Sample records for variables temperature salinity

  1. Development and Testing of a Coupled Ocean-atmosphere Mesoscale Ensemble Prediction System

    DTIC Science & Technology

    2011-06-28

    wind, temperature, and moisture variables, while the oceanographic ET is derived from ocean current, temperature, and salinity variables. Estimates of...wind, temperature, and moisture variables while the oceanographic ET is derived from ocean current temperature, and salinity variables. Estimates of...uncertainty in the model. Rigorously accurate ensemble methods for describing the distribution of future states given past information include particle

  2. Morphometric variability of Arctodiaptomus salinus (Copepoda) in the Mediterranean-Black Sea region.

    PubMed

    Anufriieva, Elena V; Shadrin, Nickolai V

    2015-11-18

    Inter-species variability in morphological traits creates a need to know the range of variability of characteristics in the species for taxonomic and ecological tasks. Copepoda Arctodiaptomus salinus, which inhabits water bodies across Eurasia and North Africa, plays a dominant role in plankton of different water bodies-from fresh to hypersaline. This work assesses the intra- and inter-population morphometric variability of A. salinus in the Mediterranean-Black Sea region and discusses some observed regularities. The variability of linear body parameters and proportions was studied. The impacts of salinity, temperature, and population density on morphological characteristics and their variability can manifest themselves in different ways at the intra- and inter-population levels. A significant effect of salinity, pH and temperature on the body proportions was not found. Their intra-population variability is dependent on temperature and salinity. Sexual dimorphism of A. salinus manifests in different linear parameters, proportions, and their variability. There were no effects of temperature, pH and salinity on the female/male parameter ratio. There were significant differences in the body proportions of males and females in different populations. The influence of temperature, salinity, and population density can be attributed to 80%-90% of intra-population variability of A. salinus. However, these factors can explain less than 40% of inter-population differences. Significant differences in the body proportions of males and females from different populations may suggest that some local populations of A. salinus in the Mediterranean-Black Sea region are in the initial stages of differentiation.

  3. Continuous salinity and temperature data from san francisco estuary, 19822002: Trends and the salinity-freshwater inflow relationship

    USGS Publications Warehouse

    Shellenbarger, G.G.; Schoellhamer, D.H.

    2011-01-01

    The U.S. Geological Survey and other federal and state agencies have been collecting continuous temperature and salinity data, two critical estuarine habitat variables, throughout San Francisco estuary for over two decades. Although this dynamic, highly variable system has been well studied, many questions remain relating to the effects of freshwater inflow and other physical and biological linkages. This study examines up to 20 years of publically available, continuous temperature and salinity data from 10 different San Francisco Bay stations to identify trends in temperature and salinity and quantify the salinityfreshwater inflow relationship. Several trends in the salinity and temperature records were identified, although the high degree of daily and interannual variability confounds the analysis. In addition, freshwater inflow to the estuary has a range of effects on salinity from -0.0020 to -0.0096 (m3 s-1) -1 discharge, depending on location in the estuary and the timescale of analyzed data. Finally, we documented that changes in freshwater inflow to the estuary that are within the range of typical management actions can affect bay-wide salinities by 0.61.4. This study reinforces the idea that multidecadal records are needed to identify trends from decadal changes in water management and climate and, therefore, are extremely valuable. ?? 2011 Coastal Education & Research Foundation.

  4. Morphometric variability of Arctodiaptomus salinus (Copepoda) in the Mediterranean-Black Sea region

    PubMed Central

    ANUFRIIEVA, Elena V.; SHADRIN, Nickolai V.

    2015-01-01

    Inter-species variability in morphological traits creates a need to know the range of variability of characteristics in the species for taxonomic and ecological tasks. Copepoda Arctodiaptomus salinus, which inhabits water bodies across Eurasia and North Africa, plays a dominant role in plankton of different water bodies-from fresh to hypersaline. This work assesses the intra- and inter-population morphometric variability of A. salinus in the Mediterranean-Black Sea region and discusses some observed regularities. The variability of linear body parameters and proportions was studied. The impacts of salinity, temperature, and population density on morphological characteristics and their variability can manifest themselves in different ways at the intra- and inter-population levels. A significant effect of salinity, pH and temperature on the body proportions was not found. Their intra-population variability is dependent on temperature and salinity. Sexual dimorphism of A. salinus manifests in different linear parameters, proportions, and their variability. There were no effects of temperature, pH and salinity on the female/male parameter ratio. There were significant differences in the body proportions of males and females in different populations. The influence of temperature, salinity, and population density can be attributed to 80%-90% of intra-population variability of A. salinus. However, these factors can explain less than 40% of inter-population differences. Significant differences in the body proportions of males and females from different populations may suggest that some local populations of A. salinus in the Mediterranean-Black Sea region are in the initial stages of differentiation. PMID:26646569

  5. Comparison of the Effects of Environmental Parameters on the Growth Variability of Vibrio parahaemolyticus Coupled with Strain Sources and Genotypes Analyses.

    PubMed

    Liu, Bingxuan; Liu, Haiquan; Pan, Yingjie; Xie, Jing; Zhao, Yong

    2016-01-01

    Microbial growth variability plays an important role on food safety risk assessment. In this study, the growth kinetic characteristics corresponding to maximum specific growth rate (μmax) of 50 V. parahaemolyticus isolates from different sources and genotypes were evaluated at different temperatures (10, 20, 30, and 37°C) and salinity (0.5, 3, 5, 7, and 9%) using the automated turbidimetric system Bioscreen C. The results demonstrated that strain growth variability increased as the growth conditions became more stressful both in terms of temperature and salinity. The coefficient of variation (CV) of μmax for temperature was larger than that for salinity, indicating that the impact of temperature on strain growth variability was greater than that of salinity. The strains isolated from freshwater aquatic products had more conspicuous growth variations than those from seawater. Moreover, the strains with tlh (+) /tdh (+) /trh (-) exhibited higher growth variability than tlh (+) /tdh (-) /trh (-) or tlh (+) /tdh (-) /trh (+), revealing that gene heterogeneity might have possible relations with the growth variability. This research illustrates that the growth environments, strain sources as well as genotypes have impacts on strain growth variability of V. parahaemolyticus, which can be helpful for incorporating strain variability in predictive microbiology and microbial risk assessment.

  6. Comparison of the Effects of Environmental Parameters on the Growth Variability of Vibrio parahaemolyticus Coupled with Strain Sources and Genotypes Analyses

    PubMed Central

    Liu, Bingxuan; Liu, Haiquan; Pan, Yingjie; Xie, Jing; Zhao, Yong

    2016-01-01

    Microbial growth variability plays an important role on food safety risk assessment. In this study, the growth kinetic characteristics corresponding to maximum specific growth rate (μmax) of 50 V. parahaemolyticus isolates from different sources and genotypes were evaluated at different temperatures (10, 20, 30, and 37°C) and salinity (0.5, 3, 5, 7, and 9%) using the automated turbidimetric system Bioscreen C. The results demonstrated that strain growth variability increased as the growth conditions became more stressful both in terms of temperature and salinity. The coefficient of variation (CV) of μmax for temperature was larger than that for salinity, indicating that the impact of temperature on strain growth variability was greater than that of salinity. The strains isolated from freshwater aquatic products had more conspicuous growth variations than those from seawater. Moreover, the strains with tlh+/tdh+/trh− exhibited higher growth variability than tlh+/tdh−/trh− or tlh+/tdh−/trh+, revealing that gene heterogeneity might have possible relations with the growth variability. This research illustrates that the growth environments, strain sources as well as genotypes have impacts on strain growth variability of V. parahaemolyticus, which can be helpful for incorporating strain variability in predictive microbiology and microbial risk assessment. PMID:27446034

  7. Impact of Satellite Remote Sensing Data on Simulations of ...

    EPA Pesticide Factsheets

    We estimated surface salinity flux and solar penetration from satellite data, and performed model simulations to examine the impact of including the satellite estimates on temperature, salinity, and dissolved oxygen distributions on the Louisiana continental shelf (LCS) near the annual hypoxic zone. Rainfall data from the Tropical Rainfall Measurement Mission (TRMM) were used for the salinity flux, and the diffuse attenuation coefficient (Kd) from Moderate Resolution Imaging Spectroradiometer (MODIS) were used for solar penetration. Improvements in the model results in comparison with in situ observations occurred when the two types of satellite data were included. Without inclusion of the satellite-derived surface salinity flux, realistic monthly variability in the model salinity fields was observed, but important inter-annual variability wasmissed. Without inclusion of the satellite-derived light attenuation, model bottom water temperatures were too high nearshore due to excessive penetration of solar irradiance. In general, these salinity and temperature errors led to model stratification that was too weak, and the model failed to capture observed spatial and temporal variability in water-column vertical stratification. Inclusion of the satellite data improved temperature and salinity predictions and the vertical stratification was strengthened, which improved prediction of bottom-water dissolved oxygen. The model-predicted area of bottom-water hypoxia on the

  8. Decadal Variability of Temperature and Salinity in the Northwest Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Mishonov, A. V.; Seidov, D.; Reagan, J. R.; Boyer, T.; Parsons, A. R.

    2017-12-01

    There are only a few regions in the World Ocean where the density of observations collected over the past 60 years is sufficient for reliable data mapping with spatial resolutions finer than one-degree. The Northwest Atlantic basin is one such regions where a spatial resolution of gridded temperature and salinity fields, comparable to those generated by eddy-resolving numerical models of ocean circulation, has recently becomes available. Using the new high-resolution Northwest Atlantic Regional Climatology, built on quarter-degree and one-tenth-degree resolution fields, we analyzed decadal variability and trends of temperature and salinity over 60 years in the Northwest Atlantic, and two 30-year ocean climates of 1955-1984 and 1985-2012 to evaluate the oceanic climate shift in this region. The 30-year climate shift is demonstrated using an innovative 3-D visualization of temperature and salinity. Spatial and temporal variability of heat accumulation found in previous research of the entire North Atlantic Ocean persists in the Northwest Atlantic Ocean. Salinity changes between two 30-year climates were also computed and are discussed.

  9. The role of the Atlantic Water in multidecadal ocean variability in the Nordic and Barents Seas

    NASA Astrophysics Data System (ADS)

    Yashayaev, Igor; Seidov, Dan

    2015-03-01

    The focus of this work is on the temporal and spatial variability of the Atlantic Water (AW). We analyze the existing historic hydrographic data from the World Ocean Database to document the long-term variability of the AW throughflow across the Norwegian Sea to the western Barents Sea. Interannual-to-multidecadal variability of water temperature, salinity and density are analyzed along six composite sections crossing the AW flow and coastal currents at six selected locations. The stations are lined up from southwest to northeast - from the northern North Sea (69°N) throughout the Norwegian Sea to the Kola Section in the Barents Sea (33°30‧E). The changing volume and characteristics of the AW throughflow dominate the hydrographic variability on decadal and longer time scales in the studied area. We examine the role of fluctuations of the volume of inflow versus the variable local factors, such as the air-sea interaction and mixing with the fresh coastal and cold Arctic waters, in controlling the long-term regional variability. It is shown that the volume of the AW, passing through the area and affecting the position of the outer edge of the warm and saline core, correlates well with temperature and salinity averaged over the central portions of the studied sections. The coastal flow (mostly associated with the Norwegian Coastal Current flowing over the continental shelf) is largely controlled by seasonal local heat and freshwater impacts. Temperature records at all six lines show a warming trend superimposed on a series of relatively warm and cold periods, which in most cases follow, with a delay of four to five years, the periods of relatively low and high North Atlantic Oscillation (NAO), and the periods of relatively high and low Atlantic Multidecadal Oscillation (AMO), respectively. In general, there is a relatively high correlation between the year-to-year changes of the NAO and AMO indices, which is to some extent reflected in the (delayed) AW temperature fluctuations. It takes about two years for freshening and salinification events and a much shorter time (of about a year or less) for cooling and warming episodes to propagate or spread across the region. This significant difference in the propagation rates of salinity and temperature anomalies is explained by the leading role of horizontal advection in the propagation of salinity anomalies, whereas temperature is also controlled by the competing air-sea interaction along the AW throughflow. Therefore, although a water parcel moves within the flow as a whole, the temperature, salinity and density anomalies split and propagate separately, with the temperature and density signals leading relative to the salinity signal. A new hydrographic index, coastal-to-offshore density step, is introduced to capture variability in the strength of the AW volume transport. This index shows the same cycles of variability as observed in temperature, NAO and AMO but without an obvious trend.

  10. Upper-Ocean Variability in the Arctic’s Amundsen and Nansen Basins

    DTIC Science & Technology

    2017-05-01

    collect vertical profiles of ocean temperature, salinity and horizontal velocity at few- hour interval as well as sample for specified time periods...deployed for the MIZ program - specifically, vertical temperature, salinity and velocity profiles were collected every 3 hours in the upper 250m of the...the system), this ITP-V returned 5+ months of upper ocean temperature, salinity , velocity and turbulence data from the Makarov Basin, a region of

  11. Salinity affects behavioral thermoregulation in a marine decapod crustacean

    NASA Astrophysics Data System (ADS)

    Reiser, Stefan; Mues, Annika; Herrmann, Jens-Peter; Eckhardt, André; Hufnagl, Marc; Temming, Axel

    2017-10-01

    Thermoregulation in aquatic ectotherms is a complex behavioral pattern that is affected by various biotic and abiotic factors with one being salinity. Especially in coastal and estuarine habitats, altering levels of salinity involve osmoregulatory adjustments that affect total energy budgets and may influence behavioral responses towards temperature. To examine the effect of salinity on behavioral thermoregulation in a marine evertebrate ectotherm, we acclimated juvenile and sub-adult common brown shrimp (Crangon crangon, L.) to salinities of 10, 20 and 30 PSU and investigated their thermal preference in an annular chamber system using the gravitational method for temperature preference determination. Thermal preference of individual brown shrimp was considerably variable and brown shrimp selected a wide range of temperatures in each level of salinity as well as within individual experimental trials. However, salinity significantly affected thermal preference with the shrimp selecting higher temperatures at 10 and 20 PSU when compared to 30 PSU of salinity. Body size had no effect on thermal selection and did not interact with salinity. Temperature preference differed by sex and male shrimp selected significantly higher temperatures at 10 PSU when compared to females. The results show that salinity strongly affects thermal selection in brown shrimp and confirms the strong interrelation of temperature and salinity on seasonal migratory movements that has been previously derived from observations in the field. In the field, however, it remains unclear whether salinity drives thermal selection or whether changes in temperature modify salinity preference.

  12. Decadal variability on the Northwest European continental shelf

    NASA Astrophysics Data System (ADS)

    Jones, Sam; Cottier, Finlo; Inall, Mark; Griffiths, Colin

    2018-02-01

    Decadal scale time series of the shelf seas are important for understanding both climate and process studies. Despite numerous investigations of long-term temperature variability in the shelf seas, studies of salinity variability are few. Salt is a more conservative tracer than temperature in shallow seas, and it can reveal changes in local hydrographic conditions as well as transmitted basin-scale changes. Here, new inter-annual salinity time series on the northwest European shelf are developed and a 13 year high resolution salinity record from a coastal mooring in western Scotland is presented and analysed. We find strong temporal variability in coastal salinity on timescales ranging from tidal to inter-annual, with the magnitude of variability greatest during winter months. There is little seasonality and no significant decadal trend in the coastal time series of salinity. We propose 4 hydrographic states to explain salinity variance in the shelf area west of Scotland based on the interaction between a baroclinic coastal current and wind-forced barotropic flow: while wind forcing is important, we find that changes in the buoyancy-driven flow are more likely to influence long-term salinity observations. We calculate that during prevailing westerly wind conditions, surface waters in the Sea of the Hebrides receive a mix of 62% Atlantic origin water to 38% coastal sources. This contrasts with easterly wind conditions, during which the mix is 6% Atlantic to 94% coastal sources on average. This 'switching' between hydrographic states is expected to impact nutrient transport and therefore modify the level of primary productivity on the shelf. This strong local variability in salinity is roughly an order of magnitude greater than changes in the adjacent ocean basin, and we infer from this that Scottish coastal waters are likely to be resilient to decadal changes in ocean climate.

  13. Variability of the western Galician upwelling system (NW Spain) during an intensively sampled annual cycle. An EOF analysis approach

    NASA Astrophysics Data System (ADS)

    Herrera, J. L.; Rosón, G.; Varela, R. A.; Piedracoba, S.

    2008-07-01

    The key features of the western Galician shelf hydrography and dynamics are analyzed on a solid statistical and experimental basis. The results allowed us to gather together information dispersed in previous oceanographic works of the region. Empirical orthogonal functions analysis and a canonical correlation analysis were applied to a high-resolution dataset collected from 47 surveys done on a weekly frequency from May 2001 to May 2002. The main results of these analyses are summarized bellow. Salinity, temperature and the meridional component of the residual current are correlated with the relevant local forcings (the meridional coastal wind component and the continental run-off) and with a remote forcing (the meridional temperature gradient at latitude 37°N). About 80% of the salinity and temperature total variability over the shelf, and 37% of the residual meridional current total variability are explained by two EOFs for each variable. Up to 22% of the temperature total variability and 14% of the residual meridional current total variability is devoted to the set up of cross-shore gradients of the thermohaline properties caused by the wind-induced Ekman transport. Up to 11% and 10%, respectively, is related to the variability of the meridional temperature gradient at the Western Iberian Winter Front. About 30% of the temperature total variability can be explained by the development and erosion of the seasonal thermocline and by the seasonal variability of the thermohaline properties of the central waters. This thermocline presented unexpected low salinity values due to the trapping during spring and summer of the high continental inputs from the River Miño recorded in 2001. The low salinity plumes can be traced on the Galician shelf during almost all the annual cycle; they tend to be extended throughout the entire water column under downwelling conditions and concentrate in the surface layer when upwelling favourable winds blow. Our evidences point to the meridional temperature gradient acting as an important controlling factor of the central waters thermohaline properties and in the development and decay of the Iberian Poleward Current.

  14. Impact of change in climate and policy from 1988 to 2007 on environmental and microbial variables at the time series station Boknis Eck, Baltic Sea

    NASA Astrophysics Data System (ADS)

    Hoppe, H.-G.; Giesenhagen, H. C.; Koppe, R.; Hansen, H.-P.; Gocke, K.

    2012-12-01

    Phytoplankton and bacteria are sensitive indicators of environmental change. The temporal development of these key organisms was monitored from 1988 to the end of 2007 at the time series station Boknis Eck in the Western Baltic Sea. This period was characterized by the adaption of the Baltic Sea ecosystem to changes in the environmental conditions caused by the collapse and conversion of the political system in the Southern and Eastern Border States, accompanied by the general effects of global climate change. Measured variables were chlorophyll, primary production, bacteria number, -biomass and -production, glucose turnover rate, macro-nutrients, pH, temperature and salinity. Negative trends with time were recorded for chlorophyll, the bacterial variables, nitrate, ammonia, phosphate, silicate, oxygen and salinity while temperature, pH, and the ratio between bacteria numbers and chlorophyll increased. The strongest reductions with time occurred for the annual maximum values, e.g. for chlorophyll during the spring bloom or for nitrate during winter, while the annual minimum values remained more stable. In deep water above sediment the negative trends of oxygen, nitrate, phosphate and bacterial variables as well as the positive trend of temperature were similar to those in the surface while the trends of salinity, ammonia and silicate were opposite to those in the surface. Decreasing oxygen even in the surface layer was of particular interest because it suggested enhanced recycling of nutrients from the deep hypoxic zones to the surface by vertical mixing. In the long run all variables correlated positively with temperature, except chlorophyll and salinity. Salinity correlated negatively with all bacterial variables as well as precipitation and positively with chlorophyll. Surprisingly, bacterial variables did not correlate with chlorophyll which may be inherent with the time lag between the peaks of phytoplankton and bacteria during spring. Compared to the 20-yr averages of the environmental and microbial variables, the strongest negative deviations of corresponding annual averages were measured about ten years after political change for nitrate and bacterial secondary production (~ -60%), followed by chlorophyll (-50%) and bacterial biomass (-40%). Considering the circulation of surface currents in the Baltic Sea we conclude that the improved management of water resources after 1989 together with the trends of the climate variables salinity and temperature were responsible for the observed patterns of the microbial variables at the Boknis Eck time series station.

  15. Impact of change in climate and policy from 1988 to 2007 on environmental and microbial variables at the time series station Boknis Eck, Baltic Sea

    NASA Astrophysics Data System (ADS)

    Hoppe, H.-G.; Giesenhagen, H. C.; Koppe, R.; Hansen, H.-P.; Gocke, K.

    2013-07-01

    Phytoplankton and bacteria are sensitive indicators of environmental change. The temporal development of these key organisms was monitored from 1988 to the end of 2007 at the time series station Boknis Eck in the western Baltic Sea. This period was characterized by the adaption of the Baltic Sea ecosystem to changes in the environmental conditions caused by the conversion of the political system in the southern and eastern border states, accompanied by the general effects of global climate change. Measured variables were chlorophyll, primary production, bacteria number, -biomass and -production, glucose turnover rate, macro-nutrients, pH, temperature and salinity. Negative trends with time were recorded for chlorophyll, bacteria number, bacterial biomass and bacterial production, nitrate, ammonia, phosphate, silicate, oxygen and salinity while temperature, pH, and the ratio between bacteria numbers and chlorophyll increased. Strongest reductions with time occurred for the annual maximum values, e.g. for chlorophyll during the spring bloom or for nitrate during winter, while the annual minimum values remained more stable. In deep water above sediment the negative trends of oxygen, nitrate, phosphate and bacterial variables as well as the positive trend of temperature were similar to those in the surface while the trends of salinity, ammonia and silicate were opposite to those in the surface. Decreasing oxygen, even in the surface layer, was of particular interest because it suggested enhanced recycling of nutrients from the deep hypoxic zones to the surface by vertical mixing. The long-term seasonal patterns of all variables correlated positively with temperature, except chlorophyll and salinity. Salinity correlated negatively with all bacterial variables (as well as precipitation) and positively with chlorophyll. Surprisingly, bacterial variables did not correlate with chlorophyll, which may be inherent with the time lag between the peaks of phytoplankton and bacteria during spring. Compared to the 20-yr averages of the environmental and microbial variables, the strongest negative deviations of corresponding annual averages were measured about ten years after political change for nitrate and bacterial secondary production (~ -60%), followed by chlorophyll (-50%) and bacterial biomass (-40%). Considering the circulation of surface currents in the Baltic Sea we interpret the observed patterns of the microbial variables at the Boknis Eck time series station as a consequence of the improved management of water resources after 1989 and - to a minor extent - the trends of the climate variables salinity and temperature.

  16. Multiproxy evidence of Holocene climate variability from estuarine sediments, eastern North America

    USGS Publications Warehouse

    Cronin, T. M.; Thunell, R.; Dwyer, G.S.; Saenger, C.; Mann, M.E.; Vann, C.; Seal, R.R.

    2005-01-01

    We reconstructed paleoclimate patterns from oxygen and carbon isotope records from the fossil estuarine benthic foraminifera Elphidium and Mg/ Ca ratios from the ostracode Loxoconcha from sediment cores from Chesapeake Bay to examine the Holocene evolution of North Atlantic Oscillation (NAO)-type climate variability. Precipitation-driven river discharge and regional temperature variability are the primary influences on Chesapeake Bay salinity and water temperature, respectively. We first calibrated modern ??18 Owater to salinity and applied this relationship to calculate trends in paleosalinity from the ??18 Oforam, correcting for changes in water temperature estimated from ostracode Mg /Ca ratios. The results indicate a much drier early Holocene in which mean paleosalinity was ???28 ppt in the northern bay, falling ???25% to ???20 ppt during the late Holocene. Early Holocene Mg/Ca-derived temperatures varied in a relatively narrow range of 13?? to 16??C with a mean temperature of 14.2??C and excursions above 16??C; the late Holocene was on average cooler (mean temperature of 12.8??C). In addition to the large contrast between early and late Holocene regional climate conditions, multidecadal (20-40 years) salinity and temperature variability is an inherent part of the region's climate during both the early and late Holocene, including the Medieval Warm Period and Little Ice Age. These patterns are similar to those observed during the twentieth century caused by NAO-related processes. Comparison of the midlatitude Chesapeake Bay salinity record with tropical climate records of Intertropical Convergence Zone fluctuations inferred from the Cariaco Basin titanium record suggests an anticorrelation between precipitation in the two regions at both millennial and centennial timescales. Copyright 2005 by the American Geophysical Union.

  17. The Influence of Individual Variability on Zooplankton Population Dynamics under Different Environmental Conditions

    NASA Astrophysics Data System (ADS)

    Bi, R.; Liu, H.

    2016-02-01

    Understanding how biological components respond to environmental changes could be insightful to predict ecosystem trajectories under different climate scenarios. Zooplankton are key components of marine ecosystems and changes in their dynamics could have major impact on ecosystem structure. We developed an individual-based model of a common coastal calanoid copepod Acartia tonsa to examine how environmental factors affect zooplankton population dynamics and explore the role of individual variability in sustaining population under various environmental conditions consisting of temperature, food concentration and salinity. Total abundance, egg production and proportion of survival were used to measure population success. Results suggested population benefits from high level of individual variability under extreme environmental conditions including unfavorable temperature, salinity, as well as low food concentration, and selection on fast-growers becomes stronger with increasing individual variability and increasing environmental stress. Multiple regression analysis showed that temperature, food concentration, salinity and individual variability have significant effects on survival of A. tonsa population. These results suggest that environmental factors have great influence on zooplankton population, and individual variability has important implications for population survivability under unfavorable conditions. Given that marine ecosystems are at risk from drastic environmental changes, understanding how individual variability sustains populations could increase our capability to predict population dynamics in a changing environment.

  18. Seasonal Mixed Layer Heat Budget in the Southeast Tropical Atlantic

    NASA Astrophysics Data System (ADS)

    Scannell, H. A.; McPhaden, M. J.

    2016-12-01

    We analyze a mixed layer heat budget at 6ºS, 8ºE from a moored buoy of the Prediction and Research Moored Array in the Atlantic (PIRATA) to better understand the causes of seasonal mixed layer temperature variability in the southeast tropical Atlantic. This region is of interest because it is susceptible to warm biases in coupled global climate models and has historically been poorly sampled. Previous work suggests that thermodynamic changes in both latent heat loss and absorbed solar radiation dominate mixed layer properties away from the equator in the tropical Atlantic, while advection and entrainment are more important near the equator. Changes in mixed layer salinity can also influence temperature through the formation of barrier layers and density gradients. Freshwater flux from the Congo River, migration of the Intertropical Convergence Zone and advection of water masses are considered important contributors to mixed layer salinity variability in our study region. We analyze ocean temperature, salinity and meteorological data beginning in 2013 using mooring, Argo, and satellite platforms to study how seasonal temperature variability in the mixed layer is influenced by air-sea interactions and ocean dynamics.

  19. Influence of increasing temperature and salinity on herbicide toxicity in estuarine phytoplankton.

    PubMed

    DeLorenzo, Marie E; Danese, Loren E; Baird, Thomas D

    2013-07-01

    Ecological risk assessments are, in part, based on results of toxicity tests conducted under standard exposure conditions. Global climate change will have a wide range of effects on estuarine habitats, including potentially increasing water temperature and salinity, which may alter the risk assessment of estuarine pollutants. We examined the effects of increasing temperature and salinity on the toxicity of common herbicides (irgarol, diuron, atrazine, and ametryn) to the phytoplankton species Dunaliella tertiolecta. Static 96-h algal bioassays were conducted for each herbicide under four exposure scenarios: standard temperature and salinity (25°C, 20 ppt), standard temperature and elevated salinity (25°C, 40 ppt), elevated temperature and standard salinity (35°C, 20 ppt), and elevated temperature and elevated salinity (35°C, 40 ppt). The endpoints assessed were algal cell density at 96 h, growth rate, chlorophyll a content, lipid content, and starch content. Increasing exposure temperature reduced growth rate and 96-h cell density but increased the cellular chlorophyll and lipid concentrations of the control algae. Exposure condition did not alter starch content of control algae. Herbicides were found to decrease growth rate, 96 h cell density, and cellular chlorophyll and lipid concentrations, while starch concentrations increased with herbicide exposure. Herbicide effects under standard test conditions were then compared with those observed under elevated temperature and salinity. Herbicide effects on growth rate, cell density, and starch content were more pronounced under elevated salinity and temperature conditions. To encompass the natural variability in estuarine temperature and salinity, and to account for future changes in climate, toxicity tests should be conducted under a wider range of environmental conditions. Copyright © 2011 Wiley Periodicals, Inc.

  20. Survival, growth and reproduction of non-indigenous Nile tilapia, Oreochromis niloticus (Linnaeus 1758). I. Physiological capabilities in various temperatures and salinities

    USGS Publications Warehouse

    Schofield, Pamela J.; Peterson, Mark S.; Lowe, Michael R.; Brown-Peterson, Nancy J.; Slack, William T.

    2011-01-01

    The physiological tolerances of non-native fishes is an integral component of assessing potential invasive risk. Salinity and temperature are environmental variables that limit the spread of many non-native fishes. We hypothesised that combinations of temperature and salinity will interact to affect survival, growth, and reproduction of Nile tilapia, Oreochromis niloticus, introduced into Mississippi, USA. Tilapia withstood acute transfer from fresh water up to a salinity of 20 and survived gradual transfer up to 60 at typical summertime (30°C) temperatures. However, cold temperature (14°C) reduced survival of fish in saline waters ≥10 and increased the incidence of disease in freshwater controls. Although fish were able to equilibrate to saline waters in warm temperatures, reproductive parameters were reduced at salinities ≥30. These integrated responses suggest that Nile tilapia can invade coastal areas beyond their point of introduction. However, successful invasion is subject to two caveats: (1) wintertime survival depends on finding thermal refugia, and (2) reproduction is hampered in regions where salinities are ≥30. These data are vital to predicting the invasion of non-native fishes into coastal watersheds. This is particularly important given the predicted changes in coastal landscapes due to global climate change and sea-level rise.

  1. In Situ Global Sea Surface Salinity and Variability from the NCEI Global Thermosalinograph Database

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Boyer, T.; Zhang, H. M.

    2017-12-01

    Sea surface salinity (SSS) plays an important role in the global ocean circulations. The variations of sea surface salinity are key indicators of changes in air-sea water fluxes. Using nearly 30 years of in situ measurements of sea surface salinity from thermosalinographs, we will evaluate the variations of the sea surface salinity in the global ocean. The sea surface salinity data used are from our newly-developed NCEI Global Thermosalinograph Database - NCEI-TSG. This database provides a comprehensive set of quality-controlled in-situ sea-surface salinity and temperature measurements collected from over 340 vessels during the period 1989 to the present. The NCEI-TSG is the world's most complete TSG dataset, containing all data from the different TSG data assembly centers, e.g. COAPS (SAMOS), IODE (GOSUD) and AOML, with more historical data from NCEI's archive to be added. Using this unique dataset, we will investigate the spatial variations of the global SSS and its variability. Annual and interannual variability will also be studied at selected regions.

  2. Seasonal induced changes in spinach rhizosphere microbial community structure with varying salinity and drought.

    PubMed

    Mark Ibekwe, A; Ors, Selda; Ferreira, Jorge F S; Liu, Xuan; Suarez, Donald L

    2017-02-01

    Salinity is a common problem under irrigated agriculture, especially in low rainfall and high evaporative demand areas of southwestern United States and other semi-arid regions around the world. However, studies on salinity effects on soil microbial communities are relatively few while the effects of irrigation-induced salinity on soil chemical and physical properties and plant growth are well documented. In this study, we examined the effects of salinity, temperature, and temporal variability on soil and rhizosphere microbial communities in sand tanks irrigated with prepared solutions designed to simulate saline wastewater. Three sets of experiments with spinach (Spinacia oleracea L., cv. Racoon) were conducted under saline water during different time periods (early winter, late spring, and early summer). Bacterial 16S V4 rDNA region was amplified utilizing fusion primers designed against the surrounding conserved regions using MiSeq® Illumina sequencing platform. Across the two sample types, bacteria were relatively dominant among three phyla-the Proteobacteria, Cyanobacteria, and Bacteroidetes-accounted for 77.1% of taxa detected in the rhizosphere, while Proteobacteria, Bacteroidetes, and Actinobacteria accounted for 55.1% of taxa detected in soil. The results were analyzed using UniFrac coupled with principal coordinate analysis (PCoA) to compare diversity, abundance, community structure, and specific bacterial groups in soil and rhizosphere samples. Permutational analysis of variance (PERMANOVA) analysis showed that soil temperature (P=0.001), rhizosphere temperature (P=0.001), rhizosphere salinity (P=0.032), and evapotranspiration (P=0.002) significantly affected beta diversity of soil and rhizosphere microbial communities. Furthermore, salinity had marginal effects (P=0.078) on soil beta diversity. However, temporal variability differentially affected rhizosphere microbial communities irrigated with saline wastewater. Therefore, microbial communities in soils impacted by saline irrigation water respond differently to irrigation water quality and season of application due to temporal effects associated with temperature. Published by Elsevier B.V.

  3. Dynamics of the Seychelles-Chagos Thermocline Ridge

    NASA Astrophysics Data System (ADS)

    Bulusu, S.

    2016-02-01

    The southwest tropical Indian Ocean (SWTIO) features a unique, seasonal upwelling of the thermocline also known as the Seychelles-Chagos Thermocline Ridge (SCTR). More recently, this ridge or "dome"-like feature in the thermocline depth at (55°E-65°E, 5°S-12°S) in the SWTIO has been linked to interannual variability in the semi-annual Indian Ocean monsoon seasons as well as the Madden-Julian Oscillation (MJO) and El Niño Southern Oscillation (ENSO). The SCTR is a region where the MJO is associated with strong SST variability. Normally more cyclones are found generated in this SCTR region when the thermocline is deeper, which has a positive relation to the arrival of a downwelling Rossby wave from the southeast tropical Indian Ocean. Previous studies have focused their efforts solely on sea surface temperature (SST) because they determined salinity variability to be low, but with the Soil Moisture and Ocean Salinity (SMOS), and Aquarius salinity missions new insight can be shed on the effects that the seasonal upwelling of the thermocline has on Sea Surface Salinity (SSS). Seasonal SSS anomalies these missions will reveal the magnitude of seasonal SSS variability, while Argo depth profiles will show the link between changes in subsurface salinity and temperature structure. A seasonal increase in SST and a decrease in SSS associated with the downwelling of the thermocline have also been shown to occasionally generate MJO events, an extremely important part of climate variability in the Indian ocean. Satellite derives salinity and Argo data can help link changes in surface and subsurface salinity structure to the generation of the important MJO events. This study uses satellite derived salinity from Soil Moisture and Ocean Salinity (SMOS), and Aquarius to see if these satellites can yield new information on seasonal and interannual surface variability. In this study barrier layer thickness (BLT) estimates will be derived from satellite measurements using a multilinear regression model (MRM). This study will help to improve monsoon modeling and forecasting, two areas that remain highly inaccurate after decades of research work.

  4. Optical Models for Remote Sensing of Colored Dissolved Organic Matter Absorption and Salinity in New England, Middle Atlantic and Gulf Coast Estuaries USA

    EPA Science Inventory

    In estuarine and nearshore ecosystems, salinity levels, along with temperature, control water column stratification, the types and locations of plants and animals, and the flocculation of particles. Salinity is also a key factor when monitoring water quality variables (e.g., diss...

  5. A comparison of sea surface salinity in the equatorial Pacific Ocean during the 1997-1998, 2012-2013, and 2014-2015 ENSO events

    NASA Astrophysics Data System (ADS)

    Corbett, Caroline M.; Subrahmanyam, Bulusu; Giese, Benjamin S.

    2017-11-01

    Sea surface salinity (SSS) variability during the 1997-1998 El Niño event and the failed 2012-2013 and 2014-2015 El Niño events is explored using a combination of observations and ocean reanalyses. Previously, studies have mainly focused on the sea surface temperature (SST) and sea surface height (SSH) variability. This analysis utilizes salinity data from Argo and the Simple Ocean Data Assimilation (SODA) reanalysis to examine the SSS variability. Advective processes and evaporation minus precipitation (E-P) variability is understood to influence SSS variability. Using surface wind, surface current, evaporation, and precipitation data, we analyze the causes for the observed SSS variability during each event. Barrier layer thickness and upper level salt content are also examined in connection to subsurface salinity variability. Both advective processes and E-P variability are important during the generation and onset of a successful El Niño, while a lack of one or both of these processes leads to a failed ENSO event.

  6. World Ocean Database and the Global Temperature and Salinity Profile Program Database: Synthesis of historical and near real-time ocean profile data

    NASA Astrophysics Data System (ADS)

    Boyer, T.; Sun, L.; Locarnini, R. A.; Mishonov, A. V.; Hall, N.; Ouellet, M.

    2016-02-01

    The World Ocean Database (WOD) contains systematically quality controlled historical and recent ocean profile data (temperature, salinity, oxygen, nutrients, carbon cycle variables, biological variables) ranging from Captain Cooks second voyage (1773) to this year's Argo floats. The US National Centers for Environmental Information (NCEI) also hosts the Global Temperature and Salinity Profile Program (GTSPP) Continuously Managed Database (CMD) which provides quality controlled near-real time ocean profile data and higher level quality controlled temperature and salinity profiles from 1990 to present. Both databases are used extensively for ocean and climate studies. Synchronization of these two databases will allow easier access and use of comprehensive regional and global ocean profile data sets for ocean and climate studies. Synchronizing consists of two distinct phases: 1) a retrospective comparison of data in WOD and GTSPP to ensure that the most comprehensive and highest quality data set is available to researchers without the need to individually combine and contrast the two datasets and 2) web services to allow the constantly accruing near-real time data in the GTSPP CMD and the continuous addition and quality control of historical data in WOD to be made available to researchers together, seamlessly.

  7. Depth, Salinity and Temperature Variability in the Maryland Coastal Lagoons

    NASA Astrophysics Data System (ADS)

    Chigbu, P.; Malagon, H.; Doctor, S.

    2016-02-01

    Alterations in temperature, precipitation, and sea level associated with global climate change will likely affect the hydrology and bathymetry of Maryland Coastal Bays (MCBs). This will in turn have effects on the abundance, distribution and diversity of the inhabiting biota, as well as the biogeochemistry and food web dynamics of the system. Depth, salinity and temperature data collected monthly (April to October) each year (1990 to 2012) from 20 sites in the MCBs were analyzed. Mean depth at most sites increased significantly with year (p<0.02). The rate of change in depth ranged from -0.02m/yr to 0.043m/yr (mean = 0.021m/yr), which is about seven times higher than the global rate of sea level rise. At the predicted mean rate of change in depth, the MCBs would have risen by 0.78m by the year 2050. Salinity varied between years of below average (e.g. 1990, 2003 and 2009), and above average (e.g. 1991, 1999, 2002 and 2007) levels. Inter-annual variability in salinity at most sites was significantly accounted for by variations in freshwater discharge, although the strength of the relationship decreased with proximity of the sites to the inlets. Measurements taken in April of each year since 1990 showed that temperature has increased significantly in the northern bays (Assawoman and Isle of Wight) and Chincoteague Bay, but not in Sinepuxent and Newport Bays. The observed changes in depth, salinity and temperature have important implications with regard to the functioning of the MCBs, and serve as a basis for evaluating future responses of the lagoons to climatic changes.

  8. Environmental Influences on the Fish Assemblage of the Humber Estuary, U.K.

    NASA Astrophysics Data System (ADS)

    Marshall, S.; Elliott, M.

    1998-02-01

    Salinity, temperature, turbidity and dissolved oxygen were measured in conjunction with a series of fish samples taken by a 2 m beam trawl from 14 sites throughout the Humber estuary, U.K., over the period April 1992 to November 1994. Sediment type was not measured as the literature indicates that the area is homogeneous. The influences of environmental factors and the characteristics of the fish assemblage were analysed using a range of multivariate techniques, including two-way indicator species analysis, canonical correspondence analysis, principal components analysis and Spearman rank correlation. The analyses indicate that salinity is the dominant factor influencing the distribution of the species, with temperature also having a major influence. Of the species examined, whiting (Merlangius merlangus), sole (Solea solea), flounder (Pleuronectes flesus), sprat (Sprattus sprattus) and herring (Clupea harengus) showed a correlation in distribution to temperature, sole, plaice (Pleuronectes platessa), pogge (Agonus cataphractus) and stickleback (Gasterosteus aculeatus) to salinity, and whiting, flounder, pogge and stickleback to dissolved oxygen. Only cod (Gadus morhua) showed a correlation with tidal state, while whiting, pogge and stickleback were correlated to depth. Unlike in some other estuaries, turbidity did not influence the composition of the fish assemblage. Temperature and salinity fluctuations appear to influence different aspects of the community, with temperature proving to be the best predictor of total abundance, while salinity influenced the species richness and total biomass. The analyses demonstrate the most important variables with regard to environmental-biotic interactions, although they also indicate that the variables measured do not account for all of the observed variation in fish biomass and abundance.

  9. Florida Current surface temperature and salinity variability during the last millennium

    NASA Astrophysics Data System (ADS)

    Lund, David C.; Curry, William

    2006-06-01

    The salinity and temperature of the Florida Current are key parameters affecting the transport of heat into the North Atlantic, yet little is known about their variability on centennial timescales. Here we report replicated, high-resolution foraminiferal records of Florida Current surface hydrography for the last millennium from two coring sites, Dry Tortugas and the Great Bahama Bank. The oxygen isotopic composition of Florida Current surface water (δ18Ow) near Dry Tortugas increased 0.4‰ during the course of the Little Ice Age (LIA) (˜1200-1850 A.D.), equivalent to a salinity increase of 0.8-1.5. On the Great Bahama Bank, where surface waters are influenced by the North Atlantic subtropical gyre, δ18Ow increased by 0.3‰ during the last 200 years. Although a portion (˜0.1‰) of this shift may be an artifact of anthropogenically driven changes in surface water ΣCO2, the remaining δ18Ow signal implies a 0.4-1 increase in salinity after 200 years B.P. The simplest explanation of the δ18Ow data is southward migration of the Atlantic Hadley circulation during the LIA. Scaling of the δ18Ow records to salinity using the modern low-latitude δ18Ow-S slope produces an unrealistic reversal in the salinity gradient between the two sites. Only if δ18Ow is scaled to salinity using a high-latitude δ18Ow-S slope can the records be reconciled. Variable atmospheric 14C paralleled Dry Tortugas δ18Ow, suggesting that solar irradiance paced centennial-scale migration of the Inter-Tropical Convergence Zone and changes in Florida Current salinity during the last millennium.

  10. Remote sensing and avian influenza: A review of image processing methods for extracting key variables affecting avian influenza virus survival in water from Earth Observation satellites

    NASA Astrophysics Data System (ADS)

    Tran, Annelise; Goutard, Flavie; Chamaillé, Lise; Baghdadi, Nicolas; Lo Seen, Danny

    2010-02-01

    Recent studies have highlighted the potential role of water in the transmission of avian influenza (AI) viruses and the existence of often interacting variables that determine the survival rate of these viruses in water; the two main variables are temperature and salinity. Remote sensing has been used to map and monitor water bodies for several decades. In this paper, we review satellite image analysis methods used for water detection and characterization, focusing on the main variables that influence AI virus survival in water. Optical and radar imagery are useful for detecting water bodies at different spatial and temporal scales. Methods to monitor the temperature of large water surfaces are also available. Current methods for estimating other relevant water variables such as salinity, pH, turbidity and water depth are not presently considered to be effective.

  11. Seasonal variability of salinity, temperature, turbidity and suspended chlorophyll in the Tweed Estuary.

    PubMed

    Uncles, R J; Bloomer, N J; Frickers, P E; Griffiths, M L; Harris, C; Howland, R J; Morris, A W; Plummer, D H; Tappin, A D

    2000-05-05

    Results are presented from a campaign of measurements that were undertaken to examine seasonal variability in physical and chemical fluxes and processes within the Tweed Estuary during the period September 1996-August 1997. The study utilised monthly surveys, each of approximately 1 week duration. This article interprets a subset of the salinity, temperature, turbidity [suspended particulate matter (SPM) levels] and chlorophyll a data. Measurements discussed here were obtained throughout the estuary during high-speed transects that covered the region between the tidal river and the coastal zone. Longitudinal distributions of surface salinity depended strongly on freshwater runoff. During high runoff the surface salinity was low and the freshwater-saltwater interface (FSI) was located close to the mouth. The reverse was true at times of low runoff. Salinity stratification was generally strong. During the surveys, river runoff temperatures ranged from approximately 2 to 18 degrees C and coastal waters (approximately 33 salinity) from approximately 6 to 15 degrees C. Turbidity was low throughout the campaign (SPM < 30 mg l(-1)). Because of rapid flushing times (one or two tides), turbidity tended to mix conservatively between river and coastal waters. Higher coastal turbidity was associated with stronger wind events, and higher fluvial turbidity with spate events. Suspended chlorophyll a levels were usually low throughout the estuary (typically < 2 microg l(-1)) and showed large spatial variability. Because of the rapid flushing of the estuary, it is hypothesised that it was not possible for several algal cell divisions to occur before algae were flushed to the coastal zone. A 'bloom' occurred during the May 1997 survey, when chlorophyll a levels reached 14 microg l(-1). Higher chlorophyll a concentrations at that time occurred at very low salinities, indicating that these waters and algae were largely fluvially derived, and may have resulted from increasing springtime solar irradiation.

  12. Salinity signature of the Pacific Decadal Oscillation

    NASA Astrophysics Data System (ADS)

    Overland, James E.; Salo, Sigrid; Adams, Jennifer Miletta

    Three sites in the North Pacific have temperature and salinity observations in most months for several years before and after 1977. The Gulf of Alaska station (57°N, 148°W) showed a 2°C warming and a 0.6 freshening in salinity at 10 m depth in the 1980s compared to the 1970s. OWS PAPA (50°N, 145°W) and PAPA line station 7 (49.1°N, 132.4°W) show warming of 0.6°C and 0.9°C, with no major salinity change. The decrease in density and increase in stratification in the Gulf of Alaska after 1977 corresponds primarily to a decrease in salinity in the upper 150 m. We propose that while the Pacific Decadal Oscillation has an east/west character in temperature, the salinity signature will have a NNW/SSE character, similar to the pattern of interannual variability in precipitation.

  13. Aquarius Salinity Retrieval Algorithm: Final Pre-Launch Version

    NASA Technical Reports Server (NTRS)

    Wentz, Frank J.; Le Vine, David M.

    2011-01-01

    This document provides the theoretical basis for the Aquarius salinity retrieval algorithm. The inputs to the algorithm are the Aquarius antenna temperature (T(sub A)) measurements along with a number of NCEP operational products and pre-computed tables of space radiation coming from the galaxy and sun. The output is sea-surface salinity and many intermediate variables required for the salinity calculation. This revision of the Algorithm Theoretical Basis Document (ATBD) is intended to be the final pre-launch version.

  14. Plasma osmolality and oxygen consumption of perch Perca fluviatilis in response to different salinities and temperatures.

    PubMed

    Christensen, E A F; Svendsen, M B S; Steffensen, J F

    2017-03-01

    The present study determined the blood plasma osmolality and oxygen consumption of the perch Perca fluviatilis at different salinities (0, 10 and 15) and temperatures (5, 10 and 20° C). Blood plasma osmolality increased with salinity at all temperatures. Standard metabolic rate (SMR) increased with salinity at 10 and 20° C. Maximum metabolic rate (MMR) and aerobic scope was lowest at salinity of 15 at 5° C, yet at 20° C, they were lowest at a salinity of 0. A cost of osmoregulation (SMR at a salinity of 0 and 15 compared with SMR at a salinity of 10) could only be detected at a salinity of 15 at 20° C, where it was 28%. The results show that P. fluviatilis have capacity to osmoregulate in hyper-osmotic environments. This contradicts previous studies and indicates intraspecific variability in osmoregulatory capabilities among P. fluviatilis populations or habitat origins. An apparent cost of osmoregulation (28%) at a salinity of 15 at 20° C indicates that the cost of osmoregulation in P. fluviatilis increases with temperature under hyperosmotic conditions and a power analysis showed that the cost of osmoregulation could be lower than 12·5% under other environmental conditions. The effect of salinity on MMR is possibly due to a reduction in gill permeability, initiated to reduce osmotic stress. An interaction between salinity and temperature on aerobic scope shows that high salinity habitats are energetically beneficial during warm periods (summer), whereas low salinity habitats are energetically beneficial during cold periods (winter). It is suggested, therefore, that the seasonal migrations of P. fluviatilis between brackish and fresh water is to select an environment that is optimal for metabolism and aerobic scope. © 2016 The Fisheries Society of the British Isles.

  15. [Spatial differentiation and impact factors of Yutian Oasis's soil surface salt based on GWR model].

    PubMed

    Yuan, Yu Yun; Wahap, Halik; Guan, Jing Yun; Lu, Long Hui; Zhang, Qin Qin

    2016-10-01

    In this paper, topsoil salinity data gathered from 24 sampling sites in the Yutian Oasis were used, nine different kinds of environmental variables closely related to soil salinity were selec-ted as influencing factors, then, the spatial distribution characteristics of topsoil salinity and spatial heterogeneity of influencing factors were analyzed by combining the spatial autocorrelation with traditional regression analysis and geographically weighted regression model. Results showed that the topsoil salinity in Yutian Oasis was not of random distribution but had strong spatial dependence, and the spatial autocorrelation index for topsoil salinity was 0.479. Groundwater salinity, groundwater depth, elevation and temperature were the main factors influencing topsoil salt accumulation in arid land oases and they were spatially heterogeneous. The nine selected environmental variables except soil pH had significant influences on topsoil salinity with spatial disparity. GWR model was superior to the OLS model on interpretation and estimation of spatial non-stationary data, also had a remarkable advantage in visualization of modeling parameters.

  16. Deep Bering Sea Circulation and Variability, 2001-2016, From Argo Data

    NASA Astrophysics Data System (ADS)

    Johnson, Gregory C.; Stabeno, Phyllis J.

    2017-12-01

    The mean structure, seasonal cycle, and interannual variability of temperature and salinity are analyzed in the deep Bering Sea basin using Argo profile data collected from 2001 to 2016. Gyre transports are estimated using geostrophic stream function maps of Argo profile data referenced to a 1,000 dbar nondivergent absolute velocity stream function mapped from Argo parking pressure displacement data. Relatively warm and salty water from the North Pacific enters the basin through the Near Strait and passages between Aleutian Islands to the east. This water then flows in a cyclonic (counterclockwise) direction around the region, cooling (and freshening) along its path. Aleutian North Slope Current transports from 0 to 1,890 dbar are estimated at 3-6 Sverdrups (1 Sv = 106 m3 s-1) eastward, feeding into the northwestward Bering Slope Current with transports of mostly 5-6 Sv. The Kamchatka Current has transports of ˜6 Sv north of Shirshov Ridge, increasing to 14-16 Sv south of the ridge, where it is augmented by westward flow from Near Strait. Temperature exhibits strong interannual variations in the upper ocean, with warm periods in 2004-2005 and 2015-2016, and cold periods around 2009 and 2012. In contrast, upper ocean salinity generally decreases from 2001 to 2016. As a result of this salinity decrease, the density of the subsurface temperature minimum decreased over this time period, despite more interannual variability in the minimum temperature value. The subsurface temperature maximum also exhibits interannual variability, but with values generally warmer than those previously reported for the 1970s and 1980s.

  17. Global Variability and Changes in Ocean Total Alkalinity from Aquarius Satellite

    NASA Astrophysics Data System (ADS)

    Fine, R. A.; Willey, D. A.; Millero, F. J., Jr.

    2016-02-01

    To document effects of ocean acidification it is important to have an understanding of the processes and parameters that influence alkalinity. Alkalinity is a gauge on the ability of seawater to neutralize acids. We use Aquarius satellite data, which allow unprecedented global mapping of surface total alkalinity as it correlates strongly with salinity and to a lesser extent with temperature. Spatial variability in total alkalinity and salinity exceed temporal variability, the latter includes seasonal and differences compared to climatological data. The northern hemisphere has more spatial and monthly variability in total alkalinity and salinity, while less variability in Southern Ocean alkalinity is due to less salinity variability and upwelling of waters enriched in alkalinity. Satellite alkalinity data are providing a global baseline that can be used for comparing with future carbon data, and for evaluating spatial and temporal variability and past trends. For the first time it is shown that recent satellite derived total alkalinity in the subtropics have increased as compared with climatological data; this is reflective of large scale changes in the global water cycle. Total alkalinity increases imply increased dissolution of calcareous minerals and difficulty for calcifying organisms to make their shells.

  18. Responses of trophic structure and zooplankton community to salinity and temperature in Tibetan lakes: Implication for the effect of climate warming.

    PubMed

    Lin, Qiuqi; Xu, Lei; Hou, Juzhi; Liu, Zhengwen; Jeppesen, Erik; Han, Bo-Ping

    2017-11-01

    Warming has pronounced effects on lake ecosystems, either directly by increased temperatures or indirectly by a change in salinity. We investigated the current status of zooplankton communities and trophic structure in 45 Tibetan lakes along a 2300 m altitude and a 76 g/l salinity gradient. Freshwater to hyposaline lakes mainly had three trophic levels: phytoplankton, small zooplankton and fish/Gammarus, while mesosaline to hypersaline lakes only had two: phytoplankton and large zooplankton. Zooplankton species richness declined significantly with salinity, but did not relate with temperature. Furthermore, the decline in species richness with salinity in lakes with two trophic levels was much less abrupt than in lakes with three trophic levels. The structural variation of the zooplankton community depended on the length of the food chain, and was significantly explained by salinity as the critical environmental variable. The zooplankton community shifted from dominance of copepods and small cladoceran species in the lakes with low salinity and three trophic levels to large saline filter-feeding phyllopod species in those lakes with high salinity and two trophic levels. The zooplankton to phytoplankton biomass ratio was positively related with temperature in two-trophic-level systems and vice versa in three-trophic-level systems. As the Tibetan Plateau is warming about three times faster than the global average, our results imply that warming could have a considerable impact on the structure and function of Tibetan lake ecosystems, either via indirect effects of salinization/desalinization on species richness, composition and trophic structure or through direct effects of water temperature on trophic interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Differential modulation of eastern oyster ( Crassostrea virginica) disease parasites by the El-Niño-Southern Oscillation and the North Atlantic Oscillation

    NASA Astrophysics Data System (ADS)

    Soniat, Thomas M.; Hofmann, Eileen E.; Klinck, John M.; Powell, Eric N.

    2009-02-01

    The eastern oyster ( Crassostrea virginica) is affected by two protozoan parasites, Perkinsus marinus which causes Dermo disease and Haplosporidium nelsoni which causes MSX (Multinucleated Sphere Unknown) disease. Both diseases are largely controlled by water temperature and salinity and thus are potentially sensitive to climate variations resulting from the El Niño-Southern Oscillation (ENSO), which influences climate along the Gulf of Mexico coast, and the North Atlantic Oscillation (NAO), which influences climate along the Atlantic coast of the United States. In this study, a 10-year time series of temperature and salinity and P. marinus infection intensity for a site in Louisiana on the Gulf of Mexico coast and a 52-year time series of air temperature and freshwater inflow and oyster mortality from Delaware Bay on the Atlantic coast of the United States were analyzed to determine patterns in disease and disease-induced mortality in C. virginica populations that resulted from ENSO and NAO climate variations. Wavelet analysis was used to decompose the environmental, disease infection intensity and oyster mortality time series into a time-frequency space to determine the dominant modes of variability and the time variability of the modes. For the Louisiana site, salinity and Dermo disease infection intensity are correlated at a periodicity of 4 years, which corresponds to ENSO. The influence of ENSO on Dermo disease along the Gulf of Mexico is through its effect on salinity, with high salinity, which occurs during the La Niña phase of ENSO at this location, favoring parasite proliferation. For the Delaware Bay site, the primary correlation was between temperature and oyster mortality, with a periodicity of 8 years, which corresponds to the NAO. Warmer temperatures, which occur during the positive phase of the NAO, favor the parasites causing increased oyster mortality. Thus, disease prevalence and intensity in C. virginica populations along the Gulf of Mexico coast is primarily regulated by salinity, whereas temperature regulates the disease process along the United States east coast. These results show that the response of an organism to climate variability in a region is not indicative of the response that will occur over the entire range of a particular species. This has important implications for management of marine resources, especially those that are commercially harvested.

  20. Gulf Stream Temperature, Salinity and Transport During the Last Millennium

    DTIC Science & Technology

    2006-02-01

    their relationship to 9 one another and to proxies of solar variability. Chapter 3 addresses the temperature and salinity components of the...Florida Current 618Oc varied coherently with proxies of atmospheric radiocarbon at low frequencies over 10 the last 5,000 years, suggesting a link...cooling that began around 1000 A.D. models and proxies used. This two-stage character of the LIA is not apparent in the Florida margin cores. 6.4

  1. Climatology and seasonality of upper ocean salinity: a three-dimensional view from argo floats

    NASA Astrophysics Data System (ADS)

    Chen, Ge; Peng, Lin; Ma, Chunyong

    2018-03-01

    Primarily due to the constraints of observation technologies (both field and satellite measurements), our understanding of ocean salinity is much less mature compared to ocean temperature. As a result, the characterizations of the two most important properties of the ocean are unfortunately out of step: the former is one generation behind the latter in terms of data availability and applicability. This situation has been substantially changed with the advent of the Argo floats which measure the two variables simultaneously on a global scale since early this century. The first decade of Argo-acquired salinity data are analyzed here in the context of climatology and seasonality, yielding the following main findings for the global upper oceans. First, the six well-defined "salty pools" observed around ±20° in each hemisphere of the Pacific, Atlantic and Indian Oceans are found to tilt westward vertically from the sea surface to about 600 m depth, forming six saline cores within the subsurface oceans. Second, while potential temperature climatology decreases monotonically to the bottom in most places of the ocean, the vertical distribution of salinity can be classified into two categories: A double-halocline type forming immediately above and below the local salinity maximum around 100-150 m depths in the tropical and subtropical oceans, and a single halocline type existing at about 100 m depth in the extratropical oceans. Third, in contrast to the midlatitude dominance for temperature, seasonal variability of salinity in the oceanic mixed layer has a clear tropical dominance. Meanwhile, it is found that a two-mode structure with annual and semiannual periodicities can effectively penetrate through the upper ocean into a depth of 2000 m. Fourth, signature of Rossby waves is identified in the annual phase map of ocean salinity within 200-600 m depths in the tropical oceans, revealing a strongly co-varying nature of ocean temperature and salinity at specific depths. These results serve as significant contributions to improving our knowledge on the haline aspect of the ocean climate.

  2. The vertical dependence in the horizontal variability of salinity and temperature at the ocean surface

    NASA Astrophysics Data System (ADS)

    Asher, W.; Drushka, K.; Jessup, A. T.; Clark, D.

    2016-02-01

    Satellite-mounted microwave radiometers measure sea surface salinity (SSS) as an area-averaged quantity in the top centimeter of the ocean over the footprint of the instrument. If the horizontal variability in SSS is large inside this footprint, sub-grid-scale variability in SSS can affect comparison of the satellite-retrieved SSS with in situ measurements. Understanding the magnitude of horizontal variability in SSS over spatial scales that are relevant to the satellite measurements is therefore important. Horizontal variability of SSS at the ocean surface can be studied in situ using data recorded by thermosalinographs (TSGs) that sample water from a depth of a few meters. However, it is possible measurements made at this depth might underestimate the horizontal variability at the surface because salinity and temperature can become vertically stratified in a very near surface layer due to the effects of rain, solar heating, and evaporation. This vertical stratification could prevent horizontal gradients from propagating to the sampling depths of ship-mounted TSGs. This presentation will discuss measurements made using an underway salinity profiling system installed on the R/V Thomas Thompson that made continuous measurements of SSS and SST in the Pacific Ocean. The system samples at nominal depths of 2-m, 3-m, and 5-m, allowing the depth dependence of the horizontal variability in SSS and SST to be measured. Horizontal variability in SST is largest at low wind speeds during daytime, when a diurnal warm layer forms. In contrast, the diurnal signal in the variability of SSS was smaller with variability being slightly larger at night. When studied as a function of depth, the results show that over 100-km scales, the horizontal variability in both SSS and SST at a depth of 2 m is approximately a factor of 4 higher than the variability at 5 m.

  3. The Atlantic Multidecadal Variability in surface and deep ocean temperature and salinity fields from unperturbed climate simulations

    NASA Astrophysics Data System (ADS)

    Zanchettin, D.; Jungclaus, J. H.

    2013-12-01

    Large multidecadal fluctuations in basin-average sea-surface temperature (SST) are a known feature of observed, reconstructed and simulated variability in the North Atlantic Ocean. This phenomenon is often referred to as Multidecadal Atlantic Variability or AMV. Historical AMV fluctuations are associated with analog basin-scale changes in sea-surface salinity, so that warming corresponds to salinification and cooling to freshening [Polyakov et al., 2005]. The surface imprint of the AMV further corresponds to same-sign fluctuations in the shallow ocean and with opposite-sign fluctuations in the deep ocean for both temperature and salinity [Polyakov et al., 2005]. This out-of-phase behavior reflects the thermohaline overturning circulation shaping North Atlantic's low-frequency variability. Several processes contribute to the AMV, involving both ocean-atmosphere coupled processes and deep ocean circulation [e.g., Grossmann and Klotzbach, 2009]. In particular, recirculation in the North Atlantic subpolar gyre region of salinity anomalies from Arctic freshwater export may trigger multidecadal variability in the Atlantic meridional overturning circulation, and therefore may be part of the AMV [Jungclaus et al., 2005; Dima and Lohmann, 2007]. With this contribution, we aim to improve the physical interpretation of the AMV by investigating spatial and temporal patterns of temperature and salinity fields in the shallow and deep ocean. We focus on two unperturbed millennial-scale simulations performed with the Max Planck Institute Earth system model in its paleo (MPI-ESM-P) and low-resolution (MPI-ESM-LR) configurations, which provide reference control climates for assessments of pre-industrial and historical climate simulations. The two model configurations only differ for the presence, in MPI-ESM-LR, of an active module for dynamical vegetation. We use spatial-average indices and empirical orthogonal functions/principal components to track the horizontal and vertical propagation of temperature and salinity anomalies related to the AMV. In particular, we discuss the potential predictability of multidecadal fluctuations in North Atlantic SSTs based on indices derived from the sea-surface salinity field. We show how the two simulations provide AMV realizations with some distinguishable characteristics, e.g., the typical fluctuations' frequencies and the linkage with the North Atlantic meridional overturning and gyre circulations. We further show how information gained by investigating different definitions of the AMV [Zanchettin et al., 2013] helps designing numerical sensitivity studies for understanding the mechanism(s) behind this phenomenon, concerning both its origin and global impacts. References Dima, M., and G. Lohmann [2007], J. Clim., 20, 2706-2719, doi:10.1175/JCLI4174.1 Jungclaus, J.H., et al. [2005], J. Clim., 18, 4013- 4031, doi:10.1175/JCLI3462.1 Polyakov, I. V., et al. [2005], J. Clim., 18:4562-4581 Grossmann, I., and P. J. Klotzbach [2009], J. Geophys. Res., 114, D24107, doi:10.1029/2009JD012728 Zanchettin D., et al. [2013], Clim. Dyn., doi:10.1007/s00382-013-1669-0

  4. On the calculation of air-sea fluxes of CO2 in the presence of temperature and salinity gradients

    NASA Astrophysics Data System (ADS)

    Woolf, D. K.; Land, P. E.; Shutler, J. D.; Goddijn-Murphy, L. M.; Donlon, C. J.

    2016-02-01

    The presence of vertical temperature and salinity gradients in the upper ocean and the occurrence of variations in temperature and salinity on time scales from hours to many years complicate the calculation of the flux of carbon dioxide (CO2) across the sea surface. Temperature and salinity affect the interfacial concentration of aqueous CO2 primarily through their effect on solubility with lesser effects related to saturated vapor pressure and the relationship between fugacity and partial pressure. The effects of temperature and salinity profiles in the water column and changes in the aqueous concentration act primarily through the partitioning of the carbonate system. Climatological calculations of flux require attention to variability in the upper ocean and to the limited validity of assuming "constant chemistry" in transforming measurements to climatological values. Contrary to some recent analysis, it is shown that the effect on CO2 fluxes of a cool skin on the sea surface is large and ubiquitous. An opposing effect on calculated fluxes is related to the occurrence of warm layers near the surface; this effect can be locally large but will usually coincide with periods of low exchange. A salty skin and salinity anomalies in the upper ocean also affect CO2 flux calculations, though these haline effects are generally weaker than the thermal effects.

  5. Reconstruction from EOF analysis of SMOS salinity data in Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Parard, Gaelle; Alvera-Azcárate, Aida; Barth, Alexander; Olmedo, Estrella; Turiel, Antonio; Becker, Jean-Marie

    2017-04-01

    Sea Surface Salinity (SSS) data from the Soil Moisture and Ocean Salinity (SMOS) mission is reconstructed in the North Atlantic and the Mediterranean Sea using DINEOF (Data Interpolating Empirical Orthogonal Functions). We used the satellite data Level 2 from SMOS Barcelona Expert Centre between 2011 and 2015. DINEOF is a technique that reconstructs missing data and removes noise by retaining only an optimal set of EOFs. DINEOF analysis is used to detect and remove outliers from the SMOS SSS daily field. The gain obtained with DINEOF method and L2 SMOS data give a higher spatial and temporal resolution between 2011 and 2015, allow to study the SSS variability from daily to seasonal resolution. In order to improve the SMOS salinity data reconstruction we combine with other parameters measured from satellite such chlorophyll, sea surface temperature, precipitation and CDOM variability. After a validation of the SMOS satellite data reconstruction with in situ data (CTD, Argo float salinity measurement) in the North Atlantic and Mediterranean Sea, the main SSS processes and their variability are studied. The gain obtained with the higher spatial and temporal resolution with SMOS salinity data give assess to study the characteristics of oceanic structures in North Atlantic and Mediterranean Sea.

  6. An environmental tolerance index for ostracodes as indicators of physical and chemical factors in aquatic habitats

    USGS Publications Warehouse

    Curry, B. Brandon

    1999-01-01

    Continental ostracode occurrences reflect salinity, solute composition, temperature, flow conditions, and other environmental properties of the water they inhabit. Their occurrences also reflect the variability of many of these environmental parameters. Environmental tolerance indices (ETIs) offer a new way to express the nature of an ostracode's environment. As defined herein, ETIs range in value from zero to one, and may be calculated for continuous and binary variables. For continuous variables such as salinity, the ETI is the ratio of the range of values of salinity tolerated by an ostracode to the total range of salinity values from a representative database. In this investigation, the database of continuous variables consists of information from 341 sites located throughout the United States. Binary ETIs indicate whether an environmental variable such as flowing water affects ostracode presence or absence. The binary database consists of information from 784 sites primarily from Illinois, USA. ETIs were developed in this investigation to interpret paleohydrological changes implied by fossil ostracode successions. ETI profiles may be cast in terms of a weighted average, or on presence/absence. The profiles express ostracode tolerance of environmental parameters such as salinity or currents. Tolerance of a wide range of values is taken to indicate shallow water because shallow environments are conducive to thermal variability, short-term water residence, and the development of currents from wind-driven waves.

  7. Year-Long Monitoring of Physico-Chemical and Biological Variables Provide a Comparative Baseline of Coral Reef Functioning in the Central Red Sea

    PubMed Central

    Roik, Anna; Röthig, Till; Roder, Cornelia; Ziegler, Maren; Kremb, Stephan G.

    2016-01-01

    Coral reefs in the central Red Sea are sparsely studied and in situ data on physico-chemical and key biotic variables that provide an important comparative baseline are missing. To address this gap, we simultaneously monitored three reefs along a cross-shelf gradient for an entire year over four seasons, collecting data on currents, temperature, salinity, dissolved oxygen (DO), chlorophyll-a, turbidity, inorganic nutrients, sedimentation, bacterial communities of reef water, and bacterial and algal composition of epilithic biofilms. Summer temperature (29–33°C) and salinity (39 PSU) exceeded average global maxima for coral reefs, whereas DO concentration was low (2–4 mg L-1). While temperature and salinity differences were most pronounced between seasons, DO, chlorophyll-a, turbidity, and sedimentation varied most between reefs. Similarly, biotic communities were highly dynamic between reefs and seasons. Differences in bacterial biofilms were driven by four abundant families: Rhodobacteraceae, Flavobacteriaceae, Flammeovirgaceae, and Pseudanabaenaceae. In algal biofilms, green crusts, brown crusts, and crustose coralline algae were most abundant and accounted for most of the variability of the communities. Higher bacterial diversity of biofilms coincided with increased algal cover during spring and summer. By employing multivariate matching, we identified temperature, salinity, DO, and chlorophyll-a as the main contributing physico-chemical drivers of biotic community structures. These parameters are forecast to change most with the progression of ocean warming and increased nutrient input, which suggests an effect on the recruitment of Red Sea benthic communities as a result of climate change and anthropogenic influence. In conclusion, our study provides insight into coral reef functioning in the Red Sea and a comparative baseline to support coral reef studies in the region. PMID:27828965

  8. Year-Long Monitoring of Physico-Chemical and Biological Variables Provide a Comparative Baseline of Coral Reef Functioning in the Central Red Sea.

    PubMed

    Roik, Anna; Röthig, Till; Roder, Cornelia; Ziegler, Maren; Kremb, Stephan G; Voolstra, Christian R

    2016-01-01

    Coral reefs in the central Red Sea are sparsely studied and in situ data on physico-chemical and key biotic variables that provide an important comparative baseline are missing. To address this gap, we simultaneously monitored three reefs along a cross-shelf gradient for an entire year over four seasons, collecting data on currents, temperature, salinity, dissolved oxygen (DO), chlorophyll-a, turbidity, inorganic nutrients, sedimentation, bacterial communities of reef water, and bacterial and algal composition of epilithic biofilms. Summer temperature (29-33°C) and salinity (39 PSU) exceeded average global maxima for coral reefs, whereas DO concentration was low (2-4 mg L-1). While temperature and salinity differences were most pronounced between seasons, DO, chlorophyll-a, turbidity, and sedimentation varied most between reefs. Similarly, biotic communities were highly dynamic between reefs and seasons. Differences in bacterial biofilms were driven by four abundant families: Rhodobacteraceae, Flavobacteriaceae, Flammeovirgaceae, and Pseudanabaenaceae. In algal biofilms, green crusts, brown crusts, and crustose coralline algae were most abundant and accounted for most of the variability of the communities. Higher bacterial diversity of biofilms coincided with increased algal cover during spring and summer. By employing multivariate matching, we identified temperature, salinity, DO, and chlorophyll-a as the main contributing physico-chemical drivers of biotic community structures. These parameters are forecast to change most with the progression of ocean warming and increased nutrient input, which suggests an effect on the recruitment of Red Sea benthic communities as a result of climate change and anthropogenic influence. In conclusion, our study provides insight into coral reef functioning in the Red Sea and a comparative baseline to support coral reef studies in the region.

  9. An overview of new insights from satellite salinity missions on oceanography

    NASA Astrophysics Data System (ADS)

    Reul, Nicolas

    2015-04-01

    The Soil Moisture and Ocean Salinity (SMOS) mission, launched on 2 November 2009, is the European Space Agency's (ESA) second Earth Explorer Opportunity mission. The scientific objectives of the SMOS mission directly respond to the need for global observations of soil moisture and ocean salinity, two key variables describing the Earth's water cycle and having been identified as Essential Climate Variables (ECVs) by the Global Climate Observing System (GCOS). After five years of satellite Sea Surface Salinity (SSS) monitoring from SMOS data, we will present an overview of the scientific highlights these data have brougtht to the oceanographic communities. In particular, we shall review the impact of SMOS SSS and brightness tempeaerture data for the monitoring of: -Mesoscale variability of SSS (and density) in frontal structures, eddies, -Ocean propagative SSS signals (e.g. TIW, planetary waves), -Freshwater flux Monitoring (Evaportaion minus precipitation, river run off), -Large scale SSS anomalies related to climate fluctuations (e.g. ENSO, IOD), -Air-Sea interactions (equatorial upwellings, Tropical cyclone wakes) -Temperature-Salinity dependencies, -Sea Ice thickness, -Tropical Storm and high wind monitoring, -Ocean surface bio-geo chemistry.

  10. Dynamics of harmful dinoflagellates driven by temperature and salinity in a northeastern Mediterranean lagoon.

    PubMed

    Dhib, Amel; Frossard, Victor; Turki, Souad; Aleya, Lotfi

    2013-04-01

    To attempt to determine the effects of temperature and salinity on the dynamics of the dinoflagellate community, a monthly sampling was carried out from October 2008 to March 2009 at eight sampling stations in Ghar El Melh Lagoon (GML; Mediterranean Sea, Northern Tunisia). Dinoflagellates were dominant among plankton, accounting for 73.9 % of the lagoon's overall plankton community, and were comprised of 25 different species among which 17 were reported in the literature as harmful. While no significant difference was found in the distribution of dinoflagellates among the stations, a strong monthly difference was observed. This temporal variability was due to an increase in the abundance of Prorocentrum micans from December to February, leading to a strong decrease in the Shannon diversity index from station to station. At the onset of P. micans development, dinoflagellate abundances reached 1.26.10(5) cells l(-1). A redundance analysis indicates that both temperature and salinity have a significant effect on the dynamics of the dinoflagellate community. Using a generalized additive model, both temperature and salinity appear to have significant nonlinear relationships with P. micans abundances. Model predictions indicate that outbreaks of P. micans may occur at a temperature below 22.5 °C and with salinity above 32.5. We discuss our results against a backdrop of climate change which, by affecting temperature and salinity, is likely to have an antagonistic impact on P. micans development and subsequently on the dinoflagellate dynamics in GML.

  11. Spatially-Resolved Influence of Temperature and Salinity on Stock and Recruitment Variability of Commercially Important Fishes in the North Sea

    PubMed Central

    Akimova, Anna; Núñez-Riboni, Ismael; Kempf, Alexander; Taylor, Marc H.

    2016-01-01

    Understanding of the processes affecting recruitment of commercially important fish species is one of the major challenges in fisheries science. Towards this aim, we investigated the relation between North Sea hydrography (temperature and salinity) and fish stock variables (recruitment, spawning stock biomass and pre-recruitment survival index) for 9 commercially important fishes using spatially-resolved cross-correlation analysis. We used high-resolution (0.2° × 0.2°) hydrographic data fields matching the maximal temporal extent of the fish population assessments (1948–2013). Our approach allowed for the identification of regions in the North Sea where environmental variables seem to be more influential on the fish stocks, as well as the regions of a lesser or nil influence. Our results confirmed previously demonstrated negative correlations between temperature and recruitment of cod and plaice and identified regions of the strongest correlations (German Bight for plaice and north-western North Sea for cod). We also revealed a positive correlation between herring spawning stock biomass and temperature in the Orkney-Shetland area, as well as a negative correlation between sole pre-recruitment survival index and temperature in the German Bight. A strong positive correlation between sprat stock variables and salinity in the central North Sea was also found. To our knowledge the results concerning correlations between North Sea hydrography and stocks’ dynamics of herring, sole and sprat are novel. The new information about spatial distribution of the correlation provides an additional help to identify mechanisms underlying these correlations. As an illustration of the utility of these results for fishery management, an example is provided that incorporates the identified environmental covariates in stock-recruitment models. PMID:27584155

  12. Environmental and Hydroclimatic Sensitivities of Greenhouse Gas (GHG) Fluxes from Coastal Wetlands

    NASA Astrophysics Data System (ADS)

    Abdul-Aziz, O. I.; Ishtiaq, K. S.

    2016-12-01

    We computed the reference environmental and hydroclimatic sensitivities of the greenhouse gas (GHG) fluxes (CO2 and CH4) from coastal salt marshes. Non-linear partial least squares regression models of CO2 (net uptake) and CH4 (net emissions) fluxes were developed with a bootstrap resampling approach using the photosynthetically active radiation (PAR), air and soil temperatures, water height, soil moisture, porewater salinity, and pH as predictors. Analytical sensitivity coefficients of different predictors were then analytically derived from the estimated models. The numerical sensitivities of the dominant drivers were determined by perturbing the variables individually and simultaneously to compute their individual and combined (respectively) effects on the GHG fluxes. Four tidal wetlands of Waquoit Bay, MA — incorporating a gradient in land-use, salinity and hydrology — were considered as the case study sites. The wetlands were dominated by native Spartina Alterniflora, and characterized by high salinity and frequent flooding. Results indicated a high sensitivity of CO2 fluxes to temperature and PAR, a moderate sensitivity to soil salinity and water height, and a weak sensitivity to pH and soil moisture. In contrast, the CH4 fluxes were more sensitive to temperature and salinity, compared to that of PAR, pH, and hydrologic variables. The estimated sensitivities and mechanistic insights can aid the management of coastal carbon under a changing climate and environment. The sensitivity coefficients also indicated the most dominant drivers of GHG fluxes for the development of a parsimonious predictive model.

  13. A multilevel trait-based approach to the ecological performance of Microcystis aeruginosa complex from headwaters to the ocean.

    PubMed

    Kruk, Carla; Segura, Angel M; Nogueira, Lucía; Alcántara, Ignacio; Calliari, Danilo; Martínez de la Escalera, Gabriela; Carballo, Carmela; Cabrera, Carolina; Sarthou, Florencia; Scavone, Paola; Piccini, Claudia

    2017-12-01

    The Microcystis aeruginosa complex (MAC) clusters cosmopolitan and conspicuous harmful bloom-forming cyanobacteria able to produce cyanotoxins. It is hypothesized that low temperatures and brackish salinities are the main barriers to MAC proliferation. Here, patterns at multiple levels of organization irrespective of taxonomic identity (i.e. a trait-based approach) were analyzed. MAC responses from the intracellular (e.g. respiratory activity) to the ecosystem level (e.g. blooms) were evaluated in wide environmental gradients. Experimental results on buoyancy and respiratory activity in response to increased salinity (0-35) and a literature review of maximum growth rates under different temperatures and salinities were combined with field sampling from headwaters (800km upstream) to the marine end of the Rio de la Plata estuary (Uruguay-South America). Salinity and temperature were the major variables affecting MAC responses. Experimentally, freshwater MAC cells remained active for 24h in brackish waters (salinity=15) while colonies increased their flotation velocity. At the population level, maximum growth rate decreased with salinity and presented a unimodal exponential response with temperature, showing an optimum at 27.5°C and a rapid decrease thereafter. At the community and ecosystem levels, MAC occurred from fresh to marine waters (salinity 30) with a sustained relative increase of large mucilaginous colonies biovolume with respect to individual cells. Similarly, total biomass and, specific and morphological richness decreased with salinity while blooms were only detected in freshwater both at high (33°C) and low (11°C) temperatures. In brackish waters, large mucilaginous colonies presented advantages under osmotic restrictive conditions. These traits values have also been associated with higher toxicity potential. This suggest salinity or low temperatures would not represent effective barriers for the survival and transport of potentially toxic MAC under likely near future scenarios of increasing human impacts (i.e. eutrophication, dam construction and climate change). Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Integrating the effects of salinity on the physiology of the eastern oyster, Crassostrea virginica, in the northern Gulf of Mexico through a Dynamic Energy Budget model

    USGS Publications Warehouse

    Lavaud, Romain; LaPeyre, Megan K.; Casas, Sandra M.; Bacher, C.; La Peyre, Jerome F.

    2017-01-01

    We present a Dynamic Energy Budget (DEB) model for the eastern oyster, Crassostrea virginica, which enables the inclusion of salinity as a third environmental variable, on top of the standard foodr and temperature variables. Salinity changes have various effects on the physiology of oysters, potentially altering filtration and respiration rates, and ultimately impacting growth, reproduction and mortality. We tested different hypotheses as to how to include these effects in a DEB model for C. virginica. Specifically, we tested two potential mechanisms to explain changes in oyster shell growth (cm), tissue dry weight (g) and gonad dry weight (g) when salinity moves away from the ideal range: 1) a negative effect on filtration rate and 2) an additional somatic maintenance cost. Comparative simulations of shell growth, dry tissue biomass and dry gonad weight in two monitored sites in coastal Louisiana experiencing salinity from 0 to 28 were statistically analyzed to determine the best hypothesis. Model parameters were estimated through the covariation method, using literature data and a set of specifically designed ecophysiological experiments. The model was validated through independent field studies in estuaries along the northern Gulf of Mexico. Our results suggest that salinity impacts C. virginica’s energy budget predominantly through effects on filtration rate. With an overwhelming number of environmental factors impacting organisms, and increasing exposure to novel and extreme conditions, the mechanistic nature of the DEB model with its ability to incorporate more than the standard food and temperature variables provides a powerful tool to verify hypotheses and predict individual organism performance across a range of conditions.

