Sample records for variables temperature ph

  1. Water pH and temperature in Lake Biwa from MBT'/CBT indices during the last 282 000 years

    NASA Astrophysics Data System (ADS)

    Ajioka, T.; Yamamoto, M.; Takemura, K.; Hayashida, A.

    2014-03-01

    We generated a 282 000-year record of water pH and temperature in Lake Biwa, central Japan, by analysing the methylation index (MBT') and cyclisation ratio (CBT) of branched tetraethers in sediments from piston and borehole cores to understand the responses of precipitation and air temperature in central Japan to the East Asian monsoon variability on the orbital timescale. Because water pH in Lake Biwa is determined by phosphorus input driven by precipitation, the record of water pH should indicate changes in summer precipitation in central Japan. The estimated pH showed significant periodicity at 19 and 23 ka (precession) and at 41 ka (obliquity). The variation in the estimated pH agrees with variation in the pollen temperature index. This indicates synchronous variation in summer air temperature and precipitation in central Japan, which contradicts the conclusions of previous studies. The variation in estimated pH was also synchronous with the variation of oxygen isotopes in stalagmites in China, suggesting that East Asian summer monsoon precipitation was governed by Northern Hemisphere summer insolation on orbital timescales. However, the estimated winter temperatures were higher during interglacials and lower during glacials, showing an eccentricity cycle. This suggests that the temperature variation reflected winter monsoon variability.

  2. Diel Variability in Seawater pH Relates to Calcification and Benthic Community Structure on Coral Reefs

    PubMed Central

    Martz, Todd R.; Brainard, Russell E.

    2012-01-01

    Community structure and assembly are determined in part by environmental heterogeneity. While reef-building corals respond negatively to warming (i.e. bleaching events) and ocean acidification (OA), the extent of present-day natural variability in pH on shallow reefs and ecological consequences for benthic assemblages is unknown. We documented high resolution temporal patterns in temperature and pH from three reefs in the central Pacific and examined how these data relate to community development and net accretion rates of early successional benthic organisms. These reefs experienced substantial diel fluctuations in temperature (0.78°C) and pH (>0.2) similar to the magnitude of ‘warming’ and ‘acidification’ expected over the next century. Where daily pH within the benthic boundary layer failed to exceed pelagic climatological seasonal lows, net accretion was slower and fleshy, non-calcifying benthic organisms dominated space. Thus, key aspects of coral reef ecosystem structure and function are presently related to natural diurnal variability in pH. PMID:22952785

  3. Six Month In Situ High-Resolution Carbonate Chemistry and Temperature Study on a Coral Reef Flat Reveals Asynchronous pH and Temperature Anomalies.

    PubMed

    Kline, David I; Teneva, Lida; Hauri, Claudine; Schneider, Kenneth; Miard, Thomas; Chai, Aaron; Marker, Malcolm; Dunbar, Rob; Caldeira, Ken; Lazar, Boaz; Rivlin, Tanya; Mitchell, Brian Gregory; Dove, Sophie; Hoegh-Guldberg, Ove

    2015-01-01

    Understanding the temporal dynamics of present thermal and pH exposure on coral reefs is crucial for elucidating reef response to future global change. Diel ranges in temperature and carbonate chemistry parameters coupled with seasonal changes in the mean conditions define periods during the year when a reef habitat is exposed to anomalous thermal and/or pH exposure. Anomalous conditions are defined as values that exceed an empirically estimated threshold for each variable. We present a 200-day time series from June through December 2010 of carbonate chemistry and environmental parameters measured on the Heron Island reef flat. These data reveal that aragonite saturation state, pH, and pCO2 were primarily modulated by biologically-driven changes in dissolved organic carbon (DIC) and total alkalinity (TA), rather than salinity and temperature. The largest diel temperature ranges occurred in austral spring, in October (1.5 - 6.6°C) and lowest diel ranges (0.9 - 3.2°C) were observed in July, at the peak of winter. We observed large diel total pH variability, with a maximum range of 7.7 - 8.5 total pH units, with minimum diel average pH values occurring during spring and maximum during fall. As with many other reefs, the nighttime pH minima on the reef flat were far lower than pH values predicted for the open ocean by 2100. DIC and TA both increased from June (end of Fall) to December (end of Spring). Using this high-resolution dataset, we developed exposure metrics of pH and temperature individually for intensity, duration, and severity of low pH and high temperature events, as well as a combined metric. Periods of anomalous temperature and pH exposure were asynchronous on the Heron Island reef flat, which underlines the importance of understanding the dynamics of co-occurrence of multiple stressors on coastal ecosystems.

  4. Six Month In Situ High-Resolution Carbonate Chemistry and Temperature Study on a Coral Reef Flat Reveals Asynchronous pH and Temperature Anomalies

    PubMed Central

    Kline, David I.; Teneva, Lida; Hauri, Claudine; Schneider, Kenneth; Miard, Thomas; Chai, Aaron; Marker, Malcolm; Dunbar, Rob; Caldeira, Ken; Lazar, Boaz; Rivlin, Tanya; Mitchell, Brian Gregory; Dove, Sophie; Hoegh-Guldberg, Ove

    2015-01-01

    Understanding the temporal dynamics of present thermal and pH exposure on coral reefs is crucial for elucidating reef response to future global change. Diel ranges in temperature and carbonate chemistry parameters coupled with seasonal changes in the mean conditions define periods during the year when a reef habitat is exposed to anomalous thermal and/or pH exposure. Anomalous conditions are defined as values that exceed an empirically estimated threshold for each variable. We present a 200-day time series from June through December 2010 of carbonate chemistry and environmental parameters measured on the Heron Island reef flat. These data reveal that aragonite saturation state, pH, and pCO2 were primarily modulated by biologically-driven changes in dissolved organic carbon (DIC) and total alkalinity (TA), rather than salinity and temperature. The largest diel temperature ranges occurred in austral spring, in October (1.5 – 6.6°C) and lowest diel ranges (0.9 – 3.2°C) were observed in July, at the peak of winter. We observed large diel total pH variability, with a maximum range of 7.7 – 8.5 total pH units, with minimum diel average pH values occurring during spring and maximum during fall. As with many other reefs, the nighttime pH minima on the reef flat were far lower than pH values predicted for the open ocean by 2100. DIC and TA both increased from June (end of Fall) to December (end of Spring). Using this high-resolution dataset, we developed exposure metrics of pH and temperature individually for intensity, duration, and severity of low pH and high temperature events, as well as a combined metric. Periods of anomalous temperature and pH exposure were asynchronous on the Heron Island reef flat, which underlines the importance of understanding the dynamics of co-occurrence of multiple stressors on coastal ecosystems. PMID:26039687

  5. Factors affecting Archaeal Lipid Compositions of the Sulfolobus Species

    NASA Astrophysics Data System (ADS)

    He, L.; Han, J.; Wei, Y.; Lin, L.; Wei, Y.; Zhang, C.

    2010-12-01

    Temperature is the best known variable affecting the distribution of the archaeal glycerol dibiphytanyl glycerol tetraethers (GDGTs) in marine and freshwater systems. Other variables such as pH, ionic strength, or bicarbonate concentration may also affect archaeal GDGTs in terrestrial systems. Studies of pure cultures can help us pinpoint the specific effects these variables may have on archaeal lipid distribution in natural environments. In this study, three Sulfolobus species (HG4, HB5-2, HB9-6) isolated from Tengchong hot springs (pH 2-3, temperature 73-90°C) in China were used to investigate the effects of temperature, pH, substrate, and type of strain on the composition of GDGTs. Results showed that increase in temperature had negative effects on the relative contents of GDGT-0 (no cyclopentyl rings), GDGT-1 (one cyclopentyl ring), GDGT-2 and GDGT-3 but positive effects on GDGT-4, GDGT-4', GDGT-5 and GDGT-5'. Increase in pH, on the other hand, had negative effects on GDGT-0, GDGT-1, GDGT-4', GDGT-5 and GDGT-5', and positive effects on GDGT-3 and GDGT-4. GDGT-2 remained relatively constant with changing pH. When the HG4 was grown on different substrates, GDGT-5 was five time more abundant in sucrose-grown cultures than in yeast extract- or sulfur- grown cultures, suggesting that carbohydrates may stimulate the production of GDGT-5. For all three species, the ring index (average number of rings) of GDGTs correlated positively with incubation temperature. In HG4, ring index was much lower at optimal pH (3.5) than at other pH values. Ring index of HB5-2 or HB9-6 is higher than that of HG4, suggesting that speciation may affect the degree of cyclization of GDGT of the Sulfolobus. These results indicate that individual archaeal lipids respond differently to changes in environmental variables, which may be also species specific.

  6. Effect of fire-retardant treatment on plywood pH and the relationship of pH to strength properties

    Treesearch

    S. T. Lebow; J. E. Winandy

    1999-01-01

    This paper investigates the relationship between wood pH and the strength properties of fire-retardant-treated (FRT) plywood, as it is affected by fire-retardant (FR) formulations, processing variables, and extended high temperature exposure conditions. The objectives of this study were to (1) identify the effect of post-treatment kiln-drying temperature, followed by...

  7. Modulators of actin-myosin dissociation: basis for muscle type functional differences during fatigue

    PubMed Central

    Karatzaferi, Christina; Adamek, Nancy

    2017-01-01

    The muscle types present with variable fatigue tolerance, in part due to the myosin isoform expressed. However, the critical steps that define “fatigability” in vivo of fast vs. slow myosin isoforms, at the molecular level, are not yet fully understood. We examined the modulation of the ATP-induced myosin subfragment 1 (S1) dissociation from pyrene-actin by inorganic phosphate (Pi), pH, and temperature using a specially modified stopped-flow system that allowed fast kinetics measurements at physiological temperature. We contrasted the properties of rabbit psoas (fast) and bovine masseter (slow) myosins (obtained from samples collected from New Zealand rabbits and from a licensed abattoir, respectively, according to institutional and national ethics permits). To identify ATP cycling biochemical intermediates, we assessed ATP binding to a preequilibrated mixture of actomyosin and variable [ADP], pH (pH 7 vs. pH 6.2), and Pi (zero, 15, or 30 added mM Pi) in a range of temperatures (5 to 45°C). Temperature and pH variations had little, if any, effect on the ADP dissociation constant (KADP) for fast S1, but for slow S1, KADP was weakened with increasing temperature or low pH. In the absence of ADP, the dissociation constant for phosphate (KPi) was weakened with increasing temperature for fast S1. In the presence of ADP, myosin type differences were revealed at the apparent phosphate affinity, depending on pH and temperature. Overall, the newly revealed kinetic differences between myosin types could help explain the in vivo observed muscle type functional differences at rest and during fatigue. PMID:28931538

  8. Extraction of indirectly captured information for use in a comparison of offline pH measurement technologies.

    PubMed

    Ritchie, Elspeth K; Martin, Elaine B; Racher, Andy; Jaques, Colin

    2017-06-10

    Understanding the causes of discrepancies in pH readings of a sample can allow more robust pH control strategies to be implemented. It was found that 59.4% of differences between two offline pH measurement technologies for an historical dataset lay outside an expected instrument error range of ±0.02pH. A new variable, Osmo Res , was created using multiple linear regression (MLR) to extract information indirectly captured in the recorded measurements for osmolality. Principal component analysis and time series analysis were used to validate the expansion of the historical dataset with the new variable Osmo Res . MLR was used to identify variables strongly correlated (p<0.05) with differences in pH readings by the two offline pH measurement technologies. These included concentrations of specific chemicals (e.g. glucose) and Osmo Res, indicating culture medium and bolus feed additions as possible causes of discrepancies between the offline pH measurement technologies. Temperature was also identified as statistically significant. It is suggested that this was a result of differences in pH-temperature compensations employed by the pH measurement technologies. In summary, a method for extracting indirectly captured information has been demonstrated, and it has been shown that competing pH measurement technologies were not necessarily interchangeable at the desired level of control (±0.02pH). Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Response surface methodology as an approach to determine optimal activities of lipase entrapped in sol-gel matrix using different vegetable oils.

    PubMed

    Pinheiro, Rubiane C; Soares, Cleide M F; de Castro, Heizir F; Moraes, Flavio F; Zanin, Gisella M

    2008-03-01

    The conditions for maximization of the enzymatic activity of lipase entrapped in sol-gel matrix were determined for different vegetable oils using an experimental design. The effects of pH, temperature, and biocatalyst loading on lipase activity were verified using a central composite experimental design leading to a set of 13 assays and the surface response analysis. For canola oil and entrapped lipase, statistical analyses showed significant effects for pH and temperature and also the interactions between pH and temperature and temperature and biocatalyst loading. For the olive oil and entrapped lipase, it was verified that the pH was the only variable statistically significant. This study demonstrated that response surface analysis is a methodology appropriate for the maximization of the percentage of hydrolysis, as a function of pH, temperature, and lipase loading.

  10. Inactivation of Mycobacterium avium with free chlorine.

    PubMed

    Luh, Jeanne; Mariñas, Benito J

    2007-07-15

    The inactivation kinetics of Mycobacterium avium with free chlorine was characterized by two stages: an initial phase at a relatively fast rate followed by a slower second stage of pseudo first-order kinetics. The inactivation rate of each stage was approximately the same for all experiments performed at a certain condition of pH and temperature; however, variability was observed for the disinfectant exposure at which the transition between the two stages occurred. This variability was not a function of the initial disinfectant concentration, the initial bacterial density, or the bacterial stock. However, the transition to the second stage varied more significantly at high temperatures (30 degrees C), while lower variability was observed at lower temperatures (5 and 20 degrees C). Experiments conducted at pH values in the range of 6-9 revealed that the inactivation of M. avium was primarily due to hypochlorous acid, with little contribution from hypochlorite ion within this pH range. The inactivation kinetics was represented with a two-population model. The activation energies for the resulting pseudo first-order rate constants for the populations with fast and slow kinetics were 100.3 and 96.5 kJ/mol, respectively. The magnitude of these values suggested that for waters of relatively high pH and low temperatures, little inactivation of M. avium would be achieved within treatment plants, providing a seeding source for distribution systems.

  11. Scales and sources of pH and dissolved oxygen variability in a shallow, upwelling-driven ecosystem

    NASA Astrophysics Data System (ADS)

    Tanner, C. A.; Martz, T.; Levin, L. A.

    2011-12-01

    In the coastal zone extreme variability in carbonate chemistry and oxygen is driven by fluctuations in temperature, salinity, air-sea gas exchange, mixing processes, and biology. This variability appears to be magnified in upwelling-driven ecosystems where low oxygen and low pH waters intrude into shallow depths. The oxygen and carbon chemistry signal can be further confounded by highly productive ecosystems such as kelp beds where photosynthesis and respiration consume and release significant amounts of dissolved inorganic carbon and oxygen. This variability poses a challenge for scientists assessing the impacts of climate change on nearshore ecosystems. We deployed physical & biogeochemical sensors in order to observe these processes in situ. The "SeapHOx" instruments used in this study consist of a modified Honeywell Durafet° ISFET pH sensor, an Aanderra Optode Oxygen sensor, and a SBE-37 conductivity, temperature, pressure sensor. The instruments were deployed on and around the La Jolla Kelp Forest at a variety of depths. Our goals were to (a) characterize the link between pH and oxygen and identify the magnitude of pH and oxygen variability over a range of intra-annual time scales and (b) investigate spatial patterns of pH and oxygen variability associated with depth, proximity to shore, and presence of kelp. Results thus far reveal a strong relationship between oxygen and pH. Temporal variability is greatest at the semidiurnal frequency where pH (at 7 m) can range up to 0.3 units and oxygen can change 50% over 6 h. Diurnal variability is a combination of the diurnal tidal component and diel cycles of production and respiration. Event-scale dynamics associated with upwelling can maintain pH and oxygen below 7.8 units and 200 μmol kg-1, respectively, for multiple days. Frequent current reversals drive changes in the observed oxygen and pH variability. When alongshore currents are flowing southward, driven by upwelling-favorable winds, the magnitude of semidiurnal pH variability increases 5-fold relative to the magnitude of change during northward alongshore. Applying an empirically-determined alkalinity relationship, we conclude that changes in the carbonate chemistry parameters are largely driven by changes in total carbon. On small spatial scales, cross-shore differences exist in mean oxygen and pH but differences in alongshore mean oxygen and pH at a given depth appears to be negligible. Cross-shore differences can equate to a 0.05 pH unit decrease and 25 μmol kg-1 oxygen decrease over 1 km at a given depth. Strong spatial variability in pH and oxygen conditions exist over vertical gradients in the kelp forest, with mean pH at the surface (7m) being 0.2 pH units greater than at the bottom (17m) and mean oxygen being 104 μmol kg-1 greater. The observed range of pH (7.55-8.22) observed in this shallow environment during the course of a year is greater than open ocean predictions for a global mean pH reduction of 0.2-0.3 units predicted by the year 2100. These results suggest that organisms on exposed upwelling coasts may be adapted to a range of pH conditions and highlight the need for scientists to consider biological response to varying scales of pH change in order to develop more realistic predictions of the impacts of climate change for the coastal zone.

  12. Ocean circulation and biogeochemistry moderate interannual and decadal surface water pH changes in the Sargasso Sea

    USGS Publications Warehouse

    Nathalie F. Goodkin,; Bo-Shian Wang,; Chen-Feng You,; Konrad Hughen,; Prouty, Nancy G.; Bates, Nicholas; Scott Doney,

    2015-01-01

    The oceans absorb anthropogenic CO2 from the atmosphere, lowering surface ocean pH, a concern for calcifying marine organisms. The impact of ocean acidification is challenging to predict as each species appears to respond differently and because our knowledge of natural changes to ocean pH is limited in both time and space. Here we reconstruct 222 years of biennial seawater pH variability in the Sargasso Sea from a brain coral, Diploria labyrinthiformis. Using hydrographic data from the Bermuda Atlantic Time-series Study and the coral-derived pH record, we are able to differentiate pH changes due to surface temperature versus those from ocean circulation and biogeochemical changes. We find that ocean pH does not simply reflect atmospheric CO2 trends but rather that circulation/biogeochemical changes account for >90% of pH variability in the Sargasso Sea and more variability in the last century than would be predicted from anthropogenic uptake of CO2 alone.

  13. Water pH and temperature in Lake Biwa from MBT'/CBT indices during the last 280 000 years

    NASA Astrophysics Data System (ADS)

    Ajioka, T.; Yamamoto, M.; Takemura, K.; Hayashida, A.; Kitagawa, H.

    2014-10-01

    We generated a 280 000 yr record of water pH and temperature in Lake Biwa, central Japan, by analysing the methylation index (MBT') and cyclisation ratio (CBT) of branched tetraethers in sediments from piston and borehole cores. Our aim was to understand the responses of precipitation and air temperature in central Japan to the East Asian monsoon variability on orbital timescales. Because the water pH in Lake Biwa is determined by phosphorus and alkali cation inputs, the record of water pH should indicate the changes in precipitation and temperature in central Japan. Comparison with a pollen assemblage in a Lake Biwa core suggests that lake water pH was determined by summer temperature in the low-eccentricity period before 55 ka, while it was determined by summer precipitation in the high-eccentricity period after 55 ka. From 130 to 55 ka, the variation in lake pH (summer precipitation) lagged behind that in summer temperature by several thousand years. This perspective is consistent with the conclusions of previous studies (Igarashi and Oba, 2006; Yamamoto, 2009), in that the temperature variation preceded the precipitation variation in central Japan.

  14. Morphometric variability of Arctodiaptomus salinus (Copepoda) in the Mediterranean-Black Sea region.

    PubMed

    Anufriieva, Elena V; Shadrin, Nickolai V

    2015-11-18

    Inter-species variability in morphological traits creates a need to know the range of variability of characteristics in the species for taxonomic and ecological tasks. Copepoda Arctodiaptomus salinus, which inhabits water bodies across Eurasia and North Africa, plays a dominant role in plankton of different water bodies-from fresh to hypersaline. This work assesses the intra- and inter-population morphometric variability of A. salinus in the Mediterranean-Black Sea region and discusses some observed regularities. The variability of linear body parameters and proportions was studied. The impacts of salinity, temperature, and population density on morphological characteristics and their variability can manifest themselves in different ways at the intra- and inter-population levels. A significant effect of salinity, pH and temperature on the body proportions was not found. Their intra-population variability is dependent on temperature and salinity. Sexual dimorphism of A. salinus manifests in different linear parameters, proportions, and their variability. There were no effects of temperature, pH and salinity on the female/male parameter ratio. There were significant differences in the body proportions of males and females in different populations. The influence of temperature, salinity, and population density can be attributed to 80%-90% of intra-population variability of A. salinus. However, these factors can explain less than 40% of inter-population differences. Significant differences in the body proportions of males and females from different populations may suggest that some local populations of A. salinus in the Mediterranean-Black Sea region are in the initial stages of differentiation.

  15. Statistical analysis of environmental variability within the CELSS breadboard project's biomass production chamber

    NASA Technical Reports Server (NTRS)

    Stutte, G. W.; Chetirkin, P. V.; Mackowiak, C. L.; Fortson, R. E.

    1993-01-01

    Variability in the aerial and root environments of NASA's Breadboard Project's Biomass Production Chamber (BPC) was determined. Data from two lettuce and two potato growouts were utilized. One growout of each crop was conducted prior to separating the upper and lower chambers; the other was subsequent to separation. There were little or no differences in pH, EC, or solution temperature between the upper and lower chamber or within a chamber. Variation in the aerial environment within a chamber was two to three times greater than variation between chambers for air temperature, relative humidity, and PPF. High variability in air velocity, relative to tray position, was observed. Separating the BPC had no effect on PPF, air velocity, solution temperature, pH, or EC. Separation reduced the gradient in air temperature and relative humidity between the upper and lower chambers, but increased the variability within a chamber. Variation between upper and lower chambers was within 5 percent of environmental set-points and of little or no physiological significance. In contrast, the variability within a chamber limits the capability of the BPC to generate statistically reliable data from individual tray treatments at this time.

  16. Patterns in Temporal Variability of Temperature, Oxygen and pH along an Environmental Gradient in a Coral Reef

    PubMed Central

    Guadayol, Òscar; Silbiger, Nyssa J.; Donahue, Megan J.; Thomas, Florence I. M.

    2014-01-01

    Spatial and temporal environmental variability are important drivers of ecological processes at all scales. As new tools allow the in situ exploration of individual responses to fluctuations, ecologically meaningful ways of characterizing environmental variability at organism scales are needed. We investigated the fine-scale spatial heterogeneity of high-frequency temporal variability in temperature, dissolved oxygen concentration, and pH experienced by benthic organisms in a shallow coastal coral reef. We used a spatio-temporal sampling design, consisting of 21 short-term time-series located along a reef flat-to-reef slope transect, coupled to a long-term station monitoring water column changes. Spectral analyses revealed sharp gradients in variance decomposed by frequency, as well as differences between physically-driven and biologically-reactive parameters. These results highlight the importance of environmental variance at organismal scales and present a new sampling scheme for exploring this variability in situ. PMID:24416364

  17. Morphometric variability of Arctodiaptomus salinus (Copepoda) in the Mediterranean-Black Sea region

    PubMed Central

    ANUFRIIEVA, Elena V.; SHADRIN, Nickolai V.

    2015-01-01

    Inter-species variability in morphological traits creates a need to know the range of variability of characteristics in the species for taxonomic and ecological tasks. Copepoda Arctodiaptomus salinus, which inhabits water bodies across Eurasia and North Africa, plays a dominant role in plankton of different water bodies-from fresh to hypersaline. This work assesses the intra- and inter-population morphometric variability of A. salinus in the Mediterranean-Black Sea region and discusses some observed regularities. The variability of linear body parameters and proportions was studied. The impacts of salinity, temperature, and population density on morphological characteristics and their variability can manifest themselves in different ways at the intra- and inter-population levels. A significant effect of salinity, pH and temperature on the body proportions was not found. Their intra-population variability is dependent on temperature and salinity. Sexual dimorphism of A. salinus manifests in different linear parameters, proportions, and their variability. There were no effects of temperature, pH and salinity on the female/male parameter ratio. There were significant differences in the body proportions of males and females in different populations. The influence of temperature, salinity, and population density can be attributed to 80%-90% of intra-population variability of A. salinus. However, these factors can explain less than 40% of inter-population differences. Significant differences in the body proportions of males and females from different populations may suggest that some local populations of A. salinus in the Mediterranean-Black Sea region are in the initial stages of differentiation. PMID:26646569

  18. Sorption-desorption of fipronil in some soils, as influenced by ionic strength, pH and temperature.

    PubMed

    Singh, Anand; Srivastava, Anjana; Srivastava, Prakash C

    2016-08-01

    The sorption-desorpion of fipronil insecticide is influenced by soil properties and variables such as pH, ionic strength, temperature, etc. A better understanding of soil properties and these variables in sorption-desorption processes by quantification of fipronil using liquid chromatography may help to optimise suitable soil management to reduce contamination of surface and groundwaters. In the present investigation, the sorption-desorption of fipronil was studied in some soils at varying concentrations, ionic strengths, temperatures and pH values, and IR specta of fipronil sorbed onto soils were studied. The sorption of fipronil onto soils conformed to the Freundlich isotherm model. The sorption-desorption of fipronil varied with ionic strength in each of the soils. Sorption decreased but desorption increased with temperature. Sorption did not change with increasing pH, but for desorption there was no correlation. The cumulative desorption of fipronil from soil was significantly and inversely related to soil organic carbon content. IR spectra of sorbed fipronil showed the involvement of amino, nitrile, sulfone, chloro and fluoro groups and the pyrazole nucleus of the fipronil molecule. The sorption of fipronil onto soils appeared to be a physical process with the involvement of hydrogen bonding. An increase in soil organic carbon may help to reduce desorption of fipronil. High-temperature regimes are more conducive to the desorption. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  19. Continuous measurement of intra-oral pH and temperature: development, validation of an appliance and a pilot study.

    PubMed

    Choi, J E; Loke, C; Waddell, J N; Lyons, K M; Kieser, J A; Farella, M

    2015-08-01

    To describe a novel approach for continuous measurement of intra-oral pH and temperature in individuals carrying out normal daily activities over 24 h. We designed, validated and constructed a custom-made appliance fitted with a pH probe and a thermocouple. Six subjects wore the appliance over a 24-h period for two non-consecutive days, while the intra-oral pH and temperature were measured continuously and recorded. Intra-oral pH and temperature were very similar across different recording days, the difference being not statistically significant (P ≥ 0.14). There was a noticeable difference in the pattern of variation of pH between day and night. During the day, the mean pH was 7.3 (±0.4) and dropped markedly only after consumption of acidic food and drinks. The intra-oral pH decreased slowly during sleep with an average pH of 6.6 (±0.4) being recorded. The difference between day and night was statistically significant (P = 0.002). The mean intra-oral temperature was 33.9 °C (±0.9) during daytime and 35·9 °C (±0·5) during sleep (P = 0.013) with minor fluctuations occurring over 24 h. The continuous and simultaneous intra-oral pH and temperature measurement system described in this report is reliable, easy to construct, able to measure variables over a sustained period and may serve as a future diagnostic tool in a number of applications. © 2015 John Wiley & Sons Ltd.

  20. Finding stable cellulase and xylanase: evaluation of the synergistic effect of pH and temperature.

    PubMed

    Farinas, Cristiane S; Loyo, Marcel Moitas; Baraldo, Anderson; Tardioli, Paulo W; Neto, Victor Bertucci; Couri, Sonia

    2010-12-31

    Ethanol from lignocellulosic biomass has been recognized as one of the most promising alternatives for the production of renewable and sustainable energy. However, one of the major bottlenecks holding back its commercialization is the high costs of the enzymes needed for biomass conversion. In this work, we studied the enzymes produced from a selected strain of Aspergillus niger under solid state fermentation. The cellulase and xylanase enzymatic cocktail was characterized in terms of pH and temperature by using response surface methodology. Thermostability and kinetic parameters were also determined. The statistical analysis of pH and temperature effects on enzymatic activity showed a synergistic interaction of these two variables, thus enabling to find a pH and temperature range in which the enzymes have a higher activity. The results obtained allowed the construction of mathematical models used to predict endoglucanase, β-glucosidase and xylanase activities under different pH and temperature conditions. Optimum temperature values for all three enzymes were found to be in the range between 35°C and 60°C, and the optimum pH range was found between 4 and 5.5. The methodology employed here was very effective in estimating enzyme behavior under different process conditions. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Optimization of Processing Parameters for Extraction of Amylase Enzyme from Dragon (Hylocereus polyrhizus) Peel Using Response Surface Methodology

    PubMed Central

    Abdul Manap, Mohd Yazid; Zohdi, Norkhanani

    2014-01-01

    The main goal of this study was to investigate the effect of extraction conditions on the enzymatic properties of thermoacidic amylase enzyme derived from dragon peel. The studied extraction variables were the buffer-to-sample (B/S) ratio (1 : 2 to 1 : 6, w/w), temperature (−18°C to 25°), mixing time (60 to 180 seconds), and the pH of the buffer (2.0 to 8.0). The results indicate that the enzyme extraction conditions exhibited the least significant (P < 0.05) effect on temperature stability. Conversely, the extraction conditions had the most significant (P < 0.05) effect on the specific activity and pH stability. The results also reveal that the main effect of the B/S ratio, followed by its interaction with the pH of the buffer, was significant (P < 0.05) among most of the response variables studied. The optimum extraction condition caused the amylase to achieve high enzyme activity (648.4 U), specific activity (14.2 U/mg), temperature stability (88.4%), pH stability (85.2%), surfactant agent stability (87.2%), and storage stability (90.3%). PMID:25050403

  2. Investigation of pH and Temperature Profiles in the GI Tract of Fasted Human Subjects Using the Intellicap(®) System.

    PubMed

    Koziolek, Mirko; Grimm, Michael; Becker, Dieter; Iordanov, Ventzeslav; Zou, Hans; Shimizu, Jeff; Wanke, Christoph; Garbacz, Grzegorz; Weitschies, Werner

    2015-09-01

    Gastrointestinal (GI) pH and temperature profiles under fasted-state conditions were investigated in two studies with each 10 healthy human subjects using the IntelliCap(®) system. This telemetric drug delivery device enabled the determination of gastric emptying time, small bowel transit time, and colon arrival time by significant pH and temperature changes. The study results revealed high variability of GI pH and transit times. The gastric transit of IntelliCap(®) was characterized by high fluctuations of the pH with mean values ranging from pH 1.7 to pH 4.7. Gastric emptying was observed after 7-202 min (median: 30 min). During small bowel transit, which had a duration of 67-532 min (median: 247 min), pH values increased slightly from pH 5.9-6.3 in proximal parts to pH 7.4-7.8 in distal parts. Colonic pH conditions were characterized by values fluctuating mainly between pH 5 and pH 8. The pH profiles and transit times described in this work are highly relevant for the comprehension of drug delivery of solid oral dosage forms comprising ionizable drugs and excipients with pH-dependent solubility. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  3. Temperature modulates the response of the thermophilous sea urchin Arbacia lixula early life stages to CO2-driven acidification.

    PubMed

    Gianguzza, Paola; Visconti, Giulia; Gianguzza, Fabrizio; Vizzini, Salvatrice; Sarà, Gianluca; Dupont, Sam

    2014-02-01

    The increasing abundances of the thermophilous black sea urchin Arbacia lixula in the Mediterranean Sea are attributed to the Western Mediterranean warming. However, few data are available on the potential impact of this warming on A. lixula in combination with other global stressors such as ocean acidification. The aim of this study is to investigate the interactive effects of increased temperature and of decreased pH on fertilization and early development of A. lixula. This was tested using a fully crossed design with four temperatures (20, 24, 26 and 27 °C) and two pH levels (pHNBS 8.2 and 7.9). Temperature and pH had no significant effect on fertilization and larval survival (2d) for temperature <27 °C. At 27 °C, the fertilization success was very low (<1%) and all larvae died within 2d. Both temperature and pH had effects on the developmental dynamics. Temperature appeared to modulate the impact of decreasing pH on the % of larvae reaching the pluteus stage leading to a positive effect (faster growth compared to pH 8.2) of low pH at 20 °C, a neutral effect at 24 °C and a negative effect (slower growth) at 26 °C. These results highlight the importance of considering a range of temperatures covering today and the future environmental variability in any experiment aiming at studying the impact of ocean acidification. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Accelerated dissolution testing for controlled release microspheres using the flow-through dissolution apparatus.

    PubMed

    Collier, Jarrod W; Thakare, Mohan; Garner, Solomon T; Israel, Bridg'ette; Ahmed, Hisham; Granade, Saundra; Strong, Deborah L; Price, James C; Capomacchia, A C

    2009-01-01

    Theophylline controlled release capsules (THEO-24 CR) were used as a model system to evaluate accelerated dissolution tests for process and quality control and formulation development of controlled release formulations. Dissolution test acceleration was provided by increasing temperature, pH, flow rate, or adding surfactant. Electron microscope studies on the theophylline microspheres subsequent to each experiment showed that at pH values of 6.6 and 7.6 the microspheres remained intact, but at pH 8.6 they showed deterioration. As temperature was increased from 37-57 degrees C, no change in microsphere integrity was noted. Increased flow rate also showed no detrimental effect on integrity. The effect of increased temperature was determined to be the statistically significant variable.

  5. Trained sensory perception of pork eating quality as affected by fresh and cooked pork quality attributes and end-point cooked temperature.

    PubMed

    Moeller, S J; Miller, R K; Aldredge, T L; Logan, K E; Edwards, K K; Zerby, H N; Boggess, M; Box-Steffensmeier, J M; Stahl, C A

    2010-05-01

    The present study evaluated individual and interactive influences of pork loin (n=679) ultimate ph (pH), intramuscular fat (IMF), Minolta L* color (L*), Warner-Bratzler shear force (WBSF), and internal cooked temperatures (62.8 degrees C, 68.3 degrees C, 73.9 degrees C, and 79.4 degrees C) on trained sensory perception of palatability. Logistical regression analyses were used, fitting sensory responses as dependent variables and quality and cooked temperature as independent variables, testing quadratic and interactive effects. Incremental increases in cooked temperature reduced sensory juiciness and tenderness scores by 3.8% and 0.9%, respectively, but did not influence sensory flavor or saltiness scores. An increase of 4.9N in WBSF, from a base of 14.7N (lowest) to 58.8N (greatest) was associated with a 3.7% and 1.8% reduction in sensory tenderness and juiciness scores, respectively, with predicted sensory tenderness scores reduced by 3.55 units when comparing ends of the WBSF range. Modeled sensory responses for loins with pH of 5.40 and 5.60 had reduced tenderness, chewiness, and fat flavor ratings when compared with responses for loins with pH of 5.80 to 6.40, the range indicative of optimal sensory response. Loin IMF and L* were significant model effects; however, their influence on sensory attributes was small, with predicted mean sensory responses measurably improved only when comparing 6% and 1% IMF and L* values of 46.9 (dark) when compared with 65.0 (pale). Tenderness and juiciness scores, were related to a greater extent to loin WBSF and pH, and to a lesser extent to cooked temperature, IMF and L*. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  6. Response surface methodological approach for the decolorization of simulated dye effluent using Aspergillus fumigatus fresenius.

    PubMed

    Sharma, Praveen; Singh, Lakhvinder; Dilbaghi, Neeraj

    2009-01-30

    The aim of our research was to study, effect of temperature, pH and initial dye concentration on decolorization of diazo dye Acid Red 151 (AR 151) from simulated dye solution using a fungal isolate Aspergillus fumigatus fresenius have been investigated. The central composite design matrix and response surface methodology (RSM) have been applied to design the experiments to evaluate the interactive effects of three most important operating variables: temperature (25-35 degrees C), pH (4.0-7.0), and initial dye concentration (100-200 mg/L) on the biodegradation of AR 151. The total 20 experiments were conducted in the present study towards the construction of a quadratic model. Very high regression coefficient between the variables and the response (R(2)=0.9934) indicated excellent evaluation of experimental data by second-order polynomial regression model. The RSM indicated that initial dye concentration of 150 mg/L, pH 5.5 and a temperature of 30 degrees C were optimal for maximum % decolorization of AR 151 in simulated dye solution, and 84.8% decolorization of AR 151 was observed at optimum growth conditions.

  7. A spatial model for a stream networks of Citarik River with the environmental variables: potential of hydrogen (PH) and temperature

    NASA Astrophysics Data System (ADS)

    Bachrudin, A.; Mohamed, N. B.; Supian, S.; Sukono; Hidayat, Y.

    2018-03-01

    Application of existing geostatistical theory of stream networks provides a number of interesting and challenging problems. Most of statistical tools in the traditional geostatistics have been based on a Euclidean distance such as autocovariance functions, but for stream data is not permissible since it deals with a stream distance. To overcome this autocovariance developed a model based on the distance the flow with using convolution kernel approach (moving average construction). Spatial model for a stream networks is widely used to monitor environmental on a river networks. In a case study of a river in province of West Java, the objective of this paper is to analyze a capability of a predictive on two environmental variables, potential of hydrogen (PH) and temperature using ordinary kriging. Several the empirical results show: (1) The best fit of autocovariance functions for temperature and potential hydrogen (ph) of Citarik River is linear which also yields the smallest root mean squared prediction error (RMSPE), (2) the spatial correlation values between the locations on upstream and on downstream of Citarik river exhibit decreasingly

  8. Temperature Effects on Biomass and Regeneration of Vegetation in a Geothermal Area

    PubMed Central

    Nishar, Abdul; Bader, Martin K.-F.; O’Gorman, Eoin J.; Deng, Jieyu; Breen, Barbara; Leuzinger, Sebastian

    2017-01-01

    Understanding the effects of increasing temperature is central in explaining the effects of climate change on vegetation. Here, we investigate how warming affects vegetation regeneration and root biomass and if there is an interactive effect of warming with other environmental variables. We also examine if geothermal warming effects on vegetation regeneration and root biomass can be used in climate change experiments. Monitoring plots were arranged in a grid across the study area to cover a range of soil temperatures. The plots were cleared of vegetation and root-free ingrowth cores were installed to assess above and below-ground regeneration rates. Temperature sensors were buried in the plots for continued soil temperature monitoring. Soil moisture, pH, and soil chemistry of the plots were also recorded. Data were analyzed using least absolute shrinkage and selection operator and linear regression to identify the environmental variable with the greatest influence on vegetation regeneration and root biomass. There was lower root biomass and slower vegetation regeneration in high temperature plots. Soil temperature was positively correlated with soil moisture and negatively correlated with soil pH. Iron and sulfate were present in the soil in the highest quantities compared to other measured soil chemicals and had a strong positive relationship with soil temperature. Our findings suggest that soil temperature had a major impact on root biomass and vegetation regeneration. In geothermal fields, vegetation establishment and growth can be restricted by low soil moisture, low soil pH, and an imbalance in soil chemistry. The correlation between soil moisture, pH, chemistry, and plant regeneration was chiefly driven by soil temperature. Soil temperature was negatively correlated to the distance from the geothermal features. Apart from characterizing plant regeneration on geothermal soils, this study further demonstrates a novel approach to global warming experiments, which could be particularly useful in low heat flow geothermal systems that more realistically mimic soil warming. PMID:28326088

  9. Temperature Effects on Biomass and Regeneration of Vegetation in a Geothermal Area.

    PubMed

    Nishar, Abdul; Bader, Martin K-F; O'Gorman, Eoin J; Deng, Jieyu; Breen, Barbara; Leuzinger, Sebastian

    2017-01-01

    Understanding the effects of increasing temperature is central in explaining the effects of climate change on vegetation. Here, we investigate how warming affects vegetation regeneration and root biomass and if there is an interactive effect of warming with other environmental variables. We also examine if geothermal warming effects on vegetation regeneration and root biomass can be used in climate change experiments. Monitoring plots were arranged in a grid across the study area to cover a range of soil temperatures. The plots were cleared of vegetation and root-free ingrowth cores were installed to assess above and below-ground regeneration rates. Temperature sensors were buried in the plots for continued soil temperature monitoring. Soil moisture, pH, and soil chemistry of the plots were also recorded. Data were analyzed using least absolute shrinkage and selection operator and linear regression to identify the environmental variable with the greatest influence on vegetation regeneration and root biomass. There was lower root biomass and slower vegetation regeneration in high temperature plots. Soil temperature was positively correlated with soil moisture and negatively correlated with soil pH. Iron and sulfate were present in the soil in the highest quantities compared to other measured soil chemicals and had a strong positive relationship with soil temperature. Our findings suggest that soil temperature had a major impact on root biomass and vegetation regeneration. In geothermal fields, vegetation establishment and growth can be restricted by low soil moisture, low soil pH, and an imbalance in soil chemistry. The correlation between soil moisture, pH, chemistry, and plant regeneration was chiefly driven by soil temperature. Soil temperature was negatively correlated to the distance from the geothermal features. Apart from characterizing plant regeneration on geothermal soils, this study further demonstrates a novel approach to global warming experiments, which could be particularly useful in low heat flow geothermal systems that more realistically mimic soil warming.

  10. Use of aluminum sulfate (alum) to decrease ammonia emissions from beef cattle bedded manure packs

    USDA-ARS?s Scientific Manuscript database

    Confined cattle facilities are an increasingly common housing system in the Northern Great Plains of the United States. Ammonia volatilization from the surface of the floor and bedding in these confined facilities depends on several variables including pH, temperature, and moisture content. When pH ...

  11. Measuring pH variability using an experimental sensor on an underwater glider

    NASA Astrophysics Data System (ADS)

    Hemming, Michael P.; Kaiser, Jan; Heywood, Karen J.; Bakker, Dorothee C. E.; Boutin, Jacqueline; Shitashima, Kiminori; Lee, Gareth; Legge, Oliver; Onken, Reiner

    2017-05-01

    Autonomous underwater gliders offer the capability of measuring oceanic parameters continuously at high resolution in both vertical and horizontal planes, with timescales that can extend to many months. An experimental ion-sensitive field-effect transistor (ISFET) sensor measuring pH on the total scale was attached to a glider during the REP14-MED experiment in June 2014 in the Sardinian Sea in the northwestern Mediterranean. During the deployment, pH was sampled at depths of up to 1000 m along an 80 km transect over a period of 12 days. Water samples were collected from a nearby ship and analysed for dissolved inorganic carbon concentration and total alkalinity to derive the pH for validating the ISFET sensor measurements. The vertical resolution of the pH sensor was good (1 to 2 m), but stability was poor and the sensor drifted in a non-monotonous fashion. In order to remove the sensor drift, a depth-constant time-varying offset was applied throughout the water column for each dive, reducing the spread of the data by approximately two-thirds. Furthermore, the ISFET sensor required temperature- and pressure-based corrections, which were achieved using linear regression. Correcting for this decreased the apparent sensor pH variability by a further 13 to 31 %. Sunlight caused an apparent sensor pH decrease of up to 0.1 in surface waters around local noon, highlighting the importance of shielding the sensor from light in future deployments. The corrected pH from the ISFET sensor is presented along with potential temperature, salinity, potential density anomalies (σθ), and dissolved oxygen concentrations (c(O2)) measured by the glider, providing insights into the physical and biogeochemical variability in the Sardinian Sea. The pH maxima were identified close to the depth of the summer chlorophyll maximum, where high c(O2) values were also found. Longitudinal pH variations at depth (σθ > 28. 8 kg m-3) highlighted the variability of water masses in the Sardinian Sea. Higher pH was observed where salinity was > 38. 65, and lower pH was found where salinity ranged between 38.3 and 38.65. The higher pH was associated with saltier Levantine Intermediate Water, and it is possible that the lower pH was related to the remineralisation of organic matter. Furthermore, shoaling isopycnals closer to shore coinciding with low pH and c(O2), high salinity, alkalinity, dissolved inorganic carbon concentrations, and chlorophyll fluorescence waters may be indicative of upwelling.

  12. Humboldt's spa: microbial diversity is controlled by temperature in geothermal environments.

    PubMed

    Sharp, Christine E; Brady, Allyson L; Sharp, Glen H; Grasby, Stephen E; Stott, Matthew B; Dunfield, Peter F

    2014-06-01

    Over 200 years ago Alexander von Humboldt (1808) observed that plant and animal diversity peaks at tropical latitudes and decreases toward the poles, a trend he attributed to more favorable temperatures in the tropics. Studies to date suggest that this temperature-diversity gradient is weak or nonexistent for Bacteria and Archaea. To test the impacts of temperature as well as pH on bacterial and archaeal diversity, we performed pyrotag sequencing of 16S rRNA genes retrieved from 165 soil, sediment and biomat samples of 36 geothermal areas in Canada and New Zealand, covering a temperature range of 7.5-99 °C and a pH range of 1.8-9.0. This represents the widest ranges of temperature and pH yet examined in a single microbial diversity study. Species richness and diversity indices were strongly correlated to temperature, with R(2) values up to 0.62 for neutral-alkaline springs. The distributions were unimodal, with peak diversity at 24 °C and decreasing diversity at higher and lower temperature extremes. There was also a significant pH effect on diversity; however, in contrast to previous studies of soil microbial diversity, pH explained less of the variability (13-20%) than temperature in the geothermal samples. No correlation was observed between diversity values and latitude from the equator, and we therefore infer a direct temperature effect in our data set. These results demonstrate that temperature exerts a strong control on microbial diversity when considered over most of the temperature range within which life is possible.

  13. Simultaneous wireless assessment of intra-oral pH and temperature.

    PubMed

    Farella, M; Loke, C; Sander, S; Songini, A; Allen, M; Mei, L; Cannon, R D

    2016-08-01

    Intra-oral pH plays an important role in the pathogenesis of tooth erosion and decay, but there is limited information about its variation in real life settings. The aims of this research were to: 1) develop a wireless device, which can be used to continuously monitor intra-oral pH and temperature in real-time; 2) test and validate the device under controlled laboratory conditions; and 3) collect data in a natural environment in a sample of healthy volunteers. A wireless device for measuring pH and temperature simultaneously was developed, calibrated and validated against the gold standard glass electrode pH meter. A smart phone was used as data logger. The wireless device was embedded in an oral appliance and worn by eleven participants (mean age 31.1±6.9years) for 24h, while conducting standardised drinking tasks and regular daily activities. The wireless device could accurately measure pH and temperature both in vitro and in vivo. The recovery time following the swallow of a standard acidic drink varied markedly among individuals (mean=1.3±0.9min). The intra-oral pH and temperature recorded in the natural environment also showed a large inter- and intra-individual variability. The average intra-oral pH when asleep (6.7±0.5) was lower (p<0.001) than when awake (7.2±0.5). The average intra-oral temperature during sleep (35.6±0.5°C) was higher (p<0.001) than when awake (34.5±0.7°C). Intra-oral pH and temperature can be continuously and wirelessly assessed in real-life settings, and show individual-specific patterns with circadian variations. Intra-oral pH becomes slightly acidic during sleep while intra-oral temperature increases and fluctuates less. We propose a wireless device that is capable of measuring intra-oral pH over a 24-h period. We found marked inter-individual variation after acidic stimuli, and day to sleep time variation of both intra-oral temperature and pH. Our approach may provide new insight into the relationship between oral pH, tooth wear and decay. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Stream water temperature limits occupancy of salamanders in mid-Atlantic protected areas

    USGS Publications Warehouse

    Grant, Evan H. Campbell; Wiewel, Amber N. M.; Rice, Karen C.

    2014-01-01

    Stream ecosystems are particularly sensitive to urbanization, and tolerance of water-quality parameters is likely important to population persistence of stream salamanders. Forecasted climate and landscape changes may lead to significant changes in stream flow, chemical composition, and temperatures in coming decades. Protected areas where landscape alterations are minimized will therefore become increasingly important for salamander populations. We surveyed 29 streams at three national parks in the highly urbanized greater metropolitan area of Washington, DC. We investigated relationships among water-quality variables and occupancy of three species of stream salamanders (Desmognathus fuscus, Eurycea bislineata, and Pseudotriton ruber). With the use of a set of site-occupancy models, and accounting for imperfect detection, we found that stream-water temperature limits salamander occupancy. There was substantial uncertainty about the effects of the other water-quality variables, although both specific conductance (SC) and pH were included in competitive models. Our estimates of occupancy suggest that temperature, SC, and pH have some importance in structuring stream salamander distribution.

  15. Interactive effects of temperature, pH, and water activity on the growth kinetics of Shiga toxin-producing Escherichia coli O104:H4 3.

    PubMed

    Juneja, Vijay K; Mukhopadhyay, Sudarsan; Ukuku, Dike; Hwang, Cheng-An; Wu, Vivian C H; Thippareddi, Harshavardhan

    2014-05-01

    The risk of non-O157 Shiga toxin-producing Escherichia coli strains has become a growing public health concern. Several studies characterized the behavior of E. coli O157:H7; however, no reports on the influence of multiple factors on E. coli O104:H4 are available. This study examined the effects and interactions of temperature (7 to 46°C), pH (4.5 to 8.5), and water activity (aw ; 0.95 to 0.99) on the growth kinetics of E. coli O104:H4 and developed predictive models to estimate its growth potential in foods. Growth kinetics studies for each of the 23 variable combinations from a central composite design were performed. Growth data were used to obtain the lag phase duration (LPD), exponential growth rate, generation time, and maximum population density (MPD). These growth parameters as a function of temperature, pH, and aw as controlling factors were analyzed to generate second-order response surface models. The results indicate that the observed MPD was dependent on the pH, aw, and temperature of the growth medium. Increasing temperature resulted in a concomitant decrease in LPD. Regression analysis suggests that temperature, pH, and aw significantly affect the LPD, exponential growth rate, generation time, and MPD of E. coli O104:H4. A comparison between the observed values and those of E. coli O157:H7 predictions obtained by using the U. S. Department of Agriculture Pathogen Modeling Program indicated that E. coli O104:H4 grows faster than E. coli O157:H7. The developed models were validated with alfalfa and broccoli sprouts. These models will provide risk assessors and food safety managers a rapid means of estimating the likelihood that the pathogen, if present, would grow in response to the interaction of the three variables assessed.

  16. Influence of condensing equipment and temperature on exhaled breath condensate pH, total protein and leukotriene concentrations.

    PubMed

    Czebe, Krisztina; Barta, Imre; Antus, Balázs; Valyon, Márta; Horváth, Ildikó; Kullmann, Tamás

    2008-05-01

    Exhaled breath condensate analysis is an attractive but still not fully standardised method for investigating airway pathology. Adherence of biomarkers to various condensing surfaces and changes in condensing temperature has been considered to be responsible for the variability of the results. Our aims were to compare the efficacy of different types of condensers and to test the influence of condensing temperature on condensate composition. Breath condensates from 12 healthy persons were collected in two settings: (1) by using three condensers of different type (EcoScreen, R-Tube, Anacon) and (2) by using R-Tube condenser either cooled to -20 or -70 degrees C. Condensate pH at standardised CO(2) level was determined; protein content was measured by the Bradford method and leukotrienes by EIA. Breath condensates collected using EcoScreen were more alkaline (6.45+/-0.20 vs. 6.19+/-0.23, p<0.05 and 6.10+/-0.26, p<0.001) and contained more protein (3.89+/-2.03 vs. 2.65+/-1.98, n.s. and 1.88+/-1.99 microg/ml, p<0.004) as compared to the other devices. Only parameters obtained with R-Tube and Anacon correlated. Condensing temperature affected condensate pH (5.99+/-0.20 at -20 degrees C and 5.82+/-0.07 at -70 degrees C, p<0.05) but not protein content. Leukotriene B(4) was not found in any sample and cysteinyl-leukotriene was not found in condensates collected with R-Tube or Anacon. Condenser type influences sample pH, total protein content and cysteinyl-leukotriene concentration. Condensing temperature influences condensate pH but not total protein content. These results suggest that adherence of the biomarkers to condenser surface and condensing temperature may play a role but does not fully explain the variability of EBC biomarker levels.

  17. Humboldt's spa: microbial diversity is controlled by temperature in geothermal environments

    PubMed Central

    Sharp, Christine E; Brady, Allyson L; Sharp, Glen H; Grasby, Stephen E; Stott, Matthew B; Dunfield, Peter F

    2014-01-01

    Over 200 years ago Alexander von Humboldt (1808) observed that plant and animal diversity peaks at tropical latitudes and decreases toward the poles, a trend he attributed to more favorable temperatures in the tropics. Studies to date suggest that this temperature–diversity gradient is weak or nonexistent for Bacteria and Archaea. To test the impacts of temperature as well as pH on bacterial and archaeal diversity, we performed pyrotag sequencing of 16S rRNA genes retrieved from 165 soil, sediment and biomat samples of 36 geothermal areas in Canada and New Zealand, covering a temperature range of 7.5–99 °C and a pH range of 1.8–9.0. This represents the widest ranges of temperature and pH yet examined in a single microbial diversity study. Species richness and diversity indices were strongly correlated to temperature, with R2 values up to 0.62 for neutral–alkaline springs. The distributions were unimodal, with peak diversity at 24 °C and decreasing diversity at higher and lower temperature extremes. There was also a significant pH effect on diversity; however, in contrast to previous studies of soil microbial diversity, pH explained less of the variability (13–20%) than temperature in the geothermal samples. No correlation was observed between diversity values and latitude from the equator, and we therefore infer a direct temperature effect in our data set. These results demonstrate that temperature exerts a strong control on microbial diversity when considered over most of the temperature range within which life is possible. PMID:24430481

  18. The Effect of Temperature and Solution pH on the Nucleation of Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Jacobs, Randolph S.; Frazier, Tyralynn; Snell, Edward H.; Pusey, Marc L.

    1999-01-01

    Part of the challenge of macromolecular crystal growth for structure determination is obtaining crystals with a volume suitable for x-ray analysis. In this respect an understanding of the effect of solution conditions on macromolecule nucleation rates is advantageous. This study investigated the effects of supersaturation, temperature, and pH on the nucleation rate of tetragonal lysozyme crystals. Batch crystallization plates were prepared at given solution concentrations and incubated at set temperatures over 1 week. The number of crystals per well with their size and axial ratios were recorded and correlated with solution conditions. Crystal numbers were found to increase with increasing supersaturation and temperature. The most significant variable, however, was pH; crystal numbers changed by two orders of magnitude over the pH range 4.0-5.2. Crystal size also varied with solution conditions, with the largest crystals obtained at pH 5.2. Having optimized the crystallization conditions, we prepared a batch of crystals under the same initial conditions, and 50 of these crystals were analyzed by x-ray diffraction techniques. The results indicate that even under the same crystallization conditions, a marked variation in crystal properties exists.

  19. Natural red dyes extraction on roselle petals

    NASA Astrophysics Data System (ADS)

    Inggrid, H. M.; Jaka; Santoso, H.

    2016-11-01

    Roselle (Hibiscus sabdariffa L.) has a high quantity of anthocyanin pigment and is a good colorant. The anthocyanin pigment can be used as a natural colorant and antioxidant. An antioxidant is an organic compound that has the ability to inhibit free radical reactions in the human body. The objective of this research is to study the effect of pH and temperature on total anthocyanin and antioxidant activity in roselle extract, and to evaluate the effect of temperature and sunlight on the stability of the red color from roselle. Dried roselle petals were extracted with solid liquid extraction method using water as solvent. The variables in this study are temperature (5°C, 30°C, and 55°C) and pH (2, 7, and 12). Total anthocyanin was analysed using the pH differential method. The antioxidant activities were determined using the DPPH method. The highest total anthocyanin in the roselle petals was 80.4 mg/L at a temperature of 5°C and pH 2. The highest antioxidant activity and yield content in the roselle were 90.4% and 71.6 % respectively, obtained at 55°C and pH 2.

  20. Analysis of the spatio-temporal variability of seawater quality in the southeastern Arabian Gulf.

    PubMed

    Mezhoud, Nahla; Temimi, Marouane; Zhao, Jun; Al Shehhi, Maryam Rashed; Ghedira, Hosni

    2016-05-15

    In this study, seawater quality measurements, including salinity, sea surface temperature (SST), chlorophyll-a (Chl-a), Secchi disk depth (SDD), pH, and dissolved oxygen (DO), were made from June 2013 to November 2014 at 52 stations in the southeastern Arabian Gulf. Significant variability was noticed for all collected parameters. Salinity showed a decreasing trend, and Chl-a, DO, pH, and SDD demonstrated increasing trends from shallow onshore stations to deep offshore ones, which could be attributed to variations of ocean circulation and meteorological conditions from onshore to offshore waters, and the likely effects of desalination plants along the coast. Salinity and temperature were high in summer and low in winter while Chl-a, SDD, pH, and DO indicated an opposite trend. The CTD profiles showed vertically well-mixed structures. Qualitative analysis of phytoplankton showed a high diversity of species without anomalous species found except in Ras Al Khaimah stations where diatoms were the dominating ones. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. A Pathway-based Approach to Predicting Interactions between Chemical and Non-chemical Stressors: Applications to Global Climate Change

    EPA Science Inventory

    A variety of environmental variables influenced by global climate change (GCC) can directly or indirectly affect the health of organisms. These variables may include temperature, salinity, pH, and penetration of ultraviolet radiation (UVR) in aquatic environments, and water shor...

  2. Bayesian belief network modelling of chlorine disinfection for human pathogenic viruses in municipal wastewater.

    PubMed

    Carvajal, Guido; Roser, David J; Sisson, Scott A; Keegan, Alexandra; Khan, Stuart J

    2017-02-01

    Chlorine disinfection of biologically treated wastewater is practiced in many locations prior to environmental discharge or beneficial reuse. The effectiveness of chlorine disinfection processes may be influenced by several factors, such as pH, temperature, ionic strength, organic carbon concentration, and suspended solids. We investigated the use of Bayesian multilayer perceptron (BMLP) models as efficient and practical tools for compiling and analysing free chlorine and monochloramine virus disinfection performance as a multivariate problem. Corresponding to their relative susceptibility, Adenovirus 2 was used to assess disinfection by monochloramine and Coxsackievirus B5 was used for free chlorine. A BMLP model was constructed to relate key disinfection conditions (CT, pH, turbidity) to observed Log Reduction Values (LRVs) for these viruses at constant temperature. The models proved to be valuable for incorporating uncertainty in the chlor(am)ination performance estimation and interpolating between operating conditions. Various types of queries could be performed with this model including the identification of target CT for a particular combination of LRV, pH and turbidity. Similarly, it was possible to derive achievable LRVs for combinations of CT, pH and turbidity. These queries yielded probability density functions for the target variable reflecting the uncertainty in the model parameters and variability of the input variables. The disinfection efficacy was greatly impacted by pH and to a lesser extent by turbidity for both types of disinfections. Non-linear relationships were observed between pH and target CT, and turbidity and target CT, with compound effects on target CT also evidenced. This work demonstrated that the use of BMLP models had considerable ability to improve the resolution and understanding of the multivariate relationships between operational parameters and disinfection outcomes for wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Advanced Biotelemetry Systems for Space Life Sciences: PH Telemetry

    NASA Technical Reports Server (NTRS)

    Hines, John W.; Somps, Chris; Ricks, Robert; Kim, Lynn; Connolly, John P. (Technical Monitor)

    1995-01-01

    The SENSORS 2000! (S2K!) program at NASA's Ames Research Center is currently developing a biotelemetry system for monitoring pH and temperature in unrestrained subjects. This activity is part of a broader scope effort to provide an Advanced Biotelemetry System (ABTS) for use in future space life sciences research. Many anticipated research endeavors will require biomedical and biochemical sensors and related instrumentation to make continuous inflight measurements in a variable-gravity environment. Since crew time is limited, automated data acquisition, data processing, data storage, and subject health monitoring are required. An automated biochemical and physiological data acquisition system based on non invasive or implantable biotelemetry technology will meet these requirements. The ABTS will ultimately acquire a variety of physiological measurands including temperature, biopotentials (e.g. ECG, EEG, EMG, EOG), blood pressure, flow and dimensions, as well as chemical and biological parameters including pH. Development activities are planned in evolutionary, leveraged steps. Near-term activities include 1) development of a dual channel pH/temperature telemetry system, and 2) development of a low bandwidth, 4-channel telemetry system, that measures temperature, heart rate, pressure, and pH. This abstract describes the pH/temperature telemeter.

  4. Variability of breath condensate pH may contribute to the better understanding of non-allergic seasonal respiratory diseases

    NASA Astrophysics Data System (ADS)

    Kullmann, Tamás; Szipőcs, Annamária

    2017-09-01

    The seasonal variability of certain non-allergic respiratory diseases is not clearly understood. Analysis of the breath condensate, the liquid that can be collected by breathing into a cold tube, has been proposed to bring closer to the understanding of airway pathologies. It has been assumed, that (1) airway lining fluid was a stable body liquid and (2) the breath condensate samples were representative of the airway lining fluid. Research was focussed on the identification of biomarkers indicative of respiratory pathologies. Despite 30 years of extended investigations breath condensate analysis has not gained any clinical implementation so far. The pH of the condensate is the characteristic that can be determined with the highest reproducibility. The present paper shows, that contrary to the initial assumptions, breath condensate is not a representative of the airway lining fluid, and the airway lining fluid is not a stable body liquid. Condensate pH shows baseline variability and it is influenced by drinking and by the ambient temperature. The changes in condensate pH are linked to changes in airway lining fluid pH. The variability of airway lining fluid pH may explain seasonal incidence of certain non-allergic respiratory diseases such as the catching of a common cold and the increased incidence of COPD exacerbations and exercise-induced bronchoconstriction in cold periods.

  5. Respiratory alkalosis and primary hypocapnia in Labrador Retrievers participating in field trials in high-ambient-temperature conditions.

    PubMed

    Steiss, Janet E; Wright, James C

    2008-10-01

    To determine whether Labrador Retrievers participating in field trials develop respiratory alkalosis and hypocapnia primarily in conditions of high ambient temperatures. 16 Labrador Retrievers. At each of 5 field trials, 5 to 10 dogs were monitored during a test (retrieval of birds over a variable distance on land [1,076 to 2,200 m]; 36 assessments); ambient temperatures ranged from 2.2 degrees to 29.4 degrees C. For each dog, rectal temperature was measured and a venous blood sample was collected in a heparinized syringe within 5 minutes of test completion. Blood samples were analyzed on site for Hct; pH; sodium, potassium, ionized calcium, glucose, lactate, bicarbonate, and total CO2 concentrations; and values of PvO2 and PvCO2. Scatterplots of each variable versus ambient temperature were reviewed. Regression analysis was used to evaluate the effect of ambient temperature (< or = 21 degrees C and > 21 degrees C) on each variable. Compared with findings at ambient temperatures < or = 21 degrees C, venous blood pH was increased (mean, 7.521 vs 7.349) and PvCO2 was decreased (mean, 17.8 vs 29.3 mm Hg) at temperatures > 21 degrees C; rectal temperature did not differ. Two dogs developed signs of heat stress in 1 test at an ambient temperature of 29 degrees C; their rectal temperatures were higher and PvCO2 values were lower than findings in other dogs. When running distances frequently encountered at field trials, healthy Labrador Retrievers developed hyperthermia regardless of ambient temperature. Dogs developed respiratory alkalosis and hypocapnia at ambient temperatures > 21 degrees C.

  6. Hazard evaluation of ten organophosphorous insecticides against the midge, Chironomus riparius via QSAR

    USGS Publications Warehouse

    Landrum, Peter F.; Fisher, Susan W.; Hwang, Haejo; Hickey, James P.

    1999-01-01

    Toxicities of ten organophosphorus (OP) insecticides were measured against midge larvae (Chironomus riparius) under varying temperature (11, 18, and 25°C) and pH (6, 7, and 8) conditions and with and without sediment. Toxicity usually increased with increasing temperature and was greater in the absence of sediment. No trend was found with varying pH. A series of unidimensional parameters and multidimensional models were used to describe the changes in toxicity. Log Kow was able to explain about 40–60% of the variability in response data for aqueous exposures while molecular volume and aqueous solubility were less predictive. Likewise, the linear solvation energy relationship (LSER) model only explained 40–70% of the response variability, suggesting that factors other than solubility were most important for producing the observed response. Molecular connectivity was the most useful for describing the variability in the response. In the absence of sediment, 1χv and 3κ were best able to describe the variation in response among all compounds at each pH (70–90%). In the presence of sediment, even molecular connectivity could not describe the variability until the partitioning potential to sediment was accounted for by assuming equilibrium partitioning. After correcting for partitioning, the same molecular connectivity terms as in the aqueous exposures described most of the variability, 61–87%, except for the 11°C data where correlations were not significant. Molecular connectivity was a better tool than LSER or the unidimensional variables to explain the steric fitness of OP insecticides which was crucial to the toxicity.

  7. The Effect of Temperature and Solution pH on Tetragonal Lysozyme Nucleation Kinetics

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Jacobs, Randolph S.; Frazier, Tyralynn; Snell, Edward H.; Pusey, Marc L.

    1998-01-01

    Part of the challenge of macromolecular crystal growth for structure determination is obtaining an appropriate number of crystals with a crystal volume suitable for x-ray analysis. In this respect an understanding of the effect of solution conditions on macromolecule nucleation rates is advantageous. This study investigated the effects of supersaturation, temperature and pH on the nucleation rate of tetragonal lysozyme crystals. Batch crystallization plates were prepared at given solution concentrations and incubated at set temperatures over one week. The number of crystals per well with their size and axial ratios were recorded and correlated with solution conditions, Duplicate experiments indicate the reproducibility of the technique, Crystal numbers were found to increase with increasing supersaturation and temperature. The most significant variable however, was pH, where crystal numbers changed by two orders of magnitude over the pH range 4.0 to 5.2. Crystal size varied also with solution conditions, with the largest crystals being obtained at pH 5.2. Having optimized the crystallization conditions, a batch of crystals were prepared under exactly the same conditions and fifty of these crystals were analyzed by x-ray techniques. The results indicate that even under the same crystallization conditions, a marked variation in crystal properties exists.

  8. Multiple environmental factors regulate the expression of the carbohydrate-selective OprB porin of Pseudomonas aeruginosa.

    PubMed

    Adewoye, L O; Worobec, E A

    1999-12-01

    In response to low extracellular glucose concentration, Pseudomonas aeruginosa induces the expression of the outer membrane carbohydrate-selective OprB porin. The promoter region of the oprB gene was cloned into a lacZ transcriptional fusion vector, and the construct was mobilized into P. aeruginosa OprB-deficient strain, WW100, to evaluate additional environmental factors that influence OprB porin gene expression. Growth temperature, pH of the growth medium, salicylate concentration, and carbohydrate source were found to differentially influence porin expression. This expression pattern was compared to those of whole-cell [14C]glucose uptake under conditions of high osmolarity, ionicity, variable pH, growth temperatures, and carbohydrate source. These studies revealed that the high-affinity glucose transport genes are down-regulated by salicylic acid, differentially regulated by pH and temperature, and are specifically responsive to exogenous glucose induction.

  9. Intra-shell boron isotope ratios in the symbiont-bearing benthic foraminiferan Amphistegina lobifera: Implications for δ 11B vital effects and paleo-pH reconstructions

    NASA Astrophysics Data System (ADS)

    Rollion-Bard, C.; Erez, J.

    2010-03-01

    The boron isotope composition of marine carbonates is considered to be a seawater pH proxy. Nevertheless, the use of δ 11B has some limitations such as the knowledge of the fractionation factor ( α4-3) between boric acid and the borate ion and the amplitude of "vital effects" on this proxy that are not well constrained. Using secondary ion mass spectrometry (SIMS) we have examined the internal variability of the boron isotope ratio in the shallow water, symbionts bearing foraminiferan Amphistegina lobifera. Specimens were cultured at constant temperature (24 ± 0.1 °C) in seawater with pH ranging between 7.90 and 8.45. Intra-shell boron isotopes showed large variability with an upper limit value of ≈30‰. Our results suggest that the fractionation factor α4-3 of 0.97352 ( Klochko et al., 2006) is in better agreement with our experiments and with direct pH measurements in seawater vacuoles associated with the biomineralization process in these foraminifera. Despite the large variability of the skeletal pH values in each cultured specimen, it is possible to link the lowest calculated pH values to the experimental culture pH values while the upper pH limit is slightly below 9. This variability can be interpreted as follows: foraminifera variably increase the pH at the biomineralization site to about 9. This increase above ambient seawater pH leads to a range in δ 11B (Δ 11B) for each seawater pH. This Δ 11B is linearly correlated with the culture seawater pH with a slope of -13.1 per pH unit, and is independent of the fractionation factor α4-3, or the δ 11B sw through time. It may also be independent of the p KB (the dissociation constant of boric acid) value. Therefore, Δ 11B in foraminifera can potentially reconstruct paleo-pH of seawater.

  10. Factors regulating nitrification in aquatic sediments: Effects of organic carbon, nitrogen availability, and pH

    USGS Publications Warehouse

    Strauss, E.A.; Mitchell, N.L.; Lamberti, G.A.

    2002-01-01

    We investigated the response in nitrification to organic carbon (C) availability, the interactive effects of the C: nitrogen (N) ratio and organic N availability, and differing pH in sediments from several streams in the upper midwestern United States. In addition, we surveyed 36 streams to assess variability in sediment nitrification rates. Labile dissolved organic carbon (DOC) additions of 30 mg C??L-1 (as acetate) to stream sediments reduced nitrification rates (P < 0.003), but lower concentration additions or dilution of ambient DOC concentration had no effect on nitrification. C:N and organic N availability strongly interacted to affect nitrification (P < 0.0001), with N availability increasing nitrification most at lower C:N. Nitrification was also strongly influenced by pH (P < 0.002), with maximum rates occurring at pH 7.5. A multiple regression model developed from the stream survey consisted of five variables (stream temperature, pH, conductivity, DOC concentration, and total extractable NH4+) and explained 60% of the variation observed in nitrification. Our results suggest that nitrification is regulated by several variables, with NH4+ availability and pH being the most important. Organic C is likely important at regulating nitrification only under high environmental C:N conditions and if most available C is relatively labile.

  11. Stability of Secondary and Tertiary Structures of Virus-Like Particles Representing Noroviruses: Effects of pH, Ionic Strength, and Temperature and Implications for Adhesion to Surfaces.

    PubMed

    Samandoulgou, Idrissa; Hammami, Riadh; Morales Rayas, Rocio; Fliss, Ismail; Jean, Julie

    2015-11-01

    Loss of ordered molecular structure in proteins is known to increase their adhesion to surfaces. The aim of this work was to study the stability of norovirus secondary and tertiary structures and its implications for viral adhesion to fresh foods and agrifood surfaces. The pH, ionic strength, and temperature conditions studied correspond to those prevalent in the principal vehicles of viral transmission (vomit and feces) and in the food processing and handling environment (pasteurization and refrigeration). The structures of virus-like particles representing GI.1, GII.4, and feline calicivirus (FCV) were studied using circular dichroism and intrinsic UV fluorescence. The particles were remarkably stable under most of the conditions. However, heating to 65°C caused losses of β-strand structure, notably in GI.1 and FCV, while at 75°C the α-helix content of GII.4 and FCV decreased and tertiary structures unfolded in all three cases. Combining temperature with pH or ionic strength caused variable losses of structure depending on the particle type. Regardless of pH, heating to pasteurization temperatures or higher would be required to increase GII.4 and FCV adhesion, while either low or high temperatures would favor GI.1 adhesion. Regardless of temperature, increased ionic strength would increase GII.4 adhesion but would decrease GI.1 adhesion. FCV adsorption would be greater at refrigeration, pasteurization, or high temperature combined with a low salt concentration or at a higher NaCl concentration regardless of temperature. Norovirus adhesion mediated by hydrophobic interaction may depend on hydrophobic residues normally exposed on the capsid surface at pH 3, pH 8, physiological ionic strength, and low temperature, while at pasteurization temperatures it may rely more on buried hydrophobic residues exposed upon structural rearrangement. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Incubation temperature effects on physical characteristics of normal, dark, firm and dry, and halothane-carrier pork longissimus.

    PubMed

    McCaw, J; Ellis, M; Brewer, M S; McKeith, F K

    1997-06-01

    Pigs (n = 18) were selected to represent three different muscle conditions (six pigs per condition): normal: dark, firm, and dry; and halothane carrier. A 45-cm-long longissimus section was excised from each side of the carcass at 30 min postmortem and cut into six sections. Right side sections were assigned to the intermediate temperature incubation (23 degrees C), and left side sections were designated high temperature incubation (40 degrees C). Sections were randomly assigned to incubation times (0, 1, 2, 4, 6, or 8 h). The 0 h section from each incubation treatment was designated as a control and was placed directly into a 4 degree C cooler. Temperature and pH were evaluated on the control section and for each loin section a the end of the incubation time. Color (L*, a*, and b* values), percentage of purge loss, water-holding capacity, and drip loss were determined. Incubation treatment did not alter pH decline in dark, firm, and dry muscle; however, high temperature increased pH decline in normal and halothane carrier samples. Results suggest that there is a strong interaction between pH and temperature that affects pork quality attributes. High incubation temperature had a negative effect on most quality variables; however, muscle condition (normal or halothane carrier) had limited effects on muscle quality.

  13. Variability in daily pH scales with coral reef accretion and community structure

    NASA Astrophysics Data System (ADS)

    Price, N.; Martz, T.; Brainard, R. E.; Smith, J.

    2011-12-01

    Little is known about natural variability in pH in coastal waters and how resident organisms respond to current nearshore seawater conditions. We used autonomous sensors (SeaFETs) to record temperature and, for the first time, pH with high temporal (hourly observations; 7 months of sampling) resolution on the reef benthos (5-10m depth) at several islands (Kingman, Palmyra and Jarvis) within the newly designated Pacific Remote Island Areas Marine National Monument (PRIMNM) in the northern Line Islands; these islands are uninhabited and lack potentially confounding local impacts (e.g. pollution and overfishing). Recorded benthic pH values were compared with regional means and minimum thresholds based on seasonal amplitude estimated from surrounding open-ocean climatological data, which represent seawater chemistry values in the absence of feedback from the reef. Each SeaFET sensor was co-located with replicate Calcification/Acidification Units (CAUs) designed to quantify species abundances and net community calcification rates so we could determine which, if any, metrics of natural variability in benthic pH and temperature were related to community development and reef accretion rates. The observed range in daily pH encompassed maximums reported from the last century (8.104 in the early evening) to minimums approaching projected levels within the next 100 yrs (7.824 at dawn) for pelagic waters. Net reef calcification rates, measured as calcium carbonate accretion on CAUs, varied within and among islands and were comparable with rates measured from the Pacific and Caribbean using chemistry-based approaches. Benthic species assemblages on the CAUs were differentiated by the presence of calcifying and fleshy taxa (CAP analysis, mean allocation success 80%, δ2 = 0.886, P = <0.001). In general, accretion rates were higher at sites that had a greater number of hours at high pH values each day. Where daily pH failed to exceed climatological seasonal minimum thresholds, net accretion was slower and fleshy, non-calcifying benthic organisms dominated. Natural variation in benthic pH offers a unique opportunity to study ecological consequences of likely future ocean chemistry.

  14. Intra-Shell boron isotope ratios in benthic foraminifera: Implications for paleo-pH reconstructions

    NASA Astrophysics Data System (ADS)

    Rollion-Bard, C.; Erez, J.

    2009-12-01

    The boron isotope composition of marine carbonates is considered to be a seawater pH proxy. Nevertheless, the use of δ11B has some limitations: 1) the knowledge of fractionation factor (α4-3) between the two boron dissolved species (boric acid and borate ion), 2) the δ11B of seawater may have varied with time and 3) the amplitude of the "vital effects" of this proxy. Using secondary ion mass spectrometry (SIMS), we looked at the internal variability in the boron isotope ratio of the shallow water, symbionts bearing foraminiferan Amphistegina lobifera. Specimens were cultured at constant temperature (24±0.1 °C) in seawater with pH ranging between 7.90 and 8.45. We performed 6 to 8 measurements of δ11B in each foraminifera. Intra-shell boron isotopes show large variability with an upper threshold value of pH ~ 9. The ranges of the skeletal calculated pH values in different cultured foraminifera, show strong correlation with the culture pH values and may thus serve as proxy for pH in the past ocean.

  15. Optimization of furfural and 5-hydroxymethylfurfural production from wheat straw by a microwave-assisted process.

    PubMed

    Yemiş, Oktay; Mazza, Giuseppe

    2012-04-01

    Optimization of acid-catalyzed conversion conditions of wheat straw into furfural, 5-hydroxymethylfurfural (HMF), glucose, and xylose was studied by response surface methodology (RSM). A central composite design (CCD) was used to determine the effects of independent variables, including reaction temperature (140-200 °C), residence time (1-41 min), pH (0.1-2.1), and liquid:solid ratio (15-195 mL/g) on furan and sugar production. The surface response analysis revealed that temperature, time and pH had a strong influence on the furfural, HMF, xylose and glucose yield, whereas liquid to solid ratio was found not to be significant. The initial pH of solution was the most important variable in acid-catalyzed conversion of wheat straw to furans. The maximum predicted furfural, HMF, xylose and glucose yields were 66%, 3.4%, 100%, and 65%, respectively. This study demonstrated that the microwave-assisted process was a very effective method for the xylose production from wheat straw by diluted acid catalysis. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  16. Effects of process variables on the yield stress of rheologically modified biomass

    Treesearch

    Joseph R. Samaniuk; C Tim Scott; Thatcher W. Root; Daniel J. Klingenberg

    2015-01-01

    Additives that alter the rheology of lignocellulosic biomass suspensions were tested under conditions of variable pH, temperature, and solid concentration. The effects of certain ions, biomass type, after the addition of rheological modifier were also examined. Torque and vane rheometry were used to measure the yield stress of samples. It was found that the...

  17. Evaluating Spatial Heterogeneity and Environmental Variability Inferred from Branched Glycerol Dialkyl Glycerol Tetraethers (GDGTs) Distribution in Soils from Valles Caldera, New Mexic

    NASA Astrophysics Data System (ADS)

    Contreras Quintana, S. H.; Werne, J. P.; Brown, E. T.; Halbur, J.; Sinninghe Damsté, , J.; Schouten, S.; Correa-Metrio, A.; Fawcett, P. J.

    2014-12-01

    Branched glycerol dialkyl glycerol tetraethers (GDGTs) are recently discovered bacterial membrane lipids, ubiquitously present in peat bogs and soils, as well as in rivers, lakes and lake sediments. Their distribution appears to be controlled mainly by soil pH and annual mean air temperature (MAT) and they have been increasingly used as paleoclimate proxies in sedimentary records. In order to validate their application as paleoclimate proxies, it is essential evaluate the influence of small scale environmental variability on their distribution. Initial application of the original soil-based branched GDGT distribution proxy to lacustrine sediments from Valles Caldera, New Mexico (NM) was promising, producing a viable temperature record spanning two glacial/interglacial cycles. In this study, we assess the influence of analytical and spatial soil heterogeneity on the concentration and distribution of 9 branched GDGTs in soils from Valles Caldera, and show how this variability is propagated to MAT and pH estimates using multiple soil-based branched GDGT transfer functions. Our results show that significant differences in the abundance and distribution of branched GDGTs in soil can be observed even within a small area such as Valles Caldera. Although the original MBT-CBT calibration appears to give robust MAT estimates and the newest calibration provides pH estimates in better agreement with modern local soils in Valles Caldera, the environmental heterogeneity (e.g. vegetation type and soil moisture) appears to affect the precision of MAT and pH estimates. Furthermore, the heterogeneity of soils leads to significant variability among samples taken even from within a square meter. While such soil heterogeneity is not unknown (and is typically controlled for by combining multiple samples), this study quantifies heterogeneity relative to branched GDGT-based proxies for the first time, indicating that care must be taken with samples from heterogeneous soils in MAT and pH reconstructions.

  18. Identification of lipolytic enzymes isolated from bacteria indigenous to Eucalyptus wood species for application in the pulping industry.

    PubMed

    Ramnath, L; Sithole, B; Govinden, R

    2017-09-01

    This study highlights the importance of determining substrate specificity at variable experimental conditions. Lipases and esterases were isolated from microorganisms cultivated from Eucalyptus wood species and then concentrated (cellulases removed) and characterized. Phenol red agar plates supplemented with 1% olive oil or tributyrin was ascertained to be the most favourable method of screening for lipolytic activity. Lipolytic activity of the various enzymes were highest at 45-61 U/ml at the optimum temperature and pH of between at 30-35 °C and pH 4-5, respectively. Change in pH influenced the substrate specificity of the enzymes tested. The majority of enzymes tested displayed a propensity for longer aliphatic acyl chains such as dodecanoate (C 12 ), myristate (C 14 ), palmitate (C 16 ) and stearate (C 18 ) indicating that they could be characterised as potential lipases. Prospective esterases were also detected with specificity towards acetate (C 2 ), butyrate (C 4 ) and valerate (C 5 ). Enzymes maintained up to 95% activity at the optimal pH and temperature for 2-3 h. It is essential to test substrates at various pH and temperature when determining optimum activity of lipolytic enzymes, a method rarely employed. The stability of the enzymes at acidic pH and moderate temperatures makes them excellent candidates for application in the treatment of pitch during acid bi-sulphite pulping, which would greatly benefit the pulp and paper industry.

  19. Spatial variability of surface-sediment porewater pH and related water-column characteristics in deep waters of the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Shao, Changgao; Sui, Yi; Tang, Danling; Legendre, Louis

    2016-12-01

    This study analyzes the pH of surface-sediment porewater (i.e. 2-3 cm below the water-sediment interface), and concentrations of CaCO3 and organic carbon (OC) in 1192 sediment cores from the northern South China Sea, in water depths ranging from 137 to 3702 m. This is the first study in the literature to analyze the large-scale spatial variability of deep-water surface-sediment pH over a large ocean basin. The data showed strong spatial variations in pH. The lowest pH values (<7.3) were observed south of Hainan Island, an area that is affected by summer upwelling and freshwater runoff from the Pearl and Red Rivers. Moderately low pH values (generally 7.3-7.5) occurred in two other areas: a submarine canyon, where sediments originated partly from the Pearl River and correspond to a paleo-delta front during the last glacial period; and southwest of Taiwan Island, where waters are affected by the northern branch of the Kuroshio intrusion current (KIC) and runoff from Taiwan rivers. The surface sediments with the highest pH (⩾7.5, and up to 8.3) were located in a fourth area, which corresponded to the western branch of the KIC where sediments have been intensively eroded by bottom currents. The pH of surface-sediment porewater was significantly linearly related to water depth, bottom-water temperature, and CaCO3 concentration (p < 0.05 for the whole sampling area). This study shows that the pH of surface-sediment porewater can be sensitive to characteristics of the overlying water column, and suggests that it will respond to global warming as changes in surface-ocean temperature and pH progressively reach deeper waters.

  20. Optimization of process variables for decolorization of Disperse Yellow 211 by Bacillus subtilis using Box-Behnken design.

    PubMed

    Sharma, Praveen; Singh, Lakhvinder; Dilbaghi, Neeraj

    2009-05-30

    Decolorization of textile azo dye Disperse Yellow 211 (DY 211) was carried out from simulated aqueous solution by bacterial strain Bacillus subtilis. Response surface methodology (RSM), involving Box-Behnken design matrix in three most important operating variables; temperature, pH and initial dye concentration was successfully employed for the study and optimization of decolorization process. The total 17 experiments were conducted in the study towards the construction of a quadratic model. According to analysis of variance (ANOVA) results, the proposed model can be used to navigate the design space. Under optimized conditions the bacterial strain was able to decolorize DY 211 up to 80%. Model indicated that initial dye concentration of 100 mgl(-1), pH 7 and a temperature of 32.5 degrees C were found optimum for maximum % decolorization. Very high regression coefficient between the variables and the response (R(2)=0.9930) indicated excellent evaluation of experimental data by polynomial regression model. The combination of the three variables predicted through RSM was confirmed through confirmatory experiments, hence the bacterial strain holds a great potential for the treatment of colored textile effluents.

  1. Chlorite, Biotite, Illite, Muscovite, and Feldspar Dissolution Kinetics at Variable pH and Temperatures up to 280 C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, S.; Smith, M.; Lammers, K.

    2016-10-05

    Summary Sheet silicates and clays are ubiquitous in geothermal environments. Their dissolution is of interest because this process contributes to scaling reactions along fluid pathways and alteration of fracture surfaces, which could affect reservoir permeability. In order to better predict the geochemical impacts on long-term performance of engineered geothermal systems, we have measured chlorite, biotite, illite, and muscovite dissolution and developed generalized kinetic rate laws that are applicable over an expanded range of solution pH and temperature for each mineral. This report summarizes the rate equations for layered silicates where data were lacking for geothermal systems.

  2. Optimization of tannase production by a novel Klebsiella pneumoniae KP715242 using central composite design.

    PubMed

    Kumar, Mukesh; Rana, Shiny; Beniwal, Vikas; Salar, Raj Kumar

    2015-09-01

    A novel tannase producing bacterial strain was isolated from rhizospheric soil of Acacia species and identified as Klebsiella pneumoniae KP715242. A 3.25-fold increase in tannase production was achieved upon optimization with central composite design using response surface methodology. Four variables namely pH, temperature, incubation period, and agitation speed were used to optimize significant correlation between the effects of these variables on tannase production. A second-order polynomial was fitted to data and validated by ANOVA. The results showed a complex relationship between variables and response given that all factors were significant and could explain 99.6% of the total variation. The maximum production was obtained at 5.2 pH, 34.97 °C temperature, 103.34 rpm agitation speed and 91.34 h of incubation time. The experimental values were in good agreement with the predicted ones and the models were highly significant with a correlation coefficient ( R 2 ) of 0.99 and a highly significant F-value of 319.37.

  3. Exploring the reversibility of marine climate change impacts in temperature overshoot scenarios

    NASA Astrophysics Data System (ADS)

    Zickfeld, K.; Li, X.; Tokarska, K.; Kohfeld, K. E.

    2017-12-01

    Artificial carbon dioxide removal (CDR) from the atmosphere has been proposed as a measure for mitigating climate change and restoring the climate system to a `safe' state after overshoot. Previous studies have demonstrated that the changes in surface air temperature due to anthropogenic CO2 emissions can be reversed through CDR, while some oceanic properties, for example thermosteric sea level rise, show a delay in their response to CDR. This research aims to investigate the reversibility of changes in ocean conditions after implementation of CDR with a focus on ocean biogeochemical properties. To achieve this, we analyze climate model simulations based on two sets of emission scenarios. We first use RCP2.6 and its extension until year 2300 as the reference scenario and design several temperature and cumulative CO2 emissions "overshoot" scenarios based on other RCPs, which represents cases with less ambitious mitigation policies in the near term that temporarily exceed the 2 °C target adopted by the Paris Agreement. In addition, we use a set of emission scenarios with a reference scenario limiting warming to 1.5°C in the long term and two overshoot scenarios. The University of Victoria Earth System Climate Model (UVic ESCM), a climate model of intermediate complexity, is forced with these emission scenarios. We compare the response of select ocean variables (seawater temperature, pH, dissolved oxygen) in the overshoot scenarios to that in the respective reference scenario at the time the same amount of cumulative emissions is achieved. Our results suggest that the overshoot and subsequent return to a reference CO2 cumulative emissions level would leave substantial impacts on the marine environment. Although the changes in global mean sea surface variables (temperature, pH and dissolved oxygen) are largely reversible, global mean ocean temperature, dissolved oxygen and pH differ significantly from those in the reference scenario. Large ocean areas exhibit temperature increase and pH and dissolved oxygen decrease relative to the reference scenario without cumulative CO2 emissions overshoot. Furthermore, our results show that the higher the level of overshoot, the lower the reversibility of changes in the marine environment.

  4. Bio-conversion of apple pomace into ethanol and acetic acid: Enzymatic hydrolysis and fermentation.

    PubMed

    Parmar, Indu; Rupasinghe, H P Vasantha

    2013-02-01

    Enzymatic hydrolysis of cellulose present in apple pomace was investigated using process variables such as enzyme activity of commercial cellulase, pectinase and β-glucosidase, temperature, pH, time, pre-treatments and end product separation. The interaction of enzyme activity, temperature, pH and time had a significant effect (P<0.05) on release of glucose. Optimal conditions of enzymatic saccharification were: enzyme activity of cellulase, 43units; pectinase, 183units; β-glucosidase, 41units/g dry matter (DM); temperature, 40°C; pH 4.0 and time, 24h. The sugars were fermented using Saccharomyces cerevisae yielding 19.0g ethanol/100g DM. Further bio-conversion using Acetobacter aceti resulted in the production of acetic acid at a concentration of 61.4g/100g DM. The present study demonstrates an improved process of enzymatic hydrolysis of apple pomace to yield sugars and concomitant bioconversion to produce ethanol and acetic acid. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Daily and seasonal variability of pH, dissolved oxygen, temperature, and specific conductance in the Colorado River between the forebay of Glen Canyon, Dam and Lees Ferry, northeastern Arizona, 1998-99

    USGS Publications Warehouse

    Flynn, Marilyn E.; Hart, Robert J.; Marzolf, G. Richard; Bowser, Carl J.

    2001-01-01

    The productivity of the trout fishery in the tailwater reach of the Colorado River downstream from Glen Canyon Dam depends on the productivity of lower trophic levels. Photosynthesis and respiration are basic biological processes that control productivity and alter pH and oxygen concentration. During 1998?99, data were collected to aid in the documentation of short- and long-term trends in these basic ecosystem processes in the Glen Canyon reach. Dissolved-oxygen, temperature, and specific-conductance profile data were collected monthly in the forebay of Glen Canyon Dam to document the status of water chemistry in the reservoir. In addition, pH, dissolved-oxygen, temperature, and specific-conductance data were collected at five sites in the Colorado River tailwater of Glen Canyon Dam to document the daily, seasonal, and longitudinal range of variation in water chemistry that could occur annually within the Glen Canyon reach.

