epoch the X-ray source has faded again. This time, the reprocessed emission has also faded, indicating that the reprocessed flux has responded to the continuum. If these effects are caused by time delays due to the distance between the X-ray source and the reprocessing region, we derive a light crossing time of between approximately 1 light day and approximately 1.5 light years. This corresponds to a distance of 0.001 pc to 0.55 pc, which implies that the reprocessed emission originates between 3 x 10(exp 15) cm and 1.6 x 10(exp l8) cm from the X-ray source. In other words, the reprocessing in MCG-5-23-16 is not dominated by the inner regions of a standard accretion disk.

  13. 1FGL J1417.7-4407: A Likely Gamma-Ray Bright Binary with A Massive Neutron Star and A Giant Secondary

    NASA Technical Reports Server (NTRS)

    Strader, Jay; Chomiuk, Laura; Cheung, C. C.; Sand, David J.; Donato, Davide; Corbet, Robin H. D.; Koeppe, Dana; Edwards, Philip G.; Stevens, Jamie; Petrov, Leonid

    2015-01-01

    We present multiwavelength observations of the persistent Fermi-Large Area Telescope unidentified gamma-ray source 1FGL J1417.7-4407, showing it is likely to be associated with a newly discovered X-ray binary containing a massive neutron star (nearly 2 solar mass) and a approximately 0.35 solar mass giant secondary with a 5.4 day period. SOAR optical spectroscopy at a range of orbital phases reveals variable double-peaked H alpha emission, consistent with the presence of an accretion disk. The lack of radio emission and evidence for a disk suggests the gamma-ray emission is unlikely to originate in a pulsar magnetosphere, but could instead be associated with a pulsar wind, relativistic jet, or could be due to synchrotron self-Compton at the disk-magnetosphere boundary. Assuming a wind or jet, the high ratio of gamma- ray to X-ray luminosity (approximately 20) suggests efficient production of gamma-rays, perhaps due to the giant companion. The system appears to be a low-mass X-ray binary that has not yet completed the pulsar recycling process. This system is a good candidate to monitor for a future transition between accretion-powered and rotational-powered states, but in the context of a giant secondary.

  14. The evolving corona and evidence for jet launching from the supermassive black hole in Markarian 335

    NASA Astrophysics Data System (ADS)

    Wilkins, Daniel; Gallo, Luigi C.

    2015-01-01

    Through detailed analysis of the X-rays that are reflected from the accretion disc, it is possible to probe structures right down to the innermost stable circular orbit and event horizon around the supermassive black holes in AGN. By measuring the illumination pattern of the accretion disc, along with reverberation time lags between variability in the X-ray continuum and reflection, unprecedented detail of the geometry and spatial extent of the corona that produces the X-ray continuum has emerged when the observed data are combined with insight gained from general relativistic ray tracing simulations.We conducted detailed analysis of both the X-ray continuum and its reflection from the accretion disc in the narrow line Seyfert 1 galaxy Markarian 335, over observations spanning nearly a decade to measure the underlying changes in the structure of the X-ray emitting corona that gave rise to more than an order of magnitude variation in luminosity.Underlying this long timescale variability lies much more complex patterns of behaviour on short timescales. We are, for the first time, able to observe and measure the changes in the structure of the corona that give rise to transient phenomena including a flare in the X-ray emission seen during a low flux state by Suzaku in July 2013. This flaring event was found to mark a reconfiguration of the corona while there is evidence that the flare itself was cased by an aborted jet-launching event. More recently, detailed analysis of a NuSTAR target of opportunity observation is letting us understand the sudden increase in X-ray flux by a factor of 15 in Markarian 335 seen in September 2014.These observations allow us to trace, from observations, the evolution of the X-ray emitting corona that gives rise to not only the extreme variability seen in the X-ray emission from AGN, but also the processes by which jets and other outflow are launched from the extreme environments around black holes. This gives us important insight into the physical processes by which energy is liberated from black hole accretion flows and allows observational constraints to be placed upon theoretical models of how these extreme objects are powered.

  15. Effect of insulator sleeve material on the x-ray emission from a plasma focus device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussain, S.; Badar, M. A.; Shafiq, M.

    The effect of insulator sleeve material on x-ray emission from a 2.3 kJ Mather type plasma focus device operated in argon-hydrogen mixture is investigated. The time and space resolved x-ray emission characteristics are studied by using a three channel p-i-n diode x-ray spectrometer and a multipinhole camera. The x-ray emission depends on the volumetric ratio of argon-hydrogen mixture as well as the filling pressure and the highest x-ray emission is observed for a volumetric ratio 40% Ar to 60%H{sub 2} at 2.5 mbar filling pressure. The fused silica insulator sleeve produces the highest x-ray emission whereas nonceramic insulator sleeves suchmore » as nylon, Perspex, or Teflon does not produce focus or x-rays. The pinhole images of the x-ray emitting zones reveal that the contribution of the Cu K{alpha} line is weak and plasma x-rays are intense. The highest plasma electron temperature is estimated to be 3.3 and 3.6 keV for Pyrex glass and fused silica insulator sleeves, respectively. It is speculated that the higher surface resistivity of fused silica is responsible for enhanced x-ray emission and plasma electron temperature.« less

  16. Einstein X-ray observations of Herbig Ae/Be stars

    NASA Technical Reports Server (NTRS)

    Damiani, F.; Micela, G.; Sciortino, S.; Harnden, F. R., Jr.

    1994-01-01

    We have investigated the X-ray emission from Herbig Ae/Be stars, using the full set of Einstein Imaging Proportional Counter (IPC) observations. Of a total of 31 observed Herbig stars, 11 are confidently identified with X-ray sources, with four additonal dubious identifications. We have used maximum likelihood luminosity functions to study the distribution of X-ray luminosity, and we find that Be stars are significantly brighter in X-rays than Ae stars and that their X-ray luminosity is independent of projected rotational velocity v sin i. The X-ray emission is instead correlated with stellar bolometric luminosity and with effective temperature, and also with the kinetic luminosity of the stellar wind. These results seem to exclude a solar-like origin for the X-ray emission, a possibility suggested by the most recent models of Herbig stars' structure, and suggest an analogy with the X-ray emission of O (and early B) stars. We also observe correlations between X-ray luminosity and the emission at 2.2 microns (K band) and 25 microns, which strengthen the case for X-ray emission of Herbig stars originating in their circumstellar envelopes.

  17. XMM-Newton observations of the non-thermal supernova remnant HESS J1731-347 (G353.6-0.7)

    NASA Astrophysics Data System (ADS)

    Doroshenko, V.; Pühlhofer, G.; Bamba, A.; Acero, F.; Tian, W. W.; Klochkov, D.; Santangelo, A.

    2017-12-01

    We report on the analysis of XMM-Newton observations of the non-thermal shell-type supernova remnant HESS J1731-347 (G353.6-0.7). For the first time the complete remnant shell has been covered in X-rays, which allowed direct comparison with radio and TeV observations. We carried out a spatially resolved spectral analysis of XMM-Newton data and confirmed the previously reported non-thermal power-law X-ray spectrum of the source with negligible variations of spectral index across the shell. On the other hand, the X-ray absorption column is strongly variable and correlates with the CO emission thus confirming that the absorbing material must be in the foreground and reinforcing the previously suggested lower limit on distance. Finally, we find that the X-ray emission of the remnant is suppressed towards the Galactic plane, which points to lower shock velocities in this region, likely due to the interaction of the shock with the nearby molecular cloud.

  18. Transient iron fluorescence: new clues on the AGN disk/corona?

    NASA Astrophysics Data System (ADS)

    Nardini, E.

    2017-10-01

    Deep X-ray observations of the so-called `bare' active galaxies represent the most effective means of probing the physical conditions in the immediate surroundings of a radiatively efficient supermassive black hole, thus aiding our understanding of the emission processes in AGN. Indeed, the structure and properties of the putative X-ray corona, and the nature of coupling with the disk, are still largely unknown. The recent, surprising discovery of transient iron fluorescence on timescales of 10-15 hours during the 7.5 days of XMM-Newton monitoring of Ark 120, the nearest and X-ray brightest bare AGN, poses several challenges to the commonly adopted X-ray emission paradigm of a very compact corona. Such a rapid variability implies that the inner accretion flow is highly dynamic and inhomogeneous, involving the presence of orbiting hotspots, density gradients, or other forms of clumpiness and instability. Whatever the case, these results offer a compelling glimpse of what could be achieved in the future with Athena's capabilities.

  19. Pulsations in the Earth's Lower Ionosphere Synchronized With Solar Flare Emission

    NASA Astrophysics Data System (ADS)

    Hayes, Laura A.; Gallagher, Peter T.; McCauley, Joseph; Dennis, Brian R.; Ireland, Jack; Inglis, Andrew

    2017-10-01

    Solar flare emission at X-ray and extreme ultraviolet (EUV) energies can cause substantial enhancements in the electron density in the Earth's lower ionosphere. It has now become clear that flares exhibit quasi-periodic pulsations with timescales of minutes at X-ray energies, but to date, it has not been known if the ionosphere is sensitive to this variability. Here using a combination of very low frequency (24 kHz) measurement together with space-based X-ray and EUV observations, we report pulsations of the ionospheric D region, which are synchronized with a set of pulsating flare loops. Modeling of the ionosphere show that the D region electron density varies by up to an order of magnitude over the timescale of the pulsations (˜ 20 min). Our results reveal that the Earth's ionosphere is more sensitive to small-scale changes in solar soft X-ray flux than previously thought and implies that planetary ionospheres are closely coupled to small-scale changes in solar/stellar activity.

  20. Long term X-ray variability characteristics of the narrow-line Seyfert 1 galaxy RE J1034+396

    NASA Astrophysics Data System (ADS)

    Chaudhury, K.; Chitnis, V. R.; Rao, A. R.; Singh, K. P.; Bhattacharyya, Sudip; Dewangan, G. C.; Chakraborty, S.; Chandra, S.; Stewart, G. C.; Mukerjee, K.; Dey, R. K.

    2018-05-01

    We present the results of our study of the long term X-ray variability characteristics of the Narrow Line Seyfert 1 galaxy RE J1034+396. We use data obtained from the AstroSat satellite along with the light curves obtained from XMM-Newton and Swift-XRT. We use the 0.3 - 7.0 keV and 3 - 20 keV data, respectively, from the SXT and the LAXPC of AstroSat. The X-ray spectra in the 0.3 - 20 keV region are well fit with a model consisting of a power-law and a soft excess described by a thermal-Compton emission with a large optical depth, consistent with the earlier reported results. We have examined the X-ray light curves in the soft and hard X-ray bands of SXT and LAXPC, respectively, and find that the variability is slightly larger in the hard band. To investigate the variability characteristics of this source at different time scales, we have used X-ray light curves obtained from XMM-Newton data (200 s to 100 ks range) and Swift-XRT data (1 day to 100 day range) and find that there are evidences to suggest that the variability sharply increases at longer time scales. We argue that the mass of the black hole in RE J1034+396 is likely to be ˜3 × 106 M⊙, based on the similarity of the observed QPO to the high frequency QPO seen in the Galactic black hole binary, GRS 1915+105.

  1. A Consistent Picture Emerges: A Compact X-Ray Continuum Emission Region in the Gravitationally Lensed Quasar SDSS J0924+0219

    NASA Astrophysics Data System (ADS)

    MacLeod, Chelsea L.; Morgan, Christopher W.; Mosquera, A.; Kochanek, C. S.; Tewes, M.; Courbin, F.; Meylan, G.; Chen, B.; Dai, X.; Chartas, G.

    2015-06-01

    We analyze the optical, UV, and X-ray microlensing variability of the lensed quasar SDSS J0924+0219 using six epochs of Chandra data in two energy bands (spanning 0.4-8.0 keV, or 1-20 keV in the quasar rest frame), 10 epochs of F275W (rest-frame 1089 Å) Hubble Space Telescope data, and high-cadence R-band (rest-frame 2770 Å) monitoring spanning 11 years. Our joint analysis provides robust constraints on the extent of the X-ray continuum emission region and the projected area of the accretion disk. The best-fit half-light radius of the soft X-ray continuum emission region is between 5× {10}13 and 1015 cm, and we find an upper limit of 1015 cm for the hard X-rays. The best-fit soft-band size is about 13 times smaller than the optical size, and roughly 7{{GM}}{BH}/{c}2 for a 2.8× {10}8 {M}⊙ black hole, similar to the results for other systems. We find that the UV emitting region falls in between the optical and X-ray emitting regions at 1014 cm \\lt {r}1/2,{UV}\\lt 3× {10}15 cm. Finally, the optical size is significantly larger, by 1.5σ, than the theoretical thin-disk estimate based on the observed, magnification-corrected I-band flux, suggesting a shallower temperature profile than expected for a standard disk.

  2. Short-Term Variability and Power Spectral Density Analysis of the Radio-Loud Active Galactic Nucleus 3C 390.3

    NASA Astrophysics Data System (ADS)

    Gliozzi, Mario; Papadakis, Iossif E.; Eracleous, Michael; Sambruna, Rita M.; Ballantyne, David R.; Braito, Valentina; Reeves, James N.

    2009-09-01

    We investigate the short-term variability properties and the power spectral density (PSD) of the broad-line radio galaxy (BLRG) 3C 390.3 using observations made by XMM-Newton, RXTE, and Suzaku on several occasions between 2004 October and 2006 December. The main aim of this work is to derive model-independent constraints on the origin of the X-ray emission and on the nature of the central engine in 3C 390.3. On timescales of the order of few hours, probed by uninterrupted XMM-Newton light curves, the flux of 3C 390.3 is consistent with being constant in all energy bands. On longer timescales, probed by the 2-day RXTE and Suzaku observations, the flux variability becomes significant. The latter observation confirms that the spectral variability behavior of 3C 390.3 is consistent with the spectral evolution observed in (radio-quiet) Seyfert galaxies: the spectrum softens as the source brightens. The correlated variability between soft and hard X-rays, observed during the Suzaku exposure and between the two XMM-Newton pointings, taken 1 week apart, argues against scenarios characterized by the presence of two distinct variable components in the 0.5-10 keV X-ray band. A detailed PSD analysis carried out over five decades in frequency suggests the presence of a break at T br = 43+34 -25 days at a 92% confidence level. This is the second tentative detection of a PSD break in a radio-loud, non-jet dominated active galactic nucleus (AGN), after the BLRG 3C 120, and appears to be in general agreement with the relation between T br, M BH, and L bol, followed by Seyfert galaxies. Our results indicate that the X-ray variability properties of 3C 390.3 are broadly consistent with those of radio-quiet AGN, suggesting that the X-ray emission mechanism in 3C 390.3 is similar to that of nearby Seyfert galaxies without any significant contribution from a jet component.

  3. SphinX Measurements of the 2009 Solar Minimum X-Ray Emission

    NASA Astrophysics Data System (ADS)

    Sylwester, J.; Kowalinski, M.; Gburek, S.; Siarkowski, M.; Kuzin, S.; Farnik, F.; Reale, F.; Phillips, K. J. H.; Bakała, J.; Gryciuk, M.; Podgorski, P.; Sylwester, B.

    2012-06-01

    The SphinX X-ray spectrophotometer on the CORONAS-PHOTON spacecraft measured soft X-ray emission in the 1-15 keV energy range during the deep solar minimum of 2009 with a sensitivity much greater than GOES. Several intervals are identified when the X-ray flux was exceptionally low, and the flux and solar X-ray luminosity are estimated. Spectral fits to the emission at these times give temperatures of 1.7-1.9 MK and emission measures between 4 × 1047 cm-3 and 1.1 × 1048 cm-3. Comparing SphinX emission with that from the Hinode X-ray Telescope, we deduce that most of the emission is from general coronal structures rather than confined features like bright points. For one of 27 intervals of exceptionally low activity identified in the SphinX data, the Sun's X-ray luminosity in an energy range roughly extrapolated to that of ROSAT (0.1-2.4 keV) was less than most nearby K and M dwarfs.

  4. The 2010 Very High Energy γ-Ray Flare And 10 Years Of Multi-Wavelength Observations Of M 87

    DOE PAGES

    Abramowski, A.

    2012-02-02

    The giant radio galaxy M87 with its proximity (16 Mpc), famous jet, and very massive black hole ((3 - 6) X 10 9M Θ ) provides a unique opportunity to investigate the origin of very high energy (VHE; E>100 GeV) γ-ray emission generated in relativistic outflows and the surroundings of super-massive black holes. M87 has been established as a VHE γ-ray emitter since 2006. The VHE γ-ray emission displays strong variability on timescales as short as a day. In this paper, results from a joint VHE monitoring campaign on M87 by the MAGIC and VERITAS instruments in 2010 are reported.more » During the campaign, a flare at VHE was detected triggering further observations at VHE (H.E.S.S.), X-rays (Chandra), and radio (43 GHz VLBA). The excellent sampling of the VHE -ray light curve enables one to derive a precise temporal characterization of the flare: the single, isolated flare is well described by a two-sided exponential function with significantly different flux rise and decay times of τrise d = (1:69 ± 0:30) days and τdecay d = (0:611 ± 0:080) days, respectively. While the overall variability pattern of the 2010 flare appears somewhat different from that of previous VHE flares in 2005 and 2008, they share very similar timescales (~day), peak fluxes (Φ>0:35 TeV ≃ (1 - 3) X 10 -11 ph cm -2 s -1), and VHE spectra. 43 GHz VLBA radio observations of the inner jet regions indicate no enhanced flux in 2010 in contrast to observations in 2008, where an increase of the radio flux of the innermost core regions coincided with a VHE flare. On the other hand, Chandra X-ray observations taken ~ 3 days after the peak of the VHE γ-ray emission reveal an enhanced flux from the core (flux increased by factor ~ 2; variability timescale < 2 days). The long-term (2001-2010) multi-wavelength (MWL) light curve of M87, spanning from radio to VHE and including data from HST, LT, VLA and EVN, is used to further investigate the origin of the VHE γ-ray emission. No unique, common MWL signature of the three VHE flares has been identified. In the outer kpc jet region, in particular in HST-1, no enhanced MWL activity was detected in 2008 and 2010, disfavoring it as the origin of the VHE flares during these years. Shortly after two of the three flares (2008 and 2010), the X-ray core was observed to be at a higher flux level than its characteristic range (determined from more than 60 monitoring observations: 2002-2009). In 2005, the strong flux dominance of HST-1 could have suppressed the detection of such a feature. Published models for VHE γ-ray emission from M87 are reviewed in the light of the new data.« less

  5. The 300 Kpc Long X-Ray Jet in PKS 1127-145, Z=1.18 Quasar: Constraining X-Ray Emission Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siemiginowska, Aneta; /Harvard-Smithsonian Ctr. Astrophys.; Stawarz, Lukasz

    2006-11-20

    We present a {approx} 100 ksec Chandra X-ray observation and new VLA radio data of the large scale, 300 kpc long X-ray jet in PKS 1127-145, a radio loud quasar at redshift z=1.18. With this deep X-ray observation we now clearly discern the complex X-ray jet morphology and see substructure within the knots. The X-ray and radio jet intensity profiles are seen to be strikingly different with the radio emission peaking strongly at the two outer knots while the X-ray emission is strongest in the inner jet region. The jet X-ray surface brightness gradually decreases by an order of magnitudemore » going out from the core. The new X-ray data contain sufficient counts to do spectral analysis of the key jet features. The X-ray energy index of the inner jet is relatively flat with {alpha}{sub x} = 0.66 {+-} 0.15 and steep in the outer jet with {alpha}{sub x} = 1.0 {+-} 0.2. We discuss the constraints implied by the new data on the X-ray emission models and conclude that ''one-zone'' models fail and at least a two component model is needed to explain the jet's broad-band emission. We propose that the X-ray emission originates in the jet proper while the bulk of the radio emission comes from a surrounding jet sheath. We also consider intermittent jet activity as a possible cause of the observed jet morphology.« less

  6. An XMM-Newton Study of the Bright Ultrasoft Narrow-Line Quasar NAB 0205+024

    NASA Technical Reports Server (NTRS)

    Brandt, Niel

    2004-01-01

    The broad-band X-ray continuum of NAB 0205424 is well constrained due to the excellent photon statistics obtained (about 97,700 counts), and its impressive soft X-ray excess is clearly apparent. The hard X-ray power law has become notably steeper than when NAB 0205424 was observed with ASCA, attesting to the presence of significant X-ray spectral variability. A strong and broad emission feature is detected from about 5 to 6.4 keV, and we have modeled this as a relativistic line emitted close to the black hole from a narrow annulus of the accretion disk. Furthermore, a strong X-ray flare is detected with a hard X-ray spectrum; this flare may be responsible for illuminating the inner line-emitting part of the accretion disk. The combined observational results can be broadly interpreted in terms of the "thundercloud model proposed by Merloni & Fabian (2001).

  7. Swift Monitoring of NGC 4151: Evidence for a Second X-Ray/UV Reprocessing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edelson, R.; Gelbord, J.; Cackett, E.

    Swift monitoring of NGC 4151 with an ∼6 hr sampling over a total of 69 days in early 2016 is used to construct light curves covering five bands in the X-rays (0.3–50 keV) and six in the ultraviolet (UV)/optical (1900–5500 Å). The three hardest X-ray bands (>2.5 keV) are all strongly correlated with no measurable interband lag, while the two softer bands show lower variability and weaker correlations. The UV/optical bands are significantly correlated with the X-rays, lagging ∼3–4 days behind the hard X-rays. The variability within the UV/optical bands is also strongly correlated, with the UV appearing to leadmore » the optical by ∼0.5–1 days. This combination of ≳3 day lags between the X-rays and UV and ≲1 day lags within the UV/optical appears to rule out the “lamp-post” reprocessing model in which a hot, X-ray emitting corona directly illuminates the accretion disk, which then reprocesses the energy in the UV/optical. Instead, these results appear consistent with the Gardner and Done picture in which two separate reprocessings occur: first, emission from the corona illuminates an extreme-UV-emitting toroidal component that shields the disk from the corona; this then heats the extreme-UV component, which illuminates the disk and drives its variability.« less

  8. Short-term X-ray spectral variability of the quasar PDS 456 observed in a low-flux state

    NASA Astrophysics Data System (ADS)

    Matzeu, G. A.; Reeves, J. N.; Nardini, E.; Braito, V.; Costa, M. T.; Tombesi, F.; Gofford, J.

    2016-05-01

    We present a detailed analysis of a recent, 2013 Suzaku campaign on the nearby (z = 0.184) luminous (Lbol ˜ 1047 erg s-1) quasar PDS 456. This consisted of three observations, covering a total duration of ˜1 Ms and a net exposure of 455 ks. During these observations, the X-ray flux was unusually low, suppressed by a factor of >10 in the soft X-ray band when compared to previous observations. We investigated the broad-band continuum by constructing a spectral energy distribution (SED), making use of the optical/UV photometry and hard X-ray spectra from the later simultaneous XMM-Newton and NuSTAR campaign in 2014. The high-energy part of this low-flux SED cannot be accounted for by physically self-consistent accretion disc and corona models without attenuation by absorbing gas, which partially covers a substantial fraction of the line of sight towards the X-ray continuum. At least two layers of absorbing gas are required, of column density log (NH,low/cm-2) = 22.3 ± 0.1 and log (NH,high/cm-2) = 23.2 ± 0.1, with average line-of-sight covering factors of ˜80 per cent (with typical ˜5 per cent variations) and 60 per cent (±10-15 per cent), respectively. During these observations PDS 456 displays significant short-term X-ray spectral variability, on time-scales of ˜100 ks, which can be accounted for by variable covering of the absorbing gas along the line of sight. The partial covering absorber prefers an outflow velocity of v_pc = 0.25^{+0.01}_{-0.05} c at the >99.9 per cent confidence level over the case where vpc = 0. This is consistent with the velocity of the highly ionized outflow responsible for the blueshifted iron K absorption profile. We therefore suggest that the partial covering clouds could be the denser, or clumpy part of an inhomogeneous accretion disc wind. Finally estimates are placed upon the size-scale of the X-ray emission region from the source variability. The radial extent of the X-ray emitter is found to be of the order ˜15-20Rg, although the hard X-ray (>2 keV) emission may originate from a more compact or patchy corona of hot electrons, which is typically ˜6-8Rg in size.

  9. Are There Intrinsically X-Ray Quiet Quasars

    NASA Technical Reports Server (NTRS)

    Gallagher, S. C.; Brandt, W. N.; Laor, A.; Elvis, Martin; Mathur, S.; Wills, Beverly J.; Iyomoto, N.; White, Nicholas (Technical Monitor)

    2000-01-01

    Recent ROSAT studies have identified a significant population of Active Galactic Nuclei (AGN) that are notably faint in soft X-rays relative to their optical fluxes. Are these AGN intrinsically X-ray weak or are they just highly absorbed? Brandt, Laor & Wills have systematically examined the optical and UV spectral properties of a well-defined sample of these soft X-ray weak (SXW) AGN drawn from the Boroson & Green sample of all the Palomar Green AGN 00 with z < 0.5. We present ASCA observations of three of these SXW AGN: PG 1011-040, PG 1535+547 (Mrk 486), and PG 2112+059. In general, our ASCA observations support the intrinsic absorption scenario for explaining soft X-ray weakness; both PG 1535+547 and PG 2112+059 show significant column densities (NH is approximately 10(exp 22) - 10(exp 23)/sq cm) of absorbing gas. Interestingly, PG 1011-040 shows no spectral evidence for X-ray absorption. The weak X-ray emission may result from very strong absorption of a partially covered source, or this AGN may be intrinsically X-ray weak. PG 2112+059 is a Broad Absorption Line (BAL) QSO, and we find it to have the highest X-ray flux known of this class. It shows a typical power-law X-ray continuum above 3 keV; this is the first direct evidence that BAL QSOs indeed have normal X-ray continua underlying their intrinsic absorption. Finally, marked variability between the ROSAT and ASCA observations of PG 1535+547 and PG 2112+059 suggests that the soft X-ray weak designation may be transient, and multi-epoch 0.1-10.0 KeV X-ray observations are required to constrain variability of the absorber and continuum.

  10. X-Ray Quasi-periodic Oscillations in the Lense–Thirring Precession Model. I. Variability of Relativistic Continuum

    NASA Astrophysics Data System (ADS)

    You, Bei; Bursa, Michal; Życki, Piotr T.

    2018-05-01

    We develop a Monte Carlo code to compute the Compton-scattered X-ray flux arising from a hot inner flow that undergoes Lense–Thirring precession. The hot flow intercepts seed photons from an outer truncated thin disk. A fraction of the Comptonized photons will illuminate the disk, and the reflected/reprocessed photons will contribute to the observed spectrum. The total spectrum, including disk thermal emission, hot flow Comptonization, and disk reflection, is modeled within the framework of general relativity, taking light bending and gravitational redshift into account. The simulations are performed in the context of the Lense–Thirring precession model for the low-frequency quasi-periodic oscillations, so the inner flow is assumed to precess, leading to periodic modulation of the emitted radiation. In this work, we concentrate on the energy-dependent X-ray variability of the model and, in particular, on the evolution of the variability during the spectral transition from hard to soft state, which is implemented by the decrease of the truncation radius of the outer disk toward the innermost stable circular orbit. In the hard state, where the Comptonizing flow is geometrically thick, the Comptonization is weakly variable with a fractional variability amplitude of ≤10% in the soft state, where the Comptonizing flow is cooled down and thus becomes geometrically thin, the fractional variability of the Comptonization is highly variable, increasing with photon energy. The fractional variability of the reflection increases with energy, and the reflection emission for low spin is counterintuitively more variable than the one for high spin.

  11. On the Absence of Non-thermal X-Ray Emission around Runaway O Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toalá, J. A.; Oskinova, L. M.; Ignace, R.

    Theoretical models predict that the compressed interstellar medium around runaway O stars can produce high-energy non-thermal diffuse emission, in particular, non-thermal X-ray and γ -ray emission. So far, detection of non-thermal X-ray emission was claimed for only one runaway star, AE Aur. We present a search for non-thermal diffuse X-ray emission from bow shocks using archived XMM-Newton observations for a clean sample of six well-determined runaway O stars. We find that none of these objects present diffuse X-ray emission associated with their bow shocks, similarly to previous X-ray studies toward ζ Oph and BD+43°3654. We carefully investigated multi-wavelength observations ofmore » AE Aur and could not confirm previous findings of non-thermal X-rays. We conclude that so far there is no clear evidence of non-thermal extended emission in bow shocks around runaway O stars.« less

  12. The CHANDRA HETGS X-ray Grating Spectrum of Eta Carinae

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.; Swank, J. H.; Petre, R.; Ishibashi, K.; Davidson, K.; Townsley, L.; Smith, R.; White, S.; Viotti, R.; Damineli, A.; hide

    2001-01-01

    Eta Carinae may be the most massive and luminous star in the Galaxy and is suspected to be a massive, colliding wind binary system. The CHANDRA X-ray observatory has obtained a calibrated, high-resolution X-ray spectrum of the star uncontaminated by the nearby extended soft X-ray emission. Our 89 ksec CHANDRA observation with the High Energy Transmission Grating Spectrometer (HETGS) shows that the hot gas near the star is non-isothermal. The temperature distribution may represent the emission on either side of the colliding wind bow shock, effectively 'resolving' the shock. If so, the pre-shock wind velocities are approximately 700 and 1800 km/s in our analysis, and these velocities may be interpreted as the terminal velocities of the winds from 71 Carinae and from the hidden companion star. The forbidden-to-intercombination line ratios for the He-like ions of S, Si, and Fe are large, indicating that the line forming region lies far from the stellar photosphere. The iron fluorescent line at 1.93 angstroms, first detected by ASCA, is clearly resolved from the thermal iron line in the CHANDRA grating spectrum. The Fe fluorescent line is weaker in our CHANDRA observation than in any of the ASCA spectra. The CHANDRA observation also provides the first high-time resolution lightcurve of the uncontaminated stellar X-ray emission from 77 Carinae and shows that there is no significant, coherent variability during the CHANDRA observation. The 77 Carinae CHANDRA grating spectrum is unlike recently published X-ray grating spectra of single massive stars in significant ways and is generally consistent with colliding wind emission in a massive binary.

  13. Spectral and Temporal Characteristics of LS PEG and TW PIC Using XMM-NEWTON Data

    NASA Astrophysics Data System (ADS)

    Talebpour Sheshvan, Nasrin; Balman, Solen

    2016-07-01

    We report the analysis of archival XMM-Newton X-ray observations of LS Peg and TW Pic. These are Cataclysmic Variables (CVs) suggested as Intermediate Polars (IPs), but unconfirmed in the X-rays. Identification of several periodic oscillations in the optical band hint them as IPs. Unlike the previous spectral analysis on the EPIC-MOS data by fitting a hot optically thin plasma emission model with a single temperature for LS Peg, we simultaneously fitted all EPIC spectrum (pn+MOS) using a composite model of absorption for interstellar medium (tbabs) with two different partial covering absorbers (pcfabs) including a multitemperature plasma emission component (cevmkl) and a Gaussian emission line at 6.4 keV. TW Pic is best modeled in a similar manner with only one partial covering absorber and an extra Gaussian emission line at 6.7 keV. LS Peg has a maximum plasma temperature of ˜14.8 keV with an X-ray luminosity of ˜5×10^{32}ergs ^{-1} translating to an accretion rate of ˜1.27×10^{-10}M _{⊙}yr ^{-1}. TW Pic shows kT _{max} ˜38.7 keV with an X-ray luminosity around 1.6×10^{33}ergs ^{-1} at an accretion rate of ˜4×10^{-10}M _{⊙}yr ^{-1}. In addition, we discuss orbital modulations in the X-rays and power spectral analysis, and derive the EPIC pn spectra for orbital minimum and orbital maximum phases for both sources. We elaborate on the geometry of accretion and absorption in the X-ray emitting regions of both sources with articulation on the magnetic nature.

  14. Hard X-Ray Emission of the Luminous Infrared Galaxy NGC 6240 as Observed by Nustar

    NASA Technical Reports Server (NTRS)

    Puccetti, S.; Comastri, A.; Bauer, F. E.; Brandt, W. N.; Fiore, F.; Harrison, F. A.; Luo, B.; Stern, D.; Urry, C. M.; Alexander, D. M.; hide

    2016-01-01

    We present a broadband (approx.0.3-70 keV) spectral and temporal analysis of NuSTAR observations of the luminous infrared galaxy NGC 6240 combined with archival Chandra, XMM-Newton, and BeppoSAX data. NGC 6240 is a galaxy in a relatively early merger state with two distinct nuclei separated by approx.1.5. Previous Chandra observations resolved the two nuclei and showed that they are both active and obscured by Compton-thick material. Although they cannot be resolved by NuSTAR, we were able to clearly detect, for the first time, both the primary and the reflection continuum components thanks to the unprecedented quality of the NuSTAR data at energies >10 keV. The NuSTAR hard X-ray spectrum is dominated by the primary continuum piercing through an absorbing column density which is mildly optically thick to Compton scattering (tau approx. = 1.2, NH approx. 1.5×10(exp 24)/sq cm. We detect moderately hard X-ray (>10 keV) flux variability up to 20% on short (15-20 ks) timescales. The amplitude of the variability is largest at approx..30 keV and is likely to originate from the primary continuum of the southern nucleus. Nevertheless, the mean hard X-ray flux on longer timescales (years) is relatively constant. Moreover, the two nuclei remain Compton-thick, although we find evidence of variability in the material along the line of sight with column densities NH < or = 2×10(exp 23)/sq cm over long (approx.3-15 yr) timescales. The observed X-ray emission in the NuSTAR energy range is fully consistent with the sum of the best-fit models of the spatially resolved Chandra spectra of the two nuclei.

  15. Hard X-ray emission of the luminous infrared galaxy NGC 6240 as observed by NuSTAR

    NASA Astrophysics Data System (ADS)

    Puccetti, S.; Comastri, A.; Bauer, F. E.; Brandt, W. N.; Fiore, F.; Harrison, F. A.; Luo, B.; Stern, D.; Urry, C. M.; Alexander, D. M.; Annuar, A.; Arévalo, P.; Baloković, M.; Boggs, S. E.; Brightman, M.; Christensen, F. E.; Craig, W. W.; Gandhi, P.; Hailey, C. J.; Koss, M. J.; La Massa, S.; Marinucci, A.; Ricci, C.; Walton, D. J.; Zappacosta, L.; Zhang, W.

    2016-01-01

    We present a broadband (~0.3-70 keV) spectral and temporal analysis of NuSTAR observations of the luminous infrared galaxy NGC 6240 combined with archival Chandra, XMM-Newton, and BeppoSAX data. NGC 6240 is a galaxy in a relatively early merger state with two distinct nuclei separated by ~1.̋5. Previous Chandra observations resolved the two nuclei and showed that they are both active and obscured by Compton-thick material. Although they cannot be resolved by NuSTAR, we were able to clearly detect, for the first time, both the primary and the reflection continuum components thanks to the unprecedented quality of the NuSTAR data at energies >10 keV. The NuSTAR hard X-ray spectrum is dominated by the primary continuum piercing through an absorbing column density which is mildly optically thick to Compton scattering (τ ≃ 1.2, NH ~ 1.5 × 1024 cm-2). We detect moderately hard X-ray (>10 keV) flux variability up to 20% on short (15-20 ks) timescales. The amplitude of the variability is largest at ~30 keV and is likely to originate from the primary continuum of the southern nucleus. Nevertheless, the mean hard X-ray flux on longer timescales (years) is relatively constant. Moreover, the two nuclei remain Compton-thick, although we find evidence of variability in the material along the line of sight with column densities NH ≤ 2 × 1023 cm-2 over long (~3-15 yr) timescales. The observed X-ray emission in the NuSTAR energy range is fully consistent with the sum of the best-fit models of the spatially resolved Chandra spectra of the two nuclei.

  16. SHORT-TIMESCALE MONITORING OF THE X-RAY, UV, AND BROAD DOUBLE-PEAK EMISSION LINE OF THE NUCLEUS OF NGC 1097

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schimoia, Jaderson S.; Storchi-Bergmann, Thaisa; Grupe, Dirk

    2015-02-10

    Recent studies have suggested that the short-timescale (≲ 7 days) variability of the broad (∼10,000 km s{sup –1}) double-peaked Hα profile of the LINER nucleus of NGC 1097 could be driven by a variable X-ray emission from a central radiatively inefficient accretion flow. To test this scenario, we have monitored the NGC 1097 nucleus in X-ray and UV continuum with Swift and the Hα flux and profile in the optical spectrum using SOAR and Gemini-South from 2012 August to 2013 February. During the monitoring campaign, the Hα flux remained at a very low level—three times lower than the maximum flux observed in previousmore » campaigns and showing only limited (∼20%) variability. The X-ray variations were small, only ∼13% throughout the campaign, while the UV did not show significant variations. We concluded that the timescale of the Hα profile variation is close to the sampling interval of the optical observations, which results in only a marginal correlation between the X-ray and Hα fluxes. We have caught the active galaxy nucleus in NGC 1097 in a very low activity state, in which the ionizing source was very weak and capable of ionizing just the innermost part of the gas in the disk. Nonetheless, the data presented here still support the picture in which the gas that emits the broad double-peaked Balmer lines is illuminated/ionized by a source of high-energy photons which is located interior to the inner radius of the line-emitting part of the disk.« less

  17. On the physical environment in the nucleus of Centaurus A /NGC 5128/

    NASA Technical Reports Server (NTRS)

    Beall, J. H.; Rose, W. K.

    1980-01-01

    A model is proposed for the radio and X-ray variability of the nucleus of Centaurus A in which an adiabatically expanding plasma containing a power-law distribution of relativistic electrons produces the radio flux by synchrotron emission, and the X-ray flux by inverse Compton scattering of an ambient distribution of thermal photons. The variability of Centaurus A is shown to be consistent with the expansion of an initially opaque, hot (1000-10,000 K) plasma which eventually becomes optically thin. Radio flares without corresponding X-ray flares are possible in this model because the plasma density decreases during the expansion, allowing radio radiation previously absorbed or suppressed to be observed. Some consequences of the model for the physical environment in galactic nuclei are discussed.

  18. Acyclic High-Energy Variability in Eta Carinae and WR 140

    NASA Technical Reports Server (NTRS)

    Corcoran, Michael F.

    2012-01-01

    Eta Carinae and WR 140 are similar long-period colliding wind binaries in which X-ray emission is produced by a strong shock due to the collision of the powerful stellar winds. The change in the orientation and density of this shock as the stars revolve in their orbits influences the X-ray flux and spectrum in a phase dependent way. Monitoring observations with RXTE and other X-ray satellite observatories since the 1990s have detailed this variability but have also shown significant deviations from strict phase dependence (short-term brightness changes or "flares", and cyc1e-to-cyc1e average flux differences). We examine these acylic variations in Eta Car and WR 140 and discuss what they tell us about the stability of the wind-wind collision shock.

  19. ORIGIN OF THE GALACTIC DIFFUSE X-RAY EMISSION: IRON K-SHELL LINE DIAGNOSTICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nobukawa, Masayoshi; Uchiyama, Hideki; Nobukawa, Kumiko K.

    This paper reports detailed K-shell line profiles of iron (Fe) and nickel (Ni) of the Galactic Center X-ray Emission (GCXE), Galactic Bulge X-ray Emission (GBXE), Galactic Ridge X-ray Emission (GRXE), magnetic Cataclysmic Variables (mCVs), non-magnetic Cataclysmic Variables (non-mCVs), and coronally Active Binaries (ABs). For the study of the origin of the GCXE, GBXE, and GRXE, the spectral analysis is focused on equivalent widths of the Fe i-K α , Fe xxv-He α , and Fe xxvi-Ly α  lines. The global spectrum of the GBXE is reproduced by a combination of the mCVs, non-mCVs, and ABs spectra. On the other hand,more » the GRXE spectrum shows significant data excesses at the Fe i-K α and Fe xxv-He α  line energies. This means that additional components other than mCVs, non-mCVs, and ABs are required, which have symbiotic phenomena of cold gas and very high-temperature plasma. The GCXE spectrum shows larger excesses than those found in the GRXE spectrum at all the K-shell lines of iron and nickel. Among them the largest ones are the Fe i-K α , Fe xxv-He α , Fe xxvi-Ly α , and Fe xxvi-Ly β  lines. Together with the fact that the scale heights of the Fe i-K α , Fe xxv-He α , and Fe xxvi-Ly α lines are similar to that of the central molecular zone (CMZ), the excess components would be related to high-energy activity in the extreme envelopment of the CMZ.« less

  20. Theory of High-Energy Emission from the Pulsar/Be Star System PSR 1259-63. I. Radiation Mechanisms and Interaction Geometry

    NASA Astrophysics Data System (ADS)

    Tavani, Marco; Arons, Jonathan

    1997-03-01

    We study the physical processes in the system containing the 47 ms radio pulsar PSR B1259-63 orbiting around a Be star in a highly eccentric orbit. This system is the only known binary where a radio pulsar is observed to interact with gaseous material from a Be star. A rapidly rotating radio pulsar such as PSR B1259-63 is expected to produce a wind of electromagnetic emission and relativistic particles, and this binary is an ideal astrophysical laboratory to study the mass outflow/pulsar interaction in a highly time-variable environment. Motivated by the results of a recent multiwavelength campaign during the 1994 January periastron passage of PSR B1259-63, we discuss several issues regarding the mechanism of high-energy emission. Unpulsed power-law emission from the PSR B1259-63 system was detected near periastron in the energy range 1-200 keV. The observed X-ray/soft γ-ray emission is characterized by moderate luminosity, small and constant column density, lack of detectable pulsations, and peculiar spectral and intensity variability. In principle, high-energy (X-ray and gamma-ray) emission from the system can be produced by different mechanisms including (1) mass accretion onto the surface of the neutron star, (2) ``propeller''-like magnetospheric interaction at a small pulsar distance, and (3) shock-powered emission in a pulsar wind termination shock at a large distance from the pulsar. We carry out a series of calculations aimed at modeling the high-energy data of the PSR B1259-63 system throughout its orbit and especially near periastron. We find that the observed high-energy emission from the PSR B1259-63 system is not compatible with accretion or propeller-powered emission. This conclusion is supported by a model based on standard properties of Be stars and for plausible assumptions about the pulsar/outflow interaction geometry. We find that shock-powered high-energy emission produced by the pulsar/outflow interaction is consistent with all the characteristics of the high-energy emission of the PSR B1259-63 system. This opens the possibility of obtaining for the first time constraints on the physical properties of the PSR B1259-63 pulsar wind and its interaction properties in a strongly time-variable nebular environment. By studying the time evolution of the pulsar cavity, we can constrain the magnitude and geometry of the mass outflow as the PSR B1259-63 orbits around its Be star companion. The pulsar/outflow interaction is most likely mediated by a collisionless shock at the internal boundary of the pulsar cavity. The system shows all the characteristics of a binary plerion being diffuse and compact near apastron and periastron, respectively. The PSR B1259-63 system is subject to different radiative regimes depending on whether synchrotron or inverse-Compton (IC) cooling dominates the radiation of electron/positron pairs (e+/- pairs) advected away from the inner boundary of the pulsar cavity. The highly nonthermal nature of the observed X-ray/soft γ-ray emission from the PSR B1259-63 system near periastron establishes the existence of an efficient particle acceleration mechanism within a timescale shown to be less than ~102-103 s. A synchrotron/IC model of emission of e+/- pairs accelerated at the inner shock front of the pulsar cavity and adiabatically expanding in the MHD flow provides an excellent explanation of the observed time-variable X-ray flux and spectrum from the PSR B1259-63 system. We find that the best model for the PSR B1259-63 system is consistent with the pulsar orbital plane being misaligned with the plane of a thick equatorial Be star outflow. The angular width of the equatorially enhanced Be star outflow is constrained to be ~50° at the pulsar distance, and the misalignment angle is >~25°. We calculate the intensity and spectrum of the high-energy emission for the whole PSR B1259-63 orbit and predict the characteristics of the emission near the apastron region based on the periastron results. The mass-loss rate is deduced to be approximately constant in time during a ~2 yr period. Our results for the Be star outflow of the PSR B1259-63 system are consistent with models of the radio eclipses near periastron. The consequences of our analysis have general validity. Our study of the PSR B1259-63 system shows that X-ray emission can be caused by a mechanism alternative to accretion in a system containing an energetic pulsar interacting with nebular material. This fact can have far-reaching consequences for the interpretation of galactic astrophysical systems showing nonthermal X-ray and γ-ray emission. We show that a binary system such as PSR B1259-63 offers a novel way to study the acceleration process of relativistic plasmas subject to strongly time variable radiative environments.

  1. Multiwavelength analysis of the Lyman-α emitting galaxy Haro 2: relation between the diffuse Lyman-α and soft X-ray emissions

    NASA Astrophysics Data System (ADS)

    Otí-Floranes, H.; Mas-Hesse, J. M.; Jiménez-Bailón, E.; Schaerer, D.; Hayes, M.; Östlin, G.; Atek, H.; Kunth, D.