  15. Ontogenetic optimal temperature and salinity envelops of the copepod Eurytemora affinis in the Seine estuary (France)

    NASA Astrophysics Data System (ADS)

    Dur, Gaël; Souissi, Sami

    2018-01-01

    Temperature and salinity are important factors shaping the habitats of estuarine ectotherms. Their respective effect varies along the life history moments of species with a complex life cycle. Estuarine species, particularly those living in the salinity gradient, are concerned by habitat changes that can reduce their fitness. Consequently, efforts to define the importance of those two environmental variables on developmental stages are required to enable forecasting estuarine species' future distributions. The present study focuses on the main component of the Seine estuary's zooplankton, i.e. the calanoid copepod Eurytemora affinis, and aims: (i) to establish the role of temperature and salinity in designing the habitat of E. affinis within the Seine estuary; and (ii) to model the habitat of three groups of E. affinis defined through the life cycle as follows: all larval instars (N1-N6), the first to fourth juvenile instars (C1-C4), and the pre-adult and adults instars (C5-Adults). For this purpose, data from intensive field studies of zooplankton sampling during 2002-2010 were used. The fine-scale data, i.e., every 10-20 min, on density and abiotic conditions (salinity, temperature) provided inputs for the computation. We established regions in salinity-temperature space where the three groups of developmental instars exhibit higher densities. The computed habitats differ between developmental groups. In general, the preferendum of salinity increases with ontogeny. The optima of temperature are rather constant between developmental stages (∼14 °C). Our model can be used to determine E. affinis functional habitat (i.e., the spatial relation with structuring factors), to carry out retrospective analysis, and to test future distributions. The present study also emphasizes the need of data from appropriate sampling strategies to conduct habitat definition.

  16. Multivariate Error Covariance Estimates by Monte-Carlo Simulation for Assimilation Studies in the Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Borovikov, Anna; Rienecker, Michele M.; Keppenne, Christian; Johnson, Gregory C.

    2004-01-01

    One of the most difficult aspects of ocean state estimation is the prescription of the model forecast error covariances. The paucity of ocean observations limits our ability to estimate the covariance structures from model-observation differences. In most practical applications, simple covariances are usually prescribed. Rarely are cross-covariances between different model variables used. Here a comparison is made between a univariate Optimal Interpolation (UOI) scheme and a multivariate OI algorithm (MvOI) in the assimilation of ocean temperature. In the UOI case only temperature is updated using a Gaussian covariance function and in the MvOI salinity, zonal and meridional velocities as well as temperature, are updated using an empirically estimated multivariate covariance matrix. Earlier studies have shown that a univariate OI has a detrimental effect on the salinity and velocity fields of the model. Apparently, in a sequential framework it is important to analyze temperature and salinity together. For the MvOI an estimation of the model error statistics is made by Monte-Carlo techniques from an ensemble of model integrations. An important advantage of using an ensemble of ocean states is that it provides a natural way to estimate cross-covariances between the fields of different physical variables constituting the model state vector, at the same time incorporating the model's dynamical and thermodynamical constraints as well as the effects of physical boundaries. Only temperature observations from the Tropical Atmosphere-Ocean array have been assimilated in this study. In order to investigate the efficacy of the multivariate scheme two data assimilation experiments are validated with a large independent set of recently published subsurface observations of salinity, zonal velocity and temperature. For reference, a third control run with no data assimilation is used to check how the data assimilation affects systematic model errors. While the performance of the UOI and MvOI is similar with respect to the temperature field, the salinity and velocity fields are greatly improved when multivariate correction is used, as evident from the analyses of the rms differences of these fields and independent observations. The MvOI assimilation is found to improve upon the control run in generating the water masses with properties close to the observed, while the UOI failed to maintain the temperature and salinity structure.

  17. Temperature and salinity variability in the exit passages of the Indonesian Throughflow

    NASA Astrophysics Data System (ADS)

    Sprintall, Janet; Potemra, James T.; Hautala, Susan L.; Bray, Nancy A.; Pandoe, Wahyu W.

    2003-07-01

    The Indonesian Throughflow was monitored from December 1995 until May 1999 in the five major exit passages of the Lesser Sunda Islands, as it flows from the Indonesian interior seas into the southeast Indian Ocean. The monitoring array included pairs of shallow pressure gauges at each side of the straits, equipped with temperature and salinity sensors. As in the inferred geostrophic velocity from the cross-strait pressure gauge data, the temperature and salinity data show strong variability over all time scales related to the local regional and remote forcing mechanisms of heat, freshwater and wind. The annual cycle dominates the temperature time series, with warmest temperatures occurring during the austral summer northwest monsoon, except in Lombok Strait where the semi-annual signal is dominant, and related to the Indian Ocean westerly wind-forced Kelvin waves during the monsoon transitions that supply Indian Ocean warmer surface water to the strait. In the salinity data, the annual signal again dominates the time series in all straits, with a distinct freshening occurring in March-May. This is partly related to the rainfall and resultant voluminous river runoff impacting the region, one month after the wetter northwest monsoon ends in March. The fresh, warm water from the monsoon-transition Indian Ocean Kelvin wave also contributes to the freshening observed in May. There is little cross-strait gradient in near-surface temperature and salinity through the outflow straits, except in Lombok Strait, where Lombok is warmer (except during the northwest monsoon) and fresher than the Bali site (especially during March through May). A fortnightly signal in temperature is found in Ombai and Sumba Straits, and is probably related to the proximity of these straits to the interior Banda Sea where the fortnightly tidal signal is strong. The fortnightly signal is also evident at the Bali site, although not at the Lombok site. Numerous ADCP surveys taken during the survey period suggest a western intensification of the flow through Lombok Strait, such that the Bali site also may be more influenced by the internal Indonesian seas. Finally, there is regional variability in temperature and salinity on interannual time scales. From mid-1997 through early 1998, the region is cooler and saltier than normal. These property changes are related to both the strong 1997-1998 El Niño event in the Pacific, and the strong 1997 Dipole Mode in the Indian Ocean, which together can result in lower regional precipitation; lower transport of the fresh, warm Throughflow water; and changes in the upwelling regime along the Lesser Sunda Island chain. From mid-1998 on, warmer conditions returned to the region probably related to the La Niña event.

  18. Analysis of the spatio-temporal variability of seawater quality in the southeastern Arabian Gulf.

    PubMed

    Mezhoud, Nahla; Temimi, Marouane; Zhao, Jun; Al Shehhi, Maryam Rashed; Ghedira, Hosni

    2016-05-15

    In this study, seawater quality measurements, including salinity, sea surface temperature (SST), chlorophyll-a (Chl-a), Secchi disk depth (SDD), pH, and dissolved oxygen (DO), were made from June 2013 to November 2014 at 52 stations in the southeastern Arabian Gulf. Significant variability was noticed for all collected parameters. Salinity showed a decreasing trend, and Chl-a, DO, pH, and SDD demonstrated increasing trends from shallow onshore stations to deep offshore ones, which could be attributed to variations of ocean circulation and meteorological conditions from onshore to offshore waters, and the likely effects of desalination plants along the coast. Salinity and temperature were high in summer and low in winter while Chl-a, SDD, pH, and DO indicated an opposite trend. The CTD profiles showed vertically well-mixed structures. Qualitative analysis of phytoplankton showed a high diversity of species without anomalous species found except in Ras Al Khaimah stations where diatoms were the dominating ones. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Salinity controls on Na incorporation in Red Sea planktonic foraminifera

    NASA Astrophysics Data System (ADS)

    Mezger, E. M.; de Nooijer, L. J.; Boer, W.; Brummer, G. J. A.; Reichart, G. J.

    2016-12-01

    Whereas several well-established proxies are available for reconstructing past temperatures, salinity remains challenging to assess. Reconstructions based on the combination of (in)organic temperature proxies and foraminiferal stable oxygen isotopes result in relatively large uncertainties, which may be reduced by application of a direct salinity proxy. Cultured benthic and planktonic foraminifera showed that Na incorporation in foraminiferal shell calcite provides a potential independent proxy for salinity. Here we present the first field calibration of such a potential proxy. Living planktonic foraminiferal specimens from the Red Sea surface waters were collected and analyzed for their Na/Ca content using laser ablation quadrupole inductively coupled plasma mass spectrometry. Using the Red Sea as a natural laboratory, the calibration covers a broad range of salinities over a steep gradient within the same water mass. For both Globigerinoides ruber and Globigerinoides sacculifer calcite Na/Ca increases with salinity, albeit with a relatively large intraspecimen and interspecimen variability. The field-based calibration is similar for both species from a salinity of 36.8 up to 39.6, while values for G. sacculifer deviate from this trend in the northernmost transect. It is hypothesized that the foraminifera in the northernmost part of the Red Sea are (partly) expatriated and hence should be excluded from the Na/Ca-salinity calibration. Incorporation of Na in foraminiferal calcite therefore provides a potential proxy for salinity, although species-specific calibrations are still required and more research on the effect of temperature is needed.

  20. Interpretation of time series (salinity and temperature) layers in North Atlantic from 1950 to 2011

    NASA Astrophysics Data System (ADS)

    Rubchenia, A.; Popov, A.; Fedorova, A.; Lebedev, N.

    2012-04-01

    On the basis of long period data series (1950-2011) form various sources (National Oceanographic Data Center (NOAD) (www.nodc.noaa.gov), WOD09 database and data from ARGO project) 10 boxes in North Atlantic were selected. Location of boxes was determined by circulation pattern in North Atlantic and Euro-Arctic Seas. For further analysis two "seasons" was selected: "cold season" (October-May) and "warm season" (June-September). Data verification was made. Analysis of data series clearly show the "Great Salinity Anomaly" (so-called GSA) in 1960-70th, 1980th and 1990th. Trends of salinity and temperature data series were calculated. Spectral analysis allow us to calculate periodicity from 2 to 22 years. Boxes situated in regions with Arctic waters have singularity showed through domination of high frequency oscillation during propagation to South. In Fram Strait salinity fluctuates with periods 9..11 and 20 years, the same period was calculated using temperature data series. In Denmark Strait there are oscillations of temperature with specific period from 4 to 7 years. Range of variability vary. For salinity it is 0.4..4.6 psu, for temperature it is 0.04..5.5C. In salinity data series from boxes with surface Arctic waters noticed clear minimums connected with GSAs. Trends in Denmark Strait and Fram strait in the end of 2000th are negative at different levels. Since 1975 to 2001 salinity near the southern part of Greenland was increased, since 2001 - decreased. But temperature was raised from 0.04 in 1989 to 5.59 in 2010. Thermohaline characteristics of water masses which has Atlantic origin oscillated with period near 20 years. Salinity near Newfoundland was decreased since 2005. In Farrero-Shetland straits salinity trend is positive since at 100m level, Salinity rising from 1970th to 2006 is about 0.3 psu were noticed. Oscillations with period 2..4 years is weak. But at 800m layer salinity oscillations are different, since 1990 there is not significant oscillations at all. Temperature trend at this level is negative since 1950th. Salinity at 100-300 level at Station M area described with negative trend since 1960 to 1993, in both "seasons". Next, up to 2010 salinity is increasing, but in 2011 salinity dramatically decreased. Main oscillations have periods 2..3 years, 4..5 years and 20 years. At 800m level oscillations are very weak. Temperature is increased since 1995 in surface layer and since 2002 in deeper levels. At all levels temperature dramatically decreased after 2010. In central part of Greenland Sea ("Cupola area") dominated oscillations with period 4 years (1950-60th), 5..7 years (1970th) and 9 years (after 1979). In "cold season" oscillation with 11 years traced. Salinity trend is positive at all levels during last 10-15 years. Salinity and temperature were increased at 800m level up to 2006. It could lead to termination of deep water formation. Since 2006 temperature decreased, especially in "cold season". Salinity trend in West Spitsbergen Current is positive since 1996 at surface and sine 1978 at deeper levels. Temperature was increased since 1965 to 2006 in surface layer, but since 2006 in "warm season" temperature is decreasing at all layers. Main oscillations is 4..5 years, 6..7 years and 9..11 years.

  1. Effects of Precipitation on Ocean Mixed-Layer Temperature and Salinity as Simulated in a 2-D Coupled Ocean-Cloud Resolving Atmosphere Model

    NASA Technical Reports Server (NTRS)

    Li, Xiaofan; Sui, C.-H.; Lau, K-M.; Adamec, D.

    1999-01-01

    A two-dimensional coupled ocean-cloud resolving atmosphere model is used to investigate possible roles of convective scale ocean disturbances induced by atmospheric precipitation on ocean mixed-layer heat and salt budgets. The model couples a cloud resolving model with an embedded mixed layer-ocean circulation model. Five experiment are performed under imposed large-scale atmospheric forcing in terms of vertical velocity derived from the TOGA COARE observations during a selected seven-day period. The dominant variability of mixed-layer temperature and salinity are simulated by the coupled model with imposed large-scale forcing. The mixed-layer temperatures in the coupled experiments with 1-D and 2-D ocean models show similar variations when salinity effects are not included. When salinity effects are included, however, differences in the domain-mean mixed-layer salinity and temperature between coupled experiments with 1-D and 2-D ocean models could be as large as 0.3 PSU and 0.4 C respectively. Without fresh water effects, the nocturnal heat loss over ocean surface causes deep mixed layers and weak cooling rates so that the nocturnal mixed-layer temperatures tend to be horizontally-uniform. The fresh water flux, however, causes shallow mixed layers over convective areas while the nocturnal heat loss causes deep mixed layer over convection-free areas so that the mixed-layer temperatures have large horizontal fluctuations. Furthermore, fresh water flux exhibits larger spatial fluctuations than surface heat flux because heavy rainfall occurs over convective areas embedded in broad non-convective or clear areas, whereas diurnal signals over whole model areas yield high spatial correlation of surface heat flux. As a result, mixed-layer salinities contribute more to the density differences than do mixed-layer temperatures.

  2. Coastal 'Big Data' and nature-inspired computation: Prediction potentials, uncertainties, and knowledge derivation of neural networks for an algal metric

    NASA Astrophysics Data System (ADS)

    Millie, David F.; Weckman, Gary R.; Young, William A.; Ivey, James E.; Fries, David P.; Ardjmand, Ehsan; Fahnenstiel, Gary L.

    2013-07-01

    Coastal monitoring has become reliant upon automated sensors for data acquisition. Such a technical commitment comes with a cost; particularly, the generation of large, high-dimensional data streams ('Big Data') that personnel must search through to identify data structures. Nature-inspired computation, inclusive of artificial neural networks (ANNs), affords the unearthing of complex, recurring patterns within sizable data volumes. In 2009, select meteorological and hydrological data were acquired via autonomous instruments in Sarasota Bay, Florida (USA). ANNs estimated continuous chlorophyll (CHL) a concentrations from abiotic predictors, with correlations between measured:modeled concentrations >0.90 and model efficiencies ranging from 0.80 to 0.90. Salinity and water temperature were the principal influences for modeled CHL within the Bay; concentrations steadily increased at temperatures >28° C and were greatest at salinities <36 (maximizing at ca. 35.3). Categorical ANNs modeled CHL classes of 6.1 and 11 μg CHL L-1 (representative of local and state-imposed constraint thresholds, respectively), with an accuracy of ca. 83% and class precision ranging from 0.79 to 0.91. The occurrence likelihood of concentrations > 6.1 μg CHL L-1 maximized at a salinity of ca. 36.3 and a temperature of ca. 29.5 °C. A 10th-order Chebyshev bivariate polynomial equation was fit (adj. r2 = 0.99, p < 0.001) to a three-dimensional response surface portraying modeled CHL concentrations, conditional to the temperature-salinity interaction. The TREPAN algorithm queried a continuous ANN to extract a decision tree for delineation of CHL classes; turbidity, temperature, and salinity (and to lesser degrees, wind speed, wind/current direction, irradiance, and urea-nitrogen) were key variables for quantitative rules in tree formalisms. Taken together, computations enabled knowledge provision for and quantifiable representations of the non-linear relationships between environmental variables and CHL a.

  3. Physics in Oceanography.

    ERIC Educational Resources Information Center

    Charnock, H.

    1980-01-01

    Described is physical oceanography as analyzed by seven dependent variables, (three components of velocity, the pressure, density, temperature and salinity) as a function of three space variables and time. Topics discussed include the heat balance of the earth, current patterns in the ocean, heat transport, the air-sea interaction, and prospects…

  4. Annual growth patterns of baldcypress (Taxodium distichum) along salinity gradients

    USGS Publications Warehouse

    Thomas, Brenda L.; Doyle, Thomas W.; Krauss, Ken W.

    2015-01-01

    The effects of salinity on Taxodium distichum seedlings have been well documented, but few studies have examined mature trees in situ. We investigated the environmental drivers of T. distichum growth along a salinity gradient on the Waccamaw (South Carolina) and Savannah (Georgia) Rivers. On each river, T. distichum increment cores were collected from a healthy upstream site (Upper), a moderately degraded mid-reach site (Middle), and a highly degraded downstream site (Lower). Chronologies were successfully developed for Waccamaw Upper and Middle, and Savannah Middle. Correlations between standardized chronologies and environmental variables showed significant relationships between T. distichum growth and early growing season precipitation, temperature, and Palmer Drought Severity Index (PDSI). Savannah Middle chronology correlated most strongly with August river salinity levels. Both lower sites experienced suppression/release events likely in response to local anthropogenic impacts rather than regional environmental variables. The factors that affect T. distichum growth, including salinity, are strongly synergistic. As sea-level rise pushes the freshwater/saltwater interface inland, salinity becomes more limiting to T. distichum growth in tidal freshwater swamps; however, salinity impacts are exacerbated by locally imposed environmental modifications.

  5. The hydrography of the Mozambique Channel from six years of continuous temperature, salinity, and velocity observations

    NASA Astrophysics Data System (ADS)

    Ullgren, J. E.; van Aken, H. M.; Ridderinkhof, H.; de Ruijter, W. P. M.

    2012-11-01

    Temperature, salinity and velocity data are presented, along with the estimated volume transport, from seven full-length deep sea moorings placed across the narrowest part of the Mozambique Channel, southwest Indian Ocean, during the period November 2003 to December 2009. The dominant water mass in the upper layer is Sub-Tropical Surface Water (STSW) which overlies South Indian Central Water (SICW), and is normally capped by fresher Tropical Surface Water (TSW). Upper ocean salinity increased through 2005 as a result of saline STSW taking up a relatively larger part of the upper layer, at the expense of TSW. Upper waters are on average warmer and lighter in the central Channel than on the sides. Throughout the upper 1.5 km of the water column there is large hydrographic variability, short-term as well as interannual, and in particular at frequencies (four to seven cycles per year) associated with the southward passage of anticyclonic Mozambique Channel eddies. The eddies have a strong T-S signal, in the upper and central waters as well as on the intermediate level, as the eddies usually carry saline Red Sea Water (RSW) in their core. While the interannual frequency band displays an east-west gradient with higher temperature variance on the western side, the eddy frequency band shows highest variance in the centre of the Channel, where the eddy band contains about 40% of the total isopycnal hydrographic variability. Throughout the >6 years of measurements, the frequency and characteristics of eddies vary between periods, both in terms of strength and vertical structure of eddy T-S signals. These changes contribute to the interannual variability of water mass properties: an increase in central water salinity to a maximum in late 2007 coincided with a period of unusually frequent eddies with strong salinity signals. The warmest and most saline deep water is found within the northward flowing Mozambique Undercurrent, on the western side of the Channel. The Undercurrent has two cores: an intermediate one mainly containing diluted Antarctic Intermediate Water (AAIW), and a deep one consisting of North Atlantic Deep Water (NADW). In the intermediate core, T-S properties are strongly correlated with current velocity, probably because of the strong salinity gradient at the interface between Red Sea Water (RSW) and AAIW. In the deep core, velocity and hydrographic time series do not correlate on a daily basis, but they do at longer time scales.

  6. The Effects of In-Hospital Intravenous Cold Saline in Postcardiac Arrest Patients Treated with Targeted Temperature Management.

    PubMed

    Suppogu, Nissi; Panza, Gregory A; Kilic, Sena; Gowdar, Shreyas; Kallur, Kamala R; Jayaraman, Ramya; Lundbye, Justin; Fernandez, Antonio B

    2018-03-01

    Recent data suggest that rapid infusion of intravenous (IV) cold saline for Targeted Temperature Management (TTM) after cardiac arrest is associated with higher rates of rearrest, pulmonary edema, and hypoxia, with no difference in neurologic outcomes or survival when administered by Emergency Medical Services. We sought to determine the effects of IV cold saline administration in the hospital setting in postcardiac arrest patients to achieve TTM and its effect on clinical parameters and neurologic outcomes. A cohort of 132 patients who completed TTM after cardiac arrest in a single institution was retrospectively studied. Patients who did not receive cold saline were matched by age, gender, Glasgow coma scale, downtime, and presenting rhythm to patients who received cold saline. Demographics, cardiac rearrest, diuretic use, time to target temperature, and Cerebral Performance Category (CPC) scores were recorded among other variables. Patients who received cold saline achieved target temperature sooner (280 vs. 345 minutes, p = 0.05), had lower lactate levels on day 1 (4.2 ± 3.5 mM vs. 6.0 ± 4.9 mM, p = 0.019) and day 2 (1.3 ± 2.2 mM vs. 2.2 ± 3.2 mM, p = 0.046), increased incidence of pulmonary edema (51.5% vs. 31.8%, p = 0.006), and increased diuretic utilization (63.6% vs. 42.4%, p = 0.014). There was no significant difference in cardiac rearrest, arterial oxygenation, and CPC scores (ps > 0.05). Infusion of IV cold saline is associated with shorter time to target temperature, increased incidence of pulmonary edema, and diuretic use, with no difference in cardiac rearrest, survival, and neurologic outcomes.

  7. Influence of Environmental Variables on Gambierdiscus spp. (Dinophyceae) Growth and Distribution

    PubMed Central

    Xu, Yixiao; Richlen, Mindy L.; Liefer, Justin D.; Robertson, Alison; Kulis, David; Smith, Tyler B.; Parsons, Michael L.; Anderson, Donald M.

    2016-01-01

    Benthic dinoflagellates in the genus Gambierdiscus produce the ciguatoxin precursors responsible for the occurrence of ciguatera toxicity. The prevalence of ciguatera toxins in fish has been linked to the presence and distribution of toxin-producing species in coral reef ecosystems, which is largely determined by the presence of suitable benthic habitat and environmental conditions favorable for growth. Here using single factor experiments, we examined the effects of salinity, irradiance, and temperature on growth of 17 strains of Gambierdiscus representing eight species/phylotypes (G. belizeanus, G. caribaeus, G. carolinianus, G. carpenteri, G. pacificus, G. silvae, Gambierdiscus sp. type 4–5), most of which were established from either Marakei Island, Republic of Kiribati, or St. Thomas, United States Virgin Island (USVI). Comparable to prior studies, growth rates fell within the range of 0–0.48 divisions day-1. In the salinity and temperature studies, Gambierdiscus responded in a near Gaussian, non-linear manner typical for such studies, with optimal and suboptimal growth occurring in the range of salinities of 25 and 45 and 21.0 and 32.5°C. In the irradiance experiment, no mortality was observed; however, growth rates at 55μmol photons · m-2 · s-1 were lower than those at 110–400μmol photons · m-2 · s-1. At the extremes of the environmental conditions tested, growth rates were highly variable, evidenced by large coefficients of variability. However, significant differences in intraspecific growth rates were typically found only at optimal or near-optimal growth conditions. Polynomial regression analyses showed that maximum growth occurred at salinity and temperature levels of 30.1–38.5 and 23.8–29.2°C, respectively. Gambierdiscus growth patterns varied among species, and within individual species: G. belizeanus, G. caribaeus, G. carpenteri, and G. pacificus generally exhibited a wider range of tolerance to environmental conditions, which may explain their broad geographic distribution. In contrast, G. silvae and Gambierdiscus sp. types 4–5 all displayed a comparatively narrow range of tolerance to temperature, salinity, and irradiance. PMID:27074134

  8. A Pathway-based Approach to Predicting Interactions between Chemical and Non-chemical Stressors: Applications to Global Climate Change

    EPA Science Inventory

    A variety of environmental variables influenced by global climate change (GCC) can directly or indirectly affect the health of organisms. These variables may include temperature, salinity, pH, and penetration of ultraviolet radiation (UVR) in aquatic environments, and water shor...

  9. Marine Benthic Communities of Block Island and Rhode Island Sounds and What they're Good For

    EPA Science Inventory

    The benthic invertebrates of Block Island and Rhode Island Sounds include those adapted to near-shore habitats with variable temperature and salinity, mid-shelf species with narrower requirements, and boreal species that avoid elevated temperatures. Studies of benthic fauna in th...

  10. Parallel conductance estimation by hypertonic dilution method with conductance catheter: effects of the bolus concentration and temperature.

    PubMed

    Herrera, M C; Olivera, J M; Valentinuzzi, M E

    1999-07-01

    The conductance catheter has gained momentum since its introduction in cardiovascular dynamics back in 1980. However, measuring errors are still blurring its clinical acceptance. The main objective here was to study the effects of the injected saline concentration and temperature on the evaluation of the parallel conductance, Gp, and thus, on the correction volume Vp. That conductance, Gp, and its associated volume, Vp, were computed using 167 saline dilution curves obtained with boluses at different concentrations and temperatures, injected in seven anesthetized closed-chest dogs. The excursion of the total conductance relative to the steady-state value during a saline maneuver showed good correlation with the injected concentration at both studied temperatures. The reference parallel volume (one reference per dog) was defined as the average value obtained with three successive maneuvers, at 6-M concentration and at body temperature; therefore, the method acted as its own reference. The variation of Vp relative to the reference value was clearly dependent on the injected concentration and on its temperature; dispersion was greater at 22 degrees C than at 40 degrees C. The variability would recognize also other causes, such as uncertainty of the extrapolation procedure and the thoracic redistribution of electrical field lines. As conclusion, it is recommended to characterize each maneuver by its concentration and temperature. Body temperature and 6-M concentration appear as the most recommendable combination for the injectate in most animals. Finally, these results intend to characterize the Vp estimation procedure in order to minimize errors. The variability of Vp, in different experimental conditions, demonstrated that both concentration and temperature are additional parameters that may modify the Gp estimate.

  11. Distribution of Arctic and Pacific copepods and their habitat in the northern Bering Sea and Chukchi Sea

    NASA Astrophysics Data System (ADS)

    Sasaki, H.; Matsuno, K.; Fujiwara, A.; Onuka, M.; Yamaguchi, A.; Ueno, H.; Watanuki, Y.; Kikuchi, T.

    2015-11-01

    The advection of warm Pacific water and the reduction of sea-ice extent in the western Arctic Ocean may influence the abundance and distribution of copepods, i.e., a key component in food webs. To understand the factors affecting abundance of copepods in the northern Bering Sea and Chukchi Sea, we constructed habitat models explaining the spatial patterns of the large and small Arctic copepods and the Pacific copepods, separately, using generalized additive models. Copepods were sampled by NORPAC net. Vertical profiles of density, temperature and salinity in the seawater were measured using CTD, and concentration of chlorophyll a in seawater was measured with a fluorometer. The timing of sea-ice retreat was determined using the satellite image. To quantify the structure of water masses, the magnitude of pycnocline and averaged density, temperature and salinity in upper and bottom layers were scored along three axes using principal component analysis (PCA). The structures of water masses indexed by the scores of PCAs were selected as explanatory variables in the best models. Large Arctic copepods were abundant in the water mass with high salinity water in bottom layer or with cold/low salinity water in upper layer and cold/high salinity water in bottom layer, and small Arctic copepods were abundant in the water mass with warm/saline water in upper layer and cold/high salinity water in bottom layers, while Pacific copepods were abundant in the water mass with warm/saline in upper layer and cold/high salinity water in bottom layer. All copepod groups were abundant in areas with deeper depth. Although chlorophyll a in upper and bottom layers were selected as explanatory variables in the best models, apparent trends were not observed. All copepod groups were abundant where the sea-ice retreated at earlier timing. Our study might indicate potential positive effects of the reduction of sea-ice extent on the distribution of all groups of copepods in the Arctic Ocean.

  12. The Relationship between Phytoplankton Distribution and Water Column Characteristics in North West European Shelf Sea Waters

    PubMed Central

    Davidson, Keith; Bolch, Christopher J. S.; Brand, Tim D.; Narayanaswamy, Bhavani E.

    2012-01-01

    Phytoplankton underpin the marine food web in shelf seas, with some species having properties that are harmful to human health and coastal aquaculture. Pressures such as climate change and anthropogenic nutrient input are hypothesized to influence phytoplankton community composition and distribution. Yet the primary environmental drivers in shelf seas are poorly understood. To begin to address this in North Western European waters, the phytoplankton community composition was assessed in light of measured physical and chemical drivers during the “Ellett Line” cruise of autumn 2001 across the Scottish Continental shelf and into adjacent open Atlantic waters. Spatial variability existed in both phytoplankton and environmental conditions, with clear differences not only between on and off shelf stations but also between different on shelf locations. Temperature/salinity plots demonstrated different water masses existed in the region. In turn, principal component analysis (PCA), of the measured environmental conditions (temperature, salinity, water density and inorganic nutrient concentrations) clearly discriminated between shelf and oceanic stations on the basis of DIN∶DSi ratio that was correlated with both salinity and temperature. Discrimination between shelf stations was also related to this ratio, but also the concentration of DIN and DSi. The phytoplankton community was diatom dominated, with multidimensional scaling (MDS) demonstrating spatial variability in its composition. Redundancy analysis (RDA) was used to investigate the link between environment and the phytoplankton community. This demonstrated a significant relationship between community composition and water mass as indexed by salinity (whole community), and both salinity and DIN∶DSi (diatoms alone). Diatoms of the Pseudo-nitzschia seriata group occurred at densities potentially harmful to shellfish aquaculture, with the potential for toxicity being elevated by the likelihood of DSi limitation of growth at most stations and depths. PMID:22479533

  13. Metabolic and reproductive plasticity of core and marginal populations of the eurythermic saline water bug Sigara selecta (Hemiptera: Corixidae) in a climate change context.

    PubMed

    Carbonell, J A; Bilton, D T; Calosi, P; Millán, A; Stewart, A; Velasco, J

    2017-04-01

    Ongoing climate change is driving dramatic range shifts in diverse taxa worldwide, and species responses to global change are likely to be determined largely by population responses at geographical range margins. Here we investigate the metabolic and reproductive plasticity in response to water temperature and salinity variation of two populations of the eurythermic saline water bug Sigara selecta: one population located close to the northern edge of its distribution, in a relatively cold, thermally stable region (SE England - 'marginal'), and one close to the range centre, in a warmer and more thermally variable Mediterranean climate (SE Spain - 'core'). We compared metabolic and oviposition rates and egg size, following exposure to one of four different combinations of temperature (15 and 25°C) and salinity (10 and 35gL -1 ). Oviposition rate was significantly higher in the marginal population, although eggs laid were smaller overall. No significant differences in oxygen consumption rates were found between core and marginal populations, although the marginal population showed higher levels of plasticity in both metabolic and reproductive traits. Our results suggest that population-specific responses to environmental change are complex and may be mediated by differences in phenotypic plasticity. In S. selecta, the higher plasticity of the marginal population may facilitate both its persistence in current habitats and northward expansion with future climatic warming. The less plastic core population may be able to buffer current environmental variability with minor changes in metabolism and fecundity, but could be prone to extinction if temperature and salinity changes exceed physiological tolerance limits in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Evaluating hydrography, circulation and transport in a coastal archipelago using a high-resolution 3D hydrodynamic model

    NASA Astrophysics Data System (ADS)

    Tuomi, Laura; Miettunen, Elina; Alenius, Pekka; Myrberg, Kai

    2018-04-01

    We used a 3D hydrodynamic model, COHERENS, to simulate the temperature, salinity and currents in an extremely complicated area, the Archipelago Sea in the Baltic Sea. The high-resolution model domain with approximately 460 m resolution was nested inside a coarser resolution ( 3.7 km) grid covering the entire Baltic Sea. The verification of the model results against temperature and salinity measurements showed that the model well captured the seasonal temperature cycle in the surface layer, both in the inner and outer archipelago. In the inner archipelago, the model tended to reproduce higher temperatures in the bottom layer than were measured. The modelled vertical temperature and salinity stratifications were not as pronounced as the measured ones but did describe the overall vertical structure. There was large year-to-year variability in the annual mean surface circulation, both in direction and magnitude. In the deeper channels crossing the Archipelago Sea, there were some year-to-year differences in the magnitudes of the bottom layer currents, but there was very little difference in the directions. These differences were studied by introducing passive tracers into the model through river discharge and as point sources. The results showed that the prevailing wind conditions resulted in southward net transport from the Bothnian Sea towards the Baltic Proper. However, due to the variability in the wind conditions in some years, a significant proportion of transport can also be towards north, from the Baltic Proper to the Bothnian Sea.

  15. Spatial and temporal variability of thermohaline properties in the Bay of Koper (northern Adriatic Sea)

    NASA Astrophysics Data System (ADS)

    Soczka Mandac, Rok; Žagar, Dušan; Faganeli, Jadran

    2013-04-01

    In this study influence of fresh water discharge on the spatial and temporal variability of thermohaline (TH) conditions is explored for the Bay of Koper (Bay). The Bay is subject to different driving agents: wind stress (bora, sirocco), tidal and seiches effect, buoyancy fluxes, general circulation of the Adriatic Sea and discharge of the Rizana and Badaševica rivers. These rivers have torrential characteristics that are hard to forecast in relation to meteorological events (precipitation). Therefore, during episodic events the spatial and temporal variability of TH properties in the Bay is difficult to determine [1]. Measurements of temperature, salinity and turbidity were conducted monthly on 35 sampling points in the period: June 2011 - December 2012. The data were processed and spatial interpolated with an objective analysis method. Furthermore, empirical orthogonal function analysis (EOF) [2] was applied to investigate spatial and temporal TH variations. Strong horizontal and vertical stratification was observed in the beginning of June 2011 due to high fresh water discharge of the Rizana (31 m3/s) and Badaševica (2 m3/s) rivers. The horizontal gradient (ΔT = 6°C) was noticed near the mouth of the Rizana river. Similar pattern was identified for salinity field on the boundary of the front where the gradient was ΔS = 20 PSU. Vertical temperature gradient was ΔT = 4°C while salinity gradient was ΔS = 18 PSU in the subsurface layer at depth of 3 m. Spatial analysis of the first principal component (86% of the total variance) shows uniform temperature distribution in the surface layer (1m) during the studied period. Furthermore, temporal variability of temperature shows seasonal variation with a minimum in February and maximum in August. This confirms that episodic events have a negligible effect on spatial and temporal variation of temperature in the subsurface layer. Further analysis will include application of EOF on the salinity, density and total suspended matter. Additionally, we will investigate the cross correlations between the above mentioned parameters with singular value decomposition method. Reference: 1. Faganeli, J., Planinc, R., Pezdic, J., Smodis, B., Stegnar, P., and Ogorelec, B. 1991. Marine geology of Gulf of Trieste (northern Adriatic): Geochemical aspects. Marine Geology, 99: 93-108. 2. Glover, M., Jenkins, J., and Doney, S. C. 2011. Modeling methods for marine science. Cambridge University Press, 571 p.

  16. Environmental forcing on jellyfish communities in a small temperate estuary.

    PubMed

    Primo, Ana Lígia; Marques, Sónia C; Falcão, Joana; Crespo, Daniel; Pardal, Miguel A; Azeiteiro, Ulisses M

    2012-08-01

    The impact of biological, hydrodynamic and large scale climatic variables on the jellyfish community of Mondego estuary was evaluated from 2003 to 2010. Plankton samples were collected at the downstream part of the estuary. Siphonophora Muggiaea atlantica and Diphyes spp. were the main jellyfish species. Jellyfish density was generally higher in summer and since 2005 densities had increased. Summer community analysis pointed out Acartia clausi, estuarine temperature and salinity as the main driven forces for the assemblage's structure. Also, Chl a, estuarine salinity, runoff and SST were identified as the major environmental factors influencing the siphonophores summer interannual variability. Temperature influenced directly and indirectly the community and fluctuation of jellyfish blooms in the Mondego estuary. This study represents a contribution to a better knowledge of the gelatinous plankton communities in small temperate estuaries. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Tropical Pacific sea surface salinity variability derived from SMOS data: Comparison with in-situ observations.

    NASA Astrophysics Data System (ADS)

    Ballabrera, Joaquim; Hoareau, Nina; Umbert, Marta; Martínez, Justino; Turiel, Antonio

    2013-04-01

    Prediction of El Niño/Southern Oscillation (ENSO), and its relation with global climate anomalies, continues to be an important research effort in short-term climate forecasting. This task has become even more challenging as researchers are becoming more and more convinced that there is not a single archetypical El Niño (or La Niña) pattern, but several. During some events (called now Standard or East Pacific), the largest temperature anomalies are located at the eastern part of the Pacific. However, during some of the most recent events, the largest anomalies are restricted to the central part of the Pacific Ocean, and are now called Central Pacific or Modoki (a Japanese word for "almost") events. Although the role of salinity in operational ENSO forecasting was initially neglected (in contrast with temperature, sea level, or surface winds), recent studies have shown that salinity does play a role in the preconditioning of ENSO. Moreover, some researchers suggest that sea surface salinity might play a role (through the modulation of the western Pacific barrier layer) to favor the Standard or the Modoki nature of each event. Sea Surface Salinity maps are being operationally generated from microwave (L-band, 1.4 Ghz) brightness temperature maps. The L-band frequency was chosen because is the optimal one for ocean salinity measurements. However, after three years of satellite data, it has been found that noise in brightness temperatures (due to natural and artificial sources) is larger than expected. Moreover, the retrieval of SSS information requires special care because of the low sensitivity of the brightness temperature to SSS: from 0.2-0.8 K per salinity unit. Despite of all these facts, current accuracy of SS maps ranges from 0.2-0.4, depending on the processing level and the region being considered. We present here our study about the salinity variability in the tropical Pacific Ocean from the 9-day, 0.25 bins salinity maps derived from the SMOS reprocessing campaign released to the SMOS user community on March 2011. During the period under study, the equatorial Pacific has been in a quasi-continuous La Niña state. During the cold phases of ENSO, positive anomalies of SSS are expected with the largest anomalous values in the western warm-fresh pool. The anomalies derived from the SMOS data do indeed display a positive anomaly. The persistence of the feature, its geographical pattern, the time modulation of the anomaly amplitude indicate, and its resemblance with in situ observations indicate this novel observation technology is currently able to capture seasonal and interannual signatures of climate interest.

  18. Study of the effect of temperature, irradiance and salinity on growth and yessotoxin production by the dinoflagellate Protoceratium reticulatum in culture by using a kinetic and factorial approach.

    PubMed

    Paz, Beatriz; Vázquez, José A; Riobó, Pilar; Franco, José M

    2006-10-01

    A complete first order orthogonal plan was used to optimize the growth and the production of yessotoxin (YTX) by the dinoflagellate Protoceratium reticulatum in culture by controlling salinity, temperature and irradiance. Initially, an approach to the kinetic data of cellular density and YTX production for each one of the experimental design conditions was performed. The P. reticulatum growth and YTX production were fitted to logistical equations and to a first-order kinetic model, respectively. The parameters obtained from this adjustment were used as dependent variables for the formulation of the empirical equations of the factorial design tested. The results showed that in practically all the cases for both, P. reticulatum growth and YTX production, irradiance is the primary independent variable and has a positive effect in the range 50-90 micromol photons m(-2) s(-1). Additionally, in certain specific cases, temperature reveals significant positive effects when maintained between 15 and 23 degrees C and salinity in the range of 20-34 displays negative effects. Despite the narrow ranges used in the work, results showed the suitability of factorial analysis to evaluate the optimal conditions for growth and yessotoxin production by the dinoflagellate P. reticulatum.

  19. Seasonal variability of free amino acids in two marine bivalves, Macoma balthica and Mytilus spp., in relation to environmental and physiological factors.

    PubMed

    Kube, S; Sokolowski, A; Jansen, J M; Schiedek, D

    2007-08-01

    The seasonal variability of the intracellular free amino acid (FAA) concentration was studied in 5 Macoma balthica populations and 7 Mytilus spp. populations along their European distribution. Because of the well known physiological role of FAA as organic osmolytes for salinity induced cell volume regulation in marine osmoconformers, FAA variations were compared in bivalve populations that were exposed to high vs. low intraannual salinity fluctuations. In general, seasonal FAA variations were more pronounced in M. balthica than in Mytilus spp. In both bivalve taxa from different locations in the Baltic Sea, highest FAA concentrations were found in autumn and winter and low FAA concentrations were measured in summer. Seasonal patterns were less pronounced in both taxa at locations with constant salinity conditions. In contrast to Baltic Sea populations, Atlantic and Mediterranean bivalves showed high FAA concentrations in summer and low values in winter, regardless of seasonal salinity fluctuations. Significant seasonal FAA variations at locations with constant salinity conditions showed that salinity appeared not to be the main factor in determining FAA concentrations. The seasonal patterns of the main FAA pool components, i.e. alanine, glycine and taurine, are discussed in the context of seasonal variations in environmental factors (salinity, temperature) and physiological state (glycogen content, reproductive stage).

  20. Coral Records of 20th Century Central Tropical Pacific SST and Salinity: Signatures of Natural and Anthropogenic Climate Change

    NASA Astrophysics Data System (ADS)

    Nurhati, I. S.; Cobb, K.; Di Lorenzo, E.

    2011-12-01

    Accurate forecasts of regional climate changes in many regions of the world largely depend on quantifying anthropogenic trends in tropical Pacific climate against its rich background of interannual to decadal-scale climate variability. However, the strong natural climate variability combined with limited instrumental climate datasets have obscured potential anthropogenic climate signals in the region. Here, we present coral-based sea-surface temperature (SST) and salinity proxy records over the 20th century (1898-1998) from the central tropical Pacific - a region sensitive to El Niño-Southern Oscillation (ENSO) whose variability strongly impacts the global climate. The SST and salinity proxy records are reconstructed via coral Sr/Ca and the oxygen isotopic composition of seawater (δ18Osw), respectively. On interannual (2-7yr) timescales, the SST proxy record tracks both eastern- and central-Pacific flavors of ENSO variability (R=0.65 and R=0.67, respectively). Interannual-scale salinity variability in our coral record highlights profound differences in precipitation and ocean advections during the two flavors of ENSO. On decadal (8yr-lowpassed) timescales, the central tropical Pacific SST and salinity proxy records are controlled by different sets of dynamics linked to the leading climate modes of North Pacific climate variability. Decadal-scale central tropical Pacific SST is highly correlated to the recently discovered North Pacific Gyre Oscillation (NPGO; R=-0.85), reflecting strong dynamical links between the central Pacific warming mode and extratropical decadal climate variability. Whereas decadal-scale salinity variations in the central tropical Pacific are significantly correlated with the Pacific Decadal Oscillation (PDO; R=0.54), providing a better understanding on low-frequency salinity variability in the region. Having characterized natural climate variability in this region, the coral record shows a +0.5°C warming trend throughout the last century. However, the most prominent feature of the new coral records is an unprecedented freshening trend since the mid-20th century, in line with global climate models (GCMs) projections of enhanced hydrological patterns (wet areas are getting wetter and vice versa) under greenhouse forcing. Taken together, the coral records provide key constraints on tropical Pacific climate trends that may improve regional climate projections in areas affected by tropical Pacific climate variability.
    Central Tropical Pacific SST and Salinity Proxy Records

  1. Hydrographic Variability off the Coast of Oman

    NASA Astrophysics Data System (ADS)

    Belabbassi, L.; Dimarco, S. F.; Jochens, A. E.; Al Gheilani, H.; Wang, Z.

    2010-12-01

    Data from hydrographic transects made in 2001 and 2002 and between 2007 and 2009 were obtained from the Oman Ministry of Fisheries Wealth. Property-depth plots of temperature, salinity, and dissolved oxygen were produced for all transects and in all months for which data were available. These were analyzed for temporal and spatial variability. For all transects, there exist large variability on various timescales, with strong spatial variability. Two common features that are seen in the hydrographic data sets are the Persian Gulf Water (PGW) and a layer of continuous low oxygen concentrations in the lower part of the water column. Plots of salinity produced for transects located in the northern part of the Gulf of Oman show a one-unit increase in salinity of the water at the bottom of deepest station during the months of August and September as compared to the other months. Similarly, cross-shelf contour plots of temperature shows an increase in water temperature near the bottom station during the months of August and September. These indicate the presence of the PGW outflow in the northern part of the Gulf of Oman. For dissolved oxygen distributions, hydrographic transects that did not extend far offshore show monthly differences in the presence of water with low oxygen concentrations. For transects that do extend far offshore and also show a layer of low oxygen water throughout the year, there is generally a monthly difference on whether this water is found close to the surface or deeper in the water column. The variability seen in the data could only be explained by comparing these data to data collected from the real time cable ocean observing system installed by Lighthouse R &D Enterprise in the Oman Sea and the Arabian Sea in 2005. The analysis of these data reveal that the variability observed is related to processes such as ocean conditions, monsoonal cycle, and extreme weather events.

  2. An Eight-Century High-Resolution Paleoclimate Record From the Cariaco Basin: Baseline Variability and the 20th Century

    NASA Astrophysics Data System (ADS)

    Black, D. E.; Thunell, R. C.; Kaplan, A.; Tappa, E. J.; Peterson, L. C.

    2007-12-01

    The Cariaco Basin, Venezuela is well-positioned to record a detailed history of surface ocean changes along the southern margin of the Caribbean and the tropical Atlantic. Varved, high deposition rate sediments deposited under anoxic conditions and an abundance of well-preserved microfossils result in one of the few marine records capable of preserving evidence of interannual- to decadal-scale climate variability in the tropical Atlantic. Here we present Mg/Ca and stable oxygen isotope data with sub-decadal resolution derived from sediments deposited over the last 800 years. Mg/Ca measured on the planktic foraminifer Globigerina bulloides from a Cariaco Basin sediment core strongly correlates with spring (March-May) instrumental SSTs between AD 1870 and 1990. The long-term record displays a surprising amount of variability for a tropical location. The temperature swings are not necessarily related to local upwelling variability, but instead represent wider conditions in the Caribbean and western tropical Atlantic. The Mg/Ca-SST record also captures the decadal and multidecadal variability observed in global land and sea surface temperature anomalies, and correlates with Atlantic tropical storm and hurricane frequency over the late-19th and 20th centuries. On average, 20th century temperatures are not the warmest in the entire record, but they do show the largest increase in magnitude and fastest rate of SST change over the last eight hundred years. Stable oxygen isotope data also correlate well with instrumental SSTs, but not over the full instrumental record. Poor correlations with early instrumental SST data suggest a salinity overprint. However, reconstructing δ- water variability using combined Mg/Ca and δ18O data is not straightforward as the δ- water/salinity relationship varies seasonally in the Cariaco Basin. Comparisons with percent titanium data suggest intervals of both local and regional surface salinity changes over the length of the record.

  3. Dynamic hydrographic variations in northwestern Arabian Gulf over the past three decades: Temporal shifts and trends derived from long-term monitoring data.

    PubMed

    Al-Yamani, Faiza; Yamamoto, Takahiro; Al-Said, Turki; Alghunaim, Aws

    2017-09-15

    Hydrographic variables were monitored in northwestern Arabian Gulf over the past three decades and the time-series data were statistically analyzed. The results show that while salinity has undergone several shifts, seawater temperature exhibited a steady increasing trend since the 1980s. The observed salinity shows strong correlation with Shatt Al-Arab River discharge indicating primary contribution of freshwater to salinity among other factors (evaporation and desalination effluent). Recent data show that salinity is at its highest level in the last 30years with less pronounced seasonal variability in response to severe decline in the freshwater runoff into the northwestern Arabian Gulf. The changes in hydrographic conditions may have significant implications on hydrodynamics, water quality, and ecosystems in the Gulf. Thus, cooperation among the concerned countries - both coastal and riparian nations - would be essential for prevention of further major changes in the Gulf. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Hydrographic and Ecological Effects of Enlargement of the Chesapeake and Delaware Canal. Appendix IV. Benthos of Delaware Waters in and Near C and D Canal.

    DTIC Science & Technology

    1973-09-01

    stations in the last three sampling periods of this project to supplement the regular I infaunal sampling schedule. Salinity , dissolved oxygen, water...summer. Salinity was quite variable but tended to be * highest in late summer (range 0.1 — 10 O/~~~~~~ )~~~ Dissolved oxygen, being an inverse...function of both salinity and temperature, dropped in summer. Concentrations in the 2—3 mg/l range were not unusual. The physical data collected in

  5. A combination mode of climate variability responsible for extremely poor recruitment of the Japanese eel (Anguilla japonica)

    NASA Astrophysics Data System (ADS)

    Lin, Yong-Fu; Wu, Chau-Ron; Han, Yu-San

    2017-03-01

    Satellite data and assimilation products are used to investigate fluctuations in the catch of Japanese eel (Anguilla japonica) in eastern Asian countries. It has been reported that the salinity front has extended farther south, which has shifted the eel’s spawning grounds to a lower latitude, resulting in smaller eel catches in 1983, 1992, and 1998. This study demonstrates that interannual variability in the eel catch is strongly correlated with the combination mode (C-mode), but not with the El Niño-Southern Oscillation. These eels continue to spawn within the North Equatorial Current (NEC), but the salinity front shifts south during a canonical El Niño. On the other hand, the spawning grounds accompanied by the salinity front extend farther south during the C-mode of climate variability, and eel larvae fail to join the nursery in the NEC, resulting in extremely poor recruitment in East Asia. We propose an appropriate sea surface temperature index to project Japanese eel larval catch.

  6. Technical note: Effects of an epinephrine infusion on eye temperature and heart rate variability in bull calves.

    PubMed

    Stewart, M; Webster, J R; Stafford, K J; Schaefer, A L; Verkerk, G A

    2010-11-01

    Changes in autonomic nervous system (ANS) activity are one of the first phases of a stress response, but they are rarely used to assess the welfare of farm animals. Eye temperature measured using infrared thermography (IRT) is proposed as an indicator of ANS activity because it may reflect changes in blood flow in the capillary beds of the conjunctiva. The aim was to determine whether epinephrine infusion would initiate eye temperature changes in calves. Sixteen 4-mo-old Friesian calves (124±5 kg) were assigned randomly to receive a jugular infusion of either epinephrine (4 μg/kg per min for 5 min) or saline. Eye temperature (°C), heart rate (HR), and HR variability (HRV) were recorded from 15 min before infusion until 10 min after it was completed. Blood samples collected via jugular catheter were assayed for epinephrine, norepinephrine, and cortisol concentrations, and packed cell volume (PCV) was measured. No changes in any variable were observed with the saline infusion. Plasma epinephrine concentrations increased 90-fold with epinephrine infusion, which was associated with a decrease in eye temperature of 1.4±0.05°C. During epinephrine infusion, plasma norepinephrine concentrations decreased by half and HR decreased by 9.3±3.3 beats/min. The HRV measure, the root mean square of successive differences, increased by 49.7±9.2 ms, indicating a compensatory increase in parasympathetic activity. After epinephrine infusion, plasma cortisol concentrations increased by 10.4±1.7 ng/mL and PCV was higher (38 vs. 31±0.1%, epinephrine vs. saline, respectively). These results support the hypothesis that changes in eye temperature are mediated by the sympathetic component of the ANS. Infrared thermography is a noninvasive method to assess ANS activity for evaluating welfare of cattle. Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. A descriptive analysis of temporal and spatial patterns of variability in Puget Sound oceanographic properties

    Treesearch

    Stephanie Moore; Nathan J. Mantua; Jan A. Newton; Mitsuhiro Kawase; Mark J. Warner; Jonathan P. Kellogg

    2008-01-01

    Temporal and spatial patterns of variability in Puget Sound's oceanographic properties are determined using continuous vertical profile data from two long-term monitoring programs; monthly observations at 16 stations from 1993 to 2002, and biannual observations at 40 stations from 1998 to 2003. Climatological monthly means of temperature, salinity, and density...

  8. Relating large-scale climate variability to local species abundance: ENSO forcing and shrimp in Breton Sound, Louisiana, USA

    USGS Publications Warehouse

    Piazza, Bryan P.; LaPeyre, Megan K.; Keim, B.D.

    2010-01-01

    Climate creates environmental constraints (filters) that affect the abundance and distribution of species. In estuaries, these constraints often result from variability in water flow properties and environmental conditions (i.e. water flow, salinity, water temperature) and can have significant effects on the abundance and distribution of commercially important nekton species. We investigated links between large-scale climate variability and juvenile brown shrimp Farfantepenaeus aztecus abundance in Breton Sound estuary, Louisiana (USA). Our goals were to (1) determine if a teleconnection exists between local juvenile brown shrimp abundance and the El Niño Southern Oscillation (ENSO) and (2) relate that linkage to environmental constraints that may affect juvenile brown shrimp recruitment to, and survival in, the estuary. Our results identified a teleconnection between winter ENSO conditions and juvenile brown shrimp abundance in Breton Sound estuary the following spring. The physical connection results from the impact of ENSO on winter weather conditions in Breton Sound (air pressure, temperature, and precipitation). Juvenile brown shrimp abundance effects lagged ENSO by 3 mo: lower than average abundances of juvenile brown shrimp were caught in springs following winter El Niño events, and higher than average abundances of brown shrimp were caught in springs following La Niña winters. Salinity was the dominant ENSO-forced environmental filter for juvenile brown shrimp. Spring salinity was cumulatively forced by winter river discharge, winter wind forcing, and spring precipitation. Thus, predicting brown shrimp abundance requires incorporating climate variability into models.

  9. Hydrologic aspects of marsh ponds during winter on the Gulf Coast Chenier Plain, USA: Effects of structural marsh management

    USGS Publications Warehouse

    Bolduc, F.; Afton, A.D.

    2004-01-01

    The hydrology of marsh ponds influences aquatic invertebrate and waterbird communities. Hydrologic variables in marsh ponds of the Gulf Coast Chenier Plain are potentially affected by structural marsh management (SMM: levees, water control structures and impoundments) that has been implemented since the 1950s. Assuming that SMM restricts tidal flows and drainage of rainwater, we predicted that SMM would increase water depth, and concomitantly decrease salinity and transparency in impounded marsh ponds. We also predicted that SMM would increase seasonal variability in water depth in impounded marsh ponds because of the potential incapacity of water control structures to cope with large flooding events. In addition, we predicted that SMM would decrease spatial variability in water depth. Finally, we predicted that ponds of impounded freshwater (IF), oligohaline (IO), and mesohaline (IM) marshes would be similar in water depth, temperature, dissolved oxygen (O2), and transparency. Using a priori multivariate analysis of variance (MANOVA) contrast, we tested these predictions by comparing hydrologic variables within ponds of impounded and unimpounded marshes during winters 1997-1998 to 1999-2000 on Rockefeller State Wildlife Refuge, near Grand Chenier, Louisiana. Specifically, we compared hydrologic variables (1) between IM and unimpounded mesohaline marsh ponds (UM); and (2) among IF, IO, and IM marshes ponds. As predicted, water depth was higher and salinity and O2 were lower in IM than in UM marsh ponds. However, temperature and transparency did not differ between IM and UM marsh ponds. Water depth varied more among months in IM marsh ponds than within those of UM marshes, and variances among and within ponds were lower in IM than UM marshes. Finally, all hydrologic variables, except salinity, were similar among IF, IO, and IM marsh ponds. Hydrologic changes within marsh ponds due to SMM should (1) promote benthic invertebrate taxa that tolerate low levels of O2 and salinity; (2) deter waterbird species that cannot cope with increased water levels; and (3) reduce waterbird species diversity by decreasing spatial variability in water depth among and within marsh ponds.

  10. Evaporation from a shallow, saline lake in the Nebraska Sandhills: Energy balance drivers of seasonal and interannual variability

    NASA Astrophysics Data System (ADS)

    Riveros-Iregui, Diego A.; Lenters, John D.; Peake, Colin S.; Ong, John B.; Healey, Nathan C.; Zlotnik, Vitaly A.

    2017-10-01

    Despite potential evaporation rates in excess of the local precipitation, dry climates often support saline lakes through groundwater inputs of water and associated solutes. These groundwater-fed lakes are important indicators of environmental change, in part because their shallow water levels and salinity are very sensitive to weather and climatic variability. Some of this sensitivity arises from high rates of open-water evaporation, which is a dominant but poorly quantified process for saline lakes. This study used the Bowen ratio energy budget method to calculate open-water evaporation rates for Alkali Lake, a saline lake in the Nebraska Sandhills region (central United States), where numerous groundwater-fed lakes occupy the landscape. Evaporation rates were measured during the warm season (May - October) over three consecutive years (2007-2009) to gain insights into the climatic and limnological factors driving evaporation, as well as the partitioning of energy balance components at seasonal and interannual time scales. Results show a seasonal peak in evaporation rate in late June of 7.0 mm day-1 (on average), with a maximum daily rate of 10.5 mm day-1 and a 3-year mean July-September (JAS) rate of 5.1 mm day-1, which greatly exceeds the long-term JAS precipitation rate of 1.3 mm day-1. Seasonal variability in lake evaporation closely follows that of net radiation and lake surface temperature, with sensible heat flux and heat storage variations being relatively small, except in response to short-term, synoptic events. Interannual changes in the surface energy balance were weak, by comparison, although a 6-fold increase in mean lake level over the three years (0.05-0.30 m) led to greater heat storage within the lake, an enhanced JAS lake-air temperature gradient, and greater sensible heat loss. These large variations in water level were also associated with large changes in absolute salinity (from 28 to 118 g kg-1), with periods of high salinity characterized by reductions in mass transfer estimates of evaporation rate by up to 20%, depending on atmospheric conditions and absolute salinity. Energy balance estimates of evaporation, on the other hand, were found to be less sensitive to variations in salinity. These results provide regional insights for lakes in the Nebraska Sandhills region and implications for estimation of the energy and water balance of saline lakes in similar arid and semi-arid landscapes.

  11. Modeling Diffusion as a Result of Observing Salinity, Water Temperature and Mixing of the Norwalk River into Long Island Sound

    NASA Astrophysics Data System (ADS)

    Giuliano, A. L.; Gillotte, C. N.; Wooldridge, T. R.

    2016-02-01

    This project investigates the space and time variability of salinity and temperature in the lower Norwalk River using a one-dimensional numerical model. The project uses surface measurements taken at two locations, one at the Norwalk Maritime Museum (NMM) and the other at the mouth of the river as it drains into the Norwalk Islands region adjacent to Long Island Sound (LIS). The model covers a relatively small distance of 1-2km. The size of the upriver neck and the first buoy is approximately five times smaller than the mouth between the second buoy site and Peach Island. The instrumentation will be responsible for generally characterizing the thermal physics occurring at the river-ocean environment. A one-dimensional advection-diffusion model will be used to simulate results. The data points will measure the salinity, water temperature, and pressure during a series of deployments in the river during a three-season period between 2013 and 2014. Further processes will ultimately show the overall advection occurring in the river. The upriver site is maintained by the Norwalk River Museum. A YSI XXX attached to a tether buoy is used to measure salinity and temperature at the surface.Preliminary results suggest typical temperature range at the upriver site is greater than at the mouth of the Norwalk River, and the daily peak temperature lag depends upon several factors, such as tidal state. The phenomenon of a salt wedge will also be considered.

  12. Assessing spatial variability of soil properties and ions associated to salinity using the multifractal approach

    NASA Astrophysics Data System (ADS)

    Machado Siqueira, Glécio; Soares da Silva, Jucicleia; Farías França e Silva, Ênio; Lado, Marcos; Paz-González, Antonio; Vidal-Vázquez, Eva

    2017-04-01

    The lowlands coastal region of the state of Pernambuco, Northeast of Brazil, was formerly covered by humid Atlantic forest (Mata Atlântica) and then has been increasingly devoted to Sugar cane production. Because the water table is near to the soil surface salinity can occur in this area. The objective of this study was to assess the scale dependence of parameters associated to soil salinity and ions responsible for salination using multifractal analysis. The field work was conducted at an experimental field located in the Goiania municipality, Pernambuco, Brazil. This site is located 10 km east from the Atlantic coast. The field has been devoted to monoculture of sugarcane (Saccharum of?cinarum sp.) since 25 years. The climate of the region is tropical, with average annual temperature of 24°C and 1800 mm of precipitation per year. Soil was sampled every 3 m at 128 locations across a 384 m transect at a depth of 0-20 cm. The soil samples were analysed for pH, electrical conductivity (EC), Na+, K+, Ca2+, Mg2+, Cl- and SO4-2; also sodium adsorption ratio (SAR) was calculated. The spatial distributions of all the studied variables associated to soil salinity exhibited multifractal behaviour. Although all the variables studied exhibited a very strong power law scaling, different degrees of multifractality, assessed by differences in the amplitude and several selected parameters of the generalized dimension and singularity spectrum curves, have been appreciated. The multifractal approach gives a good description of the patterns of spatial variability of properties and ions describing soil salinity, and allows discriminating differences between them.

  13. An improved understanding of the Alaska coastal current: The application of a bivalve growth-temperature model to reconstruct freshwater-influenced paleoenvironments

    USGS Publications Warehouse

    Hallmann, N.; Schone, B.R.; Irvine, G.V.; Burchell, M.; Cokelet, E.D.; Hilton, M.R.

    2011-01-01

    Shells of intertidal bivalve mollusks contain sub-seasonally to interannually resolved records of temperature and salinity variations in coastal settings. Such data are essential to understand changing land-sea interactions through time, specifically atmospheric (precipitation rate, glacial meltwater, river discharge) and oceanographic circulation patterns; however, independent temperature and salinity proxies are currently not available. We established a model for reconstructing daily water temperatures with an average standard error of ???1.3 ??C based on variations in the width of lunar daily growth increments of Saxidomus gigantea from southwestern Alaska, United States. Temperature explains 70% of the variability in shell growth. When used in conjunction with stable oxygen isotope data, this approach can also be used to identify changes in past seawater salinity. This study provides a better understanding of the hydrological changes related to the Alaska Coastal Current (ACC). In combination with ??18Oshell values, increment-derived temperatures were used to estimate salinity changes with an average error of 1.4 ?? 1.1 PSU. Our model was calibrated and tested with modern shells and then applied to archaeological specimens. As derived from the model, the time interval of 988-1447 cal yr BP was characterized by ???1-2 ??C colder and much drier (2-5 PSU) summers. During that time, the ACC was likely flowing much more slowly than at present. In contrast, between 599-1014 cal yr BP, the Aleutian low may have been stronger, which resulted in a 3 ??C temperature decrease during summers and 1-2 PSU fresher conditions than today; the ACC was probably flowing more quickly at that time. The shell growth-temperature model can be used to estimate seasonal to interannual salinity and temperature changes in freshwater-influenced environments through time. ?? 2011 SEPM (Society for Sedimentary Geology).

  14. Decadal trends in deep ocean salinity and regional effects on steric sea level

    NASA Astrophysics Data System (ADS)

    Purkey, S. G.; Llovel, W.

    2017-12-01

    We present deep (below 2000 m) and abyssal (below 4000 m) global ocean salinity trends from the 1990s through the 2010s and assess the role of deep salinity in local and global sea level budgets. Deep salinity trends are assessed using all deep basins with available full-depth, high-quality hydrographic section data that have been occupied two or more times since the 1980s through either the World Ocean Circulation Experiment (WOCE) Hydrographic Program or the Global Ship-Based Hydrographic Investigations Program (GO-SHIP). All salinity data is calibrated to standard seawater and any intercruise offsets applied. While the global mean deep halosteric contribution to sea level rise is close to zero (-0.017 +/- 0.023 mm/yr below 4000 m), there is a large regional variability with the southern deep basins becoming fresher and northern deep basins becoming more saline. This meridional gradient in the deep salinity trend reflects different mechanisms driving the deep salinity variability. The deep Southern Ocean is freshening owing to a recent increased flux of freshwater to the deep ocean. Outside of the Southern Ocean, the deep salinity and temperature changes are tied to isopycnal heave associated with a falling of deep isopycnals in recent decades. Therefore, regions of the ocean with a deep salinity minimum are experiencing both a halosteric contraction with a thermosteric expansion. While the thermosteric expansion is larger in most cases, in some regions the halosteric compensates for as much as 50% of the deep thermal expansion, making a significant contribution to local sea level rise budgets.

  15. Long-term trend analysis of reservoir water quality and quantity at the landscape scale in two major river basins of Texas, USA.

    USGS Publications Warehouse

    Patino, Reynaldo; Asquith, William H.; VanLandeghem, Matthew M.; Dawson, D.

    2016-01-01

    Trends in water quality and quantity were assessed for 11 major reservoirs of the Brazos and Colorado river basins in the southern Great Plains (maximum period of record, 1965–2010). Water quality, major contributing-stream inflow, storage, local precipitation, and basin-wide total water withdrawals were analyzed. Inflow and storage decreased and total phosphorus increased in most reservoirs. The overall, warmest-, or coldest-monthly temperatures increased in 7 reservoirs, decreased in 1 reservoir, and did not significantly change in 3 reservoirs. The most common monotonic trend in salinity-related variables (specific conductance, chloride, sulfate) was one of no change, and when significant change occurred, it was inconsistent among reservoirs. No significant change was detected in monthly sums of local precipitation. Annual water withdrawals increased in both basins, but the increase was significant (P < 0.05) only in the Colorado River and marginally significant (P < 0.1) in the Brazos River. Salinity-related variables dominated spatial variability in water quality data due to the presence of high- and low-salinity reservoirs in both basins. These observations present a landscape in the Brazos and Colorado river basins where, in the last ∼40 years, reservoir inflow and storage generally decreased, eutrophication generally increased, and water temperature generally increased in at least 1 of 3 temperature indicators evaluated. Because local precipitation remained generally stable, observed reductions in reservoir inflow and storage during the study period may be attributable to other proximate factors, including increased water withdrawals (at least in the Colorado River basin) or decreased runoff from contributing watersheds.

  16. Linking interannual variability in shelf bottom water properties to the California Undercurrent and local processes in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Stone, H. B.; Banas, N. S.; Hickey, B. M.; MacCready, P.

    2016-02-01

    The Pacific Northwest coast is an unusually productive area with a strong river influence and highly variable upwelling-favorable and downwelling-favorable winds, but recent trends in hypoxia and ocean acidification in this region are troubling to both scientists and the general public. A new ROMS hindcast model of this region makes possible a study of interannual variability. This study of the interannual temperature and salinity variability on the Pacific Northwest coast is conducted using a coastal hindcast model (43°N - 50°N) spanning 2002-2009 from the University of Washington Coastal Modeling Group, with a resolution of 1.5 km over the shelf and slope. Analysis of hindcast model results was used to assess the relative importance of source water variability, including the poleward California Undercurrent, local and remote wind forcing, winter wind-driven mixing, and river influence in explaining the interannual variations in the shelf bottom layer (40 - 80 m depth, 10 m thick) and over the slope (150 - 250 m depth, <100 km from shelf break) at each latitude within the model domain. Characterized through tracking of the fraction of Pacific Equatorial Water (PEW) relative to Pacific Subarctic Upper Water (PSUW) present on the slope, slope water properties at all latitudes varied little throughout the time series, with the largest variability due to patterns of large north-south advection of water masses over the slope. Over the time series, the standard deviation of slope temperature was 0.09 ˚C, while slope salinity standard deviation was 0.02 psu. Results suggest that shelf bottom water interannual variability is not driven primarily by interannual variability in slope water as shelf bottom water temperature and salinity vary nearly 10 times more than those over the slope. Instead, interannual variability in shelf bottom water properties is likely driven by other processes, such as local and remote wind forcing, and winter wind-driven mixing. The relative contributions of these processes to interannual variability in shelf bottom water properties will be addressed. Overall, these results highlight the importance of shelf processes relative to large-scale influences on the interannual timescale in particular. Implications for variability in hypoxia and ocean acidification impacts will be discussed.

  17. A Gulf Stream-derived pycnocline intrusion on the Middle Atlantic Bight shelf

    NASA Astrophysics Data System (ADS)

    Gawarkiewicz, Glen; McCarthy, Robert K.; Barton, Kenneth; Masse, Ann K.; Church, Thomas M.

    1990-12-01

    Saline intrusions from the upper slope onto the outer shelf are frequently observed at the pycnocline along the shelfbreak front in the Middle Atlantic Bight during the summer. A brief cruise was conducted in July, 1986 between Baltimore and Washington Canyons to examine along-shelf variability of pycnocline salinity intrusions. A particularly saline intrusion of 35.8 Practical Salinity Units (PSU) was observed between 20 and 40 m in a water depth of 70 to 80 m. The along-shelf extent was at least 40 km. The cooler, sub-pycnocline outer shelf water was displaced 15 km shoreward of the shelfbreak. A Gulf Stream filament was present in the slope region prior to the hydrographic sampling, but was not visible in thermal imagery during the hydrographic sampling. Temperature-salinity characteristics of the intrusion suggest that it was a mixture of Gulf Stream water and slope water, possibly from the filament. The shoreward penetration of saline water was most pronounced at the pycnocline and penetrated the shelfbreak front, with salinities as high as 35.0 PSU reaching as far shoreward as the 35 m isobath. These pycnocline intrusions may be an important mechanism for the transport of Gulf Stream-derived water onto the shelf during the summer. The presence of filaments or other Gulf Stream-derived water on the upper slope may account for some of the along-front variability of the pycnocline salinity maximum that has previously been observed.

  18. Impacts of Climatic Variability on Vibrio parahaemolyticus Outbreaks in Taiwan

    PubMed Central

    Hsiao, Hsin-I; Jan, Man-Ser; Chi, Hui-Ju

    2016-01-01

    This study aimed to investigate and quantify the relationship between climate variation and incidence of Vibrio parahaemolyticus in Taiwan. Specifically, seasonal autoregressive integrated moving average (ARIMA) models (including autoregression, seasonality, and a lag-time effect) were employed to predict the role of climatic factors (including temperature, rainfall, relative humidity, ocean temperature and ocean salinity) on the incidence of V. parahaemolyticus in Taiwan between 2000 and 2011. The results indicated that average temperature (+), ocean temperature (+), ocean salinity of 6 months ago (+), maximum daily rainfall (current (−) and one month ago (−)), and average relative humidity (current and 9 months ago (−)) had significant impacts on the incidence of V. parahaemolyticus. Our findings offer a novel view of the quantitative relationship between climate change and food poisoning by V. parahaemolyticus in Taiwan. An early warning system based on climate change information for the disease control management is required in future. PMID:26848675

  19. Impacts of Climatic Variability on Vibrio parahaemolyticus Outbreaks in Taiwan.

    PubMed

    Hsiao, Hsin-I; Jan, Man-Ser; Chi, Hui-Ju

    2016-02-03

    This study aimed to investigate and quantify the relationship between climate variation and incidence of Vibrio parahaemolyticus in Taiwan. Specifically, seasonal autoregressive integrated moving average (ARIMA) models (including autoregression, seasonality, and a lag-time effect) were employed to predict the role of climatic factors (including temperature, rainfall, relative humidity, ocean temperature and ocean salinity) on the incidence of V. parahaemolyticus in Taiwan between 2000 and 2011. The results indicated that average temperature (+), ocean temperature (+), ocean salinity of 6 months ago (+), maximum daily rainfall (current (-) and one month ago (-)), and average relative humidity (current and 9 months ago (-)) had significant impacts on the incidence of V. parahaemolyticus. Our findings offer a novel view of the quantitative relationship between climate change and food poisoning by V. parahaemolyticus in Taiwan. An early warning system based on climate change information for the disease control management is required in future.

  20. An Evaluation of Antarctica as a Calibration Target for Passive Microwave Satellite Missions with Climate Data Record Applications

    NASA Technical Reports Server (NTRS)

    Kim, Edward

    2011-01-01

    Passive microwave remote sensing at L-band (1.4 GHz) is sensitive to soil moisture and sea surface salinity, both important climate variables. Science studies involving these variables can now take advantage of new satellite L-band observations. The first mission with regular global passive microwave observations at L-band is the European Space Agency's Soil Moisture and Ocean Salinity (SMOS), launched November, 2009. A second mission, NASA's Aquarius, was launched June, 201 I. A third mission, NASA's Soil Moisture Active Passive (SMAP) is scheduled to launch in 2014. Together, these three missions may provide a decade-long data record-provided that they are intercalibrated. The intercalibration is best performed at the radiance (brightness temperature) level, and Antarctica is proving to be a key calibration target. However, Antarctica has thus far not been fully characterized as a potential target. This paper will present evaluations of Antarctica as a microwave calibration target for the above satellite missions. Preliminary analyses have identified likely target areas, such as the vicinity of Dome-C and larger areas within East Antarctica. Physical sources of temporal and spatial variability of polar firn are key to assessing calibration uncertainty. These sources include spatial variability of accumulation rate, compaction, surface characteristics (dunes, micro-topography), wind patterns, and vertical profiles of density and temperature. Using primarily SMOS data, variability is being empirically characterized and attempts are being made to attribute observed variability to physical sources. One expected outcome of these studies is the potential discovery of techniques for remotely sensing--over all of Antarctica-parameters such as surface temperature.

  1. An Evaluation of Antarctica as a Calibration Target for Passive Microwave Satellite Missions

    NASA Technical Reports Server (NTRS)

    Kim, Edward

    2012-01-01

    Passive microwave remote sensing at L-band (1.4 GHz) is sensitive to soil moisture and sea surface salinity, both important climate variables. Science studies involving these variables can now take advantage of new satellite L-band observations. The first mission with regular global passive microwave observations at L-band is the European Space Agency's Soil Moisture and Ocean Salinity (SMOS), launched November, 2009. A second mission, NASA's Aquarius, was launched June, 201l. A third mission, NASA's Soil Moisture Active Passive (SMAP) is scheduled to launch in 2014. Together, these three missions may provide a decade-long data record -- provided that they are intercalibrated. The intercalibration is best performed at the radiance (brightness temperature) level, and Antarctica is proving to be a key calibration target. However, Antarctica has thus far not been fully characterized as a potential target. This paper will present evaluations of Antarctica as a microwave calibration target for the above satellite missions. Preliminary analyses have identified likely target areas, such as the vicinity of Dome-C and larger areas within East Antarctica. Physical sources of temporal and spatial variability of polar firn are key to assessing calibration uncertainty. These sources include spatial variability of accumulation rate, compaction, surface characteristics (dunes, micro-topography), wind patterns, and vertical profiles of density and temperature. Using primarily SMOS data, variability is being empirically characterized and attempts are being made to attribute observed variability to physical sources. One expected outcome of these studies is the potential discovery of techniques for remotely sensing--over all of Antarctica--parameters such as surface temperature.

  2. Inter- and intra-variability of seed germination traits of Carpobrotus edulis N.E.Br. and its hybrid C. affine acinaciformis.

    PubMed

    Podda, Lina; Santo, Andrea; Mattana, Efisio; Mayoral, Olga; Bacchetta, Gianluigi

    2018-06-22

    Invasions by alien Carpobrotus spp. have been recognized as one of the most severe threats to Mediterranean-climate coastal ecosystems and Carpobrotus is considered one of the most widespread invasive alien genera in the Mediterranean Basin. The aims of this study were to characterize seed germination of both C. edulis and its hybrid C. affine acinaciformis, in terms of photoperiod, temperature and salinity. Inter- and intra-specific variability in the responses to photoperiod (12/12 h light and total darkness), constant temperatures (5, 10, 15, 20, 25°C) and an alternating temperature regime (25/10°C), salt stress (0, 125, 250, 500 mM NaCl) and the recovery of seed germination were evaluated for two seed lots of C. edulis and two of its hybrid C. affine acinaciformis. All the tested seed lots achieved higher germination percentages in the light, respect to total darkness. In relation to temperature, the two C. edulis seed lots did not show a preference, while the two C. affine acinaciformis seed lots differed in their germination response, one germinating more at the lowest temperatures (5 and 10°C) and one at the highest (20 and 25°C). For all the seed lots, highest germination occurred without NaCl (0 mM) and germination decreased with increasing salinity. Different germination requirements in saline substrate were not detected for C. edulis, while were observed for C. affine acinaciformis. Marked differences were detected in recovery responses between the two taxa. C. edulis demonstrated to have the ability to germinate in a wide time window during the year. This study identified significant differences in seed production, seed mass, germination requirements (temperature) and salinity tolerance for both C. edulis and C. affine acinaciformis. Our results indicated the extreme versatility of the hybrid forms to germinate in a wide range of natural conditions and habitats. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Arctic Contribution to Upper-Ocean Variability in the North Atlantic.

    NASA Astrophysics Data System (ADS)

    Walsh, John E.; Chapman, William L.

    1990-12-01

    Because much of the deep water of the world's oceans forms in the high-latitude North Atlantic, the potential climatic leverage of salinity and temperature anomalies in this region is large. Substantial variations of sea ice have accompanied North Atlantic salinity and temperature anomalies, especially the extreme and long-lived `Great Salinity Anomaly' of the late 1960s and early 1970s. Atmospheric pressure data are used hem to show that the local forcing of high-latitude North Atlantic Ocean fluctuations is augmented by antecedent atmospheric circulation anomalies over the central Arctic. These circulation anomalies are consistent with enhanced wind-forcing of thicker, older ice into the Transpolar Drift Stream and an enhanced export of sea ice (fresh water) from the Arctic into the Greenland Sea prior to major episodes of ice severity in the Greenland and Iceland seas. An index of the pressure difference between southern Greenland and the Arctic-Asian coast reached its highest value of the twentieth century during the middle-to-late 1960s, the approximate time of the earliest observation documentation of the Great Salinity Anomaly.

  4. Important aspects of Eastern Mediterranean large-scale variability revealed from data of three fixed observatories

    NASA Astrophysics Data System (ADS)

    Bensi, Manuel; Velaoras, Dimitris; Cardin, Vanessa; Perivoliotis, Leonidas; Pethiakis, George

    2015-04-01

    Long-term variations of temperature and salinity observed in the Adriatic and Aegean Seas seem to be regulated by larger-scale circulation modes of the Eastern Mediterranean (EMed) Sea, such as the recently discovered feedback mechanisms, namely the BiOS (Bimodal Oscillating System) and the internal thermohaline pump theories. These theories are the results of interpretation of many years' observations, highlighting possible interactions between two key regions of the EMed. Although repeated oceanographic cruises carried out in the past or planned for the future are a very useful tool for understanding the interaction between the two basins (e.g. alternating dense water formation, salt ingressions), recent long time-series of high frequency (up to 1h) sampling have added valuable information to the interpretation of internal mechanisms for both areas (i.e. mesoscale eddies, evolution of fast internal processes, etc.). During the last 10 years, three deep observatories were deployed and maintained in the Adriatic, Ionian, and Aegean Seas: they are respectively, the E2-M3A, the Pylos, and the E1-M3A. All are part of the largest European network of Fixed Point Open Ocean Observatories (FixO3, http://www.fixo3.eu/). Herein, from the analysis of temperature and salinity, and potential density time series collected at the three sites from the surface down to the intermediate and deep layers, we will discuss the almost perfect anti-correlated behavior between the Adriatic and the Aegean Seas. Our data, collected almost continuously since 2006, reveal that these observatories well represent the thermohaline variability of their own areas. Interestingly, temperature and salinity in the intermediate layer suddenly increased in the South Adriatic from the end of 2011, exactly when they started decreasing in the Aegean Sea. Moreover, Pylos data used together with additional ones (e.g. Absolute dynamic topography, temperature and salinity data from other platforms) collected along the typical pathway of the Levantine/Cretan intermediate waters towards the Adriatic Sea, reveal variability of the subsurface/intermediate layers (100-400m depth), which could possibly be attributed to seasonal variability or influences from dynamical features such as the Pelops Gyre. References Bensi, M., V. Cardin, A. Rubino, G. Notarstefano, and P. M. Poulain (2013), Effects of winter convection on the deep layer of the Southern Adriatic Sea in 2012, J. Geophys. Res. Oceans, 118, doi:10.1002/2013JC009432. Velaoras, D., G. Krokos, K. Nittis, and A. Theocharis (2014), Dense intermediate water outflow from the Cretan Sea: A salinity driven, recurrent phenomenon, connected to thermohaline circulation changes, J. Geophys. Res. Oceans, 119, doi:10.1002/2014JC009937.

  5. Eastern equatorial Pacific Ocean T-S variations with El Nino

    NASA Technical Reports Server (NTRS)

    Wang, O.; Fukumori, I.; Lee, T.; Johnson, G. C.

    2004-01-01

    Temperature-Salinity (T-S) relationship variability in the pycnocline of the eastern equatorial Pacific Ocean (NINO3 region, 5 degrees S ??degrees N, 150 degrees W ?? degrees W) over the last two decades is investigated using observational data and model simulation.

  6. About the seasonal variability of the Alboran Sea circulation

    NASA Astrophysics Data System (ADS)

    Vargas-Yáñez, M.; Plaza, F.; García-Lafuente, J.; Sarhan, T.; Vargas, J. M.; Vélez-Belchi, P.

    2002-07-01

    Data from a mooring line deployed midway between the Alboran Island and Cape Tres Forcas are used to study the time variability of the Alboran Sea from May 1997 to May 1998. The upper layer salinity and zonal velocity present annual and semiannual cycles characterised by a minimum in spring and autumn and a maximum in summer and winter. Temperature has the opposite behaviour to that of salinity indicating changes in the presence of the Atlantic water within the Alboran Passage. A large set of SST images is used to study these cycles. The decrease of salinity and velocity in our mooring location in spring and autumn seems to be related to the eastward drifting of the Western Alboran Gyre (WAG). The increase of salinity and velocity is caused by the Atlantic current flowing south of the Alboran Island and its associated thermohaline front. Conductivity-temperature-depth (CTD) data from two cruises along the 3°W are coherent with current meters and SST interpretations. During the period analysed, summer months are characterised by the stability of the two-gyre system, while in winter, the circulation is characterised by a coastal jet flowing close to the African shore. We use sea level differences across the Strait of Gibraltar for studying the variability of the Atlantic inflow. We discuss the changes in the Alboran Sea circulation and its relation with the variability of the inertial radius of the Atlantic inflow. Though our results are speculative, we find a possible relation between the disappearance of the two-gyre system and a reversal of the circulation in Gibraltar. Longer time series are needed to conclude, but comparison with previous works makes us think that the seasonal cycle described from May 1997 to May 1998 could be the most likely one for the Alboran Sea upper layer.