  6. Exhaled breath condensate pH assays are not influenced by oral ammonia

    PubMed Central

    Wells, K; Vaughan, J; Pajewski, T; Hom, S; Ngamtrakulpanit, L; Smith, A; Nguyen, A; Turner, R; Hunt, J

    2005-01-01

    Background: Measurement of pH in exhaled breath condensate (EBC) is robust and simple. Acidic source fluid (airway lining fluid) traps bases while volatilising acids, leading to EBC acidification in many lung diseases. Lower airway ammonia is one determinant of airway lining fluid pH, raising the concern that addition of the base ammonia by contamination from the mouth might confound EBC pH assays. Methods: Three discrete methods were used to limit oral ammonia contamination of EBC collections: endotracheal intubation, oral rinsing, and –40°C condenser temperatures. Separately, ammonia was removed from collected EBC samples by lyophilisation and resuspension. Intraweek and intraday variability of ammonia concentration was determined in 76 subjects, and ammonia and pH from a further 235 samples were graphically compared. Ammonia was assayed spectrophotometrically and pH was assessed after deaeration. Results: Data from 1091 samples are presented. Ammonia was reduced in EBC by all methods. Endotracheal intubation decreased EBC ammonia from a mean (SD) of 619 (124) µM to 80 (24) µM (p<0.001, n = 32). Oral rinsing before collection also led to a decline in EBC ammonia from 573 (307) µM to 224 (80) µM (p = 0.016, n = 7). The colder the condensation temperature used, the less ammonia was trapped in the EBC. Lyophilisation removed 99.4 (1.9)% of ammonia. Most importantly, the pH of EBC never decreased after removal of ammonia by any of these methods. Intraweek and intraday coefficients of variation for ammonia were 64 (27)% and 60 (32)%, which is substantially more variable than EBC pH assays. Conclusions: Although ammonia and pH appear to correlate in EBC, the oral ammonia concentration is not an important determinant of EBC pH. No precautions need to be taken to exclude oral ammonia when EBC pH is of interest. The low pH and low ammonia found in EBC from patients with lung diseases appear to be independent effects of volatile compounds arising from the airway. PMID:15618579

  7. Temperature and pH effects on plant uptake of benzotriazoles by sunflowers in hydroponic culture.

    PubMed

    Castro, Sigifredo; Davis, Lawrence C; Erickson, Larry E

    2004-01-01

    This article describes a systematic approach to understanding the effect of environmental variables on plant uptake (phyto-uptake) of organic contaminants. Uptake (and possibly phytotransformation) of xenobiotics is a complex process that may differ from nutrient uptake. A specific group of xenobiotics (benzotriazoles) were studied using sunflowers grown hydroponically with changes of environmental conditions including solution volume, temperature, pH, and mixing. The response of plants to these stimuli was evaluated and compared using physiological changes (biomass production and water uptake) and estimated uptake rates (influx into plants), which define the uptake characteristics for the xenobiotic. Stirring of the hydroponic solution had a significant impact on plant growth and water uptake. Plants were healthier, probably because of a combination of factors such as improved aeration and increase in temperature. Uptake and possibly phytotransformation of benzotriazoles was increased accordingly. Experiments at different temperatures allowed us to estimate an activation energy for the reaction leading to triazole disappearance from the solution. The estimated activation energy was 43 kJ/mol, which indicates that the uptake process is kinetically limited. Culturing plants in triazole-amended hydroponic solutions at different pH values did not strongly affect the biomass production, water uptake, and benzotriazole uptake characteristics. The sunflowers showed an unexpected capacity to buffer the solution pH.

  8. Acid-catalysed xylose dehydration into furfural in the presence of kraft lignin.

    PubMed

    Lamminpää, Kaisa; Ahola, Juha; Tanskanen, Juha

    2015-02-01

    In this study, the effects of kraft lignin (Indulin AT) on acid-catalysed xylose dehydration into furfural were studied in formic and sulphuric acids. The study was done using D-optimal design. Three variables in both acids were included in the design: time (20-80 min), temperature (160-180°C) and initial lignin concentration (0-20 g/l). The dependent variables were xylose conversion, furfural yield, furfural selectivity and pH change. The results showed that the xylose conversion and furfural yield decreased in sulphuric acid, while in formic acid the changes were minor. Additionally, it was showed that lignin has an acid-neutralising capacity, and the added lignin increased the pH of reactant solutions in both acids. The pH rise was considerably lower in formic acid than in sulphuric acid. However, the higher pH did not explain all the changes in conversion and yield, and thus lignin evidently inhibits the formation of furfural. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Extending the applicability of pressurized hot water extraction to compounds exhibiting limited water solubility by pH control: curcumin from the turmeric rhizome.

    PubMed

    Euterpio, Maria Anna; Cavaliere, Chiara; Capriotti, Anna Laura; Crescenzi, Carlo

    2011-11-01

    Pressurized hot water extraction (PHWE, also known as subcritical water extraction) is commonly considered to be an environmentally friendly extraction technique that could potentially replace traditional methods that use organic solvents. Unfortunately, the applicability of this technique is often limited by the very low water solubility of the target compounds, even at high temperatures. In this paper, the scope for broadening the applicability of PHWE by adjusting the pH of the water used in the extraction is demonstrated in the extraction of curcumin (which exhibits very limited water solubility) from untreated turmeric (Curcuma longa L.) rhizomes. Although poor extraction yields were obtained, even at high temperatures when using degassed water or neutral phosphate buffer as the extraction medium, yields exceeding those obtained by Soxhlet extraction were achieved using highly acidic pH buffers due to curcumin protonation. The influence of the temperature, pH, and buffer concentration on the extraction yield were investigated in detail by means of a series of designed experiments. Optimized conditions for the extraction of curcumin from turmeric by PHWE were estimated at 197 °C using 62 g/L buffer concentration at pH 1.6. The relationships between these variables were subjected to statistical analysis using response surface methodology.

  10. Influence of environmental variables on diffusive greenhouse gas fluxes at hydroelectric reservoirs in Brazil.

    PubMed

    Rogério, J P; Santos, M A; Santos, E O

    2013-11-01

    For almost two decades, studies have been under way in Brazil, showing how hydroelectric reservoirs produce biogenic gases, mainly methane (CH4) and carbon dioxide (CO2), through the organic decomposition of flooded biomass. This somewhat complex phenomenon is due to a set of variables with differing levels of interdependence that directly or indirectly affect greenhouse gas (GHG) emissions. The purpose of this paper is to determine, through a statistical data analysis, the relation between CO2, CH4 diffusive fluxes and environmental variables at the Furnas, Itumbiara and Serra da Mesa hydroelectric reservoirs, located in the Cerrado biome on Brazil's high central plateau. The choice of this region was prompted by its importance in the national context, covering an area of some two million square kilometers, encompassing two major river basins (Paraná and Tocantins-Araguaia), with the largest installed power generation capacity in Brazil, together accounting for around 23% of Brazilian territory. This study shows that CH4 presented a moderate negative correlation between CO2 and depth. Additionally, a moderate positive correlation was noted for pH, water temperature and wind. The CO2 presented a moderate negative correlation for pH, wind speed, water temperature and air temperature. Additionally, a moderate positive correlation was noted for CO2 and water temperature. The complexity of the emission phenomenon is unlikely to occur through a simultaneous understanding of all the factors, due to difficulties in accessing and analyzing all the variables that have real, direct effects on GHG production and emission.

  11. Deep-Sea DuraFET: A Pressure Tolerant pH Sensor Designed for Global Sensor Networks.

    PubMed

    Johnson, Kenneth S; Jannasch, Hans W; Coletti, Luke J; Elrod, Virginia A; Martz, Todd R; Takeshita, Yuichiro; Carlson, Robert J; Connery, James G

    2016-03-15

    Increasing atmospheric carbon dioxide is driving a long-term decrease in ocean pH which is superimposed on daily to seasonal variability. These changes impact ecosystem processes, and they serve as a record of ecosystem metabolism. However, the temporal variability in pH is observed at only a few locations in the ocean because a ship is required to support pH observations of sufficient precision and accuracy. This paper describes a pressure tolerant Ion Sensitive Field Effect Transistor pH sensor that is based on the Honeywell Durafet ISFET die. When combined with a AgCl pseudoreference sensor that is immersed directly in seawater, the system is capable of operating for years at a time on platforms that cycle from depths of several km to the surface. The paper also describes the calibration scheme developed to allow calibrated pH measurements to be derived from the activity of HCl reported by the sensor system over the range of ocean pressure and temperature. Deployments on vertical profiling platforms enable self-calibration in deep waters where pH values are stable. Measurements with the sensor indicate that it is capable of reporting pH with an accuracy of 0.01 or better on the total proton scale and a precision over multiyear periods of 0.005. This system enables a global ocean observing system for ocean pH.

  12. Association of digital cushion thickness with sole temperature measured with the use of infrared thermography.

    PubMed

    Oikonomou, G; Trojacanec, P; Ganda, E K; Bicalho, M L S; Bicalho, R C

    2014-07-01

    The main objective of this study was to investigate the association between digital cushion thickness and sole temperature measured by infrared thermography. Data were collected from 216 lactating Holstein cows at 4 to 10d in milk (DIM). Cows were locomotion scored and sole temperature was measured after claw trimming (a minimum delay of 3 min was allowed for the hoof to cool) using an infrared thermography camera. Temperature was measured at the typical ulcer site of the lateral digit of the left hind foot. Immediately after the thermographic image was obtained, the thickness of the digital cushion was measured by ultrasonography. Rumen fluid samples were collected with a stomach tube and sample pH was measured immediately after collection. Additionally, a blood sample was obtained and used for measurements of serum concentrations of β-hydroxybutyrate (BHBA), nonesterified fatty acids (NEFA), and haptoglobin. To evaluate the associations of digital cushion thickness with sole temperature, a linear regression model was built using the GLIMMIX procedure in SAS software (SAS Institute Inc., Cary, NC). Sole temperature was the response variable, and digital cushion thickness quartiles, locomotion score group, rumen fluid pH, rumen fluid sample volume, environmental temperature, age in days, and serum levels of NEFA, BHBA, and haptoglobin were fitted in the model. Only significant variables were retained in the final model. Simple linear regression scatter plots were used to illustrate associations between sole temperature (measured by infrared thermography at the typical ulcer site) and environmental temperature and between NEFA and BHBA serum levels and haptoglobin. One-way ANOVA was used to compare rumen fluid pH for different locomotion score groups and for different digital cushion quartiles. Results from the multivariable linear regression model showed that sole temperature increased as locomotion scores increased and decreased as digital cushion thickness increased. These results were adjusted for environmental temperature, which was significantly associated with sole temperature. Serum levels of NEFA, BHBA, and haptoglobin were not associated with sole temperature. However, significant correlations existed between serum levels of NEFA and haptoglobin and between serum levels of BHBA and haptoglobin. Rumen fluid pH was not associated with either locomotion score or digital cushion thickness. In conclusion, we show here that digital cushion thickness was associated with sole temperature in cows at 4 to 10 DIM. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Effect of temperature, water activity, and pH on growth and production of ochratoxin A by Aspergillus niger and Aspergillus carbonarius from Brazilian grapes.

    PubMed

    Passamani, Fabiana Reinis Franca; Hernandes, Thais; Lopes, Noelly Alves; Bastos, Sabrina Carvalho; Santiago, Wilder Douglas; Cardoso, Maria das Graças; Batista, Luís Roberto

    2014-11-01

    The growth of ochratoxigenic fungus and the presence of ochratoxin A (OTA) in grapes and their derivatives can be caused by a wide range of physical, chemical, and biological factors. The determination of interactions between these factors and fungal species from different climatic regions is important in designing models for minimizing the risk of OTA in wine and grape juice. This study evaluated the influence of temperature, water activity (aw), and pH on the development and production of OTA in a semisynthetic grape culture medium by Aspergillus carbonarius and Aspergillus niger strains. To analyze the growth conditions and production of OTA, an experimental design was conducted using response surface methodology as a tool to assess the effects of these abiotic variables on fungal behavior. A. carbonarius showed the highest growth at temperatures from 20 to 33°C, aw between 0.95 and 0.98, and pH levels between 5 and 6.5. Similarly, for A. niger, temperatures between 24 and 37°C, aw greater than 0.95, and pH levels between 4 and 6.5 were optimal. The greatest toxin concentrations for A. carbonarius and A. niger (10 μg/g and 7.0 μg/g, respectively) were found at 15°C, aw 0.99, and pH 5.35. The lowest pH was found to contribute to greater OTA production. These results show that the evaluated fungi are able to grow and produce OTA in a wide range of temperature, aw, and pH. However, the optimal conditions for toxin production are generally different from those optimal for fungal growth. The knowledge of optimal conditions for fungal growth and production of OTA, and of the stages of cultivation in which these conditions are optimal, allows a more precise assessment of the potential risk to health from consumption of products derived from grapes.

  14. Exo-polygalacturonase production by Bacillus subtilis CM5 in solid state fermentation using cassava bagasse

    PubMed Central

    Swain, Manas R.; Kar, Shaktimay; Ray, Ramesh C.

    2009-01-01

    The purpose of this investigation was to study the effect of Bacillus subtilis CM5 in solid state fermentation using cassava bagasse for production of exo-polygalacturonase (exo-PG). Response surface methodology was used to evaluate the effect of four main variables, i.e. incubation period, initial medium pH, moisture holding capacity (MHC) and incubation temperature on enzyme production. A full factorial Central Composite Design was applied to study these main factors that affected exo-PG production. The experimental results showed that the optimum incubation period, pH, MHC and temperature were 6 days, 7.0, 70% and 50°C, respectively for optimum exo-PG production. PMID:24031409

  15. Optimization study for Pb(II) and COD sequestration by consortium of sulphate-reducing bacteria

    NASA Astrophysics Data System (ADS)

    Verma, Anamika; Bishnoi, Narsi R.; Gupta, Asha

    2017-09-01

    In this study, initial minimum inhibitory concentration (MIC) of Pb(II) ions was analysed to check optimum concentration of Pb(II) ions at which the growth of sulphate-reducing consortium (SRC) was found to be maximum. 80 ppm of Pb(II) ions was investigated as minimum inhibitory concentration for SRC. Influence of electron donors such as lactose, sucrose, glucose and sodium lactate was examined to investigate best carbon source for growth and activity of sulphate-reducing bacteria. Sodium lactate was found to be the prime carbon source for SRC. Later optimization of various parameters was executed using Box-Behnken design model of response surface methodology to explore the effectiveness of three independent operating variables, namely, pH (5.0-9.0), temperature (32-42 °C) and time (5.0-9.0 days), on dependent variables, i.e. protein content, precipitation of Pb(II) ions, and removal of COD by SRC biomass. Maximum removal of COD and Pb(II) was observed to be 91 and 98 %, respectively, at pH 7.0 and temperature 37 °C and incubation time 7 days. According to response surface analysis and analysis of variance, the experimental data were perfectly fitted to the quadratic model, and the interactive influence of pH, temperature and time on Pb(II) and COD removal was highly significant. A high regression coefficient between the variables and response ( r 2 = 0.9974) corroborate eminent evaluation of experimental data by second-order polynomial regression model. SEM and Fourier transform infrared analysis was performed to investigate morphology of PbS precipitates, sorption mechanism and involved functional groups in metal-free and metal-loaded biomass of SRC for Pb(II) binding.

  16. Optimization of process variables by central composite design for the immobilization of urease enzyme on functionalized gold nanoparticles for various applications.

    PubMed

    Talat, Mahe; Singh, Ashwani Kumar; Srivastava, O N

    2011-08-01

    In the present study, enzyme urease has been immobilized on amine-functionalized gold nanoparticles (AuNPs). AuNPs were synthesized using natural precursor, i.e., clove extract and amine functionalized through 0.004 M L: -cysteine. Enzyme (urease) was extracted and purified from the vegetable waste, i.e., seeds of pumpkin to apparent homogeneity (sp. activity 353 U/mg protein). FTIR spectroscopy and transmission electron microscopy was used to characterize the immobilized enzyme. The immobilized enzyme exhibited enhanced activity as compared with the enzyme in the solution, especially, at lower enzyme concentration. Based on the evaluation of activity assay of the immobilized enzyme, it was found that the immobilized enzyme was quite stable for about a month and could successfully be used even after eight cycles having enzyme activity of about 47%. In addition to this central composite design (CCD) with the help of MINITAB version 15 Software was utilized to optimize the process variables viz., pH and temperature affecting the enzyme activity upon immobilization on AuNPs. The results predicted by the design were found in good agreement (R2 = 96.38%) with the experimental results indicating the applicability of proposed model. The multiple regression analysis and ANOVA showed the individual and cumulative effect of pH and temperature on enzyme activity indicating that the activity increased with the increase of pH up to 7.5 and temperature 75 °C. The effects of each variables represented by main effect plot, 3D surface plot, isoresponse contour plot and optimized plot were helpful in predicting results by performing a limited set of experiments.

  17. A direct CO2 control system for ocean acidification experiments: testing effects on the coralline red algae Phymatolithon lusitanicum.

    PubMed

    Sordo, Laura; Santos, Rui; Reis, Joao; Shulika, Alona; Silva, Joao

    2016-01-01

    Most ocean acidification (OA) experimental systems rely on pH as an indirect way to control CO 2 . However, accurate pH measurements are difficult to obtain and shifts in temperature and/or salinity alter the relationship between pH and p CO 2 . Here we describe a system in which the target p CO 2 is controlled via direct analysis of p CO 2 in seawater. This direct type of control accommodates potential temperature and salinity shifts, as the target variable is directly measured instead of being estimated. Water in a header tank is permanently re-circulated through an air-water equilibrator. The equilibrated air is then routed to an infrared gas analyzer (IRGA) that measures p CO 2 and conveys this value to a Proportional-Integral-Derivative (PID) controller. The controller commands a solenoid valve that opens and closes the CO 2 flush that is bubbled into the header tank. This low-cost control system allows the maintenance of stabilized levels of p CO 2 for extended periods of time ensuring accurate experimental conditions. This system was used to study the long term effect of OA on the coralline red algae Phymatolithon lusitanicum . We found that after 11 months of high CO 2 exposure, photosynthesis increased with CO 2 as opposed to respiration, which was positively affected by temperature. Results showed that this system is adequate to run long-term OA experiments and can be easily adapted to test other relevant variables simultaneously with CO 2 , such as temperature, irradiance and nutrients.

  18. A direct CO2 control system for ocean acidification experiments: testing effects on the coralline red algae Phymatolithon lusitanicum

    PubMed Central

    Santos, Rui; Reis, Joao; Shulika, Alona

    2016-01-01

    Most ocean acidification (OA) experimental systems rely on pH as an indirect way to control CO2. However, accurate pH measurements are difficult to obtain and shifts in temperature and/or salinity alter the relationship between pH and pCO2. Here we describe a system in which the target pCO2 is controlled via direct analysis of pCO2 in seawater. This direct type of control accommodates potential temperature and salinity shifts, as the target variable is directly measured instead of being estimated. Water in a header tank is permanently re-circulated through an air-water equilibrator. The equilibrated air is then routed to an infrared gas analyzer (IRGA) that measures pCO2 and conveys this value to a Proportional-Integral-Derivative (PID) controller. The controller commands a solenoid valve that opens and closes the CO2 flush that is bubbled into the header tank. This low-cost control system allows the maintenance of stabilized levels of pCO2 for extended periods of time ensuring accurate experimental conditions. This system was used to study the long term effect of OA on the coralline red algae Phymatolithon lusitanicum. We found that after 11 months of high CO2 exposure, photosynthesis increased with CO2 as opposed to respiration, which was positively affected by temperature. Results showed that this system is adequate to run long-term OA experiments and can be easily adapted to test other relevant variables simultaneously with CO2, such as temperature, irradiance and nutrients. PMID:27703853

  19. Influence of elevated temperature and acid mine drainage on mortality of the crayfish Cambarus bartonii

    USGS Publications Warehouse

    Hartman, K.J.; Hom, C.D.; Mazik, P.M.

    2010-01-01

    Effects of elevated temperature and acid mine drainage (AMD) on crayfish mortality were investigated in the Stony River, Grant County, West Virginia. During summers 2003 and 2004, four-week in situ bioassays were performed along a thermal and AMD gradient with the native crayfish Cambarus bartonii. Crayfish mortality was analyzed in conjunction with temperature and AMD related variables (pH, specific conductivity). Mortality was significantly higher (48-88%) at sites with high temperatures during 2003 (max = 33.0??C), but no significant differences were observed in 2004 (max = 32.0??C). Temperatures were higher in 2003 than 2004 due to increased discharge from a cooling reservoir flowing into the river. Additionally, duration of high temperature was approximately four days in 2003 as compared with only one day in 2004. No significant relationship between acid mine drainage variables and crayfish mortality was apparent.

  20. Berry composition and climate: responses and empirical models.

    PubMed

    Barnuud, Nyamdorj N; Zerihun, Ayalsew; Gibberd, Mark; Bates, Bryson

    2014-08-01

    Climate is a strong modulator of berry composition. Accordingly, the projected change in climate is expected to impact on the composition of berries and of the resultant wines. However, the direction and extent of climate change impact on fruit composition of winegrape cultivars are not fully known. This study utilised a climate gradient along a 700 km transect, covering all wine regions of Western Australia, to explore and empirically describe influences of climate on anthocyanins, pH and titratable acidity (TA) levels in two or three cultivars of Vitis vinifera (Cabernet Sauvignon, Chardonnay and Shiraz). The results showed that, at a common maturity of 22° Brix total soluble solids, berries from the warmer regions had low levels of anthocyanins and TA as well as high pH compared to berries from the cooler regions. Most of these regional variations in berry composition reflected the prevailing climatic conditions of the regions. Thus, depending on cultivar, 82-87 % of TA, 83 % of anthocyanins and about half of the pH variations across the gradient were explained by climate-variable-based empirical models. Some of the variables that were relevant in describing the variations in berry attributes included: diurnal ranges and ripening period temperature (TA), vapour pressure deficit in October and growing degree days (pH), and ripening period temperatures (anthocyanins). Further, the rates of change in these berry attributes in response to climate variables were cultivar dependent. Based on the observed patterns along the climate gradient, it is concluded that: (1) in a warming climate, all other things being equal, berry anthocyanins and TA levels will decline whereas pH levels will rise; and (2) despite variations in non-climatic factors (e.g. soil type and management) along the sampling transect, variations in TA and anthocyanins were satisfactorily described using climate-variable-based empirical models, indicating the overriding impact of climate on berry composition. The models presented here are useful tools for assessing likely changes in berry TA and anthocyanins in response to changing climate for the wine regions and cultivars covered in this study.

  1. Berry composition and climate: responses and empirical models

    NASA Astrophysics Data System (ADS)

    Barnuud, Nyamdorj N.; Zerihun, Ayalsew; Gibberd, Mark; Bates, Bryson

    2014-08-01

    Climate is a strong modulator of berry composition. Accordingly, the projected change in climate is expected to impact on the composition of berries and of the resultant wines. However, the direction and extent of climate change impact on fruit composition of winegrape cultivars are not fully known. This study utilised a climate gradient along a 700 km transect, covering all wine regions of Western Australia, to explore and empirically describe influences of climate on anthocyanins, pH and titratable acidity (TA) levels in two or three cultivars of Vitis vinifera (Cabernet Sauvignon, Chardonnay and Shiraz). The results showed that, at a common maturity of 22° Brix total soluble solids, berries from the warmer regions had low levels of anthocyanins and TA as well as high pH compared to berries from the cooler regions. Most of these regional variations in berry composition reflected the prevailing climatic conditions of the regions. Thus, depending on cultivar, 82-87 % of TA, 83 % of anthocyanins and about half of the pH variations across the gradient were explained by climate-variable-based empirical models. Some of the variables that were relevant in describing the variations in berry attributes included: diurnal ranges and ripening period temperature (TA), vapour pressure deficit in October and growing degree days (pH), and ripening period temperatures (anthocyanins). Further, the rates of change in these berry attributes in response to climate variables were cultivar dependent. Based on the observed patterns along the climate gradient, it is concluded that: (1) in a warming climate, all other things being equal, berry anthocyanins and TA levels will decline whereas pH levels will rise; and (2) despite variations in non-climatic factors (e.g. soil type and management) along the sampling transect, variations in TA and anthocyanins were satisfactorily described using climate-variable-based empirical models, indicating the overriding impact of climate on berry composition. The models presented here are useful tools for assessing likely changes in berry TA and anthocyanins in response to changing climate for the wine regions and cultivars covered in this study.

  2. Response surface modeling of boron adsorption from aqueous solution by vermiculite using different adsorption agents: Box-Behnken experimental design.

    PubMed

    Demirçivi, Pelin; Saygılı, Gülhayat Nasün

    2017-07-01

    In this study, a different method was applied for boron removal by using vermiculite as the adsorbent. Vermiculite, which was used in the experiments, was not modified with adsorption agents before boron adsorption using a separate process. Hexadecyltrimethylammonium bromide (HDTMA) and Gallic acid (GA) were used as adsorption agents for vermiculite by maintaining the solid/liquid ratio at 12.5 g/L. HDTMA/GA concentration, contact time, pH, initial boron concentration, inert electrolyte and temperature effects on boron adsorption were analyzed. A three-factor, three-level Box-Behnken design model combined with response surface method (RSM) was employed to examine and optimize process variables for boron adsorption from aqueous solution by vermiculite using HDTMA and GA. Solution pH (2-12), temperature (25-60 °C) and initial boron concentration (50-8,000 mg/L) were chosen as independent variables and coded x 1 , x 2 and x 3 at three levels (-1, 0 and 1). Analysis of variance was used to test the significance of variables and their interactions with 95% confidence limit (α = 0.05). According to the regression coefficients, a second-order empirical equation was evaluated between the adsorption capacity (q i ) and the coded variables tested (x i ). Optimum values of the variables were also evaluated for maximum boron adsorption by vermiculite-HDTMA (HDTMA-Verm) and vermiculite-GA (GA-Verm).

  3. Improving industrial full-scale production of baker's yeast by optimizing aeration control.

    PubMed

    Blanco, Carlos A; Rayo, Julia; Giralda, José M

    2008-01-01

    This work analyzes the control of optimum dissolved oxygen of an industrial fed-batch procedure in which baker's yeast (Saccharomyces cerevisiae) is grown under aerobic conditions. Sugar oxidative metabolism was controlled by monitoring aeration, molasses flows, and yeast concentration in the propagator along the later stage of the propagation, and keeping pH and temperature under controlled conditions. A large number of fed-batch growth experiments were performed in the tank for a period of 16 h, for each of the 3 manufactured commercial products. For optimization and control of cultivations, the growth and metabolite formation were quantified through measurement of specific growth and ethanol concentration. Data were adjusted to a model of multiple lineal regression, and correlations representing dissolved oxygen as a function of aeration, molasses, yeast concentration in the broth, temperature, and pH were obtained. The actual influence of each variable was consistent with the mathematical model, further justified by significant levels of each variable, and optimum aeration profile during the yeast propagation.

  4. Factors Controlling the Distribution of Archaeal Tetraethers in Terrestrial Hot Springs▿

    PubMed Central

    Pearson, Ann; Pi, Yundan; Zhao, Weidong; Li, WenJun; Li, Yiliang; Inskeep, William; Perevalova, Anna; Romanek, Christopher; Li, Shuguang; Zhang, Chuanlun L.

    2008-01-01

    Glycerol dialkyl glycerol tetraethers (GDGTs) found in hot springs reflect the abundance and community structure of Archaea in these extreme environments. The relationships between GDGTs, archaeal communities, and physical or geochemical variables are underexamined to date and when reported often result in conflicting interpretations. Here, we examined profiles of GDGTs from pure cultures of Crenarchaeota and from terrestrial geothermal springs representing a wide distribution of locations, including Yellowstone National Park (United States), the Great Basin of Nevada and California (United States), Kamchatka (Russia), Tengchong thermal field (China), and Thailand. These samples had temperatures of 36.5 to 87°C and pH values of 3.0 to 9.2. GDGT abundances also were determined for three soil samples adjacent to some of the hot springs. Principal component analysis identified four factors that accounted for most of the variance among nine individual GDGTs, temperature, and pH. Significant correlations were observed between pH and the GDGTs crenarchaeol and GDGT-4 (four cyclopentane rings, m/z 1,294); pH correlated positively with crenarchaeol and inversely with GDGT-4. Weaker correlations were observed between temperature and the four factors. Three of the four GDGTs used in the marine TEX86 paleotemperature index (GDGT-1 to -3, but not crenarchaeol isomer) were associated with a single factor. No correlation was observed for GDGT-0 (acyclic caldarchaeol): it is effectively its own variable. The biosynthetic mechanisms and exact archaeal community structures leading to these relationships remain unknown. However, the data in general show promise for the continued development of GDGT lipid-based physiochemical proxies for archaeal evolution and for paleo-ecology or paleoclimate studies. PMID:18390673

  5. Factors controlling the distribution of archaeal tetraethers in terrestrial hot springs.

    PubMed

    Pearson, Ann; Pi, Yundan; Zhao, Weidong; Li, WenJun; Li, Yiliang; Inskeep, William; Perevalova, Anna; Romanek, Christopher; Li, Shuguang; Zhang, Chuanlun L

    2008-06-01

    Glycerol dialkyl glycerol tetraethers (GDGTs) found in hot springs reflect the abundance and community structure of Archaea in these extreme environments. The relationships between GDGTs, archaeal communities, and physical or geochemical variables are underexamined to date and when reported often result in conflicting interpretations. Here, we examined profiles of GDGTs from pure cultures of Crenarchaeota and from terrestrial geothermal springs representing a wide distribution of locations, including Yellowstone National Park (United States), the Great Basin of Nevada and California (United States), Kamchatka (Russia), Tengchong thermal field (China), and Thailand. These samples had temperatures of 36.5 to 87 degrees C and pH values of 3.0 to 9.2. GDGT abundances also were determined for three soil samples adjacent to some of the hot springs. Principal component analysis identified four factors that accounted for most of the variance among nine individual GDGTs, temperature, and pH. Significant correlations were observed between pH and the GDGTs crenarchaeol and GDGT-4 (four cyclopentane rings, m/z 1,294); pH correlated positively with crenarchaeol and inversely with GDGT-4. Weaker correlations were observed between temperature and the four factors. Three of the four GDGTs used in the marine TEX(86) paleotemperature index (GDGT-1 to -3, but not crenarchaeol isomer) were associated with a single factor. No correlation was observed for GDGT-0 (acyclic caldarchaeol): it is effectively its own variable. The biosynthetic mechanisms and exact archaeal community structures leading to these relationships remain unknown. However, the data in general show promise for the continued development of GDGT lipid-based physiochemical proxies for archaeal evolution and for paleo-ecology or paleoclimate studies.

  6. Literature Review of Low Impact Development for Stormwater Control

    DTIC Science & Technology

    2015-05-30

    appropriate LID technology can be selected to capture the targeted vi metal pollutant. Little information exists on the effects of field variables such as...loading rates and volume, temperature , climate, pH, sediments, organics, and maintenance cycles on systems in the field. 4. The amount of research...maximum extent technically feasible, the pre-development hydrology of the property with regard to the temperature , rate, volume, and duration of flow

  7. Short-term effects of increased temperature and lowered pH on a temperate grazer-seaweed interaction (Littorina obtusata/Ascophyllum nodosum)

    NASA Astrophysics Data System (ADS)

    Cardoso, Patricia G.; Grilo, Tiago F.; Dionísio, Gisela; Aurélio, Maria; Lopes, Ana R.; Pereira, Ricardo; Pacheco, Mário; Rosa, Rui

    2017-10-01

    There has been a significant increase in the literature regarding the effects of warming and acidification on the marine ecosystem. To our knowledge, there is very little information on the potential effects of both combined stressors on marine grazer-seaweed interactions. Here, we evaluated, for the first time several phenotypic responses (e.g periwinkle survival, condition index, consumption rates, seaweed photosynthetic activity and oxidative stress) of the temperate periwinkle Littorina obtusata (grazer) and the brown seaweed Ascophyllum nodosum (prey) to such climate change-related variables, for 15 days. Increased temperature (22 °C, pH 8.0) elicited a significant lethal effect on the periwinkle within a short-term period (mortality rate > 90%). Acidification condition (18 °C, pH 7.6) was the one that showed lower mortality rates (≈20%), reflected by lower impact on periwinkle fitness and consumption rates. Under a scenario of increased temperature and lowered pH the antioxidant defences of L. obtusata seemed to be supressed increasing the risk of peroxidative damage. The seaweed evidenced signs of cellular damage under such conditions. These results suggest that: i) lower pH per se seems to benefit the interaction between grazer and seaweed while, ii) a combined scenario of increased temperature and lowered pH may be negative for the interaction, due to the unbalance between periwinkle mortality rates and consumption rates. But most importantly, since grazing often plays an important role on structuring natural communities, such predator-prey disturbances can elicit cascading effects on the remaining community structure and functioning of the temperate rocky-shore ecosystems.

  8. Modeling of bromate formation by ozonation of surface waters in drinking water treatment.

    PubMed

    Legube, Bernard; Parinet, Bernard; Gelinet, Karine; Berne, Florence; Croue, Jean-Philippe

    2004-04-01

    The main objective of this paper is to try to develop statistically and chemically rational models for bromate formation by ozonation of clarified surface waters. The results presented here show that bromate formation by ozonation of natural waters in drinking water treatment is directly proportional to the "Ct" value ("Ctau" in this study). Moreover, this proportionality strongly depends on many parameters: increasing of pH, temperature and bromide level leading to an increase of bromate formation; ammonia and dissolved organic carbon concentrations causing a reverse effect. Taking into account limitation of theoretical modeling, we proposed to predict bromate formation by stochastic simulations (multi-linear regression and artificial neural networks methods) from 40 experiments (BrO(3)(-) vs. "Ctau") carried out with three sand filtered waters sampled on three different waterworks. With seven selected variables we used a simple architecture of neural networks, optimized by "neural connection" of SPSS Inc./Recognition Inc. The bromate modeling by artificial neural networks gives better result than multi-linear regression. The artificial neural networks model allowed us classifying variables by decreasing order of influence (for the studied cases in our variables scale): "Ctau", [N-NH(4)(+)], [Br(-)], pH, temperature, DOC, alkalinity.

  9. Remote sensing and avian influenza: A review of image processing methods for extracting key variables affecting avian influenza virus survival in water from Earth Observation satellites

    NASA Astrophysics Data System (ADS)

    Tran, Annelise; Goutard, Flavie; Chamaillé, Lise; Baghdadi, Nicolas; Lo Seen, Danny

    2010-02-01

    Recent studies have highlighted the potential role of water in the transmission of avian influenza (AI) viruses and the existence of often interacting variables that determine the survival rate of these viruses in water; the two main variables are temperature and salinity. Remote sensing has been used to map and monitor water bodies for several decades. In this paper, we review satellite image analysis methods used for water detection and characterization, focusing on the main variables that influence AI virus survival in water. Optical and radar imagery are useful for detecting water bodies at different spatial and temporal scales. Methods to monitor the temperature of large water surfaces are also available. Current methods for estimating other relevant water variables such as salinity, pH, turbidity and water depth are not presently considered to be effective.

  10. Fluoroquinolone resistance of Serratia marcescens: sucrose, salicylate, temperature, and pH induction of phenotypic resistance.

    PubMed

    Begic, Sanela; Worobec, Elizabeth A

    2007-11-01

    Serratia marcescens is a nosocomial agent with a natural resistance to a broad spectrum of antibiotics, making the treatment of its infections very challenging. This study examines the influence of salicylate, sucrose, temperature, and pH variability on membrane permeability and susceptibility of S. marcescens to norfloxacin (hydrophilic fluoroquinolone) and nalidixic acid (hydrophobic quinolone). Resistance of wild-type S. marcescens UOC-67 (ATCC 13880) to norfloxacin and nalidixic acid was assessed by minimal inhibitory concentration (MIC) assays after growth in the presence of various concentrations of sucrose and salicylate and different temperatures and pH values. Norfloxacin and nalidixic acid accumulation was determined in the absence and presence of (i) carbonyl cyanide m-chlorophenylhydrazone (CCCP), a proton-motive-force collapser, and (ii) Phe-Arg beta-naphthylamide (PAbetaN), an efflux pump inhibitor. Accumulation of norfloxacin decreased when S. marcescens was grown in high concentrations of salicylate (8 mmol/L) and sucrose (10% m/v), at high temperature (42 degrees C), and at pH 6, and it was restored in the presence of CCCP because of the collapse of proton-gradient-dependent efflux in S. marcescens. Although nalidixic acid accumulation was observed, it was not affected by salicylate, sucrose, pH, or temperature changes. In the absence of PAbetaN, and either in the presence or absence of CCCP, a plateau was reached in the nalidixic acid accumulation for all environmental conditions. With the addition of 20 mg/L PAbetaN nalidixic acid accumulation is restored for all environmental conditions, suggesting that this quinolone is recognized by a yet to be identified S. marcescens pump that does not use proton motive force as its energy source.

  11. Interactions between chemical and climate stressors: A role for mechanistic toxicology in assessing climate change risks

    EPA Science Inventory

    Incorporation of global climate change (GCC) effects into regulatory assessments of chemical risk and injury requires an integrated examination of both chemical and non-chemical stressors. Environmental variables altered by GCC, such as temperature, precipitation, salinity and pH...

  12. Environmental and Hydroclimatic Sensitivities of Greenhouse Gas (GHG) Fluxes from Coastal Wetlands

    NASA Astrophysics Data System (ADS)

    Abdul-Aziz, O. I.; Ishtiaq, K. S.

    2016-12-01

    We computed the reference environmental and hydroclimatic sensitivities of the greenhouse gas (GHG) fluxes (CO2 and CH4) from coastal salt marshes. Non-linear partial least squares regression models of CO2 (net uptake) and CH4 (net emissions) fluxes were developed with a bootstrap resampling approach using the photosynthetically active radiation (PAR), air and soil temperatures, water height, soil moisture, porewater salinity, and pH as predictors. Analytical sensitivity coefficients of different predictors were then analytically derived from the estimated models. The numerical sensitivities of the dominant drivers were determined by perturbing the variables individually and simultaneously to compute their individual and combined (respectively) effects on the GHG fluxes. Four tidal wetlands of Waquoit Bay, MA — incorporating a gradient in land-use, salinity and hydrology — were considered as the case study sites. The wetlands were dominated by native Spartina Alterniflora, and characterized by high salinity and frequent flooding. Results indicated a high sensitivity of CO2 fluxes to temperature and PAR, a moderate sensitivity to soil salinity and water height, and a weak sensitivity to pH and soil moisture. In contrast, the CH4 fluxes were more sensitive to temperature and salinity, compared to that of PAR, pH, and hydrologic variables. The estimated sensitivities and mechanistic insights can aid the management of coastal carbon under a changing climate and environment. The sensitivity coefficients also indicated the most dominant drivers of GHG fluxes for the development of a parsimonious predictive model.

  13. Optimization of maltodextrin production from avocado seed starch by response surface methodology

    NASA Astrophysics Data System (ADS)

    Nguyen, Thanh Viet; Ma, Tuyen-Hoang Nguyen; Nguyen, Tha Thi; Ho, Vinh-Nghi Kim; Vo, Hau Tan

    2018-04-01

    A process for maltodextrin production from avocado seed starch was reported in this study. Response surface methodology was used to investigate the effects of three independent variables for hydrolysis of the starch using a commercial food-grade α-amylase, Termamyl SC. These variables included enzyme concentration (0.05 - 0.15% starch), pH (5.0 - 6.0) and hydrolysis time (1.0 - 3.0 h), while the temperature fixed at 95°C. The result showed that the optimum conditions were using enzyme concentration at 0.12%, pH at 5.5 and 2.75 h of the incubation time. Under the optimum conditions, the recovered starch yield was 79.8% and the maltodextrin powder had 15.8 of dextrose equivalent.

  14. Isolation of fish skin and bone gelatin from tilapia (Oreochromis niloticus): Response surface approach

    NASA Astrophysics Data System (ADS)

    Arpi, N.; Fahrizal; Novita, M.

    2018-03-01

    In this study, gelatin from fish collagen, as one of halal sources, was extracted from tilapia (Oreochromis niloticus) skin and bone, by using Response Surface Methodology to optimize gelatin extraction conditions. Concentrations of alkaline NaOH and acid HCl, in the pretreatment process, and temperatures in extraction process were chosen as independent variables, while dependent variables were yield, gel strength, and emulsion activity index (EAI). The result of investigation showed that lower NaOH pretreatment concentrations provided proper pH extraction conditions which combine with higher extraction temperatures resulted in high gelatin yield. However, gelatin emulsion activity index increased proportionally to the decreased in NaOH concentrations and extraction temperatures. No significant effect of the three independent variables on the gelatin gel strength. RSM optimization process resulted in optimum gelatin extraction process conditions using alkaline NaOH concentration of 0.77 N, acid HCl of 0.59 N, and extraction temperature of 66.80 °C. The optimal solution formula had optimization targets of 94.38%.

  15. Field measurement of alkalinity and pH

    USGS Publications Warehouse

    Barnes, Ivan

    1964-01-01

    The behavior of electrometric pH equipment under field conditions departs from the behavior predicted from Nernst's law. The response is a linear function of pH, and hence measured pH values may be corrected to true pH if the instrument is calibrated with two reference solutions for each measurement. Alkalinity titrations may also be made in terms of true pH. Standard methods, such as colorimetric titrations, were rejected as unreliable or too cumbersome for rapid field use. The true pH of the end point of the alkalinity titration as a function of temperature, ionic strength, and total alkalinity has been calculated. Total alkalinity in potable waters is the most important factor influencing the end point pH, which varies from 5.38 (0 ? C, 5 ppm (parts per million) HC0a-) to 4.32 (300 ppm HC0a-,35 ? C), for the ranges of variables considered. With proper precautions, the pH may be determined to =i:0.02 pH and the alkalinity to =i:0.6 ppm HCO3- for many naturally occurring bodies of fresh water.

  16. How Geochemistry Provides Habitability: A Case Study of Iron Oxidation

    NASA Astrophysics Data System (ADS)

    St Clair, B.; Shock, E.

    2016-12-01

    Two things have to be true for chemotrophic microbes to gain chemical energy from their environment. First, there must be a source of energy, provided by compounds in differing oxidation states that are out of thermodynamic equilibrium with one another. Second, there must be mechanistic difficulties that are keeping those compounds from reacting, preventing chemical energy from dissipating on its own. Using this energetic reference frame, geochemical habitability requires the combined presence of energy sources and kinetic barriers, which are determined by numerous variables including temperature, pH, and concentrations of reactants and products. Here we present habitable geochemical space visually as habitability diagrams. As an example, the pH and temperature ranges that can sustain life for a specific reaction can be delineated by the aforementioned kinetic and energetic boundaries, together with commonly attainable pH / temperatures of environments at Earth's surface. Other habitability diagrams can be constructed for any combination of relevant geochemical variables to better illustrate the inherently multidimensional problem. We have chosen iron oxidation reactions to illustrate this point, as kinetic and energetic boundaries can be found at conditions readily attainable in natural systems. By calculating energy availability (as affinity, A) in each system from compositional data where concentrations of all reactants and products are known, the energy boundary is defined by A=0. Evaluating the kinetic boundary means measuring the relative rates of the biotic and abiotic processes in situ, which we have done in Yellowstone hot springs, acid mine drainage in Arizona, and cold springs in the Swiss Alps. Many experiments have yielded biological rates, and all have yielded abiotic rates, which range from inconsequential to rates too rapid for biology to compete. These results encompass both sides of the kinetic boundary, defining its trajectory. When plotted in pH and T space, this boundary is pH 7.7 at 10°C but decreases to pH 5.5 at 90°C. This tool for visualizing habitability helps quantify extreme environments as those near the kinetic or thermodynamic limits.

  17. Introducing global peat-specific temperature and pH calibrations based on brGDGT bacterial lipids

    NASA Astrophysics Data System (ADS)

    Naafs, B. D. A.; Inglis, G. N.; Zheng, Y.; Amesbury, M. J.; Biester, H.; Bindler, R.; Blewett, J.; Burrows, M. A.; del Castillo Torres, D.; Chambers, F. M.; Cohen, A. D.; Evershed, R. P.; Feakins, S. J.; Gałka, M.; Gallego-Sala, A.; Gandois, L.; Gray, D. M.; Hatcher, P. G.; Honorio Coronado, E. N.; Hughes, P. D. M.; Huguet, A.; Könönen, M.; Laggoun-Défarge, F.; Lähteenoja, O.; Lamentowicz, M.; Marchant, R.; McClymont, E.; Pontevedra-Pombal, X.; Ponton, C.; Pourmand, A.; Rizzuti, A. M.; Rochefort, L.; Schellekens, J.; De Vleeschouwer, F.; Pancost, R. D.

    2017-07-01

    Glycerol dialkyl glycerol tetraethers (GDGTs) are membrane-spanning lipids from Bacteria and Archaea that are ubiquitous in a range of natural archives and especially abundant in peat. Previous work demonstrated that the distribution of bacterial branched GDGTs (brGDGTs) in mineral soils is correlated to environmental factors such as mean annual air temperature (MAAT) and soil pH. However, the influence of these parameters on brGDGT distributions in peat is largely unknown. Here we investigate the distribution of brGDGTs in 470 samples from 96 peatlands around the world with a broad mean annual air temperature (-8 to 27 °C) and pH (3-8) range and present the first peat-specific brGDGT-based temperature and pH calibrations. Our results demonstrate that the degree of cyclisation of brGDGTs in peat is positively correlated with pH, pH = 2.49 × CBTpeat + 8.07 (n = 51, R2 = 0.58, RMSE = 0.8) and the degree of methylation of brGDGTs is positively correlated with MAAT, MAATpeat (°C) = 52.18 × MBT5me‧ - 23.05 (n = 96, R2 = 0.76, RMSE = 4.7 °C). These peat-specific calibrations are distinct from the available mineral soil calibrations. In light of the error in the temperature calibration (∼4.7 °C), we urge caution in any application to reconstruct late Holocene climate variability, where the climatic signals are relatively small, and the duration of excursions could be brief. Instead, these proxies are well-suited to reconstruct large amplitude, longer-term shifts in climate such as deglacial transitions. Indeed, when applied to a peat deposit spanning the late glacial period (∼15.2 kyr), we demonstrate that MAATpeat yields absolute temperatures and relative temperature changes that are consistent with those from other proxies. In addition, the application of MAATpeat to fossil peat (i.e. lignites) has the potential to reconstruct terrestrial climate during the Cenozoic. We conclude that there is clear potential to use brGDGTs in peats and lignites to reconstruct past terrestrial climate.

  18. Optimization of Pumpkin Oil Recovery by Using Aqueous Enzymatic Extraction and Comparison of the Quality of the Obtained Oil with the Quality of Cold-Pressed Oil

    PubMed Central

    Roszkowska, Beata; Czaplicki, Sylwester; Tańska, Małgorzata

    2016-01-01

    Summary The study was carried out to optimize pumpkin oil recovery in the process of aqueous extraction preceded by enzymatic maceration of seeds, as well as to compare the quality of the obtained oil to the quality of cold-pressed pumpkin seed oil. Hydrated pulp of hulless pumpkin seeds was macerated using a 2% (by mass) cocktail of commercial pectinolytic, cellulolytic and proteolytic preparations (Rohapect® UF, Rohament® CL and Colorase® 7089). The optimization procedure utilized response surface methodology based on Box- -Behnken plan of experiment. The optimized variables of enzymatic pretreatment were pH, temperature and maceration time. The results showed that the pH value, temperature and maceration time of 4.7, 54 °C and 15.4 h, respectively, were conducive to maximize the oil yield up to 72.64%. Among these variables, the impact of pH was crucial (above 73% of determined variation) for oil recovery results. The oil obtained by aqueous enzymatic extraction was richer in sterols, squalene and tocopherols, and only slightly less abundant in carotenoids than the cold-pressed one. However, it had a lower oxidative stability, with induction period shortened by approx. 30% in relation to the cold-pressed oil. PMID:28115898

  19. Adaptive Neuro-Fuzzy Inference system analysis on adsorption studies of Reactive Red 198 from aqueous solution by SBA-15/CTAB composite

    NASA Astrophysics Data System (ADS)

    Aghajani, Khadijeh; Tayebi, Habib-Allah

    2017-01-01

    In this study, the Mesoporous material SBA-15 were synthesized and then, the surface was modified by the surfactant Cetyltrimethylammoniumbromide (CTAB). Finally, the obtained adsorbent was used in order to remove Reactive Red 198 (RR 198) from aqueous solution. Transmission electron microscope (TEM), Fourier transform infra-red spectroscopy (FTIR), Thermogravimetric analysis (TGA), X-ray diffraction (XRD), and BET were utilized for the purpose of examining the structural characteristics of obtained adsorbent. Parameters affecting the removal of RR 198 such as pH, the amount of adsorbent, and contact time were investigated at various temperatures and were also optimized. The obtained optimized condition is as follows: pH = 2, time = 60 min and adsorbent dose = 1 g/l. Moreover, a predictive model based on ANFIS for predicting the adsorption amount according to the input variables is presented. The presented model can be used for predicting the adsorption rate based on the input variables include temperature, pH, time, dosage, concentration. The error between actual and approximated output confirm the high accuracy of the proposed model in the prediction process. This fact results in cost reduction because prediction can be done without resorting to costly experimental efforts. SBA-15, CTAB, Reactive Red 198, adsorption study, Adaptive Neuro-Fuzzy Inference systems (ANFIS).

  20. Biological mechanisms supporting adaptation to ocean acidification in coastal ecosystems

    NASA Astrophysics Data System (ADS)

    Hendriks, Iris E.; Duarte, Carlos M.; Olsen, Ylva S.; Steckbauer, Alexandra; Ramajo, Laura; Moore, Tommy S.; Trotter, Julie A.; McCulloch, Malcolm

    2015-01-01

    The direct influence of anthropogenic CO2 might play a limited role in pH regulation in coastal ecosystems as pH regulation in these areas can be complex. They experience large variability across a broad range of spatial and temporal scales, with complex external and internal drivers. Organisms influence pH at a patch scale, where community metabolic effects and hydrodynamic processes interact to produce broad ranges in pH, (˜0.3-0.5 pH units) over daily cycles and spatial scales (mm to m) particularly in shallow vegetated habitats and coral reefs where both respiration and photosynthetic activity are intense. Biological interactions at the ecosystem scale, linked to patchiness in habitat landscapes and seasonal changes in metabolic processes and temperature lead to changes of about 0.3-0.5 pH units throughout a year. Furthermore, on the scale of individual organisms, small-scale processes including changes at the Diffusive Boundary Layer (DBL), interactions with symbionts, and changes to the specific calcification environment, induce additional changes in excess of 0.5 pH units. In these highly variable pH environments calcifying organisms have developed the capacity to alter the pH of their calcifying environment, or specifically within critical tissues where calcification occurs, thus achieving a homeostasis. This capacity to control the conditions for calcification at the organism scale may therefore buffer the full impacts of ocean acidification on an organism scale, although this might be at a cost to the individual. Furthermore, in some areas, calcifiers may potentially benefit from changes to ambient seawater pH, where photosynthetic organisms drawdown CO2.

  1. Contemporary formulation and distribution practices for cold-filled acid products: Australian industry survey and modeling of published pathogen inactivation data.

    PubMed

    Chapman, B; Scurrah, K J; Ross, T

    2010-05-01

    A survey of 12 Australian manufacturers indicated that mild-tasting acids and preservatives are used to partially replace acetic acid in cold-filled acid dressings and sauces. In contrast to traditional ambient temperature distribution practices, some manufacturers indicated that they supply the food service sector with cold-filled acid products prechilled for incorporation into ready-to-eat foods. The Comité des Industries des Mayonnaises et Sauces Condimentaires de la Communauté Economique Européenne (CIMSCEE) Code, a formulation guideline used by the industry to predict the safety of cold-filled acid formulations with respect to Salmonella enterica and Escherichia coli, does not extend to the use of acids and preservatives other than acetic acid nor does it consider the effects of chill distribution. We found insufficient data in the published literature to comprehensively model the response of S. enterica and E. coli to all of the predictor variables (i.e., pH, acetic acid, NaCl, sugars, other acids, preservatives, and storage temperature) of relevance for contemporary cold-filled acid products in Australia. In particular, we noted a lack of inactivation data for S. enterica at aqueous-phase NaCl concentrations of >3% (wt/wt). However, our simple models clearly identified pH and 1/absolute temperature of storage as the most important variables generally determining inactivation. To develop robust models to predict the effect of contemporary formulation and storage variables on product safety, additional empirical data are required. Until such models are available, our results support challenge testing of cold-filled acid products to ascertain their safety, as suggested by the CIMSCEE, but suggest consideration of challenging with both E. coli and S. enterica at incubation temperatures relevant to intended product distribution temperatures.

  2. Graphic Representation of Carbon Dioxide Equilibria in Biological Systems.

    ERIC Educational Resources Information Center

    Kindig, Neal B.; Filley, Giles F.

    1983-01-01

    The log C-pH diagram is a useful means of displaying quantitatively the many variables (including temperature) that determine acid-base equilibria in biological systems. Presents the diagram as extended to open/closed biological systems and derives a new water-ion balance method for determining equilibrium pH. (JN)

  3. Impact of change in climate and policy from 1988 to 2007 on environmental and microbial variables at the time series station Boknis Eck, Baltic Sea

    NASA Astrophysics Data System (ADS)

    Hoppe, H.-G.; Giesenhagen, H. C.; Koppe, R.; Hansen, H.-P.; Gocke, K.

    2012-12-01

    Phytoplankton and bacteria are sensitive indicators of environmental change. The temporal development of these key organisms was monitored from 1988 to the end of 2007 at the time series station Boknis Eck in the Western Baltic Sea. This period was characterized by the adaption of the Baltic Sea ecosystem to changes in the environmental conditions caused by the collapse and conversion of the political system in the Southern and Eastern Border States, accompanied by the general effects of global climate change. Measured variables were chlorophyll, primary production, bacteria number, -biomass and -production, glucose turnover rate, macro-nutrients, pH, temperature and salinity. Negative trends with time were recorded for chlorophyll, the bacterial variables, nitrate, ammonia, phosphate, silicate, oxygen and salinity while temperature, pH, and the ratio between bacteria numbers and chlorophyll increased. The strongest reductions with time occurred for the annual maximum values, e.g. for chlorophyll during the spring bloom or for nitrate during winter, while the annual minimum values remained more stable. In deep water above sediment the negative trends of oxygen, nitrate, phosphate and bacterial variables as well as the positive trend of temperature were similar to those in the surface while the trends of salinity, ammonia and silicate were opposite to those in the surface. Decreasing oxygen even in the surface layer was of particular interest because it suggested enhanced recycling of nutrients from the deep hypoxic zones to the surface by vertical mixing. In the long run all variables correlated positively with temperature, except chlorophyll and salinity. Salinity correlated negatively with all bacterial variables as well as precipitation and positively with chlorophyll. Surprisingly, bacterial variables did not correlate with chlorophyll which may be inherent with the time lag between the peaks of phytoplankton and bacteria during spring. Compared to the 20-yr averages of the environmental and microbial variables, the strongest negative deviations of corresponding annual averages were measured about ten years after political change for nitrate and bacterial secondary production (~ -60%), followed by chlorophyll (-50%) and bacterial biomass (-40%). Considering the circulation of surface currents in the Baltic Sea we conclude that the improved management of water resources after 1989 together with the trends of the climate variables salinity and temperature were responsible for the observed patterns of the microbial variables at the Boknis Eck time series station.

  4. Manipulation of the apoplastic pH of intact plants mimics stomatal and growth responses to water availability and microclimatic variation.

    PubMed

    Wilkinson, Sally; Davies, William J

    2008-01-01

    The apoplastic pH of intact Forsythiaxintermedia (cv. Lynwood) and tomato (Solanum lycopersicum) plants has been manipulated using buffered foliar sprays, and thereby stomatal conductance (g(s)), leaf growth rate, and plant water loss have been controlled. The more alkaline the pH of the foliar spray, the lower the g(s) and/or leaf growth rate subsequently measured. The most alkaline pH that was applied corresponds to that measured in sap extracted from shoots of tomato and Forsythia plants experiencing, respectively, soil drying or a relatively high photon flux density (PFD), vapour pressure deficit (VPD), and temperature in the leaf microclimate. The negative correlation between PFD/VPD/temperature and g(s) determined in well-watered Forsythia plants exposed to a naturally varying summer microclimate was eliminated by spraying the plants with relatively alkaline but not acidic buffers, providing evidence for a novel pH-based signalling mechanism linking the aerial microclimate with stomatal aperture. Increasing the pH of the foliar spray only reduced g(s) in plants of the abscisic acid (ABA)-deficient flacca mutant of tomato when ABA was simultaneously sprayed onto leaves or injected into stems. In well-watered Forsythia plants exposed to a naturally varying summer microclimate (variable PFD, VPD, and temperature), xylem pH and leaf ABA concentration fluctuated but were positively correlated. Manipulation of foliar apoplastic pH also affected the response of g(s) and leaf growth to ABA injected into stems of intact Forsythia plants. The techniques used here to control physiology and water use in intact growing plants could easily be applied in a horticultural context.

  5. Relative effect of temperature and pH on diel cycling of dissolved trace elements in prickly pear creek, Montana

    USGS Publications Warehouse

    Jones, Clain A.; Nimick, D.A.; McCleskey, R. Blaine

    2004-01-01

    Diel (24 hr) cycles in dissolved metal and As concentrations have been documented in many northern Rocky Mountain streams in the U.S.A. The cause(s) of the cycles are unknown, although temperature- and pH-dependent sorption reactions have been cited as likely causes. A light/dark experiment was conducted to isolate temperature and pH as variables affecting diel metal cycles in Prickly Pear Creek, Montana. Light and dark chambers containing sediment and a strand of macrophyte were placed in the stream to simulate instream temperature oscillations. Photosynthesis-induced pH changes were allowed to proceed in the light chambers while photosynthesis was prevented in the dark chambers. Water samples were collected periodically for 22 hr in late July 2001 from all chambers and the stream. In the stream, dissolved Zn concentrations increased by 300% from late afternoon to early morning, while dissolved As concentrations exhibited the opposite pattern, increasing 33% between early morning and late afternoon. Zn and As concentrations in the light chambers showed similar, though less pronounced, diel variations. Conversely, Zn and As concentrations in the dark chambers had no obvious diel variation, indicating that light, or light-induced reactions, caused the variation. Temperature oscillations were nearly identical between light and dark chambers, strongly suggesting that temperature was not controlling the diel variations. As expected, pH was negatively correlated (P < 0.01) with dissolved Zn concentrations and positively correlated with dissolved As concentrations in both the light and dark chambers. From these experiments, photosynthesis-induced pH changes were determined to be the major cause of the diel dissolved Zn and As cycles in Prickly Pear Creek. Further research is necessary in other streams to verify that this finding is consistent among streams having large differences in trace-element concentrations and mineralogy of channel substrate. ?? 2004 Kluwer Academic Publishers.

  6. Quality by design approach for understanding the critical quality attributes of cyclosporine ophthalmic emulsion.

    PubMed

    Rahman, Ziyaur; Xu, Xiaoming; Katragadda, Usha; Krishnaiah, Yellela S R; Yu, Lawrence; Khan, Mansoor A

    2014-03-03

    Restasis is an ophthalmic cyclosporine emulsion used for the treatment of dry eye syndrome. There are no generic products for this product, probably because of the limitations on establishing in vivo bioequivalence methods and lack of alternative in vitro bioequivalence testing methods. The present investigation was carried out to understand and identify the appropriate in vitro methods that can discriminate the effect of formulation and process variables on critical quality attributes (CQA) of cyclosporine microemulsion formulations having the same qualitative (Q1) and quantitative (Q2) composition as that of Restasis. Quality by design (QbD) approach was used to understand the effect of formulation and process variables on critical quality attributes (CQA) of cyclosporine microemulsion. The formulation variables chosen were mixing order method, phase volume ratio, and pH adjustment method, while the process variables were temperature of primary and raw emulsion formation, microfluidizer pressure, and number of pressure cycles. The responses selected were particle size, turbidity, zeta potential, viscosity, osmolality, surface tension, contact angle, pH, and drug diffusion. The selected independent variables showed statistically significant (p < 0.05) effect on droplet size, zeta potential, viscosity, turbidity, and osmolality. However, the surface tension, contact angle, pH, and drug diffusion were not significantly affected by independent variables. In summary, in vitro methods can detect formulation and manufacturing changes and would thus be important for quality control or sameness of cyclosporine ophthalmic products.

  7. Impact of change in climate and policy from 1988 to 2007 on environmental and microbial variables at the time series station Boknis Eck, Baltic Sea

    NASA Astrophysics Data System (ADS)

    Hoppe, H.-G.; Giesenhagen, H. C.; Koppe, R.; Hansen, H.-P.; Gocke, K.

    2013-07-01

    Phytoplankton and bacteria are sensitive indicators of environmental change. The temporal development of these key organisms was monitored from 1988 to the end of 2007 at the time series station Boknis Eck in the western Baltic Sea. This period was characterized by the adaption of the Baltic Sea ecosystem to changes in the environmental conditions caused by the conversion of the political system in the southern and eastern border states, accompanied by the general effects of global climate change. Measured variables were chlorophyll, primary production, bacteria number, -biomass and -production, glucose turnover rate, macro-nutrients, pH, temperature and salinity. Negative trends with time were recorded for chlorophyll, bacteria number, bacterial biomass and bacterial production, nitrate, ammonia, phosphate, silicate, oxygen and salinity while temperature, pH, and the ratio between bacteria numbers and chlorophyll increased. Strongest reductions with time occurred for the annual maximum values, e.g. for chlorophyll during the spring bloom or for nitrate during winter, while the annual minimum values remained more stable. In deep water above sediment the negative trends of oxygen, nitrate, phosphate and bacterial variables as well as the positive trend of temperature were similar to those in the surface while the trends of salinity, ammonia and silicate were opposite to those in the surface. Decreasing oxygen, even in the surface layer, was of particular interest because it suggested enhanced recycling of nutrients from the deep hypoxic zones to the surface by vertical mixing. The long-term seasonal patterns of all variables correlated positively with temperature, except chlorophyll and salinity. Salinity correlated negatively with all bacterial variables (as well as precipitation) and positively with chlorophyll. Surprisingly, bacterial variables did not correlate with chlorophyll, which may be inherent with the time lag between the peaks of phytoplankton and bacteria during spring. Compared to the 20-yr averages of the environmental and microbial variables, the strongest negative deviations of corresponding annual averages were measured about ten years after political change for nitrate and bacterial secondary production (~ -60%), followed by chlorophyll (-50%) and bacterial biomass (-40%). Considering the circulation of surface currents in the Baltic Sea we interpret the observed patterns of the microbial variables at the Boknis Eck time series station as a consequence of the improved management of water resources after 1989 and - to a minor extent - the trends of the climate variables salinity and temperature.

  8. Localized environmental control on the distribution of brGDGTs in Chinese soils: Implication for paleo-pH reconstruction

    NASA Astrophysics Data System (ADS)

    Zheng, F.; Chen, Y.; Li, F.; Ma, C.; Zhu, Y.; Zhang, C. L.

    2014-12-01

    Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are unique bacterial lipids that commonly occur in soil and peat bog. The methylation and cyclization degrees of brGDGTs, expressed as MBT and CBT, respectively, are mainly controlled by mean annual air temperature (MAAT) and soil pH. However, the brGDGT-derived temperatures scatter widely compared to actual MAATs in both regional and global calibrations. In this study, we collected 297 soil samples from diverse regions of China (Lanzhou, Guangzhou, Shanghai, Yunnan, Dongying and Tibetan Plateau) in order to identify environmental variables that control the distribution of brGDGTs locally. The results show that MBT correlated positively with MAAT under the global calibration framework; however, large variation in MBT occurred for a given MAAT for individual regions. When confined within a specific region, MBT index positively correlated with conductivity in Dongying soils and negatively with pH in Yunnan and Guangzhou soils. Removing GDGT-II from CBT calculation resulted in a revised CBT index that provides more accurate estimation of pH (R2=0.79 vs 0.67), especially in alkaline soils. In addition, the combination of MBT and revised CBT also improves the estimation of soil pH (R2 =0.79) than the original CBT index alone (R2=0.67). Our results demonstrate that brGDGTs-derived proxies may be more reliable for estimating paleo-soil pH than paleo-continental temperature.

  9. Sensitivity of cell-based biosensors to environmental variables.

    PubMed

    Gilchrist, Kristin H; Giovangrandi, Laurent; Whittington, R Hollis; Kovacs, Gregory T A

    2005-01-15

    Electrically active living cells cultured on extracellular electrode arrays are utilized to detect biologically active agents. Because cells are highly sensitive to environmental conditions, environmental fluctuations can elicit cellular responses that contribute to the noise in a cell-based biosensor system. Therefore, the characterization and control of environmental factors such as temperature, pH, and osmolarity is critical in such a system. The cell-based biosensor platform described here utilizes the measurement of action potentials from cardiac cells cultured on electrode arrays. A recirculating fluid flow system is presented for use in dose-response experiments that regulates temperature within +/-0.2 degrees C, pH to within +/-0.05 units, and allows no significant change in osmolarity. Using this system, the relationship between the sensor output parameters and environmental variation was quantified. Under typical experimental conditions, beat rate varied approximately 10% per degree change in temperature or per 0.1 unit change in pH. Similar relationships were measured for action potential amplitude, duration, and conduction velocity. For the specific flow system used in this work, the measured environmental sensitivity resulted in an overall beat rate variation of +/-4.7% and an overall amplitude variation of +/-3.3%. The magnitude of the noise due to environmental sensitivity has a large impact on the detection capability of the cell-based system. The significant responses to temperature, pH, and osmolarity have important implications for the use of living cells in detection systems and should be considered in the design and evaluation of such systems.

  10. The effect of oxidant addition on ferrous iron removal from multi-element acidic sulphate solutions

    NASA Astrophysics Data System (ADS)

    Mbedzi, Ndishavhelafhi; Ibana, Don; Dyer, Laurence; Browner, Richard

    2017-01-01

    This study was an investigation on the hydrolytic precipitation of iron from simulated pregnant leach solution (PLS) of nickel laterite atmospheric leaching. The effect of equilibrium pH, temperature and the addition of oxidant on total iron (ferrous (Fe (II)) and ferric (Fe (III)), aluminium and chromium removal was investigated together with the associated nickel and cobalt losses to the precipitate. Systematic variations of the experimental variables revealed ≥99% of the ferric iron can be removed from solution at conditions similar to those used in standard partial neutralisation in zinc and nickel production, pH of 2.5 and temperature less than 100 °C with minimal losses (<0.5%) of both nickel and cobalt. Temperature variation from 55 to 90 °C had no significant effect on the magnitude of Fe (III) precipitation but led to a significant increase in aluminium removal from 67% to 95% and improved the filterability of the precipitates. There was no ferrous iron precipitation even at a pH of 3.75 in the absence of an oxidant with its removal (98%) achieved by oxidative precipitation with oxygen gas at pH 3.5. Unlike Fe (III) precipitation, the operating temperature significantly affects oxidative precipitation of Fe (II). Hence, in practical application, the hydrolytic precipitation and oxidation to remove iron must be operated at 85 °C to ensure both ferrous and ferric iron are precipitated.

  11. Simulation of stimuli-triggered release of molecular species from halloysite nanotubes

    NASA Astrophysics Data System (ADS)

    Elumalai, Divya Narayan; Tully, Joshua; Lvov, Yuri; Derosa, Pedro A.

    2016-10-01

    A Monte Carlo model is used to study the effect of environmental variables (pH and temperature) on the transport and release of dexamethasone molecules from Halloysite Nanotubes (HNTs) in a dielectric fluid medium. The model used for this study was introduced elsewhere and it is based on basic physics interactions without experimental parameters for these interactions. An intermediate phase between the burst and saturation phase is found and explained. Molecules experience a 1-D diffusion process that is different from the diffusion in the burst phase or the surface diffusion experienced by molecules attached to the wall. It is predicted that this phase exists when the molecule-wall interaction is attractive but not always noticeable in the release profile. In this work, it is shown that an agreement with the experiment better than previously reported is obtained when simulated delivery curves are produced by the weighted average of the release profiles from a collection of HNTs with diameters and lengths distributed according to the experimental sample, highlighting the relevance of HNTs' morphology in the release. HNTs are suitable for environment-triggered release and thus the effect of temperature, molecule zeta potential, and pH is studied. It is observed that for temperatures that significantly differ from room temperature (by 100's of degrees), the release profile changes significantly, increasing the delivery speed at high temperature and reducing that speed at low temperature. Finally, it is observed that as the pH becomes more acidic, both the molecule and inner wall surface become more positive (or less negative) with both eventually becoming positive leading to a repulsive interaction; thus, molecules are pushed out by electrostatic repulsion. On the contrary, as the pH becomes more basic, positive molecules become more positive while the wall becomes less negative, but even at pH 12, the wall remains negative and the interaction is attractive. Changes in pH between different regions may act as a trigger for delivery or as a control in the delivery rate.

  12. The effect of yeast weight and temperature on ethanol production from sorghum and iles-iles flour

    NASA Astrophysics Data System (ADS)

    Kusmiyati, Shitophyta, Lukhi Mulia

    2015-12-01

    An increased of human need that spend a lot of energy, especially fuel resulting in excessive energy consumption. Therefore, the existence of alternative energy that renewable and environmentally friendly, such as bioethanol is required. In this study the use of sorghum and iles-iles as raw materials for bioethanol production were investigated. The variables studied were the saccharification time, weight of dry yeast Saccharomyces cerevisiae added in the starter culture (2.5, 5, 10, 15, 20 g) and fermentation temperature (30, 35, 40, 45, 50°C). Bioethanol production consisted of the enzymatic hydrolysis (liquefaction and saccharification), and fermentation. For liquefaction, 1.6% v/w α-amylase enzyme, 1 hour, T = 95-100° C, pH 6 were used. For saccharification, 3.2% v/w b-amylase enzyme, time 4,8,24,48 hours, T = 60°C, pH 5 were used. For fermentation, Saccharomyces cerevisiae yeast were used with conditions of time for 120 hours, pH 4.5. The effect of dry yeast weight and fermentation temperature indicated that 15 g yeast weight and temperature 30° C were found to be the best condition which resulted the highest ethanol concentration of 85.20 g/L and 79.94 g/L for sorghum and iles-iles flour, respectively.

  13. Rheological Behavior, Granule Size Distribution and Differential Scanning Calorimetry of Cross-Linked Banana (Musa paradisiaca) Starch.

    NASA Astrophysics Data System (ADS)

    Núñez-Santiago, María C.; Maristany-Cáceres, Amira J.; Suárez, Francisco J. García; Bello-Pérez, Arturo

    2008-07-01

    Rheological behavior at 60 °C, granule size distribution and Differential Scanning Calorimetry (DSC) tests were employed to study the effect of diverse reaction conditions: adipic acid concentration, pH and temperature during cross-linking of banana (Musa paradisiaca) starch. These properties were determined in native banana starch pastes for the purpose of comparison. Rheological behavior from pastes of cross-linked starch at 60 °C did not show hysteresis, probably due the cross-linkage of starch that avoided disruption of granules, elsewhere, native starch showed hysteresis in a thixotropic loop. All pastes exhibited non-Newtonian shear thinning behavior. In all cases, size distribution showed a decrease in the median diameter in cross-linked starches. This condition produces a decrease in swelling capacity of cross-linked starch. The median diameter decreased with an increase of acid adipic concentration; however, an increase of pH and Temperature produced an increase in this variable. Finally, an increase in gelatinization temperature and entalphy (ΔH) were observed as an effect of cross-linkage. An increase in acid adipic concentration produced an increase in Tonset and a decrease in ΔH. pH and temperature. The cross-linked of banana starch produced granules more resistant during the pasting procedure.

  14. Climate-water quality relationships in Texas reservoirs

    USGS Publications Warehouse

    Gelca, Rodica; Hayhoe, Katharine; Scott-Fleming, Ian; Crow, Caleb; Dawson, D.; Patino, Reynaldo

    2015-01-01

    Water temperature, dissolved oxygen, and concentrations of salts in surface water bodies can be affected by the natural environment, local human activities such as surface and ground water withdrawals, land use, and energy extraction, and variability and long-term trends in atmospheric conditions including temperature and precipitation. Here, we quantify the relationship between 121 indicators of mean and extreme temperature and precipitation and 24 water quality parameters in 57 Texas reservoirs using observational data records covering the period 1960 to 2010. We find that water temperature, dissolved oxygen, pH, specific conductance, chloride, sulfate, and phosphorus all show consistent correlations with atmospheric predictors, including high and low temperature extremes, dry days, heavy precipitation events, and mean temperature and precipitation over time scales ranging from one week to two years. Based on this analysis and published future projections for this region, we expect climate change to increase water temperatures, decrease dissolved oxygen levels, decrease pH, increase specific conductance, and increase levels of sulfate, chloride in Texas reservoirs. Over decadal time scales, this may affect aquatic ecosystems in the reservoirs, including altering the risk of conditions conducive to algae occurrence, as well as affecting the quality of water available for human consumption and recreation.

  15. Actinide Corroles: Synthesis and Characterization of Thorium(IV) and Uranium(IV) bis(-chloride) Dimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Ashleigh L.; Buckley, Heather L.; Gryko, Daniel T.

    2013-12-01

    The first synthesis and structural characterization of actinide corroles is presented. Thorium(IV) and uranium(IV) macrocycles of Mes2(p-OMePh)corrole were synthesised and characterized by single-crystal X-ray diffraction, UV-Visible spectroscopy, variable-temperature 1H NMR, ESI mass spectrometry and cyclic voltammetry.

  16. Calibrations between the variables of microbial TTI response and ground pork qualities.

    PubMed

    Kim, Eunji; Choi, Dong Yeol; Kim, Hyun Chul; Kim, Keehyuk; Lee, Seung Ju

    2013-10-01

    A time-temperature indicator (TTI) based on a lactic acid bacterium, Weissella cibaria CIFP009, was applied to ground pork packaging. Calibration curves between TTI response and pork qualities were obtained from storage tests at 2°C, 10°C, and 13°C. The curves of the TTI vs. total cell number at different temperatures coincided to the greatest extent, indicating the highest representativeness of calibration, by showing the least coefficient of variance (CV=11%) of the quality variables at a given TTI response (titratable acidity) on the curves, followed by pH (23%), volatile basic nitrogen (VBN) (25%), and thiobarbituric acid-reactive substances (TBARS) (47%). Similarity of Arrhenius activation energy (Ea) could also reflect the representativeness of calibration. The total cell number (104.9 kJ/mol) was found to be the most similar to that of the TTI response (106.2 kJ/mol), followed by pH (113.6 kJ/mol), VBN (77.4 kJ/mol), and TBARS (55.0 kJ/mol). Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Lysine and novel hydroxylysine lipids in soil bacteria: amino acid membrane lipid response to temperature and pH in Pseudopedobacter saltans

    PubMed Central

    Moore, Eli K.; Hopmans, Ellen C.; Rijpstra, W. Irene C.; Sánchez-Andrea, Irene; Villanueva, Laura; Wienk, Hans; Schoutsen, Frans; Stams, Alfons J. M.; Sinninghe Damsté, Jaap S.

    2015-01-01

    Microbial decomposition of organic matter is an essential process in the global carbon cycle. The soil bacteria Pseudopedobacter saltans and Flavobacterium johnsoniae are both able to degrade complex organic molecules, but it is not fully known how their membrane structures are adapted to their environmental niche. The membrane lipids of these species were extracted and analyzed using high performance liquid chromatography-electrospray ionization/ion trap/mass spectrometry (HPLC-ESI/IT/MS) and high resolution accurate mass/mass spectrometry (HRAM/MS). Abundant unknown intact polar lipids (IPLs) from P. saltans were isolated and further characterized using amino acid analysis and two dimensional nuclear magnetic resonance (NMR) spectroscopy. Ornithine IPLs (OLs) with variable (hydroxy) fatty acid composition were observed in both bacterial species. Lysine-containing IPLs (LLs) were also detected in both species and were characterized here for the first time using HPLC-MS. Novel LLs containing hydroxy fatty acids and novel hydroxylysine lipids with variable (hydroxy) fatty acid composition were identified in P. saltans. The confirmation of OL and LL formation in F. johnsoniae and P. saltans and the presence of OlsF putative homologs in P. saltans suggest the OlsF gene coding protein is possibly involved in OL and LL biosynthesis in both species, however, potential pathways of OL and LL hydroxylation in P. saltans are still undetermined. Triplicate cultures of P. saltans were grown at three temperature/pH combinations: 30°C/pH 7, 15°C/pH 7, and 15°C/pH 9. The fractional abundance of total amino acid containing IPLs containing hydroxylated fatty acids was significantly higher at higher temperature, and the fractional abundance of lysine-containing IPLs was significantly higher at lower temperature and higher pH. These results suggest that these amino acid-containing IPLs, including the novel hydroxylysine lipids, could be involved in temperature and pH stress response of soil bacteria. PMID:26175720

  18. Experimental design data for the biosynthesis of citric acid using Central Composite Design method.

    PubMed

    Kola, Anand Kishore; Mekala, Mallaiah; Goli, Venkat Reddy

    2017-06-01

    In the present investigation, we report that statistical design and optimization of significant variables for the microbial production of citric acid from sucrose in presence of filamentous fungi A. niger NCIM 705. Various combinations of experiments were designed with Central Composite Design (CCD) of Response Surface Methodology (RSM) for the production of citric acid as a function of six variables. The variables are; initial sucrose concentration, initial pH of medium, fermentation temperature, incubation time, stirrer rotational speed, and oxygen flow rate. From experimental data, a statistical model for this process has been developed. The optimum conditions reported in the present article are initial concentration of sucrose of 163.6 g/L, initial pH of medium 5.26, stirrer rotational speed of 247.78 rpm, incubation time of 8.18 days, fermentation temperature of 30.06 °C and flow rate of oxygen of 1.35 lpm. Under optimum conditions the predicted maximum citric acid is 86.42 g/L. The experimental validation carried out under the optimal values and reported citric acid to be 82.0 g/L. The model is able to represent the experimental data and the agreement between the model and experimental data is good.

  19. Integration and application of optical chemical sensors in microbioreactors.

    PubMed

    Gruber, Pia; Marques, Marco P C; Szita, Nicolas; Mayr, Torsten

    2017-08-08

    The quantification of key variables such as oxygen, pH, carbon dioxide, glucose, and temperature provides essential information for biological and biotechnological applications and their development. Microfluidic devices offer an opportunity to accelerate research and development in these areas due to their small scale, and the fine control over the microenvironment, provided that these key variables can be measured. Optical sensors are well-suited for this task. They offer non-invasive and non-destructive monitoring of the mentioned variables, and the establishment of time-course profiles without the need for sampling from the microfluidic devices. They can also be implemented in larger systems, facilitating cross-scale comparison of analytical data. This tutorial review presents an overview of the optical sensors and their technology, with a view to support current and potential new users in microfluidics and biotechnology in the implementation of such sensors. It introduces the benefits and challenges of sensor integration, including, their application for microbioreactors. Sensor formats, integration methods, device bonding options, and monitoring options are explained. Luminescent sensors for oxygen, pH, carbon dioxide, glucose and temperature are showcased. Areas where further development is needed are highlighted with the intent to guide future development efforts towards analytes for which reliable, stable, or easily integrated detection methods are not yet available.

  20. A Statistical Approach for Optimization of Simultaneous Production of β-Glucosidase and Endoglucanase by Rhizopus oryzae from Solid-State Fermentation of Water Hyacinth Using Central Composite Design

    PubMed Central

    Karmakar, Moumita; Ray, Rina Rani

    2011-01-01

    The production cost of β-glucosidase and endoglucanase could be reduced by using water hyacinth, an aquatic weed, as the sole carbon source and using cost-efficient fermentation strategies like solid-state fermentation (SSF). In the present study, the effect of different production conditions on the yield of β-glucosidase and endoglucanase by Rhizopus oryzae MTCC 9642 from water hyacinth was investigated systematically using response surface methodology. A Central composite experimental design was applied to optimize the impact of three variables, namely, substrate concentration, pH, and temperature, on enzyme production. The optimal level of each parameter for maximum enzyme production by the fungus was determined. Highest activity of endoglucanase of 495 U/mL was achieved at a substrate concentration of 1.23%, pH 7.29, and temperature 29.93°C whereas maximum β-glucosidase activity of 137.32 U/ml was achieved at a substrate concentration of 1.25%, pH 6.66, and temperature 32.09°C. There was a direct correlation between the levels of enzymatic activities and the substrate concentration of water hyacinth as carbon source. PMID:21687577

  1. Shifts in leaf litter breakdown along a forest-pasture-urban gradient in Andean streams.

    PubMed

    Iñiguez-Armijos, Carlos; Rausche, Sirkka; Cueva, Augusta; Sánchez-Rodríguez, Aminael; Espinosa, Carlos; Breuer, Lutz

    2016-07-01

    Tropical montane ecosystems of the Andes are critically threatened by a rapid land-use change which can potentially affect stream variables, aquatic communities, and ecosystem processes such as leaf litter breakdown. However, these effects have not been sufficiently investigated in the Andean region and at high altitude locations in general. Here, we studied the influence of land use (forest-pasture-urban) on stream physico-chemical variables (e.g., water temperature, nutrient concentration, and pH), aquatic communities (macroinvertebrates and aquatic fungi) and leaf litter breakdown rates in Andean streams (southern Ecuador), and how variation in those stream physico-chemical variables affect macroinvertebrates and fungi related to leaf litter breakdown. We found that pH, water temperature, and nutrient concentration increased along the land-use gradient. Macroinvertebrate communities were significantly different between land uses. Shredder richness and abundance were lower in pasture than forest sites and totally absent in urban sites, and fungal richness and biomass were higher in forest sites than in pasture and urban sites. Leaf litter breakdown rates became slower as riparian land use changed from natural to anthropogenically disturbed conditions and were largely determined by pH, water temperature, phosphate concentration, fungal activity, and single species of leaf-shredding invertebrates. Our findings provide evidence that leaf litter breakdown in Andean streams is sensitive to riparian land-use change, with urban streams being the most affected. In addition, this study highlights the role of fungal biomass and shredder species (Phylloicus; Trichoptera and Anchytarsus; Coleoptera) on leaf litter breakdown in Andean streams and the contribution of aquatic fungi in supporting this ecosystem process when shredders are absent or present low abundance in streams affected by urbanization. Finally, we summarize important implications in terms of managing of native vegetation and riparian buffers to promote ecological integrity and functioning of tropical Andean stream ecosystems.

  2. Polymer performance in cooling water: The influence of process variables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amjad, Z.; Pugh, J.; Zibrida, J.

    1997-01-01

    The key to the efficacy of phosphate and phosphonates in stabilized phosphate and all-organic cooling water treatment (CWT) programs is the presence and performance of polymeric inhibitors/dispersants. The performance of polymeric additives used in CWT programs can be adversely impacted by the presence of iron, phosphonate, or cationic polymer and influenced by a variety of process variables including system pH and temperature. In this article, the performance of several polymeric additives is evaluated under a variety of stressed conditions.

  3. Polymer performance in cooling water: The influence of process variables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amjad, Z.; Pugh, J.; Zibrida, J.

    1996-12-01

    The key to the efficacy of phosphate and phosphonates in stabilized phosphate and all-organic cooling water treatment (CWT) programs is the presence and performance of polymeric inhibitors/dispersants. The performance of polymeric additives used in CWT programs can be adversely impacted by the presence of iron, phosphonate, or cationic polymer and influenced by a variety of process variables including system pH and temperature. In this paper, the performance of several polymeric additives is evaluated under a variety of stressed conditions.

  4. Controlling acrylamide in French fry and potato chip models and a mathematical model of acrylamide formation: acrylamide: acidulants, phytate and calcium.

    PubMed

    Park, Yeonhwa; Yang, Heewon; Storkson, Jayne M; Albright, Karen J; Liu, Wei; Lindsay, Robert C; Pariza, Michael W

    2005-01-01

    We previously reported that in potato chip and French fry models, the formation of acrylamide can be reduced by controlling pH during processing steps, either by organic (acidulants) or inorganic acids. Use of phytate, a naturally occurring chelator, with or without Ca++ (or divalent ions), can reduce acrylamide formation in both models. However, since phytate itself is acidic, the question remains as to whether the effect of phytate is due to pH alone or to additional effects. In the French fry model, the effects on acrylamide formation of pH, phytate, and/or Ca++ in various combinations were tested in either blanching or soaking (after blanching) steps. All treatments significantly reduced acrylamide levels compared to control. Among variables tested, pH may be the single most important factor for reducing acrylamide levels, while there were independent effects of phytate and/or Ca++ in this French fry model. We also developed a mathematical formula to estimate the final concentration of acrylamide in a potato chip model, using variables that can affect acrylamide formation: glucose and asparagine concentrations, cut potato surface area and shape, cooking temperature and time, and other processing conditions.

  5. [Production and partial characterization of beta-galactosidase from Kluyveromyces lactis grown in deproteinized whey].

    PubMed

    Ramírez Matheus, Alejandra O; Rivas, Nilo

    2003-06-01

    The purpose of this work was to optimize the beta-galactosidase production by Kluyveromyces lactis, applying the Surface Response Methodology (SRM) and using deproteinized whey as fermentation medium. An Orthogonal Central Compound Design (OCCD) was used without repetition, with four factors: temperature, pH, agitation speed and fermentation time. Then, enzyme activity (U/ml) as response variable was used. Thirty trials in twenty-five treatments, with six repetitions at the central point, were carried out, in a New Brunswick Bioflo 2000 fermentor with a volume of 2 liters. The deproteinized whey obtained by thermocoagulation was chemically analyzed. The results were: moisture 93.83%, total solids 6.17%, protein 0.44%, lactose 4.85%, acidity 0.43% and pH 4.58. The best conditions in the enzyme production were: temperature 30.3 degrees C, pH 4.68, agitation speed 191 r.p.m. and fermentation time 18.5 h. with an enzyme production of 8.3 U/ml. The degree of purification obtained was 7.4 times and the yield was 50.8%. The purified enzyme had an optimum temperature of 60 degrees C and a pH of 6.2. This work shows that the yeast Kluyveromyces lactis grown in deproteinized whey is able to produce the enzyme beta-galactosidase and SRM can be used in the fermentology processes, specifically in determining the best suitable operation conditions.

  6. Lethal levels of selected water quality variables to larval and juvenile Lost River and shortnose suckers

    USGS Publications Warehouse

    Saiki, M.K.; Monda, D.P.; Bellerud, B.L.

    1999-01-01

    Resource managers hypothesize that occasional fish kills during summer-early fall in Upper Klamath Lake, Oregon, may be linked to unfavorable water quality conditions created by massive algal blooms. In a preliminary effort to address this concern, short-term (96-h-long) laboratory tests were conducted with larval and juvenile Lost River (Deltistes luxatus) and shortnose (Chasmistes brevirostris) suckers to determine the upper median lethal concentrations (LC50s; also referred to as median tolerance limits) for pH, un-ionized ammonia, and water temperature, and the lower LC50s for dissolved oxygen. The mean LC50s varied among species and life stages as follows: for pH, 10.30-10.39; for un-ionized ammonia, 0.48-1.06 mg litre-1; for temperature, 30.35-31.82??C; and for dissolved oxygen, 1.34-2.10 mg litre-1. Comparisons of 95% confidence limits indicated that, on average, the 96-h LC50s were not significantly different from those computed for shorter exposure times (i.e., 24 h, 48 h, and 72 h). According to two-way analysis of variance, LC50s for the four water quality variables did not vary significantly (p > 0.05) between fish species. However, LC50s for pH (exposure times of 24 h and 48 h) and dissolved oxygen (exposure times of 48 h, 72 h, and 96 h) differed significantly (p ??? 0.05) between life stages, whereas LC50s for un-ionized ammonia and water temperature did not exhibit significant differences. In general, larvae were more sensitive than juveniles to high pH and low dissolved oxygen concentrations. When compared to ambient water quality conditions in Upper Klamath Lake, our results strongly suggest that near-anoxic conditions associated with the senescence phase of algal blooms are most likely to cause high mortalities of larval and juvenile suckers.

  7. Ocean warming ameliorates the negative effects of ocean acidification on Paracentrotus lividus larval development and settlement.

    PubMed

    García, Eliseba; Clemente, Sabrina; Hernández, José Carlos

    2015-09-01

    Ocean warming and acidification both impact marine ecosystems. All organisms have a limited body temperature range, outside of which they become functionally constrained. Beyond the absolute extremes of this range, they cannot survive. It is hypothesized that some stressors can present effects that interact with other environmental variables, such as ocean acidification (OA) that have the potential to narrow the thermal range where marine species are functional. An organism's response to ocean acidification can therefore be highly dependent on thermal conditions. This study evaluated the combined effects of predicted ocean warming conditions and acidification, on survival, development, and settlement, of the sea urchin Paracentrotus lividus. Nine combined treatments of temperature (19.0, 20.5 and 22.5 °C) and pH (8.1, 7.7 and 7.4 units) were carried out. All of the conditions tested were either within the current natural ranges of seawater pH and temperature or are within the ranges that have been predicted for the end of the century, in the sampling region (Canary Islands). Our results indicated that the negative effects of low pH on P. lividus larval development and settlement will be mitigated by a rise in seawater temperature, up to a thermotolerance threshold. Larval development and settlement performance of the sea urchin P. lividus was enhanced by a slight increase in temperature, even under lowered pH conditions. However, the species did show negative responses to the levels of ocean warming and acidification that have been predicted for the turn of the century. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Modeling chlorophyll-a and dissolved oxygen concentration in tropical floodplain lakes (Paraná River, Brazil).

    PubMed

    Rocha, R R A; Thomaz, S M; Carvalho, P; Gomes, L C

    2009-06-01

    The need for prediction is widely recognized in limnology. In this study, data from 25 lakes of the Upper Paraná River floodplain were used to build models to predict chlorophyll-a and dissolved oxygen concentrations. Akaike's information criterion (AIC) was used as a criterion for model selection. Models were validated with independent data obtained in the same lakes in 2001. Predictor variables that significantly explained chlorophyll-a concentration were pH, electrical conductivity, total seston (positive correlation) and nitrate (negative correlation). This model explained 52% of chlorophyll variability. Variables that significantly explained dissolved oxygen concentration were pH, lake area and nitrate (all positive correlations); water temperature and electrical conductivity were negatively correlated with oxygen. This model explained 54% of oxygen variability. Validation with independent data showed that both models had the potential to predict algal biomass and dissolved oxygen concentration in these lakes. These findings suggest that multiple regression models are valuable and practical tools for understanding the dynamics of ecosystems and that predictive limnology may still be considered a powerful approach in aquatic ecology.

  9. Tensile stress rupture behavior of a woven ceramic matrix composite in humid environments at intermediate temperature

    NASA Astrophysics Data System (ADS)

    Larochelle, Kevin J.

    This study focused on moisture and intermediate temperature effects on the embrittlement phenomenon and stress rupture life of the ceramic matrix composite (CMC) made of Sylramic(TM) fibers with an in-situ layer of boron nitride (Syl-iBN), boron nitride interphase (BN), and SiC matrix (Syl-iBN/BN/SiC). Stress rupture tests were performed at 550°C or 750°C with moisture contents of 0.0, 0.2, or 0.6 atm partial pressure of water vapor, pH 2O. The CMC stress rupture strengths at 100 hrs at 550°C with 0.0, 0.2, or 0.6 atm pH2O were 75%, 65% and 51% of the monotonic room temperature tensile strength, respectively. At 750°C, the corresponding strengths were 67%, 51%, and 49%, respectively. Field Emission Scanning Electron Microscopy (FESEM) analysis showed that the amount of pesting by glass formations increased with time, temperature, and pH2O leading to embrittlement. Total embrittlement times for 550°C were estimated to be greater than 63 hrs for 0.0 atm pH2O greater than 38 hrs for 0.2 atm pH 2O and between 8 and 71 hrs for 0.6 atm pH2O. Corresponding estimated embrittlement times for the 750°C were greater than 83 hrs, between 13 and 71 hrs, and between 1 and 6 hrs. A time-dependent, phenomenological, Monte Carlo-type simulation of composite failure was developed. The simulated total embrittlement times for the 550°C cases were 300 hrs, 100 hrs, and 25 hrs for 0.0, 0.2, and 0.6 atm pH 2O, respectively. The corresponding embrittlement times for the 750°C cases were 300 hrs, 20 hrs, and 3 hrs. A detailed sensitivity analysis on the variables used in the model was conducted. The model was most sensitive to variation in the ultimate strength of the CMC at room temperature, the ultimate strength of the CMC at elevated temperature, and the reference strength of a fiber and it was least sensitive to variation in the modulus of elasticity of the matrix and fiber. The sensitivity analysis showed that the stress ruptures curves generated by variation in the total embrittlement time simulate the trends in the experimental data. This research showed that the degree of stress rupture strength degradation increases with temperature, moisture content level, and exposure time.