    2012-10-01

    Context. Lyman-α emission is commonly used as star formation tracer in cosmological studies. Nevertheless, resonant scattering strongly affects the resulting luminosity, leading to variable and unpredictable escape fractions in different objects. Aims: To understand how the Lyα escape fraction depends on the properties of the star-forming regions, we need high spatial resolution multiwavelength studies of nearby Lyα emitters, like Haro 2. Methods: We study the Lyα emission of Haro 2 in connection with the properties of the young stellar population, the characteristics of the interstellar medium, the distribution and intensity of the Balmer emission lines and the properties of the X-ray emission. We have used HST-STIS spectral images along the major and minor axes of Haro 2 to characterize the Lyα emission, as well as FOC UV, WFPC-2 optical and NICMOS near infrared broadband-filter images to analyze the properties of the stellar population. WFPC-2 Hα image and ground-based spectroscopy allow us to study the Balmer emission lines. Finally, Chandra/ACIS X-ray images provide resolved distribution of the X-ray emission at various energy bands. The observational data are analyzed by comparison with the predictions from evolutionary synthesis models to constrain the properties of the star formation episode. Results: The UV, Hα and far infrared luminosities of the Haro 2 nuclear starburst are well reproduced assuming a young stellar population with ages ~3.5-5.0 Myr, affected by differential intestellar extinctions. A significant fraction of the stars are completely obscured in the UV, being identifiable only indirectly by their contribution to the ionization of the gas and to the far infrared emission. The diffuse soft X-ray emission extending over the whole source is attributed to gas heated by the mechanical energy released by the starburst. A compact hard X-ray emission (likely an UltraLuminous X-ray source) has been identified in a star-forming condensation to the southeast. Both compact and diffuse Lyα emission components are observed along the major and minor axes in STIS spectral images. Lyα is spatially decoupled from Balmer lines emission, Balmer decrement and UV continuum. However, the diffuse Lyα component is spatially correlated with the diffuse soft X-ray emission. Moreover, unlike the compact Lyα emission, diffuse Lyα shows luminosities larger than predicted from Hα, assuming case B recombination and considering the dust extinction as derived from Hα/Hβ. Conclusions: The Lyα emission closely associated to the massive stellar clusters is strongly affected by the properties of the surrounding neutral gas (presence of outflows, dust abundance), leading to even a range of escape fractions at different locations within the same starburst. On the other hand, we propose that the diffuse Lyα emission originates in gas ionized by the hot plasma responsible for the soft X-ray radiation, as suggested by their spatial correlation and by the measured L(Hα)/L0.4-2.4 keV ratios. Calibration of Lyα as star formation rate tracer should therefore include both effects (destruction vs. enhancement) to avoid biases in the study of galaxies at cosmological distances.

  2. The Man behind the Curtain: X-Rays Drive the UV through NIR Variability in the 2013 Active Galactic Nucleus Outburst in NGC 2617

    NASA Astrophysics Data System (ADS)

    Shappee, B. J.; Prieto, J. L.; Grupe, D.; Kochanek, C. S.; Stanek, K. Z.; De Rosa, G.; Mathur, S.; Zu, Y.; Peterson, B. M.; Pogge, R. W.; Komossa, S.; Im, M.; Jencson, J.; Holoien, T. W.-S.; Basu, U.; Beacom, J. F.; Szczygieł, D. M.; Brimacombe, J.; Adams, S.; Campillay, A.; Choi, C.; Contreras, C.; Dietrich, M.; Dubberley, M.; Elphick, M.; Foale, S.; Giustini, M.; Gonzalez, C.; Hawkins, E.; Howell, D. A.; Hsiao, E. Y.; Koss, M.; Leighly, K. M.; Morrell, N.; Mudd, D.; Mullins, D.; Nugent, J. M.; Parrent, J.; Phillips, M. M.; Pojmanski, G.; Rosing, W.; Ross, R.; Sand, D.; Terndrup, D. M.; Valenti, S.; Walker, Z.; Yoon, Y.

    2014-06-01

    After the All-Sky Automated Survey for SuperNovae discovered a significant brightening of the inner region of NGC 2617, we began a ~70 day photometric and spectroscopic monitoring campaign from the X-ray through near-infrared (NIR) wavelengths. We report that NGC 2617 went through a dramatic outburst, during which its X-ray flux increased by over an order of magnitude followed by an increase of its optical/ultraviolet (UV) continuum flux by almost an order of magnitude. NGC 2617, classified as a Seyfert 1.8 galaxy in 2003, is now a Seyfert 1 due to the appearance of broad optical emission lines and a continuum blue bump. Such "changing look active galactic nuclei (AGNs)" are rare and provide us with important insights about AGN physics. Based on the Hβ line width and the radius-luminosity relation, we estimate the mass of central black hole (BH) to be (4 ± 1) × 107 M ⊙. When we cross-correlate the light curves, we find that the disk emission lags the X-rays, with the lag becoming longer as we move from the UV (2-3 days) to the NIR (6-9 days). Also, the NIR is more heavily temporally smoothed than the UV. This can largely be explained by a simple model of a thermally emitting thin disk around a BH of the estimated mass that is illuminated by the observed, variable X-ray fluxes.

  3. X-ray Monitoring of eta Carinae: Variations on a Theme

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.

    2004-01-01

    We present monitoring observations by the Rossi X-ray Timing Explorer of the 2-10 keV X-ray emission from the supermassive star eta Carinae from 1996 through late 2003. These data cover more than one of the stellar variability cycles in temporal detail and include especially detailed monitoring through two X-ray minima. We compare the current X-ray minimum which began on June 29, 2003 to the previous X-ray minimum which began on December 15, 1997, and refine the X-ray period to 2024 days. We examine the variations in the X-ray spectrum with phase and with time, and also refine our understanding of the X-ray peaks which have a quasi-period of 84 days, with significant variation. Cycle-to-cycle differences are seen in the level of X-ray intensity and in the detailed variations of the X-ray flux on the rise to maximum just prior to the X-ray minimum. Despite these differences the similarities between the decline to minimum, the duration of the minimum, and correlated variations of the X-ray flux and other measures throughout the electromagnetic spectrum leave little doubt that that the X-ray variation is strictly periodic and produced by orbital motion as the wind from eta Carinae collides with the wind of an otherwise unseen companion.

  4. Modeling of the EUV and X-Ray Emission Spectra Induced by the Solar Winds Ions in the Heliosphere

    NASA Technical Reports Server (NTRS)

    Kharchenko, Vasili

    2005-01-01

    We have carried out investigation of the EUV and X-ray emission spectra induced in interaction between the Solar Wind (SW) and interstellar neutral gas. The spectra of most important SW ions have been computed for the charge-exchange mechanism of X-ray emission using new accurate spectroscopic data from recent laboratory measurements and theoretical calculations. Total spectra have been constructed as a sum of spectra induced in the charge-exchange collisions by individual O(exp q+), C(exp q+), N(exp q+), Ne(exp q+), Mg (exp q+) and Fe(exp q+) ions. Calculations have been performed for X-ray emission from the heliospheric hydrogen and helium gas. X-ray maps of the heliosphere have been computed. The power density of X-ray sources in the heliospheric ecliptic plane is shown for the H gas and for the He gas. Distances from the Sun (0,0) are given in AU. The helium cone is clear seen in the X-ray map of the charge-exchange emission induced by the solar wind. X-ray emission spectra detected by the Chandra X-ray telescope from the "dark" side of Moon has been identified as a X-ray background emission induced by the solar wind from the geocorona. Spectra and intensities of this charge-exchange X-rays have been compared with the heliospheric component of the X-ray background. Observations and modeling of the SW spectra induced from the geocorona indicate a strong presence of emission lines of highly charged oxygen ions. Anisotropy in distribution of heliospheric X-rays has been predicted and calculated for the regions of the fast and slow solar winds.

  5. Mrk 421 after the Giant X-Ray Outburst in 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapanadze, B.; Kapanadze, S.; Tabagari, L.

    2017-10-20

    We present the results of the Swift observations of the nearby BL Lac object Mrk 421 during 2013 November–2015 June. The source exhibited a strong long-term variability in the 0.3–10 keV band, with a maximum-to-minimum flux ratio of 13, and underwent X-ray flares by a factor of 1.8–5.2 on timescales of a few weeks or shorter. The source showed 48 instances of intraday flux variability in this period, which sometimes was observed within the 1 ks observational run. It was characterized by fractional amplitudes of 1.5(0.3)%–38.6(0.4)% and flux doubling/halving times of 2.6–20.1 hr. The X-ray flux showed a lack ofmore » correlation with the TeV flux on some occasions (strong TeV flares were not accompanied by comparable X-ray activity and vice versa), indicating that the high-energy emission in Mrk 421 was generated from an emission region more complex than a single zone. The best fits of the 0.3–10 keV spectra were mainly obtained using the log-parabola model, showing a strong spectral variability that generally followed a “harder-when-brighter” trend. The position of the synchrotron spectral energy distribution peak showed an extreme range from a few eV to ∼10 keV that happens rarely in blazars.« less

  6. Gamma-ray emission concurrent with the nova in the symbiotic binary V407 Cygni.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bouvier, A; Brandt, T J; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Buehler, R; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Carrigan, S; Casandjian, J M; Cecchi, C; Celik, O; Charles, E; Chaty, S; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Corbel, S; Corbet, R; DeCesar, M E; den Hartog, P R; Dermer, C D; de Palma, F; Digel, S W; Donato, D; do Couto e Silva, E; Drell, P S; Dubois, R; Dubus, G; Dumora, D; Favuzzi, C; Fegan, S J; Ferrara, E C; Fortin, P; Frailis, M; Fuhrmann, L; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guiriec, S; Hadasch, D; Harding, A K; Hayashida, M; Hays, E; Healey, S E; Hill, A B; Horan, D; Hughes, R E; Itoh, R; Jean, P; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Koerding, E; Kuss, M; Lande, J; Latronico, L; Lee, S-H; Lemoine-Goumard, M; Garde, M Llena; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Mehault, J; Michelson, P F; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Naumann-Godo, M; Nestoras, I; Nolan, P L; Norris, J P; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Razzaque, S; Rea, N; Reimer, A; Reimer, O; Reposeur, T; Ripken, J; Ritz, S; Romani, R W; Roth, M; Sadrozinski, H F-W; Sander, A; Parkinson, P M Saz; Scargle, J D; Schinzel, F K; Sgrò, C; Shaw, M S; Siskind, E J; Smith, D A; Smith, P D; Sokolovsky, K V; Spandre, G; Spinelli, P; Stawarz, Ł; Strickman, M S; Suson, D J; Takahashi, H; Takahashi, T; Tanaka, T; Tanaka, Y; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vandenbroucke, J; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wallace, E; Wang, P; Winer, B L; Wolff, M T; Wood, K S; Yang, Z; Ylinen, T; Ziegler, M; Maehara, H; Nishiyama, K; Kabashima, F; Bach, U; Bower, G C; Falcone, A; Forster, J R; Henden, A; Kawabata, K S; Koubsky, P; Mukai, K; Nelson, T; Oates, S R; Sakimoto, K; Sasada, M; Shenavrin, V I; Shore, S N; Skinner, G K; Sokoloski, J; Stroh, M; Tatarnikov, A M; Uemura, M; Wahlgren, G M; Yamanaka, M

    2010-08-13

    Novae are thermonuclear explosions on a white dwarf surface fueled by mass accreted from a companion star. Current physical models posit that shocked expanding gas from the nova shell can produce x-ray emission, but emission at higher energies has not been widely expected. Here, we report the Fermi Large Area Telescope detection of variable gamma-ray emission (0.1 to 10 billion electron volts) from the recently detected optical nova of the symbiotic star V407 Cygni. We propose that the material of the nova shell interacts with the dense ambient medium of the red giant primary and that particles can be accelerated effectively to produce pi(0) decay gamma-rays from proton-proton interactions. Emission involving inverse Compton scattering of the red giant radiation is also considered and is not ruled out.

  7. The high-energy view of the broad-line radio galaxy 3C 111

    NASA Astrophysics Data System (ADS)

    Ballo, L.; Braito, V.; Reeves, J. N.; Sambruna, R. M.; Tombesi, F.

    2011-12-01

    We present the analysis of Suzaku and XMM-Newton observations of the broad-line radio galaxy (BLRG) 3C 111. Its high-energy emission shows variability, a harder continuum with respect to the radio-quiet active galactic nucleus population, and weak reflection features. Suzaku found the source in a minimum flux level; a comparison with the XMM-Newton data implies an increase of a factor of 2.5 in the 0.5-10 keV flux, in the 6 months separating the two observations. The iron K complex is detected in both data sets, with rather low equivalent width(s). The intensity of the iron K complex does not respond to the change in continuum flux. An ultrafast, high-ionization outflowing gas is clearly detected in the Suzaku/X-ray Imaging Spectrometer data; the absorber is most likely unstable. Indeed, during the XMM-Newton observation, which was 6 months after, the absorber was not detected. No clear rollover in the hard X-ray emission is detected, probably due to the emergence of the jet as a dominant component in the hard X-ray band, as suggested by the detection above ˜100 keV with the GSO onboard Suzaku, although the present data do not allow us to firmly constrain the relative contribution of the different components. The fluxes observed by the γ-ray satellites CGRO and Fermi would be compatible with the putative jet component if peaking at energies E˜ 100 MeV. In the X-ray band, the jet contribution to the continuum starts to be significant only above 10 keV. If the detection of the jet component in 3C 111 is confirmed, then its relative importance in the X-ray energy band could explain the different observed properties in the high-energy emission of BLRGs, which are otherwise similar in their other multiwavelength properties. Comparison between X-ray and γ-ray data taken at different epochs suggests that the strong variability observed for 3C 111 is probably driven by a change in the primary continuum.

  8. Long-term multi-wavelength variability and correlation study of Markarian 421 from 2007 to 2009

    NASA Astrophysics Data System (ADS)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Babic, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Buson, S.; Carosi, A.; Chatterjee, A.; Clavero, R.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Giammaria, P.; Godinović, N.; González Muñoz, A.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hanabata, Y.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; López-Coto, R.; Majumdar, P.; Makariev, M.; Mallot, K.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Orito, R.; Overkemping, A.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Rhode, W.; Ribó, M.; Rico, J.; Rodriguez Garcia, J.; Saito, T.; Satalecka, K.; Schultz, C.; Schweizer, T.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Stamerra, A.; Steinbring, T.; Strzys, M.; Takalo, L.; Takami, H.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Thaele, J.; Torres, D. F.; Toyama, T.; Treves, A.; Verguilov, V.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zanin, R.

    2016-09-01

    Aims: We study the multi-band variability and correlations of the TeV blazar Mrk 421 on year timescales, which can bring additional insight on the processes responsible for its broadband emission. Methods: We observed Mrk 421 in the very high energy (VHE) γ-ray range with the Cherenkov telescope MAGIC-I from March 2007 to June 2009 for a total of 96 h of effective time after quality cuts. The VHE flux variability is quantified using several methods, including the Bayesian Block algorithm, which is applied to data from Cherenkov telescopes here for the first time. The 2.3 yr long MAGIC light curve is complemented with data from the Swift/BAT and RXTE/ASM satellites and the KVA, GASP-WEBT, OVRO, and Metsähovi telescopes from February 2007 to July 2009, allowing for an excellent characterisation of the multi-band variability and correlations over year timescales. Results: Mrk 421 was found in different γ-ray emission states during the 2.3 yr long observation period: The flux above 400 GeV spans from the minimum nightly value of (1.3 ± 0.4)×10-11 cm-2 s-1 to the maximum flux, that is about 24 times higher, at (3.1 ± 0.1)×10-10 cm-2 s-1. Flares and different levels of variability in the γ-ray light curve could be identified with the Bayesian Block algorithm. The same behaviour of a quiet and active emission was found in the X-ray light curves measured by Swift/BAT and the RXTE/ASM, with a direct correlation in time. The behaviour of the optical light curve of GASP-WEBT and the radio light curves by OVRO and Metsähovi are different as they show no coincident features with the higher energetic light curves and a less variable emission. Overall, the fractional variability increases with energy. The comparable variability in the X-ray and VHE bands and their direct correlation during both high- and low-activity periods spanning many months show that the electron populations radiating the X-ray and γ-ray photons are either the same, as expected in the synchrotron-self-Compton mechanism, or at least strongly correlated, as expected in electromagnetic cascades. The complete data set shown in Fig. 2 and the data points shown in Figs. 3 and 4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/593/A91

  9. The Remarkable Afterglow of GRB 061007: Implications for Optical Flashes and GRB Fireballs

    NASA Astrophysics Data System (ADS)

    Mundell, C. G.; Melandri, A.; Guidorzi, C.; Kobayashi, S.; Steele, I. A.; Malesani, D.; Amati, L.; D'Avanzo, P.; Bersier, D. F.; Gomboc, A.; Rol, E.; Bode, M. F.; Carter, D.; Mottram, C. J.; Monfardini, A.; Smith, R. J.; Malhotra, S.; Wang, J.; Bannister, N.; O'Brien, P. T.; Tanvir, N. R.

    2007-05-01

    We present a multiwavelength analysis of Swift GRB 061007. The 2 m robotic Faulkes Telescope South began observing 137 s after the onset of the γ-ray emission, when the optical counterpart was already decaying from R~10.3 mag, and continued observing for the next 5.5 hr. These observations begin during the final γ-ray flare and continue through and beyond a long, soft tail of γ-ray emission whose flux shows an underlying simple power-law decay identical to that seen at optical and X-ray wavelengths, with temporal slope α~1.7 (F~t-α). This remarkably simple decay in all of these bands is rare for Swift bursts, which often show much more complex light curves. We suggest the afterglow emission begins as early as 30-100 s and is contemporaneous with the ongoing variable prompt emission from the central engine, but originates from a physically distinct region dominated by the forward shock. The observed multiwavelength evolution of GRB 061007 is explained by an expanding fireball whose optical, X-ray, and late-time γ-ray emission is dominated by emission from a forward shock with typical synchrotron frequency, νm, that is already below the optical band as early as t=137 s and a cooling frequency, νc, above the X-ray band to at least t=105 s. In contrast, the typical frequency of the reverse shock lies in the radio band at early time. We suggest that the unexpected lack of bright optical flashes from the majority of Swift GRBs may be explained with a low νm originating from small microphysics parameters, ɛe and ɛB. Finally, the optical light curves imply a minimum jet opening angle θ=4.7deg, and no X-ray jet break before t~106 s makes GRB 061007 a secure outlier to spectral energy correlations.

  10. New Probe of Early Phases of Jet Formation and Evolution using Stellar Tidal Disruption Flares

    NASA Astrophysics Data System (ADS)

    Ranga Reddy Pasham, Dheeraj; van Velzen, Sjoert

    2018-01-01

    The tidal disruption of a star by a supermassive black hole can result in transient radio emission. The electrons producing these synchrotron radio flares could either be accelerated inside a relativistic jet or externally by shocks resulting from an outflow interacting with the circumnuclear medium. Until now, evidence for the internal emission mechanism has been lacking; nearly all tidal disruption flare studies have adopted the external shock model to explain the observed properties of radio flares. I will talk about a result that presents a challenge to external emission models: we discovered a cross-correlation between the soft X-ray (0.3-1 keV) and 16 GHz radio flux of Rosetta Stone tidal disruption flare ASASSN-14li. Variability features in the X-ray light curve appear again in the radio light curve, but after a time lag of about 13 days. This demonstrates that soft X-ray emitting accretion disk regulates the radio emission. This coupling appears to be inconsistent with all previous external emission models for this source but is naturally explained if the radio emission originates from a freely expanding jet. I will show that emission internal to an adiabatically expanding jet can also reproduce the observed evolution of the radio spectral energy distribution. Furthermore, both the correlation between X-ray and radio luminosity as well as our radio spectral modeling imply an approximately linear coupling between the accretion rate and jet power. I will also discuss how future tidal disruption events can help us understand how jets form and evolve in general.

  11. Extreme AGN Captured in a Low State by XMM-Newton and NuSTAR

    NASA Astrophysics Data System (ADS)

    Frederick, Sara; Kara, Erin; Reynolds, Christopher S.

    2018-01-01

    The most variable active galactic nuclei (AGN), taken together, are a compelling wellspring of interesting accretion-related phenomena and can exhibit dramatic variability in the X-ray band down to timescales of a few minutes. We present the exemplifying case study of 1H 1934-063 (z = 0.0102), a narrow-line Seyfert I (NLS1) that is among the most variable AGN ever observed with XMM-Newton. We present spectroscopic and temporal analyses of a concurrent XMM-Newton and NuSTAR 120 ks observation, during which the source exhibited a steep (factor of 1.5) plummet and subsequent full recovery of flux that we explore in detail. Combined spectral and timing results point to a dramatic change in the continuum on timescales as short as a few ks. Similar to other highly variable Seyfert 1s, this AGN is X-ray bright and displays strong reflection spectral features. We find agreement with a change in the continuum, and we rule out absorption as the cause for this dramatic variability that is observed even at NuSTAR energies. We compare measurements from detailed time-resolved spectral fitting with Fourier-based timing results to constrain coronal geometry, dynamics, and emission/absorption processes dictating the nature of this variability. We also announce the discovery of a Fe-K time lag between the hard X-ray continuum emission (1-4 keV) and relativistically-blurred reprocessing by the inner accretion flow (0.3-1 keV).

  12. Variability of faint ROSAT field sources

    NASA Astrophysics Data System (ADS)

    Nicholson, K. L.; Mittaz, J. P. D.; Mason, K. O.

    1997-03-01

    We describe a technique to search for variability in faint X-ray sources, based on Poisson statistics. This is applied to data in the field of the detached white dwarf binary RE J1629+781 which has been observed repeatedly with the ROSAT Position Sensitive Proportional Counter (PSPC) over a period of 2.5yr as part of the calibration programme of the co-aligned extreme ultraviolet (EUV) sensitive Wide Field Camera. The field contains eight other identified sources comprising four active galactic nuclei (AGN), a LINER, a probable cluster of galaxies and two stars. Variability is detected in three of the AGN, which all have redshifts between 0.35 and 0.38. The amplitude of variability ranges between one and three times the mean count rate, but is only detected on time-scales of less than 3-5 months. No variability is found in the fourth AGN which is at a redshift of 1.1, nor in the LINER galaxy, Arp 185. The X-ray emission from Arp 185 is relatively bright, and the upper limit to flux variations is 27 per cent of the mean flux. This result is consistent with a non-AGN origin for the X-ray emission from this galaxy. Variability is detected from one of the identified stars in the field, of spectral type dM5.5e. No variations were seen in the flux of the other star (spectral type G) or from the probable cluster of galaxies.

  13. Variability of FUV Emission Line in Classical T Tauri Stars as a Diagnostic for Disc Accretion

    NASA Astrophysics Data System (ADS)

    Ramkumar, B.; Johns-Krull, C. M.

    2005-12-01

    We present our results of FUV emission line variability studies done on four classical T Tauri stars. We have used the IUE Final Archive spectra of pre-main sequence stars to analyze the sample of four stars BP Tau, DR Tau, RU Lup and RY Tau where each of these low-resolution (R ˜6 Å) spectra was observed in the IUE short-wavelength band pass (1150--1980Å). Given a broad time line of multiple observations being available from the IUE Final archive, an intrinsic variability study has been possible with this sample. Our results indicate that the transition region lines \\ion{Si}{4} and \\ion{C}{4}, produced near the accretion shocks at ˜105 K, have a strong correlation between them in all four stars except DR Tau. We also observe a strong correlation between \\ion{C}{4} & \\ion{He}{2} on our entire sample with a correlation coefficient of 0.549 (false alarm probability = 7.9 x 10-2) or higher. In addition, \\ion{He}{2} correlates with the molecular hydrogen (1503Å) line in all but RU Lup. If the \\ion{He}{2} lines are produced because of X-ray ionization then the observed molecular hydrogen emission is indeed controlled by X-ray ionization and therefore \\ion{He}{2} could serve as an X-ray proxy for future studies. Also, our correlation results strengthen the fact that \\ion{C}{4} is a good predictor of \\ion{Si}{4} and have a common origin i.e. in accretion shocks in the star formation process.

  14. Comparative study of X-ray emission from plasma focus relative to different preionization schemes

    NASA Astrophysics Data System (ADS)

    Ahmad, S.; Qayyum, A.; Hassan, M.; Zakaullah, M.

    2017-07-01

    A 2.7-kJ Mather-type plasma focus has been investigated for X-ray emission with preionization produced by an α-source, a β-source, and a shunt resistor. Time-resolved and time integrated measurements are carried out using a PIN-diode-based X-ray spectrometer and pinhole camera. The β-source (28Ni63) assisted preionization enhances the X-ray emission up to 25%, while preionization induced by depleted uranium (92U238) increases both Cu-Kα and total X-ray yield of about 100%. The preionization caused by the optimum shunt resistor enhances the Cu-Kα and total X-ray yield of about 53%. It is found that preionization also broadens the working pressure range for the high X-ray yield and improves the shot-to-shot reproducibility of the system. Pinhole images reveal that the X-ray emission from the anode tip is dominant owing to impact of electron bombardment, while the X-ray emission from hot spots is also visible.

  15. An Intriguing Convex Break in the EGRET SED of Mrk 421

    NASA Technical Reports Server (NTRS)

    Nandikotkur, Giridhar; Jahoda, Keith M.; Georganopoulos, M.; Hartman, R. C.; Mukherjee, R.; Thompson, D. J.; Swank, Jean H.

    2007-01-01

    Based upon analysis of the entire EGRET data from Mrk 421, it is found that the time-averaged spectra are inconsistent with the predictions of current theoretical models that have had success in describing simultaneous X-ray/TeV observations, and suggest additional components in the GeV band, as well as complex time variability. Current theoretical pictures explain the GeV emission as comptonization of the synchrotron photons in the jet, and predict hard spectra that should join smoothly with the TeV emission. Our analysis shows that the situation is more complex. The spectrum ranges from hard to soft during individual epochs, and shows a convext break in the aggregated data. We also present the mission-averaged EGRET spectrum for PKS 2155-304, which shows a similar (but not as pronounced) convex curvature. We discuss a series of possible explanations for the 10(exp 22) - 10(exp 23) HZ declining part of the EGRET nu F(sub nu), spectrum for Mrk 421, and suggest that it is synchrotron emission from the high energy tail of the electron population that produces the X-rays during the highest X-ray states. Such multi-MeV photons are produced by electrons accelerated close to the limit of diffusive shock acceleration. Simultaneous GLAST and X-ray observations of high X-ray states will address the issue of the convex curvature in the future.

  16. The 3 megasecond Chandra campaign on Sgr A*: a census of x-ray flaring activity from the galactic center

    NASA Astrophysics Data System (ADS)

    Neilsen, Joey

    Over the last decade, X-ray observations of Sgr A* have revealed a black hole in a deep sleep, punctuated roughly once per day by brief flares. The extreme X-ray faintness of this supermassive black hole has been a long-standing puzzle in black hole accretion. To study the accretion processes in the Galactic Center, Chandra (in concert with numerous ground- and space-based observatories) undertook a 3 Ms campaign on Sgr A* in 2012. With its excellent observing cadence, sensitivity, and spectral resolution, this Chandra X-ray Visionary Project (XVP) provides an unprecedented opportunity to study the behavior of our closest supermassive black hole. We present a progress report from our ongoing study of X-ray flares, including the brightest flare ever seen from Sgr A*. Focusing on the statistics of the flares, the quiescent emission, and the relationship between the X-ray and the infrared, we discuss the physical implications of X-ray variability in the Galactic Center.

  17. The 3 Megasecond Chandra Campaign on Sgr A*: A Census of X-ray Flaring Activity from the Galactic Center

    NASA Astrophysics Data System (ADS)

    Neilsen, Joseph; Nowak, Michael; Gammie, Charles F.; Dexter, Jason; Markoff, Sera; Haggard, Daryl; Nayakshin, Sergei; Wang, Q. Daniel; Grosso, N.; Porquet, D.; Tomsick, John; Degenaar, Nathalie; Fragile, P. Christopher; Houck, John C.; Wijnands, Rudy; Miller, Jon M.; Baganoff, Frederick K.

    2014-08-01

    Over the last decade, X-ray observations of Sgr A* have revealed a black hole in a deep sleep, punctuated roughly once per day by brief ares. The extreme X-ray faintness of this supermassive black hole has been a long-standing puzzle in black hole accretion. To study the accretion processes in the Galactic Center, Chandra (in concert with numerous ground- and space-based observatories) undertook a 3 Ms campaign on Sgr A* in 2012. With its excellent observing cadence, sensitivity, and spectral resolution, this Chandra X-ray Visionary Project (XVP) provides an unprecedented opportunity to study the behavior of our closest supermassive black hole. We present a progress report from our ongoing study of X-ray flares, including one of the brightest flares ever seen from Sgr A*. Focusing on the statistics of the flares, the quiescent emission, and the relationship between the X-ray and the infrared, we discuss the physical implications of X-ray variability in the Galactic Center.

  18. X-ray studies of quasars with the Einstein Observatory. II

    NASA Technical Reports Server (NTRS)

    Zamorani, G.; Maccacaro, T.; Henry, J. P.; Tananbaum, H.; Soltan, A.; Liebert, J.; Stocke, J.; Strittmatter, P. A.; Weymann, R. J.; Smith, M. G.

    1981-01-01

    X-ray observations of 107 quasars have been carried out with the Einstein Observatory, and 79 have been detected. A correlation between optical emission and X-ray emission is found; and for radio-loud quasars, the data show a correlation between radio emission and X-ray emission. For a given optical luminosity, the average X-ray emission of radio-loud quasars is about three times higher than that of radio-quiet quasars. The data also suggest that the ratio of X-ray to optical luminosity is decreasing with increasing redshift and/or optical luminosity. The data support the picture in which luminosity evolution, rather than pure density evolution, describes the quasar behavior as a function of redshift.

  19. Periodic Emission from the Gamma-ray Binary 1FGL J1018.6-5856

    NASA Technical Reports Server (NTRS)

    Celic, O.; Corbet, R. H. D.; Donato, D.; Ferrara, E. C.; Gehrels, N.; Harding, A. K.; Hays, E.; McEnery, J. E.; Thompson, D. J.; Troja, E.

    2012-01-01

    Gamma-ray binaries are stellar systems containing a neutron star or black hole with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy. A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that IFGL JI018.6-5856 exhibits intensity and spectral modulation with a 16.6 day period. We identified a variable X-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an 06V f) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. IFGL J1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.

  20. Periodic emission from the gamma-ray binary 1FGL J1018.6-5856.

    PubMed

    Fermi LAT Collaboration; Ackermann, M; Ajello, M; Ballet, J; Barbiellini, G; Bastieri, D; Belfiore, A; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Cavazzuti, E; Cecchi, C; Çelik, Ö; Charles, E; Chaty, S; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Corbel, S; Corbet, R H D; Cutini, S; de Luca, A; den Hartog, P R; de Palma, F; Dermer, C D; Digel, S W; do Couto e Silva, E; Donato, D; Drell, P S; Drlica-Wagner, A; Dubois, R; Dubus, G; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Fortin, P; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hill, A B; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, T J; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Mazziotta, M N; McEnery, J E; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Naumann-Godo, M; Norris, J P; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ozaki, M; Paneque, D; Parent, D; Pesce-Rollins, M; Pierbattista, M; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Ritz, S; Romani, R W; Roth, M; Saz Parkinson, P M; Sgrò, C; Siskind, E J; Spandre, G; Spinelli, P; Suson, D J; Takahashi, H; Tanaka, T; Thayer, J G; Thayer, J B; Thompson, D J; Tibaldo, L; Tinivella, M; Torres, D F; Tosti, G; Troja, E; Uchiyama, Y; Usher, T L; Vandenbroucke, J; Vianello, G; Vitale, V; Waite, A P; Winer, B L; Wood, K S; Wood, M; Yang, Z; Zimmer, S; Coe, M J; Di Mille, F; Edwards, P G; Filipović, M D; Payne, J L; Stevens, J; Torres, M A P

    2012-01-13

    Gamma-ray binaries are stellar systems containing a neutron star or black hole, with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy. A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that 1FGL J1018.6-5856 exhibits intensity and spectral modulation with a 16.6-day period. We identified a variable x-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an O6V((f)) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. 1FGL J1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.

  1. Periodic Emission from the Gamma-Ray Binary 1FGL J1018.6-5856

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Gamma-ray binaries are stellar systems containing a neutron star or black hole, with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy, A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that 1FGL ]1018.6-5856 exhibits intensity and spectral modulation with a 16.6 day period. We identified a variable x-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an O6V((f)) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. 1FGL ]1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.

  2. Joint XMM-Newton, Chandra, and RXTE Observations of Cyg X-1 at Phase Zero

    NASA Technical Reports Server (NTRS)

    Pottschmidt, Katja

    2008-01-01

    We present first results of simultaneous observations of the high mass X-ray binary Cyg X-1 for 50 ks with XMM-Newton, Chandra-HETGS and RXTE in 2008 April. The observations are centered on phase 0 of the 5.6 d orbit when pronounced dips in the X-ray emission from the black hole are known to occur. The dips are due to highly variable absorption in the accretion stream from the O-star companion to the black hole. Compared to previous high resolution spectroscopy studies of the dip and non-dip emission with Chandra, the addition of XMM-Newton data allows for a better determination of the continuum, especially through the broad iron line region (with RXTE constraining the greater than 10 keV continuum).

  3. Chandra Deep X-ray Observation of a Typical Galactic Plane Region and Near-Infrared Identification

    NASA Technical Reports Server (NTRS)

    Ebisawa, K.; Tsujimoto, M.; Paizis, A.; Hamaguichi, K.; Bamba, A.; Cutri, R.; Kaneda, H.; Maeda, Y.; Sato, G.; Senda, A.

    2004-01-01

    Using the Chandra Advanced CCD Imaging Spectrometer Imaging array (ACIS-I), we have carried out a deep hard X-ray observation of the Galactic plane region at (l,b) approx. (28.5 deg,0.0 deg), where no discrete X-ray source has been reported previously. We have detected 274 new point X-ray sources (4 sigma confidence) as well as strong Galactic diffuse emission within two partidly overlapping ACIS-I fields (approx. 250 sq arcmin in total). The point source sensitivity was approx. 3 x 10(exp -15)ergs/s/sq cm in the hard X-ray band (2-10 keV and approx. 2 x 10(exp -16) ergs/s/sq cm in the soft band (0.5-2 keV). Sum of all the detected point source fluxes account for only approx. 10 % of the total X-ray fluxes in the field of view. In order to explain the total X-ray fluxes by a superposition of fainter point sources, an extremely rapid increase of the source population is required below our sensitivity limit, which is hardly reconciled with any source distribution in the Galactic plane. Therefore, we conclude that X-ray emission from the Galactic plane has truly diffuse origin. Only 26 point sources were detected both in the soft and hard bands, indicating that there are two distinct classes of the X-ray sources distinguished by the spectral hardness ratio. Surface number density of the hard sources is only slightly higher than observed at the high Galactic latitude regions, strongly suggesting that majority of the hard X-ray sources are active galaxies seen through the Galactic plane. Following the Chandra observation, we have performed a near-infrared (NIR) survey with SOFI at ESO/NTT to identify these new X-ray sources. Since the Galactic plane is opaque in NIR, we did not see the background extragalactic sources in NIR. In fact, only 22 % of the hard sources had NIR counterparts which are most likely to be Galactic origin. Composite X-ray energy spectrum of those hard X-ray sources having NIR counterparts exhibits a narrow approx. 6.7 keV iron emission line, which is a signature of Galactic quiescent cataclysmic variables (CVs).

  4. Unprecedented study of the broadband emission of Mrk 421 during flaring activity in March 2010

    DOE PAGES

    Aleksić, J.; Ansoldi, S.; Antonelli, L. A.; ...

    2015-05-27

    Because of its proximity, Mrk 421 is one of the best sources on which to study the nature of BL Lac objects. Its proximity allows us to characterize its broadband spectral energy distribution (SED). Here, the goal is to better understand the mechanisms responsible for the broadband emission and the temporal evolution of Mrk 421. These mechanisms may also apply to more distant blazars that cannot be studied with the same level of detail. A flare occurring in March 2010 was observed for 13 consecutive days (from MJD 55 265 to MJD 55 277) with unprecedented wavelength coverage from radiomore » to very high energy (VHE; E> 100 GeV) γ-rays with MAGIC, VERITAS, Whipple, Fermi-LAT, MAXI, RXTE, Swift, GASP-WEBT, and several optical and radio telescopes. We modeled the day-scale SEDs with one-zone and two-zone synchrotron self-Compton (SSC) models, investigated the physical parameters, and evaluated whether the observed broadband SED variability can be associated with variations in the relativistic particle population. As a result, the activity of Mrk 421 initially was high and then slowly decreased during the 13-day period. The flux variability was remarkable at the X-ray and VHE bands, but it was minor or not significant at the other bands. The variability in optical polarization was also minor. These observations revealed an almost linear correlation between the X-ray flux at the 2–10 keV band and the VHE γ-ray flux above 200 GeV, consistent with the γ-rays being produced by inverse-Compton scattering in the Klein-Nishina regime in the framework of SSC models. The one-zone SSC model can describe the SED of each day for the 13 consecutive days reasonably well, which once more shows the success of this standard theoretical scenario to describe the SEDs of VHE BL Lacs such as Mrk 421. This flaring activity is also very well described by a two-zone SSC model, where one zone is responsible for the quiescent emission, while the other smaller zone, which is spatially separated from the first, contributes to the daily variable emission occurring at X-rays and VHE γ-rays. The second blob is assumed to have a smaller volume and a narrow electron energy distribution with 3 × 104« less

  5. X-Ray Emission from the MUSCLES Exoplanet Host Stars

    NASA Astrophysics Data System (ADS)

    Brown, Alexander; Schneider, P. Christian; France, Kevin; Loyd, Parke; MUSCLES Team

    2016-07-01

    The MUSCLES (Measurements of the Ultraviolet Spectral Characteristics of Low-mass Exoplanetary Systems) project is a multi-spectral-region investigation of the high-energy (UV/X-ray) radiation fields of K dwarf / M dwarf exoplanet host stars and how this radiation will influence the evolution of the exoplanet atmospheres. As part of this project we have used Chandra and XMM-Newton to study the X-ray emission from ten (7 M dwarf and 3 K dwarf), nearby (within 15 pc), low mass exoplanet hosts. Typically, we have coordinated the X-ray observations with HST-COS FUV and ground-based optical spectroscopy of the same targets. Even though these stars are generally considered to be inactive we find evidence for significant X-ray variability for many of the M dwarfs observed. In this poster we illustrate the coronal properties of the stars using example light-curves and spectral analyses. The UV and X-ray data are crucial input to the modeling the complete spectral energy distributions for exoplanet studies.This work was supported by Chandra grants GO4-15041X and GO5-16155X and NASA XMM grant NNX16AC09G to the University of Colorado at Boulder. The overall MUSCLES project was undertaken by HST GO programs 12464 and 13650 and supported by STScI grants HST-GO-12464.01 and HST-GO-13650.01 . P.C.S. is supported by an ESA Research Fellowship.

  6. Light curve and SED modeling of the gamma-ray binary 1FGL J1018.6–5856: Constraints on the orbital geometry and relativistic flow

    DOE PAGES

    An, Hongjun; Romani, Roger W.

    2017-04-04

    We present broadband spectral energy distributions and light curves of the gamma-ray binary 1FGL J1018.6–5856 measured in the X-ray and the gamma-ray bands. We find that the orbital modulation in the low-energy gamma-ray band is similar to that in the X-ray band, suggesting a common spectral component. However, above a GeV the orbital light curve changes significantly. We suggest that the GeV band contains significant flux from a pulsar magnetosphere, while the X-ray to TeV light curves are dominated by synchrotron and Compton emission from an intrabinary shock (IBS). We find that a simple one-zone model is inadequate to explainmore » the IBS emission, but that beamed Synchrotron-self Compton radiation from adiabatically accelerated plasma in the shocked pulsar wind can reproduce the complex multiband light curves, including the variable X-ray spike coincident with the gamma-ray maximum. Furthermore, the model requires an inclination of ~50° and an orbital eccentricity of ~0.35, consistent with the limited constraints from existing optical observations. This picture motivates searches for pulsations from the energetic young pulsar powering the wind shock.« less

  7. Light curve and SED modeling of the gamma-ray binary 1FGL J1018.6–5856: Constraints on the orbital geometry and relativistic flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Hongjun; Romani, Roger W.

    We present broadband spectral energy distributions and light curves of the gamma-ray binary 1FGL J1018.6–5856 measured in the X-ray and the gamma-ray bands. We find that the orbital modulation in the low-energy gamma-ray band is similar to that in the X-ray band, suggesting a common spectral component. However, above a GeV the orbital light curve changes significantly. We suggest that the GeV band contains significant flux from a pulsar magnetosphere, while the X-ray to TeV light curves are dominated by synchrotron and Compton emission from an intrabinary shock (IBS). We find that a simple one-zone model is inadequate to explainmore » the IBS emission, but that beamed Synchrotron-self Compton radiation from adiabatically accelerated plasma in the shocked pulsar wind can reproduce the complex multiband light curves, including the variable X-ray spike coincident with the gamma-ray maximum. Furthermore, the model requires an inclination of ~50° and an orbital eccentricity of ~0.35, consistent with the limited constraints from existing optical observations. This picture motivates searches for pulsations from the energetic young pulsar powering the wind shock.« less

  8. Light Curve and SED Modeling of the Gamma-Ray Binary 1FGL J1018.6–5856: Constraints on the Orbital Geometry and Relativistic Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Hongjun; Romani, Roger W., E-mail: hjan@chungbuk.ac.kr

    We present broadband spectral energy distributions and light curves of the gamma-ray binary 1FGL J1018.6−5856 measured in the X-ray and the gamma-ray bands. We find that the orbital modulation in the low-energy gamma-ray band is similar to that in the X-ray band, suggesting a common spectral component. However, above a GeV the orbital light curve changes significantly. We suggest that the GeV band contains significant flux from a pulsar magnetosphere, while the X-ray to TeV light curves are dominated by synchrotron and Compton emission from an intrabinary shock (IBS). We find that a simple one-zone model is inadequate to explainmore » the IBS emission, but that beamed Synchrotron-self Compton radiation from adiabatically accelerated plasma in the shocked pulsar wind can reproduce the complex multiband light curves, including the variable X-ray spike coincident with the gamma-ray maximum. The model requires an inclination of ∼50° and an orbital eccentricity of ∼0.35, consistent with the limited constraints from existing optical observations. This picture motivates searches for pulsations from the energetic young pulsar powering the wind shock.« less

  9. X-MIME: An Imaging X-ray Spectrometer for Detailed Study of Jupiter's Icy Moons and the Planet's X-ray Aurora

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; Ramsey, B. D.; Waite, J. H.; Rehak, P.; Johnson, R. E.; Cooper, J. F.; Swartz, D. A.

    2004-01-01

    Remote observations with the Chandra X-ray Observatory and the XMM-Newton Observatory have shown that the Jovian system is a source of x-rays with a rich and complicated structure. The planet's polar auroral zones and its disk are powerful sources of x-ray emission. Chandra observations revealed x-ray emission from the Io Plasma Torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from these moons is certainly due to bombardment of their surfaces of highly energetic protons, oxygen and sulfur ions from the region near the Torus exciting atoms in their surfaces and leading to fluorescent x-ray emission lines. Although the x-ray emission from the Galilean moons is faint when observed from Earth orbit, an imaging x-ray spectrometer in orbit around these moons, operating at 200 eV and above with 150 eV energy resolution, would provide a detailed mapping (down to 40 m spatial resolution) of the elemental composition in their surfaces. Such maps would provide important constraints on formation and evolution scenarios for the surfaces of these moons. Here we describe the characteristics of X-MIME, an imaging x-ray spectrometer under going a feasibility study for the JIMO mission, with the ultimate goal of providing unprecedented x-ray studies of the elemental composition of the surfaces of Jupiter's icy moons and Io, as well as of Jupiter's auroral x-ray emission.

  10. First Hard X-Ray Detection of the Non-Thermal Emission Around the Arches Cluster: Morphology and Spectral Studies With NuSTAR

    NASA Technical Reports Server (NTRS)

    Krivonos, Roman A.; Tomsick, John A.; Bauer, Franz E.; Baganoff, Frederick K.; Barriere, Nicolas M.; Bodaghee, Arash; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Grefenstette, Brian W.; hide

    2014-01-01

    The Arches cluster is a young, densely packed massive star cluster in our Galaxy that shows a high level of star formation activity. The nature of the extended non-thermal X-ray emission around the cluster remains unclear. The observed bright Fe K(alpha) line emission at 6.4 keV from material that is neutral or in a low ionization state can be produced either by X-ray photoionization or by cosmic-ray particle bombardment or both. In this paper, we report on the first detection of the extended emission around the Arches cluster above 10 keV with the NuSTAR mission, and present results on its morphology and spectrum. The spatial distribution of the hard X-ray emission is found to be consistent with the broad region around the cluster where the 6.4 keV line is observed. The interpretation of the hard X-ray emission within the context of the X-ray reflection model puts a strong constraint on the luminosity of the possible illuminating hard X-ray source. The properties of the observed emission are also in broad agreement with the low-energy cosmic-ray proton excitation scenario. Key words: cosmic rays - Galaxy: center - ISM: general - X-rays: individual (Arches cluster)

  11. Coronae on stars

    NASA Technical Reports Server (NTRS)

    Haisch, B. M.