  7. Spatial variability of E. coli in an urban salt-wedge estuary.

    PubMed

    Jovanovic, Dusan; Coleman, Rhys; Deletic, Ana; McCarthy, David

    2017-01-15

    This study investigated the spatial variability of a common faecal indicator organism, Escherichia coli, in an urban salt-wedge estuary in Melbourne, Australia. Data were collected through comprehensive depth profiling in the water column at four sites and included measurements of temperature, salinity, pH, dissolved oxygen, turbidity, and E. coli concentrations. Vertical variability of E. coli was closely related to the salt-wedge dynamics; in the presence of a salt-wedge, there was a significant decrease in E. coli concentrations with depth. Transverse variability was low and was most likely dwarfed by the analytical uncertainties of E. coli measurements. Longitudinal variability was also low, potentially reflecting minimal die-off, settling, and additional inputs entering along the estuary. These results were supported by a simple mixing model that predicted E. coli concentrations based on salinity measurements. Additionally, an assessment of a sentinel monitoring station suggested routine monitoring locations may produce conservative estimates of E. coli concentrations in stratified estuaries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Salinity and temperature tolerance of brown-marbled grouper Epinephelus fuscoguttatus.

    PubMed

    Cheng, Sha-Yen; Chen, Chih-Sung; Chen, Jiann-Chu

    2013-04-01

    Grouper have to face varied environmental stressors as a result of drastic changes to water conditions during the storm season. We aimed to test the response of brown-marbled grouper to drastic and gradual changes in temperature and salinity to understand the grouper's basic stress response. The results can improve the culture of grouper. Brown-marbled grouper, Epinephelus fuscoguttatus (6.2 ± 0.8 g) were examined for temperature and salinity tolerances at nine different environmental regimes (10, 20, and 33 ‰ combined with 20, 26 and 32 °C), in which the fish were subjected to both gradual and sudden changes in temperature and salinity. The critical thermal maximum (50 % CTMAX) and the upper incipient lethal temperature (UILT) were in the ranges of 35.9-38.3 and 32.7-36.5 °C, respectively. The critical thermal minimum (50 % CTMIN) and the lower incipient lethal temperature (LILT) were in the ranges of 9.8-12.2 and 14.9-22.3 °C, respectively. The critical salinity maximum (50 % CSMAX) and the upper incipient lethal salinity (UILS) were in the ranges of 67.0-75.5 and 54.2-64.8 ‰, respectively. Fish at temperature of 20 °C and a salinity of 33 ‰ tolerated temperatures as low as 10 °C when the temperature was gradually decreased. Fish acclimated at salinities of 10-33 ‰ and a temperature of 32 °C tolerated salinities of as high as 75-79 ‰. All fish survived from accumulating salinity after acute transfer to 20, 10, 5, and 3 ‰. But all fish died while transferred to 0 ‰. Relationships among the UILT, LILT, 50 % CTMAX, 50 % CTMIN, UILS, 50 % CSMAX, salinity, and temperature were examined. The grouper's temperature and salinity tolerance elevated by increasing acclimation temperature and salinity. On the contrary, the grouper's temperature and salinity tolerance degraded by decreasing acclimation temperature and salinity. The tolerance of temperature and salinity on grouper in gradual changes were higher than in drastic changes.

  9. Estimation of the barrier layer thickness in the Indian Ocean using Aquarius Salinity

    NASA Astrophysics Data System (ADS)

    Felton, Clifford S.; Subrahmanyam, Bulusu; Murty, V. S. N.; Shriver, Jay F.

    2014-07-01

    Monthly barrier layer thickness (BLT) estimates are derived from satellite measurements using a multilinear regression model (MRM) within the Indian Ocean. Sea surface salinity (SSS) from the recently launched Soil Moisture and Ocean Salinity (SMOS) and Aquarius SAC-D salinity missions are utilized to estimate the BLT. The MRM relates BLT to sea surface salinity (SSS), sea surface temperature (SST), and sea surface height anomalies (SSHA). Three regions where the BLT variability is most rigorous are selected to evaluate the performance of the MRM for 2012; the Southeast Arabian Sea (SEAS), Bay of Bengal (BoB), and Eastern Equatorial Indian Ocean (EEIO). The MRM derived BLT estimates are compared to gridded Argo and Hybrid Coordinate Ocean Model (HYCOM) BLTs. It is shown that different mechanisms are important for sustaining the BLT variability in each of the selected regions. Sensitivity tests show that SSS is the primary driver of the BLT within the MRM. Results suggest that salinity measurements obtained from Aquarius and SMOS can be useful for tracking and predicting the BLT in the Indian Ocean. Largest MRM errors occur along coastlines and near islands where land contamination skews the satellite SSS retrievals. The BLT evolution during 2012, as well as the advantages and disadvantages of the current model are discussed. BLT estimations using HYCOM simulations display large errors that are related to model layer structure and the selected BLT methodology.

  10. Characterization and Correction of Aquarius Long Term Calibration Drift Using On-Earth Brightness Temperature Refernces

    NASA Technical Reports Server (NTRS)

    Brown, Shannon; Misra, Sidharth

    2013-01-01

    The Aquarius/SAC-D mission was launched on June 10, 2011 from Vandenberg Air Force Base. Aquarius consists of an L-band radiometer and scatterometer intended to provide global maps of sea surface salinity. One of the main mission objectives is to provide monthly global salinity maps for climate studies of ocean circulation, surface evaporation and precipitation, air/sea interactions and other processes. Therefore, it is critical that any spatial or temporal systematic biases be characterized and corrected. One of the main mission requirements is to measure salinity with an accuracy of 0.2 psu on montly time scales which requires a brightness temperature stability of about 0.1K, which is a challenging requirement for the radiometer. A secondary use of the Aquarius data is for soil moisture applications, which requires brightness temperature stability at the warmer end of the brightness temperature dynamic range. Soon after launch, time variable drifts were observed in the Aquarius data compared to in-situ data from ARGO and models for the ocean surface salinity. These drifts could arise from a number of sources, including the various components of the retrieval algorithm, such as the correction for direct and reflected galactic emission, or from the instrument brightness temperature calibration. If arising from the brightness temperature calibration, they could have gain and offset components. It is critical that the nature of the drifts be understood before a suitable correction can be implemented. This paper describes the approach that was used to detect and characterize the components of the drift that were in the brightness temperature calibration using on-Earth reference targets that were independent of the ocean model.

  11. Near-surface temperature and salinity stratification as observed with dual-sensor Lagrangian drifters deployed during SPURS-2 field campaign

    NASA Astrophysics Data System (ADS)

    Volkov, Denis; Dong, Shenfu; Goni, Gustavo; Lumpkin, Rick; Foltz, Greg

    2017-04-01

    Despite the importance of sea surface salinity (SSS) as an indicator of the hydrological cycle, many details of air-sea interaction responsible for freshwater fluxes and processes determining the near-surface salinity stratification and its variability are still poorly understood. This is primarily due to the lack of dedicated observations. The advent of satellites capable of monitoring SSS, such as the Soil Moisture and Ocean Salinity (SMOS), Aquarius, and Soil Moisture Active-Passive (SMAP) missions, has greatly advanced our knowledge of SSS distribution and variability. However, the spatial resolution of satellite retrievals is too coarse to study the upper-ocean salinity changes due to patchy and transient rain events. Furthermore, the satellites measure salinity within the upper 1 cm skin layer, which can significantly differ from in situ SSS measured at 5 m depth by most Argo floats. Differences between the Aquarius and Argo SSS can be as large as ±0.5 psu. In order to study the near-surface salinity structure in great detail and to link the satellite observations of SSS with all the oceanic and atmospheric processes that control its variability, the National Aeronautics and Space Administration has initiated two field campaigns within the framework of Salinity Processes in the Upper-Ocean Regional Study (SPURS) project (http://spurs.jpl.nasa.gov/). The first campaign, SPURS-1, took place in the evaporation-dominated subtropical North Atlantic Ocean in 2012-2013. The second campaign, SPURS-2, focused on a 3×3° domain in the Inter-Tropical Convergence Zone (ITCZ) in the eastern equatorial Pacific (123.5-126.5°W and 8.5-11.5°N), where the near-surface salinity is strongly dominated by precipitation. The first SPURS-2 cruise took place in Aug-Sep 2016 on board the R/V Roger Revelle, during which a complex multi-instrument oceanographic survey was conducted. As part of this field campaign, we deployed 6 dual-sensor Lagrangian drifters, specifically designed to measure temperature and salinity near the surface ( 20 cm) and at 5 m depth. The main objectives of this deployment were (i) to validate the satellite SSS retrievals and to investigate the causes for the satellite-Argo SSS bias in the precipitation-dominated SPURS-2 region, and (ii) to explore salinity stratification in the upper 5 m and processes that determine it, in particular in relation to rain events. Throughout the experiment, we have observed systematic differences of 0.01-0.02 psu between the near-surface and 5 m salinity. Rain and low wind events have caused salinity differences of up to 2 psu. Strong evaporation on sunny and low wind days has caused the surface to be saltier than the 5-m depth layer by up to 0.4 psu. The mixing time scale between the surface and 5-m depth has been less than a day. Overall, the drifter observations have shown that the bias between Argo and satellite retrievals in the precipitation-dominated region can be largely due to the surface-subsurface salinity differences.

  12. On the persistence and coherence of subpolar sea surface temperature and salinity anomalies associated with the Atlantic multidecadal variability

    NASA Astrophysics Data System (ADS)

    Zhang, Rong

    2017-08-01

    This study identifies key features associated with the Atlantic multidecadal variability (AMV) in both observations and a fully coupled climate model, e.g., decadal persistence of monthly mean subpolar North Atlantic (NA) sea surface temperature (SST) and salinity (SSS) anomalies, and high coherence at low frequency among subpolar NA SST/SSS, upper ocean heat/salt content, and the Atlantic Meridional Overturning Circulation (AMOC) fingerprint. These key AMV features, which can be used to distinguish the AMV mechanism, cannot be explained by the slab ocean model results or the red noise process but are consistent with the ocean dynamics mechanism. This study also shows that at low frequency, the correlation and regression between net surface heat flux and SST anomalies are key indicators of the relative roles of oceanic versus atmospheric forcing in SST anomalies. The oceanic forcing plays a dominant role in the subpolar NA SST anomalies associated with the AMV.

  13. The vertical structure of upper ocean variability at the Porcupine Abyssal Plain during 2012-2013

    NASA Astrophysics Data System (ADS)

    Damerell, Gillian M.; Heywood, Karen J.; Thompson, Andrew F.; Binetti, Umberto; Kaiser, Jan

    2016-05-01

    This study presents the characterization of variability in temperature, salinity and oxygen concentration, including the vertical structure of the variability, in the upper 1000 m of the ocean over a full year in the northeast Atlantic. Continuously profiling ocean gliders with vertical resolution between 0.5 and 1 m provide more information on temporal variability throughout the water column than time series from moorings with sensors at a limited number of fixed depths. The heat, salt and dissolved oxygen content are quantified at each depth. While the near surface heat content is consistent with the net surface heat flux, heat content of the deeper layers is driven by gyre-scale water mass changes. Below ˜150m, heat and salt content display intraseasonal variability which has not been resolved by previous studies. A mode-1 baroclinic internal tide is detected as a peak in the power spectra of water mass properties. The depth of minimum variability is at ˜415m for both temperature and salinity, but this is a depth of high variability for oxygen concentration. The deep variability is dominated by the intermittent appearance of Mediterranean Water, which shows evidence of filamentation. Susceptibility to salt fingering occurs throughout much of the water column for much of the year. Between about 700-900 m, the water column is susceptible to diffusive layering, particularly when Mediterranean Water is present. This unique ability to resolve both high vertical and temporal variability highlights the importance of intraseasonal variability in upper ocean heat and salt content, variations that may be aliased by traditional observing techniques.

  14. A Bayesian, multivariate calibration for Globigerinoides ruberMg/Ca

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khider, D.; Huerta, G.; Jackson, C.

    The use of Mg/Ca in marine carbonates as a paleothermometer has been challenged by observations that implicate salinity as a contributing influence on Mg incorporation into biotic calcite and that dissolution at the sea-floor alters the original Mg/Ca. Yet, these factors have not yet been incorporated into a single calibration model. In this paper, we introduce a new Bayesian calibration for Globigerinoides ruber Mg/Ca based on 186 globally distributed core top samples, which explicitly takes into account the effect of temperature, salinity, and dissolution on this proxy. Our reported temperature, salinity, and dissolution (here expressed as deep-water ΔCO 2- 3)more » sensitivities are (±2σ) 8.7±0.9%/°C, 3.9±1.2%/psu, and 3.3±1.3%/μmol.kg -1 below a critical threshold of 21 μmol/kg in good agreement with previous culturing and core-top studies. We then perform a sensitivity experiment on a published record from the western tropical Pacific to investigate the bias introduced by these secondary influences on the interpretation of past temperature variability. This experiment highlights the potential for misinterpretations of past oceanographic changes when the secondary influences of salinity and dissolution are not accounted for. Finally, multiproxy approaches could potentially help deconvolve the contributing influences but this awaits better characterization of the spatio-temporal relationship between salinity and δ 18O sw over millennial and orbital timescales.« less

  15. Seasonal carbonate chemistry covariation with temperature, oxygen, and salinity in a fjord estuary: implications for the design of ocean acidification experiments.

    PubMed

    Reum, Jonathan C P; Alin, Simone R; Feely, Richard A; Newton, Jan; Warner, Mark; McElhany, Paul

    2014-01-01

    Carbonate chemistry variability is often poorly characterized in coastal regions and patterns of covariation with other biologically important variables such as temperature, oxygen concentration, and salinity are rarely evaluated. This absence of information hampers the design and interpretation of ocean acidification experiments that aim to characterize biological responses to future pCO2 levels relative to contemporary conditions. Here, we analyzed a large carbonate chemistry data set from Puget Sound, a fjord estuary on the U.S. west coast, and included measurements from three seasons (winter, summer, and fall). pCO2 exceeded the 2008-2011 mean atmospheric level (392 µatm) at all depths and seasons sampled except for the near-surface waters (< 10 m) in the summer. Further, undersaturated conditions with respect to the biogenic carbonate mineral aragonite were widespread (Ωar<1). We show that pCO2 values were relatively uniform throughout the water column and across regions in winter, enriched in subsurface waters in summer, and in the fall some values exceeded 2500 µatm in near-surface waters. Carbonate chemistry covaried to differing levels with temperature and oxygen depending primarily on season and secondarily on region. Salinity, which varied little (27 to 31), was weakly correlated with carbonate chemistry. We illustrate potential high-frequency changes in carbonate chemistry, temperature, and oxygen conditions experienced simultaneously by organisms in Puget Sound that undergo diel vertical migrations under present-day conditions. We used simple calculations to estimate future pCO2 and Ωar values experienced by diel vertical migrators based on an increase in atmospheric CO2. Given the potential for non-linear interactions between pCO2 and other abiotic variables on physiological and ecological processes, our results provide a basis for identifying control conditions in ocean acidification experiments for this region, but also highlight the wide range of carbonate chemistry conditions organisms may currently experience in this and similar coastal ecosystems.

  16. Seasonal Carbonate Chemistry Covariation with Temperature, Oxygen, and Salinity in a Fjord Estuary: Implications for the Design of Ocean Acidification Experiments

    PubMed Central

    Reum, Jonathan C. P.; Alin, Simone R.; Feely, Richard A.; Newton, Jan; Warner, Mark; McElhany, Paul

    2014-01-01

    Carbonate chemistry variability is often poorly characterized in coastal regions and patterns of covariation with other biologically important variables such as temperature, oxygen concentration, and salinity are rarely evaluated. This absence of information hampers the design and interpretation of ocean acidification experiments that aim to characterize biological responses to future pCO2 levels relative to contemporary conditions. Here, we analyzed a large carbonate chemistry data set from Puget Sound, a fjord estuary on the U.S. west coast, and included measurements from three seasons (winter, summer, and fall). pCO2 exceeded the 2008–2011 mean atmospheric level (392 µatm) at all depths and seasons sampled except for the near-surface waters (< 10 m) in the summer. Further, undersaturated conditions with respect to the biogenic carbonate mineral aragonite were widespread (Ωar<1). We show that pCO2 values were relatively uniform throughout the water column and across regions in winter, enriched in subsurface waters in summer, and in the fall some values exceeded 2500 µatm in near-surface waters. Carbonate chemistry covaried to differing levels with temperature and oxygen depending primarily on season and secondarily on region. Salinity, which varied little (27 to 31), was weakly correlated with carbonate chemistry. We illustrate potential high-frequency changes in carbonate chemistry, temperature, and oxygen conditions experienced simultaneously by organisms in Puget Sound that undergo diel vertical migrations under present-day conditions. We used simple calculations to estimate future pCO2 and Ωar values experienced by diel vertical migrators based on an increase in atmospheric CO2. Given the potential for non-linear interactions between pCO2 and other abiotic variables on physiological and ecological processes, our results provide a basis for identifying control conditions in ocean acidification experiments for this region, but also highlight the wide range of carbonate chemistry conditions organisms may currently experience in this and similar coastal ecosystems. PMID:24586915

  17. Spicule size variation in Xestospongia testudinaria Lamarck, 1815 at Probolinggo-Situbondo coastal

    NASA Astrophysics Data System (ADS)

    Subagio, Iwenda Bella; Setiawan, Edwin; Hariyanto, Sucipto; Irawan, Bambang

    2017-06-01

    Xestospongia testudinaria Lamarck, 1815 is a marine sponge that become a main constituent in reef ecosystems at northern waters Probolinggo-Situbondo. This barrel sponge species possesses an oxea type of spicule that varies in dimensions (length and width) in concordance to condition and location of habitat. The experiment aimed to understand how spicules condition of this sponge reacted to environment variables. Sponges' specimen were taken by SCUBA equipment in 6-7 m, 10-11 m, and 14-15 m depths in addition to four different localities and three different part of sponges' body (upper, middle and basal parts). Environmental variables data were also retrieved (salinity, water clarity, temperature, dissolve silica, and depth) in each locations. Results confirmed that oxea spicule size either in length or width dimensions in four locations (Batu Lawang coral cluster [BL], Karang Mayit coral cluster [KM], Paiton coral cluster [PT], and Takat Palapa [TP]) relatively increased toward depth. Likewise, the size of spicules in the TP relatively longer than three other locations. In contrast, spicules oxea in PT relatively wider than three other locations. Salinity gave negative impact to spicules length, while depth gave positive impact. Depth, water clarity, dissolve silica, and temperature gave negative effect to spicules width while salinity gave positive impact.

  18. Metabolic physiology of the invasive clam, Potamocorbula amurensis: the interactive role of temperature, salinity, and food availability.

    PubMed

    Miller, Nathan A; Chen, Xi; Stillman, Jonathon H

    2014-01-01

    In biological systems energy serves as the ultimate commodity, often determining species distributions, abundances, and interactions including the potential impact of invasive species on native communities. The Asian clam Potamocorbula amurensis invaded the San Francisco Estuary (SFE) in 1986 and is implicated in the decline of native fish species through resource competition. Using a combined laboratory/field study we examined how energy expenditure in this clam is influenced by salinity, temperature and food availability. Measures of metabolism were made at whole organism (metabolic rate) and biochemical (pyruvate kinase (PK) and citrate synthase (CS) enzyme activities) levels. We found in the field, over the course of a year, the ratio of PK to CS was typically 1.0 suggesting that aerobic and fermentative metabolism were roughly equivalent, except for particular periods characterized by low salinity, higher temperatures, and intermediate food availabilities. In a 30-day laboratory acclimation experiment, however, neither metabolic rate nor PK:CS ratio was consistently influenced by the same variables, though the potential for fermentative pathways did predominate. We conclude that in field collected animals, the addition of biochemical measures of energetic state provide little additional information to the previously measured whole organism metabolic rate. In addition, much of the variation in the laboratory remained unexplained and additional variables, including reproductive stage or body condition may influence laboratory-based results. Further study of adult clams must consider the role of organismal condition, especially reproductive state, in comparisons of laboratory experiments and field observations.

  19. Mg/Ca-temperature calibration and flux variability of Globigerinoides ruber based on a bi-weekly resolved sediment trap

    NASA Astrophysics Data System (ADS)

    Monteagudo, M. M.; Weldeab, S.; Lea, D. W.; Karl, D. M.; Rosenthal, Y.

    2016-12-01

    Planktonic foraminiferal Mg/Ca is one of the most widely-applied proxies for sea surface temperature reconstructions. Current calibrations yield a temperature sensitivity of 9.0 ± 1.0% Mg/Ca per °C (1-2). According to culture studies (3-4), salinity may also influence Mg/Ca ratios by 3.3 ± 1.7% per salinity unit (4), though this effect has not been verified by a field-based study. Paired Mg/Ca-δ18O and faunal fluxes of Globigerinoides ruber (sensu lato) were measured from sediment trap samples at the Hawaii Ocean Time Series. Within the habitat depth range of G. ruber (0-50 m), seasonal temperature and salinity vary by 4 °C and 0.7 practical salinity units, respectively. Multivariate regression reveals that salinity influence is not significant at this site, allowing us to isolate and quantify the temperature influence on Mg/Ca using spatially and temporally highly-resolved temperature measurements. Our study shows an exponential Mg/Ca-temperature relationship of: Mg/Ca [mmol/mol] = (0.97 ± 0.39) exp ((0.063 ± 0.016)*T[°C]) (RMSE=0.32). The results of our faunal and geochemical analyses highlight two key findings. First, foraminiferal assemblage data reveals that the mean annual flux of G. ruber (13 shells/m2/day) is strongly skewed by flux during the summer (up to 63 shells/m2/day) with potential implications for reconstructing annual SST. Second, our results indicate a temperature sensitivity of 6.3 ± 1.6% Mg/Ca per °C, suggesting that the temperature influence on Mg/Ca may be lower than the canonical 9 ± 1 % Mg/Ca per °C value and is sensitive to the choice of habitat depth. 1. Anand et al., Paleoceanography, 18, 1050 (2003); 2. Dekens et al., G3, 3, 1022 (2002); 3. Hönisch et al., GCA, 121, 196-213 (2013); 4. Kisakürek et al., EPSL, 273, 260-269 (2008).

  20. Spatial variability in plankton biomass and hydrographic variables along an axial transect in Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Roman, M.; Kimmel, D.; McGilliard, C.; Boicourt, W.

    2006-05-01

    High-resolution, axial sampling surveys were conducted in Chesapeake Bay during April, July, and October from 1996 to 2000 using a towed sampling device equipped with sensors for depth, temperature, conductivity, oxygen, fluorescence, and an optical plankton counter (OPC). The results suggest that the axial distribution and variability of hydrographic and biological parameters in Chesapeake Bay were primarily influenced by the source and magnitude of freshwater input. Bay-wide spatial trends in the water column-averaged values of salinity were linear functions of distance from the main source of freshwater, the Susquehanna River, at the head of the bay. However, spatial trends in the water column-averaged values of temperature, dissolved oxygen, chlorophyll-a and zooplankton biomass were nonlinear along the axis of the bay. Autocorrelation analysis and the residuals of linear and quadratic regressions between each variable and latitude were used to quantify the patch sizes for each axial transect. The patch sizes of each variable depended on whether the data were detrended, and the detrending techniques applied. However, the patch size of each variable was generally larger using the original data compared to the detrended data. The patch sizes of salinity were larger than those for dissolved oxygen, chlorophyll-a and zooplankton biomass, suggesting that more localized processes influence the production and consumption of plankton. This high-resolution quantification of the zooplankton spatial variability and patch size can be used for more realistic assessments of the zooplankton forage base for larval fish species.

  1. Ecophysiology of Nais elinguis (Oligochaeta) in a brackish-water lagoon

    NASA Astrophysics Data System (ADS)

    Little, Colin

    1984-02-01

    Population densities of Nais elinguis Müller were determined in Swanpool, a brackish-water lagoon at Falmouth, Cornwall, U.K., over a four-year period. High densities were found only from January to May, usually with a peak in March. Significant negative correlations were shown between population density and both salinity and temperature. In laboratory tests, feeding rates remained unchanged from freshwater to 20‰ salinity (S), but declined above this salinity. Nais elinguis was shown to be a good osmoregulator, remaining hyperosmotic below 7‰ S, and hypo-osmotic above this. Feeding rate showed a Q 10 of approximately 2 from 1 to 25°C, but above this the rate declined. Feeding rate was unaffected between pH 6 and 11. Increased salinity to (10‰ S) did not influence the effect of temperature on feeding rate. This high salinity did reduce feeding rate at a pH of 10 and above. It is concluded that the physical and chemical variables considered are unlikely to be direct causal factors limiting populations of N. elinguis in Swanpool. The influence of food supply, competition, predation and changes in reproductive mode are discussed as possible controlling factors. It is shown that the population decline of N. elinguis in early summer usually coincides with the rise of populations of chironomid larvae.

  2. Interactions between chemical and climate stressors: A role for mechanistic toxicology in assessing climate change risks

    EPA Science Inventory

    Incorporation of global climate change (GCC) effects into regulatory assessments of chemical risk and injury requires an integrated examination of both chemical and non-chemical stressors. Environmental variables altered by GCC, such as temperature, precipitation, salinity and pH...

  3. Seasonal surface circulation, temperature, and salinity in Prince William Sound, Alaska

    NASA Astrophysics Data System (ADS)

    Musgrave, David L.; Halverson, Mark J.; Scott Pegau, W.

    2013-02-01

    Salinity, temperature, and depth profiles from 1973 to 2010 were used to construct a seasonal climatology of surface temperature, surface salinity, mixed layer depth (MLD), potential energy of mixing, and surface geostrophic circulation in Prince William Sound (PWS) and the adjacent Gulf of Alaska. Surface salinity is greatest in winter and least in summer due to the influence of increased freshwater runoff in summer. It is generally lowest in the northwest and highest in the Gulf of Alaska. The surface temperature is lowest in the winter and highest in the summer when surface heating is greatest, with little spatial variability across the Sound. The MLD is deepest in winter (9-27 m) and shallowest in summer (4-5 m). The work by winds was estimated from meteorological buoy data in central PWS and compared to the potential energy of mixing of the upper water column. The potential depth to which winds mix the upper water column was generally consistent with the MLD. The surface geostrophic circulation in the central Sound has: a southerly flow in the western central Sound in the winter; a closed, weak anticyclonic cell in spring; a closed, cyclonic cell in the summer; an open, cyclonic circulation in the fall. In the western passages, a southerly flow occurs in spring, summer, and fall. These results have important implications for oil spill response in PWS, the use of oil dispersants, and for comparison to numerical studies.

  4. Pronounced centennial-scale Atlantic Ocean climate variability correlated with Western Hemisphere hydroclimate.

    PubMed

    Thirumalai, Kaustubh; Quinn, Terrence M; Okumura, Yuko; Richey, Julie N; Partin, Judson W; Poore, Richard Z; Moreno-Chamarro, Eduardo

    2018-01-26

    Surface-ocean circulation in the northern Atlantic Ocean influences Northern Hemisphere climate. Century-scale circulation variability in the Atlantic Ocean, however, is poorly constrained due to insufficiently-resolved paleoceanographic records. Here we present a replicated reconstruction of sea-surface temperature and salinity from a site sensitive to North Atlantic circulation in the Gulf of Mexico which reveals pronounced centennial-scale variability over the late Holocene. We find significant correlations on these timescales between salinity changes in the Atlantic, a diagnostic parameter of circulation, and widespread precipitation anomalies using three approaches: multiproxy synthesis, observational datasets, and a transient simulation. Our results demonstrate links between centennial changes in northern Atlantic surface-circulation and hydroclimate changes in the adjacent continents over the late Holocene. Notably, our findings reveal that weakened surface-circulation in the Atlantic Ocean was concomitant with well-documented rainfall anomalies in the Western Hemisphere during the Little Ice Age.

  5. Pronounced centennial-scale Atlantic Ocean climate variability correlated with Western Hemisphere hydroclimate

    USGS Publications Warehouse

    Thirumalai, Kaustubh; Quinn, Terrence M.; Okumura, Yuko; Richey, Julie; Partin, Judson W.; Poore, Richard Z.; Moreno-Chamarro, Eduardo

    2018-01-01

    Surface-ocean circulation in the northern Atlantic Ocean influences Northern Hemisphere climate. Century-scale circulation variability in the Atlantic Ocean, however, is poorly constrained due to insufficiently-resolved paleoceanographic records. Here we present a replicated reconstruction of sea-surface temperature and salinity from a site sensitive to North Atlantic circulation in the Gulf of Mexico which reveals pronounced centennial-scale variability over the late Holocene. We find significant correlations on these timescales between salinity changes in the Atlantic, a diagnostic parameter of circulation, and widespread precipitation anomalies using three approaches: multiproxy synthesis, observational datasets, and a transient simulation. Our results demonstrate links between centennial changes in northern Atlantic surface-circulation and hydroclimate changes in the adjacent continents over the late Holocene. Notably, our findings reveal that weakened surface-circulation in the Atlantic Ocean was concomitant with well-documented rainfall anomalies in the Western Hemisphere during the Little Ice Age.

  6. Combined effects of temperature and salinity on the demographic response of Proales similis (Beauchamp, 1907) and Brachionus plicatilis (Müller, 1786) (Rotifera) to mercury.

    PubMed

    Rebolledo, Uriel Arreguin; Nandini, S; Sánchez, Ofelia Escobar; Sarma, S S S

    2018-07-01

    The demographic response of the brackish-water rotifers Proales similis and Brachionus plicatilis to mercury (0.5, 2, 8 and 32 μg L -1 of HgCl 2 ) at different salinity levels (10 and 20‰) and two temperature (25 °C and 32 °C) regimes were evaluated. Median lethal concentration (LC 50 ) for P. similis and B. plicatilis was 10 and 16 μg L -1 , respectively, showing that Proales similis was more sensitive to mercury than B. plicatilis. The rate of population increase (r) for both species was greater at 10‰ salinity and 32 °C (ranged from 0.6 to 0.95 d -1 ). The r-value decreased as the concentration of mercury in the medium increased. Regardless of the temperature, at lower salinity and higher mercury concentration (32 μg L -1 ), P. similis died within six days. The survivorship of P. similis and B. plicatilis was higher at 25 °C than at 32 °C (ranged from 5 to 8 and 7-13 d, respectively). Fecundity was higher at 32 °C than at 25 °C for both rotifers species. There was a significant effect of the interaction among salinity, temperature, and mercury in both species on the reproductive variables such as net and gross reproductive rates, generation time and the rate of population increase. Considering the sensitivity of P. similis, we suggest that this species be included in the list of marine bioassay organisms. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Updating temperature and salinity mean values and trends in the Western Mediterranean: The RADMED project

    NASA Astrophysics Data System (ADS)

    Vargas-Yáñez, M.; García-Martínez, M. C.; Moya, F.; Balbín, R.; López-Jurado, J. L.; Serra, M.; Zunino, P.; Pascual, J.; Salat, J.

    2017-09-01

    The RADMED project is devoted to the implementation and maintenance of a multidisciplinary monitoring system around the Spanish Mediterranean waters. This observing system is based on periodic multidisciplinary cruises covering the coastal waters, continental shelf and slope waters and some deep stations (>2000 m) from the Westernmost Alboran Sea to Barcelona in the Catalan Sea, including the Balearic Islands. This project was launched in 2007 unifying and extending some previous monitoring projects which had a more reduced geographical coverage. Some of the time series currently available extend from 1992, while the more recent ones were initiated in 2007. The present work updates the available time series up to 2015 (included) and shows the capability of these time series for two main purposes: the calculation of mean values for the properties of main water masses around the Spanish Mediterranean, and the study of the interannual and decadal variability of such properties. The data set provided by the RADMED project has been merged with historical data from the MEDAR/MEDATLAS data base for the calculation of temperature and salinity trends from 1900 to 2015. The analysis of these time series shows that the intermediate and deep layers of the Western Mediterranean have increased their temperature and salinity with an acceleration of the warming and salting trends from 1943. Trends for the heat absorbed by the water column for the 1943-2015 period, range between 0.2 and 0.6 W/m2 depending on the used methodology. The temperature and salinity trends for the same period and for the intermediate layer are 0.002 °C/yr and 0.001 yr-1 respectively. Deep layers warmed and increased their salinity at a rate of 0.004 °C/yr and 0.001 yr-1.

  8. Is the Aquarius sea surface salinity variability representative?

    NASA Astrophysics Data System (ADS)

    Carton, J.; Grodsky, S.

    2016-12-01

    The leading mode of the Aquarius monthly anomalous sea surface salinity (SSS) is evaluated within the 50S-50N belt, where SSS retrieval accuracy is higher. This mode accounts for about 18% of the variance and resembles a pattern of the ENSO-induced anomalous rainfall. The leading mode of SSS variability deducted from a longer JAMSTEC analysis also accounts for about 17% of the variance and has very similar spatial pattern and almost a perfect correspondence of its temporal principal component to the SOI index. In that sense, the Aquarius SSS variability at low and middle latitudes is representative of SSS variability that may be obtained from longer records. This is explained by the fact that during the Aquarius period (2011-2015), the SOI index changed significantly from La Nina toward El Nino state, thus spanning a significant range of its characteristic variations. Multivariate EOF analysis of anomalous SSS and SST suggests that ENSO-induced shift in the tropical Pacific rainfall produces negatively correlated variability of temperature and salinity, which are expected if the anomalous surface flux (stronger rainfall coincident with less downward radiation) drives the system. But, anomalous SSS and SST are positively correlated in some areas including the northwestern Atlantic shelf (north of the Gulfstream) and the Pacific sector adjusting to the California peninsula. This positive correlation is indicative of an advection driven regime that is analyzed separately.

  9. Anthropogenic Influence on the Changes of the Subtropical Gyre Circulation in the South Pacific in the 20th Century

    NASA Astrophysics Data System (ADS)

    Albrecht, F.; Pizarro, O.; Montecinos, A.

    2016-12-01

    The subtropical ocean gyre in the South Pacific is a large scale wind-driven ocean circulation, including the Peru-Chile Current, the westward South Equatorial Current, the East Australian Current, and the eastward South Pacific Current. Large scale ocean circulations play an essential role in the climate of the Earth over long and short term time scales.In the recent years a spin-up of this circulation has been recognized analyzing observations of sea level, temperature and salinity profiles, sea surface temperature and wind. Until now it is not clear whether this spin-up is decadal variability or whether it is a long-term trend introduced by anthropogenic forcing. This study aims to analyze whether and how anthropogenic forcing influences the position and the strength of the gyre in the 20th century. To determine that, yearly means of different variables of an ensemble of CMIP5 models are analyzed. The experiments 'historical' and 'historicalNat' are examined. The 'historical' experiment simulates the climate of the 20th century and the 'historicalNat' experiment covers the same time period, but only includes natural forcings. Comparing the outcomes of these two experiments is supposed to give information about the anthropogenic influence on the subtropical gyre of the South Pacific.The main variable we analyze is sea level change. This is directly related to the gyre circulation. The center of the gyre is characterized by a high pressure zone (high sea level) and the temporal and spatial variability of the sea level height field gives information about changes in the gyre circulation. The CMIP5 databank includes steric and dynamic sea level changes. Steric sea level, that is the contribution of temperature and salinity of the water, describes the major contribution to regional sea level change with respect to the global mean. Density changes contract or expand the water, which also changes the sea surface height. This does not only occur at the surface, but at all layers in the ocean. Sea level change thus integrates ocean variability throughout the depth of the ocean. Sea level simulations of the different experiments are compared using long-term trends, multi-year anomalies and EOF-Analysis. Changes in temperature and salinity in the deeper ocean are used to describe the development of the gyre below the surface.

  10. Responses of the picophytoplankton community to temperature fronts in the northeastern Arabian Sea during the northeast monsoon

    NASA Astrophysics Data System (ADS)

    Mitbavkar, Smita; Anil, Arga Chandrashekar

    2018-07-01

    We investigated the responses of the picophytoplankton (< 3 μm) community to a temperature filament and front through high resolution spatial ( 1 NM) sampling (November-23 to December-11, 2012) in the northeastern Arabian Sea (69°E, 18.85°N to 20.25°N). Samples were collected at discrete depths within the 100 m water column. Synechococcus dominated the picophytoplankton community numerically and in terms of biomass along the entire transect. To investigate the patterns of variability in picophytoplankton distribution, depending on the water mass characteristics, the entire transect was divided into four zones (1) south of filament (SFIL) with warm oligotrophic waters, (2) filament (FIL) with cooler and low saline waters, (3) north of filament (NFIL) with relatively cooler waters than the SFIL and (4) front (FRO) with relatively cooler and less saline waters than the FIL. Depth-integrated abundance and biomass of Synechococcus were relatively higher within the FIL and FRO whereas Prochlorococcus and picoeukaryotes were abundant in SFIL and NFIL. Redundancy analysis of environmental variables and picophytoplankton abundance showed that lower saline water mass within the mesoscale features harbored relatively higher Synechococcus abundance and biomass. Two Synechococcus ecotypes were distinguished based on the fluorescence intensity of the accessory pigment, phycoerythrin; the one with higher intensity (open ocean ecotype) dominating in the FIL and the other with lower intensity in the FRO (coastal ecotype). The relatively lower saline surface water mass at the FRO, probably a result of coastal advection, could have introduced the latter ecotype. Vertically, a positive correlation of Prochlorococcus with nutrients and Synechococcus with temperature corroborates their higher and lower abundance and biomass, respectively in the deeper waters. The positive correlation of Synechococcus with the total chlorophyll biomass indicates a similar response to environmental variables within the mesoscale features. This study shows that picophytoplankton contribution (16-24%) to the total phytoplankton carbon biomass in tropical mesoscale features is likely to have important consequences on the planktonic food web function.

  11. Fine-scale variability of isopycnal salinity in the California Current System

    NASA Astrophysics Data System (ADS)

    Itoh, Sachihiko; Rudnick, Daniel L.

    2017-09-01

    This paper examines the fine-scale structure and seasonal fluctuations of the isopycnal salinity of the California Current System from 2007 to 2013 using temperature and salinity profiles obtained from a series of underwater glider surveys. The seasonal mean distributions of the spectral power of the isopycnal salinity gradient averaged over submesoscale (12-30 km) and mesoscale (30-60 km) ranges along three survey lines off Monterey Bay, Point Conception, and Dana Point were obtained from 298 transects. The mesoscale and submesoscale variance increased as coastal upwelling caused the isopycnal salinity gradient to steepen. Areas of elevated variance were clearly observed around the salinity front during the summer then spread offshore through the fall and winter. The high fine-scale variances were observed typically above 25.8 kg m-3 and decreased with depth to a minimum at around 26.3 kg m-3. The mean spectral slope of the isopycnal salinity gradient with respect to wavenumber was 0.19 ± 0.27 over the horizontal scale of 12-60 km, and 31%-35% of the spectra had significantly positive slopes. In contrast, the spectral slope over 12-30 km was mostly flat, with mean values of -0.025 ± 0.32. An increase in submesoscale variability accompanying the steepening of the spectral slope was often observed in inshore areas; e.g., off Monterey Bay in winter, where a sharp front developed between the California Current and the California Under Current, and the lower layers of the Southern California Bight, where vigorous interaction between a synoptic current and bottom topography is to be expected.

  12. Influence of genetic background, salinity, and inoculum size on growth of the ichthyotoxic golden alga (Prymnesium parvum).

    PubMed

    Rashel, Rakib H; Patiño, Reynaldo

    2017-06-01

    Salinity (5-30) effects on golden alga growth were determined at a standard laboratory temperature (22°C) and one associated with natural blooms (13°C). Inoculum-size effects were determined over a wide size range (100-100,000cellsml -1 ). A strain widely distributed in the USA, UTEX-2797 was the primary study subject but another of limited distribution, UTEX-995 was used to evaluate growth responses in relation to genetic background. Variables examined were exponential growth rate (r), maximum cell density (max-D) and, when inoculum size was held constant (100cellsml -1 ), density at onset of exponential growth (early-D). In UTEX-2797, max-D increased as salinity increased from 5 to ∼10-15 and declined thereafter regardless of temperature but r remained generally stable and only declined at salinity of 25-30. In addition, max-D correlated positively with r and early-D, the latter also being numerically highest at salinity of 15. In UTEX-995, max-D and r responded similarly to changes in salinity - they remained stable at salinity of 5-10 and 5-15, respectively, and declined at higher salinity. Also, max-D correlated with r but not early-D. Inoculum size positively and negatively influenced max-D and r, respectively, in both strains and these effects were significant even when the absolute size difference was small (100 versus 1000 cells ml -1 ). When cultured under similar conditions, UTEX-2797 grew faster and to much higher density than UTEX-995. In conclusion, (1) UTEX-2797's superior growth performance may explain its relatively wide distribution in the USA, (2) the biphasic growth response of UTEX-2797 to salinity variation, with peak abundance at salinity of 10-15, generally mirrors golden alga abundance-salinity associations in US inland waters, and (3) early cell density - whether artificially manipulated or naturally attained - can influence UTEX-2797 bloom potential. Published by Elsevier B.V.

  13. Addition of simultaneous heat and solute transport and variable fluid viscosity to SEAWAT

    USGS Publications Warehouse

    Thorne, D.; Langevin, C.D.; Sukop, M.C.

    2006-01-01

    SEAWAT is a finite-difference computer code designed to simulate coupled variable-density ground water flow and solute transport. This paper describes a new version of SEAWAT that adds the ability to simultaneously model energy and solute transport. This is necessary for simulating the transport of heat and salinity in coastal aquifers for example. This work extends the equation of state for fluid density to vary as a function of temperature and/or solute concentration. The program has also been modified to represent the effects of variable fluid viscosity as a function of temperature and/or concentration. The viscosity mechanism is verified against an analytical solution, and a test of temperature-dependent viscosity is provided. Finally, the classic Henry-Hilleke problem is solved with the new code. ?? 2006 Elsevier Ltd. All rights reserved.

  14. Skill assessment of the coupled physical-biogeochemical operational Mediterranean Forecasting System

    NASA Astrophysics Data System (ADS)

    Cossarini, Gianpiero; Clementi, Emanuela; Salon, Stefano; Grandi, Alessandro; Bolzon, Giorgio; Solidoro, Cosimo

    2016-04-01

    The Mediterranean Monitoring and Forecasting Centre (Med-MFC) is one of the regional production centres of the European Marine Environment Monitoring Service (CMEMS-Copernicus). Med-MFC operatively manages a suite of numerical model systems (3DVAR-NEMO-WW3 and 3DVAR-OGSTM-BFM) that provides gridded datasets of physical and biogeochemical variables for the Mediterranean marine environment with a horizontal resolution of about 6.5 km. At the present stage, the operational Med-MFC produces ten-day forecast: daily for physical parameters and bi-weekly for biogeochemical variables. The validation of the coupled model system and the estimate of the accuracy of model products are key issues to ensure reliable information to the users and the downstream services. Product quality activities at Med-MFC consist of two levels of validation and skill analysis procedures. Pre-operational qualification activities focus on testing the improvement of the quality of a new release of the model system and relays on past simulation and historical data. Then, near real time (NRT) validation activities aim at the routinely and on-line skill assessment of the model forecast and relays on the NRT available observations. Med-MFC validation framework uses both independent (i.e. Bio-Argo float data, in-situ mooring and vessel data of oxygen, nutrients and chlorophyll, moored buoys, tide-gauges and ADCP of temperature, salinity, sea level and velocity) and semi-independent data (i.e. data already used for assimilation, such as satellite chlorophyll, Satellite SLA and SST and in situ vertical profiles of temperature and salinity from XBT, Argo and Gliders) We give evidence that different variables (e.g. CMEMS-products) can be validated at different levels (i.e. at the forecast level or at the level of model consistency) and at different spatial and temporal scales. The fundamental physical parameters temperature, salinity and sea level are routinely validated on daily, weekly and quarterly base at regional and sub-regional scale and along specific vertical layers (temperature and salinity); while velocity fields are daily validated against in situ coastal moorings. Since the velocity skill cannot be accurately assessed through coastal measurements due to the actual model horizontal resolution (~6.5 km), new validation metrics and procedures are under investigation. Chlorophyll is the only biogeochemical variable that can be validated routinely at the temporal and spatial scale of the weekly forecast, while nutrients and oxygen predictions can be validated locally or at sub-basin and seasonal scales. For the other biogeochemical variables (i.e. primary production, carbonate system variables) only the accuracy of the average dynamics and model consistency can be evaluated. Then, we discuss the limiting factors of the present validation framework, and the quality and extension of the observing system that would be needed for improving the reliability of the physical and biogeochemical Mediterranean forecast services.

  15. Salinity and hypoxia in the Baltic Sea since A.D. 1500

    NASA Astrophysics Data System (ADS)

    Hansson, Daniel; Gustafsson, Erik

    2011-03-01

    Over the past century, large salinity variability and deteriorating oxygen conditions have been observed in the Baltic Sea. These long-term changes were investigated in the central Baltic Sea using an ocean climate model with meteorological forcing based on seasonal temperature and pressure reconstructions covering the period 1500-1995. The results indicate that the salinity has slowly increased by 0.5 salinity units since 1500, peaking in the middle eighteenth century. Oxygen concentration is negatively correlated with salinity in the major part of the water column, indicating improved ventilation during a fresher state of the Baltic Sea. It is suggested that anoxic conditions have occurred in the deep water several times per century since 1500. However, since the middle twentieth century, increased oxygen consumption that is most likely the effect of anthropogenic nutrient release has resulted in a persistent oxygen deficiency in the water below 125 m. Within the limitations of our model formulation we suggest that the contemporary severe oxygen conditions are unprecedented since 1500.

  16. Salinity and temperature tolerance of an emergent alien species, the Amazon fish Astronotus ocellatus

    USGS Publications Warehouse

    Gutierrel, Silvia M M; Schofield, Pam; Prodocimo, Viviane

    2016-01-01

    Astronotus ocellatus (oscar), is native to the Amazon basin and, although it has been introduced to many countries, little is known regarding its tolerances for salinity and temperature. In this report, we provide data on the tolerance of A. ocellatus to abrupt and gradual changes in salinity, its high and low temperature tolerance, and information on how salinity, temperature, and fish size interact to affect survival. Fish were able to survive abrupt transfer to salinities as high as 16 ppt with no mortality. When salinity change was gradual (2 ppt/day), fish in the warm-temperature experiment (28°C) survived longer than fish in the cool-temperature experiment (18°C). Larger fish survived longer than smaller ones at the higher salinities when the temperature was warm, but when the temperature was cool fish size had little effect on survival. In the temperature-tolerance experiments, fish survived from 9 to 41°C for short periods of time. Overall, the species showed a wide range of temperature and salinity tolerance. Thus, in spite of the tropical freshwater origin of this species, physiological stress is not likely to hinder its dispersal to brackish waters, especially when temperatures are warm.

  17. P-T composition and evolution of paleofluids in the Paleoproterozoic Mag Hill IOCG system, Contact Lake belt, Northwest Territories, Canada

    NASA Astrophysics Data System (ADS)

    Somarin, A. Karimzadeh; Mumin, A. Hamid

    2014-02-01

    The Echo Bay stratovolcano complex and Contact Lake Belt of the Great Bear Magmatic Zone, Northwest Territories, host a series of coalescing Paleoproterozoic hydrothermal systems that affected an area of several hundred square kilometers. They were caused by intrusion of synvolcanic diorite-monzodioritic plutons into andesitic host rocks, producing several characteristic hydrothermal assemblages. They include early and proximal albite, magnetite-actinolite-apatite, and potassic (K-feldspar) alteration, followed by more distal hematite, phyllic (quartz-sericite-pyrite), and propylitic (chlorite-epidote-carbonate±sericite±albite±quartz) alteration, and finally by late-stage polymetallic epithermal veins. These alteration types are characteristic of iron oxide copper-gold deposits, however, with distal and lower-temperature assemblages similar to porphyry Cu systems. Magnetite-actinolite-apatite alteration formed from high temperature (up to 560 °C) fluids with average salinity of 12.8 wt% NaCl equivalent. The prograde propylitic and phyllic alteration stages are associated with fluids with temperatures varying from 80 to 430 °C and a wide salinity range (0.5-45.6 wt% NaCl equivalent). Similarly, wide fluid temperature (104-450 °C) and salinity (4.2-46.1 wt% NaCl equivalent) ranges are recorded for the phyllic alteration. This was followed by Cu-Ag-U-Zn-Co-Pb sulfarsenide mineralization in late-stage epithermal veins formed at shallow depths and temperatures from 270 °C to as low as 105 °C. The polymetallic veins precipitated from high salinity (mean 30 wt% NaCl equivalent) dense fluids (1.14 g/cm3) with a vapor pressure of 3.8 bars, typical of epithermal conditions. Fluid inclusion evidence indicates that mixed fluids with evolving physicochemical properties were responsible for the formation of the alteration assemblages and mineralization at Mag Hill. An early high temperature, moderate salinity, and magmatic fluid was subsequently modified variably by boiling, mixing with cooler low-salinity meteoric water, and simple cooling. The evidence is consistent with emplacement of the source plutons and stocks into an epithermal environment within ~1 km of surface. This generated near-surface high-temperature alteration in a dynamic hydrothermal system that collapsed (telescoped) resulting in widespread evidence of boiling and epithermal mineralization superimposed on earlier stages of alteration.

  18. The vertical structure of upper ocean variability at the Porcupine Abyssal Plain during 2012–2013

    PubMed Central

    Heywood, Karen J.; Thompson, Andrew F.; Binetti, Umberto; Kaiser, Jan

    2016-01-01

    Abstract This study presents the characterization of variability in temperature, salinity and oxygen concentration, including the vertical structure of the variability, in the upper 1000 m of the ocean over a full year in the northeast Atlantic. Continuously profiling ocean gliders with vertical resolution between 0.5 and 1 m provide more information on temporal variability throughout the water column than time series from moorings with sensors at a limited number of fixed depths. The heat, salt and dissolved oxygen content are quantified at each depth. While the near surface heat content is consistent with the net surface heat flux, heat content of the deeper layers is driven by gyre‐scale water mass changes. Below ∼150m, heat and salt content display intraseasonal variability which has not been resolved by previous studies. A mode‐1 baroclinic internal tide is detected as a peak in the power spectra of water mass properties. The depth of minimum variability is at ∼415m for both temperature and salinity, but this is a depth of high variability for oxygen concentration. The deep variability is dominated by the intermittent appearance of Mediterranean Water, which shows evidence of filamentation. Susceptibility to salt fingering occurs throughout much of the water column for much of the year. Between about 700–900 m, the water column is susceptible to diffusive layering, particularly when Mediterranean Water is present. This unique ability to resolve both high vertical and temporal variability highlights the importance of intraseasonal variability in upper ocean heat and salt content, variations that may be aliased by traditional observing techniques. PMID:27840785

  19. Influence of water temperature and salinity on seasonal occurrences of Vibrio cholerae and enteric bacteria in oyster-producing areas of Veracruz, México.

    PubMed

    Castañeda Chávez, Maria del Refugio; Pardio Sedas, Violeta; Orrantia Borunda, Erasmo; Lango Reynoso, Fabiola

    2005-12-01

    The influence of temperature and salinity on the occurrence of Vibrio cholerae, Escherichia coli and Salmonella spp. associated with water and oyster samples was investigated in two lagoons on the Atlantic Coast of Veracruz, Mexico over a 1-year period. The results indicated that seasonal salinity variability and warm temperatures, as well as nutrient influx, may influence the occurrence of V. cholera. non-O1 and O1. The conditions found in the Alvarado (31.12 degrees C, 6.27 per thousand, pH=8.74) and La Mancha lagoons (31.38 degrees C, 24.18 per thousand, pH=9.15) during the rainy season 2002 favored the occurrence of V. cholera O1 Inaba enterotoxin positive traced in oysters. Vibrio alginolyticus was detected in Alvarado lagoon water samples during the winter season. E. coli and Salmonella spp. were isolated from water samples from the La Mancha (90-96.7% and 86.7-96.7%) and Alvarado (88.6-97.1% and 88.6-100%) lagoons. Occurrence of bacteria may be due to effluents from urban, agricultural and industrial areas.

  20. The influence of temperature and salinity on the Li/Ca and d7Li of inorganic and biogenic carbonates

    NASA Astrophysics Data System (ADS)

    Marriott, C.; Staubwasser, M.; Crompton, R.; Henderson, G.

    2003-04-01

    Lithium is the sixth most abundant metal in the ocean. It is conservative with a residence time of around 1Ma and has two stable isotopes ^7Li and ^6Li that are not actively involved in biological processes. Isotopic fractionation is observed during incorporation into calcium carbonate but no previous work has systematically examined the controls on this fractionation. We have investigated Li incorporation and isotopic fraction in both inorganically precipitated calcite and coralline aragonite (1). In both cases there is an inverse correlation of Li concentration with temperature and no significant variation in isotopic fractionation. A decrease in D Li/Ca from 0.0092 to 0.0030 is seen over a temperature range of 5--30^oC, whilst an offset of approximately -8.5 ppm is seen in the δ^7Li ratio relative to the growth solution. The temperature dependence of Li/Ca has an increased sensitivity at low temperatures and might therefore be useful in examining changes in bottom water temperature. We are now investigating Li/Ca and δ^7Li of foraminifera. Previous work (2) has suggested little variability in Li/Ca with temperature, although this was for samples from warmer water where Li/Ca is not sensitive. In this study, Uvigerina are examined in a series of core top samples from the Arabian Sea with a depth range of 95--1800m and corresponding temperature range of 5--20^oC. A series of inorganic calcite samples have also been precipitated in order to examine the effect of salinity on Li/Ca, δ^7Li and δ44Ca over a salinity range of 10--50 psu. The distribution coefficient of Li shows a positive correlation with salinity over this range. δ^7Li and δ44Ca measurements for these samples are presently being analysed. (1) Marriott et al., 2002, GCA, 66, A485 (2) Delaney et al., 1985, GCA, 49, 1327

  1. Holocene Deep Ocean Variability Detected with Individual Benthic Foraminifera

    NASA Astrophysics Data System (ADS)

    Bova, S. C.; Herbert, T.; Fox-Kemper, B.

    2015-12-01

    Historical observations of deep ocean temperatures (>700 m water depth) show apparently unprecedented rates of warming over the past half century that parallel observed surface warming, on the order of 0.1°C/decade (Purkey and Johnson 2010). Most water masses below 700 m depth, however, have not been at the sea surface where they exchange heat and carbon with the atmosphere since well before industrialization (Gebbie and Huybers 2012). How then has the heat content of isolated deep water masses responded to climate change over the last century? In models, wave mechanisms propagate thermocline anomalies quickly (Masuda et al. 2010), but these dynamics are not fully understood. We therefore turn to the sedimentary record to constrain the bounds of earlier variability from Holocene anomalies. The oxygen isotopic composition (δ18O) of individual benthic foraminifera provide approximately month-long snapshots of the temperature and salinity of ambient deep water during calcification. We exploit the short lifespan of these organisms to reconstruct variability in δ18Oshell, and thus the variability in deep water temperature and salinity, during five 200-yr Holocene intervals at 1000 m water depth in the Eastern Equatorial Pacific (EEP). Modern variability in benthic foraminifer δ18O was too weak to detect but variability at 1000 m water depth in the EEP exceeded our detection limit during two Holocene intervals at high confidence (p<0.01), with δ18O anomalies up to ~0.6 ± 0.15‰ that persist for a month or longer. Although the source of these anomalies remains speculative, rapid communication between the surface and deep ocean that operates on human timescales, faster than previously recognized, or intrinsic variability that has not been active during the history of ocean observations are potential explanations. Further work combining models and high-resolution proxy data is needed to identify the mechanism and global extent of this type of subsurface variability in the global oceans.

  2. Small but tough: What can ecophysiology of croaking gourami Trichopsis vittatus (Cuvier 1831) tell us about invasiveness of non-native fishes in Florida?

    USGS Publications Warehouse

    Schofield, Pam; Schulte, Jessica

    2016-01-01

    Trichopsis vittata (Cuvier, 1831) is a small, freshwater gourami (Fam: Osphronemidae) native to southeast Asia. It was first detected in Florida in the 1970s and seems to have persisted for decades in a small area. In this study, we documented T. vittata’s ecophysiological tolerances (salinity and low-temperature) and qualitatively compared them to published values for other sympatric non-native species that have successfully invaded much of the Florida peninsula. Trichopsis vittata survived acute salinity shifts to 16 psu and was able to survive up to 20 psu when salinity was raised more slowly (5 psu per week). In a cold-tolerance experiment, temperature was lowered from 24 °C at 1 °C hr-1 until fish died. Mean temperature at death (i.e., lower lethal limit) was 7.2 °C. Trichopsis vittata seems as tolerant or more tolerant than many other sympatric non-native fishes for the variables we examined. However, T. vittata is the only species that has not dispersed since its introduction. Species other than T. vittata have broadly invaded ranges, many of which include the entire lower third of the Florida peninsula. It is possible that tolerance to environmental parameters serves as a filter for establishment, wherein candidate species must possess the ability to survive abiotic extremes as a first step. However, a species’ ability to expand its geographic range may ultimately rely on a secondary set of criteria including biotic interactions and life-history variables.

  3. The Effect of Alongcoast Advection on Pacific Northwest Shelf and Slope Water Properties in Relation to Upwelling Variability

    NASA Astrophysics Data System (ADS)

    Stone, Hally B.; Banas, Neil S.; MacCready, Parker

    2018-01-01

    The Northern California Current System experiences highly variable seasonal upwelling in addition to larger basin-scale variability, both of which can significantly affect its water chemistry. Salinity and temperature fields from a 7 year ROMS hindcast model of this region (43°N-50°N), along with extensive particle tracking, were used to study interannual variability in water properties over both the upper slope and the midshelf bottom. Variation in slope water properties was an order of magnitude smaller than on the shelf. Furthermore, the primary relationship between temperature and salinity anomalies in midshelf bottom water consisted of variation in density (cold/salty versus warm/fresh), nearly orthogonal to the anomalies along density levels (cold/fresh versus warm/salty) observed on the upper slope. These midshelf anomalies were well-explained (R2 = 0.6) by the combination of interannual variability in local and remote alongshore wind stress, and depth of the California Undercurrent (CUC) core. Lagrangian analysis of upper slope and midshelf bottom water shows that both are affected simultaneously by large-scale alongcoast advection of water through the northern and southern boundaries. The amplitude of anomalies in bottom oxygen and dissolved inorganic carbon (DIC) on the shelf associated with upwelling variability are larger than those associated with typical variation in alongcoast advection, and are comparable to observed anomalies in this region. However, a large northern intrusion event in 2004 illustrates that particular, large-scale alongcoast advection anomalies can be just as effective as upwelling variability in changing shelf water properties on the interannual scale.

  4. Variability and change of sea level and its components in the Indo-Pacific region during the altimetry era

    NASA Astrophysics Data System (ADS)

    Wu, Quran; Zhang, Xuebin; Church, John A.; Hu, Jianyu

    2017-03-01

    Previous studies have shown that regional sea level exhibits interannual and decadal variations associated with the modes of climate variability. A better understanding of those low-frequency sea level variations benefits the detection and attribution of climate change signals. Nonetheless, the contributions of thermosteric, halosteric, and mass sea level components to sea level variability and trend patterns remain unclear. By focusing on signals associated with dominant climate modes in the Indo-Pacific region, we estimate the interannual and decadal fingerprints and trend of each sea level component utilizing a multivariate linear regression of two adjoint-based ocean reanalyses. Sea level interannual, decadal, and trend patterns primarily come from thermosteric sea level (TSSL). Halosteric sea level (HSSL) is of regional importance in the Pacific Ocean on decadal time scale and dominates sea level trends in the northeast subtropical Pacific. The compensation between TSSL and HSSL is identified in their decadal variability and trends. The interannual and decadal variability of temperature generally peak at subsurface around 100 m but that of salinity tend to be surface-intensified. Decadal temperature and salinity signals extend deeper into the ocean in some regions than their interannual equivalents. Mass sea level (MassSL) is critical for the interannual and decadal variability of sea level over shelf seas. Inconsistencies exist in MassSL trend patterns among various estimates. This study highlights regions where multiple processes work together to control sea level variability and change. Further work is required to better understand the interaction of different processes in those regions.

  5. The Effect of Alongcoast Advection on Pacific Northwest Shelf and Slope Water Properties in Relation to Upwelling Variability

    PubMed Central

    Banas, Neil S.; MacCready, Parker

    2018-01-01

    Abstract The Northern California Current System experiences highly variable seasonal upwelling in addition to larger basin‐scale variability, both of which can significantly affect its water chemistry. Salinity and temperature fields from a 7 year ROMS hindcast model of this region (43°N–50°N), along with extensive particle tracking, were used to study interannual variability in water properties over both the upper slope and the midshelf bottom. Variation in slope water properties was an order of magnitude smaller than on the shelf. Furthermore, the primary relationship between temperature and salinity anomalies in midshelf bottom water consisted of variation in density (cold/salty versus warm/fresh), nearly orthogonal to the anomalies along density levels (cold/fresh versus warm/salty) observed on the upper slope. These midshelf anomalies were well‐explained (R 2 = 0.6) by the combination of interannual variability in local and remote alongshore wind stress, and depth of the California Undercurrent (CUC) core. Lagrangian analysis of upper slope and midshelf bottom water shows that both are affected simultaneously by large‐scale alongcoast advection of water through the northern and southern boundaries. The amplitude of anomalies in bottom oxygen and dissolved inorganic carbon (DIC) on the shelf associated with upwelling variability are larger than those associated with typical variation in alongcoast advection, and are comparable to observed anomalies in this region. However, a large northern intrusion event in 2004 illustrates that particular, large‐scale alongcoast advection anomalies can be just as effective as upwelling variability in changing shelf water properties on the interannual scale. PMID:29938149

  6. Effects of temperature and salinity on survival, growth and DNA methylation of juvenile Pacific abalone, Haliotis discus hannai Ino

    NASA Astrophysics Data System (ADS)

    Kong, Ning; Liu, Xiao; Li, Junyuan; Mu, Wendan; Lian, Jianwu; Xue, Yanjie; Li, Qi

    2017-09-01

    Temperature and salinity are two of the most potent abiotic factors influencing marine mollusks. In this study, we investigated the individual and combined effects of temperature and salinity on the survival and growth of juvenile Pacific abalone, Haliotis discus hannai Ino, and also examined the DNA methylation alteration that may underpin the phenotypic variation of abalone exposed to different rearing conditions. The single-factor data showed that the suitable ranges of temperature and salinity were 16-28°C at a constant salinity of 32, and 24-40 at a constant temperature of 20°C, respectively. The two-factor data indicated that both survival and growth were significantly affected by temperature, salinity and their interaction. The optimal temperature-salinity combination for juveniles was 23-25°C and 30-36. To explore environment-induced DNA methylation alteration, the methylation-sensitive amplified polymorphism (MSAP) technique was used to analyze the genomic methylation profiles of abalone reared in optimal and adverse conditions. Neither temperature nor salinity induced evident changes in the global methylation level, but 67 and 63 differentially methylated loci were identified in temperature and salinity treatments, respectively. The between-group eigen analysis also showed that both temperature and salinity could induce epigenetic differentiation in H. discus hannai Ino. The results of our study provide optimal rearing conditions for juvenile H. discus hannai Ino, and represent the first step toward revealing the epigenetic regulatory mechanism of abalone in response to thermal and salt stresses.

  7. Global monitoring of Sea Surface Salinity with Aquarius

    NASA Technical Reports Server (NTRS)

    Lagerloef, G. S. E.; LeVine, D. M.; Chao, Yi; Colomb, R.; Nollmann, I.

    2005-01-01

    Aquarius is a microwave remote sensing system designed to obtain global maps of the surface salinity field of the oceans from space. It will be flown on the Aquarius/SAC-D mission, a partnership between the USA (NASA) and Argentina (CONAE) with launch scheduled for late in 2008. The objective of Aquarius is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean. This will provide data to address scientific questions associated with ocean circulation and its impact on climate. For example, salinity is needed to understand the large scale thermohaline circulation, driven by buoyancy, which moves large masses of water and heat around the globe. Of the two variables that determine buoyancy (salinity and temperature), temperature is already being monitored. Salinity is the missing variable needed to understand this circulation. Salinity also has an important role in energy exchange between the ocean and atmosphere, for example in the development of fresh water lenses (buoyant water that forms stable layers and insulates water below from the atmosphere) which alter the air-sea coupling. Aquarius is a combination radiometer and scatterometer (radar) operating at L-band (1.413 GHz for the radiometer and 1.26 GHz for the scatterometer). The primary instrument,for measuring salinity is the radiometer which is able to detect salinity because of the modulation salinity produces on the thermal emission from sea water. This change is detectable at the long wavelength end of the microwave spectrum. The scatterometer will provide a correction for surface roughness (waves) which is one of the greatest unknowns in the retrieval. The sensor will be in a sun-synchronous orbit at about 650 km with equatorial crossings of 6am/6pm. The antenna for these two instruments is a 3 meter offset fed reflector with three feeds arranged in pushbroom fashion looking away from the sun toward the shadow side of the orbit to minimize sunglint. The mission goal is to produce maps of the salinity field globally once each month with an accuracy of 0.2 psu and a spatial resolution of 100 km. This will be adequate to address l&ge scale features of the salinity field of the open ocean. The temporal resolution is sufficient to address seasonal changes and a three year mission is planned to-collect sufficient data to look for interannual variation. Aquarius is being developed by NASA as part of the Earth System Science Pathfinder (ESSP) program. The SAC-D mission is being developed by CONAE and will include the space craft and several additional instruments, including visible and infrared cameras and a microwave radiometer to monitor rain and wind velocity over the oceans, and sea ice.

  8. The effects of heated and room-temperature abdominal lavage solutions on core body temperature in dogs undergoing celiotomy.

    PubMed

    Nawrocki, Michael A; McLaughlin, Ron; Hendrix, P K

    2005-01-01

    To document the magnitude of temperature elevation obtained with heated lavage solutions during abdominal lavage, 18 dogs were lavaged with sterile isotonic saline intraoperatively (i.e., during a celiotomy). In nine dogs, room-temperature saline was used. In the remaining nine dogs, saline heated to 43+/-2 degrees C (110+/-4 degrees F) was used. Esophageal, rectal, and tympanic temperatures were recorded every 60 seconds for 15 minutes after initiation of the lavage. Temperature levels decreased in dogs lavaged with room-temperature saline. Temperature levels increased significantly in dogs lavaged with heated saline after 2 to 6 minutes of lavage, and temperatures continued to increase throughout the 15-minute lavage period.

  9. Chemical Variability in Ocean Frontal Areas: Results of a Workshop Conducted 19-22 September 1983

    DTIC Science & Technology

    1988-07-01

    tidal mixing and is separated from the seasonally stratified waters of the Bering Sea Shelf by a front at approximately 50 m. Salinity, temperature...the concentration of dissolved methane at the entrance to Port Moller is seasonably variable, it averages about a factor of 10 above the ambient...coastal levels regardless of season . By fitting the distribution of dissolved methane to a 2-D advection-diffusion model, we estimated a mean velocity

  10. Étude de la variation spatio-temporelle des paramètres physico-chimiques caractérisant la qualité des eaux d'une lagune côtière et ses zonations écologiques : cas de Moulay Bousselham, Maroc

    NASA Astrophysics Data System (ADS)

    Labbardi, Hanane; Ettahiri, Omar; Lazar, Said; Massik, Zakia; El Antri, Said

    2005-04-01

    Our interest is related to the hydrological characteristics of the Moulay Bousselham lagoon. Water samples were taken monthly from July 2001 to June 2002 in 15 stations distributed along the lagoon. The various measured hydrological parameters (temperature, salinity, suspended matter, chlorophyll a) showed significant monthly variations ( p<0.001), whereas spatially among all sampled stations, only the salinity showed significant variations. The variability analysis approached by the analysis of the normalized principal components combined with discriminate analysis showed very small inter-stations variability. Its percentage is 11% and 9% of the total variance during high and low tide, respectively. To cite this article: H. Labbardi et al., C. R. Geoscience 337 (2005).

  11. Mapping Spatial Variability of Soil Salinity in a Coastal Paddy Field Based on Electromagnetic Sensors

    PubMed Central

    Guo, Yan; Huang, Jingyi; Shi, Zhou; Li, Hongyi

    2015-01-01

    In coastal China, there is an urgent need to increase land area for agricultural production and urban development, where there is a rapid growing population. One solution is land reclamation from coastal tidelands, but soil salinization is problematic. As such, it is very important to characterize and map the within-field variability of soil salinity in space and time. Conventional methods are often time-consuming, expensive, labor-intensive, and unpractical. Fortunately, proximal sensing has become an important technology in characterizing within-field spatial variability. In this study, we employed the EM38 to study spatial variability of soil salinity in a coastal paddy field. Significant correlation relationship between ECa and EC1:5 (i.e. r >0.9) allowed us to use EM38 data to characterize the spatial variability of soil salinity. Geostatistical methods were used to determine the horizontal spatio-temporal variability of soil salinity over three consecutive years. The study found that the distribution of salinity was heterogeneous and the leaching of salts was more significant in the edges of the study field. By inverting the EM38 data using a Quasi-3D inversion algorithm, the vertical spatio-temporal variability of soil salinity was determined and the leaching of salts over time was easily identified. The methodology of this study can be used as guidance for researchers interested in understanding soil salinity development as well as land managers aiming for effective soil salinity monitoring and management practices. In order to better characterize the variations in soil salinity to a deeper soil profile, the deeper mode of EM38 (i.e., EM38v) as well as other EMI instruments (e.g. DUALEM-421) can be incorporated to conduct Quasi-3D inversions for deeper soil profiles. PMID:26020969

  12. Mapping spatial variability of soil salinity in a coastal paddy field based on electromagnetic sensors.

    PubMed

    Guo, Yan; Huang, Jingyi; Shi, Zhou; Li, Hongyi

    2015-01-01

    In coastal China, there is an urgent need to increase land area for agricultural production and urban development, where there is a rapid growing population. One solution is land reclamation from coastal tidelands, but soil salinization is problematic. As such, it is very important to characterize and map the within-field variability of soil salinity in space and time. Conventional methods are often time-consuming, expensive, labor-intensive, and unpractical. Fortunately, proximal sensing has become an important technology in characterizing within-field spatial variability. In this study, we employed the EM38 to study spatial variability of soil salinity in a coastal paddy field. Significant correlation relationship between ECa and EC1:5 (i.e. r >0.9) allowed us to use EM38 data to characterize the spatial variability of soil salinity. Geostatistical methods were used to determine the horizontal spatio-temporal variability of soil salinity over three consecutive years. The study found that the distribution of salinity was heterogeneous and the leaching of salts was more significant in the edges of the study field. By inverting the EM38 data using a Quasi-3D inversion algorithm, the vertical spatio-temporal variability of soil salinity was determined and the leaching of salts over time was easily identified. The methodology of this study can be used as guidance for researchers interested in understanding soil salinity development as well as land managers aiming for effective soil salinity monitoring and management practices. In order to better characterize the variations in soil salinity to a deeper soil profile, the deeper mode of EM38 (i.e., EM38v) as well as other EMI instruments (e.g. DUALEM-421) can be incorporated to conduct Quasi-3D inversions for deeper soil profiles.

  13. The Baltic Sea natural long-term variability of salinity

    NASA Astrophysics Data System (ADS)

    Schimanke, Semjon; Markus Meier, H. E.

    2015-04-01

    The Baltic Sea is one of the largest brackish sea areas of the world. The sensitive state of the Baltic Sea is sustained by a fresh-water surplus by river discharge and precipitation on one hand as well as inflows of highly saline and oxygen-rich water masses from the North Sea on the other. Major inflows which are crucial for the renewal of the deep water occur very intermittent with a mean frequency of approximately one per year. Stagnation periods (periods without major inflows) lead for instance to a reduction of oxygen concentration in the deep Baltic Sea spreading hypoxic conditions. Depending on the amount of salt water inflow and fresh-water supply the deep water salinity of the Baltic Sea varies between 11 to 14 PSU on the decadal scale. The goal of this study is to understand the contribution of different driving factors for the decadal to multi-decadal variability of salinity in the Baltic Sea. Continuous measurement series of salinity exist from the 1950 but are not sufficiently long for the investigation of long-term fluctuations. Therefore, a climate simulation of more than 800 years has been carried out with the Rossby Center Ocean model (RCO). RCO is a biogeochemical regional climate model which covers the entire Baltic Sea. It is driven with atmospheric data dynamical downscaled from a GCM mimicking natural climate variability. The analysis focus on the role of variations in river discharge and precipitation, changes in wind speed and direction, fluctuations in temperature and shifts in large scale pressure patterns (e.g. NAO). Hereby, the length of the simulation will allow to identify mechanisms working on decadal to multi-decadal time scales. Moreover, it will be discussed how likely long stagnation periods are under natural climate variability and if the observed exceptional long stagnation period between 1983-1993 might be related to beginning climate change.

  14. Long and Short Term Variability of the Main Physical Parameters in the Coastal Area of the SE Baltic Proper

    NASA Astrophysics Data System (ADS)

    Mingelaite, Toma; Rukseniene, Viktorija; Dailidiene, Inga

    2015-04-01

    Keywords: SE Baltic Sea, coastal upwelling, IR Remote Sensing The memory of the ocean and seas of atmospheric forcing events contributes to the long-term climate change. Intensifying climate change processes in the North Atlantic region including Baltic Sea has drawn widespread interest, as a changing water temperature has ecological, economic and social impact in coastal areas of the Europe seas. In this work we analyse long and short term variability of the main physical parameters in the coastal area of the South Eastern Baltic Sea Proper. The analysis of long term variability is based on monitoring data measured in the South Eastern Baltic Sea for the last 50 years. The main focus of the long term variability is changes of hydro meteorological parameters relevant to the observed changes in the climate.The water salinity variations in the Baltic Sea near the Lithuanian coast and in the Curonian Lagoon, a shallow and enclosed sub-basin of the Baltic Sea, were analysed along with the time series of some related hydroclimatic factors. The short term water temperature and salinity variations were analysed with a strong focus on coastal upwelling events. Combining both remote sensing and in situ monitoring data physical parameters such as vertical salinity variations during upwelling events was analysed. The coastal upwelling in the SE Baltic Sea coast, depending on its scale and intensity, may lead to an intrusion of colder and saltier marine waters to the Curonian Lagoon resulting in hydrodynamic changes and pronounced temperature drop extending for 30-40 km further down the Lagoon. The study results show that increasing trends of water level, air and water temperature, and decreasing ice cover duration are related to the changes in meso-scale atmospheric circulation, and more specifically, to the changes in regional and local wind regime climate. That is in a good agreement with the increasing trends in local higher intensity of westerly winds, and with the winter NAO index that indicates the change and variations of the atmospheric circulation in the North Atlantic region, including the Baltic Sea area. This work is supported by "Lithuanian Maritime Sectors' Technologies and Environmental Research Development" project Nr. VP1-3.1-ŠMM-08-K-01-019 funded by the European Social Fund Agency.

  15. Warm and Saline Events Embedded in the Meridional Circulation of the Northern North Atlantic

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa; Rhines, Peter B.; Worthen, Denise L.

    2011-01-01

    Ocean state estimates from 1958 to 2005 from the Simple Ocean Assimilation System (SODA) system are analyzed to understand circulation between subtropical and subpolar Atlantic and their connection with atmospheric forcing. This analysis shows three periods (1960s, around 1980, and 2000s) with enhanced warm, saline waters reaching high latitudes, alternating with freshwater events originating at high latitudes. It complements surface drifter and altimetry data showing the subtropical -subpolar exchange leading to a significant temperature and salinity increase in the northeast Atlantic after 2001. The warm water limb of the Atlantic meridional overturning cell represented by SODA expanded in density/salinity space during these warm events. Tracer simulations using SODA velocities also show decadal variation of the Gulf Stream waters reaching the subpolar gyre and Nordic seas. The negative phase of the North Atlantic Oscillation index, usually invoked in such variability, fails to predict the warming and salinization in the early 2000s, with salinities not seen since the 1960s. Wind stress curl variability provided a linkage to this subtropical/subpolar gyre exchange as illustrated using an idealized two ]layer circulation model. The ocean response to the modulation of the climatological wind stress curl pattern was found to be such that the northward penetration of subtropical tracers is enhanced when amplitude of the wind stress curl is weaker than normal. In this case both the subtropical and subpolar gyres weaken and the subpolar density surfaces relax; hence, the polar front moves westward, opening an enhanced northward access of the subtropical waters in the eastern boundary current.

  16. Effects of Physiochemical Factors on Prokaryotic Biodiversity in Malaysian Circumneutral Hot Springs.

    PubMed

    Chan, Chia S; Chan, Kok-Gan; Ee, Robson; Hong, Kar-Wai; Urbieta, María S; Donati, Edgardo R; Shamsir, Mohd S; Goh, Kian M

    2017-01-01

    Malaysia has a great number of hot springs, especially along the flank of the Banjaran Titiwangsa mountain range. Biological studies of the Malaysian hot springs are rare because of the lack of comprehensive information on their microbial communities. In this study, we report a cultivation-independent census to describe microbial communities in six hot springs. The Ulu Slim (US), Sungai Klah (SK), Dusun Tua (DT), Sungai Serai (SS), Semenyih (SE), and Ayer Hangat (AH) hot springs exhibit circumneutral pH with temperatures ranging from 43°C to 90°C. Genomic DNA was extracted from environmental samples and the V3-V4 hypervariable regions of 16S rRNA genes were amplified, sequenced, and analyzed. High-throughput sequencing analysis showed that microbial richness was high in all samples as indicated by the detection of 6,334-26,244 operational taxonomy units. In total, 59, 61, 72, 73, 65, and 52 bacterial phyla were identified in the US, SK, DT, SS, SE, and AH hot springs, respectively. Generally, Firmicutes and Proteobacteria dominated the bacterial communities in all hot springs. Archaeal communities mainly consisted of Crenarchaeota, Euryarchaeota, and Parvarchaeota. In beta diversity analysis, the hot spring microbial memberships were clustered primarily on the basis of temperature and salinity. Canonical correlation analysis to assess the relationship between the microbial communities and physicochemical variables revealed that diversity patterns were best explained by a combination of physicochemical variables, rather than by individual abiotic variables such as temperature and salinity.

  17. Effects of Physiochemical Factors on Prokaryotic Biodiversity in Malaysian Circumneutral Hot Springs

    PubMed Central

    Chan, Chia S.; Chan, Kok-Gan; Ee, Robson; Hong, Kar-Wai; Urbieta, María S.; Donati, Edgardo R.; Shamsir, Mohd S.; Goh, Kian M.

    2017-01-01

    Malaysia has a great number of hot springs, especially along the flank of the Banjaran Titiwangsa mountain range. Biological studies of the Malaysian hot springs are rare because of the lack of comprehensive information on their microbial communities. In this study, we report a cultivation-independent census to describe microbial communities in six hot springs. The Ulu Slim (US), Sungai Klah (SK), Dusun Tua (DT), Sungai Serai (SS), Semenyih (SE), and Ayer Hangat (AH) hot springs exhibit circumneutral pH with temperatures ranging from 43°C to 90°C. Genomic DNA was extracted from environmental samples and the V3–V4 hypervariable regions of 16S rRNA genes were amplified, sequenced, and analyzed. High-throughput sequencing analysis showed that microbial richness was high in all samples as indicated by the detection of 6,334–26,244 operational taxonomy units. In total, 59, 61, 72, 73, 65, and 52 bacterial phyla were identified in the US, SK, DT, SS, SE, and AH hot springs, respectively. Generally, Firmicutes and Proteobacteria dominated the bacterial communities in all hot springs. Archaeal communities mainly consisted of Crenarchaeota, Euryarchaeota, and Parvarchaeota. In beta diversity analysis, the hot spring microbial memberships were clustered primarily on the basis of temperature and salinity. Canonical correlation analysis to assess the relationship between the microbial communities and physicochemical variables revealed that diversity patterns were best explained by a combination of physicochemical variables, rather than by individual abiotic variables such as temperature and salinity. PMID:28729863

  18. Effects of temperature and salinity on survival rate of cultured corals and photosynthetic efficiency of zooxanthellae in coral tissues

    NASA Astrophysics Data System (ADS)

    Kuanui, Pataporn; Chavanich, Suchana; Viyakarn, Voranop; Omori, Makoto; Lin, Chiahsin

    2015-06-01

    This study investigated the effects of temperature and salinity on growth, survival, and photosynthetic efficiency of three coral species, namely, Pocillopora damicornis, Acropora millepora and Platygyra sinensis of different ages (6 and 18 months old). The experimental corals were cultivated via sexual propagation. Colonies were exposed to 5 different temperatures (18, 23, 28, 33, and 38°C) and 5 different salinities (22, 27, 32, 37, and 42 psu). Results showed that temperature significantly affected photosynthetic efficiency (Fv/Fm) (p < 0.05) compared to salinity. The maximum quantum yield of corals decreased ranging from 5% to 100% when these corals were exposed to different temperatures and salinities. Temperature also significantly affected coral growth and survival. However, corals exposed to changes in salinity showed higher survivorship than those exposed to changes in temperature. Results in this study also showed that corals of different ages and of different species did not display the same physiological responses to changes in environmental conditions. Thus, the ability of corals to tolerate salinity and temperature stresses depends on several factors.

  19. Respiratory responses of the mysid Gastrosaccus brevifissura (Peracarida: Mysidacea), in relation to body size, temperature and salinity.