  10. Dramatic Variability of the Carbonate System at a Temperate Coastal Ocean Site (Beaufort, North Carolina, USA) Is Regulated by Physical and Biogeochemical Processes on Multiple Timescales

    PubMed Central

    Johnson, Zackary I.; Wheeler, Benjamin J.; Blinebry, Sara K.; Carlson, Christina M.; Ward, Christopher S.; Hunt, Dana E.

    2013-01-01

    Increasing atmospheric carbon dioxide (CO2) from anthropogenic sources is acidifying marine environments resulting in potentially dramatic consequences for the physical, chemical and biological functioning of these ecosystems. If current trends continue, mean ocean pH is expected to decrease by ~0.2 units over the next ~50 years. Yet, there is also substantial temporal variability in pH and other carbon system parameters in the ocean resulting in regions that already experience change that exceeds long-term projected trends in pH. This points to short-term dynamics as an important layer of complexity on top of long-term trends. Thus, in order to predict future climate change impacts, there is a critical need to characterize the natural range and dynamics of the marine carbonate system and the mechanisms responsible for observed variability. Here, we present pH and dissolved inorganic carbon (DIC) at time intervals spanning 1 hour to >1 year from a dynamic, coastal, temperate marine system (Beaufort Inlet, Beaufort NC USA) to characterize the carbonate system at multiple time scales. Daily and seasonal variation of the carbonate system is largely driven by temperature, alkalinity and the balance between primary production and respiration, but high frequency change (hours to days) is further influenced by water mass movement (e.g. tides) and stochastic events (e.g. storms). Both annual (~0.3 units) and diurnal (~0.1 units) variability in coastal ocean acidity are similar in magnitude to 50 year projections of ocean acidity associated with increasing atmospheric CO2. The environmental variables driving these changes highlight the importance of characterizing the complete carbonate system rather than just pH. Short-term dynamics of ocean carbon parameters may already exert significant pressure on some coastal marine ecosystems with implications for ecology, biogeochemistry and evolution and this shorter term variability layers additive effects and complexity, including extreme values, on top of long-term trends in ocean acidification. PMID:24358377

  11. Impacts of climate variability and future climate change on harmful algal blooms and human health

    Treesearch

    Stephanie K. Moore; Vera L. Trainer; Nathan J. Mantua; Micaela S. Parker; Edward A. Laws; Lorraine C. Backer; Lora E. Fleming

    2008-01-01

    Anthropogenically-derived increases in atmospheric greenhouse gas concentrations have been implicated in recent climate change, and are projected to substantially impact the climate on a global scale in the future. For marine and freshwater systems, increasing concentrations of greenhouse gases are expected to increase surface temperatures, lower pH, and cause changes...

  12. Non-additive effects of ocean acidification in combination with warming on the larval proteome of the Pacific oyster, Crassostrea gigas.

    PubMed

    Harney, Ewan; Artigaud, Sébastien; Le Souchu, Pierrick; Miner, Philippe; Corporeau, Charlotte; Essid, Hafida; Pichereau, Vianney; Nunes, Flavia L D

    2016-03-01

    Increasing atmospheric carbon dioxide results in ocean acidification and warming, significantly impacting marine invertebrate larvae development. We investigated how ocean acidification in combination with warming affected D-veliger larvae of the Pacific oyster Crassostrea gigas. Larvae were reared for 40h under either control (pH8.1, 20 °C), acidified (pH7.9, 20 °C), warm (pH8.1, 22 °C) or warm acidified (pH7.9, 22 °C) conditions. Larvae in acidified conditions were significantly smaller than in the control, but warm acidified conditions mitigated negative effects on size, and increased calcification. A proteomic approach employing two-dimensional electrophoresis (2-DE) was used to quantify proteins and relate their abundance to phenotypic traits. In total 12 differentially abundant spots were identified by nano-liquid chromatography-tandem mass spectrometry. These proteins had roles in metabolism, intra- and extra-cellular matrix formations, stress response, and as molecular chaperones. Seven spots responded to reduced pH, four to increased temperature, and six to acidification and warming. Reduced abundance of proteins such as ATP synthase and GAPDH, and increased abundance of superoxide dismutase, occurred when both pH and temperature changes were imposed, suggesting altered metabolism and enhanced oxidative stress. These results identify key proteins that may be involved in the acclimation of C. gigas larvae to ocean acidification and warming. Increasing atmospheric CO2 raises sea surface temperatures and results in ocean acidification, two climatic variables known to impact marine organisms. Larvae of calcifying species may be particularly at risk to such changing environmental conditions. The Pacific oyster Crassostrea gigas is ecologically and commercially important, and understanding its ability to acclimate to climate change will help to predict how aquaculture of this species is likely to be impacted. Modest, yet realistic changes in pH and/or temperature may be more informative of how populations will respond to contemporary climate change. We showed that concurrent acidification and warming mitigates the negative effects of pH alone on size of larvae, but proteomic analysis reveals altered patterns of metabolism and an increase in oxidative stress suggesting non-additive effects of the interaction between pH and temperature on protein abundance. Thus, even small changes in climate may influence development, with potential consequences later in life. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Effect of process temperature, pH and suspended solids content upon pasteurization of a model agricultural waste during thermophilic aerobic digestion.

    PubMed

    Ugwuanyi, J O; Harvey, L M; McNeil, B

    1999-09-01

    Thermophilic aerobic digestion(TAD), or liquid composting, is a versatile new process for the treatment and stabilization of high strength wastes of liquid or, perhaps more importantly, slurry consistency. The pattern of inactivation of various pathogenic and indicator organisms was studied using batch digestions under conditions that may be expected to be found in full-scale TAD processes. Rapid inactivation of test populations occurred within the first 10 min from the start of digestion. The inactivation rate was slightly lower when digestions were conducted below 60 degrees C. In some instances, a 'tail' was apparent, possibly indicating the survival of relatively resistant sub-populations particularly in the case of Serratia marcescens and Enterococcus faecalis, or of clumping or attachment of cells to particulate materials. The effect of pH on the inactivation of the test populations depended on the temperature of digestion, but varied with the test population. At 55 degrees C Escherichia coli was more sensitive to temperature effects at pH 7 than at pH 8, but was more sensitive at pH 8, 60 degrees C. The reverse was the case at 60 degrees C for Ent. faecalis. An increase in the solid content of the digesting waste caused a progressive increase in the protection of test organisms from thermal inactivation. Challenging a TAD process with test strains allows (via estimation of D-values) a quantification of the cidal effects of such processes, with a view to manipulating process variables to enhance such effects.

  14. Sensitivity of sea urchin fertilization to pH varies across a natural pH mosaic.

    PubMed

    Kapsenberg, Lydia; Okamoto, Daniel K; Dutton, Jessica M; Hofmann, Gretchen E

    2017-03-01

    In the coastal ocean, temporal fluctuations in pH vary dramatically across biogeographic ranges. How such spatial differences in pH variability regimes might shape ocean acidification resistance in marine species remains unknown. We assessed the pH sensitivity of the sea urchin Strongylocentrotus purpuratus in the context of ocean pH variability. Using unique male-female pairs, originating from three sites with similar mean pH but different variability and frequency of low pH (pH T  ≤ 7.8) exposures, fertilization was tested across a range of pH (pH T 7.61-8.03) and sperm concentrations. High fertilization success was maintained at low pH via a slight right shift in the fertilization function across sperm concentration. This pH effect differed by site. Urchins from the site with the narrowest pH variability regime exhibited the greatest pH sensitivity. At this site, mechanistic fertilization dynamics models support a decrease in sperm-egg interaction rate with decreasing pH. The site differences in pH sensitivity build upon recent evidence of local pH adaptation in S. purpuratus and highlight the need to incorporate environmental variability in the study of global change biology.

  15. Ultrasound assisted extraction of pectin from waste Artocarpus heterophyllus fruit peel.

    PubMed

    Moorthy, I Ganesh; Maran, J Prakash; Ilakya, S; Anitha, S L; Sabarima, S Pooja; Priya, B

    2017-01-01

    Four factors three level face centered central composite response surface design was employed in this study to investigate and optimize the effect of process variables (liquid-solid (LS) ratio (10:1-20:1ml/g), pH (1-2), sonication time (15-30min) and extraction temperature (50-70°C)) on the maximum extraction yield of pectin from waste Artocarpus heterophyllus (Jackfruit) peel by ultrasound assisted extraction method. Numerical optimization method was adapted in this study and the following optimal condition was obtained as follows: Liquid-solid ratio of 15:1ml/g, pH of 1.6, sonication time of 24min and temperature of 60°C. The optimal condition was validated through experiments and the observed value was interrelated with predicted value. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. How Does The Climate Change?

    NASA Astrophysics Data System (ADS)

    Jones, R. N.

    2011-12-01

    In 1997, maximum temperature in SE Australia shifted up by 0.8°C at pH0<0.01. Rainfall decreased by 13% in 1997-2010 compared to 1900-1996. Statistically significant shifts also occur in impact indicators: baumé levels in winegrapes shift >21 days earlier from 1998, streamflow records decrease by 30-70% from 1997 and annual mean forest fire danger index increased by 38% from 1997. Despite catastrophic fires killing 178 people in early 2009, the public remains unaware of this large change in their exposure. When regional temperature was separated into internally and externally forced components, the latter component was found to warm in two steps, in 1968-73 and 1997. These dates coincide with shifts in zonal mean temperature (24-44S; Figure 1). Climate model output shows similar step and trend behavior. Tests run on zonal, hemispheric and global mean temperature observations found shifts in all regions. 1997 marks a shift in global temperature of 0.3°C at pH0<0.01. Similar shifts occur in long-term tide gauge records around the globe (e.g., Figure 2) and in ocean heat content. The prevailing paradigm for how climate variables change is signal-noise construct combining a smooth signal with variations caused by internal climate variability. There seems to be no sound theoretical basis for this assumption. On the contrary, complex system behavior would suggest non-linear responses to externally forced change, especially at the regional scale. Some of our most basic assumptions about how climate changes may need to be re-examined.

  17. Physical and biological forcing of mesoscale variability in the carbonate system of the Ross Sea (Antarctica) during summer 2014

    NASA Astrophysics Data System (ADS)

    Rivaro, Paola; Ianni, Carmela; Langone, Leonardo; Ori, Carlo; Aulicino, Giuseppe; Cotroneo, Yuri; Saggiomo, Maria; Mangoni, Olga

    2017-02-01

    Water samples (0-200 m) were collected in a coastal area of the Ross Sea in January 2014 to evaluate the physical and biological forcing on the carbonate system at the mesoscale (distance between stations of 5-10 km). Remote sensing supported the determination of the sampling strategy and helped positioning each sampling station. Total alkalinity, pH, dissolved oxygen, phytoplankton pigments and composition were investigated in combination with measurements of temperature, salinity and current speed. Total inorganic carbon, sea water CO2 partial pressure and the saturation state (Ω) for calcite and aragonite were calculated from the measured total alkalinity and pH. In addition, continuous measurements of atmospheric CO2 concentration were completed. LADCP measurements revealed the presence of a significant change in current speed and direction that corresponded to a clearly defined front characterized by gradients in both temperature and salinity. Phytoplankton biomass was relatively high at all stations and the highest values of chlorophyll-a were found between 20 to 50 m, with the dominant taxonomic group being haptophyceae. The carbonate system properties in surface waters exhibited mesoscale variability with a horizontal length scale of about 10 km. Sea-ice melt, through the input of low salinity water, results in a dilution of the total alkalinity and inorganic carbon, but our observations suggest that phytoplankton activity was the major forcing of the distribution of the carbonate system variables. Higher CO3-, Ω and pH in the surface layer were found where the highest values of chlorophyll-a were observed. The calculated ΔpCO2 pattern follows both MODIS data and in situ chlorophyll-a measurements, and the estimated CO2 fluxes ranged from -0.5 ± 0.4 to -31.0 ± 6.4 mmol m- 2 d- 1. The large range observed in the fluxes is due to both the spatial variability of sea water pCO2 and to the episodic winds experienced.

  18. Optimization of ultrasound-assisted extraction of pectinase enzyme from guava (Psidium guajava) peel: Enzyme recovery, specific activity, temperature, and storage stability.

    PubMed

    Amid, Mehrnoush; Murshid, Fara Syazana; Manap, Mohd Yazid; Islam Sarker, Zaidul

    2016-01-01

    This study aimed to investigate the effects of the ultrasound-assisted extraction conditions on the yield, specific activity, temperature, and storage stability of the pectinase enzyme from guava peel. The ultrasound variables studied were sonication time (10-30 min), ultrasound temperature (30-50 °C), pH (2.0-8.0), and solvent-to-sample ratio (2:1 mL/g to 6:1 mL/g). The main goal was to optimize the ultrasound-assisted extraction conditions to maximize the recovery of pectinase from guava peel with the most desirable enzyme-specific activity and stability. Under the optimum conditions, a high yield (96.2%), good specific activity (18.2 U/mg), temperature stability (88.3%), and storage stability (90.3%) of the extracted enzyme were achieved. The optimal conditions were 20 min sonication time, 40 °C temperature, at pH 5.0, using a 4:1 mL/g solvent-to-sample ratio. The study demonstrated that optimization of ultrasound-assisted process conditions for the enzyme extraction could improve the enzymatic characteristics and yield of the enzyme.

  19. The effects of season and sand mining activities on thermal regime and water quality in a large shallow tropical lake.

    PubMed

    Sharip, Zati; Zaki, Ahmad Taqiyuddin Ahmad

    2014-08-01

    Thermal structure and water quality in a large and shallow lake in Malaysia were studied between January 2012 and June 2013 in order to understand variations in relation to water level fluctuations and in-stream mining activities. Environmental variables, namely temperature, turbidity, dissolved oxygen, pH, electrical conductivity, chlorophyll-A and transparency, were measured using a multi-parameter probe and a Secchi disk. Measurements of environmental variables were performed at 0.1 m intervals from the surface to the bottom of the lake during the dry and wet seasons. High water level and strong solar radiation increased temperature stratification. River discharges during the wet season, and unsustainable sand mining activities led to an increased turbidity exceeding 100 NTU, and reduced transparency, which changed the temperature variation and subsequently altered the water quality pattern.

  20. Screening and optimization of pectin lyase and polygalacturonase activity from ginseng pathogen Cylindrocarpon Destructans

    PubMed Central

    Sathiyaraj, Gayathri; Srinivasan, Sathiyaraj; Kim, Ho-Bin; Subramaniyam, Sathiyamoorthy; Lee, Ok Ran; Kim, Yeon-Ju; Yang, Deok Chun

    2011-01-01

    Cylindrocarpon destructans isolated from ginseng field was found to produce pectinolytic enzymes. A Taguchi’s orthogonal array experimental design was applied to optimize the preliminary production of polygalacturonase (PG) and pectin lyase (PL) using submerged culture condition. This method was applied to evaluate the significant parameters for the production of enzymes. The process variables were pH, pectin concentration, incubation time and temperature. Optimization of process parameters resulted in high levels of enzyme (PG and PL) production after ten days of incubation at a pH of 5.0 at 25°C in the presence of 1.5% pectin. Among different nitrogen sources, urea and peptone showed high production of PG and PL, respectively. The enzyme production and mycelial growth seems to have direct influence on the culture conditions; therefore, at stationary state high enzyme production and mycelial growth were obtained than agitation state. Along with this, optimization of enzyme activity was also determined using various physiological parameters like, temperature, incubation time and pH. Taguchi’s data was also analyzed using one step ANOVA statistical method. PMID:24031695

  1. A stepwise-cluster microbial biomass inference model in food waste composting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Wei; Huang, Guo H., E-mail: huangg@iseis.or; Chinese Research Academy of Environmental Science, North China Electric Power University, Beijing 100012-102206

    2009-12-15

    A stepwise-cluster microbial biomass inference (SMI) model was developed through introducing stepwise-cluster analysis (SCA) into composting process modeling to tackle the nonlinear relationships among state variables and microbial activities. The essence of SCA is to form a classification tree based on a series of cutting or mergence processes according to given statistical criteria. Eight runs of designed experiments in bench-scale reactors in a laboratory were constructed to demonstrate the feasibility of the proposed method. The results indicated that SMI could help establish a statistical relationship between state variables and composting microbial characteristics, where discrete and nonlinear complexities exist. Significance levelsmore » of cutting/merging were provided such that the accuracies of the developed forecasting trees were controllable. Through an attempted definition of input effects on the output in SMI, the effects of the state variables on thermophilic bacteria were ranged in a descending order as: Time (day) > moisture content (%) > ash content (%, dry) > Lower Temperature (deg. C) > pH > NH{sub 4}{sup +}-N (mg/Kg, dry) > Total N (%, dry) > Total C (%, dry); the effects on mesophilic bacteria were ordered as: Time > Upper Temperature (deg. C) > Total N > moisture content > NH{sub 4}{sup +}-N > Total C > pH. This study made the first attempt in applying SCA to mapping the nonlinear and discrete relationships in composting processes.« less

  2. Effect of variable hydrothermal conditions on sulfur speciation and isotopic compositions mediated by two Thiomicrospira strains

    NASA Astrophysics Data System (ADS)

    Houghton, J.; Wills, E.; Fike, D. A.

    2012-12-01

    Microbially mediated reactions involving elemental sulfur in low temperature hydrothermal environments are a critical component of the net hydrothermal flux of sulfur to the global oceans. We assess here the physiological impact on sulfur speciation and isotopic composition of two microbial strains at a range of pH conditions consistent with the sharp gradients found in seafloor hydrothermal environments. Thiomicrospira thermophila and T. crunogena, both isolated from hydrothermal vents at East Pacific Rise, were grown with thiosulfate as the electron donor under aerobic, closed system conditions at controlled pH and optimal temperature (35°C). T. thermophila at pH 8 produced sulfate at a 1:1 ratio with thiosulfate consumption during exponential growth, with the ratio decreasing as pH decreases. This stoichiometric ratio decreases more steeply as a function of pH during metabolism by T. crunogena. Sulfate:thiosulfate ratios less than one indicate the production of alternative oxidized sulfur compounds such as polythionates. The rate of sulfate production is comparable in both strains and is dependent on pH, decreasing from 0.8mM/hr at pH 8 to 0.2mM/hr at pH 5.6. Fractionation of 34S expressed as Δ34S between reactant and product range from 0‰ to 3‰ for both sulfate and elemental sulfur produced, with no difference between products in pH buffered experiments (pH 5.6 and 8.0). However, in unbuffered experiments during which growth causes pH to decrease from 7 to below 4.5, Δ34S(S2O3-SO4) is consistently larger than Δ34S(S2O3-S) in both strains by a factor of 2. The metabolic activity of these (and similar) strains indicate that complex and cryptic sulfur cycling may be occurring in the subsurface, associated with only minimal variation in the δ34S isotopic composition of sulfate and elemental sulfur.

  3. Purification, immobilization and characterization of tannase from Penicillium variable.

    PubMed

    Sharma, Shashi; Agarwal, Lata; Saxena, Rajendra Kumar

    2008-05-01

    Tannase from Penicillium variable IARI 2031 was purified by a two-step purification strategy comprising of ultra-filtration using 100 kDa molecular weight cutoff and gel-filtration using Sephadex G-200. A purification fold of 135 with 91% yield of tannase was obtained. The enzyme has temperature and pH optima of 50 degrees C and 5 degrees C, respectively. However, the functional temperature range is from 25 to 80 degrees C and functional pH range is from 3.0 to 8.0. This tannase could successfully be immobilized on Amberlite IR where it retains about 85% of the initial catalytic activity even after ninth cycle of its use. Based on the Michaelis-Menten constant (Km) of tannase, tannic acid is the best substrate with Km of 32 mM and Vmax of 1.11 micromol ml(-1)min(-1). Tannase is inhibited by phenyl methyl sulphonyl fluoride (PMSF) and N-ethylmaleimide retaining only 28.1% and 19% residual activity indicating that this enzyme belongs to the class of serine hydrolases. Tannase in both crude and crude lyophilized forms is stable for one year retaining more than 60% residual activity.

  4. Water and sediment characteristics associated with avian botulism outbreaks in wetlands

    USGS Publications Warehouse

    Rocke, Tonie E.; Samuel, Michael D.

    1999-01-01

    Avian botulism kills thousands of waterbirds annually throughout North America, but management efforts to reduce its effects have been hindered because environmental conditions that promote outbreaks are poorly understood. We measured sediment and water variables in 32 pairs of wetlands with and without a current outbreak of avian botulism. Wetlands with botulism outbreaks had greater percent organic matter (POM) in the sediment (P = 0.088) and lower redox potential in the water (P = 0.096) than paired control wetlands. We also found that pH, redox potential, temperature, and salinity measured just above the sediment-water interface were associated (P ≤ 0.05) with the risk of botulism outbreaks in wetlands, but relations were complex, involving nonlinear and multivariate associations. Regression models indicated that the risk of botulism outbreaks increased when water pH was between 7.5 and 9.0, redox potential was negative, and water temperature was >20°C. Risk declined when redox potential increased (>100), water temperature decreased (10-15°C), pH was 9.0, or salinity was low (<2.0 ppt). Our predictive models could allow managers to assess potential effects of wetland management practices on the risk of botulism outbreaks and to develop and evaluate alternative management strategies to reduce losses from avian botulism.

  5. Multi-Response Optimization of Granaticinic Acid Production by Endophytic Streptomyces thermoviolaceus NT1, Using Response Surface Methodology

    PubMed Central

    Roy, Sudipta; Halder, Suman Kumar; Banerjee, Debdulal

    2016-01-01

    Streptomyces thermoviolaceus NT1, an endophytic isolate, was studied for optimization of granaticinic acid production. It is an antimicrobial metabolite active against even drug resistant bacteria. Different media, optimum glucose concentration, initial media pH, incubation temperature, incubation period, and inoculum size were among the selected parameters optimized in the one-variable-at-a-time (OVAT) approach, where glucose concentration, pH, and temperature were found to play a critical role in antibiotic production by this strain. Finally, the Box–Behnken experimental design (BBD) was employed with three key factors (selected after OVAT studies) for response surface methodological (RSM) analysis of this optimization study.RSM analysis revealed a multifactorial combination; glucose 0.38%, pH 7.02, and temperature 36.53 °C as the optimum conditions for maximum antimicrobial yield. Experimental verification of model analysis led to 3.30-fold (61.35 mg/L as compared to 18.64 mg/L produced in un-optimized condition) enhanced granaticinic acid production in ISP2 medium with 5% inoculum and a suitable incubation period of 10 days. So, the conjugated optimization study for maximum antibiotic production from Streptomyces thermoviolaceus NT1 was found to result in significantly higher yield, which might be exploited in industrial applications. PMID:28952581

  6. A review of dark fermentative hydrogen production from biodegradable municipal waste fractions.

    PubMed

    De Gioannis, G; Muntoni, A; Polettini, A; Pomi, R

    2013-06-01

    Hydrogen is believed to play a potentially key role in the implementation of sustainable energy production, particularly when it is produced from renewable sources and low energy-demanding processes. In the present paper an attempt was made at critically reviewing more than 80 recent publications, in order to harmonize and compare the available results from different studies on hydrogen production from FW and OFMSW through dark fermentation, and derive reliable information about process yield and stability in view of building related predictive models. The review was focused on the effect of factors, recognized as potentially affecting process evolution (including type of substrate and co-substrate and relative ratio, type of inoculum, food/microorganisms [F/M] ratio, applied pre-treatment, reactor configuration, temperature and pH), on the fermentation yield and kinetics. Statistical analysis of literature data from batch experiments was also conducted, showing that the variables affecting the H2 production yield were ranked in the order: type of co-substrate, type of pre-treatment, operating pH, control of initial pH and fermentation temperature. However, due to the dispersion of data observed in some instances, the ambiguity about the presence of additional hidden variables cannot be resolved. The results from the analysis thus suggest that, for reliable predictive models of fermentative hydrogen production to be derived, a high level of consistency between data is strictly required, claiming for more systematic and comprehensive studies on the subject. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Near-shore Antarctic pH variability has implications for the design of ocean acidification experiments

    PubMed Central

    Kapsenberg, Lydia; Kelley, Amanda L.; Shaw, Emily C.; Martz, Todd R.; Hofmann, Gretchen E.

    2015-01-01

    Understanding how declining seawater pH caused by anthropogenic carbon emissions, or ocean acidification, impacts Southern Ocean biota is limited by a paucity of pH time-series. Here, we present the first high-frequency in-situ pH time-series in near-shore Antarctica from spring to winter under annual sea ice. Observations from autonomous pH sensors revealed a seasonal increase of 0.3 pH units. The summer season was marked by an increase in temporal pH variability relative to spring and early winter, matching coastal pH variability observed at lower latitudes. Using our data, simulations of ocean acidification show a future period of deleterious wintertime pH levels potentially expanding to 7–11 months annually by 2100. Given the presence of (sub)seasonal pH variability, Antarctica marine species have an existing physiological tolerance of temporal pH change that may influence adaptation to future acidification. Yet, pH-induced ecosystem changes remain difficult to characterize in the absence of sufficient physiological data on present-day tolerances. It is therefore essential to incorporate natural and projected temporal pH variability in the design of experiments intended to study ocean acidification biology.

  8. Relation Between Selected Water-Quality Variables, Climatic Factors, and Lake Levels in Upper Klamath and Agency Lakes, Oregon, 1990-2006

    USGS Publications Warehouse

    Morace, Jennifer L.

    2007-01-01

    Growth and decomposition of dense blooms of Aphanizomenon flos-aquae in Upper Klamath Lake frequently cause extreme water-quality conditions that have led to critical fishery concerns for the region, including the listing of two species of endemic suckers as endangered. The Bureau of Reclamation has asked the U.S. Geological Survey (USGS) to examine water-quality data collected by the Klamath Tribes for relations with lake level. This analysis evaluates a 17-year dataset (1990-2006) and updates a previous USGS analysis of a 5-year dataset (1990-94). Both univariate hypothesis testing and multivariable analyses evaluated using an information-theoretic approach revealed the same results-no one overarching factor emerged from the data. No single factor could be relegated from consideration either. The lack of statistically significant, strong correlations between water-quality conditions, lake level, and climatic factors does not necessarily show that these factors do not influence water-quality conditions; it is more likely that these conditions work in conjunction with each other to affect water quality. A few different conclusions could be drawn from the larger dataset than from the smaller dataset examined in 1996, but for the most part, the outcome was the same. Using an observational dataset that may not capture all variation in water-quality conditions (samples were collected on a two-week interval) and that has a limited range of conditions for evaluation (confined to the operation of lake) may have confounded the exploration of explanatory factors. In the end, all years experienced some variation in poor water-quality conditions, either in timing of occurrence of the poor conditions or in their duration. The dataset of 17 years simply provided 17 different patterns of lake level, cumulative degree-days, timing of the bloom onset, and poor water-quality conditions, with no overriding causal factor emerging from the variations. Water-quality conditions were evaluated for their potential to be harmful to the endangered sucker species on the basis of high-stress thresholds-water temperature values greater than 28 degrees Celsius, dissolved-oxygen concentrations less than 4 milligrams per liter, and pH values greater than 9.7. Few water temperatures were greater than 28 degrees Celsius, and dissolved-oxygen concentrations less than 4 milligrams per liter generally were recorded in mid to late summer. In contrast, high pH values were more frequent, occurring earlier in the season and parallel with growth in the algal bloom. The 10 hypotheses relating water-quality variables, lake level, and climatic factors from the earlier USGS study were tested in this analysis for the larger 1990-2006 dataset. These hypotheses proposed relations between lake level and chlorophyll-a, pH, dissolved oxygen, total phosphorus, and water temperature. As in the previous study, no evidence was found in the larger dataset for any of these relations based on a seasonal (May-October) distribution. When analyzing only the June data, the previous 5-year study did find evidence for three hypotheses relating lake level to the onset of the bloom, chlorophyll-a concentrations, and the frequency of high pH values in June. These hypotheses were not supported by the 1990-2006 dataset, but the two hypotheses related to cumulative degree-days from the previous study were: chlorophyll-a concentrations were lower and onset of the algal bloom was delayed when spring air temperatures were cooler. Other relations between water-quality variables and cumulative degree-days were not significant. In an attempt to identify interrelations among variables not detected by univariate analysis, multiple regressions were performed between lakewide measures of low dissolved-oxygen concentrations or high pH values in July and August and six physical and biological variables (peak chlorophyll-a concentrations, degree-days, water temperature, median October-May discharg

  9. Seawater Acidification and Elevated Temperature Affect Gene Expression Patterns of the Pearl Oyster Pinctada fucata

    PubMed Central

    Liu, Wenguang; Huang, Xiande; Lin, Jianshi; He, Maoxian

    2012-01-01

    Oceanic uptake of anthropogenic carbon dioxide results in decrease in seawater pH and increase in temperature. In this study, we demonstrated the synergistic effects of elevated seawater temperature and declined seawater pH on gene expression patterns of aspein, calmodulin, nacrein, she-7-F10 and hsp70 in the pearl oyster Pinctada fucata. Under ‘business-as-usual’ scenarios, four treatments were examined: (1) ambient pH (8.10) and ambient temperature (27°C) (control condition), (2) ambient pH and elevated temperature (+3°C), (3) declined pH (7.70) and ambient temperature, (4) declined pH and elevated temperature. The results showed that under warming and acidic seawater conditions, expression of aspein and calmodulin showed no significant differences among different time point in condition 8.10 T. But the levels of aspein and calmodulin in conditions 8.10 T+3, 7.70 T and 7.70 T+3, and levels of nacrein, she-7-F10 in all the four treatments changed significantly. Low pH and pH×temperature interaction influenced the expression of aspein and calmodulin significantly after hours 48 and 96. Significant effects of low pH and pH×temperature interaction on the expression of nacrein were observed at hour 96. The expression level of she-7-F10 was affected significantly by pH after hours 48 and 96. The expression of hsp70 was significantly affected by temperature, pH, temperature×pH interaction at hour 6, and by temperature×pH interaction at hour 24. This study suggested that declined pH and pH×temperature interaction induced down regulation of calcification related genes, and the interaction between declined seawater pH and elevated temperature caused up regulation of hsp70 in P. facata. These results demonstrate that the declined seawater pH and elevated temperature will impact the physiological process, and potentially the adaptability of P. fucata to future warming and acidified ocean. PMID:22438983

  10. In-Situ pH Measurements in Mid-Ocean Ridge Hydrothermal Vent Fluids: Constraints on Subseafloor Alteration Processes at Crustal Depths

    NASA Astrophysics Data System (ADS)

    Schaen, A. T.; Ding, K.; Seyfried, W. E.

    2013-12-01

    Developments in electrochemistry and material science have facilitated the construction of ceramic (YSZ) based chemical sensor systems that can be used to measure and monitor pH and redox in aqueous fluids at elevated temperatures and pressures. In recent years, these sensor systems have been deployed to acquire real-time and time series in-situ data for high-temperature hydrothermal vent fluids at the Main Endeavour Field (Juan de Fuca Ridge), 9oN (East Pacific Rise), and at the ultramafic-hosted Rainbow field (36oN, Mid-Atlantic Ridge). Here we review in-situ pH data measured at these sites and apply these data to estimate the pH of fluids ascending to the seafloor from hydrothermal alteration zones deeper in the crust. In general, in-situ pH measured at virtually all vent sites is well in excess of that measured shipboard owing to the effects of temperature on the distribution of aqueous species and the solubility of metal sulfides, especially Cu and Zn, originally dissolved in the vent fluids. In situ pH measurements determined at MEF (Sully vent) and EPR 9oN (P-vent) in 2005 and 2008 were 4.4 ×0.02 and 5.05×0.05, respectively. The temperature and pressure (seafloor) of the vent fluids at each of the respective sites were 356oC and 220 bar, and 380oC and 250 bar. Plotting these data with respect to fluid density reveals that the in-situ pH of each vent fluid is approximately 1.5 pH units below neutrality. The density-pH (in-situ) correlation, however, is important because it provides a means from which the vent fluids were derived. Using dissolved silica and chloride from fluid samples at the MEF (Sully) suggest T/P conditions of approximately 435oC, 380 bar, based on quartz-fluid and NaCl-H2O systems. At the fluid density calculated for these conditions, pH (in-situ) is predicted to be ~6.2. Attempts are presently underway to assess the effect of the calculated pH on metal sulfide and silicate (e.g., plagioclase, chlorite) solubility in comparison with constraints imposed by the full range of chemical components in the vent fluids sampled and analyzed in association with pH (in-situ) measurements. Since pH is a master variable in all geochemical systems, the novel approach proposed here may provide new insight on hydrothermal alteration processes at conditions difficult or impossible to assess by more traditional means, ultimately influencing hydrothermal fluid fluxes.

  11. Optimization of growth and bacteriocin production by Lactobacillus sakei subsp. sakei2a.

    PubMed

    Malheiros, Patrícia S; Sant'Anna, Voltaire; Todorov, Svetoslav D; Franco, Bernadette D G M

    2015-01-01

    Lactobacillus sakei subsp. sakei 2a is a bacteriocinogenic lactic acid bacterium isolated from Brazilian pork sausage, capable of inhibiting the growth of microbial pathogens, mainly Listeria monocytogenes. In order to optimize bacteriocin production for industrial applications, this study evaluated the effect of supplementation of MRS broth with glucose, Tween 20, Tween 80, sodium citrate, potassium chloride and cysteine, and effect of the initial pH and temperature of incubation of the medium on production of bacteriocins by L. sakei 2a. Adding glucose and Tween 20 to the medium, an initial pH of 5.0 or 5.5, and incubation temperatures of 25 °C or 30 °C resulted to the highest bacteriocin yields. Thus, a 2(4) factorial design with the four variables was performed, and statistical analysis showed that it was an adequate model (R (2) = 0.8296). In the studied range, the four parameters significantly influenced bacteriocin production, with the maximum yield produced at an initial pH between 5.5 and 7.0, a temperature between 25 and 30 °C and supplementation of the MRS broth with glucose from 3.25 to 6.0 g L(-1) and Tween 20 from 0.575 to 1.15% (v/v). Response Surface Methodology analysis indicated that the highest bacteriocin production (12800 AU mL(-1)) occurred in the MRS broth supplemented with 5.5 g L(-1) glucose and 1.05% Tween 20 at an initial pH of 6.28 and an incubation temperature of 25 °C. The amount of bacteriocin produced in commercial MRS broths under the same conditions was only 5600AU mL(-1).

  12. Optimization of growth and bacteriocin production by Lactobacillus sakei subsp. sakei2a

    PubMed Central

    Malheiros, Patrícia S.; Sant’Anna, Voltaire; Todorov, Svetoslav D.; Franco, Bernadette D.G.M.

    2015-01-01

    Lactobacillus sakei subsp. sakei 2a is a bacteriocinogenic lactic acid bacterium isolated from Brazilian pork sausage, capable of inhibiting the growth of microbial pathogens, mainly Listeria monocytogenes. In order to optimize bacteriocin production for industrial applications, this study evaluated the effect of supplementation of MRS broth with glucose, Tween 20, Tween 80, sodium citrate, potassium chloride and cysteine, and effect of the initial pH and temperature of incubation of the medium on production of bacteriocins by L. sakei 2a. Adding glucose and Tween 20 to the medium, an initial pH of 5.0 or 5.5, and incubation temperatures of 25 °C or 30 °C resulted to the highest bacteriocin yields. Thus, a 24 factorial design with the four variables was performed, and statistical analysis showed that it was an adequate model (R 2 = 0.8296). In the studied range, the four parameters significantly influenced bacteriocin production, with the maximum yield produced at an initial pH between 5.5 and 7.0, a temperature between 25 and 30 °C and supplementation of the MRS broth with glucose from 3.25 to 6.0 g L−1 and Tween 20 from 0.575 to 1.15% (v/v). Response Surface Methodology analysis indicated that the highest bacteriocin production (12800 AU mL−1) occurred in the MRS broth supplemented with 5.5 g L−1 glucose and 1.05% Tween 20 at an initial pH of 6.28 and an incubation temperature of 25 °C. The amount of bacteriocin produced in commercial MRS broths under the same conditions was only 5600AU mL−1. PMID:26413066

  13. In situ-forming hydrogels for sustained ophthalmic drug delivery.

    PubMed

    Nanjawade, Basavaraj K; Manvi, F V; Manjappa, A S

    2007-09-26

    Ophthalmic drug delivery is one of the most interesting and challenging endeavors facing the pharmaceutical scientist. The conventional ocular drug delivery systems like solutions, suspensions, and ointments show drawbacks such as increased precorneal elimination, high variability in efficiency, and blurred vision respectively. In situ-forming hydrogels are liquid upon instillation and undergo phase transition in the ocular cul-de-sac to form visco-elastic gel and this provides a response to environmental changes. In the past few years, an impressive number of novel temperature, pH, and ion induced in situ-forming systems have been reported for sustain ophthalmic drug delivery. Each system has its own advantages and drawbacks. The choice of a particular hydrogel depends on its intrinsic properties and envisaged therapeutic use. This review includes various temperature, pH, and ion induced in situ-forming polymeric systems used to achieve prolonged contact time of drugs with the cornea and increase their bioavailability.

  14. [Effect of thermal treatments on the chemical characteristics of mora crab meat (Homalaspis plana)].

    PubMed

    Quitral Robles, Vilma; Abugoch, Lilian; Vinagre, Julia; Guarda, Abel; Larraín, M Angélica; Santana, Gabriela

    2003-03-01

    Marine species muscles present non-proteins nitrogenated compounds, used as quality index. They are total volatile basis (NBVT), trimethylamine oxide (TMAO) and trimethylamine (TMA). pH is considered too as a quality index. The aim of this work was to evaluate these parameters in a fresh and canned marine product from the V region, corresponding to mora crab (Homalaspis plana). Fresh pincer meat from mora crab was extracted and kept in ice until theits analysis and thermal process of the canned product. A 3(2) statistical design was applied, considering two variables with 3 levels: 15, 30 y 45 minutes time levels: 80 degrees, 100 degrees y 121 degrees C temperature levels. Nine conditions of time-temperature were obtained. The thermal treatment caused an increase in pH and BVT. The TMA was increased since reduction of TMAO.

  15. A series of tetraazalene radical-bridged M2 (M = CrIII, MnII, FeII, CoII) complexes with strong magnetic exchange coupling.

    PubMed

    DeGayner, Jordan A; Jeon, Ie-Rang; Harris, T David

    2015-11-13

    The ability of tetraazalene radical bridging ligands to mediate exceptionally strong magnetic exchange coupling across a range of transition metal complexes is demonstrated. The redox-active bridging ligand N , N ', N '', N '''-tetra(2-methylphenyl)-2,5-diamino-1,4-diiminobenzoquinone ( NMePh LH 2 ) was metalated to give the series of dinuclear complexes [(TPyA) 2 M 2 ( NMePh L 2- )] 2+ (TPyA = tris(2-pyridylmethyl)amine, M = Mn II , Fe II , Co II ). Variable-temperature dc magnetic susceptibility data for these complexes reveal the presence of weak superexchange interactions between metal centers, and fits to the data provide coupling constants of J = -1.64(1) and -2.16(2) cm -1 for M = Mn II and Fe II , respectively. One-electron reduction of the complexes affords the reduced analogues [(TPyA) 2 M 2 ( NMePh L 3- ˙)] + . Following a slightly different synthetic procedure, the related complex [(TPyA) 2 CrIII2( NMePh L 3- ˙)] 3+ was obtained. X-ray diffraction, cyclic voltammetry, and Mössbauer spectroscopy indicate the presence of radical NMePh L 3- ˙ bridging ligands in these complexes. Variable-temperature dc magnetic susceptibility data of the radical-bridged species reveal the presence of strong magnetic interactions between metal centers and ligand radicals, with simulations to data providing exchange constants of J = -626(7), -157(7), -307(9), and -396(16) cm -1 for M = Cr III , Mn II , Fe II , and Co II , respectively. Moreover, the strength of magnetic exchange in the radical-bridged complexes increases linearly with decreasing M-L bond distance in the oxidized analogues. Finally, ac magnetic susceptibility measurements reveal that [(TPyA) 2 Fe 2 ( NMePh L 3- ˙)] + behaves as a single-molecule magnet with a relaxation barrier of U eff = 52(1) cm -1 . These results highlight the ability of redox-active tetraazalene bridging ligands to enable dramatic enhancement of magnetic exchange coupling upon redox chemistry and provide a rare opportunity to examine metal-radical coupling trends across a transmetallic series of complexes.

  16. A model to assess lactic acid bacteria aminopeptidase activities in Parmigiano Reggiano cheese during ripening.

    PubMed

    Gatti, M; De Dea Lindner, J; Gardini, F; Mucchetti, G; Bevacqua, D; Fornasari, M E; Neviani, E

    2008-11-01

    The aim of this work was to investigate in which phases of ripening of Parmigiano Reggiano cheese lactic acid bacteria aminopeptidases present in cheese extract could be involved in release of free amino acids and to better understand the behavior of these enzymes in physical-chemical conditions that are far from their optimum. In particular, we evaluated 6 different substrates to reproduce broad-specificity aminopeptidase N, broad-specificity aminopeptidase C, glutamyl aminopeptidase A, peptidase with high specificity for leucine and alanine, proline iminopeptidase, and X-prolyl dipeptidyl aminopeptidase activities releasing different N-terminal amino acids. The effects of pH, NaCl concentration, and temperature on the enzyme activities of amino acid beta-naphthylamide (betaNA)-substrates were determined by modulating the variables in 19 different runs of an experimental design, which allowed the building of mathematical models able to assess the effect on aminopeptidases activities over a range of values, obtained with bibliographic data, covering different environmental conditions in different zones of the cheese wheel at different aging times. The aminopeptidases tested in this work were present in cell-free Parmigiano Reggiano cheese extract after a 17-mo ripening and were active when tested in model system. The modeling approach shows that to highlight the individual and interactive effects of chemical-physical variables on enzyme activities, it is helpful to determine the true potential of an amino-peptidase in cheese. Our results evidenced that the 6 different lactic acid bacteria peptidases participate in cheese proteolysis and are induced or inhibited by the cheese production parameters that, in turn, depend on the cheese dimension. Generally, temperature and pH exerted the more relevant effects on the enzymatic activities, and in many cases, a relevant interactive effect of these variables was observed. Increasing salt concentration slowed down broad-specificity amino-peptidase C, glutamyl aminopeptidase A, proline iminopeptidase, and peptidase with high specificity for leucine and alanine. Interestingly, this variable did not affect broad-specificity aminopeptidase N and positively affected X-prolyl dipeptidyl aminopeptidase. The models elaborated varying pH, temperatures, and salt concentration and were a useful, low cost, and fast tool to understand the role of the main peptidases in the different phases of cheese ripening in relation to the major environmental factors influencing enzyme activity.

  17. Identifying community thresholds for lotic benthic diatoms in response to human disturbance.

    PubMed

    Tang, Tao; Tang, Ting; Tan, Lu; Gu, Yuan; Jiang, Wanxiang; Cai, Qinghua

    2017-06-23

    Although human disturbance indirectly influences lotic assemblages through modifying physical and chemical conditions, identifying thresholds of human disturbance would provide direct evidence for preventing anthropogenic degradation of biological conditions. In the present study, we used data obtained from tributaries of the Three Gorges Reservoir in China to detect effects of human disturbance on streams and to identify disturbance thresholds for benthic diatoms. Diatom species composition was significantly affected by three in-stream stressors including TP, TN and pH. Diatoms were also influenced by watershed % farmland and natural environmental variables. Considering three in-stream stressors, TP was positively influenced by % farmland and % impervious surface area (ISA). In contrast, TN and pH were principally affected by natural environmental variables. Among measured natural environmental variables, average annual air temperature, average annual precipitation, and topsoil % CaCO 3 , % gravel, and total exchangeable bases had significant effects on study streams. When effects of natural variables were accounted for, substantial compositional changes in diatoms occurred when farmland or ISA land use exceeded 25% or 0.3%, respectively. Our study demonstrated the rationale for identifying thresholds of human disturbance for lotic assemblages and addressed the importance of accounting for effects of natural factors for accurate disturbance thresholds.

  18. Fate of cadmium at the soil-solution interface: a thermodynamic study as influenced by varying pH at South 24 Parganas, West Bengal, India.

    PubMed

    Karak, Tanmoy; Paul, Ranjit Kumar; Das, Sampa; Das, Dilip K; Dutta, Amrit Kumar; Boruah, Romesh K

    2015-11-01

    A study on the sorption kinetics of Cd from soil solution to soils was conducted to assess the persistence of Cd in soil solution as it is related to the leaching, bioavailability, and potential toxicity of Cd. The kinetics of Cd sorption on two non-contaminated alkaline soils from Canning (22° 18' 48.02″ N and 88° 39' 29.0″ E) and Lakshmikantapur (22° 06' 16.61″ N and 88° 19' 08.66″ E) of South 24 Parganas, West Bengal, India, were studied using conventional batch experiment. The variable soil suspension parameters were pH (4.00, 6.00, 8.18, and 9.00), temperatures (308, 318, and 328 K) and Cd concentrations (5-100 mg L(-1)). The average rate coefficient (kavg) and half-life (t1/2) values indicate that the persistence of Cd in soil solution is influenced by both temperature and soil suspension pH. The concentration of Cd in soil solution decreases with increase of temperature; therefore, Cd sorption on the soil-solution interface is an endothermic one. Higher pH decreases the t 1/2 of Cd in soil solution, indicating that higher pH (alkaline) is not a serious concern in Cd toxicity than lower pH (acidic). Based on the energy of activation (Ea) values, Cd sorption in acidic pH (14.76±0.29 to 64.45±4.50 kJ mol(-1)) is a surface control phenomenon and in alkaline pH (9.33±0.09 to 44.60±2.01 kJ mol(-1)) is a diffusion control phenomenon The enthalpy of activation (ΔH∓) values were found to be between 7.28 and 61.73 kJ mol(-1). Additionally, higher positive energy of activation (ΔG∓) values (46.82±2.01 to 94.47±2.36 kJ mol(-1)) suggested that there is an energy barrier for product formation.

  19. High Levels of Sediment Contamination Have Little Influence on Estuarine Beach Fish Communities

    PubMed Central

    McKinley, Andrew C.; Dafforn, Katherine A.; Taylor, Matthew D.; Johnston, Emma L.

    2011-01-01

    While contaminants are predicted to have measurable impacts on fish assemblages, studies have rarely assessed this potential in the context of natural variability in physico-chemical conditions within and between estuaries. We investigated links between the distribution of sediment contamination (metals and PAHs), physico-chemical variables (pH, salinity, temperature, turbidity) and beach fish assemblages in estuarine environments. Fish communities were sampled using a beach seine within the inner and outer zones of six estuaries that were either heavily modified or relatively unmodified by urbanization and industrial activity. All sampling was replicated over two years with two periods sampled each year. Shannon diversity, biomass and abundance were all significantly higher in the inner zone of estuaries while fish were larger on average in the outer zone. Strong differences in community composition were also detected between the inner and outer zones. Few differences were detected between fish assemblages in heavily modified versus relatively unmodified estuaries despite high concentrations of sediment contaminants in the inner zones of modified estuaries that exceeded recognized sediment quality guidelines. Trends in species distributions, community composition, abundance, Shannon diversity, and average fish weight were strongly correlated to physico-chemical variables and showed a weaker relationship to sediment metal contamination. Sediment PAH concentrations were not significantly related to the fish assemblage. These findings suggest that variation in some physico-chemical factors (salinity, temperature, pH) or variables that co-vary with these factors (e.g., wave activity or grain size) have a much greater influence on this fish assemblage than anthropogenic stressors such as contamination. PMID:22039470

  20. Processed dairy beverages pH evaluation: consequences of temperature variation.

    PubMed

    Ferreira, Fabiana Vargas; Pozzobon, Roselaine Terezinha

    2009-01-01

    This study assessed the pH from processed dairy beverages as well as eventual consequences deriving from different ingestion temperatures. 50 adults who accompanied children attended to at the Dentistry School were randomly selected and they answered a questionnaire on beverages. The beverages were divided into 4 groups: yogurt (GI) fermented milk (GII), chocolate-based products (GIII) and fermented dairy beverages (GIV). They were asked which type, flavor and temperature. The most popular beverages were selected, and these made up the sample. A pH meter Quimis 400A device was used to verify pH. The average pH from each beverage was calculated and submitted to statistical analysis (Variance and Tukey test with a 5% significance level). for groups I, II and III beverages, type x temperature interaction was significant, showing the pH averages were influenced by temperature variation. At iced temperatures, they presented lower pH values, which were considered statistically significant when compared to the values found for the same beverages at room temperature. All dairy beverages, with the exception of the chocolate-based type presented pH below critical level for enamel and present corrosive potential; as to ingestion temperature, iced temperature influenced pH reducing its values, in vitro.

  1. Hydrothermal Reactivity of Amines

    NASA Astrophysics Data System (ADS)

    Robinson, K.; Shock, E.; Hartnett, H. E.; Williams, L. B.; Gould, I.

    2013-12-01

    The reactivity of aqueous amines depends on temperature, pH, and redox state [1], all of which are highly variable in hydrothermal systems. Temperature and pH affect the ratio of protonated to unprotonated amines (R-NH2 + H+ = R-NH3+), which act as nucleophiles and electrophiles, respectively. We hypothesize that this dual nature can explain the pH dependence of reaction rates, and predict that rates will approach a maximum at pH = pKa where the ratio of protonated and unprotonated amines approaches one and the two compounds are poised to react with one another. Higher temperatures in hydrothermal systems allow for more rapid reaction rates, readily reversible reactions, and unique carbon-nitrogen chemistry in which water acts as a reagent in addition to being the solvent. In this study, aqueous benzylamine was used as a model compound to explore the reaction mechanisms, kinetics, and equilibria of amines under hydrothermal conditions. Experiments were carried out in anoxic silica glass tubes at 250°C (Psat) using phosphate-buffered solutions to observe changes in reaction rates and product distributions as a function of pH. The rate of decomposition of benzylamine was much faster at pH 4 than at pH 9, consistent with the prediction that benzylamine acts as both nucleophile and an electrophile, and our estimate that the pKa of benzylamine is ~5 at 250°C and Psat. Accordingly, dibenzylamine is the primary product of the reaction of two benzylamine molecules, and this reaction is readily reversible under hydrothermal conditions. Extremely acidic or basic pH can be used to suppress dibenzylamine production, which also suppresses the formation of all other major products, including toluene, benzyl alcohol, dibenzylimine, and tribenzylamine. This suggests that dibenzylamine is the lone primary product that then itself reacts as a precursor to produce the above compounds. Analog experiments performed with ring-substituted benzylamine derivatives and chiral methylbenzylamine suggest an SN2 mechanism for the formation of dibenzylamine. These results show the interdependence of pH and speciation with amine reaction rates. We predict the distribution of primary, secondary, tertiary, and quaternary amines in hydrothermal solutions can be used to solve for the pH of subsurface reaction zones in hydrothermal systems. [1] McCollom, T.M. (2013) The influence of minerals on decomposition of the n-alkyl-α-amino acid norvaline under hydrothermal conditions. Geochim. Cosmochim. Acta, 104, 330-357.

  2. Multivariate statistical analysis of a high rate biofilm process treating kraft mill bleach plant effluent.

    PubMed

    Goode, C; LeRoy, J; Allen, D G

    2007-01-01

    This study reports on a multivariate analysis of the moving bed biofilm reactor (MBBR) wastewater treatment system at a Canadian pulp mill. The modelling approach involved a data overview by principal component analysis (PCA) followed by partial least squares (PLS) modelling with the objective of explaining and predicting changes in the BOD output of the reactor. Over two years of data with 87 process measurements were used to build the models. Variables were collected from the MBBR control scheme as well as upstream in the bleach plant and in digestion. To account for process dynamics, a variable lagging approach was used for variables with significant temporal correlations. It was found that wood type pulped at the mill was a significant variable governing reactor performance. Other important variables included flow parameters, faults in the temperature or pH control of the reactor, and some potential indirect indicators of biomass activity (residual nitrogen and pH out). The most predictive model was found to have an RMSEP value of 606 kgBOD/d, representing a 14.5% average error. This was a good fit, given the measurement error of the BOD test. Overall, the statistical approach was effective in describing and predicting MBBR treatment performance.

  3. Preparation of dual-stimuli-responsive liposomes using methacrylate-based copolymers with pH and temperature sensitivities for precisely controlled release.

    PubMed

    Sugimoto, Takumi; Yamazaki, Naoko; Hayashi, Takaaki; Yuba, Eiji; Harada, Atsushi; Kotaka, Aki; Shinde, Chiharu; Kumei, Takayuki; Sumida, Yasushi; Fukushima, Mitsuhiro; Munekata, Yuki; Maruyama, Keiichi; Kono, Kenji

    2017-07-01

    Dual-signal-sensitive copolymers were synthesized by copolymerization of methoxy diethylene glycol methacrylate, methacrylic acid, and lauroxy tetraethylene glycol methacrylate, which respectively provide temperature sensitivity, pH sensitivity, and anchoring to liposome surfaces. These novel copolymers, with water solubility that differs depending on temperature and pH, are soluble in water under neutral pH and low-temperature conditions, but they become water-insoluble and form aggregates under acidic pH and high-temperature conditions. Liposomes modified with these copolymers exhibited enhanced content release at weakly acidic pH with increasing temperature, although no temperature-dependent content release was observed in neutral conditions. Interaction between the copolymers and the lipid monolayer at the air-water interface revealed that the copolymer chains penetrate more deeply into the monolayer with increasing temperature at acidic pH than at neutral pH, where the penetration of copolymer chains was moderate and temperature-independent at neutral pH. Interaction of the copolymer-modified liposomes with HeLa cells demonstrated that the copolymer-modified liposomes were adsorbed quickly and efficiently onto the cell surface and that they were internalized more gradually than the unmodified liposomes through endocytosis. Furthermore, the copolymer-modified liposomes enhanced the content release in endosomes with increasing temperature, but no such temperature-dependent enhancement of content release was observed for unmodified liposomes. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Differential impacts of ocean acidification and warming on winter and summer progeny of a coastal squid (Loligo vulgaris).

    PubMed

    Rosa, Rui; Trübenbach, Katja; Pimentel, Marta S; Boavida-Portugal, Joana; Faleiro, Filipa; Baptista, Miguel; Dionísio, Gisela; Calado, Ricardo; Pörtner, Hans O; Repolho, Tiago

    2014-02-15

    Little is known about the capacity of early life stages to undergo hypercapnic and thermal acclimation under the future scenarios of ocean acidification and warming. Here, we investigated a comprehensive set of biological responses to these climate change-related variables (2°C above winter and summer average spawning temperatures and ΔpH=0.5 units) during the early ontogeny of the squid Loligo vulgaris. Embryo survival rates ranged from 92% to 96% under present-day temperature (13-17°C) and pH (8.0) scenarios. Yet, ocean acidification (pH 7.5) and summer warming (19°C) led to a significant drop in the survival rates of summer embryos (47%, P<0.05). The embryonic period was shortened by increasing temperature in both pH treatments (P<0.05). Embryo growth rates increased significantly with temperature under present-day scenarios, but there was a significant trend reversal under future summer warming conditions (P<0.05). Besides pronounced premature hatching, a higher percentage of abnormalities was found in summer embryos exposed to future warming and lower pH (P<0.05). Under the hypercapnic scenario, oxygen consumption rates decreased significantly in late embryos and newly hatched paralarvae, especially in the summer period (P<0.05). Concomitantly, there was a significant enhancement of the heat shock response (HSP70/HSC70) with warming in both pH treatments and developmental stages. Upper thermal tolerance limits were positively influenced by acclimation temperature, and such thresholds were significantly higher in late embryos than in hatchlings under present-day conditions (P<0.05). In contrast, the upper thermal tolerance limits under hypercapnia were higher in hatchlings than in embryos. Thus, we show that the stressful abiotic conditions inside the embryo's capsules will be exacerbated under near-future ocean acidification and summer warming scenarios. The occurrence of prolonged embryogenesis along with lowered thermal tolerance limits under such conditions is expected to negatively affect the survival success of squid early life stages during the summer spawning period, but not winter spawning.

  5. Identification of the significant factors in food safety using global sensitivity analysis and the accept-and-reject algorithm: application to the cold chain of ham.

    PubMed

    Duret, Steven; Guillier, Laurent; Hoang, Hong-Minh; Flick, Denis; Laguerre, Onrawee

    2014-06-16

    Deterministic models describing heat transfer and microbial growth in the cold chain are widely studied. However, it is difficult to apply them in practice because of several variable parameters in the logistic supply chain (e.g., ambient temperature varying due to season and product residence time in refrigeration equipment), the product's characteristics (e.g., pH and water activity) and the microbial characteristics (e.g., initial microbial load and lag time). This variability can lead to different bacterial growth rates in food products and has to be considered to properly predict the consumer's exposure and identify the key parameters of the cold chain. This study proposes a new approach that combines deterministic (heat transfer) and stochastic (Monte Carlo) modeling to account for the variability in the logistic supply chain and the product's characteristics. The model generates a realistic time-temperature product history , contrary to existing modeling whose describe time-temperature profile Contrary to existing approaches that use directly a time-temperature profile, the proposed model predicts product temperature evolution from the thermostat setting and the ambient temperature. The developed methodology was applied to the cold chain of cooked ham including, the display cabinet, transport by the consumer and the domestic refrigerator, to predict the evolution of state variables, such as the temperature and the growth of Listeria monocytogenes. The impacts of the input factors were calculated and ranked. It was found that the product's time-temperature history and the initial contamination level are the main causes of consumers' exposure. Then, a refined analysis was applied, revealing the importance of consumer behaviors on Listeria monocytogenes exposure. Copyright © 2014. Published by Elsevier B.V.

  6. Carbonate chemistry in a Kennebec Estuary softshell clam flat: Seasonal variability and implications for blue carbon mitigation

    NASA Astrophysics Data System (ADS)

    Miller, H. R.; Jurcic, B.; Indrick, R.; LaVigne, M.

    2016-12-01

    Maine's softshell clam (Mya arenaria) industry brings $20 million to the state annually. Reduced clam flat sediments aragonite saturation state (Ω), a predicted effect of ocean acidification, has been shown to negatively impact shell development in M. arenaria's early life stages. Seagrass restoration has been proposed to benefit Maine clam flats. However, the Gulf of Maine experiences seasonal changes in temperature and freshwater input, and the impacts on the carbonate chemistry of intertidal ecosystems have yet to be quantified. We measured overlying water and surface ( upper 1cm) porewater temperature (T), salinity (S), pH, and alkalinity (TA) biweekly from March to August, 2016 to quantify spatial and seasonal sediment Ω variability in a Kennebec Estuary clam flat (Wyman Bay, Maine). Reduced freshwater flow from spring into summer caused an increase in overlying water S (5-25ppt), TA (400-1800ueq/L), and W (0.09-1.20). Surface sediment pore water S (15-29ppt) and TA (1100-2100ueq/L) also increased in summer; however, Ω was variable and remained well below saturation (<0.40). Overlying water pH (7.38-7.96) and sediment pore water pH (6.85-7.47) showed no seasonal trend. Contrary to the predicted impact of seagrass on clam flat carbonate chemistry, preliminary data show sediment Ω is significantly lower in a site located within S. alterniflora (0.150.05) compared to sites lacking alterniflora (0.210.1) within Wyman Bay. Elevated sediment organic matter concentrations found with grasses (4.6%0.5) vs. without (2.9%0.4) may be produced by the grasses and organisms attracted to the ecosystem, and may result in greater respiration driving pH and Ω down rather than up. The strong correlation between TA and S (R2=0.78-0.99) suggests freshwater flow with spring melt during M. arenaria's planktonic larval stage and rain events (predicted to increase with climate change) can reduce Ω, with potentially negative implications for early M. arenaria life stages.

  7. Pork Quality Traits According to Postmortem pH and Temperature in Berkshire

    PubMed Central

    Kim, Tae Wan; Kim, Chul Wook; Yang, Mi Ra; No, Gun Ryoung; Kim, Il-Suk

    2016-01-01

    This study was performed to investigate the role of pH and temperature postmortem, and to demonstrate the importance of these factors in determining meat quality. Postmortem pH45min (pH at 45 min postmortem or initial pH) via analysis of Pearson’s correlation showed high positive correlation with pH change pHc24 (pH change from pH45min to pH24h postmortem). However, postmortem pH after 24 h (pH24h or ultimate pH) had a high negative correlation with pH change, pHc24, CIE L*, and protein content. Initial temperature postmortem (T1h ) was positively associated with a change in temperature from 45 min to 24 h postmortem (Tc24) and cooking loss, but negatively correlated with water holding capacity. Temperature at 24 h postmortem (T24h) was negatively associated with Tc24. Collectively, these results indicate that higher initial pH was associated with higher pHc24, T1h, and Tc24. However, higher initial pH was associated with a reduction in carcass weight, backfat thickness, CIE a* and b*, water holding capacity, collagen and fat content, drip loss, and cooking loss as well as decreased shear force. In contrast, CIE a* and b*, drip loss, cooking loss, and shear force in higher ultimate pH was showed by a similar pattern to higher initial pH, whereas pHc24, carcass weight, backfat thickness, water holding capacity, fat content, moisture content, protein content, T1h, T24h, and Tc24 were exhibited by completely differential patterns (p<0.05). Therefore, we suggest that initial pH, ultimate pH, and temperatures postmortem are important factors in determining the meat quality of pork. PMID:27499661

  8. Pork loin quality is not indicative of fresh belly or fresh and cured ham quality.

    PubMed

    Arkfeld, E K; Wilson, K B; Overholt, M F; Harsh, B N; Lowell, J E; Hogan, E K; Klehm, B J; Bohrer, B M; Mohrhauser, D A; King, D A; Wheeler, T L; Dilger, A C; Shackelford, S D; Boler, D D

    2016-12-01

    The objective was to characterize the relationship between fresh loin quality with fresh belly or fresh and cured ham quality. Pigs raised in 8 barns representing 2 seasons [cold ( = 4,290) and hot ( = 3,394)] and 2 production focuses [lean ( = 3,627) and quality ( = 4,057)] were used. Carcass characteristics and other meat quality data were collected on 7,684 carcasses. All of the carcasses were evaluated for HCW, LM depth, tenth rib fat depth, leg (ham primal) weight, instrumental color on the gluteus medius and gluteus profundus of the ham face, and subjective loin quality. Instrumental loin color and ultimate pH (≥ 22 h postmortem) were collected on the ventral side of loins along with dimensions and firmness scores of fresh bellies from 50% of the carcasses. Ten percent of the boneless loins and fresh hams were evaluated for slice shear force (SSF) or cured ham characteristics. Correlation coefficients between traits were computed using the CORR procedure of SAS and considered significantly different from 0 at ≤ 0.05. Temperature decline, beginning at 31 min postmortem and concluding at 22 h postmortem, for the longissimus dorsi and semimembranosus muscles were evaluated on 10% of the carcasses. Ultimate loin pH was correlated with dimensional belly characteristics ( ≥ |0.07|; < 0.0001) fresh ham instrumental color ( ≥ |0.03|; ≤ 0.05), and semimembranosus ultimate pH ( = 0.33; < 0.0001). Further, ultimate loin pH was correlated ( ≤ 0.01) with pump retention ( = 0.087) and cooked yield ( = 0.156) of cured hams. Instrumental L*on the ventral surface of the loin was related to L* on both muscles of the ham face ( ≤ 0.0001). Even though significant relationships between the loin, belly, and ham were detected, the variability in belly and ham quality explained by variability in loin quality was poor (≤ 22.09%). Compositional differences between the loin and belly may have contributed to those poor relationships. Additionally, differences in temperature declines during chilling between the loin and ham likely contributed to the weak nature of relationships. Equilibration of longissimus dorsi temperature to ambient cooler temperature occurred at 14 h postmortem ( = 0.0005), yet the semimembranosus had not equilibrated with ambient (equilibration bay) temperature ( < 0.0001) at 22 h postmortem. Using loin quality to draw conclusions about fresh belly and fresh and cured ham quality may be misleading.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Ling; Song, Yu, E-mail: songyu@dlpu.edu.cn; Yang, Wei

    Open-framework zinc phosphates were synthesized by microwave-assisted technique, and it was shown that the morphology of as-prepared materials could be easily tailored by changing synthesis temperature, reaction time and pH value. During the synthesis, when the reaction temperature increases from 130 °C to 220 °C, the products transformed from hexagonal prisms to polyhedron along with the disappearance of the hexagonal prisms vertical plane. Simultaneously, both the reaction time and pH value could promote the nucleation and growth of crystal particles. More interestingly, the target products with different morphologies could be obtained by varying the usage of NaOH or NH{sub 3}·H{submore » 2}O at 130 °C during the microwave synthesis process. - Graphical abstract: Zinc phosphates with variable morphologies can be obtained by simply tuning the microwave-heating temperatures. Display Omitted - Highlights: • Synthesis of open-framework Zn{sub 4} (H{sub 3}O) (NH{sub 4}){sub 3}(PO{sub 4}){sub 4} compounds employing microwave technique. • Dependence of morphology on the reaction conditions. • Morphology transformation from hexagonal prisms to polyhedron was observed.« less

  10. Biophysical insight into structure-function relation of Allium sativum Protease Inhibitor by thermal, chemical and pH-induced modulation using comprehensive spectroscopic analysis.

    PubMed

    Shamsi, Tooba Naz; Parveen, Romana; Naz, Huma; Haque, Md Anzarul; Fatima, Sadaf

    2017-10-01

    In this study, we have analyzed the structural and functional changes in the nature of Allium sativum Protease Inhibitor (ASPI) on undergoing various denaturation with variable range of pH, temperature and urea (at pH 8.2). ASPI being anti-tryptic in nature has native molecular mass of ∼15kDa. The conformational stability, functional parameters and their correlation were estimated under different conditions using circular dichroism, fluorescence and activity measurements. ASPI was found to fall in belongs to α+β protein. It demonstrated structural and functional stability in the pH range 5.0-12.0 and up to70°C temperature. Further decrease in pH and increase in temperature induces unfolding followed by aggregation. Chemical induced denaturation was found to be cooperative and transitions were reversible and sigmoid. T m (midpoint of denaturation), ΔC p (constant pressure heat capacity change) and ΔH m (van't Hoff enthalpy change at T m were calculated to be 41.25±0.2°C, 1.3±0.07kcalmol -1 K -1 and 61±2kcalmol -1 respectively for thermally denatured ASPI earlier. The reversibility of the protein was confirmed for both thermally and chemically denatured ASPI. The results obtained from trypsin inhibitory activity assay and structural studies are found to be in a significant correlation and hence established structure-function relationship of ASPI. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Methylation of Brazilein on Secang (Caesalpinia sappan Linn) Wood Extract for Maintain Color Stability to the Changes of pH

    NASA Astrophysics Data System (ADS)

    Ulma, Zeni; Rahayuningsih, Edia; Dwi Wahyuningsih, Tutik

    2018-01-01

    The stability of natural dyes to the changes of pH is really necessary when the natural dyes are applied either on fabric or food. This research aimed to increase the stability of brazilein, a compound contained within the secang wood extract, to the changes of pH. The methylation process was done by reacting Dimethyl Carbonate (DMC) with the brazilein on the secang wood extract. DMC acts as a substance that substitute hydroxyl group on brazilein. The methylation reaction of brazilein on secang wood extract was operated on a three-necked round-bottomed flask fitted with mercury-sealed stirrer and reflux condenser under 80°C temperature and 250 rpm stirring speed. There were two variables observed in this research; the DMC amount ratio to the amount of secang wood extract and the time of the methylation process. The research showed that at the 1:10 the DMC amount ratio to the amount of wood extract and 8 hours of the methylation process give the better stability of color of the secang wood extract than the variation of the other variables.

  12. Explaining the variation in the shear force of lamb meat using sarcomere length, the rate of rigor onset and pH.

    PubMed

    Hopkins, D L; Toohey, E S; Lamb, T A; Kerr, M J; van de Ven, R; Refshauge, G

    2011-08-01

    The temperature when the pH=6.0 (temp@pH6) impacts on the tenderness and eating quality of sheep meat. Due to the expense, sarcomere length is not routinely measured as a variable to explain variation in shear force, but whether measures such as temp@pH6 are as useful a parameter needs to be established. Measures of rigor onset in 261 carcases, including the temp@pH6, were evaluated in this study for their ability to explain some of the variation in shear force. The results show that for 1 day aged product combinations of the temp@pH6, the pH at 18 °C and the pH at 24 h provided a larger reduction (almost double) in total shear force variation than sarcomere length alone, with pH at 24 h being the single best measure. For 5 day aged product, pH at 18 °C was the single best measure. Inclusion of sarcomere length did represent some improvement, but the marginal increase would not be cost effective. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  13. The Influence of pH on Prokaryotic Cell Size and Temperature

    NASA Astrophysics Data System (ADS)

    Sundararajan, D.; Gutierrez, F.; Heim, N. A.; Payne, J.

    2015-12-01

    The pH of a habitat is essential to an organism's growth and success in its environment. Although most organisms maintain a neutral internal pH, their environmental pH can vary greatly. However, little research has been done concerning an organism's environmental pH across a wide range of taxa. We studied pH tolerance in prokaryotes and its relationship with biovolume, taxonomic classification, and ideal temperature. We had three hypotheses: pH and temperature are not correlated; pH tolerance is similar within taxonomic groups; and extremophiles have small cell sizes. To test these hypotheses, we used pH, size, and taxonomic data from The Prokaryotes. We found that the mean optimum external pH was neutral for prokaryotes as a whole and when divided by domain, phylum, and class. Using ANOVA to test for pH within and among group variances, we found that variation of pH in domains, phyla, classes, and families was greater than between them. pH and size did not show much of a correlation, except that the largest and smallest sized prokaryotes had nearly neutral pH. This seems significant because extremophiles need to divert more of their energy from growth to maintain a neutral internal pH. Acidophiles showed a larger range of optimum pH values than alkaliphiles. A similar result was seen with the minimum and maximum pH values of acidophiles and alkaliphiles. While acidophiles were spread out and had some alkaline maximum values, alkaliphiles had smaller ranges, and unlike some acidophiles that had pH minimums close to zero, alkaliphile pH maximums did not go beyond a pH of 12. No statistically significant differences were found between sizes of acidophiles and alkaliphiles. However, optimum temperatures of acidophiles and alkaliphiles did have a statistically significant difference. pH and temperature had a negative correlation. Therefore, pH seems to have a correlation with cell size, temperature, and taxonomy to some extent.

  14. Enhancement stability and catalytic activity of immobilized α-amylase using bioactive phospho-silicate glass as a novel inorganic support.

    PubMed

    Ahmed, Samia A; Mostafa, Faten A; Ouis, Mona A

    2018-06-01

    α-Amylase enzyme was immobilized on bioactive phospho-silicate glass (PS-glass) as a novel inorganic support by physical adsorption and covalent binding methods using glutaraldehyde and poly glutaraldehyde as a spacer. Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) studies confirmed the glass-enzyme linkage. Dissolution of PS-glass in acidic and neutral pH is higher than that of alkaline pH. Some immobilization variables were optimized using statistical factorial design (Central Composite Design). Optimized immobilization variables enhanced the immobilization yield (IY) from 27.9 to 79.9% (2.9-fold). It was found that the immobilized enzyme had higher optimum temperature, higher half-life time (t 1/2 ), lower activation energy (E a ), lower deactivation constant rate (k d ) and higher decimal reduction time (D-values) within the temperature range of 40-60°C. Differential scanning calorimetry analysis (DSC) confirmed the thermalstability of the immobilized enzyme. The immobilized enzyme was stable at a wide pH range (5.0-8.0). Kinetic studies of starch hydrolysis demonstrated that immobilized enzyme had lower Michaelis constant (K m ), maximum velocity (V max ) and catalytic efficiency (V max /K m ) values. The storage stability and reusability of the immobilized enzyme were found to be about 74.7 and 62.5% of its initial activity after 28days and 11cycles, respectively. Enhanced α-amylase stabilities upon immobilization make it suitable for industrial application. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. The Limits of Life in the Deep Subsurface - Implications for the Origin of Life

    NASA Astrophysics Data System (ADS)

    Baross, John

    2013-06-01

    There are very few environments on Earth where life is absent. Microbial life has proliferated into habitats that span nearly every imaginable physico-chemical variable. Only the availability of liquid water and temperature are known to prevent the growth of organisms. The other extreme physical and chemical variables, such as pH, pressure, high concentrations of solutes, damaging radiation, and toxic metals, are life-prohibiting factors for most organisms but not for all. The deep subsurface environments span all of the extreme conditions encountered by life including habitat conditions not yet explored, such as those that combine high temperature, high and low pH and extreme pressures. Some of the ``extremophile'' microorganisms inhabiting the deep subsurface environments have been shown to be among the most ``ancient'' of extant life. Their genomes and physiologies have led to a broader understanding of the geological settings of early life, the most ancient energy pathways, and the importance of water/rock interactions and tectonics in the origin and early evolution of life. The case can now be made that deep subsurface environments contributed to life's origin and provided the habitat(s) for the earliest microbial communities. However, there is much more to be done to further our understanding on the role of moderate to high pressures and temperatures on the chemical and biochemical ``steps'' leading to life, and on the evolution and physiology of both ancient and present-day subsurface microbial communities.

  16. Use of intertidal areas by shrimps (Decapoda) in a Brazilian Amazon estuary.

    PubMed

    Sampaio, Hebert A; Martinelli-Lemos, Jussara M

    2014-03-01

    The present work investigated the occupation and the correlation of the shrimp abundance in relation to environmental variables in different habitats (mangroves, salt marshes and rocky outcrops) in an Amazon estuary. The collections were made in August and November 2009, at low syzygy tide on Areuá Beach, situated in the Extractive Reserve of Mãe Grande de Curuçá, Pará, Brazil totaling 20 pools. In each environment, we recorded the physical-chemical factors (pH, salinity, and temperature) and measured the area (m2) and volume (m3) of every pool through bathymetry. The average pH, salinity, temperature, area and volume of tide pools were 8.75 (± 0.8 standard deviation), 35.45 (± 3), 29.49 °C (± 2.32), 27.41 m2 (± 41.18), and 5.19 m3 (± 8.01), respectively. We caught a total of 4,871 shrimps, distributed in three families and four species: Farfantepenaeus subtilis (98.36%) (marine) followed by Alpheus pontederiae (0.76%) (estuarine), Macrobrachium surinamicum (0.45%) and Macrobrachium amazonicum (0.43%) predominantly freshwater. The species F. subtilis and A. pontederiae occurred in the three habitats, whereas M. surinamicum occurred in salt marsh and rocky outcrop and M. amazonicum only in marisma. Temperature and pH were the most important environmental descriptors that significantly affected the density and biomass of shrimps.

  17. Methane production and consumption in grassland and boreal ecosystems

    NASA Technical Reports Server (NTRS)

    Schimel, David S.; Burke, Ingrid C.; Johnston, Carol; Pastor, John

    1994-01-01

    The objectives of the this project were to develop a mechanistic understanding of methane production and oxidation suitable for incorporation into spatially explicit models for spatial extrapolation. Field studies were undertaken in Minnesota, Canada, and Colorado to explore the process controls over the two microbial mediated methane transformations in a range of environments. Field measurements were done in conjunction with ongoing studies in Canada (the Canadian Northern Wetlands Projects: NOWES) and in Colorado (The Shortgrass Steppe Long Term Ecological Research Project: LTER). One of the central hypotheses of the proposal was that methane production should be substrate limited, as well as being controlled by physical variables influencing microbial activity (temperature, oxidation status, and pH). Laboratory studies of peats from Canada and Minnesota (Northern and Southern Boreal) were conducted with amendments of a methanogenic substrate at multiple temperatures and at multiple pHs (the latter by titrating samples). The studies showed control by substrate, pH, and temperature in order in anaerobic samples. Field and laboratory manipulations of natural plant litter, rather than an acetogenic substrate, showed similarly large effects. The studies concluded that substrate is an important control over methanogenesis, that substrate availability in the field is closely coupled to the chemistry of the dominant vegetation influencing its decomposition rate, that most methane is produced from recent plant litter, and that landscape changes in pH are an important control, highly correlated with vegetation.

  18. The use of artificial neural network for modeling the decolourization of acid orange 7 solution of industrial by ozonation process

    NASA Astrophysics Data System (ADS)

    Fatimah, S.; Wiharto, W.

    2017-02-01

    Acid Orange 7 (AO7) is one of the synthetic dye in the dyeing process in the textile industry. The use of this dye can produce wastewater which will be endangered if not treated well. Ozonation method is one technique to solve this problem. Ozonation is a waste processing techniques using ozone as an oxidizing agent. Variables used in this research is the ozone concentration, the initial concentration of AO7, temperature, and pH. Based on the experimental result that the optimum value decolourization percentage is 80% when the ozone concentration is 560 mg/L, the initial concentration AO7 is 14 mg/L, the temperature is 390 °C, and pH is 7,6. Decolourization efficiency of experimental results and predictions successfully modelled by the neural network architecture. The data used to construct a neural network architecture quasi newton one step secant as many as 31 data. A comparison between the predicted results of the designed ANN models and experiment was conducted. From the modeling results obtained MAPE value of 0.7763%. From the results of this artificial neural network architecture obtained the optimum value decolourization percentage in 80,64% when the concentration of ozone is 550 mg/L, the initial concentration AO7 is 11 mg/L, the temperature is 41 °C, and the pH is 7.9.

  19. Optimized production of vanillin from green vanilla pods by enzyme-assisted extraction combined with pre-freezing and thawing.

    PubMed

    Zhang, Yanjun; Mo, Limei; Chen, Feng; Lu, Minquan; Dong, Wenjiang; Wang, Qinghuang; Xu, Fei; Gu, Fenglin

    2014-02-19

    Production of vanillin from natural green vanilla pods was carried out by enzyme-assisted extraction combined with pre-freezing and thawing. In the first step the green vanilla pods were pre-frozen and then thawed to destroy cellular compartmentation. In the second step pectinase from Aspergillus niger was used to hydrolyze the pectin between the glucovanillin substrate and β-glucosidase. Four main variables, including enzyme amount, reaction temperature, time and pH, which were of significance for the vanillin content were studied and a central composite design (CCD) based on the results of a single-factor tests was used. Response surface methodology based on CCD was employed to optimize the combination of enzyme amount, reaction temperature, time, and pH for maximum vanillin production. This resulted in the optimal condition in regards of the enzyme amount, reaction temperature, time, and pH at 84.2 mg, 49.5 °C, 7.1 h, and 4.2, respectively. Under the optimal condition, the experimental yield of vanillin was 4.63% ± 0.11% (dwb), which was in good agreement with the value predicted by the model. Compared to the traditional curing process (1.98%) and viscozyme extract (2.36%), the optimized method for the vanillin production significantly increased the yield by 133.85% and 96%, respectively.

  20. Relations of biological indicators to nutrient data for lakes and streams in Pennsylvania and West Virginia, 1990-98

    USGS Publications Warehouse

    Brightbill, Robin A.; Koerkle, Edward H.

    2003-01-01

    The Clean Water Action Plan of 1998 provides a blueprint for federal agencies to work with states, tribes, and other stakeholders to protect and restore the Nation's water resources. The plan includes an initiative that addresses the nutrient-enrichment problem of lakes and streams across the United States. The U.S. Environmental Protection Agency (USEPA) is working to set nutrient criteria by nationwide nutrient ecoregions that are an aggregation of the Omernik level III ecoregions. Because low levels of nutrients are necessary for healthy streams and elevated concentrations can cause algal blooms that deplete available oxygen and kill off aquatic organisms, criteria levels are to be set, in part, using the relation between chlorophyll a and concentrations of total nitrogen and total phosphorus.Data from Pennsylvania and West Virginia, collected between 1990 and 1998, were analyzed for relations between chlorophyll a, nutrients, and other explanatory variables. Both phytoplankton and periphyton chlorophyll a concentrations from lakes and streams were analyzed separately within each of the USEPA nutrient ecoregions located within the boundaries of the two states. These four nutrient ecoregions are VII (Mostly Glaciated Dairy), VIII (Nutrient Poor, Largely Glaciated Upper Midwest and Northeast), IX (Southeastern Temperate Forested Plains and Hills), and XI (Central and Eastern Forested Uplands).Phytoplankton chlorophyll a concentrations in lakes were related to total nitrogen, total phosphorus, Secchi depth, concentration of dissolved oxygen, pH, water temperature, and specific conductivity. In nutrient ecoregion VII, nutrients were not significant predictors of chlorophyll a concentrations. Total nitrogen, Secchi depth, and pH were significantly related to phytoplankton chlorophyll a concentrations in nutrient ecoregion IX. Lake periphyton chlorophyll a concentrations from nutrient ecoregion XI were related to total phosphorus rather than total nitrogen, Secchi depth, and pH. In all cases, Secchi depth was inversely related to the chlorophyll a concentrations in a lake. Nutrient ecoregion VIII had too few samples for any type of analysis.Streams within the different nutrient ecoregions had many variables that were significantly related to periphyton chlorophyll a concentrations. These variables consisted of total nitrogen, total phosphorus, drainage area, percent forest cover, several macroinvertebrate indices, pH, basin slope, total residue, total suspended solids, and water temperature. Nutrients were not significantly related to periphyton chlorophyll a in streams within nutrient ecoregions VII or IX but were in nutrient ecoregion XI. Drainage area, percent forest cover, and several invertebrate indices were significant variables in nutrient ecoregion VII. Percent forest cover and several invertebrate indices had a negative relation with chlorophyll a concentrations in these streams. Percent forest cover and basin slope had a negative effect on periphyton in nutrient ecoregion IX streams. Light availability was more critical to periphyton growth in streams than nutrients.Ecoregion XI had enough samples to do seasonal analyses. Summer-season periphyton chlorophyll a concentrations in nutrient ecoregion XI streams were positively related to total phosphorus and drainage area but negatively related to percent forest cover. Summer-season phytoplankton in streams was related to different variables within the same nutrient ecoregion. Both total nitrogen and total phosphorus were positively related with chlorophyll a concentrations as well as basin slope, total residue, and total suspended solids but negatively related to pH. The winter stream phytoplankton chlorophyll a concentrations were related to water temperature only.

  1. Post mortem rigor development in the Egyptian goose (Alopochen aegyptiacus) breast muscle (pectoralis): factors which may affect the tenderness.

    PubMed

    Geldenhuys, Greta; Muller, Nina; Frylinck, Lorinda; Hoffman, Louwrens C

    2016-01-15

    Baseline research on the toughness of Egyptian goose meat is required. This study therefore investigates the post mortem pH and temperature decline (15 min-4 h 15 min post mortem) in the pectoralis muscle (breast portion) of this gamebird species. It also explores the enzyme activity of the Ca(2+)-dependent protease (calpain system) and the lysosomal cathepsins during the rigor mortis period. No differences were found for any of the variables between genders. The pH decline in the pectoralis muscle occurs quite rapidly (c = -0.806; ultimate pH ∼ 5.86) compared with other species and it is speculated that the high rigor temperature (>20 °C) may contribute to the increased toughness. No calpain I was found in Egyptian goose meat and the µ/m-calpain activity remained constant during the rigor period, while a decrease in calpastatin activity was observed. The cathepsin B, B & L and H activity increased over the rigor period. Further research into the connective tissue content and myofibrillar breakdown during aging is required in order to know if the proteolytic enzymes do in actual fact contribute to tenderisation. © 2015 Society of Chemical Industry.

  2. Optimization of Crude Oil and PAHs Degradation by Stenotrophomonas rhizophila KX082814 Strain through Response Surface Methodology Using Box-Behnken Design

    PubMed Central

    Virupakshappa, Praveen Kumar Siddalingappa; Mishra, Gaurav; Mehkri, Mohammed Ameenuddin

    2016-01-01

    The present paper describes the process optimization study for crude oil degradation which is a continuation of our earlier work on hydrocarbon degradation study of the isolate Stenotrophomonas rhizophila (PM-1) with GenBank accession number KX082814. Response Surface Methodology with Box-Behnken Design was used to optimize the process wherein temperature, pH, salinity, and inoculum size (at three levels) were used as independent variables and Total Petroleum Hydrocarbon, Biological Oxygen Demand, and Chemical Oxygen Demand of crude oil and PAHs as dependent variables (response). The statistical analysis, via ANOVA, showed coefficient of determination R 2 as 0.7678 with statistically significant P value 0.0163 fitting in second-order quadratic regression model for crude oil removal. The predicted optimum parameters, namely, temperature, pH, salinity, and inoculum size, were found to be 32.5°C, 9, 12.5, and 12.5 mL, respectively. At this optimum condition, the observed and predicted PAHs and crude oil removal were found to be 71.82% and 79.53% in validation experiments, respectively. The % TPH results correlate with GC/MS studies, BOD, COD, and TPC. The validation of numerical optimization was done through GC/MS studies and % removal of crude oil. PMID:28116165

  3. Genetic variability of psychrotolerant Acidithiobacillus ferrivorans revealed by (meta)genomic analysis.

    PubMed

    González, Carolina; Yanquepe, María; Cardenas, Juan Pablo; Valdes, Jorge; Quatrini, Raquel; Holmes, David S; Dopson, Mark

    2014-11-01

    Acidophilic microorganisms inhabit low pH environments such as acid mine drainage that is generated when sulfide minerals are exposed to air. The genome sequence of the psychrotolerant Acidithiobacillus ferrivorans SS3 was compared to a metagenome from a low temperature acidic stream dominated by an A. ferrivorans-like strain. Stretches of genomic DNA characterized by few matches to the metagenome, termed 'metagenomic islands', encoded genes associated with metal efflux and pH homeostasis. The metagenomic islands were enriched in mobile elements such as phage proteins, transposases, integrases and in one case, predicted to be flanked by truncated tRNAs. Cus gene clusters predicted to be involved in copper efflux and further Cus-like RND systems were predicted to be located in metagenomic islands and therefore, constitute part of the flexible gene complement of the species. Phylogenetic analysis of Cus clusters showed both lineage specificity within the Acidithiobacillus genus as well as niche specificity associated with an acidic environment. The metagenomic islands also contained a predicted copper efflux P-type ATPase system and a polyphosphate kinase potentially involved in polyphosphate mediated copper resistance. This study identifies genetic variability of low temperature acidophiles that likely reflects metal resistance selective pressures in the copper rich environment. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  4. Predicting adsorptive removal of chlorophenol from aqueous solution using artificial intelligence based modeling approaches.

    PubMed

    Singh, Kunwar P; Gupta, Shikha; Ojha, Priyanka; Rai, Premanjali

    2013-04-01

    The research aims to develop artificial intelligence (AI)-based model to predict the adsorptive removal of 2-chlorophenol (CP) in aqueous solution by coconut shell carbon (CSC) using four operational variables (pH of solution, adsorbate concentration, temperature, and contact time), and to investigate their effects on the adsorption process. Accordingly, based on a factorial design, 640 batch experiments were conducted. Nonlinearities in experimental data were checked using Brock-Dechert-Scheimkman (BDS) statistics. Five nonlinear models were constructed to predict the adsorptive removal of CP in aqueous solution by CSC using four variables as input. Performances of the constructed models were evaluated and compared using statistical criteria. BDS statistics revealed strong nonlinearity in experimental data. Performance of all the models constructed here was satisfactory. Radial basis function network (RBFN) and multilayer perceptron network (MLPN) models performed better than generalized regression neural network, support vector machines, and gene expression programming models. Sensitivity analysis revealed that the contact time had highest effect on adsorption followed by the solution pH, temperature, and CP concentration. The study concluded that all the models constructed here were capable of capturing the nonlinearity in data. A better generalization and predictive performance of RBFN and MLPN models suggested that these can be used to predict the adsorption of CP in aqueous solution using CSC.

  5. Survival of spotted salamander eggs in temporary woodland ponds of coastal Maryland

    USGS Publications Warehouse

    Albers, P.H.; Prouty, R.M.

    1987-01-01

    Temporary ponds on the Atlantic Coastal Plain in maryland were characterized according to water chemistry, rain input, phytoplankton, zooplankton and use by the spotted salamander Ambystoma maculatum during March-October 1983-1984. Neither the number of egg masses per unit of pond surface (abundance) nor the survival of spotted salamander embryos was significantly correlated (P>0.05) with pond pH. Rainfall during May-July significantly increased the hydrogen ion concentration of 5 of 11 ponds evaluated for the impact of rainfall during the previous 48h and the previous week. Survival of egg masses transferred among eight ponds with pH3.66-4.45 and one pond with pH5.18 was significantly reduced (P

  6. The initial freezing point temperature of beef rises with the rise in pH: a short communication.

    PubMed

    Farouk, M M; Kemp, R M; Cartwright, S; North, M

    2013-05-01

    This study tested the hypothesis that the initial freezing point temperature of meat is affected by pH. Sixty four bovine M. longissimus thoracis et lumborum were classified into two ultimate pH groups: low (<5.8) and high pH (>6.2) and their cooling and freezing point temperatures were determined. The initial freezing temperatures for beef ranged from -0.9 to -1.5°C (∆=0.6°C) with the higher and lower temperatures associated with high and low ultimate pH respectively. There was a significant correlation (r=+0.73, P<0.01) between beef pH and freezing point temperature in the present study. The outcome of this study has implications for the meat industry where evidence of freezing (ice formation) in a shipment as a result of high pH meat could result in a container load of valuable chilled product being downgraded to a lower value frozen product. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Stress effect of different temperatures and air exposure during transport on physiological profiles in the American lobster Homarus americanus.

    PubMed

    Lorenzon, S; Giulianini, P G; Martinis, M; Ferrero, E A

    2007-05-01

    Homarus americanus is an important commercial species that can survive 2-3 days out of water if kept cool and humid. Once caught for commercial purpose and shipped around the world, a lobster is likely to be subjected to a number of stressors, including emersion and air exposure, hypoxia, temperature changes and handling. This study focused on the effect of transport stress and specifically at different animal body temperature (6 and 15 degrees C) and air exposure during commercial transport and recovery process in water. Animals were monitored, by hemolymph bleeding, at different times: 0 h (arrival time at plant) 3 h, 12 h, 24 h and 96 h after immersion in the stocking tank with a water temperature of 6.5+/-1.5 degrees C. We analysed the effects by testing some physiological variables of the hemolymph: glucose, cHH, lactate, total protein, cholesterol, triglycerides, chloride and calcium concentration, pH and density. All these variables appeared to be influenced negatively by high temperature both in average of alteration from the physiological value and in recovering time. Blood glucose, lactate, total protein, cholesterol were significantly higher in the group with high body temperature compared to those with low temperature until 96 h after immersion in the recovery tank.