    1986-01-01

    Three lines of evidence are noted to point to a flare heating source for stellar coronae: a strong correlation between time-averaged flare energy release and coronal X-ray luminosity, the high temperature flare-like component of the spectral signature of coronal X-ray emission, and the observed short time scale variability that indicates continuous flare activity. It is presently suggested that flares may represent only the extreme high energy tail of a continuous distribution of coronal energy release events.

  12. SPITZER IRAC OBSERVATIONS OF IR EXCESS IN HOLMBERG IX X-1: A CIRCUMBINARY DISK OR A VARIABLE JET?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudik, R. P.; Berghea, C. T.; Roberts, T. P.

    2016-11-01

    We present Spitzer Infrared Array Camera photometric observations of the ultraluminous X-ray source (ULX, X-1) in Holmberg IX. We construct a spectral energy distribution (SED) for Holmberg IX X-1 based on published optical, UV, and X-ray data combined with the IR data from this analysis. We modeled the X-ray and optical data with disk and stellar models; however, we find a clear IR excess in the ULX SED that cannot be explained by fits or extrapolations of any of these models. Instead, further analysis suggests that the IR excess results from dust emission, possibly a circumbinary disk, or a variablemore » jet.« less

  13. High-efficiency in situ resonant inelastic x-ray scattering (iRIXS) endstation at the Advanced Light Source

    NASA Astrophysics Data System (ADS)

    Qiao, Ruimin; Li, Qinghao; Zhuo, Zengqing; Sallis, Shawn; Fuchs, Oliver; Blum, Monika; Weinhardt, Lothar; Heske, Clemens; Pepper, John; Jones, Michael; Brown, Adam; Spucces, Adrian; Chow, Ken; Smith, Brian; Glans, Per-Anders; Chen, Yanxue; Yan, Shishen; Pan, Feng; Piper, Louis F. J.; Denlinger, Jonathan; Guo, Jinghua; Hussain, Zahid; Chuang, Yi-De; Yang, Wanli

    2017-03-01

    An endstation with two high-efficiency soft x-ray spectrographs was developed at Beamline 8.0.1 of the Advanced Light Source, Lawrence Berkeley National Laboratory. The endstation is capable of performing soft x-ray absorption spectroscopy, emission spectroscopy, and, in particular, resonant inelastic soft x-ray scattering (RIXS). Two slit-less variable line-spacing grating spectrographs are installed at different detection geometries. The endstation covers the photon energy range from 80 to 1500 eV. For studying transition-metal oxides, the large detection energy window allows a simultaneous collection of x-ray emission spectra with energies ranging from the O K-edge to the Ni L-edge without moving any mechanical components. The record-high efficiency enables the recording of comprehensive two-dimensional RIXS maps with good statistics within a short acquisition time. By virtue of the large energy window and high throughput of the spectrographs, partial fluorescence yield and inverse partial fluorescence yield signals could be obtained for all transition metal L-edges including Mn. Moreover, the different geometries of these two spectrographs (parallel and perpendicular to the horizontal polarization of the beamline) provide contrasts in RIXS features with two different momentum transfers.

  14. Hard X-ray Flux from Low-Mass Stars in the Cygnus OB2 Association

    NASA Astrophysics Data System (ADS)

    Caramazza, M.; Drake, J. J.; Micela, G.; Flaccomio, E.

    2009-05-01

    We investigate the X-ray emission in the 20-40 keV band expected from the flaring low-mass stellar population in Cygnus OB2 assuming that the observed soft X-ray emission is due to a superposition of flares and that the ratio of hard X-ray to soft X-ray emission is described by a scaling found for solar flares by Isola and co-workers. We estimate a low-mass stellar hard X-ray flux in the 20-40 keV band in the range ~7×1031-7×1033 erg/s and speculate the limit of this values. Hard X-ray emission could lie at a level not much below the current observed flux upper limits for Cygnus OB2. Simbol-X, with its broad energy band (10-100 keV) and its sensitivity should be able to detect this emission and would provide insights into the hard X-ray production of flares on pre-main sequence stars.

  15. Simultaneous Chandra and VLA Observations of the Transitional Millisecond Pulsar PSR J1023+0038: Anti-correlated X-Ray and Radio Variability

    NASA Astrophysics Data System (ADS)

    Bogdanov, Slavko; Deller, Adam T.; Miller-Jones, James C. A.; Archibald, Anne M.; Hessels, Jason W. T.; Jaodand, Amruta; Patruno, Alessandro; Bassa, Cees; D’Angelo, Caroline

    2018-03-01

    We present coordinated Chandra X-ray Observatory and Karl G. Jansky Very Large Array observations of the transitional millisecond pulsar PSR J1023+0038 in its low-luminosity accreting state. The unprecedented five hours of strictly simultaneous X-ray and radio continuum coverage for the first time unambiguously show a highly reproducible, anti-correlated variability pattern. The characteristic switches from the X-ray high mode into a low mode are always accompanied by a radio brightening with a duration that closely matches the X-ray low mode interval. This behavior cannot be explained by a canonical inflow/outflow accretion model where the radiated emission and the jet luminosity are powered by, and positively correlated with, the available accretion energy. We interpret this phenomenology as alternating episodes of low-level accretion onto the neutron star during the X-ray high mode that are interrupted by rapid ejections of plasma by the active rotation-powered pulsar, possibly initiated by a reconfiguration of the pulsar magnetosphere, that cause a transition to a less X-ray luminous mode. The observed anti-correlation between radio and X-ray luminosity has an additional consequence: transitional MSPs can make excursions into a region of the radio/X-ray luminosity plane previously thought to be occupied solely by black hole X-ray binary sources. This complicates the use of this luminosity relation for identifying candidate black holes, suggesting the need for additional discriminants when attempting to establish the true nature of the accretor.

  16. Highly variable AGN from the XMM-Newton slew survey

    NASA Astrophysics Data System (ADS)

    Strotjohann, N. L.; Saxton, R. D.; Starling, R. L. C.; Esquej, P.; Read, A. M.; Evans, P. A.; Miniutti, G.

    2016-07-01

    Aims: We investigate the properties of a variability-selected complete sample of active galactic nuclei (AGN) in order to identify the mechanisms which cause large amplitude X-ray variability on timescales of years. Methods: A complete sample of 24 sources was constructed, from AGN which changed their soft X-ray luminosity by more than one order of magnitude over 5-20 years between ROSAT observations and the XMM-Newton slew survey. Follow-up observations were obtained with the Swift satellite. We analysed the spectra of these AGN at the Swift and XMM observation epochs, where six sources had continued to display extreme variability. Multiwavelength data are used to calculate black hole masses and the relative X-ray brightness αOX. Results: After removal of two probable spurious sources, we find that the sample has global properties which differ little from a non-varying control sample drawn from the wider XMM-slew/ROSAT/Veron sample of all secure AGN detections. A wide range of AGN types are represented in the varying sample. The black hole mass distributions for the varying and non-varying sample are not significantly different. This suggests that long timescale variability is not strongly affected by black hole mass. There is marginal evidence that the variable sources have a lower redshift (2σ) and X-ray luminosity (1.7σ). Apart from two radio-loud sources, the sample sources have normal optical-X-ray ratios (αOX) when at their peak but are X-ray weak during their lowest flux measurements. Conclusions: Drawing on our results and other studies, we are able to identify a variety of variability mechanisms at play: tidal disruption events, jet activity, changes in absorption, thermal emission from the inner accretion disc, and variable accretion disc reflection. Little evidence for strong absorption is seen in the majority of the sample and single-component absorption can be excluded as the mechanism for most sources.

  17. Distance and spectrum of the Apollo gamma-ray burst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilman, D.; Metzger, A.E.; Parker, R.H.

    1980-03-15

    The ..gamma..-ray spectrometer on Apollo 16 obtained spectral information with good energy resolution from more than 2500 burst photons in the energy range 0.06--5.16 MeV. The spectrum from 2 keV to 2 MeV, observed at X-ray energies by the Apollo X-ray spectrometer, is fitted by a thermal bremsstrahlung spectrum with kT=500 keV. The success of the fit implies that the source is optically thin, and it follows that it must be closer than 50 pc. Absence of spectral variability suggests that the burst results from isothermal changes in emission measure.

  18. The flaring activity of Markarian 421 during April 2000

    NASA Astrophysics Data System (ADS)

    Fegan, D. J.; VERITAS Collaboration

    2001-08-01

    Evidence for correlated TeV γ and X-ray flaring of the extreme blazar Mrk421 during April 2000 is presented and discussed. The remarkably persistent TeV flare of April 30th 2000 (40 σ significance), exhibiting structure over almost six hours of continuous observation, is analysed in detail. 1 Extreme BL Lac objects The most extreme members of the Active Galactic Nucleus (AGN) family are BL Lac objects and optically violently variable (OVV) quasars, collectively known as blazars. These objects are dominated by the presence of relativistic jets. For jets fortuitously aligned with an observers line of sight, emission may exhibit dramatic variability over very short time scales, in turn implying remarkably compact emission regions. For blazars, the Spectral Energy Distribution (SED) is dominated by non-thermal continuum emission, extending from radio to TeV gamma rays. The broadband nature of the blazar emission offers unique insights into energetic physical processes at work in a very compact region, close to the base of the jet and near the underlying central engine, most likely a supermassive black hole. BL Lacs are very effectively characterized on the basis of their SED shape. X-ray and radio flux limited surveys apear to display a bimodal distribution of properties, with LBL (Low-energy peaked, or "Red" BL Lacs) having synchrotron peaks in the IR-optical bands, and HBL (High-energy peaked, or "Blue" BL Lacs) in the UV to soft X-ray band. Recent comprehensive surveys such as DXRBS, REX and RGB have extended, by almost two orders of magnitude, the range of observable synchrotron peak frequencies. For blazar class objects, broadband emission confirms that the synchrotron peak may span the entire IR Xray range, thus accounting for the multi-frequency emission properties of this class of object. Mrk421, Mrk501, 1ES2344 and 1H1426 all exhibit broadband emission properties, high

  19. An X-ray view of HD 166734, a massive supergiant system

    NASA Astrophysics Data System (ADS)

    Nazé, Yaël; Gosset, Eric; Mahy, Laurent; Parkin, Elliot Ross

    2017-11-01

    The X-ray emission of the O+O binary HD 166734 was monitored using Swift and XMM-Newton observatories, leading to the discovery of phase-locked variations. The presence of an f line in the He-like triplets further supports a wind-wind collision as the main source of the X-rays in HD 166734. While temperature and absorption do not vary significantly along the orbit, the X-ray emission strength varies by one order of magnitude, with a long minimum state (Δ(φ) 0.1) occurring after a steep decrease. The flux at minimum is compatible with the intrinsic emission of the O-stars in the system, suggesting a possible disappearance of colliding wind emission. While this minimum cannot be explained by eclipse or occultation effects, a shock collapse may occur at periastron in view of the wind properties. Afterwards, the recovery is long, with an X-ray flux proportional to the separation d (in hard band) or to d2 (in soft band). This is incompatible with an adiabatic nature for the collision (which would instead lead to FX ∝ 1 /d), but could be reconciled with a radiative character of the collision, though predicted temperatures are lower and more variable than in observations. An increase in flux around φ 0.65 and the global asymmetry of the light curve remain unexplained, however. Based on observations collected with Swift and the ESA science mission XMM-Newton, an ESA Science Mission with instruments and contributions directly funded by ESA Member States and the USA (NASA).

  20. SWIFT Observations of a Far UV Luminosity Component in SS433

    NASA Technical Reports Server (NTRS)

    Cannizzo, J. K.; Boyd, P. T.; Dolan, J. F.

    2007-01-01

    SS433 is a binary system showing relativistic Doppler shifts in its two sets of emission lines. The origin of its UV continuum is not well established. We observed SS433 to determine the emission mechanism responsible for its far UV spectrum. The source was observed at several different phases of both its 13 d orbital period and 162.5 d precession period using the UVOT and XRT detector systems on Swift. The far UV spectrum down to 1880 Angstrom lies significantly above the spectral flux distribution predicted by extrapolating the reddened blackbody continuum that fits the spectrum above 3500 Angstroms. The intensity of the far UV flux varies over a period of days and the variability is correlated with the variability of the soft X-ray flux from the source. An emission mechanism in addition to those previously detected in the optical and X-ray regions must exist in the far UV spectrum of SS433.

  1. A Chandra Survey of Milky Way Globular Clusters. I. Emissivity and Abundance of Weak X-Ray Sources

    NASA Astrophysics Data System (ADS)

    Cheng, Zhongqun; Li, Zhiyuan; Xu, Xiaojie; Li, Xiangdong

    2018-05-01

    Based on archival Chandra data, we have carried out an X-ray survey of 69, or nearly half the known population of, Milky Way globular clusters (GCs), focusing on weak X-ray sources, mainly cataclysmic variables (CVs) and coronally active binaries (ABs). Using the cumulative X-ray luminosity per unit stellar mass (i.e., X-ray emissivity) as a proxy of the source abundance, we demonstrate a paucity (lower by 41% ± 27% on average) of weak X-ray sources in most GCs relative to the field, which is represented by the Solar Neighborhood and Local Group dwarf elliptical galaxies. We also revisit the mutual correlations among the cumulative X-ray luminosity (L X), cluster mass (M), and stellar encounter rate (Γ), finding {L}{{X}}\\propto {M}0.74+/- 0.13, {L}{{X}}\\propto {{{Γ }}}0.67+/- 0.07 and {{Γ }}\\propto {M}1.28+/- 0.17. The three quantities can further be expressed as {L}{{X}}\\propto {M}0.64+/- 0.12 {{{Γ }}}0.19+/- 0.07, which indicates that the dynamical formation of CVs and ABs through stellar encounters in GCs is less dominant than previously suggested, and that the primordial formation channel has a substantial contribution. Taking these aspects together, we suggest that a large fraction of primordial, soft binaries have been disrupted in binary–single or binary–binary stellar interactions before they could otherwise evolve into X-ray-emitting close binaries, whereas the same interactions also have led to the formation of new close binaries. No significant correlations between {L}{{X}}/{L}K and cluster properties, including dynamical age, metallicity, and structural parameters, are found.

  2. Emission Mechanisms in X-Ray Faint Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Brown, B. A.; Bregman, J. N.

    1999-12-01

    To understand the X-ray emission in normal elliptical galaxies, it is important to determine the relative contributions of hot interstellar gas and discrete sources to the observed emission. In X-ray luminous ellipticals, a hot gaseous component dominates the emission from X-ray binaries and other discrete sources. It is expected that, as one looks toward lower X-ray luminous galaxies, that the hot gas will contribute less to the overall X-ray emission and that discrete sources will supply most, if not all of, the observed X-ray emission. Here we examine ROSAT HRI and PSPC data for seventeen optically bright (BT < 11.15) elliptical galaxies with log(LX/L_B) < 29.7 ergs s-1/L⊙ . Radial surface brightness profiles are modeled with a modified King beta model and a de Vaucouleurs r1/4 law (similar to a beta = 0.5 beta model). For galaxy profiles where the two models are easily distinguishable, the models are combined, and fit to the data to determine or set upper limits to the discrete source contribution. The modeled data suggest that X-ray faint elliptical galaxies may still retain a sizable fraction of hot gas, but that emission from discrete sources are a significant component of the total observed X-ray emission. Support for this project has been provided by NASA and the National Academy of Sciences.

  3. The Role of Hot ISM in Galaxy Formation and Evolution

    NASA Astrophysics Data System (ADS)

    Ostriker, Jeremiah

    2014-08-01

    The cooling rate for hot gas in and around galaxies has a critical importance both in physically setting the basic mass scale for these massive, self-gravitating systems and as an observational tool for assessing formation models, by enabling the comparison between predicted and observed X-ray luminosities. Three classic papers in 1977 showed that it would be difficult for galaxies above a certain mass to cool on a dynamical timescale. That mass scale, in terms of fundamental physics is as follows: M ≃ [({Gm_p^2}/{hbar c})^{-2}({e^2}/{hbar c})^5({m_p}/{m_e})^{1/2}]m_{p} or roughly 10^{12} solar masses. Galaxies above this mass tend to be enveloped in the hot, X-ray emitting, gaseous halos familiar to Chandra observers and their predecessors. The outer parts of these gaseous halos are easily kept hot by SNI, dynamical in-fall of satellites and other processes, but the inner parts will repeatedly collapse into cooling flows, starbursts and AGN flare-ups. The thermal X-ray emission will be highly variable with this providing an important diagnostic for these physical processes. Also, normal cosmological inflow of gas onto massive galaxies can be shown to produce (absent feedback) more X-rays emission than is observed - providing yet another argument for feedback processes, which would reduce the ambient hot gas density. Finally, several postulated physical scenarios, such as gas rich ("wet") binary spiral mergers or thermal AGN feedback would produce X-ray emission far in excess of observational limits, again showing the power of X-ray observations as a critical diagnostic tool.

  4. On the Nature of the Hard X-ray Sources SWIFT J1907.3-2050, IGR J12123-5802 and IGR J19552+0044

    NASA Technical Reports Server (NTRS)

    Bernardini, F.; De Martino, D.; Mukai, K.; Falanga, M.; Andruchow, I.; Bonnet-Bidaud, J.-M.; Masetti, N.; Gonzalez Buitrago, D. H.; Mouchet, M.; Tovmassian, G.

    2013-01-01

    The INTEGRAL and Swift hard X-ray surveys have identified a large number of new sources, among which many are proposed as Cataclysmic Variables (CVs). Here we present the first detailed study of three X-ray selected CVs, Swift J1907.3-2050, IGRJ12123-5802, and IGRJ19552+0044 based on XMM-Newton, Suzaku, Swift observations and ground based optical and archival near-infrared/infrared data. Swift J1907.3-2050 is highly variable from hours to months-years at all wavelengths. No coherent X-ray pulses are detected but rather transient features. The X-ray spectrum reveals a multi-temperature optically thin plasma absorbed by complex neutral material and a soft black body component arising from a small area. These characteristics are remarkably similar to those observed in magnetic CVs. A supra-solar abundance of nitrogen could arise from nuclear processed material from the donor star. Swift J1907.3-2050 could be a peculiar magnetic CV with the second longest (20.82 hours) binary period. IGRJ12123-5802 is variable in the X-rays on a timescale of greater than or approximately 7.6 hours. No coherent pulsations are detected, but its spectral characteristics suggest that it could be a magnetic CV of the Intermediate Polar (IP) type. IGRJ19552+0044 shows two X-ray periods, approximately 1.38 hours and approximately 1.69 hours and a X-ray spectrum characterized by a multi-temperature plasma with little absorption. We derive a low accretion rate, consistent with a CV below the orbital period gap. Its peculiar near-infrared/infrared spectrum suggests a contribution from cyclotron emission. It could either be a pre-polar or an IP with the lowest degree of asynchronism.

  5. On the Nature of the Hard X-Ray Sources SWIFT J1907.3-2050, IGR J12123-5802 and IGR J19552+0044

    NASA Technical Reports Server (NTRS)

    Bernardini, F.; deMartino, D; Mukai, K.; Falanga, M.; Andruchow, I.; Bonnet-Bidaud, J.-M.; Masetti, N.; GonzalezBuitrago, D. H.; Mouchet, M.; Tovmassian, G.

    2014-01-01

    The INTEGRAL and Swift hard X-ray surveys have identified a large number of new sources, among which many are proposed as Cataclysmic Variables (CVs). Here we present the first detailed study of three X-ray selected CVs, Swift J1907.3-2050, IGRJ12123-5802, and IGRJ19552+0044 based on XMM-Newton, Suzaku, Swift observations and ground based optical and archival nIR/IR data. Swift J1907.3-2050 is highly variable from hours to monthsyears at all wavelengths. No coherent X-ray pulses are detected but rather transient features. The X-ray spectrum reveals a multi-temperature optically thin plasma absorbed by complex neutral material and a soft black body component arising from a small area. These characteristics are remarkably similar to those observed in magnetic CVs. A supra-solar abundance of nitrogen could arise from nuclear processed material from the donor star. Swift J1907.3-2050 could be a peculiar magnetic CV with the second longest (20.82 h) binary period. IGRJ12123-5802 is variable in the X-rays on a timescale of approximately or greater than 7.6 h. No coherent pulsations are detected, but its spectral characteristics suggest that it could be a magnetic CV of the Intermediate Polar (IP) type. IGRJ19552+0044 shows two X-ray periods, approximately 1.38 h and approximately 1.69 h and a X-ray spectrum characterized by a multi-temperature plasma with little absorption.We derive a low accretion rate, consistent with a CV below the orbital period gap. Its peculiar nIR/IR spectrum suggests a contribution from cyclotron emission. It could either be a pre-polar or an IP with the lowest degree of asynchronism.

  6. Characterization of New Hard X-ray Cataclysmic Variables

    NASA Technical Reports Server (NTRS)

    Bernardini, F.; deMartino, D.; Falanga, M.; Mukai, K.; Matt, G.; Bonnet-Bidaud, J.-M.; Masetti, N.; Mouchet, M.

    2012-01-01

    Aims. We aim at characterizing a sample of nine new hard X-ray selected Cataclysmic Variable (CVs), to unambiguously identify them as magnetic systems of the Intermediate Polar (IP) type. Methods. We performed detailed timing and spectral analysis by using X-ray, and simultaneous UV and optical data collected by XMM-Newton, complemented with hard X-ray data provided by INTEGRAL and Swift. The pulse arrival time were used to estimate the orbital periods. The broad band X-ray spectra were fitted using composite models consisting of different absorbing columns and emission components. Results. Strong X-ray pulses at the White Dwarf (WD) spin period are detected and found to decrease with energy. Most sources are spin-dominated systems in the X-rays, though four are beat dominated at optical wavelengths. We estimated the orbital period in all system (except for IGR J16500-3307), providing the first estimate for IGRJ08390-4833, IGRJ18308-1232, and IGR J18173-2509. All X-ray spectra are multi-temperature. V2069 Cyg and RX J0636+3535 poses a soft X-ray optically thick component at kT approx. 80 eV. An intense K (sub alpha) Fe line at 6.4 keV is detected in all sources. An absorption edge at 0.76 keV from OVII is detected in IGR J08390-4833. The WD masses and lower limits to the accretion rates are also estimated. Conclusions. We found all sources to be IPs. IGR J08390-4833, V2069 Cyg, and IGR J16500-3307 are pure disc accretors, while IGR J18308-1232, IGR J1509-6649, IGR J17195-4100, and RX J0636+3535 display a disc-overflow accretion mode. All sources show a temperature gradient in the post-shock regions and a highly absorbed emission from material located in the pre-shock flow which is also responsible for the X-ray pulsations. Reflection at the WD surface is likely the origin of the fluorescent iron line. There is an increasing evidence for the presence of a warm absorber in IPs, a feature that needs future exploration. The addition of two systems to the subgroup of soft X-ray IPs confirms a relatively large ( 30%) incidence.

  7. Gamma-Ray Emission Concurrent with the Nova in the Symbiotic Binary V407 Cygni

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2010-08-13

    Novae are thermonuclear explosions on a white dwarf surface fueled by mass accreted from a companion star. Current physical models posit that shocked expanding gas from the nova shell can produce x-ray emission, but emission at higher energies has not been widely expected. Here in this paper, we report the Fermi Large Area Telescope detection of variable γ-ray emission (0.1 to 10 billion electron volts) from the recently detected optical nova of the symbiotic star V407 Cygni. We propose that the material of the nova shell interacts with the dense ambient medium of the red giant primary and that particlesmore » can be accelerated effectively to produce π 0 decay γ-rays from proton-proton interactions. Lastly, emission involving inverse Compton scattering of the red giant radiation is also considered and is not ruled out.« less

  8. A giant radio flare from Cygnus X-3 with associated γ-ray emission: The 2011 radio and γ-ray flare of Cyg X-3

    DOE PAGES

    Corbel, S.; Dubus, G.; Tomsick, J. A.; ...

    2012-04-10

    With frequent flaring activity of its relativistic jets, Cygnus X-3 (Cyg X-3) is one of the most active microquasars and is the only Galactic black hole candidate with confirmed high-energy γ-ray emission, thanks to detections by Fermi Large Area Telescope (Fermi/LAT) and AGILE. In 2011, we observed Cyg X-3 in order to transit to a soft X-ray state, which is known to be associated with high-energy γ-ray emission. We present the results of a multiwavelength campaign covering a quenched state, when radio emission from Cyg X-3 is at its weakest and the X-ray spectrum is very soft. A giant (~20more » Jy) optically thin radio flare marks the end of the quenched state, accompanied by rising non-thermal hard X-rays. Fermi/LAT observations (E≥ 100 MeV) reveal renewed γ-ray activity associated with this giant radio flare, suggesting a common origin for all non-thermal components. In addition, current observations unambiguously show that the γ-ray emission is not exclusively related to the rare giant radio flares. A three-week period of γ-ray emission is also detected when Cyg X-3 was weakly flaring in radio, right before transition to the radio quenched state. There were no γ-rays observed during the ~1-month long quenched state, when the radio flux is weakest. These results suggest transitions into and out of the ultrasoft X-ray (radio-quenched) state trigger γ-ray emission, implying a connection to the accretion process, and also that the γ-ray activity is related to the level of radio flux (and possibly shock formation), strengthening the connection to the relativistic jets.« less

  9. Search for Hard X-Ray Emission from the Soft X-Ray Transient Aquila X-1

    NASA Astrophysics Data System (ADS)

    Harmon, B. A.; Zhang, S. N.; Paciesas, W. S.; Tavani, M.; Kaaret, P.; Ford, E.

    1994-12-01

    We are investigating the possibility of hard x-ray emission from the recurrent soft x-ray transient and x-ray burst source Aquila X-1 (Aql X-1). Outbursts of this source are relatively frequent with a spacing of ~ 4-10 months (Kitamoto, S. et al. 1993, ApJ, 403, 315). The recent detections of hard tails (\\(>\\)20 keV) in low luminosity x-ray bursters (Barret, D. & Vedrenne, G. 1994, ApJ Supp. S. 92, 505) suggest that neutron star transient systems such as Aql X-1 can produce hard x-ray emission which is detectable by BATSE. We are correlating reported optical and soft x-ray observations since 1991 of Aql X-1 with BATSE observations in order to search for hard x-ray emission episodes, and to study their temporal and spectral evolution. We will present preliminary results of this search in the 20-1000 keV band using the Earth occultation technique applied to the large area detectors. If this work is successful, we hope to alert the astronomical community for the next Aql X-1 outburst expected in 1995. Simultaneous x-ray/hard x-ray and optical observations of Aql X-1 during outburst would be of great importance for the modeling of soft x-ray transients and related systems.

  10. X-ray emission scaling law from a plasma focus with different anode tip materials (Cu, Mo, and W)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharif, M.; Ahmad, S.; Zakaullah, M.

    X-ray emission from a 2.3-5.3 kJ Mather-type plasma focus [Phys. Fluids 7, 5 (1964)] employing copper, molybdenum, and tungsten anode tip is studied. Argon is used as a working gas. Characteristic Cu K{alpha} and Mo K-series emission and their ratio to the continuous x-rays are determined. From the variation of the x-ray yield data with filling pressure at different charging voltages, scaling laws are obtained. X-ray pinhole images demonstrate that a significant amount of x-ray emission is from the anode tip. The comparison of the ratio of characteristic to continuum radiation for copper anode with typical x-ray tube data revealsmore » that the contribution of very high energy electron beam from the focus region for x-ray generation through thick target bremsstrahlung mechanism is not significant. Rather, electrons with energy of the order of, or even less than, the charging voltage are responsible for bulk of the x-ray emission.« less

  11. Enhanced high-energy gamma-ray emission from the microquasar Cygnus X-3 detected by Fermi/LAT

    NASA Astrophysics Data System (ADS)

    Loh, Alan; Corbel, Stephane

    2017-02-01

    Following the recent decrease of the hard X-ray emission from the high-mass X-ray binary Cygnus X-3 as seen by the Swift/Burst Alert Telescope (https://swift.gsfc.nasa.gov/results/transients/CygX-3/), the Large Area Telescope (LAT), one of the two instruments on the Fermi Gamma-ray Space Telescope, has observed significant gamma-ray emission originating from the microquasar.

  12. X-ray emission from Stephan's Quintet and other compact groups

    NASA Technical Reports Server (NTRS)

    Bahcall, N. A.; Harris, D. E.; Rood, H. J.

    1984-01-01

    A search for X-ray emission from five compact groups of galaxies with the Einstein Observatory revealed detections from three groups. Soft, extended X-ray emission was observed in Stephan's Quintet, which is most likely caused by hot intracluster gas. This provides evidence for dynamical interaction among the group galaxies. X-ray emission from the group Arp 330 may also originate in hot intracluster gas. Stephan's Quintet and Arp 330 have the largest velocity dispersions among the groups studied, suggesting a correlation between high velocity and the release (or properties) of hot gas. X-ray emission from Arp 318 may originate in its member galaxies.

  13. OPTICAL SPECTROSCOPY OF X-RAY-SELECTED YOUNG STARS IN THE CARINA NEBULA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaidya, Kaushar; Chen, Wen-Ping; Lee, Hsu-Tai

    We present low-resolution optical spectra for 29 X-ray sources identified as either massive star candidates or low-mass pre-main-sequence (PMS) star candidates in the clusters Trumpler 16 and Trumpler 14 of the Carina Nebula. Spectra of two more objects (one with an X-ray counterpart, and one with no X-ray counterpart), not originally our targets, but found close (∼3″) to two of our targets, are presented as well. Twenty early-type stars, including an O8 star, seven B1–B2 stars, two B3 stars, a B5 star, and nine emission-line stars, are identified. Eleven T Tauri stars, including eight classical T Tauri stars (CTTSs) and threemore » weak-lined T Tauri stars, are identified. The early-type stars in our sample are more reddened compared to the previously known OB stars of the region. The Chandra hardness ratios of our T Tauri stars are found to be consistent with the Chandra hardness ratios of T Tauri stars of the Orion Nebula Cluster. Most early-type stars are found to be nonvariable in X-ray emission, except the B2 star J104518.81–594217.9, the B3 star J104507.84–594134.0, and the Ae star J104424.76–594555.0, which are possible X-ray variables. J104452.20–594155.1, a CTTS, is among the brightest and the hardest X-ray sources in our sample, appears to be a variable, and shows a strong X-ray flare. The mean optical and near-infrared photometric variability in the V and K{sub s} bands, of all sources, is found to be ∼0.04 and 0.05 mag, respectively. The T Tauri stars show significantly larger mean variation, ∼0.1 mag, in the K{sub s} band. The addition of one O star and seven B1–B2 stars reported here contributes to an 11% increase of the known OB population in the observed field. The 11 T Tauri stars are the first ever confirmed low-mass PMS stars in the Carina Nebula region.« less

  14. Fermi/Large Area Telescope Discovery of Gamma-Ray Emission from a Relativistic Jet in the Narrow-Line Quasar PMN J0948+0022

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2009-06-17

    In this paper, we report the discovery by the Large Area Telescope (LAT) onboard the Fermi Gamma-Ray Space Telescope of high-energy γ-ray emission from the peculiar quasar PMN J0948+0022 (z = 0.5846). The optical spectrum of this object exhibits rather narrow Hβ (FWHM(Hβ) ~1500 km s –1), weak forbidden lines, and is therefore classified as a narrow-line type I quasar. This class of objects is thought to have relatively small black hole mass and to accrete at a high Eddington ratio. The radio loudness and variability of the compact radio core indicate the presence of a relativistic jet. Quasi-simultaneous radio/optical/X-raymore » and γ-ray observations are presented. Both radio and γ-ray emissions (observed over five months) are strongly variable. The simultaneous optical and X-ray data from Swift show a blue continuum attributed to the accretion disk and a hard X-ray spectrum attributed to the jet. The resulting broadband spectral energy distribution (SED) and, in particular, the γ-ray spectrum measured by Fermi are similar to those of more powerful Flat-Spectrum Radio Quasars (FSRQs). A comparison of the radio and γ-ray characteristics of PMN J0948+0022 with the other blazars detected by LAT shows that this source has a relatively low radio and γ-ray power with respect to other FSRQs. The physical parameters obtained from modeling the SED also fall at the low power end of the FSRQ parameter region discussed in Celotti & Ghisellini. Finally, we suggest that the similarity of the SED of PMN J0948+0022 to that of more massive and more powerful quasars can be understood in a scenario in which the SED properties depend on the Eddington ratio rather than on the absolute power.« less

  15. Chandra X-ray Observations of Jovian Low-latitude Emissions: Morphological, Temporal, and Spectral Characteristics

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Anil; Elsner, Ronald F.; Gladstone, G. Randall; Cravens, Thomas E.; Waiate J. Hunter, Jr.; Branduardi-Raymont, Graziella; Ford, Peter

    2004-01-01

    Chandra observed X-rays from Jupiter during 24-26 February 2003 for about 40 hours with the ACIS-S and HRC-I instruments. The analysis of Jovian low-latitude "disk" Xray emissions are presented and compared with the high-latitude "auroral" emissions. We report the first Chandra ACIS-S measured X-ray spectrum (0.3-2 keV) of Jupiter's low-latitude disk The disk X-ray emission is harder and extends to higher energies than the auroral spectrum. The temporal variation in the Jovian disk X-rays is on an average consistent with those in the solar X-rays observed by GOES, and TIMED/SSE. Contrary to the auroral X-rays, the disk emissions are uniformly distributed over Jupiter; no indication of longitudinal dependence or correlation with surface magneh field strength is visible. Also, unlike the approx. 40 +/- 20 min periodic oscillations seen in the auroral X-ray emissions, the disk emissions do not show any periodic oscillations. The disk spectrum seems to be consistent with resonant and fluorescent scattering of solar X-rays by the Jovian upper atmosphere. Jupiter's disk is found to be about 50% dimmer in soft X-rays in February 2003 compared that in December 2000, which is consistent with the decrease in solar activity. No evidence of lightning-induced X-rays is seen in the Chandra X-ray data. The Jovian disk spectra observed with Chandra-ACIS is stronger than that observed with XMM-Newton two months later during April 28-29, 2003. The XMM-Newton Xray image of Jupiter shows evidence of limb darkening on the anti-sunward side as seen from Earth, as well as an asymmetry with respect to the subsolar point: suggesting a solar driven process.

  16. Periodic Emission from the Gamma-Ray Binary 1FGL J1018.6-5856

    DOE PAGES

    Ackermann, M.

    2012-01-12

    Gamma-ray binaries are stellar systems containing a neutron star or black hole with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy. A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that 1FGL J1018.6-5856 exhibits intensity and spectral modulation with a 16.6 day period. We identified a variable X-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an O6V((f)) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. 1FGLmore » J1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.« less

  17. Physical parameters of the Centaurus X-3 system

    NASA Technical Reports Server (NTRS)

    Osmer, P. S.; Whelan, J. A. J.; Hiltner, W. A.

    1975-01-01

    Photographic spectra of Cen X-3 show that the primary star has a spectral type near O6.5 with weak, variable emission at 4640 and 4686 A. No orbital motion of the emission or absorption lines is detected; for the latter the upper limit is about plus or minus 50 km/sec. Analysis of the available data indicates that the primary is a factor of 2-3 less massive than expected from normal evolutionary models while the X-ray source has a mass near 1.5 times the solar mass.

  18. The Chandra M10l Megasecond: Diffuse Emission

    NASA Technical Reports Server (NTRS)

    Kuntz, K. D.; Snowden, S. L.

    2009-01-01

    Because MIOl is nearly face-on, it provides an excellent laboratory in which to study the distribution of X-ray emitting gas in a typical late-type spiral galaxy. We obtained a Chandra observation with a cumulative exposure of roughly 1 Ms to study the diffuse X-ray emission in MlOl. The bulk of the X-ray emission is correlated with the star formation traced by the FUV emission. The global FUV/Xray correlation is non-linear (the X-ray surface brightness is roughly proportional to the square root of the FUV surface brightness) and the small-scale correlation is poor, probably due to the delay between the FUV emission and the X-ray production ill star-forming regions. The X-ray emission contains only minor contributions from unresolved stars (approximates less than 3%), unresolved X-ray point sources (approximates less than 4%), and individual supernova remnants (approximates 3%). The global spectrum of the diffuse emission can be reasonably well fitted with a three component thermal model, but the fitted temperatures are not unique; many distributions of emission measure can produce the same temperatures when observed with the current CCD energy resolution. The spectrum of the diffuse emission depends on the environment; regions with higher X-ray surface brightnesses have relatively stronger hard components, but there is no significant evidence that the temperatures of the emitting components increase with surface brightness.

  19. Flares from small to large: X-ray spectroscopy of Proxima Centauri with XMM-Newton

    NASA Astrophysics Data System (ADS)

    Güdel, M.; Audard, M.; Reale, F.; Skinner, S. L.; Linsky, J. L.

    2004-03-01

    We report results from a comprehensive study of the nearby M dwarf Proxima Centauri with the XMM-Newton satellite, using simultaneously its X-ray detectors and the Optical Monitor with its U band filter. We find strongly variable coronal X-ray emission, with flares ranging over a factor of 100 in peak flux. The low-level emission is found to be continuously variable on at least three time scales (a slow decay of several hours, modulation on a time scale of 1 hr, and weak flares with time scales of a few minutes). Several weak flares are characteristically preceded by an optical burst, compatible with predictions from standard solar flare models. We propose that the U band bursts are proxies for the elusive stellar non-thermal hard X-ray bursts suggested from solar observations. In the course of the observation, a very large X-ray flare started and was observed essentially in its entirety. Its peak luminosity reached 3.9× 1028 erg s-1 [0.15-10 keV], and the total X-ray energy released in the same band is derived to be 1.5× 1032 ergs. This flare has for the first time allowed to measure significant density variations across several phases of the flare from X-ray spectroscopy of the O VII He-like triplet; we find peak densities reaching up to 4× 1011 cm-3 for plasma of about 1-5 MK. Abundance ratios show little variability in time, with a tendency of elements with a high first ionization potential to be overabundant relative to solar photospheric values. Using Fe XVII lines with different oscillator strengths, we do not find significant effects due to opacity during the flare, indicating that large opacity increases are not the rule even in extreme flares. We model the large flare in terms of an analytic 2-Ribbon flare model and find that the flaring loop system should have large characteristic sizes (≈ 1R*) within the framework of this simplistic model. These results are supported by full hydrodynamic simulations. Comparing the large flare to flares of similar size occurring much more frequently on more active stars, we propose that the X-ray properties of active stars are a consequence of superimposed flares such as the example analyzed in this paper. Since larger flares produce hotter plasma, such a model also explains why, during episodes of low-level emission, more active stars show hotter plasma than less active stars. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA).

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleksić, J.; Antonelli, L. A.; Antoranz, P.

    Recently the radio galaxy IC 310 was identified as a γ-ray emitter based on observations at GeV energies with Fermi-LAT and at very high energies (VHE, E > 100 GeV) with the MAGIC telescopes. Originally classified as a head-tail radio galaxy, the nature of this object is subject of controversy since its nucleus shows blazar-like behavior. In order to understand the nature of IC 310 and the origin of the VHE emission, we studied the spectral and flux variability of IC 310 from the X-ray band to the VHE γ-ray regime. The light curve of IC 310 above 300 GeVmore » has been measured with the MAGIC telescopes from 2009 October to 2010 February. Contemporaneous Fermi-LAT data (2008-2011) in the 10-500 GeV energy range were also analyzed. In the X-ray regime, archival observations from 2003 to 2007 with XMM-Newton, Chandra, and Swift-XRT in the 0.5-10 keV band were studied. The VHE light curve reveals several high-amplitude and short-duration flares. Day-to-day flux variability is clearly present (>5σ). The photon index between 120 GeV and 8 TeV remains at the value Γ ~ 2.0 during both low and high flux states. The VHE spectral shape does not show significant variability, whereas the flux at 1 TeV changes by a factor of ~7. Fermi-LAT detected only eight γ-ray events in the energy range 10 GeV–500 GeV in three years of observation. Moreover, the measured photon index of Γ = 1.3 ± 0.5 in the Fermi-LAT range is very hard. The X-ray measurements show strong variability in both flux and photon index. The latter varied from 1.76 ± 0.07 to 2.55 ± 0.07. The rapid variability measured in γ-rays and X-rays confirms the blazar-like behavior of IC 310. The multi-TeV γ-ray emission seems to originate from scales of less than 80 Schwarzschild radii (for a black hole mass of 2 × 10 8 M⊙) within the compact core of its FR I radio jet with orientation angle 10°-38°. The spectral energy distribution resembles that of an extreme blazar, albeit the luminosity is more than two orders of magnitude lower.« less

  1. The 2010 Very High Energy Gamma-Ray Flare and 10 Years of Multi-Wavelength Observations of M87

    NASA Technical Reports Server (NTRS)

    Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A G.; Anton, G.; Balzer, A.; Barnacka, A.; Barres de Almeida, U.; Becherini, Y.; Becker, J.; hide

    2011-01-01

    The giant radio galaxy M87 with its proximity (16 Mpc), famous jet, and very massive black hole ((3-6) X 10(exp 9) Solar Mass) provides a unique opportunity to investigate the origin of very high energy (VHE; E>100 GeV) gamma-ray emission generated in relativistic outflows and the surroundings of super-massive black holes. M87 has been established as a VHE gamma -ray emitter since 2006. The VHE gamma -ray emission displays strong variability on timescales as short as a day. In this paper, results from a joint VHE monitoring campaign on M87 by the MAGIC and VERITAS instruments in 2010 are reported. During the campaign, a flare at VHE was detected. triggering further observations at VHE (H.E.S.S.), X-rays (Chandra), and radio (43 GHz VLBA). The excellent sampling of the VHE gamma-ray light curve enables one to derive a precise temporal characterization of the flare: the single, isolated flare is well described by a two-sided exponential function with significantly different flux rise and decay times of rise tau ((sup rise sub d) = (1:69 +/- 0:30) days and tau(sup decay sub d = (0:611 +/- 0:080) days, respectively. While the overall variability pattern of the 2010 flare appears somewhat different from that of previous VHE flares in 2005 and 2008, they share very similar timescales (approx day), peak fluxes (Phi (sub > 0:35 TeV) approx. equals (1 - 3) X 10(exp -11) ph / square cm/s), and VHE spectra. 43 GHz VLBA radio observations of the inner jet regions indicate no enhanced flux in 2010 in contrast to observations in 2008, where an increase of the radio flux of the innermost core regions coincided with a VHE flare. On the other hand, Chandra X-ray observations taken approx 3 days after the peak of the VHE gamma -ray emission reveal an enhanced flux from the core (flux increased by factor approx 2; variability timescale < 2 days). The long-term (2001-2010) multi-wavelength (MWL) light curve of M87, spanning from radio to VHE and including data from HST, LT, VLA and EVN, is used to further investigate the origin of the VHE gamma -ray emission. No unique, common MWL signature of the three VHE flares has been identified. In the outer kpc jet region, in particular in HST-1, no enhanced MWL activity was detected in 2008 and 2010, disfavoring it as the origin of the VHE flares during these years. Shortly after two of the three flares (2008 and 2010), the X-ray core was observed to be at a higher flux level than its characteristic range (determined from more than 60 monitoring observations: 2002-2009). In 2005, the strong flux dominance of HST-1 could have suppressed the detection of such a feature. Published models for VHE gamma -ray emission from M87 are reviewed in the light of the new data.

  2. Fermi-LAT and Suzaku Observations of the Radio Galaxy Centaurus B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsuta, Junichiro; /Stanford U., HEPL /KIPAC, Menlo Park; Tanaka, Y.T.

    2012-08-17

    CentaurusB is a nearby radio galaxy positioned in the Southern hemisphere close to the Galactic plane. Here we present a detailed analysis of about 43 months accumulation of Fermi-LAT data and of newly acquired Suzaku X-ray data for Centaurus B. The source is detected at GeV photon energies, although we cannot completely exclude the possibility that it is an artifact due to incorrect modeling of the bright Galactic diffuse emission in the region. The LAT image provides a weak hint of a spatial extension of the {gamma} rays along the radio lobes, which is consistent with the lack of sourcemore » variability in the GeV range. We note that the extension cannot be established statistically due to the low number of the photons. Surprisingly, we do not detect any diffuse emission of the lobes at X-ray frequencies, with the provided upper limit only marginally consistent with the previously claimed ASCA flux. The broad-band modeling shows that the observed {gamma}-ray flux of the source may be produced within the lobes, if the diffuse non-thermal X-ray emission component is not significantly below the derived Suzaku upper limit. This association would imply that efficient in-situ acceleration of the ultrarelativistic particles is occurring and that the lobes are dominated by the pressure from the relativistic particles. However, if the diffuse X-ray emission is much below the Suzaku upper limits, the observed {gamma}-ray flux is not likely to be produced within the lobes, but instead within the unresolved core of Centaurus B. In this case, the extended lobes could be dominated by the pressure of the magnetic field.« less

  3. Origin of X-Ray and Gamma-Ray Emission from the Galactic Central Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chernyshov, D. O.; Dogiel, V. A.; Cheng, K.-S.