    PubMed

    Marshall, David J; Perissinotto, Renzo; Holley, Jean Francois

    2003-02-01

    The mysid Gastrosaccus brevifissura (Peracarida: Mysidacea) is widely distributed in southern Africa and is thought to be important in the functioning of estuarine systems. This mysid may experience highly variable physicochemical conditions, and its physiological responses to these are of interest considering its ecological role. This study presents data on the metabolic physiology in relation to body length, temperature (15-30 degrees C) and salinity (15-35 psu) of a G. brevifissura population on the sub-tropical eastern seaboard of South Africa. Oxygen consumption rate was linearly related to size (for body lengths ranging from 3 to 10 mm) and varied among individuals from 0.67 to 6.51 microgram h(-1), dependent on environmental conditions. Oxygen consumption rate was largely independent of salinity variation between 20 and 35 psu, although was significantly depressed at 15 psu. Aerobic rate generally increased with an acute increase in temperature (Q(10)=2.147), but was not affected by 7 days of acclimation at either 15 or 25 degrees C. The lack of a metabolic adjustment to meet the additional energetic demands associated with a decline in salinity may well be a factor limiting the estuarine distribution of G. brevifissura. Even though feeding behaviour substantially changes between summer and winter, this may best be explained by food availability or other ecological factors, rather than a metabolic adjustment, considering the apparent lack of metabolic acclimation.

  20. Effect of Water Surface Salinity on Evaporation: The Case of a Diluted Buoyant Plume Over the Dead Sea

    NASA Astrophysics Data System (ADS)

    Mor, Z.; Assouline, S.; Tanny, J.; Lensky, I. M.; Lensky, N. G.

    2018-03-01

    Evaporation from water bodies strongly depends on surface water salinity. Spatial variation of surface salinity of saline water bodies commonly occurs across diluted buoyant plumes fed by freshwater inflows. Although mainly studied at the pan evaporation scale, the effect of surface water salinity on evaporation has not yet been investigated by means of direct measurement at the scale of natural water bodies. The Dead Sea, a large hypersaline lake, is fed by onshore freshwater springs that form local diluted buoyant plumes, offering a unique opportunity to explore this effect. Surface heat fluxes, micrometeorological variables, and water temperature and salinity profiles were measured simultaneously and directly over the salty lake and over a region of diluted buoyant plume. Relatively close meteorological conditions prevailed in the two regions; however, surface water salinity was significantly different. Evaporation rate from the diluted plume was occasionally 3 times larger than that of the main salty lake. In the open lake, where salinity was uniform with depth, increased wind speed resulted in increased evaporation rate, as expected. However, in the buoyant plume where diluted brine floats over the hypersaline brine, wind speed above a threshold value (˜4 m s-1) caused a sharp decrease in evaporation probably due to mixing of the stratified plume and a consequent increase in the surface water salinity.

  1. The effect of ephedrine on intraoperative hypothermia

    PubMed Central

    Jo, Youn Yi; Kim, Ji Young; Kim, Joon-Sik; Kwon, Youngjun

    2011-01-01

    Background Prevention of intraoperative hypothermia has become a standard of operative care. Since ephedrine has a thermogenic effect and it is frequently used to treat hypotension during anesthesia, this study was designed to determine the effect of ephedrine on intraoperative hypothermia of patients who are undergoing spine surgery. Methods Twenty-four patients were randomly divided to receive an ephedrine (the ephedrine group, n = 12) or normal saline (the control group, n = 12) infusion for 2 h. The esophageal temperature (the core temperature), the index finger temperature (the peripheral temperature) and the hemodynamic variables such as the mean blood pressure and heart rate were measured every 15 minutes after the intubation. Results At the end of the study period, the esophageal temperature and hemodynamic variables were significantly decreased in the control group, whereas those in the ephedrine group were stably maintained. The index finger temperature was significantly lower in the ephedrine group compared to that in the control group, suggesting the prevention of core-to-peripheral redistribution of the heat as the cause of temperature maintenance. Conclusions An intraoperative infusion of ephedrine minimized the decrease of the core temperature and it stably maintained the hemodynamic variables during spine surgery with the patient under general anesthesia. PMID:21602974

  2. Connecting Atlantic temperature variability and biological cycling in two earth system models

    NASA Astrophysics Data System (ADS)

    Gnanadesikan, Anand; Dunne, John P.; Msadek, Rym

    2014-05-01

    Connections between the interdecadal variability in North Atlantic temperatures and biological cycling have been widely hypothesized. However, it is unclear whether such connections are due to small changes in basin-averaged temperatures indicated by the Atlantic Multidecadal Oscillation (AMO) Index, or whether both biological cycling and the AMO index are causally linked to changes in the Atlantic Meridional Overturning Circulation (AMOC). We examine interdecadal variability in the annual and month-by-month diatom biomass in two Earth System Models with the same formulations of atmospheric, land, sea ice and ocean biogeochemical dynamics but different formulations of ocean physics and thus different AMOC structures and variability. In the isopycnal-layered ESM2G, strong interdecadal changes in surface salinity associated with changes in AMOC produce spatially heterogeneous variability in convection, nutrient supply and thus diatom biomass. These changes also produce changes in ice cover, shortwave absorption and temperature and hence the AMO Index. Off West Greenland, these changes are consistent with observed changes in fisheries and support climate as a causal driver. In the level-coordinate ESM2M, nutrient supply is much higher and interdecadal changes in diatom biomass are much smaller in amplitude and not strongly linked to the AMO index.

  3. Increased temperatures combined with lowered salinities differentially impact oyster size class growth and mortality

    USGS Publications Warehouse

    LaPeyre, Megan K.; Rybovich, Molly; Hall, Steven G.; La Peyre, Jerome F.

    2016-01-01

    Changes in the timing and interaction of seasonal high temperatures and low salinities as predicted by climate change models could dramatically alter oyster population dynamics. Little is known explicitly about how low salinity and high temperature combinations affect spat (<25mm), seed (25–75mm), andmarket (>75mm) oyster growth and mortality. Using field and laboratory studies, this project quantified the combined effects of extremely low salinities (<5) and high temperatures (>30°C) on growth and survival of spat, seed, andmarket-sized oysters. In 2012 and 2013, hatchery-produced oysters were placed in open and closed cages at three sites in Breton Sound, LA, along a salinity gradient that typically ranged from 5 to 20. Growth and mortality were recorded monthly. Regardless of size class, oysters at the lowest salinity site (annualmean = 4.8) experienced significantly highermortality and lower growth than oysters located in higher salinity sites (annual means = 11.1 and 13.0, respectively); furthermore, all oysters in open cages at the two higher salinity sites experienced higher mortality than in closed cages, likely due to predation. To explicitly examine oyster responses to extreme low salinity and high temperature combinations, a series of laboratory studies were conducted. Oysters were placed in 18 tanks in a fully crossed temperature (25°C, 32°C) by salinity (1, 5, and 15) study with three replicates, and repeated at least twice for each oyster size class. Regardless of temperature, seed and market oysters held in low salinity tanks (salinity 1) experienced 100% mortality within 7 days. In contrast, at salinity 5, temperature significantly affected mortality; oysters in all size classes experienced greater than 50%mortality at 32°C and less than 40%mortality at 25°C. At the highest salinity tested (15), only market-sized oysters held at 32°C experienced significant mortality (>60%). These studies demonstrate that high water temperatures (>30°C) and low salinities (<5) negatively impact oyster growth and survival differentially and that high temperatures alone may negatively impact market-sized oysters. It is critical to understand the potential impacts of climate and anthropogenic changes on oyster resources to better adapt and manage for long-term sustainability.

  4. High Temperature and Salinity Enhance Soil Nitrogen Mineralization in a Tidal Freshwater Marsh

    PubMed Central

    Gao, Haifeng; Bai, Junhong; He, Xinhua; Zhao, Qingqing; Lu, Qiongqiong; Wang, Junjing

    2014-01-01

    Soil nitrogen (N) mineralization in wetlands is sensitive to various environmental factors. To compare the effects of salinity and temperature on N mineralization, wetland soils from a tidal freshwater marsh locating in the Yellow River Delta was incubated over a 48-d anaerobic incubation period under four salinity concentrations (0, 10, 20 and 35‰) and four temperature levels (10, 20, 30 and 40°C). The results suggested that accumulated ammonium nitrogen (NH4 +-N) increased with increasing incubation time under all salinity concentrations. Higher temperatures and salinities significantly enhanced soil N mineralization except for a short-term (≈10 days) inhibiting effect found under 35‰ salinity. The incubation time, temperature, salinity and their interactions exhibited significant effects on N mineralization (P<0.001) except the interactive effect of salinity and temperature (P>0.05), while temperature exhibited the greatest effect (P<0.001). Meanwhile, N mineralization processes were simulated using both an effective accumulated temperature model and a one-pool model. Both models fit well with the simulation of soil N mineralization process in the coastal freshwater wetlands under a range of 30 to 40°C (R2 = 0.88–0.99, P<0.01). Our results indicated that an enhanced NH4 +-N release with increasing temperature and salinity deriving from the projected global warming could have profound effects on nutrient cycling in coastal wetland ecosystems. PMID:24733366

  5. Studies on the Time Course of Salinity and Temperature Adaptation in the Commercial Brown Shrimp Penaeus aztecus Ives.

    DTIC Science & Technology

    1977-09-01

    Effect of temperature background 52 Effect of salinity and temperature change 53 Blood Osmoregulation During the Time Course of Adaptation... Osmoregulators Osmotic concentration Salinity Serum Standard metabolism Weight specific metabolic rate APPENDIX B: Tables I-IX. Mean... Effect of salinity and temperature change on the blood osmoregulation of Penaeus aztecus in relation to the isosmotic line 153 81

  6. Subsurface low dissolved oxygen occurred at fresh- and saline-water intersection of the Pearl River estuary during the summer period.

    PubMed

    Li, Gang; Liu, Jiaxing; Diao, Zenghui; Jiang, Xin; Li, Jiajun; Ke, Zhixin; Shen, Pingping; Ren, Lijuan; Huang, Liangmin; Tan, Yehui

    2018-01-01

    Estuarine oxygen depletion is one of the worldwide problems, which is caused by the freshwater-input-derived severe stratification and high nutrients loading. In this study we presented the horizontal and vertical distributions of dissolved oxygen (DO) in the Pearl River estuary, together with temperature, salinity, chlorophyll a concentration and heterotrophic bacteria abundance obtained from two cruises during the summer (wet) and winter (dry) periods of 2015. In surface water, the DO level in the summer period was lower and varied greater, as compared to the winter period. The DO remained unsaturated in the summer period if salinity is <12 and saturated if salinity is >12; while in the winter period it remained saturated throughout the estuary. In subsurface (>5m) water, the DO level varied from 0.71 to 6.65mgL -1 and from 6.58 to 8.20mgL -1 in the summer and winter periods, respectively. Particularly, we observed an area of ~1500km 2 low DO zone in the subsurface water with a threshold of 4mgDOL -1 during this summer period, that located at the fresh- and saline-water intersection where is characterized with severe stratification and high heterotrophic bacteria abundance. In addition, our results indicate that spatial DO variability in surface water was contributed differently by biological and physio-chemical variables in the summer and winter periods, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Influence of genetic background, salinity, and inoculum size on growth of the ichthyotoxic golden alga (Prymnesium parvum)

    USGS Publications Warehouse

    Rashel, Rakib H.; Patino, Reynaldo

    2017-01-01

    Salinity (5–30) effects on golden alga growth were determined at a standard laboratory temperature (22 °C) and one associated with natural blooms (13 °C). Inoculum-size effects were determined over a wide size range (100–100,000 cells ml−1). A strain widely distributed in the USA, UTEX-2797 was the primary study subject but another of limited distribution, UTEX-995 was used to evaluate growth responses in relation to genetic background. Variables examined were exponential growth rate (r), maximum cell density (max-D) and, when inoculum size was held constant (100 cells ml−1), density at onset of exponential growth (early-D). In UTEX-2797, max-D increased as salinity increased from 5 to ∼10–15 and declined thereafter regardless of temperature but r remained generally stable and only declined at salinity of 25–30. In addition, max-D correlated positively with r and early-D, the latter also being numerically highest at salinity of 15. In UTEX-995, max-D and r responded similarly to changes in salinity − they remained stable at salinity of 5–10 and 5–15, respectively, and declined at higher salinity. Also, max-D correlated with r but not early-D. Inoculum size positively and negatively influenced max-D and r, respectively, in both strains and these effects were significant even when the absolute size difference was small (100 versus 1000 cells ml−1). When cultured under similar conditions, UTEX-2797 grew faster and to much higher density than UTEX-995. In conclusion, (1) UTEX-2797’s superior growth performance may explain its relatively wide distribution in the USA, (2) the biphasic growth response of UTEX-2797 to salinity variation, with peak abundance at salinity of 10–15, generally mirrors golden alga abundance-salinity associations in US inland waters, and (3) early cell density – whether artificially manipulated or naturally attained – can influence UTEX-2797 bloom potential.

  8. Recent changes (2004-2016) of temperature and salinity in the Mediterranean outflow

    NASA Astrophysics Data System (ADS)

    Naranjo, Cristina; García-Lafuente, Jesús; Sammartino, Simone; Sánchez-Garrido, José C.; Sánchez-Leal, Ricardo; Jesús Bellanco, M.

    2017-06-01

    Temperature and salinity series near the seafloor at Espartel Sill (Strait of Gibraltar) have been used to analyze the thermohaline variability of the Mediterranean outflow. The series shows temperature drops by the end of most winters/early springs, which are the remote response to Western Mediterranean Deep Water (WMDW) formation events in the Gulf of Lion that uplift old WMDW nearby the strait. This process distorts the seasonal cycle of colder/warmer water flowing out in summer/winter likely linked to the seasonality of the Western Alborán Gyre. The series shows positive trends in agreement with previous values, which are largely increased after 2013. It is tentatively interpreted as the Western Mediterranean Transition (WMT) signature that started with the very cold winters of 2005 and 2006. It was only after the large new WMDW production of 2012 and 2013 harsh winters that WMT waters were made available to flow out of the Mediterranean Sea.

  9. Listening In on the Past: What Can Otolith δ18O Values Really Tell Us about the Environmental History of Fishes?

    PubMed Central

    Darnaude, Audrey M.; Sturrock, Anna; Trueman, Clive N.; Mouillot, David; EIMF; Campana, Steven E.; Hunter, Ewan

    2014-01-01

    Oxygen isotope ratios from fish otoliths are used to discriminate marine stocks and reconstruct past climate, assuming that variations in otolith δ18O values closely reflect differences in temperature history of fish when accounting for salinity induced variability in water δ18O. To investigate this, we exploited the environmental and migratory data gathered from a decade using archival tags to study the behaviour of adult plaice (Pleuronectes platessa L.) in the North Sea. Based on the tag-derived monthly distributions of the fish and corresponding temperature and salinity estimates modelled across three consecutive years, we first predicted annual otolith δ18O values for three geographically discrete offshore sub-stocks, using three alternative plausible scenarios for otolith growth. Comparison of predicted vs. measured annual δ18O values demonstrated >96% correct prediction of sub-stock membership, irrespective of the otolith growth scenario. Pronounced inter-stock differences in δ18O values, notably in summer, provide a robust marker for reconstructing broad-scale plaice distribution in the North Sea. However, although largely congruent, measured and predicted annual δ18O values of did not fully match. Small, but consistent, offsets were also observed between individual high-resolution otolith δ18O values measured during tag recording time and corresponding δ18O predictions using concomitant tag-recorded temperatures and location-specific salinity estimates. The nature of the shifts differed among sub-stocks, suggesting specific vital effects linked to variation in physiological response to temperature. Therefore, although otolith δ18O in free-ranging fish largely reflects environmental temperature and salinity, we counsel prudence when interpreting otolith δ18O data for stock discrimination or temperature reconstruction until the mechanisms underpinning otolith δ18O signature acquisition, and associated variation, are clarified. PMID:25279667

  10. Coastal Circulation and Sediment Dynamics in Hanalei Bay, Kaua'i, Part IV, Measurements of Waves, Currents, Temperature, Salinity, and Turbidity, June-September 2006

    USGS Publications Warehouse

    Storlazzi, Curt D.; Presto, M. Katherine; Logan, Joshua B.; Field, Michael E.

    2008-01-01

    High-resolution measurements of waves, currents, water levels, temperature, salinity and turbidity were made in Hanalei Bay, northern Kaua'i, Hawai'i, during the summer of 2006 to better understand coastal circulation, sediment dynamics, and the potential impact of a river flood in a coral reef-lined embayment during quiescent summer conditions. A series of bottommounted instrument packages were deployed in water depths of 10 m or less to collect long-term, high-resolution measurements of waves, currents, water levels, temperature, salinity, and turbidity. These data were supplemented with a series of profiles through the water column to characterize the vertical and spatial variability in water column properties within the bay. These measurements support the ongoing process studies being conducted as part of the U.S. Geological Survey (USGS) Coastal and Marine Geology Program's Pacific Coral Reef Project; the ultimate goal is to better understand the transport mechanisms of sediment, larvae, pollutants, and other particles in coral reef settings. Information regarding the USGS study conducted in Hanalei Bay during the 2005 summer is available in Storlazzi and others (2006), Draut and others (2006) and Carr and others (2006). This report, the last part in a series, describes data acquisition, processing, and analysis for the 2006 summer data set.

  11. Coastal circulation and sediment dynamics in Hanalei Bay, Kauai. Part I: Measurements of waves, currents, temperature, salinity and turbidity : June - August, 2005

    USGS Publications Warehouse

    Storlazzi, Curt D.; Presto, M. Kathy; Logan, Joshua B.; Field, Michael E.

    2006-01-01

    Introduction: High-resolution measurements of waves, currents, water levels, temperature, salinity and turbidity were made in Hanalei Bay, northern Kauai, Hawaii, during the summer of 2005 to better understand coastal circulation and sediment dynamics in coral reef habitats. A series of bottom-mounted instrument packages were deployed in water depths of 10 m or less to collect long-term, high-resolution measurements of waves, currents, water levels, temperature, salinity and turbidity. These data were supplemented with a series of vertical instrument casts to characterize the vertical and spatial variability in water column properties within the bay. The purpose of these measurements was to collect hydrographic data to learn how waves, currents and water column properties vary spatially and temporally in an embayment that hosts a nearshore coral reef ecosystem adjacent to a major river drainage. These measurements support the ongoing process studies being conducted as part of the U.S. Geological Survey (USGS) Coastal and Marine Geology Program's Coral Reef Project; the ultimate goal is to better understand the transport mechanisms of sediment, larvae, pollutants and other particles in coral reef settings. This report, the first part in a series, describes data acquisition, processing and analysis.

  12. Impact of Seawater Nonlinearities on Nordic Seas Circulation

    NASA Astrophysics Data System (ADS)

    Helber, R. W.; Wallcraft, A. J.; Shriver, J. F.

    2017-12-01

    The Nordic Seas (Greenland, Iceland, and Norwegian Seas) form an ocean basin important for Arctic-mid-latitude climate linkages. Cold fresh water from the Arctic Ocean and warm salty water from the North Atlantic Ocean meet in the Nordic Seas, where a delicate balance between temperature and salinity variability results in deep water formation. Seawater non-linearities are stronger at low temperatures and salinities making high-latitude oceans highly subject to thermbaricity and cabbeling. This presentation highlights and quantifies the impact of seawater non-linearities on the Nordic Seas circulation. We use two layered ocean circulation models, the Hybrid Coordinate Ocean Model (HYOCM) and the Modular Ocean Model version 6 (MOM6), that enable accurate representation of processes along and across density or neutral density surfaces. Different equations-of-state and vertical coordinates are evaluated to clarify the impact of seawater non-linearities. Present Navy systems, however, do not capture some features in the Nrodic Seas vertical structure. For example, observations from the Greenland Sea reveal a subsurface temperature maximum that deepens from approximately 1500 m during 1998 to 1800 m during 2005. We demonstrate that in terms of density, salinity is the largest source of error in Nordic Seas Navy forecasts, regional scale models can represent mesoscale features driven by thermobaricity, vertical coordinates are a critical issue in Nordic Sea circulation modeling.

  13. Evaporation, precipitation, and associated salinity changes at a humid, subtropical estuary

    USGS Publications Warehouse

    Sumner, D.M.; Belaineh, G.

    2005-01-01

    The distilling effect of evaporation and the diluting effect of precipitation on salinity at two estuarine sites in the humid subtropical setting of the Indian River Lagoon, Florida, were evaluated based on daily evaporation computed with an energy-budget method and measured precipitation. Despite the larger magnitude of evaporation (about 1,580 mm yr-1) compared to precipitation (about 1,180 mm yr-1) between February 2002 and January 2004, the variability of monthly precipitation induced salinity changes was more than twice the variability of evaporation induced changes. Use of a constant, mean value of evaporation, along with measured values of daily precipitation, were sufficient to produce simulated salinity changes that contained little monthly (root-mean-square error = 0.33??? mo-1 and 0.52??? mo-1 at the two sites) or cumulative error (<1??? yr-1) compared to simulations that used computed daily values of evaporation. This result indicates that measuring the temporal variability in evaporation may not be critical to simulation of salinity within the lagoon. Comparison of evaporation and precipitation induced salinity changes with measured salinity changes indicates that evaporation and precipitation explained only 4% of the changes in salinity within a flow-through area of the lagoon; surface water and ocean inflows probably accounted for most of the variability in salinity at this site. Evaporation and precipitation induced salinity changes explained 61% of the variability in salinity at a flow-restricted part of the lagoon. ?? 2005 Estuarine Research Federation.

  14. Spatial variability of soil salinity in coastal saline soil at different scales in the Yellow River Delta, China.

    PubMed

    Wang, Zhuoran; Zhao, Gengxing; Gao, Mingxiu; Chang, Chunyan

    2017-02-01

    The objectives of this study were to explore the spatial variability of soil salinity in coastal saline soil at macro, meso and micro scales in the Yellow River delta, China. Soil electrical conductivities (ECs) were measured at 0-15, 15-30, 30-45 and 45-60 cm soil depths at 49 sampling sites during November 9 to 11, 2013. Soil salinity was converted from soil ECs based on laboratory analyses. Our results indicated that at the macro scale, soil salinity was high with strong variability in each soil layer, and the content increased and the variability weakened with increasing soil depth. From east to west in the region, the farther away from the sea, the lower the soil salinity was. The degrees of soil salinization in three deeper soil layers are 1.14, 1.24 and 1.40 times higher than that in the surface soil. At the meso scale, the sequence of soil salinity in different topographies, soil texture and vegetation decreased, respectively, as follows: depression >flatland >hillock >batture; sandy loam >light loam >medium loam >heavy loam >clay; bare land >suaeda salsa >reed >cogongrass >cotton >paddy >winter wheat. At the micro scale, soil salinity changed with elevation in natural micro-topography and with anthropogenic activities in cultivated land. As the study area narrowed down to different scales, the spatial variability of soil salinity weakened gradually in cultivated land and salt wasteland except the bare land.

  15. Physical and biological forcing of mesoscale variability in the carbonate system of the Ross Sea (Antarctica) during summer 2014

    NASA Astrophysics Data System (ADS)

    Rivaro, Paola; Ianni, Carmela; Langone, Leonardo; Ori, Carlo; Aulicino, Giuseppe; Cotroneo, Yuri; Saggiomo, Maria; Mangoni, Olga

    2017-02-01

    Water samples (0-200 m) were collected in a coastal area of the Ross Sea in January 2014 to evaluate the physical and biological forcing on the carbonate system at the mesoscale (distance between stations of 5-10 km). Remote sensing supported the determination of the sampling strategy and helped positioning each sampling station. Total alkalinity, pH, dissolved oxygen, phytoplankton pigments and composition were investigated in combination with measurements of temperature, salinity and current speed. Total inorganic carbon, sea water CO2 partial pressure and the saturation state (Ω) for calcite and aragonite were calculated from the measured total alkalinity and pH. In addition, continuous measurements of atmospheric CO2 concentration were completed. LADCP measurements revealed the presence of a significant change in current speed and direction that corresponded to a clearly defined front characterized by gradients in both temperature and salinity. Phytoplankton biomass was relatively high at all stations and the highest values of chlorophyll-a were found between 20 to 50 m, with the dominant taxonomic group being haptophyceae. The carbonate system properties in surface waters exhibited mesoscale variability with a horizontal length scale of about 10 km. Sea-ice melt, through the input of low salinity water, results in a dilution of the total alkalinity and inorganic carbon, but our observations suggest that phytoplankton activity was the major forcing of the distribution of the carbonate system variables. Higher CO3-, Ω and pH in the surface layer were found where the highest values of chlorophyll-a were observed. The calculated ΔpCO2 pattern follows both MODIS data and in situ chlorophyll-a measurements, and the estimated CO2 fluxes ranged from -0.5 ± 0.4 to -31.0 ± 6.4 mmol m- 2 d- 1. The large range observed in the fluxes is due to both the spatial variability of sea water pCO2 and to the episodic winds experienced.

  16. The influence of spatially and temporally varying oceanographic conditions on meroplanktonic metapopulations

    NASA Astrophysics Data System (ADS)

    Botsford, L. W.; Moloney, C. L.; Hastings, A.; Largier, J. L.; Powell, T. M.; Higgins, K.; Quinn, J. F.

    We synthesize the results of several modelling studies that address the influence of variability in larval transport and survival on the dynamics of marine metapopulations distributed along a coast. Two important benthic invertebrates in the California Current System (CCS), the Dungeness crab and the red sea urchin, are used as examples of the way in which physical oceanographic conditions can influence stability, synchrony and persistence of meroplanktonic metapopulations. We first explore population dynamics of subpopulations and metapopulations. Even without environmental forcing, isolated local subpopulations with density-dependence can vary on time scales roughly twice the generation time at high adult survival, shifting to annual time scales at low survivals. The high frequency behavior is not seen in models of the Dungeness crab, because of their high adult survival rates. Metapopulations with density-dependent recruitment and deterministic larval dispersal fluctuate in an asynchronous fashion. Along the coast, abundance varies on spatial scales which increase with dispersal distance. Coastwide, synchronous, random environmental variability tends to synchronize these metapopulations. Climate change could cause a long-term increase or decrease in mean larval survival, which in this model leads to greater synchrony or extinction respectively. Spatially managed metapopulations of red sea urchins go extinct when distances between harvest refugia become greater than the scale of larval dispersal. All assessments of population dynamics indicate that metapopulation behavior in general dependes critically on the temporal and spatial nature of larval dispersal, which is largely determined by physical oceanographic conditions. We therfore explore physical influences on larval dispersal patterns. Observed trends in temperature and salinity applied to laboratory-determined responses indicate that natural variability in temperature and salinity can lead to variability in larval development period on interannual (50%), intra-annual (20%) and latitudinal (200%) scales. Variability in development period significantly influences larval survival and, thus, net transport. Larval drifters that undertake diel vertical migration in a primitive equation model of coastal circulation (SPEM) demonstrate the importance of vertical migration in determining horizontal transport. Empirically derived estimates of the effects of wind forcing on larval transport of vertically migrating larvae (wind drift when near the surface and Ekman transport below the surface) match cross-shelf distributions in 4 years of existing larval data. We use a one-dimensional advection-diffusion model, which includes intra-annual timing of cross-shelf flows in the CCS, to explore the combined effects on settlement: (1) temperature- and salinity-dependent development and survival rates and (2) possible horizontal transport due to vertical migration of crab larvae. Natural variability in temperature, wind forcing, and the timing of the spring transition can cause the observed variability in recruitment. We conclude that understanding the dynamics of coastally distributed metapopulations in response to physically-induced variability in larval dispersal will be a critical step in assessing the effects of climate change on marine populations.

  17. Going with the flow: Tidal influence on the occurrence of the harbour porpoise (Phocoena phocoena) in the Marsdiep area, The Netherlands

    NASA Astrophysics Data System (ADS)

    IJsseldijk, Lonneke L.; Camphuysen, Kees C. J.; Nauw, Janine J.; Aarts, Geert

    2015-09-01

    One of the most important factors explaining the distribution and behaviour of coastal marine mammals are tides. Tidal forces drive a large number of primary and secondary processes, such as changes in water depth, salinity, temperature, current velocity and direction. Unravelling which tidal process is the most influential for a certain species is often challenging, due to a lack of observations of all tide related covariates, strong correlation between them, and the elusive nature of most marine organisms which often hampers their detection. In the Marsdiep area, a tidal inlet between the North Sea and the Dutch Wadden Sea, the presence of harbour porpoises (Phocoena phocoena) was studied as a function of tide related covariates. Observations were carried out in early spring from a ferry crossing the inlet on a half hourly basis. Environmental and sightings data were collected by one observer, while an on-board Acoustic Doppler Current Profiler (ADCP) and temperature sensor continuously recorded current velocity profiles and temperature, respectively. Sea surface temperature and salinity were measured at a nearby jetty. Sightings (n = 134) were linked to tidal elevation, geographical position, local depth-averaged current velocity, water temperature (with and without trend correction) and salinity. Variation in sighting rate was best described by salinity, with highest sighting rate at high levels of salinity (> 30 g kg- 1), indicating that porpoises enter the area in bodies of (more saline) North Sea water. Second best variable was time of day, with the highest sighting rate early morning, and decreasing during the day. However, surveys in the morning happened to coincide more often with high water and hence, the apparent time of day effect could be due to collinearity. Most porpoises were present in the northern part of the Marsdiep, particularly during high tide. Tide dependent sighting rates confirmed that porpoises reside in the North Sea, and enter the western Wadden Sea during the flood and leave during ebb. This tidal influx is most likely related to prey availability, which corresponds to other recent studies in this area showing higher fish abundance during high tide. Documenting information on tide related patterns could be used in practice, when e.g. planning anthropogenic activities or assessing critical habitats for this species.

  18. Natural and management influences on freshwater inflows and salinity in the San Francisco Estuary at monthly to interannual scales

    USGS Publications Warehouse

    Knowles, Noah

    2002-01-01

    Understanding the processes controlling the physics, chemistry, and biology of the San Francisco Estuary and their relation to climate variability is complicated by the combined influence on freshwater inflows of natural variability and upstream management. To distinguish these influences, alterations of estuarine inflow due to major reservoirs and freshwater pumping in the watershed were inferred from available data. Effects on salinity were estimated by using reconstructed estuarine inflows corresponding to differing levels of impairment to drive a numerical salinity model. Both natural and management inflow and salinity signals show strong interannual variability. Management effects raise salinities during the wet season, with maximum influence in spring. While year‐to‐year variations in all signals are very large, natural interannual variability can greatly exceed the range of management effects on salinity in the estuary.

  19. Arctic Ocean

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.; Zukor, Dorothy J. (Technical Monitor)

    2000-01-01

    The Arctic Ocean is the smallest of the Earth's four major oceans, covering 14x10(exp 6) sq km located entirely within the Arctic Circle (66 deg 33 min N). It is a major player in the climate of the north polar region and has a variable sea ice cover that tends to increase its sensitivity to climate change. Its temperature, salinity, and ice cover have all undergone changes in the past several decades, although it is uncertain whether these predominantly reflect long-term trends, oscillations within the system, or natural variability. Major changes include a warming and expansion of the Atlantic layer, at depths of 200-900 m, a warming of the upper ocean in the Beaufort Sea, a considerable thinning (perhaps as high as 40%) of the sea ice cover, a lesser and uneven retreat of the ice cover (averaging approximately 3% per decade), and a mixed pattern of salinity increases and decreases.

  20. Pearl Harbor Biological Survey

    DTIC Science & Technology

    1974-08-30

    properties, uses, and driving mechanisms affecting the harbor is given. The methods of obtaining current data, salinity profiles, and temperature... salinities were used for each calibration In order to check the salinity computation mechanism of the Instrument. Temperature calibrations were...Water Temperature Contours for Navy Thermal Discharges 3.2-23 3.2-7. General Layout of Pearl Harbor Showing Mean Monthly Salinity (3L) Variation

  1. Understanding the Dynamics of the South Indian Ocean Sea Surface Salinity Maximum Pool From Argo, Rama, Aquarius, SMOS & Other Satellites

    NASA Astrophysics Data System (ADS)

    Menezes, V. V.; Phillips, H. E.

    2016-02-01

    Subtropical salinity maximum regions are particularly important because the salty subtropical underwater (STW) is formed by subduction of surface waters in these areas. In all oceans, the STW is transported equatorward from the formation region and are tightly related to the Subtropical-Tropical Cell. In the South Indian Ocean (SIO), the salinity maximum pool is further poleward (25S-38S) and eastward (60E-120E). It significantly impacts the circulation of the eastern basin, because the STW forms a strong haline front with the fresh Indonesian Throughflow waters. This haline front overwhelms the temperature contribution establishing the eastward Eastern Gyral Current, an important upstream source for the Leeuwin Current. In the present work, we analyze the variability of the SSS maximum pool using Aquarius and SMOS satellites, an Argo gridded product and the RAMA mooring located at 25S-100E. OAFLUX, 3B42 TRMM, Ascat/Quikscat winds and OSCAR products complement this study. The salinity maximum pool has a strong seasonal cycle of contraction (min in Oct) and expansion (max in April), and most of this variation occurs in the pool poleward side. Advection and entrainment control the contraction, while expansion is due to atmospheric forcing (E-P). From 2004 to 2014, a clear reduction in the pool area is identified, which might be related to a decadal variability. In this case, the variation is in the equatorward side of the pool. Processes controlling this long-term variability are being investigated.

  2. Salinity and Temperature Tolerance of the Nemertean Worm Carcinonemertes errans, an Egg Predator of the Dungeness Crab.

    PubMed

    Dunn, Paul H; Young, Craig M

    2015-04-01

    Estuaries can be harsh habitats for the marine animals that enter them, but they may also provide these species with sub-saline refuges from their parasites. The nemertean egg predator Carcinonemertes errans is known to occur less frequently and in smaller numbers on its host, the Dungeness crab Metacarcinus magister, when the hosts are found within estuaries. We examined the temperature and salinity tolerances of C. errans to determine if this observed distribution represents a true salinity refuge. We monitored the survival of juvenile and larval worms exposed to ecologically relevant salinities (5-30) and temperatures (8-20 °C) over the course of several days under laboratory conditions. Juvenile worms were unaffected by the experimental temperature levels and exhibited robustness to salinity treatments 25 and 30. However, significant mortality was seen at salinity treatments 20 and below. Larvae were less tolerant than juveniles to lowered salinity and were also somewhat more susceptible to the higher temperatures tested. Given that the Dungeness crab can tolerate forays into mesohaline (salinity 5-18) waters for several days at a time, our findings suggest that salinity gradients play an important role in creating a parasite refuge for this species within the estuaries of the Pacific Northwest. © 2015 Marine Biological Laboratory.

  3. Effects of acute changes in salinity and temperature on routine metabolism and nitrogen excretion in gambusia (Gambusia affinis) and zebrafish (Danio rerio).

    PubMed

    Uliano, E; Cataldi, M; Carella, F; Migliaccio, O; Iaccarino, D; Agnisola, C

    2010-11-01

    Acute stress may affect metabolism and nitrogen excretion as part of the adaptive response that allows animals to face adverse environmental changes. In the present paper the acute effects of different salinities and temperatures on routine metabolism, spontaneous activity and excretion of ammonia and urea were studied in two freshwater fish: gambusia, Gambusia affinis and zebrafish, Danio rerio, acclimated to 27 degrees C. The effects on gill morphology were also evaluated. Five salinities (0 per thousand, 10 per thousand, 20 per thousand, 30 per thousand and 35 per thousand) were tested in gambusia, while four salinities were used in zebrafish (0 per thousand, 10 per thousand, 20 per thousand and 25 per thousand). Each salinity acute stress was tested alone or in combination with an acute temperature reduction to 20 degrees C. In gambusia, both salinity and temperature acute stress strongly stimulated urea excretion. Routine oxygen consumption was barely affected by acute salinity or temperature stress, and was reduced by the combined effects of temperature and high salinity. Gills maintained their structural integrity in all stressing conditions; hyperplasia and hypertrophy of mitochondria-rich cells were observed. In zebrafish, temperature and salinity acute changes, both alone and in combination, scarcely affected any parameter tested. The major effect observed was a reduction of nitrogen excretion at 20 degrees C-25 per thousand; under these extreme conditions a significant structural disruption of gills was observed. These results confirm the high tolerance to acute salinity and temperature stress in gambusia, and demonstrate the involvement of urea excretion modulation in the stress response in this species. Copyright 2010 Elsevier Inc. All rights reserved.

  4. Toxicity of antifouling biocides to the intertidal harpacticoid copepod Tigriopus japonicus (Crustacea, Copepoda): effects of temperature and salinity.

    PubMed

    Kwok, K W H; Leung, K M Y

    2005-01-01

    Intertidal harpacticoid copepods are commonly used in eco-toxicity tests worldwide. They predominately live in mid-high shore rock pools and often experience a wide range of temperature and salinity fluctuation. Most eco-toxicity tests are conducted at fixed temperature and salinity and thus the influence of these environmental factors on chemical toxicity is largely unknown. This study investigated the combined effect of temperature and salinity on the acute toxicity of the copepod Tigriopus japonicus against two common biocides, copper (Cu) and tributyltin (TBT) using a 2 x 3 x 4 factorial design (i.e. two temperatures: 25 and 35 degrees C; three salinities: 15.0 per thousand, 34.5 per thousand and 45.0 per thousand; three levels of the biocide plus a control). Copper sulphate and tributyltin chloride were used as the test chemicals while distilled water and acetone were utilised as solvents for Cu and TBT respectively. 96 h-LC50s of Cu and TBT were 1024 and 0.149 microg l(-1) respectively (at 25 degrees C; 34.5 per thousand) and, based on these results, nominal biocide concentrations of LC0 (i.e. control), LC30, LC50 and LC70 were employed. Analysis of Covariance using 'concentration' as the covariate and both 'temperature' and 'salinity' as fixed factors, showed a significant interaction between temperature and salinity effects for Cu, mortality increasing with temperature but decreasing with elevated salinity. A similar result was revealed for TBT. Both temperature and salinity are, therefore, important factors affecting the results of acute eco-toxicity tests using these marine copepods. We recommend that such eco-toxicity tests should be conducted at a range of environmentally realistic temperature/salinity regimes, as this will enhance the sensitivity of the test and improve the safety margin in line with the precautionary principle.

  5. Elevated temperature enhances normal early embryonic development in the coral Platygyra acuta under low salinity conditions

    NASA Astrophysics Data System (ADS)

    Chui, Apple Pui Yi; Ang, Put

    2015-06-01

    To better understand the possible consequences of climate change on reef building scleractinian corals in a marginal environment, laboratory experiments were conducted to examine the interactive effects of changes in salinity and temperature on percent fertilization success and early embryonic development of the coral Platygyra acuta. In the present study, a salinity of 24 psu (ambient 32 psu) reduced fertilization success by 60 %. Normal embryonic development was reduced by >80 % at 26 psu (ambient 33 psu) with 100 % abnormal development at 22 psu under ambient temperature. Elevated temperature (+3 °C) above the ambient spawning temperature did not show any negative effects on fertilization success. However, there was a trend for more abnormal embryos to develop at elevated temperature in the 2 d of the spawning event. The interactive effects between salinity and temperature are statistically significant only on normal embryonic development of P. acuta, but not on its fertilization success. Salinity was revealed to be the main factor affecting both fertilization success and normal embryonic development. Interestingly, the much lower fertilization success (76 %) observed in the second day of spawning (Trial 2) under ambient temperature recovered to 99 % success under elevated (+3 °C) temperature conditions. Moreover, elevated temperature enhanced normal early embryonic development under lowered salinity (26 psu). This antagonistic interactive effect was consistently observed in two successive nights of spawning. Overall, our results indicate that, in terms of its fertilization success and embryonic development, P. acuta is the most tolerant coral species to reduced salinity thus far reported in the literature. Elevated temperature, at least that within the tolerable range of the corals, could apparently alleviate the potential negative effects from salinity stresses. This mitigating role of elevated temperature appears not to have been reported on corals before.

  6. The effects of salinity and temperature shock on Kappaphycus alvarezii seaweed spores release

    NASA Astrophysics Data System (ADS)

    Harwinda, F. K.; Satyantini, W. H.; Masithah, E. W.

    2018-04-01

    One of the reproductive aspects of development step that is considered as the solution of this issue is seaweed sporulation technique through which is induced through salinity and temperature shock. This study aims to determine the effect of combination and interaction of salinity and temperature shock on the release of K. alvarezii spores in order to produce superior seeds. This research was conducted using Complete Randomized Design Factorial which consists of nine combinations of treatments and three replications. The used treatment in this study is the combination of different environmental factors such as salinity shock and temperature shock. The data were analyzed using ANOVA (Analysis of Variance) followed by Duncan Multiple Range Test. The results showed that salinity (31 ppt, 33 ppt, and 35 ppt) and temperature (30°C, 32°C, and 34°C). shock affected the osmoregulation system and the release of K. alvarezii spores. The salinity shock and temperature shock had interaction with K. alvarezii spore release on the sixth and seventh day with the best treatment at 32°C temperature and 31 ppt salinity and released 5413 cells/ml spores on the seventh day.

  7. Identifying metabolic pathways for production of extracellular polymeric substances by the diatom Fragilariopsis cylindrus inhabiting sea ice.

    PubMed

    Aslam, Shazia N; Strauss, Jan; Thomas, David N; Mock, Thomas; Underwood, Graham J C

    2018-05-01

    Diatoms are significant primary producers in sea ice, an ephemeral habitat with steep vertical gradients of temperature and salinity characterizing the ice matrix environment. To cope with the variable and challenging conditions, sea ice diatoms produce polysaccharide-rich extracellular polymeric substances (EPS) that play important roles in adhesion, cell protection, ligand binding and as organic carbon sources. Significant differences in EPS concentrations and chemical composition corresponding to temperature and salinity gradients were present in sea ice from the Weddell Sea and Eastern Antarctic regions of the Southern Ocean. To reconstruct the first metabolic pathway for EPS production in diatoms, we exposed Fragilariopsis cylindrus, a key bi-polar diatom species, to simulated sea ice formation. Transcriptome profiling under varying conditions of EPS production identified a significant number of genes and divergent alleles. Their complex differential expression patterns under simulated sea ice formation was aligned with physiological and biochemical properties of the cells, and with field measurements of sea ice EPS characteristics. Thus, the molecular complexity of the EPS pathway suggests metabolic plasticity in F. cylindrus is required to cope with the challenging conditions of the highly variable and extreme sea ice habitat.

  8. Assessment of surf zone environmental variables in a southwestern Atlantic sandy beach (Monte Hermoso, Argentina).

    PubMed

    Menéndez, M Clara; Fernández Severini, Melisa D; Buzzi, Natalia S; Piccolo, M Cintia; Perillo, Gerardo M E

    2016-08-01

    The aim of this study was to investigate the temporal dynamics (monthly/tidal) of water temperature, salinity, chlorophyll-a (chlo-a), suspended particulate matter (SPM), particulate organic carbon (POC), and dissolved nutrients in the surf zone of Monte Hermoso sandy beach, Argentina. We also aimed to understand the underlying mechanisms responsible for the observed variability. Sampling was carried out approximately monthly (September 2009-November 2010), and all samples were collected in a fixed station during high and low tide. Water temperature showed a clear seasonal variability (July: 9 °C-December: 26.5 °C) and a thermal amplitude of 17.5 °C. Salinity ranged from 33 to 37, without a pronounced seasonality. SPM (10-223 mg L(-1)) and POC concentrations (399-6445 mg C m(-3)) were high in surf zone waters. Chlo-a (0.05-9.16 μg L(-1)) was low and did not evidence the occurrence of surf diatom accumulations. Dissolved nutrient concentration was quite fluctuating. None of the variables seemed to be affected by tidal stage. The results showed how fluctuating the physico-chemical and biological variables can be in this particular system. The observed variability can be related with local beach conditions but also with regional processes. The study area is highly influenced by a neighbor estuary and as a consequence, could be vulnerable to their seasonal and inter-annual dynamics. All of these characteristics must be considered for further studies and planning of the uses of natural resources and should be taken into account in any environmental monitoring program conducted in a similar beach system.

  9. Ecological consequences of invasion across the freshwater-marine transition in a warming world.

    PubMed

    Crespo, Daniel; Solan, Martin; Leston, Sara; Pardal, Miguel A; Dolbeth, Marina

    2018-02-01

    The freshwater-marine transition that characterizes an estuarine system can provide multiple entry options for invading species, yet the relative importance of this gradient in determining the functional contribution of invading species has received little attention. The ecological consequences of species invasion are routinely evaluated within a freshwater versus marine context, even though many invasive species can inhabit a wide range of salinities. We investigate the functional consequences of different sizes of Corbicula fluminea -an invasive species able to adapt to a wide range of temperatures and salinity-across the freshwater-marine transition in the presence versus absence of warming. Specifically, we characterize how C. fluminea affect fluid and particle transport, important processes in mediating nutrient cycling (NH 4 -N, NO 3 -N, PO 4 -P). Results showed that sediment particle reworking (bioturbation) tends to be influenced by size and to a lesser extent, temperature and salinity; nutrient concentrations are influenced by different interactions between all variables (salinity, temperature, and size class). Our findings demonstrate the highly context-dependent nature of the ecosystem consequences of invasion and highlight the potential for species to simultaneously occupy multiple components of an ecosystem. Recognizing of this aspect of invasibility is fundamental to management and conservation efforts, particularly as freshwater and marine systems tend to be compartmentalized rather than be treated as a contiguous unit. We conclude that more comprehensive appreciation of the distribution of invasive species across adjacent habitats and different seasons is urgently needed to allow the true extent of biological introductions, and their ecological consequences, to be fully realized.

  10. Temporal coherence among tropical coastal lagoons: a search for patterns and mechanisms.

    PubMed

    Caliman, A; Carneiro, L S; Santangelo, J M; Guariento, R D; Pires, A P F; Suhett, A L; Quesado, L B; Scofield, V; Fonte, E S; Lopes, P M; Sanches, L F; Azevedo, F D; Marinho, C C; Bozelli, R L; Esteves, F A; Farjalla, V F

    2010-10-01

    Temporal coherence (i.e., the degree of synchronicity of a given variable among ecological units within a predefined space) has been shown for several limnological features among temperate lakes, allowing predictions about the structure and function of ecosystems. However, there is little evidence of temporal coherence among tropical aquatic systems, where the climatic variability among seasons is less pronounced. Here, we used data from long-term monitoring of physical, chemical and biological variables to test the degree of temporal coherence among 18 tropical coastal lagoons. The water temperature and chlorophyll-a concentration had the highest and lowest temporal coherence among the lagoons, respectively, whereas the salinity and water colour had intermediate temporal coherence. The regional climactic factors were the main factors responsible for the coherence patterns in the water temperature and water colour, whereas the landscape position and morphometric characteristics explained much of the variation of the salinity and water colour among the lagoons. These results indicate that both local (lagoon morphometry) and regional (precipitation, air temperature) factors regulate the physical and chemical conditions of coastal lagoons by adjusting the terrestrial and marine subsidies at a landscape-scale. On the other hand, the chlorophyll-a concentration appears to be primarily regulated by specific local conditions resulting in a weak temporal coherence among the ecosystems. We concluded that temporal coherence in tropical ecosystems is possible, at least for some environmental features, and should be evaluated for other tropical ecosystems. Our results also reinforce that aquatic ecosystems should be studied more broadly to accomplish a full understanding of their structure and function.

  11. Measurements of the dielectric properties of sea water at 1.43 GHz

    NASA Technical Reports Server (NTRS)

    Ho, W. W.; Love, A. W.; Vanmelle, M. J.

    1974-01-01

    Salinity and temperature of water surfaces of estuaries and bay regions are determined to accuracies of 1 ppt salinity and 0.3 kelvin surface temperature. L-band and S-band radiometers are used in combination as brightness temperature detectors. The determination of the brightness temperature versus salinity, with the water surface temperature as a parameter for 1.4 GHz, is performed with a capillary tube inserted into a resonance cavity. Detailed analysis of the results indicates that the measured values are accurate to better than 0.2 percent in the electric property epsilon' and 0.4 percent in epsilon''. The calculated brightness temperature as a function of temperature and salinity is better than 0.2 kelvin. Thus it is possible to reduce the measured data obtained with the two-frequency radiometer system with 1 ppt accuracy to values in the salinity range 5 to 40 ppt.

  12. Effects of Seawater Salinity and Temperature on Growth and Pigment Contents in Hypnea cervicornis J. Agardh (Gigartinales, Rhodophyta)

    PubMed Central

    Ding, Lanping; Ma, Yuanyuan; Huang, Bingxin; Chen, Shanwen

    2013-01-01

    This study simulated outdoor environmental living conditions and observed the growth rates and changes of several photosynthetic pigments (Chl a, Car, PE, and PC) in Hypnea cervicornis J. Agardh (Gigartinales, Rhodophyta) by setting up different ranges of salinity (25, 30, 35, 40, 45, and 50) and temperature (15, 20, 25, and 30°C). At conditions of culture, the results are as follows. (1) Changes in salinity and temperature have significant effects on the growth of H. cervicornis. The growth rates first increase then decrease as the temperature increases, while growth tends to decline as salinity increases. The optimum salinity and temperature conditions for growth are 25 and 25°C, respectively. (2) Salinity and temperature have significant or extremely significant effects on photosynthetic pigments (Chl a, Car, PE, and PC) in H. cervicornis. The results of this study are advantageous to ensure propagation and economic development of this species in the southern sea area of China. PMID:24350276

  13. Assimilation of Satellite Sea Surface Salinity Fields: Validating Ocean Analyses and Identifying Errors in Surface Buoyancy Fluxes

    NASA Astrophysics Data System (ADS)

    Mehra, A.; Nadiga, S.; Bayler, E. J.; Behringer, D.

    2014-12-01

    Recently available satellite sea-surface salinity (SSS) fields provide an important new global data stream for assimilation into ocean forecast systems. In this study, we present results from assimilating satellite SSS fields from NASA's Aquarius mission into the National Oceanic and Atmospheric Administration's (NOAA) operational Modular Ocean Model version 4 (MOM4), the oceanic component of NOAA's operational seasonal-interannual Climate Forecast System (CFS). Experiments on the sensitivity of the ocean's overall state to different relaxation time periods were run to evaluate the importance of assimilating high-frequency (daily to mesoscale) and low-frequency (seasonal) SSS variability. Aquarius SSS data (Aquarius Data Processing System (ADPS) version 3.0), mapped daily fields at 1-degree spatial resolution, were used. Four model simulations were started from the same initial ocean condition and forced with NOAA's daily Climate Forecast System Reanalysis (CFSR) fluxes, using a relaxation technique to assimilate daily satellite sea surface temperature (SST) fields and selected SSS fields, where, except as noted, a 30-day relaxation period is used. The simulations are: (1) WOAMC, the reference case and similar to the operational setup, assimilating monthly climatological SSS from the 2009 NOAA World Ocean Atlas; (2) AQ_D, assimilating daily Aquarius SSS; (3) AQ_M, assimilating monthly Aquarius SSS; and (4) AQ_D10, assimilating daily Aquarius SSS, but using a 10-day relaxation period. The analysis focuses on the tropical Pacific Ocean, where the salinity dynamics are intense and dominated by El Niño interannual variability in the cold tongue region and by high-frequency precipitation events in the western Pacific warm pool region. To assess the robustness of results and conclusions, we also examine the results for the tropical Atlantic and Indian Oceans. Preliminary validation studies are conducted using observations, such as satellite sea-surface height (SSH) fields and in situ Argo buoy vertical profiles of temperature and salinity, to demonstrate that SSS data assimilation improves ocean state representation of the following variables: ocean heat content (0-300m), dynamic height (0-1000m), mixed-layer depth, sea surface heigh, and surface buoyancy fluxes.

  14. Effect of temperature and salinity on phosphate sorption on marine sediments.

    PubMed

    Zhang, Jia-Zhong; Huang, Xiao-Lan

    2011-08-15

    Our previous studies on the phosphate sorption on sediments in Florida Bay at 25 °C in salinity 36 seawater revealed that the sorption capacity varies considerably within the bay but can be attributed to the content of sedimentary P and Fe. It is known that both temperature and salinity influence the sorption process and their natural variations are the greatest in estuaries. To provide useful sorption parameters for modeling phosphate cycle in Florida Bay, a systematic study was carried out to quantify the effects of salinity and temperature on phosphate sorption on sediments. For a given sample, the zero equilibrium phosphate concentration and the distribution coefficient were measured over a range of salinity (2-72) and temperature (15-35 °C) conditions. Such a suite of experiments with combinations of different temperature and salinity were performed for 14 selected stations that cover a range of sediment characteristics and geographic locations of the bay. Phosphate sorption was found to increase with increasing temperature or decreasing salinity and their effects depended upon sediment's exchangeable P content. This study provided the first estimate of the phosphate sorption parameters as a function of salinity and temperature in marine sediments. Incorporation of these parameters in water quality models will enable them to predict the effect of increasing freshwater input, as proposed by the Comprehensive Everglades Restoration Plan, on the seasonal cycle of phosphate in Florida Bay.

  15. SMOS reveals the signature of Indian Ocean Dipole events

    NASA Astrophysics Data System (ADS)

    Durand, Fabien; Alory, Gaël; Dussin, Raphaël; Reul, Nicolas

    2013-12-01

    The tropical Indian Ocean experiences an interannual mode of climatic variability, known as the Indian Ocean Dipole (IOD). The signature of this variability in ocean salinity is hypothesized based on modeling and assimilation studies, on account of scanty observations. Soil Moisture and Ocean Salinity (SMOS) satellite has been designed to take up the challenge of sea surface salinity remote sensing. We show that SMOS data can be used to infer the pattern of salinity variability linked with the IOD events. The core of maximum variability is located in the central tropical basin, south of the equator. This region is anomalously salty during the 2010 negative IOD event, and anomalously fresh during the 2011 positive IOD event. The peak-to-peak anomaly exceeds one salinity unit, between late 2010 and late 2011. In conjunction with other observational datasets, SMOS data allow us to draw the salt budget of the area. It turns out that the horizontal advection is the main driver of salinity anomalies. This finding is confirmed by the analysis of the outputs of a numerical model. This study shows that the advent of SMOS makes it feasible the quantitative assessment of the mechanisms of ocean surface salinity variability in the tropical basins, at interannual timescales.

  16. Simulating the role of surface forcing on observed multidecadal upper-ocean salinity changes

    DOE PAGES

    Lago, Veronique; Wijffels, Susan E.; Durack, Paul J.; ...

    2016-07-18

    The ocean’s surface salinity field has changed over the observed record, driven by an intensification of the water cycle in response to global warming. However, the origin and causes of the coincident subsurface salinity changes are not fully understood. The relationship between imposed surface salinity and temperature changes and their corresponding subsurface changes is investigated using idealized ocean model experiments. The ocean’s surface has warmed by about 0.5°C (50 yr) –1 while the surface salinity pattern has amplified by about 8% per 50 years. The idealized experiments are constructed for a 50-yr period, allowing a qualitative comparison to the observedmore » salinity and temperature changes previously reported. The comparison suggests that changes in both modeled surface salinity and temperature are required to replicate the three-dimensional pattern of observed salinity change. The results also show that the effects of surface changes in temperature and salinity act linearly on the changes in subsurface salinity. In addition, surface salinity pattern amplification appears to be the leading driver of subsurface salinity change on depth surfaces; however, surface warming is also required to replicate the observed patterns of change on density surfaces. This is the result of isopycnal migration modified by the ocean surface warming, which produces significant salinity changes on density surfaces.« less

  17. Simulating the role of surface forcing on observed multidecadal upper-ocean salinity changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lago, Veronique; Wijffels, Susan E.; Durack, Paul J.

    The ocean’s surface salinity field has changed over the observed record, driven by an intensification of the water cycle in response to global warming. However, the origin and causes of the coincident subsurface salinity changes are not fully understood. The relationship between imposed surface salinity and temperature changes and their corresponding subsurface changes is investigated using idealized ocean model experiments. The ocean’s surface has warmed by about 0.5°C (50 yr) –1 while the surface salinity pattern has amplified by about 8% per 50 years. The idealized experiments are constructed for a 50-yr period, allowing a qualitative comparison to the observedmore » salinity and temperature changes previously reported. The comparison suggests that changes in both modeled surface salinity and temperature are required to replicate the three-dimensional pattern of observed salinity change. The results also show that the effects of surface changes in temperature and salinity act linearly on the changes in subsurface salinity. In addition, surface salinity pattern amplification appears to be the leading driver of subsurface salinity change on depth surfaces; however, surface warming is also required to replicate the observed patterns of change on density surfaces. This is the result of isopycnal migration modified by the ocean surface warming, which produces significant salinity changes on density surfaces.« less

  18. Controls of picophytoplankton abundance and composition in a highly dynamic marine system, the Northern Alboran Sea (Western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Amorim, Ana L.; León, Pablo; Mercado, Jesús M.; Cortés, Dolores; Gómez, Francisco; Putzeys, Sebastien; Salles, Soluna; Yebra, Lidia

    2016-06-01

    The Alboran Sea is a highly dynamic basin which exhibits a high spatio-temporal variability of hydrographic structures (e.g. fronts, gyres, coastal upwellings). This work compares the abundance and composition of picophytoplankton observed across the northern Alboran Sea among eleven cruises between 2008 and 2012 using flow cytometry. We evaluate the seasonal and longitudinal variability of picophytoplankton on the basis of the circulation regimes at a regional scale and explore the presence of cyanobacteria ecotypes in the basin. The maximal abundances obtained for Prochlorococcus, Synechococcus and picoeukaryotes (12.7 × 104, 13.9 × 104 and 8.6 × 104 cells mL- 1 respectively) were consistent with those reported for other adjacent marine areas. Seasonal changes in the abundance of the three picophytoplankton groups were highly significant although they did not match the patterns described for other coastal waters. Higher abundances of Prochlorococcus were obtained in autumn-winter while Synechococcus and picoeukaryotes exhibited a different seasonal abundance pattern depending on the sector (e.g. Synechococcus showed higher abundance in summer in the west sector and during winter in the eastern study area). Additionally, conspicuous longitudinal gradients were observed for Prochlorococcus and Synechococcus, with Prochlorococcus decreasing from west to east and Synechococcus following the opposite pattern. The analysis of environmental variables (i.e. temperature, salinity and inorganic nutrients) and cell abundances indicates that Prochlorococcus preferred high salinity and nitrate to phosphate ratio. On the contrary, temperature did not seem to play a role in Prochlorococcus distribution as it was numerically important during the whole seasonal cycle. Variability in Synechococcus abundance could not be explained by changes in any environmental variable suggesting that different ecotypes were sampled during the surveys. In particular, our data would indicate the presence of at least two ecotypes of Synechococcus: a summer ecotype widely distributed in the whole Alboran Sea and a winter ecotype adapted to lower temperature and higher nutrient concentration whose growth is favoured in the eastern sector.

  19. Effects of saline drinking water on early gosling development

    USGS Publications Warehouse

    Stolley, D.S.; Bissonette, J.A.; Kadlec, J.A.; Coster, D.

    1999-01-01

    Relatively high levels of saline drinking water may adversely affect the growth, development, and survival of young waterfowl. Saline drinking water was suspect in the low survival rate of Canada goose (Branta canadensis) goslings at Fish Springs National Wildlife Refuge (FSNWR) in western Utah. Hence, we investigated the effects of saline drinking water on the survival and growth of captive, wild-strain goslings from day 1-28 following hatch. We compared survival and growth (as measured by body mass, wing length, and culmen length) between a control group on tap water with a mean specific conductivity of 650 ??S/cm, and 2 saline water treatments: (1) intermediate level (12,000 ??S/cm), and (2) high level (18,000 ??S/cm). Gosling mortality occurred only in the 18,000 ??S/cm treatment group (33%; n = 9). Slopes of regressions of mean body mass, wing length, and culmen length on age were different from each other (P < 0.05), except for culmen length for the intermediate and high treatment levels. We predict that free-ranging wild goslings will experience mortality at even lower salinity levels than captive goslings because of the combined effects of depressed growth and environmental stresses, including hot desert temperatures and variable food quality over summer.

  20. Using Remotely Sensed Data and Watershed and Hydrodynamic Models to Evaluate the Effects of Land Cover Land Use Change on Aquatic Ecosystems in Mobile Bay, AL

    NASA Technical Reports Server (NTRS)

    Al-Hamdan, Mohammad; Estes, Maurice G., Jr.; Judd, Chaeli; Woodruff, Dana; Ellis, Jean; Quattrochi, Dale; Watson, Brian; Rodriquez, Hugo; Johnson, Hoyt

    2012-01-01

    Alabama coastal systems have been subjected to increasing pressure from a variety of activities including urban and rural development, shoreline modifications, industrial activities, and dredging of shipping and navigation channels. The impacts on coastal ecosystems are often observed through the use of indicator species. One such indicator species for aquatic ecosystem health is submerged aquatic vegetation (SAV). Watershed and hydrodynamic modeling has been performed to evaluate the impact of land cover land use (LCLU) change in the two counties surrounding Mobile Bay (Mobile and Baldwin) on SAV stressors and controlling factors (temperature, salinity, and sediment) in the Mobile Bay estuary. Watershed modeling using the Loading Simulation Package in C++ (LSPC) was performed for all watersheds contiguous to Mobile Bay for LCLU scenarios in 1948, 1992, 2001, and 2030. Remotely sensed Landsat-derived National Land Cover Data (NLCD) were used in the 1992 and 2001 simulations after having been reclassified to a common classification scheme. The Prescott Spatial Growth Model was used to project the 2030 LCLU scenario based on current trends. The LSPC model simulations provided output on changes in flow, temperature, and sediment for 22 discharge points into the estuary. These results were inputted in the Environmental Fluid Dynamics Computer Code (EFDC) hydrodynamic model to generate data on changes in temperature, salinity, and sediment on a grid throughout Mobile Bay and adjacent estuaries. The changes in the aquatic ecosystem were used to perform an ecological analysis to evaluate the impact on SAV habitat suitability. This is the key product benefiting the Mobile Bay coastal environmental managers that integrates the influences of temperature, salinity, and sediment due to LCLU driven flow changes with the restoration potential of SAVs. Data products and results are being integrated into NOAA s EcoWatch and Gulf of Mexico Data Atlas online systems for dissemination to coastal resource managers and stakeholders. Objective 1: Develop and utilize Land Use scenarios for Mobile and Baldwin Counties, AL as input to models to predict the affects on water properties (temperature,salinity,)for Mobile Bay through 2030. Objective 2: Evaluate the impact of land use change on seagrasses and SAV in Mobile Bay. Hypothesis: Urbanization will significantly increase surface flows and impact salinity and temperature variables that effect seagrasses and SAVs.

  1. Application of acoustic-Doppler current profiler and expendable bathythermograph measurements to the study of the velocity structure and transport of the Gulf Stream

    NASA Technical Reports Server (NTRS)

    Joyce, T. M.; Dunworth, J. A.; Schubert, D. M.; Stalcup, M. C.; Barbour, R. L.

    1988-01-01

    The degree to which Acoustic-Doppler Current Profiler (ADCP) and expendable bathythermograph (XBT) data can provide quantitative measurements of the velocity structure and transport of the Gulf Stream is addressed. An algorithm is used to generate salinity from temperature and depth using an historical Temperature/Salinity relation for the NW Atlantic. Results have been simulated using CTD data and comparing real and pseudo salinity files. Errors are typically less than 2 dynamic cm for the upper 800 m out of a total signal of 80 cm (across the Gulf Stream). When combined with ADCP data for a near-surface reference velocity, transport errors in isopycnal layers are less than about 1 Sv (10 to the 6th power cu m/s), as is the difference in total transport for the upper 800 m between real and pseudo data. The method is capable of measuring the real variability of the Gulf Stream, and when combined with altimeter data, can provide estimates of the geoid slope with oceanic errors of a few parts in 10 to the 8th power over horizontal scales of 500 km.

  2. Salinity effect on the maximal growth temperature of some bacteria isolated from marine enviroments.

    PubMed

    Stanley, S O; Morita, R Y

    1968-01-01

    Salinity of the growth medium was found to have a marked effect on the maximal growth temperature of four bacteria isolated from marine sources. Vibrio marinus MP-1 had a maximal growth temperature of 21.2 C at a salinity of 35% and a maximal growth temperature of 10.5 C at a salinity of 7%, the lowest salinity at which it would grow. This effect was shown to be due to the presence of various cations in the medium. The order of effectiveness of cations in restoring the normal maximal growth temperature, when added to dilute seawater, was Na(+) > Li(+) > Mg(++) > K(+) > Rb(+) > NH(4) (+). The anions tested, with the exception of SO(4)=, had no marked effect on the maximal growth temperature response. In a completely defined medium, the highest maximal growth temperature was 20.0 C at 0.40 m NaCl. A decrease in the maximal growth temperature was observed at both low and high concentrations of NaCl.

  3. Sea-surface temperature and salinity mapping from remote microwave radiometric measurements of brightness temperature

    NASA Technical Reports Server (NTRS)

    Hans-Juergen, C. B.; Kendall, B. M.; Fedors, J. C.

    1977-01-01

    A technique to measure remotely sea surface temperature and salinity was demonstrated with a dual frequency microwave radiometer system. Accuracies in temperature of 1 C and in salinity of part thousand for salinity greater than 5 parts per thousand were attained after correcting for the influence of extraterrestrial background radiation, atmospheric radiation and attenuation, sea-surface roughness, and antenna beamwidth. The radiometers, operating at 1.43 and 2.65 GHz, comprise a third-generation system using null balancing and feedback noise injection. Flight measurements from an aircraft at an altitude of 1.4 km over the lower Chesapeake Bay and coastal areas of the Atlantic Ocean resulted in contour maps of sea-surface temperature and salinity with a spatial resolution of 0.5 km.

  4. Effect of salinity on locomotor performance and thermal extremes of metamorphic Andean Toads (Rhinella spinulosa) from Monte Desert, Argentina.

    PubMed

    Sanabria, Eduardo; Quiroga, Lorena; Vergara, Cristina; Banchig, Mariana; Rodriguez, Cesar; Ontivero, Emanuel

    2018-05-01

    Rhinella spinulosa is distributed from Peru to Argentina (from 1200 to 5000 m elevation), inhabiting arid mountain valleys of the Andes, characterized by salty soils. The variations in soil salinity, caused by high evapotranspiration of water, can create an osmotic constraint and high thermal oscillations for metamorphsed Andean toad (R. spinulosa), affecting their thermoregulation and extreme thermal tolerances. We investigated the changes in thermal tolerance parameters (critical thermal maximum and crystallization temperature) of a population of metamorphosed R. spinulosa from the Monte Desert of San Juan, Argentina, under different substrate salinity conditions. Our results suggest that the locomotor performance of metamorphs of R. spinulosa is affected by increasing salinity concentrations in the environment where they develop. On the other hand, the thermal extremes of metamorphs of R. spinulosa also showed changes associated with different salinity conditions. According to other studies on different organisms, the increase of the osmolarity of the internal medium may increase the thermal tolerance of this species. More studies are needed to understand the thermo-osmolar adjustments of the metamorphs of toads to environmental variability. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. One hundred years of Arctic ice cover variations as simulated by a one-dimensional, ice-ocean model

    NASA Astrophysics Data System (ADS)

    Hakkinen, S.; Mellor, G. L.

    1990-09-01

    A one-dimensional ice-ocean model consisting of a second moment, turbulent closure, mixed layer model and a three-layer snow-ice model has been applied to the simulation of Arctic ice mass and mixed layer properties. The results for the climatological seasonal cycle are discussed first and include the salt and heat balance in the upper ocean. The coupled model is then applied to the period 1880-1985, using the surface air temperature fluctuations from Hansen et al. (1983) and from Wigley et al. (1981). The analysis of the simulated large variations of the Arctic ice mass during this period (with similar changes in the mixed layer salinity) shows that the variability in the summer melt determines to a high degree the variability in the average ice thickness. The annual oceanic heat flux from the deep ocean and the maximum freezing rate and associated nearly constant minimum surface salinity flux did not vary significantly interannually. This also implies that the oceanic influence on the Arctic ice mass is minimal for the range of atmospheric variability tested.

  6. Effect of physico-chemical regimes and tropical cyclones on seasonal distribution of chlorophyll-a in the Chilika Lagoon, east coast of India.

    PubMed

    Sahoo, Subhashree; Baliarsingh, S K; Lotliker, Aneesh A; Pradhan, Umesh K; Thomas, C S; Sahu, K C

    2017-04-01

    A comprehensive analysis on spatiotemporal variation in physico-chemical variables and their control on chlorophyll-a during 2013-14 was carried out in the Chilika Lagoon. Spatiotemporal variation in physico-chemical regimes significantly controlled the phytoplankton biomass of the lagoon. Further, precipitation-induced river/terrestrial freshwater influx and marine influence controlled the physico-chemical regimes of the Chilika Lagoon, such as nutrients (NH 4 + , NO 3 - , NO 2 - , PO 4 3- and Si(OH) 4 ), temperature, salinity, total suspended matter and dissolved oxygen. This study revealed significant effects of tropical cyclones Phailin (2013) and Hudhud (2014) on physico-chemical regimes and in turn the phytoplankton biomass of the lagoon. Although both cyclones Phailin (2013) and Hudhud (2014) were intense, Phailin (2013) had a greater impact on the Chilika Lagoon due to the proximity of its landfall. Heavy precipitation caused an influx of nutrient-rich freshwater, both during each cyclone's passage, through rainfall, and after, through increased river flow and terrestrial run-off. The increase in nutrients, carried by the run-off, promoted phytoplankton growth, albeit in lag phase. In general, phytoplankton growth was controlled by nitrogenous nutrients. However, the addition of SiO 4 through terrigenous run-off fuelled preferential growth of diatoms. The salinity pattern (which can be considered a proxy for fresh and marine water influx) indicated injection of freshwater nutrients into the northern, southern and central sectors of the lagoon through riverine/terrestrial freshwater run-off; marine influx was restricted to the mouth of the lagoon. Present and past magnitudes of salinity and chlorophyll-a were also compared to better understand the pattern of variability. A significant change in salinity pattern was noticed after the opening of an artificial inlet, because of the resulting higher influx of marine water. The overall phytoplankton biomass (using chlorophyll-a concentration as a proxy) remained consistent in the lagoon pre- and post-restoration. Due to the wide range of salinity and temperature tolerance, diatoms remained dominant in both pre- and post-restoration periods, but the overall phytoplankton diversity increased after the artificial inlet was dredged.

  7. Species Profiles. Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Pacific Southwest) Crangonid Shrimp

    DTIC Science & Technology

    1989-12-01

    temperature affected survival at different shelter has been suggested as an important salinities and salinity affected survival at mechanism of nutrient...10 Salinity . . . . .. . . . . .. . . . .. . .. . .. . .. .. . .. .. .. .. . .. . . .. . .. . . . . .. . . . 11 Temperature- Salinity ...members of the tribe Caridca by four features Order .................... Decapoda (Figure 3); (1)-the rostrum is very short, Suborder

  8. Hydrodynamic and suspended-solids concentration measurements in Suisun Bay, California, 1995

    USGS Publications Warehouse

    Cuetara, Jay I.; Burau, Jon R.; Schoellhamer, David H.

    2001-01-01

    Sea level, current velocity, water temperature, salinity (computed from conductivity and temperature), and suspended-solids data collected in Suisun Bay, California, from May 30, 1995, through October 27, 1995, by the U.S. Geological Survey are documented in this report. Data were collected concurrently at 21 sites. Various parameters were measured at each site. Velocity-profile data were collected at 6 sites, single-point velocity measurements were made at 9 sites, salinity data were collected at 20 sites, and suspended-solids concentrations were measured at 10 sites. Sea-level and velocity data are presented in three forms; harmonic analysis results; time-series plots (sea level, current speed, and current direction versus time); and time-series plots of low-pass-filtered time series. Temperature, salinity, and suspended-solids data are presented as plots of raw and low-pass-filtered time series.The velocity and salinity data presented in this report document a period when the residual current patterns and salt field were transitioning from a freshwater-inflow-dominated condition towards a quasi steady-state summer condition when density-driven circulation and tidal nonlinearities became relatively more important as long-term transport mechanisms. Sacramento-San Joaquin River Delta outflow was high prior to and during this study, so the tidally averaged salinities were abnormally low for this time of year. For example, the tidally averaged salinities varied from 0-12 at Martinez, the western border of Suisun Bay, to a maximum of 2 at Mallard Island, the eastern border of Suisun Bay. Even though salinities increased overall in Suisun Bay during the study period, the near-bed residual currents primarily were directed seaward. Therefore, salinity intrusion through Suisun Bay towards the Delta primarily was accomplished in the absence of the tidally averaged, two-layer flow known as gravitational circulation where, by definition, the net currents are landward at the bed. The Folsom Dam spillway gate failure on July 17, 1995, was analyzed to determine the effect on the hydrodynamics of Suisun Bay. The peak flow of the American River reached roughly 1,000 cubic meters per second as a result of the failure, which is relatively small. This was roughly 15 percent of the approximate 7,000 cubic meters per second tidal flows that occur daily in Suisun Bay and was likely attenuated greatly. Based on analysis of tidally averaged near-bed salinity and depth-averaged currents after the failure, the effect was essentially nonexistent and is indistinguishable from the natural variability.

  9. Oscillating Adriatic temperature and salinity regimes mapped using the Self-Organizing Maps method

    NASA Astrophysics Data System (ADS)

    Matić, Frano; Kovač, Žarko; Vilibić, Ivica; Mihanović, Hrvoje; Morović, Mira; Grbec, Branka; Leder, Nenad; Džoić, Tomislav

    2017-01-01

    This paper aims to document salinity and temperature regimes in the middle and south Adriatic Sea by applying the Self-Organizing Maps (SOM) method to the available long-term temperature and salinity series. The data were collected on a seasonal basis between 1963 and 2011 in two dense water collecting depressions, Jabuka Pit and Southern Adriatic Pit, and over the Palagruža Sill. Seasonality was removed prior to the analyses. Salinity regimes have been found to oscillate rapidly between low-salinity and high-salinity SOM solutions, ascribed to the advection of Western and Eastern Mediterranean waters, respectively. Transient salinity regimes normally lasted less than a season, while temperature transient regimes lasted longer. Salinity regimes prolonged their duration after the major basin-wide event, the Eastern Mediterranean Transient, in the early 1990s. A qualitative relationship between high-salinity regimes and dense water formation and dynamics has been documented. The SOM-based analyses have a large capacity for classifying the oscillating ocean regimes in a basin, which, in the case of the Adriatic Sea, beside climate forcing, is an important driver of biogeochemical changes that impacts trophic relations, appearance and abundance of alien organisms, and fisheries, etc.

  10. Estimation of Geotropic Currents in the Bay of Bengal using In-situ Observations.

    NASA Astrophysics Data System (ADS)

    T, V. R.

    2014-12-01

    Geostraphic Currents (GCs) can be estimated from temperature and salinity observations. In this study an attempt has been made to compute GC using temperature and salinity observations from Expendable Bathy Thermograph (XBT) and CTD over Bay of Bengal (BoB). Although in recent time we have Argo observations but it is for a limited period and coarse temporal resolutions. In BoB Bengal, where not enough simultaneous hydrographic temperature and salinity data are available with reasonable spatial resolution (~one degree spatial resolution) and for a longer period. To overcome the limitations of GC computed from XBT profiles, temperature-salinity relationships were used from simultaneous temperature and salinity observations. We have demonstrated that GCs can be computed with an accuracy of less than 8.5 cm/s (root mean square error) at the surface with respect to temperature from XBT and salinity from climatological record. This error reduces with increasing depth. Finally, we demonstrated the application of this approach to study the temporal variation of the GCs during 1992 to 2012 along an XBT transect.

  11. Effects of structural marsh management and salinity on invertebrate prey of waterbirds in marsh ponds during winter on the Gulf Coast Chenier Plain

    USGS Publications Warehouse

    Bolduc, F.; Afton, A.D.

    2003-01-01

    Aquatic invertebrates are important food resources for wintering waterbirds, and prey selection generally is limited by prey size. Aquatic invertebrate communities are influenced by sediments and hydrologic characteristics of wetlands, which were affected by structural marsh management (levees, water-control structures and impoundments; SMM) and salinity on the Gulf Coast Chenier Plain of North America. Based on previous research, we tested general predictions that SMM reduces biomass of infaunal invertebrates and increases that of epifaunal invertebrates and those that tolerate low levels of dissolved oxygen (O2) and salinity. We also tested the general prediction that invertebrate biomass in freshwater, oligohaline, and mesohaline marshes are similar, except for taxa adapted to specific ranges of salinity. Finally, we investigated relationships among invertebrate biomass and sizes, sediment and hydrologic variables, and marsh types. Accordingly, we measured biomass of common invertebrate by three size classes (63 to 199 ??m, 200 to 999 ??m, and ???1000 ??m), sediment variables (carbon content, C:N ratio, hardness, particle size, and O, penetration), and hydrologic variables (salinity, water depth,temperature, 02, and turbidity) in ponds of impounded freshwater (IF), oligohaline (IO), mesohaline (IM), and unimpounded mesohaline (UM) marshes during winters 1997-1998 to 1999-2000 on Rockefeller State Wildlife Refuge, near Grand Chenier, Louisiana, USA. As predicted, an a priori multivariate analysis of variance (MANOVA) contrast indicated that biomass of an infaunal class of invertebrates (Nematoda, 63 to 199 ??m) was greater in UM marsh ponds than in those of IM marshes, and biomass of an epifaunal class of invertebrates (Ostracoda, 200 to 999 ??m) was greater in IM marsh ponds than in those of UM marshes. The observed reduction in Nematoda due to SMM also was consistent with the prediction that SMM reduces invertebrates that do not tolerate low salinity. Furthermore, as predicted, an a priori MANOVA contrast indicated that biomass of a single invertebrate class adapted to low salinity (Oligochaeta, 200 to 999 ??m) was greater in ponds of IF marshes than in those of IO and IM marshes. A canonical correspondence analysis indicated that variation in salinity and O2 penetration best explained differences among sites that maximized biomass of the common invertebrate classes. Salinity was positively correlated with the silt-clay fraction, O2, and O2 penetration, and negatively correlated with water depth, sediment hardness, carbon, and C:N. Nematoda, Foraminifera, and Copepoda generally were associated with UM marsh ponds and high salinity, whereas other invertebrate classes were distributed among impounded marsh ponds and associated with lower salinity. Our results suggest that SMM and salinity have relatively small effects on invertebrate prey of wintering waterbirds in marsh ponds because they affect biomass of Nematoda and Oligochaeta, and few waterbirds consume these invertebrates. ?? 2003, The Society of Wetland Scientists.

  12. Vertical Variability of Anoxia Along the Northern Omani Shelf.

    NASA Astrophysics Data System (ADS)

    Queste, B. Y.; Piontkovski, S.; Heywood, K. J.

    2016-02-01

    Three autonomous underwater gliders were deployed along a 80 km transect extending from Muscat out into the Gulf during both monsoons and the intermonsoon season as part of a project funded by ONR Global and the UK NERC. The gliders surveyed the top 1000m across the continental shelf, the steep continental slope, and the Sea of Oman while measuring temperature, salinity, oxygen, chlorophyll a fluorescence, optical backscatter, photosyntheticall active radiation and providing estimates of depth-averaged currents and up/downwelling. The data show the depth of the surface oxycline varying by 50m across the transect as a function of mixed layer depth. Below, we observed high variability, on the order of days, in the oxygen profile with the boundary of the suboxic zone (< 6 µmol.kg-1) varying by up to 250m. This upper boundary was determined by the volume of the Persian Gulf Water (PGW) outflow which travels along the shelf edge. Below 400m, oxygen concentrations reached levels below 1 µmol.kg-1. The physical drivers of PGW transport therefore double, or reduce by half, the available habitat for macrofauna. The across-shelf transect allowed estimation of along-slope transport and variability of the PGW, identified by its higher salinity, temperature, optical backscatter and oxygen content. The structure and volume of the outflow was highly variable. During peak outflow, the core extended beyond the glider transect. During periods of minimal flow, it was constrained to 10km beyond the shelf break. PGW was also present in mesoscale eddies beyond the shelf break.

  13. High Levels of Sediment Contamination Have Little Influence on Estuarine Beach Fish Communities

    PubMed Central

    McKinley, Andrew C.; Dafforn, Katherine A.; Taylor, Matthew D.; Johnston, Emma L.

    2011-01-01

    While contaminants are predicted to have measurable impacts on fish assemblages, studies have rarely assessed this potential in the context of natural variability in physico-chemical conditions within and between estuaries. We investigated links between the distribution of sediment contamination (metals and PAHs), physico-chemical variables (pH, salinity, temperature, turbidity) and beach fish assemblages in estuarine environments. Fish communities were sampled using a beach seine within the inner and outer zones of six estuaries that were either heavily modified or relatively unmodified by urbanization and industrial activity. All sampling was replicated over two years with two periods sampled each year. Shannon diversity, biomass and abundance were all significantly higher in the inner zone of estuaries while fish were larger on average in the outer zone. Strong differences in community composition were also detected between the inner and outer zones. Few differences were detected between fish assemblages in heavily modified versus relatively unmodified estuaries despite high concentrations of sediment contaminants in the inner zones of modified estuaries that exceeded recognized sediment quality guidelines. Trends in species distributions, community composition, abundance, Shannon diversity, and average fish weight were strongly correlated to physico-chemical variables and showed a weaker relationship to sediment metal contamination. Sediment PAH concentrations were not significantly related to the fish assemblage. These findings suggest that variation in some physico-chemical factors (salinity, temperature, pH) or variables that co-vary with these factors (e.g., wave activity or grain size) have a much greater influence on this fish assemblage than anthropogenic stressors such as contamination. PMID:22039470

  14. Resilience of estuarine phytoplankton and their temporal variability along salinity gradients during drought and hypersalinity

    NASA Astrophysics Data System (ADS)

    Nche-Fambo, F. A.; Scharler, U. M.; Tirok, K.