  8. Distribution of ether lipids and composition of the archaeal community in terrestrial geothermal springs: impact of environmental variables.

    PubMed

    Xie, Wei; Zhang, Chuanlun L; Wang, Jinxiang; Chen, Yufei; Zhu, Yuanqing; de la Torre, José R; Dong, Hailiang; Hartnett, Hilairy E; Hedlund, Brian P; Klotz, Martin G

    2015-05-01

    Archaea can respond to changes in the environment by altering the composition of their membrane lipids, for example, by modification of the abundance and composition of glycerol dialkyl glycerol tetraethers (GDGTs). Here, we investigated the abundance and proportions of polar GDGTs (P-GDGTs) and core GDGTs (C-GDGTs) sampled in different seasons from Tengchong hot springs (Yunnan, China), which encompassed a pH range of 2.5-10.1 and a temperature range of 43.7-93.6°C. The phylogenetic composition of the archaeal community (reanalysed from published work) divided the Archaea in spring sediment samples into three major groups that corresponded with spring pH: acidic, circumneutral and alkaline. Cluster analysis showed correlation between spring pH and the composition of P- and C-GDGTs and archaeal 16S rRNA genes, indicating an intimate link between resident Archaea and the distribution of P- and C-GDGTs in Tengchong hot springs. The distribution of GDGTs in Tengchong springs was also significantly affected by temperature; however, the relationship was weaker than with pH. Analysis of published datasets including samples from Tibet, Yellowstone and the US Great Basin hot springs revealed a similar relationship between pH and GDGT content. Specifically, low pH springs had higher concentrations of GDGTs with high numbers of cyclopentyl rings than neutral and alkaline springs, which is consistent with the predominance of high cyclopentyl ring-characterized Sulfolobales and Thermoplasmatales present in some of the low pH springs. Our study suggests that the resident Archaea in these hot springs are acclimated if not adapted to low pH by their genetic capacity to effect the packing density of their membranes by increasing cyclopentyl rings in GDGTs at the rank of community. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Modelling lamb carcase pH and temperature decline parameters: relationship to shear force and abattoir variation.

    PubMed

    Hopkins, David L; Holman, Benjamin W B; van de Ven, Remy J

    2015-02-01

    Carcase pH and temperature decline rates influence lamb tenderness; therefore pH decline parameters are beneficial when modelling tenderness. These include pH at temperature 18 °C (pH@Temp18), temperature when pH is 6 (Temp@pH6), and pH at 24 h post-mortem (pH24). This study aimed to establish a relationship between shear force (SF) as a proxy for tenderness and carcase pH decline parameters estimated using both linear and spline estimation models for the m. longissimus lumborum (LL). The study also compared abattoirs regarding their achievement of ideal pH decline, indicative of optimal tenderness. Based on SF measurements of LL and m. semimembranosus collected as part of the Information Nucleus slaughter programme (CRC for Sheep Industry Innovation) this study found significant relationships between tenderness and pH24LL, consistent across the meat cuts and ageing periods examined. Achievement of ideal pH decline was shown not to have significantly differed across abattoirs, although rates of pH decline varied significantly across years within abattoirs.

  10. Variability of exhaled breath condensate pH in lung transplant recipients.

    PubMed

    Czebe, Krisztina; Kullmann, Tamas; Csiszer, Eszter; Barat, Erzsebet; Horvath, Ildiko; Antus, Balazs

    2008-01-01

    Measurement of pH in exhaled breath condensate (EBC) may represent a novel method for investigating airway pathology. The aim of this longitudinal study was to assess the variability of EBC pH in stable lung transplant recipients (LTR). During routine clinical visits 74 EBC pH measurements were performed in 17 LTR. EBC pH was also measured in 19 healthy volunteers on four separate occasions. EBC pH was determined at standard CO2 partial pressure by a blood gas analyzer. Mean EBC pH in clinically stable LTR and in controls was similar (6.38 +/- 0.09 vs. 6.44 +/- 0.16; p = nonsignificant). Coefficient of variation for pH in LTR and controls was 2.1 and 2.3%, respectively. The limits of agreement for between-visit variability determined by the Bland-Altman test in LTR and healthy volunteers were also comparable (-0.29 and 0.46 vs. -0.53 and 0.44). Our data suggest that the variability of EBC pH in stable LTR is relatively small, and it is similar to that in healthy nontransplant subjects.

  11. Coral calcification and reef development under natural disturbances

    NASA Astrophysics Data System (ADS)

    Wall, M.; Schmidt, G. M.; Khokkiatiwong, S.; Richter, C.

    2012-04-01

    Corals are impressive ecosystem engineers shaping and influencing tropical shallow water environments through their complex carbonate framework. Calcification a key physiological process determining coral growth and reef development, is highly dependent on constant environmental conditions, especially temperature, aragonite saturation and pH. However, not in all reef areas such constant and stable conditons can be found. Coral reefs located in the Andaman Sea off the western Thai coast are subjected to large amplitude internal waves (LAIW), which induce strong oscillations in several physical and chemical environmental parameters and hence, offer the possibility to study the influence of fluctuating conditions on coral reefs. Characteristics of these oscillations as well as reef framework development have been studied on reefs of five islands, which are exposed to LAIW along their western sides and LAIW-sheltered on their eastern sides. LAIW reach these shallow water reef areas all year round, however, strongest fluctuations were recorded during the dry season (November to May) with temperature drops of up to 8°C and pH values ranging from 8.22-7.90. Several (up to 12) sudden changes in environmental conditions can occur during a day, which differ in intensity and duration. Salinity, pH and oxygen are well correlated with changes in temperature and thus, temperature variability calculated as degree days cooling (DDC) was used as proxy for the complex set of environmental variability. This proxy enabled us to combine frequency and intensity of disturbances in one value and allowed for ranking each study location according to the severity of LAIW disturbances. Framework height was found to be clearly reduced in areas exposed to LAIW compared to the complex three-dimensional carbonate framework in the LAIW-sheltered reefs. Moreover, it showed a strong linear correlation with DDC (Rsqr=0.732, p=0.007) indicating the negative effect of pulsed disturbances on coral reef development. LAIW are a ubiquitous phenomenon especially in tropical oceans where coral communities exposed to these internal waves may offer a unique possibility to study in situ the effect of several cumulative stressors on coral- and reef development, as well as the consequences for the whole reef community.

  12. Response of O2 and pH to ENSO in the California Current System in a high-resolution global climate model

    NASA Astrophysics Data System (ADS)

    Turi, Giuliana; Alexander, Michael; Lovenduski, Nicole S.; Capotondi, Antonietta; Scott, James; Stock, Charles; Dunne, John; John, Jasmin; Jacox, Michael

    2018-02-01

    Coastal upwelling systems, such as the California Current System (CalCS), naturally experience a wide range of O2 concentrations and pH values due to the seasonality of upwelling. Nonetheless, changes in the El Niño-Southern Oscillation (ENSO) have been shown to measurably affect the biogeochemical and physical properties of coastal upwelling regions. In this study, we use a novel, high-resolution global climate model (GFDL-ESM2.6) to investigate the influence of warm and cold ENSO events on variations in the O2 concentration and the pH of the CalCS coastal waters. An assessment of the CalCS response to six El Niño and seven La Niña events in ESM2.6 reveals significant variations in the response between events. However, these variations overlay a consistent physical and biogeochemical (O2 and pH) response in the composite mean. Focusing on the mean response, our results demonstrate that O2 and pH are affected rather differently in the euphotic zone above ˜ 100 m. The strongest O2 response reaches up to several hundreds of kilometers offshore, whereas the pH signal occurs only within a ˜ 100 km wide band along the coast. By splitting the changes in O2 and pH into individual physical and biogeochemical components that are affected by ENSO variability, we found that O2 variability in the surface ocean is primarily driven by changes in surface temperature that affect the O2 solubility. In contrast, surface pH changes are predominantly driven by changes in dissolved inorganic carbon (DIC), which in turn is affected by upwelling, explaining the confined nature of the pH signal close to the coast. Below ˜ 100 m, we find conditions with anomalously low O2 and pH, and by extension also anomalously low aragonite saturation, during La Niña. This result is consistent with findings from previous studies and highlights the stress that the CalCS ecosystem could periodically undergo in addition to impacts due to climate change.

  13. Analyzing the Differences and Preferences of Pathogenic and Nonpathogenic Prokaryote Species

    NASA Astrophysics Data System (ADS)

    Nolen, L.; Duong, K.; Heim, N. A.; Payne, J.

    2015-12-01

    A limited amount of knowledge exists on the large-scale characteristics and differences of pathogenic species in comparison to all prokaryotes. Pathogenic species, like other prokaryotes, have attributes specific to their environment and lifestyles. However, because they have evolved to coexist inside their hosts, the conditions they occupy may be more limited than those of non-pathogenic species. In this study we investigate the possibility of divergent evolution between pathogenic and non-pathogenic species by examining differences that may have evolved as a result of the need to adapt to their host. For this research we analyzed data collected from over 1900 prokaryotic species and performed t-tests using R to quantify potential differences in preferences. To examine the possible divergences from nonpathogenic bacteria, we focused on three variables: cell biovolume, preferred environmental pH, and preferred environmental temperature. We also looked at differences between pathogenic and nonpathogenic species belonging to the same phylum. Our results suggest a strong divergence in abiotic preferences between the two groups, with pathogens occupying a much smaller range of temperatures and pHs than their non-pathogenic counterparts. However, while the median biovolume is different when comparing pathogens and nonpathogens, we cannot conclude that the mean values are significantly different from each other. In addition, we found evidence of convergent evolution, as the temperature and pH preferences of pathogenic bacteria species from different phlya all approach the same values. Pathogenic species do not, however, all approach the same biovolume values, suggesting that specific pH and temperature preferences are more characteristic of pathogens than certain biovolumes.

  14. Mapping as a tool for predicting the risk of anthrax outbreaks in Northern Region of Ghana.

    PubMed

    Nsoh, Ayamdooh Evans; Kenu, Ernest; Forson, Eric Kofi; Afari, Edwin; Sackey, Samuel; Nyarko, Kofi Mensah; Yebuah, Nathaniel

    2016-01-01

    Anthrax is a febrile soil-born infectious disease that can affect all warm-blooded animals including man. Outbreaks of anthrax have been reported in northern region of Ghana but no concerted effort has been made to implement risk-based surveillance systems to document outbreaks so as to implement policies to address the disease. We generated predictive maps using soil pH, temperature and rainfall as predictor variables to identify hotspot areas for the outbreaks. A 10-year secondary data records on soil pH, temperature and rainfall were used to create climate-based risk maps using ArcGIS 10.2. The monthly mean values of rainfall and temperature for ten years were calculated and anthrax related evidence based constant raster values were created as weights for the three factors. All maps were generated using the Kriging interpolation method. There were 43 confirmed outbreaks. The deaths involved were 131 cattle, 44 sheep, 15 goats, 562 pigs with 6 human deaths and 22 developed cutaneous anthrax. We found three strata of well delineated distribution pattern indicating levels of risk due to suitability of area for anthrax spore survival. The likelihood of outbreaks occurrence and reoccurrence was higher in Strata I, Strata II and strata III respectively in descending order, due to the suitability of soil pH, temperature and rainfall for the survival and dispersal of B. anthracis spore. The eastern corridor of Northern region is a Hots spot area. Policy makers can develop risk based surveillance system and focus on this area to mitigate anthrax outbreaks and reoccurrence.

  15. A gold nanocluster-based fluorescent probe for simultaneous pH and temperature sensing and its application to cellular imaging and logic gates

    NASA Astrophysics Data System (ADS)

    Wu, Yun-Tse; Shanmugam, Chandirasekar; Tseng, Wei-Bin; Hiseh, Ming-Mu; Tseng, Wei-Lung

    2016-05-01

    Metal nanocluster-based nanomaterials for the simultaneous determination of temperature and pH variations in micro-environments are still a challenge. In this study, we develop a dual-emission fluorescent probe consisting of bovine serum albumin-stabilized gold nanoclusters (BSA-AuNCs) and fluorescein-5-isothiocyanate (FITC) as temperature- and pH-responsive fluorescence signals. Under single wavelength excitation the FITC/BSA-AuNCs exhibited well-separated dual emission bands at 525 and 670 nm. When FITC was used as a reference fluorophore, FITC/BSA-AuNCs showed a good linear response over the temperature range 1-71 °C and offered temperature-independent spectral shifts, temperature accuracy, activation energy, and reusability. The possible mechanism for high temperature-induced fluorescence quenching of FITC/BSA-AuNCs could be attributed to a weakening of the Au-S bond, thereby lowering the charge transfer from BSA to AuNCs. Additionally, the pH- and temperature-responsive properties of FITC/BSA-AuNCs allow simultaneous temperature sensing from 21 to 41 °C (at intervals of 5 °C) and pH from 6.0 to 8.0 (at intervals of 0.5 pH unit), facilitating the construction of two-input AND logic gates. Three-input AND logic gates were also designed using temperature, pH, and trypsin as inputs. The practicality of using FITC/BSA-AuNCs to determine the temperature and pH changes in HeLa cells is also validated.Metal nanocluster-based nanomaterials for the simultaneous determination of temperature and pH variations in micro-environments are still a challenge. In this study, we develop a dual-emission fluorescent probe consisting of bovine serum albumin-stabilized gold nanoclusters (BSA-AuNCs) and fluorescein-5-isothiocyanate (FITC) as temperature- and pH-responsive fluorescence signals. Under single wavelength excitation the FITC/BSA-AuNCs exhibited well-separated dual emission bands at 525 and 670 nm. When FITC was used as a reference fluorophore, FITC/BSA-AuNCs showed a good linear response over the temperature range 1-71 °C and offered temperature-independent spectral shifts, temperature accuracy, activation energy, and reusability. The possible mechanism for high temperature-induced fluorescence quenching of FITC/BSA-AuNCs could be attributed to a weakening of the Au-S bond, thereby lowering the charge transfer from BSA to AuNCs. Additionally, the pH- and temperature-responsive properties of FITC/BSA-AuNCs allow simultaneous temperature sensing from 21 to 41 °C (at intervals of 5 °C) and pH from 6.0 to 8.0 (at intervals of 0.5 pH unit), facilitating the construction of two-input AND logic gates. Three-input AND logic gates were also designed using temperature, pH, and trypsin as inputs. The practicality of using FITC/BSA-AuNCs to determine the temperature and pH changes in HeLa cells is also validated. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02341j

  16. Hydrothermal ore-forming processes in the light of studies in rock- buffered systems: II. Some general geologic applications

    USGS Publications Warehouse

    Hemley, J.J.; Hunt, J.P.

    1992-01-01

    The experimental metal solubilities for rock-buffered hydrothermal systems provide important insights into the acquisition, transport, and deposition of metals in real hydrothermal systems that produced base metal ore deposits. Water-rock reactions that determine pH, together with total chloride and changes in temperature and fluid pressure, play significant roles in controlling the solubility of metals and determining where metals are fixed to form ore deposits. Deposition of metals in hydrothermal systems occurs where changes such as cooling, pH increase due to rock alteration, boiling, or fluid mixing cause the aqueous metal concentration to exceed saturation. Metal zoning results from deposition occurring at successive saturation surfaces. Zoning is not a reflection simply of relative solubility but of the manner of intersection of transport concentration paths with those surfaces. Saturation surfaces will tend to migrate outward and inward in prograde and retrograde time, respectively, controlled by either temperature or chemical variables. -from Authors

  17. Aspects of the "Design Space" in high pressure liquid chromatography method development.

    PubMed

    Molnár, I; Rieger, H-J; Monks, K E

    2010-05-07

    The present paper describes a multifactorial optimization of 4 critical HPLC method parameters, i.e. gradient time (t(G)), temperature (T), pH and ternary composition (B(1):B(2)) based on 36 experiments. The effect of these experimental variables on critical resolution and selectivity was carried out in such a way as to systematically vary all four factors simultaneously. The basic element is a gradient time-temperature (t(G)-T) plane, which is repeated at three different pH's of the eluent A and at three different ternary compositions of eluent B between methanol and acetonitrile. The so-defined volume enables the investigation of the critical resolution for a part of the Design Space of a given sample. Further improvement of the analysis time, with conservation of the previously optimized selectivity, was possible by reducing the gradient time and increasing the flow rate. Multidimensional robust regions were successfully defined and graphically depicted. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  18. Biomimetic synthesis of silver nanoparticles and evaluation of their catalytic activity towards degradation of methyl orange

    NASA Astrophysics Data System (ADS)

    Manjari Mishra, Pravat; Bihari Pani, Khirod

    2017-11-01

    This paper described the significant effect of process variables like reductant concentrations, substrate concentration, reaction pH and reaction temperature on the size, morphology and yield of the silver nanoparticles (AgNPs) synthesized using aqueous leaf extract of a medicinal plant Momordica charantia (Bitter guard). By means of UV-vis spectroscopy, XRD analysis, TEM analysis and Fluorescence analysis, it is observed that the reaction solution containing 10-3 M of AgNO3 of pH 5.3  +  10 ml of aqueous leaf extract at normal room temperature, was optimum for synthesis of stable, polydisperse, predominantly spherical AgNPs with average size of 12.15 nm. FT-IR and TEM studies confirmed the stability of AgNPs was due to the capping of phytoconstituents present in the leaf extract. The aqueous solution of leaf extract containing AgNPs showed remarkable catalytic activity towards degradation of methyl orange (MO) in aqueous medium.

  19. Diurnal pH variations of a Glacial Stream: a starting point for Inquiry-driven student and teacher Investigations of a Glacial Ecosystem

    NASA Astrophysics Data System (ADS)

    O'Brien, W. P.; Galbraith, J.; Fatland, D. R.; Heavner, M.

    2009-12-01

    Contemporary geoscience research often operates in a mode that generates huge repositories of data available on the internet to the scientific community and the general public. The SEAMONSTER (SM) online data browser of both archival and real-time data is an example of such a dynamic online ecosystem resource associated with the Juneau Icefield. Although newly developed database navigation tools and geobrowsers make it easy for non-experts to access data of interest, it nonetheless can be daunting to K-16 educators to fashion lesson plans that make effective use of these rich resources. In the following scenario, a student and associated teacher, operating outside the traditional didactic lecture/demo mode, explore and try to make sense of a tiny portion of SM data in a spirit of inquiry guided by curiosity, looking for features that catch their attention as they skim through interactive time-series graphs (96 samples/day) of data from Lemon Creek (which drains Lemon Glacier) for stream hydrological variables (temperature, pH, conductivity, dissolved oxygen, turbidity, discharge) and associated meteorological variables (precipitation, humidity, temperature). Amidst all the complex fluctuations that follow no immediately apparent pattern, one regular and continuous feature does stand out: a seemingly sinusoidal diurnal variation in pH of about 0.1 that peaks daily at noon. This high-frequency signal is superimposed on a slower signal characterized by multiple-day trends and larger fluctuations in pH. The resulting composite signal with its easily identifiable patterns is an ideal candidate for investigating Fourier signal decomposition. They hypothesize that photosynthesis could be a contributing factor to the diurnal signal and then design and run an experiment modeling bioactive streamwater with a blended chloroplast-rich slurry of fresh spinach leaves (spinach soup). They put a recording pH meter in the spinach soup and expose it to high and low levels of light; the experiment (based in part on my own actual videotaped spinach-soup study) returns a positive correlation between elevated pH and increased photosynthetic activity in the soup, thereby providing a plausible explanation for micro-scale daily fluctuations in stream pH. They then re-examine the local hydrological and meteorological data, looking for patterns and correlations that might enable them to infer the sources (glacial or watershed) and types of photosynthetic producers/consumers living in Lemon Creek. These results could then be compared with diurnal pH variations also found in a nearby non-glacial stream, Montana Creek. Thus the steady pH heartbeat of a stream in the dynamic ecosystem surrounding a partially-glaciated watershed threads together a diverse set of inquiry-and-data-driven ecological investigations integrating topics from chemistry, biology, physics and informatics.

  20. Cytotoxicity and hemolytic activity of jellyfish Nemopilema nomurai (Scyphozoa: Rhizostomeae) venom.

    PubMed

    Kang, Changkeun; Munawir, Al; Cha, Mijin; Sohn, Eun-Tae; Lee, Hyunkyoung; Kim, Jong-Shu; Yoon, Won Duk; Lim, Donghyun; Kim, Euikyung

    2009-07-01

    The recent bloom of a giant jellyfish Nemopilema nomurai has caused a danger to sea bathers and fishery damages in the waters of China, Korea, and Japan. The present study investigated the cytotoxic and hemolytic activities of crude venom extract of N. nomurai using a number of in vitro assays. The jellyfish venom showed a much higher cytotoxic activity in H9C2 heart myoblast than in C2C12 skeletal myoblast (LC(50)=2 microg/mL vs. 12 microg/mL, respectively), suggesting its possible in vivo selective toxicity on cardiac tissue. This result is consistent with our previous finding that cardiovascular function is a target of the venom. In order to determine the stability of N. nomurai venom, its cytotoxicity was examined under the various temperature and pH conditions. The activity was relatively well retained at low environmental temperature (or=60 degrees C). In pH stability test, the venom has abruptly lost its activity at low pH environment (pH

  1. Resilience to temperature and pH changes in a future climate change scenario in six strains of the polar diatom Fragilariopsis cylindrus

    NASA Astrophysics Data System (ADS)

    Pančić, M.; Hansen, P. J.; Tammilehto, A.; Lundholm, N.

    2015-07-01

    The effects of ocean acidification and increased temperature on physiology of six strains of the polar diatom Fragilariopsis cylindrus from Greenland were investigated. Experiments were performed under manipulated pH levels (8.0, 7.7, 7.4, and 7.1) and different temperatures (1, 5, and 8 °C) to simulate changes from present to plausible future levels. Each of the 12 scenarios was run for 7 days, and a significant interaction between temperature and pH on growth was detected. By combining increased temperature and acidification, the two factors counterbalanced each other, and therefore no effect on the growth rates was found. However, the growth rates increased with elevated temperatures by ~ 20-50 % depending on the strain. In addition, a general negative effect of increasing acidification on growth was observed. At pH 7.7 and 7.4, the growth response varied considerably among strains. However, a more uniform response was detected at pH 7.1 with most of the strains exhibiting reduced growth rates by 20-37 % compared to pH 8.0. It should be emphasized that a significant interaction between temperature and pH was found, meaning that the combination of the two parameters affected growth differently than when considering one at a time. Based on these results, we anticipate that the polar diatom F. cylindrus will be unaffected by changes in temperature and pH within the range expected by the end of the century. In each simulated scenario, the variation in growth rates among the strains was larger than the variation observed due to the whole range of changes in either pH or temperature. Climate change may therefore not affect the species as such, but may lead to changes in the population structure of the species, with the strains exhibiting high phenotypic plasticity, in terms of temperature and pH tolerance towards future conditions, dominating the population.

  2. Resilience to temperature and pH changes in a future climate change scenario in six strains of the polar diatom Fragilariopsis cylindrus

    NASA Astrophysics Data System (ADS)

    Pančić, M.; Hansen, P. J.; Tammilehto, A.; Lundholm, N.

    2015-03-01

    The effects of ocean acidification and increased temperature on physiology of six strains of the polar diatom Fragilariopsis cylindrus from Greenland were investigated. Experiments were performed under manipulated pH levels (8.0, 7.7, 7.4, and 7.1) and different temperatures (1, 5 and 8 °C) to simulate changes from present to plausible future levels. Each of the 12 scenarios was run for 7 days, and a significant interaction between temperature and pH on growth was detected. By combining increased temperature and acidification, the two factors counterbalanced each other, and therefore no effect on the growth rates was found. However, the growth rates increased with elevated temperatures by ∼20-50% depending on the strain. In addition, a general negative effect of increasing acidification on growth was observed. At pH 7.7 and 7.4, the growth response varied considerably among strains. However, a more uniform response was detected at pH 7.1 with most of the strains exhibiting reduced growth rates by 20-37% compared to pH 8.0. It should be emphasized that a significant interaction between temperature and pH was found, meaning that the combination of the two parameters affected growth differently than when considering one at a time. Based on these results, we anticipate that the polar diatom F. cylindrus will be unaffected by changes in temperature and pH within the range expected by the end of the century. In each simulated scenario, the variation in growth rates among the strains was larger than the variation observed due to the whole range of changes in either pH or temperature. Climate change may therefore not affect the species as such, but may lead to changes in the population structure of the species, with the strains exhibiting high phenotypic plasticity, in terms of temperature and pH tolerance towards future conditions, dominating the population.

  3. A gold nanocluster-based fluorescent probe for simultaneous pH and temperature sensing and its application to cellular imaging and logic gates.

    PubMed

    Wu, Yun-Tse; Shanmugam, Chandirasekar; Tseng, Wei-Bin; Hiseh, Ming-Mu; Tseng, Wei-Lung

    2016-06-07

    Metal nanocluster-based nanomaterials for the simultaneous determination of temperature and pH variations in micro-environments are still a challenge. In this study, we develop a dual-emission fluorescent probe consisting of bovine serum albumin-stabilized gold nanoclusters (BSA-AuNCs) and fluorescein-5-isothiocyanate (FITC) as temperature- and pH-responsive fluorescence signals. Under single wavelength excitation the FITC/BSA-AuNCs exhibited well-separated dual emission bands at 525 and 670 nm. When FITC was used as a reference fluorophore, FITC/BSA-AuNCs showed a good linear response over the temperature range 1-71 °C and offered temperature-independent spectral shifts, temperature accuracy, activation energy, and reusability. The possible mechanism for high temperature-induced fluorescence quenching of FITC/BSA-AuNCs could be attributed to a weakening of the Au-S bond, thereby lowering the charge transfer from BSA to AuNCs. Additionally, the pH- and temperature-responsive properties of FITC/BSA-AuNCs allow simultaneous temperature sensing from 21 to 41 °C (at intervals of 5 °C) and pH from 6.0 to 8.0 (at intervals of 0.5 pH unit), facilitating the construction of two-input AND logic gates. Three-input AND logic gates were also designed using temperature, pH, and trypsin as inputs. The practicality of using FITC/BSA-AuNCs to determine the temperature and pH changes in HeLa cells is also validated.

  4. Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: IV Acid-sulfate waters

    USGS Publications Warehouse

    Nordstrom, D. Kirk; McCleskey, R. Blaine; Ball, J.W.

    2009-01-01

    Many waters sampled in Yellowstone National Park, both high-temperature (30-94 ??C) and low-temperature (0-30 ??C), are acid-sulfate type with pH values of 1-5. Sulfuric acid is the dominant component, especially as pH values decrease below 3, and it forms from the oxidation of elemental S whose origin is H2S in hot gases derived from boiling of hydrothermal waters at depth. Four determinations of pH were obtained: (1) field pH at field temperature, (2) laboratory pH at laboratory temperature, (3) pH based on acidity titration, and (4) pH based on charge imbalance (at both laboratory and field temperatures). Laboratory pH, charge imbalance pH (at laboratory temperature), and acidity pH were in close agreement for pH ??10%, a selection process was used to compare acidity, laboratory, and charge balance pH to arrive at the best estimate. Differences between laboratory and field pH can be explained based on Fe oxidation, H2S or S2O3 oxidation, CO2 degassing, and the temperature-dependence of pK2 for H2SO4. Charge imbalances are shown to be dependent on a speciation model for pH values 350 mg/L Cl) decrease as the Cl- concentration increases from boiling which appears inconsistent with the hypothesis of H2S oxidation as a source of hydrothermal SO4. This trend is consistent with the alternate hypothesis of anhydrite solubility equilibrium. Acid-sulfate water analyses are occasionally high in As, Hg, and NH3 concentrations but in contrast to acid mine waters they are low to below detection in Cu, Zn, Cd, and Pb concentrations. Even concentrations of SO4, Fe, and Al are much lower in thermal waters than acid mine waters of the same pH. This difference in water chemistry may explain why certain species of fly larvae live comfortably in Yellowstone's acid waters but have not been observed in acid rock drainage of the same pH.

  5. Seasonal and diel variation in xylem CO2 concentration and sap pH in sub-Mediterranean oak stems.

    PubMed

    Salomón, Roberto; Valbuena-Carabaña, María; Teskey, Robert; McGuire, Mary Anne; Aubrey, Doug; González-Doncel, Inés; Gil, Luis; Rodríguez-Calcerrada, Jesús

    2016-04-01

    Since a substantial portion of respired CO2 remains within the stem, diel and seasonal trends in stem CO2 concentration ([CO2]) are of major interest in plant respiration and carbon budget research. However, continuous long-term stem [CO2] studies are scarce, and generally absent in Mediterranean climates. In this study, stem [CO2] was monitored every 15min together with stem and air temperature, sap flow, and soil water storage during a growing season in 16 stems of Quercus pyrenaica to elucidate the main drivers of stem [CO2] at different temporal scales. Fluctuations in sap pH were also assessed during two growing seasons to evaluate potential errors in estimates of the concentration of CO2 dissolved in xylem sap ([CO2*]) calculated using Henry's law. Stem temperature was the best predictor of stem [CO2] and explained more than 90% and 50% of the variability in stem [CO2] at diel and seasonal scales, respectively. Under dry conditions, soil water storage was the main driver of stem [CO2]. Likewise, the first rains after summer drought caused intense stem [CO2] pulses, suggesting enhanced stem and root respiration and increased resistance to radial CO2 diffusion. Sap flow played a secondary role in controlling stem [CO2] variations. We observed night-time sap pH acidification and progressive seasonal alkalinization. Thus, if the annual mean value of sap pH (measured at midday) was assumed to be constant, night-time sap [CO2*] was substantially overestimated (40%), and spring and autumn sap [CO2*] were misestimated by 25%. This work highlights that diel and seasonal variations in temperature, tree water availability, and sap pH substantially affect xylem [CO2] and sap [CO2*]. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Influence of the hydrothermal temperature and pH on the crystallinity of a sputtered hydroxyapatite film

    NASA Astrophysics Data System (ADS)

    Ozeki, K.; Aoki, H.; Masuzawa, T.

    2010-09-01

    Hydroxyapatite (HA) was coated onto titanium substrates using radio frequency sputtering, and the sputtered films were crystallized under hydrothermal conditions at 110-170 °C at pH values of 7.0 and 9.5. The crystallite size, the remnant film thickness, and the surface morphology of the films were observed using X-ray diffraction, energy dispersive X-ray spectroscopy, and scanning electron microscopy, respectively. The crystallite size increased with the process temperature, and reached 123.6 nm (pH 9.5 and 170 °C) after 24 h. All of the crystallite sizes of the film treated at pH 9.5 were higher than those treated at pH 7.0 at each process temperature. The film treated at pH 9.5 retained more than 90% of the initial film thickness at any process temperature. The ratio of the film treated at pH 7.0 did not reached 90% at less than 150 °C, and tended to increase with the process temperature.

  7. [Establishment of optimal conditions at laboratory and pilot plant levels for the preparation of a protein isolated from Lupinus mutabilis].

    PubMed

    Rodríguez Pacheco, T; Aliaga, T; Schoeneberger, H; Gross, R

    1981-12-01

    Laboratory conditions were first investigated to determine are optimum processing parameters for the preparation of a protein isolate from the ground, defatted, commercial flakes of Lupinus mutabilis. The extraction variables were: pH (2-10); solvent to lupine ratio (5:1 to 40:1); temperature (28 degrees C - 60 degrees C) and time (10-50 min). The isoelectric point of the lupine protein was found to be pH 4.5 with a protein solubility higher than 80% above pH 8.0. Using 70-100 mesh, ground defatted flakes, and extracting at pH 8.7 for 60 min, a protein isolate was obtained on acidification to pH 4.5 which was 99.8 protein (dry basis), compared to 55.25% protein for the original material. This protein isolate represented 32% of the initial material and 57.6% of the initial nitrogen. When making pilot plant assays we found that the yield of protein isolate decreased to 20.4% of the original material and 36.4% of the initial nitrogen. The protein efficiency ratio for the protein isolate was 2.15 when supplemented with methionine, and had a digestibility of 89.33

  8. Ocean acidification increases the sensitivity of and variability in physiological responses of an intertidal limpet to thermal stress

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Russell, Bayden D.; Ding, Meng-Wen; Dong, Yun-Wei

    2018-05-01

    Understanding physiological responses of organisms to warming and ocean acidification is the first step towards predicting the potential population- and community-level ecological impacts of these stressors. Increasingly, physiological plasticity is being recognized as important for organisms to adapt to the changing microclimates. Here, we evaluate the importance of physiological plasticity for coping with ocean acidification and elevated temperature, and its variability among individuals, of the intertidal limpet Cellana toreuma from the same population in Xiamen. Limpets were collected from shaded mid-intertidal rock surfaces. They were acclimated under combinations of different pCO2 concentrations (400 and 1000 ppm, corresponding to a pH of 8.1 and 7.8) and temperatures (20 and 24 °C) in a short-term period (7 days), with the control conditions (20 °C and 400 ppm) representing the average annual temperature and present-day pCO2 level at the collection site. Heart rates (as a proxy for metabolic performance) and expression of genes encoding inducible and constitutive heat-shock proteins (hsp70 and hsc70) at different heat-shock temperatures (26, 30, 34, and 38 °C) were measured. Hsp70 and Hsc70 play important roles in protecting cells from heat stresses, but have different expression patterns, with Hsp70 significantly increased in expression during stress and Hsc70 constitutively expressed and only mildly induced during stress. Analysis of heart rate showed significantly higher temperature coefficients (Q10 rates) for limpets at 20 °C than at 24 °C and post-acclimation thermal sensitivity of limpets at 400 ppm was lower than at 1000 ppm. Expression of hsp70 linearly increased with the increasing heat-shock temperatures, with the largest slope occurring in limpets acclimated under a future scenario (24 °C and 1000 ppm pCO2). These results suggested that limpets showed increased sensitivity and stress response under future conditions. Furthermore, the increased variation in physiological response under the future scenario indicated that some individuals have higher physiological plasticity to cope with these conditions. While short-term acclimation to reduced pH seawater decreases the ability of partial individuals against thermal stress, physiological plasticity and variability seem to be crucial in allowing some intertidal animals to survive in a rapidly changing environment.

  9. Nematicidal activity of three novel extracellular proteases of the nematophagous fungus Monacrosporium sinense.

    PubMed

    Soares, Filippe E F; Braga, Fabio R; Araújo, Jackson V; Geniêr, Hugo L A; Gouveia, Angélica S; Queiroz, José H

    2013-04-01

    Extracellular proteases are an important virulence factor for the nematophagous fungi Monacrosporium. The objective of this study was to optimize, purify, partially characterize, and to evaluate the nematicidal activity of the proteases produced by the nematophagous fungus Monacrosporium sinense (SF53) by solid-state fermentation. Wheat bran was used as substrate for protease production. The variables moisture, pH, incubation time, temperature, glucose, yeast extract, and the number of conidia were tested for their influences on protease production by SF53. To determine the optimal level of the selected variables the central composite design was applied. The crude extract obtained was purified in two steps, an ion exchange chromatography and a gel excision. SDS-PAGE and zymogram were performed for analysis of the purification process. Proteolytic activity was also tested at different pHs and temperatures. In the in vitro assay, the nematicidal activity of the three proteases was evaluated. pH and incubation time showed a significant effect (p<0.05) on production of protease. The highest value of activity was 38.0 (U/ml) under the conditions of pH 5.0 and incubation time of 211 h. SF53 produced three different proteases (Ms1, Ms2, and Ms3) which were directly purified from the zymogram. Ms1, Ms2, and Ms3 showed the following percentage of reduction (p<0.05) on the number of Panagrellus redivivus compared to control after 24 h: 76.8, 68.1, and 92.1%. This is the first report of the use of proteases of the isolate SF53 on a phytonematode, which may be a research tool in future works.

  10. Development of an autonomous, wireless pH and temperature sensing system for monitoring pig meat quality.

    PubMed

    Frisby, June; Raftery, Declan; Kerry, Joe P; Diamond, Dermot

    2005-06-01

    This paper focuses on the development of a unique wireless pH and temperature monitoring system to assess pig meat quality. Pale, soft and exudative (PSE) pig meat continues to be a major problem in the pig meat industry today. The PSE condition in pork is related to a number of factors including genetics, pre-slaughter stress and insufficient chilling of pig carcasses, which cause a rapid rate of glycolysis post-mortem (<1h). As a result the pH drops to low levels while the muscle temperature is still high. A wireless dual channel system that monitors pH and temperature simultaneously has been developed to provide pH and temperature data of the carcass during the first 24h after slaughter. We have demonstrated that this approach can distinguish in real time, pH and temperature profiles that are 'non-normal', and identify carcasses that are PSE positive quickly and easily.

  11. Assessing Soil Organic C Stability at the Continental Scale: An Analysis of Soil C and Radiocarbon Profiles Across the NEON Sites

    NASA Astrophysics Data System (ADS)

    Heckman, K. A.; Gallo, A.; Hatten, J. A.; Swanston, C.; McKnight, D. M.; Strahm, B. D.; Sanclements, M.

    2017-12-01

    Soil carbon stocks have become recognized as increasingly important in the context of climate change and global C cycle modeling. As modelers seek to identify key parameters affecting the size and stability of belowground C stocks, attention has been drawn to the mineral matrix and the soil physiochemical factors influenced by it. Though clay content has often been utilized as a convenient and key explanatory variable for soil C dynamics, its utility has recently come under scrutiny as new paradigms of soil organic matter stabilization have been developed. We utilized soil cores from a range of National Ecological Observatory Network (NEON) experimental plots to examine the influence of physicochemical parameters on soil C stocks and turnover, and their relative importance in comparison to climatic variables. Soils were cored at NEON sites, sampled by genetic horizon, and density separated into light fractions (particulate organics neither occluded within aggregates nor associated with mineral surfaces), occluded fractions (particulate organics occluded within aggregates), and heavy fractions (organics associated with mineral surfaces). Bulk soils and density fractions were measured for % C and radiocarbon abundance (as a measure of C stability). Carbon and radiocarbon abundances were examined among fractions and in the context of climatic variables (temperature, precipitation, elevation) and soil physiochemical variables (% clay and pH). No direct relationships between temperature and soil C or radiocarbon abundances were found. As a whole, soil radiocarbon abundance in density fractions decreased in the order of light>heavy>occluded, highlighting the importance of both surface sorption and aggregation to the preservation of organics. Radiocarbon abundance was correlated with pH, with variance also grouping by dominate vegetation type. Soil order was also identified as an important proxy variable for C and radiocarbon abundance. Preliminary results suggest that both integrative proxies as well as physicochemical properties may be needed to account for variation in soil C abundance and stability at the continental scale.

  12. Effect of Antimicrobial and Physical Treatments on Growth of Multispecies Staphylococcal Biofilms

    PubMed Central

    Payne, David E.; Ma, Tianhui Maria; VanEpps, J. Scott; Boles, Blaise R.; Younger, John G.

    2017-01-01

    ABSTRACT The prevalence and structure of Staphylococcus aureus and Staphylococcus epidermidis within multispecies biofilms were found to depend sensitively on physical environment and antibiotic dosage. Although these species commonly infect similar sites, such as orthopedic implants, little is known about their behavior in multispecies communities, particularly in response to treatment. This research establishes that S. aureus is much more prevalent than S. epidermidis when simultaneously seeded and grown under unstressed conditions (pH 7, 37°C) in both laboratory and clinical strains. In multispecies communities, S. epidermidis is capable of growing a more confluent biofilm when the addition of S. aureus is delayed 4 to 6 h during 18 h of growth. Different vancomycin dosages generate various behaviors: S. epidermidis is more prevalent at a dose of 1.0 μg/ml vancomycin, but reduced growth of both species occurs at 1.9 μg/ml vancomycin. This variability is consistent with the different MICs of S. aureus and S. epidermidis. Growth at higher temperature (45°C) results in an environment where S. aureus forms porous biofilms. This porosity allows S. epidermidis to colonize more of the surface, resulting in detectable S. epidermidis biomass. Variations in pH result in increased prevalence of S. epidermidis at low pH (pH 5 and 6), while S. aureus remains dominant at high pH (pH 8 and 9). This work establishes the structural variability of multispecies staphylococcal biofilms as they undergo physical and antimicrobial treatments. It provides a basis for understanding the structure of these communities at infection sites and how treatments disrupt their multispecies behaviors. IMPORTANCE Staphylococcus aureus and Staphylococcus epidermidis are two species of bacteria that are commonly responsible for biofilm infections on medical devices. Biofilms are structured communities of bacteria surrounded by polysaccharides, proteins, and DNA; bacteria are more resistant to antimicrobials as part of a biofilm than as individual cells. This work investigates the structure and prevalence of these two organisms when grown together in multispecies biofilms and shows shifts in the behavior of the polymicrobial community when grown in various concentrations of vancomycin (an antibiotic commonly used to treat staphylococcal infections), in a high-temperature environment (a condition previously shown to lead to cell disruption and death), and at low and high pH (a change that has been previously shown to soften the mechanical properties of staphylococcal biofilms). These shifts in community structure demonstrate the effect such treatments may have on multispecies staphylococcal infections. PMID:28411222

  13. Effect of Antimicrobial and Physical Treatments on Growth of Multispecies Staphylococcal Biofilms.

    PubMed

    Stewart, Elizabeth J; Payne, David E; Ma, Tianhui Maria; VanEpps, J Scott; Boles, Blaise R; Younger, John G; Solomon, Michael J

    2017-06-15

    The prevalence and structure of Staphylococcus aureus and Staphylococcus epidermidis within multispecies biofilms were found to depend sensitively on physical environment and antibiotic dosage. Although these species commonly infect similar sites, such as orthopedic implants, little is known about their behavior in multispecies communities, particularly in response to treatment. This research establishes that S. aureus is much more prevalent than S. epidermidis when simultaneously seeded and grown under unstressed conditions (pH 7, 37°C) in both laboratory and clinical strains. In multispecies communities, S. epidermidis is capable of growing a more confluent biofilm when the addition of S. aureus is delayed 4 to 6 h during 18 h of growth. Different vancomycin dosages generate various behaviors: S. epidermidis is more prevalent at a dose of 1.0 μg/ml vancomycin, but reduced growth of both species occurs at 1.9 μg/ml vancomycin. This variability is consistent with the different MICs of S. aureus and S. epidermidis Growth at higher temperature (45°C) results in an environment where S. aureus forms porous biofilms. This porosity allows S. epidermidis to colonize more of the surface, resulting in detectable S. epidermidis biomass. Variations in pH result in increased prevalence of S. epidermidis at low pH (pH 5 and 6), while S. aureus remains dominant at high pH (pH 8 and 9). This work establishes the structural variability of multispecies staphylococcal biofilms as they undergo physical and antimicrobial treatments. It provides a basis for understanding the structure of these communities at infection sites and how treatments disrupt their multispecies behaviors. IMPORTANCE Staphylococcus aureus and Staphylococcus epidermidis are two species of bacteria that are commonly responsible for biofilm infections on medical devices. Biofilms are structured communities of bacteria surrounded by polysaccharides, proteins, and DNA; bacteria are more resistant to antimicrobials as part of a biofilm than as individual cells. This work investigates the structure and prevalence of these two organisms when grown together in multispecies biofilms and shows shifts in the behavior of the polymicrobial community when grown in various concentrations of vancomycin (an antibiotic commonly used to treat staphylococcal infections), in a high-temperature environment (a condition previously shown to lead to cell disruption and death), and at low and high pH (a change that has been previously shown to soften the mechanical properties of staphylococcal biofilms). These shifts in community structure demonstrate the effect such treatments may have on multispecies staphylococcal infections. Copyright © 2017 American Society for Microbiology.

  14. Development of performance matrix for generic product equivalence of acyclovir topical creams.

    PubMed

    Krishnaiah, Yellela S R; Xu, Xiaoming; Rahman, Ziyaur; Yang, Yang; Katragadda, Usha; Lionberger, Robert; Peters, John R; Uhl, Kathleen; Khan, Mansoor A

    2014-11-20

    The effect of process variability on physicochemical characteristics and in vitro performance of qualitatively (Q1) and quantitatively (Q2) equivalent generic acyclovir topical dermatological creams was investigated to develop a matrix of standards for determining their in vitro bioequivalence with reference listed drug (RLD) product (Zovirax®). A fractional factorial design of experiment (DOE) with triplicate center point was used to create 11 acyclovir cream formulations with manufacturing variables such as pH of aqueous phase, emulsification time, homogenization speed, and emulsification temperature. Three more formulations (F-12-F-14) with drug particle size representing RLD were also prepared where the pH of the final product was adjusted. The formulations were subjected to physicochemical characterization (drug particle size, spreadability, viscosity, pH, and drug concentration in aqueous phase) and in vitro drug release studies against RLD. The results demonstrated that DOE formulations were structurally and functionally (e.g., drug release) similar (Q3) to RLD. Moreover, in vitro drug permeation studies showed that extent of drug bioavailability/retention in human epidermis from F-12-F-14 were similar to RLD, although differed in rate of permeation. The results suggested generic acyclovir creams can be manufactured to obtain identical performance as that of RLD with Q1/Q2/Q3. Published by Elsevier B.V.

  15. Active Control of pH in the Bioculture System Through Carbon Dioxide Control

    NASA Technical Reports Server (NTRS)

    Monhollon, Luke; Pletcher, David; Hauss, Jessica

    2016-01-01

    For successful cell research, the growth culture environment must be tightly controlled. Deviance from the optimal conditions will mask the desired variable being analyzed or lead to inconstancies in the results. In standard laboratories, technology and procedures are readily available for the reliable control of variables such as temperature, pH, nutrient loading, and dissolved gases. Due to the nature of spaceflight, and the inherent constraints to engineering designs, these same elements become a challenge to maintain at stable values by both automated and manual approaches. Launch mass, volume, and power usage create significant constraints to cell culture systems; nonetheless, innovative solutions for active environmental controls are available. The acidity of the growth media cannot be measured through standard probes due to the degradation of electrodes and reliance on indicators for chromatography. Alternatively, carbon dioxide sensors are capable of monitoring the pH by leveraging the relationship between the partial pressure of carbon dioxide and carbonic acid in solution across a membrane. In microgravity cell growth systems, the gas delivery system can be used to actively maintain the media at the proper acidity by maintaining a suitable gas mixture around permeable tubing. Through this method, launch mass and volume are significantly reduced through the efficient use of the limited gas supply in orbit.

  16. The Geographic Information System applied to study schistosomiasis in Pernambuco

    PubMed Central

    Barbosa, Verônica Santos; Loyo, Rodrigo Moraes; Guimarães, Ricardo José de Paula Souza e; Barbosa, Constança Simões

    2017-01-01

    ABSTRACT OBJECTIVE Diagnose risk environments for schistosomiasis in coastal localities of Pernambuco using geoprocessing techniques. METHODS A coproscopic and malacological survey were carried out in the Forte Orange and Serrambi areas. Environmental variables (temperature, salinity, pH, total dissolved solids and water fecal coliform dosage) were collected from Biomphalaria breeding sites or foci. The spatial analysis was performed using ArcGis 10.1 software, applying the kernel estimator, elevation map, and distance map. RESULTS In Forte Orange, 4.3% of the population had S. mansoni and were found two B. glabrata and 26 B. straminea breeding sites. The breeding sites had temperatures of 25ºC to 41ºC, pH of 6.9 to 11.1, total dissolved solids between 148 and 661, and salinity of 1,000 d. In Serrambi, 4.4% of the population had S. mansoni and were found seven B. straminea and seven B. glabrata breeding sites. Breeding sites had temperatures of 24ºC to 36ºC, pH of 7.1 to 9.8, total dissolved solids between 116 and 855, and salinity of 1,000 d. The kernel estimator shows the clusters of positive patients and foci of Biomphalaria, and the digital elevation map indicates areas of rainwater concentration. The distance map shows the proximity of the snail foci with schools and health facilities. CONCLUSIONS Geoprocessing techniques prove to be a competent tool for locating and scaling the risk areas for schistosomiasis, and can subsidize the health services control actions. PMID:29166439

  17. Identification of molecular and physiological responses to chronic environmental challenge in an invasive species: the Pacific oyster, Crassostrea gigas

    PubMed Central

    Clark, Melody S; Thorne, Michael A S; Amaral, Ana; Vieira, Florbela; Batista, Frederico M; Reis, João; Power, Deborah M

    2013-01-01

    Understanding the environmental responses of an invasive species is critical in predicting how ecosystem composition may be transformed in the future, especially under climate change. In this study, Crassostrea gigas, a species well adapted to the highly variable intertidal environment, was exposed to the chronic environmental challenges of temperature (19 and 24°C) and pH (ambient seawater and a reduction of 0.4 pH units) in an extended 3-month laboratory-based study. Physiological parameters were measured (condition index, shell growth, respiration, excretion rates, O:N ratios, and ability to repair shell damage) alongside molecular analyses. Temperature was by far the most important stressor, as demonstrated by reduced condition indexes and shell growth at 24°C, with relatively little effect detected for pH. Transcriptional profiling using candidate genes and SOLiD sequencing of mantle tissue revealed that classical “stress” genes, previously reported to be upregulated under acute temperature challenges, were not significantly expressed in any of the treatments, emphasizing the different response between acute and longer term chronic stress. The transcriptional profiling also elaborated on the cellular responses underpinning the physiological results, including the identification of the PI3K/AKT/mTOR pathway as a potentially novel marker for chronic environmental challenge. This study represents a first attempt to understand the energetic consequences of cumulative thermal stress on the intertidal C. gigas which could significantly impact on coastal ecosystem biodiversity and function in the future. PMID:24223268

  18. Optimization of the mineralization of a mixture of phenolic pollutants under a ferrioxalate-induced solar photo-Fenton process.

    PubMed

    Monteagudo, J M; Durán, A; Aguirre, M; San Martín, I

    2011-01-15

    The mineralization of solutions containing a mixture of three phenolic compounds, gallic, p-coumaric and protocatechuic acids, in a ferrioxalate-induced solar photo-Fenton process was investigated. The reactions were carried out in a pilot plant consisting of a compound parabolic collector (CPC) solar reactor. An optimization study was performed combining a multivariate experimental design and neuronal networks that included the following variables: pH, temperature, solar power, air flow and initial concentrations of H(2)O(2), Fe(II) and oxalic acid. Under optimal conditions, total elimination of the original compounds and 94% TOC removal of the mixture were achieved in 5 and 194 min, respectively. pH and initial concentrations of H(2)O(2) and Fe(II) were the most significant factors affecting the mixture mineralization. The molar correlation between consumed hydrogen peroxide and removed TOC was always between 1 and 3. A detailed analysis of the reaction was presented. The values of the pseudo-first-order mineralization kinetic rate constant, k(TOC), increased as initial Fe(II) and H(2)O(2) concentrations and temperature increased. The optimum pH value also slightly increased with greater Fe(II) and hydrogen peroxide concentrations but decreased when temperature increased. OH and O(2)(-) radicals were the main oxidative intermediate species in the process, although singlet oxygen ((1)O(2)) also played a role in the mineralization reaction. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Initial steps in defining the environment of the prepuce of the bull by measuring pH and temperature.

    PubMed

    Koziol, J H; Fraser, N S; Passler, T; Wolfe, D F

    2017-12-01

    To determine the baseline pH and temperature of the preputial cavity of bulls. We enrolled 55 bulls ranging in age from 15 to 84 months. The preputial temperature and pH were measured by insertion of temperature and pH probes, respectively, into the preputial orifice prior to routine breeding soundness examinations. Information was obtained from owners regarding the diet of each bull and categorised as one of three categories: forage only, grain supplemented or silage supplemented. The average temperature of the prepuce was 37.81°C ± 1.76 and the median pH of the prepuce was 8.45 (6.35-9.46). Preputial temperatures of the bull weakly correlated with ambient temperatures (r s  = -0.29, P = 0.028). The preputial pH of silage-fed bulls was significantly lower than that of bulls fed forage only (P = 0.025) or grain-supplemented diets (P = 0.002). The median preputial pH of bulls fed a silage-based diet was 7.6 (6.3-8.9) compared with a median pH 8.7 (7.8-9.1) for bulls fed forage-based diets or a median of 8.5 (7.7-9.4) for those given grain-supplemented diets. Diet and ambient temperature can, respectively, affect pH and the temperature in the prepuce. Further studies to describe and understand the microbiota of the prepuce and penis may assist in developing treatments for diseases of the genital tract in bulls. © 2017 Australian Veterinary Association.

  20. Influence of water temperature and salinity on seasonal occurrences of Vibrio cholerae and enteric bacteria in oyster-producing areas of Veracruz, México.

    PubMed

    Castañeda Chávez, Maria del Refugio; Pardio Sedas, Violeta; Orrantia Borunda, Erasmo; Lango Reynoso, Fabiola

    2005-12-01

    The influence of temperature and salinity on the occurrence of Vibrio cholerae, Escherichia coli and Salmonella spp. associated with water and oyster samples was investigated in two lagoons on the Atlantic Coast of Veracruz, Mexico over a 1-year period. The results indicated that seasonal salinity variability and warm temperatures, as well as nutrient influx, may influence the occurrence of V. cholera. non-O1 and O1. The conditions found in the Alvarado (31.12 degrees C, 6.27 per thousand, pH=8.74) and La Mancha lagoons (31.38 degrees C, 24.18 per thousand, pH=9.15) during the rainy season 2002 favored the occurrence of V. cholera O1 Inaba enterotoxin positive traced in oysters. Vibrio alginolyticus was detected in Alvarado lagoon water samples during the winter season. E. coli and Salmonella spp. were isolated from water samples from the La Mancha (90-96.7% and 86.7-96.7%) and Alvarado (88.6-97.1% and 88.6-100%) lagoons. Occurrence of bacteria may be due to effluents from urban, agricultural and industrial areas.

  1. Optimization of extraction of novel pectinase enzyme discovered in red pitaya (Hylocereus polyrhizus) peel.

    PubMed

    Zohdi, Nor Khanani; Amid, Mehrnoush

    2013-11-20

    Plant peels could be a potential source of novel pectinases for use in various industrial applications due to their broad substrate specificity with high stability under extreme conditions. Therefore, the extraction conditions of a novel pectinase enzyme from pitaya peel was optimized in this study. The effect of extraction variables, namely buffer to sample ratio (2:1 to 8:1, X₁), extraction temperature (-15 to +25 °C, X₂) and buffer pH (4.0 to 12.0, X₃) on specific activity, temperature stability, storage stability and surfactant agent stability of pectinase from pitaya peel was investigated. The study demonstrated that the optimum conditions for the extraction of pectinase from pitaya sources could improve the enzymatic characteristics of the enzyme and protect its activity and stability during the extraction procedure. The optimum extraction conditions cause the pectinase to achieve high specific activity (15.31 U/mg), temperature stability (78%), storage stability (88%) and surfactant agent stability (83%). The most desirable conditions to achieve the highest activity and stability of pectinase enzyme from pitaya peel were the use of 5:1 buffer to sample ratio at 5 °C and pH 8.0.

  2. Occurance and survival of Vibrio alginolyticus in Tamouda Bay (Morocco).

    PubMed

    Sabir, M; Cohen, N; Boukhanjer, A; Ennaji, M M

    2011-10-15

    The objectives of this study were to investigate the spatial and seasonal fluctuations of Vibrio alginolyticus in marine environment of the Tamouda Bay on the Mediterranean coast of Morocco and to determine the dominant factors of the environment that govern these fluctuations. The samples (sea water, plankton, shellfish and sediment) were collected fortnightly for two years from three study sites on the coast Tamouda Bay in northern Morocco. The charge of Vibrio alginolyticus is determined by MPN method. The physicochemical parameters including temperature of sea water, pH, salinity, turbidity and chlorophyll a concentration were determined. Analysis of variance of specific variables and several principal component analyses showed that the temperature of seawater is the major determinant of seasonal distribution of Vibrio alginolyticus. The results showed a positive linear correlation between Vibrio alginolyticus and the water temperature, pH, turbidity and chlorophyll a. Similarly, there are seasonal variations and spatial of Vibrio alginolyticus in marine environment of the Tamouda bay and the highest concentrations were recorded in both years of study during the warm season whereas it was minimal during the cold season. Linear positive correlation was recorded between Vibrio alginolyticus populations in all ecological types of samples studied.

  3. A review on acidifying treatments for vegetable canned food.

    PubMed

    Derossi, A; Fiore, A G; De Pilli, T; Severini, C

    2011-12-01

    As is well known, pasteurization treatments are not sufficient for destroying heat resistance of spore forming microorganisms, which are prevented from germination and growing by pH reducing. So, the acidification process becomes one of the most important pre-treatments for the canning industry. It is commonly applied before pasteurization treatment with the purpose of inhibiting spore germination and for reducing heat resistance of the microorganism, thereby allowing to reduce the time or temperature values of the heat treatment. With the aim to reduce the pH of vegetables several techniques are available but their application is not easy to plan. Often, industries define operative conditions only on the basis of empirical experience, thus increasing the risk of microbial growth or imparting an unpleasant sour taste. With the aim of highlighting the correct plan and management of acidification treatments to reach safety without degrading quality of canned fruit and vegetables, the topics that are reviewed and discussed are the effects of low pH on heat resistance of the most important microorganisms, acidification techniques and significant process variables, the effect of low pH on sensorial properties, and future trends.

  4. Hydrological cycle effects on the aquatic community in a Neotropical stream of the Andean piedmont during the 2007-2010 ENSO events.

    PubMed

    Ríos-Pulgarín, M I; Barletta, M; Mancera-Rodriguez, N J

    2016-07-01

    The seasonal and interannual changes in the fish, macroinvertebrates and phycoperiphyton assemblages of the Guarinó River were examined in relation to the physical and chemical environmental changes associated with the hydrological cycle and the El Niño-Niña/Southern Oscillation (ENSO) between 2007 and 2010. Four samplings (in dry and rainy seasons) were performed per year. Environmental variables (temperature, pH, conductivity, turbidity, oxygen, total nitrogen, orthophosphate, depth and flow rate) were measured. The temporal patterns of the taxonomic compositions for the three assemblages and the functional composition of fish and macroinvertebrate assemblages with respect to environmental variables were examined through canonical discriminant analysis, multidimensional scaling and multiple correlations. The presence and abundance of fishes, macroinvertebrates and algae species were regulated by environmental variables associated with extreme hydrological events, which derived from the natural torrential regimen of the basin and larger-scale phenomena, such as El Niño and La Niña. Fish abundance and richness were significantly correlated with algal density and pH, the macroinvertebrate density was negatively related to the flow rate and the richness was positively correlated with algal density. The algae richness was positively correlated with pH and negatively correlated with the flow rate and nitrogen. The algal density was positively correlated with pH and temperature and negatively correlated with river flow. The phycoperiphyton assemblage exhibited more direct responses in its density and richness to the hydrological changes (r(2) = 0·743 and 0·800, respectively). In functional terms, the El Niño phenomenon was defined by a greater abundance of omnivorous and insectivorous fishes, as well as filter feeders, scrapers and macroinvertebrate predators. During La Niña, a greater abundance of benthic fishes (both detritivorous and insectivorous) and shredder and collector-gatherer macroinvertebrates was observed. Differentiated responses recorded in the community were based on adaptive strategies for the local hydrological regime that enable fast recovery under conditions such as ENSO phenomena. Composition changes according to adaptations to different hydrological scenarios and the predominance of generalists' trophic guilds and species with plasticity in their habits and their ranges of environmental tolerance were found, supporting the habitat templet model. © 2016 The Fisheries Society of the British Isles.

  5. Do spectral bands of fetal heart rate variability associate with concomitant fetal scalp pH?

    PubMed

    Siira, Saila M; Ojala, Tiina H; Vahlberg, Tero J; Rosén, Karl G; Ekholm, Eeva M

    2013-09-01

    Objective information on specific fetal heart rate (FHR) parameters would be advantageous when assessing fetal responses to hypoxia. Small, visually undetectable changes in FHR variability can be quantified by power spectral analysis of FHR variability. To investigate the effect of intrapartum hypoxia and acidemia on spectral powers of FHR variability. This is a retrospective observational clinical study with data from an EU multicenter project. We had 462 fetuses with a normal pH-value (pH>7.20; controls) in fetal scalp blood sample (FBS) and 81 fetuses with a low scalp pH-value (≤ 7.20; low-FBS pH-fetuses). The low-FBS pH-fetuses were further divided into two subgroups according to the degree of acidemia: fetuses with FBS pH7.11-7.20 (n = 58) and fetuses with FBS pH ≤7.10 (n = 23). Spectral powers of FHR variability in relation to the concomitant FBS pH-value. Fetuses with FBS pH ≤7.20 had increased spectral powers of FHR variability compared with controls (2.49 AU vs. 2.23 AU; p = 0.038). However, the subgroup of most affected fetuses (those with FBS pH ≤7.10) had significantly lower FHR variability spectral powers when compared to fetuses with FBS pH7.11-7.20. This study shows that spectral powers of FHR variability change as a fetus becomes hypoxic, and that spectral powers decrease with deepening fetal acidemia. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. The use of a natural coagulant (Opuntia ficus-indica) in the removal for organic materials of textile effluents.

    PubMed

    de Souza, Maísa Tatiane Ferreira; Ambrosio, Elizangela; de Almeida, Cibele Andrade; de Souza Freitas, Thábata Karoliny Formicoli; Santos, Lídia Brizola; de Cinque Almeida, Vitor; Garcia, Juliana Carla

    2014-08-01

    The goal of this study was to investigate the activity of the coagulant extracted from the cactus Opuntia ficus-indica (OFI) in the process of coagulation/flocculation of textile effluents. Preliminary tests of a kaolinite suspension achieved maximum turbidity removal of 95 % using an NaCl extraction solution. Optimization assays were conducted with actual effluents using the response surface methodology (RSM) based on the Box-Behnken experimental design. The responses of the variables FeCl3, dosage, cactus dosage, and pH in the removal of COD and turbidity from both effluents were investigated. The optimum conditions determined for jeans washing laundry effluent were the following: FeCl3 160 mg L(-1), cactus dosage 2.60 mg L(-1), and pH 5.0. For the fabric dyeing effluent, the optimum conditions were the following: FeCl3 640 mg L(-1), cactus dosage 160 mg L(-1), and pH 6.0. Investigation of the effects of the storage time and temperature of the cactus O. ficus-indica showed that coagulation efficiency was not significantly affected for storage at room temperature for up to 4 days.

  7. Modeling and predicting the biofilm formation of Salmonella Virchow with respect to temperature and pH.

    PubMed

    Ariafar, M Nima; Buzrul, Sencer; Akçelik, Nefise

    2016-03-01

    Biofilm formation of Salmonella Virchow was monitored with respect to time at three different temperature (20, 25 and 27.5 °C) and pH (5.2, 5.9 and 6.6) values. As the temperature increased at a constant pH level, biofilm formation decreased while as the pH level increased at a constant temperature, biofilm formation increased. Modified Gompertz equation with high adjusted determination coefficient (Radj(2)) and low mean square error (MSE) values produced reasonable fits for the biofilm formation under all conditions. Parameters of the modified Gompertz equation could be described in terms of temperature and pH by use of a second order polynomial function. In general, as temperature increased maximum biofilm quantity, maximum biofilm formation rate and time of acceleration of biofilm formation decreased; whereas, as pH increased; maximum biofilm quantity, maximum biofilm formation rate and time of acceleration of biofilm formation increased. Two temperature (23 and 26 °C) and pH (5.3 and 6.3) values were used up to 24 h to predict the biofilm formation of S. Virchow. Although the predictions did not perfectly match with the data, reasonable estimates were obtained. In principle, modeling and predicting the biofilm formation of different microorganisms on different surfaces under various conditions could be possible.

  8. Invasive Ponto-Caspian hydrozoan Cordylophora caspia (hydrozoa: Cnidaria) in southern Baltic coastal lakes

    NASA Astrophysics Data System (ADS)

    Obolewski, Krystian; Jarosiewicz, Anna; Ożgo, Małgorzata

    2015-12-01

    Cordylophora caspia Pall. is a highly invasive Ponto-Caspian colonial hydroid with a worldwide distribution. It is a biofouling organism colonizing industrial water installations and causing serious economic problems. Here, we give the first report of its occurrence in southern Baltic coastal lakes, and analyze its distribution in relation to environmental factors and likely colonization routes. Samples were collected from the stalks of Phragmites australis at the total of 102 sites in 15 lakes and lagoons. The species was most numerous in lagoons, i.e. ß-oligohaline water bodies with a surface hydrological connection with the sea, where it reached mean densities of 1200-4800 hydranths m-2. In regression tree analysis, chloride concentration, followed by pH, were the strongest explanatory variables for its occurrence, with highest densities observed at chloride concentration above 1.18 g Cl L-1 and pH 8.05-9.26. At pH 5.77-8.04 higher densities were observed at temperatures above 20.3 °C. Generally, within the range of parameters observed in our study, high densities of C. caspia were associated with high chloride concentration, pH, temperature and electrical conductivity values. The species was also present in freshwater lakes; these colonies may have the highest capacity for future invasions of such habitats. Within lakes, high densities were observed at canals connecting these water bodies with the sea, and at sites close to the inflow of rivers. This distribution pattern can facilitate its further spread into inland waters.

  9. Scaling laws for perturbations in the ocean-atmosphere system following large CO2 emissions

    NASA Astrophysics Data System (ADS)

    Towles, N.; Olson, P.; Gnanadesikan, A.

    2015-07-01

    Scaling relationships are found for perturbations to atmosphere and ocean variables from large transient CO2 emissions. Using the Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir (LOSCAR) model (Zeebe et al., 2009; Zeebe, 2012b), we calculate perturbations to atmosphere temperature, total carbon, ocean temperature, total ocean carbon, pH, alkalinity, marine-sediment carbon, and carbon-13 isotope anomalies in the ocean and atmosphere resulting from idealized CO2 emission events. The peak perturbations in the atmosphere and ocean variables are then fit to power law functions of the form of γ DαEβ, where D is the event duration, E is its total carbon emission, and γ is a coefficient. Good power law fits are obtained for most system variables for E up to 50 000 PgC and D up to 100 kyr. Although all of the peak perturbations increase with emission rate E/D, we find no evidence of emission-rate-only scaling, α + β = 0. Instead, our scaling yields α + β ≃ 1 for total ocean and atmosphere carbon and 0 < α + β < 1 for most of the other system variables.

  10. Optimizing culture conditions for production of intra and extracellular inulinase and invertase from Aspergillus niger ATCC 20611 by response surface methodology (RSM).

    PubMed

    Dinarvand, Mojdeh; Rezaee, Malahat; Foroughi, Majid

    The aim of this study was obtain a model that maximizes growth and production of inulinase and invertase by Aspergillus niger ATCC 20611, employing response surface methodology (RSM). The RSM with a five-variable and three-level central composite design (CCD) was employed to optimize the medium composition. Results showed that the experimental data could be appropriately fitted into a second-order polynomial model with a coefficient of determination (R 2 ) more than 0.90 for all responses. This model adequately explained the data variation and represented the actual relationships between the parameters and responses. The pH and temperature value of the cultivation medium were the most significant variables and the effects of inoculum size and agitation speed were slightly lower. The intra-extracellular inulinase, invertase production and biomass content increased 10-32 fold in the optimized medium condition (pH 6.5, temperature 30°C, 6% (v/v), inoculum size and 150rpm agitation speed) by RSM compared with medium optimized through the one-factor-at-a-time method. The process development and intensification for simultaneous production of intra-extracellular inulinase (exo and endo inulinase) and invertase from A. niger could be used for industrial applications. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  11. The Temperature Sensitivity (Q10) of Soil Respiration: Controlling Factors and Spatial Prediction at Regional Scale Based on Environmental Soil Classes

    NASA Astrophysics Data System (ADS)

    Meyer, N.; Welp, G.; Amelung, W.

    2018-02-01

    The temperature sensitivity of heterotrophic soil respiration is crucial for modeling carbon dynamics but it is variable. Presently, however, most models employ a fixed value of 1.5 or 2.0 for the increase of soil respiration per 10°C increase in temperature (Q10). Here we identified the variability of Q10 at a regional scale (Rur catchment, Germany/Belgium/Netherlands). We divided the study catchment into environmental soil classes (ESCs), which we define as unique combinations of land use, aggregated soil groups, and texture. We took nine soil samples from each ESC (108 samples) and incubated them at four soil moisture levels and five temperatures (5-25°C). We hypothesized that Q10 variability is controlled by soil organic carbon (SOC) degradability and soil moisture and that ESC can be used as a widely available proxy for Q10, owing to differences in SOC degradability. Measured Q10 values ranged from 1.2 to 2.8 and were correlated with indicators of SOC degradability (e.g., pH, r = -0.52). The effect of soil moisture on Q10 was variable: Q10 increased with moisture in croplands but decreased in forests. The ESC captured significant parts of Q10 variability under dry (R2 = 0.44) and intermediate (R2 = 0.36) moisture conditions, where Q10 increased in the order cropland

  12. Extremophiles in Mineral Sulphide Heaps: Some Bacterial Responses to Variable Temperature, Acidity and Solution Composition

    PubMed Central

    Watling, Helen R.; Shiers, Denis W.; Collinson, David M.

    2015-01-01

    In heap bioleaching, acidophilic extremophiles contribute to enhanced metal extraction from mineral sulphides through the oxidation of Fe(II) and/or reduced inorganic sulphur compounds (RISC), such as elemental sulphur or mineral sulphides, or the degradation of organic compounds derived from the ore, biota or reagents used during mineral processing. The impacts of variable solution acidity and composition, as well as temperature on the three microbiological functions have been examined for up to four bacterial species found in mineral sulphide heaps. The results indicate that bacteria adapt to sufficiently high metal concentrations (Cu, Ni, Co, Zn, As) to allow them to function in mineral sulphide heaps and, by engaging alternative metabolic pathways, to extend the solution pH range over which growth is sustained. Fluctuating temperatures during start up in sulphide heaps pose the greatest threat to efficient bacterial colonisation. The large masses of ores in bioleaching heaps mean that high temperatures arising from sulphide oxidation are hard to control initially, when the sulphide content of the ore is greatest. During that period, mesophilic and moderately thermophilic bacteria are markedly reduced in both numbers and activity. PMID:27682094

  13. A biologically inspired variable-pH strategy for enhancing short-chain fatty acids (SCFAs) accumulation in maize straw fermentation.

    PubMed

    Meng, Yao; Mumme, Jan; Xu, Heng; Wang, Kaijun

    2016-02-01

    This study investigates the feasibility of varying the pH to enhance the accumulation of short-chain fatty acids (SCFAs) in the in vitro fermentation of maize straw. The corresponding hydrolysis rate and the net SCFA yield increased as inoculum ratio (VSinoculum/VSsubstrate) increased from 0.09 to 0.79. The pH were maintained at 5.3, 5.8, 6.3, 6.8, 7.3, and 7.8, respectively. A neutral pH of approximately 6.8 was optimal for hydrolysis. The net SCFA yield decreased by 34.9% for a pH of less than 5.8, but remained constant at approximately 721±5mg/gvs for a pH between 5.8 and 7.8. In addition, results were obtained for variable and constant pH levels at initial substrate concentrations of 10, 30 and 50g/L. A variable pH increased the net SCFA yield by 23.6%, 29.0%, and 36.6% for concentrations of 10, 30 and 50g/L. Therefore, a variable pH enhanced SCFA accumulation in maize straw fermentation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Activation of Phosphorylase Kinase by Physiological Temperature.

    PubMed

    Herrera, Julio E; Thompson, Jackie A; Rimmer, Mary Ashley; Nadeau, Owen W; Carlson, Gerald M

    2015-12-29

    In the six decades since its discovery, phosphorylase kinase (PhK) from rabbit skeletal muscle has usually been studied at 30 °C; in fact, not a single study has examined functions of PhK at a rabbit's body temperature, which is nearly 10 °C greater. Thus, we have examined aspects of the activity, regulation, and structure of PhK at temperatures between 0 and 40 °C. Between 0 and 30 °C, the activity at pH 6.8 of nonphosphorylated PhK predictably increased; however, between 30 and 40 °C, there was a dramatic jump in its activity, resulting in the nonactivated enzyme having a far greater activity at body temperature than was previously realized. This anomalous change in properties between 30 and 40 °C was observed for multiple functions, and both stimulation (by ADP and phosphorylation) and inhibition (by orthophosphate) were considerably less pronounced at 40 °C than at 30 °C. In general, the allosteric control of PhK's activity is definitely more subtle at body temperature. Changes in behavior related to activity at 40 °C and its control can be explained by the near disappearance of hysteresis at physiological temperature. In important ways, the picture of PhK that has emerged from six decades of study at temperatures of ≤30 °C does not coincide with that of the enzyme studied at physiological temperature. The probable underlying mechanism for the dramatic increase in PhK's activity between 30 and 40 °C is an abrupt change in the conformations of the regulatory β and catalytic γ subunits between these two temperatures.

  15. Comprehensive model of microalgae photosynthesis rate as a function of culture conditions in photobioreactors.

    PubMed

    Costache, T A; Acién Fernández, F Gabriel; Morales, M M; Fernández-Sevilla, J M; Stamatin, I; Molina, E

    2013-09-01

    In this paper, the influence of culture conditions (irradiance, temperature, pH, and dissolved oxygen) on the photosynthesis rate of Scenedesmus almeriensis cultures is analyzed. Short-run experiments were performed to study cell response to variations in culture conditions, which take place in changing environments such as outdoor photobioreactors. Experiments were performed by subjecting diluted samples of cells to different levels of irradiance, temperature, pH, and dissolved oxygen concentration. Results demonstrate the existence of photoinhibition phenomena at irradiances higher than 1,000 μE/m(2) s; in addition to reduced photosynthesis rates at inadequate temperatures or pH-the optimal values being 35 °C and 8, respectively. Moreover, photosynthesis rate reduction at dissolved oxygen concentrations above 20 mg/l is demonstrated. Data have been used to develop an integrated model based on considering the simultaneous influence of irradiance, temperature, pH, and dissolved oxygen. The model fits the experimental results in the range of culture conditions tested, and it was validated using data obtained by the simultaneous variation of two of the modified variables. Furthermore, the model fits experimental results obtained from an outdoor culture of S. almeriensis performed in an open raceway reactor. Results demonstrate that photosynthetic efficiency is modified as a function of culture conditions, and can be used to determine the proximity of culture conditions to optimal values. Optimal conditions found (T = 35 °C, pH = 8, dissolved oxygen concentration <20 mg/l) allows to maximize the use of light by the cells. The developed model is a powerful tool for the optimal design and management of microalgae-based processes, especially outdoors, where the cultures are subject to daily culture condition variations.

  16. Automatized sspKa measurements of dihydrogen phosphate and Tris(hydroxymethyl) aminomethane in acetonitrile/water mixtures from 20 to 60°C.

    PubMed

    Acquaviva, A; Tascon, M; Padró, J M; Gagliardi, L G; Castells, C B

    2014-09-01

    We measured pKa values of Tris(hydroxymethyl)aminomethane and dihydrogen phosphate; both are commonly used to prepare buffers for reverse-phase liquid chromatography (RPLC), in acetonitrile/water mixtures from 0% to 70% (v/v) (64.6% (w/w)) acetonitrile and at 20, 30, 40, 50, and 60°C. The procedure is based on potentiometric measurements of pH of buffer solutions of variable solvent compositions using a glass electrode and a novel automated system. The method consists in the controlled additions of small volumes of a thermostated solution from an automatic buret into another isothermal solution containing exactly the same buffer-component concentrations, but a different solvent composition. The continuous changes in the solvent composition induce changes in the potentials. Thus, only two sequences of additions are needed: increasing the amount of acetonitrile from pure water and decreasing the content of acetonitrile from 70% (v/v) (64.6% (w/w)). In the procedure with homemade apparatus, times for additions, stirring, homogenization, and data acquisition are entirely controlled by software programmed for this specific routine. This rapid, fully automated method was applied to acquire more than 40 potential data covering the whole composition range (at each temperature) in about two hours and allowed a systematic study of the effect of temperature and acetonitrile composition on acid-base equilibria of two widely used substances to control pH close to 7. The experimental pKa results were fitted to empirical functions between pKa and temperature and acetonitrile composition. These equations allowed predictions of pKa to estimate the pH of mixtures at any composition and temperature, which would be very useful, for instance, during chromatographic method development. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Enhancing Degradation of Low Density Polyethylene Films by Curvularia lunata SG1 Using Particle Swarm Optimization Strategy.

    PubMed

    Raut, Sangeeta; Raut, Smita; Sharma, Manisha; Srivastav, Chaitanya; Adhikari, Basudam; Sen, Sudip Kumar

    2015-09-01

    In the present study, artificial neural network (ANN) modelling coupled with particle swarm optimization (PSO) algorithm was used to optimize the process variables for enhanced low density polyethylene (LDPE) degradation by Curvularia lunata SG1. In the non-linear ANN model, temperature, pH, contact time and agitation were used as input variables and polyethylene bio-degradation as the output variable. Further, on application of PSO to the ANN model, the optimum values of the process parameters were as follows: pH = 7.6, temperature = 37.97 °C, agitation rate = 190.48 rpm and incubation time = 261.95 days. A comparison between the model results and experimental data gave a high correlation coefficient ([Formula: see text]). Significant enhancement of LDPE bio-degradation using C. lunata SG1by about 48 % was achieved under optimum conditions. Thus, the novelty of the work lies in the application of combination of ANN-PSO as optimization strategy to enhance the bio-degradation of LDPE.

  18. Acid-base balance and metabolic response of the sea urchin Paracentrotus lividus to different seawater pH and temperatures.

    PubMed

    Catarino, Ana I; Bauwens, Mathieu; Dubois, Philippe

    2012-07-01

    In order to better understand if the metabolic responses of echinoids could be related to their acid-base status in an ocean acidification context, we studied the response of an intertidal sea urchin species, Paracentrotus lividus, submitted to low pH at two different temperatures. Individuals were submitted to control (8.0) and low pH (7.7 and 7.4) at 10°C and 16°C (19 days). The relation between the coelomic fluid acid-base status, the RNA/DNA ratio of gonads and the individual oxygen uptake were studied. The coelomic fluid pH decreased with the aquarium seawater, independently of temperature, but this explained only 13% of the pH variation. The coelomic fluid showed though a partial buffer capacity that was not related to skeleton dissolution ([Mg(2+)] and [Ca(2+)] did not differ between pH treatments). There was an interaction between temperature and pH on the oxygen uptake (V (O2)) which was increased at pH 7.7 and 7.4 at 10°C in comparison with controls, but not at 16°C, indicating an upregulation of the metabolism at low temperature and pH. However, gonad RNA/DNA ratios did not differ according to pH and temperature treatments, indicating that even if maintenance of physiological activities has an elevated metabolic cost when individuals are exposed to stress, they are not directly affected during short-term exposure. Long-term studies are needed in order to verify if gonad production/growth will be affected by low pH seawaters exposure.

  19. Effective Control of Bioelectricity Generation from a Microbial Fuel Cell by Logical Combinations of pH and Temperature

    PubMed Central

    Tang, Jiahuan; Liu, Ting; Yuan, Yong

    2014-01-01

    In this study, a microbial fuel cell (MFC) with switchable power release is designed, which can be logically controlled by combinations of the most physiologically important parameters such as “temperature” and “pH.” Changes in voltage output in response to temperature and pH changes were significant in which voltage output decreased sharply when temperature was lowered from 30°C to 10°C or pH was decreased from 7.0 to 5.0. The switchability of the MFC comes from the microbial anode whose activity is affected by the combined medium temperature and pH. Changes in temperature and pH cause reversible activation-inactivation of the bioanode, thus affecting the activity of the entire MFC. With temperature and pH as input signals, an AND logic operation is constructed for the MFC whose power density is controlled. The developed system has the potential to meet the requirement of power supplies producing electrical power on-demand for self-powered biosensors or biomedical devices. PMID:24741343

  20. Zr/ZrO2 sensors for in situ measurement of pH in high-temperature and -pressure aqueous solutions.

    PubMed

    Zhang, R H; Zhang, X T; Hu, S M

    2008-04-15

    The aim of this study is to develop new pH sensors that can be used to test and monitor hydrogen ion activity in hydrothermal conditions. A Zr/ZrO2 oxidation electrode is fabricated for in situ pH measurement of high-temperature aqueous solutions. This sensor responds rapidly and precisely to pH over a wide range of temperature and pressure. The Zr/ZrO2 electrode was made by oxidizing zirconium metal wire with Na2CO3 melt, which produced a thin film of ZrO2 on its surface. Thus, an oxidation-reduction electrode was produced. The Zr/ZrO2 electrode has a good electrochemical stability over a wide range of pH in high-temperature aqueous solutions when used with a Ag/AgCl reference electrode. Measurements of the Zr/ZrO2 sensor potential against a Ag/AgCl reference electrode is shown to vary linearly with pH between temperatures 20 and 200 degrees C. The slope of the potential versus pH at high temperature is slightly below the theoretical value indicated by the Nernst equation; such deviation is attributed to the fact that the sensor is not strictly at equilibrium with the solution to be tested in a short period of time. The Zr/ZrO2 sensor can be calibrated over the conditions that exist in the natural deep-seawater. Our studies showed that the Zr/ZrO2 electrode is a suitable pH sensor for the hydrothermal systems at midocean ridge or other geothermal systems with the high-temperature environment. Yttria-stabilized zirconia sensors have also been used to investigate the pH of hydrothermal fluids in hot springs vents at midocean ridge. These sensors, however, are not sensitive below 200 degrees C. Zr/ZrO2 sensors have wider temperature range and can be severed as good alternative sensors for measuring the pH of hydrothermal fluids.

  1. In situ Dynamics of O2, pH, Light, and Photosynthesis in Ikaite Tufa Columns (Ikka Fjord, Greenland)-A Unique Microbial Habitat.

    PubMed

    Trampe, Erik C L; Larsen, Jens E N; Glaring, Mikkel A; Stougaard, Peter; Kühl, Michael

    2016-01-01

    The Ikka Fjord (SW Greenland) harbors a unique microbial habitat in the form of several hundred submarine tufa columns composed of ikaite, a special hexahydrate form of calcium carbonate that precipitates when alkaline phosphate- and carbonate-enriched spring water seeping out of the sea floor meets cold seawater. While several unique heterotrophic microbes have been isolated from the tufa columns, the microbial activity, and the boundary conditions for microbial growth in ikaite have remained unexplored. We present the first detailed in situ characterization of the physico-chemical microenvironment and activity of oxygenic phototrophs thriving within the ikaite columns. In situ underwater microsensor measurements of pH, temperature, and irradiance in the porous ikaite crystal matrix, revealed an extreme microenvironment characterized by low temperatures, strong light attenuation, and gradients of pH changing from pH 9 at the outer column surface to above pH 10 over the first 1-2 cm of the ikaite. This outer layer of the freshly deposited ikaite matrix contained densely pigmented yellow and green zones harboring a diverse phototrophic community dominated by diatoms and cyanobacteria, respectively, as shown by amplicon sequencing. In situ O2 measurements, as well as underwater variable chlorophyll fluorescence measurements of photosynthetic activity, demonstrated high levels of oxygenic photosynthesis in this extreme gradient environment with strong irradiance-driven O2 dynamics ranging from anoxia to hyperoxic conditions in the ikaite matrix, albeit the local formation of gas bubbles buffered the day-night dynamics of O2 in the tufa columns. The microbial phototrophs in the ikaite matrix are embedded in exopolymers forming endolithic biofilms that may interact with mineral formation and cementing of ikaite crystals.

  2. In situ Dynamics of O2, pH, Light, and Photosynthesis in Ikaite Tufa Columns (Ikka Fjord, Greenland)—A Unique Microbial Habitat

    PubMed Central

    Trampe, Erik C. L.; Larsen, Jens E. N.; Glaring, Mikkel A.; Stougaard, Peter; Kühl, Michael

    2016-01-01

    The Ikka Fjord (SW Greenland) harbors a unique microbial habitat in the form of several hundred submarine tufa columns composed of ikaite, a special hexahydrate form of calcium carbonate that precipitates when alkaline phosphate- and carbonate-enriched spring water seeping out of the sea floor meets cold seawater. While several unique heterotrophic microbes have been isolated from the tufa columns, the microbial activity, and the boundary conditions for microbial growth in ikaite have remained unexplored. We present the first detailed in situ characterization of the physico-chemical microenvironment and activity of oxygenic phototrophs thriving within the ikaite columns. In situ underwater microsensor measurements of pH, temperature, and irradiance in the porous ikaite crystal matrix, revealed an extreme microenvironment characterized by low temperatures, strong light attenuation, and gradients of pH changing from pH 9 at the outer column surface to above pH 10 over the first 1–2 cm of the ikaite. This outer layer of the freshly deposited ikaite matrix contained densely pigmented yellow and green zones harboring a diverse phototrophic community dominated by diatoms and cyanobacteria, respectively, as shown by amplicon sequencing. In situ O2 measurements, as well as underwater variable chlorophyll fluorescence measurements of photosynthetic activity, demonstrated high levels of oxygenic photosynthesis in this extreme gradient environment with strong irradiance-driven O2 dynamics ranging from anoxia to hyperoxic conditions in the ikaite matrix, albeit the local formation of gas bubbles buffered the day-night dynamics of O2 in the tufa columns. The microbial phototrophs in the ikaite matrix are embedded in exopolymers forming endolithic biofilms that may interact with mineral formation and cementing of ikaite crystals. PMID:27242741

  3. Effects of temperature, pH and NaCl on protease activity in digestive tract of young turbot, Scophthalmus maximus

    NASA Astrophysics Data System (ADS)

    Chen, Muyan; Zhang, Xiumei; Gao, Tianxiang; Chen, Chao

    2006-09-01

    The protease activity in digestive tract of young turbot Scophthalmus maximum was studied, and the optimal pH, temperature and NaCl concentration were determined for different portions of the fish's internal organs. The optimal activity in the fish's stomach was at pH of 2.2, while that in the intestinal extracts was within the alkaline range from 9.5 to 10.0. In hepatopancreas, the optimal pH was in low alkalinity at 8.5. The optimal reaction temperature was above 40°C in stomach, intestine and hepatopancreas. With increasing temperature, the pH value increased in stomach, while in the intestine, an opposite tendency was observed due to combined effect of pH and temperature. NaCl concentration showed inhibitory impact on protein digestion in hepatopancreas. The main protease for protein digestion in turbot seemed to be pepsin. Moreover, the maximum protease activity in different segments of intestine existed in the hindgut.

  4. Regulation of arsenic mobility on basaltic glass surfaces by speciation and pH.

    PubMed

    Sigfusson, Bergur; Meharg, Andrew A; Gislason, Sigurdur R

    2008-12-01

    The importance of geothermal energy as a source for electricity generation and district heating has increased over recent decades. Arsenic can be a significant constituent of the geothermal fluids pumped to the surface during power generation. Dissolved As exists in different oxidation states, mainly as As(III) and As(V), and the charge of individual species varies with pH. Basaltic glass is one of the most important rock types in many high-temperature geothermal fields. Static batch and dynamic column experiments were combined to generate and validate sorption coefficients for As(III) and As(V) in contact with basaltic glass at pH 3-10. Validation was carried out by two empirical kinetic models and a surface complexation model (SCM). The SCM provided a better fit to the experimental column data than kinetic models at high pH values. However, in certain circumstances, an adequate estimation of As transport in the column could not be attained without incorporation of kinetic reactions. The varying mobility with pH was due to the combined effects of the variable charge of the basaltic glass with the pH point of zero charge at 6.8 and the individual As species as pH shifted, respectively. The mobility of As(III) decreased with increasing pH. The opposite was true for As(V), being nearly immobile at pH 3 to being highly mobile at pH 10. Incorporation of appropriate sorption constants, based on the measured pH and Eh of geothermal fluids, into regional groundwater-flow models should allow prediction of the As(III) and As(V) transport from geothermal systems to adjacent drinking water sources and ecosystems.

  5. Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition

    NASA Astrophysics Data System (ADS)

    Tripati, Aradhna K.; Hill, Pamela S.; Eagle, Robert A.; Mosenfelder, Jed L.; Tang, Jianwu; Schauble, Edwin A.; Eiler, John M.; Zeebe, Richard E.; Uchikawa, Joji; Coplen, Tyler B.; Ries, Justin B.; Henry, Drew

    2015-10-01

    ;Clumped-isotope; thermometry is an emerging tool to probe the temperature history of surface and subsurface environments based on measurements of the proportion of 13C and 18O isotopes bound to each other within carbonate minerals in 13C18O16O22- groups (heavy isotope ;clumps;). Although most clumped isotope geothermometry implicitly presumes carbonate crystals have attained lattice equilibrium (i.e., thermodynamic equilibrium for a mineral, which is independent of solution chemistry), several factors other than temperature, including dissolved inorganic carbon (DIC) speciation may influence mineral isotopic signatures. Therefore we used a combination of approaches to understand the potential influence of different variables on the clumped isotope (and oxygen isotope) composition of minerals. We conducted witherite precipitation experiments at a single temperature and at varied pH to empirically determine 13C-18O bond ordering (Δ47) and δ18O of CO32- and HCO3- molecules at a 25 °C equilibrium. Ab initio cluster models based on density functional theory were used to predict equilibrium 13C-18O bond abundances and δ18O of different DIC species and minerals as a function of temperature. Experiments and theory indicate Δ47 and δ18O compositions of CO32- and HCO3- ions are significantly different from each other. Experiments constrain the Δ47-δ18O slope for a pH effect (0.011 ± 0.001; 12 ⩾ pH ⩾ 7). Rapidly-growing temperate corals exhibit disequilibrium mineral isotopic signatures with a Δ47-δ18O slope of 0.011 ± 0.003, consistent with a pH effect. Our theoretical calculations for carbonate minerals indicate equilibrium lattice calcite values for Δ47 and δ18O are intermediate between HCO3- and CO32-. We analyzed synthetic calcites grown at temperatures ranging from 0.5 to 50 °C with and without the enzyme carbonic anhydrase present. This enzyme catalyzes oxygen isotopic exchange between DIC species and is present in many natural systems. The two types of experiments yielded statistically indistinguishable results, and these measurements yield a calibration that overlaps with our theoretical predictions for calcite at equilibrium. The slow-growing Devils Hole calcite exhibits Δ47 and δ18O values consistent with lattice equilibrium. Factors influencing DIC speciation (pH, salinity) and the timescale for DIC equilibration, as well as reactions at the mineral-solution interface, have the potential to influence clumped-isotope signatures and the δ18O of carbonate minerals. In fast-growing carbonate minerals, solution chemistry may be an important factor, particularly over extremes of pH and salinity. If a crystal grows too rapidly to reach an internal equilibrium (i.e., achieve the value for the temperature-dependent mineral lattice equilibrium), it may record the clumped-isotope signature of a DIC species (e.g., the temperature-dependent equilibrium of HCO3-) or a mixture of DIC species, and hence record a disequilibrium mineral composition. For extremely slow-growing crystals, and for rapidly-grown samples grown at a pH where HCO3- dominates the DIC pool at equilibrium, effects of solution chemistry are likely to be relatively small or negligible. In summary, growth environment, solution chemistry, surface equilibria, and precipitation rate may all play a role in dictating whether a crystal achieves equilibrium or disequilibrium clumped-isotope signatures.