    We study a possible connection between different non-thermal emissions from the inner few parsecs of the Galaxy. We analyze the origin of the gamma-ray source 2FGL J1745.6−2858 (or 3FGL J1745.6−2859c) in the Galactic Center (GC) and the diffuse hard X-ray component recently found by the Nuclear Spectroscopic Telescope Array , as well as the radio emission and processes of hydrogen ionization from this area. We assume that a source in the GC injected energetic particles with power-law spectrum into the surrounding medium in the past or continues to inject until now. The energetic particles may be protons, electrons, or amore » combination of both. These particles diffuse to the surrounding medium and interact with gas, magnetic field, and background photons to produce non-thermal emissions. We study the spectral and spatial features of the hard X-ray emission and gamma-ray emission by the particles from the central source. Our goal is to examine whether the hard X-ray and gamma-ray emissions have a common origin. Our estimations show that, in the case of pure hadronic models, the expected flux of hard X-ray emission is too low. Despite the fact that protons can produce a non-zero contribution in gamma-ray emission, it is unlikely that they and their secondary electrons can make a significant contribution in hard X-ray flux. In the case of pure leptonic models, it is possible to reproduce both X-ray and gamma-ray emissions for both transient and continuous supply models. However, in the case of the continuous supply model, the ionization rate of molecular hydrogen may significantly exceed the observed value.« less

  4. The man behind the curtain: X-rays drive the UV through NIR variability in the 2013 active galactic nucleus outburst in NGC 2617

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shappee, B. J.; Kochanek, C. S.; Stanek, K. Z.

    2014-06-10

    After the All-Sky Automated Survey for SuperNovae discovered a significant brightening of the inner region of NGC 2617, we began a ∼70 day photometric and spectroscopic monitoring campaign from the X-ray through near-infrared (NIR) wavelengths. We report that NGC 2617 went through a dramatic outburst, during which its X-ray flux increased by over an order of magnitude followed by an increase of its optical/ultraviolet (UV) continuum flux by almost an order of magnitude. NGC 2617, classified as a Seyfert 1.8 galaxy in 2003, is now a Seyfert 1 due to the appearance of broad optical emission lines and a continuummore » blue bump. Such 'changing look active galactic nuclei (AGNs)' are rare and provide us with important insights about AGN physics. Based on the Hβ line width and the radius-luminosity relation, we estimate the mass of central black hole (BH) to be (4 ± 1) × 10{sup 7} M {sub ☉}. When we cross-correlate the light curves, we find that the disk emission lags the X-rays, with the lag becoming longer as we move from the UV (2-3 days) to the NIR (6-9 days). Also, the NIR is more heavily temporally smoothed than the UV. This can largely be explained by a simple model of a thermally emitting thin disk around a BH of the estimated mass that is illuminated by the observed, variable X-ray fluxes.« less

  5. A Chandra X-Ray Census of the Interacting Binaries in Old Open Clusters—Collinder 261

    NASA Astrophysics Data System (ADS)

    Vats, Smriti; van den Berg, Maureen

    2017-03-01

    We present the first X-ray study of Collinder 261 (Cr 261), which at an age of 7 Gyr is one of the oldest open clusters known in the Galaxy. Our observation with the Chandra X-Ray Observatory is aimed at uncovering the close interacting binaries in Cr 261, and reaches a limiting X-ray luminosity of {L}X≈ 4× {10}29 {erg} {{{s}}}-1 (0.3-7 keV) for stars in the cluster. We detect 107 sources within the cluster half-mass radius r h , and we estimate that among the sources with {L}X≳ {10}30 {erg} {{{s}}}-1, ˜26 are associated with the cluster. We identify a mix of active binaries and candidate active binaries, candidate cataclysmic variables, and stars that have “straggled” from the main locus of Cr 261 in the color-magnitude diagram. Based on a deep optical source catalog of the field, we estimate that Cr 261 has an approximate mass of 6500 M ⊙, roughly the same as the old open cluster NGC 6791. The X-ray emissivity of Cr 261 is similar to that of other old open clusters, supporting the trend that they are more luminous in X-rays per unit mass than old populations of higher (globular clusters) and lower (the local neighborhood) stellar density. This implies that the dynamical destruction of binaries in the densest environments is not solely responsible for the observed differences in X-ray emissivity.

  6. The Symbiotic System SS73 17 seen with Suzaku

    NASA Technical Reports Server (NTRS)

    Smith, Randall K.; Mushotzky, Richard; Kallman, Tim; Tueller, Jack; Mukai, Koji; Markwardt, Craig

    2007-01-01

    We observed with Suzaku the symbiotic star SS73 17, motivated by the discovery by the INTEGRAL satellite and the Swift BAT survey that it emits hard X-rays. Our observations showed a highly-absorbed X-ray spectrum with NH > loz3 emp2, equivalent to Av > 26, although the source has B magnitude 11.3 and is also bright in UV. The source also shows strong, narrow iron lines including fluorescent Fe K as well as Fe xxv and Fe XXVI. The X-ray spectrum can be fit with a thermal model including an absorption component that partially covers the source. Most of the equivalent width of the iron fluorescent line in this model can be explained as a combination of reprocessing in a dense absorber plus reflection off a white dwarf surface, but it is likely that the continuum is partially seen in reflection as well. Unlike other symbiotic systems that show hard X-ray emission (CH Cyg, RT Cru, T CrB, GX1+4), SS73 17 is not known to have shown nova-like optical variability, X-ray flashes, or pulsations, and has always shown faint soft X-ray emission. As a result, although it is likely a white dwarf, the nature of the compact object in SS73 17 is still uncertain. SS73 17 is probably an extreme example of the recently discovered and relatively small class of hard X-ray emitting symbiotic systems.

  7. X-ray Variability of the Magnetic Cataclysmic Variable V1432 Aql and the Seyfert Galaxy NGC 6814

    NASA Technical Reports Server (NTRS)

    Mukai, K.; Hellier, C.; Madejski, G.; Patterson, J.; Skillman, D. R.

    2003-01-01

    V1432 Aquilae (=RX J1940.2-1025) is the X-ray bright, eclipsing magnetic cataclysmic variable approximately 37 (sup) away from the Seyfert galaxy, NGC 6814. Due to a 0.3% difference between the orbital (12116.3 s) and the spin (12150 s) periods: the accretion geometry changes over the approximately 50 day beat period. Here we report the results of an RXTE campaign to observe the eclipse 25 times, as well as of archival observations with ASCA and BeppoSAX. Having confirmed that the eclipse is indeed caused by the secondary, we use the eclipse timings and profiles to map the accretion geometry as a function of the beat phase. We find that the accretion region is compact, and that it moves relative to the center of white dwarf on the beat period. The amplitude of this movement suggest a low-mass white dwarf, in contrast to the high mass previously estimated from its X-ray spectrum. The size of the X-ray emission region appears to be larger than in other eclipsing magnetic CVs. We also report on the RXTE data as well as the long-term behavior of NGC 6814, indicating flux variability by a factor of at least 10 on time scales of years.

  8. Interacting Cosmic Rays with Molecular Clouds: A Bremsstrahlung Origin of Diffuse High-energy Emission from the Inner 2°×1° of the Galactic Center

    NASA Astrophysics Data System (ADS)

    Yusef-Zadeh, F.; Hewitt, J. W.; Wardle, M.; Tatischeff, V.; Roberts, D. A.; Cotton, W.; Uchiyama, H.; Nobukawa, M.; Tsuru, T. G.; Heinke, C.; Royster, M.

    2013-01-01

    The high-energy activity in the inner few degrees of the Galactic center is traced by diffuse radio, X-ray, and γ-ray emission. The physical relationship between different components of diffuse gas emitting at multiple wavelengths is a focus of this work. We first present radio continuum observations using the Green Bank Telescope and model the nonthermal spectrum in terms of a broken power-law distribution of ~GeV electrons emitting synchrotron radiation. We show that the emission detected by Fermi is primarily due to nonthermal bremsstrahlung produced by the population of synchrotron emitting electrons in the GeV energy range interacting with neutral gas. The extrapolation of the electron population measured from radio data to low and high energies can also explain the origin of Fe I 6.4 keV line and diffuse TeV emission, as observed with Suzaku, XMM-Newton, Chandra, and the H.E.S.S. observatories. The inferred physical quantities from modeling multiwavelength emission in the context of bremsstrahlung emission from the inner ~300 × 120 pc of the Galactic center are constrained to have the cosmic-ray ionization rate ~1-10 × 10-15 s-1, molecular gas heating rate elevating the gas temperature to 75-200 K, fractional ionization of molecular gas 10-6-10-5, large-scale magnetic field 10-20 μG, the density of diffuse and dense molecular gas ~100 and ~103 cm-3 over 300 pc and 50 pc path lengths, and the variability of Fe I Kα 6.4 keV line emission on yearly timescales. Important implications of our study are that GeV electrons emitting in radio can explain the GeV γ-rays detected by Fermi and that the cosmic-ray irradiation model, like the model of the X-ray irradiation triggered by past activity of Sgr A*, can also explain the origin of the variable 6.4 keV emission from Galactic center molecular clouds.

  9. INTERACTING COSMIC RAYS WITH MOLECULAR CLOUDS: A BREMSSTRAHLUNG ORIGIN OF DIFFUSE HIGH-ENERGY EMISSION FROM THE INNER 2 Degree-Sign Multiplication-Sign 1 Degree-Sign OF THE GALACTIC CENTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusef-Zadeh, F.; Roberts, D. A.; Royster, M.

    2013-01-01

    The high-energy activity in the inner few degrees of the Galactic center is traced by diffuse radio, X-ray, and {gamma}-ray emission. The physical relationship between different components of diffuse gas emitting at multiple wavelengths is a focus of this work. We first present radio continuum observations using the Green Bank Telescope and model the nonthermal spectrum in terms of a broken power-law distribution of {approx}GeV electrons emitting synchrotron radiation. We show that the emission detected by Fermi is primarily due to nonthermal bremsstrahlung produced by the population of synchrotron emitting electrons in the GeV energy range interacting with neutral gas.more » The extrapolation of the electron population measured from radio data to low and high energies can also explain the origin of Fe I 6.4 keV line and diffuse TeV emission, as observed with Suzaku, XMM-Newton, Chandra, and the H.E.S.S. observatories. The inferred physical quantities from modeling multiwavelength emission in the context of bremsstrahlung emission from the inner {approx}300 Multiplication-Sign 120 pc of the Galactic center are constrained to have the cosmic-ray ionization rate {approx}1-10 Multiplication-Sign 10{sup -15} s{sup -1}, molecular gas heating rate elevating the gas temperature to 75-200 K, fractional ionization of molecular gas 10{sup -6}-10{sup -5}, large-scale magnetic field 10-20 {mu}G, the density of diffuse and dense molecular gas {approx}100 and {approx}10{sup 3} cm{sup -3} over 300 pc and 50 pc path lengths, and the variability of Fe I K{alpha} 6.4 keV line emission on yearly timescales. Important implications of our study are that GeV electrons emitting in radio can explain the GeV {gamma}-rays detected by Fermi and that the cosmic-ray irradiation model, like the model of the X-ray irradiation triggered by past activity of Sgr A*, can also explain the origin of the variable 6.4 keV emission from Galactic center molecular clouds.« less

  10. Radio and X-Ray Observations of the 1998 Outburst of the Recurrent X-Ray Transient 4U 1630-47

    NASA Astrophysics Data System (ADS)

    Hjellming, R. M.; Rupen, M. P.; Mioduszewski, A. J.; Kuulkers, E.; McCollough, M.; Harmon, B. A.; Buxton, M.; Sood, R.; Tzioumis, A.; Rayner, D.; Dieters, S.; Durouchoux, P.

    1999-03-01

    We report radio (NRAO VLA and Australia Telescope Compact Array), soft X-ray (Rossi X-Ray Timing Explorer ASM), and hard X-ray (Compton Gamma Ray Observatory BATSE) observations of a 1998 outburst in the recurring X-ray transient 4U 1630-47, where radio emission was detected for the first time. The radio observations identify the position of 4U 1630-47 to within 1". Because the radio emission is optically thin with a spectral index of ~-0.8 during the rise, peak, and decay of the initial radio event, the emission is probably coming from an optically thin radio jet ejected over a period of time. The 20-100 keV emission first appeared 1998 January 28 (MJD 50841), the 2-12 keV emission first appeared 1998 February 3 (MJD 50847), and the first radio emission was detected 1998 February 12.6 (MJD 50856.6). The rise of the radio emission probably began about 1998 February 7 (MJD 50851) when the X-rays were in a very hard fluctuating-hardness state, just before changing to a softer, more stable hardness state.

  11. Free-Free Radiation Cannot Make the UV/Soft-X-Ray Excess in AGN

    NASA Astrophysics Data System (ADS)

    Kriss, G. A.

    1994-05-01

    Thermal gas always has associated atomic spectral features either in absorption or in emission. In optically thin gas the emission spectrum is dominated by line radiation and recombination continua. An example of radiation from optically thin material in accreting systems is the emission-line-dominated spectrum of a cataclysmic variable in its low state. Barvainis (1993, ApJ, 412, 513) and others have proposed that the UV/soft-X-ray excess prominent in the spectra of many AGN is due to free-free emission from gas at temperatures of 10(5) - 10(6) K. Simple arguments using only atomic data show that the recombination radiation from emission lines would produce UV, optical, and soft X-ray spectral features orders of magnitude stronger than observed. Collisional excitation produces even more line radiation under most physical conditions. As a particular example I take the Astro-1 observations of the Seyfert 1 galaxy Mrk 335 by HUT and BBXRT. Depending on the ionization state of the gas (which may be photoionized by the central source), the emission measure of the free-free radiation necessary to produce the UV continuum (3 times 10(68) cm(-3) at 8.2 times 10(5) K for H_o = 75 km s(-1) Mpc(-1) ) implies line emission from O VI, O VII, or O VIII more than a factor of 10 stronger than any features observed by HUT or BBXRT.

  12. The 3 Ms Chandra campaign on Sgr A*: a census of X-ray flaring activity from the Galactic center

    NASA Astrophysics Data System (ADS)

    Neilsen, J.; Nowak, M. A.; Gammie, C.; Dexter, J.; Markoff, S.; Haggard, D.; Nayakshin, S.; Wang, Q. D.; Grosso, N.; Porquet, D.; Tomsick, J. A.; Degenaar, N.; Fragile, P. C.; Houck, J. C.; Wijnands, R.; Miller, J. M.; Baganoff, F. K.

    2014-05-01

    Over the last decade, X-ray observations of Sgr A* have revealed a black hole in a deep sleep, punctuated roughly once per day by brief flares. The extreme X-ray faintness of this supermassive black hole has been a long-standing puzzle in black hole accretion. To study the accretion processes in the Galactic center, Chandra (in concert with numerous ground- and space-based observatories) undertook a 3 Ms campaign on Sgr A* in 2012. With its excellent observing cadence, sensitivity, and spectral resolution, this Chandra X-ray Visionary Project (XVP) provides an unprecedented opportunity to study the behavior of the closest supermassive black hole. We present a progress report from our ongoing study of X-ray flares, including the brightest flare ever seen from Sgr A*. Focusing on the statistics of the flares and the quiescent emission, we discuss the physical implications of X-ray variability in the Galactic center.

  13. Periodicity Analysis of X-ray Light Curves of SS 433

    NASA Astrophysics Data System (ADS)

    Wang, J. Y.; Lu, X. L.; Zhao, Q. W.; Dong, D. Q.; Lao, B. Q.; Lu, Y.; Wei, Y. H.; Wu, X. C.; An, T.

    2016-03-01

    SS 433 is the only X-ray binary to date that was detected to have a pair of well-collimated jets, and its orbital period, super orbital period, and nutation period were all detected at the same time. The study on the periodic X-ray variabilities is helpful for understanding its dynamic process of the central engine and the correlation with other bands. In the present paper, two time series analysis techniques, Lomb-Scargle periodogram and weighted wavelet Z-transform, are employed to search for the periodicities from the Swift/BAT (Burst Alert Telescope)(15--50 keV) and RXTE/ASM (Rossi X-Ray Timing Explorer/All-Sky Monitor)(1.5--3, 3--5 and 5--12 keV) light curves of SS 433, and the Monte Carlo simulation is performed. For the 15--50 keV energy band, five significant periodic signals are detected, which are P_1(˜6.29 d), P_2 (˜6.54 d), P_3 (˜13.08 d), P_4 (˜81.50 d), and P_5 (˜162.30 d). For the 3--5 and 5--12 keV energy bands, periodic signals P_3 (˜13 d) and P_5 (˜162 d) are detected in both energy bands. However, for the 1.5--3 keV energy band, no significant periodic signal is detected. P_5 has the strongest periodic signal in the power spectrum for all the energy bands of 3--5, 5--12, and 15--50 keV, and it is consistent with that obtained by previous study in optical band. Further, due to the existence of relativistic radio jets, the X-ray and optical band variability of P_5 (˜162 d) is probably related to the precession of the relativistic jets. High coherence between X-ray and optical light curves may also imply that the X-ray and optical emissions are of the same physical origin. P_3 shows a good agreement with the orbital period (˜13.07 d) first obtained by previous study, and P_2 and P_4 are the high frequency harmonic components of P_3 and P_5, respectively. P_1 is detected from the power spectrum of 15--50 keV energy band only, and it is consistent with the systematic nutation period. As the power of energy band decreases (from hard X-ray to soft X-ray), less periodicities are detected, which provides an evidence that the emission from high energy band (hard X-ray) comes primarily from jets, and the emission from low energy band (soft X-ray) may originate from the medium around binary systems. The multiple X-ray periods obtained from the present studies provide the necessary basis for the analysis of multi-wavelength data and the dynamics of the central engine system of SS 433.

  14. A giant radio flare from Cygnus X-3 with associated γ-ray emission

    NASA Astrophysics Data System (ADS)

    Corbel, S.; Dubus, G.; Tomsick, J. A.; Szostek, A.; Corbet, R. H. D.; Miller-Jones, J. C. A.; Richards, J. L.; Pooley, G.; Trushkin, S.; Dubois, R.; Hill, A. B.; Kerr, M.; Max-Moerbeck, W.; Readhead, A. C. S.; Bodaghee, A.; Tudose, V.; Parent, D.; Wilms, J.; Pottschmidt, K.

    2012-04-01

    With frequent flaring activity of its relativistic jets, Cygnus X-3 (Cyg X-3) is one of the most active microquasars and is the only Galactic black hole candidate with confirmed high-energy γ-ray emission, thanks to detections by Fermi Large Area Telescope (Fermi/LAT) and AGILE. In 2011, Cyg X-3 was observed to transit to a soft X-ray state, which is known to be associated with high-energy γ-ray emission. We present the results of a multiwavelength campaign covering a quenched state, when radio emission from Cyg X-3 is at its weakest and the X-ray spectrum is very soft. A giant (˜20 Jy) optically thin radio flare marks the end of the quenched state, accompanied by rising non-thermal hard X-rays. Fermi/LAT observations (E≥ 100 MeV) reveal renewed γ-ray activity associated with this giant radio flare, suggesting a common origin for all non-thermal components. In addition, current observations unambiguously show that the γ-ray emission is not exclusively related to the rare giant radio flares. A three-week period of γ-ray emission is also detected when Cyg X-3 was weakly flaring in radio, right before transition to the radio quenched state. No γ-rays are observed during the ˜1-month long quenched state, when the radio flux is weakest. Our results suggest transitions into and out of the ultrasoft X-ray (radio-quenched) state trigger γ-ray emission, implying a connection to the accretion process, and also that the γ-ray activity is related to the level of radio flux (and possibly shock formation), strengthening the connection to the relativistic jets.

  15. A Giant Radio Flare from Cygnus X-3 with Associated Gamma-Ray Emission

    NASA Technical Reports Server (NTRS)

    Corbel, S.; Dubus, G.; Tomsick, J. A.; Szostek, A.; Corbet, R. H. D.; Miller-Jones, J. C. A.; Richards, J. L.; Pooley, G.; Trushkin, S.; Dubois, R.; hide

    2012-01-01

    With frequent flaring activity of its relativistic jets, Cygnus X-3 (Cyg X-3) is one of the most active microquasars and is the only Galactic black hole candidate with confirmed high energy gamma-ray emission, thanks to detections by Fermi/LAT and AGILE. In 2011, Cyg X-3 was observed to transit to a soft X-ray state, which is known to be associated with high-energy gamma-ray emission. We present the results of a multiwavelength campaign covering a quenched state, when radio emission from Cyg X-3 is at its weakest and the X-ray spectrum is very soft. A giant (approx 20 Jy) optically thin radio flare marks the end of the quenched state, accompanied by rising non-thermal hard X-rays. Fermi/LAT observations (E greater than or equal 100 MeV) reveal renewed gamma-ray activity associated with this giant radio flare, suggesting a common origin for all non-thermal components. In addition, current observations unambiguously show that the gamma-ray emission is not exclusively related to the rare giant radio flares. A 3-week period of gamma-ray emission is also detected when Cyg X-3 was weakly flaring in radio, right before transition to the radio quenched state. No gamma rays are observed during the one-month long quenched state, when the radio flux is weakest. Our results suggest transitions into and out of the ultrasoft X-ray (radio quenched) state trigger gamma-ray emission, implying a connection to the accretion process, and also that the gamma-ray activity is related to the level of radio flux (and possibly shock formation), strengthening the connection to the relativistic jets.

  16. ASCA Observations of the Barnard 209 Dark Cloud and an Intense X-Ray Flare on V773 Tauri

    NASA Technical Reports Server (NTRS)

    Skinner, Stephen L.; Guedel, Manuel; Koyama, Katsuji; Yamauchi, Shigeo

    1997-01-01

    ASCA (Advanced Satellite for Cosmology and Astrophysics) detected an intense X-ray flare on the weak-lined T Tauri star V773 Tau (=HD 283447) during a 30 ks observation of the Barnard 209 dark cloud in 1995 September. This star is a spectroscopic binary and shows signs of strong magnetic surface activity including a spot-modulated optical light curve. The flare was seen only during its decay phase but is still one of the strongest ever recorded from a T Tauri star with a peak luminosity L(sub x) = 10(exp 32.4) ergs/s (0.5-10 keV), a maximum temperature of at least 42 million K, and energy release of greater than 10(exp 37) ergs. A shorter ASCA observation taken five months later showed V773 Tau in a quiescent state (L(sub x)= 10(exp 31.0) ergs/s) and detected variable emission from the infrared binary IRAS 04113+2758. The differential emission measure (DEM) distribution during the V773 Tau flare shows a bimodal temperature structure that is almost totally dominated by hot plasma at an average temperature of approx. 37 million K. Using information from time-resolved spectra, we examine the flare decay in terms of solar flare models (cooling loops and two-ribbon flares) and also consider possible nonsolar behavior (interbinary flares, star-disk flares, and rotational X-ray modulation). Solar models are unable to reproduce the unusual convex-shaped X-ray light curve, which decays slowly over a timespan of at least 1 day. However, the light curve decay is accurately modeled as a sinusoid with an inferred X-ray period of 2.97 days, which is nearly identical to the optical rotation period(s) of the two K-type components. This provides tantalizing evidence that the flaring region was undergoing rotational occultation, but periodic X-ray variability is not yet proven since our ASCA observation spans only one-third of a rotation cycle.

  17. The Born-again Planetary Nebula A78: An X-Ray Twin of A30

    NASA Astrophysics Data System (ADS)

    Toalá, J. A.; Guerrero, M. A.; Todt, H.; Hamann, W.-R.; Chu, Y.-H.; Gruendl, R. A.; Schönberner, D.; Oskinova, L. M.; Marquez-Lugo, R. A.; Fang, X.; Ramos-Larios, G.

    2015-01-01

    We present the XMM-Newton discovery of X-ray emission from the planetary nebula (PN) A78, the second born-again PN detected in X-rays apart from A30. These two PNe share similar spectral and morphological characteristics: they harbor diffuse soft X-ray emission associated with the interaction between the H-poor ejecta and the current fast stellar wind and a point-like source at the position of the central star (CSPN). We present the spectral analysis of the CSPN, using for the first time an NLTE code for expanding atmospheres that takes line blanketing into account for the UV and optical spectra. The wind abundances are used for the X-ray spectral analysis of the CSPN and the diffuse emission. The X-ray emission from the CSPN in A78 can be modeled by a single C VI emission line, while the X-ray emission from its diffuse component is better described by an optically thin plasma emission model with a temperature of kT = 0.088 keV (T ≈ 1.0 × 106 K). We estimate X-ray luminosities in the 0.2-2.0 keV energy band of L X, CSPN = (1.2 ± 0.3) × 1031 erg s-1 and L X, DIFF = (9.2 ± 2.3) × 1030 erg s-1 for the CSPN and diffuse components, respectively.

  18. UNDERSTANDING X-RAY STARS:. The Discovery of Binary X-ray Sources

    NASA Astrophysics Data System (ADS)

    Schreier, E. J.; Tananbaum, H.

    2000-09-01

    The discovery of binary X-ray sources with UHURU introduced many new concepts to astronomy. It provided the canonical model which explained X-ray emission from a large class of galactic X-ray sources: it confirmed the existence of collapsed objects as the source of intense X-ray emission; showed that such collapsed objects existed in binary systems, with mass accretion as the energy source for the X-ray emission; and provided compelling evidence for the existence of black holes. This model also provided the basis for explaining the power source of AGNs and QSOs. The process of discovery and interpretation also established X-ray astronomy as an essential sub-discipline of astronomy, beginning its incorporation into the mainstream of astronomy.

  19. Quasi-Periodic Pulsations During the Impulsive and Decay Phases of an X-Class Flare

    NASA Technical Reports Server (NTRS)

    Hays, L. A.; Gallagher, P. T.; Dennis, B. R.; Ireland, J.; Inglis, A. R.; Ryan, D. F.

    2016-01-01

    Quasi-periodic pulsations (QPPs) are often observed in X-ray emission from solar flares. To date, it is unclear what their physical origins are. Here, we present a multi-instrument investigation of the nature of QPP during the impulsive and decay phases of the X1.0 flare of 2013 October 28. We focus on the character of the fine structure pulsations evident in the soft X-ray (SXR) time derivatives and compare this variability with structure across multiple wavelengths including hard X-ray and microwave emission. We find that during the impulsive phase of the flare, high correlations between pulsations in the thermal and non-thermal emissions are seen. A characteristic timescale of 20 s is observed in all channels and a second timescale of 55 s is observed in the non-thermal emissions. SXR pulsations are seen to persist into the decay phase of this flare, up to 20 minutes after the non-thermal emission has ceased. We find that these decay phase thermal pulsations have very small amplitude and show an increase in characteristic timescale from 40 s up to 70 s. We interpret the bursty nature of the co-existing multi-wavelength QPPs during the impulsive phase in terms of episodic particle acceleration and plasma heating. The persistent thermal decay phase QPPs are most likely connected with compressive magnetohydrodynamic processes in the post-flare loops such as the fast sausage mode or the vertical kink mode.

  20. Observations of Scorpius X-1 with IUE - Ultraviolet results from a multiwavelength campaign

    NASA Technical Reports Server (NTRS)

    Vrtilek, S. D.; Raymond, J. C.; Penninx, W.; Verbunt, F.; Hertz, P.

    1991-01-01

    IUE UV results are presented for the low-mass X-ray binary Sco X-1. Models that predict UV continuum emission from the X-ray-heated surface from the companion star and from an X-ray illuminated accretion disk are adjusted for parameters intrinsic to Sco X-1, and fitted to the data. X-ray heating is found to be the dominant source of UV emission; the mass-accretion rate increases monotonically along the 'Z-shaped' curve in an X-ray color-color diagram. UV emission lines from He, C, N, O, and Si were detected; they all increase in intensity from the HB to the FB state. A model in which emission lines are due to outer-disk photoionization by the X-ray source is noted to give good agreement with line fluxes observed in each state.

  1. 1ES 1113+432: Luminous, soft X-ray outburst from a nearby cataclysmic variable (AR Ursae Majoris)

    NASA Technical Reports Server (NTRS)

    Remillard, R. A.; Schachter, J. F.; Silber, A. D.; Slane, P.

    1994-01-01

    A remarkable X-ray transient from the Einstein Slew Survey, 1 ES 1113+432, is identified with a nearby, short-period cataclysmic variable. Wenzel (1993) has confirmed that the optical counterpart is the variable star, AR UMa (cataloged as 'semiregular'), erroneously reported 5.7 min southeast of the true position. One of the Einstein slew observations recorded a flux of 43 IPC counts/s, which is an order of magnitude above the flux observed from the brightest cataclysmic variables in other X-ray surveys. The outburst spectrum is extremely 'soft,' with an implied blackbody temperature of approximately 22 eV. The optical counterpart (V = 16.5) exhibits a strong UV component, TiO bands from an M star, and broadened Balmer emission lines. Optical states as bright as V approx. 13 were found on photographs from the Harvard Plate Library, confirming outburst behavior in the optical counterpart. The historical photographic record suggests that 1ES 1113+432 remains in a low-accretion state most of the time. Both of the soft X-ray spectrum and the transitions between high and low-accretion states are suggestive of the AM Her (magnetic) subclass. Photometric observations in the I band show 0.18 mag modulations at a period of 0.966 hr. These are interpreted as ellipsiodal variations in the secondary star for a binary period of 1.932 hr, which is near the lower boundary of the 'period gap' in the histogram, of orbital periods of accreting white dwarfs. Thus 1ES 1113+432 provides the rare opportunity to study a secondary star in a cataclysmic binary that has evolved through the period gap. The optical spectral features from the secondary imply a spectral type of approximately M6 and a distance of approximately 88 pc. The peak luminosity in the soft X-ray component (unabsorbed) is then estimated to be 3 X 10(exp 33) ergs/s, assuming emission from a blackbody slab with a temperature of 22 eV. While this luminosity is higher than previous measures of the soft X-ray component, it does not exceed the amount of radiation that could be emitted from the accretion-heated surface of a white dwarf.

  2. X-ray observations of two short but intense solar flares

    NASA Technical Reports Server (NTRS)

    Nitta, Nariaki; Dennis, Brian R.; Kiplinger, Alan L.

    1990-01-01

    This paper presents continuum X-ray spectra of impulsive emission in two short but intense solar flares which have relatively weak soft X-ray emissions, combining data obtained with soft X-ray and hard X-ray spectrometers on board two satellites, the SMM and Hinotori. In both flares, photon spectra of the impulsive component are found to flatten toward low energies, suggesting that a low-energy cutoff of the electron spectrum could be greater than about 50 keV and that the total energy contained in the electrons is significantly less than that usually quoted for a cutoff energy of about 20 keV. Different shapes of the X-ray spectrum at energies below 50 keV in other flares can be attributed to the variety in the relative strength of gradual and impulsive emissions. In one of the two flares, observations with the imager on Hinotori suggest that hard X-ray emission is likely to be associated with loop footpoints. It is argued that contamination by the gradual soft X-ray emission and/or the asymmetry of loops could explain the detection of single sources in the majority of flares that have been imaged in hard X-rays.

  3. Electronic structure of the organic semiconductor Alq3 (aluminum tris-8-hydroxyquinoline) from soft x-ray spectroscopies and density functional theory calculations.

    PubMed

    DeMasi, A; Piper, L F J; Zhang, Y; Reid, I; Wang, S; Smith, K E; Downes, J E; Peltekis, N; McGuinness, C; Matsuura, A

    2008-12-14

    The element-specific electronic structure of the organic semiconductor aluminum tris-8-hydroxyquinoline (Alq(3)) has been studied using a combination of resonant x-ray emission spectroscopy, x-ray photoelectron spectroscopy, x-ray absorption spectroscopy, and density functional theory (DFT) calculations. Resonant and nonresonant x-ray emission spectroscopy were used to measure directly the carbon, nitrogen and oxygen 2p partial densities of states in Alq(3), and good agreement was found with the results of DFT calculations. Furthermore, resonant x-ray emission at the carbon K-edge is shown to be able to measure the partial density of states associated with individual C sites. Finally, comparison of previous x-ray emission studies and the present data reveal the presence of clear photon-induced damage in the former.

  4. X-ray studies of quasars with the Einstein Observatory

    NASA Technical Reports Server (NTRS)

    Tananbaum, H.; Branduardi, G.; Fabbiano, G.; Feigelson, E.; Giacconi, R.; Henry, J. P.; Avni, Y.; Elvis, M.; Pye, J. P.; Soltan, A.

    1979-01-01

    Results of an investigation of the X-ray properties of quasars conducted using the Einstein Observatory (HEAO 2) are reported. The positions, fluxes and luminosities of 35 known quasars were observed by the Einstein high-resolution imaging detector and the imaging proportional counter. Assuming optical redshifts as valid distance indicators, 0.5-4.5 keV X-ray luminosities ranging from 10 to the 43rd to 10 to the 47 ergs/sec are obtained, with evidence of very little cold gas absorption. Flux variability on a time scale of less than 10,000 sec is observed for the quasar OX 169, which implies a mass between 8 x 10 to the 5th and 2 x 10 to the 8th solar masses for the black hole assumed to be responsible for the emission. Preliminary results of the quasar survey also indicate that quasars contribute significantly to the diffuse X-ray background.

  5. An ASCA observation of the Castor system

    NASA Technical Reports Server (NTRS)

    Gotthelf, Eric V.; Jalota, Lalit; Mukai, Koji; White, Nicholas E.

    1994-01-01

    We report on a day-long ASCA broadband (1-10 keV) spectro-imaging observation of the X-ray emission from the Castor multibinary system. Significant flares were detected from both the flare star system YY Gem (Castor C) and from Castor AB located 73 sec away. Using an optimal viewing geometry and image restoration techniques, we are able to spatially resolve the emission from the two X-ray components. Broadband flare activity from Castor AB is confirmed, and quiescent flux is detected. The quiescent spectrum of YY Gem is a complex blend of emission lines across the ASCA bandpass which requires multitemperature components or two-temperature variable metal-poor abundances (approximately 5-10 below solar) to obtain a satisfactory fit to both the Mewe-Kaastra and Raymond-Smith models. The flare spectrum is consistent with an increase in the emissivity of the hotter component.

  6. Ion Storage Ring Measurements of Low Temperature Dielectronic Recombination Rate Coefficients for Modeling X-Ray Photoionized Cosmic Plasmas

    NASA Technical Reports Server (NTRS)

    Savin, D. W.; Gwinner, G.; Schwalm, D.; Wolf, A.; Mueller, A.; Schippers, S.

    2002-01-01

    Low temperature dielectronic recombination (DR) is the dominant recombination mechanism for most ions in X-ray photoionized cosmic plasmas. Reliably modeling and interpreting spectra from these plasmas requires accurate low temperature DR rate Coefficients. Of particular importance are the DR rate coefficients for the iron L-shell ions (Fe XVII-Fe XXIV). These ions are predicted to play an important role in determining the thermal structure and line emission of X-ray photoionized plasmas, which form in the media surrounding accretion powered sources such as X-ray binaries (XRBs), active galactic nuclei (AGN), and cataclysmic variables (Savin et al., 2000). The need for reliable DR data of iron L-shell ions has become particularly urgent after the launches of Chandra and XMM-Newton. These satellites are now providing high-resolution X-ray spectra from a wide range of X-ray photoionized sources. Interpreting the spectra from these sources requires reliable DR rate coefficients. However, at the temperatures relevant, for X-ray photoionized plasmas, existing theoretical DR rate coefficients can differ from one another by factors of two to orders of magnitudes.

  7. X-ray Spectral Analysis of the Cataclysmic Variable LS Peg using XMM-Newton Observatory Data

    NASA Astrophysics Data System (ADS)

    Talebpour Sheshvan, N.; Nabizadeh, A.; Balman, S.

    2017-10-01

    LS Peg is a Cataclysmic Variable (CV) suggested as Intermediate Polar (IP) because of similar properties to those observed in IP systems. We used archival XMM-Newton observation of LS Peg in order to study the X-ray characteristics of the system. We show LS Peg light curves in several different energy bands, and discuss about orbital modulations and power spectral analysis. Unlike the previous spectral analysis of the EPIC-MOS data by fitting a hot optically thin plasma emission model with a single temperature, we simultaneously fit EPIC spectrum (pn+MOS) using a composite model of absorption (tbabs) along with two different partial covering absorbers plus a multi-temperature plasma emission component in XSPEC. In addition, we find a Gaussian emission line at 6.4 keV. For LS Peg the maximum temperature of the plasma distribution is found to be ˜ 17.8 keV with a luminosity of ˜ 7.4×10^{32}erg s^{-1} translating to an accretion rate of ˜ 1.7×10 ^{-10} M_{⊙} yr^{-1}. We present spectra for orbital minimum and orbital maximum. In addition, we use SWIFT observations of the source in order to make a comparison. We elaborate on the geometry of accretion and absorption in the X-ray emitting region with articulation on the magnetic nature.

  8. Multi-time-scale X-ray reverberation mapping of accreting black holes

    NASA Astrophysics Data System (ADS)

    Mastroserio, Guglielmo; Ingram, Adam; van der Klis, Michiel

    2018-04-01

    Accreting black holes show characteristic reflection features in their X-ray spectrum, including an iron Kα line, resulting from hard X-ray continuum photons illuminating the accretion disc. The reverberation lag resulting from the path-length difference between direct and reflected emission provides a powerful tool to probe the innermost regions around both stellar-mass and supermassive black holes. Here, we present for the first time a reverberation mapping formalism that enables modelling of energy-dependent time lags and variability amplitude for a wide range of variability time-scales, taking the complete information of the cross-spectrum into account. We use a pivoting power-law model to account for the spectral variability of the continuum that dominates over the reverberation lags for longer time-scale variability. We use an analytic approximation to self-consistently account for the non-linear effects caused by this continuum spectral variability, which have been ignored by all previous reverberation studies. We find that ignoring these non-linear effects can bias measurements of the reverberation lags, particularly at low frequencies. Since our model is analytic, we are able to fit simultaneously for a wide range of Fourier frequencies without prohibitive computational expense. We also introduce a formalism of fitting to real and imaginary parts of our cross-spectrum statistic, which naturally avoids some mistakes/inaccuracies previously common in the literature. We perform proof-of-principle fits to Rossi X-ray Timing Explorer data of Cygnus X-1.

  9. Hunting for Intrinsically X-ray Weak Quasars: The Case of PHL 1811 Analogs

    NASA Astrophysics Data System (ADS)

    Brandt, William

    2009-09-01

    A central dogma of X-ray astronomy is that luminous X-ray emission is a universal property of efficiently accreting supermassive black holes. One interesting challenge to this idea has come from the quasar PHL 1811 which appears to be intrinsically X-ray weak and also has distinctive emission-line properties. We propose to observe a sample of eight SDSS quasars, selected to have similar UV emission-line properties to that of PHL 1811, to test if they are also X-ray weak. Our analyses of the currently available X-ray data appear to support this hypothesis but do not provide a proper test. Our results will have implications for the nature of accretion-disk coronae, emission-line formation, and AGN selection.

  10. Accretion from a clumpy massive-star wind in supergiant X-ray binaries

    NASA Astrophysics Data System (ADS)

    El Mellah, I.; Sundqvist, J. O.; Keppens, R.

    2018-04-01

    Supergiant X-ray binaries (SgXB) host a compact object, often a neutron star (NS), orbiting an evolved O/B star. Mass transfer proceeds through the intense line-driven wind of the stellar donor, a fraction of which is captured by the gravitational field of the NS. The subsequent accretion process on to the NS is responsible for the abundant X-ray emission from SgXB. They also display peak-to-peak variability of the X-ray flux by a factor of a few 10-100, along with changes in the hardness ratios possibly due to varying absorption along the line of sight. We use recent radiation-hydrodynamic simulations of inhomogeneities (a.k.a. clumps) in the non-stationary wind of massive hot stars to evaluate their impact on the time-variable accretion process. For this, we run 3D hydrodynamic simulations of the wind in the vicinity of the accretor to investigate the formation of the bow shock and follow the inhomogeneous flow over several spatial orders of magnitude, down to the NS magnetosphere. In particular, we show that the impact of the wind clumps on the time variability of the intrinsic mass accretion rate is severely tempered by the crossing of the shock, compared to the purely ballistic Bondi-Hoyle-Lyttleton estimation. We also account for the variable absorption due to clumps passing by the line of sight and estimate the final effective variability of the column density and mass accretion rate for different orbital separations. Finally, we compare our results to the most recent analysis of the X-ray flux and the hardness ratio in Vela X-1.

  11. Interactions of X-ray Binaries with Their Surrounding Material

    NASA Astrophysics Data System (ADS)

    Servillat, Mathieu; Chaty, S.; Coleiro, A.; Tang, S.; Grindlay, J. E.; Los, E.

    2013-04-01

    We can observe the interactions of high mass X-ray binaries with their surrounding material in two complementary ways: variability over long time scales, and direct infrared observation of dust/gas. This gives unprecedented clues on the formation and evolution of those systems. Using Herschel infrared observations of high mass X-ray binaries and of ultra-luminous X-ray sources, we aim to detect and characterize the surrounding material. In the case of ultra-luminous X-ray sources, due to the enormous amount of energy radiated, strong interactions with their environment are expected, particularly if the emission is not beamed and if they host an intermediate mass black hole. This provides a unique test for the existence of such objects. The Digital Access to a Sky Century at Harvard (DASCH) is a project to digitize and analyze the scientific data contained in the 530 000 Harvard College Observatory plates taken between the 1880s and 1990s, which is a unique resource for studying temporal variations in the universe on 10-100 yr timescales. The Be star SAO 49275 shows significant slow variability of 1 magnitude on time scales 10-50 years. This variability seems connected to the formation and disappearance of the decretion disk of the Be star, maybe triggered by the presence of a compact object companion, possibly a white dwarf.

  12. X-RAYS FROM A RADIO-LOUD COMPACT BROAD ABSORPTION LINE QUASAR 1045+352 AND THE NATURE OF OUTFLOWS IN RADIO-LOUD BROAD ABSORPTION LINE QUASARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunert-Bajraszewska, Magdalena; Katarzynski, Krzysztof; Siemiginowska, Aneta

    2009-11-10

    We present new results on X-ray properties of radio-loud broad absorption line (BAL) quasars and focus on broadband spectral properties of a high-ionization BAL (HiBAL) compact steep spectrum (CSS) radio-loud quasar 1045+352. This HiBAL quasar has a very complex radio morphology indicating either strong interactions between a radio jet and the surrounding interstellar medium or a possible re-start of the jet activity. We detected 1045+352 quasar in a short 5 ksec Chandra ACIS-S observation. We applied theoretical models to explain spectral energy distribution of 1045+352 and argue that non-thermal, inverse-Compton (IC) emission from the innermost parts of the radio jetmore » can account for a large fraction of the observed X-ray emission. In our analysis, we also consider a scenario in which the observed X-ray emission from radio-loud BAL quasars can be a sum of IC jet X-ray emission and optically thin corona X-ray emission. We compiled a sample of radio-loud BAL quasars that were observed in X-rays to date and report no correlation between their X-ray and radio luminosity. However, the radio-loud BAL quasars show a large range of X-ray luminosities and absorption columns. This is consistent with the results obtained earlier for radio-quiet BAL quasars and may indicate an orientation effect in BAL quasars or more complex dependence between X-ray emission, radio emission, and an orientation based on the radio morphology.« less

  13. Energy-dependent intensity variation of the persistent X-ray emission of magnetars observed with Suzaku

    NASA Astrophysics Data System (ADS)

    Nakagawa, Yujin; Ebisawa, Ken; Enoto, Teruaki

    2018-03-01

    The emission mechanism of magnetars is still controversial even though various observational and theoretical studies have been made. In order to investigate mechanisms of both the persistent X-ray emission and the burst emission of the magnetars, we propose a model in which the persistent X-ray emission consists of numerous micro-bursts of various sizes. If this model is correct, root mean square (rms) intensity variations of the persistent emission would exceed the values expected from the Poisson distribution. Using Suzaku archive data of 11 magnetars (22 observations), the rms intensity variations were calculated from 0.2 keV to 70 keV. As a result, we found significant excess rms intensity variations from all 11 magnetars. We suppose that numerous micro-bursts constituting the persistent X-ray emission cause the observed variations, suggesting that the persistent X-ray emission and the burst emission have identical emission mechanisms. In addition, we found that the rms intensity variations clearly increase toward higher energy bands for four magnetars (six observations). The energy-dependent rms intensity variations imply that the soft thermal component and the hard X-ray component are emitted from different regions far apart from each other.

  14. New Chandra observations of the jet in 3C273. 1. Softer X-ray than radio spectra and the X-ray emission mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jester, Sebastian; /Fermilab; Harris, D.E.

    2006-05-01

    The jet in 3C273 is a high-power quasar jet with radio, optical and X-ray emission whose size and brightness allow a detailed study of the emission processes acting in it. We present deep Chandra observations of this jet and analyze the spectral properties of the jet emission from radio through X-rays. We find that the X-ray spectra are significantly softer than the radio spectra in all regions of the bright part of the jet except for the first bright ''knot A'', ruling out a model in which the X-ray emission from the entire jet arises from beamed inverse-Compton scattering ofmore » cosmic microwave background photons in a single-zone jet flow. Within two-zone jet models, we find that a synchrotron origin for the jet's X-rays requires fewer additional assumptions than an inverse-Compton model, especially if velocity shear leads to efficient particle acceleration in jet flows.« less

  15. The gamma-ray emitting radio-loud narrow-line Seyfert 1 galaxy PKS 2004-447. I. The X-ray View

    NASA Astrophysics Data System (ADS)

    Kreikenbohm, A.; Schulz, R.; Kadler, M.; Wilms, J.; Markowitz, A.; Chang, C. S.; Carpenter, B.; Elsässer, D.; Gehrels, N.; Mannheim, K.; Müller, C.; Ojha, R.; Ros, E.; Trüstedt, J.