    2015-06-01

    In South African estuaries, there is no knowledge on the resilience and variability in phytoplankton communities under conditions of hypersalinity, extended droughts and reverse salinity gradients. Phytoplankton composition, abundance and biomass vary with changes in environmental variables and taxa richness declines specifically under hypersaline conditions. This research thus investigated the phytoplankton community composition, its resilience and variability under highly variable and extreme environmental conditions in an estuarine lake system (Lake St. Lucia, South Africa) over one year. The lake system was characterised by a reverse salinity gradient with hypersalinity furthest from the estuarine inlet during the study period. During this study, 78 taxa were recorded: 56 diatoms, eight green algae, one cryptophyte, seven cyanobacteria and six dinoflagellates. Taxon variability and resilience depended on their ability to tolerate high salinities. Consequently, the phytoplankton communities as well as total abundance and biomass differed along the salinity gradient and over time with salinity as the main determinant. Cyanobacteria were dominant in hypersaline conditions, dinoflagellates in marine-brackish salinities, green algae and cryptophytes in lower salinities (brackish) and diatoms were abundant in marine-brackish salinities but survived in hypersaline conditions. Total abundance and biomass ranged from 3.66 × 103 to 1.11 × 109 Cells/L and 1.21 × 106 to 1.46 × 1010 pgC/L respectively, with the highest values observed under hypersaline conditions. Therefore, even under highly variable, extreme environmental conditions and hypersalinity the phytoplankton community as a whole was resilient enough to maintain a relatively high biomass throughout the study period. The resilience of few dominant taxa, such as Cyanothece, Spirulina, Protoperidinium and Nitzschia and the dominance of other common genera such as Chlamydomonas, Chroomonas, Navicula, Gyrosigma, Oxyrrhis, and Prorocentrum, provided the carbon at the base of the food web in the system and showed that even during the extended period of drought, a foundation for productivity can be provided for once conditions improve.

  15. Detection and variability of the Congo River plume from satellite derived sea surface temperature, salinity, ocean colour and sea level

    NASA Astrophysics Data System (ADS)

    Hopkins, Jo; Lucas, Marc; Dufau, Claire; Sutton, Marion; Lauret, Olivier

    2013-04-01

    The Congo River in Africa has the world's second highest annual mean daily freshwater discharge and is the second largest exporter of terrestrial organic carbon into the oceans. It annually discharges an average of 1,250 × 109 m3 of freshwater into the southeast Atlantic producing a vast fresh water plume, whose signature can be traced hundreds of kilometres from the river mouth. Large river plumes such as this play important roles in the ocean carbon cycle, often functioning as carbon sinks. An understanding of their extent and seasonality is therefore essential if they are to be realistically accounted for in global assessments of the carbon cycle. Despite its size, the variability and dynamics of the Congo plume are minimally documented. In this paper we analyse satellite derived sea surface temperature, salinity, ocean colour and sea level anomaly to describe and quantify the extent, strength and variability of the far-field plume and to explain its behaviour in relation to winds, ocean currents and fresh water discharge. Empirical Orthogonal Function analysis reveals strong seasonal and coastal upwelling signals, potential bimodal seasonality of the Angola Current and responses to fresh water discharge peaks in all data sets. The strongest plume-like signatures however were found in the salinity and ocean colour where the dominant sources of variability come from the Congo River itself, rather than from the wider atmosphere and ocean. These two data sets are then analysed using a statistically based water mass detection technique to isolate the behaviour of the plume. The Congo's close proximity to the equator means that the influence of the earth's rotation on the fresh water inflow is relatively small and the plume tends not to form a distinct coastal current. Instead, its behaviour is determined by wind and surface circulation patterns. The main axis of the plume between November and February, following peak river discharge, is oriented northwest, driven by the wind and Ekman surface currents and possibly a northern branch of the Benguela Coastal Current. From February through to May the main axis swings towards the southwest, extending 750 km from the mouth, coinciding with a westerly shift in the wind direction and an increase in its speed. From June through to August, when discharge is at a minimum and the plumes salinity is highest, the main axis of the plume extends up to 850 km westward, but retreats to 440 km throughout the autumn. Following the end of the coastal upwelling period and an increase in river discharge the plumes salinity starts to rise again and the equatorward fresh water tongue re-establishes itself.

  16. Infrared thermal remote sensing for soil salinity assessment on landscape scale

    NASA Astrophysics Data System (ADS)

    Ivushkin, Konstantin; Bartholomeus, Harm; Bregt, Arnold K.; Pulatov, Alim; Bui, Elisabeth N.; Wilford, John

    2017-04-01

    Soil salinity is considered as one of the most severe land degradation aspects. An increased soil salt level inhibits growth and development of crops. Therefore, up to date soil salinity information is vital for appropriate management practices and reclamation strategies. This information is required at increasing spatial and temporal resolution for appropriate management adaptations. Conventional soil sampling and associated laboratory analyses are slow, expensive, and often cannot deliver the temporal and spatial resolution required. The change of canopy temperature is one of the stress indicators in plants. Its behaviour in response to salt stress on individual plant level is well studied in laboratory and greenhouse experiments, but its potential for landscape scale studies using remote sensing techniques is not investigated yet. In our study, possibilities of satellite thermography for landscape scale soil salinity assessment of cropped areas were studied. The performance of satellite thermography is compared with other approaches that have been used before, like Normalised Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). The study areas were Syrdarya province of Uzbekistan and four study areas in four Australian states namely, Western Australia, South Australia, Queensland and New South Wales. The diversity of the study areas allowed us to analyse behaviour of canopy temperature of different crops (wheat, cotton, barley) and different agriculture practices (rain fed and irrigated). MODIS and Landsat TM multiannual satellite images were used to measure canopy temperature. As ground truth for Uzbekistan study area we used a provincial soil salinity map. For the Australian study areas we used the EC map for the whole country. ANOVA was used to analyse relations between the soil salinity maps and canopy temperature, NDVI, EVI. Time series graphs were created to analyse the dynamics of the indicators during the growing season. The results showed significant relations between the soil salinity maps and canopy temperature. The amplitude of canopy temperature difference between salinity classes varies for different crops, but the trend of temperature increase under increased salinity is present in all cases. The calculated F-values were higher for canopy temperature than for all other compared indicators. The vegetation indices also showed significant differences, but F-values were lower compared to canopy temperature. Also the visual comparison of the soil salinity map and the canopy temperature map show similar spatial patterns. The NDVI and EVI maps look more random and noisy and patterns are less pronounced than for the canopy temperature map. The strongest relation between the soil salinity map and canopy temperature was usually observed at the end of a dry season and in the period of maximum crop development. Satellite thermography appeared to be a valuable approach to detect soil salinity under agricultural crops at landscape scale.

  17. Characterizing Uncertainty In Electrical Resistivity Tomography Images Due To Subzero Temperature Variability

    NASA Astrophysics Data System (ADS)

    Herring, T.; Cey, E. E.; Pidlisecky, A.

    2017-12-01

    Time-lapse electrical resistivity tomography (ERT) is used to image changes in subsurface electrical conductivity (EC), e.g. due to a saline contaminant plume. Temperature variation also produces an EC response, which interferes with the signal of interest. Temperature compensation requires the temperature distribution and the relationship between EC and temperature, but this relationship at subzero temperatures is not well defined. The goal of this study is to examine how uncertainty in the subzero EC/temperature relationship manifests in temperature corrected ERT images, especially with respect to relevant plume parameters (location, contaminant mass, etc.). First, a lab experiment was performed to determine the EC of fine-grained glass beads over a range of temperatures (-20° to 20° C) and saturations. The measured EC/temperature relationship was then used to add temperature effects to a hypothetical EC model of a conductive plume. Forward simulations yielded synthetic field data to which temperature corrections were applied. Varying the temperature/EC relationship used in the temperature correction and comparing the temperature corrected ERT results to the synthetic model enabled a quantitative analysis of the error of plume parameters associated with temperature variability. Modeling possible scenarios in this way helps to establish the feasibility of different time-lapse ERT applications by quantifying the uncertainty associated with parameter(s) of interest.

  18. Benthic habitat classification in Lignumvitae Key Basin, Florida Bay, using the U.S. Geological Survey Along-Track Reef Imaging System (ATRIS)

    USGS Publications Warehouse

    Reich, C.D.; Zawada, D.G.; Thompson, P.R.; Reynolds, C.E.; Spear, A.H.; Umberger, D.K.; Poore, R.Z.

    2011-01-01

    The Comprehensive Everglades Restoration Plan (CERP) funded in partnership between the U.S. Army Corps of Engineers, South Florida Water Management District, and other Federal, local and Tribal members has in its mandate a guideline to protect and restore freshwater flows to coastal environments to pre-1940s conditions (CERP, 1999). Historic salinity data are sparse for Florida Bay, so it is difficult for water managers to decide what the correct quantity, quality, timing, and distribution of freshwater are to maintain a healthy and productive estuarine ecosystem. Proxy records of seasurface temperature (SST) and salinity have proven useful in south Florida. Trace-element chemistry on foraminifera and molluscan shells preserved in shallow-water sediments has provided some information on historical salinity and temperature variability in coastal settings, but little information is available for areas within the main part of Florida Bay (Brewster-Wingard and others, 1996). Geochemistry of coral skeletons can be used to develop subannually resolved proxy records for SST and salinity. Previous studies suggest corals, specifically Solenastrea bournoni, present in the lower section of Florida Bay near Lignumvitae Key, may be suitable for developing records of SST and salinity for the past century, but the distribution and species composition of the bay coral community have not been well documented (Hudson and others, 1989; Swart and others, 1999). Oddly, S. bournoni thrives in the study area because it can grow on a sandy substratum and can tolerate highly turbid water. Solenastrea bournoni coral heads in this area should be ideally located to provide a record (~100-150 years) of past temperature and salinity variations in Florida Bay. The goal of this study was to utilize the U.S. Geological Survey's (USGS) Along-Track Reef Imaging System (ATRIS) capability to further our understanding of the abundance, distribution, and size of corals in the Lignumvitae Key Basin. The study area was subdivided into four areas whereby corals and other benthic habitats were classified based on ATRIS imagery.

  19. Offshore Habitat Preference of Overwintering Juvenile and Adult Black Sea Bass, Centropristis striata, and the Relationship to Year-Class Success

    PubMed Central

    Miller, Alicia S.; Shepherd, Gary R.; Fratantoni, Paula S.

    2016-01-01

    Black sea bass (Centropristis striata) migrations are believed to play a role in overwinter survival and connectivity between juvenile and adult populations. This study investigated oceanographic drivers of winter habitat choice and regional differences between populations of juvenile and adult black sea bass. Trends in cohort strength, as a result of juvenile survival, were also identified. Oceanographic and fisheries survey data were analyzed using generalized additive models. Among the oceanographic variables investigated, salinity was the main driver in habitat selection with an optimal range of 33–35 practical salinity units (PSU) for both juveniles and adults. Preferred temperature ranges varied between juveniles and adults, but held a similar minimum preference of >8°C. Salinity and temperature ranges also differed by regions north and south of Hudson Canyon. Shelf water volume had less of an effect than temperature or salinity, but showed an overall negative relationship with survey catch. The effect of winter conditions on juvenile abundance was also observed across state and federal survey index trends. A lack of correlation observed among surveys in the fall paired with a strong correlation in the spring identifies the winter period as a factor determining year-class strength of new recruits to the population. A rank order analysis of spring indices identified three of the largest year classes occurring during years with reduced shelf water volumes, warmer winter shelf waters, and a 34 PSU isohaline aligned farther inshore. While greater catches of black sea bass in the northwest Atlantic Ocean remain south of Hudson Canyon, the species’ range has expanded north in recent years. PMID:26824350

  20. Species Profiles. Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Pacific Northwest). Dungeness Crab.

    DTIC Science & Technology

    1986-08-01

    variety of factors crab eggs has been linked to increased including depth, latitude, tempera- egg mortality because of mechanical ture, salinity and...time. crabs seem less dependent on epibenthic cover and can be found over more exposed substrates. Most crabs Temperature- Salinity Interactions remain...13 Salinity . .. ....... ........................................ 14 Temperature- Salinity Interactions. .. .... ....... ....... 14

  1. West Florida shelf circulation and temperature budget for the 1999 spring transition

    USGS Publications Warehouse

    He, Ruoying; Weisberg, Robert H.

    2002-01-01

    Mid-latitude continental shelves undergo a spring transition as the net surface heat flux changes from cooling to warming. Using in situ data and a numerical circulation model we investigate the circulation and temperature budget on the West Florida Continental Shelf (WFS) for the spring transition of 1999. The model is a regional adaptation of the primitive equation, Princeton Ocean Model forced by NCEP reanalysis wind and heat flux fields and by river inflows. Based on agreements between the modeled and observed fields we use the model to draw inferences on how the surface momentum and heat fluxes affect the seasonal and synoptic scale variability. We account for a strong southeastward current at mid-shelf by the baroclinic response to combined wind and buoyancy forcing, and we show how this local forcing leads to annually occurring cold and low salinity tongues. Through term-by-term analyses of the temperature budget we describe the WFS temperature evolution in spring. Heat flux largely controls the seasonal transition, whereas ocean circulation largely controls the synoptic scale variability. These two processes, however, are closely linked. Bottom topography and coastline geometry are important in generating regions of convergence and divergence. Rivers contribute to the local hydrography and are important ecologically. Along with upwelling, river inflows facilitate frontal aggregation of nutrients and the spring formation of a high concentration chlorophyll plume near the shelf break (the so-called ‘Green River’) coinciding with the cold, low salinity tongues. These features originate by local, shelf-wide forcing; the Loop Current is not an essential ingredient.

  2. A direct CO2 control system for ocean acidification experiments: testing effects on the coralline red algae Phymatolithon lusitanicum.

    PubMed

    Sordo, Laura; Santos, Rui; Reis, Joao; Shulika, Alona; Silva, Joao

    2016-01-01

    Most ocean acidification (OA) experimental systems rely on pH as an indirect way to control CO 2 . However, accurate pH measurements are difficult to obtain and shifts in temperature and/or salinity alter the relationship between pH and p CO 2 . Here we describe a system in which the target p CO 2 is controlled via direct analysis of p CO 2 in seawater. This direct type of control accommodates potential temperature and salinity shifts, as the target variable is directly measured instead of being estimated. Water in a header tank is permanently re-circulated through an air-water equilibrator. The equilibrated air is then routed to an infrared gas analyzer (IRGA) that measures p CO 2 and conveys this value to a Proportional-Integral-Derivative (PID) controller. The controller commands a solenoid valve that opens and closes the CO 2 flush that is bubbled into the header tank. This low-cost control system allows the maintenance of stabilized levels of p CO 2 for extended periods of time ensuring accurate experimental conditions. This system was used to study the long term effect of OA on the coralline red algae Phymatolithon lusitanicum . We found that after 11 months of high CO 2 exposure, photosynthesis increased with CO 2 as opposed to respiration, which was positively affected by temperature. Results showed that this system is adequate to run long-term OA experiments and can be easily adapted to test other relevant variables simultaneously with CO 2 , such as temperature, irradiance and nutrients.

  3. A direct CO2 control system for ocean acidification experiments: testing effects on the coralline red algae Phymatolithon lusitanicum

    PubMed Central

    Santos, Rui; Reis, Joao; Shulika, Alona

    2016-01-01

    Most ocean acidification (OA) experimental systems rely on pH as an indirect way to control CO2. However, accurate pH measurements are difficult to obtain and shifts in temperature and/or salinity alter the relationship between pH and pCO2. Here we describe a system in which the target pCO2 is controlled via direct analysis of pCO2 in seawater. This direct type of control accommodates potential temperature and salinity shifts, as the target variable is directly measured instead of being estimated. Water in a header tank is permanently re-circulated through an air-water equilibrator. The equilibrated air is then routed to an infrared gas analyzer (IRGA) that measures pCO2 and conveys this value to a Proportional-Integral-Derivative (PID) controller. The controller commands a solenoid valve that opens and closes the CO2 flush that is bubbled into the header tank. This low-cost control system allows the maintenance of stabilized levels of pCO2 for extended periods of time ensuring accurate experimental conditions. This system was used to study the long term effect of OA on the coralline red algae Phymatolithon lusitanicum. We found that after 11 months of high CO2 exposure, photosynthesis increased with CO2 as opposed to respiration, which was positively affected by temperature. Results showed that this system is adequate to run long-term OA experiments and can be easily adapted to test other relevant variables simultaneously with CO2, such as temperature, irradiance and nutrients. PMID:27703853

  4. The effects of mercury on developing larvae of Rhithropanopeus harrisii (Gould) . I. Interactions of temperature, salinity and mercuryon larval development

    NASA Astrophysics Data System (ADS)

    McKenney, C. L.; Costlow, J. D.

    1982-02-01

    Larvae of the estuarine xanthid crab Rhithropanopeus harrisii were reared inthe laboratory from hatch through completion of metamorphosis to postlarva in 64 combinations of temperature (20-35°C), salinity (10-40‰) and mercury (0-20 parts 10 -9 Hg 2+). Multiple linear regression analysis and response surface methodology were used to determine and visually display the individual and interactive effects of the various constant temperature-salinity-mercury combinations on both survival and developmental rates of developing larvae throughout total larval development and for zoeae and megalopae separately, to distinguish any differential sensitivity between the two larval forms. Survival capacity of larvae under a broad range of salinities and temperatures characteristic of temperate estuarine conditions was progressively reduced upon continual exposure to mercury ranging from 5 to 20 parts 10 -9 Hg 2+. Exposure concentrations as low as 5 parts 10 -9 Hg 2+ reduced the salinity and temperature plasciticity of the normally euryhalinic and eurythermal larvae. Larval survival from hatch to postlarva was affected by both mercury-salinity and mercury-temperature interactions with mercury toxicity increasing under suboptimal temperatures and salinities. Viability of early zoeal stages proved more sensitive to mercury exposure than the final megalopa stage. Exposure to mercury concentrations from 5-20 parts 10 -9, Hg 2+ prolonged complete developmental duration by 3 to 4 days with zoeal developmental rates retarded more than megalopal rates. Developmental rates of the megalopa were more reduced by mercury at higher salinities, and both zoeal and megalopal developmental rates were more retarded by mercury at lower temperatures. The reduced plasticity of larvae to estuarine conditions, and retarded developmental rates by low mercury concentrations may reduce recruitment into adult benthic populations and alter the distributional patterns of pelagic R. harrisii larvae.

  5. Tropical North Atlantic Coral-Based Sea Surface Temperature and Salinity Reconstructions From the Little Ice Age and Early Holocene

    NASA Astrophysics Data System (ADS)

    Saenger, C.; Cohen, A.; Oppo, D.; Hubbard, D.

    2006-12-01

    Understanding the magnitude and spatial extent of tropical sea surface temperature (SST) cooling during the Little Ice Age (~1400-1850 A.D.; LIA) is important for elucidating low-latitude paleoclimate, but present estimates are poorly constrained. We used Sr/Ca and δ18O variability within the aragonitic skeleton of the coral genus Montastrea to reconstruct SST and sea surface salinity (SSS) during the LIA and early Holocene (EH) in the tropical Atlantic. Four seasonally-resolved coral Sr/Ca records from St. Croix, U.S. Virgin Islands, and Bermuda indicate SST is highly correlated (r2 = 0.94) with modern Montastrea Sr/Ca and mean annual coral extension. A Sr/Ca -SST calibration that combines temperature and growth rate effects on coral Sr/Ca was applied to fossil St. Croix corals to reconstruct Caribbean climate during 5-10 year intervals of the LIA (440 ± 30 yBP) and EH (7200 ± 30; EH). Contrary to previous coral-based LIA proxy reconstructions, we find mean SST during the LIA was similar to today, but approximately 1.2°C cooler during the EH. Both periods exhibited higher amplitude seasonal variability indicating other SST estimates may be seasonally biased. Based on residual coral δ18O, we find the LIA and EH were saltier, which suggests previous cooling estimates of 1-3°C relative to today may be exaggerated by changes in seawater δ18O. Our results are consistent with a southerly migration of the Intertropical Convergence Zone (ITCZ) during the LIA, but their corroboration requires longer, high-resolution proxy reconstructions that place our two brief multi-annual coral records from the LIA and EH, respectively, within the context of multi-decadal variability.

  6. Salinity and Temperature Tolerance Experiments on Selected Florida Bay Mollusks

    USGS Publications Warehouse

    Murray, James B.; Wingard, G. Lynn

    2006-01-01

    The ultimate goal of the Comprehensive Everglades Restoration Plan (CERP) is to restore and preserve the unique ecosystems of South Florida, including the estuaries. Understanding the effect of salinity and temperature changes, beyond typical oscillations, on the biota of South Florida's estuaries is a necessary component of achieving the goal of restoring the estuaries. The U.S. Geological Survey has been actively involved in researching the history of the South Florida Ecosystem, to provide targets, performance measures, and baseline data for restoration managers. These experiments addressed two aspects of ecosystem history research: 1) determining the utility of using molluscan shells as recorders of change in water chemistry parameters, primarily salinity, and 2) enhancing our in situ observations on modern assemblages by exceeding typically observed aquatic conditions. This set of experiments expanded our understanding of the effects of salinity, temperature and other water chemistry parameters on the reproduction, growth and overall survivability of key species of mollusks used in interpreting sediment core data. Observations on mollusks, plants and microbes made as part of these experiments have further refined our knowledge and understanding of the effects of ecosystem feedback and the role salinity and temperature play in ecosystem stability. The results have demonstrated the viability of several molluscan species as indicators of atypical salinity, and possibly temperature, modulations. For example Cerithium muscarum and Bulla striata demonstrated an ability to withstand a broad salinity and temperature range, with reproduction occurring in atypically high salinities and temperatures. These experiments also provided calibration data for the shell biogeochemistry of Chione cancellata and the possible use of this species as a water chemistry recorder. Observations made in the mesocosms, on a scale not normally observable in the field, have led to new questions about the influence of salinity on the localized ecosystem. The next phase of these experiments; to calibrate growth rate and reproductive viability in atypical salinities is currently underway.

  7. Near-surface salinity and temperature structure observed with dual-sensor drifters in the subtropical South Pacific

    NASA Astrophysics Data System (ADS)

    Dong, Shenfu; Volkov, Denis; Goni, Gustavo; Lumpkin, Rick; Foltz, Gregory R.

    2017-07-01

    Three surface drifters equipped with temperature and salinity sensors at 0.2 and 5 m depths were deployed in April/May 2015 in the subtropical South Pacific with the objective of measuring near-surface salinity differences seen by satellite and in situ sensors and examining the causes of these differences. Measurements from these drifters indicate that water at a depth of 0.2 m is about 0.013 psu fresher than at 5 m and about 0.024°C warmer. Events with large temperature and salinity differences between the two depths are caused by anomalies in surface freshwater and heat fluxes, modulated by wind. While surface freshening and cooling occurs during rainfall events, surface salinification is generally observed under weak wind conditions (≤4 m/s). Further examination of the drifter measurements demonstrates that (i) the amount of surface freshening and strength of the vertical salinity gradient heavily depend on wind speed during rain events, (ii) salinity differences between 0.2 and 5 m are positively correlated with the corresponding temperature differences for cases with surface salinification, and (iii) temperature exhibits a diurnal cycle at both depths, whereas the diurnal cycle of salinity is observed only at 0.2 m when the wind speed is less than 6 m/s. The amplitudes of the diurnal cycles of temperature at both depths decrease with increasing wind speed. The mean diurnal cycle of surface salinity is dominated by events with winds less than 2 m/s.

  8. Near-surface Salinity and Temperature structure Observed with Dual-Sensor Drifters in the Subtropical South Pacific

    NASA Astrophysics Data System (ADS)

    Dong, S.; Volkov, D.; Goni, G. J.; Lumpkin, R.; Foltz, G. R.

    2017-12-01

    Three surface drifters equipped with temperature and salinity sensors at 0.2 m and 5 m depths were deployed in April/May 2015 in the subtropical South Pacific with the objective of measuring near-surface salinity differences seen by satellite and in situ sensors and examining the causes of these differences. Measurements from these drifters indicate that water at a depth of 0.2 m is about 0.013 psu fresher than at 5 m and about 0.024°C warmer. Events with large temperature and salinity differences between the two depths are caused by anomalies in surface freshwater and heat fluxes, modulated by wind. While surface freshening and cooling occurs during rainfall events, surface salinification is generally observed under weak wind conditions (≤4 m/s). Further examination of the drifter measurements demonstrates that (i) the amount of surface freshening and strength of the vertical salinity gradient heavily depend on wind speed during rain events, (ii) salinity differences between 0.2 m and 5 m are positively correlated with the corresponding temperature differences for cases with surface salinification, and (iii) temperature exhibits a diurnal cycle at both depths, whereas the diurnal cycle of salinity is observed only at 0.2 m when the wind speed is less than 6 m/s. The amplitudes of the diurnal cycles of temperature at both depths decrease with increasing wind speed. The mean diurnal cycle of surface salinity is dominated by events with winds less than 2 m/s.

  9. Variability of the Bering Sea Circulation in the Period 1992-2010

    DTIC Science & Technology

    2012-06-09

    mas- sive sources of data (satellite altimetry, Argo drifters) may improve the accuracy of these estimates in the near future. Large-scale...Combining these data with in situ observations of temperature, salinity and subsurface currents allowed obtaining increasingly accurate estimates ...al. (2006) esti- mated the Kamchatka Current transport of 24 Sv (1 Sv = 106 m?/s), a value significantly higher than pre- vious estimates of

  10. Hydrography and circulation west of Sardinia in June 2014

    NASA Astrophysics Data System (ADS)

    Knoll, Michaela; Borrione, Ines; Fiekas, Heinz-Volker; Funk, Andreas; Hemming, Michael P.; Kaiser, Jan; Onken, Reiner; Queste, Bastien; Russo, Aniello

    2017-11-01

    In the frame of the REP14-MED sea trial in June 2014, the hydrography and circulation west of Sardinia, observed by means of gliders, shipborne CTD (conductivity, temperature, depth) instruments, towed devices, and vessel-mounted ADCPs (acoustic doppler current profilers), are presented and compared with previous knowledge. So far, the circulation is not well-known in this area, and the hydrography is subject to long-term changes. Potential temperature, salinity, and potential density ranges as well as core values of the observed water masses were determined. Modified Atlantic Water (MAW), with potential density anomalies below 28.72 kg m-3, showed a salinity minimum of 37.93 at 50 dbar. Levantine Intermediate Water (LIW), with a salinity maximum of about 38.70 at 400 dbar, was observed within a range of 28.72<σΘ/(kg m-3) < 29.10. MAW and LIW showed slightly higher salinities than previous investigations. During the trial, LIW covered the whole area from the Sardinian shelf to 7°15' E. Only north of 40° N was it tied to the continental slope. Within the MAW, a cold and saline anticyclonic eddy was observed in the southern trial area. The strongest variability in temperature and salinity appeared around this eddy, and in the southwestern part of the domain, where unusually low saline surface water entered the area towards the end of the experiment. An anticyclonic eddy of Winter Intermediate Water was recorded moving northward at 0.014 m s-1. Geostrophic currents and water mass transports calculated across zonal and meridional transects showed a good agreement with vessel-mounted ADCP measurements. Within the MAW, northward currents were observed over the shelf and offshore, while a southward transport of about 1.5 Sv occurred over the slope. A net northward transport of 0.38 Sv across the southern transect decreased to zero in the north. Within the LIW, northward transports of 0.6 Sv across the southern transects were mainly observed offshore, and decreased to 0.3 Sv in the north where they were primarily located over the slope. This presentation of the REP14-MED observations helps to further understand the long-term evolution of hydrography and circulation in the Western Mediterranean, where considerable changes occurred after the Eastern Mediterranean Transient and the Western Mediterranean Transition.

  11. Changes to Yucatán Peninsula precipitation associated with salinity and temperature extremes of the Caribbean Sea during the Maya civilization collapse.

    PubMed

    Wu, Henry C; Felis, Thomas; Scholz, Denis; Giry, Cyril; Kölling, Martin; Jochum, Klaus P; Scheffers, Sander R

    2017-11-20

    Explanations of the Classic Maya civilization demise on the Yucatán Peninsula during the Terminal Classic Period (TCP; ~CE 750-1050) are controversial. Multiyear droughts are one likely cause, but the role of the Caribbean Sea, the dominant moisture source for Mesoamerica, remains largely unknown. Here we present bimonthly-resolved snapshots of reconstructed sea surface temperature (SST) and salinity (SSS) variability in the southern Caribbean from precisely dated fossil corals. The results indicate pronounced interannual to decadal SST and SSS variability during the TCP, which may be temporally coherent to precipitation anomalies on the Yucatán. Our results are best explained by changed Caribbean SST gradients affecting the Caribbean low-level atmospheric jet with consequences for Mesoamerican precipitation, which are possibly linked to changes in Atlantic Meridional Overturning Circulation strength. Our findings provide a new perspective on the anomalous hydrological changes during the TCP that complement the oft-suggested southward displacement of the Intertropical Convergence Zone. We advocate for a strong role of Caribbean SST and SSS condition changes and related ocean-atmosphere interactions that notably influenced the propagation and transport of precipitation to the Yucatán Peninsula during the TCP.

  12. Simulation of mesoscale circulation in the Tatar Strait of the Japan Sea

    NASA Astrophysics Data System (ADS)

    Ponomarev, V. I.; Fayman, P. A.; Prants, S. V.; Budyansky, M. V.; Uleysky, M. Yu.

    2018-06-01

    The eddy-resolved ocean circulation model RIAMOM (Lee et al., 2003) is used to analyze seasonal variability of mesoscale circulation in the Tatar Strait of the Japan Sea. The model domain is a vast area including the northern Japan Sea, Okhotsk Sea and adjacent region in the Pacific Ocean. A numerical experiment with a horizontal 1/18° resolution has been carried out under realistic meteorological conditions from the ECMWF ERA-40 reanalysis with restoring of surface temperature and salinity. The simulated seasonal variability of both the current system and mesoscale eddy dynamics in the Tatar Strait is in a good agreement with temperature and salinity distributions of oceanographic observation data collected during various seasons and years. Two general circulation regimes in the Strait have been found. The circulation regime changes from summer to winter due to seasonal change of the North Asian Monsoon. On a synoptic time scale, the similar change of the circulation regime occurs due to change of the southeastern wind to the northwestern one when the meteorological situation with an anticyclone over the Okhotsk Sea changes to that with a strong cyclone. The Lagrangian maps illustrate seasonal changes in direction of the main currents and in polarity and location of mesoscale eddies in the Strait.

  13. Optimization of Crude Oil and PAHs Degradation by Stenotrophomonas rhizophila KX082814 Strain through Response Surface Methodology Using Box-Behnken Design

    PubMed Central

    Virupakshappa, Praveen Kumar Siddalingappa; Mishra, Gaurav; Mehkri, Mohammed Ameenuddin

    2016-01-01

    The present paper describes the process optimization study for crude oil degradation which is a continuation of our earlier work on hydrocarbon degradation study of the isolate Stenotrophomonas rhizophila (PM-1) with GenBank accession number KX082814. Response Surface Methodology with Box-Behnken Design was used to optimize the process wherein temperature, pH, salinity, and inoculum size (at three levels) were used as independent variables and Total Petroleum Hydrocarbon, Biological Oxygen Demand, and Chemical Oxygen Demand of crude oil and PAHs as dependent variables (response). The statistical analysis, via ANOVA, showed coefficient of determination R 2 as 0.7678 with statistically significant P value 0.0163 fitting in second-order quadratic regression model for crude oil removal. The predicted optimum parameters, namely, temperature, pH, salinity, and inoculum size, were found to be 32.5°C, 9, 12.5, and 12.5 mL, respectively. At this optimum condition, the observed and predicted PAHs and crude oil removal were found to be 71.82% and 79.53% in validation experiments, respectively. The % TPH results correlate with GC/MS studies, BOD, COD, and TPC. The validation of numerical optimization was done through GC/MS studies and % removal of crude oil. PMID:28116165

  14. Quantifying the role of ocean initial conditions in decadal prediction

    NASA Astrophysics Data System (ADS)

    Matei, D.; Pohlmann, H.; Müller, W.; Haak, H.; Jungclaus, J.; Marotzke, J.

    2009-04-01

    The forecast skill of decadal climate predictions is investigated using two different initialization strategies. First we apply an assimilation of ocean synthesis data provided by the GECCO project (Köhl and Stammer 2008) as initial conditions for the coupled model ECHAM5/MPI-OM. The results show promising skill up to decadal time scales particularly over the North Atlantic (see also Pohlmann et al. 2009). However, mismatches between the ocean climates of GECCO and the MPI-OM model may lead to inconsistencies in the representation of water masses. Therefore, we pursue an alternative approach to the representation of the observed North Atlantic climate for the period 1948-2007. Using the same MPI-OM ocean model as in the coupled system, we perform an ensemble of four NCEP integrations. The ensemble mean temperature and salinity anomalies are then nudged into the coupled model, followed by hindcast/forecast experiments. The model gives dynamically consistent three-dimensional temperature and salinity fields, thereby avoiding the problems of model drift that were encountered when the assimilation experiment was only driven by reconstructed SSTs (Keenlyside et al. 2008, Pohlmann et al. 2009). Differences between the two assimilation approaches are discussed by comparing them with the observational data in key regions and processes, such as North Atlantic and Tropical Pacific climate, MOC variability, Subpolar Gyre variability.

  15. Carbon isotope variations in a solar pond microbial mat: Role of environmental gradients as steering variables

    NASA Astrophysics Data System (ADS)

    Schidlowski, Manfred; Gorzawski, Hendrik; Dor, Inka

    1994-05-01

    A biogeochemical traverse is presented for a juvenile benthic mat covering the depth profile of an artificially stratified and eutrophicated hypersaline heliothermal pond with known gradients of temperature, salinity, pH, and light transmission. It can be shown that visual mat development depends primarily on temperature and salinity as main environmental steering variables whose increase with depth goes along with the attenuation and final disappearance of a visible microbial film in the pond's hypolimnic compartment. Recorded biogeochemical parameters (C org content, cell numbers, chlorophyll-a content) evidently reflect, as either biomass- or productivity-related index functions, the visually perceptible growth gradient of the microbial ecosystem along the pond slope. The observed coincidence of maxima in these index functions with maxima in δ13Corg clearly identifies high rates of primary productivity as the agent ultimately responsible for the generation of isotopically heavy ( 13C-enriched) biomass in these and related environments. Extreme demands placed on the local feeder pool of dissolved inorganic carbon by high rates of primary productivity entertained by the mat-forming microbenthos obviously give rise to severe CO 2 limitation, enforcing the operation of a diffusion-(supply-)limited assimilatory pathway with an isotopically indiscriminate metabolization of the available CO 2 resources.

  16. Reconstructing Past Ocean Salinity ((delta)18Owater)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guilderson, T P; Pak, D K

    2005-11-23

    Temperature and salinity are two of the key properties of ocean water masses. The distribution of these two independent but related characteristics reflects the interplay of incoming solar radiation (insolation) and the uneven distribution of heat loss and gain by the ocean, with that of precipitation, evaporation, and the freezing and melting of ice. Temperature and salinity to a large extent, determine the density of a parcel of water. Small differences in temperature and salinity can increase or decrease the density of a water parcel, which can lead to convection. Once removed from the surface of the ocean where 'local'more » changes in temperature and salinity can occur, the water parcel retains its distinct relationship between (potential) temperature and salinity. We can take advantage of this 'conservative' behavior where changes only occur as a result of mixing processes, to track the movement of water in the deep ocean (Figure 1). The distribution of density in the ocean is directly related to horizontal pressure gradients and thus (geostrophic) ocean currents. During the Quaternary when we have had systematic growth and decay of large land based ice sheets, salinity has had to change. A quick scaling argument following that of Broecker and Peng [1982] is: the modern ocean has a mean salinity of 34.7 psu and is on average 3500m deep. During glacial maxima sea level was on the order of {approx}120m lower than present. Simply scaling the loss of freshwater (3-4%) requires an average increase in salinity a similar percentage or to {approx}35.9psu. Because much of the deep ocean is of similar temperature, small changes in salinity have a large impact on density, yielding a potentially different distribution of water masses and control of the density driven (thermohaline) ocean circulation. It is partly for this reason that reconstructions of past salinity are of interest to paleoceanographers.« less

  17. Survival and development of horseshoe crab (Limulus polyphemus) embryos and larvae in hypersaline conditions.

    PubMed

    Ehlinger, Gretchen S; Tankersley, Richard A

    2004-04-01

    The horseshoe crab Limulus polyphemus spawns in the mid- to upper intertidal zone where females deposit eggs in nests below the sediment surface. Although adult crabs generally inhabit subtidal regions of estuaries with salinities from 5 to 34 ppt, developing embryos and larvae within nests are often exposed to more extreme conditions of salinity and temperature during summer spawning periods. To test whether these conditions have a negative impact on early development and survival, we determined development time, survival, and molt cycle duration for L. polyphemus embryos and larvae raised at 20 combinations of salinity (range: 30-60 ppt) and temperature (range: 25-40 degrees C). Additionally, the effect of hyperosmotic and hypoosmotic shock on the osmolarity of the perivitelline fluid of embryos was determined at salinities between 5 and 90 ppt. The embryos completed their development and molted at salinities below 60 ppt, yet failed to develop at temperatures of 35 degrees C or higher. Larval survival was high at salinities of 10-70 ppt but declined significantly at more extreme salinities (i.e., 5, 80, and 90 ppt). Perivitelline fluid remained nearly isoosmotic over the range of salinities tested. Results indicate that temperature and salinity influence the rate of crab development, but only the extremes of these conditions have an effect on survival.

  18. Delineating recurrent fish spawning habitats in the North Sea

    NASA Astrophysics Data System (ADS)

    Lelièvre, S.; Vaz, S.; Martin, C. S.; Loots, C.

    2014-08-01

    The functional value of spawning habitats makes them critically important for the completion of fish life cycles and spawning grounds are now considered to be “essential habitats”. Inter-annual fluctuations in spawning ground distributions of dab (Limanda Limanda), plaice (Pleuronectes platessa), cod (Gadus morhua) and whiting (Merlangius merlangus) were investigated in the southern North Sea and eastern English Channel, from 2006 to 2009. The preferential spawning habitats of these species were modelled using generalised linear models, with egg distribution being used as proxy of spawners' location. Egg spatial and temporal distributions were explored based on six environmental variables: sea surface temperature and salinity, chlorophyll a concentration, depth, bedstress and seabed sediment types. In most cases, egg density was found to be strongly related to these environmental variables. Egg densities were positively correlated with shallow to intermediate depths having low temperature and relatively high salinity. Habitat models were used to map annual, i.e. 2006 to 2009, winter spatial distributions of eggs, for each species separately. Then, annual maps were combined to explore the spatial variability of each species' spawning grounds, and define recurrent, occasional, rare and unfavourable spawning areas. The recurrent spawning grounds of all four species were located in the south-eastern part of the study area, mainly along the Dutch and German coasts. This study contributes knowledge necessary to the spatial management of fishery resources in the area, and may also be used to identify marine areas with particular habitat features that need to be preserved.

  19. Submesoscale-selective compensation of fronts in a salinity-stratified ocean.

    PubMed

    Spiro Jaeger, Gualtiero; Mahadevan, Amala

    2018-02-01

    Salinity, rather than temperature, is the leading influence on density in some regions of the world's upper oceans. In the Bay of Bengal, heavy monsoonal rains and runoff generate strong salinity gradients that define density fronts and stratification in the upper ~50 m. Ship-based observations made in winter reveal that fronts exist over a wide range of length scales, but at O(1)-km scales, horizontal salinity gradients are compensated by temperature to alleviate about half the cross-front density gradient. Using a process study ocean model, we show that scale-selective compensation occurs because of surface cooling. Submesoscale instabilities cause density fronts to slump, enhancing stratification along-front. Specifically for salinity fronts, the surface mixed layer (SML) shoals on the less saline side, correlating sea surface salinity (SSS) with SML depth at O(1)-km scales. When losing heat to the atmosphere, the shallower and less saline SML experiences a larger drop in temperature compared to the adjacent deeper SML on the salty side of the front, thus correlating sea surface temperature (SST) with SSS at the submesoscale. This compensation of submesoscale fronts can diminish their strength and thwart the forward cascade of energy to smaller scales. During winter, salinity fronts that are dynamically submesoscale experience larger temperature drops, appearing in satellite-derived SST as cold filaments. In freshwater-influenced regions, cold filaments can mark surface-trapped layers insulated from deeper nutrient-rich waters, unlike in other regions, where they indicate upwelling of nutrient-rich water and enhanced surface biological productivity.

  20. Response of planktonic cladocerans (Class: Branchiopoda) to short-term changes in environmental variables in the surface waters of the Bay of Biscay

    NASA Astrophysics Data System (ADS)

    d'Elbée, Jean; Lalanne, Yann; Castège, Iker; Bru, Noelle; D'Amico, Frank

    2014-08-01

    From January 2001 to December 2008, 73 surface plankton samples and 45 vertical profiles of sea temperature, salinity, dissolved oxygen and pH were collected on a monthly basis from a single sampling station located in the Bay of Biscay (43°37N; 1°43W) (North-East Atlantic). Two types of North Atlantic Oscillation (NAO) indexes were included in the data set and submitted to a Canonical Correspondence Analysis and Spearman non-parametric test. Significant breaks and levels in time series were tested using a data segmentation method. The temperature range varies from 11 °C to 25 °C. It begins to rise from April until August and then decline. Low salinity values occur in mid-spring (<34 PSU) and high values (>36 PSU) in autumn. Dissolved oxygen mean values were around 8 mg/l. In summer, when temperature and salinity are high, surface water layer is always accompanied with a significant deoxygenation, and the process reverses in winter. pH mean values range was 7.78-8.33. Seasonal and inter-annual variations of the two NAO indexes are strongly correlated to one another, but do not correlate with any hydrological or biological variable. Five of the seven cladocerans species which are present in the Bay of Biscay were found in this study. There is a strong pattern in species succession throughout the year: Evadne nordmanni is a vernal species, while Penilia avirostris and Pseudevadne tergestina occur mainly in summer and autumn. Evadne spinifera has a maximum abundance in spring, Podon intermedius in autumn, but they both occur throughout the year. However, for some thirty years, the presence of species has tended to become significantly extended throughout the year. During the 2001-2008 period, there was a noticeable decline and even a disappearance of the categories involved in sexual reproduction as well as those involved in parthenogenesis, in favor of non-breeding individuals.

  1. Cytogenetic and viability effects of petroleum aromatic and PCB hydrocarbons, temperature and salinity, on early development of the American oyster, Crassostrea virginica Gmelin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stiles-Jewell, S.

    1994-01-01

    Fertilized eggs were exposed to 0.1, 10 and 100 mg/l of benzene, naphthalene and Aroclor 1254 individually and in combination in seawater at temperatures and salinities of 20 and 25. Toxicity was measured as frequencies of: (1) meiotic and mitotic abnormalities in 3-hour embryos; (2) total development to the 48-hour straight-hinge larval stage; (3) mortality and abnormality at the 48-hour larval stage; (4) mean size of larvae at 48 hours; and (5) cytogenetic and cytological abnormalities in 48-hour larvae. Dose-dependent responses were observed. Overall, naphthalene and aroclor at 100 mg/l had few embryos that survived to the stage where theymore » could be examined and scored for cytogenetic and cytological abnormality even by 3-hours post-fertilization. Abnormality of the few embryos available for examination was somewhat higher for aroclor but was significantly higher for naphthalene than for control embryos and those exposed to 0.1 mg/l. At the highest concentration of 100 mg/l, mortality was 100% by the larval stage for naphthalene and aroclor. Though total development and survival of embryos to the larval stage at the 10 mg/l dose were high, many of the larvae were dead or abnormal in the aroclor-exposed cultures. This mean incidence was significantly higher than for all other groups. Larvae developing in these cultures with 10 mg/l were also significantly smaller and cytological condition of the larvae was significantly worse. Higher temperature appeared to increase the frequency of deleterious effects, particularly for naphthalene and aroclor. Results with salinity were more variable. Overall, results showed that petroleum aromatic hydrocarbons and PCBs can have toxic effects on the development and survival of early life stages of oysters, as well as sublethal effects on growth and cytological condition, depending on dose and interactions with other compound and with environmental variables.« less

  2. Physical forcing of late summer chlorophyll a blooms in the oligotrophic eastern North Pacific

    NASA Astrophysics Data System (ADS)

    Toyoda, Takahiro; Okamoto, Suguru

    2017-03-01

    We investigated physical forcing of late summer chlorophyll a (chl a) blooms in the oligotrophic eastern North Pacific Ocean by using ocean reanalysis and satellite data. Relatively large chl a blooms as defined in this study occurred in August-October following sea surface temperature (SST) anomaly (SSTA) decreases, mixed layer deepening, and temperature and salinity increases at the bottom of the mixed layer. These physical conditions were apparently induced by the entrainment of subsurface water resulting from the destabilization of the surface layer caused by anomalous northward Ekman transport of subtropical waters of higher salinity. Salinity-normalized total alkalinity data provide supporting evidence for nutrient supply by the entrainment process. We next investigated the impact of including information about the entrainment on bloom identification. The results of analyses using reanalysis data and of those using only satellite data showed large SSTA decreases when the northward Ekman salinity transports were large, implying that the entrainment of subsurface water is well represented in both types of data. After surface-destabilizing conditions were established, relatively high surface chl a concentrations were observed. The use of SST information can further improve the detection of high chl a concentrations. Although the detection of high chl a concentrations would be enhanced by finer data resolution and the inclusion of biogeochemical parameters in the ocean reanalysis, our results obtained by using existing reanalysis data as well as recent satellite data are valuable for better understanding and prediction of lower trophic ecosystem variability.

  3. Influence of salinity and temperature on acute toxicity of cadmium to Mysidopsis bahia molenock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voyer, R.A.; Modica, G.

    1990-01-01

    Acute toxicity tests were conducted to compare estimates of toxicity, as modified by salinity and temperature, based on response surface techniques with those derived using conventional test methods, and to compare effect of a single episodic exposure to cadmium as a function of salinity with that of continuous exposure. Regression analysis indicated that mortality following continuous 96-hr exposure is related to linear and quadratic effects of salinity and cadmium at 20 C, and to the linear and quadratic effects of cadmium only at 25C. LC50s decreased with increases in temperature and decreases in salinity. Based on the regression model developed,more » 96-hr LC50s ranged from 15.5 to 28.0 micro Cd/L at 10 and 30% salinities, respectively, at 25C; and from 47 to 85 microgram Cd/L at these salinities at 20C.« less

  4. Variable salinity responses of 12 alfalfa genotypes and comparative expression analyses of salt-response genes

    USDA-ARS?s Scientific Manuscript database

    Twelve alfalfa genotypes that were selected for biomass under salinity, differences in Na and Cl concentrations in shoots and K/Na ratio were evaluated in this long-term salinity experiment. The selected plants were cloned to reduce genetic variability within each genotype. Salt tolerance (ST) index...

  5. Role of subsurface ocean in decadal climate predictability over the South Atlantic.

    PubMed

    Morioka, Yushi; Doi, Takeshi; Storto, Andrea; Masina, Simona; Behera, Swadhin K

    2018-06-04

    Decadal climate predictability in the South Atlantic is explored by performing reforecast experiments using a coupled general circulation model with two initialization schemes; one is assimilated with observed sea surface temperature (SST) only, and the other is additionally assimilated with observed subsurface ocean temperature and salinity. The South Atlantic is known to undergo decadal variability exhibiting a meridional dipole of SST anomalies through variations in the subtropical high and ocean heat transport. Decadal reforecast experiments in which only the model SST is initialized with the observation do not predict well the observed decadal SST variability in the South Atlantic, while the other experiments in which the model SST and subsurface ocean are initialized with the observation skillfully predict the observed decadal SST variability, particularly in the Southeast Atlantic. In-depth analysis of upper-ocean heat content reveals that a significant improvement of zonal heat transport in the Southeast Atlantic leads to skillful prediction of decadal SST variability there. These results demonstrate potential roles of subsurface ocean assimilation in the skillful prediction of decadal climate variability over the South Atlantic.

  6. A new dipole index of the salinity anomalies of the tropical Indian Ocean.

    PubMed

    Li, Junde; Liang, Chujin; Tang, Youmin; Dong, Changming; Chen, Dake; Liu, Xiaohui; Jin, Weifang

    2016-04-07

    With the increased interest in studying the sea surface salinity anomaly (SSSA) of the tropical Indian Ocean during the Indian Ocean Dipole (IOD), an index describing the dipole variability of the SSSA has been pursued recently. In this study, we first use a regional ocean model with a high spatial resolution to produce a high-quality salinity simulation during the period from 1982 to 2014, from which the SSSA dipole structure is identified for boreal autumn. On this basis, by further analysing the observed data, we define a dipole index of the SSSA between the central equatorial Indian Ocean (CEIO: 70°E-90°E, 5°S-5°N) and the region off the Sumatra-Java coast (SJC: 100°E-110°E, 13°S-3°S). Compared with previous SSSA dipole indices, this index has advantages in detecting the dipole signals and in characterizing their relationship to the sea surface temperature anomaly (SSTA) dipole variability. Finally, the mechanism of the SSSA dipole is investigated by dynamical diagnosis. It is found that anomalous zonal advection dominates the SSSA in the CEIO region, whereas the SSSA in the SJC region are mainly influenced by the anomalous surface freshwater flux. This SSSA dipole provides a positive feedback to the formation of the IOD events.

  7. Temperature-salinity structure of the AMOC in high-resolution ocean simulations and in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Wang, F.; Xu, X.; Chassignet, E.

    2017-12-01

    On average, the CMIP5 models represent the AMOC structure, water properties, Heat transport and Freshwater transport reasonably well. For temperature, CMIP5 models exhibit a colder northward upper limb and a warmer southward lower limb. the temperature contrast induces weaker heat transport than observation. For salinity, CMIP5 models exhibit saltier southward lower limb, thus contributes to weaker column freshwater transport. Models have large spread, among them, AMOC strength contributes to Heat transport but not freshwater transport. AMOC structure (the overturning depth) contributes to transport-weighted temperature not transport-weighted salinity in southward lower limb. The salinity contrast in upper and lower limb contributes to freshwater transport, but temperature contrast do not contribute to heat transport.

  8. Temperature Trends in Montane Lakes

    NASA Astrophysics Data System (ADS)

    Melack, J. M.; Sadro, S.; Jellison, R.

    2014-12-01

    Long-term temperature trends in lakes integrate hydrological and meteorological factors. We examine temperature trends in a small montane lake with prolonged ice-cover and large seasonal snowfall and in a large saline lake. Emerald Lake, located in the Sierra Nevada (California), is representative of high-elevation lakes throughout the region. No significant trend in outflow temperature was apparent from 1991to 2012. Snowfall in the watershed accounted for 93% of the variability in average summer lake temperatures. Mono Lake (California) lies in a closed, montane basin and is hypersaline and monomictic or meromictic. Temperature profiles have been collected from 1982 to 2010. In the upper water column, the July-August-September water temperatures increased 0.8-1.0°C over the 29 years. This rate of warming is less than published estimates based on satellite-derived skin temperatures and will discussed in the context of general limnological interpretation of temperature trends.

  9. Sensitivity of Global Sea-Air CO2 Flux to Gas Transfer Algorithms, Climatological Wind Speeds, and Variability of Sea Surface Temperature and Salinity

    NASA Technical Reports Server (NTRS)

    McClain, Charles R.; Signorini, Sergio

    2002-01-01

    Sensitivity analyses of sea-air CO2 flux to gas transfer algorithms, climatological wind speeds, sea surface temperatures (SST) and salinity (SSS) were conducted for the global oceans and selected regional domains. Large uncertainties in the global sea-air flux estimates are identified due to different gas transfer algorithms, global climatological wind speeds, and seasonal SST and SSS data. The global sea-air flux ranges from -0.57 to -2.27 Gt/yr, depending on the combination of gas transfer algorithms and global climatological wind speeds used. Different combinations of SST and SSS global fields resulted in changes as large as 35% on the oceans global sea-air flux. An error as small as plus or minus 0.2 in SSS translates into a plus or minus 43% deviation on the mean global CO2 flux. This result emphasizes the need for highly accurate satellite SSS observations for the development of remote sensing sea-air flux algorithms.

  10. Annual egg production rates of calanoid copepod species on the continental shelf of the Eastern Tropical Pacific off Mexico

    NASA Astrophysics Data System (ADS)

    Kozak, Eva R.; Franco-Gordo, Carmen; Palomares-García, Ricardo; Gómez-Gutiérrez, Jaime; Suárez-Morales, Eduardo

    2017-01-01

    We provide the first estimations of calanoid copepod egg production rates (EPR) in the Eastern Tropical Pacific over an annual cycle (January-December 2011). Gravid females were collected twice monthly and incubated for 12 h without food to estimate EPR, weight-specific fecundity (Gf), spawning success (SS, percentage of females to spawn out of the total species incubated per month and season) and egg hatching success (EHS). This study reports the average EPR of 10 species and the monthly EPR and Gf of four planktonic calanoid copepods (Centropages furcatus, Temora discaudata, Pontellina sobrina, and Nannocalanus minor) that spawned with enough frequency to infer their seasonal reproductive patterns. These species showed distinct seasonal reproductive strategies. Most copepod species spawned sporadically with large EPR variability, while three copepod species reproduced throughout the year (C. furcatus, T. discaudata and P. sobrina) and N. minor spawned only during the mixed period (Feb-May). The four species had relatively similar average EPR (C. furcatus 16, T. discaudata 18, P. sobrina 13, and N. minor 12 eggs fem-1 day-1). These are the first EPR estimations of P. sobrina and its previously known reproductive period is expanded. A Canonical Correspondence Analysis (CCA) was used to analyze EPR and species abundance of all calanoid copepods (40 spp.) collected throughout the time series in relation to temperature, salinity, mixed layer depth (MLD), dissolved oxygen, and chlorophyll a (Chl-a) concentrations to identify the variables that best explained the copepod abundance variability. Temperature, Chl-a, and salinity had the strongest effect on the biological variables, linked to seasonal and episodic upwelling-downwelling processes in the surveyed area. As a result of moderate upwelling events and seasonal variation of environmental conditions, it appears relatively few species are capable of maintaining continuous reproduction under the relatively higher temperatures and strong fluctuations of food availability that exist in this coastal habitat of the Eastern Tropical Pacific.

  11. Distribution of the Euryhaline Squid Lolliguncula brevis in Chesapeake Bay: Effects of Selected Abiotic Factors

    DTIC Science & Technology

    2002-01-31

    salinity , water temperature, dissolved oxy- gen and water clarity. Since temporal variation in the Chesapeake Bay ecosystem is high, the effects of year...temperature (p ɘ.001; ψ = 2.42) had significant impacts on squid catch probability, although the effects were con- founded by a water temperature × salinity ...commonly encountered in such waters during VIMS Trawl Surveys The synergistic and independent effects of salinity , water temperature and dissolved oxygen

  12. The Effects of Temperature and Salinity on Mg Incorporation in Planktonic Foraminifera Globigerinoides ruber (white): Results from a Global Sediment Trap Mg/Ca Database

    NASA Astrophysics Data System (ADS)

    Gray, W. R.; Weldeab, S.; Lea, D. W.

    2015-12-01

    Mg/Ca in Globigerinoides ruber is arguably the most important proxy for sea surface temperature (SST) in tropical and sub tropical regions, and as such guides our understanding of past climatic change in these regions. However, the sensitivity of Mg/Ca to salinity is debated; while analysis of foraminifera grown in cultures generally indicates a sensitivity of 3 - 6% per salinity unit, core-top studies have suggested a much higher sensitivity of between 15 - 27% per salinity unit, bringing the utility of Mg/Ca as a SST proxy into dispute. Sediment traps circumvent the issues of dissolution and post-depositional calcite precipitation that hamper core-top calibration studies, whilst allowing the analysis of foraminifera that have calcified under natural conditions within a well constrained period of time. We collated previously published sediment trap/plankton tow G. ruber (white) Mg/Ca data, and generated new Mg/Ca data from a sediment trap located in the highly-saline tropical North Atlantic, close to West Africa. Calcification temperature and salinity were calculated for the time interval represented by each trap/tow sample using World Ocean Atlas 2013 data. The resulting dataset comprises >240 Mg/Ca measurements (in the size fraction 150 - 350 µm), that span a temperature range of 18 - 28 °C and 33.6 - 36.7 PSU. Multiple regression of the dataset reveals a temperature sensitivity of 7 ± 0.4% per °C (p < 2.2*10-16) and a salinity sensitivity of 4 ± 1% per salinity unit (p = 2*10-5). Application of this calibration has significant implications for both the magnitude and timing of glacial-interglacial temperature changes when variations in salinity are accounted for.

  13. [Joint effects of water temperature and salinity on the expression of gill Hsp70 gene in Pinctada martensii (Dunker)].

    PubMed

    Wang, Ya-Nan; Wang, Hui; Zhu, Xiao-Wen; Luo, Ming-Ming; Liu, Zhi-Gang; Du, Xiao-Dong

    2012-12-01

    By using central composite experimental design and response surface method, the joint effects of water temperature (16-40 degrees C) and salinity (10-50) on the expression of gill Hsp70 gene in Pinctada martensii (Dunker) were studied under laboratory conditions. The results showed that the linear and quadratic effects of temperature on the expression of gill Hsp70 gene were significant, the linear effect of salinity was not significant, while the quadratic effect of salinity was significant. The interactive effect of temperature and salinity was not significant, and the effect of temperature was greater than that of salinity. The model equation of the gill Hsp70 gene expression was established, with the R2, Adj. R2, and Pred. R2 as high as 98.7%, 97.4%, and 89.2%, respectively, suggesting that the overarching predictive capability of the model was very satisfactory, and could be practicably applied for prediction. Through the optimization of the model, the expression of the gill Hsp70 gene reached its minimum (0.5276) when the temperature was 26.78 degrees C and the salinity was 29.33, with the desirability value being 98%. These experimental results could offer theoretical reference for the high expression of gill Hsp70 gene in P. martensii, the maintenance of cell internal environment stability, and the enhancement of P. martensii stress resistance.

  14. The combined influence of sub-optimal temperature and salinity on the in vitro viability of Perkinsus marinus, a protistan parasite of the eastern oyster Crassostrea virginica

    USGS Publications Warehouse

    La Peyre, M.K.; Casas, S.M.; Gayle, W.; La Peyre, Jerome F.

    2010-01-01

    Perkinsus marinus is a major cause of mortality in eastern oysters along the Gulf of Mexico and Atlantic coasts. It is also well documented that temperature and salinity are the primary environmental factors affecting P. marinus viability and proliferation. However, little is known about the effects of combined sub-optimal temperatures and salinities on P. marinus viability. This in vitro study examined those effects by acclimating P. marinus at three salinities (7, 15, 25. ppt) to 10 ??C to represent the lowest temperatures generally reached in the Gulf of Mexico, and to 2 ??C to represent the lowest temperatures reached along the mid-Atlantic coasts and by measuring changes in cell viability and density on days 1, 30, 60 and 90 following acclimation. Cell viability and density were also measured in 7. ppt cultures acclimated to each temperature and then transferred to 3.5. ppt. The largest decreases in cell viability occurred only with combined low temperature and salinity, indicating that there is clearly a synergistic effect. The largest decreases in cell viability occurred only with both low temperature and salinity after 30. days (3.5. ppt, 2 ??C: 0% viability), 60. days (3.5. ppt, 10 ??C: 0% viability) and 90. days (7. ppt, 2 ??C: 0.6 ?? 0.7%; 7. ppt, 10 ??C: 0.2 ?? 0.2%). ?? 2010 .

  15. How ocean lateral mixing changes Southern Ocean variability in coupled climate models

    NASA Astrophysics Data System (ADS)

    Pradal, M. A. S.; Gnanadesikan, A.; Thomas, J. L.

    2016-02-01

    The lateral mixing of tracers represents a major uncertainty in the formulation of coupled climate models. The mixing of tracers along density surfaces in the interior and horizontally within the mixed layer is often parameterized using a mixing coefficient ARedi. The models used in the Coupled Model Intercomparison Project 5 exhibit more than an order of magnitude range in the values of this coefficient used within the Southern Ocean. The impacts of such uncertainty on Southern Ocean variability have remained unclear, even as recent work has shown that this variability differs between different models. In this poster, we change the lateral mixing coefficient within GFDL ESM2Mc, a coarse-resolution Earth System model that nonetheless has a reasonable circulation within the Southern Ocean. As the coefficient varies from 400 to 2400 m2/s the amplitude of the variability varies significantly. The low-mixing case shows strong decadal variability with an annual mean RMS temperature variability exceeding 1C in the Circumpolar Current. The highest-mixing case shows a very similar spatial pattern of variability, but with amplitudes only about 60% as large. The suppression of mixing is larger in the Atlantic Sector of the Southern Ocean relatively to the Pacific sector. We examine the salinity budgets of convective regions, paying particular attention to the extent to which high mixing prevents the buildup of low-saline waters that are capable of shutting off deep convection entirely.

  16. Estuarine turbidity, flushing, salinity, and circulation

    NASA Technical Reports Server (NTRS)

    Pritchard, D. W.

    1972-01-01

    The effects of estuarine turbidity, flushing, salinity, and circulation on the ecology of the Chesapeake Bay are discussed. The sources of fresh water, the variations in salinity, and the circulation patterns created by temperature and salinity changes are analyzed. The application of remote sensors for long term observation of water temperatures is described. The sources of sediment and the biological effects resulting from increased sediments and siltation are identified.

  17. SMOS: a satellite mission to measure ocean surface salinity

    NASA Astrophysics Data System (ADS)

    Font, Jordi; Kerr, Yann H.; Srokosz, Meric A.; Etcheto, Jacqueline; Lagerloef, Gary S.; Camps, Adriano; Waldteufel, Philippe

    2001-01-01

    The ESA's SMOS (Soil Moisture and Ocean Salinity) Earth Explorer Opportunity Mission will be launched by 2005. Its baseline payload is a microwave L-band (21 cm, 1.4 GHz) 2D interferometric radiometer, Y shaped, with three arms 4.5 m long. This frequency allows the measurement of brightness temperature (Tb) under the best conditions to retrieve soil moisture and sea surface salinity (SSS). Unlike other oceanographic variables, until now it has not been possible to measure salinity from space. However, large ocean areas lack significant salinity measurements. The 2D interferometer will measure Tb at large and different incidence angles, for two polarizations. It is possible to obtain SSS from L-band passive microwave measurements if the other factors influencing Tb (SST, surface roughness, foam, sun glint, rain, ionospheric effects and galactic/cosmic background radiation) can be accounted for. Since the radiometric sensitivity is low, SSS cannot be recovered to the required accuracy from a single measurement as the error is about 1-2 psu. If the errors contributing to the uncertainty in Tb are random, averaging the independent data and views along the track, and considering a 200 km square, allow the error to be reduced to 0.1-0.2 pus, assuming all ancillary errors are budgeted.

  18. Effects of tidal current phase at the junction of two straits

    USGS Publications Warehouse

    Warner, J.; Schoellhamer, D.; Burau, J.; Schladow, G.

    2002-01-01

    Estuaries typically have a monotonic increase in salinity from freshwater at the head of the estuary to ocean water at the mouth, creating a consistent direction for the longitudinal baroclinic pressure gradient. However, Mare Island Strait in San Francisco Bay has a local salinity minimum created by the phasing of the currents at the junction of Mare Island and Carquinez Straits. The salinity minimum creates converging baroclinic pressure gradients in Mare Island Strait. Equipment was deployed at four stations in the straits for 6 months from September 1997 to March 1998 to measure tidal variability of velocity, conductivity, temperature, depth, and suspended sediment concentration. Analysis of the measured time series shows that on a tidal time scale in Mare Island Strait, the landward and seaward baroclinic pressure gradients in the local salinity minimum interact with the barotropic gradient, creating regions of enhanced shear in the water column during the flood and reduced shear during the ebb. On a tidally averaged time scale, baroclinic pressure gradients converge on the tidally averaged salinity minimum and drive a converging near-bed and diverging surface current circulation pattern, forming a "baroclinic convergence zone" in Mare Island Strait. Historically large sedimentation rates in this area are attributed to the convergence zone. 

  19. Measuring pH variability using an experimental sensor on an underwater glider

    NASA Astrophysics Data System (ADS)

    Hemming, Michael P.; Kaiser, Jan; Heywood, Karen J.; Bakker, Dorothee C. E.; Boutin, Jacqueline; Shitashima, Kiminori; Lee, Gareth; Legge, Oliver; Onken, Reiner

    2017-05-01

    Autonomous underwater gliders offer the capability of measuring oceanic parameters continuously at high resolution in both vertical and horizontal planes, with timescales that can extend to many months. An experimental ion-sensitive field-effect transistor (ISFET) sensor measuring pH on the total scale was attached to a glider during the REP14-MED experiment in June 2014 in the Sardinian Sea in the northwestern Mediterranean. During the deployment, pH was sampled at depths of up to 1000 m along an 80 km transect over a period of 12 days. Water samples were collected from a nearby ship and analysed for dissolved inorganic carbon concentration and total alkalinity to derive the pH for validating the ISFET sensor measurements. The vertical resolution of the pH sensor was good (1 to 2 m), but stability was poor and the sensor drifted in a non-monotonous fashion. In order to remove the sensor drift, a depth-constant time-varying offset was applied throughout the water column for each dive, reducing the spread of the data by approximately two-thirds. Furthermore, the ISFET sensor required temperature- and pressure-based corrections, which were achieved using linear regression. Correcting for this decreased the apparent sensor pH variability by a further 13 to 31 %. Sunlight caused an apparent sensor pH decrease of up to 0.1 in surface waters around local noon, highlighting the importance of shielding the sensor from light in future deployments. The corrected pH from the ISFET sensor is presented along with potential temperature, salinity, potential density anomalies (σθ), and dissolved oxygen concentrations (c(O2)) measured by the glider, providing insights into the physical and biogeochemical variability in the Sardinian Sea. The pH maxima were identified close to the depth of the summer chlorophyll maximum, where high c(O2) values were also found. Longitudinal pH variations at depth (σθ > 28. 8 kg m-3) highlighted the variability of water masses in the Sardinian Sea. Higher pH was observed where salinity was > 38. 65, and lower pH was found where salinity ranged between 38.3 and 38.65. The higher pH was associated with saltier Levantine Intermediate Water, and it is possible that the lower pH was related to the remineralisation of organic matter. Furthermore, shoaling isopycnals closer to shore coinciding with low pH and c(O2), high salinity, alkalinity, dissolved inorganic carbon concentrations, and chlorophyll fluorescence waters may be indicative of upwelling.

  20. The Geographic Information System applied to study schistosomiasis in Pernambuco

    PubMed Central

    Barbosa, Verônica Santos; Loyo, Rodrigo Moraes; Guimarães, Ricardo José de Paula Souza e; Barbosa, Constança Simões

    2017-01-01

    ABSTRACT OBJECTIVE Diagnose risk environments for schistosomiasis in coastal localities of Pernambuco using geoprocessing techniques. METHODS A coproscopic and malacological survey were carried out in the Forte Orange and Serrambi areas. Environmental variables (temperature, salinity, pH, total dissolved solids and water fecal coliform dosage) were collected from Biomphalaria breeding sites or foci. The spatial analysis was performed using ArcGis 10.1 software, applying the kernel estimator, elevation map, and distance map. RESULTS In Forte Orange, 4.3% of the population had S. mansoni and were found two B. glabrata and 26 B. straminea breeding sites. The breeding sites had temperatures of 25ºC to 41ºC, pH of 6.9 to 11.1, total dissolved solids between 148 and 661, and salinity of 1,000 d. In Serrambi, 4.4% of the population had S. mansoni and were found seven B. straminea and seven B. glabrata breeding sites. Breeding sites had temperatures of 24ºC to 36ºC, pH of 7.1 to 9.8, total dissolved solids between 116 and 855, and salinity of 1,000 d. The kernel estimator shows the clusters of positive patients and foci of Biomphalaria, and the digital elevation map indicates areas of rainwater concentration. The distance map shows the proximity of the snail foci with schools and health facilities. CONCLUSIONS Geoprocessing techniques prove to be a competent tool for locating and scaling the risk areas for schistosomiasis, and can subsidize the health services control actions. PMID:29166439

  1. Seasonal variation of hydrographic and nutrient fields during the US JGOFS Arabian Sea Process Study

    NASA Astrophysics Data System (ADS)

    Morrison, J. M.; Codispoti, L. A.; Gaurin, S.; Jones, B.; Manghnani, V.; Zheng, Z.

    Between September 1994 and December 1995, the US JGOFS Arabian Sea Process Experiment collected extensive, high quality hydrographic data (temperature, salinity, dissolved oxygen and nutrients) during all seasons in the northern Arabian Sea. An analysis of this unique data suite suggests the presence of many features that are described in the canonical literature, but these new data provided the following insights. Although the seasonal evolution of mixed-layer depths was in general agreement with previous descriptions, the deepest mixed-layer depths in our data occurred during the late NE Monsoon instead of the SW Monsoon. The region exhibits considerable mesoscale variability resulting in extremely variable temperature-salinity (TS) distributions in the upper 1000 db. This mesoscale variability is readily observed in satellite imaging, in the high resolution data taken by a companion ONR funded project, and in underway ADCP data. The densest water reaching the sea surface during coastal upwelling appeared to have maximum offshore depths of ˜150 m and σθ's close to the core value (˜25) for the saline Arabian Sea Water (ASW), but salinities in these upwelling waters were relatively low. The densest water found at the sea surface during late NE Monsoon conditions has σθ's>24.8 and relatively high salinities, suggesting that they are a source for the ASW salinity maximum. Persian Gulf Water (PGW) with a core σθ of 26.6 forms a widespread salinity maximum. Despite the considerable extent of this feature, Persian Gulf outflow water, with a salinity (4) of ˜39 at its source, can only be a minor contributor. Within the standard US JGOFS sampling grid, maximum salinities on this surface are ˜36.8 at stations near the Gulf, falling to values as low as ˜35.3 at the stations farthest removed from its influence. Even at our standard stations closest to the Gulf (N-1 and N-2), the high-salinity, low-nutrient Persian Gulf water has only a modest direct effect on nutrient concentrations. This PGW salinity maximum is associated with the suboxic portions of the Arabian Sea's oxygen minimum zone. The salinity maximum associated with Red Sea Water (RSW, core σθ=27.2) in the JGOFS study region is clearly evident at the southermost sampling site at 10'N (S-15). Elsewhere, this signal is weak or absent and salinity on the 27.2 σθ surface tends to increase towards the Persian Gulf, suggesting that the disappearance of this salinity maximum is due, at least in part, to the influence of the Persian Gulf outflow. Inorganic nitrogen-to-phosphate ratios were lower (frequently much lower) than the standard Redfield ratio of 15/1-16/1 (by atoms) at all times and all depths suggesting that inorganic nitrogen was more important than phosphate as a limiting nutrient for phytoplankton growth, and that the effects of denitrification dominated the effects of nitrogen fixation. The water upwelling off the Omani coast during the SW Monsoon has inorganic nitrogen to silicate ratios that were higher (˜2/1) than the ˜1/1 ratio often assumed as the ratio of uptake during diatom growth. The temporal evolution of inorganic nitrogen-to-silicate ratios suggests major alteration by diatom uptake only during the late SW Monsoon cruise (TN050) in August-September 1995. Widespread moderate surface layer nutrient concentrations occurred during the late NE Monsoon. A zone of high offshore nutrient concentrations was encountered during the SW Monsoon, but instead of being associated with offshore upwelling it may represent offshore advection from the coastal upwelling zone, the influence of an eddy, or both. Although our data do not contradict previous suggestions that the volume of subtoxic water may be reduced the SW Monsoon, they suggest a weaker re-oxygenation than indicated by some previous work. Similarly, they do not confirm results suggesting that secondary nitrite maxima may be common in waters with oxygen concentrations >5 μM.

  2. Bolus oral or continuous intestinal amino acids reduce hypothermia during anesthesia in rats.

    PubMed

    Imoto, Akinobu; Yokoyama, Takeshi; Suwa, Kunio; Yamasaki, Fumiyasu; Yatabe, Tomoaki; Yokoyama, Reiko; Yamashita, Koichi; Selldén, Eva

    2010-01-01

    We hypothesized that, with oral or intestinal administration of amino acids (AA), we may reduce hypothermia during general anesthesia as effectively as with intravenous AA. We, therefore, examined the effect of bolus oral and continuous intestinal AA in preventing hypothermia in rats. Male Wistar rats were anesthetized with sevoflurane for induction and with propofol for maintenance. In the first experiment, 30 min before anesthesia, rats received one bolus 42 mL/kg of AA solution (100 g/L) or saline orally. Then for the next 3 h during anesthesia, they received 14 mL/kg/h of AA and/or saline intravenously. They were in 4 groups: I-A/A, both AA; I-A/S, oral AA and intravenous saline; I-S/A, oral saline and intravenous AA; I-S/S, both saline. In the second experiment, rats received 14 mL/kg/h duodenal AA and/or saline for 2 h. They were in 3 groups: II-A/S, duodenal AA and intravenous saline; II-S/A, duodenal saline and intravenous AA; II-S/S, both saline. Core body temperature was measured rectally. After the second experiment, serum electrolytes were examined. In both experiments, rectal temperature decreased in all groups during anesthesia. However, the decrease in rectal temperature was significantly less in groups receiving AA than in groups receiving only saline. In the second experiment, although there was no significant difference in the decrease in body temperature between II-A/S and II-S/A, Na(+) concentration was significantly lower in II-S/A. In conclusion, AA, administered orally or intestinally, tended to keep the body temperature stable during anesthesia without disturbing electrolyte balance. These results suggest that oral or enteral AA may be useful for prevention of hypothermia in patients.

  3. Submesoscale-selective compensation of fronts in a salinity-stratified ocean

    PubMed Central

    Spiro Jaeger, Gualtiero; Mahadevan, Amala

    2018-01-01

    Salinity, rather than temperature, is the leading influence on density in some regions of the world’s upper oceans. In the Bay of Bengal, heavy monsoonal rains and runoff generate strong salinity gradients that define density fronts and stratification in the upper ~50 m. Ship-based observations made in winter reveal that fronts exist over a wide range of length scales, but at O(1)-km scales, horizontal salinity gradients are compensated by temperature to alleviate about half the cross-front density gradient. Using a process study ocean model, we show that scale-selective compensation occurs because of surface cooling. Submesoscale instabilities cause density fronts to slump, enhancing stratification along-front. Specifically for salinity fronts, the surface mixed layer (SML) shoals on the less saline side, correlating sea surface salinity (SSS) with SML depth at O(1)-km scales. When losing heat to the atmosphere, the shallower and less saline SML experiences a larger drop in temperature compared to the adjacent deeper SML on the salty side of the front, thus correlating sea surface temperature (SST) with SSS at the submesoscale. This compensation of submesoscale fronts can diminish their strength and thwart the forward cascade of energy to smaller scales. During winter, salinity fronts that are dynamically submesoscale experience larger temperature drops, appearing in satellite-derived SST as cold filaments. In freshwater-influenced regions, cold filaments can mark surface-trapped layers insulated from deeper nutrient-rich waters, unlike in other regions, where they indicate upwelling of nutrient-rich water and enhanced surface biological productivity. PMID:29507874

  4. Environmental and biological characteristics of Atlantic bluefin tuna and albacore spawning habitats based on their egg distributions

    NASA Astrophysics Data System (ADS)

    Reglero, Patricia; Santos, Maria; Balbín, Rosa; Laíz-Carrión, Raul; Alvarez-Berastegui, Diego; Ciannelli, Lorenzo; Jiménez, Elisa; Alemany, Francisco

    2017-06-01

    Tuna spawning habitats are traditionally characterized using data sets of larvae or gonads from mature adults and concurrent environmental variables. Data on egg distributions have never previously been used since molecular analyses are mandatory to identify tuna eggs to species level. However, in this study we use molecularly derived egg distribution data, in addition to larval data, to characterize hydrographic and biological drivers of the spatial distribution of eggs and larvae of bluefin Thunnus thynnus and albacore tuna Thunnus alalunga in the Balearic Sea, a main spawning area of these species in the Mediterranean. The effects of the hydrography, characterized by salinity, temperature and geostrophic velocity, on the spatial distributions of the eggs and larvae are investigated. Three biological variables are used to describe the productivity in the area: chlorophyll a in the mixed layer, chlorophyll a in the deep chlorophyll maximum and mesozooplankton biomass in the mixed layer. Our results point to the importance of salinity fronts and temperatures above a minimum threshold in shaping the egg and larval distribution of both species. The spatial distribution of the biotic variables was very scattered, and they did not emerge as significant variables in the presence-absence models. However, they became significant when modeling egg and larval abundances. The lack of correlation between the three biotic variables challenges the use of chlorophyll a to describe trophic scenarios for the larvae and suggests that the spatial distribution of resources is not persistent in time. The different patterns in relation to biotic variables across species and stages found in this and other studies indicate a still elusive understanding of the link between trophic levels involving tuna early larval stages. Our ability to improve short-term forecasting and long-term predictions of climate effects on the egg and larval distributions is discussed based on the consistency of the environmentally driven spatial patterns for the two species.

  5. An Investigation of Turbulent Heat Exchange in the Subtropics

    DTIC Science & Technology

    2014-09-30

    meteorological sensors aboard the research vessel the R/V Revelle during the DYNAMO field program. In situ meteorology and high-rate flux sensors operated...continuously while in the sampling period for DYNAMO Leg 3. This included all sensors operating during Leg 2 with the addition of a closed-path LI...stress; wave data; surface and near surface sea temperatures, salinity and currents; and other key variables specifically requested by DYNAMO /LASP PIs

  6. Short-Term Variability on the Scotian Shelf

    NASA Astrophysics Data System (ADS)

    Greenan, B.; Petrie, B.; Harrison, G.; Oakey, N.; Strain, P.

    2002-12-01

    The traditional view of the production cycle on the continental shelf of Nova Scotia features a spring bloom followed by a period of low production and a less intense fall bloom. The annual cycle of primary productivity thus has a large, low frequency component. However, there is increasing evidence that the production cycle has significant variability on shorter time scales. Physical, chemical and biological variability on the Scotian Shelf is examined on a daily to weekly timescale. This is accomplished through the use of a newly developed mooring platform (SeaHorse) that uses surface wave energy to enable the instrument to climb down the mooring wire and then float upwards while sampling the water column. This provides bi-hourly profiles of temperature, salinity, pressure and chlorophyll at one location over month-long periods. Results from the three-week deployment in October 2000 indicate a subsurface chlorophyll maximum below the pycnocline during the first part of the time series. An event occurred in mid-October during which the temperature, salinity and density iso-surfaces rose approximately 25 m. During this event, a small bloom, with peak chlorophyll concentrations of about 2 mg m-3 and duration of several days, began as nutrients were brought into the upper part of the water column by upwelling-favorable winds. SeaWiFS ocean color satellite images were valuable in providing a spatial context for chlorophyll concentrations, however, the lack of temporal resolution due to poor quality images means that this data set provided limited information for short-term chlorophyll variability. Gradient Richardson Numbers were estimated for 2 m vertical bins using SeaHorse CTD data and nearby ADCP current measurements. A trend of decreasing Ri in the ocean mixed layer with increasing surface wind stress is suggested.

  7. Large and local-scale influences on physical and chemical characteristics of coastal waters of Western Europe during winter

    NASA Astrophysics Data System (ADS)

    Tréguer, Paul; Goberville, Eric; Barrier, Nicolas; L'Helguen, Stéphane; Morin, Pascal; Bozec, Yann; Rimmelin-Maury, Peggy; Czamanski, Marie; Grossteffan, Emilie; Cariou, Thierry; Répécaud, Michel; Quéméner, Loic

    2014-11-01

    There is now a strong scientific consensus that coastal marine systems of Western Europe are highly sensitive to the combined effects of natural climate variability and anthropogenic climate change. However, it still remains challenging to assess the spatial and temporal scales at which climate influence operates. While large-scale hydro-climatic indices, such as the North Atlantic Oscillation (NAO) or the East Atlantic Pattern (EAP) and the weather regimes such as the Atlantic Ridge (AR), are known to be relevant predictors of physical processes, changes in coastal waters can also be related to local hydro-meteorological and geochemical forcing. Here, we study the temporal variability of physical and chemical characteristics of coastal waters located at about 48°N over the period 1998-2013 using (1) sea surface temperature, (2) sea surface salinity and (3) nutrient concentration observations for two coastal sites located at the outlet of the Bay of Brest and off Roscoff, (4) river discharges of the major tributaries close to these two sites and (5) regional and local precipitation data over the region of interest. Focusing on the winter months, we characterize the physical and chemical variability of these coastal waters and document changes in both precipitation and river runoffs. Our study reveals that variability in coastal waters is connected to the large-scale North Atlantic atmospheric circulation but is also partly explained by local river influences. Indeed, while the NAO is strongly related to changes in sea surface temperature at the Brest and Roscoff sites, the EAP and the AR have a major influence on precipitations, which in turn modulate river discharges that impact sea surface salinity at the scale of the two coastal stations.