  6. Effect of digestion temperature and pH on treatment efficiency and evolution of volatile fatty acids during thermophilic aerobic digestion of model high strength agricultural waste.

    PubMed

    Ugwuanyi, J Obeta; Harvey, L M; McNeil, B

    2005-04-01

    Thermophilic aerobic digestion (TAD) of a model agricultural waste, potato peel slurry, at soluble chemical oxygen demand (COD) load equivalent to approximately 8.0 gl(-1), was carried out under batch conditions at 0.5 vvm aeration rate. Digestions were carried out at temperatures of 45, 50, 55, 60 and 65 degrees C (or left unregulated) without pH control to study the effect of digestion temperatures on TAD. The effects of digestion pH on the process were studied at pH 6.0, 7.0, 8.0, 9.0 and 9.5 (and in unregulated control) all at 55 degrees C. Except for digestion at 65 degrees C, which was inoculated extraneously using culture of Bacillus strearothermophilus all reactions were carried out using the populations indigenous to the waste. During digestion at different temperatures, the removal of soluble COD increased with temperature to reach a peak at 60 degrees C before declining slightly, removal of soluble solid (SS) followed similar pattern and reached peak at 65 degrees C being the highest temperature studied, while the degradation of TSS and TS (TSS + TS) decreased with an increase in temperature. Digestion at pH 7.0 was more efficient than at other pH values. Acetate was the predominant volatile fatty acid (VFA) in all the reactions and accounted for up to 90% of the total. Digestion at 60 degrees C led to the greatest accumulation of acetate, and this coincided with the period of highest oxygen uptake, and rapid consumption of soluble carbohydrate. Iso-valerate was also produced at all pH values. Digestion at 55 degrees C and also at pH 7.0 led to rapid and efficient processes with least accumulation of VFA and should be of interest in full-scale processes whenever it is practicable to regulate the digestion pH and temperature. The result of digestion at unregulated pH indicates that gradual adaptation may be used to achieve efficient treatment at elevated pH values. This would be of interest in full-scale processes where it is not practicable to tightly regulate digestion pH, and where the waste is produced at a pH value much higher than neutral.

  7. A Quantitative Review and Meta-Models of the Variability and Factors Affecting Oral Drug Absorption-Part I: Gastrointestinal pH.

    PubMed

    Abuhelwa, Ahmad Y; Foster, David J R; Upton, Richard N

    2016-09-01

    This study aimed to conduct a quantitative meta-analysis for the values of, and variability in, gastrointestinal (GI) pH in the different GI segments; characterize the effect of food on the values and variability in these parameters; and present quantitative meta-models of distributions of GI pH to help inform models of oral drug absorption. The literature was systemically reviewed for the values of, and the variability in, GI pH under fed and fasted conditions. The GI tract was categorized into the following 10 distinct regions: stomach (proximal, mid-distal), duodenum (proximal, mid-distal), jejunum and ileum (proximal, mid, and distal small intestine), and colon (ascending, transverse, and descending colon). Meta-analysis used the "metafor" package of the R language. The time course of postprandial stomach pH was modeled using NONMEM. Food significantly influenced the estimated meta-mean stomach and duodenal pH but had no significant influence on small intestinal and colonic pH. The time course of postprandial pH was described using an exponential model. Increased meal caloric content increased the extent and duration of postprandial gastric pH buffering. The different parts of the small intestine had significantly different pH. Colonic pH was significantly different for descending but not for ascending and transverse colon. Knowledge of GI pH is important for the formulation design of the pH-dependent dosage forms and in understanding the dissolution and absorption of orally administered drugs. The meta-models of GI pH may also be used as part of semi-physiological pharmacokinetic models to characterize the effect of GI pH on the in vivo drug release and pharmacokinetics.

  8. Additive effects of pCO2 and temperature on respiration rates of the Antarctic pteropod Limacina helicina antarctica.

    PubMed

    Hoshijima, Umihiko; Wong, Juliet M; Hofmann, Gretchen E

    2017-01-01

    The Antarctic pteropod, Limacina helicina antarctica , is a dominant member of the zooplankton in the Ross Sea and supports the vast diversity of marine megafauna that designates this region as an internationally protected area. Here, we observed the response of respiration rate to abiotic stressors associated with global change-environmentally relevant temperature treatments (-0.8°C, 4°C) and pH treatments reflecting current-day and future modeled extremes (8.2, 7.95 and 7.7 pH at -0.8°C; 8.11, 7.95 and 7.7 pH at 4°C). Sampling repeatedly over a 14-day period in laboratory experiments and using microplate respirometry techniques, we found that the metabolic rate of juvenile pteropods increased in response to low-pH exposure (pH 7.7) at -0.8°C, a near-ambient temperature. Similarly, metabolic rate increased when pteropods were exposed simultaneously to multiple stressors: lowered pH conditions (pH 7.7) and a high temperature (4°C). Overall, the results showed that p CO 2 and temperature interact additively to affect metabolic rates in pteropods. Furthermore, we found that L. h. antarctica can tolerate acute exposure to temperatures far beyond its maximal habitat temperature. Overall, L. h. antarctica appears to be susceptible to pH and temperature stress, two abiotic stressors which are expected to be especially deleterious for ectothermic marine metazoans in polar seas.

  9. Additive effects of pCO2 and temperature on respiration rates of the Antarctic pteropod Limacina helicina antarctica

    PubMed Central

    Hoshijima, Umihiko; Wong, Juliet M

    2017-01-01

    Abstract The Antarctic pteropod, Limacina helicina antarctica, is a dominant member of the zooplankton in the Ross Sea and supports the vast diversity of marine megafauna that designates this region as an internationally protected area. Here, we observed the response of respiration rate to abiotic stressors associated with global change—environmentally relevant temperature treatments (−0.8°C, 4°C) and pH treatments reflecting current-day and future modeled extremes (8.2, 7.95 and 7.7 pH at −0.8°C; 8.11, 7.95 and 7.7 pH at 4°C). Sampling repeatedly over a 14-day period in laboratory experiments and using microplate respirometry techniques, we found that the metabolic rate of juvenile pteropods increased in response to low-pH exposure (pH 7.7) at −0.8°C, a near-ambient temperature. Similarly, metabolic rate increased when pteropods were exposed simultaneously to multiple stressors: lowered pH conditions (pH 7.7) and a high temperature (4°C). Overall, the results showed that pCO2 and temperature interact additively to affect metabolic rates in pteropods. Furthermore, we found that L. h. antarctica can tolerate acute exposure to temperatures far beyond its maximal habitat temperature. Overall, L. h. antarctica appears to be susceptible to pH and temperature stress, two abiotic stressors which are expected to be especially deleterious for ectothermic marine metazoans in polar seas. PMID:29218223

  10. Effects of natural current pH variability on the sea urchin Paracentrotus lividus larvae development and settlement.

    PubMed

    García, Eliseba; Clemente, Sabrina; Hernández, José Carlos

    2018-08-01

    One of the most important environmental factors controlling the distribution, physiology, morphology and behaviour of marine invertebrates is ocean pH. In the last decade, the effects of decreasing ocean pH as a result of climate change processes (i.e. ocean acidification) on marine organisms have been target of much research. However, the effects of natural pH variability in the species' niche have been largely neglected. Marine coastal habitats are characterized by a high environmental variability and, in some cases, organisms are already coping with pH values predicted by the end of the century. It is thought that because of adaptation or acclimation to natural environmental variability, intertidal species may have some resilience to future changes. In this study, we explored the sensitivities of the sea urchin Paracentrotus lividus during its larvae development and settlement undergoing two different daily pH frequencies (12 h fluctuation from 7.7 to 8.1 units of pH, and constant pH treatment of 8.1 units of pH) that have been currently recorded in the sampling region (Canary Islands). Results showed that, despite larvae development was slightly enhanced by moderated fluctuating pH regimes, P. lividus larva was able to develop normally in both, fluctuating and constant, pH environments. Results of the settlement experiment showed very clear patterns since postlarvae settlement was only successful when a covering of algae was added, regardless of the pH fluctuation applied. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Fine-Scale Variability in Temperature, Salinity, and pH in the Upper-Ocean and the Effects on Acoustic Transmission Loss in the Western Arctic Ocean.

    DTIC Science & Technology

    2010-03-01

    28  V.  ANALYTIC METHOD AND DATA ANALYSIS ..................................................29  A.  DATA PROCESSING ...your help getting ready for the Arctic and with the data processing back at NPS. Thank you to Professor John Colosi and LCDR Ben Jones for your help...light. Acoustic energy, however, can propagate for very long ranges (Kinsler et al. 2000). This energy can be passively received and processed , and

  12. Computational Investigation of Combustion Dynamics in a Lean-Direct Injection Gas Turbine Combustor

    DTIC Science & Technology

    2012-11-01

    variable vector which includes turbulence kinetic energy and specific dissipation, k and w; In the viscous flux, D is the molecular diffusion coefficient...for the liquid particle. This equation assumes the uniform temperature inside the liquid particle. The source term consist of the net sensible ...Spray Characteristics on Diesel Engine Combustion and Emission, SAE 980131, 1998 24 Fu, Y., “Aerodynamics and Combustion of Axial Swirlers,” Ph . D. dissertation from the University of Cincinnati, 2008.

  13. Water Quality Characteristics of Sembrong Dam Reservoir, Johor, Malaysia

    NASA Astrophysics Data System (ADS)

    Mohd-Asharuddin, S.; Zayadi, N.; Rasit, W.; Othman, N.

    2016-07-01

    A study of water quality and heavy metal content in Sembrong Dam water was conducted from April - August 2015. A total of 12 water quality parameters and 6 heavy metals were measured and classified based on the Interim National Water Quality Standard of Malaysia (INWQS). The measured and analyzed parameter variables were divided into three main categories which include physical, chemical and heavy metal contents. Physical and chemical parameter variables were temperature, dissolved oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solid (TSS), turbidity, pH, nitrate, phosphate, ammonium, conductivity and salinity. The heavy metals measured were copper (Cu), lead (Pb), aluminium (Al), chromium (Cr), ferum (Fe) and zinc (Zn). According to INWQS, the water salinity, conductivity, BOD, TSS and nitrate level fall under Class I, while the Ph, DO and turbidity lie under Class IIA. Furthermore, values of COD and ammonium were classified under Class III. The result also indicates that the Sembrong Dam water are not polluted with heavy metals since all heavy metal readings recorded were falls far below Class I.

  14. Stability of Tranexamic Acid after 12-Week Storage at Temperatures from -20 deg C to 50 deg C

    DTIC Science & Technology

    2013-07-01

    PRELIMINARY REPORTS STABILITY OF TRANEXAMIC ACID AFTER 12-WEEK STORAGE AT TEMPERATURES FROM –20◦C TO 50◦C Rodolfo de Guzman, Jr., MT, I. Amy...Polykratis, BS, Jill L. Sondeen, PhD, Daniel N. Darlington, PhD, Andrew P. Cap, MD, PhD, Michael A. Dubick, PhD ABSTRACT Background. Tranexamic acid (TXA) is... tranexamic acid ; temperature stability; HPLC; thromboelastography; storage PREHOSPITAL EMERGENCY CARE 2013;17:394–400 BACKGROUND Hemorrhage is the leading

  15. Locally driven interannual variability of near-surface pH and ΩA in the Strait of Georgia

    NASA Astrophysics Data System (ADS)

    Moore-Maley, Ben L.; Allen, Susan E.; Ianson, Debby

    2016-03-01

    Declines in mean ocean pH and aragonite saturation state (ΩA) driven by anthropogenic CO2 emissions have raised concerns regarding the trends of pH and ΩA in estuaries. Low pH and ΩA can be harmful to a variety of marine organisms, especially those with calcium carbonate shells, and so may threaten the productive ecosystems and commercial fisheries found in many estuarine environments. The Strait of Georgia is a large, temperate, productive estuarine system with numerous wild and aquaculture shellfish and finfish populations. We determine the seasonality and variability of near-surface pH and ΩA in the Strait using a one-dimensional, biophysical, mixing layer model. We further evaluate the sensitivity of these quantities to local wind, freshwater, and cloud forcing by running the model over a wide range of scenarios using 12 years of observations. Near-surface pH and ΩA demonstrate strong seasonal cycles characterized by low pH, aragonite-undersaturated waters in winter and high pH, aragonite-supersaturated waters in summer. The aragonite saturation horizon generally lies at ˜20 m depth except in winter and during strong Fraser River freshets when it shoals to the surface. Periods of strong interannual variability in pH and aragonite saturation horizon depth arise in spring and summer. We determine that at different times of year, each of wind speed, freshwater flux, and cloud fraction are the dominant drivers of this variability. These results establish the mechanisms behind the emerging observations of highly variable near-surface carbonate chemistry in the Strait.

  16. Immunomodulatory effects of temperature and pH of water in an Indian freshwater sponge.

    PubMed

    Mukherjee, Soumalya; Bhunia, Anindya Sundar; Bhunia, Niladri Sekhar; Ray, Mitali; Ray, Sajal

    2016-07-01

    Eunapius carteri, a freshwater sponge of India, inhabits the ponds and lakes and experiences variations of temperature and pH of water throughout the year. Sponges bear evolutionary and ecological importance with limited information on their immunological attribute and adaptational resilience in a changing environment. This paper reports temperature and pH specific responses of immune related parameters in sponge maintained in the experimental conditions of laboratory. Innate immunological parameters like phagocytosis and generation of cytotoxic molecules like superoxide anion, nitric oxide and phenoloxidase activity were estimated in E. carteri at different environmentally realistic water temperatures (10, 20, 30 and 40°C) and pH (6.4, 7.4 and 8.4). Phagocytosis and cytotoxicity are established as important immune parameters of invertebrates. Calalase, an antioxidant enzyme and phosphatases are involved in pathogen destruction and are considered as components of innate immunity. Activities of catalase, acid and alkaline phosphatases were estimated in E. carteri at different thermal regimes and pH. Modulation of phagocytic and cytotoxic responses and the activities of catalase and phosphatases at different water temperatures and pH indicated temperature and pH specific immunological status of E. carteri. Present investigation deals with the effects of selected hydrological parameters on the fundamental immune related parameters in sponge indicating its adaptational plasticity. Immunological resilience of this species in the face of variation of water temperature and pH is thought to be a special adaptive feature of sponge, a reported "living fossil". Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Temperature and substrate chemistry as major drivers of interregional variability of leaf microbial decomposition and cellulolytic activity in headwater streams.

    PubMed

    Fenoy, Encarnación; Casas, J Jesús; Díaz-López, Manuel; Rubio, Juan; Guil-Guerrero, J Luís; Moyano-López, Francisco J

    2016-11-01

    Abiotic factors, substrate chemistry and decomposers community composition are primary drivers of leaf litter decomposition. In soil, much of the variation in litter decomposition is explained by climate and substrate chemistry, but with a significant contribution of the specialisation of decomposer communities to degrade specific substrates (home-field advantage, HFA). In streams, however, HFA effects on litter decomposition have not been explicitly tested. We evaluated responses of microbial decomposition and β-glucosidase activity to abiotic factors, substrate and decomposer assemblages, using a reciprocal litter transplant experiment: 'ecosystem type' (mountain vs lowland streams) × 'litter chemistry' (alder vs reed). Temperature, pH and ionic concentration were higher in lowland streams. Decomposition for both species was faster in lowland streams. Decomposition of reed was more accelerated in lowland compared with mountain streams than that of alder, suggesting higher temperature sensitivity of decomposition in reed. Q10 (5°C-15°C) values of β-glucosidase activity were over 2. The alkaline pH and high ionic concentration of lowland streams depleted enzyme activity. We found similar relationships of decomposition or enzyme activity with abiotic factors for both species, suggesting limited support to the HFA hypothesis. Overall, our results suggest a prime role of temperature interacting with substrate chemistry on litter decomposition. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Reduction of verotoxigenic Escherichia coli by process and recipe optimisation in dry-fermented sausages.

    PubMed

    Heir, E; Holck, A L; Omer, M K; Alvseike, O; Høy, M; Måge, I; Axelsson, L

    2010-07-15

    Outbreaks of verotoxigenic Escherichia coli (VTEC) linked to dry-fermented sausages (DFSs) have emphasized the need for DFS manufacturers to introduce measures to obtain enhanced safety and still maintain the sensory qualities of their products. To our knowledge no data have yet been reported on non-O157:H7 VTEC survival in DFS. Here, the importance of recipe and process variables on VTEC (O157:H7 and O103:H25) reductions in two types of DFS, morr and salami, was determined through three statistically designed experiments. Linear regression and ANOVA analyses showed that no single variable had a dominant effect on VTEC reductions. High levels of NaCl, NaNO(2), glucose (low pH) and fermentation temperature gave enhanced VTEC reduction, while high fat and large casing diameter (a(w)) gave the opposite effect. Interaction effects were small. The process and recipe variables showed similar effects in morr and salami. In general, recipes combining high batter levels of salt (NaCl and NaNO(2)) and glucose along with high fermentation temperature that gave DFS with low final pH and a(w), provided approximately 3 log(10) reductions compared to approximately 1.5 log(10) reductions obtained for standard recipe DFS. Storage at 4 degrees C for 2 months provided log(10) 0.33-0.95 additional VTEC reductions and were only marginally affected by recipe type. Sensory tests revealed only small differences between the various recipes of morr and salami. By optimisation of recipe and process parameters, it is possible to obtain increased microbial safety of DFS while maintaining the sensory qualities of the sausages. 2010 Elsevier B.V. All rights reserved.

  19. Pulsed electric field processing of different fruit juices: impact of pH and temperature on inactivation of spoilage and pathogenic micro-organisms.

    PubMed

    Timmermans, R A H; Nierop Groot, M N; Nederhoff, A L; van Boekel, M A J S; Matser, A M; Mastwijk, H C

    2014-03-03

    Pulsed electrical field (PEF) technology can be used for the inactivation of micro-organisms and therefore for preservation of food products. It is a mild technology compared to thermal pasteurization because a lower temperature is used during processing, leading to a better retention of the quality. In this study, pathogenic and spoilage micro-organisms relevant in refrigerated fruit juices were studied to determine the impact of process parameters and juice composition on the effectiveness of the PEF process to inactivate the micro-organisms. Experiments were performed using a continuous-flow PEF system at an electrical field strength of 20 kV/cm with variable frequencies to evaluate the inactivation of Salmonella Panama, Escherichia coli, Listeria monocytogenes and Saccharomyces cerevisiae in apple, orange and watermelon juices. Kinetic data showed that under the same conditions, S. cerevisiae was the most sensitive micro-organism, followed by S. Panama and E. coli, which displayed comparable inactivation kinetics. L. monocytogenes was the most resistant micro-organism towards the treatment conditions tested. A synergistic effect between temperature and electric pulses was observed at inlet temperatures above 35 °C, hence less energy for inactivation was required at higher temperatures. Different juice matrices resulted in a different degree of inactivation, predominantly determined by pH. The survival curves were nonlinear and could satisfactorily be modeled with the Weibull model. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Optimization of edible coating formulations for improving postharvest quality and shelf life of pear fruit using response surface methodology.

    PubMed

    Nandane, A S; Dave, Rudri K; Rao, T V Ramana

    2017-01-01

    The effect of composite edible films containing soy protein isolate (SPI) in combination with additives like hydroxypropyl methylcellulose (HPMC) and olive oil on 'Babughosha' pear ( Pyrus communis L.) stored at ambient temperature (28 ± 5 °C and 60 ± 10% RH) was evaluated using Response surface methodology (RSM). A total of 30 edible coating formulations comprising of SPI (2-6%, w/v), olive oil (0.7-1.1%, v/v), HPMC (0.1-0.5%, w/v) and potassium sorbate (0-0.4% w/v) were evaluated for optimizing the most suitable combination. Quality parameters like weight loss%, TSS, pH and titrable acidity of the stored pears were selected as response variables for optimization. The optimization procedure was carried out using RSM. It was observed that the response variables were mainly effected by concentration of SPI and olive oil in the formulation. Edible coating comprising of SPI 5%, HPMC 0.40%, olive oil 1% and potassium sorbate 0.22% was found to be most suitable combination for pear fruit with predicted values of response variables indicated as weight loss% 3.50, pH 3.41, TSS 11.13 and TA% 0.513.

  1. Milk pH as a function of CO2 concentration, temperature, and pressure in a heat exchanger.

    PubMed

    Ma, Y; Barbano, D M

    2003-12-01

    Raw skim milk, with or without added CO2, was heated, held, and cooled in a small pilot-scale tubular heat exchanger (372 ml/min). The experiment was replicated twice, and, for each replication, milk was first carbonated at 0 to 1 degree C to contain 0 (control), 600, 1200, 1800, and 2400 ppm added CO2 using a continuous carbonation unit. After storage at 0 to 1 degree C, portions of milk at each CO2 concentration were heated to 40, 56, 72, and 80 degrees C, held at the desired temperature for 30 s (except 80 degrees C, holding 20 s) and cooled to 0 to 1 degree C. At each temperature, five pressures were applied: 69, 138, 207, 276, and 345 kPa. Pressure was controlled with a needle valve at the heat exchanger exit. Both the pressure gauge and pH probe were inline at the end of the holding section. Milk pH during heating depended on CO2 concentration, temperature, and pressure. During heating of milk without added CO2, pH decreased linearly as a function of increasing temperature but was independent of pressure. In general, the pH of milk with added CO2 decreased with increasing CO2 concentration and pressure. For milk with added CO2, at a fixed CO2 concentration, the effect of pressure on pH decrease was greater at a higher temperature. At a fixed temperature, the effect of pressure on pH decrease was greater for milk with a higher CO2 concentration. Thermal death of bacteria during pasteurization of milk without added CO2 is probably due not only to temperature but also to the decrease in pH that occurs during the process. Increasing milk CO2 concentration and pressure decreases the milk pH even further during heating and may further enhance the microbial killing power of pasteurization.

  2. Variability in growth/no growth boundaries of 188 different Escherichia coli strains reveals that approximately 75% have a higher growth probability under low pH conditions than E. coli O157:H7 strain ATCC 43888.

    PubMed

    Haberbeck, L U; Oliveira, R C; Vivijs, B; Wenseleers, T; Aertsen, A; Michiels, C; Geeraerd, A H

    2015-02-01

    This study investigated the variation in growth/no growth boundaries of 188 Escherichia coli strains. Experiments were conducted in Luria-Bertani media under 36 combinations of lactic acid (LA) (0 and 25 mM), pH (3.8, 3.9, 4.0, 4.1, 4.2 and 4.3 for 0 mM LA and 4.3, 4.4, 4.5, 4.6, 4.7 and 4.8 for 25 mM LA) and temperature (20, 25 and 30 °C). After 3 days of incubation, growth was monitored through optical density measurements. For each strain, a so-called purposeful selection approach was used to fit a logistic regression model that adequately predicted the likelihood for growth. Further, to assess the growth/no growth variability for all the strains at once, a generalized linear mixed model was fitted to the data. Strain was fitted as a fixed factor and replicate as a random blocking factor. E. coli O157:H7 strain ATCC 43888 was used as reference strain allowing a comparison with the other strains. Out of the 188 strains tested, 140 strains (∼75%) presented a significantly higher probability of growth under low pH conditions than the O157:H7 strain ATCC 43888, whereas 20 strains (∼11%) showed a significantly lower probability of growth under high pH conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Kinetics of p-hydroxybenzoic acid photodecomposition and ozonation in a batch reactor.

    PubMed

    Benitez, F J; Beltran-Heredia, J; Peres, J A; Dominguez, J R

    2000-04-03

    The decomposition of p-hydroxybenzoic acid, an important pollutant present in the wastewaters of the olive oil industry, has been carried out by a direct photolysis provided by a polychromatic UV radiation source, and by ozone. In both processes, the conversions obtained as a function of the operating variables (temperature, pH and ozone partial pressure in the ozonation process) are reported. In order to evaluate the radiation flow rate absorbed by the solutions in the photochemical process, the Line Source Spherical Emission Model is used. The application of this model to the experimental results provides the determination of the reaction quantum yields which values ranged between 8.62 and 81.43 l/einstein. In the ozonation process, the film theory allows to establish that the absorption process takes place in the fast and pseudo-first-order regime and the reaction is overall second-order, first-order with respect to both reactants, ozone and p-hydroxybenzoic acid. The rate constants are evaluated and vary between 0.18x10(5) and 29.9x10(5) l/mol s depending on the temperature and pH.

  4. Optimizing adsorption of fluoride from water by modified banana peel dust using response surface modelling approach

    NASA Astrophysics Data System (ADS)

    Bhaumik, Ria; Mondal, Naba Kumar

    2016-06-01

    The present work highlighted the effective application of banana peel dust (BPD) for removal of fluoride (F-) from aqueous solution. The effects of operating parameters such as pH, initial concentration, adsorbent dose, contact time, agitation speed and temperature were analysed using response surface methodology. The significance of independent variables and their interactions were tested by the analysis of variance and t test statistics. Experimental results revealed that BPD has higher F- adsorption capacity (17.43, 26.31 and 39.5 mg/g). Fluoride adsorption kinetics followed pseudo-second-order model with high correlation of coefficient value (0.998). On the other hand, thermodynamic data suggest that adsorption is favoured at lower temperature, exothermic in nature and enthalpy driven. The adsorbents were characterised through scanning electron microscope, Fourier transform infrared spectroscopy and point of zero charges (pHZPC) ranges from pH 6.2-8.2. Finally, error analysis clearly demonstrates that all three adsorbents are well fitted with Langmuir isotherm compared to the other isotherm models. The reusable properties of the material support further development for commercial application purpose.

  5. Laboratory study on coprecipitation of phosphate with ikaite in sea ice

    NASA Astrophysics Data System (ADS)

    Hu, Yu-Bin; Dieckmann, Gerhard S.; Wolf-Gladrow, Dieter A.; Nehrke, Gernot

    2014-10-01

    Ikaite (CaCO3·6H2O) has recently been discovered in sea ice, providing first direct evidence of CaCO3 precipitation in sea ice. However, the impact of ikaite precipitation on phosphate (PO4) concentration has not been considered so far. Experiments were set up at pH from 8.5 to 10.0, salinities from 0 to 105, temperatures from -4°C to 0°C, and PO4 concentrations from 5 to 50 µmol kg-1 in artificial sea ice brine so as to understand how ikaite precipitation affects the PO4 concentration in sea ice under different conditions. Our results show that PO4 is coprecipitated with ikaite under all experimental conditions. The amount of PO4 removed by ikaite precipitation increases with increasing pH. Changes in salinity (S ≥ 35) as well as temperature have little impact on PO4 removal by ikaite precipitation. The initial PO4 concentration affects the PO4 coprecipitation. These findings may shed some light on the observed variability of PO4 concentration in sea ice.

  6. By-product identification and phytotoxicity of biodegraded Direct Yellow 4 dye.

    PubMed

    Nouren, Shazia; Bhatti, Haq Nawaz; Iqbal, Munawar; Bibi, Ismat; Kamal, Shagufta; Sadaf, Sana; Sultan, Misbah; Kausar, Abida; Safa, Yusra

    2017-02-01

    Citrus limon peroxidase mediated decolourization of Direct Yellow 4 (DY4) was investigated. The process variables (pH, temperature, incubation time, enzyme dose, H 2 O 2 amount, dye concentration, co-metal ions and surfactants) were optimized for maximum degradation of dye. Maximum dye decolourization of 89.47% was achieved at pH 5.0, temperature 50 °C, enzyme dose 24 U/mL, H 2 O 2 concentration 0.25 mM and DY4 concentration 18.75 mg/L and incubation time 10 min. The co-metal ions and surfactants did not affect the dye decolourization significantly. Response surface analysis revealed that predicted values were in agreement with experimentally determined responses. The degradation products were identified by UPLC/MS analysis and degradation pathway was proposed. Besides, phytotoxicity assay revealed a considerable detoxification in response of biodegradation of DY4 dye. C. limon showed promising efficiency for DY4 degradation and could possibly be used for the remediation of textile effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Frontiers in Pulmonary Hypertension in Infants and Children With Bronchopulmonary Dysplasia

    PubMed Central

    Collaco, Joseph M.; Romer, Lewis H.; Stuart, Bridget D.; Coulson, John D.; Everett, Allen D.; Lawson, Edward E.; Brenner, Joel I.; Brown, Anna T.; Nies, Melanie K.; Sekar, Priya; Nogee, Lawrence M.; McGrath-Morrow, Sharon A.

    2014-01-01

    Summary Pulmonary hypertension (PH) is an increasingly recognized complication of premature birth and bronchopulmonary dysplasia (BPD), and is associated with increased morbidity and mortality. Extreme phenotypic variability exists among preterm infants of similar gestational ages, making it difficult to predict which infants are at increased risk for developing PH. Intrauterine growth retardation or drug exposures, postnatal therapy with prolonged positive pressure ventilation, cardiovascular shunts, poor postnatal lung and somatic growth, and genetic or epigenetic factors may all contribute to the development of PH in preterm infants with BPD. In addition to the variability of severity of PH, there is also qualitative variability seen in PH, such as the variable responses to vasoactive medications. To reduce the morbidity and mortality associated with PH, a multi-pronged approach is needed. First, improved screening for and increased recognition of PH may allow for earlier treatment and better clinical outcomes. Second, identification of both prenatal and postnatal risk factors for the development of PH may allow targeting of therapy and resources for those at highest risk. Third, understanding the pathophysiology of the preterm pulmonary vascular bed may help improve outcomes through recognizing pathways that are dysregulated in PH, identifying novel biomarkers, and testing novel treatments. Finally, the recognition of conditions and exposures that may exacerbate or lead to recurrent PH is needed to help with developing treatment guidelines and preventative strategies that can be used to reduce the burden of disease. PMID:22777709

  8. Evaluation of Eurasian Watermilfoil Control Techniques Using Aquatic Herbicides in Fort Peck Lake, Montana

    DTIC Science & Technology

    2015-07-01

    19 Table 3. Temperature , dissolved oxygen , pH, and wind...21 Table 4. Temperature , dissolved oxygen , and pH measured in the study plots following treatment, Fort Peck Lake, MT, 2012...quality, particularly temperature , pH, dissolved oxygen , and nutrient cycling (Prentki et al. 1979; Carpenter and Lodge 1986, Frodge et al. 1990; Boylen

  9. Spatial variability of E. coli in an urban salt-wedge estuary.

    PubMed

    Jovanovic, Dusan; Coleman, Rhys; Deletic, Ana; McCarthy, David

    2017-01-15

    This study investigated the spatial variability of a common faecal indicator organism, Escherichia coli, in an urban salt-wedge estuary in Melbourne, Australia. Data were collected through comprehensive depth profiling in the water column at four sites and included measurements of temperature, salinity, pH, dissolved oxygen, turbidity, and E. coli concentrations. Vertical variability of E. coli was closely related to the salt-wedge dynamics; in the presence of a salt-wedge, there was a significant decrease in E. coli concentrations with depth. Transverse variability was low and was most likely dwarfed by the analytical uncertainties of E. coli measurements. Longitudinal variability was also low, potentially reflecting minimal die-off, settling, and additional inputs entering along the estuary. These results were supported by a simple mixing model that predicted E. coli concentrations based on salinity measurements. Additionally, an assessment of a sentinel monitoring station suggested routine monitoring locations may produce conservative estimates of E. coli concentrations in stratified estuaries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Experimental and Statistical Analysis of MgO Nanofluids for Thermal Enhancement in a Novel Flat Plate Heat Pipes

    NASA Astrophysics Data System (ADS)

    Pandiaraj, P.; Gnanavelbabu, A.; Saravanan, P.

    Metallic fluids like CuO, Al2O3, ZnO, SiO2 and TiO2 nanofluids were widely used for the development of working fluids in flat plate heat pipes except magnesium oxide (MgO). So, we initiate our idea to use MgO nanofluids in flat plate heat pipe as a working fluid material. MgO nanopowders were synthesized by wet chemical method. Solid state characterizations of synthesized nanopowders were carried out by Ultraviolet Spectroscopy (UV), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD) techniques. Synthesized nanopowders were prepared as nanofluids by adding water and as well as water/ethylene glycol as a binary mixture. Thermal conductivity measurements of prepared nanofluids were studied using transient hot-wire apparatus. Response surface methodology based on the Box-Behnken design was implemented to investigate the influence of temperature (30-60∘C), particle fraction (1.5-4.5 vol.%), and solution pH (4-12) of nanofluids as the independent variables. A total of 17 experiments were accomplished for the construction of second-order polynomial equations for target output. All the influential factors, their mutual effects and their quadratic terms were statistically validated by analysis of variance (ANOVA). The optimum stability and thermal conductivity of MgO nanofluids with various temperature, volume fraction and solution pH were predicted and compared with experimental results. The results revealed that increase in particle fraction and pH of MgO nanofluids at certain points would increase thermal conductivity and become stable at nominal temperature.

  11. Earth system responses to cumulative carbon emissions

    NASA Astrophysics Data System (ADS)

    Steinacher, M.; Joos, F.

    2015-07-01

    Information on the relationship between cumulative fossil carbon emissions and multiple climate targets are essential to design emission mitigation and climate adaptation strategies. In this study, the transient responses in different climate variables are quantified for a large set of multi-forcing scenarios extended to year 2300 towards stabilization and in idealized experiments using the Bern3D-LPJ carbon-climate model. The model outcomes are constrained by 26 physical and biogeochemical observational data sets in a Bayesian, Monte-Carlo type framework. Cumulative fossil emissions of 1000 Gt C result in a global mean surface air temperature change of 1.88 °C (68 % confidence interval (c.i.): 1.28 to 2.69 °C), a decrease in surface ocean pH of 0.19 (0.18 to 0.22), and in steric sea level rise of 20 cm (13 to 27 cm until 2300). Linearity between cumulative emissions and transient response is high for pH and reasonably high for surface air and sea surface temperatures, but less pronounced for changes in Atlantic Meridional Overturning, Southern Ocean and tropical surface water saturation with respect to biogenic structures of calcium carbonate, and carbon stocks in soils. The slopes of the relationships change when CO2 is stabilized. The Transient Climate Response is constrained, primarily by long-term ocean heat observations, to 1.7 °C (68 % c.i.: 1.3 to 2.2 °C) and the Equilibrium Climate Sensitivity to 2.9 °C (2.0 to 4.2 °C). This is consistent with results by CMIP5 models, but inconsistent with recent studies that relied on short-term air temperature data affected by natural climate variability.

  12. Comprehensive reuse of drinking water treatment residuals in coagulation and adsorption processes.

    PubMed

    Jung, Kyung-Won; Hwang, Min-Jin; Park, Dae-Seon; Ahn, Kyu-Hong

    2016-10-01

    While drinking water treatment residuals (DWTRs) inevitably lead to serious problems due to their huge amount of generation and limitation of landfill sites, their unique properties of containing Al or Fe contents make it possible to reuse them as a beneficial material for coagulant recovery and adsorbent. Hence, in the present study, to comprehensively handle and recycle DWTRs, coagulant recovery from DWTRs and reuse of coagulant recovered residuals (CRs) were investigated. In the first step, coagulant recovery from DWTRs was conducted using response surface methodology (RSM) for statistical optimization of independent variables (pH, solid content, and reaction time) on response variable (Al recovery). As a result, a highly acceptable Al recovery of 97.5 ± 0.4% was recorded, which corresponds to 99.5% of the predicted Al recovery. Comparison study of recovered and commercial coagulant from textile wastewater treatment indicated that recovered coagulant has reasonable potential for use in wastewater treatment, in which the performance efficiencies were 68.5 ± 2.1% COD, 97.2 ± 1.9% turbidity, and 64.3 ± 1.0% color removals at 50 mg Al/L. Subsequently, in a similar manner, RSM was also applied to optimize coagulation conditions (Al dosage, initial pH, and reaction time) for the maximization of real cotton textile wastewater treatment in terms of COD, turbidity, and color removal. Overall performance revealed that the initial pH had a remarkable effect on the removal performance compared to the effects of other independent variables. This is mainly due to the transformation of metal species form with increasing or decreasing pH conditions. Finally, a feasibility test of CRs as adsorbent for phosphate adsorption from aqueous solution was conducted. Adsorption equilibrium of phosphate at different temperatures (10-30 °C) and initial levels of pH (3-11) indicated that the main mechanisms of phosphate adsorption onto CRs are endothermic and chemical precipitation; the surfaces are energetically heterogeneous for adsorbing phosphate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Ecology and geography of human monkeypox case occurrences across Africa.

    PubMed

    Ellis, Christine K; Carroll, Darin S; Lash, Ryan R; Peterson, A Townsend; Damon, Inger K; Malekani, Jean; Formenty, Pierre

    2012-04-01

    As ecologic niche modeling (ENM) evolves as a tool in spatial epidemiology and public health, selection of the most appropriate and informative environmental data sets becomes increasingly important. Here, we build on a previous ENM analysis of the potential distribution of human monkeypox in Africa by refining georeferencing criteria and using more-diverse environmental data to identify environmental parameters contributing to monkeypox distributional ecology. Significant environmental variables include annual precipitation, several temperature-related variables, primary productivity, evapotranspiration, soil moisture, and pH. The potential distribution identified with this set of variables was broader than that identified in previous analyses but does not include areas recently found to hold monkeypox in southern Sudan. Our results emphasize the importance of selecting the most appropriate and informative environmental data sets for ENM analyses in pathogen transmission mapping.

  14. Understanding the relationships among phytoplankton, benthic macroinvertebrates, and water quality variables in peri-urban river systems.

    PubMed

    Pinto, Uthpala; Maheshwari, Basant L; Morris, E Charles

    2014-12-01

    In this article, using the Hawkesbury-Nepean River as a case study, the spatial and temporal trends of water quality variables over three sampling surveys in a peri-urban situation are examined for their effect on benthic macroinvertebrate communities and phytoplankton communities and whether phytoplankton and benthic macroinvertebrate species can be used as indicators for river health assessment. For this, the authors monitored the spatial and temporal difference of 10 water quality parameters: temperature, turbidity, pH, dissolved oxygen, electrical conductivity, oxidation reduction potential, total nitrogen, total phosphorus, manganese, and suspended solids. The variability in water quality parameters clearly indicated a complex pattern, depending on the season (interaction p = 0.001), which highlighted how the river condition is stressed at multiple points as a result of anthropogenic effects. In particular, the downstream locations indicated an accumulation of nutrients, the presence of increased sediments, and phytoplankton related variables such as total counts, bio-volumes, chlorophyll-a, and total phosphorus. The patterns of phytoplankton communities varied in a complex way depending on the season (interaction p = 0.001). Abundances of phytoplankton were also found in low concentrations where the water column is not severely disturbed by flow and tide. However, when the water clarity drops resulting from tidal cycles, inflows from tributaries, and intense boating activities, the phytoplankton abundances also increased considerably. On the other hand, benthic macroinvertebrates compositions were significantly different between locations (p = 0.001) with increased abundances associated with upstream sites. Aphanocapsa holsatica and chironomid larvae appeared as the important indicators for upstream and downstream site differences in water quality. Water temperature influenced the phytoplankton community pattern (ρ(w) = 0.408), whereas pH influenced the benthic macroinvertebrate community pattern (ρ(w) = 0.437). The findings of this study provide valuable insights into the interactions of water quality parameters on biotic assemblages and to the extent that benthic macroinvertebrates and phytoplankton assemblages are suitable as indicators for monitoring and assessing peri-urban river health.

  15. Benthic metabolic feedbacks to carbonate chemistry on coral reefs:implications for ocean acidification

    NASA Astrophysics Data System (ADS)

    Price, N.; Rohwer, F. L.; Stuart, S. A.; Andersson, A.; Smith, J.

    2012-12-01

    The metabolic activity of resident organisms can cause spatio-temporal variability in carbonate chemistry within the benthic boundary layer, and thus potentially buffer the global impacts of ocean acidification. But, little is known about the capacity for particular species assemblages to contribute to natural daily variability in carbonate chemistry. We encapsulated replicate areas (~3m2) of reef across six Northern Line Islands in the central Pacific for 24 hrs to quantify feedbacks to carbonate chemistry within the benthic boundary layer from community metabolism. Underneath each 'tent', we quantified relative abundance and biomass of each species of corals and algae. We coupled high temporal resolution time series data on the natural diurnal variability in pH, dissolved oxygen, salinity, and temperature (using autonomous sensors) with resident organisms' net community calcification and productivity rates (using change in total dissolved carbon and total alkalinity over time) to examine feedbacks from reef metabolism to boundary layer carbonate chemistry. These reefs experienced large ranges in pH (> 0.2 amplitude) each day, similar to the magnitude of 'acidification' expected over the next century. Daily benthic pH, pCO2, and aragonite saturation state (Ωaragonite) were contrasted with seasonal threshold values estimated from open ocean climatological data extrapolated at each island to determine relative inter-island feedbacks. Diurnal amplitude in pH, pCO2, and Ωaragonite at each island was dependent upon the resident species assemblage of the benthos and was particularly reliant upon the biomass, productivity, and calcification rate of Halimeda. Net primary productivity of fleshy algae (algal turfs and Lobophora spp.) predominated on degraded, inhabited islands where net community calcification was negligible. In contrast, the chemistry over reefs on 'pristine', uninhabited islands was driven largely by net calcification of calcareous algae and stony corals. Knowledge about species specific physiological rates and relative abundances of key taxa whose metabolism significantly alters carbonate chemistry may give insight to the ability for a reef to buffer against or exacerbate ocean acidification.

  16. Temperature influences neuronal activity and CO2/pH sensitivity of locus coeruleus neurons in the bullfrog, Lithobates catesbeianus.

    PubMed

    Santin, Joseph M; Watters, Kayla C; Putnam, Robert W; Hartzler, Lynn K

    2013-12-15

    The locus coeruleus (LC) is a chemoreceptive brain stem region in anuran amphibians and contains neurons sensitive to physiological changes in CO2/pH. The ventilatory and central sensitivity to CO2/pH is proportional to the temperature in amphibians, i.e., sensitivity increases with increasing temperature. We hypothesized that LC neurons from bullfrogs, Lithobates catesbeianus, would increase CO2/pH sensitivity with increasing temperature and decrease CO2/pH sensitivity with decreasing temperature. Further, we hypothesized that cooling would decrease, while warming would increase, normocapnic firing rates of LC neurons. To test these hypotheses, we used whole cell patch-clamp electrophysiology to measure firing rate, membrane potential (V(m)), and input resistance (R(in)) in LC neurons in brain stem slices from adult bullfrogs over a physiological range of temperatures during normocapnia and hypercapnia. We found that cooling reduced chemosensitive responses of LC neurons as temperature decreased until elimination of CO2/pH sensitivity at 10°C. Chemosensitive responses increased at elevated temperatures. Surprisingly, chemosensitive LC neurons increased normocapnic firing rate and underwent membrane depolarization when cooled and decreased normocapnic firing rate and underwent membrane hyperpolarization when warmed. These responses to temperature were not observed in nonchemosensitive LC neurons or neurons in a brain stem slice 500 μm rostral to the LC. Our results indicate that modulation of cellular chemosensitivity within the LC during temperature changes may influence temperature-dependent respiratory drive during acid-base disturbances in amphibians. Additionally, cold-activated/warm-inhibited LC neurons introduce paradoxical temperature sensitivity in respiratory control neurons of amphibians.

  17. Temperature sensitivity of organic substrate decay varies with pH

    NASA Astrophysics Data System (ADS)

    Min, K.; Lehmeier, C.; Ballantyne, F.; Billings, S. A.

    2012-12-01

    Cellulose is the most abundant biopolymer in soils and globally ubiquitous. It serves as a primary carbon source for myriad microbes able to release cellulases which cleave the cellulose into smaller molecules. For example, β-glucosidase, one type of cellulase, breaks down a terminal β-glycosidic bond of cellulose. The carbon of the liberated glucose becomes available for microbial uptake, after which it can then be mineralized and returned to the atmosphere via heterotrophic respiration. Thus, exoenzymes play an important role in the global cycling of carbon. Numerous studies suggest that global warming potentially increases the rate at which β-glucosidase breaks down cellulose, but it is not known how pH of the soil solution influences the effect of temperature on cellulose decomposition rates; this is important given the globally wide range of soil pH. Using fluorescence enzyme assay techniques, we studied the effect of temperature and pH on the reaction rate at which purified β-Glucosidase decays β-D-cellobioside (a compound often employed to simulate cellulose). We evaluated the temperature sensitivity of this reaction at five temperatures (5, 10, 15, 20, and 25°C) and six pH values (3.5, 4.5, 5.5, 6.5, 7.5, and 8.5)encompassing the naturally occurring range in soils, in a full-factorial design. First, we determined Vmax at 25°C and pH 6.5, standard conditions for measuring enzyme activities in many studies. The Vmax was 858.65 μmol h-1mg-1and was achieved at substrate concentration of 270 μM. At all pH values, the reaction rate slowed down at lower temperatures; at a pH of 3.5, no enzymatic activity was detected. The enzyme activity was significantly different between pH 4.5 and higher pHs. For example, enzyme reactivity at pH 4.5 was significantly lower than that at 7.5 at 20 and 25°C (Bonferroni-corrected P =0.0006, 0.0004, respectively), but not at lower temperatures. Similarly, enzyme reactivity at pH 4.5 was lower than that at pH 8.5 at 10, 15, and 25°C (P=0.0009, 0.0007, 0.0005, respectively), with a near-significant trend at 20°C (P=0.0023), and exhibited a nearly significant depression in response to temperature at 25°C compared to that at pH 6.5 (P=0.0015). Our results suggest that exoenzymatic cellulose decomposition with warming may be more enhanced in soil systems exhibiting higher pH. This work highlights the importance of soil solution pH as a driver of temperature sensitivity of substrate decay, and adds a level of complexity for developing accurate predictions of soil carbon cycling with climate change.

  18. Time-related Changes in pH, Buffering Capacity and Phosphate and Urea Concentration of Stimulated Saliva.

    PubMed

    Vuletic, Lea; Peros, Kristina; Spalj, Stjepan; Rogic, Dunja; Alajbeg, Ivan

    2014-01-01

    To quantify changes in pH, buffering capacity and hydrogen carbonate, phosphate, protein and urea concentrations of stimulated saliva which occur during a 30-min measurement delay after saliva collection. The correlation between time-related chemical changes and changes of salivary pH and buffering capacity was assessed in order to explain the observed changes in salivary pH and buffering capacity. Stimulated saliva samples were collected from 30 volunteers after inducing salivation by chewing a piece of parafilm. Measurements of salivary variables were made immediately after saliva collection and again 30 min later, during which time the specimens were exposed to the atmosphere in collection cups at room temperature. Postponement of measurements resulted in a significant increase in pH and a significant decrease of buffering capacity, phosphate and urea concentration. The results suggest that the time-related pH increase could primarily be attributed to loss of dissolved carbon dioxide from saliva, and confirm the importance of hydrogen carbonate in the neutralisation of hydrogen ions, but they do not support the principle of catalysed phase-buffering for the hydrogen carbonate buffer system in saliva. A decrease in phosphate and urea concentration affects salivary buffering capacity. This study emphasises the importance of the standardisation of measurement time when measuring salivary pH, buffering capacity, phosphate and urea concentrations following the collection of saliva in order to obtain comparable results. It also provides a partial explanation of the mechanisms underlying the observed changes of pH and buffering capacity over time.

  19. Size matters: plasticity in metabolic scaling shows body-size may modulate responses to climate change.

    PubMed

    Carey, Nicholas; Sigwart, Julia D

    2014-08-01

    Variability in metabolic scaling in animals, the relationship between metabolic rate ( R: ) and body mass ( M: ), has been a source of debate and controversy for decades. R: is proportional to MB: , the precise value of B: much debated, but historically considered equal in all organisms. Recent metabolic theory, however, predicts B: to vary among species with ecology and metabolic level, and may also vary within species under different abiotic conditions. Under climate change, most species will experience increased temperatures, and marine organisms will experience the additional stressor of decreased seawater pH ('ocean acidification'). Responses to these environmental changes are modulated by myriad species-specific factors. Body-size is a fundamental biological parameter, but its modulating role is relatively unexplored. Here, we show that changes to metabolic scaling reveal asymmetric responses to stressors across body-size ranges; B: is systematically decreased under increasing temperature in three grazing molluscs, indicating smaller individuals were more responsive to warming. Larger individuals were, however, more responsive to reduced seawater pH in low temperatures. These alterations to the allometry of metabolism highlight abiotic control of metabolic scaling, and indicate that responses to climate warming and ocean acidification may be modulated by body-size. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  20. Optimization of probiotic and lactic acid production by Lactobacillus plantarum in submerged bioreactor systems.

    PubMed

    Brinques, Graziela Brusch; do Carmo Peralba, Maria; Ayub, Marco Antônio Záchia

    2010-02-01

    Biomass and lactic acid production by a Lactobacillus plantarum strain isolated from Serrano cheese, a microorganism traditionally used in foods and recognized as a potent probiotic, was optimized. Optimization procedures were carried out in submerged batch bioreactors using cheese whey as the main carbon source. Sequential experimental Plackett-Burman designs followed by central composite design (CCD) were used to assess the influence of temperature, pH, stirring, aeration rate, and concentrations of lactose, peptone, and yeast extract on biomass and lactic acid production. Results showed that temperature, pH, aeration rate, lactose, and peptone were the most influential variables for biomass formation. Under optimized conditions, the CCD for temperature and aeration rate showed that the model predicted maximal biomass production of 14.30 g l(-1) (dw) of L. plantarum. At the central point of the CCD, a biomass of 10.2 g l(-1) (dw), with conversion rates of 0.10 g of cell g(-1) lactose and 1.08 g lactic acid g(-1) lactose (w/w), was obtained. These results provide useful information about the optimal cultivation conditions for growing L. plantarum in batch bioreactors in order to boost biomass to be used as industrial probiotic and to obtain high yields of conversion of lactose to lactic acid.

  1. The TAED/H2O2/NaHCO3 system as an approach to low-temperature and near-neutral pH bleaching of cotton.

    PubMed

    Long, Xiaoxia; Xu, Changhai; Du, Jinmei; Fu, Shaohai

    2013-06-05

    A low-temperature and near-neutral pH bleaching system was conceived for cotton by incorporating TAED, H2O2 and NaHCO3. The TAED/H2O2/NaHCO3 system was investigated and optimized for bleaching of cotton using a central composite design (CCD) combined with response surface methodology (RSM). CCD experimental data were fitted to create a response surface quadratic model (RSQM) describing the degree of whiteness of bleached cotton fabric. Analysis of variance for the RSQM revealed that temperature was the most significant variable, followed by [TAED] and time, while [NaHCO3] was insignificant. An effective system was conducted by adding 5.75 g L(-1) TAED together with H2O2 and NaHCO3 at a molar ratio of 1:2.4:2.8 and applied to bleaching of cotton at 70 °C for 40 min. Compared to a commercial bleaching method, the TAED/H2O2/NaHCO3 system provided cotton with comparable degree of whiteness, slightly inferior water absorbency and acceptable dyeability, but had competitive advantage in protecting cotton from severe chemical damage in bleaching. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Water Quality Conditions in Upper Klamath and Agency Lakes, Oregon, 2005

    USGS Publications Warehouse

    Hoilman, Gene R.; Lindenberg, Mary K.; Wood, Tamara M.

    2008-01-01

    During June-October 2005, water quality data were collected from Upper Klamath and Agency Lakes in Oregon, and meteorological data were collected around and within Upper Klamath Lake. Data recorded at two continuous water quality monitors in Agency Lake showed similar temperature patterns throughout the field season, but data recorded at the northern site showed more day-to-day variability for dissolved oxygen concentration and saturation after late June and more day-to-day variability for pH and specific conductance values after mid-July. Data recorded from the northern and southern parts of Agency Lake showed more comparable day-to-day variability in dissolved oxygen concentrations and pH from September through the end of the monitoring period. For Upper Klamath Lake, seasonal (late July through early August) lows of dissolved oxygen concentrations and saturation were coincident with a seasonal low of pH values and seasonal highs of ammonia and orthophosphate concentrations, specific conductance values, and water temperatures. Patterns in these parameters, excluding water temperature, were associated with bloom dynamics of the cyanobacterium (blue-green alga) Aphanizomenon flos-aquae in Upper Klamath Lake. In Upper Klamath Lake, water temperature in excess of 28 degrees Celsius (a high stress threshold for Upper Klamath Lake suckers) was recorded only once at one site during the field season. Large areas of Upper Klamath Lake had periods of dissolved oxygen concentration of less than 4 milligrams per liter and pH value greater than 9.7, but these conditions were not persistent throughout days at most sites. Dissolved oxygen concentrations in Upper Klamath Lake on time scales of days and months appeared to be influenced, in part, by bathymetry and prevailing current flow patterns. Diel patterns of water column stratification were evident, even at the deepest sites. This diel pattern of stratification was attributable to diel wind speed patterns and the shallow nature of most of Upper Klamath Lake. Timing of the daily extreme values of dissolved oxygen concentration, pH, and water temperature was less distinct with increased water column depth. Chlorophyll a concentrations varied spatially and temporally throughout Upper Klamath Lake. Location greatly affected algal concentrations, in turn affecting nutrient and dissolved oxygen concentrations - some of the highest chlorophyll a concentrations were associated with the lowest dissolved oxygen concentrations and the highest un-ionized ammonia concentrations. The occurrence of the low dissolved oxygen and high un-ionized ammonia concentrations coincided with a decline in algae resulting from cell death, as measured by concentrations of chlorophyll a. Dissolved oxygen production rates in experiments were as high as 1.47 milligrams of oxygen per liter per hour, and consumption rates were as much as -0.73 milligrams of oxygen per liter per hour. Dissolved oxygen consumption rates measured in this study were comparable to those measured in a 2002 Upper Klamath Lake study, and a higher rate of dissolved oxygen consumption was recorded in dark bottles positioned higher in the water column. Data, though inconclusive, indicated that a decreasing trend of dissolved oxygen productivity through July could have contributed to the decreasing dissolved oxygen concentrations and percent saturation recorded in Upper Klamath Lake during this time. Phytoplankton self-shading was evident from a general inverse relation between depth of photic zone and chlorophyll a concentrations. This shading caused net dissolved oxygen consumption during daylight hours in lower parts of the water column that would otherwise have been in the photic zone. Meteorological data collected in and around Upper Klamath Lake showed that winds were likely to come from a broad range of westerly directions in the northern one-third of the lake, but tended to come from a narrow range of northwesterly directions

  3. Production, purification, and characterization of lipase from thermophilic and alkaliphilic Bacillus coagulans BTS-3.

    PubMed

    Kumar, Satyendra; Kikon, Khyodano; Upadhyay, Ashutosh; Kanwar, Shamsher S; Gupta, Reena

    2005-05-01

    A thermophilic isolate Bacillus coagulans BTS-3 produced an extracellular alkaline lipase, the production of which was substantially enhanced when the type of carbon source, nitrogen source, and the initial pH of culture medium were consecutively optimized. Lipase activity 1.16 U/ml of culture medium was obtained in 48 h at 55 degrees C and pH 8.5 with refined mustard oil as carbon source and a combination of peptone and yeast extract (1:1) as nitrogen sources. The enzyme was purified 40-fold to homogeneity by ammonium sulfate precipitation and DEAE-Sepharose column chromatography. Its molecular weight was 31 kDa on SDS-PAGE. The enzyme showed maximum activity at 55 degrees C and pH 8.5, and was stable between pH 8.0 and 10.5 and at temperatures up to 70 degrees C. The enzyme was found to be inhibited by Al3+, Co2+, Mn2+, and Zn2+ ions while K+, Fe3+, Hg2+, and Mg2+ ions enhanced the enzyme activity; Na+ ions have no effect on enzyme activity. The purified lipase showed a variable specificity/hydrolytic activity towards various 4-nitrophenyl esters.

  4. Comparison of COD removal from pharmaceutical wastewater by electrocoagulation, photoelectrocoagulation, peroxi-electrocoagulation and peroxi-photoelectrocoagulation processes.

    PubMed

    Farhadi, Sajjad; Aminzadeh, Behnoush; Torabian, Ali; Khatibikamal, Vahid; Alizadeh Fard, Mohammad

    2012-06-15

    This work makes a comparison between electrocoagulation (EC), photoelectrocoagulation, peroxi-electrocoagulation and peroxi-photoelectrocoagulation processes to investigate the removal of chemical oxygen demand (COD) from pharmaceutical wastewater. The effects of operational parameters such as initial pH, current density, applied voltage, amount of hydrogen peroxide and electrolysis time on COD removal efficiency were investigated and the optimum operating range for each of these operating variables was experimentally determined. In electrocoagulation process, the optimum values of pH and voltage were determined to be 7 and 40 V, respectively. Desired pH and hydrogen peroxide concentration in the Fenton-based processes were found to be 3 and 300 mg/L, respectively. The amounts of COD, pH, electrical conductivity, temperature and total dissolved solids (TDS) were on-line monitored. Results indicated that under the optimum operating range for each process, the COD removal efficiency was in order of peroxi-electrocoagulation > peroxi-photoelectrocoagulation > photoelectrocoagulation>electrocoagulation. Finally, a kinetic study was carried out using the linear pseudo-second-order model and results showed that the pseudo-second-order equation provided the best correlation for the COD removal rate. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Key-Generation Algorithms for Linear Piece In Hand Matrix Method

    NASA Astrophysics Data System (ADS)

    Tadaki, Kohtaro; Tsujii, Shigeo

    The linear Piece In Hand (PH, for short) matrix method with random variables was proposed in our former work. It is a general prescription which can be applicable to any type of multivariate public-key cryptosystems for the purpose of enhancing their security. Actually, we showed, in an experimental manner, that the linear PH matrix method with random variables can certainly enhance the security of HFE against the Gröbner basis attack, where HFE is one of the major variants of multivariate public-key cryptosystems. In 1998 Patarin, Goubin, and Courtois introduced the plus method as a general prescription which aims to enhance the security of any given MPKC, just like the linear PH matrix method with random variables. In this paper we prove the equivalence between the plus method and the primitive linear PH matrix method, which is introduced by our previous work to explain the notion of the PH matrix method in general in an illustrative manner and not for a practical use to enhance the security of any given MPKC. Based on this equivalence, we show that the linear PH matrix method with random variables has the substantial advantage over the plus method with respect to the security enhancement. In the linear PH matrix method with random variables, the three matrices, including the PH matrix, play a central role in the secret-key and public-key. In this paper, we clarify how to generate these matrices and thus present two probabilistic polynomial-time algorithms to generate these matrices. In particular, the second one has a concise form, and is obtained as a byproduct of the proof of the equivalence between the plus method and the primitive linear PH matrix method.

  6. Combined effects of ocean acidification and temperature on planula larvae of the moon jellyfish Aurelia coerulea.

    PubMed

    Dong, Zhijun; Sun, Tingting

    2018-08-01

    Rapidly rising levels of atmospheric CO 2 have caused two environmental stressors, ocean acidification and seawater temperature increases, which represent major abiotic threats to marine organisms. Here, we investigated for the first time the combined effects of ocean acidification and seawater temperature increases on the behavior, survival, and settlement of the planula larvae of Aurelia coerulea, which is considered a nuisance species around the world. Three pH levels (8.1, 7.7 and 7.3) and two temperature levels (24 °C and 27 °C) were used in the present study. There were no interactive effects of temperature and pH on the behavior, survival, and settlement of planula larvae of A. coerulea. We found that the swimming speed and mortality of the planula larvae of A. coerulea were significantly affected by temperature, and low pH significantly affected settlement. Planula larvae of A. coerulea from the elevated temperature treatment moved faster and showed higher mortality than those at the control temperature. The settlement rate of A. coerulea planulae was significantly higher at the pH level of 7.3 than at other pH levels. These results suggest that seawater temperature increase, rather than reduced pH, was the main stress factor affecting the survival of A. coerulea planulae. Overall, the planula larvae of the common jellyfish A. coerulea appeared to be resistant to ocean acidification, but may be negatively affected by future seawater temperature increases. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. How pH, Temperature, and Time of Incubation Affect False-Positive Responses and Uncertainty of the LAL Gel-Clot Test.

    PubMed

    Lourenço, Felipe Rebello; Botelho, Túlia De Souza; Pinto, Terezinha De Jesus Andreoli

    2012-01-01

    The limulus amebocyte lysate (LAL) test is the simplest and most widely used procedure for detection of endotoxin in parenteral drugs. The LAL test demands optimal pH, ionic strength, temperature, and time of incubation. Slight changes in these parameters may increase the frequency of false-positive responses and the estimated uncertainty of the LAL test. The aim of this paper is to evaluate how changes in the pH, temperature, and time of incubation affect the occurrence of false-positive responses in the LAL test. LAL tests were performed in nominal conditions (37 °C, 60 min, and pH 7) and in different conditions of temperature (36 °C and 38 °C), time of incubation (58 and 62 min), and pH (6 and 8). Slight differences in pH increase the frequency of false-positive responses 5-fold (relative risk 5.0), resulting in an estimated of uncertainty 7.6%. Temperature and time of incubation affect the LAL test less, showing relative risks of 1.5 and 1.0, respectively. Estimated uncertainties in 36 °C or 38 °C temperatures and 58 or 62 min of incubation were found to be 2.0% and 1.0%, respectively. Simultaneous differences in these parameters significantly increase the frequency of false-positive responses. The limulus amebocyte lysate (LAL) gel-clot test is a simple test for detection of endotoxin from Gram-negative bacteria. The test is based on a gel formation when a certain amount of endotoxin is present; it is a pass/fail test. The LAL test requires optimal pH, ionic strength, temperature, and time of incubation. Slight difference in these parameters may increase the frequency of false-positive responses. The aim of this paper is to evaluate how changes in the pH, temperature, and time of incubation affect the occurrence of false-positive responses in the LAL test. We find that slight differences in pH increase the frequency of false-positive responses 5-fold. Temperature and time of incubation affect the LAL test less. Simultaneous differences in these parameters significantly increase the frequency of false-positive responses.

  8. Effects of niacin supplementation and dietary concentrate proportion on body temperature, ruminal pH and milk performance of primiparous dairy cows.

    PubMed

    Lohölter, Malte; Meyer, Ulrich; Rauls, Caroline; Rehage, Jürgen; Dänicke, Sven

    2013-06-01

    The objective of this study was to investigate the effects of niacin and dietary concentrate proportion on body temperature, ruminal pH and milk production of dairy cows. In a 2 × 2 factorial design, 20 primiparous Holstein cows (179 ± 12 days in milk) were assigned to four dietary treatments aimed to receive either 0 or 24 g niacin and 30% (low) or 60% (high) concentrate with the rest being a partial mixed ration (PMR) composed of 60% corn and 40% grass silage (on dry matter basis). Ambient temperature and relative humidity were determined and combined by the calculation of temperature humidity index. Respiration rates, rectal, skin and subcutaneous temperatures were measured. Milk production and composition were determined. Ruminal pH and temperature were recorded at a frequency of 5 min using wireless devices for continuous intra-ruminal measurement (boluses). pH values were corrected for pH sensor drift. The climatic conditions varied considerably but temporarily indicated mild heat stress. Niacin did not affect skin, rectal and subcutaneous temperatures but tended to increase respiration rates. High concentrate reduced skin temperatures at rump, thigh and neck by 0.1-0.3°C. Due to the technical disturbances, not all bolus data could be subjected to statistical evaluation. However, both niacin and high concentrate influenced mean ruminal pH. High concentrate increased the time spent with a pH below 5.6 and ruminal temperatures (0.2-0.3°C). Niacin and high concentrate enhanced milk, protein and lactose yield but reduced milk fat and protein content. Milk fat yield was slightly reduced by high concentrate but increased due to niacin supplementation. In conclusion, niacin did not affect body temperature but stimulated milk performance. High concentrate partially influenced body temperatures and had beneficial effects on milk production.

  9. Optimization of monomethoxy polyethyleneglycol-modified oxalate decarboxylase by response surface methodology.

    PubMed

    Long, Han; Cai, XingHua; Yang, Hui; He, JunBin; Wu, Jia; Lin, RiHui

    2017-09-01

    In order to improve the stability of oxalate decarboxylase (Oxdc), response surface methodology (RSM), based on a four-factor three-level Box-Behnken central composite design was used to optimize the reaction conditions of oxalate decarboxylase (Oxdc) modified with monomethoxy polyethyleneglycol (mPEG5000). Four independent variables such as the ratio of mPEG-aldehyde to Oxdc, reaction time, temperature, and reaction pH were investigated in this work. The structure of modified Oxdc was identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Fourier transform infrared (FTIR) spectroscopy, the stability of the modified Oxdc was also investigated. The optimal conditions were as follows: the mole ratio of mPEG-aldehyde to Oxdc of 1:47.6, time of 13.1 h, temperature at 29.9 °C, and the reaction pH of 5.3. Under optimal conditions, experimental modified rate (MR = 73.69%) and recovery rate (RR = 67.58%) were matched well with the predicted value (MR = 75.11%) and (RR = 69.17%). SDS-PAGE and FTIR analysis showed that mPEG was covalently bound to the Oxdc. Compared with native Oxdc, the modified Oxdc (mPEG-Oxdc) showed higher thermal stability and better tolerance to trypsin or different pH treatment. This work will provide a further theoretical reference for enzyme modification and conditional optimization.

  10. Optimization of polyhydroxybutyrate production utilizing waste water as nutrient source by Botryococcus braunii Kütz using response surface methodology.

    PubMed

    Kavitha, Ganapathy; Kurinjimalar, Chidambaram; Sivakumar, Krishnan; Kaarthik, Muthukumar; Aravind, Rajamani; Palani, Perumal; Rengasamy, Ramasamy

    2016-12-01

    Investigations have been made to optimize various factors including pH, temperature, and substrate for enhanced polyhydroxybutyrate (PHB) production in Botryococcus braunii which serves as a pioneer for production of bioplastic (PHB). Polyhydroxybutyrate is a natural, decomposable polymers accumulated by the microorganism under different nutritional condition. Strain selection was done by staining method using Sudan black and Nile red dye. Using response surface methodology (RSM), three level- three variables Box Behnken design (BBD), the best potential combination of pH (4-11), temperature (30-50°C) and sewage waste water as substrate fed at different concentrations at 20%-100% for maximum PHB production was investigated. Maximum yield (247±0.42mg/L) of PHB dry weight was achieved from the 60% concentration of sewage waste water as a growth medium at pH 7.5 at 40°C. It was well in close agreement with the value predicted by RSM model yield (246± 0.32mg/L). Thus the study shows the production of PHB by B. braunii along with the basic characterization of PHB by using FTIR and TEM analysis. These preliminary studies indicated that PHB can also be produced by B. braunii utilizing waste water. There is no report on the optimization of PHB production in this microalgae have been documented. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Bromeliad Selection by Two Salamander Species in a Harsh Environment

    PubMed Central

    Ruano-Fajardo, Gustavo; Rovito, Sean M.; Ladle, Richard J.

    2014-01-01

    Bromeliad phytotelmata are frequently used by several Neotropical amphibian taxa, possibly due to their high humidity, microclimatic stability, and role as a refuge from predators. Indeed, the ability of phytotelmata to buffer against adverse environmental conditions may be instrumental in allowing some amphibian species to survive during periods of environmental change or to colonize sub-optimal habitats. Association between bromeliad traits and salamanders has not been studied at a fine scale, despite the intimate association of many salamander species with bromeliads. Here, we identify microhabitat characteristics of epiphytic bromeliads used by two species of the Bolitoglossa morio group (B. morio and B. pacaya) in forest disturbed by volcanic activity in Guatemala. Specifically, we measured multiple variables for bromeliads (height and position in tree, phytotelma water temperature and pH, canopy cover, phytotelma size, leaf size, and tree diameter at breast height), as well as salamander size. We employed a DNA barcoding approach to identify salamanders. We found that B. morio and B. pacaya occurred in microsympatry in bromeliads and that phytotelmata size and temperature of bromeliad microhabitat were the most important factors associated with the presence of salamanders. Moreover, phytotelmata with higher pH contained larger salamanders, suggesting that larger salamanders or aggregated individuals might modify pH. These results show that bromeliad selection is nonrandom with respect to microhabitat characteristics, and provide insight into the relationship between salamanders and this unique arboreal environment. PMID:24892414

  12. Conversion of rice husk into fermentable sugar by two stage hydrolysis

    NASA Astrophysics Data System (ADS)

    Salimi, M. N.; Lim, S. E.; Yusoff, A. H. M.; Jamlos, M. F.

    2017-10-01

    Rice husks, a complex lignocellulosic biomass which comprised of high cellulose content (38-50%), hemicellulose (23-32%) and lignin (15-25%) possesses the potential to pursue as low cost feedstock for production of ethanol. Dilute sulfuric acid at concentration of 1, 2, 3 (%, v/v) were used for pretreatments at varied hydrolysis time (15-60 min) and enzymatic saccharification at range of 45-60˚C and pH 4.5-6.0 were evaluated for conversion of rice husk’s cellulose and hemicellulose to fermentable sugars. The maximum yield of fermentable sugars from rice husks by dilute sulfuric acid (2%, 60 minutes) was 0.0751 g/l. Total fermentable sugar was identified using dinitrosalicylic acid (DNS) method and expressed in g/l. Enzymatic hydrolysis for conversion of cellulose to fermentable sugar has been studied by applying response surface methodology (RSM) and Analysis of Variance (ANOVA). Two independent variables namely initial pH and incubation temperature were considered using Central Composite Design (CCD). The determination coefficient, R2 obtained was 0.9848. This indicates that 98.48% capriciousness in the respond could be clarified by the ANOVA. Based on the data shown by Design Expert software, the optimum condition for total sugar production was at pH 6.0 and temperature 45˚C as it produced 0.5086 g/l of total sugar.

  13. Sporulation boundaries and spore formation kinetics of Bacillus spp. as a function of temperature, pH and a(w).

    PubMed

    Baril, Eugénie; Coroller, Louis; Couvert, Olivier; El Jabri, Mohammed; Leguerinel, Ivan; Postollec, Florence; Boulais, Christophe; Carlin, Frédéric; Mafart, Pierre

    2012-10-01

    Sporulation niches in the food chain are considered as a source of hazard and are not clearly identified. Determining the sporulation environmental boundaries could contribute to identify potential sporulation niches. Spore formation was determined in a Sporulation Mineral Buffer. The effect of incubation temperature, pH and water activity on time to one spore per mL, maximum sporulation rate and final spore concentration was investigated for a Bacillus weihenstephanensis and a Bacillus licheniformis strain. Sporulation boundaries of B. weihenstephanensis and of B. licheniformis were similar to, or included within, the range of temperatures, pH and water activities supporting growth. For instance, sporulation boundaries of B. weihenstephanensis were evaluated at 5°C, 35°C, pH 5.2 and a(w) 0.960 while growth boundaries were observed at 5°C, 37°C, pH 4.9 and a(w) 0.950. Optimum spore formation was determined at 30°C pH 7.2 for B. weihenstephanensis and at 45°C pH 7.2 for B. licheniformis. Lower temperatures and pH delayed the sporulation process. For instance, the time to one spore per mL was tenfold longer when sporulation occurred at 10°C and 20°C, for each strain respectively, than at optimum sporulation temperature. The relative effect of temperature and pH on sporulation rates and on growth rates is similar. This work suggests that the influence of environmental factors on the quantitative changes in sporulation boundaries and rates was similar to their influence on changes in growth rate. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Optimization of papain hydrolysis conditions for release of glycosaminoglycans from the chicken keel cartilage

    NASA Astrophysics Data System (ADS)

    Le Vien, Nguyen Thi; Nguyen, Pham Bao; Cuong, Lam Duc; An, Trinh Thi Thua; Dao, Dong Thi Anh

    2017-09-01

    Glycosaminoglycans (GAGs) are natural biocompounds which join to construct cartilage tissuses, it can be extracted from cartilage of sharks, pigs, cows, chickens, etc. GAGs contain a Chondroitin sulfate (CS) content which is a supplement of functional food used for preventing and supporting treatment of arthritis and eye diseases. Therefore, the GAGs extraction from byproducts of the industry of cattle and poultry slaughter to identify the CS content by papain enzyme is necessary. In this study, the optimal hydrolysis conditions were obtained by response surface methodology (RSM). The independent variables were coded as: pH (x1), enzyme concentration (x2), incubation temperature (x3) and hydrolysis time (x4). The results of the analysis of variance (ANOVA) shown that the variables actively affected GAGs content. The optimal conditions of hydrolysis were derived at pH of 7.1, ratio of enzyme per substances of 0.62% w/wpo, temperature of 65°C and hydrolysis time of 230 minutes, GAGs content reached 14.3% of the dry matter of raw material. Analyzes by HPLC revealed that 56.17% of the dry preparations of GAGs were CS compound, were equivalent to 8.11% of the dry matter of chicken keel cartilage. Molecular weight of the dry preparations GAGs was 259.6 kDa. The dry preparations included the contents of moisture 12.2%, protein 8.42%, lipid 0%, ash 10.03% and extracted GAGs 69.35%.

  15. Nickel (II) Preconcentration and Speciation Analysis During Transport from Aqueous Solutions Using a Hollow-fiber Permeation Liquid Membrane (HFPLM) Device.

    PubMed

    Bautista-Flores, Ana Nelly; De San Miguel, Eduardo Rodríguez; Gyves, Josefina de; Jönsson, Jan Åke

    2011-08-18

    Nickel (II) preconcentration and speciation analysis using a hollow fiber supported liquid membrane (HFSLM) device was studied. A counterflow of protons coupled to complexation with formate provided the driving force of the process, while Kelex 100 was employed as carrier. The influence of variables related to module configuration (acceptor pH and carrier concentration) and to the sample properties (donor pH) on the preconcentration factor, E, was simultaneously studied and optimized using a 3 factor Doehlert matrix response surface methodology. The effect of metal concentration was studied as well. Preconcentration factors as high as 4240 were observed  depending on the values of the different variables. The effects of the presence of inorganic anions (NO2-, SO42-, Cl-, NO3-, CO32-, CN-) and dissolved organic matter (DOM) in the form of humic acids were additionally considered in order to carry out a speciation analysis study. Nickel preconcentration was observed to be independent of both effects, except when cyanide was present in the donor phase. A characterization of the transport regime was performed through the analysis of the dependence of E on the temperature. E increases with the increase in temperature according to the equation E(K) = -8617.3 + 30.5T with an activation energy of 56.7 kJ mol-1 suggesting a kinetic-controlled regime. Sample depletion ranged from 12 to 1.2% depending on the volume of the donor phase (100 to 1000 mL, respectively).

  16. Microbial community diversity patterns are related to physical and chemical differences among temperate lakes near Beaver Island, MI

    PubMed Central

    Hengy, Miranda H.; Horton, Dean J.; Uzarski, Donald G.

    2017-01-01

    Lakes are dynamic and complex ecosystems that can be influenced by physical, chemical, and biological processes. Additionally, individual lakes are often chemically and physically distinct, even within the same geographic region. Here we show that differences in physicochemical conditions among freshwater lakes located on (and around) the same island, as well as within the water column of each lake, are significantly related to aquatic microbial community diversity. Water samples were collected over time from the surface and bottom-water within four freshwater lakes located around Beaver Island, MI within the Laurentian Great Lakes region. Three of the sampled lakes experienced seasonal lake mixing events, impacting either O2, pH, temperature, or a combination of the three. Microbial community alpha and beta diversity were assessed and individual microbial taxa were identified via high-throughput sequencing of the 16S rRNA gene. Results demonstrated that physical and chemical variability (temperature, dissolved oxygen, and pH) were significantly related to divergence in the beta diversity of surface and bottom-water microbial communities. Despite its correlation to microbial community structure in unconstrained analyses, constrained analyses demonstrated that dissolved organic carbon (DOC) concentration was not strongly related to microbial community structure among or within lakes. Additionally, several taxa were correlated (either positively or negatively) to environmental variables, which could be related to aerobic and anaerobic metabolisms. This study highlights the measurable relationships between environmental conditions and microbial communities within freshwater temperate lakes around the same island. PMID:29062609

  17. Portable system for temperature monitoring in all phases of wine production.

    PubMed

    Boquete, Luciano; Cambralla, Rafael; Rodríguez-Ascariz, J M; Miguel-Jiménez, J M; Cantos-Frontela, J J; Dongil, J

    2010-07-01

    This paper presents a low-cost and highly versatile temperature-monitoring system applicable to all phases of wine production, from grape cultivation through to delivery of bottled wine to the end customer. Monitoring is performed by a purpose-built electronic system comprising a digital memory that stores temperature data and a ZigBee communication system that transmits it to a Control Centre for processing and display. The system has been tested under laboratory conditions and in real-world operational applications. One of the system's advantages is that it can be applied to every phase of wine production. Moreover, with minimum modification, other variables of interest (pH, humidity, etc.) could also be monitored and the system could be applied to other similar sectors, such as olive-oil production. 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Yield and cold storage of Trichoderma conidia is influenced by substrate pH and storage temperature.

    PubMed

    Steyaert, Johanna M; Chomic, Anastasia; Nieto-Jacobo, Maria; Mendoza-Mendoza, Artemio; Hay, Amanda J; Braithwaite, Mark; Stewart, Alison

    2017-05-01

    In this study we examined the influence of the ambient pH during morphogenesis on conidial yield of Trichoderma sp. "atroviride B" LU132 and T. hamatum LU593 and storage at low temperatures. The ambient pH of the growth media had a dramatic influence on the level of Trichoderma conidiation and this was dependent on the strain and growth media. On malt-extract agar, LU593 yield decreased with increasing pH (3-6), whereas yield increased with increasing pH for LU132. During solid substrate production the reverse was true for LU132 whereby yield decreased with increasing pH. The germination potential of the conidia decreased significantly over time in cold storage and the rate of decline was a factor of the strain, pH during morphogenesis, growth media, and storage temperature. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Effects of temperature on decomposition of a potential nuisance species: the submerged aquatic macrophyte Egeria najas Planchon (Hydrocharitaceae).

    PubMed

    Carvalho, P; Thomaz, S M; Bini, L M

    2005-02-01

    Decomposition of aquatic plants is influenced by several biotic and abiotic factors. Among them, temperature plays an important role. Despite the increasing number of studies describing the effects of temperature on the decomposition of aquatic macrophytes, little attention has been given to the decay of submerged macrophytes. In this paper, we assessed the effect of temperature on weight loss and chemical composition of detritus of the submerged aquatic macrophyte Egeria najas Planchon (Hydrocharitaceae). Fresh plant material was maintained at 17 degrees C and 27 degrees C, in the dark, in incubation chambers. The overall decay process was best described by a linear model, with rates of 0.014 day(-1) (R2= 94%) and 0.045 day(-1) (R2= 96%) obtained at 17 degrees C and 27 degrees C, respectively. The analysis of covariance (ANCOVA) indicated a significant difference between the decomposition rates at the two temperatures. The rapid breakdown of E. najas detritus, indicated by the decay coefficient, may be explained by its low content of resistant compounds such as cellulose and lignin. The variables analyzed in this study (pH, electrical conductivity, dissolved oxygen in the water and organic matter, total nitrogen and total phosphorus concentration in detritus) showed accentuated responses at 27 degrees C. It is likely that the higher temperature increased microbial activity and, therefore, oxygen consumption in the water, consequently affecting the pH and the rate of ion and nutrient liberation into the aquatic ecosystem. Due to the rapid decomposition of E. najas at high temperatures, a small exportation is expected of this species from its stands to distant regions in tropical reservoirs, where it is considered a potential nuisance species.

  20. Ab initio determination of effective electron-phonon coupling factor in copper

    NASA Astrophysics Data System (ADS)

    Ji, Pengfei; Zhang, Yuwen

    2016-04-01

    The electron temperature Te dependent electron density of states g (ε), Fermi-Dirac distribution f (ε), and electron-phonon spectral function α2 F (Ω) are computed as prerequisites before achieving effective electron-phonon coupling factor Ge-ph. The obtained Ge-ph is implemented into a molecular dynamics (MD) and two-temperature model (TTM) coupled simulation of femtosecond laser heating. By monitoring temperature evolutions of electron and lattice subsystems, the result utilizing Ge-ph from ab initio calculation shows a faster decrease of Te and increase of Tl than those using Ge-ph from phenomenological treatment. The approach of calculating Ge-ph and its implementation into MD-TTM simulation is applicable to other metals.

  1. Continuous water-quality monitoring and regression analysis to estimate constituent concentrations and loads in the Red River of the North, Fargo, North Dakota, 2003-05

    USGS Publications Warehouse

    Ryberg, Karen R.

    2006-01-01

    This report presents the results of a study by the U.S. Geological Survey, done in cooperation with the Bureau of Reclamation, U.S. Department of the Interior, to estimate water-quality constituent concentrations in the Red River of the North at Fargo, North Dakota. Regression analysis of water-quality data collected in 2003-05 was used to estimate concentrations and loads for alkalinity, dissolved solids, sulfate, chloride, total nitrite plus nitrate, total nitrogen, total phosphorus, and suspended sediment. The explanatory variables examined for regression relation were continuously monitored physical properties of water-streamflow, specific conductance, pH, water temperature, turbidity, and dissolved oxygen. For the conditions observed in 2003-05, streamflow was a significant explanatory variable for all estimated constituents except dissolved solids. pH, water temperature, and dissolved oxygen were not statistically significant explanatory variables for any of the constituents in this study. Specific conductance was a significant explanatory variable for alkalinity, dissolved solids, sulfate, and chloride. Turbidity was a significant explanatory variable for total phosphorus and suspended sediment. For the nutrients, total nitrite plus nitrate, total nitrogen, and total phosphorus, cosine and sine functions of time also were used to explain the seasonality in constituent concentrations. The regression equations were evaluated using common measures of variability, including R2, or the proportion of variability in the estimated constituent explained by the regression equation. R2 values ranged from 0.703 for total nitrogen concentration to 0.990 for dissolved-solids concentration. The regression equations also were evaluated by calculating the median relative percentage difference (RPD) between measured constituent concentration and the constituent concentration estimated by the regression equations. Median RPDs ranged from 1.1 for dissolved solids to 35.2 for total nitrite plus nitrate. Regression equations also were used to estimate daily constituent loads. Load estimates can be used by water-quality managers for comparison of current water-quality conditions to water-quality standards expressed as total maximum daily loads (TMDLs). TMDLs are a measure of the maximum amount of chemical constituents that a water body can receive and still meet established water-quality standards. The peak loads generally occurred in June and July when streamflow also peaked.

  2. Temperature and pH effects on feeding and growth of Antarctic krill

    NASA Astrophysics Data System (ADS)

    Saba, G.; Bockus, A.; Fantasia, R. L.; Shaw, C.; Sugla, M.; Seibel, B.

    2016-02-01

    Rapid warming in the Western Antarctic Peninsula (WAP) region is occurring, and is associated with an overall decline in primary, secondary, and higher trophic levels, including Antarctic krill (Euphausia superba), a key species in Antarctic food webs. Additionally, there are predictions that by the end of this century the Southern Ocean will be one of the first regions to be affected by seawater chemistry changes associated with enhanced CO2. Ocean acidification and warming may act synergistically to impair animal performance, which may negatively impact Antarctic krill. We assessed the effects of temperature (ambient temperature, ambient +3 degrees C) and pH (Experiment 1 = 8.0, 7.7; Experiment 2 = 8.0, 7.5, 7.1) on juvenile Antarctic krill feeding and growth (growth increment and intermolt period) during incubation experiments at Palmer Station, Antarctica. Food intake was lower in krill exposed to reduced pH. Krill intermolt period (IMP) was significantly lower in the elevated temperature treatments (16.9 days) compared to those at 0 degrees (22.8 days). Within the elevated temperature treatment, minor increases in IMP occurred in krill exposed reduced pH. Growth increment (GI) was lower with decreased pH at the first molt, and this was exacerbated at elevated temperature. However, differences in GI were eliminated between the first and second molts suggesting potential ability of Antarctic krill to acclimate to changes in temperature and pH. Reductions in juvenile krill growth and feeding under elevated temperature and reduced pH are likely caused by higher demands for internal acid-base regulation or a metabolic suppression. However, the subtlety of these feeding and growth responses leaves an open question as to how krill populations will tolerate prolonged future climate change in the Antarctic.

  3. A novel approach for stabilizing fresh urine by calcium hydroxide addition

    PubMed Central

    Randall, Dyllon G.; Krähenbühl, Manuel; Köpping, Isabell; Larsen, Tove A.; Udert, Kai M.

    2016-01-01

    In this study, we investigated the prevention of enzymatic urea hydrolysis in fresh urine by increasing the pH with calcium hydroxide (Ca(OH)2) powder. The amount of Ca(OH)2 dissolving in fresh urine depends significantly on the composition of the urine. The different urine compositions used in our simulations showed that between 4.3 and 5.8 g Ca(OH)2 dissolved in 1 L of urine at 25 °C. At this temperature, the pH at saturation is 12.5 and is far above the pH of 11, which we identified as the upper limit for enzymatic urea hydrolysis. However, temperature has a strong effect on the saturation pH, with higher values being achieved at lower temperatures. Based on our results, we recommend a dosage of 10 g Ca(OH)2 L−1 of fresh urine to ensure solid Ca(OH)2 always remains in the urine reactor which ensures sufficiently high pH values. Besides providing sufficient Ca(OH)2, the temperature has to be kept in a certain range to prevent chemical urea hydrolysis. At temperatures below 14 °C, the saturation pH is higher than 13, which favors chemical urea hydrolysis. We chose a precautionary upper temperature of 40 °C because the rate of chemical urea hydrolysis increases at higher temperatures but this should be confirmed with kinetic studies. By considering the boundaries for pH and temperature developed in this study, urine can be stabilized effectively with Ca(OH)2 thereby simplifying later treatment processes or making direct use easier. PMID:27055084

  4. Temperature range and degree of acidity growth of isolate of indigenous bacteria on fermented feed “fermege”

    NASA Astrophysics Data System (ADS)

    Isnawati; Trimulyono, G.

    2018-01-01

    Fermege is a fermented feed of ruminants, especially goats made from water hyacinth (Eichhornia crassipes). Temperature range and pH need to know in making starter formula for acceleration of fermentation process at making ruminant feed made from this materials. The starter formula expired period can be extended by adjusting starter storage temperature and pH of the starter. This research was aimed to find the temperature and pH range for the growth of isolate of indigenous bacteria “fermege.” This research is an explorative research conducted by growing bacteria isolate indigenous fermege in liquid medium with various pH and incubation in various temperature. Bacterial population was calculated based on turbidity of bacterial suspension with turbidometer. The stages of this research were to isolate the bacteria present in the fermege, purify the isolates found, and then grow the isolates in a liquid medium with various pH values. The isolated bacterials were incubated at different temperature variations. The cell population density of the isolates was calculated after incubation for 24 hours. The results showed there were eight indigenous bacterial isolates. All isolates can grow in the pH range 6 and 7. Two isolates (Bacillus subtilis and B. pumilus) can grow at 4°C. All isolates obtained can grow at a temperature of 30°C. Isolates Bacillus badius, B. subtilis, B. cereus, Pseudomonas stutzeri and P. diminuta can grow at 50°C. Based on research indicates that indigenous fermege bacterial isolates have the ability to grow in the neutral pH range and temperature range between 4°C and 50°C.

  5. Application of automated measurement stations for continuous water quality monitoring of the Dender river in Flanders, Belgium.

    PubMed

    Vandenberghe, V; Goethals, P L M; Van Griensven, A; Meirlaen, J; De Pauw, N; Vanrolleghem, P; Bauwens, W

    2005-09-01

    During the summer of 1999, two automated water quality measurement stations were installed along the Dender river in Belgium. The variables dissolved oxygen, temperature, conductivity, pH, rain-intensity, flow and solar radiation were measured continuously. In this paper these on-line measurement series are presented and interpreted using also additional measurements and ecological expert-knowledge. The purpose was to demonstrate the variability in time and space of the aquatic processes and the consequences of conducting and interpreting discrete measurements for river quality assessment and management. The large fluctuations of the data illustrated the importance of continuous measurements for the complete description and modelling of the biological processes in the river.

  6. Interacting Effects of pH, Temperature, and Salt Concentration on Growth and Survival of Vibrio parahaemolyticus

    PubMed Central

    Beuchat, L. R.

    1973-01-01

    Thermal resistance and minimal pH and temperature conditions for growth of Vibrio parahaemolyticus in artificial media containing 3 and 7% sodium chloride were studied. Growth was observed at pH 4.8 and at 5 C. PMID:4715562

  7. Macroalgal response to a warmer ocean with higher CO2 concentration.

    PubMed

    Hernández, Celso A; Sangil, Carlos; Fanai, Alessandra; Hernández, José Carlos

    2018-05-01

    Primary production and respiration rates were studied for six seaweed species (Cystoseira abies-marina, Lobophora variegata, Pterocladiella capillacea, Canistrocarpus cervicornis, Padina pavonica and Corallina caespitosa) from Subtropical North-East Atlantic, to estimate the combined effects of different pH and temperature levels. Macroalgal samples were cultured at temperature and pH combinations ranging from current levels to those predicted for the next century (19, 21, 23, 25 °C, pH: 8.1, 7.7 and 7.4). Decreased pH had a positive effect on short-term production of the studied species. Raised temperatures had a more varied and species dependent effect on short term primary production. Thermophilic algae increased their production at higher temperatures, while temperate species were more productive at lower or present temperature conditions. Temperature also affected algal respiration rates, which were higher at low temperature levels. The results suggest that biomass and productivity of the more tropical species in coastal ecosystems would be enhanced by future ocean conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Post-deposition annealing temperature dependence TiO{sub 2}-based EGFET pH sensor sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zulkefle, M. A., E-mail: alhadizulkefle@gmail.com; Rahman, R. A., E-mail: rohanieza.abdrahman@gmail.com; Yusoff, K. A., E-mail: khairul.aimi.yusof@gmail.com

    EGFET pH sensor is one type of pH sensor that is used to measure and determine pH of a solution. The sensing membrane of EGFET pH sensor plays vital role in the overall performance of the sensor. This paper studies the effects of different annealing temperature of the TiO{sub 2} sensing membranes towards sensitivity of EGFET pH sensor. Sol-gel spin coating was chosen as TiO{sub 2} deposition techniques since it is cost-effective and produces thin film with uniform thickness. Deposited TiO{sub 2} thin films were then annealed at different annealing temperatures and then were connected to the gate of MOSFETmore » as a part of the EGFET pH sensor structure. The thin films now act as sensing membranes of the EGFET pH sensor and sensitivity of each sensing membrane towards pH was measured. From the results it was determined that sensing membrane annealed at 300 °C gave the highest sensitivity followed by sample annealed at 400 °C and 500 °C.« less

  9. Rheological behavior and Ibuprofen delivery applications of pH responsive composite alginate hydrogels.

    PubMed

    Jabeen, Suraya; Maswal, Masrat; Chat, Oyais Ahmad; Rather, Ghulam Mohammad; Dar, Aijaz Ahmad

    2016-03-01

    Synthesis and structural characterization of hydrogels composed of sodium alginate, polyethylene oxide and acrylic acid with cyclodextrin as the hydrocolloid prepared at different pH values is presented. The hydrogels synthesized show significant variations in rheological properties, drug encapsulation capability and release kinetics. The hydrogels prepared at lower pH (pH 1) are more elastic, have high tensile strength and remain almost unaffected by varying temperature or frequency. Further, their Ibuprofen encapsulation capacity is low and releases it slowly. The hydrogel prepared at neutral pH (pH 7) is viscoelastic, thermo-reversible and also exhibits sol-gel transition on applying frequency and changing temperature. It shows highest Ibuprofen encapsulation capacity and also optimum drug release kinetics. The hydrogel prepared at higher pH (pH 12) is more viscous, has low tensile strength, is unstable to change in temperature and has fast drug release rate. The study highlights the pH responsiveness of three composite alginate hydrogels prepared under different conditions to be employed in drug delivery applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Thermophysical properties of carboxylic and amino acid buffers at subzero temperatures: relevance to frozen state stabilization.