    2016-01-01

    As part of the TANAMI multiwavelength progam, we discuss new X-ray observations of the γ-ray and radio-loud narrow line Seyfert 1 galaxy (γ-NLS1) PKS 2004-447. The active galaxy is a member of a small sample of radio-loud NLS1s detected in γ-rays by the Fermi Large Area Telescope. It stands out for being the radio-loudest and the only southern-hemisphere source in this sample. We present results from our X-ray monitoring program comprised of Swift snapshot observations from 2012 through 2014 and two new X-ray observations with XMM-Newton in 2012. Supplemented by archival data from 2004 and 2011, our data set allows for a careful analysis of the X-ray spectrum and variability of this peculiar source. The (0.5-10) keV spectrum is described well by a power law (Γ ~ 1.6), which can be interpreted as non-thermal emission from a relativistic jet. The source exhibits moderate flux variability on timescales of both months and years. Correlated brightness variations in the (0.5-2) keV and (2-10) keV bands are explained by a single variable spectral component, such as the one from the jet. A possible soft excess seen in the data from 2004 cannot be confirmed by the new XMM-Newton observations taken during low-flux states. Any contribution to the total flux in 2004 is less than 20% of the power-law component. The (0.5-10) keV luminosities of PKS 2004-447 are in the range of (0.5-2.7) × 1044 erg s-1. A comparison of the X-ray properties among the known γ-NLS1 galaxies shows that in four out of five cases the X-ray spectrum is dominated by a flat power law without intrinsic absorption. These objects are moderately variable in their brightness, while spectral variability is observed in at least two sources. The major difference across the X-ray spectra of γ-NLS1s is the luminosity, which spans a range of almost two orders of magnitude from 1044 erg s-1 to 1046 erg s-1 in the (0.5-10) keV band.

  16. Accretion Flows in Magnetic White Dwarf Systems

    NASA Technical Reports Server (NTRS)

    Imamura, James N.

    2005-01-01

    We received Type A and B funding under the NASA Astrophysics Data Program for the analysis and interpretation of hard x-ray data obtained by the Rossi X-ray Timing Explorer and other NASA sponsored missions for Intermediate Polars (IPS) and Polars. For some targets, optical data was available. We reduced and analyzed the X-ray spectra and the X-ray and optical (obtained at the Cerro Tololo Inter-American Observatory) timing data using detailed shock models (which we constructed) to place constraints on the properties of the accreting white dwarfs, the high energy emission mechanisms of white dwarfs, and the large-scale accretion flows of Polars and IPS. IPS and Polars are white dwarf mass-transfer binaries, members of the larger class of cata,clysmic variables. They differ from the bulk of the cataclysmic variables in that they contain strongly magnetic white dwarfs; the white dwarfs in Polars have B, = 7 to 230 MG and those in IPS have B, less than 10 MG. The IPS and Polars are both examples of funneled accretion flows in strong magnetic field systems. The IPS are similar to x-ray pulsars in that accretion disks form in the systems which are disrupted by the strong stellar magnetic fields of the white dwarfs near the stellar surface from where the plasma is funneled to the surface of the white dwarf. The localized hot spots formed at the footpoints of the funnels coupled with the rotation of the white dwarf leads to coherent pulsed x-ray emission. The Polars offer an example of a different accretion topology; the magnetic field of the white dwarf controls the accretion flow from near the inner Lagrangian point of the system directly to the stellar surface. Accretion disks do not form. The strong magnetic coupling generally leads to synchronous orbital/rotational motion in the Polars. The physical system in this sense resembles the Io/Jupiter system. In both IPS and Polars, pulsed emission from the infrared to x-rays is produced as the funneled flows merge onto the white dwarfs through the formation of strong radiating shock waves. A comparative study of the IPS and Polars can elucidate the primary effects of the magnetic fields on the dynamics and thermodynamics in accreting white dwarf systems.

  17. High-efficiency in situ resonant inelastic x-ray scattering (iRIXS) endstation at the Advanced Light Source

    DOE PAGES

    Qiao, Ruimin; Li, Qinghao; Zhuo, Zengqing; ...

    2017-03-17

    In this paper, an endstation with two high-efficiency soft x-ray spectrographs was developed at Beamline 8.0.1 of the Advanced Light Source, Lawrence Berkeley National Laboratory. The endstation is capable of performing soft x-ray absorption spectroscopy, emission spectroscopy, and, in particular, resonant inelastic soft x-ray scattering (RIXS). Two slit-less variable line-spacing grating spectrographs are installed at different detection geometries. The endstation covers the photon energy range from 80 to 1500 eV. For studying transition-metal oxides, the large detection energy window allows a simultaneous collection of x-ray emission spectra with energies ranging from the O K-edge to the Ni L-edge without movingmore » any mechanical components. The record-high efficiency enables the recording of comprehensive two-dimensional RIXS maps with good statistics within a short acquisition time. By virtue of the large energy window and high throughput of the spectrographs, partial fluorescence yield and inverse partial fluorescence yield signals could be obtained for all transition metal L-edges including Mn. Finally and moreover, the different geometries of these two spectrographs (parallel and perpendicular to the horizontal polarization of the beamline) provide contrasts in RIXS features with two different momentum transfers.« less

  18. Dynamical Models for High-Energy Emission from Massive Stars

    NASA Astrophysics Data System (ADS)

    Owocki, Stanley %FAA(University of Delaware)

    Massive stars are prominent sources of X-rays and gamma-rays detected by both targeted and survey observations from orbiting telescopes like Chandra, XMM/Newton, RXTE, and Fermi. Such high-energy emissions represent key probes of the dynamics of massive-star mass loss, and their penetration through many magnitudes of visible interstellar extinction makes them effective beacons of massive stars in distant reaches of the Galaxy, and in young, active star-forming regions. The project proposed here will develop a comprehensive theoretical framework for interpreting both surveys and targeted observations of high-energy emission from massive stars. It will build on our team's extensive experience in both theoretical models and observational analyses for three key types of emission mechanisms in the stellar wind outflows of these stars, namely: 1) Embedded Wind Shocks (EWS) arising from internal instabilities in the wind driving; 2) shocks in Colliding Wind Binary (CWB) systems; and 3) High-Mass X-ray Binaries (HMXB) systems with interaction between massive-star wind with a compact companion (neutron star or black hole). Taking advantage of commonalities in the treatment of radiative driving, hydrodynamics, shock heating and cooling, and radiation transport, we will develop radiation hydrodynamical models for the key observational signatures like energy distribution, emission line spectrum, and variability, with an emphasis on how these can be used in affiliated analyses of both surveys like the recent Chandra mapping of the Carina association, and targeted observations of galactic X-ray and gamma-ray sources associated with each of the above specific model types. The promises of new clumping-insensitive diagnostics of mass loss rates, and the connection to mass transfer and binarity, all have broad relevance for understanding the origin, evolution, and fate of massive stars, in concert with elements of NASA's Strategic Subgoal 3D. Building on our team's expertise, the project emphasizes training of a new generation of students and post-doctoral researchers to model and analyze observations by current and future NASA X-ray and gamma-ray observatories.

  19. New Gener. High-Energy Spectra of the Blazar 3C 279 with XMM-Newton and GLAST

    NASA Astrophysics Data System (ADS)

    Collmar, Werner

    2007-10-01

    We propose two 20 ksec XMM-Newton observations of the X-ray bright gamma-ray blazar 3C~279 simultaneous with GLAST/LAT. The main goal is to measure its X-ray properties (spectrum, variability) in order to (1) improve our knowledge on the X-ray emission of the blazar, and (2) to supplement and correlate them to simultaneous GLAST/LAT Gamma-ray observations (30 MeV-300 GeV). Simultaneous GLAST observations of 3C 279 are guaranteed (assuming proper operation then). The high-energy data will be supplemented by ground-based measurements, adding finally up to multifrequency spectra which have unprecedented accuracy and will extend up to high-energy gamma-rays. Such high-quality SEDs will provide severe constraints on their modeling and have the potential to discriminate among models.

  20. Keeping Tabs on the Unique Jet in M87 During Cycle 19

    NASA Astrophysics Data System (ADS)

    Cheung, C. Teddy

    2017-09-01

    We request two observations of M87 at 5 ks each. The first should be in Dec 2017 and the second in 2018 Mar. There are three reasons for this modest request: (1) If our companion M87 ToO proposal is triggered, we need to know the X-ray intensity of each component in the jet before the onset of TeV flaring. (2) Ascertain if the intensities of the known X-ray variable nucleus and knot HST-1, as well as knot D (known to be optically variable with superluminal sub-structures) have increased substantially since our most recent observation; if we were to find a substantial change, a DDT request would be instigated. (3) Extend the time baseline for evaluation of long term intensity decay of knots as expected for synchrotron losses of high energy electrons responsible for X-ray emission.

  1. X-ray Probes of Magnetospheric Interactions with Jupiter's Auroral zones, the Galilean Satellites, and the Io Plasma Torus

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; Ramsey, B. D.; Waite, J. H., Jr.; Rehak, P.; Johnson, R. E.; Cooper, J. F.; Swartz, D. A.

    2004-01-01

    Remote observations with the Chandra X-ray Observatory and the XMM-Newton Observatory have shown that the Jovian system is a source of x-rays with a rich and complicated structure. The planet's polar auroral zones and its disk are powerful sources of x-ray emission. Chandra observations revealed x-ray emission from the Io Plasma Torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from these moons is certainly due to bombardment of their surfaces of highly energetic protons, oxygen and sulfur ions from the region near the Torus exciting atoms in their surfaces and leading to fluorescent x-ray emission lines. Although the x-ray emission from the Galilean moons is faint when observed fiom Earth orbit, an imaging x-ray spectrometer in orbit around these moons, operating at 200 eV and above with 150 eV energy resolution, would provide a detailed mapping (down to 40 m spatial resolution) of the elemental composition in their surfaces. Here we describe the physical processes leading to x-ray emission fiom the surfaces of Jupiter's moons and the instrumental properties, as well as energetic ion flux models or measurements, required to map the elemental composition of their surfaces. We discuss the proposed scenarios leading to possible surface compositions. For Europa, the two most extreme are (1) a patina produced by exogenic processes such as meteoroid bombardment and ion implantation, and (2) upwelling of material fiom the subsurface ocean. We also describe the characteristics of X - m , an imaging x-ray spectrometer under going a feasibility study for the JIM0 mission, with the ultimate goal of providing unprecedented x-ray studies of the elemental composition of the surfaces of Jupiter's icy moons and Io, as well as of Jupiter's auroral x-ray emission.

  2. The nature of 50 Palermo Swift-BAT hard X-ray objects through optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Rojas, A. F.; Masetti, N.; Minniti, D.; Jiménez-Bailón, E.; Chavushyan, V.; Hau, G.; McBride, V. A.; Bassani, L.; Bazzano, A.; Bird, A. J.; Galaz, G.; Gavignaud, I.; Landi, R.; Malizia, A.; Morelli, L.; Palazzi, E.; Patiño-Álvarez, V.; Stephen, J. B.; Ubertini, P.

    2017-06-01

    We present the nature of 50 hard X-ray emitting objects unveiled through an optical spectroscopy campaign performed at seven telescopes in the northern and southern hemispheres. These objects were detected with the Burst Alert Telescope (BAT) instrument onboard the Swift satellite and listed as of unidentified nature in the 54-month Palermo BAT catalogue. In detail, 45 sources in our sample are identified as active galactic nuclei of which, 27 are classified as type 1 (with broad and narrow emission lines) and 18 are classified as type 2 (with only narrow emission lines). Among the broad-line emission objects, one is a type 1 high-redshift quasi-stellar object, and among the narrow-line emission objects, one is a starburst galaxy, one is a X-ray bright optically normal galaxy, and one is a low ionization nuclear emission line region. We report 30 new redshift measurements, 13 confirmations and 2 more accurate redshift values. The remaining five objects are galactic sources: three are Cataclismic Variables, one is a X-ray Binary probably with a low mass secondary star, and one is an active star. Based on observations obtained from the following observatories: Cerro Tololo Interamerican Observatory (Chile); Astronomical Observatory of Bologna in Loiano (Italy); Observatorio Astronómico Nacional (San Pedro Mártir, Mexico); Radcliffe telescope of the South African Astronomical Observatory (Sutherland, South Africa); Sloan Digital Sky Survey; Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias (Canary Islands, Spain) and New Technology Telescope (NTT) of La Silla Observatory, Chile.

  3. A Falling Corona Model for the Anomalous Behavior of the Broad Emission Lines in NGC 5548

    NASA Astrophysics Data System (ADS)

    Sun, Mouyuan; Xue, Yongquan; Cai, Zhenyi; Guo, Hengxiao

    2018-04-01

    NGC 5548 has been intensively monitored by the AGN Space Telescope and Optical Reverberation Mapping collaboration. Approximately after half of the light curves, the correlation between the broad emission lines and the lag-corrected ultraviolet (UV) continua becomes weak. This anomalous behavior is accompanied by an increase of soft X-ray emission. We propose a simple model to understand this anomalous behavior, i.e., the corona might fall down, thereby increasing the covering fraction of the inner disk. Therefore, X-ray and extreme-UV emission suffer from spectral variations. The UV continua variations are driven by both X-ray and extreme-UV variations. Consequently, the spectral variability induced by the falling corona would dilute the correlation between the broad emission lines and the UV continua. Our model can explain many additional observational facts, including the dependence of the anomalous behavior on velocity and ionization energy. We also show that the time lag and correlation between the X-ray and the UV variations change as NGC 5548 displays the anomalous behavior. The time lag is dramatically longer than the expectation from disk reprocessing if the anomalous behavior is properly excluded. During the anomalous state, the time lag approaches the light-travel timescale of disk reprocessing albeit with a much weaker correlation. We speculate that the time lag in the normal state is caused by reprocessing of the broad line region gas. As NGC 5548 enters the abnormal state, the contribution of the broad line region gas is smaller; the time lag reflects disk reprocessing. We also discuss alternative scenarios.

  4. Formation and Destruction of Jets in X-ray Binaries

    NASA Technical Reports Server (NTRS)

    Kylafix, N. D.; Contopoulos, I.; Kazanas, D.; Christodoulou, D. M.

    2011-01-01

    Context. Neutron-star and black-hole X-ray binaries (XRBs) exhibit radio jets, whose properties depend on the X-ray spectral state e.nd history of the source. In particular, black-hole XRBs emit compact, 8teady radio jets when they are in the so-called hard state. These jets become eruptive as the sources move toward the soft state, disappear in the soft state, and then re-appear when the sources return to the hard state. The jets from neutron-star X-ray binaries are typically weaker radio emitters than the black-hole ones at the same X-ray luminosity and in some cases radio emission is detected in the soft state. Aims. Significant phenomenology has been developed to describe the spectral states of neutron-star and black-hole XRBs, and there is general agreement about the type of the accretion disk around the compact object in the various spectral states. We investigate whether the phenomenology describing the X-ray emission on one hand and the jet appearance and disappearance on the other can be put together in a consistent physical picture. Methods. We consider the so-called Poynting-Robertson cosmic battery (PRCB), which has been shown to explain in a natural way the formation of magnetic fields in the disks of AGNs and the ejection of jets. We investigate whether the PRCB can also explain the [ormation, destruction, and variability or jets in XRBs. Results. We find excellent agreement between the conditions under which the PRCB is efficient (i.e., the type of the accretion disk) and the emission or destruction of the r.adio jet. Conclusions. The disk-jet connection in XRBs can be explained in a natural way using the PRCB.

  5. Discovery of Diffuse Hard X-ray Emission associated with Jupiter

    NASA Astrophysics Data System (ADS)

    Ezoe, Y.; Miyoshi, Y.; Ishikawa, K.; Ohashi, T.; Terada, N.; Uchiyama, Y.; Negoro, H.

    2009-12-01

    Our discovery of diffuse hard (1-5 keV) X-ray emission around Jupiter is reported. Recent Chandra and XMM-Newton observations revealed several types of X-rays in the vicinity of Jupiter such as auroral and disk emission from Jupiter and faint diffuse X-rays from the Io Plasma Torus (see Bhardwaj et al. 2007 for review). To investigate possible diffuse hard X-ray emission around Jupiter with the highest sensitivity, we conducted data analysis of Suzaku XIS observations of Jupiter on Feb 2006. After removing satellite and planetary orbital motions, we detected a significant diffuse X-ray emission extending to ~6 x 3 arcmin with the 1-5 keV X-ray luminosity of ~3e15 erg/s. The emitting region very well coincided with the Jupiter's radiation belts. The 1-5 keV X-ray spectrum was represented by a simple power law model with a photon index of 1.4. Such a flat continuum strongly suggests non-thermal origin. Although such an emission can be originated from multiple background point sources, its possibility is quite low. We hence examined three mechanisms, assuming that the emission is truly diffuse: bremsstrahlung by keV electrons, synchrotron emission by TeV electrons, and inverse Compton scattering of solar photons by MeV electrons. The former two can be rejected because of the X-ray spectral shape and implausible existence of TeV electrons around Jupiter, respectively. The last possibility was found to be possible because tens MeV electrons, which have been confirmed in inner radiation belts (Bolton et al. 2002), can kick solar photons to the keV energy range and provide a simple power-law continuum. We estimated an average electron density from the X-ray luminosity assuming the oblate spheroid shaped emitting region with 8 x 8 x 4 Jovian radii. The necessary density was 0.02 1/cm3 for 50 MeV electrons. Hence, our results may suggest a new particle acceleration phenomenon around Jupiter.

  6. Probing the extent of the non-thermal emission from the Vela X region at TeV energies with H.E.S.S.

    NASA Astrophysics Data System (ADS)

    Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker Tjus, J.; Bernlöhr, K.; Birsin, E.; Biteau, J.; Bochow, A.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Charbonnier, A.; Chaves, R. C. G.; Cheesebrough, A.; Cologna, G.; Conrad, J.; Couturier, C.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; Drury, L. O.' C.; Dubois, F.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Gast, H.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Göring, D.; Grondin, M.-H.; Häffner, S.; Hague, J. D.; Hahn, J.; Hampf, D.; Harris, J.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Masbou, J.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Menzler, U.; Moderski, R.; Mohamed, M.; Moulin, E.; Naumann, C. L.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nguyen, N.; Niemiec, J.; Nolan, S. J.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raue, M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sheidaei, F.; Skilton, J. L.; Sol, H.; Spengler, G.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorobiov, S.; Vorster, M.; Wagner, S. J.; Ward, M.; White, R.; Wierzcholska, A.; Wouters, D.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    2012-12-01

    Context. Vela X is a region of extended radio emission in the western part of the Vela constellation: one of the nearest pulsar wind nebulae, and associated with the energetic Vela pulsar (PSR B0833-45). Extended very-high-energy (VHE) γ-ray emission (HESS J0835-455) was discovered using the H.E.S.S. experiment in 2004. The VHE γ-ray emission was found to be coincident with a region of X-ray emission discovered with ROSAT above 1.5 keV (the so-called Vela X cocoon): a filamentary structure extending southwest from the pulsar to the centre of Vela X. Aims: A deeper observation of the entire Vela X nebula region, also including larger offsets from the cocoon, has been performed with H.E.S.S. This re-observation was carried out in order to probe the extent of the non-thermal emission from the Vela X region at TeV energies and to investigate its spectral properties. Methods: To increase the sensitivity to the faint γ-ray emission from the very extended Vela X region, a multivariate analysis method combining three complementary reconstruction techniques of Cherenkov-shower images is applied for the selection of γ-ray events. The analysis is performed with the On/Off background method, which estimates the background from separate observations pointing away from Vela X; towards regions free of γ-ray sources but with comparable observation conditions. Results: The γ-ray surface brightness over the large Vela X region reveals that the detection of non-thermal VHE γ-ray emission from the PWN HESS J0835-455 is statistically significant over a region of radius 1.2° around the position α = 08h35m00s, δ = -45°36'00'' (J2000). The Vela X region exhibits almost uniform γ-ray spectra over its full extent: the differential energy spectrum can be described by a power-law function with a hard spectral index Γ = 1.32 ± 0.06stat ± 0.12sys and an exponential cutoff at an energy of (14.0 ± 1.6stat ± 2.6sys) TeV. Compared to the previous H.E.S.S. observations of Vela X the new analysis confirms the general spatial overlap of the bulk of the VHE γ-ray emission with the X-ray cocoon, while its extent and morphology appear more consistent with the (more extended) radio emission, contradicting the simple correspondence between VHE γ-ray and X-ray emissions. Morphological and spectral results challenge the interpretation of the origin of γ-ray emission in the GeV and TeV ranges in the framework of current models.

  7. Rapid and multiband variability of the TeV bright active nucleus of the galaxy IC 310

    DOE PAGES

    Aleksić, J.; Antonelli, L. A.; Antoranz, P.; ...

    2014-03-14

    Recently the radio galaxy IC 310 was identified as a γ-ray emitter based on observations at GeV energies with Fermi-LAT and at very high energies (VHE, E > 100 GeV) with the MAGIC telescopes. Originally classified as a head-tail radio galaxy, the nature of this object is subject of controversy since its nucleus shows blazar-like behavior. In order to understand the nature of IC 310 and the origin of the VHE emission, we studied the spectral and flux variability of IC 310 from the X-ray band to the VHE γ-ray regime. The light curve of IC 310 above 300 GeVmore » has been measured with the MAGIC telescopes from 2009 October to 2010 February. Contemporaneous Fermi-LAT data (2008-2011) in the 10-500 GeV energy range were also analyzed. In the X-ray regime, archival observations from 2003 to 2007 with XMM-Newton, Chandra, and Swift-XRT in the 0.5-10 keV band were studied. The VHE light curve reveals several high-amplitude and short-duration flares. Day-to-day flux variability is clearly present (>5σ). The photon index between 120 GeV and 8 TeV remains at the value Γ ~ 2.0 during both low and high flux states. The VHE spectral shape does not show significant variability, whereas the flux at 1 TeV changes by a factor of ~7. Fermi-LAT detected only eight γ-ray events in the energy range 10 GeV–500 GeV in three years of observation. Moreover, the measured photon index of Γ = 1.3 ± 0.5 in the Fermi-LAT range is very hard. The X-ray measurements show strong variability in both flux and photon index. The latter varied from 1.76 ± 0.07 to 2.55 ± 0.07. The rapid variability measured in γ-rays and X-rays confirms the blazar-like behavior of IC 310. The multi-TeV γ-ray emission seems to originate from scales of less than 80 Schwarzschild radii (for a black hole mass of 2 × 10 8 M⊙) within the compact core of its FR I radio jet with orientation angle 10°-38°. The spectral energy distribution resembles that of an extreme blazar, albeit the luminosity is more than two orders of magnitude lower.« less

  8. November 15, 1991 X Flare -- The Movie: Hα , Soft X-rays, and Hard X-rays and Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Wulser, J.-P.; Acton, L.; Sakao, T.; Canfield, R.; Kosugi, T.; Slater, G.; Strong, K.; Tsuneta, S.

    1992-05-01

    The X1.5/3B flare on 1991 November 15, 22:33 UT was well observed by the Hα Imaging Spectrograph and the Vector Magnetograph (Stokes Polarimeter) at Mees Solar Observatory, and by the Soft- and Hard X-ray Telescopes (SXT and HXT) aboard YOHKOH. We have combined this multispectral dataset into a series of temporally and spatially co-aligned video movies and analyzed the morphological and temporal relationships of the various flare emissions. The earliest manifestations of this flare include unresolved preflare SXR brightenings very close to the magnetic neutral line and preflare motions of filaments seen in Hα . In the flare core, SXR and Hα emission show moving and rotating coronal structures which we interpret as a successive brightening of adjacent loops during the main phase of the flare. The HXR source shows much more dramatic variability than the SXR source, and they are clearly not cospatial. On the other hand, there is a close spatial relationship between the HXR and Hα blue wing emission sites. The Hα , HXR, and SXR images all point to acceleration and heating in a region that starts close to the neutral line and moves outward during each HXR burst and during the gradual phase. Spectacular mass ejections are seen in both SXR and Hα , with clear unwinding of tightly coiled structures, acceleration of X-ray and Hα material to velocities of order 1000 km/s, and a striking thermal bifurcation between hot and cold plasma.

  9. Simultaneous Multiwavelength Observations of the Blazar 1ES 1959+650 at a Low TeV Flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tagliaferri, G.; Ghisellini, G.; Foschini, L.

    We present the results from a multiwavelength campaign on the TeV blazar 1ES 1959+650, performed in 2006 May. Data from the optical, UV, soft- and hard-X-ray, and very high energy (VHE) gamma-ray (E > 100 GeV) bands were obtained with the Suzaku and Swift satellites, the MAGIC telescope, and other ground-based facilities. The source spectral energy distribution (SED), derived from Suzaku and MAGIC observations at the end of 2006 May, shows the usual double hump shape, with the synchrotron peak at a higher flux level than the Compton peak. With respect to historical values, during our campaign the source exhibitedmore » a relatively high state in X-rays and optical, while in the VHE band it was at one of the lowest level so far recorded. We also monitored the source for flux spectral variability on a time window of 10 days in the optical-UV and X-ray bands and 7 days in the VHE band. The source varies more in the X-ray than in the optical band, with the 2-10 keV X-ray flux varying by a factor of {approx}2. The synchrotron peak is located in the X-ray band and moves to higher energies as the source gets brighter, with the X-ray fluxes above it varying more rapidly than the X-ray fluxes at lower energies. The variability behavior observed in the X-ray band cannot be produced by emitting regions varying independently and suggests instead some sort of 'standing shock' scenario. The overall SED is well represented by a homogeneous one-zone synchrotron inverse Compton emission model, from which we derive physical parameters that are typical of high-energy peaked blazars.« less

  10. Multiwavelength observations of a VHE gamma-ray flare from PKS 1510-089 in 2015

    NASA Astrophysics Data System (ADS)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Arcaro, C.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Bednarek, W.; Bernardini, E.; Berti, A.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hassan, T.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Ishio, K.; Konno, Y.; Kubo, H.; Kushida, J.; Kuveždić, D.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; Majumdar, P.; Makariev, M.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Šnidarić, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Torres-Albà, N.; Toyama, T.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zarić, D.; Desiante, R.; Becerra González, J.; D'Ammando, F.; Larsson, S.; Raiteri, C. M.; Reinthal, R.; Lähteenmäki, A.; Järvelä, E.; Tornikoski, M.; Ramakrishnan, V.; Jorstad, S. G.; Marscher, A. P.; Bala, V.; MacDonald, N. R.; Kaur, N.; Sameer; Baliyan, K.; Acosta-Pulido, J. A.; Lazaro, C.; Martí-nez-Lombilla, C.; Grinon-Marin, A. B.; Pastor Yabar, A.; Protasio, C.; Carnerero, M. I.; Jermak, H.; Steele, I. A.; Larionov, V. M.; Borman, G. A.; Grishina, T. S.

    2017-07-01

    Context. PKS 1510-089 is one of only a few flat spectrum radio quasars detected in the very-high-energy (VHE, > 100 GeV) gamma-ray band. Aims: We study the broadband spectral and temporal properties of the PKS 1510-089 emission during a high gamma-ray state. Methods: We performed VHE gamma-ray observations of PKS 1510-089 with the Major Atmospheric Gamma Imaging Cherenkov (MAGIC) telescopes during a long, high gamma-ray state in May 2015. In order to perform broadband modeling of the source, we have also gathered contemporaneous multiwavelength data in radio, IR, optical photometry and polarization, UV, X-ray, and GeV gamma-ray ranges. We construct a broadband spectral energy distribution (SED) in two periods, selected according to VHE gamma-ray state. Results: PKS 1510-089 was detected by MAGIC during a few day-long observations performed in the middle of a long, high optical and gamma-ray state, showing for the first time a significant VHE gamma-ray variability. Similarly to the optical and gamma-ray high state of the source detected in 2012, it was accompanied by a rotation of the optical polarization angle and the emission of a new jet component observed in radio. However, owing to large uncertainty on the knot separation time, the association with the VHE gamma-ray emission cannot be firmly established. The spectral shape in the VHE band during the flare is similar to those obtained during previous measurements of the source. The observed flux variability sets constraints for the first time on the size of the region from which VHE gamma rays are emitted. We model the broadband SED in the framework of the external Compton scenario and discuss the possible emission site in view of multiwavelength data and alternative emission models.

  11. INTEGRAL and XMM-Newton Spectral Studies of NGC 4388

    NASA Technical Reports Server (NTRS)

    Beckmann, V.; Gehrels, N.; Favre, P.; Walter, R.; Courvoisier, T. J.-L.; Petrucci, P.-O.; Malzac, J.

    2004-01-01

    We present first INTEGRAL and XMM-Newton observations of a Seyfert galaxy, the type 2 AGN NGC 4388. Several INTEGRAL observations performed in 2003 allow us to study the spectrum in the 20 - 300 keV range. In addition two XMM-Newton observations give detailed insight into the 0.2 - 10 keV emission. Comparison with previous observations by BeppoSAX, SIGMA and CGRO/OSSE show that the overall spectrum for soft X-rays up to the gamma-rays can be described by a highly absorbed (N(sub H approx. = 2.7 x 10(exp 23)/sq cm) and variable non-thermal component in addition to constant non-absorbed thermal emission (T approx. = 0.8 keV) of low abundance (Z approx. 5% Z (solar)), plus a constant Fe K a line. The hard X-ray component is well described by a simple power law with a mean photon index of Gamma = 1.7. During the INTEGRAL observations the flux at 100 keV increased by a factor of 1.5. The analysis of XMM-Newton data implies that the emission below 3 keV is decoupled from the AGN and probably due to extended emission as seen in Chandra observations. The constant iron line emission is apparently also decoupled from the direct emission of the central engine and likely to be generated in the obscuring material, e.g. in the molecular torus.

  12. X-ray spectrum and variability of the quasar PG 1211+143

    NASA Technical Reports Server (NTRS)

    Yaqoob, Tahir; Serlemitsos, Peter; Mushotzky, Richard; Madejski, Greg; Turner, T. Jane; Kunieda, Hideyo

    1994-01-01

    We present preliminary results of an ASCA observation of the classic soft-excess quasar PG 1211+143. The overall ASCA spectrum can be characterized by a blackbody with a temperature of approximately 125 eV (quasar frame) and a power law with photon index of approximately 2. Simultaneous ROSAT data are suggestive of further steepening of the spectrum just below the ASCA band. Comparison with previous observations shows that the soft flux in the 0.1-2 keV band varies by at least a factor of approximately 16, scaling roughly as the square of the hard flux in the 2-10 keV band over a timescale of approximately 13.5 yr. We also find evidence of short-term amplitude variability of up to a factor of approximately 2 on a timescale of approximately 2 x 10(exp 4) sec, in both the soft and hard flux so that the soft and hard photons are likely to originate from the same, compact, region. The data rule out variable absorption (cold or ionized) as the origin of the soft excess, favoring an intrinsic emission component. However, we argue against optically thin emission for the 'blue bump' in PG 1211+143. The large amplitude soft X-ray variability may be indicative of variations in the effective temperature, or peak, of the soft component. There is only marginal evidence for Fe K line emission between 6-7 keV in the quasar frame.

  13. Electronic Structure of the Organic Semiconductor Alq3 (aluminum tris-8-hydroxyquinoline) from Soft X-ray Spectroscopies and Density Functional Theory Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeMasi, A.; Piper, L; Zhang, Y

    2008-01-01

    The element-specific electronic structure of the organic semiconductor aluminum tris-8-hydroxyquinoline (Alq3) has been studied using a combination of resonant x-ray emission spectroscopy, x-ray photoelectron spectroscopy, x-ray absorption spectroscopy, and density functional theory (DFT) calculations. Resonant and nonresonant x-ray emission spectroscopy were used to measure directly the carbon, nitrogen and oxygen 2p partial densities of states in Alq3, and good agreement was found with the results of DFT calculations. Furthermore, resonant x-ray emission at the carbon K-edge is shown to be able to measure the partial density of states associated with individual C sites. Finally, comparison of previous x-ray emission studiesmore » and the present data reveal the presence of clear photon-induced damage in the former.« less

  14. Long-term radio and X-ray evolution of the tidal disruption event ASASSN-14li

    NASA Astrophysics Data System (ADS)

    Bright, J. S.; Fender, R. P.; Motta, S. E.; Mooley, K.; Perrott, Y. C.; van Velzen, S.; Carey, S.; Hickish, J.; Razavi-Ghods, N.; Titterington, D.; Scott, P.; Grainge, K.; Scaife, A.; Cantwell, T.; Rumsey, C.

    2018-04-01

    We report on late time radio and X-ray observations of the tidal disruption event candidate ASASSN-14li, covering the first 1000 d of the decay phase. For the first ˜200 d the radio and X-ray emission fade in concert. This phase is better fitted by an exponential decay at X-ray wavelengths, while the radio emission is well described by either an exponential or the canonical t-5/3 decay assumed for tidal disruption events. The correlation between radio and X-ray emission during this period can be fitted as L_R∝ L_X^{1.9± 0.2}. After 400 d the radio emission at 15.5 GHz has reached a plateau level of 244 ± 8 μJy which it maintains for at least the next 600 d, while the X-ray emission continues to fade exponentially. This steady level of radio emission is likely due to relic radio lobes from the weak AGN-like activity implied by historical radio observations. We note that while most existing models are based upon the evolution of ejecta which are decoupled from the central black hole, the radio-X-ray correlation during the declining phase is also consistent with core-jet emission coupled to a radiatively efficient accretion flow.

  15. Chandra observations of Jupiter's X-ray Aurora during Juno upstream and apojove intervals

    NASA Astrophysics Data System (ADS)

    Dunn, W.; Jackman, C. M.; Kraft, R.; Gladstone, R.; Branduardi-Raymont, G.; Knigge, C.; Altamirano, D.; Elsner, R.; Kammer, J.

    2017-12-01

    The Chandra space telescope has recently conducted a number of campaigns to observe Jupiter's X-ray aurora. The first set of campaigns took place in summer 2016 while the Juno spacecraft was upstream of the planet sampling the solar wind. The second set of campaigns took place in February, June and August 2017 at times when the Juno spacecraft was at apojove. These campaigns were planned following the Juno orbit correction to capitalise on the opportunity to image the X-ray emission while Juno was orbiting close to the expected position of the magnetopause. Previous work has suggested that the auroral X-ray emissions map close to the magnetopause boundary [e.g. Vogt et al., 2015; Kimura et al., 2016; Dunn et al., 2016] and thus in situ spacecraft coverage in this region combined with remote observation of the X-rays afford the chance to constrain the drivers of these energetic emissions and determine if they originate on open or closed field lines. We aim to examine possible drivers of X-ray emission including reconnection and the Kelvin-Helmholtz instability and to explore the role of the solar wind in controlling the emissions. We report on these upstream and apojove campaigns including intensities and periodicities of auroral X-ray emissions. This new era of jovian X-ray astronomy means we have more data than ever before, long observing windows (up to 72 ks for this Chandra set), and successive observations relatively closely spaced in time. These features combine to allow us to pursue novel methods for examining periodicities in the X-ray emission. Our work will explore significance testing of emerging periodicities, and the search for coherence in X-ray pulsing over weeks and months, seeking to understand the robustness and regularity of previously reported hot spot X-ray emissions. The periods that emerge from our analysis will be compared against those which emerge from radio and UV wavelengths.

  16. Hard X-ray imaging and the relative contribution of thermal and nonthermal emission in flares

    NASA Technical Reports Server (NTRS)

    Holman, G. D.

    1986-01-01

    The question of whether the impulsive 25 to 100 keV X-ray emission from solar flares is thermal or nonthermal has been a long-standing controversy. Both thermal and nonthermal (beam) models have been developed and applied to the hard X-ray data. It now seems likely that both thermal and nonthermal emission have been observed at hard X-ray energies. The Hinotori classification scheme, for example, is an attempt to associate the thermal-nonthermal characteristics of flare hard X-ray emission with other flare properties. From a theoretical point of view, it is difficult to generate energetic, nonthermal electrons without dumping an equal or greater amount of energy into plasma heating. On the other hand, any impulsive heating process will invariably generate at least some nonthermal particles. Hence, strictly speaking, although thermal or nonthermal emission may dominate the hard X-ray emission in a given energy range for a given flare, there is no such thing as a purely thermal or nonthermal flare mechanism.

  17. Hard X-ray Emission from the M87 AGN Detected with NuSTAR

    NASA Astrophysics Data System (ADS)

    Wong, Ka-Wah; Nemmen, Rodrigo; Irwin, Jimmy; Lin, Dacheng

    2018-01-01

    M87 hosts a 3–6 billion solar mass black hole with a remarkable relativistic jet that has been regularly monitored in radio to TeV bands. However, hard X-ray emission above 10keV expected to primarily come from the jet or the accretion flow had never been detected from its unresolved X-ray core. We report NuSTAR detection up to 40 keV from the the central regions of M87. Together with simultaneous Chandra observations, we have constrained the dominant hard X-ray emission to be from its unresolved X-ray core, presumably in its quiescent state. The core spectrum is well fitted by a power-law. The measured flux density at 40keV is consistent with a jet origin, although emission from the advection-dominated accretion flow cannot be completely ruled out. The detected hard X-ray emission is significantly lower than that predicted by synchrotron self-Compton models introduced to explain emission above a GeV.

  18. A Coordinated X-Ray and Optical Campaign of the Nearest Massive Eclipsing Binary, Delta Orionis Aa. I. Overview of the X-Ray Spectrum

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.; Nicholas, J. S.; Pablo, H.; Shenar, T.; Pollock, A. M. T.; Waldron, W. L.; Moffat, A. F. J.; Richardson, N. D.; Russell, C. M. P.; Hamaguchi, K.; hide

    2015-01-01

    We present an overview of four deep phase-constrained Chandra HETGS X-ray observations of Delta Ori A. Delta Ori A is actually a triple system that includes the nearest massive eclipsing spectroscopic binary, Delta Ori Aa, the only such object that can be observed with little phase-smearing with the Chandra gratings. Since the fainter star, Delta Ori Aa2, has a much lower X-ray luminosity than the brighter primary (Delta Ori Aa1), Delta Ori Aa provides a unique system with which to test the spatial distribution of the X-ray emitting gas around Delta Ori Aa1 via occultation by the photosphere of, and wind cavity around, the X-ray dark secondary. Here we discuss the X-ray spectrum and X-ray line profiles for the combined observation, having an exposure time of nearly 500 ks and covering nearly the entire binary orbit. The companion papers discuss the X-ray variability seen in the Chandra spectra, present new space-based photometry and ground-based radial velocities obtained simultaneously with the X-ray data to better constrain the system parameters, and model the effects of X-rays on the optical and UV spectra. We find that the X-ray emission is dominated by embedded wind shock emission from star Aa1, with little contribution from the tertiary star Ab or the shocked gas produced by the collision of the wind of Aa1 against the surface of Aa2. We find a similar temperature distribution to previous X-ray spectrum analyses. We also show that the line half-widths are about 0.3-0.5 times the terminal velocity of the wind of star Aa1. We find a strong anti-correlation between line widths and the line excitation energy, which suggests that longer-wavelength, lower-temperature lines form farther out in the wind. Our analysis also indicates that the ratio of the intensities of the strong and weak lines of Fe XVII and Ne X are inconsistent with model predictions, which may be an effect of resonance scattering.

  19. A COORDINATED X-RAY AND OPTICAL CAMPAIGN OF THE NEAREST MASSIVE ECLIPSING BINARY, δ ORIONIS Aa. I. OVERVIEW OF THE X-RAY SPECTRUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corcoran, M. F.; Hamaguchi, K.; Nichols, J. S.

    2015-08-20

    We present an overview of four deep phase-constrained Chandra HETGS X-ray observations of δ Ori A. Delta Ori A is actually a triple system that includes the nearest massive eclipsing spectroscopic binary, δ Ori Aa, the only such object that can be observed with little phase-smearing with the Chandra gratings. Since the fainter star, δ Ori Aa2, has a much lower X-ray luminosity than the brighter primary (δ Ori Aa1), δ Ori Aa provides a unique system with which to test the spatial distribution of the X-ray emitting gas around δ Ori Aa1 via occultation by the photosphere of, andmore » wind cavity around, the X-ray dark secondary. Here we discuss the X-ray spectrum and X-ray line profiles for the combined observation, having an exposure time of nearly 500 ks and covering nearly the entire binary orbit. The companion papers discuss the X-ray variability seen in the Chandra spectra, present new space-based photometry and ground-based radial velocities obtained simultaneously with the X-ray data to better constrain the system parameters, and model the effects of X-rays on the optical and UV spectra. We find that the X-ray emission is dominated by embedded wind shock emission from star Aa1, with little contribution from the tertiary star Ab or the shocked gas produced by the collision of the wind of Aa1 against the surface of Aa2. We find a similar temperature distribution to previous X-ray spectrum analyses. We also show that the line half-widths are about 0.3−0.5 times the terminal velocity of the wind of star Aa1. We find a strong anti-correlation between line widths and the line excitation energy, which suggests that longer-wavelength, lower-temperature lines form farther out in the wind. Our analysis also indicates that the ratio of the intensities of the strong and weak lines of Fe xvii and Ne x are inconsistent with model predictions, which may be an effect of resonance scattering.« less

  20. A Chandra High-Resolution X-ray Image of Centaurus A.

    PubMed

    Kraft; Forman; Jones; Kenter; Murray; Aldcroft; Elvis; Evans; Fabbiano; Isobe; Jerius; Karovska; Kim; Prestwich; Primini; Schwartz; Schreier; Vikhlinin

    2000-03-01

    We present first results from a Chandra X-Ray Observatory observation of the radio galaxy Centaurus A with the High-Resolution Camera. All previously reported major sources of X-ray emission including the bright nucleus, the jet, individual point sources, and diffuse emission are resolved or detected. The spatial resolution of this observation is better than 1&arcsec; in the center of the field of view and allows us to resolve X-ray features of this galaxy not previously seen. In particular, we resolve individual knots of emission in the inner jet and diffuse emission between the knots. All of the knots are diffuse at the 1&arcsec; level, and several exhibit complex spatial structure. We find the nucleus to be extended by a few tenths of an arcsecond. Our image also suggests the presence of an X-ray counterjet. Weak X-ray emission from the southwest radio lobe is also seen, and we detect 63 pointlike galactic sources (probably X-ray binaries and supernova remnants) above a luminosity limit of approximately 1.7x1037 ergs s-1.

  1. X-ray emission from high temperature plasmas

    NASA Technical Reports Server (NTRS)

    Harries, W. L.

    1974-01-01

    X-rays from a 25-hJ plasma focus apparatus were observed with pinhole cameras. The cameras consist of 0.4 mm diameter pinholes in 2 cm thick lead housing enclosing an X-ray intensifying screen at the image plane. Pictures recorded through thin aluminum foils or plastic sheets for X-ray energies sub gamma smaller than 15 keV show distributed X-ray emissions from the focussed plasma and from the anode surface. However, when thick absorbers are used, radial filamentary structure in the X-ray emission from the anode surface is revealed. Occasionally larger structures are observed in addition to the filaments. Possible mechanisms for the filamentary structure are discussed.

  2. The Nature of the Torus in the Heavily Obscured AGN Markarian 3: an X-Ray Study

    NASA Technical Reports Server (NTRS)

    Guainazzi, M.; Risaliti, G.; Awaki, H.; Arevalo, P.; Bauer, F. E.; Bianchi, S.; Boggs, S.E; Brandt, W. N.; Brightman, M.; Christensen, F. E.; hide

    2016-01-01

    In this paper, we report the results of an X-ray monitoring campaign on the heavily obscured Seyfert galaxy, Markarian 3, carried out between the fall of 2014 and the spring of 2015 with NuSTAR, Suzaku and XMMNewton. The hard X-ray spectrum of Markarian 3 is variable on all the time-scales probed by our campaign, down to a few days. The observed continuum variability is due to an intrinsically variable primary continuum seen in transmission through a large, but still Compton-thin column density (N(sub H) approx. 0.8-1.1 x 10(exp 24)/sq cm). If arranged in a spherical-toroidal geometry, the Compton scattering matter has an opening angle approx. 66deg, and is seen at a grazing angle through its upper rim (inclination angle approx. 70deg). We report a possible occultation event during the 2014 campaign. If the torus is constituted by a system of clouds sharing the same column density, this event allows us to constrain their number (17 +/- 5) and individual column density, [approx. (4.9 +/- 1.5) x 10(exp 22)/ sq cm]. The comparison of IR and X-ray spectroscopic results with state-of-the art torus models suggests that at least two-thirds of the X-ray obscuring gas volume might be located within the dust sublimation radius. We report also the discovery of an ionized absorber, characterized by variable resonant absorption lines due to He- and H-like iron. This discovery lends support to the idea that moderate column density absorbers could be due to clouds evaporated at the outer surface of the torus, possibly accelerated by the radiation pressure due to the central AGN emission leaking through the patchy absorber.