  8. The Predictability of Near-Coastal Currents Using a Baroclinic Unstructured Grid Model

    DTIC Science & Technology

    2011-12-28

    clinic simulations. ADCIRC solves the time-dependent scalar transport equation for salinity and temperature. Through the equation of state...described by McDougall ct al. (2003), ADCIRC uses the temperature, salinity , and pressure in determining the density field. In order to avoid spurious...model. 2.3 Initialization and boundary forcing Temperature, salinity , elevation, and velocity fields from a regional ocean model are needed both to

  9. Effect of salinity on the upper lethal temperature tolerance of early-juvenile red drum.

    PubMed

    McDonald, Dusty; Bumguardner, Britt; Cason, Paul

    2015-10-01

    Previous work investigating the temperature tolerance of juvenile red drum ranging 18-50mm TL found evidence for positive size dependence (smaller fish less tolerant to higher temperatures) suggesting smaller size classes (<18mm TL) potentially may succumb to extreme summer water temperatures. Here, we explored the upper lethal temperature tolerance (ULT) in smaller-sized red drum which ranged from 10 to 20mm TL across multiple salinities to further understand the thermal limitations of this propagated game fish. In order to investigate the combined effect of temperature and salinity on ULT, temperature trials were conducted under three levels of salinity which commonly occur along the coast of Texas (25, 35, and 45ppt). The rate of temperature increase (+0.25°C/h) was designed to mimic a natural temperature increase of a summer day in Texas. We determined that the lethal temperature at 50% (LT50) did not differ between the three salinities examined statistically; median lethal temperature for individuals exposed to 25ppt ranged from 36.4 to 37.7°C, 35ppt ranged from 36.4 to 37.7°C, and 45ppt ranged from 36.1 to 37.4°C. Further, LT50 data obtained here for early-juvenile red drum did not differ from data of a similar experiment examining 25mm TL sized fish. Published by Elsevier Ltd.

  10. Continuous water-quality and suspended-sediment transport monitoring in the San Francisco Bay, California, water years 2014–15

    USGS Publications Warehouse

    Buchanan, Paul A.; Downing-Kunz, Maureen; Schoellhamer, David H.; Livsey, Daniel N.

    2018-03-08

    The U.S. Geological Survey (USGS) monitors water quality and suspended-sediment transport in the San Francisco Bay (bay) as part of a multi-agency effort to address management, water supply, and ecological concerns. The San Francisco Bay area is home to millions of people, and the bay teems both with resident and with migratory wildlife, plants, and fish. Freshwater mixes with salt water in the bay, which is subject both to riverine influences (floods, droughts, managed reservoir releases and freshwater diversions) and to marine influences (tides, waves, effects of salt water). To understand this environment, the USGS, along with its partners (see “Acknowledgements”), has been monitoring the bay’s waters continuously since 1988. Several water-quality variables are of particular importance to State and Federal resource managers and are monitored at key locations throughout the bay (fig. 1). Salinity, which indicates the relative mixing of fresh and ocean waters in the bay, is derived from specific conductance measurements. Water temperature, along with salinity, affects the density of water, which controls gravity-driven circulation patterns and stratification in the water column. Turbidity, a measure of light scattered from suspended particles in the water, is used to estimate suspended-sediment concentration (SSC). Suspended sediment affects the bay in multiple ways: attenuation of sunlight in the water column, affecting phytoplankton growth; deposition on tidal marsh and intertidal mudflats, which can help sustain these habitats as sea level rises; deposition in ports and shipping channels, which can necessitate dredging; and often, adsorption of contaminants, affecting their distribution and concentrations in the environment. Dissolved oxygen concentration, essential to a healthy ecosystem and a fundamental indicator of water quality, is affected by water temperature, salinity, ecosystem metabolism, tidal currents, and wind. Tidal currents in the bay reverse four times a day, and wind direction and intensity typically vary on a daily cycle. Consequently, salinity, water temperature, SSC, and dissolved-oxygen concentration vary spatially and temporally throughout the bay. Therefore, continuous measurements are needed to observe these changes. The purpose of this fact sheet is to provide information about these variables, as well as internet links to access these continuous water-quality data collected by the USGS.

  11. Remote Sensing of Salinity: The Dielectric Constant of Sea Water

    NASA Technical Reports Server (NTRS)

    LeVine, David M.; Lang, R.; Utku, C.; Tarkocin, Y.

    2011-01-01

    Global monitoring of sea surface salinity from space requires an accurate model for the dielectric constant of sea water as a function of salinity and temperature to characterize the emissivity of the surface. Measurements are being made at 1.413 GHz, the center frequency of the Aquarius radiometers, using a resonant cavity and the perturbation method. The cavity is operated in a transmission mode and immersed in a liquid bath to control temperature. Multiple measurements are made at each temperature and salinity. Error budgets indicate a relative accuracy for both real and imaginary parts of the dielectric constant of about 1%.

  12. Comparison of seasonal variability of Aquarius sea surface salinity time series with in situ observations in the Karimata Strait, Indonesia

    NASA Astrophysics Data System (ADS)

    Susanto, R. D.; Setiawan, A.; Zheng, Q.; Sulistyo, B.; Adi, T. R.; Agustiadi, T.; Trenggono, M.; Triyono, T.; Kuswardani, A.

    2016-12-01

    The seasonal variability of a full lifetime of Aquarius sea surface salinity time series from August 25, 2011 to June 7, 2015 is compared to salinity time series obtained from in situ observations in the Karimata Strait. The Karimata Strait plays dual roles in water exchange between the Pacific and the Indian Ocean. The salinity in the Karimata Strait is strongly affected by seasonal monsoon winds. During the boreal winter monsoon, northwesterly winds draws low salinity water from the South China Sea into the Java Sea and at the same time, the Java Sea receives an influx of the Indian Ocean water via the Sunda Strait. The Java Sea water will reduce the main Indonesian throughflow in the Makassar Strait. Conditions are reversed during the summer monsoon. Low salinity water from the South China Sea also controls the vertical structure of water properties in the upper layer of the Makassar Strait and the Lombok Strait. As a part of the South China Sea and Indonesian Seas Transport/Exchange (SITE) program, trawl resistance bottom mounted CTD was deployed in the Karimata Strait in mid-2010 to mid-2016 at water depth of 40 m. CTD casts during the mooring recoveries and deployments are used to compare the bottom salinity data. This in situ salinity time series is compared with various Aquarius NASA salinity products (the level 2, level 3 ascending and descending tracks and the seven-days rolling averaged) to check the consistency, correlation and statistical analysis. The preliminary results show that the seasonal variability of Aquarius salinity time series has larger amplitude variability compared to that of in situ data.

  13. Etched FBG coated with polyimide for simultaneous detection the salinity and temperature

    NASA Astrophysics Data System (ADS)

    Luo, Dong; Ma, Jianxun; Ibrahim, Zainah; Ismail, Zubaidah

    2017-06-01

    In marine environment, concrete structures can corrode because of the PH alkalinity of concrete paste; and the salinity PH is heavily related with the concentration of salt in aqueous solutions. In this study, an optical fiber salinity sensor is proposed on the basis of an etched FBG (EFBG) coated with a layer of polyimide. Chemical etching is employed to reduce the diameter of FBG and to excite Cladding Mode Resonance Wavelengths (CMRWs). CMRW and Fundamental Mode Resonance Wavelength (FMRW) can be used to measure the Refractive index (RI) and temperature of salinity. The proposed sensor is then characterized with a matrix equation. Experimental results show that FMRW and 5th CMRW have the detection sensitivities of 15.407 and 125.92 nm/RIU for RI and 0.0312 and 0.0435 nm/°C for temperature, respectively. The proposed sensor can measure salinity and temperature simultaneously.

  14. Accurate Measurements of the Dielectric Constant of Seawater at L Band

    NASA Technical Reports Server (NTRS)

    Lang, Roger; Zhou, Yiwen; Utku, Cuneyt; Le Vine, David

    2016-01-01

    This paper describes measurements of the dielectric constant of seawater at a frequency of 1.413 GHz, the center of the protected band (i.e., passive use only) used in the measurement of sea surface salinity from space. The objective of the measurements is to accurately determine the complex dielectric constant of seawater as a function of salinity and temperature. A resonant cylindrical microwave cavity in transmission mode has been employed to make the measurements. The measurements are made using standard seawater at salinities of 30, 33, 35, and 38 practical salinity units over a range of temperatures from 0 degree C to 35 degree C in 5 degree C intervals. Repeated measurements have been made at each temperature and salinity. Mean values and standard deviations are then computed. The total error budget indicates that the real and imaginary parts of the dielectric constant have a combined standard uncertainty of about 0.3 over the range of salinities and temperatures considered. The measurements are compared with the dielectric constants obtained from the model functions of Klein and Swift and those of Meissner and Wentz. The biggest differences occur at low and high temperatures.

  15. Temperature Data Assimilation with Salinity Corrections: Validation for the NSIPP Ocean Data Assimilation System in the Tropical Pacific Ocean, 1993-1998

    NASA Technical Reports Server (NTRS)

    Troccoli, Alberto; Rienecker, Michele M.; Keppenne, Christian L.; Johnson, Gregory C.

    2003-01-01

    The NASA Seasonal-to-Interannual Prediction Project (NSIPP) has developed an Ocean data assimilation system to initialize the quasi-isopycnal ocean model used in our experimental coupled-model forecast system. Initial tests of the system have focused on the assimilation of temperature profiles in an optimal interpolation framework. It is now recognized that correction of temperature only often introduces spurious water masses. The resulting density distribution can be statically unstable and also have a detrimental impact on the velocity distribution. Several simple schemes have been developed to try to correct these deficiencies. Here the salinity field is corrected by using a scheme which assumes that the temperature-salinity relationship of the model background is preserved during the assimilation. The scheme was first introduced for a zlevel model by Troccoli and Haines (1999). A large set of subsurface observations of salinity and temperature is used to cross-validate two data assimilation experiments run for the 6-year period 1993-1998. In these two experiments only subsurface temperature observations are used, but in one case the salinity field is also updated whenever temperature observations are available.

  16. Blood and urine responses to ingesting fluids of various salt and glucose concentrations. [to combat orthostatic intolerance

    NASA Technical Reports Server (NTRS)

    Frey, Mary A.; Riddle, Jeanne; Charles, John B.; Bungo, Michael W.

    1991-01-01

    To compensate for the reduced blood and fluid volumes that develop during weightlessness, the Space Shuttle crewmembers consume salt tablets and water equivalent to 1 l of normal saline, about 2 hrs before landing. This paper compares the effects on blood, urine, and cardiovascular variables of the ingestion of 1 l of normal (0.9 percent) saline with the effects of distilled water, 1 percent glucose, 0.74 percent saline with 1 percent glucose, 0.9 percent saline with 1 percent glucose, and 1.07 percent saline. It was found that the expansion of plasma volume and the concentration of urine were greater 4 hrs after ingestion of 1.07 percent saline solution than after ingestion of normal saline and that the solutions containig glucose did not enhance any variables as compared with normal saline.

  17. Time variable eddy mixing in the global Sea Surface Salinity maxima

    NASA Astrophysics Data System (ADS)

    Busecke, J. J. M.; Abernathey, R.; Gordon, A. L.

    2016-12-01

    Lateral mixing by mesoscale eddies is widely recognized as a crucial mechanism for the global ocean circulation and the associated heat/salt/tracer transports. The Salinity in the Upper Ocean Processes Study (SPURS) confirmed the importance of eddy mixing for the surface salinity fields even in the center of the subtropical gyre of the North Atlantic. We focus on the global salinity maxima due to their role as indicators for global changes in the hydrological cycle as well as providing the source water masses for the shallow overturning circulation. We introduce a novel approach to estimate the contribution of eddy mixing to the global sea surface salinity maxima. Using a global 2D tracer experiments in a 1/10 degree MITgcm setup driven by observed surface velocities, we analyze the effect of eddy mixing using a water mass framework, thus focussing on the diffusive flux across surface isohalines. This enables us to diagnose temporal variability on seasonal to inter annual time scales, revealing regional differences in the mechanism causing temporal variability.Sensitivity experiments with various salinity backgrounds reveal robust inter annual variability caused by changes in the surface velocity fields potentially forced by large scale climate.

  18. Remote sensing of salinity

    NASA Technical Reports Server (NTRS)

    Thomann, G. C.

    1975-01-01

    The complex dielectric constant of sea water is a function of salinity at 21 cm wavelength, and sea water salinity can be determined by a measurement of emissivity at 21 cm along with a measurement of thermodynamic temperature. Three aircraft and one helicopter experiments using two different 21 cm radiometers were conducted under different salinity and temperature conditions. Single or multiple ground truth measurements were used to calibrate the data in each experiment. It is inferred from these experiments that accuracies of 1 to 2%/OO are possible with a single surface calibration point necessary only every two hours if the following conditions are met--water temperatures above 20 C, salinities above 10%/OO, and level plane flight. More frequent calibration, constraint of the aircraft's orientation to the same as it was during calibration, and two point calibration (at a high and low salinity level) rather than single point calibration may give even better accuracies in some instances.

  19. Salinity fronts in the tropical Pacific Ocean.

    PubMed

    Kao, Hsun-Ying; Lagerloef, Gary S E

    2015-02-01

    This study delineates the salinity fronts (SF) across the tropical Pacific, and describes their variability and regional dynamical significance using Aquarius satellite observations. From the monthly maps of the SF, we find that the SF in the tropical Pacific are (1) usually observed around the boundaries of the fresh pool under the intertropical convergence zone (ITCZ), (2) stronger in boreal autumn than in other seasons, and (3) usually stronger in the eastern Pacific than in the western Pacific. The relationship between the SF and the precipitation and the surface velocity are also discussed. We further present detailed analysis of the SF in three key tropical Pacific regions. Extending zonally around the ITCZ, where the temperature is nearly homogeneous, we find the strong SF of 1.2 psu from 7° to 11°N to be the main contributor of the horizontal density difference of 0.8 kg/m 3 . In the eastern Pacific, we observe a southward extension of the SF in the boreal spring that could be driven by both precipitation and horizontal advection. In the western Pacific, the importance of these newly resolved SF associated with the western Pacific warm/fresh pool and El Niño southern oscillations are also discussed in the context of prior literature. The main conclusions of this study are that (a) Aquarius satellite salinity measurements reveal the heretofore unknown proliferation, structure, and variability of surface salinity fronts, and that (b) the fine-scale structures of the SF in the tropical Pacific yield important new information on the regional air-sea interaction and the upper ocean dynamics.

  20. Effects of temperature and salinity on larval survival and development in the invasive shrimp Palaemon macrodactylus (Caridea: Palaemonidae) along the reproductive season

    NASA Astrophysics Data System (ADS)

    Guadalupe Vázquez, M.; Bas, Claudia C.; Kittlein, Marcelo; Spivak, Eduardo D.

    2015-05-01

    The invasive shrimp Palaemon macrodactylus is associated mainly with brackish waters. Previous studies raised the question if tolerance to low salinities differs between larvae and adults. To answer this question, the combined effects of two temperatures (20 and 25 °C) and four salinities (5, 12, 23 and 34 psu) on survival and development of larvae that hatched at the beginning, in the midpoint and near the end of a reproductive season (denoted early, middle season and late larvae respectively) were examined. The three types of larvae were able to survive and reach juvenile phase at salinities between 12 and 34 psu and at both temperatures. At 5 psu all larvae died, but 45% molted at least once. Temperature and salinity to a lesser extent, had effects on the duration of development and on the number of larval stages in all larval types. Development was longer at the lower temperature, especially in middle season and late larvae. Most early larvae reached the juvenile phase through 5 larval stages; the number of larval stages of middle season and late larvae was higher at 20 °C and in late larvae also low salinity produced extra stages. Low salinity (12 psu) and, in early and middle season larvae, low temperature produced lighter and smaller individuals. Response of larvae to environmental factors seems to be related in part to the previous conditions (maternal effects and/or embryo development conditions). The narrower salinity tolerance of larvae compared to adults and the ability of zoea I to survive at least some days at 5 psu may be related with an export larval strategy.

  1. Development, implementation, and validation of a modeling system for the San Francisco Bay and Estuary

    NASA Astrophysics Data System (ADS)

    Chao, Yi; Farrara, John D.; Zhang, Hongchun; Zhang, Yinglong J.; Ateljevich, Eli; Chai, Fei; Davis, Curtiss O.; Dugdale, Richard; Wilkerson, Frances

    2017-07-01

    A three-dimensional numerical modeling system for the San Francisco Bay is presented. The system is based on an unstructured grid numerical model known as Semi-implicit Cross-scale Hydroscience Integrated System Model (SCHISM). The lateral boundary condition is provided by a regional coastal ocean model. The surface forcing is provided by a regional atmospheric model. The SCHISM results from a decadal hindcast run are compared with available tide gauge data, as well as a collection of temperature and salinity profiles. An examination of the observed climatological annual mean salinities at the United States Geological Survey (USGS) stations shows the highest salinities to be in the open ocean and the lowest well north (upstream) of the Central Bay, a pattern that does not change substantially with season. The corresponding mean SCHISM salinities reproduced the observed variations with location quite well, though with a fresh bias. The lowest values within the Bay occur during spring and the highest values during autumn, mirroring the seasonal variations in river discharge. The corresponding observed mean temperatures within the Bay were 2 to 3° C cooler in the Central Bay than to either the north or south. This observed pattern of a cooler Central Bay was not particularly well reproduced in the SCHISM results, which also showed a cold bias. Examination of the seasonal means revealed that the cool Central Bay pattern is found only during summer in the SCHISM results. The persistent cold and fresh biases in the model control run were nearly eliminated in a sensitivity run with modifications to the surface heat flux and river discharge. The surface atmospheric forcing and the heat flux at the western boundary are found to be the two major terms in a SCHISM-based heat budget analysis of the mean seasonal temperature cycle for the Central Bay. In the Central Bay salt budget, freshwater discharged by rivers into upstream portions of the Bay to the north balanced by the influx of salt from the west are the primary drivers of the mean seasonal salinity cycle. Concerning the interannual variability in temperatures, the warm anomalies during the period 2014-16 were the strongest and most persistent departures from normal during the period analyzed and were realistically reproduced by SCHISM. The most prominent salinity anomalies in both the observations and SCHISM results were the salty anomalies that persisted for most of the four-year California drought of 2012-2015.

  2. Patterns of climate variability in the western Equatorial Pacific during the Common Era

    NASA Astrophysics Data System (ADS)

    Esswein, K. L.; Rosenthal, Y.; Linsley, B. K.; Oppo, D.

    2011-12-01

    The distribution of sea surface temperature (SST) and salinity in the western Pacific warm pool (WPWP) has major implications for climate variability in the tropical Pacific and beyond. The spatial and temporal patterns of SST and salinity affect the complex relationships among the prevailing tropical climate systems primarily, the Australian-Asian Monsoon and El nino Southern Oscillation (ENSO) as well as inter-ocean surface circulation associated with the Indonesian throughflow (ITF). Reconstructing the variability of the WPWP surface hydrography during the most recent climate anomalies of the Common Era will provide insights into modern climate change in this region. Previous studies suggest SST cooling of ~1 °C during the Little Ice Age (LIA) 1550-1850 CE and close to modern SST during the Medieval Warm Period (MWP) 950-1100 CE. Further, these studies suggest enhanced (decreased) precipitation over Indonesia during the LIA (MWP) consistent with reconstructions of migration patterns of the intertropical convergence zone (ITCZ) as recorded in speleothem records in China. The available ocean records are, however, limited to the Makassar Strait. Here we present three new Mg/Ca-SST records from multi- and gravity cores in the northern Makassar, Bali Basin and Flores in the Indonesian Seas. These records allow us to validate previous results from the Makassar Strait and to constrain the geographic extent of past temperature and salinity changes within the WPWP. By using reconstructions of the stable oxygen isotopic composition (δ18O) of seawater derived from planktonic foraminiferal Mg/Ca and δ18O we further assess the complex interactions between the influence of the meridional systems (ITCZ) and the zonal effects of ENSO on the regional hydrology. Chronological control for both records is derived from the presence of ash layers of known historical eruptions. Exceptionally high sedimentation rates of 100 cm per 1000 years further allow a comparison between our new SST records with the instrumental record and provide a decadal scale resolution over the past two millennia. Our results from both the Bali Basin and Flores sea validate previous observations from the Makassar Strait indicating that modern SST in the WPWP are about 1 °C higher than during the LIA but do not exceed SSTs recorded during the MWP. These recent temperature trends in the WPWP are thus unlike the modern 'hockey-stick-like' warming trend observed mostly in Northern Hemisphere temperature reconstructions. Further our results support that the mode of SST change found in the Makassar Straits is indeed representative of the whole WPWP.

  3. Benthic foraminifera cultured over a large salinity gradient: first results and comparison with field data from the Baltic Sea.

    NASA Astrophysics Data System (ADS)

    Groeneveld, Jeroen; Filipsson, Helena L.; Austin, William E. N.; Darling, Kate; Quintana Krupinski, Nadine B.

    2015-04-01

    Some of the most significant challenges in paleoclimate research arise from the need to both understand and reduce the uncertainty associated with proxy methods for climate reconstructions. This is especially important for shelf and coastal environments where increasing numbers of high-resolution paleorecords are being generated. These challenges are further highlighted in connection with ECORD/IODP Expedition 347: Baltic Sea Paleoenvironments. This large-scale drilling operation took place in the Baltic Sea region during the autumn of 2013. At this time, there is a pressing need for proxy calibrations directly targeted at the brackish Baltic environment. Within the CONTEMPORARY project we are investigating different temperature and salinity proxy variables through a combination of field- and culture-based benthic foraminiferal samples, together with genetic characterization (genotyping) of the morphospecies. We have completed two field campaigns where we collected (living) foraminifera and water samples at several sites, ranging from fully marine to low salinity conditions. The core-top foraminifera have been analysed for trace metal/Ca, stable oxygen and carbon isotopes, and faunal composition. Living foraminifera collected from the sediment-water interface were cultured in sea water in two long-term experiments at different temperatures (5°C and 10°C) and at three different salinities (15, 25, and 35). The first experiment yielded a large number of reproduced and experimentally-grown Elphidium specimens. The second experiment resulted in growth but no reproduction. We will provide a summary of the experimentally grown material and discuss the challenges of generating new proxy calibrations for foraminiferal shell geochemistry in the Baltic Sea. Furthermore, specimens of Elphidium and Ammonia, found at two sampling sites (Anholt, Kattegat and Hanöbay) with differing salinities, were genotyped and the results indicate that the same genotype of Elphidium is found in both salinity regimes but that the Ammonia genotypes differ depending on the prevailing salinity regime. Also in the CONTEMPORARY team: Heather Austin, Clare Bird, Johan Gabrielsson, David J. McCarthy, Angela Roberts, Magali Schweizer.

  4. The salinity, temperature, and delta18O of the glacial deep ocean.

    PubMed

    Adkins, Jess F; McIntyre, Katherine; Schrag, Daniel P

    2002-11-29

    We use pore fluid measurements of the chloride concentration and the oxygen isotopic composition from Ocean Drilling Program cores to reconstruct salinity and temperature of the deep ocean during the Last Glacial Maximum (LGM). Our data show that the temperatures of the deep Pacific, Southern, and Atlantic oceans during the LGM were relatively homogeneous and within error of the freezing point of seawater at the ocean's surface. Our chloride data show that the glacial stratification was dominated by salinity variations, in contrast with the modern ocean, for which temperature plays a primary role. During the LGM the Southern Ocean contained the saltiest water in the deep ocean. This reversal of the modern salinity contrast between the North and South Atlantic implies that the freshwater budget at the poles must have been quite different. A strict conversion of mean salinity at the LGM to equivalent sea-level change yields a value in excess of 140 meters. However, the storage of fresh water in ice shelves and/or groundwater reserves implies that glacial salinity is a poor predictor of mean sea level.

  5. Effects of Salinity and Temperature on Growth and Survival of Juvenile Iwagaki Oyster Crassostrea nippona

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Li, Qi

    2018-03-01

    Iwagaki oyster Crassostrea nippona occurs naturally along the coasts of Japan and Korea. Because of its unique flavor, delicious taste, edibility during the summer and high commercial value, it has been identified as a potential aquaculture species. To determine the optimum aquaculture conditions and provide necessary information for mass production of the juvenile, the effects of six salinities (15, 20, 25, 30, 35 and 40) and five temperatures (16, 20, 24, 28 and 32₿ on growth and survival of juvenile C. nippona were examined in this study. In the salinity experiment, the largest values of mean shell height and growth rate were observed at salinity 25 (20.96 ± 0.36 mm and 172.0 μm d↿, respectively), which were significantly different (P < 0.05) with those of other treatments, except at salinity 30 (20.56 ± 1.05 mm and 160.3 μm d↿, respectively) (P > 0.05). The maximum survival rate 84.44% was always observed at salinity 20, and there was no significant difference (P > 0.05) in survival rate among salinities varying between 15 and 35. In the temperature-related experiments, the highest growth and survival rates of juvenile were observed at 24₿(180.8 μm d↿ and 84.4%) and 28₿(190.7 μm d↿ and 83.3%), respectively, on day 20, and showed significantly (P < 0.05) larger size and higher survival rate than any other groups. Both juvenile survival and growth were significantly depressed at extreme salinities (15, 40) and temperatures (16₿ 32₿. Based on the results of the present study, a salinity range from 25 to 30 and a temperature range from 24 to 28₿are considered optimal conditions for survival and growth of juvenile C. nippona.

  6. Spatial and seasonal prokaryotic community dynamics in ponds of increasing salinity of Sfax solar saltern in Tunisia.

    PubMed

    Boujelben, Ines; Gomariz, María; Martínez-García, Manuel; Santos, Fernando; Peña, Arantxa; López, Cristina; Antón, Josefa; Maalej, Sami

    2012-05-01

    The spatial and seasonal dynamics of the halophilic prokaryotic community was investigated in five ponds from Sfax solar saltern (Tunisia), covering a salinity gradient ranging from 20 to 36%. Fluorescence in situ hybridization indicated that, above 24% salinity, the prokaryotic community shifted from bacterial to archaeal dominance with a remarkable increase in the proportion of detected cells. Denaturing gradient gel electrophoresis (DGGE) profiles were rather similar in all the samples analyzed, except in the lowest salinity pond (around 20% salt) where several specific archaeal and bacterial phylotypes were detected. In spite of previous studies on these salterns, DGGE analysis unveiled the presence of microorganisms not previously described in these ponds, such as Archaea related to Natronomonas or bacteria related to Alkalimnicola, as well as many new sequences of Bacteroidetes. Some phylotypes, such as those related to Haloquadratum or to some Bacteroidetes, displayed a strong dependence of salinity and/or magnesium concentrations, which in the case of Haloquadratum could be related to the presence of ecotypes. Seasonal variability in the prokaryotic community composition was focused on two ponds with the lowest (20%) and the highest salinity (36%). In contrast to the crystallized pond, where comparable profiles between autumn 2007 and summer 2008 were obtained, the non-crystallized pond showed pronounced seasonal changes and a sharp succession of "species" during the year. Canonical correspondence analysis of biological and physicochemical parameters indicated that temperature was a strong factor structuring the prokaryotic community in the non-crystallizer pond, that had salinities ranging from 20 to 23.8% during the year.

  7. Regional scale soil salinity assessment using remote sensing based environmental factors and vegetation indicators

    NASA Astrophysics Data System (ADS)

    Ma, Ligang; Ma, Fenglan; Li, Jiadan; Gu, Qing; Yang, Shengtian; Ding, Jianli

    2017-04-01

    Land degradation, specifically soil salinization has rendered large areas of China west sterile and unproductive while diminishing the productivity of adjacent lands and other areas where salting is less severe. Up to now despite decades of research in soil mapping, few accurate and up-to-date information on the spatial extent and variability of soil salinity are available for large geographic regions. This study explores the po-tentials of assessing soil salinity via linear and random forest modeling of remote sensing based environmental factors and indirect indicators. A case study is presented for the arid oases of Tarim and Junggar Basin, Xinjiang, China using time series land surface temperature (LST), evapotranspiration (ET), TRMM precipitation (TRM), DEM product and vegetation indexes as well as their second order products. In par-ticular, the location of the oasis, the best feature sets, different salinity degrees and modeling approaches were fully examined. All constructed models were evaluated for their fit to the whole data set and their performance in a leave-one-field-out spatial cross-validation. In addition, the Kruskal-Wallis rank test was adopted for the statis-tical comparison of different models. Overall, the random forest model outperformed the linear model for the two basins, all salinity degrees and datasets. As for feature set, LST and ET were consistently identified to be the most important factors for two ba-sins while the contribution of vegetation indexes vary with location. What's more, models performances are promising for the salinity ranges that are most relevant to agricultural productivity.

  8. Temporal variability and climatology of hydrodynamic, water property and water quality parameters in the West Johor Strait of Singapore.

    PubMed

    Behera, Manasa Ranjan; Chun, Cui; Palani, Sundarambal; Tkalich, Pavel

    2013-12-15

    The study presents a baseline variability and climatology study of measured hydrodynamic, water properties and some water quality parameters of West Johor Strait, Singapore at hourly-to-seasonal scales to uncover their dependency and correlation to one or more drivers. The considered parameters include, but not limited by sea surface elevation, current magnitude and direction, solar radiation and air temperature, water temperature, salinity, chlorophyll-a and turbidity. FFT (Fast Fourier Transform) analysis is carried out for the parameters to delineate relative effect of tidal and weather drivers. The group and individual correlations between the parameters are obtained by principal component analysis (PCA) and cross-correlation (CC) technique, respectively. The CC technique also identifies the dependency and time lag between driving natural forces and dependent water property and water quality parameters. The temporal variability and climatology of the driving forces and the dependent parameters are established at the hourly, daily, fortnightly and seasonal scales. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. An ensemble of eddy-permitting global ocean reanalyses from the MyOcean project

    NASA Astrophysics Data System (ADS)

    Masina, Simona; Storto, Andrea; Ferry, Nicolas; Valdivieso, Maria; Haines, Keith; Balmaseda, Magdalena; Zuo, Hao; Drevillon, Marie; Parent, Laurent

    2017-08-01

    A set of four eddy-permitting global ocean reanalyses produced in the framework of the MyOcean project have been compared over the altimetry period 1993-2011. The main differences among the reanalyses used here come from the data assimilation scheme implemented to control the ocean state by inserting reprocessed observations of sea surface temperature (SST), in situ temperature and salinity profiles, sea level anomaly and sea-ice concentration. A first objective of this work includes assessing the interannual variability and trends for a series of parameters, usually considered in the community as essential ocean variables: SST, sea surface salinity, temperature and salinity averaged over meaningful layers of the water column, sea level, transports across pre-defined sections, and sea ice parameters. The eddy-permitting nature of the global reanalyses allows also to estimate eddy kinetic energy. The results show that in general there is a good consistency between the different reanalyses. An intercomparison against experiments without data assimilation was done during the MyOcean project and we conclude that data assimilation is crucial for correctly simulating some quantities such as regional trends of sea level as well as the eddy kinetic energy. A second objective is to show that the ensemble mean of reanalyses can be evaluated as one single system regarding its reliability in reproducing the climate signals, where both variability and uncertainties are assessed through the ensemble spread and signal-to-noise ratio. The main advantage of having access to several reanalyses differing in the way data assimilation is performed is that it becomes possible to assess part of the total uncertainty. Given the fact that we use very similar ocean models and atmospheric forcing, we can conclude that the spread of the ensemble of reanalyses is mainly representative of our ability to gauge uncertainty in the assimilation methods. This uncertainty changes a lot from one ocean parameter to another, especially in global indices. However, despite several caveats in the design of the multi-system ensemble, the main conclusion from this study is that an eddy-permitting multi-system ensemble approach has become mature and our results provide a first step towards a systematic comparison of eddy-permitting global ocean reanalyses aimed at providing robust conclusions on the recent evolution of the oceanic state.

  10. Climate change and soil salinity: The case of coastal Bangladesh.

    PubMed

    Dasgupta, Susmita; Hossain, Md Moqbul; Huq, Mainul; Wheeler, David

    2015-12-01

    This paper estimates location-specific soil salinity in coastal Bangladesh for 2050. The analysis was conducted in two stages: First, changes in soil salinity for the period 2001-2009 were assessed using information recorded at 41 soil monitoring stations by the Soil Research Development Institute. Using these data, a spatial econometric model was estimated linking soil salinity with the salinity of nearby rivers, land elevation, temperature, and rainfall. Second, future soil salinity for 69 coastal sub-districts was projected from climate-induced changes in river salinity and projections of rainfall and temperature based on time trends for 20 Bangladesh Meteorological Department weather stations in the coastal region. The findings indicate that climate change poses a major soil salinization risk in coastal Bangladesh. Across 41 monitoring stations, the annual median projected change in soil salinity is 39 % by 2050. Above the median, 25 % of all stations have projected changes of 51 % or higher.

  11. Submarine Groundwater Discharge and Fate Along the Coast of Kaloko-Honokohau National Historical Park, Island of Hawai`i; Part 3, Spatial and Temporal Patterns in Nearshore Waters and Coastal Groundwater Plumes, December 2003-April 2006

    USGS Publications Warehouse

    Grossman, Eric E.; Logan, Joshua B.; Presto, M. Katherine; Storlazzi, Curt D.

    2010-01-01

    During seven surveys between December 2003 and April 2006, 1,045 depth profiles of surface water temperature and salinity were collected to examine variability in water column properties and the influence of submarine groundwater discharge (SGD) on the nearshore waters and coral reef complex of Kaloko-Honokohau National Historical Park, Island of Hawai`i. This effort was made to characterize the variability in nearshore water properties with seasonality and hydrodynamic forcing (tides, winds, and waves) and to determine the spatial and vertical extent of influence of SGD plumes on the Park's marine biological resources. The results of this study reveal that nearshore waters of the Park were persistently influenced by plumes of submarine groundwater discharge that are generally colder, less saline, and more concentrated in nutrients than the surrounding seawater. These plumes extended between 100 and 1,000 m offshore to depths ranging between 1 and 5 m and often contained several million to hundreds of millions of gallons of brackish water. In essence, the Park's nearshore, like much of the arid west coast of Hawai`i, is estuarine. Although the groundwater plumes were persistent over the years studied, their spatial extent and volume varied tidally, seasonally, and annually. In one season, April 2004, an inverse relation of decreasing salinity with increasing temperature was found in the upper 5 m of the water column, unlike the other seasons, when surface water temperature and salinity were positively correlated. These data provide the first comprehensive record of nearshore water column properties within the Park boundaries and a baseline for detecting and assessing future conditions. Various resort, industrial, and municipal developments, either planned or under construction around the Park, will require significant groundwater supplies and will likely alter groundwater quantity and quality. The flux and quality of groundwater through the National Park are critical to the rare anchialine (brackish) pool ecosystems and various ecosystem functions of the nearshore waters and coral reefs. Changes in groundwater discharge are expected to have significant impacts to the area's coastal ecosystems, including decreased freshwater outflow to the brackish anchialine pools and coral reefs and increased nutrient and contaminant concentrations. In conjunction with two complementary studies of this series (Parts 1 and 2), these data provide insight into the patterns of influence and fate of SGD in the Park's coastal waters. This information is important for determining water-resource management strategies that balance the needs of the ecosystem with those of human livelihood. This report describes the data, presents the general findings, and gives representative examples of seasonal and tidal variability in water column properties and SGD-fed plumes across the Park's nearshore waters.

  12. Effects of NaCl stress on seed germination and seedling development of Brassica insularis Moris (Brassicaceae).

    PubMed

    Santo, A; Mattana, E; Frigau, L; Marzo Pastor, A; Picher Morelló, M C; Bacchetta, G

    2017-05-01

    Brassica insularis is a protected plant that grows on both coastal and inland cliffs in the western Mediterranean Basin. The objective of this study was to test if any variability exists in the salt stress response during seed germination and seedling development in this species relative to its provenance habitat. Variability among three populations in the salt stress effects on seed germination and recovery under different temperatures was evaluated. The effect of nebulisation of a salt solution on seedling development was evaluated between populations growing at different distances from the sea. Seeds of B. insularis could germinate at NaCl concentrations up to 200 mm. Seed viability was negatively affected by salt, and recovery ability decreased with increasing temperature or salinity. Inter-population variability was detected in salt response during the seed germination phase, as well as in seedling salt spray tolerance. The inland population seedlings had drastically decreased survival and life span and failed to survive to the end of the experiment. In contrast, at least 90% of the coastal seedlings survived, even when sprayed at the highest frequency with salt solution. This study allowed investigation of two natural factors, soil salinity and marine aerosols, widely present in the B. insularis habitat, and provided the first insights into ecology of this protected species and its distribution in the Mediterranean. These results might be useful in understanding the actual distributions of other species with the same ecology that experience these same abiotic parameters. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  13. Investigation of effects of temperature, salinity, and electrode design on the performance of an electrochemical coliform detector

    NASA Technical Reports Server (NTRS)

    Grana, D. C.

    1979-01-01

    The results of two research programs to determine the optimum detector design for measuring fecal coliforms in saline waters for operational systems are presented. One program was concerned with the effects of temperature and salinity on endpoint response time, and the other, the interaction between electrode configurations and the test organisms. Test results show that the endpoint response time is related to salinity and seawater temperature; however, these results can be minimized by the correct choice of growth media. Electrode configurations were developed from stainless steel, Parlodion-coated stainless steel, and platinum that circumvented problems associated with the commercial redox electrodes.

  14. Hemolymph chemistry and histopathological changes in Pacific oysters (Crassostrea gigas) in response to low salinity stress.

    PubMed

    Knowles, Graeme; Handlinger, Judith; Jones, Brian; Moltschaniwskyj, Natalie

    2014-09-01

    This study described seasonal differences in the histopathological and hemolymph chemistry changes in different family lines of Pacific oysters, Crassostrea gigas, in response to the stress of an abrupt change to low salinity, and mechanical grading. The most significant changes in pallial cavity salinity, hemolymph chemistry and histopathological findings occurred in summer at low salinity. In summer (water temperature 18°C) at low salinity, 9 (25.7% of full salinity), the mean pallial cavity salinity in oysters at day 3 was 19.8±1.6 (SE) and day 10 was 22.8±1.6 (SE) lower than oysters at salinity 35. Associated with this fall in pallial cavity salinity, mean hemolymph sodium for oysters at salinity 9 on day 3 and 10 were 297.2mmol/L±20(SE) and 350.4mmol/L±21.3(SE) lower than oysters at salinity 35. Similarly mean hemolymph potassium in oysters held at salinity 9 at day 3 and 10 were 5.6mmol/L±0.6(SE) and 7.9mmol/L±0.6 (SE) lower than oysters at salinity 35. These oysters at low salinity had expanded intercellular spaces and significant intracytoplasmic vacuolation distending the cytoplasm of epithelial cells in the alimentary tract and kidney and hemocyte infiltrate (diapedesis) within the alimentary tract wall. In contrast, in winter (water temperature 8°C) oyster mean pallial cavity salinity only fell at day 10 and this was by 6.0±0.6 (SE) compared to that of oysters at salinity 35. There were limited histopathological changes (expanded intercellular spaces and moderate intracytoplasmic vacuolation of renal epithelial cells) in these oysters at day 10 in low salinity. Mechanical grading and family line did not influence the oyster response to sudden low salinity. These findings provide additional information for interpretation of non-lethal, histopathological changes associated with temperature and salinity variation. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Diatom Cell Size, Coloniality and Motility: Trade-Offs between Temperature, Salinity and Nutrient Supply with Climate Change

    PubMed Central

    Svensson, Filip; Norberg, Jon; Snoeijs, Pauline

    2014-01-01

    Reduction in body size has been proposed as a universal response of organisms, both to warming and to decreased salinity. However, it is still controversial if size reduction is caused by temperature or salinity on their own, or if other factors interfere as well. We used natural benthic diatom communities to explore how “body size” (cells and colonies) and motility change along temperature (2–26°C) and salinity (0.5–7.8) gradients in the brackish Baltic Sea. Fourth-corner analysis confirmed that small cell and colony sizes were associated with high temperature in summer. Average community cell volume decreased linearly with 2.2% per °C. However, cells were larger with artificial warming when nutrient concentrations were high in the cold season. Average community cell volume increased by 5.2% per °C of artificial warming from 0 to 8.5°C and simultaneously there was a selection for motility, which probably helped to optimize growth rates by trade-offs between nutrient supply and irradiation. Along the Baltic Sea salinity gradient cell size decreased with decreasing salinity, apparently mediated by nutrient stoichiometry. Altogether, our results suggest that climate change in this century may polarize seasonality by creating two new niches, with elevated temperature at high nutrient concentrations in the cold season (increasing cell size) and elevated temperature at low nutrient concentrations in the warm season (decreasing cell size). Higher temperature in summer and lower salinity by increased land-runoff are expected to decrease the average cell size of primary producers, which is likely to affect the transfer of energy to higher trophic levels. PMID:25279720

  16. Coastal circulation and sediment dynamics along West Maui, Hawaii; PART IV: measurements of waves, currents, temperature, salinity and turbidity in Honolua Bay, Northwest Maui: 2003-2004

    USGS Publications Warehouse

    Storlazzi, Curt D.; Presto, M. Kathy

    2005-01-01

    High-resolution measurements of waves, currents, water levels, temperature, salinity and turbidity were made in Honolua Bay, northwest Maui, Hawaii, during 2003 and 2004 to better understand coastal dynamics in coral reef habitats. Measurements were acquired through two different collection methods. Two hydrographic survey cruises were conducted to acquire spatially-extensive, but temporally-limited, three-dimensional measurements of currents, temperature, salinity and turbidity in the winter and summer of 2003. From mid 2003 through early 2004, a bottom-mounted instrument package was deployed in a water depth of 10 m to collect long-term, single-point high-resolution measurements of waves, currents, water levels, temperature, salinity and turbidity. The purpose of these measurements was to collect hydrographic data to learn how waves, currents and water column properties such as water temperature, salinity and turbidity vary spatially and temporally in a near-shore coral reef system adjacent to a major stream drainage. These measurements support the ongoing process studies being conducted as part of the U.S. Geological Survey (USGS) Coastal and Marine Geology Program's Coral Reef Project; the ultimate goal is to better understand the transport mechanisms of sediment, larvae, pollutants and other particles in coral reef settings. This report, the final part in a series, describes data acquisition, processing and analysis. Previous reports provided data and results on: Long-term measurements of currents, temperature, salinity and turbidity off Kahana (PART I), the spatial structure of currents, temperature, salinity and suspended sediment along West Maui (PART II), and flow and coral larvae and sediment dynamics during the 2003 summer spawning season (PART III).

  17. Diatom cell size, coloniality and motility: trade-offs between temperature, salinity and nutrient supply with climate change.

    PubMed

    Svensson, Filip; Norberg, Jon; Snoeijs, Pauline

    2014-01-01

    Reduction in body size has been proposed as a universal response of organisms, both to warming and to decreased salinity. However, it is still controversial if size reduction is caused by temperature or salinity on their own, or if other factors interfere as well. We used natural benthic diatom communities to explore how "body size" (cells and colonies) and motility change along temperature (2-26°C) and salinity (0.5-7.8) gradients in the brackish Baltic Sea. Fourth-corner analysis confirmed that small cell and colony sizes were associated with high temperature in summer. Average community cell volume decreased linearly with 2.2% per °C. However, cells were larger with artificial warming when nutrient concentrations were high in the cold season. Average community cell volume increased by 5.2% per °C of artificial warming from 0 to 8.5°C and simultaneously there was a selection for motility, which probably helped to optimize growth rates by trade-offs between nutrient supply and irradiation. Along the Baltic Sea salinity gradient cell size decreased with decreasing salinity, apparently mediated by nutrient stoichiometry. Altogether, our results suggest that climate change in this century may polarize seasonality by creating two new niches, with elevated temperature at high nutrient concentrations in the cold season (increasing cell size) and elevated temperature at low nutrient concentrations in the warm season (decreasing cell size). Higher temperature in summer and lower salinity by increased land-runoff are expected to decrease the average cell size of primary producers, which is likely to affect the transfer of energy to higher trophic levels.

  18. Interactive effects of water temperature and salinity on growth and mortality of eastern oysters, Crassostrea virginica: A meta-analysis using 40 years of monitoring data

    USGS Publications Warehouse

    Lowe, Michael R.; Sehlinger, Troy; Soniat, Thomas M.; LaPeyre, Megan K.

    2017-01-01

    Despite nearly a century of exploitation and scientific study, predicting growth and mortality rates of the eastern oyster (Crassostrea virginica) as a means to inform local harvest and management activities remains difficult. Ensuring that models reflect local population responses to varying salinity and temperature combinations requires locally appropriate models. Using long-term (1988 to 2015) monitoring data from Louisiana's public oyster reefs, we develop regionally specific models of temperature- and salinity-driven mortality (sack oysters only) and growth for spat (<25 mm), seed (25–75 mm), and sack (>75 mm) oyster size classes. The results demonstrate that the optimal combination of temperature and salinity where Louisiana oysters experience reduced mortality and fast growth rates is skewed toward lower salinities and higher water temperatures than previous models have suggested. Outside of that optimal range, oysters are commonly exposed to combinations of temperature and salinity that are correlated with high mortality and reduced growth. How these combinations affect growth, and to a lesser degree mortality, appears to be size class dependent. Given current climate predictions for the region and ongoing large-scale restoration activities in coastal Louisiana, the growth and mortality models are a critical step toward ensuring sustainable oyster reefs for long-term harvest and continued delivery of the ecological services in a changing environment.

  19. Change in coccolith size and morphology due to response to temperature and salinity in coccolithophore Emiliania huxleyi (Haptophyta) isolated from the Bering and Chukchi seas

    NASA Astrophysics Data System (ADS)

    Saruwatari, Kazuko; Satoh, Manami; Harada, Naomi; Suzuki, Iwane; Shiraiwa, Yoshihiro

    2016-05-01

    Strains of the coccolithophore Emiliania huxleyi (Haptophyta) collected from the subarctic North Pacific and Arctic oceans in 2010 were established as clone cultures and have been maintained in the laboratory at 15 °C and 32 ‰ salinity. To study the physiological responses of coccolith formation to changes in temperature and salinity, growth experiments and morphometric investigations were performed on two strains, namely MR57N isolated from the northern Bering Sea and MR70N at the Chukchi Sea. This is the first report of a detailed morphometric and morphological investigation of Arctic Ocean coccolithophore strains. The specific growth rates at the logarithmic growth phases in both strains markedly increased as temperature was elevated from 5 to 20 °C, although coccolith productivity (estimated as the percentage of calcified cells) was similar at 10-20 % at all temperatures. On the other hand, the specific growth rate of MR70N was affected less by changes in salinity in the range 26-35 ‰, but the proportion of calcified cells decreased at high and low salinities. According to scanning electron microscopy (SEM) observations, coccolith morphotypes can be categorized into Type B/C on the basis of their biometrical parameters. The central area elements of coccoliths varied from thin lath type to well-calcified lath type when temperature was increased or salinity was decreased, and coccolith size decreased simultaneously. Coccolithophore cell size also decreased with increasing temperature, although the variation in cell size was slightly greater at the lower salinity level. This indicates that subarctic and arctic coccolithophore strains can survive in a wide range of seawater temperatures and at lower salinities with change in their morphology. Because all coccolith biometric parameters followed the scaling law, the decrease in coccolith size was caused simply by the reduced calcification. Taken together, our results suggest that calcification productivity may be used to predict future oceanic environmental conditions in the polar regions.

  20. Salinity anomaly as a trigger for ENSO events

    PubMed Central

    Zhu, Jieshun; Huang, Bohua; Zhang, Rong-Hua; Hu, Zeng-Zhen; Kumar, Arun; Balmaseda, Magdalena A.; Marx, Lawrence; Kinter III, James L.

    2014-01-01

    According to the classical theories of ENSO, subsurface anomalies in ocean thermal structure are precursors for ENSO events and their initial specification is essential for skillful ENSO forecast. Although ocean salinity in the tropical Pacific (particularly in the western Pacific warm pool) can vary in response to El Niño events, its effect on ENSO evolution and forecasts of ENSO has been less explored. Here we present evidence that, in addition to the passive response, salinity variability may also play an active role in ENSO evolution, and thus important in forecasting El Niño events. By comparing two forecast experiments in which the interannually variability of salinity in the ocean initial states is either included or excluded, the salinity variability is shown to be essential to correctly forecast the 2007/08 La Niña starting from April 2007. With realistic salinity initial states, the tendency to decay of the subsurface cold condition during the spring and early summer 2007 was interrupted by positive salinity anomalies in the upper central Pacific, which working together with the Bjerknes positive feedback, contributed to the development of the La Niña event. Our study suggests that ENSO forecasts will benefit from more accurate salinity observations with large-scale spatial coverage. PMID:25352285

  1. Salinity anomaly as a trigger for ENSO events.

    PubMed

    Zhu, Jieshun; Huang, Bohua; Zhang, Rong-Hua; Hu, Zeng-Zhen; Kumar, Arun; Balmaseda, Magdalena A; Marx, Lawrence; Kinter, James L

    2014-10-29

    According to the classical theories of ENSO, subsurface anomalies in ocean thermal structure are precursors for ENSO events and their initial specification is essential for skillful ENSO forecast. Although ocean salinity in the tropical Pacific (particularly in the western Pacific warm pool) can vary in response to El Niño events, its effect on ENSO evolution and forecasts of ENSO has been less explored. Here we present evidence that, in addition to the passive response, salinity variability may also play an active role in ENSO evolution, and thus important in forecasting El Niño events. By comparing two forecast experiments in which the interannually variability of salinity in the ocean initial states is either included or excluded, the salinity variability is shown to be essential to correctly forecast the 2007/08 La Niña starting from April 2007. With realistic salinity initial states, the tendency to decay of the subsurface cold condition during the spring and early summer 2007 was interrupted by positive salinity anomalies in the upper central Pacific, which working together with the Bjerknes positive feedback, contributed to the development of the La Niña event. Our study suggests that ENSO forecasts will benefit from more accurate salinity observations with large-scale spatial coverage.

  2. Spatial and temporal variability in distribution of water masses in Hornsund, Spitsbergen

    NASA Astrophysics Data System (ADS)

    Promińska, Agnieszka; Falck, Eva; Walczowski, Waldemar; Sundfjord, Arild

    2016-04-01

    Arctic fjords constitute an important part of many recent investigations because this is the place where different water masses meet, mix, and transform, influencing the stability of glaciers. Hornsund, the southernmost fjord of West Spitsbergen, has been studied during the past 15 years. Observations were based primarily on high resolution measurements of water temperature and salinity along fixed sections, that have been performed every July between 2001-2015. Research carried out in years 2010 - 2015 under Polish - Norwegian projects AWAKE and AWAKE-2 allowed for expansion of the database with data covering the period from spring to autumn. During this time measurements were also conducted from a small boat in the vicinity of glaciers with a time resolution of 1-2 weeks in addition to a mooring system deployed in the fjord and on the shelf just outside Hornsund. Synthesis of our measurements give an overview of water masses observed in the fjord. From summer to summer observations reveal high variability in water temperature and salinity giving a distinct division into an area influenced by oceanic factors (Main Basin) and an area which is more influenced by local factors (Brepollen). The chronology of water mass transformation has been obtained indicating a time of transition between winter (Arctic type), additionally interrupted by temporary inflow of waters of Atlantic origin, and summer (Atlantic type) conditions.

  3. Contrasting responses of the extended Gulf Stream to severe winter forcing

    NASA Astrophysics Data System (ADS)

    Jacobs, Z.; Grist, J. P.; Marsh, R.; Josey, S. A.; Sinha, B.

    2015-12-01

    Changes in the path and strength of the extended Gulf Stream, downstream of Cape Hatteras, and the North Atlantic Current (GSNAC), are associated with strong wintertime air-sea interactions that can further influence the atmospheric storm track. The GSNAC response to anomalous air-sea heat fluxes in particular is dependent on the location of excess heat loss, in turn related to meteorological circumstances. Outbreaks of cold continental air may lead to excess cooling over the Sargasso Sea, as in 1976-77. Under these circumstances, the Gulf Stream may intensify through a steepening of cross-stream density gradients. An alternative scenario prevailed during the cold outbreak of 2013-14 where excess cooling occurred over the central subpolar gyre and may have influenced the extreme storminess experienced in western Europe. An objectively-analysed temperature and salinity product (EN4) is used to investigate the variability of the GSNAC. Temperature and salinity profiles are used to obtain geostrophic transport at selected GSNAC transects, confirming strong horizontal temperature gradients and a positive geostrophic velocity anomaly at 70oW in spring 1977, the strongest spring transport seen in the 1970s at this location. In addition to observations, an eddy-resolving model hindcast spanning 1970-2013, is used to further characterise GSNAC transport variability, allowing a fuller assessment of the relationship between the winter surface heat flux, end-of-winter mixed layer depth, subtropical mode water volume and GSNAC transports. Preliminary results reveal a significant negative correlation between the winter surface heat flux over the Sargasso Sea and the GSNAC transport in the following spring.

  4. Salinity bias on the foraminifera Mg/Ca thermometry: Correction procedure and implications for past ocean hydrographic reconstructions

    NASA Astrophysics Data System (ADS)

    Mathien-Blard, Elise; Bassinot, Franck

    2009-12-01

    Mg/Ca in foraminiferal calcite has recently been extensively used to estimate past oceanic temperatures. Here we show, however, that the Mg/Ca temperature relationship of the planktonic species Globigerinoides ruber is significantly affected by seawater salinity, with a +1 psu change in salinity resulting in a +1.6°C bias in Mg/Ca temperature calculations. If not accounted for, such a bias could lead, for instance, to systematic overestimations of Mg/Ca temperatures during glacial periods, when global ocean salinity had significantly increased compared to today. We present here a correction procedure to derive unbiased sea surface temperatures (SST) and δ18Osw from G. ruber TMg/Ca and δ18Of measurements. This correction procedure was applied to a sedimentary record to reconstruct hydrographic changes since the Last Glacial Maximum (LGM) in the Western Pacific Warm Pool. While uncorrected TMg/Ca data indicate a 3°C warming of the Western Pacific Warm Pool since the LGM, the salinity-corrected SST result in a stronger warming of 4°C.

  5. Results from a lab study of melting sea ice

    NASA Astrophysics Data System (ADS)

    Wiese, M.; Griewank, P.; Notz, D.

    2012-04-01

    Sea-ice melting is a complex process which is not fully understood yet. In order to study sea-ice melt in detail we perform lab experiments in an approximately 2x0.7x1.2 m large tank in a cold room. We grow sea ice with different salinities at least 10 cm thick. Then we let the ice melt at different air temperatures and oceanic heat fluxes. During the melt period, we measure the evolution of ice thickness, internal temperature, salinity and surface temperature. We will present results from roughly five months of experiments. Topics will include the influence of bulk salinity on melt rates and the surface temperature. The effects of flushing on the salinity evolution and detailed thermal profiles will also be included. To investigate these processes we focus on the energy budget and the salinity evolution. These topics are linked since the thermodynamic properties of sea ice (heat capacity, heat conductivity and latent heat of fusion) are very sensitive to salinity variations. For example the heat capacity of sea ice increases greatly as the temperature approaches the melting point. This increase results in non-linear temperature profiles and enhances heat conduction into the ice. The salinity evolution during the growth phase has been investigated and measured in multiple studies over the last decades. In contrast there are no detailed lab measurements of melting ice available to quantify the effects of flushing melt water and ponding. This is partially due to the fact that the heterogeneity of melting sea ice makes it much more difficult to measure representative values.

  6. Estuarine fish communities respond to climate variability over both river and ocean basins

    USGS Publications Warehouse

    Feyrer, Frederick V.; Cloern, James E.; Brown, Larry R.; Fish, Maxfield; Hieb, Kathryn; Baxter, Randall

    2015-01-01

    Estuaries are dynamic environments at the land–sea interface that are strongly affected by interannual climate variability. Ocean–atmosphere processes propagate into estuaries from the sea, and atmospheric processes over land propagate into estuaries from watersheds. We examined the effects of these two separate climate-driven processes on pelagic and demersal fish community structure along the salinity gradient in the San Francisco Estuary, California, USA. A 33-year data set (1980–2012) on pelagic and demersal fishes spanning the freshwater to marine regions of the estuary suggested the existence of five estuarine salinity fish guilds: limnetic (salinity = 0–1), oligohaline (salinity = 1–12), mesohaline (salinity = 6–19), polyhaline (salinity = 19–28), and euhaline (salinity = 29–32). Climatic effects propagating from the adjacent Pacific Ocean, indexed by the North Pacific Gyre Oscillation (NPGO), affected demersal and pelagic fish community structure in the euhaline and polyhaline guilds. Climatic effects propagating over land, indexed as freshwater outflow from the watershed (OUT), affected demersal and pelagic fish community structure in the oligohaline, mesohaline, polyhaline, and euhaline guilds. The effects of OUT propagated further down the estuary salinity gradient than the effects of NPGO that propagated up the estuary salinity gradient, exemplifying the role of variable freshwater outflow as an important driver of biotic communities in river-dominated estuaries. These results illustrate how unique sources of climate variability interact to drive biotic communities and, therefore, that climate change is likely to be an important driver in shaping the future trajectory of biotic communities in estuaries and other transitional habitats.

  7. Estuarine fish communities respond to climate variability over both river and ocean basins.

    PubMed

    Feyrer, Frederick; Cloern, James E; Brown, Larry R; Fish, Maxfield A; Hieb, Kathryn A; Baxter, Randall D

    2015-10-01

    Estuaries are dynamic environments at the land-sea interface that are strongly affected by interannual climate variability. Ocean-atmosphere processes propagate into estuaries from the sea, and atmospheric processes over land propagate into estuaries from watersheds. We examined the effects of these two separate climate-driven processes on pelagic and demersal fish community structure along the salinity gradient in the San Francisco Estuary, California, USA. A 33-year data set (1980-2012) on pelagic and demersal fishes spanning the freshwater to marine regions of the estuary suggested the existence of five estuarine salinity fish guilds: limnetic (salinity = 0-1), oligohaline (salinity = 1-12), mesohaline (salinity = 6-19), polyhaline (salinity = 19-28), and euhaline (salinity = 29-32). Climatic effects propagating from the adjacent Pacific Ocean, indexed by the North Pacific Gyre Oscillation (NPGO), affected demersal and pelagic fish community structure in the euhaline and polyhaline guilds. Climatic effects propagating over land, indexed as freshwater outflow from the watershed (OUT), affected demersal and pelagic fish community structure in the oligohaline, mesohaline, polyhaline, and euhaline guilds. The effects of OUT propagated further down the estuary salinity gradient than the effects of NPGO that propagated up the estuary salinity gradient, exemplifying the role of variable freshwater outflow as an important driver of biotic communities in river-dominated estuaries. These results illustrate how unique sources of climate variability interact to drive biotic communities and, therefore, that climate change is likely to be an important driver in shaping the future trajectory of biotic communities in estuaries and other transitional habitats. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  8. Potential effects of physiological plastic responses to salinity on population networks of the estuarine crab Chasmagnathus granulata

    NASA Astrophysics Data System (ADS)

    Giménez, Luis

    2002-12-01

    Chasmagnathus granulata is a South American crab occurring in estuarine salt marshes of the Brazilian, Uruguayan and Argentine coasts. Life history is characterized by an export strategy of its larval stages. I reviewed information on experimental manipulation of salinity during embryonic and larval development (pre- and posthatching salinities), and on habitat characteristics of C. granulata in order to determine potential effects of larval response to salinity in the field and to suggest consequences for the population structure. Local populations are spread over coastal areas with different physical characteristics. Benthic phases occupy estuaries characterized by different patterns of salinity variation, and release larvae to coastal waters characterized by strong salinity gradients. The zoea 1 of C. granulata showed a strong acclimatory response to low salinity. This response operated only during the first weeks of development (during zoeae 1 and 2) since subsequent larval survival at low posthatching salinities was consistently low. Larvae developing at low salinity frequently followed a developmental pathway with five instead of four zoeal stages. The ability to acclimate and the variability in larval development (i.e. the existence of alternative developmental pathways) could be interpreted as a strategy to buffer environmental variability at spatial scales of local or population networks. Early survivorship and production of larvae may be relatively high across a rather wide range of variability in salinity (5-32‰). Plastic responses to low salinity would therefore contribute to maintain a certain degree of population connectivity and persistence regardless of habitat heterogeneity.

  9. Potential effects of physiological plastic responses to salinity on population networks of the estuarine crab Chasmagnathus granulata

    NASA Astrophysics Data System (ADS)

    Giménez, Luis

    2003-01-01

    Chasmagnathus granulata is a South American crab occurring in estuarine salt marshes of the Brazilian, Uruguayan and Argentine coasts. Life history is characterized by an export strategy of its larval stages. I reviewed information on experimental manipulation of salinity during embryonic and larval development (pre- and posthatching salinities), and on habitat characteristics of C. granulata in order to determine potential effects of larval response to salinity in the field and to suggest consequences for the population structure. Local populations are spread over coastal areas with different physical characteristics. Benthic phases occupy estuaries characterized by different patterns of salinity variation, and release larvae to coastal waters characterized by strong salinity gradients. The zoea 1 of C. granulata showed a strong acclimatory response to low salinity. This response operated only during the first weeks of development (during zoeae 1 and 2) since subsequent larval survival at low posthatching salinities was consistently low. Larvae developing at low salinity frequently followed a developmental pathway with five instead of four zoeal stages. The ability to acclimate and the variability in larval development (i.e. the existence of alternative developmental pathways) could be interpreted as a strategy to buffer environmental variability at spatial scales of local or population networks. Early survivorship and production of larvae may be relatively high across a rather wide range of variability in salinity (5-32‰). Plastic responses to low salinity would therefore contribute to maintain a certain degree of population connectivity and persistence regardless of habitat heterogeneity.

  10. Comparative sensitivity of Crassostrea angulata and Crassostrea gigas embryo-larval development to As under varying salinity and temperature.

    PubMed

    Moreira, Anthony; Figueira, Etelvina; Libralato, Giovanni; Soares, Amadeu M V M; Guida, Marco; Freitas, Rosa

    2018-06-07

    Oysters are a diverse group of marine bivalves that inhabit coastal systems of the world's oceans, providing a variety of ecosystem services, and represent a major socioeconomic resource. However, oyster reefs have become inevitably impacted from habitat destruction, overfishing, pollution and disease outbreaks that have pushed these structures to the break of extinction. In addition, the increased frequency of climate change related events promise to further challenge oyster species survival worldwide. Oysters' early embryonic development is likely the most vulnerable stage to climate change related stressors (e.g. salinity and temperature shifts) as well as to pollutants (e.g. arsenic), and therefore can represent the most important bottleneck that define populations' survival in a changing environment. In light of this, the present study aimed to assess two important oyster species, Crassostrea angulata and Crassostrea gigas embryo-larval development, under combinations of salinity (20, 26 and 33), temperature (20, 24 and 28 °C) and arsenic (As) exposure (0, 30, 60, 120, 240, 480, 960 and 1920 μg. As L -1 ), to infer on different oyster species capacity to cope with these environmental stressors under the eminent threat of climate change and increase of pollution worldwide. Results showed differences in each species range of salinity and temperature for successful embryonic development. For C angulata, embryo-larval development was successful at a narrower range of both salinity and temperature, compared to C. gigas. Overall, As induced higher toxicity to C. angulata embryos, with calculated EC50 values at least an order of magnitude lower than those calculated for C. gigas. The toxicity of As (measured as median effective concentration, EC50) showed to be influenced by both salinity and temperature in both species. Nonetheless, salinity had a greater influence on embryos' sensitivity to As. This pattern was mostly noticed for C. gigas, with lower salinity inducing higher sensitivity to As. Results were discussed considering the existing literature and suggest that C. angulata populations are likely to become more vulnerable under near future predictions for temperature rise, salinity shifts and pollution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Species Profiles. Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Mid-Atlantic). Blue Crab

    DTIC Science & Technology

    1989-03-01

    size only by Music 1979). molting (Hay 1905). Zoeal development depends on salinity and temperature, Growth and maturation proceed but development time...substrates. the effects depends on the toxicant, concentration, time exposed, salinity , tidal cycle, age and molt phase of Other Environmental Factors...Temperature .......................................................... 11 Salinity ............................................................. I11

  12. Salinity and temperature variations reflecting on cellular PCNA, IGF-I and II expressions, body growth and muscle cellularity of a freshwater fish larvae.

    PubMed

    Martins, Y S; Melo, R M C; Campos-Junior, P H A; Santos, J C E; Luz, R K; Rizzo, E; Bazzoli, N

    2014-06-01

    The present study assessed the influence of salinity and temperature on body growth and on muscle cellularity of Lophiosilurus alexaxdri vitelinic larvae. Slightly salted environments negatively influenced body growth of freshwater fish larvae and we observed that those conditions notably act as an environmental influencer on muscle growth and on local expression of hypertrophia and hypeplasia markers (IGFs and PCNA). Furthermore, we could see that salinity tolerance for NaCl 4gl(-)(1) diminishes with increasing temperature, evidenced by variation in body and muscle growth, and by irregular morphology of the lateral skeletal muscle of larvae. We saw that an increase of both PCNA and autocrine IGF-II are correlated to an increase in fibre numbers and fibre diameter as the temperature increases and salinity diminishes. On the other hand, autocrine IGF-I follows the opposite way to the other biological parameters assessed, increasing as salinity increases and temperature diminishes, showing that this protein did not participate in muscle cellularity, but participating in molecular/cellular repair. Therefore, slightly salted environments may provide adverse conditions that cause some obstacles to somatic growth of this species, suggesting some osmotic expenditure with a salinity increment. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. A new dipole index of the salinity anomalies of the tropical Indian Ocean

    PubMed Central

    Li, Junde; Liang, Chujin; Tang, Youmin; Dong, Changming; Chen, Dake; Liu, Xiaohui; Jin, Weifang

    2016-01-01

    With the increased interest in studying the sea surface salinity anomaly (SSSA) of the tropical Indian Ocean during the Indian Ocean Dipole (IOD), an index describing the dipole variability of the SSSA has been pursued recently. In this study, we first use a regional ocean model with a high spatial resolution to produce a high-quality salinity simulation during the period from 1982 to 2014, from which the SSSA dipole structure is identified for boreal autumn. On this basis, by further analysing the observed data, we define a dipole index of the SSSA between the central equatorial Indian Ocean (CEIO: 70°E-90°E, 5°S-5°N) and the region off the Sumatra-Java coast (SJC: 100°E-110°E, 13°S-3°S). Compared with previous SSSA dipole indices, this index has advantages in detecting the dipole signals and in characterizing their relationship to the sea surface temperature anomaly (SSTA) dipole variability. Finally, the mechanism of the SSSA dipole is investigated by dynamical diagnosis. It is found that anomalous zonal advection dominates the SSSA in the CEIO region, whereas the SSSA in the SJC region are mainly influenced by the anomalous surface freshwater flux. This SSSA dipole provides a positive feedback to the formation of the IOD events. PMID:27052319

  14. Bacterial Communities of Three Saline Meromictic Lakes in Central Asia

    PubMed Central

    Baatar, Bayanmunkh; Chiang, Pei-Wen; Rogozin, Denis Yu; Wu, Yu-Ting; Tseng, Ching-Hung; Yang, Cheng-Yu; Chiu, Hsiu-Hui; Oyuntsetseg, Bolormaa; Degermendzhy, Andrey G.; Tang, Sen-Lin

    2016-01-01

    Meromictic lakes located in landlocked steppes of central Asia (~2500 km inland) have unique geophysiochemical characteristics compared to other meromictic lakes. To characterize their bacteria and elucidate relationships between those bacteria and surrounding environments, water samples were collected from three saline meromictic lakes (Lakes Shira, Shunet and Oigon) in the border between Siberia and the West Mongolia, near the center of Asia. Based on in-depth tag pyrosequencing, bacterial communities were highly variable and dissimilar among lakes and between oxic and anoxic layers within individual lakes. Proteobacteria, Bacteroidetes, Cyanobacteria, Actinobacteria and Firmicutes were the most abundant phyla, whereas three genera of purple sulfur bacteria (a novel genus, Thiocapsa and Halochromatium) were predominant bacterial components in the anoxic layer of Lake Shira (~20.6% of relative abundance), Lake Shunet (~27.1%) and Lake Oigon (~9.25%), respectively. However, few known green sulfur bacteria were detected. Notably, 3.94% of all sequencing reads were classified into 19 candidate divisions, which was especially high (23.12%) in the anoxic layer of Lake Shunet. Furthermore, several hydro-parameters (temperature, pH, dissolved oxygen, H2S and salinity) were associated (P< 0.05) with variations in dominant bacterial groups. In conclusion, based on highly variable bacterial composition in water layers or lakes, we inferred that the meromictic ecosystem was characterized by high diversity and heterogenous niches. PMID:26934492

  15. Bacterial Communities of Three Saline Meromictic Lakes in Central Asia.

    PubMed

    Baatar, Bayanmunkh; Chiang, Pei-Wen; Rogozin, Denis Yu; Wu, Yu-Ting; Tseng, Ching-Hung; Yang, Cheng-Yu; Chiu, Hsiu-Hui; Oyuntsetseg, Bolormaa; Degermendzhy, Andrey G; Tang, Sen-Lin

    2016-01-01

    Meromictic lakes located in landlocked steppes of central Asia (~2500 km inland) have unique geophysiochemical characteristics compared to other meromictic lakes. To characterize their bacteria and elucidate relationships between those bacteria and surrounding environments, water samples were collected from three saline meromictic lakes (Lakes Shira, Shunet and Oigon) in the border between Siberia and the West Mongolia, near the center of Asia. Based on in-depth tag pyrosequencing, bacterial communities were highly variable and dissimilar among lakes and between oxic and anoxic layers within individual lakes. Proteobacteria, Bacteroidetes, Cyanobacteria, Actinobacteria and Firmicutes were the most abundant phyla, whereas three genera of purple sulfur bacteria (a novel genus, Thiocapsa and Halochromatium) were predominant bacterial components in the anoxic layer of Lake Shira (~20.6% of relative abundance), Lake Shunet (~27.1%) and Lake Oigon (~9.25%), respectively. However, few known green sulfur bacteria were detected. Notably, 3.94% of all sequencing reads were classified into 19 candidate divisions, which was especially high (23.12%) in the anoxic layer of Lake Shunet. Furthermore, several hydro-parameters (temperature, pH, dissolved oxygen, H2S and salinity) were associated (P< 0.05) with variations in dominant bacterial groups. In conclusion, based on highly variable bacterial composition in water layers or lakes, we inferred that the meromictic ecosystem was characterized by high diversity and heterogenous niches.

  16. Species Profiles. Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Gulf of Mexico). COMMON RANGIA.

    DTIC Science & Technology

    1985-04-01

    osmoconformer at salinities greater ENVIRONMENTAL REQUIREMENTS than 10 ppt, and an osmoregulator at lower salinities (Bedford and Anderson 1972a,b; Otto...1973, 1974) tested the combined effects of temperature (8 to 32°C) and salinity (0 to 20 ppt) on .. k6.. Temperature embryos and larvae of common...Bedford, W. B. , and J. W. Anderson. Allen, K. 1961. The effect of salin - 1972a. The physiological response ity on the amino acid concentra- of the

  17. Suitable Environmental Ranges for Potential Coral Reef Habitats in the Tropical Ocean

    PubMed Central

    Guan, Yi; Hohn, Sönke; Merico, Agostino

    2015-01-01

    Coral reefs are found within a limited range of environmental conditions or tolerance limits. Estimating these limits is a critical prerequisite for understanding the impacts of climate change on the biogeography of coral reefs. Here we used the diagnostic model ReefHab to determine the current environmental tolerance limits for coral reefs and the global distribution of potential coral reef habitats as a function of six factors: temperature, salinity, nitrate, phosphate, aragonite saturation state, and light. To determine these tolerance limits, we extracted maximum and minimum values of all environmental variables in corresponding locations where coral reefs are present. We found that the global, annually averaged tolerance limits for coral reefs are 21.7—29.6 °C for temperature, 28.7—40.4 psu for salinity, 4.51 μmol L-1 for nitrate, 0.63 μmol L-1 for phosphate, and 2.82 for aragonite saturation state. The averaged minimum light intensity in coral reefs is 450 μmol photons m-2 s-1. The global area of potential reef habitats calculated by the model is 330.5 × 103 km2. Compared with previous studies, the tolerance limits for temperature, salinity, and nutrients have not changed much, whereas the minimum value of aragonite saturation in coral reef waters has decreased from 3.28 to 2.82. The potential reef habitat area calculated with ReefHab is about 121×103 km2 larger than the area estimated from the charted reefs, suggesting that the growth potential of coral reefs is higher than currently observed. PMID:26030287

  18. Seasonal variation in chaetognath and parasite species assemblages along the northeastern coast of the Yucatan Peninsula.

    PubMed

    Lozano-Cobo, Horacio; Prado-Rosas, María Del Carmen Gómez Del; Sánchez-Velasco, Laura; Gómez-Gutiérrez, Jaime

    2017-03-30

    Chaetognaths are abundant carnivores with broad distributions that are intermediate hosts of trophically transmitted parasites. Monthly variations in chaetognath and parasite species distributions, abundance, prevalence, and intensity related to seasonal environmental changes were recorded in 2004 and 2005 in Laguna Nichupté, a coral reef, and the adjoining continental shelf of Quintana Roo, Mexico. Of 12 chaetognath species plus Sagitta spp., only 5 (Ferosagitta hispida, Flaccisagitta enflata, Sagitta spp., Serratosagitta serratodentata, and Pterosagitta draco) were parasitized. These species were parasitized with 33 types of flatworms and unidentified cysts (likely protozoan ciliates), having an overall mean prevalence of 6%. Digenean metacercaria larvae numerically dominated the parasite assemblages. Cluster analysis defined 2 chaetognath species assemblages. One included 7 species inside Laguna Nichupté, where F. hispida was numerically dominant (98.9%); the other contained 13 chaetognath species in the continental shelf-coral reef region, where F. enflata was abundant (53%). Canonical correspondence analysis showed that Laguna Nichupté had highly variable and hostile conditions (relatively low salinity and high temperature) for chaetognath species except for F. hispida. The higher density of F. hispida promoted greater parasite diversity (23 types), dominated by Brachyphallus sp. metacercariae. F. enflata prevailed in the continental shelf-coral reef area, which had stable high salinity and relatively low temperature. Monilicaecum and unidentified digenean 'type g' infected 5 chaetognath species on the continental shelf. Distinct primary hosts (mollusks and copepods) and contrasting environmental conditions (salinity, dissolved oxygen concentration, and temperature) between Laguna Nichupté and the continental shelf promoted distinct chaetognath species assemblages, resulting in distinct parasite diversity and prevalence patterns.

  19. Suitable environmental ranges for potential coral reef habitats in the tropical ocean.

    PubMed

    Guan, Yi; Hohn, Sönke; Merico, Agostino

    2015-01-01

    Coral reefs are found within a limited range of environmental conditions or tolerance limits. Estimating these limits is a critical prerequisite for understanding the impacts of climate change on the biogeography of coral reefs. Here we used the diagnostic model ReefHab to determine the current environmental tolerance limits for coral reefs and the global distribution of potential coral reef habitats as a function of six factors: temperature, salinity, nitrate, phosphate, aragonite saturation state, and light. To determine these tolerance limits, we extracted maximum and minimum values of all environmental variables in corresponding locations where coral reefs are present. We found that the global, annually averaged tolerance limits for coral reefs are 21.7-29.6 °C for temperature, 28.7-40.4 psu for salinity, 4.51 μmol L-1 for nitrate, 0.63 μmol L-1 for phosphate, and 2.82 for aragonite saturation state. The averaged minimum light intensity in coral reefs is 450 μmol photons m-2 s-1. The global area of potential reef habitats calculated by the model is 330.5 × 103 km2. Compared with previous studies, the tolerance limits for temperature, salinity, and nutrients have not changed much, whereas the minimum value of aragonite saturation in coral reef waters has decreased from 3.28 to 2.82. The potential reef habitat area calculated with ReefHab is about 121×103 km2 larger than the area estimated from the charted reefs, suggesting that the growth potential of coral reefs is higher than currently observed.

  20. Coral based-ENSO/IOD related climate variability in Indonesia: a review

    NASA Astrophysics Data System (ADS)

    Yudawati Cahyarini, Sri; Henrizan, Marfasran

    2018-02-01

    Indonesia is located in the prominent site to study climate variability as it lies between Pacific and Indian Ocean. It has consequences to the regional climate in Indonesia that its climate variability is influenced by the climate events in the Pacific oceans (e.g. ENSO) and in the Indian ocean (e.g. IOD), and monsoon as well as Indonesian Throughflow (ITF). Northwestern monsoon causes rainfall in the region of Indonesia, while reversely Southwestern monsoon causes dry season around Indonesia. The ENSO warm phase called El Nino causes several droughts in Indonesian region, reversely the La Nina causes flooding in some regions in Indonesia. However, the impact of ENSO in Indonesia is different from one place to the others. Having better understanding on the climate phenomenon and its impact to the region requires long time series climate data. Paleoclimate study which provides climate data back into hundreds to thousands even to million years overcome this requirement. Coral Sr/Ca can provide information on past sea surface temperature (SST) and paired Sr/Ca and δ18O may be used to reconstruct variations in the precipitation balance (salinity) at monthly to annual interannual resolution. Several climate studies based on coral geochemical records in Indonesia show that coral Sr/Ca and δ18O from Indonesian records SST and salinity respectively. Coral Sr/Ca from inshore Seribu islands complex shows more air temperature rather than SST. Modern coral from Timor shows the impact of ENSO and IOD to the saliniy and SST is different at Timor sea. This result should be taken into account when interpreting Paleoclimate records over Indonesia. Timor coral also shows more pronounced low frequency SST variability compared to the SST reanalysis (model). The longer data of low frequency variability will improve the understanding of warming trend in this climatically important region.

  1. Water Quality Characteristics of Sembrong Dam Reservoir, Johor, Malaysia

    NASA Astrophysics Data System (ADS)

    Mohd-Asharuddin, S.; Zayadi, N.; Rasit, W.; Othman, N.

    2016-07-01

    A study of water quality and heavy metal content in Sembrong Dam water was conducted from April - August 2015. A total of 12 water quality parameters and 6 heavy metals were measured and classified based on the Interim National Water Quality Standard of Malaysia (INWQS). The measured and analyzed parameter variables were divided into three main categories which include physical, chemical and heavy metal contents. Physical and chemical parameter variables were temperature, dissolved oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solid (TSS), turbidity, pH, nitrate, phosphate, ammonium, conductivity and salinity. The heavy metals measured were copper (Cu), lead (Pb), aluminium (Al), chromium (Cr), ferum (Fe) and zinc (Zn). According to INWQS, the water salinity, conductivity, BOD, TSS and nitrate level fall under Class I, while the Ph, DO and turbidity lie under Class IIA. Furthermore, values of COD and ammonium were classified under Class III. The result also indicates that the Sembrong Dam water are not polluted with heavy metals since all heavy metal readings recorded were falls far below Class I.

  2. Ecological drivers of shark distributions along a tropical coastline.

    PubMed

    Yates, Peter M; Heupel, Michelle R; Tobin, Andrew J; Simpfendorfer, Colin A

    2015-01-01

    As coastal species experience increasing anthropogenic pressures there is a growing need to characterise the ecological drivers of their abundance and habitat use, and understand how they may respond to changes in their environment. Accordingly, fishery-independent surveys were undertaken to investigate shark abundance along approximately 400 km of the tropical east coast of Australia. Generalised linear models were used to identify ecological drivers of the abundance of immature blacktip Carcharhinus tilstoni/Carcharhinus limbatus, pigeye Carcharhinus amboinensis, and scalloped hammerhead Sphyrna lewini sharks. Results indicated general and species-specific patterns in abundance that were characterised by a range of abiotic and biotic variables. Relationships with turbidity and salinity were similar across multiple species, highlighting the importance of these variables in the functioning of communal shark nurseries. In particular, turbid environments were especially important for all species at typical oceanic salinities. Mangrove proximity, depth, and water temperature were also important; however, their influence varied between species. Ecological drivers may promote spatial diversity in habitat use along environmentally heterogeneous coastlines and may therefore have important implications for population resilience.

  3. Ecological Drivers of Shark Distributions along a Tropical Coastline

    PubMed Central

    Yates, Peter M.; Heupel, Michelle R.; Tobin, Andrew J.; Simpfendorfer, Colin A.

    2015-01-01

    As coastal species experience increasing anthropogenic pressures there is a growing need to characterise the ecological drivers of their abundance and habitat use, and understand how they may respond to changes in their environment. Accordingly, fishery-independent surveys were undertaken to investigate shark abundance along approximately 400 km of the tropical east coast of Australia. Generalised linear models were used to identify ecological drivers of the abundance of immature blacktip Carcharhinus tilstoni/Carcharhinus limbatus, pigeye Carcharhinus amboinensis, and scalloped hammerhead Sphyrna lewini sharks. Results indicated general and species-specific patterns in abundance that were characterised by a range of abiotic and biotic variables. Relationships with turbidity and salinity were similar across multiple species, highlighting the importance of these variables in the functioning of communal shark nurseries. In particular, turbid environments were especially important for all species at typical oceanic salinities. Mangrove proximity, depth, and water temperature were also important; however, their influence varied between species. Ecological drivers may promote spatial diversity in habitat use along environmentally heterogeneous coastlines and may therefore have important implications for population resilience. PMID:25853657

  4. Ocean acidification narrows the acute thermal and salinity tolerance of the Sydney rock oyster Saccostrea glomerata.

    PubMed

    Parker, Laura M; Scanes, Elliot; O'Connor, Wayne A; Coleman, Ross A; Byrne, Maria; Pörtner, Hans-O; Ross, Pauline M

    2017-09-15

    Coastal and estuarine environments are characterised by acute changes in temperature and salinity. Organisms living within these environments are adapted to withstand such changes, yet near-future ocean acidification (OA) may challenge their physiological capacity to respond. We tested the impact of CO 2 -induced OA on the acute thermal and salinity tolerance, energy metabolism and acid-base regulation capacity of the oyster Saccostrea glomerata. Adult S. glomerata were acclimated to three CO 2 levels (ambient 380μatm, moderate 856μatm, high 1500μatm) for 5weeks (24°C, salinity 34.6) before being exposed to a series of acute temperature (15-33°C) and salinity (34.2-20) treatments. Oysters acclimated to elevated CO 2 showed a significant metabolic depression and extracellular acidosis with acute exposure to elevated temperature and reduced salinity, especially at the highest CO 2 of 1500μatm. Our results suggest that the acute thermal and salinity tolerance of S. glomerata and thus its distribution will reduce as OA continues to worsen. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The effects of temperature and salinity on phosphate levels in two euryhaline crustacean species

    NASA Astrophysics Data System (ADS)

    Spaargaren, D. H.; Richard, P.; Ceccaldi, H. J.