    PubMed

    Sundaramurthi, Prakash; Suryanarayanan, Raj

    2011-06-02

    Macromolecules and other thermolabile biologicals are often buffered and stored in frozen or dried (freeze-dried) state. Crystallization of buffer components in frozen aqueous solutions and the consequent pH shifts were studied in carboxylic (succinic, malic, citric, tartaric acid) and amino acid (glycine, histidine) buffers. Aqueous buffer solutions were cooled from room temperature (RT) to -25 °C and the pH of the solution was measured as a function of temperature. The thermal behavior of frozen solutions was investigated by differential scanning calorimetry (DSC), and the crystallized phases were identified by X-ray diffractometry (XRD). Based on the solubility of the neutral species of each buffer system over a range of temperatures, it was possible to estimate its degree of supersaturation at the subambient temperature of interest. This enabled us to predict its crystallization propensity in frozen systems. The experimental and the predicted rank orderings were in excellent agreement. The malate buffer system was robust with no evidence of buffer component crystallization and hence negligible pH shift. In the citrate and tartrate systems, at initial pH < pK(a)(2), only the most acidic buffer component (neutral form) crystallized on cooling, causing an increase in the freeze-concentrate pH. In glycine buffer solutions, when the initial pH was ∼3 units < isoelectric pH (pI = 5.9), β-glycine crystallization caused a small decrease in pH, while a similar effect but in the opposite direction was observed when the initial pH was ∼3 units > pI. In the histidine buffer system, depending on the initial pH, either histidine or histidine HCl crystallized.

  11. Diurnal variation of intraoral pH and temperature.

    PubMed

    Choi, Jung Eun; Lyons, Karl M; Kieser, Jules A; Waddell, Neil J

    2017-01-01

    The aim of this study was to measure continuously the intraoral pH and temperature of healthy individuals to investigate their diurnal variations. Seventeen participants (mean age, 31±9 years) wore a custom-made intraoral appliance fitted with a pH probe and thermocouple for two sets of 24 h, while carrying out normal daily activities including sleep. The continuous changes in intraoral pH and temperature were captured using a sensor placed on the palatal aspect of the upper central incisors. The collected data were categorised into different status (awake and sleep) and periods (morning, afternoon, evening and night). Both quantitative and qualitative analyses were conducted. The intraoral pH change was found to show a distinctive daily rhythm, showing a 12-h interval between maximum (7.73) and minimum (6.6) pH values. The maximum and minimum values were found to repeat after 24 h. The mean pH over 48 h (two sets of 24 h) was found to be 7.27 (±0.74). There was significant difference found in pH when subjects were awake and asleep and different periods during the day ( P <0.001). The mean intraoral temperature was 33.99 °C (±4.9), with less distinctive daily rhythm compared with pH. There was a significant difference found in temperature depending on the time of the day, except between morning and afternoon ( P =0.78). Our results showed that there is a distinctive daily, circadian-like pattern in intraoral pH variation over a 24-h period, which has been considered as one of the risk factors in sleep-related dental diseases.

  12. Spatial and temporal variability of cv. Tempranillo phenology and grape quality within the Ribera del Duero DO (Spain) and relationships with climate.

    PubMed

    Ramos, M C; Jones, G V; Yuste, J

    2015-12-01

    The aim of this work was to analyze spatial phenology and grape quality variability related to the climatic characteristics within the Ribera del Duero Designation of Origin (DO). Twenty plots planted with cv. Tempranillo and distributed within the DO were analyzed for phenology from 2004 to 2013. Grape quality parameters at ripening (berry weight, sugar content, acidity and pH, and anthocyanins) were analyzed in 26 plots for the period 2003-2013. The relationships between phenology and grape parameters with different climatic variables were confirmed with a multivariate analysis. On average, bud break was April 27(th), bloom June 17(th), and veraison August 12th. However, phenology during the time period showed high variability, with differences between years of up to 21 days for a phenology stage. The earliest dates were observed in dry years (2005, 2006, and to a lesser degree in 2009) while the later phenology dates occurred in the wettest year of the period (2008). High correlations were found between veraison date and temperature variables as well as with precipitation-evapotranspiration recorded during the bloom-veraison period. These effects tended to be higher in the central part of the DO. Grape quality parameters also showed high variability among the dry and the wet years, and the influence of extreme temperatures on color development as well as the effect of available water on acidity were observed.

  13. Spatial and temporal variability of cv. Tempranillo phenology and grape quality within the Ribera del Duero DO (Spain) and relationships with climate

    NASA Astrophysics Data System (ADS)

    Ramos, M. C.; Jones, G. V.; Yuste, J.

    2015-12-01

    The aim of this work was to analyze spatial phenology and grape quality variability related to the climatic characteristics within the Ribera del Duero Designation of Origin (DO). Twenty plots planted with cv. Tempranillo and distributed within the DO were analyzed for phenology from 2004 to 2013. Grape quality parameters at ripening (berry weight, sugar content, acidity and pH, and anthocyanins) were analyzed in 26 plots for the period 2003-2013. The relationships between phenology and grape parameters with different climatic variables were confirmed with a multivariate analysis. On average, bud break was April 27th, bloom June 17th, and veraison August 12th. However, phenology during the time period showed high variability, with differences between years of up to 21 days for a phenology stage. The earliest dates were observed in dry years (2005, 2006, and to a lesser degree in 2009) while the later phenology dates occurred in the wettest year of the period (2008). High correlations were found between veraison date and temperature variables as well as with precipitation-evapotranspiration recorded during the bloom-veraison period. These effects tended to be higher in the central part of the DO. Grape quality parameters also showed high variability among the dry and the wet years, and the influence of extreme temperatures on color development as well as the effect of available water on acidity were observed.

  14. Putting Temperature and Oxygen Thresholds of Marine Animals in Context of Environmental Change: A Regional Perspective for the Scotian Shelf and Gulf of St. Lawrence

    PubMed Central

    2016-01-01

    We conducted a literature review of reported temperature, salinity, pH, depth and oxygen preferences and thresholds of important marine species found in the Gulf of St. Lawrence and Scotian Shelf region. We classified 54 identified fishes and macroinvertebrates as important either because they support a commercial fishery, have threatened or at risk status, or meet one of the following criteria: bycatch, baitfish, invasive, vagrant, important for ecosystem energy transfer, or predators or prey of the above species. The compiled data allow an assessment of species-level impacts including physiological stress and mortality given predictions of future ocean physical and biogeochemical conditions. If an observed, multi-decadal oxygen trend on the central Scotian Shelf continues, a number of species will lose favorable oxygen conditions, experience oxygen-stress, or disappear due to insufficient oxygen in the coming half-century. Projected regional trends and natural variability are both large, and natural variability will act to alternately amplify and dampen anthropogenic changes. When estimates of variability are included with the trend, species encounter unfavourable oxygen conditions decades sooner. Finally, temperature and oxygen thresholds of adult Atlantic wolffish (Anarhichas lupus) and adult Atlantic cod (Gadus morhua) are assessed in the context of a potential future scenario derived from high-resolution ocean models for the central Scotian Shelf. PMID:27997536

  15. Elements of a predictive model for determining beach closures on a real time basis: the case of 63rd Street Beach Chicago

    USGS Publications Warehouse

    Olyphant, Greg A.; Whitman, Richard L.

    2004-01-01

    Data on hydrometeorological conditions and E. coli concentration were simultaneously collected on 57 occasions during the summer of 2000 at 63rd Street Beach, Chicago, Illinois. The data were used to identify and calibrate a statistical regression model aimed at predicting when the bacterial concentration of the beach water was above or below the level considered safe for full body contact. A wide range of hydrological, meteorological, and water quality variables were evaluated as possible predictive variables. These included wind speed and direction, incoming solar radiation (insolation), various time frames of rainfall, air temperature, lake stage and wave height, and water temperature, specific conductance, dissolved oxygen, pH, and turbidity. The best-fit model combined real-time measurements of wind direction and speed (onshore component of resultant wind vector), rainfall, insolation, lake stage, water temperature and turbidity to predict the geometric mean E.coliconcentration in the swimming zone of the beach. The model, which contained both additive and multiplicative (interaction) terms, accounted for 71% of the observed variability in the log E. coliconcentrations. A comparison between model predictions of when the beach should be closed and when the actualbacterial concentrations were above or below the 235 cfu 100 ml-1 threshold value, indicated that the model accurately predicted openingsversus closures 88% of the time.

  16. Putting Temperature and Oxygen Thresholds of Marine Animals in Context of Environmental Change: A Regional Perspective for the Scotian Shelf and Gulf of St. Lawrence.

    PubMed

    Brennan, Catherine E; Blanchard, Hannah; Fennel, Katja

    2016-01-01

    We conducted a literature review of reported temperature, salinity, pH, depth and oxygen preferences and thresholds of important marine species found in the Gulf of St. Lawrence and Scotian Shelf region. We classified 54 identified fishes and macroinvertebrates as important either because they support a commercial fishery, have threatened or at risk status, or meet one of the following criteria: bycatch, baitfish, invasive, vagrant, important for ecosystem energy transfer, or predators or prey of the above species. The compiled data allow an assessment of species-level impacts including physiological stress and mortality given predictions of future ocean physical and biogeochemical conditions. If an observed, multi-decadal oxygen trend on the central Scotian Shelf continues, a number of species will lose favorable oxygen conditions, experience oxygen-stress, or disappear due to insufficient oxygen in the coming half-century. Projected regional trends and natural variability are both large, and natural variability will act to alternately amplify and dampen anthropogenic changes. When estimates of variability are included with the trend, species encounter unfavourable oxygen conditions decades sooner. Finally, temperature and oxygen thresholds of adult Atlantic wolffish (Anarhichas lupus) and adult Atlantic cod (Gadus morhua) are assessed in the context of a potential future scenario derived from high-resolution ocean models for the central Scotian Shelf.

  17. Kinetics and mechanism of imazosulfuron hydrolysis.

    PubMed

    Morrica, P; Barbato, F; Della Iacovo, R; Seccia, S; Ungaro, F

    2001-08-01

    Knowledge of the kinetics and pathways of hydrolytic degradation is crucial to the prediction of the fate and transport mechanism of chemicals. This work first describes the kinetics of the chemical hydrolysis of imazosulfuron, a new sulfonylurea herbicide, and evaluates the results to propose a degradation pathway. The hydrolysis of imazosulfuron has been studied in aqueous buffers both within the pH range 1.9-12.3 at ambient temperature (thermostated at 25 +/- 2 degrees C) and at pH 3.6 within the temperature range of 15-55 degrees C. The hydrolysis rate of imazosulfuron was characterized by a first-order kinetics, pH- and temperature-dependent, and accelerated by acidic conditions and higher temperatures. The calculated half-lives at pH 4.5 and 5.9 were 36.5 and 578 days, respectively. At pH 6.6, 7.4, 9.2, and 12.3 no significant change in imazosulfuron concentration was observed after 150 days. Half-lives were much lower at pH <4 (= imazosulfuron pK(a)), at which they ranged from 3.3 to 6.3 days. Moreover, a change in temperature from 15 to 25 degrees C in acidic conditions (pH 3.6) decreased the half-life of imazosulfuron by a factor of approximately 4.0; in any case, a 3-5-fold increase in the rate of hydrolysis was found for each 10 degrees C increase in temperature. In acidic conditions the only hydrolysis products were the two molecules resulting from the cleavage of the sulfonylurea bridge.

  18. Modeling of thermal degradation kinetics of the C-glucosyl xanthone mangiferin in an aqueous model solution as a function of pH and temperature and protective effect of honeybush extract matrix.

    PubMed

    Beelders, Theresa; de Beer, Dalene; Kidd, Martin; Joubert, Elizabeth

    2018-01-01

    Mangiferin, a C-glucosyl xanthone, abundant in mango and honeybush, is increasingly targeted for its bioactive properties and thus to enhance functional properties of food. The thermal degradation kinetics of mangiferin at pH3, 4, 5, 6 and 7 were each modeled at five temperatures ranging between 60 and 140°C. First-order reaction models were fitted to the data using non-linear regression to determine the reaction rate constant at each pH-temperature combination. The reaction rate constant increased with increasing temperature and pH. Comparison of the reaction rate constants at 100°C revealed an exponential relationship between the reaction rate constant and pH. The data for each pH were also modeled with the Arrhenius equation using non-linear and linear regression to determine the activation energy and pre-exponential factor. Activation energies decreased slightly with increasing pH. Finally, a multi-linear model taking into account both temperature and pH was developed for mangiferin degradation. Sterilization (121°C for 4min) of honeybush extracts dissolved at pH4, 5 and 7 did not cause noticeable degradation of mangiferin, although the multi-linear model predicted 34% degradation at pH7. The extract matrix is postulated to exert a protective effect as changes in potential precursor content could not fully explain the stability of mangiferin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Spatial models to predict ash pH and Electrical Conductivity distribution after a grassland fire in Lithuania

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Cerda, Artemi; Misiūnė, Ieva

    2015-04-01

    Fire mineralizes the organic matter, increasing the pH level and the amount of dissolved ions (Pereira et al., 2014). The degree of mineralization depends among other factors on fire temperature, burned specie, moisture content, and contact time. The impact of wildland fires it is assessed using the fire severity, an index used in the absence of direct measures (e.g temperature), important to estimate the fire effects in the ecosystems. This impact is observed through the loss of soil organic matter, crown volume, twig diameter, ash colour, among others (Keeley et al., 2009). The effects of fire are highly variable, especially at short spatial scales (Pereira et al., in press), due the different fuel conditions (e.g. moisture, specie distribution, flammability, connectivity, arrangement, etc). This variability poses important challenges to identify the best spatial predictor and have the most accurate spatial visualization of the data. Considering this, the test of several interpolation methods it is assumed to be relevant to have the most reliable map. The aims of this work are I) study the ash pH and Electrical Conductivity (EC) after a grassland fire according to ash colour and II) test several interpolation methods in order to identify the best spatial predictor of pH and EC distribution. The study area is located near Vilnius at 54.42° N and 25.26°E and 154 ma.s.l. After the fire it was designed a plot with a 27 x 9 m space grid. Samples were taken every 3 meters for a total of 40 (Pereira et al., 2013). Ash color was classified according to Úbeda et al. (2009). Ash pH and EC laboratory analysis were carried out according to Pereira et al. (2014). Previous to data comparison and modelling, normality and homogeneity were assessed with the Shapiro-wilk and Levene test. pH data respected the normality and homogeneity, while EC only followed the Gaussian distribution and the homogeneity criteria after a logarithmic transformation. Data spatial correlation was calculated with the Global Moran's I Index. In order to identify the best interpolator, we tested several well known techniques as inverse distance to a power (IDP), with the power of 1, 2, 3, 4 and 5, local polynomial (LP) with the power of 1 (LP1), 2 (LP2) and 3 (LP3), spline with tension (SPT), completely regularized spline (CRS), multiquadratic (MTQ), inverse multiquadratic (IMTQ) thin plate spline (TPS) and ordinary kriging. The best interpolator was the one with the lowest Root mean square error (RMSE). The results shown that on average ash pH was 8.01 (±0.20) and EC (1408± 513.51µm cm3). The coefficient of correlation between both variables was 0.34, p<0.05. Black ash had a significantly higher pH (F=6.29, p<0.05) and EC (F=5.25, p<0.05) than dark grey ash. According to Moran's I index, pH data was significantly (p<0.05) dispersed, while EC had a random pattern. The best spatial predictor for pH was IDW1 (RMSE=0.210), and for EC IMTQ (RMSE=0.141). In both cases the least accurate technique was TPS. pH data did not showed a specific spatial pattern and some high values are very close to high values which shows a great local spatial variability, mainly observed in the northern part of the plot. In relation to EC, the high values were identified in the central part of the plot. In conclusion it was observed that ash pH and EC were different according to fire severity (ash color) and data distribution has a different spatial pattern, despite the significant correlation. pH and EC had different spatial impacts on soil properties in the immediate period after the fire. Acknowledgments POSTFIRE (Soil quality, erosion control and plant cover recovery under different post-fire management scenarios, CGL2013-47862-C2-1-R), funded by the Spanish Ministry of Economy and Competitiveness; Fuegored; RECARE (Preventing and Remediating Degradation of Soils in Europe Through Land Care, FP7-ENV-2013-TWO STAGE), funded by the European Commission; and for the COST action ES1306 (Connecting European connectivity research). References Keeley, J.E. (2009) Fire intensity, fire severity and burn severity: a brief review and suggested usage. International Journal of Wildland Fire. 18, 116-126. Pereira, P., Úbeda, X., Martin, D., Mataix-Solera, J., Cerdà, A., Burguet, M. (2014) Wildfire effects on extractable elements in ash from a Pinus pinaster forest in Portugal. Hydrological Processes, 28, 3681-3690. Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J. Arcenegui, V., Zavala, L. Modelling the impacts of wildfire on ash thickness in a short-term period. Land Degradation and Development, (In Press), DOI: 10.1002/ldr.2195 Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J., Jordan, A. Burguet, M. (2013) Spatial models for monitoring the spatio-temporal evolution of ashes after fire - a case study of a burnt grassland in Lithuania, Solid Earth, 4, 153-165. Úbeda, X., Pereira, P., Outeiro, L., Martin, D. (2009) Effects of fire temperature on the physical and chemical characteristics of the ash from two plots of cork oak (Quercus suber). Land Degradation and Development, 20(6), 589-608.

  20. Effects of Ocean Acidification and Temperature Increases on the Photosynthesis of Tropical Reef Calcified Macroalgae.

    PubMed

    Scherner, Fernando; Pereira, Cristiano Macedo; Duarte, Gustavo; Horta, Paulo Antunes; E Castro, Clovis Barreira; Barufi, José Bonomi; Pereira, Sonia Maria Barreto

    2016-01-01

    Climate change is a global phenomenon that is considered an important threat to marine ecosystems. Ocean acidification and increased seawater temperatures are among the consequences of this phenomenon. The comprehension of the effects of these alterations on marine organisms, in particular on calcified macroalgae, is still modest despite its great importance. There are evidences that macroalgae inhabiting highly variable environments are relatively resilient to such changes. Thus, the aim of this study was to evaluate experimentally the effects of CO2-driven ocean acidification and temperature rises on the photosynthesis of calcified macroalgae inhabiting the intertidal region, a highly variable environment. The experiments were performed in a reef mesocosm in a tropical region on the Brazilian coast, using three species of frondose calcifying macroalgae (Halimeda cuneata, Padina gymnospora, and Tricleocarpa cylindrica) and crustose coralline algae. The acidification experiment consisted of three treatments with pH levels below those occurring in the region (-0.3, -0.6, -0.9). For the temperature experiment, three temperature levels above those occurring naturally in the region (+1, +2, +4°C) were determined. The results of the acidification experiment indicate an increase on the optimum quantum yield by T. cylindrica and a decline of this parameter by coralline algae, although both only occurred at the extreme acidification treatment (-0.9). The energy dissipation mechanisms of these algae were also altered at this extreme condition. Significant effects of the temperature experiment were limited to an enhancement of the photosynthetic performance by H. cuneata although only at a modest temperature increase (+1°C). In general, the results indicate a possible photosynthetic adaptation and/or acclimation of the studied macroalgae to the expected future ocean acidification and temperature rises, as separate factors. Such relative resilience may be a result of the highly variable environment they inhabit.

  1. Effects of Ocean Acidification and Temperature Increases on the Photosynthesis of Tropical Reef Calcified Macroalgae

    PubMed Central

    Pereira, Cristiano Macedo; Duarte, Gustavo; Horta, Paulo Antunes; e Castro, Clovis Barreira; Barufi, José Bonomi; Pereira, Sonia Maria Barreto

    2016-01-01

    Climate change is a global phenomenon that is considered an important threat to marine ecosystems. Ocean acidification and increased seawater temperatures are among the consequences of this phenomenon. The comprehension of the effects of these alterations on marine organisms, in particular on calcified macroalgae, is still modest despite its great importance. There are evidences that macroalgae inhabiting highly variable environments are relatively resilient to such changes. Thus, the aim of this study was to evaluate experimentally the effects of CO2-driven ocean acidification and temperature rises on the photosynthesis of calcified macroalgae inhabiting the intertidal region, a highly variable environment. The experiments were performed in a reef mesocosm in a tropical region on the Brazilian coast, using three species of frondose calcifying macroalgae (Halimeda cuneata, Padina gymnospora, and Tricleocarpa cylindrica) and crustose coralline algae. The acidification experiment consisted of three treatments with pH levels below those occurring in the region (-0.3, -0.6, -0.9). For the temperature experiment, three temperature levels above those occurring naturally in the region (+1, +2, +4°C) were determined. The results of the acidification experiment indicate an increase on the optimum quantum yield by T. cylindrica and a decline of this parameter by coralline algae, although both only occurred at the extreme acidification treatment (-0.9). The energy dissipation mechanisms of these algae were also altered at this extreme condition. Significant effects of the temperature experiment were limited to an enhancement of the photosynthetic performance by H. cuneata although only at a modest temperature increase (+1°C). In general, the results indicate a possible photosynthetic adaptation and/or acclimation of the studied macroalgae to the expected future ocean acidification and temperature rises, as separate factors. Such relative resilience may be a result of the highly variable environment they inhabit. PMID:27158820

  2. Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition

    USGS Publications Warehouse

    Tripati, Aradhna K.; Hill, Pamela S.; Eagle, Robert A.; Mosenfelder, Jed L.; Tang, Jianwu; Schauble, Edwin A.; Eiler, John M.; Zeebe, Richard E.; Uchikawa, Joji; Coplen, Tyler B.; Ries, Justin B.; Henry, Drew

    2015-01-01

    “Clumped-isotope” thermometry is an emerging tool to probe the temperature history of surface and subsurface environments based on measurements of the proportion of 13C and 18O isotopes bound to each other within carbonate minerals in 13C18O16O22- groups (heavy isotope “clumps”). Although most clumped isotope geothermometry implicitly presumes carbonate crystals have attained lattice equilibrium (i.e., thermodynamic equilibrium for a mineral, which is independent of solution chemistry), several factors other than temperature, including dissolved inorganic carbon (DIC) speciation may influence mineral isotopic signatures. Therefore we used a combination of approaches to understand the potential influence of different variables on the clumped isotope (and oxygen isotope) composition of minerals.We conducted witherite precipitation experiments at a single temperature and at varied pH to empirically determine 13C-18O bond ordering (Δ47) and δ18O of CO32- and HCO3- molecules at a 25 °C equilibrium. Ab initio cluster models based on density functional theory were used to predict equilibrium 13C-18O bond abundances and δ18O of different DIC species and minerals as a function of temperature. Experiments and theory indicate Δ47 and δ18O compositions of CO32- and HCO3- ions are significantly different from each other. Experiments constrain the Δ47-δ18O slope for a pH effect (0.011 ± 0.001; 12 ⩾ pH ⩾ 7). Rapidly-growing temperate corals exhibit disequilibrium mineral isotopic signatures with a Δ47-δ18O slope of 0.011 ± 0.003, consistent with a pH effect.Our theoretical calculations for carbonate minerals indicate equilibrium lattice calcite values for Δ47 and δ18O are intermediate between HCO3− and CO32−. We analyzed synthetic calcites grown at temperatures ranging from 0.5 to 50 °C with and without the enzyme carbonic anhydrase present. This enzyme catalyzes oxygen isotopic exchange between DIC species and is present in many natural systems. The two types of experiments yielded statistically indistinguishable results, and these measurements yield a calibration that overlaps with our theoretical predictions for calcite at equilibrium. The slow-growing Devils Hole calcite exhibits Δ47 and δ18O values consistent with lattice equilibrium.Factors influencing DIC speciation (pH, salinity) and the timescale for DIC equilibration, as well as reactions at the mineral–solution interface, have the potential to influence clumped-isotope signatures and the δ18O of carbonate minerals. In fast-growing carbonate minerals, solution chemistry may be an important factor, particularly over extremes of pH and salinity. If a crystal grows too rapidly to reach an internal equilibrium (i.e., achieve the value for the temperature-dependent mineral lattice equilibrium), it may record the clumped-isotope signature of a DIC species (e.g., the temperature-dependent equilibrium of HCO3−) or a mixture of DIC species, and hence record a disequilibrium mineral composition. For extremely slow-growing crystals, and for rapidly-grown samples grown at a pH where HCO3- dominates the DIC pool at equilibrium, effects of solution chemistry are likely to be relatively small or negligible. In summary, growth environment, solution chemistry, surface equilibria, and precipitation rate may all play a role in dictating whether a crystal achieves equilibrium or disequilibrium clumped-isotope signatures.

  3. A dual pH and temperature responsive polymeric fluorescent sensor and its imaging application in living cells.

    PubMed

    Yin, Liyan; He, Chunsheng; Huang, Chusen; Zhu, Weiping; Wang, Xin; Xu, Yufang; Qian, Xuhong

    2012-05-11

    A polymeric fluorescent sensor PNME, consisting of A4 and N-isopropylacrylamide (NIPAM) units, was synthesized. PNME exhibited dual responses to pH and temperature, and could be used as an intracellular pH sensor for lysosomes imaging. Moreover, it also could sense different temperature change in living cells at 25 and 37 °C, respectively. This journal is © The Royal Society of Chemistry 2012

  4. Effect of temperature and pH on polygalacturonase production by pectinolytic bacteria Bacillus licheniformis strain GD2a in submerged medium from Raja Nangka (Musa paradisiaca var. formatypica) banana peel waste

    NASA Astrophysics Data System (ADS)

    Widowati, E.; Utami, R.; Mahadjoeno, E.; Saputro, G. P.

    2017-04-01

    The aim of this research were to determine the effect of temperature (45°C, 55°C, 65°C) and pH (5.0; 6.0; 7.0) on the increase of total cell count and polygalacturonase enzyme activity produced from raja nangka banana (Musa paradisiaca var. formatypica) peel waste by pectinolytic bacterial Bacillus licheniformis strain GD2a. This research applied two sample repetition and one analysis repetition. The result showed temperature and pH affect total cell count. The total cell count on 45°C and pH 7 recorded the highest number at 9.469 log cell/ml. Temperature and pH also affected pectin concentration at the end of fermentation. The lowest pectin concentration recorded at 45°C and pH 7 was 0.425 %. The highest enzyme activity recorded at 65°C and pH 7 was 0.204 U/ml. The highest enzyme protein concentration was recorded at 65°C and resulted as 0.310 mg/ml on pH 6. The highest specific activity was 19.527 U/mg at 65°C and pH 7. By this result, could be concluded that optimum condition process on polygalacturonase production was at 65°C and pH 7 because it gave highest enzyme activity result (0,204 U/ml).

  5. Optimization of L-asparaginase production from novel Enterobacter sp., by submerged fermentation using response surface methodology.

    PubMed

    Erva, Rajeswara Reddy; Goswami, Ajgebi Nath; Suman, Priyanka; Vedanabhatla, Ravali; Rajulapati, Satish Babu

    2017-03-16

    The culture conditions and nutritional rations influencing the production of extra cellular antileukemic enzyme by novel Enterobacter aerogenes KCTC2190/MTCC111 were optimized in shake-flask culture. Process variables like pH, temperature, incubation time, carbon and nitrogen sources, inducer concentration, and inoculum size were taken into account. In the present study, finest enzyme activity achieved by traditional one variable at a time method was 7.6 IU/mL which was a 2.6-fold increase compared to the initial value. Further, the L-asparaginase production was optimized using response surface methodology, and validated experimental result at optimized process variables gave 18.35 IU/mL of L-asparaginase activity, which is 2.4-times higher than the traditional optimization approach. The study explored the E. aerogenes MTCC111 as a potent and potential bacterial source for high yield of antileukemic drug.

  6. Chlorite, Biotite, Illite, Muscovite and Feldspar Dissolution Kinetics at Variable pH and Temperatures up to 280 deg C

    DOE Data Explorer

    Carroll, Susan; Smith, Megan M.; Lammers, Kristin

    2017-02-24

    Chemical reactions pose an important but poorly understood threat to EGS long-term success because of their impact on fracture permeability. This report summarizes the dissolution rate equations for layered silicates where data were lacking for geothermal systems. Here we report updated rate laws for chlorite (Carroll and Smith 2013), biotite (Carroll and Smith, 2015), illite (Carroll and Smith, 2014), and for muscovite. Also included is a spreadsheet with rate data and rate equations for use in reactive transport simulators.

  7. Effect of pH and temperature on the stability of UV-induced repairable pyrimidine hydrates in DNA.

    PubMed

    O'Donnell, R E; Boorstein, R J; Cunningham, R P; Teebor, G W

    1994-08-23

    UV irradiation of cytosine yields 6-hydroxy-5,6-dihydrocytosine (cytosine hydrate) whether the cytosine is in solution as base, nucleoside, or nucleotide or on the DNA backbone. Cytosine hydrate decomposes by elimination of water, yielding cytosine, or by irreversible deamination, yielding uracil hydrate, which, in turn, decomposes by dehydration yielding uracil. To determine how pH and temperature affect these decomposition reactions, alternating poly(dG-[3H]dC) copolymer was irradiated at 254 nm and incubated under different conditions of pH and temperature. The cytosine hydrate and uracil hydrate content of the DNA was determined by the use of Escherichia coli endonuclease III, which releases pyrimidine hydrates from DNA by virtue of its DNA glycosylase activity. Uracil content was determined by using uracil-DNA glycosylase. The rate of decomposition of cytosine hydrate to cytosine was determined at 4 temperatures at pH 3.1, 5.4, and 7.4. The Ea was determined from the rates by using the Arrhenius equation and proved to be the same at pH 5.4 and 7.4, although the decomposition rate at pH 5.4 was faster at all temperatures. At pH 3.1, the Ea was reduced. These results suggest that the dehydration reaction is affected by two discrete protonations, most probably of the N-3 and the OH group of C-6 of cytosine hydrate. The deamination of cytosine hydrate to uracil hydrate was maximal at pH 3.1 at all temperatures. The doubly protonated cytosine hydrate probably is the common intermediate for both competing decomposition reactions, explaining why cytosine hydrate is prone to deamination at acid pH.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Regulation of Serratia marcescens ompF and ompC porin genes in response to osmotic stress, salicylate, temperature and pH.

    PubMed

    Begic, Sanela; Worobec, Elizabeth A

    2006-02-01

    Serratia marcescens is a Gram-negative enterobacterium that has become an important opportunistic pathogen, largely due to its high degree of natural antibiotic resistance. One factor contributing to this natural antibiotic resistance is reduced outer membrane permeability, which is controlled in part by OmpC and OmpF porin proteins. OmpF expression is regulated by micF, an RNA transcript encoded upstream of the ompC gene, which hybridizes with the ompF transcript to inhibit its translation. Regulation of S. marcescens porin gene expression, as well as that of micF, was investigated using beta-galactosidase reporter gene fusions in response to 5, 8 and 10 % sucrose, 1, 5 and 8 mM salicylate, and different pH and temperature values. beta-Galactosidase activity assays revealed that a lower growth temperature (28 degrees C), a more basic pH (pH 8), and an absence of sucrose and salicylate induce the transcription of the ompF gene, whereas the induction of ompC is stimulated at a higher growth temperature (42 degrees C), acidic pH (pH 6), and maximum concentrations of sucrose (10 %) and salicylate (8 mM). In addition, when multiple conditions were tested, temperature had the predominant effect, followed by pH. In this study, it was found that the MicF regulatory mechanism does not play a role in the osmoregulation of the ompF and ompC genes, whereas MicF does repress OmpF expression in the presence of salicylate and high growth temperature, and under low pH conditions.

  9. Relationship between plaque pH and different caries-associated variables in a group of adolescents with varying caries prevalence.

    PubMed

    Aranibar Quiroz, E M; Alstad, T; Campus, G; Birkhed, D; Lingström, P

    2014-01-01

    The pH response of the dental biofilm after a sugar challenge can be considered to mirror the acidogenic potential and thereby the caries risk of an individual. The aim of this cross-sectional study was to evaluate the relationship between plaque pH and different caries variables in adolescents with varying caries prevalence. One hundred individuals, aged 14-15 years, were examined regarding different caries-related variables: (i) caries score (DSm, DSi, DSm + i, DTm), (ii) salivary secretion rate and buffer capacity, (iii) oral microflora of plaque and saliva, (iv) plaque amount, (v) plaque pH and (vi) dietary intake, oral hygiene habits and fluoride use. Plaque pH was assessed using the microtouch method before and after a 1-min mouthrinse with 10 ml 10% sucrose. Depending on the minimum pH, the participants were divided into three groups: low pH (≤5.3), medium pH (>5.3-6.3) and high pH (>6.3). Statistically significant differences between the three groups (p < 0.01) were found for initial caries (DSi) and combined manifest and initial caries (DSm + i). A statistically significant difference was also found in the log values for salivary lactobacilli (p = 0.02) within the three groups, and for the total number of bacteria in plaque (p = 0.04); for both variables, the low-pH group had the highest values. The only covariate significantly associated was the Cariogram score in the medium-pH group (p < 0.01) and the number of meals per day in the high-pH group (p = 0.02). To conclude, plaque pH measured by the microtouch method is a method that can be used for discriminating between individuals with varying caries prevalence.

  10. Combining Individual-Based Modeling and Food Microenvironment Descriptions To Predict the Growth of Listeria monocytogenes on Smear Soft Cheese

    PubMed Central

    Ferrier, Rachel; Hezard, Bernard; Lintz, Adrienne; Stahl, Valérie

    2013-01-01

    An individual-based modeling (IBM) approach was developed to describe the behavior of a few Listeria monocytogenes cells contaminating smear soft cheese surface. The IBM approach consisted of assessing the stochastic individual behaviors of cells on cheese surfaces and knowing the characteristics of their surrounding microenvironments. We used a microelectrode for pH measurements and micro-osmolality to assess the water activity of cheese microsamples. These measurements revealed a high variability of microscale pH compared to that of macroscale pH. A model describing the increase in pH from approximately 5.0 to more than 7.0 during ripening was developed. The spatial variability of the cheese surface characterized by an increasing pH with radius and higher pH on crests compared to that of hollows on cheese rind was also modeled. The microscale water activity ranged from approximately 0.96 to 0.98 and was stable during ripening. The spatial variability on cheese surfaces was low compared to between-cheese variability. Models describing the microscale variability of cheese characteristics were combined with the IBM approach to simulate the stochastic growth of L. monocytogenes on cheese, and these simulations were compared to bacterial counts obtained from irradiated cheeses artificially contaminated at different ripening stages. The simulated variability of L. monocytogenes counts with the IBM/microenvironmental approach was consistent with the observed one. Contrasting situations corresponding to no growth or highly contaminated foods could be deduced from these models. Moreover, the IBM approach was more effective than the traditional population/macroenvironmental approach to describe the actual bacterial behavior variability. PMID:23872572

  11. Structural stability of E. coli transketolase to temperature and pH denaturation.

    PubMed

    Jahromi, Raha R F; Morris, Phattaraporn; Martinez-Torres, Ruben J; Dalby, Paul A

    2011-09-10

    We have previously shown that the denaturation of TK with urea follows a non-aggregating though irreversible denaturation pathway in which the cofactor binding appears to become altered but without dissociating, then followed at higher urea by partial denaturation of the homodimer prior to any further unfolding or dissociation of the two monomers. Urea is not typically present during biocatalysis, whereas access to TK enzymes that retain activity at increased temperature and extreme pH would be useful for operation under conditions that increase substrate and product stability or solubility. To provide further insight into the underlying causes of its deactivation in process conditions, we have characterised the effects of temperature and pH on the structure, stability, aggregation and activity of Escherichia coli transketolase. The activity of TK was initially found to progressively improve after pre-incubation at increasing temperatures. Loss of activity at higher temperature and low pH resulted primarily from protein denaturation and subsequent irreversible aggregation. By contrast, high pH resulted in the formation of a native-like state that was only partially inactive. The apo-TK enzyme structure content also increased at pH 9 to converge on that of the holo-TK. While cofactor dissociation was previously proposed for high pH deactivation, the observed structural changes in apo-TK but not holo-TK indicate a more complex mechanism. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Surface sulfonamide modification of poly(N-isopropylacrylamide)-based block copolymer micelles to alter pH and temperature responsive properties for controlled intracellular uptake.

    PubMed

    Cyphert, Erika L; von Recum, Horst A; Yamato, Masayuki; Nakayama, Masamichi

    2018-06-01

    Two different surface sulfonamide-functionalized poly(N-isopropylacrylamide)-based polymeric micelles were designed as pH-/temperature-responsive vehicles. Both sulfadimethoxine- and sulfamethazine-surface functionalized micelles were characterized to determine physicochemical properties, hydrodynamic diameters, zeta potentials, temperature-dependent size changes, and lower critical solution temperatures (LCST) in both pH 7.4 and 6.8 solutions (simulating both physiological and mild low pH conditions), and tested in the incorporation of a proof-of-concept hydrophobic antiproliferative drug, paclitaxel. Cellular uptake studies were conducted using bovine carotid endothelial cells and fluorescently labeled micelles to evaluate if there was enhanced cellular uptake of the micelles in a low pH environment. Both variations of micelles showed enhanced intracellular uptake under mildly acidic (pH 6.8) conditions at temperatures slightly above their LCST and minimal uptake at physiological (pH 7.4) conditions. Due to the less negative zeta potential of the sulfamethazine-surface micelles compared to sulfadimethoxine-surface micelles, and the proximity of their LCST to physiological temperature (37°C), the sulfamethazine variation was deemed more amenable for clinically relevant temperature and pH-stimulated applications. Nevertheless, we believe both polymeric micelle variations have the capacity to be implemented as an intracellular drug or gene delivery system in response to mildly acidic conditions. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1552-1560, 2018. © 2018 Wiley Periodicals, Inc.

  13. Erratum to ;Coastal water column ammonium and nitrite oxidation are decoupled in summer;

    NASA Astrophysics Data System (ADS)

    Heiss, Elise M.; Fulweiler, Robinson W.

    2017-07-01

    Water column nitrification is a key process in the nitrogen cycle as it links reduced and oxidized forms of nitrogen and also provides the substrate (nitrate) needed for reactive nitrogen removal by denitrification. We measured potential water column ammonium and nitrite oxidation rates at four sites along an estuary to continental shelf gradient over two summers. In most cases, nitrite oxidation rates outpaced ammonium oxidation rates. Overall, ammonium and nitrite oxidation rates were higher outside of the estuary, and this trend was primarily driven by higher oxidation rates in deeper waters. Additionally, both ammonium and nitrite oxidation rates were impacted by different in situ variables. Ammonium oxidation rates throughout the water column as a whole were most positively correlated to depth and salinity and negatively correlated to dissolved oxygen, light, and temperature. In contrast, nitrite oxidation rates throughout the water column were negatively correlated with temperature, light and pH. Multivariate regression analysis revealed that surface (<20 m) ammonium oxidation rates were most strongly predicted by substrate (NH4+), salinity, and light, while deep (>20 m) rates were regulated by temperature, light, and [H+] (i.e. pH). In addition, surface (<20 m) nitrite oxidation rates were best explained by [H+] alone, while [H+], temperature, and dissolved oxygen all played a role in predicting deep (>20 m) nitrite oxidation rates. These results support the growing body of evidence that ammonium oxidation and nitrite oxidation are not always coupled, should be measured separately, and are influenced by different environmental conditions.

  14. Validation of the i-STAT system for the analysis of blood parameters in fish

    PubMed Central

    Harter, T. S.; Shartau, R. B.; Brauner, C. J.; Farrell, A. P.

    2014-01-01

    Portable clinical analysers, such as the i-STAT system, are increasingly being used for blood analysis in animal ecology and physiology because of their portability and easy operation. Although originally conceived for clinical application and to replace robust but lengthy techniques, researchers have extended the use of the i-STAT system outside of humans and even to poikilothermic fish, with only limited validation. The present study analysed a range of blood parameters [pH, haematocrit (Hct), haemoglobin (Hb), HCO3−, partial pressure of CO2 (PCO2), partial pressure of O2 (PO2), Hb saturation (sO2) and Na+ concentration] in a model teleost fish (rainbow trout, Oncorhynchus mykiss) using the i-STAT system (CG8+ cartridges) and established laboratory techniques. This methodological comparison was performed at two temperatures (10 and 20°C), two haematocrits (low and high) and three PCO2 levels (0.5, 1.0 and 1.5%). Our results indicate that pH was measured accurately with the i-STAT system over a physiological pH range and using the i-STAT temperature correction. Haematocrit was consistently underestimated by the i-STAT, while the measurements of Na+, PCO2, HCO3− and PO2 were variably inaccurate over the range of values typically found in fish. The algorithm that the i-STAT uses to calculate sO2 did not yield meaningful results on rainbow trout blood. Application of conversion factors to correct i-STAT measurements is not recommended, due to significant effects of temperature, Hct and PCO2 on the measurement errors and complex interactions may exist. In conclusion, the i-STAT system can easily generate fast results from rainbow trout whole blood, but many are inaccurate values. PMID:27293658

  15. Optimization of Maillard Reaction in Model System of Glucosamine and Cysteine Using Response Surface Methodology

    PubMed Central

    Arachchi, Shanika Jeewantha Thewarapperuma; Kim, Ye-Joo; Kim, Dae-Wook; Oh, Sang-Chul; Lee, Yang-Bong

    2017-01-01

    Sulfur-containing amino acids play important roles in good flavor generation in Maillard reaction of non-enzymatic browning, so aqueous model systems of glucosamine and cysteine were studied to investigate the effects of reaction temperature, initial pH, reaction time, and concentration ratio of glucosamine and cysteine. Response surface methodology was applied to optimize the independent reaction parameters of cysteine and glucosamine in Maillard reaction. Box-Behnken factorial design was used with 30 runs of 16 factorial levels, 8 axial levels and 6 central levels. The degree of Maillard reaction was determined by reading absorption at 425 nm in a spectrophotometer and Hunter’s L, a, and b values. ΔE was consequently set as the fifth response factor. In the statistical analyses, determination coefficients (R2) for their absorbance, Hunter’s L, a, b values, and ΔE were 0.94, 0.79, 0.73, 0.96, and 0.79, respectively, showing that the absorbance and Hunter’s b value were good dependent variables for this model system. The optimum processing parameters were determined to yield glucosamine-cysteine Maillard reaction product with higher absorbance and higher colour change. The optimum estimated absorbance was achieved at the condition of initial pH 8.0, 111°C reaction temperature, 2.47 h reaction time, and 1.30 concentration ratio. The optimum condition for colour change measured by Hunter’s b value was 2.41 h reaction time, 114°C reaction temperature, initial pH 8.3, and 1.26 concentration ratio. These results can provide the basic information for Maillard reaction of aqueous model system between glucosamine and cysteine. PMID:28401086

  16. Optimization of Maillard Reaction in Model System of Glucosamine and Cysteine Using Response Surface Methodology.

    PubMed

    Arachchi, Shanika Jeewantha Thewarapperuma; Kim, Ye-Joo; Kim, Dae-Wook; Oh, Sang-Chul; Lee, Yang-Bong

    2017-03-01

    Sulfur-containing amino acids play important roles in good flavor generation in Maillard reaction of non-enzymatic browning, so aqueous model systems of glucosamine and cysteine were studied to investigate the effects of reaction temperature, initial pH, reaction time, and concentration ratio of glucosamine and cysteine. Response surface methodology was applied to optimize the independent reaction parameters of cysteine and glucosamine in Maillard reaction. Box-Behnken factorial design was used with 30 runs of 16 factorial levels, 8 axial levels and 6 central levels. The degree of Maillard reaction was determined by reading absorption at 425 nm in a spectrophotometer and Hunter's L, a, and b values. ΔE was consequently set as the fifth response factor. In the statistical analyses, determination coefficients (R 2 ) for their absorbance, Hunter's L, a, b values, and ΔE were 0.94, 0.79, 0.73, 0.96, and 0.79, respectively, showing that the absorbance and Hunter's b value were good dependent variables for this model system. The optimum processing parameters were determined to yield glucosamine-cysteine Maillard reaction product with higher absorbance and higher colour change. The optimum estimated absorbance was achieved at the condition of initial pH 8.0, 111°C reaction temperature, 2.47 h reaction time, and 1.30 concentration ratio. The optimum condition for colour change measured by Hunter's b value was 2.41 h reaction time, 114°C reaction temperature, initial pH 8.3, and 1.26 concentration ratio. These results can provide the basic information for Maillard reaction of aqueous model system between glucosamine and cysteine.

  17. Effects of pH and sugar concentration in Zygosaccharomyces rouxii growth and time for spoilage in concentrated grape juice at isothermal and non-isothermal conditions.

    PubMed

    Rojo, M C; Arroyo López, F N; Lerena, M C; Mercado, L; Torres, A; Combina, M

    2014-04-01

    The effect of pH (1.7-3.2) and sugar concentration (64-68 °Brix) on the growth of Zygosaccharomyces rouxii MC9 using response surface methodology was studied. Experiments were carried out in concentrated grape juice inoculated with Z. rouxii at isothermal conditions (23 °C) for 60 days. pH was the variable with the highest effect on growth parameters (potential maximum growth rate and lag phase duration), although the effect of sugar concentration were also significant. In a second experiment, the time for spoilage by this microorganism in concentrated grape juice was evaluated at isothermal (23 °C) and non-isothermal conditions, in an effort to reproduce standard storage and overseas shipping temperature conditions, respectively. Results show that pH was again the environmental factor with the highest impact on delaying the spoilage of the product. Thereby, a pH value below 2.0 was enough to increase the shelf life of the product for more than 60 days in both isothermal and non-isothermal conditions. The information obtained in the present work could be used by producers and buyers to predict the growth and time for spoilage of Z. rouxii in concentrated grape juice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Quality by design in formulation and process development for a freeze-dried, small molecule parenteral product: a case study.

    PubMed

    Mockus, Linas N; Paul, Timothy W; Pease, Nathan A; Harper, Nancy J; Basu, Prabir K; Oslos, Elizabeth A; Sacha, Gregory A; Kuu, Wei Y; Hardwick, Lisa M; Karty, Jacquelyn J; Pikal, Michael J; Hee, Eun; Khan, Mansoor A; Nail, Steven L

    2011-01-01

    A case study has been developed to illustrate one way of incorporating a Quality by Design approach into formulation and process development for a small molecule, freeze-dried parenteral product. Sodium ethacrynate was chosen as the model compound. Principal degradation products of sodium ethacrynate result from hydrolysis of the unsaturated ketone in aqueous solution, and dimer formation from a Diels-Alder condensation in the freeze-dried solid state. When the drug crystallizes in a frozen solution, the eutectic melting temperature is above -5°C. Crystallization in the frozen system is affected by pH in the range of pH 6-8 and buffer concentration in the range of 5-50 mM, where higher pH and lower buffer concentration favor crystallization. Physical state of the drug is critical to solid state stability, given the relative instability of amorphous drug. Stability was shown to vary considerably over the ranges of pH and buffer concentration examined, and vial-to-vial variability in degree of crystallinity is a potential concern. The formulation design space was constructed in terms of pH and drug concentration, and assuming a constant 5 mM concentration of buffer. The process design space is constructed to take into account limitations on the process imposed by the product and by equipment capability.

  19. Temperature Dependent Effects of Elevated CO2 on Shell Composition and Mechanical Properties of Hydroides elegans: Insights from a Multiple Stressor Experiment

    PubMed Central

    Chan, Vera B. S.; Thiyagarajan, Vengatesen; Lu, Xing Wen; Zhang, Tong; Shih, Kaimin

    2013-01-01

    The majority of marine benthic invertebrates protect themselves from predators by producing calcareous tubes or shells that have remarkable mechanical strength. An elevation of CO2 or a decrease in pH in the environment can reduce intracellular pH at the site of calcification and thus interfere with animal’s ability to accrete CaCO3. In nature, decreased pH in combination with stressors associated with climate change may result in the animal producing severely damaged and mechanically weak tubes. This study investigated how the interaction of environmental drivers affects production of calcareous tubes by the serpulid tubeworm, Hydroides elegans. In a factorial manipulative experiment, we analyzed the effects of pH (8.1 and 7.8), salinity (34 and 27‰), and temperature (23°C and 29°C) on the biomineral composition, ultrastructure and mechanical properties of the tubes. At an elevated temperature of 29°C, the tube calcite/aragonite ratio and Mg/Ca ratio were both increased, the Sr/Ca ratio was decreased, and the amorphous CaCO3 content was reduced. Notably, at elevated temperature with decreased pH and reduced salinity, the constructed tubes had a more compact ultrastructure with enhanced hardness and elasticity compared to decreased pH at ambient temperature. Thus, elevated temperature rescued the decreased pH-induced tube impairments. This indicates that tubeworms are likely to thrive in early subtropical summer climate. In the context of climate change, tubeworms could be resilient to the projected near-future decreased pH or salinity as long as surface seawater temperature rise at least by 4°C. PMID:24265732

  20. Combined effects of fermentation temperature and pH on kinetic changes of chemical constituents of durian wine fermented with Saccharomyces cerevisiae.

    PubMed

    Lu, Yuyun; Voon, Marilyn Kai Wen; Huang, Dejian; Lee, Pin-Rou; Liu, Shao-Quan

    2017-04-01

    This study investigated the effects of temperature (20 and 30 °C) and pH (pH 3.1, 3.9) on kinetic changes of chemical constituents of the durian wine fermented with Saccharomyces cerevisiae. Temperature significantly affected growth of S. cerevisiae EC-1118 regardless of pH with a higher temperature leading to a faster cell death. The pH had a more significant effect on ethanol production than temperature with higher production at 20 °C (5.95%, v/v) and 30 °C (5.56%, v/v) at pH 3.9, relative to that at pH 3.1 (5.25 and 5.01%, v/v). However, relatively higher levels of isobutyl alcohol and isoamyl alcohol up to 64.52 ± 6.39 and 56.27 ± 3.00 mg/L, respectively, were produced at pH 3.1 than at pH 3.9 regardless of temperature. In contrast, production of esters was more affected by temperature than pH, where levels of ethyl esters (ethyl esters of octanoate, nonanoate, and decanoate) and acetate esters (ethyl acetate and isoamyl acetate) were significantly higher up to 2.13 ± 0.23 and 4.61 ± 0.22 mg/L, respectively, at 20 °C than at 30 °C. On the other hand, higher temperature improved the reduction of volatile sulfur compounds. This study illustrated that temperature control would be a more effective tool than pH in modulating the resulting aroma compound profile of durian wine.

  1. Modeling heat resistance of Bacillus weihenstephanensis and Bacillus licheniformis spores as function of sporulation temperature and pH.

    PubMed

    Baril, Eugénie; Coroller, Louis; Couvert, Olivier; Leguérinel, Ivan; Postollec, Florence; Boulais, Christophe; Carlin, Frédéric; Mafart, Pierre

    2012-05-01

    Although sporulation environmental factors are known to impact on Bacillus spore heat resistance, they are not integrated into predictive models used to calculate the efficiency of heating processes. This work reports the influence of temperature and pH encountered during sporulation on heat resistance of Bacillus weihenstephanensis KBAB4 and Bacillus licheniformis AD978 spores. A decrease in heat resistance (δ) was observed for spores produced either at low temperature, at high temperature or at acidic pH. Sporulation temperature and pH maximizing the spore heat resistance were identified. Heat sensitivity (z) was not modified whatever the sporulation environmental factors were. A resistance secondary model inspired by the Rosso model was proposed. Sporulation temperatures and pHs minimizing or maximizing the spore heat resistance (T(min(R)), T(opt(R)), T(max(R)), pH(min(R)) and pH(opt(R))) were estimated. The goodness of the model fit was assessed for both studied strains and literature data. The estimation of the sporulation temperature and pH maximizing the spore heat resistance is of great interest to produce spores assessing the spore inactivation in the heating processes applied by the food industry. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Evaluation of High Temperature Properties and Microstructural Characterization of Resistance Spot Welded Steel Lap Shear Joints

    NASA Astrophysics Data System (ADS)

    Gupta, R. K.; Anil Kumar, V.; Panicker, Paul G.

    2016-02-01

    Joining of thin sheets (0.5 mm) of stainless steel 304 and 17-4PH through resistance spot welding is highly challenging especially when joint is used for high temperature applications. Various combinations of stainless steel sheets of thickness 0.5 mm are spot welded and tested at room temperature as well as at high temperatures (800 K, 1,000 K, 1,200 K). Parent metal as well as spot welded joints are tested and characterized. It is observed that joint strength of 17-4PH steel is highest and then dissimilar steel joint of 17-4PH with SS-304 is moderate and of SS-304 is lowest at all the temperatures. Joint strength of 17-4PH steel is found to be >80% of parent metal properties up to 1,000 K then drastic reduction in strength is noted at 1,200 K. Gradual reduction in strength of SS-304 joint with increase in temperature from 800 to 1,200 K is noted. At 1,200 K, joint strength of all combinations of joints is found to be nearly same. Microstructural evaluation of weld nugget after testing at different temperatures shows presence of tempered martensite in 17-4PH containing welds and homogenized structure in stainless steel 304 weld.

  3. Impacts of Ocean Acidification and Temperature Change on Zooxanthellae Density in Coral Stylophora pistillata

    NASA Astrophysics Data System (ADS)

    Pantaleo, G. E.; Martínez Fernández, A.; Paytan, A.

    2016-12-01

    As ocean conditions continue to change, marine ecosystems are significantly impacted. Many calcifying organisms are being affected by the gradual changes in ocean pH and temperature that continue to occur over time. Corals are organisms that engage in a symbiotic relationship with Symbiodinium dinoflagellates (zooxanthellae). Symbiodinium are responsible for photosynthetic activity within oligotrophic waters. Corals depend on high levels of aragonite saturation state of seawater in order to build their skeletal structure. Most corals have a relatively narrow optimal range of temperature and pH in which they thrive. However, it is thought that corals residing in the Gulf of Aqaba (Red Sea) are resilient to the effects of increasing temperature. Stylophora pistillata's response to environmental impacts was tested via a simulation of ocean conditions at a high temperature and high CO2 emission scenario (pH 7.65) and lower CO2 emission scenario (pH 7.85) that are predicted for the end of this century. We present the difference in zooxanthellae density following a short term experiment where corals were placed in seawater tanks at pH 7.65, 7.85 and 8.1 and temperature was increased by 4 degrees C above seawater temperature in order to measure the response of Stylophora pistillata to potential future ocean conditions.

  4. Folates in Asian noodles: II. A comparison of commercial samples and the impact of cooking.

    PubMed

    Bui, Lan T T; Small, Darryl M

    2007-06-01

    The folate contents of 26 commercial noodle samples were investigated. The impact of ingredients, pH, and cooking on folate content was studied for the 3 predominant styles of noodles: white salted, yellow alkaline, and instant. Some variability was found in the proportion of folate present in the free form and the noodles generally had low total folate contents. The pH values of the samples covered a wide range, varying from 3.7 to 10.3; however, the results did not provide strong evidence for a relationship between pH and folate content for any of the noodle styles studied. Higher folate levels were typically found in yellow alkaline samples compared to white salted and instant noodles. The storage of noodles in dry or moist forms did not appear to influence total folate contents, and subsequent losses during cooking depended upon the time of exposure to elevated temperatures. The enzymatic treatment of samples was particularly important for cooked noodles, indicating that folates were bound or entrapped during this process.

  5. Statistical Methodologies for the Optimization of Lipase and Biosurfactant by Ochrobactrum intermedium Strain MZV101 in an Identical Medium for Detergent Applications.

    PubMed

    Ebrahimipour, Gholamhossein; Sadeghi, Hossein; Zarinviarsagh, Mina

    2017-09-11

    The Plackett-Burman design and the Box-Behnken design, statistical methodologies, were employed for the optimization lipase and biosurfactant production by Ochrobactrum intermedium strain MZV101 in an identical broth medium for detergent applications. Environmental factor pH determined to be most mutual significant variables on production. A high concentration of molasses at high temperature and pH has a negative effect on lipase and biosurfactant production by O. intermedium strain MZV101. The chosen mathematical method of medium optimization was sufficient for improving the industrial production of lipase and biosurfactant by bacteria, which were respectively increased 3.46- and 1.89-fold. The duration of maximum production became 24 h shorter, so it was fast and cost-saving. In conclusion, lipase and biosurfactant production by O. intermedium strain MZV101 in an identical culture medium at pH 10.5-11 and 50-60 °C, with 1 g/L of molasses, seemed to be economical, fast, and effective for the enhancement of yield percentage for use in detergent applications.

  6. Acclimatization to high-variance habitats does not enhance physiological tolerance of two key Caribbean corals to future temperature and pH.

    PubMed

    Camp, Emma F; Smith, David J; Evenhuis, Chris; Enochs, Ian; Manzello, Derek; Woodcock, Stephen; Suggett, David J

    2016-05-25

    Corals are acclimatized to populate dynamic habitats that neighbour coral reefs. Habitats such as seagrass beds exhibit broad diel changes in temperature and pH that routinely expose corals to conditions predicted for reefs over the next 50-100 years. However, whether such acclimatization effectively enhances physiological tolerance to, and hence provides refuge against, future climate scenarios remains unknown. Also, whether corals living in low-variance habitats can tolerate present-day high-variance conditions remains untested. We experimentally examined how pH and temperature predicted for the year 2100 affects the growth and physiology of two dominant Caribbean corals (Acropora palmata and Porites astreoides) native to habitats with intrinsically low (outer-reef terrace, LV) and/or high (neighbouring seagrass, HV) environmental variance. Under present-day temperature and pH, growth and metabolic rates (calcification, respiration and photosynthesis) were unchanged for HV versus LV populations. Superimposing future climate scenarios onto the HV and LV conditions did not result in any enhanced tolerance to colonies native to HV. Calcification rates were always lower for elevated temperature and/or reduced pH. Together, these results suggest that seagrass habitats may not serve as refugia against climate change if the magnitude of future temperature and pH changes is equivalent to neighbouring reef habitats. © 2016 The Author(s).

  7. Acclimatization to high-variance habitats does not enhance physiological tolerance of two key Caribbean corals to future temperature and pH

    PubMed Central

    Smith, David J.; Evenhuis, Chris; Enochs, Ian; Manzello, Derek; Woodcock, Stephen; Suggett, David J.

    2016-01-01

    Corals are acclimatized to populate dynamic habitats that neighbour coral reefs. Habitats such as seagrass beds exhibit broad diel changes in temperature and pH that routinely expose corals to conditions predicted for reefs over the next 50–100 years. However, whether such acclimatization effectively enhances physiological tolerance to, and hence provides refuge against, future climate scenarios remains unknown. Also, whether corals living in low-variance habitats can tolerate present-day high-variance conditions remains untested. We experimentally examined how pH and temperature predicted for the year 2100 affects the growth and physiology of two dominant Caribbean corals (Acropora palmata and Porites astreoides) native to habitats with intrinsically low (outer-reef terrace, LV) and/or high (neighbouring seagrass, HV) environmental variance. Under present-day temperature and pH, growth and metabolic rates (calcification, respiration and photosynthesis) were unchanged for HV versus LV populations. Superimposing future climate scenarios onto the HV and LV conditions did not result in any enhanced tolerance to colonies native to HV. Calcification rates were always lower for elevated temperature and/or reduced pH. Together, these results suggest that seagrass habitats may not serve as refugia against climate change if the magnitude of future temperature and pH changes is equivalent to neighbouring reef habitats. PMID:27194698

  8. Northern Russian chironomid-based modern summer temperature data set and inference models

    NASA Astrophysics Data System (ADS)

    Nazarova, Larisa; Self, Angela E.; Brooks, Stephen J.; van Hardenbroek, Maarten; Herzschuh, Ulrike; Diekmann, Bernhard

    2015-11-01

    West and East Siberian data sets and 55 new sites were merged based on the high taxonomic similarity, and the strong relationship between mean July air temperature and the distribution of chironomid taxa in both data sets compared with other environmental parameters. Multivariate statistical analysis of chironomid and environmental data from the combined data set consisting of 268 lakes, located in northern Russia, suggests that mean July air temperature explains the greatest amount of variance in chironomid distribution compared with other measured variables (latitude, longitude, altitude, water depth, lake surface area, pH, conductivity, mean January air temperature, mean July air temperature, and continentality). We established two robust inference models to reconstruct mean summer air temperatures from subfossil chironomids based on ecological and geographical approaches. The North Russian 2-component WA-PLS model (RMSEPJack = 1.35 °C, rJack2 = 0.87) can be recommended for application in palaeoclimatic studies in northern Russia. Based on distinctive chironomid fauna and climatic regimes of Kamchatka the Far East 2-component WAPLS model (RMSEPJack = 1.3 °C, rJack2 = 0.81) has potentially better applicability in Kamchatka.

  9. Optimisation of the reaction conditions for the production of cross-linked starch with high resistant starch content.

    PubMed

    Kahraman, Kevser; Koksel, Hamit; Ng, Perry K W

    2015-05-01

    The optimum reaction conditions (temperature and pH) for the preparation of cross-linked (CL) corn and wheat starches with maximum resistant starch (RS) content were investigated by using response surface methodology (RSM). According to the preliminary results, five levels were selected for reaction temperature (38-70 °C) and pH (10-12) in the main study. RS contents of the CL corn and wheat starch samples increased with increasing temperature and pH, and pH had a greater influence on RS content than had temperature. The maximum RS content (with a maximum p value of 0.4%) was obtained in wheat starch cross-linked at 38 °C and pH 12. In the case of CL corn starch, the optimum condition was 70 °C and pH 12. CL corn and wheat starch samples were also produced separately under the optimum conditions and their RS contents were 80.4% and 83.9%, respectively. These results were also in agreement with the values predicted by RSM. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Optimization study of ethanolic fermentation from oil palm trunk, rubberwood and mixed hardwood hydrolysates using Saccharomyces cerevisiae.

    PubMed

    Chin, K L; H'ng, P S; Wong, L J; Tey, B T; Paridah, M T

    2010-05-01

    Ethanolic fermentation using Saccharomyces cerevisiae was carried out on three types of hydrolysates produced from lignocelulosic biomass which are commonly found in Malaysia such as oil palm trunk, rubberwood and mixed hardwood. The effect of fermentation temperature and pH of hydrolysate was evaluated to optimize the fermentation efficiency which defined as maximum ethanol yield in minimum fermentation time. The fermentation process using different temperature of 25 degrees Celsius, 30 degrees Celsius and 40 degrees Celsius were performed on the prepared fermentation medium adjusted to pH 4, pH 6 and pH 7, respectively. Results showed that the fermentation time was significantly reduced with the increase of temperature but an adverse reduction in ethanol yield was observed using temperature of 40 degrees Celsius. As the pH of hydrolysate became more acidic, the ethanol yield increased. Optimum fermentation efficiency for ethanolic fermentation of lignocellulosic hydrolysates using S. cerevisiae can be obtained using 33.2 degrees Celsius and pH 5.3. Copyright 2009 Elsevier Ltd. All rights reserved.

  11. Carbon System Dynamics within the Papahānaumokuākea Marine National Monument

    NASA Astrophysics Data System (ADS)

    Kealoha, A. K.; Winn, C. D.; Kahng, S.; Alin, S. R.; Mackenzie, F. T.; Kosaki, R.

    2013-12-01

    Continuous underway measurements of atmospheric CO2, oceanic pCO2, pH, salinity, temperature, and oxygen were collected in surface waters within Papahānaumokuākea Marine National Monument (PMNM). Transects were conducted in the summers of 2011 and 2012 and encompassed the entire length of monument waters from approximately 21° to 28°N. Discrete samples were obtained from the underway system for the determination of spectrophotometric pH and titration alkalinity. The discrete pH samples were used to assess the consistency of the underway pH electrode and indicate that the electrode generated consistent and precise data over the duration of each cruise. The underway data collected over the entire transects show considerable variability in carbon parameters and reflects mainly the intense biological activity that occurs within coral reef ecosystems in and around the atolls comprising the Northwestern Hawaiian Archipelago. The impact of organic and inorganic metabolism on the carbon system in nearshore water was based primarily on measurements taken at French Frigate Shoals (FFS), where our most intense sampling occurred. For this analysis, all of the data collected within the area encompassed by the atoll and the surrounding ocean roughly 10 km from the 50-meter depth contour were included. These data, which span an approximate 300-km2 area, clearly show that nearshore metabolic processes influence surface water chemistry out to at least 10 km away from the shallow-water environment. Our data also show that, while the spatio-temporal complexities associated with analyzing underway data can complicate the interpretation of pCO2 and pH variability, an obvious diel trend in total alkalinity (TA) was apparent. In addition, plotting temporal changes in total dissolved inorganic carbon (DIC) and TA revealed the relative contributions of organic and inorganic metabolism to net reef metabolism.

  12. Diverging seasonal extremes for ocean acidification during the twenty-first century

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Lester; Orr, James C.

    2018-01-01

    How ocean acidification will affect marine organisms depends on changes in both the long-term mean and the short-term temporal variability of carbonate chemistry1-8. Although the decadal-to-centennial response to atmospheric CO2 and climate change is constrained by observations and models1, 9, little is known about corresponding changes in seasonality10-12, particularly for pH. Here we assess the latter by analysing nine earth system models (ESMs) forced with a business-as-usual emissions scenario13. During the twenty-first century, the seasonal cycle of surface-ocean pH was attenuated by 16 ± 7%, on average, whereas that for hydrogen ion concentration [H+] was amplified by 81 ± 16%. Simultaneously, the seasonal amplitude of the aragonite saturation state (Ωarag) was attenuated except in the subtropics, where it was amplified. These contrasting changes derive from regionally varying sensitivities of these variables to atmospheric CO2 and climate change and to diverging trends in seasonal extremes in the primary controlling variables (temperature, dissolved inorganic carbon and alkalinity). Projected seasonality changes will tend to exacerbate the impacts of increasing [H+] on marine organisms during the summer and ameliorate the impacts during the winter, although the opposite holds in the high latitudes. Similarly, over most of the ocean, impacts from declining Ωarag are likely to be intensified during the summer and dampened during the winter.

  13. Transient Earth system responses to cumulative carbon dioxide emissions: linearities, uncertainties, and probabilities in an observation-constrained model ensemble

    NASA Astrophysics Data System (ADS)

    Steinacher, M.; Joos, F.

    2016-02-01

    Information on the relationship between cumulative fossil CO2 emissions and multiple climate targets is essential to design emission mitigation and climate adaptation strategies. In this study, the transient response of a climate or environmental variable per trillion tonnes of CO2 emissions, termed TRE, is quantified for a set of impact-relevant climate variables and from a large set of multi-forcing scenarios extended to year 2300 towards stabilization. An ˜ 1000-member ensemble of the Bern3D-LPJ carbon-climate model is applied and model outcomes are constrained by 26 physical and biogeochemical observational data sets in a Bayesian, Monte Carlo-type framework. Uncertainties in TRE estimates include both scenario uncertainty and model response uncertainty. Cumulative fossil emissions of 1000 Gt C result in a global mean surface air temperature change of 1.9 °C (68 % confidence interval (c.i.): 1.3 to 2.7 °C), a decrease in surface ocean pH of 0.19 (0.18 to 0.22), and a steric sea level rise of 20 cm (13 to 27 cm until 2300). Linearity between cumulative emissions and transient response is high for pH and reasonably high for surface air and sea surface temperatures, but less pronounced for changes in Atlantic meridional overturning, Southern Ocean and tropical surface water saturation with respect to biogenic structures of calcium carbonate, and carbon stocks in soils. The constrained model ensemble is also applied to determine the response to a pulse-like emission and in idealized CO2-only simulations. The transient climate response is constrained, primarily by long-term ocean heat observations, to 1.7 °C (68 % c.i.: 1.3 to 2.2 °C) and the equilibrium climate sensitivity to 2.9 °C (2.0 to 4.2 °C). This is consistent with results by CMIP5 models but inconsistent with recent studies that relied on short-term air temperature data affected by natural climate variability.

  14. Variables affecting efficiency of molasses fermentation wastewater ozonation.

    PubMed

    Coca, M; Peña, M; González, G

    2005-09-01

    The main operating variables affecting ozonation efficiencies of wastewater from beet molasses alcoholic fermentation have been studied. Semibatch experiments have been performed in order to analyze the influence of pH, bicarbonate ion, temperature and stirring rate on color and organic matter removals. The efficiencies were similar regardless of the pH, which indicates that direct reactions of ozone with wastewater organics were predominant to radical reactions. Gel permeation chromatography confirmed the reduction in the concentration of organics absorbing light at 475 nm after ozonation. The elimination of bicarbonate ion, strong inhibitor of hydroxyl radical reactions, yielded an improvement in both color and COD reduction efficiencies. Acidification for removing bicarbonate ions produced a shift of colored compounds to smaller molecular weights. The highest efficiencies were achieved at 40 degrees C. Color and COD reductions at 40 degrees C were about 90% and 37%, respectively. In no case, the percentage of TOC removed was higher than 10-15%. Stirring rate had a slightly positive effect during the first stage of the ozonation showing that mass transfer played a role only during the initial reaction phase when direct attack of ozone molecules to aromatic/olefinic structures of colored substances was the predominant pathway.

  15. Biotic and abiotic variables influencing plant litter breakdown in streams: a global study.

    PubMed

    Boyero, Luz; Pearson, Richard G; Hui, Cang; Gessner, Mark O; Pérez, Javier; Alexandrou, Markos A; Graça, Manuel A S; Cardinale, Bradley J; Albariño, Ricardo J; Arunachalam, Muthukumarasamy; Barmuta, Leon A; Boulton, Andrew J; Bruder, Andreas; Callisto, Marcos; Chauvet, Eric; Death, Russell G; Dudgeon, David; Encalada, Andrea C; Ferreira, Verónica; Figueroa, Ricardo; Flecker, Alexander S; Gonçalves, José F; Helson, Julie; Iwata, Tomoya; Jinggut, Tajang; Mathooko, Jude; Mathuriau, Catherine; M'Erimba, Charles; Moretti, Marcelo S; Pringle, Catherine M; Ramírez, Alonso; Ratnarajah, Lavenia; Rincon, José; Yule, Catherine M

    2016-04-27

    Plant litter breakdown is a key ecological process in terrestrial and freshwater ecosystems. Streams and rivers, in particular, contribute substantially to global carbon fluxes. However, there is little information available on the relative roles of different drivers of plant litter breakdown in fresh waters, particularly at large scales. We present a global-scale study of litter breakdown in streams to compare the roles of biotic, climatic and other environmental factors on breakdown rates. We conducted an experiment in 24 streams encompassing latitudes from 47.8° N to 42.8° S, using litter mixtures of local species differing in quality and phylogenetic diversity (PD), and alder (Alnus glutinosa) to control for variation in litter traits. Our models revealed that breakdown of alder was driven by climate, with some influence of pH, whereas variation in breakdown of litter mixtures was explained mainly by litter quality and PD. Effects of litter quality and PD and stream pH were more positive at higher temperatures, indicating that different mechanisms may operate at different latitudes. These results reflect global variability caused by multiple factors, but unexplained variance points to the need for expanded global-scale comparisons. © 2016 The Author(s).

  16. Bioprocessing of wheat bran for the production of lignocellulolytic enzyme cocktail by Cotylidia pannosa under submerged conditions.

    PubMed

    Sharma, Deepika; Garlapat, Vijay Kumar; Goel, Gunjan

    2016-04-02

    Characterization and production of efficient lignocellulytic enzyme cocktails for biomass conversion is the need for biofuel industry. The present investigation reports the modeling and optimization studies of lignocellulolytic enzyme cocktail production by Cotylidia pannosa under submerged conditions. The predominant enzyme activities of cellulase, xylanase and laccase were produced in the cocktail through submerged conditions using wheat bran as a substrate. A central composite design approach was utilized to model the production process using temperature, pH, incubation time and agitation as input variables with the goal of optimizing the output variables namely cellulase, xylanase and laccase activities. The effect of individual, square and interaction terms on cellulase, xylanase and laccase activities were depicted through the non-linear regression equations with significant R(2) and P-values. An optimized value of 20 U/ml, 17 U/ml and 13 U/ml of cellulase, xylanase and laccase activities, respectively, were obtained with a media pH of 5.0 in 77 h at 31C, 140 rpm using wheatbran as a substrate. Overall, the present study introduces a fungal strain, capable of producing lignocellulolytic enzyme cocktail for subsequent applications in biofuel industry.

  17. Biotic and abiotic variables influencing plant litter breakdown in streams: a global study

    PubMed Central

    Pearson, Richard G.; Hui, Cang; Gessner, Mark O.; Pérez, Javier; Alexandrou, Markos A.; Graça, Manuel A. S.; Cardinale, Bradley J.; Albariño, Ricardo J.; Arunachalam, Muthukumarasamy; Barmuta, Leon A.; Boulton, Andrew J.; Bruder, Andreas; Callisto, Marcos; Chauvet, Eric; Death, Russell G.; Dudgeon, David; Encalada, Andrea C.; Ferreira, Verónica; Figueroa, Ricardo; Flecker, Alexander S.; Gonçalves, José F.; Helson, Julie; Iwata, Tomoya; Jinggut, Tajang; Mathooko, Jude; Mathuriau, Catherine; M'Erimba, Charles; Moretti, Marcelo S.; Pringle, Catherine M.; Ramírez, Alonso; Ratnarajah, Lavenia; Rincon, José; Yule, Catherine M.

    2016-01-01

    Plant litter breakdown is a key ecological process in terrestrial and freshwater ecosystems. Streams and rivers, in particular, contribute substantially to global carbon fluxes. However, there is little information available on the relative roles of different drivers of plant litter breakdown in fresh waters, particularly at large scales. We present a global-scale study of litter breakdown in streams to compare the roles of biotic, climatic and other environmental factors on breakdown rates. We conducted an experiment in 24 streams encompassing latitudes from 47.8° N to 42.8° S, using litter mixtures of local species differing in quality and phylogenetic diversity (PD), and alder (Alnus glutinosa) to control for variation in litter traits. Our models revealed that breakdown of alder was driven by climate, with some influence of pH, whereas variation in breakdown of litter mixtures was explained mainly by litter quality and PD. Effects of litter quality and PD and stream pH were more positive at higher temperatures, indicating that different mechanisms may operate at different latitudes. These results reflect global variability caused by multiple factors, but unexplained variance points to the need for expanded global-scale comparisons. PMID:27122551

  18. Bioprocessing of wheat bran for the production of lignocellulolytic enzyme cocktail by Cotylidia pannosa under submerged conditions

    PubMed Central

    Sharma, Deepika; Garlapat, Vijay Kumar; Goel, Gunjan

    2016-01-01

    ABSTRACT Characterization and production of efficient lignocellulytic enzyme cocktails for biomass conversion is the need for biofuel industry. The present investigation reports the modeling and optimization studies of lignocellulolytic enzyme cocktail production by Cotylidia pannosa under submerged conditions. The predominant enzyme activities of cellulase, xylanase and laccase were produced in the cocktail through submerged conditions using wheat bran as a substrate. A central composite design approach was utilized to model the production process using temperature, pH, incubation time and agitation as input variables with the goal of optimizing the output variables namely cellulase, xylanase and laccase activities. The effect of individual, square and interaction terms on cellulase, xylanase and laccase activities were depicted through the non-linear regression equations with significant R2 and P-values. An optimized value of 20 U/ml, 17 U/ml and 13 U/ml of cellulase, xylanase and laccase activities, respectively, were obtained with a media pH of 5.0 in 77 h at 31C, 140 rpm using wheatbran as a substrate. Overall, the present study introduces a fungal strain, capable of producing lignocellulolytic enzyme cocktail for subsequent applications in biofuel industry. PMID:26941214

  19. Structural, morphological and steady state photoluminescence spectroscopy studies of red Eu(3+)-doped Y2O3 nanophosphors prepared by the sol-gel method.

    PubMed

    Lamiri, Lyes; Guerbous, Lakhdar; Samah, Madani; Boukerika, Allaoua; Ouhenia, Salim

    2015-12-01

    Europium trivalent (Eu(3+))-doped Y2O3 nanopowders of different concentrations (0.5, 2.5, 5 or 7 at.%) were synthesized by the sol-gel method, at different pH values (pH 2, 5 or 8) and annealing temperatures (600 °C, 800 °C or 1000 °C). The nanopowders samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FT-IR) and steady state photoluminescence spectroscopy. The effect of pH of solution and annealing temperatures on structural, morphological and photoluminescence properties of Eu(3+)-doped Y2O3 were studied and are discussed. It was found that the average crystallite size of the nanopowders increased with increasing pH and annealing temperature values. The Y2O3:Eu(3+) material presented different morphology and its evolution depended on the pH value and the annealing temperature. Activation energies at different pH values were determined and are discussed. Under ultraviolet (UV) light excitation, Y2O3:Eu(3+) showed narrow emission peaks corresponding to the (5)D0- (7) FJ (J = 0, 1, 2 and 3) transitions of the Eu(3+) ion, with the most intense red emission at 611 assigned to forced electric dipole (5)D0 → (7)F2. The emission intensity became more intense with increasing annealing temperature and pH values, related to the improvement of crystalline quality. For the 1000 °C annealing temperature, the emission intensity presented a maximum at pH 5 related to the uniform cubic-shaped particles. It was found that for lower annealing temperatures (small crystallite size) the CTB (charge transfer band) position presented a red shift. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Hyperthermophilic archaeal prefoldin shows refolding activity at low temperature.

    PubMed

    Zako, Tamotsu; Banba, Shinya; Sahlan, Muhamad; Sakono, Masafumi; Terada, Naofumi; Yohda, Masafumi; Maeda, Mizuo

    2010-01-01

    Prefoldin is a molecular chaperone that captures a protein-folding intermediate and transfers it to a group II chaperonin for correct folding. Previous studies of archaeal prefoldins have shown that prefoldin only possesses holdase activity and is unable to fold unfolded proteins by itself. In this study, we have demonstrated for the first time that a prefoldin from hyperthermophilic archaeon, Pyrococcus horikoshii OT3 (PhPFD), exhibits refolding activity for denatured lysozyme at temperatures relatively lower than physiologically active temperatures. The interaction between PhPFD and denatured lysozyme was investigated by use of a surface plasmon resonance sensor at various temperatures. Although PhPFD showed strong affinity for denatured lysozyme at high temperature, it exhibited relatively weak interactions at lower temperature. The protein-folding seems to occur through binding and release from PhPFD by virtue of the weak affinity. Our results also imply that prefoldin might be able to contribute to the folding of some cellular proteins whose affinity with prefoldin is weak. Copyright 2009 Elsevier Inc. All rights reserved.

  1. Passive microwave mapping of ice thickness. Final Report. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Apinis, J. J.; Peake, W. H.

    1976-01-01

    Basic calculations are presented for evaluating the feasibility of a scanning microwave radiometer system for mapping the thickness of lake ice. An analytical model for the apparent brightness temperature as a function of ice thickness has been developed, and elaborated to include such variables as galactic and atmospheric noise, aspect angle, polarization, temperature gradient in the ice, the presence of transition layers such as snow, slush, and water, increased loss due to air inclusions in the ice layer, and the presence of multiple ice thicknesses within the antenna footprint. It was found that brightness temperature measurements at six or seven frequencies in the range of 0.4 to 0.7 GHz were required to obtain unambiquous thickness estimates. A number of data processing methods were examined. The effects of antenna beamwidth, scanning rate, receiver bandwidth, noise figure, and integration time were studied.

  2. Control of thermal balance by a liquid circulating garment based on a mathematical representation of the human thermoregulatory system. Ph.D. Thesis - California Univ., Berkeley

    NASA Technical Reports Server (NTRS)

    Kuznetz, L. H.

    1976-01-01

    Test data and a mathematical model of the human thermoregulatory system were used to investigate control of thermal balance by means of a liquid circulating garment (LCG). The test data were derived from five series of experiments in which environmental and metabolic conditions were varied parametrically as a function of several independent variables, including LCG flowrate, LCG inlet temperature, net environmental heat exchange, surrounding gas ventilation rate, ambient pressure, metabolic rate, and subjective/obligatory cooling control. The resultant data were used to relate skin temperature to LCG water temperature and flowrate, to assess a thermal comfort band, to demonstrate the relationship between metabolic rate and LCG heat dissipation, and so forth. The usefulness of the mathematical model as a tool for data interpretation and for generation of trends and relationships among the various physiological parameters was also investigated and verified.

  3. Measured solubilities and speciations from oversaturation experiments of neptunium, plutonium, and americium in UE-25p No. 1 well water from the Yucca Mountain region: Milestone report 3329-WBS1.2.3.4.1.3.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nitsche, H.; Roberts, K.; Prussin, T.

    1994-04-01

    Solubility and speciation are important in understanding aqueous radionuclide transport through the geosphere. They define the source term for transport retardation processes such as sorption and colloid formation. Solubility and speciation data are useful in verifying the validity of geochemical codes that are a part of predictive transport models. Results are presented from solubility and speciation experiments of {sup 237}NpO{sub 2}{sup +}, {sup 239}Pu{sup 4+}, and {sup 241}Am{sup 3+}/Nd{sup 3+} in a modified UE-25p No. 1 groundwater (from the Yucca Mountain region, Nevada, which is being investigated as a potential high-level nuclear waste disposal site) at two different temperatures (25{degree}more » and 60{degree}C) and three pH values (6.0, 7.0, 8.5). The solubility-controlling steady-state solids were identified and the speciation and/or oxidation states present in the supernatant solutions were determined. The neptunium solubility decreased with increasing temperature and pH. Plutonium concentrations significantly decreased with increasing temperature at pH 6 and 7. The concentration at pH 8.5 hardly decreased at all with increasing temperature. At both temperatures the concentrations were highest at pH 8.5, lowest at pH 7, and in between at pH 6. For the americium/neodymium solutions, the solubility decreased significantly with increasing temperature and increased somewhat with increasing pH.« less

  4. Photobleaching of chromophoric dissolved organic matter (CDOM) in the Yangtze River estuary: kinetics and effects of temperature, pH, and salinity.

    PubMed

    Song, Guisheng; Li, Yijie; Hu, Suzheng; Li, Guiju; Zhao, Ruihua; Sun, Xin; Xie, Huixiang

    2017-06-21

    The kinetics and temperature-, pH- and salinity-dependences of photobleaching of chromophoric dissolved organic matter (CDOM) in the Yangtze River estuary (YRE) were evaluated using laboratory solar-simulated irradiation and compared to those of Suwannee River humic substances (SRHSs). Nearly all CDOM in water at the head of the estuary (headwater herein) was photobleachable in both summer and winter, while significant fractions of CDOM (13-29%) were resistant to photobleaching in saltier waters. The photobleaching rate constant in the headwater was 25% higher in summer than that in winter. The absorbed photon-based photobleaching efficiency (PE) increased with temperature following the linear Arrhenius equation. For a 20 °C increase in temperature, PE increased by ∼45% in the headwater and by 70-81% in the saltier waters. PE for YRE samples exhibited minima at pH from 6 to 7 and increased with both lower and higher pH values, contrasting the consistent increase in PE with pH shown by SRHSs. No consistent effect of salinity on PE was observed for both SRHSs and YRE samples. Photobleaching increased the spectral slope coefficient between 275 nm and 295 nm in summer, consistent with the behavior of SRHSs, but decreased it in winter, implying a difference in the molecular composition of chromophores between the two seasons. Temperature, salinity, and pH modified the photoalteration of the spectral shape but their effects varied spatially and seasonally. This study demonstrates that CDOM quality, temperature, and pH should be incorporated into models involving quantification of photobleaching.

  5. Validation of a portable, waterproof blood pH analyser for elasmobranchs.

    PubMed

    Talwar, Brendan; Bouyoucos, Ian A; Shipley, Oliver; Rummer, Jodie L; Mandelman, John W; Brooks, Edward J; Grubbs, R Dean

    2017-01-01

    Quantifying changes in blood chemistry in elasmobranchs can provide insights into the physiological insults caused by anthropogenic stress, and can ultimately inform conservation and management strategies. Current methods for analysing elasmobranch blood chemistry in the field are often costly and logistically challenging. We compared blood pH values measured using a portable, waterproof pH meter (Hanna Instruments HI 99161) with blood pH values measured by an i-STAT system (CG4+ cartridges), which was previously validated for teleost and elasmobranch fishes, to gauge the accuracy of the pH meter in determining whole blood pH for the Cuban dogfish ( Squalus cubensis ) and lemon shark ( Negaprion brevirostris ). There was a significant linear relationship between values derived via the pH meter and the i-STAT for both species across a wide range of pH values and temperatures (Cuban dogfish: 6.8-7.1 pH 24-30°C; lemon sharks: 7.0-7.45 pH 25-31°C). The relative error in the pH meter's measurements was ~±2.7%. Using this device with appropriate correction factors and consideration of calibration temperatures can result in both a rapid and accurate assessment of whole blood pH, at least for the two elasmobranch species examined here. Additional species should be examined in the future across a wide range of temperatures to determine whether correction factors are universal.

  6. Spectrophotometric analysis of flavonoid-DNA binding interactions at physiological conditions

    NASA Astrophysics Data System (ADS)

    Janjua, Naveed Kausar; Siddiqa, Asima; Yaqub, Azra; Sabahat, Sana; Qureshi, Rumana; Haque, Sayed ul

    2009-12-01

    Mode of interactions of three flavonoids [morin (M), quercetin (Q), and rutin (R)] with chicken blood ds.DNA (ck.DNA) has been investigated spectrophotometrically at different temperatures including body temperature (310 K) and at two physiological pH values, i.e. 7.4 (human blood pH) and 4.7 (stomach pH). The binding constants, Kf, evaluated using Benesi-Hildebrand equation showed that the flavonoids bind effectively through intercalation at both pH values and body temperature. Quercetin, somehow, showed greater binding capabilities with DNA. The free energies of flavonoid-DNA complexes indicated the spontaneity of their binding. The order of binding constants of three flavonoids at both pH values were found to be Kf(Q) > Kf(R) > Kf(M) and at 310 K.

  7. Temperature and pH sensors based on graphenic materials.

    PubMed

    Salvo, P; Calisi, N; Melai, B; Cortigiani, B; Mannini, M; Caneschi, A; Lorenzetti, G; Paoletti, C; Lomonaco, T; Paolicchi, A; Scataglini, I; Dini, V; Romanelli, M; Fuoco, R; Di Francesco, F

    2017-05-15

    Point-of-care applications and patients' real-time monitoring outside a clinical setting would require disposable and durable sensors to provide better therapies and quality of life for patients. This paper describes the fabrication and performances of a temperature and a pH sensor on a biocompatible and wearable board for healthcare applications. The temperature sensor was based on a reduced graphene oxide (rGO) layer that changed its electrical resistivity with the temperature. When tested in a human serum sample between 25 and 43°C, the sensor had a sensitivity of 110±10Ω/°C and an error of 0.4±0.1°C compared with the reference value set in a thermostatic bath. The pH sensor, based on a graphene oxide (GO) sensitive layer, had a sensitivity of 40±4mV/pH in the pH range between 4 and 10. Five sensor prototypes were tested in a human serum sample over one week and the maximum deviation of the average response from reference values obtained by a glass electrode was 0.2pH units. For biological applications, the temperature and pH sensors were successfully tested for in vitro cytotoxicity with human fibroblast cells (MRC-5) over 24h. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Vulnerability of the calcifying larval stage of the Antarctic sea urchin Sterechinus neumayeri to near-future ocean acidification and warming.

    PubMed

    Byrne, Maria; Ho, Melanie A; Koleits, Lucas; Price, Casandra; King, Catherine K; Virtue, Patti; Tilbrook, Bronte; Lamare, Miles

    2013-07-01

    Stenothermal polar benthic marine invertebrates are highly sensitive to environmental perturbations but little is known about potential synergistic effects of concurrent ocean warming and acidification on development of their embryos and larvae. We examined the effects of these stressors on development to the calcifying larval stage in the Antarctic sea urchin Sterechinus neumayeri in embryos reared in present and future (2100+) ocean conditions from fertilization. Embryos were reared in 2 temperature (ambient: -1.0 °C, + 2 °C : 1.0 °C) and 3 pH (ambient: pH 8.0, -0.2-0.4 pH units: 7.8,7.6) levels. Principle coordinates analysis on five larval metrics showed a significant effect of temperature and pH on the pattern of growth. Within each temperature, larvae were separated by pH treatment, a pattern primarily influenced by larval arm and body length. Growth was accelerated by temperature with a 20-28% increase in postoral (PO) length at +2 °C across all pH levels. Growth was strongly depressed by reduced pH with a 8-19% decrease in PO length at pH 7.6-7.8 at both temperatures. The boost in growth caused by warming resulted in larvae that were larger than would be observed if acidification was examined in the absence of warming. However, there was no significant interaction between these stressors. The increase in left-right asymmetry and altered body allometry indicated that decreased pH disrupted developmental patterning and acted as a teratogen (agent causing developmental malformation). Decreased developmental success with just a 2 °C warming indicates that development in S. neumayeri is particularly sensitive to increased temperature. Increased temperature also altered larval allometry. Altered body shape impairs swimming and feeding in echinoplutei. In the absence of adaptation, it appears that the larval phase may be a bottleneck for survivorship of S. neumayeri in a changing ocean in a location where poleward migration to escape inhospitable conditions is not possible. © 2013 Blackwell Publishing Ltd.

  9. 40 CFR 411.15 - Standards of performance for new sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... exceed 3 °C rise above inlet temperature. pH Within the range 6.0 to 9.0. English units (lb/1,000 lb of product) TSS 0.005. Temperature (heat) Not to exceed 3 °C rise above inlet temperature. pH Within the...

  10. 40 CFR 411.15 - Standards of performance for new sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... exceed 3 °C rise above inlet temperature. pH Within the range 6.0 to 9.0. English units (lb/1,000 lb of product) TSS 0.005. Temperature (heat) Not to exceed 3 °C rise above inlet temperature. pH Within the...

  11. Nanoparticle-based measurements of pH and O2 dynamics in the rhizosphere of Zostera marina L.: effects of temperature elevation and light-dark transitions.