  3. A periodicity of approximately 1 hour in X-ray emission from the active galaxy RE J1034+396.

    PubMed

    Gierliński, Marek; Middleton, Matthew; Ward, Martin; Done, Chris

    2008-09-18

    Active galactic nuclei and quasars are thought to be scaled-up versions of Galactic black hole binaries, powered by accretion onto supermassive black holes with masses of 10(6)-10(9) M[symbol: see text], as opposed to the approximately 10 M [symbol: see text] in binaries (here M [symbol: see text] is the solar mass). One example of the similarities between these two types of systems is the characteristic rapid X-ray variability seen from the accretion flow. The power spectrum of this variability in black hole binaries consists of a broad noise with multiple quasi-periodic oscillations superimposed on it. Although the broad noise component has been observed in many active galactic nuclei, there have hitherto been no significant detections of quasi-periodic oscillations. Here we report the discovery of an approximately 1-hour X-ray periodicity in a bright active galaxy, RE J1034+396. The signal is highly statistically significant (at the 5.6 sigma level) and very coherent, with quality factor Q > 16. The X-ray modulation arises from the direct vicinity of the black hole.

  4. An X-ray investigation of the unusual supernova remnant CTB 80

    NASA Technical Reports Server (NTRS)

    Wang, Z. R.; Seward, F. D.

    1984-01-01

    The X-ray properties of SNR CTB 80 (G68.8 + 2.8) are discussed based on both low- and high-resolution images from the Einstein satellite. The X-ray maps show a point source coinciding with the region of maximum radio emission. Diffuse X-ray emission is evident mainly along the radio lobe extending about 8 arcmin east of the point source and aligned with the projected magnetic field lines. The observed X-ray luminosity is 3.2 x 10 to the 34th ergs/s with 1.0 x 10 to the 3th ergs/s from the point source (assuming a distance of 3 kpc). There is also faint, diffuse, X-ray emission south of the point source, where radio emission is absent. The unusual radio and X-ray morphologies are interpreted as a result of relativistic jets energized by the central object, and the possible association of CTB 80 with SN 1408 as recorded by Chinese observers is discussed.

  5. Study of the Jupiter X-ray imaging spectrometer on JMO

    NASA Astrophysics Data System (ADS)

    Kimura, T.; Ezoe, Y.; Kasahara, S.; Miyoshi, Y.; Yamazaki, A.; Fujimoto, M.; JMO X-ray Experiment Team

    2011-12-01

    In 2000's, the new generation X-ray observatories (Chandra, XMM-Newton and Suzaku) have revealed various new X-ray phenomena in the Jupiter system. The detected objects include Jupiter's aurorae, disk (middle and low-latitude emission), Io, Europa, the Io Plasma Torus, and radiation belts. For example, Jupiter's aurorae emit time variable X-rays via bremsstrahlung by keV electrons and charge exchange by MeV ions (Gladstone et al. 2002 Nature). A diffuse X-ray emission associated with the Jupiter's radiation belts suggests an inverse Compton scattering of tens MeV electrons (Ezoe et al. 2010 ApJ). Hence, the X-ray emission can be a unique diagnostic tool to investigate key fundamental problems on the Jupiter system such as the relativistic particle acceleration and the Jupiter-satellite reaction. However, since these observations have been done with the X-ray astronomy satellites orbiting the Earth, the photon statistics of X-ray spectra and light curves, and the angular resolution of X-ray images were severely limited. In this context, we have started to study design of an X-ray imaging spectrometer for JMO (Jupiter Magnetospheric Orbiter) which is expected to collaborate with international Jupiter exploration mission JUICE (JUpiter ICy moon Explorer). JUICE is originally EJSM (Europa Jupiter System Mission) but recently renamed JUICE as ESA-lead mission, which is proposed to be launched in 2020's. It consists of one main flight element developed by ESA to explore icy moons of Jupiter, and JMO by JAXA is expected to perform high-latitude (10-30 deg inclination) measurements of the Jupiter system and overview the magnetospheric activities. The in-situ measurements by EJSM JMO provide us with an unprecedented opportunity to observe Jupiter with extremely high photon statistics, high time and angular resolution. To realize the in-situ X-ray instrument for EJSM JMO, stringent mass and power limitations must be fulfilled. Furthermore, the radiation and the contamination of optical lights and debris must be taken care. The base line is a combination of an original ultra-light weight X-ray telescope with the mass to area ratio of 10 kg/m^{2} based on the micromachining technologies (Ezoe et al. 2010 Microsystem technologies), and a radiation-hard and low-power DepFET imaging detector (Struder et al. 2010 SPIE). In this presentation, we present the study status of the X-ray instrument onboard EJSM JMO and its scientific goals.

  6. NuSTAR Hard X-Ray Survey of the Galactic Center Region I: Hard X-Ray Morphology and Spectroscopy of the Diffuse Emission

    NASA Astrophysics Data System (ADS)

    Mori, Kaya; Hailey, Charles J.; Krivonos, Roman; Hong, Jaesub; Ponti, Gabriele; Bauer, Franz; Perez, Kerstin; Nynka, Melania; Zhang, Shuo; Tomsick, John A.; Alexander, David M.; Baganoff, Frederick K.; Barret, Didier; Barrière, Nicolas; Boggs, Steven E.; Canipe, Alicia M.; Christensen, Finn E.; Craig, William W.; Forster, Karl; Giommi, Paolo; Grefenstette, Brian W.; Grindlay, Jonathan E.; Harrison, Fiona A.; Hornstrup, Allan; Kitaguchi, Takao; Koglin, Jason E.; Luu, Vy; Madsen, Kristen K.; Mao, Peter H.; Miyasaka, Hiromasa; Perri, Matteo; Pivovaroff, Michael J.; Puccetti, Simonetta; Rana, Vikram; Stern, Daniel; Westergaard, Niels J.; Zhang, William W.; Zoglauer, Andreas

    2015-12-01

    We present the first sub-arcminute images of the Galactic Center above 10 keV, obtained with NuSTAR. NuSTAR resolves the hard X-ray source IGR J17456-2901 into non-thermal X-ray filaments, molecular clouds, point sources, and a previously unknown central component of hard X-ray emission (CHXE). NuSTAR detects four non-thermal X-ray filaments, extending the detection of their power-law spectra with Γ ˜ 1.3-2.3 up to ˜50 keV. A morphological and spectral study of the filaments suggests that their origin may be heterogeneous, where previous studies suggested a common origin in young pulsar wind nebulae (PWNe). NuSTAR detects non-thermal X-ray continuum emission spatially correlated with the 6.4 keV Fe Kα fluorescence line emission associated with two Sgr A molecular clouds: MC1 and the Bridge. Broadband X-ray spectral analysis with a Monte-Carlo based X-ray reflection model self-consistently determined their intrinsic column density (˜1023 cm-2), primary X-ray spectra (power-laws with Γ ˜ 2) and set a lower limit of the X-ray luminosity of Sgr A* flare illuminating the Sgr A clouds to LX ≳ 1038 erg s-1. Above ˜20 keV, hard X-ray emission in the central 10 pc region around Sgr A* consists of the candidate PWN G359.95-0.04 and the CHXE, possibly resulting from an unresolved population of massive CVs with white dwarf masses MWD ˜ 0.9 M⊙. Spectral energy distribution analysis suggests that G359.95-0.04 is likely the hard X-ray counterpart of the ultra-high gamma-ray source HESS J1745-290, strongly favoring a leptonic origin of the GC TeV emission.

  7. Winds in collision. II - An analysis of the X-ray emission from the eruptive symbiotic HM Sge

    NASA Technical Reports Server (NTRS)

    Willson, L. A.; Wallerstein, G.; Brugel, E. W.; Stencel, R. E.

    1984-01-01

    X-ray emissions from HM Sge obtained in 1981 from the HEAO-2 satellite are analyzed and compared quantitatively with observations of HM Sge made in 1980 and of HM Sge, V 1016 Cyg, and RR Tel made in 1979. The change in the X-ray emission from HM Sge between 1979 and 1981 is found to be consistent with the X-ray luminosity and/or temperature of the emitting region declining with an e-folding timescale of the order of one to several decades. Comparison with X-ray data from V 1016 Cyg and RR Tel gives a composite X-ray light curve that is also consistent with such a decline. A comparison of the X-ray observation with spectroscopic information makes it possible to constrain the properties of the X-ray emitting region: the result is consistent with emission from an optically thin region between the two stars in the system where their winds collide head on. It is also shown that the observations are inconsistent with a stellar (blackbody) source, with emission from an accretion disk around a white dwarf or a neutron star, and with emission from a single star wind from either a white dwarf or a neutron star.

  8. X-ray emission from high temperature plasmas

    NASA Technical Reports Server (NTRS)

    Harries, W. L.

    1977-01-01

    The physical processes occurring in plasma focus devices were investigated with particular emphasis on X-ray emission. Topics discussed include: trajectories of high energy electrons; detection of ion trajectories; spatial distribution of neutron emission; space and time resolved emission of hard X-rays from a plasma focus; the staged plasma focus as a variation of the hypocloidal pinch; formation of current sheets in a staged plasma focus; and X-ray and neutron emission from a staged plasma focus. The possibility of operating dense plasma-focus type devices in multiple arrays beyond the scaling law for a single gun is discussed.

  9. A ROTSE-I/ROSAT Survey of X-ray Emission from Contact Binary Stars

    NASA Astrophysics Data System (ADS)

    Geske, M.; McKay, T.

    2005-05-01

    Using public data from the ROSAT All Sky Survey (RASS) and the ROTSE-I Sky Patrols, the incidence of strong x-ray emissions from contact binary systems was examined. The RASS data was matched to an expanded catalog of contact binary systems from the ROTSE-I data, using a 35 arc second radius. X-ray luminosities for matching objects were then determined. This information was then used to evaluate the total x-ray emissions from all such objects, in order to determine their contribution to the galactic x-ray background.

  10. Digging in the coronal graveyard - A Rosat observation of the red giant Arcturus

    NASA Technical Reports Server (NTRS)

    Ayres, Thomas R.; Fleming, Thomas A.; Schmitt, Juergen H. M. M.

    1991-01-01

    A deep exposure of the bright star Arcturus (Alpha Bootis: K1 III) with the Roentgensatellit (Rosat) failed to detect soft X-ray emission from the archetype 'noncoronal' red giant. The 3-sigma upper limit in the energy band 0.1-2.4 keV corresponds to an X-ray luminosity of less than 3 x 10 to the 25th erg/s, equivalent to a coronal surface flux density of less than 0.0001 solar. The nondetection safely eliminates coronal irradiation as a possible mechanism to produce the highly variable He I 10830 feature and emphasizes the sharp decline in solarlike coronal activity that accompanies the evolution of low-mass single stars away from the main sequence. While the most conspicuous object in the Rosat field of view was not visible in X-rays, at least one fainter star is among the about 60 sources recorded: the Sigma Sct variable CN Boo, an A8 giant in the UMa Stream.

  11. The Origin of the Extra-nuclear X-ray Emission in the Seyfert Galaxy NGC 2992

    NASA Astrophysics Data System (ADS)

    Colbert, E. J. M.; Strickland, D. K.; Veilleux, S.; Weaver, K. A.

    2004-12-01

    We present an analysis of a Chandra ACIS observation of the edge-on Seyfert galaxy NGC 2992. We find extended X-ray emission with Lx(total) in excess of 10**40 erg/s. The brightest nebula is positioned a few 100 pc from the X-ray core, and is spatially coincident with optical line and radio emission. This emission nebula may be energized by the AGN, as opposed to a nuclear starburst. The expected kpc-scale X-ray emission due to a starburst-driven wind is larger than a few 10**39 erg/s, and we present large-scale X-ray emission that may be associated with such an outflow. The extra-nuclear emission has a very soft spectrum. Chandra and XMM spectra of the total nuclear region show a very prominent ``soft excess'' below 2-3 keV. We shall discuss the spectral properties of this soft excess, and will compare with the results from the spatial analysis, and with AGN and starburst models for extranuclear X-ray nebulae.

  12. Radio and X-Ray Observations of the 1998 Outburst of the Recurrent X-Ray Transient 4U 1630-47

    NASA Technical Reports Server (NTRS)

    Hjellming, R. M.; Rupen, M.; Mioduszewski, A. J.; Kuulkers, E.; McCollough, M. L.; Harmon, B. Alan; Buxton, M.; Sood, R.; Tzioumis, A.

    1998-01-01

    We report radio (VLA and ATCA), soft X-ray (RXTE ASM), and hard X-ray (CGRO BATSE) observations of a 1998 outburst in the recurring X-ray transient 4U 1630-47 where radio emission was detected for the first time. The radio observations identify the position of 4U 1630-47 to within 1". Because the radio emission is optically thin with a spectral index of approximately -0.6 during the rise and approximately -1 during the peak and decay of the initial radio event, the emission is probably coming from an optically thin radio jet ejected over a period of time. The 20-100 keV emission first appeared 1998 January 28 (MJD 50841), the 2-12 keV emission first appeared February 3 (MJD 50847), and the first radio emission was detected February 12.6 (MJD 50856.6). The rise of the radio emission probably began about February 7 (MJD 50851) when the X-rays were in a very hard, fluctuating hardness state, just before changing to a softer, more stable hardness state.

  13. On the X-Ray Variability of Magnetar 1RXS J170849.0-400910

    NASA Technical Reports Server (NTRS)

    Scholz, P.; Archibald, R. F.; Kaspi, V. M.; Ng, C.-Y.; Beardmore, A. P.; Gehrels, C.; Kennea, J. A.

    2014-01-01

    We present a long-term X-ray flux and spectral analysis for 1RXS J170849.0-400910 using Swift/XRT spanning over 8 years from 2005-2013. We also analyze two observations from Chandra and XMM in the period from 2003-2004. In this 10-yr period, 1RXS J170849.0-400910 displayed several rotational glitches. Previous studies have claimed variations in the X-ray emission associated with some of the glitches. From our analysis we find no evidence for significant X-ray flux variations and evidence for only low-level spectral variations. We also present an updated timing solution for 1RXS J170849.0-400910, from RXTE and Swift observations, which includes a previously unreported glitch at MJD 56019. We discuss the frequency and implications of radiatively quiet glitches in magnetars.

  14. XMM-Newton Proposal 03039101

    NASA Astrophysics Data System (ADS)

    Hernanz, Margarita

    2004-10-01

    Two recent galactic novae, V2487 Oph 1998 and V4633 Sgr 1998, have been detec- ted in both soft and hard X-rays with XMM. V2487 Oph showed an iron fluores- cent line only 2.7 yrs after its explosion, a clear signature of the very fast recovery of accretion, and V4633 Sgr displayed hard X-ray emission not clearly attributable to shocked ejecta or accretion. Longer observations are needed to do accurate timing and high resolution spectroscopy, essential to determine the main properties of the underlying cataclysmic variable in V2487 Oph (first nova seen in X-rays prior and after exploding) and to disentangle the origin of the hard X-rays from V4633 Sgr, through an analysis of the chemical compo- sition of the emitting thermal plasma, solar if accretion, non solar if ejecta.

  15. Search for neutrino emission from microquasars with the ANTARES telescope

    NASA Astrophysics Data System (ADS)

    Galatà, S.

    2012-12-01

    Neutrino telescopes are nowadays exploring a new window of observation on the high energy universe and may shed light on the longstanding problem regarding the origin of cosmic rays. The ANTARES neutrino telescope is located underwater 40 km offshore from the Southern coast of France, on a plateau at 2475 m depth. Since 2007 it observes the high energy (>100 GeV) neutrino sky looking for cosmic neutrino sources. Among the candidate neutrino emitters are microquasars, i.e. galactic X-ray binaries exhibiting relativistic jets, which may accelerate hadrons thus producing neutrinos, under certain conditions. These sources are also variable in time and undergo X-ray or gamma ray outburst that can be related to the acceleration of relativistic particles witnessed by their radio emission. These events can provide a trigger to the neutrino search, with the advantage of drastically reducing the atmospheric neutrino background. A search for neutrino emission from microquasar during outbursts is presented based on the data collected by ANTARES between 2007 and 2010. Upper limits are shown and compared with the predictions.

  16. Anatomy of the AGN in NGC 5548. IX. Photoionized emission features in the soft X-ray spectra

    NASA Astrophysics Data System (ADS)

    Mao, Junjie; Kaastra, J. S.; Mehdipour, M.; Gu, Liyi; Costantini, E.; Kriss, G. A.; Bianchi, S.; Branduardi-Raymont, G.; Behar, E.; Di Gesu, L.; Ponti, G.; Petrucci, P.-O.; Ebrero, J.

    2018-04-01

    The X-ray narrow emission line region (NELR) of the archetypal Seyfert 1 galaxy NGC 5548 has been interpreted as a single-phase photoionized plasma that is absorbed by some of the warm absorber components. This scenario requires those overlaying warm absorber components to have larger distance (to the central engine) than the X-ray NELR, which is not fully consistent with the distance estimates found in the literature. Therefore, we reanalyze the high-resolution spectra obtained in 2013-2014 with the Reflection Grating Spectrometer (RGS) aboard XMM-Newton to provide an alternative interpretation of the X-ray narrow emission features. We find that the X-ray narrow emission features in NGC 5548 can be described by a two-phase photoionized plasma with different ionization parameters (logξ = 1.3 and 0.1) and kinematics (vout = -50 and -400 km s-1), and no further absorption by the warm absorber components. The X-ray and optical NELR might be the same multi-phase photoionized plasma. Both X-ray and optical NELR have comparable distances, asymmetric line profiles, and the underlying photoionized plasma is turbulent and compact in size. The X-ray NELR is not the counterpart of the UV/X-ray absorber outside the line of sight because their distances and kinematics are not consistent. In addition, X-ray broad emission features that we find in the spectrum can be accounted for by a third photoionized emission component. The RGS spectrum obtained in 2016 is analyzed as well, where the luminosity of most prominent emission lines (the O VII forbidden line and O VIII Lyα line) are the same (at a 1σ confidence level) as in 2013-2014.

  17. Evidence for a TDE Origin for the Radio Transient in Cygnus A

    NASA Astrophysics Data System (ADS)

    Wise, Michael W.; de Vries, Martijn; Rowlinson, Antonia; Nulsen, Paul; Snios, Bradford; Birkinshaw, Mark; Worrall, Diana

    2017-08-01

    Recently new JVLA observations by Perley et al. (2017) have revealed evidence for a luminous radio transient at a projected distance of 0.46 kpc from the nucleus of Cygnus A. Based on data taken between 1989 and 2016, the flux density of this radio transient has risen from an upper limit of <0.5 mJy to 4 mJy at a frequency of 8.5 GHz. Additional VLBA observations at 8 GHz by the same authors confirm this transient source to be compact (<4 pc) and coinciding with a source seen previously in optical and NIR images. Perley et al. (2017) have interpreted this source to be a secondary supermassive black hole in a close orbit around the Cygnus A nucleus. Several explanations have been proposed for the turn-on of the Cygnus A-2 transient over the 9 year timeframe including variability in the accretion onto this secondary BH and alternatively a possible tidal disruption event (TDE).We present the results of a new X-ray analysis utilizing new and archival data from the Chandra and Swift satellites. Cygnus A has been observed multiple times by Chandra between 2000, 2005, and 2015-2017. The Swift satellite performed 9 observations of Cygnus A between 2006 and 2017. Based on these observations, we present evidence for a decline in the flux of the Cygnus A nucleus, with the soft X-ray flux (0.3-1.2 keV) showing a drop by a factor of 2 between 2000 and 2005. The Swift observations confirm the X-ray emission from the Cygnus A continued to fade after 2006. As the radio source was last undetected in 1997, these data constrain the peak of the X-ray emission and the likely onset of brightening in the radio to a window of 3 years or less. This timescale implies a very rapid onset of accretion onto the secondary black hole and strongly favors the TDE interpretation for the origin of the Cygnus A-2 radio transient. Chandra images of the 3 kpc x 3 kpc region around the Cygnus A nucleus show clear evidence for an extended region of soft X-ray emission dimming on this timescale, which we interpret as fading reflected nuclear emission from surrounding dust. In this presentation, we summarize these results and their implications in light of a TDE origin for the observed X-ray and radio variability.

  18. Simultaneous optical/X-ray study of GS 1354-64 (=BW Cir) during hard outburst: evidence for optical cyclo-synchrotron emission from the hot accretion flow

    NASA Astrophysics Data System (ADS)

    Pahari, Mayukh; Gandhi, Poshak; Charles, Philip A.; Kotze, Marissa M.; Altamirano, Diego; Misra, Ranjeev

    2017-07-01

    We present results from simultaneous optical [South African Large Telescope (SALT)] and X-ray (Swift and INTEGRAL) observations of GS 1354-64/BW Cir during the 2015 hard state outburst. During the rising phase, optical/X-ray time series shows a strong anti-correlation with X-ray photons lagging optical. Optical and X-ray power spectra show quasi-periodic oscillations (QPOs) at a frequency of ˜18 mHz with a confidence level of at least 99 per cent. Simultaneous fitting of Swift/XRT and INTEGRAL spectra in the range 0.5-1000.0 keV shows non-thermal, power-law-dominated (>90 per cent) spectra with a hard power-law index of 1.48 ± 0.03, inner disc temperature of 0.12 ± 0.01 keV and an inner disc radius of ˜3000 km. All evidence is consistent with cyclo-synchrotron radiation in a non-thermal, hot electron cloud extending to ˜100 Schwarzschild radii being a major physical process for the origin of optical photons. At outburst peak about one month later, when the X-ray flux rises and the optical drops, the apparent features in the optical/X-ray correlation vanish and the optical auto correlation widens. Although ˜0.19 Hz QPO is observed from the X-ray power spectra, the optical variability is dominated by the broad-band noise, and the inner disc temperature increases. These results support a change in the dominant optical emission source between outburst rise and peak, consistent with a weakening of hot flow as the disc moves in.

  19. Spectral and Temporal Characteristics of X-Ray-Bright Stars in the Pleiades

    NASA Technical Reports Server (NTRS)

    Gagne, Marc; Caillault, Jean-Pierre; Stauffer, John R.

    1995-01-01

    We follow up our deep ROSAT imaging survey of the Pleiades (Stauffer et al. 1994) with an analysis of the spectral and temporal characteristics of the X-ray-bright stars in the Pleiades. Raymond & Smith (1977) one and two-temperature models have been used to fit the position-sensitive proportional counter (PSPC) pulse-height spectra of the dozen or so brightest sources associated with late-type Pleiades members. The best-fit temperatures suggest hot coronal temperatures for K, M, and rapidly rotating G stars, and cooler temperatures for F and slowly rotating G stars. In order to probe the many less X-ray-luminous stars, we have generated composite spectra by combining net counts from all Pleiades members according to spectral type and rotational velocity. Model fits to the composite spectra confirm the trend seen in the individual spectral fits. Particularly interesting is the apparent dependence of coronal temperature on L(sub x)/L(sub bol). A hardness-ratio analysis also confirms some of these trends. The PSPC data have also revealed a dozen or so strong X-ray flares with peak X-ray luminosities in excess of approx. 10(exp 30) ergs/sec. We have modeled the brightest of these flares with a simple quasi-static cooling loop model. The peak temperature and emission measure and the inferred electron density and plasma volume suggest a very large scale flaring event. The PSPC data were collected over a period of approx. 18 months, allowing us to search for source variability on timescales ranging from less than a day (in the case of flares) to more than a year between individual exposures. On approximately year-long timescales, roughly 25% of the late-type stars are variable. Since the Pleiades was also intensively monitored by the imaging instruments on the Einstein Observatory, we have examined X-ray luminosity variations on the 10 yr timescale between Einstein and ROSAT and find that up to 40% of the late-type stars are X-ray variable. Since there is only marginal evidence for increased variability on decade-long timescales, the variability observed on long and short timescales may have a common physical origin.

  20. X-Ray Probes of Jupiter's Auroral Zones, Galilean Moons, and the Io Plasma Torus

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; Ramsey, B. D.; Swartz, D. A.; Rehak, P.; Waite, J. H., Jr.; Cooper, J. F.; Johnson, R. E.

    2005-01-01

    Remote observations from the Earth orbiting Chandra X-ray Observatory and the XMM-Newton Observatory have shown the the Jovian system is a rich and complex source of x-ray emission. The planet's auroral zones and its disk are powerful sources of x-ray emission, though with different origins. Chandra observations discovered x-ray emission from the Io plasma torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from the moons is due to bombardment of their surfaces by highly energetic magnetospheric protons, and oxygen and sulfur ions, producing fluorescent x-ray emission lines from the elements in their surfaces against an intense background continuum. Although very faint when observed from Earth orbit, an imaging x-ray spectrometer in orbit around the icy Galilean moons would provide a detail mapping of the elemental composition in their surfaces. Here we review the results of Chandra and XMM-Newton observations of the Jovian system and describe the characteristics of X-MIME, an imaging x-ray spectrometer undergoing study for possible application to future missions to Jupiter such as JIMO. X-MIME has the ultimate goal of providing detailed high-resolution maps of the elemental abundances of the surfaces of Jupiter's icy moons and Io, as well as detailed study of the x-ray mission from the Io plasma torus, Jupiter's auroral zones, and the planetary disk.

  1. An X-ray Observation of the L1251 Dark Cloud

    NASA Technical Reports Server (NTRS)

    Simon, Theodore

    2006-01-01

    An X-ray image of the L1251 dark cloud in Cepheus was obtained with the XMM-Newton telescope. More than three dozen sources were detected above a 3 delta limit in X-ray luminosity of L(sub X = 10(exp 29) ergs/s. Among the detections are eight optically visible T Tauri stars, which had been identified in earlier work from their emission at H(alpha). The two strongest X-ray sources have steady luminosities of L(sub X) approx. 10(exp 31) ergs/s and are at the saturation limit for X-ray activity in late-type stars, L(sub X)/L(sub bol) approx. 10(exp -3). X-ray emission was also observed from two CO emission cores in L1251, core C (L1251A) and core E (L1251B). Both regions contain high-velocity molecular gas, bright IRAS sources (Class I protostars), thermal radio sources, and Herbig-Haro (HH) jets. In L1251A strong X-ray emission was discovered in close proximity to the near-inbred and radio source IRSA/VLA 7 and to IRAS 22343+7501. IRSA/VLA 7 thus appears to be the most likely source of the molecular and HH outflows in L1251A. In L1251B X-ray emission was observed from a visible T Tauri star, KP2-44, which is thought to be the driving source for HH 189. Also reported is the tentative detection of X-ray emission from VLA 3, a thermal radio continuum source in L1251B that is closely associated with the extreme Class I protostar IRAS 22376+7455.

  2. A Study of the X-Ray Emission from Three Radio Pulsars

    NASA Technical Reports Server (NTRS)

    Slane, Patrick O. (Principal Investigator)

    1996-01-01

    The subject grant is for work on a study of x-ray emission from isolated pulsars. The purpose of the study was to: determine whether the pulsars were x-ray sources; and, if so, search for evidence of pulsations at the known radio period; and study the nature of the x-ray emission. Observation of the pulsar PSR 0355+54 were obtained, and the analysis of these data is complete. These results were reported at the 183rd AAS Meeting, and in a paper entitled 'X-Ray Emission from PSR 0355+54' which as published in the The Astrophysical Journal. Also obtained an approx. 3 ks PSPC observations of PSR 1642-03. A summary of the results from these data were reported in a Conference Proceedings for the 'New Horizon of X-ray Astronomy' symposium. In addition, as part of a study with a student from the SAO Summer Intern Program, I incorporated ROSAT archival data in an extended study of pulsar emission. These results were reported at the 185th AAS Meeting, and in a paper entitled 'Soft X-ray Emission from Selected Isolated Pulsars' which was published in The Astrophysical Journal (Letters).

  3. BROADBAND JET EMISSION IN YOUNG AND POWERFUL RADIO SOURCES: THE CASE OF THE COMPACT STEEP SPECTRUM QUASAR 3C 186

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Migliori, Giulia; Siemiginowska, Aneta; Celotti, Annalisa, E-mail: migliori@cfa.harvard.edu

    2012-04-20

    We present the X-ray analysis of a deep ({approx}200 ks) Chandra observation of the compact steep spectrum radio-loud quasar 3C 186 (z = 1.06) and investigate the contribution of the unresolved radio jet to the total X-ray emission. The spectral analysis is not conclusive on the origin of the bulk of the X-ray emission. In order to examine the jet contribution to the X-ray flux, we model the quasar spectral energy distribution, adopting several scenarios for the jet emission. For the values of the main physical parameters favored by the observables, a dominant role of the jet emission in themore » X-ray band is ruled out when a single-zone (leptonic) scenario is adopted, even including the contribution of the external photon fields as seed photons for inverse Compton emission. We then consider a structured jet, with the blazar component that-although not directly visible in the X-ray band-provides an intense field of seed synchrotron photons Compton-scattered by electrons in a mildly relativistic knot. In this case, the whole X-ray emission can be accounted for if we assume a blazar luminosity within the range observed from flat spectrum radio quasars. The X-ray radiative efficiency of such a (structured) jet is intimately related to the presence of a complex velocity structure. The jet emission can provide a significant contribution in X-rays if it decelerates within the host galaxy on kiloparsec scales. We discuss the implications of this model in terms of jet dynamics and interaction with the ambient medium.« less

  4. THE CHANDRA X-RAY SURVEY OF PLANETARY NEBULAE (CHANPLANS): PROBING BINARITY, MAGNETIC FIELDS, AND WIND COLLISIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kastner, J. H.; Montez, R. Jr.; Rapson, V.

    2012-08-15

    We present an overview of the initial results from the Chandra Planetary Nebula Survey (CHANPLANS), the first systematic (volume-limited) Chandra X-Ray Observatory survey of planetary nebulae (PNe) in the solar neighborhood. The first phase of CHANPLANS targeted 21 mostly high-excitation PNe within {approx}1.5 kpc of Earth, yielding four detections of diffuse X-ray emission and nine detections of X-ray-luminous point sources at the central stars (CSPNe) of these objects. Combining these results with those obtained from Chandra archival data for all (14) other PNe within {approx}1.5 kpc that have been observed to date, we find an overall X-ray detection rate ofmore » {approx}70% for the 35 sample objects. Roughly 50% of the PNe observed by Chandra harbor X-ray-luminous CSPNe, while soft, diffuse X-ray emission tracing shocks-in most cases, 'hot bubbles'-formed by energetic wind collisions is detected in {approx}30%; five objects display both diffuse and point-like emission components. The presence (or absence) of X-ray sources appears correlated with PN density structure, in that molecule-poor, elliptical nebulae are more likely to display X-ray emission (either point-like or diffuse) than molecule-rich, bipolar, or Ring-like nebulae. All but one of the point-like CSPNe X-ray sources display X-ray spectra that are harder than expected from hot ({approx}100 kK) central stars emitting as simple blackbodies; the lone apparent exception is the central star of the Dumbbell nebula, NGC 6853. These hard X-ray excesses may suggest a high frequency of binary companions to CSPNe. Other potential explanations include self-shocking winds or PN mass fallback. Most PNe detected as diffuse X-ray sources are elliptical nebulae that display a nested shell/halo structure and bright ansae; the diffuse X-ray emission regions are confined within inner, sharp-rimmed shells. All sample PNe that display diffuse X-ray emission have inner shell dynamical ages {approx}< 5 Multiplication-Sign 10{sup 3} yr, placing firm constraints on the timescale for strong shocks due to wind interactions in PNe. The high-energy emission arising in such wind shocks may contribute to the high excitation states of certain archetypical 'hot bubble' nebulae (e.g., NGC 2392, 3242, 6826, and 7009).« less

  5. Low-energy d-d excitations in MnO studied by resonant x-ray fluorescence spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butorin, S.M.; Guo, J.; Magnuson, M.

    1997-04-01

    Resonant soft X-ray emission spectroscopy has been demonstrated to possess interesting abilities for studies of electronic structure in various systems, such as symmetry probing, alignment and polarization dependence, sensitivity to channel interference, etc. In the present abstract the authors focus on the feasibility of resonant soft X-ray emission to probe low energy excitations by means of resonant electronic X-ray Raman scattering. Resonant X-ray emission can be regarded as an inelastic scattering process where a system in the ground state is transferred to a low excited state via a virtual core excitation. The energy closeness to a core excitation of themore » exciting radiation enhances the (generally) low probability for inelastic scattering at these wavelengths. Therefore soft X-ray emission spectroscopy (in resonant electronic Raman mode) can be used to study low energy d-d excitations in transition metal systems. The involvement of the intermediate core state allows one to use the selection rules of X-ray emission, and the appearance of the elastically scattered line in the spectra provides the reference to the ground state.« less

  6. OSO-8 X-ray spectra of clusters of galaxies. 1. Observations of twenty clusters: Physical correlations

    NASA Technical Reports Server (NTRS)

    Mushotzky, R. F.; Serlemitsos, P. J.; Smith, B. W.; Boldt, E. A.; Holt, S. S.

    1978-01-01

    OSO-8 X-ray spectra from 2 to 20 keV were analyzed for 26 clusters of galaxies. Temperature, emission integrals, iron abundances, and low energy absorption measurements are given. Eight clusters have positive iron emission line detections at the 90% confidence level, and all twenty cluster spectra are consistent with Fe/H=0.000014 by number with the possible exception of Virgo. Physical correlations between X-ray spectral parameters and other cluster properties are examined. It is found that: (1) the X-ray temperature is approximately proportional to the square of the velocity dispersion of the galaxies; (2) the emission integral and therefore the bolometric X-ray luminosity is a strong function of the X-ray temperature; (3) the X-ray temperature and emission integral are better correlated with cluster central galaxy density than with richness; (4) temperature and emission integral are separately correlated with Rood-Sastry type; and (5) the fraction of galaxies which are spirals is correlated with the observed ram pressure in the cluster core.

  7. The Variable Hard X-Ray Emission of NGC4945 as Observed by NuSTAR

    NASA Technical Reports Server (NTRS)

    Puccetti, Simonetta; Comastri, Andrea; Fiore, Fabrizio; Arevalo, Patricia; Risaliti, Guido; Bauer, Franz E.; Brandt, William N.; Stern, Daniel; Harrison, Fiona A.; Alexander, David M.; hide

    2014-01-01

    We present a broadband (approx. 0.5 - 79 keV) spectral and temporal analysis of multiple NuSTAR observations combined with archival Suzaku and Chandra data of NGC4945, the brightest extragalactic source at 100 keV. We observe hard X-ray (> 10 keV) flux and spectral variability, with flux variations of a factor 2 on timescales of 20 ksec. A variable primary continuum dominates the high energy spectrum (> 10 keV) in all the states, while the reflected/scattered flux which dominates at E< 10 keV stays approximately constant. From modelling the complex reflection/transmission spectrum we derive a Compton depth along the line of sight of Thomson approx.2.9, and a global covering factor for the circumnuclear gas of approx. 0.15. This agrees with the constraints derived from the high energy variability, which implies that most of the high energy flux is transmitted, rather that Compton-scattered. This demonstrates the effectiveness of spectral analysis in constraining the geometric properties of the circumnuclear gas, and validates similar methods used for analyzing the spectra of other bright, Compton-thick AGN. The lower limits on the e-folding energy are between 200 - 300 keV, consistent with previous BeppoSAX, Suzaku and Swift BAT observations. The accretion rate, estimated from the X-ray luminosity and assuming a bolometric correction typical of type 2 AGN, is in the range approx. 0.1 - 0.3 lambda(sub Edd) depending on the flux state. The substantial observed X-ray luminosity variability of NGC4945 implies that large errors can arise from using single-epoch X-ray data to derive L/L(sub Edd) values for obscured AGNs.

  8. The Variable Hard X-Ray Emission of NGC 4945 as Observed by NUSTAR

    DOE PAGES

    Puccetti, Simonetta; Comastri, Andrea; Fiore, Fabrizio; ...

    2014-09-02

    Here, we present a broadband (~0.5-79 keV) spectral and temporal analysis of multiple NuSTAR observations combined with archival Suzaku and Chandra data of NGC 4945, the brightest extragalactic source at 100 keV. We observe hard X-ray (>10 keV) flux and spectral variability, with flux variations of a factor of two on timescales of 20 ks. A variable primary continuum dominates the high-energy spectrum (>10 keV) in all states, while the reflected/scattered flux that dominates at E <10 keV stays approximately constant. From modeling the complex reflection/transmission spectrum, we derive a Compton depth along the line of sight of τThomson ~more » 2.9, and a global covering factor for the circumnuclear gas of ~0.15. This agrees with the constraints derived from the high-energy variability, which implies that most of the high-energy flux is transmitted rather than Compton-scattered. This demonstrates the effectiveness of spectral analysis at constraining the geometric properties of the circumnuclear gas, and validates similar methods used for analyzing the spectra of other bright, Compton-thick active galactic nuclei (AGNs). The lower limits on the e-folding energy are between 200 and 300 keV, consistent with previous BeppoSAX, Suzaku, and Swift Burst Alert Telescope observations. The accretion rate, estimated from the X-ray luminosity and assuming a bolometric correction typical of type 2 AGN, is in the range ~0.1-0.3 λEdd depending on the flux state. As a result, the substantial observed X-ray luminosity variability of NGC 4945 implies that large errors can arise from using single-epoch X-ray data to derive L/L Edd values for obscured AGNs.« less

  9. The Evolving Polarized Jet of Black Hole Candidate Swift J1745-26

    NASA Technical Reports Server (NTRS)

    Curran, P. A.; Coriat, M.; Miller-Jones, J. C. A.; Armstrong, R. P.; Edwards, P. G.; Sivakoff, G. R.; Woudt, P.; Altamirano, D.; Belloni, T. M.; Corbel, S.; hide

    2013-01-01

    Swift J1745-26 is an X-ray binary towards the Galactic Centre that was detected when it went into outburst in September 2012. This source is thought to be one of a growing number of sources that display "failed outbursts", in which the self-absorbed radio jets of the transient source are never fully quenched and the thermal emission from the geometrically-thin inner accretion disk never fully dominates the X-ray flux. We present multifrequency data from the Very Large Array, Australia Telescope Compact Array and Karoo Array Telescope (KAT- 7) radio arrays, spanning the entire period of the outburst. Our rich data set exposes radio emission that displays a high level of large scale variability compared to the X-ray emission and deviations from the standard radio-X-ray correlation that are indicative of an unstable jet and confirm the outburst's transition from the canonical hard state to an intermediate state. We also observe steepening of the spectral index and an increase of the linear polarization to a large fraction (is approx. equal to 50%) of the total flux, as well as a rotation of the electric vector position angle. These are consistent with a transformation from a self-absorbed compact jet to optically-thin ejecta - the first time such a discrete ejection has been observed in a failed outburst - and may imply a complex magnetic field geometry.

  10. X-ray Emission Line Spectroscopy of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Wang, Daniel

    What are the origins of the diffuse soft X-ray emission from non-AGN galaxies? Preliminary analysis of XMM-Newton RGS spectra shows that a substantial fraction of the emission cannot arise from optically-thin thermal plasma, as commonly assumed, and may originate in charge exchange at the interface with neutral gas. We request the support for a comprehensive observing, data analysis, and modeling program to spectroscopically determine the origins of the emission. First, we will use our scheduled XMM-Newton AO-10 368 ks observations of the nearest compact elliptical galaxy M32 to obtain the first spectroscopic calibration of the cumulative soft X-ray emission from the old stellar population and will develop a spectral model for the charge exchange, as well as analysis tools to measure the spatial and kinematic properties of the X-ray line- emitting plasma. Second, we will characterize the truly diffuse emission from the hot plasma and/or its interplay with the neutral gas in a sample of galactic spheroids and active star forming/starburst regions in nearby galaxies observed by XMM-Newton. In particular, we will map out the spatial distributions of key emission lines and measure (or tightly constrain) the kinematics of hot plasma outflows for a few X-ray-emitting regions with high-quality RGS data. For galaxies with insufficient counting statistics in individual emission lines, we will conduct a spectral stacking analysis to constrain the average properties of the X-ray-emitting plasma. We will use the results of these X-ray spectroscopic analyses, together with complementary X-ray CCD imaging/spectral data and observations in other wavelength bands, to test the models of the emission. In addition to the charge exchange, alternative scenarios such as resonance scattering and relic AGN photo-ionization will also be examined for suitable regions. These studies are important to the understanding of the relationship between the diffuse soft X-ray emission and various high-energy feedback processes of the galaxies.

  11. NuSTAR hard X-ray observations of the Jovian magnetosphere during Juno perijove and apojove intervals

    NASA Astrophysics Data System (ADS)

    Dunn, W.; Mori, K.; Hailey, C. J.; Branduardi-Raymont, G.; Grefenstette, B.; Jackman, C. M.; Hord, B. J.; Ray, L. C.

    2017-12-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) is the first focusing hard X-ray telescope operating in the 3-79 keV band with sub-arcminute angular resolution (18" FWHM). For the first time, NuSTAR provides sufficient sensitivity to detect/resolve hard X-ray emission from Jupiter above 10 keV, since the in-situ Ulysses observation failed to detect X-ray emission in the 27-48 keV band [Hurley et al. 1993]. The initial, exploratory NuSTAR observation of Jupiter was performed in February 2015 with 100 ksec exposure. NuSTAR detected hard X-ray emission (E > 10 keV) from the south polar region at a marginally significance of 3 sigma level [Mori et al. 2016, AAS meeting poster]. This hard X-ray emission is likely an extension of the non-thermal bremsstrahlung component detected up to 7 keV by XMM-Newton [Branduardi-Raymont et al. 2007]. The Ulysses non-detection suggests there should be a spectral cutoff between 7 and 27 keV. Most intriguingly, the NuSTAR detection of hard X-ray emission from the south aurora is in contrast to the 2003 XMM-Newton observations where soft X-ray emission below 8 keV was seen from both the north and south poles [Gladstone et al. 2002]. Given the marginal, but tantalizing, hard X-ray detection of the southern Jovian aurora, a series of NuSTAR observations with total exposure of nearly half a million seconds were approved in the NuSTAR GO and DDT program. These NuSTAR observations coincided with one Juno apojove (in June 2017) and three perijoves (in May, July and September 2017), also joining the multi-wavelength campaigns of observing Jupiter coordinating with Chandra and XMM-Newton X-ray telescope (below 10 keV) and HST. We will present NuSTAR imaging, spectral and timing analysis of Jupiter. NuSTAR imaging analysis will map hard X-ray emission in comparison with soft X-ray and UV images. In addition to investigating any distinctions between the soft and hard X-ray morphology of the Jovian aurorae, we will probe whether hard X-ray emission is spatially associated with the FUV auroral oval. NuSTAR spectral analysis will measure to how high an energy the non-thermal bremsstrahlung component extends, and detect an expected spectral cutoff between 7 and 27 keV. Since NuSTAR operates in the hard X-ray energy band, it probes the maximum energy of accelerating electrons in the Jovian magnetosphere.

  12. THE BORN-AGAIN PLANETARY NEBULA A78: AN X-RAY TWIN OF A30

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toalá, J. A.; Guerrero, M. A.; Marquez-Lugo, R. A.

    We present the XMM-Newton discovery of X-ray emission from the planetary nebula (PN) A78, the second born-again PN detected in X-rays apart from A30. These two PNe share similar spectral and morphological characteristics: they harbor diffuse soft X-ray emission associated with the interaction between the H-poor ejecta and the current fast stellar wind and a point-like source at the position of the central star (CSPN). We present the spectral analysis of the CSPN, using for the first time an NLTE code for expanding atmospheres that takes line blanketing into account for the UV and optical spectra. The wind abundances aremore » used for the X-ray spectral analysis of the CSPN and the diffuse emission. The X-ray emission from the CSPN in A78 can be modeled by a single C VI emission line, while the X-ray emission from its diffuse component is better described by an optically thin plasma emission model with a temperature of kT = 0.088 keV (T ≈ 1.0 × 10{sup 6} K). We estimate X-ray luminosities in the 0.2-2.0 keV energy band of L {sub X,} {sub CSPN} = (1.2 ± 0.3) × 10{sup 31} erg s{sup –1} and L {sub X,} {sub DIFF} = (9.2 ± 2.3) × 10{sup 30} erg s{sup –1} for the CSPN and diffuse components, respectively.« less

  13. Symbiotic Stars in X-rays

    NASA Technical Reports Server (NTRS)

    Luna, G. J. M.; Sokoloski, J. L.; Mukai, K.; Nelson, T.

    2014-01-01

    Until recently, symbiotic binary systems in which a white dwarf accretes from a red giant were thought to be mainly a soft X-ray population. Here we describe the detection with the X-ray Telescope (XRT) on the Swift satellite of 9 white dwarf symbiotics that were not previously known to be X-ray sources and one that was previously detected as a supersoft X-ray source. The 9 new X-ray detections were the result of a survey of 41 symbiotic stars, and they increase the number of symbiotic stars known to be X-ray sources by approximately 30%. Swift/XRT detected all of the new X-ray sources at energies greater than 2 keV. Their X-ray spectra are consistent with thermal emission and fall naturally into three distinct groups. The first group contains those sources with a single, highly absorbed hard component, which we identify as probably coming from an accretion-disk boundary layer. The second group is composed of those sources with a single, soft X-ray spectral component, which likely arises in a region where low-velocity shocks produce X-ray emission, i.e. a colliding-wind region. The third group consists of those sources with both hard and soft X-ray spectral components. We also find that unlike in the optical, where rapid, stochastic brightness variations from the accretion disk typically are not seen, detectable UV flickering is a common property of symbiotic stars. Supporting our physical interpretation of the two X-ray spectral components, simultaneous Swift UV photometry shows that symbiotic stars with harder X-ray emission tend to have stronger UV flickering, which is usually associated with accretion through a disk. To place these new observations in the context of previous work on X-ray emission from symbiotic stars, we modified and extended the alpha/beta/gamma classification scheme for symbiotic-star X-ray spectra that was introduced by Muerset et al. based upon observations with the ROSAT satellite, to include a new sigma classification for sources with hard X-ray emission from the innermost accretion region. Since we have identified the elusive accretion component in the emission from a sample of symbiotic stars, our results have implications for the understanding of wind-fed mass transfer in wide binaries, and the accretion rate in one class of candidate progenitors of type Ia supernovae.