    Total phoshate, inorganic phosphate and organic (phospholipid) phosphate concentrations were determined in the blood of Carcinus maenas and in whole-animal homogenates of Penaeus japonicus acclimatized to various salinities and a high or a low temperature. In the blood of Carcinus, total and inorganic P concentrations range between 1.0 and 4.5 mmol · l -1; the amount of phospholipids is negligeable. The higher values were found at more extreme salinities. Low temperature is associated with low phosphate concentrations, particularly at intermediate salinities. Total P concentrations in Penaeus homogenates range between 10 and 60 mmol · 1 -1; phospholipid concentrations range between zero and 50 mmol · 1 -1. The higher values are again found at the extreme salinities. Inorganic P concentrations are almost constant — ca 10 mmol · 1 -1. No apparent effect of temperature on phosphate concentrations was observed. The results show clearly that osmotic stress influences severely the phosphate metabolism of the two species studied. Both species are able to accumulate phosphate at all experimental temperature/salinity combinations used, even when deprived of food. At extreme salinities, large quantities of phosphate are accumulated and converted to organic P compounds, most likely as phospholipids associated with the cell membranes. These effects of osmotic conditions in phosphate metabolism may offer an explanation for the effect of Ca ++ on membrane permeability as the regulation of both ions may be strongly interrelated, often under hormonal control.

  6. Henry's law constant for phosphine in seawater: determination and assessment of influencing factors

    NASA Astrophysics Data System (ADS)

    Fu, Mei; Yu, Zhiming; Lu, Guangyuan; Song, Xiuxian

    2013-07-01

    The Henry's Law constant ( k) for phosphine in seawater was determined by multiple phase equilibration combined with headspace gas chromatography. The effects of pH, temperature, and salinity on k were studied. The k value for phosphine in natural seawater was 6.415 at room temperature (approximately 23°C). This value increases with increases in temperature and salinity, but no obvious change was observed at different pH levels. At the same temperature, there was no significant difference between the k for phosphine in natural seawater and that in artificial seawater. This implies that temperature and salinity are major determining factors for k in marine environment. Double linear regression with Henry's Law constants for phosphine as a function of temperature and salinity confirmed our observations. These results provide a basis for the measurement of trace phosphine concentrations in seawater, and will be helpful for future research on the status of phosphine in the oceanic biogeochemical cycle of phosphorus.

  7. Spatial patterns of littoral zooplankton assemblages along a salinity gradient in a brackish sea: A functional diversity perspective

    NASA Astrophysics Data System (ADS)

    Helenius, Laura K.; Leskinen, Elina; Lehtonen, Hannu; Nurminen, Leena

    2017-11-01

    The distribution patterns and diversity of littoral zooplankton are both key baseline information for understanding the functioning of coastal ecosystems, and for identifying the mechanisms by which the impacts of recently increased eutrophication are transferred through littoral food webs. In this study, zooplankton community structure and diversity along a shallow coastal area of the northern Baltic Sea were determined in terms of horizontal environmental gradients. Spatial heterogeneity of the zooplankton community was examined along the gradient. Altogether 31 sites in shallow sandy bays on the coast of southwest Finland were sampled in the summer periods of 2009 and 2010 for zooplankton and environmental variables (surface water temperature, salinity, turbidity, wave exposure, macrophyte coverage, chlorophyll a and nutrients). Zooplankton diversity was measured as both taxonomic as well as functional diversity, using trait-based classification of planktonic crustaceans. Salinity, and to a lesser extent turbidity and temperature, were found to be the main predictors of the spatial patterns and functional diversity of the zooplankton community. Occurrence of cyclopoid copepods, as well as abundances of the calanoid copepod genus Acartia and the rotifer genus Keratella were found to be key factors in differentiating sites along the gradient. As far as we know, this is the first extensive study of functional diversity in Baltic Sea coastal zooplankton communities.

  8. Effects of temperature, salinity, and irradiance on the growth of harmful algal bloom species Phaeocystis globosa Scherffel (Prymnesiophyceae) isolated from the South China Sea

    NASA Astrophysics Data System (ADS)

    Xu, Ning; Huang, Bozhu; Hu, Zhangxi; Tang, Yingzhong; Duan, Shunshan; Zhang, Chengwu

    2017-05-01

    Blooms of Phaeocystis globosa have been frequently reported in Chinese coastal waters, causing serious damage to marine ecosystems. To better understand the ecological characteristics of P. globosa in Chinese coastal waters that facilitate its rapid expansion, the effects of temperature, salinity and irradiance on the growth of P. globosa from the South China Sea were examined in the laboratory. The saturating irradiance for the growth of P. globosa ( I s) was 60 μmol/(m2•s), which was lower than those of other harmful algal species (70-114 μmol/(m2•s)). A moderate growth rate of 0.22/d was observed at 2 μmol/(m2•s) (the minimum irradiance in the experiment), and photo-inhibition did not occur at 230 μmol/(m2•s) (the maximum irradiance in the experiment). Exposed to 42 different combinations of temperatures (10-31°C) and salinities (10-40) under saturating irradiance, P. globosa exhibited its maximum specific growth rate of 0.80/d at the combinations of 24°C and 35, and 27°C and 40. The optimum growth rates (>0.80/d) were observed at temperatures ranging from 24 to 27°C and salinities from 35 to 40. While P. globosa was able to grow well at temperatures from 20°C to 31°C and salinities from 20 to 40, it could not grow at temperatures lower than 15°C or salinities lower than 15. Factorial analysis revealed that temperature and salinity has similar influences on the growth of this species. This strain of P. globosa not only prefers higher temperatures and higher salinity, but also possesses a flexible nutrient competing strategy, adapted to lower irradiance. Therefore, the P. globosa population from South China Sea should belong to a new ecotype. There is also a potentially high risk of blooms developing in this area throughout the year.

  9. A Novel Equation-of-State to Model Microemulsion Phase Behavior for Enhanced Oil Recovery Application

    NASA Astrophysics Data System (ADS)

    Ghosh, Soumyadeep

    Surfactant-polymer (SP) floods have significant potential to recover waterflood residual oil in shallow oil reservoirs. A thorough understanding of surfactant-oil-brine phase behavior is critical to the design of chemical EOR floods. While considerable progress has been made in developing surfactants and polymers that increase the potential of a chemical enhanced oil recovery (EOR) project, very little progress has been made to predict phase behavior as a function of formulation variables such as pressure, temperature, and oil equivalent alkane carbon number (EACN). The empirical Hand's plot is still used today to model the microemulsion phase behavior with little predictive capability as these and other formulation variables change. Such models could lead to incorrect recovery predictions and improper flood designs. Reservoir crudes also contain acidic components (primarily naphthenic acids), which undergo neutralization to form soaps in the presence of alkali. The generated soaps perform synergistically with injected synthetic surfactants to mobilize waterflood residual oil in what is termed alkali-surfactant-polymer (ASP) flooding. The addition of alkali, however, complicates the measurement and prediction of the microemulsion phase behavior that forms with acidic crudes. In this dissertation, we account for pressure changes in the hydrophilic-lipophilic difference (HLD) equation. This new HLD equation is coupled with the net-average curvature (NAC) model to predict phase volumes, solubilization ratios, and microemulsion phase transitions (Winsor II-, III, and II+). This dissertation presents the first modified HLD-NAC model to predict microemulsion phase behavior for live crudes, including optimal solubilization ratio and the salinity width of the three-phase Winsor III region at different temperatures and pressures. This new equation-of-state-like model could significantly aid the design and forecast of chemical floods where key variables change dynamically, and in screening of potential candidate reservoirs for chemical EOR. The modified HLD-NAC model is also extended here for ASP flooding. We use an empirical equation to calculate the acid distribution coefficient from the molecular structure of the soap. Key HLD-NAC parameters like optimum salinities and optimum solubilization ratios are calculated from soap mole fraction weighted equations. The model is tuned to data from phase behavior experiments with real crudes to demonstrate the procedure. We also examine the ability of the new model to predict fish plots and activity charts that show the evolution of the three-phase region. The modified HLD-NAC equations are then made dimensionless to develop important microemulsion phase behavior relationships and for use in tuning the new model to measured data. Key dimensionless groups that govern phase behavior and their effects are identified and analyzed. A new correlation was developed to predict optimum solubilization ratios at different temperatures, pressures and oil EACN with an average relative error of 10.55%. The prediction of optimum salinities with the modified HLD approach resulted in average relative errors of 2.35%. We also present a robust method to precisely determine optimum salinities and optimum solubilization ratios from salinity scan data with average relative errors of 1.17% and 2.44% for the published data examined.

  10. Continuous water-quality and suspended-sediment transport monitoring in the San Francisco Bay, California, water years 2011–13

    USGS Publications Warehouse

    Buchanan, Paul A.; Downing-Kunz, Maureen; Schoellhamer, David H.; Shellenbarger, Gregory; Weidich, Kurt

    2014-01-01

    The U.S. Geological Survey (USGS) monitors water quality and suspended-sediment transport in the San Francisco Bay. The San Francisco Bay area is home to millions of people, and the bay teems with both resident and migratory wildlife, plants, and fish. Fresh water mixes with salt water in the bay, which is subject both to riverine and marine (tides, waves, influx of salt water) influences. To understand this environment, the USGS, along with its partners, has been monitoring the bay’s waters continuously since 1988. Several water-quality variables are of particular importance to State and Federal resource managers and are monitored at key locations throughout the bay. Salinity, which indicates the relative mixing of fresh and ocean waters in the bay, is derived from specific conductance measurements. Water temperature, along with salinity, affects the density of water, which causes gravity driven circulation patterns and stratification in the water column. Turbidity is measured using light-scattering from suspended solids in water, and is used as a surrogate for suspended-sediment concentration (SSC). Suspended sediment often carries adsorbed contaminants; attenuates sunlight in the water column; deposits on tidal marsh and intertidal mudflats, which can help sustain these habitats as sea level rises; and deposits in ports and shipping channels, which can necessitate dredging. Dissolved oxygen, which is essential to a healthy ecosystem, is a fundamental indicator of water quality, and its concentration is affected by water temperature, salinity, ecosystem metabolism, tidal currents, and wind. Tidal currents in the bay reverse four times a day, and wind direction and intensity typically change on a daily cycle: consequently, salinity, water temperature, suspendedsediment concentration, and dissolvedoxygen concentration vary spatially and temporally throughout the bay, and continuous measurements are needed to observe these changes. The purpose of this fact sheet is to inform the public and resource managers of the availability of these water-quality data.

  11. Near-surface Salinity and Temperature Structure Observed with Dual-Sensor Drifters in the Subtropical South Pacific

    NASA Astrophysics Data System (ADS)

    Dong, Shenfu; Goni, Gustavo; Volkov, Denis; Lumpkin, Rick; Foltz, Gregory

    2017-04-01

    Three surface drifters equipped with temperature and salinity sensors at 0.2 m and 5 m depths were deployed in April/May 2015 in the subtropical South Pacific Ocean with the objective of measuring near-surface salinity differences seen by satellite and in situ sensors and examining the causes of the differences. Measurements from these drifters indicate that, on average, water at a depth of 0.2 m is about 0.013 psu fresher than at 5 m and about 0.024°C warmer. Events with large temperature and salinity differences between the two depths often occur when surface winds are weak. In addition to the expected surface freshening and cooling during rainfall events, surface salinification occurs under weak wind conditions when there is strong surface warming that enhances evaporation and upper ocean stratification. Further examination of the drifter measurements demonstrate that (i) the amount of surface freshening and vertical salinity gradient heavily depend on wind speed during rain events, (ii) salinity differences between 0.2 m and 5 m are positively correlated with the corresponding temperature differences, and (iii) temperature exhibits a diurnal cycle at both depths, whereas the diurnal cycle of salinity is observed only at 0.2 m when the wind speed is less than 4 m/s. Its phase is consistent with diurnal changes in surface temperature-induced evaporation. Below a wind speed of 6 m/s, the amplitudes of the diurnal cycles of temperature at both depths decrease with increasing wind speed. Wind speed also affects the phasing of the diurnal cycle of T5m with the time of maximum T5m increasing gradually with decreasing wind speed. Wind speed does not affect the phasing of the diurnal cycle of T0.2m. At 0.2 m and 5 m, the diurnal cycle of temperature also depends on surface solar radiation, with the amplitude and time of diurnal maximum increasing as solar radiation increases.

  12. North Atlantic climate model bias influence on multiyear predictability

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Park, T.; Park, W.; Latif, M.

    2018-01-01

    The influences of North Atlantic biases on multiyear predictability of unforced surface air temperature (SAT) variability are examined in the Kiel Climate Model (KCM). By employing a freshwater flux correction over the North Atlantic to the model, which strongly alleviates both North Atlantic sea surface salinity (SSS) and sea surface temperature (SST) biases, the freshwater flux-corrected integration depicts significantly enhanced multiyear SAT predictability in the North Atlantic sector in comparison to the uncorrected one. The enhanced SAT predictability in the corrected integration is due to a stronger and more variable Atlantic Meridional Overturning Circulation (AMOC) and its enhanced influence on North Atlantic SST. Results obtained from preindustrial control integrations of models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) support the findings obtained from the KCM: models with large North Atlantic biases tend to have a weak AMOC influence on SAT and exhibit a smaller SAT predictability over the North Atlantic sector.

  13. SCSPOD14, a South China Sea physical oceanographic dataset derived from in situ measurements during 1919-2014.

    PubMed

    Zeng, Lili; Wang, Dongxiao; Chen, Ju; Wang, Weiqiang; Chen, Rongyu

    2016-04-26

    In addition to the oceanographic data available for the South China Sea (SCS) from the World Ocean Database (WOD) and Array for Real-time Geostrophic Oceanography (Argo) floats, a suite of observations has been made by the South China Sea Institute of Oceanology (SCSIO) starting from the 1970s. Here, we assemble a SCS Physical Oceanographic Dataset (SCSPOD14) based on 51,392 validated temperature and salinity profiles collected from these three datasets for the period 1919-2014. A gridded dataset of climatological monthly mean temperature, salinity, and mixed and isothermal layer depth derived from an objective analysis of profiles is also presented. Comparisons with the World Ocean Atlas (WOA) and IFREMER/LOS Mixed Layer Depth Climatology confirm the reliability of the new dataset. This unique dataset offers an invaluable baseline perspective on the thermodynamic processes, spatial and temporal variability of water masses, and basin-scale and mesoscale oceanic structures in the SCS. We anticipate improvements and regular updates to this product as more observations become available from existing and future in situ networks.

  14. SCSPOD14, a South China Sea physical oceanographic dataset derived from in situ measurements during 1919–2014

    PubMed Central

    Zeng, Lili; Wang, Dongxiao; Chen, Ju; Wang, Weiqiang; Chen, Rongyu

    2016-01-01

    In addition to the oceanographic data available for the South China Sea (SCS) from the World Ocean Database (WOD) and Array for Real-time Geostrophic Oceanography (Argo) floats, a suite of observations has been made by the South China Sea Institute of Oceanology (SCSIO) starting from the 1970s. Here, we assemble a SCS Physical Oceanographic Dataset (SCSPOD14) based on 51,392 validated temperature and salinity profiles collected from these three datasets for the period 1919–2014. A gridded dataset of climatological monthly mean temperature, salinity, and mixed and isothermal layer depth derived from an objective analysis of profiles is also presented. Comparisons with the World Ocean Atlas (WOA) and IFREMER/LOS Mixed Layer Depth Climatology confirm the reliability of the new dataset. This unique dataset offers an invaluable baseline perspective on the thermodynamic processes, spatial and temporal variability of water masses, and basin-scale and mesoscale oceanic structures in the SCS. We anticipate improvements and regular updates to this product as more observations become available from existing and future in situ networks. PMID:27116565

  15. Predicting the Distribution of Vibrio spp. in the Chesapeake Bay: A Vibrio cholerae Case Study

    PubMed Central

    Magny, Guillaume Constantin de; Long, Wen; Brown, Christopher W.; Hood, Raleigh R.; Huq, Anwar; Murtugudde, Raghu; Colwell, Rita R.

    2010-01-01

    Vibrio cholerae, the causative agent of cholera, is a naturally occurring inhabitant of the Chesapeake Bay and serves as a predictor for other clinically important vibrios, including Vibrio parahaemolyticus and Vibrio vulnificus. A system was constructed to predict the likelihood of the presence of V. cholerae in surface waters of the Chesapeake Bay, with the goal to provide forecasts of the occurrence of this and related pathogenic Vibrio spp. Prediction was achieved by driving an available multivariate empirical habitat model estimating the probability of V. cholerae within a range of temperatures and salinities in the Bay, with hydrodynamically generated predictions of ambient temperature and salinity. The experimental predictions provided both an improved understanding of the in situ variability of V. cholerae, including identification of potential hotspots of occurrence, and usefulness as an early warning system. With further development of the system, prediction of the probability of the occurrence of related pathogenic vibrios in the Chesapeake Bay, notably V. parahaemolyticus and V. vulnificus, will be possible, as well as its transport to any geographical location where sufficient relevant data are available. PMID:20145974

  16. Laboratory study on coprecipitation of phosphate with ikaite in sea ice

    NASA Astrophysics Data System (ADS)

    Hu, Yu-Bin; Dieckmann, Gerhard S.; Wolf-Gladrow, Dieter A.; Nehrke, Gernot

    2014-10-01

    Ikaite (CaCO3·6H2O) has recently been discovered in sea ice, providing first direct evidence of CaCO3 precipitation in sea ice. However, the impact of ikaite precipitation on phosphate (PO4) concentration has not been considered so far. Experiments were set up at pH from 8.5 to 10.0, salinities from 0 to 105, temperatures from -4°C to 0°C, and PO4 concentrations from 5 to 50 µmol kg-1 in artificial sea ice brine so as to understand how ikaite precipitation affects the PO4 concentration in sea ice under different conditions. Our results show that PO4 is coprecipitated with ikaite under all experimental conditions. The amount of PO4 removed by ikaite precipitation increases with increasing pH. Changes in salinity (S ≥ 35) as well as temperature have little impact on PO4 removal by ikaite precipitation. The initial PO4 concentration affects the PO4 coprecipitation. These findings may shed some light on the observed variability of PO4 concentration in sea ice.

  17. Modelling Greenland icebergs

    NASA Astrophysics Data System (ADS)

    Marson, Juliana M.; Myers, Paul G.; Hu, Xianmin

    2017-04-01

    The Atlantic Meridional Overturning Circulation (AMOC) is well known for carrying heat from low to high latitudes, moderating local temperatures. Numerical studies have examined the AMOC's variability under the influence of freshwater input to subduction and deep convections sites. However, an important source of freshwater has often been overlooked or misrepresented: icebergs. While liquid runoff decreases the ocean salinity near the coast, icebergs are a gradual and remote source of freshwater - a difference that affects sea ice cover, temperature, and salinity distribution in ocean models. Icebergs originated from the Greenland ice sheet, in particular, can affect the subduction process in Labrador Sea by decreasing surface water density. Our study aims to evaluate the distribution of icebergs originated from Greenland and their contribution to freshwater input in the North Atlantic. To do that, we use an interactive iceberg module coupled with the Nucleus for European Modelling of the Ocean (NEMO v3.4), which will calve icebergs from Greenland according to rates established by Bamber et al. (2012). Details on the distribution and trajectory of icebergs within the model may also be of use for understanding potential navigation threats, as shipping increases in northern waters.

  18. Fluid inclusion studies on the mineralized quartz-rich hydrothermal breccias and quartz veins of the Kay Tanda epithermal gold deposit, Lobo, Batangas, Philippines

    NASA Astrophysics Data System (ADS)

    Frias, S. M. P.; Takahashi, R.; Imai, A.; Blamey, N.

    2017-12-01

    The Kay Tanda epithermal deposit in Lobo, Batangas, Philippines is mainly hosted in quartz-rich hydrothermal breccia and quartz veins. These contain varying gold grades with some reaching bonanza gold grades as high as 200 ppm Au. They also contain varying amounts of base metal sulfides such as sphalerite, galena, chalcopyrite and pyrite whose abundances increase with depth. Petrographic analysis of the samples revealed different quartz textures such as colloform textures in quartz veins at shallow levels and feathery, flamboyant and mosaic textures in the matrix of hydrothermal breccias at deeper levels. These textures are indicative of boiling conditions. To elucidate the fluid conditions, fluid source, composition and processes during the formation of the deposit, fluid inclusion microthermometry, quantitative fluid inclusion gas analysis and laser Raman spectroscopy were conducted. Doubly polished thin wafers prepared from the quartz veins and quartz crystals in the matrix of hydrothermal breccias. Microthermometric analysis of primary fluid inclusions included measurements of the freezing temperature Tf, the temperature of ice melting Tm, and the homogenization temperature of the fluid phase by disappearance of vapor Th. Liquid-to-vapor (L-V) ratios are variable, thus, liquid-rich liquid-vapor inclusions and vapor-rich liquid-vapor inclusions coexist in some samples. The sizes of the primary fluid inclusions may reach 100 micrometers. The homogenization temperatures range 200 °C to 380 °C, with the mode around 250 °C to 280 °C. Salinities range from 2 to 7 wt% NaCl equivalent, with the mode around 4 to 5 wt% NaCl equivalent. Trends of the distribution of fluid inclusion populations based on their homogenization temperature and salinity suggest boiling which is consistent with the variable liquid to vapor ratios, i.e. coexistence of liquid-rich inclusions and vapor-rich inclusions.

  19. Cyclic heliothermal behaviour of the shallow, hypersaline Lake Hayward, Western Australia

    USGS Publications Warehouse

    Turner, Jeffrey V.; Rosen, Michael R.; Coshell, Lee; Woodbury, Robert J.

    2018-01-01

    Lake Hayward is one of only about 30 hypersaline lakes worldwide that is meromictic and heliothermal and as such behaves as a natural salt gradient solar pond. Lake Hayward acts as a local groundwater sink, resulting in seasonally variable hypersaline lake water with total dissolved solids (TDS) in the upper layer (mixolimnion) ranging between 56 kg m−3 and 207 kg m−3 and the deeper layer (monimolimnion) from 153 kg m−3 to 211 kg m−3. This is up to six times the salinity of seawater and thus has the highest salinity of all eleven lakes in the Yalgorup National Park lake system. A program of continuously recorded water temperature profiles has shown that salinity stratification initiated by direct rainfall onto the lake’s surface and local runoff into the lake results in the onset of heliothermal conditions within hours of rainfall onset.The lake alternates between being fully mixed and becoming thermally and chemically stratified several times during the annual cycle, with the longest extended periods of heliothermal behaviour lasting 23 and 22 weeks in the winters of 1992 and 1993 respectively. The objective was to quantify the heat budgets of the cyclical heliothermal behaviour of Lake Hayward.During the period of temperature profile logging, the maximum recorded temperature of the monimolimnion was 42.6 °C at which time the temperature of the mixolimnion was 29.4 °C.The heat budget of two closed heliothermal cycles initiated by two rainfall events of 50 mm and 52 mm in 1993 were analysed. The cycles prevailed for 11 and 20 days respectively and the heat budget showed net heat accumulations of 34.2 MJ m−3 and 15.4 MJ m−3, respectively. The corresponding efficiencies of lake heat gain to incident solar energy were 0.17 and 0.18 respectively. Typically, artificial salinity gradient solar ponds (SGSP) have a solar radiation capture efficiencies ranging from 0.10 up to 0.30. Results from Lake Hayward have implications for comparative biogeochemistry and its characteristics should aid in identification of other hitherto unknown heliothermal lakes.

  20. Cyclic heliothermal behaviour of the shallow, hypersaline Lake Hayward, Western Australia

    NASA Astrophysics Data System (ADS)

    Turner, Jeffrey V.; Rosen, Michael R.; Coshell, Lee; Woodbury, Robert J.

    2018-05-01

    Lake Hayward is one of only about 30 hypersaline lakes worldwide that is meromictic and heliothermal and as such behaves as a natural salt gradient solar pond. Lake Hayward acts as a local groundwater sink, resulting in seasonally variable hypersaline lake water with total dissolved solids (TDS) in the upper layer (mixolimnion) ranging between 56 kg m-3 and 207 kg m-3 and the deeper layer (monimolimnion) from 153 kg m-3 to 211 kg m-3. This is up to six times the salinity of seawater and thus has the highest salinity of all eleven lakes in the Yalgorup National Park lake system. A program of continuously recorded water temperature profiles has shown that salinity stratification initiated by direct rainfall onto the lake's surface and local runoff into the lake results in the onset of heliothermal conditions within hours of rainfall onset. The lake alternates between being fully mixed and becoming thermally and chemically stratified several times during the annual cycle, with the longest extended periods of heliothermal behaviour lasting 23 and 22 weeks in the winters of 1992 and 1993 respectively. The objective was to quantify the heat budgets of the cyclical heliothermal behaviour of Lake Hayward. During the period of temperature profile logging, the maximum recorded temperature of the monimolimnion was 42.6 °C at which time the temperature of the mixolimnion was 29.4 °C. The heat budget of two closed heliothermal cycles initiated by two rainfall events of 50 mm and 52 mm in 1993 were analysed. The cycles prevailed for 11 and 20 days respectively and the heat budget showed net heat accumulations of 34.2 MJ m-3 and 15.4 MJ m-3, respectively. The corresponding efficiencies of lake heat gain to incident solar energy were 0.17 and 0.18 respectively. Typically, artificial salinity gradient solar ponds (SGSP) have a solar radiation capture efficiencies ranging from 0.10 up to 0.30. Results from Lake Hayward have implications for comparative biogeochemistry and its characteristics should aid in identification of other hitherto unknown heliothermal lakes.

  1. Assessing factors affecting the thermal properties of a passive thermal refuge using three-dimensional hydrodynamic flow and transport modeling

    USGS Publications Warehouse

    Decker, Jeremy D.; Swain, Eric D.; Stith, Bradley M.; Langtimm, Catherine A.

    2013-01-01

    Everglades restoration activities may cause changes to temperature and salinity stratification at the Port of the Islands (POI) marina, which could affect its suitability as a cold weather refuge for manatees. To better understand how the Picayune Strand Restoration Project (PSRP) may alter this important resource in Collier County in southwestern Florida, the USGS has developed a three-dimensional hydrodynamic model for the marina and canal system at POI. Empirical data suggest that manatees aggregate at the site during winter because of thermal inversions that provide warmer water near the bottom that appears to only occur in the presence of salinity stratification. To study these phenomena, the environmental fluid dynamics code simulator was used to represent temperature and salinity transport within POI. Boundary inputs were generated using a larger two-dimensional model constructed with the flow and transport in a linked overland-aquifer density-dependent system simulator. Model results for a representative winter period match observed trends in salinity and temperature fluctuations and produce temperature inversions similar to observed values. Modified boundary conditions, representing proposed PSRP alterations, were also tested to examine the possible effect on the salinity stratification and temperature inversion within POI. Results show that during some periods, salinity stratification is reduced resulting in a subsequent reduction in temperature inversion compared with the existing conditions simulation. This may have an effect on POI’s suitability as a passive thermal refuge for manatees and other temperature-sensitive species. Additional testing was completed to determine the important physical relationships affecting POI’s suitability as a refuge.

  2. Warming and Inhibition of Salinization at the Ocean's Surface by Cyanobacteria

    NASA Astrophysics Data System (ADS)

    Wurl, O.; Bird, K.; Cunliffe, M.; Landing, W. M.; Miller, U.; Mustaffa, N. I. H.; Ribas-Ribas, M.; Witte, C.; Zappa, C. J.

    2018-05-01

    This paper describes high-resolution in situ observations of temperature and, for the first time, of salinity in the uppermost skin layer of the ocean, including the influence of large surface blooms of cyanobacteria on those skin properties. In the presence of the blooms, large anomalies of skin temperature and salinity of 0.95°C and -0.49 practical salinity unit were found, but a substantially cooler (-0.22°C) and saltier skin layer (0.19 practical salinity unit) was found in the absence of surface blooms. The results suggest that biologically controlled warming and inhibition of salinization of the ocean's surface occur. Less saline skin layers form during precipitation, but our observations also show that surface blooms of Trichodesmium sp. inhibit evaporation decreasing the salinity at the ocean's surface. This study has important implications in the assessment of precipitation over the ocean using remotely sensed salinity, but also for a better understanding of heat exchange and the hydrologic cycle on a regional scale.

  3. Quantification of Induced Hypothermia from Aseptic Scrub Applications during Rodent Surgery Preparation

    PubMed Central

    Skorupski, Anna M; Zhang, Jingyi; Ferguson, Danielle; Lawrence, Frank

    2017-01-01

    Laboratory mice (Mus musculus) are prone to develop hypothermia during anesthesia for surgery, thus potentially impeding anesthetic recovery, wound healing, and future health. The core body temperatures of isoflurane-anesthetized mice are influenced by the choice of supplemental heat sources; however, the contribution of various surgical scrubs on the body temperatures of mice under gas anesthesia has not been assessed. We sought to quantify the effect of using alcohol (70% isopropyl alcohol [IPA]) compared with saline to rinse away surgical scrub on the progression of hypothermia in anesthetized mice (n = 47). IPA, room-temperature saline, or warmed saline (37 °C) was combined with povidone–iodine and then assessed for effects on core (rectal) and surface (infrared) temperatures. Agents were applied to a 2×2-cm shaved abdominal area of mice maintained on a water-recirculating blanket (at 38 °C) under isoflurane anesthesia (1.5% to 2.0% at 0.6 L/min) for 30 min. Although all scrub regimens significantly decreased body temperature at the time of application, treatments that included povidone–iodine led to the coldest core temperatures, which persisted while mice were anesthetized. Compared with room-temperature saline and when combined with povidone–iodine, warming of saline did not ameliorate heat loss. IPA alone demonstrated the most dramatic cooling of both surface and core readings at application but generated an unanticipated warming (rebound) phase during which body temperatures equilibrated with those of controls within minutes of application. Although alcohol is inappropriate as a stand-alone agent for surgical skin preparation, IPA is a viable alternative to saline-based rinses in this context, and its use should be encouraged within institutional guidance for rodent surgical procedures without concern for prolonged hypothermia in mice. PMID:28903829

  4. Seasonal and weekly variability of Atlantic inflow into the northern North Sea

    NASA Astrophysics Data System (ADS)

    Sheehan, Peter; Berx, Bee; Gallego, Alejandro; Hall, Rob; Heywood, Karen

    2017-04-01

    Quantifying the variability of Atlantic inflow is necessary for managing the North Sea ecosystem and for producing accurate models for forecasting, for example, oil spill trajectories. The JONSIS hydrographic section (2.23°W to 0° at 59.28°N) crosses the path of the main inflow of Atlantic water into the northwestern North Sea. 122 occupations between 1989 and 2015 are examined to determine the annual cycle of thermohaline-driven volume transport into the North Sea. Thermohaline transport is at a minimum (0.1 Sv) during winter when it is driven by a horizontal salinity gradient across a zonal bottom front; it is at a maximum (0.35 Sv) in early autumn when it is driven by a horizontal temperature gradient that develops across the same front. The amplitude of the annual cycle of temperature-driven transport (0.15 Sv) is bigger than the amplitude of the annual cycle of salinity-driven transport (0.025 Sv). The annual cycles are approximately six months out of phase. Our quantitative results are the first to be based on a long-term dataset, and we advance previous understanding by identifying a salinity-driven flow in winter. Week-to-week variability of the Atlantic inflow is examined from ten Seaglider occupations of the JONSIS section in October and November 2013. Tidal ellipses produced from glider dive-average current observations are in good agreement with ellipses produced from tide model predictions. Total transport is derived by referencing geostrophic shear to dive-average-current observations once the tidal component of the flow has been removed. Total transport through the section during the deployment (0.5-1 Sv) is bigger than the thermohaline component (0.1-0.2 Sv), suggesting non-thermohaline forcings (e.g. wind forcing) are important at that time of year. Thermohaline transport during the glider deployment is in agreement with the annual cycle derived from the long-term observations. The addition of the glider-derived barotropic current permits a more accurate estimate of the transport than is possible from long-term hydrographic monitoring, and enables the separation of barotropic and depth-varying components. These results refine our understanding of the variability of Atlantic inflow into the North Sea on key timescales, and of the contribution of frontal flow to shelf sea circulation.

  5. How to Sustain Warm Northern High Latitudes during the Late Pliocene? Roles of CO2, Orbital Changes and Increased Mediterranean Salinity on Oceanic Circulation

    NASA Astrophysics Data System (ADS)

    Contoux, C.; Zhang, Z.; Li, C.; Nisancioglu, K. H.; Risebrobakken, B.

    2014-12-01

    Northern high latitudes are thought to have been especially warm during the late Pliocene (e.g. Dowsett et al., 2013). However, the mechanisms sustaining these warm high latitude conditions are debated, especially because warm high latitudes are not necessarily depending on a stronger AMOC (Zhang et al., 2013). On the global scale, several authors reported CO2 level variability during the Pliocene ranging from 280 ppm to 450 ppm (e.g. Badger et al., 2013), which could be linked with orbital variability. More regionally, an aridification of the Mediterranean region is thought to have increased the Mediterranean outflow during the same period (e.g. Khélifi et al., 2009). These different forcings must have impacted on salinity and temperature profiles in the North Atlantic/Arctic oceans, which are then recorded at the local scale in the proxies derived from sediment cores. In order to carefully interpret these proxies, it is necessary to understand the large scale dynamics of the region during that period and its potential maximum variability with CO2 and orbital changes as well as Mediterranean outflow increase. Using the NorESM-L coupled atmosphere ocean model, which has a refined oceanic grid in the Nordic Seas region, we investigate the roles of extreme CO2and orbital variability on the Atlantic and Arctic oceanic circulation. An additional test to higher salinity in the Mediterranean is carried out. This study is part of a larger project which aims at characterising the state of the Nordic Seas during the Pliocene, and includes multi-proxy reconstructions and sensitivity model studies. References Badger et al., 2013. High resolution alkenone palaeobarometry indicates relatively stable pCO2 during the Pliocene (3.3 - 2.8 Ma), Philosophical Transactions of the Royal Society A, 371, 20130094. Dowsett et al., 2013. Sea surface temperature of the mid-Piacenzian ocean: a data-model comparison, Nature Scientific Reports, 3, 2013, doi:10.1038/srep02013. Khélifi et al., 2009. A major and long term intensification of the Mediterranean outflow water, 3.5 - 3.3 Ma ago, Geology, 2009,37;811-814, doi: 10.1130/G30058A.1 Zhang, Z.-S. et al., 2013. Mid-pliocene Atlantic meridional overturning circulation not unlike modern, Clim. Past, 9, 1495--1504, doi:10.5194/cp-9-1495-2013.

  6. Distribution and significance of long-chain alkenones as salinity and temperature indicators in Spanish saline lake sediments

    NASA Astrophysics Data System (ADS)

    Pearson, Emma J.; Juggins, Steve; Farrimond, Paul

    2008-08-01

    We investigated relationships between sedimentary solvent-extractable long-chain alkenone (LCA) concentration and composition and environmental factors in a suite of endorheic lakes from inland Spain. LCAs were found in 14 of the 54 lakes examined, with concentrations comparable with those from previously published lacustrine settings. The composition of LCAs in our sites, however, contrast from the majority of those previously reported from lake environments; in our study the tri-unsaturated component is the most abundant component at most sites where LCAs are detected, and C 38:3 is the most abundant LCA in the majority of sites. LCA occurrence appears to be restricted to brackish-hypersaline sites and C 37 LCAs are absent above a salinity of ˜40 g L -1 suggesting a salinity control on LCA-producing organisms in these sites. Low concentrations of C 37 LCA components means U37k and U37k temperature indices are generally not applicable. Instead we find good relationships between C 38 components and (in particular mean autumn) temperature and the strongest LCA-temperature relationships are found when using a combination of all C 37 and C 38 compounds. We propose a new alkenone temperature index for lakes with elevated salinity and where the C 38 components dominate the LCA distributions. This is expressed as U3738k=0.0464×MAutAT-0.867 ( r2 = 0.80, n = 13). In this paper, we provide the first account of sedimentary LCA distributions from lakes in inland Spain, extending the range of environments within which these compounds have been found and highlighting their significance as indicators of both salinity and temperature in saline, endorheic lake environments. This has important implications for extending the potential role of LCAs as palaeoclimatic indicators in lacustrine environments.

  7. Soil salinity assessment through satellite thermography for different irrigated and rainfed crops

    NASA Astrophysics Data System (ADS)

    Ivushkin, Konstantin; Bartholomeus, Harm; Bregt, Arnold K.; Pulatov, Alim; Bui, Elisabeth N.; Wilford, John

    2018-06-01

    The use of canopy thermography is an innovative approach for salinity stress detection in plants. But its applicability for landscape scale studies using satellite sensors is still not well investigated. The aim of this research is to test the satellite thermography soil salinity assessment approach on a study area with different crops, grown both in irrigated and rainfed conditions, to evaluate whether the approach has general applicability. Four study areas in four different states of Australia were selected to give broad representation of different crops cultivated under irrigated and rainfed conditions. The soil salinity map was prepared by the staff of Geoscience Australia and CSIRO Land and Water and it is based on thorough soil sampling together with environmental modelling. Remote sensing data was captured by the Landsat 5 TM satellite. In the analysis we used vegetation indices and brightness temperature as an indicator for canopy temperature. Applying analysis of variance and time series we have investigated the applicability of satellite remote sensing of canopy temperature as an approach of soil salinity assessment for different crops grown under irrigated and rainfed conditions. We concluded that in all cases average canopy temperatures were significantly correlated with soil salinity of the area. This relation is valid for all investigated crops, grown both irrigated and rainfed. Nevertheless, crop type does influence the strength of the relations. In our case cotton shows only minor temperature difference compared to other vegetation classes. The strongest relations between canopy temperature and soil salinity were observed at the moment of a maximum green biomass of the crops which is thus considered to be the best time for application of the approach.

  8. South Asian summer monsoon variability during the last ˜54 kyrs inferred from surface water salinity and river runoff proxies

    NASA Astrophysics Data System (ADS)

    Gebregiorgis, D.; Hathorne, E. C.; Sijinkumar, A. V.; Nath, B. Nagender; Nürnberg, D.; Frank, M.

    2016-04-01

    The past variability of the South Asian Monsoon is mostly known from records of wind strength over the Arabian Sea while high-resolution paleorecords from regions of strong monsoon precipitation are still lacking. Here, we present records of past monsoon variability obtained from sediment core SK 168/GC-1, which was collected at the Alcock Seamount complex in the Andaman Sea. We utilize the ecological habitats of different planktic foraminiferal species to reconstruct freshwater-induced stratification based on paired Mg/Ca and δ18O analyses and to estimate seawater δ18O (δ18Osw). The difference between surface and thermocline temperatures (ΔT) and δ18Osw (Δδ18Osw) is used to investigate changes in upper ocean stratification. Additionally, Ba/Ca in G. sacculifer tests is used as a direct proxy for riverine runoff and sea surface salinity (SSS) changes related to monsoon precipitation on land. Our Δδ18Osw time series reveals that upper ocean salinity stratification did not change significantly throughout the last glacial suggesting little influence of NH insolation changes. The strongest increase in temperature gradients between the mixed layer and the thermocline is recorded for the mid-Holocene and indicate the presence of a significantly shallower thermocline. In line with previous work, the δ18Osw and Ba/Ca records demonstrate that monsoon climate during the LGM was characterized by a significantly weaker southwest monsoon circulation and strongly reduced runoff. Based on our data the South Asian Summer Monsoon (SAM) over the Irrawaddyy strengthened gradually after the LGM beginning at ∼18 ka. This is some 3 kyrs before an increase of the Ba/Ca record from the Arabian Sea and indicates that South Asian Monsoon climate dynamics are more complex than the simple N-S displacement of the ITCZ as generally described for other regions. Minimum δ18Osw values recorded during the mid-Holocene are in phase with Ba/Ca marking a stronger monsoon precipitation, which is consistent with model simulations.

  9. Reconstructing Tropical Southwest Pacific Climate Variability and Mean State Changes at Vanuatu during the Medieval Climate Anomaly using Geochemical Proxies from Corals

    NASA Astrophysics Data System (ADS)

    Lawman, A. E.; Quinn, T. M.; Partin, J. W.; Taylor, F. W.; Thirumalai, K.; WU, C. C.; Shen, C. C.

    2017-12-01

    The Medieval Climate Anomaly (MCA: 950-1250 CE) is identified as a period during the last 2 millennia with Northern Hemisphere surface temperatures similar to the present. However, our understanding of tropical climate variability during the MCA is poorly constrained due to a lack of sub-annually resolved proxy records. We investigate seasonal and interannual variability during the MCA using geochemical records developed from two well preserved Porites lutea fossilized corals from the tropical southwest Pacific (Tasmaloum, Vanuatu; 15.6°S, 166.9°E). Absolute U/Th dates of 1127.1 ± 2.7 CE and 1105.1 ± 3.0 CE indicate that the selected fossil corals lived during the MCA. We use paired coral Sr/Ca and δ18O measurements to reconstruct sea surface temperature (SST) and the δ18O of seawater (a proxy for salinity). To provide context for the fossil coral records and test whether the mean state and climate variability at Vanuatu during the MCA is similar to the modern climate, our analysis also incorporates two modern coral records from Sabine Bank (15.9°S, 166.0°E) and Malo Channel (15.7°S, 167.2°E), Vanuatu for comparison. We quantify the uncertainty in our modern and fossil coral SST estimates via replication with multiple, overlapping coral records. Both the modern and fossil corals reproduce their respective mean SST value over their common period of overlap, which is 25 years in both cases. Based on over 100 years of monthly Sr/Ca data from each time period, we find that SSTs at Vanuatu during the MCA are 1.3 ± 0.7°C cooler relative to the modern. We also find that the median amplitude of the annual cycle is 0.8 ± 0.3°C larger during the MCA relative to the modern. Multiple data analysis techniques, including the standard deviation and the difference between the 95th and 5th percentiles of the annual SST cycle estimates, also show that the MCA has greater annual SST variability relative to the modern. Stable isotope data acquisition is ongoing, and when complete we will have a suite of records of paired coral Sr/Ca and δ18O measurements. We will apply similar statistical techniques developed for the Sr/Ca-SST record to also investigate variability in the δ18O of seawater (salinity). Modern salinity variability at Vanuatu arises due to hydrological anomalies associated with the El Niño-Southern Oscillation in the tropical Pacific.

  10. A computer model of long-term salinity in San Francisco Bay: Sensitivity to mixing and inflows

    USGS Publications Warehouse

    Uncles, R.J.; Peterson, D.H.

    1995-01-01

    A two-level model of the residual circulation and tidally-averaged salinity in San Francisco Bay has been developed in order to interpret long-term (days to decades) salinity variability in the Bay. Applications of the model to biogeochemical studies are also envisaged. The model has been used to simulate daily-averaged salinity in the upper and lower levels of a 51-segment discretization of the Bay over the 22-y period 1967–1988. Observed, monthly-averaged surface salinity data and monthly averages of the daily-simulated salinity are in reasonable agreement, both near the Golden Gate and in the upper reaches, close to the delta. Agreement is less satisfactory in the central reaches of North Bay, in the vicinity of Carquinez Strait. Comparison of daily-averaged data at Station 5 (Pittsburg, in the upper North Bay) with modeled data indicates close agreement with a correlation coefficient of 0.97 for the 4110 daily values. The model successfully simulates the marked seasonal variability in salinity as well as the effects of rapidly changing freshwater inflows. Salinity variability is driven primarily by freshwater inflow. The sensitivity of the modeled salinity to variations in the longitudinal mixing coefficients is investigated. The modeled salinity is relatively insensitive to the calibration factor for vertical mixing and relatively sensitive to the calibration factor for longitudinal mixing. The optimum value of the longitudinal calibration factor is 1.1, compared with the physically-based value of 1.0. Linear time-series analysis indicates that the observed and dynamically-modeled salinity-inflow responses are in good agreement in the lower reaches of the Bay.

  11. Absolute Salinity, ''Density Salinity'' and the Reference-Composition Salinity Scale: present and future use in the seawater standard TEOS-10

    NASA Astrophysics Data System (ADS)

    Wright, D. G.; Pawlowicz, R.; McDougall, T. J.; Feistel, R.; Marion, G. M.

    2011-01-01

    Salinity plays a key role in the determination of the thermodynamic properties of seawater and the new TEOS-101 standard provides a consistent and effective approach to dealing with relationships between salinity and these thermodynamic properties. However, there are a number of practical issues that arise in the application of TEOS-10, both in terms of accuracy and scope, including its use in the reduction of field data and in numerical models. First, in the TEOS-10 formulation for IAPSO Standard Seawater, the Gibbs function takes the Reference Salinity as its salinity argument, denoted SR, which provides a measure of the mass fraction of dissolved material in solution based on the Reference Composition approximation for Standard Seawater. We discuss uncertainties in both the Reference Composition and the Reference-Composition Salinity Scale on which Reference Salinity is reported. The Reference Composition provides a much-needed fixed benchmark but modified reference states will inevitably be required to improve the representation of Standard Seawater for some studies. However, the Reference-Composition Salinity Scale should remain unaltered to provide a stable representation of salinity for use with the TEOS-10 Gibbs function and in climate change detection studies. Second, when composition anomalies are present in seawater, no single salinity variable can fully represent the influence of dissolved material on the thermodynamic properties of seawater. We consider three distinct representations of salinity that have been used in previous studies and discuss the connections and distinctions between them. One of these variables provides the most accurate representation of density possible as well as improvements over Reference Salinity for the determination of other thermodynamic properties. It is referred to as "Density Salinity" and is represented by the symbol SAdens; it stands out as the most appropriate representation of salinity for use in dynamical physical oceanography. The other two salinity variables provide alternative measures of the mass fraction of dissolved material in seawater. "Solution Salinity", denoted SAsoln, is the most obvious extension of Reference Salinity to allow for composition anomalies; it provides a direct estimate of the mass fraction of dissolved material in solution. "Added-Mass Salinity", denoted SAadd, is motivated by a method used to report laboratory experiments; it represents the component of dissolved material added to Standard Seawater in terms of the mass of material before it enters solution. We also discuss a constructed conservative variable referred to as "Preformed Salinity", denoted S∗, which will be useful in process-oriented numerical modelling studies. Finally, a conceptual framework for the incorporation of composition anomalies in numerical models is presented that builds from studies in which composition anomalies are simply ignored up to studies in which the influences of composition anomalies are accounted for using the results of biogeochemical models. 1TEOS-10: international Thermodynamic Equation of Seawater 2010, http://www.teos-10.org/.

  12. Absolute Salinity, "Density Salinity" and the Reference-Composition Salinity Scale: present and future use in the seawater standard TEOS-10

    NASA Astrophysics Data System (ADS)

    Wright, D. G.; Pawlowicz, R.; McDougall, T. J.; Feistel, R.; Marion, G. M.

    2010-08-01

    Salinity plays a key role in the determination of the thermodynamic properties of seawater and the new TEOS-101 standard provides a consistent and effective approach to dealing with relationships between salinity and these thermodynamic properties. However, there are a number of practical issues that arise in the application of TEOS-10, both in terms of accuracy and scope, including its use in the reduction of field data and in numerical models. First, in the TEOS-10 formulation for IAPSO Standard Seawater, the Gibbs function takes the Reference Salinity as its salinity argument, denoted SR, which provides a measure of the mass fraction of dissolved material in solution based on the Reference Composition approximation for Standard Seawater. We discuss uncertainties in both the Reference Composition and the Reference-Composition Salinity Scale on which Reference Salinity is reported. The Reference Composition provides a much-needed fixed benchmark but modified reference states will inevitably be required to improve the representation of Standard Seawater for some studies. The Reference-Composition Salinity Scale should remain unaltered to provide a stable representation of salinity for use with the TEOS-10 Gibbs function and in climate change detection studies. Second, when composition anomalies are present in seawater, no single salinity variable can fully represent the influence of dissolved material on the thermodynamic properties of seawater. We consider three distinct representations of salinity that have been used in previous studies and discuss the connections and distinctions between them. One of these variables provides the most accurate representation of density possible as well as improvements over Reference Salinity for the determination of other thermodynamic properties. It is referred to as "Density Salinity" and is represented by the symbol SAdens; it stands out as the most appropriate representation of salinity for use in dynamical physical oceanography. The other two salinity variables provide alternative measures of the mass fraction of dissolved material in seawater. "Solution Salinity", denoted SAsoln, is the most obvious extension of Reference Salinity to allow for composition anomalies; it provides a direct estimate of the mass fraction of dissolved material in solution. "Added-Mass Salinity", denoted SAadd, is motivated by a method used to report laboratory experiments; it represents the component of dissolved material added to Standard Seawater in terms of the mass of material before it enters solution. We also discuss a constructed conservative variable referred to as "Preformed Salinity", denoted S*, which will be useful in process-oriented numerical modelling studies. Finally, a conceptual framework for the incorporation of composition anomalies in numerical models is presented that builds from studies in which composition anomalies are simply ignored up to studies in which the influences of composition anomalies are accounted for using the results of biogeochemical models. 1TEOS-10: international thermodynamic equation of seawater 2010, http://www.teos-10.org.

  13. Solar forcing of Florida Straits surface salinity during the early Holocene

    NASA Astrophysics Data System (ADS)

    Schmidt, Matthew W.; Weinlein, William A.; Marcantonio, Franco; Lynch-Stieglitz, Jean

    2012-09-01

    Previous studies showed that sea surface salinity (SSS) in the Florida Straits as well as Florida Current transport covaried with changes in North Atlantic climate over the past two millennia. However, little is known about earlier Holocene hydrographic variability in the Florida Straits. Here, we combine Mg/Ca-paleothermometry and stable oxygen isotope measurements on the planktonic foraminifera Globigerinoides ruber (white variety) from Florida Straits sediment core KNR166-2 JPC 51 (24° 24.70' N, 83° 13.14' W, 198 m deep) to reconstruct a high-resolution (˜25 yr/sample) early to mid Holocene record of sea surface temperature and δ18OSW (a proxy for SSS) variability. After removing the influence of global δ18OSW change due to continental ice volume variability, we find that early Holocene SSS enrichments are associated with increased evaporation/precipitation ratios in the Florida Straits during periods of reduced solar forcing, increased ice rafted debris in the North Atlantic and the development of more permanent El Niño-like conditions in the eastern equatorial Pacific. When considered with previous high-resolution reconstructions of Holocene tropical atmospheric circulation changes, our results provide evidence that variations in solar forcing over the early Holocene had a significant impact on the global tropical hydrologic cycle.

  14. Laurentide Ice Sheet Meltwater Geochemistry During the MIS 3 Warm Phase from Single-Shell Trace Element and Isotope Measurements

    NASA Astrophysics Data System (ADS)

    Branson, O.; Vetter, L.; Fehrenbacher, J. S.; Spero, H. J.

    2016-12-01

    The geochemical variability between individual foraminifera within single core intervals records both palaeo-oecanographic conditions and ecology. Within the biological context of foraminiferal species, this population variability may be interpreted to provide unparalleled paleoenvironmental information. For example, coupled trace element and stable isotope analyses of single O. universa offer a powerful tool for reconstructing the δ18O of Laurentide Ice Sheet (LIS) meltwater, by calculating the intercept between temperature-corrected δ18O water and Ba/Ca salinity estimates (Vetter et al., in review). This offers valuable insights into the dynamics of ice sheet melting at the end of the last glacial maximum. Here we apply similar coupled single-shell laser ablation (LA-ICP-MS) and isotope ratio mass spectrometry (IRMS) techniques to explore the δ18O of Laurentide meltwater during H4 and bracketing intervals. The application of these methods to down-core samples requires the development of robust LA-ICP-MS data processing techniques to identify primary signals within Ba contaminated samples, and careful consideration of palaeo Ba/Ca-salinity relationships. Our analyses offer a significant advance in systematic LA-ICP-MS data processing methods, offer constraints on the variability of riverine Ba fluxes, and ultimately provide δ18O estimates of LIS meltwater during H4.

  15. Fine-Scale Variability in Temperature, Salinity, and pH in the Upper-Ocean and the Effects on Acoustic Transmission Loss in the Western Arctic Ocean.

    DTIC Science & Technology

    2010-03-01

    28  V.  ANALYTIC METHOD AND DATA ANALYSIS ..................................................29  A.  DATA PROCESSING ...your help getting ready for the Arctic and with the data processing back at NPS. Thank you to Professor John Colosi and LCDR Ben Jones for your help...light. Acoustic energy, however, can propagate for very long ranges (Kinsler et al. 2000). This energy can be passively received and processed , and

  16. Fifty Years of Ocean Observations in the Pacific Northeast

    NASA Astrophysics Data System (ADS)

    Whitney, Frank; Tortell, Philippe

    2006-12-01

    Ocean Station Papa, at 50°N, 145°W in the Alaska Gyre (Figure 1), started as a weather station in the 1940s. In 1956, oceanographers began collecting a suite of standard measurements from the cool subarctic waters at Ocean Station Papa (OSP), including temperature, salinity, oxygen, and plankton. Three years later, a series of sampling stations was added along the 1400-kilometer `Line P' from the Canadian coast to OSP, to aid in understanding ocean variability.

  17. A Compilation of Articles Reporting Research Sponsored by the Office of Naval Research

    DTIC Science & Technology

    1980-07-01

    i-A /VGR P Technical Reports Nos 378,379,380,381 and 382 A COMPILATION OF ARTICLES REPORTING RESEARCH SPONSORED BY THE OFFICE OF NAVAL RESEARCH...SPONSORED BY ( THE OFFICE OF NAVAL RESEARCH#’ "I ZIP Office o ---- Contract JINY(601-Z.7-OO502IProject N 1 __ terge C, Anderson Associate Chairman for...SPONSORED BY THE OFFICE OF NAVAL RESEARCH TECHNICAL REPORT NO. 378 The Depth Variability of Meridional Gradients of Temperature, Salinity and Sound

  18. Effects of Climate Change on Temperature and Salinity in the Yaquina Estuary, Oregon (USA)

    EPA Science Inventory

    As part of a larger study to examine the effect of climate change (CC) on estuarine resources, we simulated the effect of rising sea level, alterations in river discharge, and increasing atmospheric temperatures on water properties (temperature and salinity) in the Yaquina Estuar...

  19. Climate variability from the Florida Bay sedimentary record: Possible teleconnections to ENSO, PNA and CNP

    USGS Publications Warehouse

    Cronin, T. M.; Dwyer, Gary S.; Schwede, S.B.; Vann, C.D.; Dowsett, H.

    2002-01-01

    We analyzed decadal and interannual climate variability in South Florida since 1880 using geochemical and faunal paleosalinity indicators from isotopically dated sediment cores at Russell Bank in Florida Bay (FB). Using the relative abundance of 2 ostracode species and the Mg/Ca ratios in Loxoconcha matagordensis shells to reconstruct paleosalinity, we found evidence for cyclic oscillations in the salinity of central FB. During this time salinity fluctuated from as low as ~18 parts per thousand (ppt) to as high as ~57 ppt. Time series analyses suggest, in addition to a 5.6 yr Mg/Ca based salinity periodicity, there are 3 other modes of variability in paleosalinity indicators: 6-7, 8-9, and 13-14 yr periods which occur in all paleo-proxies. To search for factors that might cause salinity to vary in FB, we compared the Russell Bank paleosalinity record to South Florida winter rainfall, the Southern Oscillation Index (SOI), winter North Atlantic Oscillation (NAO), and the winter Pacific North American (PNA) index, and a surrogate for the PNA in the winter season, the Central North Pacific (CNP) index. SOI and PNA/CNP appear to be associated with South Florida winter precipitation. Time series analyses of SOI and winter rainfall for the period 1910-1999 suggest ~5, 6-7, 8-9 and 13-14 yr cycles. The 6-7 yr and 13-14 yr cycles correspond to those observed in the faunal and geochemical time series from Russell Bank. The main periods of the CNP index are 5-6 and 13-15 yr, which are similar to those observed in FB paleosalinity. Cross-spectral analyses show that winter rainfall and salinity are coherent at 5.6 yr with a salinity lag of ~1.6 mo. These results suggest that regional rainfall variability influences FB salinity over interannual and decadal timescales and that much of this variability may have its origin in climate variability in the Pacific Ocean/atmosphere system.

  20. Effects of Sarin on the Operant Behavior of Guinea Pigs

    DTIC Science & Technology

    2005-07-19

    a after behavioral sessions had ended. The first collection time modified autoshaping procedure (concurrent variable-time was after the final saline...after behavioral sessions had ended. The first collection time modified autoshaping procedure (concurrent variable-time was after the final saline

  1. Cetacean distributions relative to ocean processes in the northern California Current System

    NASA Astrophysics Data System (ADS)

    Tynan, Cynthia T.; Ainley, David G.; Barth, John A.; Cowles, Timothy J.; Pierce, Stephen D.; Spear, Larry B.

    2005-01-01

    Associations between cetacean distributions, oceanographic features, and bioacoustic backscatter were examined during two process cruises in the northern California Current System (CCS) during late spring and summer 2000. Line-transect surveys of cetaceans were conducted across the shelf and slope, out to 150 km offshore from Newport, Oregon (44.6°N) to Crescent City, California (41.9°N), in conjunction with multidisciplinary mesoscale and fine-scale surveys of ocean and ecosystem structure. Occurrence patterns (presence/absence) of cetaceans were compared with hydrographic and ecological variables (e.g., sea surface salinity, sea surface temperature, thermocline depth, halocline depth, chlorophyll maximum, distance to the center of the equatorward jet, distance to the shoreward edge of the upwelling front, and acoustic backscatter at 38, 120, 200 and 420 kHz) derived from a towed, undulating array and a bioacoustic system. Using a multiple logistic regression model, 60.2% and 94.4% of the variation in occurrence patterns of humpback whales Megaptera novaeangliae during late spring and summer, respectively, were explained. Sea surface temperature, depth, and distance to the alongshore upwelling front were the most important environmental variables during June, when humpbacks occurred over the slope (200-2000 m). During August, when humpbacks concentrated over a submarine bank (Heceta Bank) and off Cape Blanco, sea surface salinity was the most important variable, followed by latitude and depth. Humpbacks did not occur in the lowest salinity water of the Columbia River plume. For harbor porpoise Phocoena phocoena, the model explained 79.2% and 70.1% of the variation in their occurrence patterns during June and August, respectively. During spring, latitude, sea surface salinity, and thermocline gradient were the most important predictors. During summer, latitude and distance to the inshore edge of the upwelling front were the most important variables. Typically a coastal species, harbor porpoises extended their distribution farther offshore at Heceta Bank and at Cape Blanco, where they were associated with the higher chlorophyll concentrations in these regions. Pacific white-sided dolphin Lagenorhynchus obliquidens was the most numerous small cetacean in early June, but was rare during August. The model explained 44.5% of the variation in their occurrence pattern, which was best described by distance to the upwelling front and acoustic backscatter at 38 kHz. The model of the occurrence pattern of Dall's porpoise Phocoenoides dalli was more successful when mesoscale variability in the CCS was higher during summer. Thus, the responses of cetaceans to biophysical features and upwelling processes in the northern CCS were both seasonally and spatially specific. Heceta Bank and associated flow-topography interactions were very important to a cascade of trophic dynamics that ultimately influenced the distribution of foraging cetaceans. The higher productivity associated with upwelling near Cape Blanco also had a strong influence on the distribution of cetaceans.

  2. Evaluation of tropical Pacific observing systems using NCEP and GFDL ocean data assimilation systems

    NASA Astrophysics Data System (ADS)

    Xue, Yan; Wen, Caihong; Yang, Xiaosong; Behringer, David; Kumar, Arun; Vecchi, Gabriel; Rosati, Anthony; Gudgel, Rich

    2017-08-01

    The TAO/TRITON array is the cornerstone of the tropical Pacific and ENSO observing system. Motivated by the recent rapid decline of the TAO/TRITON array, the potential utility of TAO/TRITON was assessed for ENSO monitoring and prediction. The analysis focused on the period when observations from Argo floats were also available. We coordinated observing system experiments (OSEs) using the global ocean data assimilation system (GODAS) from the National Centers for Environmental Prediction and the ensemble coupled data assimilation (ECDA) from the Geophysical Fluid Dynamics Laboratory for the period 2004-2011. Four OSE simulations were conducted with inclusion of different subsets of in situ profiles: all profiles (XBT, moorings, Argo), all except the moorings, all except the Argo and no profiles. For evaluation of the OSE simulations, we examined the mean bias, standard deviation difference, root-mean-square difference (RMSD) and anomaly correlation against observations and objective analyses. Without assimilation of in situ observations, both GODAS and ECDA had large mean biases and RMSD in all variables. Assimilation of all in situ data significantly reduced mean biases and RMSD in all variables except zonal current at the equator. For GODAS, the mooring data is critical in constraining temperature in the eastern and northwestern tropical Pacific, while for ECDA both the mooring and Argo data is needed in constraining temperature in the western tropical Pacific. The Argo data is critical in constraining temperature in off-equatorial regions for both GODAS and ECDA. For constraining salinity, sea surface height and surface current analysis, the influence of Argo data was more pronounced. In addition, the salinity data from the TRITON buoys played an important role in constraining salinity in the western Pacific. GODAS was more sensitive to withholding Argo data in off-equatorial regions than ECDA because it relied on local observations to correct model biases and there were few XBT profiles in those regions. The results suggest that multiple ocean data assimilation systems should be used to assess sensitivity of ocean analyses to changes in the distribution of ocean observations to get more robust results that can guide the design of future tropical Pacific observing systems.

  3. Seasonal spreading of the Persian Gulf Water mass in the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Prasad, T. G.; Ikeda, M.; Kumar, S. Prasanna

    2001-08-01

    The characteristics of the subsurface salinity maximum associated with the Persian Gulf Water mass (PGW) are used to quantify the spreading and mixing of PGW in the thermocline of the Arabian Sea based on a bimonthly climatology of temperature and salinity. Examination of the seasonal cycles of heat and freshwater fluxes in the Persian Gulf region indicates that PGW forms as a result of elevated evaporative cooling in conjunction with reduced insolation during winter. Maps are presented of the distributions of depth, salinity, and geostrophic flow on σθ = 26.5, which nearly coincides with the core of the PGW. After intense mixing in the Strait of Hormuz, the property fields suggest that warm (>17°C) and high-salinity (>36.2 psu) PGW enters the Arabian Sea to form a subsurface salinity extremum between 200 and 300 m. We have found variability in the distribution of PGW in the Arabian Sea associated with monsoonal changes in the Arabian Sea circulation. During the winter monsoon, there is southward spreading of PGW along the western boundary; during summer it is not present. Lateral mixing with low-salinity water from the Bay of Bengal in the region south of 10°N and along the west coast of India during winter accounts for changes in the characteristics of PGW along these paths. Associated with the Findlater Jet during summer, the entire thermohaline structure is vertically displaced along the coasts of Somalia and Arabia. Ekman convergence in the central Arabian Sea accounts for deepening of the PGW. Either lateral or vertical mixing would cause changes in PGW properties in these regions. During this time, PGW spreads predominantly southward along the central Arabian Sea, as indicated by a tongue of high salinity.

  4. Retention time generates short-term phytoplankton blooms in a shallow microtidal subtropical estuary

    NASA Astrophysics Data System (ADS)

    Odebrecht, Clarisse; Abreu, Paulo C.; Carstensen, Jacob

    2015-09-01

    In this study it was hypothesised that increasing water retention time promotes phytoplankton blooms in the shallow microtidal Patos Lagoon estuary (PLE). This hypothesis was tested using salinity variation as a proxy of water retention time and chlorophyll a for phytoplankton biomass. Submersible sensors fixed at 5 m depth near the mouth of PLE continuously measured water temperature, salinity and pigments fluorescence (calibrated to chlorophyll a) between March 2010 and 12th of December 2011, with some gaps. Salinity variations were used to separate alternating patterns of outflow of lagoon water (salinity <8; 46% of the time) and inflow of marine water (salinity >24; 35% of the time). The two transition phases represented a rapid change from lagoon water outflow to marine water inflow and a more gradually declining salinity between the dominating inflow and outflow conditions. During the latter of these, a significant chlorophyll a increase relative to that expected from a linear mixing relationship was observed at intermediate salinities (10-20). The increase in chlorophyll a was positively related to the duration of the prior coastal water inflow in the PLE. Moreover, chlorophyll a increase was significantly higher during austral spring-summer than autumn-winter, probably due to higher light and nutrient availability in the former. Moreover, the retention time process operating on time scales of days influences the long-term phytoplankton variability in this ecosystem. Comparing these results with monthly data from a nearby long-term water quality monitoring station (1993-2011) support the hypothesis that chlorophyll a accumulations occur after marine inflow events, whereas phytoplankton does not accumulate during high water outflow, when the water residence time is short. These results suggest that changing hydrological pattern is the most important mechanism underlying phytoplankton blooms in the PLE.

  5. Milrinone ameliorates cardiac mechanical dysfunction after hypothermia in an intact rat model.

    PubMed

    Dietrichs, Erik Sveberg; Kondratiev, Timofei; Tveita, Torkjel

    2014-12-01

    Rewarming from hypothermia is often complicated by cardiac dysfunction, characterized by substantial reduction in stroke volume. Previously we have reported that inotropic agents, working via cardiac β-receptor agonism may exert serious side effects when applied to treat cardiac contractile dysfunction during rewarming. In this study we tested whether Milrinone, a phosphodiesterase III inhibitor, is able to ameliorate such dysfunction when given during rewarming. A rat model designed for circulatory studies during experimental hypothermia with cooling to a core temperature of 15°C, stable hypothermia at this temperature for 3h and subsequent rewarming was used, with a total of 3 groups: (1) a normothermic group receiving Milrinone, (2) a hypothermic group receiving Milrinone the last hour of hypothermia and during rewarming, and (3) a hypothermic saline control group. Hemodynamic function was monitored using a conductance catheter introduced to the left ventricle. After rewarming from 15°C, stroke volume and cardiac output returned to within baseline values in Milrinone treated animals, while these variables were significantly reduced in saline controls. Milrinone ameliorated cardiac dysfunction during rewarming from 15°C. The present results suggest that at low core temperatures and during rewarming from such temperatures, pharmacologic efforts to support cardiovascular function is better achieved by substances preventing cyclic AMP breakdown rather than increasing its formation via β-receptor stimulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Interfacial tension measurement between CO2 and brines under high temperature and elevated pressure conditions

    NASA Astrophysics Data System (ADS)

    Li, X.; Boek, E. S.; Maitland, G. C.; Trusler, J. P. M.

    2012-04-01

    We have investigated the dependence of interfacial tension of (CO2 + brine) on temperature, pressure and salinity (including both salt type and molality) over the range of conditions applicable to CO2 storage in saline aquifers. The study covered a wide range of measurements of the interfacial tensions between carbon dioxide and (NaCl + KCl)(aq), CaCl2(aq), MgCl2(aq), Na2SO4(aq), KHCO3(aq), NaHCO3(aq) and two laboratory constructed brines with molality ranging from (0.3 to 5.0) mol·kg-1. The measurements were made at temperatures between (298 and 448) K at various pressures up to 50 MPa, using the pendant drop method in a high-pressure view cell filled with water-saturated CO2. The drop to be imaged was created by injecting brine from a high-pressure syringe pump into a capillary sealed through the top of the cell. The expanded uncertainties of the experimental state variables at 95 % confidence are +0.05 K in temperature and +70 kPa in pressure. For the interfacial tension, the overall expanded relative uncertainty at 95 % confidence was +1.6%. The experimental results show that interfacial tension for all the systems increases linearly with molality, indicating that relatively few measurements and simple interpolation procedures are adequate for describing this property accurately over wide ranges of conditions.

  7. Reduced Salinity Improves Marine Food Availability With Positive Feedbacks on pH in a Tidally-Dominated Estuary

    NASA Astrophysics Data System (ADS)

    Lowe, A. T.; Roberts, E. A.; Galloway, A. W. E.

    2016-02-01

    Coastal regions around the world are changing rapidly, generating many physiological stressors for marine organisms. Food availability, a major factor determining physiological condition of marine organisms, in these systems reflects the influence of biological and environmental factors, and will likely respond dramatically to long-term changes. Using observations of phytoplankton, detritus, and their corresponding fatty acids and stable isotopes of carbon, nitrogen and sulfur, we identified environmental drivers of pelagic food availability and quality along a salinity gradient in a large tidally influenced estuary (San Juan Archipelago, Salish Sea, USA). Variation in chlorophyll a (Chl a), biomarkers and environmental conditions exhibited a similar range at both tidal and seasonal scales, highlighting a tide-related mechanism controlling productivity that is important to consider for long-term monitoring. Multiple parameters of food availability were inversely and non-linearly correlated to salinity, such that availability of high-quality (based on abundance, essential fatty acid concentration and C:N) seston increased below a salinity threshold of 30. The increased marine productivity was associated with increased pH and dissolved oxygen (DO) at lower salinity. Based on this observation we predicted that a decrease of salinity to below the threshold would result in higher Chl a, temperature, DO and pH across a range of temporal and spatial scales, and tested the prediction with a meta-analysis of available data. At all scales, these variables showed significant and consistent increases related to the salinity threshold. This finding provides important context to the increased frequency of below-threshold salinity over the last 71 years in this region, suggesting greater food availability with positive feedbacks on DO and pH. Together, these findings indicate that many of the environmental factors predicted to increase physiological stress to benthic suspension feeders (e.g. decreased salinity) may simultaneously and paradoxically improve conditions for benthic organisms.

  8. Linking water and carbon cycles through salinity observed from space

    NASA Astrophysics Data System (ADS)

    Xie, X.; Liu, W. T.

    2017-12-01

    The association of ocean surface salinity in global hydrological cycle and climate change has been traditionally studied through the examination of its tendency and advection as manifestation of ocean's heat and water fluxes with the atmosphere. The variability of surface heat and water fluxes are linked to top of atmosphere radiation, whose imbalance is the main cause of global warming. Besides the link of salinity to greenhouse warming through water balance, this study will focus on the effect of changing salinity on carbon dioxide flux between the ocean and the atmosphere. We have built statistical models to estimate the partial pressure of carbon dioxide (pCO2) and ocean acidification (in terms of total alkalinity and pH) using spacebased data. PCO2 is a critical parameter governing ocean as source and sink of the accumulated greenhouse gas in the atmosphere. The exchange also causes ocean acidification, which is detrimental to marine lives and ecology. Before we had sufficient spacebased salinity measurements coincident with in situ pCO2 measurement, we trained our statistical models to use satellite sea surface temperature and chlorophyll, with one model using salinity climatology and the other without. We found significant differences between the two models in regions of strong water input through river discharge and surface water flux. The pCO2 output follows the seasonal salinity advection of the Amazon outflow. The seasonal salinity advection between Bay of Bengal and Arabian Sea are followed by change of pCO2 and total alkalinity. At shorter time scales, the signatures of rain associated with intraseasonal organized convection of summer monsoon can be detected. We have observed distribution agreement of among pCO2, surface salinity, and surface water flux for variation from a few days to a few years under the Pacific ITCZ; the agreement varies slightly with season and longitudes and the reason is under study.

  9. Production of consistent pain by intermittent infusion of sterile 5% hypertonic saline, followed by decrease of pain with cryotherapy.

    PubMed

    Long, Blaine C; Knight, Kenneth L; Hopkins, Ty; Parcell, Allen C; Feland, J Brent

    2012-08-01

    It is suggested that postinjury pain is difficult to examine; thus, investigators have developed experimental pain models. To minimize pain, cryotherapy (cryo) is applied, but reports on its effectiveness are limited. To investigate a pain model for the anterior knee and examine cryo in reducing the pain. Controlled laboratory study. Therapeutic modality laboratory. 30 physically active healthy male subjects who were free from any lower extremity orthopedic, neurological, cardiovascular, or endocrine pathologies. Perceived pain was measured every minute. Surface temperature was also assessed in the center of the patella and the popliteal fossa. There was a significant interaction between group and time (F68,864 = 3.0, P = .0001). At the first minute, there was no difference in pain between the 3 groups (saline/cryo = 4.80 ± 4.87 mm, saline/sham = 2.80 ± 3.55 mm, no saline/cryo = 4.00 ± 3.33 mm). During the first 5 min, pain increased from 4.80 ± 4.87 to 45.90 ± 21.17 mm in the saline/cryo group and from 2.80 ± 3.55 to 31.10 ± 20.25 mm in the saline/sham group. Pain did not change within the no-saline/cryo group, 4.00 ± 3.33 to 1.70 ± 1.70 mm. Pain for the saline/sham group remained constant for 17 min. Cryo decreased pain for 16 min in the saline/cryo group. There was no difference in preapplication surface temperature between or within each group. No change in temperature occurred within the saline/sham. Cooling and rewarming were similar in both cryo groups. Ambient temperature fluctuated less than 1°C during data collection. Intermittent infusion of sterile 5% hypertonic saline may be a useful experimental pain model in establishing a constant level of pain in a controlled laboratory setting. Cryotherapy decreased the induced anterior knee pain for 16 min.

  10. High-density genetic map and identification of QTLs for responses to temperature and salinity stresses in the model brown alga Ectocarpus

    PubMed Central

    Avia, Komlan; Coelho, Susana M.; Montecinos, Gabriel J.; Cormier, Alexandre; Lerck, Fiona; Mauger, Stéphane; Faugeron, Sylvain; Valero, Myriam; Cock, J. Mark; Boudry, Pierre

    2017-01-01

    Deciphering the genetic architecture of adaptation of brown algae to environmental stresses such as temperature and salinity is of evolutionary as well as of practical interest. The filamentous brown alga Ectocarpus sp. is a model for the brown algae and its genome has been sequenced. As sessile organisms, brown algae need to be capable of resisting the various abiotic stressors that act in the intertidal zone (e.g. osmotic pressure, temperature, salinity, UV radiation) and previous studies have shown that an important proportion of the expressed genes is regulated in response to hyposaline, hypersaline or oxidative stress conditions. Using the double digest RAD sequencing method, we constructed a dense genetic map with 3,588 SNP markers and identified 39 QTLs for growth-related traits and their plasticity under different temperature and salinity conditions (tolerance to high temperature and low salinity). GO enrichment tests within QTL intervals highlighted membrane transport processes such as ion transporters. Our study represents a significant step towards deciphering the genetic basis of adaptation of Ectocarpus sp. to stress conditions and provides a substantial resource to the increasing list of tools generated for the species. PMID:28256542

  11. Holocene oscillations in temperature and salinity of the surface subpolar North Atlantic.

    PubMed

    Thornalley, David J R; Elderfield, Harry; McCave, I Nick

    2009-02-05

    The Atlantic meridional overturning circulation (AMOC) transports warm salty surface waters to high latitudes, where they cool, sink and return southwards at depth. Through its attendant meridional heat transport, the AMOC helps maintain a warm northwestern European climate, and acts as a control on the global climate. Past climate fluctuations during the Holocene epoch ( approximately 11,700 years ago to the present) have been linked with changes in North Atlantic Ocean circulation. The behaviour of the surface flowing salty water that helped drive overturning during past climatic changes is, however, not well known. Here we investigate the temperature and salinity changes of a substantial surface inflow to a region of deep-water formation throughout the Holocene. We find that the inflow has undergone millennial-scale variations in temperature and salinity ( approximately 3.5 degrees C and approximately 1.5 practical salinity units, respectively) most probably controlled by subpolar gyre dynamics. The temperature and salinity variations correlate with previously reported periods of rapid climate change. The inflow becomes more saline during enhanced freshwater flux to the subpolar North Atlantic. Model studies predict a weakening of AMOC in response to enhanced Arctic freshwater fluxes, although the inflow can compensate on decadal timescales by becoming more saline. Our data suggest that such a negative feedback mechanism may have operated during past intervals of climate change.

  12. Effect of hypersaline cooling canals on aquifer salinization

    USGS Publications Warehouse

    Hughes, Joseph D.; Langevin, Christian D.; Brakefield-Goswami, Linzy

    2010-01-01

    The combined effect of salinity and temperature on density-driven convection was evaluated in this study for a large (28 km2) cooling canal system (CCS) at a thermoelectric power plant in south Florida, USA. A two-dimensional cross-section model was used to evaluate the effects of hydraulic heterogeneities, cooling canal salinity, heat transport, and cooling canal geometry on aquifer salinization and movement of the freshwater/saltwater interface. Four different hydraulic conductivity configurations, with values ranging over several orders of magnitude, were evaluated with the model. For all of the conditions evaluated, aquifer salinization was initiated by the formation of dense, hypersaline fingers that descended downward to the bottom of the 30-m thick aquifer. Saline fingers reached the aquifer bottom in times ranging from a few days to approximately 5 years for the lowest hydraulic conductivity case. Aquifer salinization continued after saline fingers reached the aquifer bottom and coalesced by lateral movement away from the site. Model results showed that aquifer salinization was most sensitive to aquifer heterogeneity, but was also sensitive to CCS salinity, temperature, and configuration.

  13. Effects of temperature and salinity on light scattering by water

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodong; Hu, Lianbo

    2010-04-01

    A theoretical model on light scattering by water was developed from the thermodynamic principles and was used to evaluate the effects of temperature and salinity. The results agreed with the measurements by Morel within 1%. The scattering increases with salinity in a non-linear manner and the empirical linear model underestimate the scattering by seawater for S < 40 psu. Seawater also exhibits an 'anomalous' scattering behavior with a minimum occurring at 24.64 °C for pure water and this minimum increases with the salinity, reaching 27.49 °C at 40 psu.

  14. A Comparison of the Pac-X Trans-Pacific Wave Glider Data and Satellite Data (MODIS, Aquarius, TRMM and VIIRS)

    PubMed Central

    Villareal, Tracy A.; Wilson, Cara

    2014-01-01

    Four wave-propelled autonomous vehicles (Wave Gliders) instrumented with a variety of oceanographic and meteorological sensors were launched from San Francisco, CA in November 2011 for a trans-Pacific (Pac-X) voyage to test platform endurance. Two arrived in Australia, one in Dec 2012 and one in February 2013, while the two destined for Japan both ran into technical difficulties and did not arrive at their destination. The gliders were all equipped with sensors to measure temperature, salinity, turbidity, oxygen, and both chlorophyll and oil fluorescence. Here we conduct an initial assessment of the data set, noting necessary quality control steps and instrument utility. We conduct a validation of the Pac-X dataset by comparing the glider data to equivalent, or near-equivalent, satellite measurements. Sea surface temperature and salinity compared well to satellite measurements. Chl fluorescence from the gliders was more poorly correlated, with substantial between glider variability. Both turbidity and oil CDOM sensors were compromised to some degree by interfering processes. The well-known diel cycle in chlorophyll fluorescence was observed suggesting that mapping physiological data over large scales is possible. The gliders captured the Pacific Ocean’s major oceanographic features including the increased chlorophyll biomass of the California Current and equatorial upwelling. A comparison of satellite sea surface salinity (Aquarius) and glider-measured salinity revealed thin low salinity lenses in the southwestern Pacific Ocean. One glider survived a direct passage through a tropical cyclone. Two gliders traversed an open ocean phytoplankton bloom; extensive spiking in the chlorophyll fluorescence data is consistent with aggregation and highlights another potential future use for the gliders. On long missions, redundant instrumentation would aid in interpreting unusual data streams, as well as a means to periodically image the sensor heads. Instrument placement is critical to minimize bubble-related problems in the data. PMID:24658053

  15. A comparison of the Pac-X trans-Pacific Wave Glider data and satellite data (MODIS, Aquarius, TRMM and VIIRS).

    PubMed

    Villareal, Tracy A; Wilson, Cara

    2014-01-01

    Four wave-propelled autonomous vehicles (Wave Gliders) instrumented with a variety of oceanographic and meteorological sensors were launched from San Francisco, CA in November 2011 for a trans-Pacific (Pac-X) voyage to test platform endurance. Two arrived in Australia, one in Dec 2012 and one in February 2013, while the two destined for Japan both ran into technical difficulties and did not arrive at their destination. The gliders were all equipped with sensors to measure temperature, salinity, turbidity, oxygen, and both chlorophyll and oil fluorescence. Here we conduct an initial assessment of the data set, noting necessary quality control steps and instrument utility. We conduct a validation of the Pac-X dataset by comparing the glider data to equivalent, or near-equivalent, satellite measurements. Sea surface temperature and salinity compared well to satellite measurements. Chl fluorescence from the gliders was more poorly correlated, with substantial between glider variability. Both turbidity and oil CDOM sensors were compromised to some degree by interfering processes. The well-known diel cycle in chlorophyll fluorescence was observed suggesting that mapping physiological data over large scales is possible. The gliders captured the Pacific Ocean's major oceanographic features including the increased chlorophyll biomass of the California Current and equatorial upwelling. A comparison of satellite sea surface salinity (Aquarius) and glider-measured salinity revealed thin low salinity lenses in the southwestern Pacific Ocean. One glider survived a direct passage through a tropical cyclone. Two gliders traversed an open ocean phytoplankton bloom; extensive spiking in the chlorophyll fluorescence data is consistent with aggregation and highlights another potential future use for the gliders. On long missions, redundant instrumentation would aid in interpreting unusual data streams, as well as a means to periodically image the sensor heads. Instrument placement is critical to minimize bubble-related problems in the data.