    PubMed

    Elgetti Brodersen, Kasper; Koren, Klaus; Lichtenberg, Mads; Kühl, Michael

    2016-07-01

    Seagrasses can modulate the geochemical conditions in their immediate rhizosphere through the release of chemical compounds from their below-ground tissue. This is a vital chemical defence mechanism, whereby the plants detoxify the surrounding sediment. Using novel nanoparticle-based optical O2 and pH sensors incorporated in reduced and transparent artificial sediment, we investigated the spatio-temporal dynamics of pH and O2 within the entire rhizosphere of Zostera marina L. during experimental manipulations of light and temperature. We combined such measurements with O2 microsensor measurements of the photosynthetic productivity and respiration of seagrass leaves. We found pronounced pH and O2 microheterogeneity within the immediate rhizosphere of Z. marina, with higher below-ground tissue oxidation capability and rhizoplane pH levels during both light exposure of the leaf canopy and elevated temperature, where the temperature-mediated stimuli of biogeochemical processes seemed to predominate. Low rhizosphere pH microenvironments appeared to correlate with plant-derived oxic microzones stimulating local sulphide oxidation and thus driving local proton generation, although the rhizoplane pH levels generally where much higher than the bulk sediment pH. Our data show that Z. marina can actively alter its rhizosphere pH microenvironment alleviating the local H2 S toxicity and enhancing nutrient availability in the adjacent sediment via geochemical speciation shift. © 2016 John Wiley & Sons Ltd.

  12. Optimisation of low temperature extraction of banana juice using commercial pectinase.

    PubMed

    Sagu, Sorel Tchewonpi; Nso, Emmanuel Jong; Karmakar, Sankha; De, Sirshendu

    2014-05-15

    The objective of this work was to develop a process with optimum conditions for banana juice. The procedure involves hydrolyzing the banana pulp by commercial pectinase followed by cloth filtration. Response surface methodology with Doehlert design was utilised to optimize the process parameters. The temperature of incubation (30-60 °C), time of reaction (20-120 min) and concentration of pectinase (0.01-0.05% v/w) were the independent variables and viscosity, clarity, alcohol insoluble solids (AIS), total polyphenol and protein concentration were the responses. Total soluble sugar, pH, conductivity, calcium, sodium and potassium concentration in the juice were also evaluated. The results showed reduction of AIS and viscosity with reaction time and pectinase concentration and reduction of polyphenol and protein concentration with temperature. Using numerical optimization, the optimum conditions for the enzymatic extraction of banana juice were estimated. Depectinization kinetics was also studied at optimum temperature and variation of kinetic constants with enzyme dose was evaluated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Surface-water-quality assessment of the Upper Illinois River basin in Illinois, Indiana, and Wisconsin; cross-sectional and depth variation of water-quality constituents and properties in the Upper Illinois River basin, 1987-88

    USGS Publications Warehouse

    Marron, Donna C.; Blanchard, Stephen F.

    1995-01-01

    Data on water velocity, temperature, specific con- ductance, pH, dissolved oxygen concentration, chlorophyll concentration, suspended sediment con- centration, fecal-coliform counts, and the percen- tage of suspended sediment finer than 62 micrometers ranged up to 21 percent; and cross-section coefficients of variation of the concentrations of suspended sediment, fecal coliform, and chlorophyll ranged from 7 to 115 percent. Midchannel measure- ments of temperature, specific conductance, and pH were within 5 percent of mean cross-sectional values of these properties at the eight sampling sites, most of which appear well mixed because of the effect of dams and reservoirs. Measurements of the concentration of dissolved oxygen at various cross- section locations and at variable sampling depths are required to obtain a representative value of this constituent at these sites. The large varia- bility of concentrations of chlorophyll and suspended sediment, and fecal-coliform counts at the eight sampling sites indicates that composite rather than midchannel or mean values of these constituents are likely to be most representative of the channel cross section.

  14. Microencapsulation of Theobroma cacao L. waste extract: optimization using response surface methodology.

    PubMed

    Gabbay Alves, Taís Vanessa; Silva da Costa, Russany; Aliakbarian, Bahar; Casazza, Alessandro Alberto; Perego, Patrizia; Carréra Silva Júnior, José Otávio; Ribeiro Costa, Roseane Maria; Converti, Attilio

    2017-03-01

    The cocoa extract (Theobroma cacao L.) has a significant amount of polyphenols (TP) with potent antioxidant activity (AA). This study aims to optimise microencapsulation of the extract of cocoa waste using chitosan and maltodextrin. Microencapsulation tests were performed according to a Box-Behnken factorial design, and the results were evaluated by response surface methodology with temperature, maltodextrin concentration (MD) and extract flowrate (EF) as independent variables, and the fraction of encapsulated TP, TP encapsulation yield, AA, yield of drying and solubility index as responses. The optimum conditions were: inlet temperature of 170 °C, MD of 5% and EF of 2.5 mL/min. HPLC analysis identified epicatechin as the major component of both the extract and microparticles. TP release was faster at pH 3.5 than in water. These results as a whole suggest that microencapsulation was successful and the final product can be used as a nutrient source for aquatic animal feed. Highlights Microencapsulation is optimised according to a factorial design of the Box-Behnken type. Epicatechin is the major component of both the extract and microcapsules. The release of polyphenols from microcapsules is faster at pH 3.5 than in water.

  15. Combination of artificial neural network and genetic algorithm method for modeling of methylene blue adsorption onto wood sawdust from water samples.

    PubMed

    Khajeh, Mostafa; Sarafraz-Yazdi, Ali; Natavan, Zahra Bameri

    2016-03-01

    The aim of this research was to develop a low price and environmentally friendly adsorbent with abundant of source to remove methylene blue (MB) from water samples. Sawdust solid-phase extraction coupled with high-performance liquid chromatography was used for the extraction and determination of MB. In this study, an experimental data-based artificial neural network model is constructed to describe the performance of sawdust solid-phase extraction method for various operating conditions. The pH, time, amount of sawdust, and temperature were the input variables, while the percentage of extraction of MB was the output. The optimum operating condition was then determined by genetic algorithm method. The optimized conditions were obtained as follows: 11.5, 22.0 min, 0.3 g, and 26.0°C for pH of the solution, extraction time, amount of adsorbent, and temperature, respectively. Under these optimum conditions, the detection limit and relative standard deviation were 0.067 μg L(-1) and <2.4%, respectively. The Langmuir and Freundlich adsorption models were applied to describe the isotherm constant and for the removal and determination of MB from water samples. © The Author(s) 2013.

  16. Chiral recognition ability of an (S)-naproxen- imprinted monolith by capillary electrochromatography.

    PubMed

    Xu, Yan-Li; Liu, Zhao-Sheng; Wang, He-Fang; Yan, Chao; Gao, Ru-Yu

    2005-02-01

    The racemic naproxen was selectively recognized by capillary electrochromatography (CEC) on an (S)-naproxen-imprinted monolith, which was prepared by an in situ thermal-initiated polymerization. The recognition selectivity of a selected monolith strictly relied on the CEC conditions involved. The factors that influence the imprinting selectivity as well as the electroosmotic flow (EOF), including the applied voltage, organic solvent, salt concentration and pH value of the buffer, column temperature, and surfactant modifiers were systematically studied. Once the column was prepared, the experiment results showed that the successful chiral recognition was dependent on CEC variables. For example: the recognition could be observed in acetonitrile and ethanol electrolytes, while methanol and dimethyl sulfoxide (DMSO) electrolytes had no chiral recognition ability. The buffer with pH values of 2.6 or 3.0 at a higher salt concentration had chiral recognition ability. Column temperatures of 25-35 degrees C were optimal. Three surfactants, sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide (CTAB), and polyoxyethylene sorbitan monolaurate (Tween 20), can improve the recognition. Baseline resolution was obtained under optimized conditions and the column efficiency of the later eluent (S)-naproxen was 90 000 plates/m.

  17. Effects of Mo Content on Microstructure and Mechanical Property of PH13-8Mo Martensitic Precipitation-Hardened Stainless Steel

    NASA Astrophysics Data System (ADS)

    Yubing, Pei; Tianjian, Wang; Zhenhuan, Gao; Hua, Fan; Gongxian, Yang

    This paper introduces the effects of Mo content on microstructure and mechanical property of PH13-8Mo martensitic precipitation-hardened stainless steel which is used for LP last stage blade in steam turbine. Thermodynamic software Thermo-Calc has been used to calculate precipitation temperature and the mass fraction of precipitated phases in PH13-8Mo steel with different Mo content. The result shows that when the mass of Mo is below 0.6wt.%, chi-phase mu-phase and sigma-phase could disappear. The microstructure and mechanical property of high Mo PH13-8Mo (Mo=0.57wt.%) and low Mo PH13-8Mo (Mo=2.15wt.%)have been investigated in different heat treatments. The investigations reveal that austenitizing temperature decrease with the reduce of Mo content, so the optimum solution temperature for low Mo PH13-8Mo is lower than that for high Mo PH13-8Mo.The influence of solution temperature on grain size is weakened with the increase of Mo content, Mo rich carbides could retard coarsening of grain. An enormous amount of nano-size uniformly distributed β-NiAl particles are found in both kinds of steels using transmission electron microscopy, they are the most important strengthening phase in PH13-8Mo.

  18. Analysis of different beta-lactams antibiotics in pharmaceutical preparations using micellar electrokinetic capillary chromatography.

    PubMed

    Pérez, M I Bailón; Rodríguez, L Cuadros; Cruces-Blanco, C

    2007-01-17

    The potential of micellar electrokinetic capillary chromatography (MEKC) for analyzing nine beta-lactams antibiotics (cloxacillin, dicloxacillin, oxacillin, penicillin G, penicillin V, ampicillin, nafcillin, piperacillin, amoxicillin) in different pharmaceutical preparations, have been demonstrated. An experimental design strategy has been applied to optimize the main variables: pH and buffer concentration, concentration of the micellar medium, separation voltage and capillary temperature. Borate buffer (26mM) at pH 8.5 containing 100mM sodium dodecyl sulphate (SDS) was used as the background electrolyte. The method was validated. Linearity, limit of detection and quantitation and precision were established for each compound. The analysis of some of the beta-lactams in Orbenin capsules, Britapen tables and in Veterin-Micipen injectable, all used in human and veterinary medicine, have demonstrated the applicability of these technique for quality control in the pharmaceutical industry.

  19. Enhancing polyphenol extraction from unripe apples by carbohydrate-hydrolyzing enzymes.

    PubMed

    Zheng, Hu-zhe; Hwang, In-Wook; Chung, Shin-Kyo

    2009-12-01

    The effects of process variables such as enzyme types, enzyme ratio, reaction temperature, pH, time, and ethanol concentration on the extraction of unripe apple polyphenol were investigated. The results indicated that Viscozyme L had the strongest effect on polyphenols extraction and was selected to study the polyphenol composition. The ratio of enzyme (Viscozyme L) to substrate (2 fungal beta-glucanase units (FBG)) at 0.02, reaction at pH 3.7, 50 degrees C for 12 h, and ethanol concentration of 70% were chosen as the most favorable extraction condition. Total phenolic content (TPC), reducing sugar content (RSC), and extraction yield increased by about 3, 1.5, and 2 times, respectively, compared with control. The contents of p-coumaric acid, ferulic acid, and caffeic acid increased to 8, 4, and 32 times, respectively. The enzyme-aided polyphenol extraction process from unripe apples might be applied to food industry for enhancing bioactive compound production.

  20. Enhancing polyphenol extraction from unripe apples by carbohydrate-hydrolyzing enzymes*

    PubMed Central

    Zheng, Hu-zhe; Hwang, In-Wook; Chung, Shin-Kyo

    2009-01-01

    The effects of process variables such as enzyme types, enzyme ratio, reaction temperature, pH, time, and ethanol concentration on the extraction of unripe apple polyphenol were investigated. The results indicated that Viscozyme L had the strongest effect on polyphenols extraction and was selected to study the polyphenol composition. The ratio of enzyme (Viscozyme L) to substrate (2 fungal beta-glucanase units (FBG)) at 0.02, reaction at pH 3.7, 50 °C for 12 h, and ethanol concentration of 70% were chosen as the most favorable extraction condition. Total phenolic content (TPC), reducing sugar content (RSC), and extraction yield increased by about 3, 1.5, and 2 times, respectively, compared with control. The contents of p-coumaric acid, ferulic acid, and caffeic acid increased to 8, 4, and 32 times, respectively. The enzyme-aided polyphenol extraction process from unripe apples might be applied to food industry for enhancing bioactive compound production. PMID:19946955

  1. Impact of alternative antimicrobial commercial egg washes on reducing Salmonella contamination

    USDA-ARS?s Scientific Manuscript database

    Introduction: Table eggs are washed with an alkaline detergent at approximately pH 11 and at a temperature at least 32°C, followed by a chlorine rinse. Both wash temperature and an antimicrobial rinse are required by regulation, but wash pH is not specified. At this pH, little, if any, free chlorine...

  2. Modeling carbon dioxide effect in a controlled atmosphere and its interactions with temperature and pH on the growth of L. monocytogenes and P. fluorescens.

    PubMed

    Couvert, Olivier; Guégan, Stéphanie; Hézard, Bernard; Huchet, Véronique; Lintz, Adrienne; Thuault, Dominique; Stahl, Valérie

    2017-12-01

    The effect of carbon dioxide, temperature, and pH on growth of Listeria monocytogenes and Pseudomonas fluorescens was studied, following a protocol to monitor microbial growth under a constant gas composition. In this way, the CO 2 dissolution didn't modify the partial pressures in the gas phase. Growth curves were acquired at different temperatures (8, 12, 22 and 37 °C), pH (5.5 and 7) and CO 2 concentration in the gas phase (0, 20, 40, 60, 80, 100% of the atmospheric pressure, and over 1 bar). These three factors greatly influenced the growth rate of L. monocytogenes and P. fluorescens, and significant interactions have been observed between the carbon dioxide and the temperature effects. Results showed no significant effect of the CO 2 concentration at 37 °C, which may be attributed to low CO2 solubility at high temperature. An inhibitory effect of CO 2 appeared at lower temperatures (8 and 12 °C). Regardless of the temperature, the gaseous CO 2 is sparingly soluble at acid pH. However, the CO 2 inhibition was not significantly different between pH 5.5 and pH 7. Considering the pKa of the carbonic acid, these results showed the dissolved carbon under HCO 3 - form didn't affect the bacterial inhibition. Finally, a global model was proposed to estimate the growth rate vs. CO 2 concentration in the aqueous phase. This dissolved concentration is calculated according to the physical equations related to the CO 2 equilibriums, involving temperature and pH interactions. This developed model is a new tool available to manage the food safety of MAP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Activation Energy of the Low-pH-Induced Lamellar to Bicontinuous Cubic Phase Transition in Dioleoylphosphatidylserine/Monoolein.

    PubMed

    Oka, Toshihiko; Saiki, Takahiro; Alam, Jahangir Md; Yamazaki, Masahito

    2016-02-09

    Electrostatic interaction is an important factor for phase transitions between lamellar liquid-crystalline (Lα) and inverse bicontinuous cubic (QII) phases. We investigated the effect of temperature on the low-pH-induced Lα to double-diamond cubic (QII(D)) phase transition in dioleoylphosphatidylserine (DOPS)/monoolein (MO) using time-resolved small-angle X-ray scattering with a stopped-flow apparatus. Under all conditions of temperature and pH, the Lα phase was directly transformed into an intermediate inverse hexagonal (HII) phase, and subsequently the HII phase slowly converted to the QII(D) phase. We obtained the rate constants of the initial step (i.e., the Lα to HII phase transition) and of the second step (i.e., the HII to QII(D) phase transition) using the non-negative matrix factorization method. The rate constant of the initial step increased with temperature. By analyzing this result, we obtained the values of its apparent activation energy, Ea (Lα → HII), which did not change with temperature but increased with an increase in pH. In contrast, the rate constant of the second step decreased with temperature at pH 2.6, although it increased with temperature at pH 2.7 and 2.8. These results indicate that the value of Ea (HII → QII(D)) at pH 2.6 increased with temperature, but the values of Ea (HII → QII(D)) at pH 2.7 and 2.8 were constant with temperature. The values of Ea (HII → QII(D)) were smaller than those of Ea (Lα → HII) at the same pH. We analyzed these results using a modified quantitative theory on the activation energy of phase transitions of lipid membranes proposed initially by Squires et al. (Squires, A. M.; Conn, C. E.; Seddon, J. M.; Templer, R. H. Soft Matter 2009, 5, 4773). On the basis of these results, we discuss the mechanism of this phase transition.

  4. Effects of pH and Temperature on the Stability of Fumonisins in Maize Products.

    PubMed

    Bryła, Marcin; Waśkiewicz, Agnieszka; Szymczyk, Krystyna; Jędrzejczak, Renata

    2017-03-01

    This paper is a study of the stability of fumonisins in dough based on maize flour prepared in a phosphate buffer with a pH of 3.5, 5.5 or 7.5 and baked at a temperature within the range of 100-250 °C. Buffers with various pH values were tested, since it is well-known that pH may significantly influence interactions of fumonisins with other substances. A standard analytical procedure was used to determine the concentration of free fumonisins. Hydrolysis in an alkaline medium was then applied to reveal the hidden forms, while the total fumonisins concentations was determined in another measurement. The total concentration of fumonisins was statistically higher in pH = 3.5 and pH = 5.5 than the concentration of free fumonisins; no similar difference was found at pH = 7.5. The applied phosphate buffer pH 7.5 may enhance solubility of fumonisins, which would increase extraction efficiency of free analytes, thereby decreasing the difference between concentrations of total and free fumonisins. Hydrolysed B₁ fumonisin (HFB₁) and partially hydrolysed B₁ fumonisin (isomers a and b: PHFB 1a and PHFB 1b , respectively) were the main investigated substances. For baking temperatures below 220 °C, fumonisins were slightly more stable for pH = 5.5 than for pH = 3.5 and pH = 7.5. In both of these latter cases, the concentration of partially hydrolysed fumonisins grew initially (up to 200 °C) with an increase in the baking temperature, and then dropped. Similar behaviour was observed for free HFB₁, which may suggest the following fumonisin degradation mechanism: initially, the tricarballylic acid (TCA) groups are removed from the molecules, and next, the HFB₁ molecules disintegrate.

  5. Effects of pH and Temperature on the Stability of Fumonisins in Maize Products

    PubMed Central

    Bryła, Marcin; Waśkiewicz, Agnieszka; Szymczyk, Krystyna; Jędrzejczak, Renata

    2017-01-01

    This paper is a study of the stability of fumonisins in dough based on maize flour prepared in a phosphate buffer with a pH of 3.5, 5.5 or 7.5 and baked at a temperature within the range of 100–250 °C. Buffers with various pH values were tested, since it is well-known that pH may significantly influence interactions of fumonisins with other substances. A standard analytical procedure was used to determine the concentration of free fumonisins. Hydrolysis in an alkaline medium was then applied to reveal the hidden forms, while the total fumonisins concentations was determined in another measurement. The total concentration of fumonisins was statistically higher in pH = 3.5 and pH = 5.5 than the concentration of free fumonisins; no similar difference was found at pH = 7.5. The applied phosphate buffer pH 7.5 may enhance solubility of fumonisins, which would increase extraction efficiency of free analytes, thereby decreasing the difference between concentrations of total and free fumonisins. Hydrolysed B1 fumonisin (HFB1) and partially hydrolysed B1 fumonisin (isomers a and b: PHFB1a and PHFB1b, respectively) were the main investigated substances. For baking temperatures below 220 °C, fumonisins were slightly more stable for pH = 5.5 than for pH = 3.5 and pH = 7.5. In both of these latter cases, the concentration of partially hydrolysed fumonisins grew initially (up to 200 °C) with an increase in the baking temperature, and then dropped. Similar behaviour was observed for free HFB1, which may suggest the following fumonisin degradation mechanism: initially, the tricarballylic acid (TCA) groups are removed from the molecules, and next, the HFB1 molecules disintegrate. PMID:28257053

  6. Sperm motility in fishes. I. Effects of temperature and pH: a review.

    PubMed

    Alavi, Sayyed Mohammad Hadi; Cosson, Jacky

    2005-02-01

    Sperm motility is a key factor in allowing us to determine semen quality and fertilizing capacity. Motility in semen is mainly controlled by K+ in salmonids, and probably also in sturgeons, and by osmotic pressure in other freshwater and seawater fish species, but other factors, such as concentration of surrounding metabolites and ions (Ca2+, Mg2+, etc.), pH and temperature also influence motility characteristics. In the present study, we have mainly reviewed and summarized the effects of temperature and pH on the motility of spermatozoa in three fish species: salmonids, cyprinids and sturgeons. Data in the literature show that motility, fertilizing ability and velocity of spermatozoa, as well as the duration of the motility period, depend on the temperature of the assay medium and also of that of the brood fish holding tank. In contrast, the pH of the swimming medium, and thus the intracellular pH of spermatozoa, has less influence on sperm motility parameters in cyprinids, salmonids and sturgeons.

  7. A series of tetraazalene radical-bridged M2 (M = CrIII, MnII, FeII, CoII) complexes with strong magnetic exchange coupling† †Electronic supplementary information (ESI) available: Experimental details, UV/Vis/NIR spectra for 2–8, additional magnetic data for 4–8, crystallographic data, selected bond distances, and crystallographic information files (CIFs) for 1, 2·0.4THF, 3·2.5THF, 4·2.5THF, and 5·2.9MeCN (CCDC 1414648–1414652). For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5sc02725j

    PubMed Central

    DeGayner, Jordan A.; Jeon, Ie-Rang

    2015-01-01

    The ability of tetraazalene radical bridging ligands to mediate exceptionally strong magnetic exchange coupling across a range of transition metal complexes is demonstrated. The redox-active bridging ligand N,N′,N′′,N′′′-tetra(2-methylphenyl)-2,5-diamino-1,4-diiminobenzoquinone (NMePhLH2) was metalated to give the series of dinuclear complexes [(TPyA)2M2(NMePhL2–)]2+ (TPyA = tris(2-pyridylmethyl)amine, M = MnII, FeII, CoII). Variable-temperature dc magnetic susceptibility data for these complexes reveal the presence of weak superexchange interactions between metal centers, and fits to the data provide coupling constants of J = –1.64(1) and –2.16(2) cm–1 for M = MnII and FeII, respectively. One-electron reduction of the complexes affords the reduced analogues [(TPyA)2M2(NMePhL3–˙)]+. Following a slightly different synthetic procedure, the related complex [(TPyA)2CrIII2(NMePhL3–˙)]3+ was obtained. X-ray diffraction, cyclic voltammetry, and Mössbauer spectroscopy indicate the presence of radical NMePhL3–˙ bridging ligands in these complexes. Variable-temperature dc magnetic susceptibility data of the radical-bridged species reveal the presence of strong magnetic interactions between metal centers and ligand radicals, with simulations to data providing exchange constants of J = –626(7), –157(7), –307(9), and –396(16) cm–1 for M = CrIII, MnII, FeII, and CoII, respectively. Moreover, the strength of magnetic exchange in the radical-bridged complexes increases linearly with decreasing M–L bond distance in the oxidized analogues. Finally, ac magnetic susceptibility measurements reveal that [(TPyA)2Fe2(NMePhL3–˙)]+ behaves as a single-molecule magnet with a relaxation barrier of Ueff = 52(1) cm–1. These results highlight the ability of redox-active tetraazalene bridging ligands to enable dramatic enhancement of magnetic exchange coupling upon redox chemistry and provide a rare opportunity to examine metal–radical coupling trends across a transmetallic series of complexes. PMID:29435213

  8. Empirical Correction for Differences in Chemical Exchange Rates in Hydrogen Exchange-Mass Spectrometry Measurements.

    PubMed

    Toth, Ronald T; Mills, Brittney J; Joshi, Sangeeta B; Esfandiary, Reza; Bishop, Steven M; Middaugh, C Russell; Volkin, David B; Weis, David D

    2017-09-05

    A barrier to the use of hydrogen exchange-mass spectrometry (HX-MS) in many contexts, especially analytical characterization of various protein therapeutic candidates, is that differences in temperature, pH, ionic strength, buffering agent, or other additives can alter chemical exchange rates, making HX data gathered under differing solution conditions difficult to compare. Here, we present data demonstrating that HX chemical exchange rates can be substantially altered not only by the well-established variables of temperature and pH but also by additives including arginine, guanidine, methionine, and thiocyanate. To compensate for these additive effects, we have developed an empirical method to correct the hydrogen-exchange data for these differences. First, differences in chemical exchange rates are measured by use of an unstructured reporter peptide, YPI. An empirical chemical exchange correction factor, determined by use of the HX data from the reporter peptide, is then applied to the HX measurements obtained from a protein of interest under different solution conditions. We demonstrate that the correction is experimentally sound through simulation and in a proof-of-concept experiment using unstructured peptides under slow-exchange conditions (pD 4.5 at ambient temperature). To illustrate its utility, we applied the correction to HX-MS excipient screening data collected for a pharmaceutically relevant IgG4 mAb being characterized to determine the effects of different formulations on backbone dynamics.

  9. Risk analysis of the thermal sterilization process. Analysis of factors affecting the thermal resistance of microorganisms.

    PubMed

    Akterian, S G; Fernandez, P S; Hendrickx, M E; Tobback, P P; Periago, P M; Martinez, A

    1999-03-01

    A risk analysis was applied to experimental heat resistance data. This analysis is an approach for processing experimental thermobacteriological data in order to study the variability of D and z values of target microorganisms depending on the deviations range of environmental factors, to determine the critical factors and to specify their critical tolerance. This analysis is based on sets of sensitivity functions applied to a specific case of experimental data related to the thermoresistance of Clostridium sporogenes and Bacillus stearothermophilus spores. The effect of the following factors was analyzed: the type of target microorganism; nature of the heating substrate; pH, temperature; type of acid employed and NaCl concentration. The type of target microorganism to be inactivated, the nature of the substrate (reference or real food) and the heating temperature were identified as critical factors, determining about 90% of the alteration of the microbiological risk. The effect of the type of acid used for the acidification of products and the concentration of NaCl can be assumed to be negligible factors for the purposes of engineering calculations. The critical non-uniformity in temperature during thermobacteriological studies was set as 0.5% and the critical tolerances of pH value and NaCl concentration were 5%. These results are related to a specific case study, for that reason their direct generalization is not correct.

  10. The use of artificial neural network (ANN) for the prediction and simulation of oil degradation in wastewater by AOP.

    PubMed

    Mustafa, Yasmen A; Jaid, Ghydaa M; Alwared, Abeer I; Ebrahim, Mothana

    2014-06-01

    The application of advanced oxidation process (AOP) in the treatment of wastewater contaminated with oil was investigated in this study. The AOP investigated is the homogeneous photo-Fenton (UV/H2O2/Fe(+2)) process. The reaction is influenced by the input concentration of hydrogen peroxide H2O2, amount of the iron catalyst Fe(+2), pH, temperature, irradiation time, and concentration of oil in the wastewater. The removal efficiency for the used system at the optimal operational parameters (H2O2 = 400 mg/L, Fe(+2) = 40 mg/L, pH = 3, irradiation time = 150 min, and temperature = 30 °C) for 1,000 mg/L oil load was found to be 72%. The study examined the implementation of artificial neural network (ANN) for the prediction and simulation of oil degradation in aqueous solution by photo-Fenton process. The multilayered feed-forward networks were trained by using a backpropagation algorithm; a three-layer network with 22 neurons in the hidden layer gave optimal results. The results show that the ANN model can predict the experimental results with high correlation coefficient (R (2) = 0.9949). The sensitivity analysis showed that all studied variables (H2O2, Fe(+2), pH, irradiation time, temperature, and oil concentration) have strong effect on the oil degradation. The pH was found to be the most influential parameter with relative importance of 20.6%.

  11. Mesophilic Acidogenesis of Food Waste-Recycling Wastewater: Effects of Hydraulic Retention Time, pH, and Temperature.

    PubMed

    Han, Gyuseong; Shin, Seung Gu; Lee, Joonyeob; Lee, Changsoo; Jo, Minho; Hwang, Seokhwan

    2016-11-01

    The effects of hydraulic retention time (HRT), pH, and operating temperature (T OP ) on the degradation of food waste-recycling wastewater (FRW) were investigated in laboratory-scale hydrolysis/acidogenesis reactors. Response surface analysis was used to approximate the production of volatile organic acids and degradation of volatile suspended solids (VSS), carbohydrate, protein, and lipid with regard to the independent variables (1 ≤ HRT ≤ 3 days, 4 ≤ pH ≤ 6, 25 ≤ T OP  ≤ 45 °C). Partial cubic models adequately approximated the corresponding response surfaces at α < 5 %. The physiological conditions for maximum acidification (0.4 g TVFA + EtOH/g VS added ) and the maximal degradation of VSS (47.5 %), carbohydrate (92.0 %), protein (17.7 %), and lipid (73.7 %) were different. Analysis of variance suggested that pH had a great effect on the responses in most cases, while T OP and HRT, and their interaction, were significant in some cases. Denaturing gradient gel electrophoresis analysis revealed that Sporanaerobacter acetigenes, Lactobacillus sp., and Eubacterium pyruvivorans-like microorganisms might be main contributors to the hydrolysis and acidogenesis of FRW. Biochemical methane potential test confirmed higher methane yield (538.2 mL CH 4 /g VS added ) from an acidogenic effluent than from raw FRW.

  12. Geochemical Interactions and Viral-Prokaryote Relationships in Freshwater Environments

    NASA Astrophysics Data System (ADS)

    Kyle, J. E.; Ferris, G.

    2009-05-01

    Viral and prokaryotic abundances were surveyed throughout southern Ontario aquatic habitats to determine relationships with geochemical parameters in the natural environment. Surface water samples were collected from acid mine drainage in summer of 2007 and 2008 and from circum-neutral pH environments in October to November 2008. Site determination was based on collecting samples from various aquatic habitats (acid mine drainage, lakes, rivers, tributaries, wetlands) with differing bedrock geology (limestone and shale dominated vs granitic Canadian Shield) to obtain a range of geochemical conditions. At each site, measurements of temperature, pH, and Eh were conducted. Samples collected for microbial counts and electron imaging were preserved to a final concentration of 2.5 % (v/v) glutaraldehyde. Additional sample were filtered into 60 mL nalgene bottles and amber EPA certified 40 mL glass vials to determine chemical constituents and dissolved organic carbon (DOC), respectively. Water was also collected to determine additional physiochemical parameters (dissolved total iron, ferric iron, nitrate, sulfate, phosphate, alkalinity, and turbidity). All samples were stored at 4 °C until analysis. Viral and prokaryotic abundance was determined by staining samples with SYBR Green I and examining with a epifluorescence microscope under blue excitation. Multiple regression analysis using stepwise backwards regression and general linear models revealed that viral abundance was the most influential predictor of prokaryotic abundance. Additional predictors include pH, sulfate, phosphate, and magnesium. The strength of the model was very strong with 90 % of the variability explained (R2 = 0.90, p < 0.007). This is the first report, to our knowledge, of viruses exhibiting such strong controls over prokaryotic abundance in the natural environment. All relationships are positively correlated with the exception of Mg, which is negatively correlated. Iron was also noted as a contributor to prokaryotic abundance but given the elements strong multicollinearity with sulfate, iron was removed from the model (as sulfate acts more conservatively across the range of pH sampled, 2.5-9.0). Geochemical variables that have been reported to influence viral abundances under laboratory and field experiments (i.e. Ca2+, DOC, temperature) had minimal effect in the natural environment despite 2 to 3 orders of magnitude range in the data. However, log transformed viral abundance did revealed a significant relationship with pH (Pearson correlation coefficient of r = 0.70) when using principle component analysis. Prokaryotic abundance did not reveal significant correlations with geochemical parameters (all r < 0.38).

  13. Water quality parameters of harbors of Charlotte Amalie, St. Thomas, Virgin Islands: Acquisition of in situ water data, intercorrelation of selected water parameters, and initial correlation of these in situ biological, chemical and physical data with ERTS-1 bulk CCT MSS band 5 data

    NASA Technical Reports Server (NTRS)

    Coulbourn, W. C.; Olsen, D. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Remote sensing by the ERTS-1 satellite was compared with selected water quality parameters including pH, salinity, conductivity, dissolved oxygen, water depth, water temperature, turbidity, plankton concentration, current variables, chlorophylla, total carotenoids, and species diversity of the benthic community. Strong correlation between turbidity and MSS-sensed radiance was recorded and less strong correlations between the two plankton pigments and radiance. Turbidity and benthic species diversity were highly correlated furnishing an inferential tie between an easily sensed water quality variable and a sensitive indicator of average water quality conditions.

  14. waterData--An R package for retrieval, analysis, and anomaly calculation of daily hydrologic time series data, version 1.0

    USGS Publications Warehouse

    Ryberg, Karen R.; Vecchia, Aldo V.

    2012-01-01

    Hydrologic time series data and associated anomalies (multiple components of the original time series representing variability at longer-term and shorter-term time scales) are useful for modeling trends in hydrologic variables, such as streamflow, and for modeling water-quality constituents. An R package, called waterData, has been developed for importing daily hydrologic time series data from U.S. Geological Survey streamgages into the R programming environment. In addition to streamflow, data retrieval may include gage height and continuous physical property data, such as specific conductance, pH, water temperature, turbidity, and dissolved oxygen. The package allows for importing daily hydrologic data into R, plotting the data, fixing common data problems, summarizing the data, and the calculation and graphical presentation of anomalies.

  15. Quantifying tolerance indicator values for common stream fish species of the United States

    USGS Publications Warehouse

    Meador, M.R.; Carlisle, D.M.

    2007-01-01

    The classification of fish species tolerance to environmental disturbance is often used as a means to assess ecosystem conditions. Its use, however, may be problematic because the approach to tolerance classification is based on subjective judgment. We analyzed fish and physicochemical data from 773 stream sites collected as part of the U.S. Geological Survey's National Water-Quality Assessment Program to calculate tolerance indicator values for 10 physicochemical variables using weighted averaging. Tolerance indicator values (TIVs) for ammonia, chloride, dissolved oxygen, nitrite plus nitrate, pH, phosphorus, specific conductance, sulfate, suspended sediment, and water temperature were calculated for 105 common fish species of the United States. Tolerance indicator values for specific conductance and sulfate were correlated (rho = 0.87), and thus, fish species may be co-tolerant to these water-quality variables. We integrated TIVs for each species into an overall tolerance classification for comparisons with judgment-based tolerance classifications. Principal components analysis indicated that the distinction between tolerant and intolerant classifications was determined largely by tolerance to suspended sediment, specific conductance, chloride, and total phosphorus. Factors such as water temperature, dissolved oxygen, and pH may not be as important in distinguishing between tolerant and intolerant classifications, but may help to segregate species classified as moderate. Empirically derived tolerance classifications were 58.8% in agreement with judgment-derived tolerance classifications. Canonical discriminant analysis revealed that few TIVs, primarily chloride, could discriminate among judgment-derived tolerance classifications of tolerant, moderate, and intolerant. To our knowledge, this is the first empirically based understanding of fish species tolerance for stream fishes in the United States.

  16. Nickel (II) Preconcentration and Speciation Analysis During Transport from Aqueous Solutions Using a Hollow-fiber Permeation Liquid Membrane (HFPLM) Device

    PubMed Central

    Bautista-Flores, Ana Nelly; de San Miguel, Eduardo Rodríguez; de Gyves, Josefina; Jönsson, Jan Åke

    2011-01-01

    Nickel (II) preconcentration and speciation analysis using a hollow fiber supported liquid membrane (HFSLM) device was studied. A counterflow of protons coupled to complexation with formate provided the driving force of the process, while Kelex 100 was employed as carrier. The influence of variables related to module configuration (acceptor pH and carrier concentration) and to the sample properties (donor pH) on the preconcentration factor, E, was simultaneously studied and optimized using a 3 factor Doehlert matrix response surface methodology. The effect of metal concentration was studied as well. Preconcentration factors as high as 4240 were observed depending on the values of the different variables. The effects of the presence of inorganic anions (NO2−, SO42−, Cl−, NO3−, CO32−, CN−) and dissolved organic matter (DOM) in the form of humic acids were additionally considered in order to carry out a speciation analysis study. Nickel preconcentration was observed to be independent of both effects, except when cyanide was present in the donor phase. A characterization of the transport regime was performed through the analysis of the dependence of E on the temperature. E increases with the increase in temperature according to the equation E(K) = −8617.3 + 30.5T with an activation energy of 56.7 kJ mol−1 suggesting a kinetic-controlled regime. Sample depletion ranged from 12 to 1.2% depending on the volume of the donor phase (100 to 1000 mL, respectively). PMID:24957733

  17. The stability of water- and fat-soluble vitamin in dentifrices according to pH level and storage type.

    PubMed

    Park, Jung-Eun; Kim, Ki-Eun; Choi, Yong-Jun; Park, Yong-Duk; Kwon, Ha-Jeong

    2016-02-01

    The purpose of this study is to evaluate the vitamin stabilities in dentifrices by analyzing various vitamins according to the level and storage temperature. The stabilities of water- and fat-soluble vitamins were investigated in buffer solution at different pH values (4, 7, 8, 10 and 11) for 14 days and in dentifrices at different pH (7 and 10) for 5 months at two temperature conditions (room and refrigeration temperature) by analyzing the remaining amounts using HPLC methods. In the buffer solution, the stability of vitamins B1 , B6 and C was increased as the pH values increased. Vitamins E and K showed poor stability at pH 4, and vitamin B3 showed poor stability at pH 11. In dentifrices, the storage temperature highly influenced vitamin stability, especially vitamins C and E, but the stabilities of vitamins B1 and C according to pH values did not correspond to the buffer solution tests. Vitamin B group was relatively stable in dentifrices, but vitamin C completely disappeared after 5 months. Vitamin K showed the least initial preservation rates. Vitamins were not detected in commercial dentifrices for adults and detected amounts were less than the advertised contents in dentifrices for children. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Modelling the regional variability of the probability of high trihalomethane occurrence in municipal drinking water.

    PubMed

    Cool, Geneviève; Lebel, Alexandre; Sadiq, Rehan; Rodriguez, Manuel J

    2015-12-01

    The regional variability of the probability of occurrence of high total trihalomethane (TTHM) levels was assessed using multilevel logistic regression models that incorporate environmental and infrastructure characteristics. The models were structured in a three-level hierarchical configuration: samples (first level), drinking water utilities (DWUs, second level) and natural regions, an ecological hierarchical division from the Quebec ecological framework of reference (third level). They considered six independent variables: precipitation, temperature, source type, seasons, treatment type and pH. The average probability of TTHM concentrations exceeding the targeted threshold was 18.1%. The probability was influenced by seasons, treatment type, precipitations and temperature. The variance at all levels was significant, showing that the probability of TTHM concentrations exceeding the threshold is most likely to be similar if located within the same DWU and within the same natural region. However, most of the variance initially attributed to natural regions was explained by treatment types and clarified by spatial aggregation on treatment types. Nevertheless, even after controlling for treatment type, there was still significant regional variability of the probability of TTHM concentrations exceeding the threshold. Regional variability was particularly important for DWUs using chlorination alone since they lack the appropriate treatment required to reduce the amount of natural organic matter (NOM) in source water prior to disinfection. Results presented herein could be of interest to authorities in identifying regions with specific needs regarding drinking water quality and for epidemiological studies identifying geographical variations in population exposure to disinfection by-products (DBPs).

  19. Chemical crosslinking of acrylic acid to form biocompatible pH sensitive hydrogel reinforced with cellulose nanocrystals (CNC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Lim Sze; Ahmad, Ishak; Lazim, Mohd Azwani Shah Mat

    2014-09-03

    The purpose of this study is to produce a novel pH and temperature sensitive hydrogel, composed of poly(acrylic acid) (PAA) and cellulose nanocrystal (CNC). CNC was extracted from kenaf fiber through a series of alkali and bleaching treatments followed by acid hydrolysis. The PAA was then subjected to chemical cross-linking using the cross-linking agent (N,N-methylenebisacrylamide) with CNC entrapped in PAA matrix. The mixture was casted onto petri dish to obtain disc shape hydrogel. The effects of reaction conditions such as the ratio of PAA and CNC on the swelling behavior of the hydrogel obtained towards pH and temperature were studied.more » The obtained hydrogel was further subjected to different tests such swelling test for swelling behaviour at different pH and temperature along with scanning electron microscopy (SEM) for morphology analysis. The hydrogel obtained showed excellent pH sensitivity and obtained maximum swelling at pH 7. Besides that, hydrogel obtained showed significant increase in swelling ratio when temperature of swelling medium was increased from 25°C to 37°C. SEM micrograph showed that the pore size of the hydrogel decreases with increase of CNC content proving that the hydrogel structure became more rigid with addition of CNC. The PAA/CNC hydrogel with such excellent sensitivity towards pH and temperature can be developed further as drug carrier.« less

  20. Deciphering the Effect of Polymer-Assisted Doping on the Optoelectronic Properties of Block Copolymer-Anchored Graphene Oxide.

    PubMed

    Maity, Nabasmita; Kuila, Atanu; Nandi, Arun K

    2017-02-14

    Doping facilitates the tuning of band gap, providing an opportunity to tailor the optoelectronic properties of graphene in a simple way, and polymer-assisted doping is a new route to combine the optoelectronic properties of graphene with the properties of a polymer. In this endeavor, a linear diblock copolymer, polycaprolactone-block-poly(dimethyl aminoethyl methacrylate) (PCL 13 -b-PDMAEMA 117 ) (GPCLD) is grafted from the graphene oxide (GO) surface via consecutive ring opening and atom transfer radical polymerization. GPCLD is characterized using proton nuclear magnetic resonance ( 1 H NMR), Fourier transform infrared spectroscopy, atomic force microscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy, and Raman spectroscopy. The phase transition behavior of the GPCLD solution with varying temperature and pH is monitored using fluorescence spectroscopy and dynamic light scattering. Temperature-dependent 1 H NMR spectra at pH 9.2 indicate the influence of temperature on the interaction between GPCLD and solvent (water) molecules causing the phase separation. Fluorescence spectra at pH 4 and 9.2 give the evidence of localized p- and n-type doping of graphene assisted by the pendent PDMAEMA chains. In the impedance spectra of GPCLD films, the Nyquist plots vary with pH; at pH 4, they exhibit a semicircle at higher frequencies and a spike at lower frequencies; at pH 7.0, the spike is replaced by an arc; and at pH 9.2, the semicircle at higher frequencies vanishes and only a spike is noticed, all of these suggesting different types of doping of graphene at different pH values. The dc-conductivity also varies with pH and temperature because of the different types of doping. The current (I)-voltage (V) property of GPCLD at different pH values is very unique: at pH 9.2, an interesting feature of negative differential resistance (NDR) is observed; at pH 7, the rectification property is observed; and at pH 4, again the NDR property is observed. The temperature-dependent I-V property at pH 7 and 9.2 clearly indicates a signature of doping, dedoping, and redoping because of the change in the interaction of GO with the grafted polymer arising from coiling and decoiling of polymer chains.

  1. Fluctuating seawater pH/pCO2 regimes are more energetically expensive than static pH/pCO2 levels in the mussel Mytilus edulis.

    PubMed

    Mangan, Stephanie; Urbina, Mauricio A; Findlay, Helen S; Wilson, Rod W; Lewis, Ceri

    2017-10-25

    Ocean acidification (OA) studies typically use stable open-ocean pH or CO 2 values. However, species living within dynamic coastal environments can naturally experience wide fluctuations in abiotic factors, suggesting their responses to stable pH conditions may not be reflective of either present or near-future conditions. Here we investigate the physiological responses of the mussel Mytilus edulis to variable seawater pH conditions over short- (6 h) and medium-term (2 weeks) exposures under both current and near-future OA scenarios. Mussel haemolymph pH closely mirrored that of seawater pH over short-term changes of 1 pH unit with acidosis or recovery accordingly, highlighting a limited capacity for acid-base regulation. After 2 weeks, mussels under variable pH conditions had significantly higher metabolic rates, antioxidant enzyme activities and lipid peroxidation than those exposed to static pH under both current and near-future OA scenarios. Static near-future pH conditions induced significant acid-base disturbances and lipid peroxidation compared with the static present-day conditions but did not affect the metabolic rate. These results clearly demonstrate that living in naturally variable environments is energetically more expensive than living in static seawater conditions, which has consequences for how we extrapolate future OA responses in coastal species. © 2017 The Authors.

  2. The Cytosolic pH of Individual Saccharomyces cerevisiae Cells Is a Key Factor in Acetic Acid Tolerance.

    PubMed

    Fernández-Niño, Miguel; Marquina, Maribel; Swinnen, Steve; Rodríguez-Porrata, Boris; Nevoigt, Elke; Ariño, Joaquín

    2015-11-01

    It was shown recently that individual cells of an isogenic Saccharomyces cerevisiae population show variability in acetic acid tolerance, and this variability affects the quantitative manifestation of the trait at the population level. In the current study, we investigated whether cell-to-cell variability in acetic acid tolerance could be explained by the observed differences in the cytosolic pHs of individual cells immediately before exposure to the acid. Results obtained with cells of the strain CEN.PK113-7D in synthetic medium containing 96 mM acetic acid (pH 4.5) showed a direct correlation between the initial cytosolic pH and the cytosolic pH drop after exposure to the acid. Moreover, only cells with a low initial cytosolic pH, which experienced a less severe drop in cytosolic pH, were able to proliferate. A similar correlation between initial cytosolic pH and cytosolic pH drop was also observed in the more acid-tolerant strain MUCL 11987-9. Interestingly, a fraction of cells in the MUCL 11987-9 population showed initial cytosolic pH values below the minimal cytosolic pH detected in cells of the strain CEN.PK113-7D; consequently, these cells experienced less severe drops in cytosolic pH. Although this might explain in part the difference between the two strains with regard to the number of cells that resumed proliferation, it was observed that all cells from strain MUCL 11987-9 were able to proliferate, independently of their initial cytosolic pH. Therefore, other factors must also be involved in the greater ability of MUCL 11987-9 cells to endure strong drops in cytosolic pH. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. The Cytosolic pH of Individual Saccharomyces cerevisiae Cells Is a Key Factor in Acetic Acid Tolerance

    PubMed Central

    Fernández-Niño, Miguel; Marquina, Maribel; Swinnen, Steve; Rodríguez-Porrata, Boris

    2015-01-01

    It was shown recently that individual cells of an isogenic Saccharomyces cerevisiae population show variability in acetic acid tolerance, and this variability affects the quantitative manifestation of the trait at the population level. In the current study, we investigated whether cell-to-cell variability in acetic acid tolerance could be explained by the observed differences in the cytosolic pHs of individual cells immediately before exposure to the acid. Results obtained with cells of the strain CEN.PK113-7D in synthetic medium containing 96 mM acetic acid (pH 4.5) showed a direct correlation between the initial cytosolic pH and the cytosolic pH drop after exposure to the acid. Moreover, only cells with a low initial cytosolic pH, which experienced a less severe drop in cytosolic pH, were able to proliferate. A similar correlation between initial cytosolic pH and cytosolic pH drop was also observed in the more acid-tolerant strain MUCL 11987-9. Interestingly, a fraction of cells in the MUCL 11987-9 population showed initial cytosolic pH values below the minimal cytosolic pH detected in cells of the strain CEN.PK113-7D; consequently, these cells experienced less severe drops in cytosolic pH. Although this might explain in part the difference between the two strains with regard to the number of cells that resumed proliferation, it was observed that all cells from strain MUCL 11987-9 were able to proliferate, independently of their initial cytosolic pH. Therefore, other factors must also be involved in the greater ability of MUCL 11987-9 cells to endure strong drops in cytosolic pH. PMID:26341199

  4. Implications of the pH and temperature of diluted, cooled boar semen on fresh and frozen-thawed sperm motility characteristics.

    PubMed

    Purdy, P H; Tharp, N; Stewart, T; Spiller, S F; Blackburn, H D

    2010-10-15

    Boar semen is typically collected, diluted and cooled for AI use over numerous days, or frozen immediately after shipping to capable laboratories. The storage temperature and pH of the diluted, cooled boar semen could influence the fertility of boar sperm. Therefore, the purpose of this study was to determine the effects of pH and storage temperature on fresh and frozen-thawed boar sperm motility end points. Semen samples (n = 199) were collected, diluted, cooled and shipped overnight to the National Animal Germplasm Program laboratory for freezing and analysis from four boar stud facilities. The temperature, pH and motility characteristics, determined using computer automated semen analysis, were measured at arrival. Samples were then cryopreserved and post-thaw motility determined. The commercial stud was a significant source of variation for mean semen temperature and pH, as well as total and progressive motility, and numerous other sperm motility characteristics. Based on multiple regression analysis, pH was not a significant source of variation for fresh or frozen-thawed boar sperm motility end points. However, significant models were derived which demonstrated that storage temperature, boar, and the commercial stud influenced sperm motility end points and the potential success for surviving cryopreservation. We inferred that maintaining cooled boar semen at approximately 16 °C during storage will result in higher fresh and frozen-thawed boar sperm quality, which should result in greater fertility. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Oxidation Behavior of Carbon Steel: Effect of Formation Temperature and pH of the Environment

    NASA Astrophysics Data System (ADS)

    Dubey, Vivekanand; Kain, Vivekanand

    2017-11-01

    The nature of surface oxide formed on carbon steel piping used in nuclear power plants affects flow-accelerated corrosion. In this investigation, carbon steel specimens were oxidized in an autoclave using demineralized water at various temperatures (150-300 °C) and at pH levels (neutral, 9.5). At low temperatures (< 240 °C), weight loss of specimens due to dissolution of iron in water occurred to a greater extent than weight gain due to oxide formation. With the increase in temperature, the extent of iron dissolution reduced and weight gain due to oxide formation increased. A similar trend was observed with the increase in pH as was observed with the increase in temperature. XRD and Raman spectroscopy confirmed the formation of magnetite. The oxide film formed by precipitation process was negligible at temperatures from 150 to 240 °C compared to that at higher temperatures (> 240 °C) as confirmed by scanning electron microscopy. Electrochemical impedance measurement followed by Mott-Schottky analysis indicated an increase in defect density with exposure duration at 150 °C at neutral pH but a low and stable defect density in alkaline environment. The defect density of the oxide formed at neutral pH at 150-300 °C was always higher than that formed in alkaline environment as reported in the literature.

  6. Effects of elevated temperature and mobile phase composition on a novel C18 silica column.

    PubMed

    Lippert, J Andreas; Johnson, Todd M; Lloyd, Jarem B; Smith, Jared P; Johnson, Bryce T; Furlow, Jason; Proctor, Angela; Marin, Stephanie J

    2007-05-01

    A novel polydentate C18 silica column was evaluated at an elevated temperature under acidic, basic, and neutral mobile phase conditions using ACN and methanol as the mobile phase organic modifier. The temperature range was 40-200 degrees C. The mobile phase compositions were from 0 to 80% organic-aqueous v/v and the mobile phase pH levels were between 2 and 12. The maximum operating temperature of the column was affected by the amount and type of organic modifier used in the mobile phase. Under neutral conditions, the column showed good column thermal stability at temperatures ranging between 120 and 200 degrees C in methanol-water and ACN-water solvent systems. At pH 2 and 3, the column performed well up to about 160 degrees C at two fixed ACN-buffer compositions. Under basic conditions at elevated temperatures, the column material deteriorated more quickly, but still remained stable up to 100 degrees C at pH 9 and 60 degrees C at pH 10. The results of this study indicate that this novel C18 silica-based column represents a significant advancement in RPLC column technology with enhanced thermal and pH stability when compared to traditional bonded phase silica columns.

  7. A monitor for continuous measurement of temperature, pH, and conductance of wet precipitation: Preliminary results from the Adirondack Mountains, New York

    USGS Publications Warehouse

    Johnsson, P.A.; Reddy, M.M.

    1990-01-01

    This report describes a continuous wet-only precipitation monitor designed by the U.S. Geological Survey to record variations in rainfall temperature, pH, and specific conductance at 1-min intervals over the course of storms. Initial sampling in the Adirondack Mountains showed that rainfall acidity varied over the course of summer storms, with low initial pH values increasing as storm intensity increased.This report describes a continuous wet-only precipitation monitor designed by the U.S. Geological Survey to record variations in rainfall temperature, pH, and specific conductance at 1-min intervals over the course of storms. Initial sampling in the Adirondack Mountains showed that rainfall acidity varied over the course of summer storms, with low initial pH values increasing as storm intensity increased.

  8. Diagnostic Value of Selected Echocardiographic Variables to Identify Pulmonary Hypertension in Dogs with Myxomatous Mitral Valve Disease.

    PubMed

    Tidholm, A; Höglund, K; Häggström, J; Ljungvall, I

    2015-01-01

    Pulmonary hypertension (PH) is commonly associated with myxomatous mitral valve disease (MMVD). Because dogs with PH present without measureable tricuspid regurgitation (TR), it would be useful to investigate echocardiographic variables that can identify PH. To investigate associations between estimated systolic TR pressure gradient (TRPG) and dog characteristics and selected echocardiographic variables. 156 privately owned dogs. Prospective observational study comparing the estimations of TRPG with dog characteristics and selected echocardiographic variables in dogs with MMVD and measureable TR. Tricuspid regurgitation pressure gradient was significantly (P < .05) associated with body weight corrected right (RVIDDn) and left (LVIDDn) ventricular end-diastolic and systolic (LVIDSn) internal diameters, pulmonary arterial (PA) acceleration to deceleration time ratio (AT/DT), heart rate, left atrial to aortic root ratio (LA/Ao), and the presence of congestive heart failure. Four variables remained significant in the multiple regression analysis with TRPG as a dependent variable: modeled as linear variables LA/Ao (P < .0001) and RVIDDn (P = .041), modeled as second order polynomial variables: AT/DT (P = .0039) and LVIDDn (P < .0001) The adjusted R(2) -value for the final model was 0.45 and receiver operating characteristic curve analysis suggested the model's performance to predict PH, defined as 36, 45, and 55 mmHg as fair (area under the curve [AUC] = 0.80), good (AUC = 0.86), and excellent (AUC = 0.92), respectively. In dogs with MMVD, the presence of PH might be suspected with the combination of decreased PA AT/DT, increased RVIDDn and LA/Ao, and a small or great LVIDDn. Copyright © 2015 The Authors Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  9. Nixtamalized flour from quality protein maize (Zea mays L). optimization of alkaline processing.

    PubMed

    Milán-Carrillo, J; Gutiérrez-Dorado, R; Cuevas-Rodríguez, E O; Garzón-Tiznado, J A; Reyes-Moreno, C

    2004-01-01

    Quality of maize proteins is poor, they are deficient in the essential amino acids lysine and tryptophan. Recently, in Mexico were successfully developed nutritionally improved 26 new hybrids and cultivars called quality protein maize (QPM) which contain greater amounts of lysine and tryptophan. Alkaline cooking of maize with lime (nixtamalization) is the first step for producing several maize products (masa, tortillas, flours, snacks). Processors adjust nixtamalization variables based on experience. The objective of this work was to determine the best combination of nixtamalization process variables for producing nixtamalized maize flour (NMF) from QPM V-537 variety. Nixtamalization conditions were selected from factorial combinations of process variables: nixtamalization time (NT, 20-85 min), lime concentration (LC, 3.3-6.7 g Ca(OH)2/l, in distilled water), and steep time (ST, 8-16 hours). Nixtamalization temperature and ratio of grain to cooking medium were 85 degrees C and 1:3 (w/v), respectively. At the end of each cooking treatment the steeping started for the required time. Steeping was finished by draining the cooking liquor (nejayote). Nixtamal (alkaline-cooked maize kernels) was washed with running tap water. Wet nixtamal was dried (24 hours, 55 degrees C) and milled to pass through 80-US mesh screen to obtain NMF. Response surface methodology (RSM) was applied as optimization technique, over four response variables: In vitro protein digestibility (PD), total color difference (deltaE), water absorption index (WAI), and pH. Predictive models for response variables were developed as a function of process variables. Conventional graphical method was applied to obtain maximum PD, WAI and minimum deltaE, pH. Contour plots of each of the response variables were utilized applying superposition surface methodology, to obtain three contour plots for observation and selection of best combination of NT (31 min), LC (5.4 g Ca(OH)2/l), and ST (8.1 hours) for producing optimized NMF from QPM.

  10. Influence of pH, Salt and Temperature on Pressure Inactivation of Hepatitis A virus

    USDA-ARS?s Scientific Manuscript database

    The effects of pH (3-7), NaCl (0-6%), and temperature on pressure inactivation of hepatitis A virus (HAV) were determined. The HAV samples were treated at 400 MPa for 1 min at 5, 20, and 50C. Decreasing solution pH enhanced pressure inactivation of HAV. This enhanced inactivation effect was most e...

  11. Thermal relaxation behavior of residual stress in laser hardened 17-4PH steel after shot peening treatment

    NASA Astrophysics Data System (ADS)

    Wang, Zhou; Chen, Yanhua; Jiang, Chuanhai

    2011-09-01

    In order to investigate the residual stress relaxations of shot peened layer, isothermal annealing treatments were carried out on tempered and laser hardened 17-4PH steel after shot peening with different temperatures from 300 °C to 600 °C. The results showed that the residual stresses were relaxed in the whole deformation layer especially under higher temperature. The maximum rates of stress relaxation took place at the initial stage of annealing process in all conditions. The relaxation process during isothermal annealing could be described by Zener-Wert-Avrami function. The thermal stability of residual stress in tempered 17-4PH was higher than that in laser hardened 17-4PH as well as that in α-iron, which was due to the pinning effects of ɛ-Cu precipitates on the dislocation movement. As massive ɛ-Cu precipitates formed in the temperature about 480 °C, the activation enthalpies for stress relaxation in laser hardened 17-4PH were the same as that in tempered 17-4PH in the conditions of isothermal annealing temperatures of 500 °C and 600 °C.

  12. Characterization of polyphenol oxidase from the Manzanilla cultivar (Olea europaea pomiformis) and prevention of browning reactions in bruised olive fruits.

    PubMed

    Segovia-Bravo, Kharla A; Jarén-Galan, Manuel; García-García, Pedro; Garrido-Fernandez, Antonio

    2007-08-08

    The crude extract of the polyphenol oxidase (PPO) enzyme from the Manzanilla cultivar (Olea europaea pomiformis) was obtained, and its properties were characterized. The browning reaction followed a zero-order kinetic model. Its maximum activity was at pH 6.0. This activity was completely inhibited at a pH below 3.0 regardless of temperature; however, in alkaline conditions, pH inhibition depended on temperature and was observed at values above 9.0 and 11.0 at 8 and 25 degrees C, respectively. The thermodynamic parameters of substrate oxidation depended on pH within the range in which activity was observed. The reaction occurred according to an isokinetic system because pH affected the enzymatic reaction rate but not the energy required to carry out the reaction. In the alkaline pH region, browning was due to a combination of enzymatic and nonenzymatic reactions that occurred in parallel. These results correlated well with the browning behavior observed in intentionally bruised fruits at different temperatures and in different storage solutions. The use of a low temperature ( approximately 8 degrees C) was very effective for preventing browning regardless of the cover solution used.

  13. Short communication: Urea hydrolysis in dairy cattle manure under different temperature, urea, and pH conditions.

    PubMed

    Moraes, L E; Burgos, S A; DePeters, E J; Zhang, R; Fadel, J G

    2017-03-01

    The objective of the study was to quantify the rate of urea hydrolysis in dairy cattle manure under different initial urea concentration, temperature, and pH conditions. In particular, by varying all 3 factors simultaneously, the interactions between them could also be determined. Fresh feces and artificial urine solutions were combined into a slurry to characterize the rate of urea hydrolysis under 2 temperatures (15°C and 35°C), 3 urea concentrations in urine solutions (500, 1,000, and 1,500 mg of urea-N/dL), and 3 pH levels (6, 7, and 8). Urea N concentration in slurry was analyzed at 0.0167, 1, 2, 4, 6, 8, 12, 16, 20, and 24 h after initial mixing. A nonlinear mixed effects model was used to determine the effects of urea concentration, pH, and temperature treatments on the exponential rate of urea hydrolysis and to predict the hydrolysis rate for each treatment combination. We detected a significant interaction between pH and initial urea level. Increasing urea concentration from 1,000 to 1,500 mg of urea-N/dL decreased the rate of urea hydrolysis across all pH levels. Across all pH and initial urea levels, the rate of urea hydrolysis increased with temperature, but the effect of pH was only observed for pH 6 versus pH 8 at the intermediate initial urea concentration. The fast rates of urea hydrolysis indicate that urea was almost completely hydrolyzed within a few hours of urine mixing with feces. The estimated urea hydrolysis rates from this study are likely maximum rates because of the thorough mixing before each sampling. Although considerable mixing of feces and urine occurs on the barn floor of commercial dairy operations from cattle walking through the manure, such mixing may be not as quick and thorough as in this study. Consequently, the urea hydrolysis rates from this study indicate the maximum loss of urea and should be accounted for in management aimed at mitigating ammonia emissions from dairy cattle manure under similar urea concentration, pH, and temperature conditions reported in this experiment. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Validation of a portable, waterproof blood pH analyser for elasmobranchs

    PubMed Central

    Bouyoucos, Ian A.; Shipley, Oliver; Rummer, Jodie L.; Mandelman, John W.; Brooks, Edward J.; Grubbs, R. Dean

    2017-01-01

    Abstract Quantifying changes in blood chemistry in elasmobranchs can provide insights into the physiological insults caused by anthropogenic stress, and can ultimately inform conservation and management strategies. Current methods for analysing elasmobranch blood chemistry in the field are often costly and logistically challenging. We compared blood pH values measured using a portable, waterproof pH meter (Hanna Instruments HI 99161) with blood pH values measured by an i-STAT system (CG4+ cartridges), which was previously validated for teleost and elasmobranch fishes, to gauge the accuracy of the pH meter in determining whole blood pH for the Cuban dogfish (Squalus cubensis) and lemon shark (Negaprion brevirostris). There was a significant linear relationship between values derived via the pH meter and the i-STAT for both species across a wide range of pH values and temperatures (Cuban dogfish: 6.8–7.1 pH 24–30°C; lemon sharks: 7.0–7.45 pH 25–31°C). The relative error in the pH meter's measurements was ~±2.7%. Using this device with appropriate correction factors and consideration of calibration temperatures can result in both a rapid and accurate assessment of whole blood pH, at least for the two elasmobranch species examined here. Additional species should be examined in the future across a wide range of temperatures to determine whether correction factors are universal. PMID:28616238

  15. Influence of prebiotics on Lactobacillus reuteri death kinetics under sub-optimal temperatures and pH.

    PubMed

    Altieri, Clelia; Iorio, Maria Clara; Bevilacqua, Antonio; Sinigaglia, Milena

    2016-01-01

    Eaten foodstuffs are usually fortified with prebiotic ingredients, such as inulin and oligofructose (FOS). The main goal of this study was to evaluate the combined effects of inulin and FOS with either suboptimal pH or storage temperature on the viability of Lactobacillus reuteri DSM 20016. Data were modeled through Weibull equation for the evaluation of the microbiological shelf life and the survival time. Prebiotics enhanced the microbiological shelf life and enhanced the survival time of the target bacterium. The use of the factorial ANOVA highlighted that inulin and FOS exerted a different effect as a function of pH and temperature. Inulin prolonged survival time under acidic conditions, while the effect of glucose + FOS was significant at pH 8. Finally, temperature could act by increasing or decreasing the effect of prebiotics, as they could exert a protective effect at 30 °C but not at 44 °C. As the main output of this research, we could suggest that the effect of prebiotics on L. reuteri could be significantly affected by pH and temperature, thus pinpointing that the design of a symbiotic food should also rely on these factors.

  16. The Development of a Stochastic Model of the Atmosphere Between 30 and 90 Km to Be Used in Determining the Effect of Atmospheric Variability on Space Shuttle Entry Parameters. Ph.D. Thesis - Virginia Polytechnic Inst. and State Univ.

    NASA Technical Reports Server (NTRS)

    Campbell, J. W.

    1973-01-01

    A stochasitc model of the atmosphere between 30 and 90 km was developed for use in Monte Carlo space shuttle entry studies. The model is actually a family of models, one for each latitude-season category as defined in the 1966 U.S. Standard Atmosphere Supplements. Each latitude-season model generates a pseudo-random temperature profile whose mean is the appropriate temperature profile from the Standard Atmosphere Supplements. The standard deviation of temperature at each altitude for a given latitude-season model was estimated from sounding-rocket data. Departures from the mean temperature at each altitude were produced by assuming a linear regression of temperature on the solar heating rate of ozone. A profile of random ozone concentrations was first generated using an auxiliary stochastic ozone model, also developed as part of this study, and then solar heating rates were computed for the random ozone concentrations.

  17. Final report of the key comparison APMP.QM-K9: APMP comparison on pH measurement of phosphate buffer

    NASA Astrophysics Data System (ADS)

    Hioki, Akiharu; Ohata, Masaki; Cherdchu, Chainarong; Tangpaisarnkul, Nongluck

    2011-01-01

    The APMP.QM-K9 was organised by TCQM of APMP to test the abilities of the national metrology institutes in the APMP region to measure a pH value of a phosphate buffer. This APMP comparison on pH measurement was proposed by the National Metrology Institute of Japan, NMIJ, and the National Institute of Metrology of Thailand, NIMT, in August 2009. After approval by TCQM, the comparison has been conducted by NMIJ and NIMT. The comparison is a key comparison following CCQM-K9, CCQM-K9.1 and CCQM-K9.2. The comparison material was a phosphate buffer of pH around 6.86 and the measurement temperatures were 15 °C, 25 °C and 37 °C. This is the first APMP key comparison on pH measurement and the third APMP comparison on pH measurement following APMP.QM-P06 (two phosphate buffers) in 2004 and APMP.QM-P09 (a phthalate buffer) in 2006. The results can be used further by any participant to support its CMC claim for a phosphate buffer. That claim will concern the pH method employed by the participant during this comparison and will cover the temperature(s) used or the full temperature range between 15 °C and 37 °C for the participant which measured pH values at the three temperatures. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  18. Biophysical feedbacks mediate carbonate chemistry in coastal ecosystems across spatiotemporal gradients.

    PubMed

    Silbiger, Nyssa J; Sorte, Cascade J B

    2018-01-15

    Ocean acidification (OA) projections are primarily based on open ocean environments, despite the ecological importance of coastal systems in which carbonate dynamics are fundamentally different. Using temperate tide pools as a natural laboratory, we quantified the relative contribution of community composition, ecosystem metabolism, and physical attributes to spatiotemporal variability in carbonate chemistry. We found that biological processes were the primary drivers of local pH conditions. Specifically, non-encrusting producer-dominated systems had the highest and most variable pH environments and the highest production rates, patterns that were consistent across sites spanning 11° of latitude and encompassing multiple gradients of natural variability. Furthermore, we demonstrated a biophysical feedback loop in which net community production increased pH, leading to higher net ecosystem calcification. Extreme spatiotemporal variability in pH is, thus, both impacting and driven by biological processes, indicating that shifts in community composition and ecosystem metabolism are poised to locally buffer or intensify the effects of OA.

  19. Optimization of the ultrasound-assisted extraction of anthocyanins and total phenolic compounds in mulberry (Morus nigra) pulp.

    PubMed

    Espada-Bellido, Estrella; Ferreiro-González, Marta; Carrera, Ceferino; Palma, Miguel; Barroso, Carmelo G; Barbero, Gerardo F

    2017-03-15

    New ultrasound-assisted extraction methods for the determination of anthocyanins and total phenolic compounds present in mulberries have been developed. Several extraction variables, including methanol composition (50-100%), temperature (10-70°C), ultrasound amplitude (30-70%), cycle (0.2-0.7s), solvent pH (3-7) and solvent-solid ratio (10:1.5-20:1.5) were optimized. A Box-Behnken design in conjunction with a response surface methodology was employed to optimize the conditions for the maximum response based on 54 different experiments. Two response variables were considered: total anthocyanins and total phenolic compounds. Extraction temperature and solvent composition were found to be the most influential parameters for anthocyanins (48°C and 76%) and phenolic compounds (64°C and 61%). The developed methods showed high reproducibility and repeatability (RSD<5%). Finally, the new methods were successfully applied to real samples in order to investigate the presence of anthocyanins and total phenolic compounds in several mulberry jams. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Effects of Physiochemical Factors on Prokaryotic Biodiversity in Malaysian Circumneutral Hot Springs.

    PubMed

    Chan, Chia S; Chan, Kok-Gan; Ee, Robson; Hong, Kar-Wai; Urbieta, María S; Donati, Edgardo R; Shamsir, Mohd S; Goh, Kian M

    2017-01-01

    Malaysia has a great number of hot springs, especially along the flank of the Banjaran Titiwangsa mountain range. Biological studies of the Malaysian hot springs are rare because of the lack of comprehensive information on their microbial communities. In this study, we report a cultivation-independent census to describe microbial communities in six hot springs. The Ulu Slim (US), Sungai Klah (SK), Dusun Tua (DT), Sungai Serai (SS), Semenyih (SE), and Ayer Hangat (AH) hot springs exhibit circumneutral pH with temperatures ranging from 43°C to 90°C. Genomic DNA was extracted from environmental samples and the V3-V4 hypervariable regions of 16S rRNA genes were amplified, sequenced, and analyzed. High-throughput sequencing analysis showed that microbial richness was high in all samples as indicated by the detection of 6,334-26,244 operational taxonomy units. In total, 59, 61, 72, 73, 65, and 52 bacterial phyla were identified in the US, SK, DT, SS, SE, and AH hot springs, respectively. Generally, Firmicutes and Proteobacteria dominated the bacterial communities in all hot springs. Archaeal communities mainly consisted of Crenarchaeota, Euryarchaeota, and Parvarchaeota. In beta diversity analysis, the hot spring microbial memberships were clustered primarily on the basis of temperature and salinity. Canonical correlation analysis to assess the relationship between the microbial communities and physicochemical variables revealed that diversity patterns were best explained by a combination of physicochemical variables, rather than by individual abiotic variables such as temperature and salinity.

  1. Calculation of the relative metastabilities of proteins using the CHNOSZ software package

    PubMed Central

    Dick, Jeffrey M

    2008-01-01

    Background Proteins of various compositions are required by organisms inhabiting different environments. The energetic demands for protein formation are a function of the compositions of proteins as well as geochemical variables including temperature, pressure, oxygen fugacity and pH. The purpose of this study was to explore the dependence of metastable equilibrium states of protein systems on changes in the geochemical variables. Results A software package called CHNOSZ implementing the revised Helgeson-Kirkham-Flowers (HKF) equations of state and group additivity for ionized unfolded aqueous proteins was developed. The program can be used to calculate standard molal Gibbs energies and other thermodynamic properties of reactions and to make chemical speciation and predominance diagrams that represent the metastable equilibrium distributions of proteins. The approach takes account of the chemical affinities of reactions in open systems characterized by the chemical potentials of basis species. The thermodynamic database included with the package permits application of the software to mineral and other inorganic systems as well as systems of proteins or other biomolecules. Conclusion Metastable equilibrium activity diagrams were generated for model cell-surface proteins from archaea and bacteria adapted to growth in environments that differ in temperature and chemical conditions. The predicted metastable equilibrium distributions of the proteins can be compared with the optimal growth temperatures of the organisms and with geochemical variables. The results suggest that a thermodynamic assessment of protein metastability may be useful for integrating bio- and geochemical observations. PMID:18834534

  2. Effects of Physiochemical Factors on Prokaryotic Biodiversity in Malaysian Circumneutral Hot Springs

    PubMed Central

    Chan, Chia S.; Chan, Kok-Gan; Ee, Robson; Hong, Kar-Wai; Urbieta, María S.; Donati, Edgardo R.; Shamsir, Mohd S.; Goh, Kian M.

    2017-01-01

    Malaysia has a great number of hot springs, especially along the flank of the Banjaran Titiwangsa mountain range. Biological studies of the Malaysian hot springs are rare because of the lack of comprehensive information on their microbial communities. In this study, we report a cultivation-independent census to describe microbial communities in six hot springs. The Ulu Slim (US), Sungai Klah (SK), Dusun Tua (DT), Sungai Serai (SS), Semenyih (SE), and Ayer Hangat (AH) hot springs exhibit circumneutral pH with temperatures ranging from 43°C to 90°C. Genomic DNA was extracted from environmental samples and the V3–V4 hypervariable regions of 16S rRNA genes were amplified, sequenced, and analyzed. High-throughput sequencing analysis showed that microbial richness was high in all samples as indicated by the detection of 6,334–26,244 operational taxonomy units. In total, 59, 61, 72, 73, 65, and 52 bacterial phyla were identified in the US, SK, DT, SS, SE, and AH hot springs, respectively. Generally, Firmicutes and Proteobacteria dominated the bacterial communities in all hot springs. Archaeal communities mainly consisted of Crenarchaeota, Euryarchaeota, and Parvarchaeota. In beta diversity analysis, the hot spring microbial memberships were clustered primarily on the basis of temperature and salinity. Canonical correlation analysis to assess the relationship between the microbial communities and physicochemical variables revealed that diversity patterns were best explained by a combination of physicochemical variables, rather than by individual abiotic variables such as temperature and salinity. PMID:28729863

  3. Comment on “Hydrolysis of neptunium(V) at variable temperatures (10 85 °C)” by L. Rao, T.G. Srinivasan, A.Yu. Garnov, P. Zanonato, P. Di Bernardo, and A. Bismondo

    NASA Astrophysics Data System (ADS)

    Neck, V.

    2006-09-01

    In a recent study [Rao, L., Srinivasan, T.G., Garnov, A.Yu., Zanonato, P., Di Bernardo, P., Bismondo, A., 2004. Hydrolysis of neptunium(V) at variable temperatures (10-85 °C). Geochim. Cosmochim. Acta68, 4821-4830.] the hydrolysis of Np(V) was investigated at 10-85 °C by absorption spectroscopy, potentiometry, and microcalorimetry along the titration of Np(V) solutions with tetramethylammonium hydroxide up to pH 10. However, there is strong evidence that the precautions to avoid competing reactions with carbonate were not sufficient and that the measured effects are not caused by the formation of Np(V) hydroxide complexes but primarily by the formation of Np(V) carbonate complexes. The reported equilibrium constants, enthalpies, entropies, and heat capacities for the complexes NpO 2OH(aq) and NpO(OH)2- are severely in error and must not be used for the geochemical modeling of neptunium. If the hydrolysis constants reported by Rao et al. [Rao, L., Srinivasan, T.G., Garnov, A.Yu., Zanonato, P., Di Bernardo, P., Bismondo, A., 2004. Hydrolysis of neptunium(V) at variable temperatures (10-85 °C). Geochim. Cosmochim. Acta68, 4821-4830] are used to calculate neptunium solubilities in alkaline solutions relevant for nuclear waste repositories, the Np(V) concentrations are overestimated by orders of magnitude.

  4. Heat-induced gelation of casein micelles in aqueous suspensions at different pH.

    PubMed

    Thomar, Peggy; Nicolai, Taco

    2016-10-01

    Heat-induced gelation of casein micelles in aqueous solution was investigated between pH 5.2 and pH 6.7 over a wide range of protein concentrations (C=25-160gL(-1)). For C≥40gL(-1) the casein micelles rapidly formed a self-supporting gel above a critical temperature (Tc). At C=160gL(-1), Tc decreased from 90°C at pH 6.5 to 30°C at pH 5.4 and increased with decreasing protein concentration. Oscillatory shear measurements during heating showed that the elastic modulus (Gel) of the gels increased strongly with increasing protein concentration, but was insensitive to the pH and the heating temperature except close to Tc where Gel decreased sharply with decreasing temperature. The microstructure of the gels was observed by confocal scanning laser microscopy. Heat-induced gelation of casein micelles was compared with that of sodium caseinate solutions free of calcium phosphate. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Seasonal and high-frequency measurements of pH, oxygen and aragonite saturation state in a coral reef: Cabo Pulmo, Mexico.

    NASA Astrophysics Data System (ADS)

    Norzagaray, O.; Martin Hernandez-Ayon, J. M.; Calderon Aguilera, L. E.; Reyes-Bonilla, H.; Castro, R.; Trasviña, A.

    2016-02-01

    Cabo Pulmo reef is located in the coastal area within the oxygen minimum zone (OMZ), which has been reported as shallow as 70m, and characterized by CO2-rich waters (>2200 μmolkg-1) and low pH (<7.7). To date it is unknown whether the OMZ waters influence these coral reef at any point of the year, or during certain oceanographic episodes, therefore, it is important to know the temporal variability of these parameters. This study presents high frequency data series from November 2013 to June 2014 from a SeapHOX sensor deployed at 15 m depth and 1.5 km from shore. The pH series was calibrated with discrete samples (total carbon and alkalinity measurements). A high-resolution aragonite saturation state (< Ωar) series was calculated from pH series and total alkalinity. Discrete and continuous measurements showed the seasonal influence of two water masses, the Gulf of California water during winter (GCW), and the surface Tropical water (TSW) during spring-summer. From December to April the conditions with the lowest pH were found (<Ωar), related to GCW, and two months with TSW; the highest pH values (> Ωar) were from May to June. During winter-spring (mostly-TSW) were present the most optimal conditions for coral calcification (>Ωar). Dissolved oxygen (OD) was always up to 3.4 mlL-1. However, two events (5-10 days length) arose in winter (February/TSW) and summer (June/GCW) with low pH (<7.9), low Ωar (<2.6), low temperature (<22oC), and low DO (<4 mlL-1), threshold values reported to cause negative effects on coral calcification and with exposure times on the order of days.

  6. The vulvar skin microenvironment: influence of different panty liners on temperature, pH and microflora.

    PubMed

    Runeman, Bo; Rybo, Göran; Forsgren-Brusk, Ulla; Larkö, Olle; Larsson, Peter; Faergemann, Jan

    2004-01-01

    The aim of this study was to confirm findings that vapour-impermeable panty liners might impair skin climate, and to assess their impact on the skin microflora. Temperature, surface pH and aerobic microflora were measured on vulvar skin of 102 women. The mean skin temperature was 1.1 degrees C higher when using a vapour-impermeable panty liner compared with not using one. Use of panty liners with vapour-permeable back sheets and acidic cores resulted in skin temperature, pH and microflora levels that were very close to those observed in persons not using liners. The temperature, pH and total number of microorganisms were significantly lower for users of vapour-permeable panty liners than for users of vapour-impermeable ones (p <0.05, p<0.001 and p<0.001, respectively). The microorganism densities were usually higher when using the vapour-impermeable panty liner, but mean differences were minor. The use of panty liners seems not to imply a microbial risk for normal, healthy women.

  7. Assessing physiological tipping points in response to ocean acidification

    NASA Astrophysics Data System (ADS)

    Dupont, S. T.; Dorey, N.; Lançon, P.; Thorndyke, M. S.

    2011-12-01

    Impact of near-future ocean acidification on marine invertebrates was mostly assessed in single-species perturbation experiment. Moreover, most of these experiments are short-term, only consider one life-history stage and one or few parameters. They do not take into account important processes such as natural variability and acclimation and evolutionary processes. In many studies published so far, there is a clear lack between the observed effects and individual fitness, most of the deviation from the control being considered as potentially negative for the tested species. However, individuals are living in a fluctuating world and changes can also be interpreted as phenotypic plasticity and may not translate into negative impact on fitness. For example, a vent mussel can survive for decades in very acidic waters despite a significantly reduced calcification compare to control (Tunnicliffe et al. 2009). This is possible thanks to the absence of predatory crabs as a result of acidic conditions that may also inhibit carapace formation. This illustrates the importance to take into account ecological interactions when interpreting single-species experiments and to consider the relative fitness between interacting species. To understand the potential consequence of ocean acidification on any given ecosystem, it is then critical to consider the relative impact on fitness for every interactive species and taking into account the natural fluctuation in environment (e.g. pH, temperature, food concentration, abundance) and discriminate between plasticity with no direct impact on fitness and teratology with direct consequence on survival. In this presentation, we will introduce the concept of "physiological tipping point" in the context of ocean acidification. This will be illustrated by some work done on sea urchin development. Embryos and larvae of the sea urchin Strongylocentrotus droebachiensis were exposed to a range of pH from 8.1 to 6.5. When exposed to low pH, growth rate is decreased. However, the intensity of the impact on the growth rate is depending on the tested pH. When pH is 7.3 or higher, only a small delay in development is observed with no effect on larval morphology (phenotypic plasticity). When the pH is lower than 7.3, the impact is more severe together with major developmental abnormalities. At pH 6.5, the development is totally arrested. The link between a species physiological tipping point and environmental variability will be discussed.

  8. A miniature integrated multimodal sensor for measuring pH, EC and temperature for precision agriculture.

    PubMed

    Futagawa, Masato; Iwasaki, Taichi; Murata, Hiroaki; Ishida, Makoto; Sawada, Kazuaki

    2012-01-01

    Making several simultaneous measurements with different kinds of sensors at the same location in a solution is difficult because of crosstalk between the sensors. In addition, because the conditions at different locations in plant beds differ, in situ measurements in agriculture need to be done in small localized areas. We have fabricated a multimodal sensor on a small Si chip in which a pH sensor was integrated with electrical conductivity (EC) and temperature sensors. An ISFET with a Si(3)N(4) membrane was used for the pH sensor. For the EC sensor, the electrical conductivity between platinum electrodes was measured, and the temperature sensor was a p-n junction diode. These are some of the most important measurements required for controlling the conditions in plant beds. The multimodal sensor can be inserted into a plant bed for in situ monitoring. To confirm the absence of crosstalk between the sensors, we made simultaneous measurements of pH, EC, and temperature of a pH buffer solution in a plant bed. When the solution was diluted with hot or cold water, the real time measurements showed changes to the EC and temperature, but no change in pH. We also demonstrated that our sensor was capable of simultaneous in situ measurements in rock wool without being affected by crosstalk.

  9. A Miniature Integrated Multimodal Sensor for Measuring pH, EC and Temperature for Precision Agriculture

    PubMed Central

    Futagawa, Masato; Iwasaki, Taichi; Murata, Hiroaki; Ishida, Makoto; Sawada, Kazuaki

    2012-01-01

    Making several simultaneous measurements with different kinds of sensors at the same location in a solution is difficult because of crosstalk between the sensors. In addition, because the conditions at different locations in plant beds differ, in situ measurements in agriculture need to be done in small localized areas. We have fabricated a multimodal sensor on a small Si chip in which a pH sensor was integrated with electrical conductivity (EC) and temperature sensors. An ISFET with a Si3N4 membrane was used for the pH sensor. For the EC sensor, the electrical conductivity between platinum electrodes was measured, and the temperature sensor was a p-n junction diode. These are some of the most important measurements required for controlling the conditions in plant beds. The multimodal sensor can be inserted into a plant bed for in situ monitoring. To confirm the absence of crosstalk between the sensors, we made simultaneous measurements of pH, EC, and temperature of a pH buffer solution in a plant bed. When the solution was diluted with hot or cold water, the real time measurements showed changes to the EC and temperature, but no change in pH. We also demonstrated that our sensor was capable of simultaneous in situ measurements in rock wool without being affected by crosstalk. PMID:22969403

  10. Determining pH at elevated pressure and temperature using in situ ¹³C NMR.

    PubMed

    Surface, J Andrew; Wang, Fei; Zhu, Yanzhe; Hayes, Sophia E; Giammar, Daniel E; Conradi, Mark S

    2015-02-03

    We have developed an approach for determining pH at elevated pressures and temperatures by using (13)C NMR measurements of inorganic carbon species together with a geochemical equilibrium model. The approach can determine in situ pH with precision better than 0.1 pH units at pressures, temperatures, and ionic strengths typical of geologic carbon sequestration systems. A custom-built high pressure NMR probe was used to collect (13)C NMR spectra of (13)C-labeled CO2 reactions with NaOH solutions and Mg(OH)2 suspensions at pressures up to 107 bar and temperatures of 80 °C. The quantitative nature of NMR spectroscopy allows the concentration ratio [CO2]/[HCO3(-)] to be experimentally determined. This ratio is then used with equilibrium constants calculated for the specific pressure and temperature conditions and appropriate activity coefficients for the solutes to calculate the in situ pH. The experimentally determined [CO2]/[HCO3(-)] ratios agree well with the predicted values for experiments performed with three different concentrations of NaOH and equilibration with multiple pressures of CO2. The approach was then applied to experiments with Mg(OH)2 slurries in which the change in pH could track the dissolution of CO2 into solution, rapid initial Mg(OH)2 dissolution, and onset of magnesium carbonate precipitation.

  11. Removal Efficiency of the Heavy Metals Zn(II), Pb(II) and Cd(II) by Saprolegnia delica and Trichoderma viride at Different pH Values and Temperature Degrees

    PubMed Central

    Hashem, Mohamed

    2007-01-01

    The removal efficiency of the heavy metals Zn, Pb and Cd by the zoosporic fungal species Saprolegnia delica and the terrestrial fungus Trichoderma viride, isolated from polluted water drainages in the Delta of Nile in Egypt, as affected by various ranges of pH values and different temperature degrees,was extensively investigated. The maximum removal efficiency of S. delica for Zn(II) and Cd(II) was obtained at pH 8 and for Pb(II) was at pH 6 whilst the removal efficiency of T. viride was found to be optimum at pH 6 for the three applied heavy metals. Regardless the median lethal doses of the three heavy metals, Zn recorded the highest bioaccumulation potency by S. delica at all pH values except at pH 4, followed by Pb whereas Cd showed the lowest removal potency by the fungal species and vice versa in case of T. viride. The optimum biomass dry weight production by S. delica was found when the fungus was grown in the medium treated with the heavy metal Pb at pH 6, followed by Zn at pH 8 and Cd at pH 8. The optimum biomass dry weight yield by T. viride amended with Zn,Pb and Cd was obtained at pH 6 for the three heavy metals with the maximum value at Zn. The highest yield of biomass dry weight was found when T. viride treated with Cd at all different pH values followed by Pb whilst Zn output was the lowest and this result was reversed in case of S. delica. The maximum removal efficiency and the biomass dry weight production for the three tested heavy metals was obtained at the incubation temperature 20℃ in case of S. delica while it was 25℃ for T. viride. Incubation of T. viride at higher temperatures (30℃ and 35℃) enhanced the removal efficiency of Pb and Cd than low temperatures (15℃ and 20℃) and vice versa in case of Zn removal. At all tested incubation temperatures, the maximum yield of biomass dry weight was attained at Zn treatment by the two tested fungal species. The bioaccumulation potency of S. delica for Zn was higher than that for Pb at all temperature degrees of incubation and Cd bioaccumulation was the lowest whereas T. viride showed the highest removal efficiency for Pb followed by Cd and Zn was the minor of the heavy metals. PMID:24015084

  12. Selectivity in reversed-phase separations: general influence of solvent type and mobile phase pH.

    PubMed

    Neue, Uwe D; Méndez, Alberto

    2007-05-01

    The influence of the mobile phase on retention is studied in this paper for a group of over 70 compounds with a broad range of multiple functional groups. We varied the pH of the mobile phase (pH 3, 7, and 10) and the organic modifier (methanol, acetonitrile (ACN), and tetrahydrofuran (THF)), using 15 different stationary phases. In this paper, we describe the overall retention and selectivity changes observed with these variables. We focus on the primary effects of solvent choice and pH. For example, transfer rules for solvent composition resulting in equivalent retention depend on the packing as well as on the type of analyte. Based on the retention patterns, one can calculate selectivity difference values for different variables. The selectivity difference is a measure of the importance of the different variables involved in method development. Selectivity changes specific to the type of analyte are described. The largest selectivity differences are obtained with pH changes.

  13. An analysis of carbon and radiocarbon profiles across a range ecosystems types

    NASA Astrophysics Data System (ADS)

    Heckman, K. A.; Gallo, A.; Hatten, J. A.; Swanston, C.; Strahm, B. D.; Sanclements, M.

    2016-12-01

    Soil carbon stocks have become recognized as increasingly important in the context of climate change and global C cycle modeling. As modelers seek to identify key parameters affecting the size and stability of belowground C stocks, attention has been drawn to the mineral matrix and the soil physiochemical factors influenced by it. Though clay content has often been utilized as a convenient and key explanatory variable for soil C dynamics, its utility has recently come under scrutiny as new paradigms of soil organic matter stabilization have been developed. We utilized soil cores from a range of National Ecological Observatory Network (NEON) experimental plots to examine the influence of mineralogical parameters on soil C stocks and turnover and their relative importance in comparison to climatic variables. Results are presented for a total of 11 NEON sites, spanning Alfisols, Entisols, Mollisols and Spodosols. Soils were sampled by genetic horizon, density separated according to density fractionation: light fractions (particulate organics neither occluded within aggregates nor associated with mineral surfaces), occluded fractions (particulate organics occluded within aggregates), and heavy fractions (organics associated with mineral surfaces). Bulk soils and density fractions were measured for % C and radiocarbon abundance (as a measure of C stability). Carbon and radiocarbon abundances were examined among fractions and in the context of climatic variables (temperature, precipitation, elevation) and soil physiochemical variables (% clay and pH). No direct relationships between temperature and soil C or radiocarbon abundances were found. As a whole, soil radiocarbon abundance in density fractions decreased in the order of light>heavy>occluded, highlighting the importance of both surface sorption and aggregation to the preservation of organics. Radiocarbon concentrations of the heavy fraction (mineral adsorbed) were significantly, though weakly, correlated with pH (r2 = 0.35, p = 0.02), though C concentrations were not. Data suggest an important role for both aggregation and soil chemistry in regulating soil C cycling across a diversity of soil orders. The current presented results serve as a preliminary report on a project spanning 40 NEON sites and a range of physiochemical analyses.

  14. What are the most crucial soil factors for predicting the distribution of alpine plant species?

    NASA Astrophysics Data System (ADS)

    Buri, A.; Pinto-Figueroa, E.; Yashiro, E.; Guisan, A.

    2017-12-01

    Nowadays the use of species distribution models (SDM) is common to predict in space and time the distribution of organisms living in the critical zone. The realized environmental niche concept behind the development of SDM imply that many environmental factors must be accounted for simultaneously to predict species distributions. Climatic and topographic factors are often primary included, whereas soil factors are frequently neglected, mainly due to the paucity of soil information available spatially and temporally. Furthermore, among existing studies, most included soil pH only, or few other soil parameters. In this study we aimed at identifying what are the most crucial soil factors for explaining alpine plant distributions and, among those identified, which ones further improve the predictive power of plant SDMs. To test the relative importance of the soil factors, we performed plant SDMs using as predictors 52 measured soil properties of various types such as organic/inorganic compounds, chemical/physical properties, water related variables, mineral composition or grain size distribution. We added them separately to a standard set of topo-climatic predictors (temperature, slope, solar radiation and topographic position). We used ensemble forecasting techniques combining together several predictive algorithms to model the distribution of 116 plant species over 250 sites in the Swiss Alps. We recorded the variable importance for each model and compared the quality of the models including different soil proprieties (one at a time) as predictors to models having only topo-climatic variables as predictors. Results show that 46% of the soil proprieties tested become the second most important variable, after air temperature, to explain spatial distribution of alpine plants species. Moreover, we also assessed that addition of certain soil factors, such as bulk soil water density, could improve over 80% the quality of some plant species models. We confirm that soil pH remains one of the most important soil factor for predicting plant species distributions, closely followed by water, organic and inorganic carbon related properties. Finally, we were able to extract three main categories of important soil properties for plant species distributions: grain size distribution, acidity and water in the soil.