  14. Radio emission from an ultraluminous x-ray source.

    PubMed

    Kaaret, Philip; Corbel, Stephane; Prestwich, Andrea H; Zezas, Andreas

    2003-01-17

    The physical nature of ultraluminous x-ray sources is uncertain. Stellar-mass black holes with beamed radiation and intermediate black holes with isotropic radiation are two plausible explanations. We discovered radio emission from an ultraluminous x-ray source in the dwarf irregular galaxy NGC 5408. The x-ray, radio, and optical fluxes as well as the x-ray spectral shape are consistent with beamed relativistic jet emission from an accreting stellar black hole. If confirmed, this would suggest that the ultraluminous x-ray sources may be stellar-mass rather than intermediate-mass black holes. However, interpretation of the source as a jet-producing intermediate-mass black hole cannot be ruled out at this time.

  15. Wind-jet interaction in high-mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Zdziarski, Andrzej

    2016-07-01

    Jets in high-mass X-ray binaries can strongly interact with the stellar wind from the donor. The interaction leads, in particular, to formation of recollimation shocks. The shocks can then accelerate electrons in the jet and lead to enhanced emission, observable in the radio and gamma-ray bands. DooSoo, Zdziarski & Heinz (2016) have formulated a condition on the maximum jet power (as a function of the jet velocity and wind rate and velocity) at which such shocks form. This criterion can explain the large difference in the radio and gamma-ray loudness between Cyg X-1 and Cyg X-3. The orbital modulation of radio emission observed in Cyg X-1 and Cyg X-3 allows a measurement of the location of the height along the jet where the bulk of emission at a given frequency occurs. Strong absorption of X-rays in the wind of Cyg X-3 is required to account for properties of the correlation of the radio emission with soft and hard X-rays. That absorption can also account for the unusual spectral and timing X-ray properties of this source.

  16. A New Observation of the Quiet Sun Soft X-ray (0.5-5 keV) Spectrum

    NASA Astrophysics Data System (ADS)

    Caspi, A.; Woods, T. N.; Stone, J.

    2012-12-01

    The solar corona is the brightest source of X-rays in the solar system, and the X-ray emission is highly variable with solar activity. While this is particularly true during solar flares, when emission can be enhanced by many orders of magnitude up to gamma-ray energies, even the so-called "quiet Sun" is bright in soft X-rays (SXRs), as the ~1-2 MK ambient plasma of the corona emits significant thermal bremsstrahlung up to ~5 keV. However, the actual solar SXR (0.5-5 keV) spectrum is not well known, particularly during quiet periods, as, with few exceptions, this energy range has not been systematically studied in many years. Previous observations include ultra-high-resolution but very narrow-band spectra from crystral spectrometers (e.g. Yohkoh/BCS), or integrated broadband irradiances from photometers (e.g. GOES/XRS, TIMED/XPS, etc.) that lack detailed spectral information. In recent years, broadband measurements with fair energy resolution (~0.5-0.7 keV FWHM) were made by SphinX on CORONAS-Photon and XRS on MESSENGER, although they did not extend below ~1 keV. We present observations of the quiet Sun SXR emission obtained using a new SXR spectrometer flown on the third SDO/EVE underflight calibration rocket (NASA 36.286). The commercial off-the-shelf Amptek X123 silicon drift detector, with an 8-micron Be window and custom aperture, measured the solar SXR emission from ~0.5 to >10 keV with ~0.15 keV FWHM resolution (though, due to hardware limitations, with only ~0.12 keV binning) and 2-sec cadence over ~5 minutes on 23 June 2012. Despite the rising solar cycle, activity on 23 June 2012 was abnormally low, with no visible active regions and GOES XRS emission near 2010 levels; we measured no solar counts above ~4 keV during the observation period. We compare our X123 measurements with spectra and broadband irradiances from other instruments, including the SphinX observations during the deep solar minimum of 2009, and with upper limits of >3 keV quiet Sun emission determined from RHESSI. We discuss the possible implications for X-ray-producing physical processes in the quiescent, active-region-free corona. The X123 spectrum could potentially serve as a reference for ~0.5-4 keV quiet Sun emission, to help improve solar spectral models such as CHIANTI and XPS Level 4. Our comparisons indicate that XPS Level 4 likely requires significant revisions in the SXR range, which may have downstream implications for the Earth ionosphere models that have used XPS Level 4 as their solar input.

  17. A New Observation of the Quiet Sun Soft X-ray (0.5-5 keV) Spectrum

    NASA Astrophysics Data System (ADS)

    Caspi, Amir; Woods, Thomas N.; Stone, Jordan

    2013-03-01

    The solar corona is the brightest source of X-rays in the solar system, and the X-ray emission is highly variable with solar activity. While this is particularly true during solar flares, when emission can be enhanced by many orders of magnitude up to gamma-ray energies, even the so-called "quiet Sun" is bright in soft X-rays (SXRs), as the 1-2 MK ambient plasma of the corona emits significant thermal bremsstrahlung up to 5 keV. However, the actual solar SXR (0.5-5 keV) spectrum is not well known, particularly during quiet periods, as, with few exceptions, this energy range has not been systematically studied in many years. Previous observations include ultra-high-resolution but very narrow-band spectra from crystral spectrometers (e.g. Yohkoh/BCS), or integrated broadband irradiances from photometers (e.g. GOES/XRS, TIMED/XPS, etc.) that lack detailed spectral information. In recent years, broadband measurements with fair energy resolution ( 0.5-0.7 keV FWHM) were made by SphinX on CORONAS-Photon and XRS on MESSENGER, although they did not extend below 1 keV. We present observations of the quiet Sun SXR emission obtained using a new SXR spectrometer flown on the third SDO/EVE underflight calibration rocket (NASA 36.286). The commercial off-the-shelf Amptek X123 silicon drift detector, with an 8-micron Be window and custom aperture, measured the solar SXR emission from 0.5 to >10 keV with 0.15 keV FWHM resolution (though, due to hardware limitations, with only 0.12 keV binning) and 2-sec cadence over 5 minutes on 23 June 2012. Despite the rising solar cycle, activity on 23 June 2012 was abnormally low, with no visible active regions and GOES XRS emission near 2010 levels; we measured no solar counts above 4 keV during the observation period. We compare our X123 measurements with spectra and broadband irradiances from other instruments, including the SphinX observations during the deep solar minimum of 2009, and with upper limits of >3 keV quiet Sun emission determined from RHESSI. We discuss the possible implications for X-ray-producing physical processes in the quiescent, active-region-free corona. The X123 spectrum could potentially serve as a reference for 0.5-4 keV quiet Sun emission, to help improve solar spectral models such as CHIANTI and XPS Level 4. Our comparisons indicate that XPS Level 4 likely requires significant revisions in the SXR range, which may have downstream implications for the Earth ionosphere models that have used XPS Level 4 as their solar input.

  18. A population of isolated hard X-ray sources near the supernova remnant Kes 69

    NASA Astrophysics Data System (ADS)

    Bocchino, F.; Bykov, A. M.; Chen, Y.; Krassilchtchikov, A. M.; Levenfish, K. P.; Miceli, M.; Pavlov, G. G.; Uvarov, Yu. A.; Zhou, X.

    2012-05-01

    Recent X-ray observations of the supernova remnant (SNR) IC 443 interacting with molecular clouds detected a new population of hard X-ray sources related to the remnant itself, which has been proposed to be fast ejecta fragments propagating within the dense environment. Encouraged by these studies, we obtained a deep XMM-Newton observation of the SNR Kes 69, which also shows signs of a shock-cloud interaction. We report on the detection of 18 hard X-ray sources in the field of Kes 69, which is a number sognificantly higher than expected for the Galactic source population in the field. The sources are spatially correlated with CO emission from the cloud in the remnant environment. The spectra of 3 of the 18 sources can be described as hard power-laws with photon indices smaller than two plus line emission associated with K-shell transitions. We discuss the two most promising scenarios for the interpretation of the sources, namely fast ejecta fragments (as in IC 443) and cataclysmic variables. While most of the observational evidence is consistent with the former interpretation, we cannot rule out the latter.

  19. SU Lyncis, a Hard X-Ray Bright M Giant: Clues Point to a Large Hidden Population of Symbiotic Stars

    NASA Technical Reports Server (NTRS)

    Mukai, K.; Luna, G. J. M.; Cusumano, G.; Segreto, A.; Munari, U.; Sokoloski, J. L.; Lucy, A. B.; Nelson, T.; Nunez, N. E.

    2016-01-01

    Symbiotic star surveys have traditionally relied almost exclusively on low resolution optical spectroscopy. However, we can obtain amore reliable estimate of their total Galactic population by using all available signatures of the symbiotic phenomenon. Here we report the discovery of a hard X-ray source, 4PBC J0642.9+5528, in the Swift hard X-ray all-sky survey, and identify it with a poorly studied red giant, SU Lyn, using pointed Swift observations and ground-based optical spectroscopy. The X-ray spectrum, the optical to UV spectrum, and the rapid UV variability of SU Lyn are all consistent with our interpretation that it is a symbiotic star containing an accreting white dwarf. The symbiotic nature of SU Lyn went unnoticed until now, because it does not exhibit emission lines strong enough to be obvious in low resolution spectra. We argue that symbiotic stars without shell-burning have weak emission lines, and that the current lists of symbiotic stars are biased in favour of shell-burning systems. We conclude that the true population of symbiotic stars has been underestimated, potentially by a large factor.

  20. Su Lyncis, a Hard X-Ray Bright M Giant: Clues Point to a Large Hidden Population of Symbiotic Stars

    NASA Technical Reports Server (NTRS)

    Mukai, K.; Luna, G. J. M.; Cusumano, G.; Segreto, A.; Munari, U.; Sokoloski, J. L.; Lucy, A. B.; Nelson, T.; Nunez, N. E.

    2016-01-01

    Symbiotic star surveys have traditionally relied almost exclusively on low resolution optical spectroscopy. However, we can obtain a more reliable estimate of their total Galactic population by using all available signatures of the symbiotic phenomenon. Here we report the discovery of a hard X-ray source, 4PBC J0642.9+5528, in the Swift hard X-ray all-sky survey, and identify it with a poorly studied red giant, SU Lyn, using pointed Swift observations and ground-based optical spectroscopy. The X-ray spectrum, the optical to UV spectrum, and the rapid UV variability of SU Lyn are all consistent with our interpretation that it is a symbiotic star containing an accreting white dwarf. The symbiotic nature of SU Lyn went unnoticed until now, because it does not exhibit emission lines strong enough to be obvious in low resolution spectra. We argue that symbiotic stars without shell-burning have weak emission lines, and that the current lists of symbiotic stars are biased in favor of shell-burning systems. We conclude that the true population of symbiotic stars has been underestimated, potentially by a large factor.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, Ruimin; Li, Qinghao; Zhuo, Zengqing

    In this paper, an endstation with two high-efficiency soft x-ray spectrographs was developed at Beamline 8.0.1 of the Advanced Light Source, Lawrence Berkeley National Laboratory. The endstation is capable of performing soft x-ray absorption spectroscopy, emission spectroscopy, and, in particular, resonant inelastic soft x-ray scattering (RIXS). Two slit-less variable line-spacing grating spectrographs are installed at different detection geometries. The endstation covers the photon energy range from 80 to 1500 eV. For studying transition-metal oxides, the large detection energy window allows a simultaneous collection of x-ray emission spectra with energies ranging from the O K-edge to the Ni L-edge without movingmore » any mechanical components. The record-high efficiency enables the recording of comprehensive two-dimensional RIXS maps with good statistics within a short acquisition time. By virtue of the large energy window and high throughput of the spectrographs, partial fluorescence yield and inverse partial fluorescence yield signals could be obtained for all transition metal L-edges including Mn. Finally and moreover, the different geometries of these two spectrographs (parallel and perpendicular to the horizontal polarization of the beamline) provide contrasts in RIXS features with two different momentum transfers.« less

  2. X-ray position detector and implementation in a mirror pointing servo system

    DOEpatents

    Rabedeau, Thomas A.; Van Campen, Douglas G.; Stefan, Peter M.

    2016-04-05

    An X-ray beam position and stability detector is provided having a first metal blade collinear with a second metal blade, where an edge of the first metal blade is opposite an edge of the second metal blade, where the first metal blade edge and the second metal blade edge are disposed along a centerline with respect to each other, where the metal blades are capable of photoelectron emission when exposed to an x-ray beam, a metal coating on the metal blades that is capable of enhancing the photoelectron emission, or suppressing energy-resonant contaminants, or enhancing the photoelectron emission and suppressing energy-resonant contaminants, a background shielding element having an electrode capable of suppressing photoelectron emission from spurious x-rays not contained in an x-ray beam of interest, and a photoelectron emission detector having an amplifier capable of detecting the photoelectron emission as a current signal.

  3. Soft X-ray Emission from Large-Scale Galactic Outflows in Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Colbert, E. J. M.; Baum, S.; O'Dea, C.; Veilleux, S.

    1998-01-01

    Kiloparsec-scale soft X-ray nebulae extend along the galaxy minor axes in several Seyfert galaxies, including NGC 2992, NGC 4388 and NGC 5506. In these three galaxies, the extended X-ray emission observed in ROSAT HRI images has 0.2-2.4 keV X-ray luminosities of 0.4-3.5 x 10(40) erg s(-1) . The X-ray nebulae are roughly co-spatial with the large-scale radio emission, suggesting that both are produced by large-scale galactic outflows. Assuming pressure balance between the radio and X-ray plasmas, the X-ray filling factor is >~ 10(4) times as large as the radio plasma filling factor, suggesting that large-scale outflows in Seyfert galaxies are predominantly winds of thermal X-ray emitting gas. We favor an interpretation in which large-scale outflows originate as AGN-driven jets that entrain and heat gas on kpc scales as they make their way out of the galaxy. AGN- and starburst-driven winds are also possible explanations if the winds are oriented along the rotation axis of the galaxy disk. Since large-scale outflows are present in at least 50 percent of Seyfert galaxies, the soft X-ray emission from the outflowing gas may, in many cases, explain the ``soft excess" X-ray feature observed below 2 keV in X-ray spectra of many Seyfert 2 galaxies.

  4. Suzaku Detection of Diffuse Hard X-Ray Emission Outside Vela X

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Mori, Koji; Petre, Robert; Yamaguchi, Hiroya; Tsunemi, Hiroshi; Bocchino, Fabrizio; Bamba, Aya; Miceli, Marco; Hewitt, John W.; Temim, Tea; hide

    2011-01-01

    Vela X is a large, 3 deg x 2 deg, radio-emitting pulsar wind nebula (PWN) powered by the Vela pulsar in the Vela supernova remnant. Using four Suzaku/XIS observations pointed just outside Vela X, we find hard X-ray emission extending throughout the fields of view. The hard X-ray spectra are well represented by a power-law. The photon index is measured to be constant at Gamma approximates 2.4, similar to that of the southern outer part of Vela X. The power-law flux decreases with increasing distance from the pulsar. These properties lead us to propose that the hard X-ray emission is associated with the Vela PWN. The larger X-ray extension found in this work strongly suggests that distinct populations relativistic electrons form the X-ray PWN and Vela X, as was recently inferred from multiwavelength spectral modeling of Vela X.

  5. X-ray variability of Seyfert 1.8/1.9 galaxies

    NASA Astrophysics Data System (ADS)

    Hernández-García, L.; Masegosa, J.; González-Martín, O.; Márquez, I.; Guainazzi, M.; Panessa, F.

    2017-06-01

    Context. Seyfert 1.8/1.9 are sources showing weak broad Hα components in their optical spectra. According to unification schemes, they are seen with an edge-on inclination, similar to type 2 Seyfert galaxies, but with slightly lower inclination angles. Aims: We aim to test whether Seyfert 1.8/1.9 have similar properties at UV and X-ray wavelengths. Methods: We used the 15 Seyfert 1.8/1.9 in the Véron Cetty and Véron catalog with public data available from the Chandra and/or XMM-Newton archives at different dates, with timescales between observations ranging from days to years. All the spectra of the same source were simultaneously fit with the same model and different parameters were left free to vary in order to select the variable parameter(s). Whenever possible, short-term variations from the analysis of the X-ray light curves and long-term UV variations from the optical monitor onboard XMM-Newton were studied. Our results are homogeneously compared with a previous work using the same methodology applied to a sample of Seyfert 2. Results: X-ray variability is found in all 15 nuclei over the aforementioned ranges of timescales. The main variability pattern is related to intrinsic changes in the sources, which are observed in ten nuclei. Changes in the column density are also frequent, as they are observed in six nuclei, and variations at soft energies, possibly related to scattered nuclear emission, are detected in six sources. X-ray intra-day variations are detected in six out of the eight studied sources. Variations at UV frequencies are detected in seven out of nine sources. Conclusions: A comparison between the samples of Seyfert 1.8/1.9 and 2 shows that, even if the main variability pattern is due to intrinsic changes of the sources in the two families, these nuclei exhibit different variability properties in the UV and X-ray domains. In particular, variations in the broad X-ray band on short timescales (days to weeks), and variations in the soft X-rays and UV on long timescales (months to years) are detected in Seyfert 1.8/1.9 but not in Seyfert 2. Overall, we suggest that optically classified Seyfert 1.8/1.9 should be kept separated from Seyfert 2 galaxies in UV/X-ray studies of the obscured AGN population because their intrinsic properties might be different.

  6. A Multi-Observatory View of the Alpha Persei Coronal Conundrum

    NASA Astrophysics Data System (ADS)

    Ayres, Thomas R.

    2017-01-01

    A ROSAT pointed survey of the Alpha Per open cluster in the 1990's detected its brightest star, mid-F supergiant α Persei, with an X-ray luminosity and spectral hardness similar to coronally active late-type dwarf members. Later, in 2010, a Hubble Cosmic Origins Spectrograph SNAPshot observation of α Per found far-ultraviolet (FUV) coronal-proxy emissions (specifically Si IV 1393 Å) unexpectedly weak. Together with a slight, but suspicious, offset of the ROSAT source, these anomalies raised the possibility that an unrecognized late-type companion might be responsible for the coronal X-rays. Recently, a multi-observatory program was carried out to test that premise; on the one hand to directly detect the putative companion, but on the other to better characterize the FUV spectrum of α Per in case it also was captured in X-rays. Initially, ground-based optical coronography from the Apache Point 3.5m, and later near-UV imaging with HST Wide Field Camera 3, searched for any close-in faint objects that plausibly could be significant X-ray emitters, but without success. Then, a Chandra pointing showed that the X-ray source is single and coincident with the bright star. In tandem, HST COS collected a much deeper FUV spectrum of α Per than the earlier brief SNAP. In hindsight, F supergiant Canopus (α Car: F0 Ib) also has a high X-ray luminosity and the same type of low Si IV/X-ray index as α Per. Significantly, the FUV Si IV emissions of both α Per and Canopus align well with the chromospheric atomic oxygen emissions (which must be intrinsic to the luminous stars), within the context of cooler late-F and early-G supergiants, including Cepheid variables. This pointed to the X-rays as the fundamental anomaly. Ironically, the over-luminous X-rays still support the case for a hyperactive dwarf secondary, albeit now spatially unresolved. However, an equally viable alternative is that both F supergiants are members of a novel class of X-ray emitters. Resolving the first possibility now has become more difficult, because the easy solution -- a well separated hyperactive companion -- has been eliminated; while testing the second will require a broader high-energy census of the early-F supergiant class.

  7. Catalytic action of β source on x-ray emission from plasma focus

    NASA Astrophysics Data System (ADS)

    Ahmad, S.; Sadiq, Mehboob; Hussain, S.; Shafiq, M.; Zakaullah, M.; Waheed, A.

    2006-01-01

    The influence of preionization around the insulator sleeve by a mesh-type β source (Ni6328) for the x-ray emission from a (2.3-3.9 kJ) plasma focus device is investigated. Quantrad Si p-i-n diodes along with suitable filters are employed as time-resolved x-ray detectors and a multipinhole camera with absorption filters is used for time-integrated analysis. X-ray emission in 4π geometry is measured as a function of argon and hydrogen gas filling pressures with and without β source at different charging voltages. It is found that the pressure range for the x-ray emission is broadened, x-ray emission is enhanced, and shot to shot reproducibility is improved with the β source. With argon, the CuKα emission is estimated to be 27.14 J with an efficiency of 0.7% for β source and 21.5 J with an efficiency of 0.55% without β source. The maximum x-ray yield in 4π geometry is found to be about 68.90 J with an efficiency of 1.8% for β source and 54.58 J with an efficiency of 1.4% without β source. With hydrogen, CuKα emission is 11.82 J with an efficiency of 0.32% for β source and 10.07 J with an efficiency of 0.27% without β source. The maximum x-ray yield in 4π geometry is found to be 30.20 J with an efficiency of 0.77% for β source and 25.58 J with an efficiency of 0.6% without β source. The x-ray emission with Pb insert at the anode tip without β source is also investigated and found to be reproducible and significantly high. The maximum x-ray yield is estimated to be 46.6 J in 4π geometry with an efficiency of 1.4% at 23 kV charging voltage. However, degradation of x-ray yield is observed when charging voltage exceeds 23 kV for Pb insert. From pinhole images it is observed that the x-ray emission due to the bombardment of electrons at the anode tip is dominant in both with and without β source.

  8. Early evolution of an X-ray emitting solar active region

    NASA Technical Reports Server (NTRS)

    Wolfson, C. J.; Acton, L. W.; Leibacher, J. W.; Roethig, D. T.

    1977-01-01

    The birth and early evolution of a solar active region has been investigated using X-ray observations from the mapping X-ray heliometer on board the OSO-8 spacecraft. X-ray emission is observed within three hours of the first detection of H-alpha plage. At that time, a plasma temperature of four million K in a region having a density on the order of 10 to the 10th power per cu cm is inferred. During the fifty hours following birth almost continuous flares or flare-like X-ray bursts are superimposed on a monotonically increasing base level of X-ray emission produced by the plasma. If the X-rays are assumed to result from heating due to dissipation of current systems or magnetic field reconnection, it may be concluded that flare-like X-ray emission soon after active region birth implies that the magnetic field probably emerges in a stressed or complex configuration.

  9. Einstein Observatory survey of X-ray emission from solar-type stars - The late F and G dwarf stars

    NASA Technical Reports Server (NTRS)

    Maggio, A.; Sciortino, S.; Vaiana, G. S.; Majer, P.; Bookbinder, J.

    1987-01-01

    Results of a volume-limited X-ray survey of stars of luminosity classes IV and V in the spectral range F7-G9 observed with the Einstein Observatory are presented. Using survival analysis techniques, the stellar X-ray luminosity function in the 0.15-4.0 keV energy band for both single and multiple sources. It is shown that the difference in X-ray luminosity between these two classes of sources is consistent with the superposition of individual components in multiple-component systems, whose X-ray properties are similar to those of the single-component sources. The X-ray emission of the stars in our sample is well correlated with their chromospheric CA II H-K line emission and with their projected equatorial rotational velocity. Comparison of the X-ray luminosity function constructed for the sample of the dG stars of the local population with the corresponding functions derived elsewhere for the Hyades, the Pleiades, and the Orion Ic open cluster confirms that the level of X-ray emission decreases with stellar age.

  10. Soft X-ray observations of two BL Lacertae objects - Markarian 421 and 501

    NASA Technical Reports Server (NTRS)

    Singh, K. P.; Garmire, G. P.

    1985-01-01

    This paper reports on the soft X-ray (0.15-2.8 keV) observations of two BL Lacertae-type objects, viz., Mrk 421 and Mrk 501. The observations were made with the low-energy detectors on the HEAO 1 satellite during the period 1977 August-1978 December. Steep, soft X-ray power-law spectra with photon index Gamma = 3 are found for both Mrk 421 and Mrk 501. The power-law models are found to give a significantly better fit than the thermal models to the observed pulse-height spectra of Mrk 421 and Mrk 501. Day-to-day soft X-ray (0.25 keV band) intensity variations are observed only in Mrk 501. No significant change is found in Gamma from both the BL Lac objects during the period of observations. However, the sum of all the X-ray observations from 1976 until 1980 can be understood in terms of two spectral components of variable intensity to account for the X-ray emission observed between 0.15 and 20 keV from Mrk 421 and Mrk 501.

  11. EX56a study of extended X-ray emission around isolated galaxies EX56b identification and spectra of bright X-ray sources at high galactic latitude

    NASA Technical Reports Server (NTRS)

    Schwartz, Daniel A.

    1987-01-01

    The EXOSAT observations confirmed the identification and extended nature of PKS 2345-35. It gave a good 2 to 10 keV X-ray spectrum and a detailed spatial profile indicating asymmetry of the structure. In the high galactic latitidue investigation, the BL Lac object identified with the HEAO-1 source 1430+423 was detected, and the first X-ray spectrum was obtained. Several simulataneous observations of H0323+022 were obtained over a broad range of electromagnetic spectrum. Studies of luminous active galactic nuclei have given significant information on the spectrum of the quasar PKS 0558-504. In a study of Southern sky cataclysmic variables, the EXOSAT was used to determine the X-ray spectrum and search for periodicities in two objects. Studies of complete identifications have revealed that X-ray sources in two high galactic latitude fields are stars, and therefore are to be excluded from the Piccinotti extragalactic sample. Only one Piccinotti source remains to be identified.

  12. An X-ray outburst from the rapidly accreting young star that illuminates McNeil's nebula.

    PubMed

    Kastner, J H; Richmond, M; Grosso, N; Weintraub, D A; Simon, T; Frank, A; Hamaguchi, K; Ozawa, H; Henden, A

    2004-07-22

    Young, low-mass stars are luminous X-ray sources whose powerful X-ray flares may exert a profound influence over the process of planet formation. The origin of the X-ray emission is uncertain. Although many (or perhaps most) recently formed, low-mass stars emit X-rays as a consequence of solar-like coronal activity, it has also been suggested that X-ray emission may be a direct result of mass accretion onto the forming star. Here we report X-ray imaging spectroscopy observations which reveal a factor approximately 50 increase in the X-ray flux from a young star that is at present undergoing a spectacular optical/infrared outburst (this star illuminates McNeil's nebula). The outburst seems to be due to the sudden onset of a phase of rapid accretion. The coincidence of a surge in X-ray brightness with the optical/infrared eruption demonstrates that strongly enhanced high-energy emission from young stars can occur as a consequence of high accretion rates. We suggest that such accretion-enhanced X-ray emission from erupting young stars may be short-lived, because intense star-disk magnetospheric interactions are quenched rapidly by the subsequent flood of new material onto the star.

  13. Observations of the May 1979 outburst of Centaurus X-4

    NASA Technical Reports Server (NTRS)

    Blair, W. P.; Raymand, J. C.; Dupree, A. K.

    1982-01-01

    The IUE spectra of the X-ray transient/X-ray burst source Cen X-4 at three intervals during the peak and decline of the May 1979 transient event were studied. The spectrum is characterized by a blue continuum and strong emission lines of N V lambda 1240, Si IV lambda 1398 and C IV lambda 1550. The origin of these emission components in the context of an X-ray dwarf nova model is investigated. It is suggested that an accretion disk plays a prominent role in the generation of the continuum emission and that X-ray heating of the accretion disk and the companion star may be important in the formation of the emission lines.

  14. TRANSIENT X-RAY SOURCE POPULATION IN THE MAGELLANIC-TYPE GALAXY NGC 55

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jithesh, V.; Wang, Zhongxiang, E-mail: jithesh@shao.ac.cn

    2016-04-10

    We present the spectral and temporal properties of 15 candidate transient X-ray sources detected in archival XMM-Newton and Chandra observations of the nearby Magellanic-type, SB(s)m galaxy NGC 55. Based on an X-ray color classification scheme, the majority of the sources may be identified as X-ray binaries (XRBs), and six sources are soft, including a likely supernova remnant. We perform a detailed spectral and variability analysis of the data for two bright candidate XRBs. Both sources displayed strong short-term X-ray variability, and their X-ray spectra and hardness ratios are consistent with those of XRBs. These results, combined with their high X-raymore » luminosities (∼10{sup 38} erg s{sup −1}), strongly suggest that they are black hole (BH) binaries. Seven less luminous sources have spectral properties consistent with those of neutron star or BH XRBs in both normal and high-rate accretion modes, but one of them is the likely counterpart to a background galaxy (because of positional coincidence). From our spectral analysis, we find that the six soft sources are candidate super soft sources (SSSs) with dominant emission in the soft (0.3–2 keV) X-ray band. Archival Hubble Space Telescope optical images for seven sources are available, and the data suggest that most of them are likely to be high-mass XRBs. Our analysis has revealed the heterogeneous nature of the transient population in NGC 55 (six high-mass XRBs, one low-mass XRBs, six SSSs, one active galactic nucleus), helping establish the similarity of the X-ray properties of this galaxy to those of other Magellanic-type galaxies.« less

  15. H.E.S.S. discovery of very high energy γ-ray emission from PKS 0625-354

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hadasch, D.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu; Kosack, K.; Krakau, S.; Kraus, M.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morâ, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.

    2018-05-01

    PKS 0625-354 (z = 0.055) was observed with the four High Energy Stereoscopic System (H.E.S.S.) telescopes in 2012 during 5.5 h. The source was detected above an energy threshold of 200 GeV at a significance level of 6.1σ. No significant variability is found in these observations. The source is well described with a power-law spectrum with photon index Γ = 2.84 ± 0.50stat ± 0.10syst and normalization (at E0 = 1.0 TeV) N0(E0) = (0.58 ± 0.22stat ± 0.12syst) × 10-12 TeV-1 cm-2 s-1. Multiwavelength data collected with Fermi-LAT, Swift-XRT, Swift-UVOT, ATOM and WISE are also analysed. Significant variability is observed only in the Fermi-LAT γ-ray and Swift-XRT X-ray energy bands. Having a good multiwavelength coverage from radio to very high energy, we performed a broad-band modelling from two types of emission scenarios. The results from a one zone lepto-hadronic and a multizone leptonic models are compared and discussed. On the grounds of energetics, our analysis favours a leptonic multizone model. Models associated to the X-ray variability constraint support previous results, suggesting a BL Lac nature of PKS 0625-354 with, however, a large-scale jet structure typical of a radio galaxy.

  16. The X-ray structure of Centaurus A

    NASA Technical Reports Server (NTRS)

    Feigelson, E. D.; Schreier, E. J.; Delvaille, J. P.; Giacconi, R.; Grindlay, J. E.; Lightman, A. P.

    1981-01-01

    The Einstein X-ray observatory imaging detectors have found X-ray emission associated with several components of the nearby radio galaxy Cen A = NGC 5128: (1) the compact nucleus; (2) an X-ray jet pointed toward the NE radio lobes; (3) the middle NE radio lobe; (4) the disk or dust lane; and (5) diffuse emission extending several arcmin around the nucleus. The intensity of the nucleus changed by a factor of seven over six months. The X-ray jet is considered in terms of thermal, inverse Compton, and synchrotron models. The emission of the NE radio lobe is greater than that expected from inverse Compton or synchrotron processes. Two ridges of emission are found along each edge of the dust lane, within several arcmin of the nucleus. The diffuse X-ray component has a luminosity which is too high to be due to bulge population X-ray sources, but which may be produced by main sequence stars under appropriate circumstances.

  17. Intense Non-Linear Soft X-Ray Emission from a Hydride Target during Pulsed D Bombardment

    NASA Astrophysics Data System (ADS)

    Miley, George H.; Yang, Yang; Lipson, Andrei; Haque, Munima; Percel, Ian; Romer, Michael

    Radiation emission from low-energy nuclear radiation (LENR) electrodes (both charged-particle and X-rays) represents an important feature of LENR in general. Here, calibration, measurement techniques, and soft X-ray emission results from deuterium bombardment of a Pd target (cathode) placed in a pulsed deuterium glow discharge (PGD) are described. An X-ray intensity of 13.4 mW/cm2 and a dose of 3.3 μJ/cm2 were calculated over a 0.5 ms pulse time from AXUV photodiode radiation detector measurements. A most striking feature is that X-ray energies >600 V are observed with a discharge voltage only about half of that value. To further investigate this phenomenon, emission during room temperature D-desorption from electrolytically loaded Pd:Dx cathodes was also studied. The X-ray emission energy observed was quite similar to the PGD case. However, the intensity in this case was almost 13 orders of magnitude lower due to the much lower deuterium fluxes involved.

  18. Cyclotron emission near stellar mass black holes

    NASA Technical Reports Server (NTRS)

    Apparao, K. M. V.

    1984-01-01

    Cyclotron emission in the inner regions of an accretion disk around a matter accreting black hole can be appreciable. In the case of the X-ray source Cyg X-1, cyclotron emission may provide the soft photons needed for 'Comptonization' to produce high energy X-rays. The inverse correlation between the fluxes of high energy and low energy X-rays during the 'high' and 'low' states of Cyg X-1, may be understood as a result of the variation of the rate of accretion and the Compton scattering of the cyclotron photons. In the case of the X-ray source GX 339-4, the observed optical flux during the high states does not seem to be due to cyclotron emission, but probably due to reprocessing of high energy X-rays by the outer regions of the disk.

  19. OSSE observations of NGC 1275 in the 0.05-10.0 MeV range

    NASA Astrophysics Data System (ADS)

    Osako, C. Y.; Ulmer, M. P.; Grabelsky, D. A.; Purcell, W. R.; Strickman, M. S.; Johnson, W. N.; Kinzer, R. L.; Kurfess, J. D.; Jung, G. V.

    1994-11-01

    We made observations of NGC 1275 with the Compton Gamma-Ray Observatory's Oriented Scintillation Spectrometer Experiment (OSSE) between 1991 November 28 and December 12. We did not detect the source during this viewing period. Our 3 sigma upper limit to a detection in the approximately 50-90 keV range is 6 x 10-6 photons/sq cm/s/keV. This flux is more than 10 times lower than the 3 sigma detection in the same energy range reported by Rothschild et al. for their OSO 7 observations. Our results are discussed in comparison with radio observations and models for the X-ray emission, and we show that it is likely that most of the approx. greater than 10 keV photons come from the nuclear region of NGC 1275. We find no significant correlation between the variable radio intensity and the hard X-ray flux of the entire NGC 1275 source. Simultaneous Very Large Baseline Array and gamma-ray observations are needed to test the self-Compton synchrotron models for gamma-ray emission from the core of NGC 1275. Our results also provide a lower limit to the magnetic field of approximately 2 x 10-7 gauss for the approximately 5 min radio source centered on NGC 1275.

  20. Scientific prospects for spectroscopy of the gamma-ray burst prompt emission with SVOM

    NASA Astrophysics Data System (ADS)

    Bernardini, M. G.; Xie, F.; Sizun, P.; Piron, F.; Dong, Y.; Atteia, J.-L.; Antier, S.; Daigne, F.; Godet, O.; Cordier, B.; Wei, J.

    2017-10-01

    SVOM (Space-based multi-band astronomical Variable Objects Monitor) is a Sino-French space mission dedicated to the study of Gamma-Ray Bursts (GRBs) in the next decade, capable to detect and localise the GRB emission, and to follow its evolution in the high-energy and X-ray domains, and in the visible and NIR bands. The satellite carries two wide-field high-energy instruments: a coded-mask gamma-ray imager (ECLAIRs; 4-150 keV), and a gamma-ray spectrometer (GRM; 15-5500 keV) that, together, will characterise the GRB prompt emission spectrum over a wide energy range. In this paper we describe the performances of the ECLAIRs and GRM system with different populations of GRBs from existing catalogues, from the classical ones to those with a possible thermal component superimposed to their non-thermal emission. The combination of ECLAIRs and the GRM will provide new insights also on other GRB properties, as for example the spectral characterisation of the subclass of short GRBs showing an extended emission after the initial spike.

  1. NuSTAR HARD X-RAY SURVEY OF THE GALACTIC CENTER REGION. I. HARD X-RAY MORPHOLOGY AND SPECTROSCOPY OF THE DIFFUSE EMISSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mori, Kaya; Hailey, Charles J.; Perez, Kerstin

    2015-12-01

    We present the first sub-arcminute images of the Galactic Center above 10 keV, obtained with NuSTAR. NuSTAR resolves the hard X-ray source IGR J17456–2901 into non-thermal X-ray filaments, molecular clouds, point sources, and a previously unknown central component of hard X-ray emission (CHXE). NuSTAR detects four non-thermal X-ray filaments, extending the detection of their power-law spectra with Γ ∼ 1.3–2.3 up to ∼50 keV. A morphological and spectral study of the filaments suggests that their origin may be heterogeneous, where previous studies suggested a common origin in young pulsar wind nebulae (PWNe). NuSTAR detects non-thermal X-ray continuum emission spatially correlated with the 6.4more » keV Fe Kα fluorescence line emission associated with two Sgr A molecular clouds: MC1 and the Bridge. Broadband X-ray spectral analysis with a Monte-Carlo based X-ray reflection model self-consistently determined their intrinsic column density (∼10{sup 23} cm{sup −2}), primary X-ray spectra (power-laws with Γ ∼ 2) and set a lower limit of the X-ray luminosity of Sgr A* flare illuminating the Sgr A clouds to L{sub X} ≳ 10{sup 38} erg s{sup −1}. Above ∼20 keV, hard X-ray emission in the central 10 pc region around Sgr A* consists of the candidate PWN G359.95–0.04 and the CHXE, possibly resulting from an unresolved population of massive CVs with white dwarf masses M{sub WD} ∼ 0.9 M{sub ⊙}. Spectral energy distribution analysis suggests that G359.95–0.04 is likely the hard X-ray counterpart of the ultra-high gamma-ray source HESS J1745–290, strongly favoring a leptonic origin of the GC TeV emission.« less

  2. Hidden Active Galactic Nuclei in Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Paggi, Alessandro; Fabbiano, Giuseppina; Civano, Francesca; Pellegrini, Silvia; Elvis, Martin; Kim, Dong-Woo

    2016-06-01

    We present a stacking analysis of the complete sample of early-type galaxies (ETGs) in the Chandra COSMOS (C-COSMOS) survey, to explore the nature of the X-ray luminosity in the redshift and stellar luminosity ranges 0\\lt z\\lt 1.5 and {10}9\\lt {L}K/{L}⊙ \\lt {10}13. Using established scaling relations, we subtract the contribution of X-ray binary populations to estimate the combined emission of hot ISM and active galactic nuclei (AGNs). To discriminate between the relative importance of these two components, we (1) compare our results with the relation observed in the local universe {L}X,{gas}\\propto {L}K4.5 for hot gaseous halos emission in ETGs, and (2) evaluate the spectral signature of each stacked bin. We find two regimes where the non-stellar X-ray emission is hard, consistent with AGN emission. First, there is evidence of hard, absorbed X-ray emission in stacked bins including relatively high z (˜1.2) ETGs with average high X-ray luminosity ({L}X {- {LMXB}}≳ 6× {10}42 {{erg}} {{{s}}}-1). These luminosities are consistent with the presence of highly absorbed “hidden” AGNs in these ETGs, which are not visible in their optical-IR spectra and spectral energy distributions. Second, confirming the early indication from our C-COSMOS study of X-ray detected ETGs, we find significantly enhanced X-ray luminosity in lower stellar mass ETGs ({L}K≲ {10}11{L}⊙ ), relative to the local {L}X,{gas}\\propto {L}K4.5 relation. The stacked spectra of these ETGs also suggest X-ray emission harder than expected from gaseous hot halos. This emission is consistent with inefficient accretion {10}-5-{10}-4{\\dot{M}}{Edd} onto {M}{BH}˜ {10}6-{10}8 {M}⊙ .

  3. Chandra X-Ray Observatory Observations of the Jovian System

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; Bhardwaj, A.; Gladstone, R.; Waite, J. H.; Ford, P.; Branduari-Raymont, G.

    2005-01-01

    Chandra X-ray Observatory (CXO) and XMM-Newton observations of x-rays from the Jovian system have answered questions that arose from early observations with the Einstein and Rosat X-ray Observatories, but in the process of vastly increasing our knowledge of x-ray emission from Jupiter and its environs they have also raised new questions and point to new opportunities for future studies. We will review recent x-ray results on the Jovian system, from the point of view of the CXO, and discuss various questions that have arisen in the course of our studies. We will discuss prospects for more observations in the immediate future, and how they might address open questions. Finally we will briefly describe ways in which an imaging x-ray spectrometer in the vicinity of the Jovian system could provide a wealth of data and results concerning Jupiter's x-ray auroral and disk emission, elemental abundance measurements for the Galilean moons, and detailed studies of x-ray emission from the Io Plasma Torus.

  4. The Elusive Soft Emission from Hard X-ray Symbiotic System RT Cru

    NASA Astrophysics Data System (ADS)

    Karovska, Margarita

    2014-09-01

    RT Cru is a fascinating member of a new class of hard X-ray emitting symbiotic binaries showing X-ray emission extending to over 50keV. While its hard X-ray emission has been studied in detail, the soft component of the spectrum, including flares, remains elusive, since previous observations have focused on the high-energy regime. We propose Chandra HRC-S/LETG observations to determine the spatial, spectral, and temporal characteristics of the source of the soft X-ray emission with a goal to establish the origin of the soft component, and determine whether and how it is tied to the hard component. Determining the origin of the soft emission is a crucial piece of the puzzle to understanding the geometry, energetics, and the environment of WD accretion in this class of symbiotic systems.

  5. NuSTAR results from the Galactic Center - diffuse emission

    NASA Astrophysics Data System (ADS)

    Hailey, Charles

    2016-03-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) was launched in June 2012. It carried the first true, hard X-ray (>~10 keV-79 keV) focusing telescopes into orbit. Its twin telescopes provide 10 times better angular resolution and 100 times better sensitivity than previously obtainable in the hard X-ray band. Consequently NuSTAR is able to resolve faint diffuse structures whose hard X-rays offer insight into some of the most energetic processes in the Galactic Center. One of the surprising discoveries that NuSTAR made in the Galactic Center is the central hard X-ray emission (CHXE). The CHXE is a diffuse emission detected from ~10 keV to beyond 50 keV in X-ray energy, and extending spatially over a region ~8 parsecs x ~4 parsecs in and out of the plane of the galaxy respectively, and centered on the supermassive black hole Sgr A*. The CHXE was speculated to be due to a large population of unresolved black hole X-ray binaries, millisecond pulsars (MSP), a class of highly magnetized white dwarf binaries called intermediate polars, or to particle outflows from Sgr A*. The presence of an unexpectedly large population of MSP in the Galactic Center would be particularly interesting, since MSP emitting at higher energies and over a much larger region have been posited to be the origin of the gamma-ray emission that is also ascribed to dark matter annihilation in the galaxy. In addition, the connection of the CHXE to the ~9000 unidentified X-ray sources in the central the the ~100 pc detected by the Chandra Observatory, to the soft X-ray emission detected by the Chandra and XMM/Newton observatories in the Galactic Center, and to the hard X-ray emission detected by both the RXTE and INTEGRAL observatories in the Galactic Ridge, is unclear. I review these results and present recent NuSTAR observations that potentially resolve the origin of the CHXE and point to a unified origin for all these X-ray emissions. Two other noteworthy classes of diffuse structures in the Galactic Center will be discussed. The first class are the giant molecular clouds, which are strong hard X-ray emitters. These hard X-rays are believed to be produced when one or more giant outbursts from the supermassive black hole Sgr A*, more than a century ago, resulted in hard X-rays being reflected from the clouds, and detected only today. I discuss how these hard X-rays are used to elucidate the past history of the supermassive black hole, and to compare and contrast these past giant outbursts with those observed from the supermassive black hole more recently. The second class are non-thermal filaments, magnetized structures with both radio and soft X-ray emission that have now been shown by NuSTAR to be hard X-ray emitters. The electrons generating the hard X-rays observed in one of these filaments are the most energetic that have been observed in the galaxy. The filaments are a heterogeneous class of hard X-ray emitters, and the various mechanisms by which they produce hard X-ray emission will be discussed. Future NuSTAR observations of the Galactic Center with NuSTAR will also be discussed.

  6. Evidence for hot clumpy accretion flow in the transitional millisecond pulsar PSR J1023+0038

    NASA Astrophysics Data System (ADS)

    Shahbaz, T.; Dallilar, Y.; Garner, A.; Eikenberry, S.; Veledina, A.; Gandhi, P.