  15. Design and evaluation of a bioreactor with application to forensic burial environments.

    PubMed

    Dunphy, Melissa A; Weisensee, Katherine E; Mikhailova, Elena A; Harman, Melinda K

    2015-12-01

    Existing forensic taphonomic methods lack specificity in estimating the postmortem interval (PMI) in the period following active decomposition. New methods, such as the use of citrate concentration in bone, are currently being considered; however, determining the applicability of these methods in differing environmental contexts is challenging. This research aims to design a forensic bioreactor that can account for environmental factors known to impact decomposition, specifically temperature, moisture, physical damage from animals, burial depth, soil pH, and organic matter content. These forensically relevant environmental variables were characterized in a soil science context. The resulting metrics were soil temperature regime, soil moisture regime, slope, texture, soil horizon, cation exchange capacity, soil pH, and organic matter content. Bioreactor chambers were constructed using sterilized thin-walled polystyrene boxes housed in calibrated temperature units. Gravesoil was represented using mineral soil (Ultisols), and organic soil proxy for Histosols, horticulture mix. Gravesoil depth was determined using mineral soil horizons A and Bt2 to simulate surface scatter and shallow grave burial respectively. A total of fourteen different environmental conditions were created and controlled successfully over a 90-day experiment. These results demonstrate successful implementation and control of forensic bioreactor simulating precise environments in a single research location, rather than site-specific testing occurring in different geographic regions. Bone sections were grossly assessed for weathering characteristics, which revealed notable differences related to exposure to different temperature regimes and soil types. Over the short 90-day duration of this experiment, changes in weathering characteristics were more evident across the different temperature regimes rather than the soil types. Using this methodology, bioreactor systems can be created to replicate many different clandestine burial contexts, which will allow for the more rapid understanding of environmental effects on skeletal remains. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Pre-slaughter rectal temperature as an indicator of pork meat quality.

    PubMed

    Vermeulen, L; Van de Perre, V; Permentier, L; De Bie, S; Geers, R

    2015-07-01

    This study investigates whether rectal temperature of pigs, prior to slaughter, can give an indication of the risk of developing pork with PSE characteristics. A total of 1203 pigs were examined, measuring the rectal temperature just before stunning, of which 794 rectal temperatures were measured immediately after stunning. pH30LT (M. Longissimus thoracis) and temperature of the ham (Temp30Ham) were collected from about 530 carcasses, 30 min after sticking. The results present a significant positive linear correlation between rectal temperature just before and after slaughter, and Temp30Ham. Moreover, pH30LT is negatively correlated with rectal temperature and Temp30Ham. Finally, a linear mixed model for pH30LT was established with the rectal temperature of the pigs just before stunning and the lairage time. This model defines that measuring rectal temperature of pigs just before slaughter allows discovery of pork with PSE traits, taking into account pre-slaughter conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Response of planktonic cladocerans (Class: Branchiopoda) to short-term changes in environmental variables in the surface waters of the Bay of Biscay

    NASA Astrophysics Data System (ADS)

    d'Elbée, Jean; Lalanne, Yann; Castège, Iker; Bru, Noelle; D'Amico, Frank

    2014-08-01

    From January 2001 to December 2008, 73 surface plankton samples and 45 vertical profiles of sea temperature, salinity, dissolved oxygen and pH were collected on a monthly basis from a single sampling station located in the Bay of Biscay (43°37N; 1°43W) (North-East Atlantic). Two types of North Atlantic Oscillation (NAO) indexes were included in the data set and submitted to a Canonical Correspondence Analysis and Spearman non-parametric test. Significant breaks and levels in time series were tested using a data segmentation method. The temperature range varies from 11 °C to 25 °C. It begins to rise from April until August and then decline. Low salinity values occur in mid-spring (<34 PSU) and high values (>36 PSU) in autumn. Dissolved oxygen mean values were around 8 mg/l. In summer, when temperature and salinity are high, surface water layer is always accompanied with a significant deoxygenation, and the process reverses in winter. pH mean values range was 7.78-8.33. Seasonal and inter-annual variations of the two NAO indexes are strongly correlated to one another, but do not correlate with any hydrological or biological variable. Five of the seven cladocerans species which are present in the Bay of Biscay were found in this study. There is a strong pattern in species succession throughout the year: Evadne nordmanni is a vernal species, while Penilia avirostris and Pseudevadne tergestina occur mainly in summer and autumn. Evadne spinifera has a maximum abundance in spring, Podon intermedius in autumn, but they both occur throughout the year. However, for some thirty years, the presence of species has tended to become significantly extended throughout the year. During the 2001-2008 period, there was a noticeable decline and even a disappearance of the categories involved in sexual reproduction as well as those involved in parthenogenesis, in favor of non-breeding individuals.

  18. Self-assembling amphiphilic peptides†

    PubMed Central

    Dehsorkhi, Ashkan; Castelletto, Valeria; Hamley, Ian W

    2014-01-01

    The self-assembly of several classes of amphiphilic peptides is reviewed, and selected applications are discussed. We discuss recent work on the self-assembly of lipopeptides, surfactant-like peptides and amyloid peptides derived from the amyloid-β peptide. The influence of environmental variables such as pH and temperature on aggregate nanostructure is discussed. Enzyme-induced remodelling due to peptide cleavage and nanostructure control through photocleavage or photo-cross-linking are also considered. Lastly, selected applications of amphiphilic peptides in biomedicine and materials science are outlined. © 2014 The Authors. Journal of Peptide Science published by European Peptide Society and John Wiley & Sons, Ltd. PMID:24729276

  19. Gelation of Regenerated Fibroin Solution

    NASA Astrophysics Data System (ADS)

    Nagarkar, Shailesh; Lele, Ashish; Chassenieux, Christophe; Nicolai, Taco; Durand, Dominique

    2008-07-01

    Silk fibroin is a high molecular weight multiblock ampiphillic protein known for its ability to form high strength fibers. It is also biocompatible; silk sutures have been traditionally used for many centuries. Recently, there has been much interest in making silk hydrogels for applications ranging from tissue engineering to controlled delivery. Fibroin gels can be formed from aqueous solutions by changing one or more state variables such as pH, temperature and ionic strength. In this work we present our investigations on the gelation of aqueous fibroin solutions derived from Bombyx Mori silk using light scattering, confocal microscopy and rheological techniques.

  20. Cell Membrane Fatty Acid Composition of Chryseobacterium frigidisoli PB4T, Isolated from Antarctic Glacier Forefield Soils, in Response to Changing Temperature and pH Conditions

    PubMed Central

    Bajerski, Felizitas; Wagner, Dirk; Mangelsdorf, Kai

    2017-01-01

    Microorganisms in Antarctic glacier forefields are directly exposed to the hostile environment of their habitat characterized by extremely low temperatures and changing geochemical conditions. To survive under those stress conditions microorganisms adapt, among others, their cell membrane fatty acid inventory. However, only little is known about the adaptation potential of microorganisms from Antarctic soil environments. In this study, we examined the adaptation of the cell membrane polar lipid fatty acid inventory of Chryseobacterium frigidisoli PB4T in response to changing temperature (0°C to 20°C) and pH (5.5 to 8.5) regimes, because this new strain isolated from an Antarctic glacier forefield showed specific adaptation mechanisms during its detailed physiological characterization. Flavobacteriaceae including Chryseobacterium species occur frequently in extreme habitats such as ice-free oases in Antarctica. C. frigidisoli shows a complex restructuring of membrane derived fatty acids in response to different stress levels. Thus, from 20°C to 10°C a change from less iso-C15:0 to more iso-C17:1ω7 is observed. Below 10°C temperature adaptation is regulated by a constant increase of anteiso-FAs and decrease of iso-FAs. An anteiso- and bis-unsaturated fatty acid, anteiso-heptadeca-9,13-dienoic acid, shows a continuous increase with decreasing cultivation temperatures underlining the particular importance of this fatty acid for temperature adaptation in C. frigidisoli. Concerning adaptation to changing pH conditions, most of the dominant fatty acids reveal constant relative proportions around neutral pH (pH 6–8). Strong variations are mainly observed at the pH extremes (pH 5.5 and 8.5). At high pH short chain saturated iso- and anteiso-FAs increase while longer chain unsaturated iso- and anteiso-FAs decrease. At low pH the opposite trend is observed. The study shows a complex interplay of different membrane components and provides, therefore, deep insights into adaptation strategies of microorganisms from extreme habitats to changing environmental conditions. PMID:28469614

  1. Effects of increased pCO2 and temperature on trace element (Ag, Cd and Zn) bioaccumulation in the eggs of the common cuttlefish, Sepia officinalis

    NASA Astrophysics Data System (ADS)

    Lacoue-Labarthe, T.; Martin, S.; Oberhänsli, F.; Teyssié, J.-L.; Markich, S.; Jeffree, R.; Bustamante, P.

    2009-05-01

    Cephalopods play a key role in many marine trophic networks and constitute alternative fisheries resources, especially given the ongoing decline in finfish stocks. Along the European coast, the eggs of the cuttlefish Sepia officinalis are characterized by an increasing permeability of the eggshell during development, which leads to selective accumulation of essential and non-essential elements in the embryo. Temperature and pH are two critical factors that affect the metabolism of marine organisms in the coastal shallow waters. In this study, we are testing the effects of pH and temperature through a crossed (3×2) laboratory experiment. Seawater pH showed a strong effect on the egg weight and non-significant impact on the hatchlings weight at the end of development implying egg swelling process and embryo growth disturbances. The lower pH of incubation seawater of eggs, the more the hatchlings accumulated 110m Ag in their tissues. The 109Cd CF decreased with increasing pH and 65Zn CF reached the maximal values pH 7.85, independent of temperature. Our results suggest that pH and temperature affected both the permeability properties of the eggshell and the embryo metabolism. To the best of our knowledge, this is one of the first studies on the ocean acidification and ocean warming consequences on the metal uptake in marine organisms, stimulating further interest to evaluate the likely ecotoxicological impact of the global change on the early-life stage of the cuttlefish.

  2. Alternative Antimicrobial Commercial Egg Washing Procedures.

    PubMed

    Hudson, Lauren K; Harrison, Mark A; Berrang, Mark E; Jones, Deana R

    2016-07-01

    Commercial table eggs are washed prior to packaging. Standard wash procedures use an alkaline pH and warm water. If a cool water method could be developed that would still provide a microbiologically safe egg, the industry may save energy costs associated with water heating. Four wash procedures were evaluated for Salmonella reduction: pH 11 at 48.9°C (industry standard), pH 11 at ambient temperature (∼20°C), pH 6 at 48.9°C, and pH 6 at ambient temperature. Alkaline washes contained potassium hydroxide-based detergent, while pH 6 washes contained approximately 200 ppm of chlorine and a proprietary chlorine stabilizer (T-128). When eggs were inoculated by immersion in a cell suspension of Salmonella Enteritidis and Salmonella Typhimurium, all treatments resulted in a slight and similar reduction of Salmonella numbers (approximately 0.77 log CFU/ml of shell emulsion reduction). When eggs were inoculated by droplet on the shell surface, Salmonella counts were reduced by approximately 5 log CFU when washed with chlorine plus the chlorine stabilizer at both temperatures and with the alkaline wash at the high temperature. The reductions in Salmonella by these treatments were not significantly (P > 0.05) different from each other but were significantly (P < 0.05) more than the reduction observed for the 20°C alkaline treatment and 20°C control water treatments. Ambient temperature acidic washes reduced Salmonella contamination to the same degree as the standard pH 11 warm water wash and may be a viable option to reduce cost, increase shelf life, and slow pathogen growth in and on shell eggs.

  3. pH and temperature dual-sensitive liposome gel based on novel cleavable mPEG-Hz-CHEMS polymeric vaginal delivery system

    PubMed Central

    Chen, Daquan; Sun, Kaoxiang; Mu, Hongjie; Tang, Mingtan; Liang, Rongcai; Wang, Aiping; Zhou, Shasha; Sun, Haijun; Zhao, Feng; Yao, Jianwen; Liu, Wanhui

    2012-01-01

    Background In this study, a pH and temperature dual-sensitive liposome gel based on a novel cleavable hydrazone-based pH-sensitive methoxy polyethylene glycol 2000-hydrazone-cholesteryl hemisuccinate (mPEG-Hz-CHEMS) polymer was used for vaginal administration. Methods The pH-sensitive, cleavable mPEG-Hz-CHEMS was designed as a modified pH-sensitive liposome that would selectively degrade under locally acidic vaginal conditions. The novel pH-sensitive liposome was engineered to form a thermogel at body temperature and to degrade in an acidic environment. Results A dual-sensitive liposome gel with a high encapsulation efficiency of arctigenin was formed and improved the solubility of arctigenin characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. The dual-sensitive liposome gel with a sol-gel transition at body temperature was degraded in a pH-dependent manner, and was stable for a long period of time at neutral and basic pH, but cleavable under acidic conditions (pH 5.0). Arctigenin encapsulated in a dual-sensitive liposome gel was more stable and less toxic than arctigenin loaded into pH-sensitive liposomes. In vitro drug release results indicated that dual-sensitive liposome gels showed constant release of arctigenin over 3 days, but showed sustained release of arctigenin in buffers at pH 7.4 and pH 9.0. Conclusion This research has shed some light on a pH and temperature dual-sensitive liposome gel using a cleavable mPEG-Hz-CHEMS polymer for vaginal delivery. PMID:22679372

  4. High-Pressure-High-Temperature Processing Reduces Maillard Reaction and Viscosity in Whey Protein-Sugar Solutions.

    PubMed

    Avila Ruiz, Geraldine; Xi, Bingyan; Minor, Marcel; Sala, Guido; van Boekel, Martinus; Fogliano, Vincenzo; Stieger, Markus

    2016-09-28

    The aim of the study was to determine the influence of pressure in high-pressure-high-temperature (HPHT) processing on Maillard reactions and protein aggregation of whey protein-sugar solutions. Solutions of whey protein isolate containing either glucose or trehalose at pH 6, 7, and 9 were treated by HPHT processing or conventional high-temperature (HT) treatments. Browning was reduced, and early and advanced Maillard reactions were retarded under HPHT processing at all pH values compared to HT treatment. HPHT induced a larger pH drop than HT treatments, especially at pH 9, which was not associated with Maillard reactions. After HPHT processing at pH 7, protein aggregation and viscosity of whey protein isolate-glucose/trehalose solutions remained unchanged. It was concluded that HPHT processing can potentially improve the quality of protein-sugar-containing foods, for which browning and high viscosities are undesired, such as high-protein beverages.

  5. Raman spectroscopic approach to monitor the in vitro cyclization of creatine → creatinine

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Debraj; Sharma, Poornima; Singh, Sachin Kumar; Singh, Pushkar; Tarcea, Nicolae; Deckert, Volker; Popp, Jürgen; Singh, Ranjan K.

    2015-01-01

    The creatine → creatinine cyclization, an important metabolic phenomenon has been initiated in vitro at acidic pH and studied through Raman spectroscopic and DFT approach. The equilibrium composition of neutral, zwitterionic and protonated microspecies of creatine has been monitored with time as the reaction proceeds. Time series Raman spectra show clear signature of creatinine formation at pH 3 after ∼240 min at room temperature and reaction is faster at higher temperature. The spectra at pH 1 and pH 5 do not show such signature up to 270 min implying faster reaction rate at pH 3.

  6. Modeling the Effect of pH and Temperature for Cellulases Immobilized on Enzymogel Nanoparticles.

    PubMed

    Samaratunga, Ashani; Kudina, Olena; Nahar, Nurun; Zakharchenko, Andrey; Minko, Sergiy; Voronov, Andriy; Pryor, Scott W

    2015-06-01

    Production costs of cellulosic biofuels can be lowered if cellulases are recovered and reused using particulate carriers that can be extracted after biomass hydrolysis. Such enzyme recovery was recently demonstrated using enzymogel nanoparticles with grafted polymer brushes loaded with cellulases. In this work, cellulase (NS50013) and β-glucosidase (Novozyme 188) were immobilized on enzymogels made of poly(acrylic acid) polymer brushes grafted to the surface of silica nanoparticles. Response surface methodology was used to model effects of pH and temperature on hydrolysis and recovery of free and attached enzymes. Hydrolysis yields using both enzymogels and free cellulase and β-glucosidase were highest at the maximum temperature tested, 50 °C. The optimal pH for cellulase enzymogels and free enzyme was 5.0 and 4.4, respectively, while both free β-glucosidase and enzymogels had an optimal pH near 4.4. Highest hydrolysis sugar concentrations with cellulase and β-glucosidase enzymogels were 69 and 53 % of those with free enzymes, respectively. Enzyme recovery using enzymogels decreased with increasing pH, but cellulase recovery remained greater than 88 % throughout the operating range of pH values less than 5.0 and was greater than 95 % at pH values below 4.3. Recovery of β-glucosidase enzymogels was not affected by temperature and had little impact on cellulase recovery.

  7. Effects of salinity, pH and temperature on the re-establishment of bioluminescence and copper or SDS toxicity in the marine dinoflagellate Pyrocystis lunula using bioluminescence as an endpoint

    USGS Publications Warehouse

    Craig, J.M.; Klerks, P.L.; Heimann, K.; Waits, J.L.

    2003-01-01

    Pyrocystis lunula is a unicellular, marine, photoautotrophic, bioluminescent dinoflagellate. This organism is used in the Lumitox ?? bioassay with inhibition of bioluminescence re-establishment as the endpoint. Experiments determined if acute changes in pH, salinity, or temperature had an effect on the organisms' ability to re-establish bioluminescence, or on the bioassay's potential to detect sodium dodecyl sulfate (SDS) and copper toxicity. The re-establishment of bioluminescence itself was not very sensitive to changes in pH within the pH 6-10 range, though reducing pH from 8 to levels below 6 decreased this capacity. Increasing the pH had little effect on Cu or SDS toxicity, but decreasing the pH below 7 virtually eliminated the toxicity of either compound in the bioassay. Lowering the salinity from 33 to 27??? or less resulted in a substantial decrease in re-establishment of bioluminescence, while increasing the salinity to 43 or 48 ??? resulted in a small decline. Salinity had little influence on the bioassay's quantification of Cu toxicity, while the data showed a weak negative relationship between SDS toxicity and salinity. Re-establishment of bioluminescence showed a direct dependence on temperature, but only at 10??C did temperature have an obvious effect on the toxicity of Cu in this bioassay. ?? 2003 Elsevier Science Ltd. All rights reserved.

  8. Preliminary findings on the correlation of saliva pH, buffering capacity, flow, Consistency and Streptococcus mutans in relation to cigarette smoking.

    PubMed

    Voelker, Marsha A; Simmer-Beck, Melanie; Cole, Molly; Keeven, Erin; Tira, Daniel

    2013-02-01

    The purpose of this preliminary study was to examine the relationship of caries risk, salivary buffering capacity, salivary pH, salivary quality (flow, consistency) and levels of Streptococcus mutans in relation to cigarette smoking. This clinical trial consisted of 53 volunteer patients receiving care in a university based dental hygiene clinic. Participants completed a questionnaire specific to their social history in regards to tobacco use, oral health and dietary history. Measurements of unstimulated saliva were collected followed by collection of stimulated saliva samples. These samples were used to measure salivary pH, buffering capacity and Streptococcus mutans levels. The subject's smoking status was significantly associated with caries risk (p= 0.001), with 25% of the variability of caries risk attributed to smoking. The smoking status was significantly associated with buffering capacity (p=0.025), with 9% of the variability of buffering status attributed to the smoking. Associations between smoking status and salivary pH were not statistically significant. The subject's caries risk was significantly associated with buffering capacity (p= 0.001), with 25% of the variability of caries risk attributed to the buffering capacity. The subject's caries risk was significantly associated with salivary pH (p= 0.031), with 9% of the variability of caries risk attributed to the salivary pH. The Streptococcus mutans test showed no statistical significance (p>0.05) possibly due to the number and low variance in the subjects. A relationship between caries risk and smoking, buffering capacity and smoking, and stimulated salivary pH and smoking were concluded. No significance difference (p>0.05) between caries risk and salivary pH, salivary quality and smoking, S. mutans and smoking were noted from the preliminary results.

  9. Artificial intelligence modeling of cadmium(II) biosorption using rice straw

    NASA Astrophysics Data System (ADS)

    Nasr, Mahmoud; Mahmoud, Alaa El Din; Fawzy, Manal; Radwan, Ahmed

    2017-05-01

    The biosorption efficiency of Cd2+ using rice straw was investigated at room temperature (25 ± 4 °C), contact time (2 h) and agitation rate (5 Hz). Experiments studied the effect of three factors, biosorbent dose BD (0.1 and 0.5 g/L), pH (2 and 7) and initial Cd2+ concentration X (10 and 100 mg/L) at two levels "low" and "high". Results showed that, a variation in X from high to low revealed 31 % increase in the Cd2+ biosorption. However, a discrepancy in pH and BD from low to high achieved 28.60 and 23.61 % increase in the removal of Cd2+, respectively. From 23 factorial design, the effects of BD, pH and X achieved p value equals to 0.2248, 0.1881 and 0.1742, respectively, indicating that the influences are in the order X > pH > BD. Similarly, an adaptive neuro-fuzzy inference system indicated that X is the most influential with training and checking errors of 10.87 and 17.94, respectively. This trend was followed by "pH" with training error (15.80) and checking error (17.39), after that BD with training error (16.09) and checking error (16.29). A feed-forward back-propagation neural network with a configuration 3-6-1 achieved correlation ( R) of 0.99 (training), 0.82 (validation) and 0.97 (testing). Thus, the proposed network is capable of predicting Cd2+ biosorption with high accuracy, while the most significant variable was X.

  10. Carbon metabolism influenced for promoters and temperature used in the heterologous protein production using Pichia pastoris yeast.

    PubMed

    Zepeda, Andrea B; Pessoa, Adalberto; Farías, Jorge G

    2018-05-19

    Nowadays, it is necessary to search for different high-scale production strategies to produce recombinant proteins of economic interest. Only a few microorganisms are industrially relevant for recombinant protein production: methylotrophic yeasts are known to use methanol efficiently as the sole carbon and energy source. Pichia pastoris is a methylotrophic yeast characterized as being an economical, fast and effective system for heterologous protein expression. Many factors can affect both the product and the production, including the promoter, carbon source, pH, production volume, temperature, and many others; but to control all of them most of the time is difficult and this depends on the initial selection of each variable. Therefore, this review focuses on the selection of the best promoter in the recombination process, considering different inductors, and the temperature as a culture medium variable in methylotrophic Pichia pastoris yeast. The goal is to understand the effects associated with different factors that influence its cell metabolism and to reach the construction of an expression system that fulfills the requirements of the yeast, presenting an optimal growth and development in batch, fed-batch or continuous cultures, and at the same time improve its yield in heterologous protein production. Copyright © 2018 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  11. Tagatose production with pH control in a stirred tank reactor containing immobilized L-arabinose rom Thermotoga neapolitana.

    PubMed

    Lim, Byung-Chul; Kim, Hye-Jung; Oh, Deok-Kun

    2008-06-01

    Chitopearl beads were used as immobilization supports for D-tagatose production from D-galactose by L-arabinose isomerase from Thermotoga neapolitana because chitopearl beads were more stable than alginate beads at temperatures above 60 degrees C. The pH and temperature for the maximum isomerization of galactose were 7.5 and 90 degrees C, respectively. In thermostability experiments, the half-lives of the immobilized enzyme at 70, 75, 80, 85, and 90 degrees C were 388, 106, 54, 36, and 22 h, respectively. The reaction temperature was determined to be 70 degrees C because the enzyme is highly stable up to 70 degrees C during the reaction. When the reaction time, galactose concentration, and temperature were increased, the pH of a mixture containing enzyme and galactose decreased by the Maillard reaction, resulting in decreased tagatose production. With pH control at 7.5, tagatose production (138 g/L) at 70 degrees C in a stirred tank reactor containing immobilized enzyme and 300 g/L galactose increased two times higher, comparing that without pH control.

  12. Effect of Aging Temperature on Corrosion Behavior of Sintered 17-4 PH Stainless Steel in Dilute Sulfuric Acid Solution

    NASA Astrophysics Data System (ADS)

    Szewczyk-Nykiel, Aneta; Kazior, Jan

    2017-07-01

    The general corrosion behavior of sintered 17-4 PH stainless steel processed under different processing conditions in dilute sulfuric acid solution at 25 °C was studied by open-circuit potential measurement and potentiodynamic polarization technique. The corrosion resistance was evaluated based on electrochemical parameters, such as polarization resistance, corrosion potential, corrosion current density as well as corrosion rate. The results showed that the precipitation-hardening treatment could significantly improve the corrosion resistance of the sintered 17-4 PH stainless steel in studied environment. As far as the influence of aging temperature on corrosion behavior of the sintered 17-4 PH stainless steel is concerned, polarization resistance and corrosion rate are reduced with increasing aging temperature from 480 up to 500 °C regardless of the temperature of solution treatment. It can be concluded that the highest corrosion resistance in 0.5 M H2SO4 solution exhibits 17-4 PH after solution treatment at 1040 °C followed by aging at 480 °C.

  13. Thermodynamic and transport properties of frozen and reacting pH2-oH2 mixtures

    NASA Technical Reports Server (NTRS)

    Carter, H. G.; Bullock, R. E.

    1972-01-01

    Application of experimental state data and spectroscopic term values shows that the thermodynamic and transport properties of reacting pH2-oH2 mixtures are considerably different than those of chemically frozen pH2 at temperatures below 300 R. Calculated H-S data also show that radiation-induced pH2-oH2 equilibration at constant enthalpy produces a temperature drop of at least 28 R, corresponding to an ideal shaft work loss of 15% or more for a turbine operating downstream from the point of conversion. Aside from differences in thermodynamic and transport properties, frozen pH2-oH2 mixtures may differ from pure pH2 on a purely hydrodynamical basis.

  14. 40 CFR 411.25 - Standards of performance for new sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (maximum for any 1 day) Metric units (kg/kkg of dust leached) TSS 0.4. Temperature (heat) Not to exceed 3 °C rise above inlet temperature. pH Within the range 6.0 to 9.0. English units (lb/1,000 lb of dust leached) TSS 0.4. Temperature (heat) Not to exceed 3 °C rise above inlet temperature. pH Within the range...

  15. 40 CFR 411.25 - Standards of performance for new sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (maximum for any 1 day) Metric units (kg/kkg of dust leached) TSS 0.4. Temperature (heat) Not to exceed 3 °C rise above inlet temperature. pH Within the range 6.0 to 9.0. English units (lb/1,000 lb of dust leached) TSS 0.4. Temperature (heat) Not to exceed 3 °C rise above inlet temperature. pH Within the range...

  16. Red Blood Cell Distribution Width, Hematology, and Serum Biochemistry in Dogs with Echocardiographically Estimated Precapillary and Postcapillary Pulmonary Arterial Hypertension.

    PubMed

    Mazzotta, E; Guglielmini, C; Menciotti, G; Contiero, B; Baron Toaldo, M; Berlanda, M; Poser, H

    2016-11-01

    Red blood cell distribution width (RDW) is a quantitative measurement of anisocytosis. RDW has prognostic value in humans with different cardiovascular and systemic disorders, but few studies have investigated this biomarker in dogs. To compare the RDW in dogs with precapillary and postcapillary pulmonary hypertension (PH) and a control population of dogs and to correlate RDW with demographic, echocardiographic, and laboratory variables. One hundred and twenty-seven client-owned dogs including 19 healthy dogs, 82 dogs with myxomatous mitral valve disease (50 dogs without PH and 32 dogs with postcapillary PH), and 26 dogs with precapillary PH. Prospective study. Dogs were allocated to groups according to clinical and echocardiographic evaluation. RDW and selected laboratory and echocardiographic variables were compared among dog groups. Associations between RDW and demographic, laboratory, and echocardiographic variables were analyzed using correlation and multiple regression analysis. Median RDW in dogs with precapillary PH (13.8%, interquartile range 13.2-14.9%) and postcapillary PH (13.7, 13.2-14.7%) was significantly increased compared to healthy dogs (13.3, 12.3-13.7%; P < .05 for both comparisons), but only dogs with severe PH had significantly increased RDW compared to dogs without PH (P < .05). Peak tricuspid regurgitation pressure gradient was significantly associated with increased RDW (rho = 0.263, P = .007). Serum urea concentration, hematocrit, age, and white blood cell number were significantly associated with RDW in the multivariate analysis. Underlying pathophysiologic processes associated with PH instead of severity of PH are likely responsible for increased RDW in dogs with PH. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  17. Definition of redox and pH influence in the AMD mine system using a fuzzy qualitative tool (Iberian Pyrite Belt, SW Spain).

    PubMed

    de la Torre, M L; Grande, J A; Valente, T; Perez-Ostalé, E; Santisteban, M; Aroba, J; Ramos, I

    2016-03-01

    Poderosa Mine is an abandoned pyrite mine, located in the Iberian Pyrite Belt which pours its acid mine drainage (AMD) waters into the Odiel river (South-West Spain). This work focuses on establishing possible reasons for interdependence between the potential redox and pH, with the load of metals and sulfates, as well as a set of variables that define the physical chemistry of the water-conductivity, temperature, TDS, and dissolved oxygen-transported by a channel from Poderosa mine affected by acid mine drainage, through the use of techniques of artificial intelligence: fuzzy logic and data mining. The sampling campaign was carried out in May of 2012. There were a total of 16 sites, the first inside the tunnel and the last at the mouth of the river Odiel, with a distance of approximately 10 m between each pair of measuring stations. While the tools of classical statistics, which are widely used in this context, prove useful for defining proximity ratios between variables based on Pearson's correlations, in addition to making it easier to handle large volumes of data and producing easier-to-understand graphs, the use of fuzzy logic tools and data mining results in better definition of the variations produced by external stimuli on the set of variables. This tool is adaptable and can be extrapolated to any system polluted by acid mine drainage using simple, intuitive reasoning.

  18. Suitable Water Flow and Water Temperature Difference of Blast Furnace

    NASA Astrophysics Data System (ADS)

    Zuo, Hai-bin; Li, Qian; Zhang, Jian-liang; Shen, Meng; Tie, Jin-yan; Jiao, Ke-xin

    This paper designs three factors such as temperature, pH, conductivity and three levels of orthogonal test. Temperature is a significant factor. However PH and conductivity are not significant through poor analysis. Further research is conducted on the temperature. Temperature stability is 50°C. Suitable water velocity is 2.3m/s, which is calculated based on the largest part of the heat flux intensity and the corresponding water temperature should be controlled with 1.5°C. Meanwhile, water velocity increased has little effect on the heat transfer capabilities.

  19. The influence of Pacific Equatorial Water on fish diversity in the southern California Current System

    NASA Astrophysics Data System (ADS)

    McClatchie, Sam; Thompson, Andrew R.; Alin, Simone R.; Siedlecki, Samantha; Watson, William; Bograd, Steven J.

    2016-08-01

    The California Undercurrent transports Pacific Equatorial Water (PEW) into the Southern California Bight from the eastern tropical Pacific Ocean. PEW is characterized by higher temperatures and salinities, with lower pH, representing a source of potentially corrosive (aragonite,Ω<1) water to the region. We use ichthyoplankton assemblages near the cores of the California Current and the California Undercurrent to determine whether PEW influenced fish diversity. We use hydrographic data to characterize the interannual and seasonal variability of estimated pH and aragonite saturation with depth. Although there is substantial variability in PEW presence as measured by spice on the 26.25-26.75 isopycnal layer, as well as in pH and aragonite saturation, we found fish diversity to be stable over the decades 1985-1996 and 1999-2011. We detected significant difference in species structure during the 1998 La Niña period, due to reduced species evenness. Species richness due to rare species was higher during the 1997/1998 El Niño compared to the La Niña but the effect on species structure was undetectable. Lack of difference in the species abundance structure in the decade before and after the 1997/1999 ENSO event showed that the assemblage reverted to its former structure following the ENSO perturbation, indicating resilience. While the interdecadal species structure remained stable, the long tail of the distributions shows that species richness increased between the decades consistent with intrusion of warm water with more diverse assemblages into the southern California region.

  20. Observing climate change trends in ocean biogeochemistry: when and where.

    PubMed

    Henson, Stephanie A; Beaulieu, Claudie; Lampitt, Richard

    2016-04-01

    Understanding the influence of anthropogenic forcing on the marine biosphere is a high priority. Climate change-driven trends need to be accurately assessed and detected in a timely manner. As part of the effort towards detection of long-term trends, a network of ocean observatories and time series stations provide high quality data for a number of key parameters, such as pH, oxygen concentration or primary production (PP). Here, we use an ensemble of global coupled climate models to assess the temporal and spatial scales over which observations of eight biogeochemically relevant variables must be made to robustly detect a long-term trend. We find that, as a global average, continuous time series are required for between 14 (pH) and 32 (PP) years to distinguish a climate change trend from natural variability. Regional differences are extensive, with low latitudes and the Arctic generally needing shorter time series (<~30 years) to detect trends than other areas. In addition, we quantify the 'footprint' of existing and planned time series stations, that is the area over which a station is representative of a broader region. Footprints are generally largest for pH and sea surface temperature, but nevertheless the existing network of observatories only represents 9-15% of the global ocean surface. Our results present a quantitative framework for assessing the adequacy of current and future ocean observing networks for detection and monitoring of climate change-driven responses in the marine ecosystem. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  1. Design of aquaponics water monitoring system using Arduino microcontroller

    NASA Astrophysics Data System (ADS)

    Murad, S. A. Z.; Harun, A.; Mohyar, S. N.; Sapawi, R.; Ten, S. Y.

    2017-09-01

    This paper describes the design of aquaponics water monitoring system using Arduino microcontroller. Arduino Development Environment (IDE) software is used to develop a program for the microcontroller to communicate with multiple sensors and other hardware. The circuit of pH sensor, temperature sensor, water sensor, servo, liquid crystal displays (LCD), peristaltic pump, solar and Global System for Mobile communication (GSM) are constructed and connected to the system. The system powered by a rechargeable battery using solar energy. When the results of pH, temperature and water sensor are out of range, a notification message will be sent to a mobile phone through GSM. If the pH of water is out of range, peristaltic pump is automatic on to maintain back the pH value of water. The water sensor is fixed in the siphon outlet water flow to detect water flow from grow bed to the fish tank. In addition, servo is used to auto feeding the fish for every 12 hours. Meanwhile, the LCD is indicated the pH, temperature, siphon outlet water flow and remaining time for the next feeding cycle. The pH and temperature of water are set in the ranges of 6 to 7 and 25 °C to 30 °C, respectively.

  2. Optimizing isothiocyanate formation during enzymatic glucosinolate breakdown by adjusting pH value, temperature and dilution in Brassica vegetables and Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Hanschen, Franziska S.; Klopsch, Rebecca; Oliviero, Teresa; Schreiner, Monika; Verkerk, Ruud; Dekker, Matthijs

    2017-01-01

    Consumption of glucosinolate-rich Brassicales vegetables is associated with a decreased risk of cancer with enzymatic hydrolysis of glucosinolates playing a key role. However, formation of health-promoting isothiocyanates is inhibited by the epithiospecifier protein in favour of nitriles and epithionitriles. Domestic processing conditions, such as changes in pH value, temperature or dilution, might also affect isothiocyanate formation. Therefore, the influences of these three factors were evaluated in accessions of Brassica rapa, Brassica oleracea, and Arabidopsis thaliana. Mathematical modelling was performed to determine optimal isothiocyanate formation conditions and to obtain knowledge on the kinetics of the reactions. At 22 °C and endogenous plant pH, nearly all investigated plants formed nitriles and epithionitriles instead of health-promoting isothiocyanates. Response surface models, however, clearly demonstrated that upon change in pH to domestic acidic (pH 4) or basic pH values (pH 8), isothiocyanate formation considerably increases. While temperature also affects this process, the pH value has the greatest impact. Further, a kinetic model showed that isothiocyanate formation strongly increases due to dilution. Finally, the results show that isothiocyanate intake can be strongly increased by optimizing the conditions of preparation of Brassicales vegetables.

  3. Effects of abiotic factors on the nanostructure of diatom frustules-ranges and variability.

    PubMed

    Su, Yanyan; Lundholm, Nina; Ellegaard, Marianne

    2018-05-26

    The intricate patterning of diatom silica frustules at nanometer-to-micrometer scales makes them of interest for a wide range of industrial applications. For some of these applications, a specific size range in nanostructure is required and may be achieved by selecting species with the desired properties. However, as all biological materials, diatom frustules exhibit variability in their morphological parameters and this variability can to some extent be affected and controlled by environmental conditions. In this review, we explore the effects of different environmental factors including salinity, heavy metals, temperature, pH, extracellular Si(OH) 4 or Ge(OH) 4 concentration, light regime, UV irradiance, long-term cultivation, and biotic factors on the nanostructure of diatom frustules. This compilation of studies illustrates that it is possible to affect the nanostructure of diatom frustules in vivo by controlling different environmental factors as well as by direct chemical modification of frustules. We compare these methods and present examples of how these changes affect the range of variability as well as comparing the magnitude of size changes of the most promising methods.

  4. Predicting adhesion and biofilm formation boundaries on stainless steel surfaces by five Salmonella enterica strains belonging to different serovars as a function of pH, temperature and NaCl concentration.

    PubMed

    Moraes, Juliana O; Cruz, Ellen A; Souza, Enio G F; Oliveira, Tereza C M; Alvarenga, Verônica O; Peña, Wilmer E L; Sant'Ana, Anderson S; Magnani, Marciane

    2018-05-26

    This study aimed to assess the capability of 97 epidemic S. enterica strains belonging to 18 serovars to form biofilm. Five strains characterized as strong biofilm-producers, belonging to distinct serovars (S. Enteritidis 132, S. Infantis 176, S. Typhimurium 177, S. Heidelberg 281 and S. Corvallis 297) were assayed for adhesion/biofilm formation on stainless steel surfaces. The experiments were conducted in different combinations of NaCl (0, 2, 4, 5, 6, 8 and 10% w/v), pH (4, 5, 6 and 7) and temperatures (8 °C, 12 °C, 20 °C and 35 °C). Only adhesion was assumed to occur when S. enterica counts were ≥3 and <5 log CFU/cm 2 , whereas biofilm formation was defined as when the counts were ≥5 log CFU/cm 2 . The binary responses were used to develop models to predict the probability of adhesion/biofilm formation on stainless steel surfaces by five strains belonging to different S. enterica serovars. A total of 99% (96/97) of the tested S. enterica strains were characterized as biofilm-producers in the microtiter plate assays. The ability to form biofilm varied (P < 0.05) within and among the different serovars. Among the biofilm-producers, 21% (20/96), 45% (43/96), and 35% (34/96) were weak, moderate and strong biofilm-producers, respectively. The capability for adhesion/biofilm formation on stainless steel surfaces under the experimental conditions studied varied among the strains studied, and distinct secondary models were obtained to describe the behavior of the five S. enterica tested. All strains showed adhesion at pH 4 up to 4% of NaCl and at 20 °C and 35 °C. The probability of adhesion decreased when NaCl concentrations were >8% and at 8 °C, as well as in pH values ≤ 5 and NaCl concentrations > 6%, for all tested strains. At pH 7 and 6, biofilm formation for S. Enteritidis, S. Infantis, S. Typhimurium, S. Heidelberg was observed up to 6% of NaCl at 35 °C and 20 °C. The predicted boundaries for adhesion were pH values < 5 and NaCl ≥ 4% and at temperatures <20 °C. For biofilm formation, the predicted boundaries were pH values < 5 and NaCl concentrations ≥ 2% and at temperatures <20 °C for all strains. The secondary models obtained describe the variability in boundaries of adhesion and biofilm formation on stainless steel by five strains belonging to different S. enterica serovars. The boundary models can be used to predict adhesion and biofilm formation ability on stainless steel by S. enterica as affected by pH, NaCl and temperature. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Sudden collapse of vacuoles in Saintpaulia sp. palisade cells induced by a rapid temperature decrease.

    PubMed

    Kadohama, Noriaki; Goh, Tatsuaki; Ohnishi, Miwa; Fukaki, Hidehiro; Mimura, Tetsuro; Suzuki, Yoshihiro

    2013-01-01

    It is well known that saintpaulia leaf is damaged by the rapid temperature decrease when cold water is irrigated onto the leaf surface. We investigated this temperature sensitivity and the mechanisms of leaf damage in saintpaulia (Saintpaulia sp. cv. 'Iceberg') and other Gesneriaceae plants. Saintpaulia leaves were damaged and discolored when subjected to a rapid decrease in temperature, but not when the temperature was decreased gradually. Sensitivity to rapid temperature decrease increased within 10 to 20 min during pre-incubation at higher temperature. Injury was restricted to the palisade mesophyll cells, where there was an obvious change in the color of the chloroplasts. During a rapid temperature decrease, chlorophyll fluorescence monitored by a pulse amplitude modulated fluorometer diminished and did not recover even after rewarming to the initial temperature. Isolated chloroplasts were not directly affected by the rapid temperature decrease. Intracellular pH was monitored with a pH-dependent fluorescent dye. In palisade mesophyll cells damaged by rapid temperature decrease, the cytosolic pH decreased and the vacuolar membrane collapsed soon after a temperature decrease. In isolated chloroplasts, chlorophyll fluorescence declined when the pH of the medium was lowered. These results suggest that a rapid temperature decrease directly or indirectly affects the vacuolar membrane, resulting in a pH change in the cytosol that subsequently affects the chloroplasts in palisade mesophyll cells. We further confirmed that the same physiological damage occurs in other Gesneriaceae plants. These results strongly suggested that the vacuoles of palisade mesophyll cells collapsed during the initial phase of leaf injury.

  6. Sudden Collapse of Vacuoles in Saintpaulia sp. Palisade Cells Induced by a Rapid Temperature Decrease

    PubMed Central

    Kadohama, Noriaki; Goh, Tatsuaki; Ohnishi, Miwa; Fukaki, Hidehiro; Mimura, Tetsuro; Suzuki, Yoshihiro

    2013-01-01

    It is well known that saintpaulia leaf is damaged by the rapid temperature decrease when cold water is irrigated onto the leaf surface. We investigated this temperature sensitivity and the mechanisms of leaf damage in saintpaulia (Saintpaulia sp. cv. ‘Iceberg’) and other Gesneriaceae plants. Saintpaulia leaves were damaged and discolored when subjected to a rapid decrease in temperature, but not when the temperature was decreased gradually. Sensitivity to rapid temperature decrease increased within 10 to 20 min during pre-incubation at higher temperature. Injury was restricted to the palisade mesophyll cells, where there was an obvious change in the color of the chloroplasts. During a rapid temperature decrease, chlorophyll fluorescence monitored by a pulse amplitude modulated fluorometer diminished and did not recover even after rewarming to the initial temperature. Isolated chloroplasts were not directly affected by the rapid temperature decrease. Intracellular pH was monitored with a pH-dependent fluorescent dye. In palisade mesophyll cells damaged by rapid temperature decrease, the cytosolic pH decreased and the vacuolar membrane collapsed soon after a temperature decrease. In isolated chloroplasts, chlorophyll fluorescence declined when the pH of the medium was lowered. These results suggest that a rapid temperature decrease directly or indirectly affects the vacuolar membrane, resulting in a pH change in the cytosol that subsequently affects the chloroplasts in palisade mesophyll cells. We further confirmed that the same physiological damage occurs in other Gesneriaceae plants. These results strongly suggested that the vacuoles of palisade mesophyll cells collapsed during the initial phase of leaf injury. PMID:23451194

  7. Effect of pH and temperature on the uptake of cadmium by Lemna minor L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chawla, G.; Singh, J.; Viswanathan, P.N.

    1991-07-01

    Many aquatic macrophytes have the capacity to take up toxic heavy metals from polluted water and accumulate them. Cut leaves and intact plants have been suggested for clearing polluted water bodies of heavy metals. However, uptake of metal ion from water is dependent on concentration, pH, temperature, presence of other substances and functional and morphological status of the biotic species. In an attempt to understand any correlation between metal bioconcentration, pH and temperature, the optimal conditions for the removal of cadmium ions by duckweed, Lemna minor (L.) were studied.

  8. Exploring the process-structure-function relationship of horseradish peroxidase through investigation of pH- and heat induced conformational changes

    NASA Astrophysics Data System (ADS)

    Stănciuc, Nicoleta; Aprodu, Iuliana; Ioniță, Elena; Bahrim, Gabriela; Râpeanu, Gabriela

    2015-08-01

    Given the importance of peroxidase as an indicator for the preservation of vegetables by heat treatment, the present study is focused on enzyme behavior under different pH and temperature conditions, in terms of process-structure-function relationships. Thus, the process-structure-function relationship of peroxidase was investigated by combining fluorescence spectroscopy, in silico prediction methods and inactivation kinetic studies. The fluorescence spectra indicated that at optimum pH value, the Trp117 residue is not located in the hydrophobic core of the protein. Significant blue- and red-shifts were obtained at different pH values, whereas the heat-treatment did not cause significant changes in Trp and Tyr environment. The ANS and quenching experiments demonstrated a more flexible conformation at lower pH and respectively at higher temperature. On the other hand molecular dynamics simulations at different temperatures highlighted that the secondary structure appeared better preserved against temperature, whereas the tertiary structure around the heme was more affected. Temperature dependent changes in the hydrogen bonding and ion paring involving amino acids from the heme-binding region (His170 and Asp247) might trigger miss-coordination of the heme iron atom by His170 residue and further enzyme activity loss.

  9. Ruminal temperature may aid in the detection of subacute ruminal acidosis.

    PubMed

    AlZahal, O; Kebreab, E; France, J; Froetschel, M; McBride, B W

    2008-01-01

    The objective of this study was to investigate the relationship between ruminal pH and ruminal temperature and to develop a predictive equation that can aid in the diagnosis of subacute ruminal acidosis (SARA). Six rumen-fistulated lactating Holstein dairy cows (639 +/- 51 kg body weight) were used in the study. Cows were randomly allocated to 1 of 2 dietary treatments: control (% of dry matter, 40% corn silage, 27% mixed haylage, 7% alfalfa hay, 18% protein supplement, 4% ground corn, and 4% wheat bran) or SARA total mixed ration (% of dry matter, 31% corn silage, 20% mixed haylage, 5% alfalfa hay, 15% protein supplement, 19% ground wheat, and 10% ground barley) and were fed daily at 0700 and 1300 h. The experiment consisted of 1 wk of adaptation followed by 1 wk of treatment. Ruminal pH and ruminal temperature were simultaneously and continuously recorded every minute for 4 d per week using the same indwelling electrode. Subacute-acidotic cows spent more time (min/d) below ruminal pH 5.6 and a greater time above 39.2 degrees C than control cows. Ruminal pH nadir had a negative relationship with its corresponding ruminal temperature (R2 = 0.77). Therefore, ruminal temperature may have potential to predict ruminal pH and thus aid in the diagnosis of SARA.

  10. Stability of urea in solution and pharmaceutical preparations.

    PubMed

    Panyachariwat, Nattakan; Steckel, Hartwig

    2014-01-01

    The stability of urea in solution and pharmaceutical preparations was analyzed as a function of temperature (25°-60°C), pH (3.11-9.67), and initial urea concentration (2.5%-20%). This study was undertaken to (i) obtain more extensive, quantitative information relative to the degradation of urea in both aqueous and non-aqueous solutions and in pharmaceutical preparations, and (ii) test the effects of initial urea concentration, pH, buffer, and temperature values on urea degradation. The stability analysis shows that urea is more stable at the pH range of 4-8 and the stability of urea decreases by increase in temperature for all pH values. Within the experimental range of temperature and initial urea concentration values, the lowest urea degradation was found with lactate buffer pH 6.0. The urea decomposition rate in solution and pharmaceutical preparations shows the dependence of the initial urea concentrations. At higher initial urea concentrations, the rate of degradation is a decreasing function with time. This suggests that the reverse reaction is a factor in the degradation of concentrated urea solution. For non-aqueous solvents, isopropanol showed the best effort in retarding the decomposition of urea. Since the losses in urea is directly influenced by its stability at a given temperature and pH, the stability analysis of urea by the proposed model can be used to prevent the loss and optimize the operating condition for urea-containing pharmaceutical preparations.

  11. Spatial variability of isoproturon mineralizing activity within an agricultural field: geostatistical analysis of simple physicochemical and microbiological soil parameters.

    PubMed

    El Sebai, T; Lagacherie, B; Soulas, G; Martin-Laurent, F

    2007-02-01

    We assessed the spatial variability of isoproturon mineralization in relation to that of physicochemical and biological parameters in fifty soil samples regularly collected along a sampling grid delimited across a 0.36 ha field plot (40 x 90 m). Only faint relationships were observed between isoproturon mineralization and the soil pH, microbial C biomass, and organic nitrogen. Considerable spatial variability was observed for six of the nine parameters tested (isoproturon mineralization rates, organic nitrogen, genetic structure of the microbial communities, soil pH, microbial biomass and equivalent humidity). The map of isoproturon mineralization rates distribution was similar to that of soil pH, microbial biomass, and organic nitrogen but different from those of structure of the microbial communities and equivalent humidity. Geostatistics revealed that the spatial heterogeneity in the rate of degradation of isoproturon corresponded to that of soil pH and microbial biomass.

  12. Spatial Variability of Dissolved Organic Carbon in Headwater Wetlands in Central Pennsylvania

    NASA Astrophysics Data System (ADS)

    Reichert-Eberhardt, A. J.; Wardrop, D.; Boyer, E. W.

    2011-12-01

    Dissolved organic carbon (DOC) is known to be of an important factor in many microbially mediated biochemical processes, such as denitrification, that occur in wetlands. The spatial variability of DOC within a wetland could impact the microbes that fuel these processes, which in turn can affect the ecosystem services provided by wetlands. However, the amount of spatial variability of DOC in wetlands is generally unknown. Furthermore, it is unknown how disturbance to wetlands can affect spatial variability of DOC. Previous research in central Pennsylvania headwater wetland soils has shown that wetlands with increased human disturbance had decreased heterogeneity in soil biochemistry. To address groundwater chemical variability 20 monitoring wells were installed in a random pattern in a 400 meter squared plot in a low-disturbance headwater wetland and a high-disturbance headwater wetland in central Pennsylvania. Water samples from these wells will be analyzed for DOC, dissolved inorganic carbon, nitrate, ammonia, and sulfate concentrations, as well as pH, conductivity, and temperature on a seasonal basis. It is hypothesized that there will be greater spatial variability of groundwater chemistry in the low disturbance wetland than the high disturbance wetland. This poster will present the initial data concerning DOC spatial variability in both the low and high impact headwater wetlands.

  13. Intraspecific N and P stoichiometry of Phragmites australis: geographic patterns and variation among climatic regions.

    PubMed

    Hu, Yu-Kun; Zhang, Ya-Lin; Liu, Guo-Fang; Pan, Xu; Yang, Xuejun; Li, Wen-Bing; Dai, Wen-Hong; Tang, Shuang-Li; Xiao, Tao; Chen, Ling-Yun; Xiong, Wei; Song, Yao-Bin; Dong, Ming

    2017-02-24

    Geographic patterns in leaf stoichiometry reflect plant adaptations to environments. Leaf stoichiometry variations along environmental gradients have been extensively studied among terrestrial plants, but little has been known about intraspecific leaf stoichiometry, especially for wetland plants. Here we analyzed the dataset of leaf N and P of a cosmopolitan wetland species, Phragmites australis, and environmental (geographic, climate and soil) variables from literature and field investigation in natural wetlands distributed in three climatic regions (subtropical, temperate and highland) across China. We found no clear geographic patterns in leaf nutrients of P. australis across China, except for leaf N:P ratio increasing with altitude. Leaf N and N:P decreased with mean annual temperature (MAT), and leaf N and P were closely related to soil pH, C:N ratio and available P. Redundancy analysis showed that climate and soil variables explained 62.1% of total variation in leaf N, P and N:P. Furthermore, leaf N in temperate region and leaf P in subtropical region increased with soil available P, while leaf N:P in subtropical region decreased with soil pH. These patterns in P. australis different from terrestrial plants might imply that changes in climate and soil properties can exert divergent effects on wetland and terrestrial ecosystems.

  14. Development of a calibration for the B isotope paleo-pH proxy in the deep sea coral Desmophyllum dianthus

    NASA Astrophysics Data System (ADS)

    Anagnostou, E.; Huang, K.; You, C.; Sherrell, R. M.

    2011-12-01

    The boron isotope ratio (δ11B) of foraminifera and coral carbonate has been proposed to record seawater pH. Here we test this pH proxy in the deep sea coral Desmophyllum dianthus (D. dianthus ). This coral species is cosmopolitan in geographic distribution and tolerates a wide temperature and depth range. Previous studies have shown that fossil D. dianthus skeletons can be dated precisely with U/Th measurements. Additionally, skeletal mass is sufficient for multiple elemental, isotopic, and radiocarbon measurements per sample making it a powerful candidate for paleoceanographic reconstructions. Ten modern corals from a depth range of 274-1470m in the Atlantic, Pacific, and Southern Oceans were analyzed using the sublimation method and multi-collector ICP-MS (Neptune), and the measured δ11B was regressed against ambient pH taken from hydrographic data sets (range pH 7.6 to 8.1). Replicate skeletal subsamples from a single coral agree within 0.35% (2SD). The array of δ11B values for these corals plots above the seawater borate δ11B vs. pH curve (Klochko et al., 2006) by an apparently constant value of 11.7 ± 1.2%, well above the range of values seen in foraminifera and surface corals. This offset is attributed to either partial incorporation of boric acid from seawater or, more likely, to physiological manipulation of the calcifying fluid to pH 8.7-9.0. The uncertainty in calculation of seawater pH from δ11B, dominated by the uncertainty in the offset value, currently limits the precision of absolute pH reconstructions to ±0.09pH units. However, the empirical calibration could be used to examine relative pH changes, thereby overcoming contributions to the uncertainty in the offset that result from the calculation of the empirical fractionation factor α and from sampling bias and variable vital effects among individuals, reducing the reconstruction error envelope. This study provides the first evidence that δ11B in D. dianthus has the potential to record ambient seawater pH.

  15. The Influence of Virus Infection on the Extracellular pH of the Host Cell Detected on Cell Membrane.

    PubMed

    Liu, Hengjun; Maruyama, Hisataka; Masuda, Taisuke; Honda, Ayae; Arai, Fumihito

    2016-01-01

    Influenza virus infection can result in changes in the cellular ion levels at 2-3 h post-infection. More H(+) is produced by glycolysis, and the viral M2 proton channel also plays a role in the capture and release of H(+) during both viral entry and egress. Then the cells might regulate the intracellular pH by increasing the export of H(+) from the intracellular compartment. Increased H(+) export could lead indirectly to increased extracellular acidity. To detect changes in extracellular pH of both virus-infected and uninfected cells, pH sensors were synthesized using polystyrene beads (ϕ1 μm) containing Rhodamine B and Fluorescein isothiocyanate (FITC). The fluorescence intensity of FITC can respond to both pH and temperature. So Rhodamine B was also introduced in the sensor for temperature compensation. Then the pH can be measured after temperature compensation. The sensor was adhered to cell membrane for extracellular pH measurement. The results showed that the multiplication of influenza virus in host cell decreased extracellular pH of the host cell by 0.5-0.6 in 4 h after the virus bound to the cell membrane, compared to that in uninfected cells. Immunostaining revealed the presence of viral PB1 protein in the nucleus of virus-bound cells that exhibited extracellular pH changes, but no PB1 protein are detected in virus-unbound cells where the extracellular pH remained constant.

  16. Effects of Temperature and pH on Reduction of Bacteria in a Point-of-Use Drinking Water Treatment Product for Emergency Relief

    PubMed Central

    Marois-Fiset, Jean-Thomas; Carabin, Anne; Lavoie, Audrey

    2013-01-01

    The effects of temperature and pH on the water treatment performance of a point-of-use (POU) coagulant/disinfectant product were evaluated. Cold temperatures (∼5°C) reduced the bactericidal efficiency of the product with regard to Escherichia coli and total coliform log10 reductions. PMID:23335762

  17. Communication: H-atom reactivity as a function of temperature in solid parahydrogen: The H + N2O reaction

    NASA Astrophysics Data System (ADS)

    Mutunga, Fredrick M.; Follett, Shelby E.; Anderson, David T.

    2013-10-01

    We present low temperature kinetic measurements for the H + N2O association reaction in solid parahydrogen (pH2) at liquid helium temperatures (1-5 K). We synthesize 15N218O doped pH2 solids via rapid vapor deposition onto an optical substrate attached to the cold tip of a liquid helium bath cryostat. We then subject the solids to short duration 193 nm irradiations to generate H-atoms produced as byproducts of the in situ N2O photodissociation, and monitor the subsequent reaction kinetics using rapid scan FTIR. For reactions initiated in solid pH2 at 4.3 K we observe little to no reaction; however, if we then slowly reduce the temperature of the solid we observe an abrupt onset to the H + N2O → cis-HNNO reaction at temperatures below 2.4 K. This abrupt change in the reaction kinetics is fully reversible as the temperature of the solid pH2 is repeatedly cycled. We speculate that the observed non-Arrhenius behavior (negative activation energy) is related to the stability of the pre-reactive complex between the H-atom and 15N218O reagents.

  18. Effects of temperature, pH, and ionic strength on the Henry's law constant of triethylamine

    NASA Astrophysics Data System (ADS)

    Leng, Chun-Bo; Roberts, Jason E.; Zeng, Guang; Zhang, Yun-Hong; Liu, Yong

    2015-05-01

    The Henry's law constants (KH) of triethylamine (TEA) in pure water and in 1-octanol were measured for the temperatures pertinent to the lower troposphere (278-298 K) using a bubble column system coupled to a Fourier transform infrared spectrometer. The KH values of TEA in water and 1-octanol at 298 K are 5.75 ± 0.86 mol L-1 atm-1 and 115.62 ± 5.78 mol L-1 atm-1. The KH values display strong dependence on temperature, pH, and ionic strength. The characteristic times for TEA to establish an equilibrium between gas and droplet with a size of 5.6 µm are ~33 s (298 K, pH = 5.6); ~8.9 × 102 s (278 K, pH = 5.6); ~1.3 × 103 s (298 K, pH = 4.0); and 3.6 × 104 s (278 K, pH = 4.0). The evaluation of TEA partitioning between gas phase and condensed phase implies that TEA predominantly resides in rainwater, and TEA loss to organic aerosol is negligible.

  19. Ocean acidification state in western Antarctic surface waters: drivers and interannual variability

    NASA Astrophysics Data System (ADS)

    Mattsdotter Björk, M.; Fransson, A.; Chierici, M.

    2013-05-01

    Each December during four years from 2006 to 2010, the surface water carbonate system was measured and investigated in the Amundsen Sea and Ross Sea, western Antarctica as part of the Oden Southern Ocean expeditions (OSO). The I/B Oden started in Punta Arenas in Chile and sailed southwest, passing through different regimes such as, the marginal/seasonal ice zone, fronts, coastal shelves, and polynyas. Discrete surface water was sampled underway for analysis of total alkalinity (AT), total dissolved inorganic carbon (CT) and pH. Two of these parameters were used together with sea-surface temperature (SST), and salinity to obtain a full description of the surface water carbonate system, including pH in situ and calcium carbonate saturation state of aragonite (ΩAr) and calcite (ΩCa). Multivariate analysis was used to investigate interannual variability and the major controls (sea-ice concentration, SST, salinity and chlorophyll a) on the variability in the carbonate system and Ω. This analysis showed that SST and chlorophyll a were the major drivers of the Ω variability in both the Amundsen and Ross seas. In 2007, the sea-ice edge was located further south and the area of the open polynya was relatively small compared to 2010. We found the lowest pH in situ (7.932) and Ω = 1 values in the sea-ice zone and in the coastal Amundsen Sea, nearby marine out flowing glaciers. In 2010, the sea-ice coverage was the largest and the areas of the open polynyas were the largest for the whole period. This year we found the lowest salinity and AT, coinciding with highest chl a. This implies that the highest ΩAr in 2010 was likely an effect of biological CO2 drawdown, which out-competed the dilution of carbonate ion concentration due to large melt water volumes. We predict and discuss future Ω values, using our data and reported rates of oceanic uptake of anthropogenic CO2, suggesting that the Amundsen Sea will become undersaturated with regard to aragonite about 20 yr sooner than predicted by models.

  20. Low-temperature solution processing of palladium/palladium oxide films and their pH sensing performance.

    PubMed

    Qin, Yiheng; Alam, Arif U; Pan, Si; Howlader, Matiar M R; Ghosh, Raja; Selvaganapathy, P Ravi; Wu, Yiliang; Deen, M Jamal

    2016-01-01

    Highly sensitive, easy-to-fabricate, and low-cost pH sensors with small dimensions are required to monitor human bodily fluids, drinking water quality and chemical/biological processes. In this study, a low-temperature, solution-based process is developed to prepare palladium/palladium oxide (Pd/PdO) thin films for pH sensing. A precursor solution for Pd is spin coated onto pre-cleaned glass substrates and annealed at low temperature to generate Pd and PdO. The percentages of PdO at the surface and in the bulk of the electrodes are correlated to their sensing performance, which was studied by using the X-ray photoelectron spectroscope. Large amounts of PdO introduced by prolonged annealing improve the electrode's sensitivity and long-term stability. Atomic force microscopy study showed that the low-temperature annealing results in a smooth electrode surface, which contributes to a fast response. Nano-voids at the electrode surfaces were observed by scanning electron microscope, indicating a reason for the long-term degradation of the pH sensitivity. Using the optimized annealing parameters of 200°C for 48 h, a linear pH response with sensitivity of 64.71±0.56 mV/pH is obtained for pH between 2 and 12. These electrodes show a response time shorter than 18 s, hysteresis less than 8 mV and stability over 60 days. High reproducibility in the sensing performance is achieved. This low-temperature solution-processed sensing electrode shows the potential for the development of pH sensing systems on flexible substrates over a large area at low cost without using vacuum equipment. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Salivary Parameters (Salivary Flow, pH and Buffering Capacity) in Stimulated Saliva of Mexican Elders 60 Years Old and Older

    PubMed Central

    Islas-Granillo, H; Borges-Yañez, SA; Medina-Solís, CE; Galan-Vidal, CA; Navarrete-Hernández, JJ; Escoffié-Ramirez, M; Maupomé, G

    2014-01-01

    ABSTRACT Objective: To compare a limited array of chewing-stimulated saliva features (salivary flow, pH and buffer capacity) in a sample of elderly Mexicans with clinical, sociodemographic and socio-economic variables. Subjects and Methods: A cross-sectional study was carried out in 139 adults, 60 years old and older, from two retirement homes and a senior day care centre in the city of Pachuca, Mexico. Socio-demographic, socio-economic and behavioural variables were collected through a questionnaire. A trained and standardized examiner obtained the oral clinical variables. Chewing-stimulated saliva (paraffin method) was collected and the salivary flow rate, pH and buffer capacity were measured. The analysis was performed using non-parametric tests in Stata 9.0. Results: Mean age was 79.1 ± 9.8 years. Most of the subjects included were women (69.1%). Mean chewing-stimulated salivary flow was 0.75 ± 0.80 mL/minute, and the pH and buffer capacity were 7.88 ± 0.83 and 4.20 ± 1.24, respectively. Mean chewing-stimulated salivary flow varied (p < 0.05) across type of retirement home, tooth brushing frequency, number of missing teeth and use of dental prostheses. pH varied across the type of retirement home (p < 0.05) and marginally by age (p = 0.087); buffer capacity (p < 0.05) varied across type of retirement home, tobacco consumption and the number of missing teeth. Conclusions: These exploratory data add to the body of knowledge with regard to chewing-stimulated salivary features (salivary flow rate, pH and buffer capacity) and outline the variability of those features across selected sociodemographic, socio-economic and behavioural variables in a group of Mexican elders. PMID:25867562

  2. Salivary Parameters (Salivary Flow, pH and Buffering Capacity) in Stimulated Saliva of Mexican Elders 60 Years Old and Older.

    PubMed

    Islas-Granillo, H; Borges-Yañez, S A; Medina-Solís, C E; Galan-Vidal, C A; Navarrete-Hernández, J J; Escoffié-Ramirez, M; Maupomé, G

    2014-12-01

    To compare a limited array of chewing-stimulated saliva features (salivary flow, pH and buffer capacity) in a sample of elderly Mexicans with clinical, sociodemographic and socio-economic variables. A cross-sectional study was carried out in 139 adults, 60 years old and older, from two retirement homes and a senior day care centre in the city of Pachuca, Mexico. Sociodemographic, socio-economic and behavioural variables were collected through a questionnaire. A trained and standardized examiner obtained the oral clinical variables. Chewing-stimulated saliva (paraffin method) was collected and the salivary flow rate, pH and buffer capacity were measured. The analysis was performed using non-parametric tests in Stata 9.0. Mean age was 79.1 ± 9.8 years. Most of the subjects included were women (69.1%). Mean chewing-stimulated salivary flow was 0.75 ± 0.80 mL/minute, and the pH and buffer capacity were 7.88 ± 0.83 and 4.20 ± 1.24, respectively. Mean chewing-stimulated salivary flow varied (p < 0.05) across type of retirement home, tooth brushing frequency, number of missing teeth and use of dental prostheses. pH varied across the type of retirement home (p < 0.05) and marginally by age (p = 0.087); buffer capacity (p < 0.05) varied across type of retirement home, tobacco consumption and the number of missing teeth. These exploratory data add to the body of knowledge with regard to chewing-stimulated salivary features (salivary flow rate, pH and buffer capacity) and outline the variability of those features across selected sociodemographic, socio-economic and behavioural variables in a group of Mexican elders.

  3. Improved production of tannase by Klebsiella pneumoniae using Indian gooseberry leaves under submerged fermentation using Taguchi approach.

    PubMed

    Kumar, Mukesh; Singh, Amrinder; Beniwal, Vikas; Salar, Raj Kumar

    2016-12-01

    Tannase (tannin acyl hydrolase E.C 3.1.1.20) is an inducible, largely extracellular enzyme that causes the hydrolysis of ester and depside bonds present in various substrates. Large scale industrial application of this enzyme is very limited owing to its high production costs. In the present study, cost effective production of tannase by Klebsiella pneumoniae KP715242 was studied under submerged fermentation using different tannin rich agro-residues like Indian gooseberry leaves (Phyllanthus emblica), Black plum leaves (Syzygium cumini), Eucalyptus leaves (Eucalyptus glogus) and Babul leaves (Acacia nilotica). Among all agro-residues, Indian gooseberry leaves were found to be the best substrate for tannase production under submerged fermentation. Sequential optimization approach using Taguchi orthogonal array screening and response surface methodology was adopted to optimize the fermentation variables in order to enhance the enzyme production. Eleven medium components were screened primarily by Taguchi orthogonal array design to identify the most contributing factors towards the enzyme production. The four most significant contributing variables affecting tannase production were found to be pH (23.62 %), tannin extract (20.70 %), temperature (20.33 %) and incubation time (14.99 %). These factors were further optimized with central composite design using response surface methodology. Maximum tannase production was observed at 5.52 pH, 39.72 °C temperature, 91.82 h of incubation time and 2.17 % tannin content. The enzyme activity was enhanced by 1.26 fold under these optimized conditions. The present study emphasizes the use of agro-residues as a potential substrate with an aim to lower down the input costs for tannase production so that the enzyme could be used proficiently for commercial purposes.

  4. Equilibrium isotherms, kinetics, and thermodynamics studies for congo red adsorption using calcium alginate beads impregnated with nano-goethite.

    PubMed

    Munagapati, Venkata Subbaiah; Kim, Dong-Su

    2017-07-01

    The present study is concerned with the batch adsorption of congo red (CR) from an aqueous solution using calcium alginate beads impregnated with nano-goethite (CABI nano-goethite) as an adsorbent. The optimum conditions for CR removal were determined by studying operational variables viz. pH, adsorbent dose, contact time, initial dye ion concentration and temperature. The CABI nano-goethite was characterized by Fourier transform infrared spectroscopy (FTIR), X- ray diffraction (XRD) and Scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) analysis. The CR sorption data onto CABI nano-goethite were described using Langmuir, Freundlich, Dubinin-Radushkevich and Temkin isotherm models. The results show that the best fit was achieved with the Langmuir isotherm model. The maximum adsorption capacity (181.1mg/g) of CR was occurred at pH 3.0. Kinetic studies showed that the adsorption followed a pseudo-second-order model. Desorption experiments were carried out to explore the feasibility of regenerating the adsorbent and the adsorbed CR from CABI nano-goethite. The best desorbing agent was 0.1M NaOH with an efficiency of 94% recovery. The thermodynamic parameters ΔG°, ΔH°, and ΔS° for the CR adsorption were determined by using adsorption capacities at five different temperatures (293, 303, 313, 323 and 303K). Results show that the adsorption process was endothermic and favoured at high temperature. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Facile synthesis and luminescence characteristics of high-quality CdS: Eu/ZnS core/shell nanocrystals with biocompatibility.

    PubMed

    Zhang, Kexin; Zhang, Rui; Yu, Yaxin; Sun, Shuqing

    2012-04-01

    In this paper, we report a facile method to synthesize high quality CdS: Eu nanocrystals (NCs) and CdS: Eu/ZnS NCs with strong photoluminescence (PL). The influence of various experimental variables including the concentration of Eu3+ ions, the reaction time and the reaction temperature were investigated systematically. In addition, the PL properties of CdS: Eu NCs exhibited pH sensitive. Under the acid condition, pH value of the CdS: Eu NCs solution played an important role in determining PL emission intensity. However, under the alkaline condition, the obtained CdS: Eu NCs exhibited a tunable PL emission wavelength (from 490 nm to 610 nm) when pH value was adjusted from pH 7 to 10. After coating with ZnS shell, the CdS: Eu/ZnS NCs showed enhanced PL intensity compare with one of the CdS: Eu NCs. The CdS: Eu NCs and CdS: Eu/ZnS NCs were characterized by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). In addition, the biocompatibility of these NCs was measured by hemolytic test, which indicated that CdS: Eu/ZnS NCs were more biocompatible than CdS: Eu NCs at the same conditions. It can be expected that CdS: Eu/ZnS NCs are promising biolabeling materials.

  6. Thermal- and pH-Dependent Size Variable Radical Nanoparticles and Its Water Proton Relaxivity for Metal-Free MRI Functional Contrast Agents.

    PubMed

    Morishita, Kosuke; Murayama, Shuhei; Araki, Takeru; Aoki, Ichio; Karasawa, Satoru

    2016-09-16

    For development of the metal-free MRI contrast agents, we prepared the supra-molecular organic radical, TEMPO-UBD, carrying TEMPO radical, as well as the urea, alkyl group, and phenyl ring, which demonstrate self-assembly behaviors using noncovalent bonds in an aqueous solution. In addition, TEMPO-UBD has the tertiary amine and the oligoethylene glycol chains (OEGs) for the function of pH and thermal responsiveness. By dynamic light scattering and transmission electron microscopy imaging, the resulting self-assembly was seen to form the spherical nanoparticles 10-150 nm in size. On heating, interestingly, the nanoparticles showed a lower critical solution temperature (LCST) behavior having two-step variation. This double-LCST behavior is the first such example among the supra-molecules. To evaluate of the ability as MRI contrast agents, the values of proton ((1)H) longitudinal relaxivity (r1) were determined using MRI apparatus. In conditions below and above CAC at pH 7.0, the distinguishable r1 values were estimated to be 0.17 and 0.21 mM(-1) s(1), indicating the suppression of fast tumbling motion of TEMPO moiety in a nanoparticle. Furthermore, r1 values became larger in the order of pH 7.0 > 9.0 > 5.0. Those thermal and pH dependencies indicated the possibility of metal-fee MRI functional contrast agents in the future.

  7. Quality by design approach of a pharmaceutical gel manufacturing process, part 1: determination of the design space.

    PubMed

    Rosas, Juan G; Blanco, Marcel; González, Josep M; Alcalá, Manel

    2011-10-01

    This work was conducted in the framework of a quality by design project involving the production of a pharmaceutical gel. Preliminary work included the identification of the quality target product profiles (QTPPs) from historical values for previously manufactured batches, as well as the critical quality attributes for the process (viscosity and pH), which were used to construct a D-optimal experimental design. The experimental design comprised 13 gel batches, three of which were replicates at the domain center intended to assess the reproducibility of the target process. The viscosity and pH models established exhibited very high linearity and negligible lack of fit (LOF). Thus, R(2) was 0.996 for viscosity and 0.975 for pH, and LOF was 0.53 for the former parameter and 0.84 for the latter. The process proved reproducible at the domain center. Water content and temperature were the most influential factors for viscosity, and water content and acid neutralized fraction were the most influential factors for pH. A desirability function was used to find the best compromise to optimize the QTPPs. The body of information was used to identify and define the design space for the process. A model capable of combining the two response variables into a single one was constructed to facilitate monitoring of the process. Copyright © 2011 Wiley-Liss, Inc.

  8. Relative Abundance of Nitrotoga spp. in a Biofilter of a Cold-Freshwater Aquaculture Plant Appears To Be Stimulated by Slightly Acidic pH

    PubMed Central

    Hüpeden, Jennifer; Wegen, Simone; Off, Sandra; Lücker, Sebastian; Bedarf, Yvonne; Daims, Holger; Kühn, Carsten

    2016-01-01

    The functioning of recirculation aquaculture systems (RAS) is essential to maintain water quality for fish health, and one crucial process here is nitrification. The investigated RAS was connected to a rainbow trout production system and operated at an average temperature of 13°C and pH 6.8. Community analyses of the nitrifying biofilm revealed a coexistence of Nitrospira and Nitrotoga, and it is hypothesized that a slightly acidic pH in combination with lower temperatures favors the growth of the latter. Modification of the standard cultivation approach toward lower pH values of 5.7 to 6.0 resulted in the successful enrichment (99% purity) of Nitrotoga sp. strain HW29, which had a 16S rRNA sequence similarity of 99.0% to Nitrotoga arctica. Reference cultures of Nitrospira defluvii and the novel Nitrotoga sp. HW29 were used to confirm differentiation of these nitrite oxidizers in distinct ecological niches. Nitrotoga sp. HW29 revealed pH and temperature optima of 6.8 and 22°C, respectively, whereas Nitrospira defluvii displayed the highest nitrite oxidation rate at pH 7.3 and 32°C. We report here the occurrence of Nitrotoga as one of the main nitrite-oxidizing bacteria in freshwater aquaculture systems and indicate that a slightly acidic pH, in addition to temperatures below 20°C, can be applied as a selective isolation criterion for this microorganism. PMID:26746710

  9. Pressure and Heat Transfer Measurements on Large Indented Nosetips.

    DTIC Science & Technology

    1979-06-01

    thickness of 0.025 inch were machined from billets of 17 - 4PH stainless steel, following specifications regarding the outer contour of the models...after roughening are shown in Figures 2 through 5, respectively. Roughened samples of 17 - 4PH stainless steel were sectioned and photomicrographs were...temperature = wind tunnel supply temperature The wall thicknesses used in the data reduction should be accurate to +0.001 inch. The density of 17 - 4PH

  10. Optimum Disinfection Properties and Commercially Available Disinfectants

    DTIC Science & Technology

    1989-07-01

    organic constituents that display a chlorine demand.) d. Upon addition to water, the agent should dissolve quickly and release its active ingredient(s...trione pH dependence alkaline pH favored Temperature dependence high at low residual Palatability Taste and odor claimed to be lartgly absent Color...CryptosgortdLjM at various temperature and pH levels. 2. A field procedwu for masueing disinfectant residual is ".eded for chlorin dioaide. 3. Stability

  11. Biphasic cultivation strategy to avoid Epo-Fc aggregation and optimize protein expression.

    PubMed

    Kaisermayer, Christian; Reinhart, David; Gili, Andreas; Chang, Martina; Aberg, Per-Mikael; Castan, Andreas; Kunert, Renate

    2016-06-10

    In biphasic cultivations, the culture conditions are initially kept at an optimum for rapid cell growth and biomass accumulation. In the second phase, the culture is shifted to conditions ensuring maximum specific protein production and the protein quality required. The influence of specific culture parameters is cell line dependent and their impact on product quality needs to be investigated. In this study, a biphasic cultivation strategy for a Chinese hamster ovary (CHO) cell line expressing an erythropoietin fusion protein (Epo-Fc) was developed. Cultures were run in batch mode and after an initial growth phase, cultivation temperature and pH were shifted. Applying a DoE (Design of Experiments) approach, a fractional factorial design was used to systematically evaluate the influence of cultivation temperature and pH as well as their synergistic effect on cell growth as well as on recombinant protein production and aggregation. All three responses were influenced by the cultivation temperature. Additionally, an interaction between pH and temperature was found to be related to protein aggregation. Compared with the initial standard conditions of 37°C and pH 7.05, a parameter shift to low temperature and acidic pH resulted in a decrease in the aggregate fraction from 75% to less than 1%. Furthermore, the synergistic effect of temperature and pH substantially lowered the cell-specific rates of glucose and glutamine consumption as well as lactate and ammonium production. The optimized culture conditions also led to an increase of the cell-specific rates of recombinant Epo-Fc production, thus resulting in a more economic bioprocess. Copyright © 2016. Published by Elsevier B.V.

  12. High temperature hydrothermal vent fluids in Yellowstone Lake: Observations and insights from in-situ pH and redox measurements

    NASA Astrophysics Data System (ADS)

    Tan, Chunyang; Cino, Christie D.; Ding, Kang; Seyfried, William E.

    2017-09-01

    ROV investigation of hydrothermal fluids issuing from vents on the floor of Yellowstone lake revealed temperatures in excess of 170 °C - the highest temperature yet reported for vent fluids within Yellowstone National Park (YNP). The study site is east of Stevenson Island at depth of approximately 100-125 m. In-situ pH and redox measurements of vent fluids were made using solid state sensors designed to sustain the elevated temperatures and pressures. YSZ membrane electrode with Ag/Ag2O internal element and internal pressure balanced Ag/AgCl reference electrode were used to measure pH, while a platinum electrode provided redox constraints. Lab verification of the pH sensor confirmed excellent agreement with Nernst law predictions, especially at temperatures in excess of 120 °C. In-situ pH values of between 4.2 and 4.5 were measured for the vent fluids at temperatures of 120 to 150 °C. The slightly acidic vent fluids are likely caused by CO2 enrichment in association with magmatic degassing effects that occur throughout YNP. This is consistent with results of simple model calculations and direct observation of CO2 bubbles in the immediate vicinity of the lake floor vents. Simultaneous redox measurements indicated moderate to highly reducing conditions (- 0.2 to - 0.3 V). As typical of measurements of this kind, internal and external redox disequilibria likely preclude unambiguous determination of redox controlling reactions. Redox disequilibria, however, can be expected to drive microbial metabolism and diversity in the near vent environment. Thus, the combination of in-situ pH and redox sensor deployments may ultimately provide the requisite framework to better understand the microbiology of the newly discovered hot vents on Yellowstone lake floor.

  13. Characterization and optimization of carboxylesterase-catalyzed esterification between capric acid and glycerol for the production of 1-monocaprin in reversed micellar system.

    PubMed

    Park, Kyung Min; Kwon, Oh Taek; Ahn, Seon Min; Lee, JaeHwan; Chang, Pahn-Shick

    2010-02-28

    Calotropis procera R. Br. carboxylesterase (EC 3.1.1.1) solubilized in reversed micellar glycerol droplets containing a very small amount of water (less than 5ppm) and stabilized by a surfactant effectively catalyzed the esterification between glycerol and capric acid to produce 1-monocaprin. Reaction variables including surfactant types, organic solvent media, reaction time, G-value ([glycerol]/[capric acid]), R-value ([water]/[surfactant]), pH, temperature, and types of metal ion inhibitors on the carboxylesterase-catalyzed esterification were characterized and optimized to efficiently produce 1-monocaprin. Bis(2-ethylhexyl) sodium sulfosuccinate (AOT) and isooctane were the most effective surfactant and organic solvent medium, respectively, for 1-monocaprin formation in reversed micelles. The optimum G- and R-values were 3.0 and 0.05, respectively, and the optimum pH and temperature were determined to be 10.0 and 60 degrees C, respectively. K(m,app.) and V(max,app.) were calculated from a Hanes-Woolf plot, and the values were 9.64 mM and 2.45 microM/min mg protein, respectively. Among various metal ions, Cu(2+) and Fe(2+) severely inhibited carboxylesterase-catalyzed esterification activity (less than 6.0% of relative activity). Copyright 2009 Elsevier B.V. All rights reserved.

  14. Ecophysiology of Nais elinguis (Oligochaeta) in a brackish-water lagoon

    NASA Astrophysics Data System (ADS)

    Little, Colin

    1984-02-01

    Population densities of Nais elinguis Müller were determined in Swanpool, a brackish-water lagoon at Falmouth, Cornwall, U.K., over a four-year period. High densities were found only from January to May, usually with a peak in March. Significant negative correlations were shown between population density and both salinity and temperature. In laboratory tests, feeding rates remained unchanged from freshwater to 20‰ salinity (S), but declined above this salinity. Nais elinguis was shown to be a good osmoregulator, remaining hyperosmotic below 7‰ S, and hypo-osmotic above this. Feeding rate showed a Q 10 of approximately 2 from 1 to 25°C, but above this the rate declined. Feeding rate was unaffected between pH 6 and 11. Increased salinity to (10‰ S) did not influence the effect of temperature on feeding rate. This high salinity did reduce feeding rate at a pH of 10 and above. It is concluded that the physical and chemical variables considered are unlikely to be direct causal factors limiting populations of N. elinguis in Swanpool. The influence of food supply, competition, predation and changes in reproductive mode are discussed as possible controlling factors. It is shown that the population decline of N. elinguis in early summer usually coincides with the rise of populations of chironomid larvae.

  15. Mineralization of hetero bi-functional reactive dye in aqueous solution by Fenton and photo-Fenton reactions.

    PubMed

    Torrades, Francesc; García-Hortal, José Antonio; García-Montaño, Julia

    2015-01-01

    This study focused on the advanced oxidation of the hetero bi-functional reactive dye Sumifix Supra Yellow 3RF (CI Reactive Yellow 145) using dark Fenton and photo-Fenton conditions in a lab-scale experiment. A 2(3) factorial design was used to evaluate the effects of the three key factors: temperature, Fe(II) and H2O2 concentrations, for a dye concentration of 250 mg L(-1) with chemical oxygen demand (COD) of 172 mg L(-1) O2 at pH=3. The response function was the COD reduction. This methodology lets us find the effects and interactions of the studied variables and their roles in the efficiency of the treatment process. In the optimization, the correlation coefficients for the model (R2) were 0.948 and 0.965 for Fenton and photo-Fenton treatments, respectively. Under optimized reaction conditions: pH=3, temperature=298 K, [H2O2]=11.765 mM and [Fe(II)]=1.075 mM; 60 min of treatment resulted in a 79% and 92.2% decrease in COD, for the dye taken as the model organic compound, after Fenton and photo-Fenton treatments, respectively.

  16. Acid Lipase from Candida viswanathii: Production, Biochemical Properties, and Potential Application

    PubMed Central

    de Almeida, Alex Fernando; Carmona, Eleonora Cano

    2013-01-01

    Influences of environmental variables and emulsifiers on lipase production of a Candida viswanathii strain were investigated. The highest lipase activity (101.1 U) was observed at 210 rpm, pH 6.0, and 27.5°C. Other fermentation parameters analyzed showed considerable rates of biomass yield (Y L/S = 1.381 g/g), lipase yield (Y L/S = 6.892 U/g), and biomass productivity (P X = 0.282 g/h). Addition of soybean lecithin increased lipase production in 1.45-fold, presenting lipase yield (Y L/S) of 10.061 U/g. Crude lipase presented optimal activity at acid pH of 3.5, suggesting a new lipolytic enzyme for this genus and yeast in general. In addition, crude lipase presented high stability in acid conditions and temperature between 40 and 45°C, after 24 h of incubation in these temperatures. Lipase remained active in the presence of organic solvents maintaining above 80% activity in DMSO, methanol, acetonitrile, ethanol, acetone, 1-propanol, isopropanol, and 2-propanol. Effectiveness for the hydrolysis of a wide range of natural triglycerides suggests that this new acid lipase has high potential application in the oleochemical and food industries for hydrolysis and/or modification of triacylglycerols to improve the nutritional properties. PMID:24350270

  17. Seasonal dynamics of bacterioplankton community in a large, shallow, highly dynamic freshwater lake.

    PubMed

    Kong, Zhaoyu; Kou, Wenbo; Ma, Yantian; Yu, Haotian; Ge, Gang; Wu, Lan

    2018-05-23

    The spatio-temporal shifts of bacterioplankton community can mirror their transition of functional traits in aquatic ecosystem. However, our understanding of spatio-temporal variation of bacterioplankton community composition structure (BCCs) within large, shallow and highly dynamic freshwater lake is still elusive. Here we examined the seasonal and spatial variability of BCCs in the Poyang Lake by 16S rRNA gene amplicon sequencing to explore how hydrological changes affect the BCCs. Principal coordinate analysis showed that the BCCs varied significantly among four sampling seasons, but not spatially. The seasonal changes of BCCs were mainly attributed to the differences between autumn and spring/winter. Higher alpha diversity indices were observed in autumn. Redundancy analysis indicated that the BCCs co-variated with water level, pH, temperature, total phosphorus, ammoniacal nitrogen, electrical conductivity, total nitrogen, and turbidity. Among them, water level was the key determinant separating autumn BCCs from the BCCs in other seasons. A significant lower relative abundance of Burkholderiales (betI and betVII) and a higher relative abundance of Actinomycetales (acI, acTH1 and acTH2) were found in autumn than in other seasons. Overall, our results suggest that water level changes associated with pH, temperature and nutrient status shaped the seasonal patterns of BCCs in the Poyang Lake.

  18. Latitudinal Distribution of Ammonia-Oxidizing Bacteria and Archaea in the Agricultural Soils of Eastern China

    PubMed Central

    Huang, Liuqin; Deng, Ye; Wang, Shang; Zhou, Yu; Liu, Li

    2014-01-01

    The response of soil ammonia-oxidizing bacterial (AOB) and archaeal (AOA) communities to individual environmental variables (e.g., pH, temperature, and carbon- and nitrogen-related soil nutrients) has been extensively studied, but how these environmental conditions collectively shape AOB and AOA distributions in unmanaged agricultural soils across a large latitudinal gradient remains poorly known. In this study, the AOB and AOA community structure and diversity in 26 agricultural soils collected from eastern China were investigated by using quantitative PCR and bar-coded 454 pyrosequencing of the amoA gene that encodes the alpha subunit of ammonia monooxygenase. The sampling locations span over a 17° latitude gradient and cover a range of climatic conditions. The Nitrosospira and Nitrososphaera were the dominant clusters of AOB and AOA, respectively; but the subcluster-level composition of Nitrosospira-related AOB and Nitrososphaera-related AOA varied across the latitudinal gradient. Variance partitioning analysis showed that geography and climatic conditions (e.g., mean annual temperature and precipitation), as well as carbon-/nitrogen-related soil nutrients, contributed more to the AOB and AOA community variations (∼50% in total) than soil pH (∼10% in total). These results are important in furthering our understanding of environmental conditions influencing AOB and AOA community structure across a range of environmental gradients. PMID:25002421

  19. Orthogonal test design for optimization of synthesis of MTX/LDHs hybrids by ion-exchange method

    NASA Astrophysics Data System (ADS)

    Liu, Su-Qing; Dai, Chao-Fan; Wang, Lin; Li, Shu-Ping; Li, Xiao-Dong

    2015-04-01

    Based on orthogonal test design, the factors influencing the synthesis of methotrexate intercalated magnesium-aluminum layered double hydroxides (MTX/LDHs for short) by ion-exchange method, such as weight ratio of pristine LDHs to MTX (R for short), exchange temperature, time and pH value were investigated. Of the four controllable independent variables, R had the strongest effect on the crystallinity and the drug-loading capacity and the optimum synthesis conditions considered from the crystallinity and the drug-loading capacity both pointed to the same values, i.e., R=2:1, pH=9.5, temperature of 80 °C and exchange time of 3 day. The XRD diffractions indicated that high MTX content was in favor of the formation of intercalated hybrids, while low content lead to the failure of it. TEM photos indicated that the intercalated hybrids all exhibited aggregated hexagonal plates. In order to improve the morphology, two different states of pristine LDHs, i.e., powder and colloid, were chosen to prepare MTX/LDHs hybrids and the results indicated that colloid state of pristine was advantageous to obtain regular particles. The study also revealed that the properties of hybrids obtained at optimum conditions by ion-exchange were superior to that obtained from standard methods, such as co-precipitation method.

  20. Determination of aliphatic amines in mineral flotation liquors and reagents by high-performance liquid chromatography after derivatization with 4-chloro-7-nitrobenzofurazan.

    PubMed

    Hao, F; Lwin, T; Bruckard, W J; Woodcock, J T

    2004-11-05

    The method described here fulfils the need for a suitable analytical method to determine the concentrations of single and mixed aliphatic amines in the range from hexylamine (C6) to octadecylamine (C18) in flotation test solutions and in commercial flotation collectors. Amines do not have a UV-vis spectrum in aqueous solution but by reacting an amine-containing solution with 4-chloro-7-nitrobenzofurazan solution (chloro-NBD), derivatized products (amino-NBDs) are formed which have absorbance maxima at 470nm. Excess chloro-NBD and the amino-NBDs can be separated from each other by high-performance liquid chromatography (HPLC) and their concentrations measured with a UV-vis detector. Important variables in the derivatization stage are pH, temperature, chloro-NBD concentration, and reaction time, all of which interact with each other. A three-stage statistical procedure was used to determine the optimum conditions. In each stage, an 8-test design was used in which a high and low limit was set for each variable, and the chromatogram peak area of the derived amino-NBD was measured. The optimum derivatization conditions established were pH 8.9, chloro-NBD concentration 0.20% (w/v), temperature 70 degrees C, and reaction time 60 min. Optimum elution conditions for chromatography were an eluent containing 80% (v/v) acetonitrile in aqueous solution containing 40mM acetic acid at pH 4.5. With a flow rate of 2.0 ml/min, dodecylamine had a retention time of about 3 min, whereas octadecylamine had a retention time of 44 min. Straight-line calibration curves were obtained up to at least 200 ppm of amine in solution. The lower limit of detection was estimated to be 0.05 microM (10ppb) with a signal to noise ratio of 3. No interfering substances were found. The method was successfully applied to the analysis of solutions from an actual flotation test and to a solid commercial amine.

Top