    2018-06-01

    We present simultaneous optical and near-infrared (IR) photometry of the millisecond pulsar PSR J1023+0038 during its low-mass X-ray binary phase. The r΄- and Ks-band light curves show rectangular, flat-bottomed dips, similar to the X-ray mode-switching (active-passive state transitions) behaviour observed previously. The cross-correlation function (CCF) of the optical and near-IR data reveals a strong, broad negative anticorrelation at negative lags, a broad positive correlation at positive lags, with a strong, positive narrow correlation superimposed. The shape of the CCF resembles the CCF of black hole X-ray binaries but the time-scales are different. The features can be explained by reprocessing and a hot accretion flow close to the neutron star's magnetospheric radius. The optical emission is dominated by the reprocessed component, whereas the near-IR emission contains the emission from plasmoids in the hot accretion flow and a reprocessed component. The rapid active-passive state transition occurs when the hot accretion flow material is channelled on to the neutron star and is expelled from its magnetosphere. During the transition the optical reprocessing component decreases resulting in the removal of a blue spectral component. The accretion of clumpy material through the magnetic barrier of the neutron star produces the observed near-IR/optical CCF and variability. The dip at negative lags corresponds to the suppression of the near-IR synchrotron component in the hot flow, whereas the broad positive correlation at positive lags is driven by the increased synchrotron emission of the outflowing plasmoids. The narrow peak in the CCF is due to the delayed reprocessed component, enhanced by the increased X-ray emission.

  7. New Mission Concept Study: Energetic X-Ray Imaging Survey Telescope (EXIST)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This Report summarizes the activity carried out under the New Mission Concept (NMC) study for a mission to conduct a sensitive all-sky imaging survey in the hard x-ray (HX) band (approximately 10-600 keV). The Energetic X-ray Imaging Survey Telescope (EXIST) mission was originally proposed for this NMC study and was then subsequently proposed for a MIDEX mission as part of this study effort. Development of the EXIST (and related) concepts continues for a future flight proposal. The hard x-ray band (approximately 10-600 keV) is nearly the final band of the astronomical spectrum still without a sensitive imaging all-sky survey. This is despite the enormous potential of this band to address a wide range of fundamental and timely objectives - from the origin and physical mechanisms of cosmological gamma-ray bursts (GRBs) to the processes on strongly magnetic neutron stars that produce soft gamma-repeaters and bursting pulsars; from the study of active galactic nuclei (AGN) and quasars to the origin and evolution of the hard x-ray diffuse background; from the nature and number of black holes and neutron stars and the accretion processes onto them to the extreme non-thermal flares of normal stars; and from searches for expected diffuse (but relatively compact) nuclear line (Ti-44) emission in uncatalogued supernova remnants to diffuse non-thermal inverse Compton emission from galaxy clusters. A high sensitivity all-sky survey mission in the hard x-ray band, with imaging to both address source confusion and time-variable background radiations, is very much needed.

  8. High Energy Emission of V404 Cygni during 2015 outburst with INTEGRAL/SPI: Spectral analysis results, issues and solutions

    NASA Astrophysics Data System (ADS)

    Jourdain, Elisabeth; Roques, Jean-Pierre

    2016-04-01

    A strong outburst of the X-ray transient V404 Cygni (= GS2023-338) was observed in 2015 June/July up to a level of 50 Crab in the hard X-ray domain.We have used the INTEGRAL/SPI data to investigate the spectral behavior of the source between 20 and 1000 keV during its maximum of activity. We have found striking variability patterns at all timescales. For the 20-200 keV energy band, the huge signal to noise ratio allows us to scrutinize the source evolution on a never reached timescale (30 s). At higher energy, the spectral shape can be determined on a timescale < 1 h.However, we note that at this level of photon flux, instrument's behavior may be severely tested and that some instrumental artifacts could affect the data analysis. We have performed thorough checks to ensure a correct handling of the SPI data and present how to obtain reliable spectral results on the emission of V404 Cyg. We demonstrate that, with the correct configuration, the hard X-ray emission, up to the MeV region, is well described by a two component model (Comptonisation law + cutoff power law) as observed in Cyg X-1 and for V404 Cygni itself at lower flux levels.

  9. Upper limits for X-ray emission from Jupiter as measured from the Copernicus satellite

    NASA Technical Reports Server (NTRS)

    Vesecky, J. F.; Culhane, J. L.; Hawkins, F. J.

    1975-01-01

    X-ray telescopic observations are made by the Copernicus satellite for detecting X-ray emission from Jupiter analogous to X-rays from terrestrial aurorae. Values of X-ray fluxes recorded by three Copernicus detectors covering the 0.6 to 7.5 keV energy range are reported. The detectors employed are described and the times at which the observations were made are given. Resulting upper-limit spectra are compared with previous X-ray observations of Jupiter. The upper-limit X-ray fluxes are discussed in terms of magnetospheric activity on Jupiter.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rana, Vikram; Harrison, Fiona A.; Walton, Dominic J.

    We present results for two ultraluminous X-ray sources (ULXs), IC 342 X-1 and IC 342 X-2, using two epochs of XMM-Newton and NuSTAR observations separated by ∼7 days. We observe little spectral or flux variability above 1 keV between epochs, with unabsorbed 0.3-30 keV luminosities being 1.04{sub −0.06}{sup +0.08}×10{sup 40} erg s{sup –1} for IC 342 X-1 and 7.40 ± 0.20 × 10{sup 39} erg s{sup –1} for IC 342 X-2, so that both were observed in a similar, luminous state. Both sources have a high absorbing column in excess of the Galactic value. Neither source has a spectrum consistent with a black hole binary in low/hard state, and both ULXsmore » exhibit strong curvature in their broadband X-ray spectra. This curvature rules out models that invoke a simple reflection-dominated spectrum with a broadened iron line and no cutoff in the illuminating power-law continuum. X-ray spectrum of IC 342 X-1 can be characterized by a soft disk-like blackbody component at low energies and a cool, optically thick Comptonization continuum at high energies, but unique physical interpretation of the spectral components remains challenging. The broadband spectrum of IC 342 X-2 can be fit by either a hot (3.8 keV) accretion disk or a Comptonized continuum with no indication of a seed photon population. Although the seed photon component may be masked by soft excess emission unlikely to be associated with the binary system, combined with the high absorption column, it is more plausible that the broadband X-ray emission arises from a simple thin blackbody disk component. Secure identification of the origin of the spectral components in these sources will likely require broadband spectral variability studies.« less

  11. Discovery of superluminal velocities of X-rays and Bharat Radiation challenging the validity of Einstein's formula E= mc2

    NASA Astrophysics Data System (ADS)

    Rao, M. A. Padmanabha

    2013-09-01

    The current paper reports discovery of superluminal velocities of X-rays, and Bharat Radiation in 12.87 to 31 nm range from solar spectra. The discovery challenges the 100 year old Albert Einstein's assertion that nothing can go faster than velocity of light c in vacuum while formulating E = mc2 in his special theory of relativity reported in 1905 [1]. Several solar spectra recorded at various wavelengths by Woods et al in 2011 demonstrated GOES X-rays arriving earlier than 13.5 nm emission, which in turn arriving earlier than 33.5 nm emission [2]. Finally, the investigators faced difficulty in concluding that short wavelengths traveled fast because of lack of information whether all the three emissions originated from the same source and at the same time. Very recently the author has reported GOES X-rays (7.0 nm) cause 13.5 nm (Bharat Radiation), which in turn causes 33.5 nm Extreme ultraviolet (EUV) emission from same excited atoms present in solar flare by Padmanabha Rao Effect [3, 4]. Based on these findings, the author succeeded in explaining how the solar spectral findings provide direct evidences on superluminal velocities of GOES X-ray and 13.5 nm Bharat Radiation emissions, when 33.5 nm EUV emission is considered travelling at velocity of light c. Among X-ray wavelengths, the short wavelength 7.0 nm X-rays traveled faster than 9.4 nm X-rays, while X-rays go at superluminal velocities. Among Bharat radiation wavelengths, short wavelengths showed fast travel, while Bharat Radiation goes at superluminal velocities as compared to 33.5 EUV emission.

  12. V-V compact group of galaxies

    NASA Technical Reports Server (NTRS)

    Bahcall, N.

    1984-01-01

    A search for X-ray emission from five compact groups of galaxies with the Einstein Observatory revealed detections from three groups. Soft, extended X-ray emission was observed in Stephan's Quintet which is most likely caused by hot intracluster gas. This provides evidence for dynamical interaction among the group galaxies. X-ray emission from the group Arp 330 may also originate in hot intracluster gas. Stephan's Quintet and Arp 330 have the largest velocity dispersions among the groups studied suggesting a correlation between high velocity and the release (or properties) of hot gas. X-ray emission from Arp 318 may originate in its member galaxies.

  13. Infrared and X-Ray Spectroscopy of the KES 75 Supernova Remnant Shell: Characterizing the Dust and Gas Properties

    NASA Technical Reports Server (NTRS)

    Temim, Tea; Dwek, Eli; Slane, Patrick; Arendt, Richard G.

    2009-01-01

    We present deep Chandra observations and Spitzer Space Telescope infrared (IR) spectroscopy of the shell in the composite supernova remnant (SNR) Kes 75 (G29.7-0.3). The remnant is composed of a central pulsar wind nebula and a bright partial shell in the south that is visible at radio, IR, and X-ray wavelengths. The X-ray emission can be modeled by either a single thermal component with a temperature of 1.5 keV, or with two thermal components with temperatures of 1.5 and 0.2 keV. Previous studies suggest that the hot component may originate from reverse-shocked SN ejecta. However, our new analysis shows no definitive evidence for enhanced abundances of Si, S, Ar, Mg, and Fe, as expected from supernova (SN) ejecta, or for the IR spectral signatures characteristic of confirmed SN condensed dust, thus favoring a circumstellar or interstellar origin for the X-ray and IR emission. The X-ray and ill emission in the shell are spatially correlated, suggesting that the dust particles are collisionally heated by the X-ray emitting gas. The IR spectrum of the shell is dominated by continuum emission from dust with little, or no line emission. Modeling the IR spectrum shows that the dust is heated to a temperature of 140 K by a relatively dense, hot plasma, that also gives rise to the hot X-ray emission component. The density inferred from the IR emission is significantly higher than the density inferred from the X-ray models, suggesting a low filling factor for this X-ray emitting gas. The total mass of the warm dust component is at least 1.3 x 10(exp -2) solar mass, assuming no significant dust destruction has occurred in the shell. The IR data also reveal the presence of an additional plasma component with a cooler temperature, consistent with the 0.2 keV gas component. Our IR analysis therefore provides an independent verification of the cooler component of the X-ray emission. The complementary analyses of the X-ray and IR emission provide quantitative estimates of density and filling factors of the clumpy medium swept up by the SNR.

  14. Infrared and X-Ray Spectroscopy of the Kes 75 Supernova Shell Characterizing the Dust and Gas Properties

    NASA Technical Reports Server (NTRS)

    Temim, Tea; Arendt, Richard G.; Dwek, Eli; Slane, Patrick

    2012-01-01

    We present deep Chandra observations and Spitzer Space Telescope infrared (IR) spectroscopy of the shell in the composite supernova remnant (SNR) Kes 75 (G29.7-0.3). The remnant is composed of a central pulsar wind nebula and a bright partial shell in the south that is visible at radio, IR, and X-ray wavelengths. The X-ray emission can be modeled by either a single thermal component with a temperature of approx 1.5 keV, or with two thermal components with temperatures of 1.5 and 0.2 keY. Previous studies suggest that the hot component may originate from reverse-shocked SN ejecta. However, our new analysis shows no definitive evidence for enhanced abundances of Si, S, Ar, Mg, and Fe, as expected from supernova (SN) ejecta, or for the IR spectral signatures characteristic of confirmed SN condensed dust, thus favoring a circumstellar or interstellar origin for the X-ray and IR emission. The X-ray and IR emission in the shell are spatially correlated, suggesting that the dust particles are collisionally heated by the X-ray emitting gas. The IR spectrum of the shell is dominated by continuum emission from dust with little, or no line emission. Modeling the IR spectrum shows that the dust is heated to a temperature of approx 140 K by a relatively dense, hot plasma, that also gives rise to the hot X-ray emission component. The density inferred from the IR emission is significantly higher than the density inferred from the X-ray models, suggesting a low filling factor for this X-ray emitting gas. The total mass of the warm dust component is at least 1.3 x 10(exp -2) Solar Mass, assuming no significant dust destruction has occurred in the shell. The IR data also reveal the presence of an additional plasma component with a cooler temperature, consistent with the 0.2 keV gas component. Our IR analysis therefore provides an independent verification of the cooler component of the X-ray emission. The complementary analyses of the X-ray and IR emission provide quantitative estimates of density and filling factors of the clumpy medium swept up by the SNR.

  15. Investigating the X-ray and Gamma-ray Properties of the Galactic Supernova Remnants Kes 69, 3C 396, 3C 400.2

    NASA Astrophysics Data System (ADS)

    Ergin, Tülün; Sezer, Aytap; Yamazaki, Ryo

    2016-06-01

    Kes 69, 3C 396, and 3C 400.2 are mixed-morphology (MM) Galactic supernova remnants (SNRs), where Kes 69 and 3C 396 are interacting with molecular clouds (MCs). Previous X-ray studies showed that the emission from these SNRs is thermal. It has been suggested that MM SNRs interacting with MCs are potential candidates for recombining plasma (RP) in X-rays and hadronic gamma-ray emission. Recently, Chandra observations revealed signs of RP in 3C 400.2. Our preliminary analyses show that the X-ray emission of NW and SE region of 3C 400.2 arises from recombining plasma. We detected GeV gamma-ray emission from Kes 69 and 3C 396 above 5σ

  16. Evidence for variability of the hard X-ray feature in the Hercules X-1 energy spectrum

    NASA Technical Reports Server (NTRS)

    Tueller, J.; Cline, T. L.; Teegarden, B. J.; Paciesas, W. S.; Boclet, D.; Durochoux, P.; Hameury, J. M.; Prantzos, N.; Haymes, R. C.

    1983-01-01

    The hard X-ray spectrum of HER X-1 was measured for the first time with a high resolution (1.4 keV FWHM) germanium spectrometer. The observation was performed near the peak of the on-state in the 35 day cycle and the 1.24 pulsations were observed between the energies of 20 keV and 70 keV. The feature corresponds to an excess of 7.5 sigma over the low energy continuum. Smooth continuum models are poor fits to the entire energy range (chance probabilities of 2 percent or less). The best fit energies are 35 keV for an absorption line and 39 keV for an emission line. These are significantly lower energies than those derived from previous experiments. A direct comparison of our data with the results of the MPI/AIT group shows statistically significant variations which strongly suggest variability in the source.

  17. Space Telescope and Optical Reverberation Mapping Project: Unraveling the Broad Line Region and the Intrinsic Absorption in NGC 5548

    NASA Astrophysics Data System (ADS)

    Kriss, G.; Storm Team

    2015-07-01

    The Space Telescope and Optical Reverberation Mapping (STORM) project monitored the Seyfert 1 galaxy NGC 5548 over a six-month period, obtaining 171 far-ultraviolet HST/COS spectra at approximately daily intervals. We find significant correlated variability in the continuum and broad emission lines, with amplitudes ranging from a factor of two in the emission lines to a factor of three in the continuum. The variations of all the strong emission lines lag behind those of the continuum, with He II lagging by ˜ 2.5 days and Ly&alpha,; C IV, and Si IV lagging by 5 to 6 days. The broad UV absorption lines discovered by Kaastra et al. (2014) and associated with the new soft X-ray obscurer are continuously present in the STORM campaign COS spectra. Their strength varies with the degree of soft X-ray obscuration as revealed by the Swift X-ray spectra. The narrow absorption lines associated with the historical warm absorber varied in response to the changing UV flux on a daily basis with lags of 3 to 8 days. The ionization response allows precise determinations of the locations, mass flux, and kinetic luminosities of the absorbers.

  18. NUSTAR and Suzaku x-ray spectroscopy of NGC 4151: Evidence for reflection from the inner accretion disk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keck, M. L.; Brenneman, L. W.; Ballantyne, D. R.

    We present X-ray timing and spectral analyses of simultaneous 150 ks Nuclear Spectroscopic Telescope Array (NuSTAR) and Suzaku X-ray observations of the Seyfert 1.5 galaxy NGC 4151. We disentangle the continuum emission, absorption, and reflection properties of the active galactic nucleus (AGN) by applying inner accretion disk reflection and absorption-dominated models. With a time-averaged spectral analysis, we find strong evidence for relativistic reflection from the inner accretion disk. We find that relativistic emission arises from a highly ionized inner accretion disk with a steep emissivity profile, which suggests an intense, compact illuminating source. We find a preliminary, near-maximal black hole spinmore » $$a\\gt 0.9$$ accounting for statistical and systematic modeling errors. We find a relatively moderate reflection fraction with respect to predictions for the lamp post geometry, in which the illuminating corona is modeled as a point source. Through a time-resolved spectral analysis, we find that modest coronal and inner disk reflection (IDR) flux variation drives the spectral variability during the observations. We discuss various physical scenarios for the IDR model and we find that a compact corona is consistent with the observed features.« less

  19. NuSTAR and Suzaku X-ray Spectroscopy of NGC 4151: Evidence for Reflection from the Inner Accretion Disk

    NASA Astrophysics Data System (ADS)

    Keck, M. L.; Brenneman, L. W.; Ballantyne, D. R.; Bauer, F.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Dauser, T.; Elvis, M.; Fabian, A. C.; Fuerst, F.; García, J.; Grefenstette, B. W.; Hailey, C. J.; Harrison, F. A.; Madejski, G.; Marinucci, A.; Matt, G.; Reynolds, C. S.; Stern, D.; Walton, D. J.; Zoghbi, A.

    2015-06-01

    We present X-ray timing and spectral analyses of simultaneous 150 ks Nuclear Spectroscopic Telescope Array (NuSTAR) and Suzaku X-ray observations of the Seyfert 1.5 galaxy NGC 4151. We disentangle the continuum emission, absorption, and reflection properties of the active galactic nucleus (AGN) by applying inner accretion disk reflection and absorption-dominated models. With a time-averaged spectral analysis, we find strong evidence for relativistic reflection from the inner accretion disk. We find that relativistic emission arises from a highly ionized inner accretion disk with a steep emissivity profile, which suggests an intense, compact illuminating source. We find a preliminary, near-maximal black hole spin a\\gt 0.9 accounting for statistical and systematic modeling errors. We find a relatively moderate reflection fraction with respect to predictions for the lamp post geometry, in which the illuminating corona is modeled as a point source. Through a time-resolved spectral analysis, we find that modest coronal and inner disk reflection (IDR) flux variation drives the spectral variability during the observations. We discuss various physical scenarios for the IDR model and we find that a compact corona is consistent with the observed features.

  20. Optical/Infrared properties of Be stars in X-ray Binary systems

    NASA Astrophysics Data System (ADS)

    Naik, Sachindra

    2018-04-01

    Be/X-ray binaries, consisting of a Be star and a compact object (neutron star), form the largest subclass of High Mass X-ray Binaries. The orbit of the compact object around the Be star is wide and highly eccentric. Neutron stars in the Be/X-ray binaries are generally quiescent in X-ray emission. Transient X-ray outbursts seen in these objects are thought to be due to the interaction between the compact object and the circumstellar disk of the Be star at the periastron passage. Optical/infrared observations of the companion Be star during these outbursts show that the increase in the X-ray intensity of the neutron star is coupled with the decrease in the optical/infrared flux of the companion star. Apart from the change in optical/infrared flux, dramatic changes in the Be star emission line profiles are also seen during X-ray outbursts. Observational evidences of changes in the emission line profiles and optical/infrared continuum flux along with associated X-ray outbursts from the neutron stars in several Be/X-ray binaries are presented in this paper.

  1. X-ray Flares from Young Stars and the Sun: Bridging the Gap with Chandra+NuSTAR

    NASA Astrophysics Data System (ADS)

    Canizares, Claude

    2017-09-01

    It is widely accepted that the coronae of pre-MS stars constitute scaled-up versions of the solar corona. However, the potential hard (>10 keV) non-thermal emission components of pre-MS flares, and the link between such emission and the softer thermal emission accessible to Chandra and XMM, remain unstudied. We propose joint HETG and NuStar observations of V773 Tau, one of the brightest and most energetically flaring pre-MS X-ray sources. By elucidating the connection between hard, non-thermal X-ray emission and softer, thermal emission, these observations will provide an essential test of models invoking scaled-up solar magnetic activity to explain X-ray emission from pre-MS stars.

  2. Long-Term Variability of AGN at Hard X-Rays

    NASA Technical Reports Server (NTRS)

    Soldi, S.; Beckmann, V.; Baumgartner W. H.; Ponti, G.; Shrader, C. R.; Lubinski, P.; Krimm, H. A.; Mattana, F.; Tueller, J.

    2013-01-01

    Variability at all observed wavelengths is a distinctive property of active galactic nuclei (AGN). Hard X-rays provide us with a view of the innermost regions of AGN, mostly unbiased by absorption along the line of sight. Characterizing the intrinsic hard X-ray variability of a large AGN sample and comparing it to the results obtained at lower X-ray energies can significantly contribute to our understanding of the mechanisms underlying the high-energy radiation. Methods. Swift/BAT provides us with the unique opportunity to follow, on time scales of days to years and with a regular sampling, the 14-195 keV emission of the largest AGN sample available up to date for this kind of investigation. As a continuation of an early work on the first 9 months of BAT data, we study the amplitude of the variations, and their dependence on sub-class and on energy, for a sample of 110 radio quiet and radio loud AGN selected from the BAT 58-month survey. About 80 of the AGN in the sample are found to exhibit significant variability on months to years time scales, radio loud sources being the most variable. The amplitude of the variations and their energy dependence are incompatible with variability being driven at hard X-rays by changes of the absorption column density. In general, the variations in the 14-24 and 35-100 keV bands are well correlated, suggesting a common origin of the variability across the BAT energy band. However, radio quiet AGN display on average 10 larger variations at 14-24 keV than at 35-100 keV and a softer-when-brighter behavior for most of the Seyfert galaxies with detectable spectral variability on month time scale. In addition, sources with harder spectra are found to be more variable than softer ones. These properties are generally consistent with a variable power law continuum, in flux and shape, pivoting at energies 50 keV, to which a constant reflection component is superposed. When the same time scales are considered, the timing properties of AGN at hard X-rays are comparable to those at lower energies, with at least some of the differences possibly ascribable to components contributing differently in the two energy domains (e.g., reflection, absorption).

  3. X-ray Spectroscopy of a TDE

    NASA Astrophysics Data System (ADS)

    Kochanek, Christopher

    2017-09-01

    Tidal disruption events (TDE), where supermassive black holes destroy stars to produce accretion flares, are of great current observational and theoretical interest. Here we propose a four epoch HRC/LETG X-ray spectroscopic ``movie'' of a TDE spread over the first 40 days of an X-ray bright TDE, including any discovered by our ASAS-SN survey, supported and extended by higher cadence Swift XRT/UVOT observations over the first 100 days. For this next X-ray bright TDE, we will measure the evolution of the X-ray emission (luminosity/temperature) from the hot accretion disk, the emission reprocessed by the debris into UV/optical, and use X-ray absorption (or emission) features to look at the abundances and the evolution of the kinematics and ionization parameter.

  4. X-Ray Emission from Ultraviolet Luminous Galaxies and Lyman Break Galaxies

    NASA Technical Reports Server (NTRS)

    Hornschemeier, Ann; Ptak, A. F.; Salim, S.; Heckman, T. P.; Overzier, R.; Mallery, R.; Rich, M.; Strickland, D.; Grimes, J.

    2009-01-01

    We present results from an XMM mini-survey of GALEX-selected Ultraviolet-Luminous Galaxies (UVLGs) that appear to include an interesting subset that are analogs to the distant (3

  5. Enhanced water window x-ray emission from in situ formed carbon clusters irradiated by intense ultra-short laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakravarty, U.; Rao, B. S.; Arora, V.

    Enhanced water window x-ray emission (23–44 Å) from carbon clusters, formed in situ using a pre-pulse, irradiated by intense (I > 10{sup 17} W/cm{sup 2}) ultra-short laser pulse, is demonstrated. An order of magnitude x-ray enhancement over planar graphite target is observed in carbon clusters, formed by a sub-ns pre-pulse, interacting with intense main pulse after a delay. The effect of the delay and the duration of the main pulse is studied for optimizing the x-ray emission in the water window region. This x-ray source has added advantages of being an efficient, high repetition rate, and low debris x-ray source.

  6. Limits on soft X-ray flux from distant emission regions

    NASA Technical Reports Server (NTRS)

    Burrows, D. N.; Mccammon, D.; Sanders, W. T.; Kraushaar, W. L.

    1984-01-01

    The all-sky soft X-ray data of McCammon et al. and the new N sub H survey (Stark et al. was used to place limits on the amount of the soft X-ray diffuse background that can originate beyond the neutral gas of the galactic disk. The X-ray data for two regions of the sky near the galactic poles are shown to be uncorrelated with 21 cm column densities. Most of the observed x-ray flux must therefore originate on the near side of the most distant neutral gas. The results from these regions are consistent with X-ray emission from a locally isotropic, unabsorbed source, but require large variations in the emission of the local region over large angular scales.

  7. Analysis and interpretation of diffuse x-ray emission using data from the Einstein satellite

    NASA Technical Reports Server (NTRS)

    Helfand, David J.

    1991-01-01

    An ambitious program to create a powerful and accessible archive of the HEAO-2 Imaging Proportional Counter (IPC) database was outlined. The scientific utility of that database for studies of diffuse x ray emissions was explored. Technical and scientific accomplishments are reviewed. Three papers were presented which have major new scientific findings relevant to the global structure of the interstellar medium and the origin of the cosmic x ray background. An all-sky map of diffuse x ray emission was constructed.

  8. X-ray flaring from Sagittarius A*: exploring the Milky Way black hole through its brightest flares

    NASA Astrophysics Data System (ADS)

    Nynka, Melania; Haggard, Daryl

    2017-08-01

    Sagittarius A* is the supermassive black hole at the center of our own Milky Way galaxy. Ambitious monitoring campaigns have yielded rich multiwavelength, time-resolved data, which have the power to probe the physical processes that underlie Sgr A*'s quiescent and flare emission. In 2013 and 2014 the Chandra X-ray Observatory captured two extremely luminous flares from Sgr A*, the two brightest ever detected in X-ray. I will describe the spectral and temporal properties of these flares, how they compare to previous analysis, and the possible physical processes driving the Sgr A* variability. I will also discuss the power spectral densities of the flares which may contain information about the black hole's ISCO and spin.

  9. Hard X-ray Emission and Efficient Particle Acceleration by Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Vink, Jacco

    2009-05-01

    I discuss the non-thermal X-ray emission from young supernova remnants. Over the last decade it has become clear from both X-ray and γ-ray observations that young supernovae accelerate particles up to 100 TeV. In soft X-rays the accelerated >10 TeV electrons produce synchrotron radiation, coming from narrow filaments located at the shock fronts. The width of these filaments shows that the magnetic fields are relatively high, thus providing evidence for magnetic field amplification. The synchrotron radiation of several remnants is known to extend into the hard X-ray regime. In particular Cas A, has a spectrum that appears as a power law up to almost 100 TeV. This is very surprising, as a steepening is expected going from the soft to the hard X-ray band. The spectrum is likely a result of many superimposed individual spectra, each steepening at different energies. This implies considerable spatial variation in hard X-rays, an obvious target for Simbol-X. The variations will be important to infer local shock acceleration properties, but also magnetic field fluctuations may cause spatial and temporal variations. Finally, I draw the attention to super bubbles and supernovae as sources of cosmic rays. As such they may be sources of hard X-ray emission. In particular, supernovae exploding inside the dense red supergiants winds of their progenitors ares promising candidates for hard X-ray emission.

  10. Temporal studies of black hole X-ray transients during outburst decay

    NASA Astrophysics Data System (ADS)

    Kalemci, Emrah

    Galactic black holes (GBH) are a class of astrophysical sources with X-ray emission that is powered by accretion from a companion star. An important goal of GBH research is to understand the accretion structure and the nature of the variability of these systems. The GBHs sometimes show significant changes in the X-ray emission properties, and these changes are called state transitions. The transitions are believed to be caused by variation of the mass accretion rate and changes in accretion geometry. Thus, their study provides valuable information on the nature of the accretion structure. In this thesis work, I present results from studying the spectral and temporal evolution of all GBH transients that have been observed with NASA's Rossi X-ray Timing Explorer during outburst decay. I explore the physical conditions before, during and after the state transition, characterize the quasi-periodic oscillations (QPO) and continuum of power spectral density (PSD) in different energy bands, and study the correlations between spectral and temporal fit parameters. I also analyze the evolution of the cross- spectral parameters during and after the transition. I show that the appearance of the broad band variability is coincident with an increase of power-law flux. The evolution of the characteristic frequencies and the spectral parameters after the transition are consistent with retreating of the inner accretion disk. The energy dependent PSD analysis shows that the level of variability increases with energy when there is significant soft flux from the optically thick accretion disk. The variability level also increases with energy if the absorption column density to the source is high. This may be a result of small angle scatterings of lower energy X-ray photons with the ISM dust around these sources. I find global correlations between the spectral index and three temporal fit parameters: the QPO frequency, the overall level of variability and the integrated time lag. The relation between the spectral index and the time lags are interpreted within the context of the average number of Compton scatterings and the temperature of the scattering medium. During the transitions, the average lag is higher and average coherence is lower. I discuss whether a hybrid accretion model, for which the hot electron corona is the base of an optically thin outflow or a jet, can explain the physical properties during the transition.

  11. NGC 4388- Spectral Studies of the First Seyfert 2 Seen by INTEGRAL

    NASA Technical Reports Server (NTRS)

    Beckman, V.; Gehrels, N.; Favre, P.; Courvoisier, T. J.-L.; Walter, R.; Malzac, J.; Petrucci, P.-O.

    2004-01-01

    We present first INTEGRAL and XMM-Newton ob- servations of a Seyfert galaxy, the type 2 AGN NGC 4388. Several INTEGRAL observations performed in 2003 allow us to study the spectrum in the 20 - 300 keV range. In addition two XMM-Newton observations give detailed insight into the 0.2 - 10 keV emission. Comparison with previous observations by BeppoSAX, SIGMA and CGROIOSSE show that the overall spectrum for soft X-rays up to the gamma-rays can be described by a highly absorbed and variable non-thermal component in addition to constant non-absorbed thermal emission of low abundance (2 - 5%Za), plus a constant Fe K alpha line. The hard X-ray component is well described by a simple power law with a mean photon index of 1 = 1.7. During the INTEGRAL observations the flux at 100 keV increased by a factor of 1.5. The analysis of XMM-Newton data implies that the emission below 3 keV is decoupled from the AGN and probably due to extended emission as seen in Chandra observations. The constant iron line emission is apparently also decoupled from the direct emission of the central engine and likely to be generated in the obscuring material, e.g. in the molecular torus or even further away.

  12. A new transient pulsar in the Small Magellanic Cloud with an unusual x-ray spectrum

    NASA Technical Reports Server (NTRS)

    Hughes, John P.

    1994-01-01

    This article reports the discovery of a luminous (3.5 x 10(exp 37) ergs/sec over the 0.2 to 2 keV band) transient X-ray pulsar in the Small Magellanic Cloud (SMC) with an extremely soft component to its X-ray spectrum. This is the first time that a spectrum of this type has been seen in this class of X-ray source. The pulse period is 2.7632 s, and the pulse modulation appears to vary with energy from nearly unpulsed in the low-energy band of the ROSAT Position Sensitive Proportional Counter (PSPC) (0.07 to 0.4 keV) to about 50% in the high-energy band (1.0 to 2.4 keV). The object, RX J0059.2-7138, also shows flickering variability in its X-ray emission on timescales of 50 to 100s. The pulse-phase-averaged PSPC X-ray spectrum can be well described by a two-component source model seen through an absorbing column density of approximately 10(exp 21) atoms cm(exp -2). One spectral component is a power law with photon index 2.4. The other component is significantly softer and can be described by either a steeply falling power law or a blackbody with a temperature KT(sub BB) approximately 35 eV. Ths component is transient, but evidently upulsed, and, for the blackbody model fits, requires a large bolometric luminosity: near, or even several times greater than, the Eddington luminosity for a 1.4 solar mass object. When these characteristics of its soft emission are considered, RX J0059.2-7138 appears quite similar to other X-ray sources in the magellanic Clouds, such as CAL 83, CAL 87, and RX J0527.8-6954, which show only extreme ultrasoft (EUS) X-ray spectra. The discovery of RX J0059.2-7138, a probably high-mass X-ray binary, clearly indicates that EUS spectra may arise from accretion-powered neutron-star X-ray sources. This result lends support to the idea that some of the 'pure' EUS sources may be shrouded low-mass X-ray binaries rather than accreting white dwarfs.

  13. PULSED GAMMA RAYS FROM THE ORIGINAL MILLISECOND AND BLACK WIDOW PULSARS: A CASE FOR CAUSTIC RADIO EMISSION?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guillemot, L.; Kramer, M.; Freire, P. C. C.

    2012-01-01

    We report the detection of pulsed gamma-ray emission from the fast millisecond pulsars (MSPs) B1937+21 (also known as J1939+2134) and B1957+20 (J1959+2048) using 18 months of survey data recorded by the Fermi Large Area Telescope and timing solutions based on radio observations conducted at the Westerbork and Nancay radio telescopes. In addition, we analyzed archival Rossi X-ray Timing Explorer and XMM-Newton X-ray data for the two MSPs, confirming the X-ray emission properties of PSR B1937+21 and finding evidence ({approx}4{sigma}) for pulsed emission from PSR B1957+20 for the first time. In both cases the gamma-ray emission profile is characterized by twomore » peaks separated by half a rotation and are in close alignment with components observed in radio and X-rays. These two pulsars join PSRs J0034-0534 and J2214+3000 to form an emerging class of gamma-ray MSPs with phase-aligned peaks in different energy bands. The modeling of the radio and gamma-ray emission profiles suggests co-located emission regions in the outer magnetosphere.« less

  14. Radio and X-Ray Observations of SN 2006jd: Another Strongly Interacting Type IIn Supernova

    NASA Technical Reports Server (NTRS)

    Chandra, Poonam; Chevalier, Roger A.; Chugai, Nikolai; Fransson, Claes; Irwin, Christopher M.; Soderberg, Alicia M.; Chakraborti, Sayan; Immler, Stefan

    2012-01-01

    We report four years of radio and X-ray monitoring of the Type IIn supernova SN 2006jd at radio wavelengths with the Very Large Array, Giant Metrewave Radio Telescope and Expanded Very Large Array at X-ray wavelengths with Chandra, XMM-Newton and Swift-XRT. We assume that the radio and X-ray emitting particles are produced by shock interaction with a dense circumstellar medium. The radio emission shows an initial rise that can be attributed to free-free absorption by cool gas mixed into the nonthermal emitting region external free-free absorption is disfavored because of the shape of the rising light curves and the low gas column density inferred along the line of sight to the emission region. The X-ray luminosity implies a preshock circumstellar density approximately 10(exp 6) per cubic meter at a radius r approximately 2 x 10(exp 16) centimeter, but the column density inferred from the photoabsorption of X-rays along the line of sight suggests a significantly lower density. The implication may be an asymmetry in the interaction. The X-ray spectrum shows Fe line emission at 6.9 keV that is stronger than is expected for the conditions in the X-ray emitting gas. We suggest that cool gas mixed into the hot gas plays a role in the line emission. Our radio and X-ray data both suggest the density profile is flatter than r2 because of the slow evolution of the unabsorbed emission.

  15. Long time scale hard X-ray variability in Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Markowitz, Alex Gary

    This dissertation examines the relationship between long-term X-ray variability characteristics, black hole mass, and luminosity of Seyfert 1 Active Galactic Nuclei. High dynamic range power spectral density functions (PSDs) have been constructed for six Seyfert 1 galaxies. These PSDs show "breaks" or characteristic time scales, typically on the order of a few days. There is resemblance to PSDs of lower-mass Galactic X-ray binaries (XRBs), with the ratios of putative black hole masses and variability time scales approximately the same (106--7) between the two classes of objects. The data are consistent with a linear correlation between Seyfert PSD break time scale and black hole mass estimate; the relation extrapolates reasonably well over 6--7 orders of magnitude to XRBs. All of this strengthens the case for a physical similarity between Seyfert galaxies and XRBs. The first six years of RXTE monitoring of Seyfert 1s have been systematically analyzed to probe hard X-ray variability on multiple time scales in a total of 19 Seyfert is in an expansion of the survey of Markowitz & Edelson (2001). Correlations between variability amplitude, luminosity, and black hole mass are explored, the data support the model of PSD movement with black hole mass suggested by the PSD survey. All of the continuum variability results are consistent with relatively more massive black holes hosting larger X-ray emission regions, resulting in 'slower' observed variability. Nearly all sources in the sample exhibit stronger variability towards softer energies, consistent with softening as they brighten. Direct time-resolved spectral fitting has been performed on continuous RXTE monitoring of seven Seyfert is to study long-term spectral variability and Fe Kalpha variability characteristics. The Fe Kalpha line displays a wide range of behavior but varies less strongly than the broadband continuum. Overall, however, there is no strong evidence for correlated variability between the line and continuum, severely challenging models in which the line tracks continuum variations modified only by a light-travel time delay. This experiment yields further support for spectral softening as continuum flux increases.

  16. Testing a double AGN hypothesis for Mrk 273

    NASA Astrophysics Data System (ADS)

    Iwasawa, K.; U, V.; Mazzarella, J. M.; Medling, A. M.; Sanders, D. B.; Evans, A. S.

    2018-04-01

    The ultra-luminous infrared galaxy (ULIRG) Mrk 273 contains two infrared nuclei, N and SW, separated by 1 arcsecond. A Chandra observation has identified the SW nucleus as an absorbed X-ray source with NH 4 × 1023 cm-2 but also hinted at the possible presence of a Compton-thick AGN in the N nucleus, where a black hole of 109 M⊙ is inferred from the ionized gas kinematics. The intrinsic X-ray spectral slope recently measured by NuSTAR is unusually hard (Γ 1.3) for a Seyfert nucleus, for which we seek an alternative explanation. We hypothesize a strongly absorbed X-ray source in N, of which X-ray emission rises steeply above 10 keV, in addition to the known X-ray source in SW, and test it against the NuSTAR data, assuming the standard spectral slope (Γ = 1.9). This double X-ray source model gives a good explanation of the hard continuum spectrum, deep Fe K absorption edge, and strong Fe K line observed in this ULIRG, without invoking the unusual spectral slope required for a single source interpretation. The putative X-ray source in N is found to be absorbed by NH = 1.4+0.7-0.4 × 1024 cm-2. The estimated 2-10 keV luminosity of the N source is 1.3 × 1043 erg s-1, about a factor of 2 larger than that of SW during the NuSTAR observation. Uncorrelated variability above and below 10 keV between the Suzaku and NuSTAR observations appears to support the double source interpretation. Variability in spectral hardness and Fe K line flux between the previous X-ray observations is also consistent with this picture.

  17. Long-term monitoring of Ark 120 with Swift

    NASA Astrophysics Data System (ADS)

    Gliozzi, M.; Papadakis, I. E.; Grupe, D.; Brinkmann, W. P.; Räth, C.

    2017-02-01

    We report the results of a six-month Swift monitoring campaign of Ark 120, a prototypical `bare' Seyfert 1 galaxy. The lack of intrinsic absorption combined with the nearly contemporaneous coverage of the ultraviolet (UV) and X-ray bands makes it possible to investigate the link between the accretion disc and the putative Comptonization corona. Our observations confirm the presence of substantial temporal variability, with the X-ray characterized by large-amplitude flux changes on time-scales of few days, while the variations in the UV bands are smoother and occur on time-scales of several weeks. The source also shows spectral variability with the X-ray spectrum steepening when the source is brighter. We do not detect any correlation between the UV flux and the X-ray spectral slope. A cross-correlation analysis suggests positive delays between X-rays and the UV emission, favouring a scenario of disc reprocessing. Although the strength of the correlation is moderate with a delay which is not well constrained (7.5 ± 7 d), it is nevertheless indicative of a very large disc reprocessing region, with a separation between the X-ray and the UV-emitting regions, which could be as large as 1000 rG. The Ark 120 correlation results are in agreement with those obtained in similar multiwavelength monitoring studies of active galactic nuclei (AGN). When combined together, the observations so far can be well described by a linear relation between the X-ray/UV delays and the mass of the central black hole. Within the context of the simplest scenario, where these delays correspond to light-travel times, the implied distance between the X-ray source and the optical/UV disc reprocessing region in these AGN should be of the order of many hundreds of gravitational radii.

  18. A Deep X-ray Survey of the Globular Cluster Omega Centauri

    NASA Astrophysics Data System (ADS)

    Henleywillis, Simon; Cool, Adrienne M.; Haggard, Daryl; Heinke, Craig; Callanan, Paul; Zhao, Yue

    2018-03-01

    We identify 233 X-ray sources, of which 95 are new, in a 222 ks exposure of Omega Centauri with the Chandra X-ray Observatory's ACIS-I detector. The limiting unabsorbed flux in the core is fX(0.5-6.0 keV) ≃ 3×10-16 erg s-1 cm-2 (Lx ≃ 1×1030 erg s-1 at 5.2 kpc). We estimate that ˜60 ± 20 of these are cluster members, of which ˜30 lie within the core (rc = 155 arcsec), and another ˜30 between 1-2 core radii. We identify four new optical counterparts, for a total of 45 likely identifications. Probable cluster members include 18 cataclysmic variables (CVs) and CV candidates, one quiescent low-mass X-ray binary, four variable stars, and five stars that are either associated with ω Cen's anomalous red giant branch, or are sub-subgiants. We estimate that the cluster contains 40 ± 10 CVs with Lx > 1031 erg s-1, confirming that CVs are underabundant in ω Cen relative to the field. Intrinsic absorption is required to fit X-ray spectra of six of the nine brightest CVs, suggesting magnetic CVs, or high-inclination systems. Though no radio millisecond pulsars (MSPs) are currently known in ω Cen, more than 30 unidentified sources have luminosities and X-ray colours like those of MSPs found in other globular clusters; these could be responsible for the Fermi-detected gamma-ray emission from the cluster. Finally, we identify a CH star as the counterpart to the second-brightest X-ray source in the cluster and argue that it is a symbiotic star. This is the first such giant/white dwarf binary to be identified in a globular cluster.

  19. Simultaneous Monitoring of X-Ray and Radio Variability in Sagittarius A*

    NASA Astrophysics Data System (ADS)

    Capellupo, Daniel M.; Haggard, Daryl; Choux, Nicolas; Baganoff, Fred; Bower, Geoffrey C.; Cotton, Bill; Degenaar, Nathalie; Dexter, Jason; Falcke, Heino; Fragile, P. Chris; Heinke, Craig O.; Law, Casey J.; Markoff, Sera; Neilsen, Joey; Ponti, Gabriele; Rea, Nanda; Yusef-Zadeh, Farhad

    2017-08-01

    Monitoring of Sagittarius A* from X-ray to radio wavelengths has revealed structured variability—including X-ray flares—but it is challenging to establish correlations between them. Most studies have focused on variability in the X-ray and infrared, where variations are often simultaneous, and because long time series at submillimeter and radio wavelengths are limited. Previous work on submillimeter and radio variability hints at a lag between X-ray flares and their candidate submillimeter or radio counterparts, with the long wavelength data lagging the X-ray. However, there is only one published time lag between an X-ray flare and a possible radio counterpart. Here we report nine contemporaneous X-ray and radio observations of Sgr A*. We detect significant radio variability peaking ≳ 176 minutes after the brightest X-ray flare ever detected from Sgr A*. We also report other potentially associated X-ray and radio variability, with the radio peaks appearing ≲ 80 minutes after these weaker X-ray flares. Taken at face value, these results suggest that stronger X-ray flares lead to longer time lags in the radio. However, we also test the possibility that the variability at X-ray and radio wavelengths is not temporally correlated. We cross-correlate data from mismatched X-ray and radio epochs and obtain comparable correlations to the matched data. Hence, we find no overall statistical evidence that X-ray flares and radio variability are correlated, underscoring a need for more simultaneous, long duration X-ray-radio monitoring of Sgr A*.

  20. Stimulated x-ray emission spectroscopy in transition metal complexes

    DOE PAGES

    Kroll, Thomas; Weninger, Clemens; Alonso-Mori, Roberto; ...

    2018-03-27

    We report the observation and analysis of the gain curve of amplified Kα X-ray emission from solutions of Mn(II) and Mn(VII) complexes using an X-ray free electron laser to create the 1s core-hole population inversion. We find spectra at amplification levels extending over four orders of magnitude until saturation. We observe bandwidths below the Mn 1s core-hole lifetime broadening in the onset of the stimulated emission. In the exponential amplification regime the resolution corrected spectral width of ~1.7 eV FWHM is constant over three orders of magnitude, pointing to the build-up of transform limited pulses of ~1fs duration. Driving the amplification into saturation leads to broadening and shift of the line. Importantly, the chemical sensitivity of the stimulated X-ray emission to the Mn oxidation state is preserved at power densities ofmore » $$\\sim10 20$$~W/cm 2 for the incoming X-ray pulses. Differences in signal sensitivity and spectral information compared to conventional (spontaneous) X-ray emission spectroscopy are discussed. Our findings build a baseline for nonlinear X-ray spectroscopy for a wide range of transition metal complexes in inorganic chemistry, catalysis and materials science.« less

Top