  16. Role of the Southwest Tropical Indian Ocean on the Modulation of Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Burns, J. M.; Bulusu, S.

    2016-02-01

    The Seychelles-Chagos Thermocline Ridge (SCTR), located in the Indian Ocean and bound by 55°E-65°E and 5°S-12°S, is a key region for air-sea interaction. This feature inhabits one of the seven ocean basins where tropical cyclones regularly form and is unique in that the variability of the subsurface can influence cyclogenesis. Tropical cyclone days for this region span from November through April, with peaks in the months of January and February. The influence of thermocline variation is particularly strong during the months of December through May and it is known that a high correlation exists between the depth of the thermocline and sea surface temperature (key ingredient for cyclogenesis). Past research provides evidence that more tropical cyclone days are observed in Southwest Tropical Indian Ocean (SWTIO) during austral summers with a deep thermocline ridge than in austral summers when a shallow thermocline ridge exists. The formation and thickness of the Barrier layer (BL) have also been shown to impact tropical cyclones in this region. BL formation is an important parameter for surface heat exchange. The amount of salt in the boundary layer may also effect heat exchange and thus cyclones. Other ocean basins have verified that salt-stratified barrier layers influence the intensification of tropical cyclones, however, the role that salinity in SWTIO plays in the modulation of tropical cycles has still yet to be explored. This study further explores how the dynamic properties of the SCTR influence the modulation of cyclones. Primarily Argo observations of salinity and temperature along with Soil Moisture Ocean Salinity (SMOS) and Aquarius salinity, and Hybrid Coordinate Ocean Model (HYCOM) simulations are used to examine this influence of the BL and salinity on cyclone formation and intensity in this region. This study is progressed with a particular focus on the austral summer of 2012/2013 when seven tropical cyclones developed in the region.

  17. Statistical properties and time-frequency analysis of temperature, salinity and turbidity measured by the MAREL Carnot station in the coastal waters of Boulogne-sur-Mer (France)

    NASA Astrophysics Data System (ADS)

    Kbaier Ben Ismail, Dhouha; Lazure, Pascal; Puillat, Ingrid

    2016-10-01

    In marine sciences, many fields display high variability over a large range of spatial and temporal scales, from seconds to thousands of years. The longer recorded time series, with an increasing sampling frequency, in this field are often nonlinear, nonstationary, multiscale and noisy. Their analysis faces new challenges and thus requires the implementation of adequate and specific methods. The objective of this paper is to highlight time series analysis methods already applied in econometrics, signal processing, health, etc. to the environmental marine domain, assess advantages and inconvenients and compare classical techniques with more recent ones. Temperature, turbidity and salinity are important quantities for ecosystem studies. The authors here consider the fluctuations of sea level, salinity, turbidity and temperature recorded from the MAREL Carnot system of Boulogne-sur-Mer (France), which is a moored buoy equipped with physico-chemical measuring devices, working in continuous and autonomous conditions. In order to perform adequate statistical and spectral analyses, it is necessary to know the nature of the considered time series. For this purpose, the stationarity of the series and the occurrence of unit-root are addressed with the Augmented-Dickey Fuller tests. As an example, the harmonic analysis is not relevant for temperature, turbidity and salinity due to the nonstationary condition, except for the nearly stationary sea level datasets. In order to consider the dominant frequencies associated to the dynamics, the large number of data provided by the sensors should enable the estimation of Fourier spectral analysis. Different power spectra show a complex variability and reveal an influence of environmental factors such as tides. However, the previous classical spectral analysis, namely the Blackman-Tukey method, requires not only linear and stationary data but also evenly-spaced data. Interpolating the time series introduces numerous artifacts to the data. The Lomb-Scargle algorithm is adapted to unevenly-spaced data and is used as an alternative. The limits of the method are also set out. It was found that beyond 50% of missing measures, few significant frequencies are detected, several seasonalities are no more visible, and even a whole range of high frequency disappears progressively. Furthermore, two time-frequency decomposition methods, namely wavelets and Hilbert-Huang Transformation (HHT), are applied for the analysis of the entire dataset. Using the Continuous Wavelet Transform (CWT), some properties of the time series are determined. Then, the inertial wave and several low-frequency tidal waves are identified by the application of the Empirical Mode Decomposition (EMD). Finally, EMD based Time Dependent Intrinsic Correlation (TDIC) analysis is applied to consider the correlation between two nonstationary time series.

  18. Brain temperature changes during selective cooling with endovascular intracarotid cold saline infusion: simulation using human data fitted with an integrated mathematical model.

    PubMed

    Neimark, Matthew Aaron Harold; Konstas, Angelos Aristeidis; Lee, Leslie; Laine, Andrew Francis; Pile-Spellman, John; Choi, Jae

    2013-03-01

    The feasibility of rapid cerebral hypothermia induction in humans with intracarotid cold saline infusion (ICSI) was investigated using a hybrid approach of jugular venous bulb temperature (JVBT) sampling and mathematical modeling of transient and steady state brain temperature distribution. This study utilized both forward mathematical modeling, in which brain temperatures were predicted based on input saline temperatures, and inverse modeling, where brain temperatures were inferred based on JVBT. Changes in ipsilateral anterior circulation territory temperature (IACT) were estimated in eight patients as a result of 10 min of a cold saline infusion of 33 ml/min. During ICSI, the measured JVBT dropped by 0.76±0.18°C while the modeled JVBT decreased by 0.86±0.18°C. The modeled IACT decreased by 2.1±0.23°C. In the inverse model, IACT decreased by 1.9±0.23°C. The results of this study suggest that mild cerebral hypothermia can be induced rapidly and safely with ICSI in the neuroangiographical setting. The JVBT corrected mathematical model can be used as a non-invasive estimate of transient and steady state cerebral temperature changes.

  19. Experimental studies on the larval development of the shrimps Crangon crangon and C. allmanni

    NASA Astrophysics Data System (ADS)

    Criales, M. M.; Anger, K.

    1986-09-01

    Larvae of the shrimps Crangon crangon L. and C. allmanni Kinahan were reared in the laboratory from hatching through metamorphosis. Effects of rearing methods (larval density, application of streptomycin, food) and of salinity on larval development were tested only in C. crangon, influence of temperature was studied in both species. Best results were obtained when larvae were reared individually, with a mixture of Artemia sp. and the rotifer Brachionus plicatilis as food. Streptomycin had partly negative effects and was thus not adopted for standard rearing techniques. All factors tested in this study influenced not only the rates of larval survival and moulting, but also morphogenesis. In both species, in particular in C. crangon, a high degree of variability in larval morphology and in developmental pathways was observed. Unsuitable conditions, e.g. crowding in mass culture, application of antibiotics, unsuitable food (rotifers, phytoplankton), extreme temperatures and salinities, tend to increase the number of larval instars and of morphological forms. The frequency of moulting is controlled mainly by temperature. Regression equations describing the relations between the durations of larval instars and temperature are given for both Crangon species. The number of moults is a linear function of larval age and a power function of temperature. There is high variation in growth (measured as carapace length), moulting frequency, morphogenesis, and survival among hatches originating from different females. The interrelations between these different measures of larval development in shrimps and prawns are discussed.

  20. Artificial intelligence based model for optimization of COD removal efficiency of an up-flow anaerobic sludge blanket reactor in the saline wastewater treatment.

    PubMed

    Picos-Benítez, Alain R; López-Hincapié, Juan D; Chávez-Ramírez, Abraham U; Rodríguez-García, Adrián

    2017-03-01

    The complex non-linear behavior presented in the biological treatment of wastewater requires an accurate model to predict the system performance. This study evaluates the effectiveness of an artificial intelligence (AI) model, based on the combination of artificial neural networks (ANNs) and genetic algorithms (GAs), to find the optimum performance of an up-flow anaerobic sludge blanket reactor (UASB) for saline wastewater treatment. Chemical oxygen demand (COD) removal was predicted using conductivity, organic loading rate (OLR) and temperature as input variables. The ANN model was built from experimental data and performance was assessed through the maximum mean absolute percentage error (= 9.226%) computed from the measured and model predicted values of the COD. Accordingly, the ANN model was used as a fitness function in a GA to find the best operational condition. In the worst case scenario (low energy requirements, high OLR usage and high salinity) this model guaranteed COD removal efficiency values above 70%. This result is consistent and was validated experimentally, confirming that this ANN-GA model can be used as a tool to achieve the best performance of a UASB reactor with the minimum requirement of energy for saline wastewater treatment.

  1. Spatial and Temporal Analysis of Sea Surface Salinity Using Satellite Imagery in Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Rajabi, S.; Hasanlou, M.; Safari, A. R.

    2017-09-01

    The recent development of satellite sea surface salinity (SSS) observations has enabled us to analyse SSS variations with high spatiotemporal resolution. In this regards, The Level3-version4 data observed by Aquarius are used to examine the variability of SSS in Gulf of Mexico for the 2012-2014 time periods. The highest SSS value occurred in April 2013 with the value of 36.72 psu while the lowest value (35.91 psu) was observed in July 2014. Based on the monthly distribution maps which will be demonstrated in the literature, it was observed that east part of the region has lower salinity values than the west part for all months mainly because of the currents which originate from low saline waters of the Caribbean Sea and furthermore the eastward currents like loop current. Also the minimum amounts of salinity occur in coastal waters where the river runoffs make fresh the high saline waters. Our next goal here is to study the patterns of sea surface temperature (SST), chlorophyll-a (CHLa) and fresh water flux (FWF) and examine the contributions of them to SSS variations. So by computing correlation coefficients, the values obtained for SST, FWF and CHLa are 0.7, 0.22 and 0.01 respectively which indicated high correlation of SST on SSS variations. Also by considering the spatial distribution based on the annual means, it found that there is a relationship between the SSS, SST, CHLa and the latitude in the study region which can be interpreted by developing a mathematical model.

  2. Modern limnology of two lakes in the Tibetan Plateau - evidence from in-situ monitoring

    NASA Astrophysics Data System (ADS)

    Wang, M.; Li, X.; Lei, L.; He, Y.; Hou, J.

    2013-12-01

    The mechanisms of climate change in the Tibetan Plateau, known as the Third Pole, receive more and more attention due to its unique geographic location and the influence of multiple climate systems. Among the paleoclimate archives, widespread lakes provide abundant information on past climate changes and have been investigated for decades. Though many high-quality paleolimnological records have been reported in the Tibetan Plateau, little is known about the modern limnological processes in most Tibetan lakes as most lakes are difficult to access and not ready for long-term monitoring. We have installed a series of temperature data logger at different water levels in two Tibetan lakes, Bangong Co and Dagze Co in July 2012 to monitor hourly variability of temperature profile. Bangong Co (33.5°N, 79.8°E, 4245 m asl) is a freshwater lake (salinity ~0.5 g/L) in the westernmost Tibetan Plateau, receiving melt water from mountain glaciers in the basin. Dagze Co (31.9°N, 87.5°E, 4470 m asl) is saline lake (salinity ~15 g/L) in the central Tibetan Plateau, mostly fed by precipitation. In combination with the climate data in the nearby weather stations, we wish to understand the modern limnological processes in the two lakes and their potential effect on the lake biology, sedimentation, and sedimentary biomarkers. Based on the data collected for the first calendar year (Jul 2012 ~ Aug 2013), we anticipate to understand: 1) the influence of climate on the hydrological processes in high elevation lakes; 2) the difference in the metalimnion in meltwater-fed lake (Bangong Co) and precipitation-fed lake (Dagze Co) and their potential effect on the lake biology; 3) the difference in the spring turnover and fall turnover and the effect of meltwater and salinity.

  3. Environmental Challenges and Physiological Solutions: Comparative Energetic Daily Rhythms of Field Mice Populations from Different Ecosystems

    PubMed Central

    Scantlebury, Michael; Haim, Abraham

    2012-01-01

    Daily and seasonal variations in physiological characteristics of mammals can be considered adaptations to temporal habitat variables. Across different ecosystems, physiological adjustments are expected to be sensitive to different environmental signals such as changes in photoperiod, temperature or water and food availability; the relative importance of a particular signal being dependent on the ecosystem in question. Energy intake, oxygen consumption (VO2) and body temperature (Tb) daily rhythms were compared between two populations of the broad-toothed field mouse Apodemus mystacinus, one from a Mediterranean and another from a sub-Alpine ecosystem. Mice were acclimated to short-day (SD) ‘winter’ and long-day (LD) ‘summer’ photoperiods under different levels of salinity simulating osmotic challenges. Mediterranean mice had higher VO2 values than sub-Alpine mice. In addition, mice exposed to short days had higher VO2 values when given water with a high salinity compared with mice exposed to long days. By comparison, across both populations, increasing salinity resulted in a decreased Tb in SD- but not in LD-mice. Thus, SD-mice may conserve energy by decreasing Tb during (‘winter’) conditions which are expected to be cool, whereas LD-mice might do the opposite and maintain a higher Tb during (‘summer’) conditions which are expected to be warm. LD-mice behaved to reduce energy expenditure, which might be considered a useful trait during ‘summer’ conditions. Overall, increasing salinity was a clear signal for Mediterranean-mice with resultant effects on VO2 and Tb daily rhythms but had less of an effect on sub-Alpine mice, which were more responsive to changes in photoperiod. Results provide an insight into how different populations respond physiologically to various environmental challenges. PMID:23251469

  4. Environmental challenges and physiological solutions: comparative energetic daily rhythms of field mice populations from different ecosystems.

    PubMed

    Scantlebury, Michael; Haim, Abraham

    2012-01-01

    Daily and seasonal variations in physiological characteristics of mammals can be considered adaptations to temporal habitat variables. Across different ecosystems, physiological adjustments are expected to be sensitive to different environmental signals such as changes in photoperiod, temperature or water and food availability; the relative importance of a particular signal being dependent on the ecosystem in question. Energy intake, oxygen consumption (VO(2)) and body temperature (T(b)) daily rhythms were compared between two populations of the broad-toothed field mouse Apodemus mystacinus, one from a Mediterranean and another from a sub-Alpine ecosystem. Mice were acclimated to short-day (SD) 'winter' and long-day (LD) 'summer' photoperiods under different levels of salinity simulating osmotic challenges. Mediterranean mice had higher VO(2) values than sub-Alpine mice. In addition, mice exposed to short days had higher VO(2) values when given water with a high salinity compared with mice exposed to long days. By comparison, across both populations, increasing salinity resulted in a decreased T(b) in SD- but not in LD-mice. Thus, SD-mice may conserve energy by decreasing T(b) during ('winter') conditions which are expected to be cool, whereas LD-mice might do the opposite and maintain a higher T(b) during ('summer') conditions which are expected to be warm. LD-mice behaved to reduce energy expenditure, which might be considered a useful trait during 'summer' conditions. Overall, increasing salinity was a clear signal for Mediterranean-mice with resultant effects on VO(2) and T(b) daily rhythms but had less of an effect on sub-Alpine mice, which were more responsive to changes in photoperiod. Results provide an insight into how different populations respond physiologically to various environmental challenges.

  5. The salinity effect in a mixed layer ocean model

    NASA Technical Reports Server (NTRS)

    Miller, J. R.

    1976-01-01

    A model of the thermally mixed layer in the upper ocean as developed by Kraus and Turner and extended by Denman is further extended to investigate the effects of salinity. In the tropical and subtropical Atlantic Ocean rapid increases in salinity occur at the bottom of a uniformly mixed surface layer. The most significant effects produced by the inclusion of salinity are the reduction of the deepening rate and the corresponding change in the heating characteristics of the mixed layer. If the net surface heating is positive, but small, salinity effects must be included to determine whether the mixed layer temperature will increase or decrease. Precipitation over tropical oceans leads to the development of a shallow stable layer accompanied by a decrease in the temperature and salinity at the sea surface.

  6. Water and sediment characteristics associated with avian botulism outbreaks in wetlands

    USGS Publications Warehouse

    Rocke, Tonie E.; Samuel, Michael D.

    1999-01-01

    Avian botulism kills thousands of waterbirds annually throughout North America, but management efforts to reduce its effects have been hindered because environmental conditions that promote outbreaks are poorly understood. We measured sediment and water variables in 32 pairs of wetlands with and without a current outbreak of avian botulism. Wetlands with botulism outbreaks had greater percent organic matter (POM) in the sediment (P = 0.088) and lower redox potential in the water (P = 0.096) than paired control wetlands. We also found that pH, redox potential, temperature, and salinity measured just above the sediment-water interface were associated (P ≤ 0.05) with the risk of botulism outbreaks in wetlands, but relations were complex, involving nonlinear and multivariate associations. Regression models indicated that the risk of botulism outbreaks increased when water pH was between 7.5 and 9.0, redox potential was negative, and water temperature was >20°C. Risk declined when redox potential increased (>100), water temperature decreased (10-15°C), pH was 9.0, or salinity was low (<2.0 ppt). Our predictive models could allow managers to assess potential effects of wetland management practices on the risk of botulism outbreaks and to develop and evaluate alternative management strategies to reduce losses from avian botulism.

  7. The long-term salinity field in San Francisco Bay

    USGS Publications Warehouse

    Uncles, R.J.; Peterson, D.H.

    1996-01-01

    Data are presented on long-term salinity behaviour in San Francisco Bay, California. A two-level, width averaged model of the tidally averaged salinity and circulation has been written in order to interpret the long-term (days to decades) salinity variability. The model has been used to simulate daily averaged salinity in the upper and lower levels of a 51 segment discretization of the Bay over the 22-yr period 1967-1988. Monthly averaged surface salinity from observations and monthly-averaged simulated salinity are in reasonable agreement. Good agreement is obtained from comparison with daily averaged salinity measured in the upper reaches of North Bay. The salinity variability is driven primarily by freshwater inflow with relatively minor oceanic influence. All stations exhibit a marked seasonal cycle in accordance with the Mediterranean climate, as well as a rich spectrum of variability due to extreme inflow events and extended periods of drought. Monthly averaged salinity intrusion positions have a pronounced seasonal variability and show an approximately linear response to the logarithm of monthly averaged Delta inflow. Although few observed data are available for studies of long-term salinity stratification, modelled stratification is found to be strongly dependent on freshwater inflow; the nature of that dependence varies throughout the Bay. Near the Golden Gate, stratification tends to increase up to very high inflows. In the central reaches of North Bay, modelled stratification maximizes as a function of inflow and further inflow reduces stratification. Near the head of North Bay, lowest summer inflows are associated with the greatest modelled stratification. Observations from the central reaches of North Bay show marked spring-neap variations in stratification and gravitational circulation, both being stronger at neap tides. This spring-neap variation is simulated by the model. A feature of the modelled stratification is a hysteresis in which, for a given spring-neap tidal range and fairly steady inflows, the stratification is higher progressing from neaps to springs than from springs to neaps. The simulated responses of the Bay to perturbations in coastal sea salinity and Delta inflow have been used to further delineate the time-scales of salinity variability. Simulations have been performed about low inflow, steady-state conditions for both salinity and Delta inflow perturbations. For salinity perturbations a small, sinusoidal salinity signal with a period of 1 yr has been applied at the coastal boundary as well as a pulse of salinity with a duration of one day. For Delta inflow perturbations a small, sinusoidally varying inflow signal with a period of 1 yr has been superimposed on an otherwise constant Delta inflow, as well as a pulse of inflow with a duration of one day. Perturbations is coastal salinity dissipate as they move through the Bay. Seasonal perturbations require about 40-45 days to propagate from the coastal ocean to the Delta and to the head of South Bay. The response times of the model to perturbations in freshwater inflow are faster than this in North Bay and comparable in South Bay. In North Bay, time-scales are consistent with advection due to lower level, up-estuary transport of coastal salinity perturbations; for inflow perturbations, faster response times arise from both upper level, down-estuary advection and much faster, down-estuary migration of isohalines in response to inflow volume continuity. In South Bay, the dominant time-scales are governed by tidal dispersion.

  8. A Population-Based Approach to Restore and Manage Ruppia Maritima (Wigeongrass) in the Highly Variable Everglades-Florida Bay Ecotone

    NASA Astrophysics Data System (ADS)

    Strazisar, T. M.; Koch, M.; Madden, C. J.

    2016-02-01

    Seagrasses and submerged aquatic vegetation (SAV) continue to decline globally from human-induced disturbance and habitat loss in estuarine and coastal ecosystems. The SAV Ruppia maritima historically created critical habitat at the Everglades-Florida Bay ecotone, but hydrological modifications and lower freshwater flows have resulted in significant declines in recent decades. We used a population-based approach to examine factors controlling Ruppia presence and abundance at the ecotone to expand the scientific base for management and restoration of SAV species in highly variable environments and examine factors required for Ruppia restoration in the Everglades. Life history transitions from seed through sexual reproduction were established under a range of field conditions critical to seagrass and SAV persistence, including salinity, temperature, light, sediment nutrients (P) and competitor SAV. We found multiple constraints to Ruppia life history development, including an ephemeral seed bank, low rates of successful germination and seedling survival and clonal reproduction limited by variable salinity, nutrients, light and competition with the macroalga Chara hornemannii. Because of low survival rates and limited clonal reproduction, Ruppia at the Evergaldes ecotone currently depends on high rates of viable seed production. However, development of large reproductive meadows requires high vegetative shoot densities. Thus, Everglades restoration should establish lower salinities to create higher seedling and adult survival and clonal reproduction to support successful sexual reproduction that can build up the seed bank for years when adult survival is limited. This population-based data from field experiments and surveys is being incorporated into a seagrass model to enable forecasting of population sustainability and evaluate Everglades restoration targets which includes restoring Ruppia to the southern Everglades-Florida Bay ecotone.

  9. Salinity of the Delaware Estuary

    USGS Publications Warehouse

    Cohen, Bernard; McCarthy, Leo T.

    1962-01-01

    The purpose of this investigation was to obtain data on and study the factors affecting the salinity of the Delaware River from Philadelphia, Pa., to the Appoquinimink River, Del. The general chemical quality of water in the estuary is described, including changes in salinity in the river cross section and profile, diurnal and seasonal changes, and the effects of rainfall, sea level, and winds on salinity. Relationships are established of the concentrations of chloride and dissolved solids to specific conductance. In addition to chloride profiles and isochlor plots, time series are plotted for salinity or some quantity representing salinity, fresh-water discharge, mean river level, and mean sea level. The two major variables which appear to have the greatest effect on the salinity of the estuary are the fresh-water flow of the river and sea level. The most favorable combination of these variables for salt-water encroachment occurs from August to early October and the least favorable combination occurs between December and May.

  10. Sea Surface Salinity Variability from Simulations and Observations: Preparing for Aquarius

    NASA Technical Reports Server (NTRS)

    Jacob, S. Daniel; LeVine, David M.

    2010-01-01

    Oceanic fresh water transport has been shown to play an important role in the global hydrological cycle. Sea surface salinity (SSS) is representative of the surface fresh water fluxes and the upcoming Aquarius mission scheduled to be launched in December 2010 will provide excellent spatial and temporal SSS coverage to better estimate the net exchange. In most ocean general circulation models, SSS is relaxed to climatology to prevent model drift. While SST remains a well observed variable, relaxing to SST reduces the range of SSS variability in the simulations (Fig.1). The main objective of the present study is to simulate surface tracers using a primitive equation ocean model for multiple forcing data sets to identify and establish a baseline SSS variability. The simulated variability scales are compared to those from near-surface argo salinity measurements.

  11. Simulation of submarine groundwater discharge salinity and temperature variations: Implications for remote detection

    USGS Publications Warehouse

    Dausman, A.M.; Langevin, C.D.; Sukop, M.C.

    2007-01-01

    A hydrological analysis using a numerical simulation was done to identify the transient response of the salinity and temperature of submarine groundwater discharge (SGD) and utilize the results to guide data collection. Results indicate that the amount of SGD fluctuates depending on the ocean stage and geology, with the greatest amount of SGD delivered at low tide when the aquifer is in direct hydraulic contact with the ocean. The salinity of SGD remains lower than the ocean throughout the year; however, the salinity difference between the aquifer and ocean is inversely proportional to the ocean stage. The temperature difference between the ocean and SGD fluctuates seasonally, with the greatest temperature differences occurring in summer and winter. The outcome of this research reveals that numerical modelling could potentially be used to guide data collection including aerial surveys using electromagnetic (EM) resistivity and thermal imagery.

  12. Ecosystem variability along the estuarine salinity gradient: Examples from long-term study of San Francisco Bay

    USGS Publications Warehouse

    Cloern, James E.; Jassby, Alan D.; Schraga, Tara; Kress, Erica S.; Martin, Charles A.

    2017-01-01

    The salinity gradient of estuaries plays a unique and fundamental role in structuring spatial patterns of physical properties, biota, and biogeochemical processes. We use variability along the salinity gradient of San Francisco Bay to illustrate some lessons about the diversity of spatial structures in estuaries and their variability over time. Spatial patterns of dissolved constituents (e.g., silicate) can be linear or nonlinear, depending on the relative importance of river-ocean mixing and internal sinks (diatom uptake). Particles have different spatial patterns because they accumulate in estuarine turbidity maxima formed by the combination of sinking and estuarine circulation. Some constituents have weak or no mean spatial structure along the salinity gradient, reflecting spatially distributed sources along the estuary (nitrate) or atmospheric exchanges that buffer spatial variability of ecosystem metabolism (dissolved oxygen). The density difference between freshwater and seawater establishes stratification in estuaries stronger than the thermal stratification of lakes and oceans. Stratification is strongest around the center of the salinity gradient and when river discharge is high. Spatial distributions of motile organisms are shaped by species-specific adaptations to different salinity ranges (shrimp) and by behavioral responses to environmental variability (northern anchovy). Estuarine spatial patterns change over time scales of events (intrusions of upwelled ocean water), seasons (river inflow), years (annual weather anomalies), and between eras separated by ecosystem disturbances (a species introduction). Each of these lessons is a piece in the puzzle of how estuarine ecosystems are structured and how they differ from the river and ocean ecosystems they bridge.

  13. Variability of CO2 fugacity at the western edge of the tropical Atlantic Ocean from the 8°N to 38°W PIRATA buoy

    NASA Astrophysics Data System (ADS)

    Bruto, Leonardo; Araujo, Moacyr; Noriega, Carlos; Veleda, Dóris; Lefèvre, Nathalie

    2017-06-01

    Hourly data of CO2 fugacity (fCO2) at 8°N-38°W were analyzed from 2008 to 2011. Analyses of wind, rainfall, temperature and salinity data from the buoy indicated two distinct seasonal periods. The first period (January to July) had a mean fCO2 of 378.9 μatm (n = 7512). During this period, in which the study area was characterized by small salinity variations, the fCO2 is mainly controlled by sea surface temperature (SST) variations (fCO2 = 24.4*SST-281.1, r2 = 0.8). During the second period (August-December), the mean fCO2 was 421.9 μatm (n = 11571). During these months, the region is subjected to the simultaneous action of (a) rainfall induced by the presence of the Intertropical Convergence Zone (ITCZ); (b) arrival of fresh water from the Amazon River plume that is transported to the east by the North Equatorial Countercurrent (NECC) after the retroflection of the North Brazil Current (NBC); and (c) vertical input of CO2-rich water due to Ekman pumping. The data indicated the existence of high-frequency fCO2 variability (periods less than 24 h). This high variability is related to two different mechanisms. In the first mechanism, fCO2 increases are associated to rapid increases in SST and are attributed to the diurnal cycle of solar radiation. In addition, low wind speed contributes to SST rising by inhibiting vertical mixing. In the second mechanism, fCO2 decreases are associated to SSS decreases caused by heavy rainfall.

  14. Detecting Global Hydrological Cycle Intensification in Sea Surface Salinity

    NASA Astrophysics Data System (ADS)

    Poague, J.; Stine, A.

    2016-12-01

    Global warming is expected to intensify the global hydrological cycle, but significant regional differences exist in the predicted response. The proposed zonal mean thermodynamic response is enhanced horizontal moisture transport associated with increased saturation vapor pressure, which in turn drives additional net precipitation in the tropics and at high latitudes and additional net evaporation in the subtropics. Sea surface salinity (SSS) anomalies are forced from above by changes in evaporation minus precipitation (E-P) and thus will respond to changes in the global hydrological cycle, opening the possibility of using historical SSS anomalies to diagnose the response of the hydrological cycle to warming. We estimate zonal mean SSS trends in the Atlantic and Pacific ocean basins from 1955-2015 to test whether historical changes in the global hydrological cycle are consistent with a primarily thermodynamic response. Motivated by this observation, we calculate the sensitivity of basin zonal-mean SSS anomalies to sea surface temperature (SST) forcing as a function of timescale to diagnose and estimate the signal-to-noise ratio of the purely thermodynamic signal as a function of timescale. High-frequency variability in SSS anomalies is likely to be influenced by variability in atmospheric circulation, complicating the attribution of the link between basin zonal-mean SSS anomalies and global SST anomalies. We therefore estimate the basin zonal mean SSS anomaly response to the major modes of large-scale dynamic variability. We find a strong correlation between detrended zonal-mean SSS anomalies and the Pacific-North American index (R=0.71,P<0.01) in the Pacific Ocean. We interpret the relationship between zonal mean SSS anomalies and temperature in terms of the relative contribution of thermodynamic and dynamic processes.

  15. Paleoenvironmental History of Long Island Sound, CT, USA

    NASA Astrophysics Data System (ADS)

    Varekamp, J. C.; Thomas, E.; Lugolobi, F.; Buchholtz Ten Brink, M. R.

    2002-12-01

    Western Long Island Sound (LIS) is an urban estuary heavily impacted by waste water effluents from CT and New York city. The estuary has suffered seasonal hypoxia since the 1970s, and in 1999 lobsters suffered > 90% mortality. We used short sediment cores that cover the last several 100 years to reconstruct the temperature/salinity history of LIS, as well as its history of hypoxic episodes. We measured oxygen and carbon isotopic compositions and Mg/Ca and Sr/Ca in calcite tests of the benthic foraminifer Elphidium excavatum, collected alive (Rose Bengal stained) in grab samples and in core samples, as proxies for bottom water temperature and salinity. The level of bottom water oxygenation is derived from the carbon isotope values in foraminiferal calcite, after correction for paleosalinity. The strong seasonal temperature fluctuation in Long Island Sound bottom waters (about 20oC) and the long livespan of the foraminifer make precise paleotemperature estimates difficult. The oxygen isotope data (in vivo effect 1.1 o/_{oo} of the foraminiferal tests were recalculated at constant mean-annual water temperature (12.5^{o}C) into paleosalinities, ranging between 18 and 33 ^{o}/oo. The oxygen and carbon isotope ratios of river water, Long Island Sound water and dissolved inorganic carbon were used to construct a mixing model for the Sound. From calculated paleosalinities and the modern mixing model we derived expected carbon isotope ratios, which were subtracted from the observed values. We argue that the residuals (excess carbon isotope values) are proportional to the amount of organic carbon that was oxidized in these waters, and as such represent a proxy for paleohypoxia. Data from nine cores show no long term trends in salinity over the last 1000 years, but show more pronounced variations over the last 100 years. Several low salinity events could be correlated with wet climate periods documented in Southern New England. The excess carbon isotope values were between 0 and -1 o/_{oo} for most of the last millennium but became much more negative in the mid 18^{th} to 19^{th} century, with strong variability in the 20^{th} century. The low salinity events of the last 100 years correlate strongly with strongly negative excess carbon isotope values, suggesting a linkage between the wet periods and oxidation of organic matter on the bottom of the Sound (algal blooms, warm periods?). This linkage between low salinity events and strongly negative excess carbon isotope values did not occur prior to 1900 AD. More detailed dating (^{210}Pb, ^{137}$Cs) will improve the time resolution and correlation between cores of the various documented events.

  16. High-dose diazepam facilitates core cooling during cold saline infusion in healthy volunteers.

    PubMed

    Hostler, David; Northington, William E; Callaway, Clifton W

    2009-08-01

    Studies have suggested that inducing mild hypothermia improves neurologic outcomes after traumatic brain injury, major stroke, cardiac arrest, or exertional heat illness. While infusion of cold normal saline is a simple and inexpensive method for reducing core temperature, human cold-defense mechanisms potentially make this route stressful or ineffective. We hypothesized that intravenous administration of diazepam during a rapid infusion of 30 mL.kg-1 of cold (4 degrees C) 0.9% saline to healthy subjects would be more comfortable and reduce core body temperature more than the administration of cold saline alone. Fifteen subjects received rapidly infused cold (4 degrees C) 0.9% saline. Subjects were randomly assigned to receive, intravenously, 20 mg diazepam (HIGH), 10 mg diazepam (LOW), or placebo (CON). Main outcomes were core temperature, skin temperature, and oxygen consumption. Data for the main outcomes were analyzed with generalized estimating equations to identify differences in group, time, or a group x time interaction. Core temperature decreased in all groups (CON, 1.0 +/- 0.2 degrees C; LOW, 1.4 +/- 0.2 degrees C; HIGH, 1.5 +/- 0.2 degrees C), while skin temperature was unchanged. Mean (95% CI) oxygen consumption was 315.3 (253.8, 376.9) mL.kg-1.min-1 in the CON group, 317.9 (275.5, 360.3) in the LOW group, and 226.1 (216.4, 235.9) in the HIGH group. Significant time and group x time interaction was observed for core temperature and oxygen consumption (p < 0.001). Administration of high-dose diazepam resulted in decreased oxygen consumption during cold saline infusion, suggesting that 20 mg of intravenous diazepam may reduce the shivering threshold without compromising respiratory or cardiovascular function.

  17. Groundwater salinity in a floodplain forest impacted by saltwater intrusion

    NASA Astrophysics Data System (ADS)

    Kaplan, David A.; Muñoz-Carpena, Rafael

    2014-11-01

    Coastal wetlands occupy a delicate position at the intersection of fresh and saline waters. Changing climate and watershed hydrology can lead to saltwater intrusion into historically freshwater systems, causing plant mortality and loss of freshwater habitat. Understanding the hydrological functioning of tidally influenced floodplain forests is essential for advancing ecosystem protection and restoration goals, however finding direct relationships between hydrological inputs and floodplain hydrology is complicated by interactions between surface water, groundwater, and atmospheric fluxes in variably saturated soils with heterogeneous vegetation and topography. Thus, an alternative method for identifying common trends and causal factors is required. Dynamic factor analysis (DFA), a time series dimension reduction technique, models temporal variation in observed data as linear combinations of common trends, which represent unexplained common variability, and explanatory variables. DFA was applied to model shallow groundwater salinity in the forested floodplain wetlands of the Loxahatchee River (Florida, USA), where altered watershed hydrology has led to changing hydroperiod and salinity regimes and undesired vegetative changes. Long-term, high-resolution groundwater salinity datasets revealed dynamics over seasonal and yearly time periods as well as over tidal cycles and storm events. DFA identified shared trends among salinity time series and a full dynamic factor model simulated observed series well (overall coefficient of efficiency, Ceff = 0.85; 0.52 ≤ Ceff ≤ 0.99). A reduced multilinear model based solely on explanatory variables identified in the DFA had fair to good results (Ceff = 0.58; 0.38 ≤ Ceff ≤ 0.75) and may be used to assess the effects of restoration and management scenarios on shallow groundwater salinity in the Loxahatchee River floodplain.

  18. Chesapeake Bay Low Freshwater Inflow Study. Biota Assessment. Phase I. Volume II.

    DTIC Science & Technology

    1980-08-01

    which can regulate in water of reduced salinity , but not fresh water, e holeuryhaline osmoregulators , which can regulate from fresh to full oceanic...salini- ties , and * oligohaline osmoregulators , which can regulate only in fresh water and very low salinities , and maintain blood hyperosmotic to the...areas, or oysters their upstream beds. Temperature: The synergistic effects of temperature and salinity have been described by Kinne (1963, 1964) and

  19. Relationships between wintering waterbirds and invertebrates, sediments and hydrology of coastal marsh ponds

    USGS Publications Warehouse

    Bolduc, F.; Afton, A.D.

    2004-01-01

    We studied relationships among sediment variables (carbon content, C:N, hardness, oxygen penetration, silt-clay fraction), hydrologic variables (dissolved oxygen, salinity, temperature, transparency, water depth), sizes and biomass of common invertebrate classes, and densities of 15 common waterbird species in ponds of impounded freshwater, oligohaline, mesohaline, and unimpounded mesohaline marshes during winters 1997-98 to 1999-2000 on Rockefeller State Wildlife Refuge, Louisiana, USA. Canonical correspondence analysis and forward selection was used to analyze the above variables. Water depth and oxygen penetration were the variables that best segregated habitat characteristics that resulted in maximum densities of common waterbird species. Most common waterbird species were associated with specific marsh types, except Green-winged Teal (Anas crecca) and Northern Shoveler (Anas clypeata). We concluded that hydrologic manipulation of marsh ponds is the best way to manage habitats for these birds, if the hydrology can be controlled adequately.

  20. Environmental influences on potential recruitment of pink shrimp, Fatlantopenaeus duorarum, from Florida Bay nursery grounds

    USGS Publications Warehouse

    Browder, Joan A.; Restrepo, V.R.; Rice, J.K.; Robblee, M.B.; Zein-Eldin, Z.

    1999-01-01

    Two modeling approaches were used to explore the basis for variation in recruitment of pink shrimp, Farfantepenaeus duorarum, to the Tortugas fishing grounds. Emphasis was on development and juvenile densities on the nursery grounds. An exploratory simulation modeling exercise demonstrated large year-to-year variations in recruitment contributions to the Tortugas rink shrimp fishery may occur on some nursery grounds, and production may differ considerably among nursery grounds within the same year, simply on the basis of differences in temperature and salinity. We used a growth and survival model to simulate cumulative harvests from a July-centered cohort of early-settlement-stage postlarvae from two parts of Florida Bay (western Florida Bay and northcentral Florida Bay), using historic temperature and salinity data from these areas. Very large year-to-year differences in simulated cumulative harvests were found for recruits from Whipray Basin. Year-to-year differences in simulated harvests of recruits from Johnson Key Basin were much smaller. In a complementary activity, generalized linear and additive models and intermittent, historic density records were used to develop an uninterrupted multi-year time series of monthly density estimates for juvenile rink shrimp in the Johnson Key Basin. The developed data series was based on relationships of density with environmental variables. The strongest relationship was with sea-surface temperature. Three other environmental variables (rainfall, water level at Everglades National Park Well P35, and mean wind speed) also contributed significantly to explaining variation in juvenile densities. Results of the simulation model and two of the three statistical models yielded similar interannual patterns for Johnson Key Basin. While it is not possible to say that one result validates the other, the concordance of the annual patterns from the two models is supportive of both approaches.

  1. Mechanisms for Seasonal and Interannual Sea Surface Salinity Variability in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Köhler, J.; Stammer, D.; Serra, N.; Bryan, F.

    2016-12-01

    Space-borne salinity data in the Indian Ocean are analyzed over the period 2000-2015 based on data from the European Space Agency's (ESA) "Soil Moisture and Ocean Salinity" (SMOS) and the National Aeronautical Space Agency's (NASA) "Aquarius/SAC-D" missions. The seasonal variability is the dominant mode of sea surface salinity (SSS) variability in the Indian Ocean, accounting for more than 50% of salinity variance. Through a combined analysis of the satellite and ARGO data, dominant forcing terms for seasonal salinity changes are identified. It is found, that E-P controls seasonal salinity tendency in the western Indian Ocean, where the ITCZ has a strong seasonal cycle. In contrast, Ekman advection is the dominant term in the northern and eastern equatorial Indian Ocean. The influence of vertical processes on the salinity tendency is enhanced in coastal upwelling regions and south of the equator due to mid-ocean upwelling. Jointly those processes can explain most of the observed seasonal cycle with a correlation of 0.85 and an RMS difference of 0.07/month. However, the detailed composition of driving terms depends on underlying data products. In general, our study confirms previous results from Lisan Yu (2011); however, in the eastern Indian Ocean contrasting results indicate the leading role of meridional Ekman advection to the seasonal salinity tendency instead of surface external forces due to precipitation. The inferred dominant salinity budget terms are confirmed by results obtained from a high resolution NCAR Core model run driven by NCEP forcing fields. From an EOF analysis of the salinity fields after substracting the annual and semiannual cycle we found that the first EOF mode explains more than 20% of salinity variance. The first principal component of SSS EOF is correlated with the Indian Ocean Dipole Mode Index. Nevertheless the EOF pattern shows a meridional tripole structure, while the IOD describes a zonal SST dipole (Saji et al, 1999).

  2. An overview of new insights from 6 years of salinity data from SMOS mission

    NASA Astrophysics Data System (ADS)

    Nicolas, R.

    2015-12-01

    Measurements of salt held in surface seawater are becoming ever-more important for oceanographers and climatologists to gain a deeper understanding of ocean circulation and Earth's water cycle. ESA's SMOS mission is proving essential for this aim. Launched in 2009, SMOS has provided the longest continuous record (now ~6 years) of sea-surface salinity measurements from space. The salinity of surface seawater is controlled largely by the balance between evaporation and precipitation, but freshwater from rivers and the freezing and melting of ice also cause changes in concentrations. Along with temperature, salinity drives ocean circulation - the thermohaline circulation - which, in turn, plays a key role in the global climate. With a wealth of salinity data from SMOS now in hand complemented by measurements from the NASA-CONAE Aquarius satellite, which uses a different measuring technique. In this talk we shall provide an overview of how the SMOS mission - now celebrating 6 years in orbit - is providing detailed global measurements of SSS. An ensemble of key ocean processes for climate and biochemistry can now be determined and monitored for the first time from space : the detailed salinity structure of tropical instability waves along the equator and the salt exchanged across major oceanic current fronts, the occurrences of large-scale salinity anomalies in the Pacific and Indian oceans related to important climate indexes are also well-evidenced in the six year-long data. In addition, the dispersal of freshwater into the ocean from the major large tropical rivers (Amazon, Orinoco and Congo), their impact on tropical cyclone (TC) intensification and the oceanic imprints of the intense rainfall in the ITCZ and under TC can now be regularly monitored to better understand the variability of the oceanic part of the global water cycle. We will present how SMOS data, along with concurrent in situ Argo ocean-profile data, other satellite observations of sea-surface temperature, sea-surface height, surface-wind stress and ocean colour, are now providing new opportunities to investigate the surface and subsurface ocean mesoscale dynamics. The talk will tentatively illustrate how this type of data synergy is the key to unlock further scientific insight and increase our knowledge of the hydrologic cycle.

  3. Assessing the impact of edaphic factors on coastal ecosystem functions in a tropical island using electromagnetic-induction

    NASA Astrophysics Data System (ADS)

    Lynch, N. E.; Wuddivira, M.; Oatham, M.

    2013-12-01

    The small islands in the low-lying states of the Caribbean Basin are among the most vulnerable to sea level rise caused by climate change. Bequia, a tropical Grenadine island, is particularly susceptible due to its small land mass, limited natural resources and an economy that is touristic and marine based. Consultation with stakeholders on sustainable livelihoods revealed that degradation of the coastal ecosystem is occurring with progressing time. Consequently, the island is losing its beneficial ecosystem services and its natural attractiveness leading to declining revenue base, increasing food security risk and job losses. We propose that with sea level rise, soil salinity increases further inland leading to degradation of coastal zones and ecosystem functions. Using geophysical techniques and standard sampling procedures we observationally investigated the spatial and temporal impacts of soil salinization due to sea level changes on the ecosystem functions of five coastal areas in the seven square mile island of Bequia. We analyzed soil, tidal, rainfall data and historical aerial imagery to assess the impact of soil salinity on the ecosystem of Bequia. Our results show extreme seasonal salinity variability with increased salinity inland during the dry season months of January to May. This was significantly influenced by the fluctuation of seasonal water content and temperature. A complete time-based analysis ensures the development of adaptation strategies to coastal change for sustainable provisioning of ecosystem services for Bequia and other Caribbean Islands with minimum ecological and economic losses.

  4. Fluid-inclusion data on samples from Creede, Colorado, in relation to mineral paragenesis

    USGS Publications Warehouse

    Woods, T.L.; Roedder, Edwin; Bethke, P.M.

    1982-01-01

    Published and unpublished data on 2575 fluid inclusions in ore and gangue minerals from the Creede, Colorado, Ag-Pb-Zn-Cu vein deposit collected in our laboratories from 1959 to 1981 have shown that the average salinity (wt. % NaCl equivalent, hereinafter termed wt.% eq.) and homogenization temperature (Th), and the ranges of these two parameters for fluid inclusions in sphalerite, quartz, fluorite, and rhodochrosite, respectively, are 8.1 (4.6 - 13.4), 239?C (195-274?C); 6.1 (1.1-10.0), 260?C (190->400?C); 10.7 (6.1-11.1), 217?C (213-229?C) and 260?C (247-268?C) (bimodal distribution of Th); and 9.9 (9.3 - 10.6), 214?C (185-249?C). Inclusions have been measured in minerals from four of the five stages of mineralization previously recognized at Creede. The few inclusions of fluids depositing rhodochrosite (A-stage, earliest in the paragenesis) yield Th and salinity values more similar to those of the low-temperature (average Th 217?C) fluids forming some of the much later fluorite (C-stage) than to any of the other fluids. Th measurements on A-stage quartz range from 192?C to 263?C and average 237?C. The early, fine-grained, B-stage sphalerites yielded Th of 214 to 241?C and salinities of 6.1 to 10.2 wt. % eq. D-stage sphalerite (late in the paragenesis) has been studied in detail (growth-zone by growth-zone) for several localities along the OH vein and reveals a generally positive correlation among Th, salinity and iron content of the host sphalerite. The deposition of D-stage sphalerite was characterized by repeated cycling through different regions of salinity/Th space, as Th and salinity generally decreased with time. Seventeen salinity-Th measurements were made on D-stage sphalerite from one locality on the Bulldog Mountain vein system, which, like the OH vein, is one of four major ore-producing vein systems at Creede. These data suggest a lower Th for a given salinity fluid from sphalerite on the Bulldog Mountain vein than on the OH vein. The very high values of Th for some quartz samples (mostly D-stage) are believed to be a result of the trapping of both gas and liquid from a boiling fluid in the upper levels of the vein system. Boiling of fluids depositing D-stage quartz is indicated by the presence of steam inclusions in quartz and the extreme variability of Th values measured on quartz. The pressure was low (< 125 kg/cm 2) throughout ore deposition. Three major growth zones in D-stage sphalerite are recognized throughout the OH vein. Deposition of the first major zone began from fluids having intermediate salinities and temperatures (7.8-9.2 wt. % eq., 240?C) but the characteristics of the fluids oscillated after that, ranging from 7.2 to 10.1 wt. % eq. and from 225?C to 270?C. Deposition of the second major, most Fe-rich zone began with the hottest, most saline fluids present during D-stage mineralization (. 270?C, 10.5-12.5 wt. % eq., 3 mole % FeS in sphalerite). The fluid then oscillated with respect to Th and salinity (213-274?C, 5.2-12.5 wt. % eq.) but showed a general decrease in both with time. Deposition of the youngest major zone began with a very Fe-poor sphalerite (0.25-0.75 mole % FeS), from the least saline, coolest fluids (5-6.5 wt. % eq., 200-212?C) and ended with a trend of increasing temperature at approximately constant salinity. The fluid-inclusion data can best be explained by a mixing model involving at least two fluids--one hot and saline, the other cool and fresher. Sudden changes in the mixing ratio, presumably from changes in the plumbing, punctuated long periods of remarkably uniform conditions of ore fluid flow and deposition. The effects of other processes such as convection and heat exchange with wall rocks must have been superimposed on this simple mixing model, however. In contrast to an earlier interpretation, several aspects of the inclusion data may be interpreted to suggest exceedingly slow ore deposition. Work in progress may resolve some of these ambiguities and refine

  5. Climate variability in an estuary: Effects of riverflow on San Francisco Bay

    USGS Publications Warehouse

    Peterson, David H.; Cayan, Daniel R.; Festa, John F.; Nichols, Frederic H.; Walters, Roy A.; Slack, James V.; Hager, Stephen E.; Schemel, Laurence E.; Peterson, David H.

    1989-01-01

    A simple conceptual model of estuarine variability in the context of climate forcing has been formulated using up to 65 years of estimated mean-monthly delta flow, the cumulative freshwater flow to San Francisco Bay from the Sacramento-San Joaquin River, and salinity observations near the mouth, head, mid-estuary, and coastal ocean. Variations in delta flow, the principal source of variability in the bay, originate from anomalous changes in northern and central California streamflow, much of which is linked to anomalous winter sea level pressure (“CPA”) in the eastern Pacific. In years when CPA is strongly negative, precipitation in the watershed is heavy, delta flow is high, and the bay's salinity is low; similarly, when CPA is strongly positive, precipitation is light, delta flow is low, and the bay's salinity is high. Thus the pattern of temporal variability in atmospheric pressure anomalies is reflected in the streamflow, then in delta flow, then in estuarine variability. Estuarine salinity can be characterized by river to ocean patterns in annual cycles of salinity in relation to delta flow. Salinity (total dissolved solids) data from the relatively pristine mountain streams of the Sierra Nevada show that for a given flow, one observes higher salinities during the rise in winter flow than on the decline. Salinity at locations throughout San Francisco Bay estuary are also higher during the rise in winter flow than the decline (because it takes a finite time for salinity to fully respond to changes in freshwater flow). In the coastal ocean, however, the annual pattern of sea surface salinity is reversed: lower salinities during the rise in winter flow than on the decline due to effects associated with spring upwelling. Delta flow in spring masks these effects of coastal upwelling on estuarine salinity, including near the mouth of the estuary and, in fact, explains in a statistical sense 86 percent of the variance in salinity at the mouth of the estuary. Some of the variations in residual salinity in the bay not explained by delta flow appear to correlate with variability in coastal ocean properties. Interestingly CPA correlates also with anomalous sea surface salinity in the coastal ocean adjacent to the bay, especially in spring (albeit through a different mechanism than streamflow). For instance, when the atmospheric pressure anomaly as indicated for streamflow is high, the coastal ocean upper-layer Ekman transport is probably in the offshore direction resultingin higher sea surface salinities along the coast (with a phase lag). This circulation corresponds, in direction, to density driven estuarine circulation. In contrast a low atmospheric pressure regime leads to an onshore surface transport, and therefore opposes estuarine circulation. The influence of variations in delta flow on estuarine/phytoplankton/biochemical dynamics can be illustrated with numerical simulation models. For example, when riverflow is high the resulting low estuarine water residence time limits phytoplankton biomass and the observed effects of phytoplankton productivity on estuarine biochemistry are minimal. When riverflow is low but suspended sediment concentrations are high, light becomes a more important factor limiting phytoplankton biomass than residence time and effects of phytoplankton productivity on estuarine biochemistry are also minimal. When both riverflow and suspended sediment concentrations are low, phytoplankton biomass increases and phytoplankton productivity emerges as a major control on estuarine biochemistry: phytoplankton activity draws down and maintains very low ambient concentrations of dissolved silica and partial pressures of carbon dioxide (shifting pH to higher values). However, after an extended period of very low delta flow the major controls on estuarine biochemistry appear to change, possibly because benthic exchange processes (both sources and sinks) strengthen as salinity rises and benthic filter-feeding invertebrates migrate upstream with increasing salinity.

  6. Mechanisms Controlling Hypoxia Data Atlas: High-resolution hydrographic and chemical observations from 2003-2014

    NASA Astrophysics Data System (ADS)

    Zimmerle, H.; DiMarco, S. F.

    2016-02-01

    The Mechanisms Controlling Hypoxia (MCH) project consisted of 31 cruises from 2003-2014 with an objective to investigate the physical and biogeochemical processes that control the hypoxic zone on the Texas-Louisiana shelf in the northern Gulf of Mexico. The known seasonal low oxygen conditions in this region are the result of river-derived nutrients, freshwater input, and wind. The MCH Data Atlas showcases in situ data and subsequent products produced during the duration of the project, focusing on oceanographic observations from 2010-2014. The Atlas features 230 high-resolution vertical sections from nine cruises using the Acrobat undulating towed vehicle that contained a CTD along with sensors measuring oxygen, fluorescence, and turbidity. Vertical profiles along the 20-meter isobaths section feature temperature, salinity, chlorophyll, and dissolved oxygen from the Acrobat towfish and CTD rosette as well as separate selected profiles from the CTD. Surface planview maps show the horizontal distribution of temperature, salinity, chlorophyll, beam transmission, and CDOM observed by the shipboard flow-through system. Bottom planview maps present the horizontal distribution of dissolved oxygen as well as temperature and salinity from the CTD rosette and Acrobat towfish along the shelf's seafloor. Informational basemaps display the GPS cruise track as well as individual CTD stations for each cruise. The shelf concentrations of CTD rosette bottle nutrients, including nitrate, nitrite, phosphate, ammonia, and silicate are displayed in select plots. Shipboard ADCP current velocity fields are also represented. MCH datasets and additional products are featured as an electronic version to compliment the published atlas. The MCH Data Atlas provides a showcase for the spatial and temporal variability of the environmental parameters associated with the annual hypoxic event and will be a useful tool in the continued monitoring and assessment of Gulf coastal hypoxia.

  7. Seasonal and spatial variations in fish and macrocrustacean assemblage structure in Mad Island Marsh estuary, Texas

    NASA Astrophysics Data System (ADS)

    Akin, S.; Winemiller, K. O.; Gelwick, F. P.

    2003-05-01

    Fish and macrocrustacean assemblage structure was analyzed along an estuarine gradient at Mad Island Marsh (MIM), Matagorda Bay, TX, during March 1998-August 1999. Eight estuarine-dependent fish species accounted for 94% of the individual fishes collected, and three species accounted for 96% of macrocrustacean abundance. Consistent with evidence from other Gulf of Mexico estuarine studies, species richness and abundance were highest during late spring and summer, and lowest during winter and early spring. Sites near the bay supported the most individuals and species. Associations between fish abundance and environmental variables were examined with canonical correspondence analysis. The dominant gradient was associated with water depth and distance from the bay. The secondary gradient reflected seasonal variation and was associated with temperature, salinity, dissolved oxygen, and vegetation cover. At the scales examined, estuarine biota responded to seasonal variation more than spatial variation. Estuarine-dependent species dominated the fauna and were common throughout the open waters of the shallow lake during winter-early spring when water temperature and salinity were low and dissolved oxygen high. During summer-early fall, sub-optimal environmental conditions (high temperature, low DO) in upper reaches accounted for strong spatial variation in assemblage composition. Small estuarine-resident fishes and the blue crab ( Callinectes sapidus) were common in warm, shallow, vegetated inland sites during summer-fall. Estuarine-dependent species were common at deeper, more saline locations near the bay during this period. During summer, freshwater species, such as gizzard shad ( Dorosoma cepedianum) and gars ( Lepisosteus spp.), were positively associated with water depth and proximity to the bay. The distribution and abundance of fishes in MIM appear to result from the combined effects of endogenous, seasonal patterns of reproduction and migration operating on large spatial scales, and species-specific response to local environmental variation.

  8. Are the spring and fall blooms on the Scotian Shelf related to short-term physical events?

    NASA Astrophysics Data System (ADS)

    Greenan, B. J. W.; Petrie, B. D.; Harrison, W. G.; Oakey, N. S.

    2004-03-01

    Physical, chemical and biological data from the Scotian Shelf indicate that short-term physical events affect the dynamics of spring and fall blooms. This is based on results from a three-week mooring deployment measuring currents, temperature, salinity and fluorescence in October 2000, combined with biweekly sampling of temperature, salinity, nutrients and chlorophyll throughout the year at this mooring site. A wind-driven upwelling event in mid-October shows temperature, salinity and density iso-surfaces rising by approximately 20 m. During this event, a bloom with peak chlorophyll concentrations of about 2.5 mg m -3 began as nutrients are brought into the upper part of the water column. Gradient Richardson Numbers ( Ri), a proxy for vertical mixing, are estimated for the mooring period in 2 m vertical bins using SeaHorse CTD data and nearby ADCP current measurements. These data indicate that vertical mixing may have played a complementary role to the upwelling in bringing nutrients into the euphotic zone. A trend of decreasing Ri in the ocean mixed layer with increasing surface wind stress is suggested. It appears that this short-term physical event is a primary factor in initiating the fall bloom on the inner Scotian Shelf in 2000. In April of that year, the termination of the spring bloom coincided with a downwelling event suggesting that it played a role in determining the duration of the bloom. SeaWiFS ocean color satellite provided a spatial context for chlorophyll observations, however, the lack of temporal resolution due to poor atmospheric conditions means that these data provide limited information on short-term chlorophyll variability.

  9. Empirical tools for simulating salinity in the estuaries in Everglades National Park, Florida

    NASA Astrophysics Data System (ADS)

    Marshall, F. E.; Smith, D. T.; Nickerson, D. M.

    2011-12-01

    Salinity in a shallow estuary is affected by upland freshwater inputs (surface runoff, stream/canal flows, groundwater), atmospheric processes (precipitation, evaporation), marine connectivity, and wind patterns. In Everglades National Park (ENP) in South Florida, the unique Everglades ecosystem exists as an interconnected system of fresh, brackish, and salt water marshes, mangroves, and open water. For this effort a coastal aquifer conceptual model of the Everglades hydrologic system was used with traditional correlation and regression hydrologic techniques to create a series of multiple linear regression (MLR) salinity models from observed hydrologic, marine, and weather data. The 37 ENP MLR salinity models cover most of the estuarine areas of ENP and produce daily salinity simulations that are capable of estimating 65-80% of the daily variability in salinity depending upon the model. The Root Mean Squared Error is typically about 2-4 salinity units, and there is little bias in the predictions. However, the absolute error of a model prediction in the nearshore embayments and the mangrove zone of Florida Bay may be relatively large for a particular daily simulation during the seasonal transitions. Comparisons show that the models group regionally by similar independent variables and salinity regimes. The MLR salinity models have approximately the same expected range of simulation accuracy and error as higher spatial resolution salinity models.

  10. Fjord light regime: Bio-optical variability, absorption budget, and hyperspectral light availability in Sognefjord and Trondheimsfjord, Norway

    NASA Astrophysics Data System (ADS)

    Mascarenhas, V. J.; Voß, D.; Wollschlaeger, J.; Zielinski, O.

    2017-05-01

    Optically active constituents (OACs) in addition to water molecules attenuate light via processes of absorption and scattering and thereby determine underwater light availability. An analysis of their optical properties helps in determining the contribution of each of these to light attenuation. With an aim to study the bio-optical variability, absorption budget and 1% spectral light availability, hydrographical (temperature and salinity), and hyperspectral optical (downwelling irradiance and upwelling radiance) profiles were measured along fjord transects in Sognefjord and Trondheimsfjord, Norway. Optical water quality observations were also performed using Secchi disc and Forel-Ule scale. In concurrence, water samples were collected and analyzed via visible spectrophotometry, fluorometry, and gravimetry to quantify and derive inherent optical properties of the water constituents. An absorption model (R2 = 0.91, n = 36, p < 0.05) as a function of OACs is developed for Sognefjord using multiple regression analysis. Influenced by glacial meltwater, Sognefjord had higher concentration of inorganic suspended matter, while Trondheimsfjord had higher concentrations of CDOM. Increase in turbidity caused increased attenuation of light upstream, as a result of which the euphotic depth decreased from outer to inner fjord sections. Triangular representation of absorption budget revealed dominant absorption by CDOM at 443-555 nm, while that by phytoplankton at 665 nm. Sognefjord however exhibited much greater optical complexity. A significantly strong correlation between salinity and acdom440 is used to develop an algorithm to estimate acdom440 using salinity in Trondheimsfjord.

  11. Benthic Algal Community Structures and Their Response to Geographic Distance and Environmental Variables in the Qinghai-Tibetan Lakes With Different Salinity

    PubMed Central

    Yang, Jian; Jiang, Hongchen; Liu, Wen; Wang, Beichen

    2018-01-01

    Uncovering the limiting factors for benthic algal distributions in lakes is of great importance to understanding of their role in global carbon cycling. However, limited is known about the benthic algal community distribution and how they are influenced by geographic distance and environmental variables in alpine lakes. Here, we investigated the benthic algal community compositions in the surface sediments of six lakes on the Qinghai-Tibetan Plateau (QTP), China (salinity ranging from 0.8 to 365.6 g/L; pairwise geographic distance among the studied lakes ranging 8–514 km) employing an integrated approach including Illumina-Miseq sequencing and environmental geochemistry. The results showed that the algal communities of the studied samples were mainly composed of orders of Bacillariales, Ceramiales, Naviculales, Oscillatoriales, Spirulinales, Synechococcales, and Vaucheriales. The benthic algal community compositions in these QTP lakes were significantly (p < 0.05) correlated with many environmental (e.g., dissolved inorganic and organic carbon, illumination intensity, total nitrogen and phosphorus, turbidity and water temperature) and spatial factors, and salinity did not show significant influence on the benthic algal community structures in the studied lakes. Furthermore, geographic distance showed strong, significant correlation (r = 0.578, p < 0.001) with the benthic algal community compositions among the studied lakes, suggesting that spatial factors may play important roles in influencing the benthic algal distribution. These results expand our current knowledge on the influencing factors for the distributions of benthic alga in alpine lakes. PMID:29636745

  12. A Coral-based Reconstruction of Sea Surface Salinity at Sabine Bank, Vanuatu from 2007 to 1843 CE

    NASA Astrophysics Data System (ADS)

    Gorman, M. K.; Quinn, T. M.; Taylor, F. W.; Dunn, E. M.; Cabioch, G.; Ballu, V.; Maes, C.; Austin, J. A.; Saustrup, S.; Pelletier, B.

    2011-12-01

    We present a reconstruction of sea surface salinity (SSS) derived from a coral δ18O time series extending from 2007-1843 CE at Sabine Bank, Vanuatu (SBV, 166.04° E, 15.94°S). This reconstruction is significant because instrumental records of SSS are rare in time and space, yet the SSS response to the El Niño Southern Oscillation (ENSO) forcing is large in many regions of the tropical oceans. There is a strong positive relationship between sea surface temperature anomalies (SSTA) in the central Pacific (Niño 3.4 region; canonical ENSO signal) and six month lagged sea surface salinity anomalies (SSSA, data from Delcroix et al., 2011) at SBV, which establishes a dynamical link between surface ocean variability at SBV and ENSO variability. We calculate a coral δ18O anomaly time series and note that there is a strong correlation between it and instrumental SSS variations over the period 1970-2007 (r = 0.70, p < 0.01). We compute a linear transfer function that we use to predict SSS variations given observed coral δ18O variations. A calibration-verification exercise conducted over two intervals (1970-1987, 1988-2007) resulted in similar correlations between instrumental and reconstructed SSS for both time periods, which provides confidence in our SSS reconstructions in the pre-1970 interval. We further test our SBV transfer function by applying it to a previously published coral δ18O record from Malo Channel, Vanuatu (Kilbourne et al., 2004b), located 130 km to the east of Sabine Bank. The reconstructed SSS time series from the two locations over their common time interval (1991-1939 CE) are nearly always the same within error, indicating that the ENSO-influenced salinity signal is regional in extent, and can be reconstructed using coral δ18O records from Vanuatu. We observe high salinity excursions (>0.5 psu) pre-1970 corresponding to strong ENSO warm phase events recorded in the SST instrumental record and historical ENSO record (i.e. 1941-42, 1918-19, 1877-78), and an overall freshening trend, demonstrating the ability of our reconstructed dataset to capture interannual variability as well as long-term trends in SSS at Vanuatu.

  13. Hematocrit and plasma osmolality values of young-of-year shortnose sturgeon following acute exposures to combinations of salinity and temperature

    USGS Publications Warehouse

    Ziegeweid, J.R.; Black, M.C.

    2010-01-01

    Little is known about the physiological capabilities of young-of-year (YOY) shortnose sturgeon. In this study, plasma osmolality and hematocrit values were measured for YOY shortnose sturgeon following 48-h exposures to 12 different combinations of salinity and temperature. Hematocrit levels varied significantly with temperature and age, and plasma osmolalities varied significantly with salinity and age. Plasma osmolality and hematocrit values were similar to previously published values for other sturgeons of similar age and size in similar treatment conditions. ?? 2010 Springer Science+Business Media B.V.

  14. ENSO related sea surface salinity variability in the equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Qu, T.

    2016-12-01

    Recently available satellite and Argo data have shown coherent, large-scale sea surface salinity (SSS) variability in the equatorial Pacific. Based on this variability, several SSS indices of El Nino have been introduced by previous studies. Combining results from an ocean general circulation model with available satellite and in-situ observations, this study investigates the SSS variability and its associated SSS indices in the equatorial Pacific. The ocean's role and in particular the vertical entrainment of subtropical waters in this variability are discussed, which suggests that the SSS variability in the equatorial Pacific may play some active role in ENSO evolution.

  15. Factors Influencing Spatial and Annual Variability in Eelgrass (Zostera marina L.) Meadows in Willapa Bay, Washington, and Coos Bay, Oregon, Estuaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thom, Ronald M.; Borde, Amy B.; Rumrill, Steven

    2003-08-01

    Environmental factors that influence annual variability and spatial differences in eelgrass meadows (Zostera marina L.) were examined within Willapa Bay, WA, and Coos Bay, OR, over a period of 4 years (1998-2001). A suite of eelgrass metrics were recorded annually at field sites that spanned the estuarine gradient from the marine-dominated to mesohaline regions. Growth of eelgrass plants was also monitored on a monthly basis within Sequim Bay, WA. Both the spatial cover and density of Z. marina were positively correlated with estuarine salinity and inversely correlated with temperature of the tideflat sediment. Experimental evidence verified that optimal eelgrass growthmore » occurred at highest salinities and relatively low temperatures. Eelgrass density, biomass, and the incident of flowering plants all increased substantially in Willapa Bay, and less so in Coos Bay, over the duration of the study. Warmer winters and cooler summers associated with the transition from El Ni?o to La Ni?a ocean conditions during the study period were correlated with the increase in eelgrass abundance and flowering. Anthropogenic factors (e.g., disturbance and erosion by vessel wakes and recreational shellfishing activities) may have contributed to spatial variability. Our findings indicate that large-scale changes in climate and nearshore ocean conditions can exert a strong regional influence on eelgrass abundance, which can vary annually by as much as 700% in Willapa Bay. Lower levels of variability observed in Coos Bay may be due to the stronger and more direct influence of the nearshore Pacific Ocean. We conclude that climate variation may have profound effects on the abundance and distribution of eelgrass meadows throughout the Pacific Northwest, and we anticipate that ocean conditions will emerge as a primary driving force for living estuarine resources and ecological processes that are associated with Z. marina beds within the landscape of these estuarine tidal basins.« less

  16. Societal Impacts of Natural Decadal Climate Variability - The Pacemakers of Civilizations

    NASA Astrophysics Data System (ADS)

    Mehta, V. M.

    2017-12-01

    Natural decadal climate variability (DCV) is one of the oldest areas of climate research. Building on centuries-long literature, a substantial body of research has emerged in the last two to three decades, focused on understanding causes, mechanisms, and impacts of DCV. Several DCV phenomena - the Pacific Decadal Oscillation (PDO) or the Interdecadal Pacific Oscillation (IPO), tropical Atlantic sea-surface temperature gradient variability (TAG for brevity), West Pacific Warm Pool variability, and decadal variability of El Niño-La Niña events - have been identified in observational records; and are associated with variability of worldwide atmospheric circulations, water vapor transport, precipitation, and temperatures; and oceanic circulations, salinity, and temperatures. Tree-ring based drought index data going back more than 700 years show presence of decadal hydrologic cycles (DHCs) in North America, Europe, and South Asia. Some of these cycles were associated with the rise and fall of civilizations, large-scale famines which killed millions of people, and acted as catalysts for socio-political revolutions. Instrument-measured data confirm presence of such worldwide DHCs associated with DCV phenomena; and show these DCV phenomena's worldwide impacts on river flows, crop productions, inland water-borne transportation, hydro-electricity generation, and agricultural irrigation. Fish catch data also show multiyear to decadal catch variability associated with these DCV phenomena in all oceans. This talk, drawn from my recently-published book (Mehta, V.M., 2017: Natural Decadal Climate Variability: Societal Impacts. CRC Press, Boca Raton, Florida, 326 pp.), will give an overview of worldwide impacts of DCV phenomena, with specific examples of socio-economic-political impacts. This talk will also describe national and international security implications of such societal impacts, and worldwide food security implications. The talk will end with an outline of needed actions to adapt to these impacts.

  17. Impact of Variable-Density Flow on the Value-of-Information from Pressure and Concentration Data for Saline Aquifer Characterization

    NASA Astrophysics Data System (ADS)

    Yoon, S.; Williams, J. R.; Juanes, R.; Kang, P. K.

    2017-12-01

    Managed aquifer recharge (MAR) is becoming an important solution for ensuring sustainable water resources and mitigating saline water intrusion in coastal aquifers. Accurate estimates of hydrogeological parameters in subsurface flow and solute transport models are critical for making predictions and managing aquifer systems. In the presence of a density difference between the injected freshwater and ambient saline groundwater, the pressure field is coupled to the spatial distribution of salinity distribution, and therefore experiences transient changes. The variable-density effects can be quantified by a mixed convection ratio between two characteristic types of convection: free convection due to density contrast, and forced convection due to a hydraulic gradient. We analyze the variable-density effects on the value-of-information of pressure and concentration data for saline aquifer characterization. An ensemble Kalman filter is used to estimate permeability fields by assimilating the data, and the performance of the estimation is analyzed in terms of the accuracy and the uncertainty of estimated permeability fields and the predictability of arrival times of breakthrough curves in a realistic push-pull setting. This study demonstrates that: 1. Injecting fluids with the velocity that balances the two characteristic convections maximizes the value of data for saline aquifer characterization; 2. The variable-density effects on the value of data for the inverse estimation decrease as the permeability heterogeneity increases; 3. The advantage of joint inversion of pressure and concentration data decreases as the coupling effects between flow and transport increase.

  18. Premedication with granisetron reduces shivering during spinal anaesthesia in children.

    PubMed

    Eldaba, Ahmed A; Amr, Yasser M

    2012-01-01

    This study evaluates the effect of prophylactic granisetron on the incidence of postoperative shivering after spinal anaesthesia in children. Eighty children, American Society of Anesthesiologists physical status I to II and aged two to five years were scheduled for surgery of the lower limb under spinal anaesthesia. The children were randomised to receive 10 µg/kg granisetron diluted in 10 ml saline 0.9% intravenously (group 1, n=40) or placebo (10 ml 0.9% saline, group 2, n=40) to be given over five minutes just before spinal puncture. Shivering, core temperature and the levels of motor and sensory block were assessed. No patients shivered in group 1. However, six patients shivered in Group 2 (P=0.025). There were no significant differences in the other measured variables between the groups. Granisetron is an effective agent to prevent shivering after spinal anaesthesia in children from two to five years of age.

  19. Energetics of osmoregulation: I. Oxygen consumption by Fundulus heteroclitus.

    PubMed

    Kidder, George W; Petersen, Christopher W; Preston, Robert L

    2006-04-01

    We have developed a flow-through method for measuring oxygen consumption in fish which allows continuous monitoring over periods of days with good accuracy. Our goal was to determine the changes in basal metabolic rate in estuarine fish as a function of salinity. We show that in Fundulus heteroclitus, the oxygen consumption drops by 50% during the first 12 hr in the respirometer, as the fish cease exploratory movements. We have determined the influence of temperature and body size on resting respiratory rate, but failed to find any circadian or tidal rhythm in aerobic respiration. With these variables controlled, we determined that changing from 10 to 30 ppt water had no demonstrable effect on oxygen uptake. Since there must be a large change in osmotic flux due to this change in salinity, it appears that the fish might be diverting energy from other uses rather than increasing aerobic energy production to meet the increased osmoregulatory work load.

  20. Mild hypothermia alters midazolam pharmacokinetics in normal healthy volunteers.

    PubMed

    Hostler, David; Zhou, Jiangquan; Tortorici, Michael A; Bies, Robert R; Rittenberger, Jon C; Empey, Philip E; Kochanek, Patrick M; Callaway, Clifton W; Poloyac, Samuel M

    2010-05-01

    The clinical use of therapeutic hypothermia has been rapidly expanding due to evidence of neuroprotection. However, the effect of hypothermia on specific pathways of drug elimination in humans is relatively unknown. To gain insight into the potential effects of hypothermia on drug metabolism and disposition, we evaluated the pharmacokinetics of midazolam as a probe for CYP3A4/5 activity during mild hypothermia in human volunteers. A second objective of this work was to determine whether benzodiazepines and magnesium administered intravenously would facilitate the induction of hypothermia. Subjects were enrolled in a randomized crossover study, which included two mild hypothermia groups (4 degrees C saline infusions and 4 degrees C saline + magnesium) and two normothermia groups (37 degrees C saline infusions and 37 degrees C saline + magnesium). The lowest temperatures achieved in the 4 degrees C saline + magnesium and 4 degrees C saline infusions were 35.4 +/- 0.4 and 35.8 +/- 0.3 degrees C, respectively. A significant decrease in the formation clearance of the major metabolite 1'-hydroxymidazolam was observed during the 4 degrees C saline + magnesium compared with that in the 37 degrees C saline group (p < 0.05). Population pharmacokinetic modeling identified a significant relationship between temperature and clearance and intercompartmental clearance for midazolam. This model predicted that midazolam clearance decreases 11.1% for each degree Celsius reduction in core temperature from 36.5 degrees C. Midazolam with magnesium facilitated the induction of hypothermia, but shivering was minimally suppressed. These data provided proof of concept that even mild and short-duration changes in body temperature significantly affect midazolam metabolism. Future studies in patients who receive lower levels and a longer duration of hypothermia are warranted.

  1. A new record of Atlantic sea surface salinity from 1896-2013 reveals the signatures of climate variability and long-term trends

    NASA Astrophysics Data System (ADS)

    Friedman, A. R.; Reverdin, G. P.; Khodri, M.; Gastineau, G.

    2017-12-01

    In the North Atlantic, sea surface salinity is both an indicator of the hydrological cycle and an active component of the ocean circulation. As an indirect "ocean rain gauge", surface salinity reflects the net surface fluxes of evaporation - precipitation + runoff, along with advection and vertical mixing. Subpolar surface salinity also may influence the strength of deep convection and the Atlantic Meridional Overturning Circulation (AMOC). However, continuous surface salinity time series beginning before the 1950s are rare, limiting our ability to resolve modes of variability and long-term trends. Here, we present a new gridded surface salinity record in the Atlantic from 1896-2013, compiled from a variety of historical sources. The compilation covers most of the Atlantic from 20°S-70°N, at 100-1000 km length scale and interannual temporal resolution, allowing us to resolve major modes of variability and linkages with large-scale Atlantic climate variations. We find that the low-latitude (tropical and subtropical) Atlantic and the subpolar Atlantic surface salinity are negatively correlated, with subpolar anomalies leading low-latitude anomalies by about a decade. Subpolar surface salinity varies in phase with the Atlantic Multidecadal Oscillation (AMO), whereas low-latitude surface salinity lags the AMO and varies in phase with the low-frequency North Atlantic Oscillation (NAO). Additionally, northern tropical surface salinity is anticorrelated with the AMO and with Sahel rainfall, suggesting that it reflects the latitude of the Intertropical Convergence Zone. The 1896-2013 long-term trend features an amplification of the mean Atlantic surface salinity gradient pattern, with freshening in the subpolar Atlantic and salinification in the tropical and subtropical Atlantic. We find that regressing out the AMO and the low-frequency NAO has little effect on the long-term residual trend. The spatial trend structure is consistent with the "rich-get-richer" hydrological cycle intensification response to global warming, and may also indicate increased Arctic cryosphere melting and surface runoff.

  2. Seasonal and interannual variability of mesozooplankton in two contrasting estuaries of the Bay of Biscay: Relationship to environmental factors

    NASA Astrophysics Data System (ADS)

    Villate, Fernando; Iriarte, Arantza; Uriarte, Ibon; Sanchez, Iraide

    2017-12-01

    Seasonal and interannual variations of total mesozooplankton abundance and community variability were assessed for the period 1998-2005 at 3 salinity sites (35, 33 and 30) of the estuaries of Bilbao and Urdaibai (southeast Bay of Biscay). Spatial differences in mesozooplankton seasonality were recognized, both within and between estuaries, related to differences between sites in hydrodynamic features and anthropogenic nutrient enrichment that drive phytoplankton biomass seasonal cycles. The within estuary seasonal differences in mesozooplankton community were mainly shown through seaward time-advances in the seasonal peak from summer to spring along the salinity gradient, linked to differences in phytoplankton availability during the summer, in turn, related to nutrient availability. These differences were most marked in the estuary of Urdaibai, where zooplankton seasonal pattern at 35 salinity (high tidal flushing) resembled that of shelf waters, while at 35 of the estuary of Bilbao zooplankton showed an estuarine seasonal pattern due to the influence of the estuarine plume. Cirripede larvae contributed most to the mesozooplankton seasonal variability, except at the outer estuary of Bilbao, where cladocerans and fish eggs and larvae were the major contributors, and the inner estuary of Urdaibai, where gastropod larvae contributed most. Total mesozooplankton increased at 30 salinity of the estuary of Bilbao and 35 salinity of the estuary of Urdaibai. Interannual variability of mesozooplankton at the lowest salinity of the estuary of Bilbao was mainly accounted for by copepods due to the introduction of non-indigenous species during estuarine rehabilitation from intense pollution. However, bivalve larvae and gastropod larvae showed the highest contributions at 35 salinity of the estuary of Urdaibai. At the rest of sites, the opposite interannual trends of polychaete larvae and hydromedusae generally made the highest contribution.

  3. Groundwater salinity in a floodplain forest impacted by saltwater intrusion.

    PubMed

    Kaplan, David A; Muñoz-Carpena, Rafael

    2014-11-15

    Coastal wetlands occupy a delicate position at the intersection of fresh and saline waters. Changing climate and watershed hydrology can lead to saltwater intrusion into historically freshwater systems, causing plant mortality and loss of freshwater habitat. Understanding the hydrological functioning of tidally influenced floodplain forests is essential for advancing ecosystem protection and restoration goals, however finding direct relationships between hydrological inputs and floodplain hydrology is complicated by interactions between surface water, groundwater, and atmospheric fluxes in variably saturated soils with heterogeneous vegetation and topography. Thus, an alternative method for identifying common trends and causal factors is required. Dynamic factor analysis (DFA), a time series dimension reduction technique, models temporal variation in observed data as linear combinations of common trends, which represent unexplained common variability, and explanatory variables. DFA was applied to model shallow groundwater salinity in the forested floodplain wetlands of the Loxahatchee River (Florida, USA), where altered watershed hydrology has led to changing hydroperiod and salinity regimes and undesired vegetative changes. Long-term, high-resolution groundwater salinity datasets revealed dynamics over seasonal and yearly time periods as well as over tidal cycles and storm events. DFA identified shared trends among salinity time series and a full dynamic factor model simulated observed series well (overall coefficient of efficiency, Ceff=0.85; 0.52≤Ceff≤0.99). A reduced multilinear model based solely on explanatory variables identified in the DFA had fair to good results (Ceff=0.58; 0.38≤Ceff≤0.75) and may be used to assess the effects of restoration and management scenarios on shallow groundwater salinity in the Loxahatchee River floodplain. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Survey of fishes and environmental conditions in Abbotts Lagoon, Point Reyes National Seashore, California

    USGS Publications Warehouse

    Saiki, M.K.; Martin, B.A.

    2001-01-01

    This study was conducted to gain a better understanding of fishery resources in Abbotts Lagoon, Point Reyes National Seashore. During February/March, May, August, and November 1999, fish were sampled with floating variable-mesh gill nets and small minnow traps from as many as 14 sites in the lagoon. Water temperature, dissolved oxygen, pH, total ammonia(NH3 + NH4+), salinity, turbidity, water depth, and bottom substrate composition were also measured at each site. A total of 2,656 fish represented by eight species was captured during the study. Gill nets captured Sacramento perch, Archoplites interruptus; largemouth bass, Micropterus salmoides; Pacific herring, Clupea pallasi; prickly sculpin, Cottus asper, silver surfperch, Hyperprosopon ellipticum; longfin smelt, Spirinchus thaleichthys; and striped bass, Morone saxatilis; whereas minnow traps captured Sacramento perch; prickly sculpin; and threespine stickleback, Gasterosteus aculeatus. Cluster analysis (Ward's minimum variance method of fish catch statistics identified two major species assemblages-the first dominated by Sacramento perch and, to a lesser extent, by largemouth bass, and the second dominated by Pacific herring and threespine stickleback. Simple discriminant analysis of environmental variables indicated that salinity contributed the most towards separating the two assemblages.

  5. A Fiji multi-coral δ18O composite approach to obtaining a more accurate reconstruction of the last two-centuries of the ocean-climate variability in the South Pacific Convergence Zone region

    NASA Astrophysics Data System (ADS)

    Dassié, Emilie P.; Linsley, Braddock K.; Corrège, Thierry; Wu, Henry C.; Lemley, Gavin M.; Howe, Steve; Cabioch, Guy

    2014-12-01

    The limited availability of oceanographic data in the tropical Pacific Ocean prior to the satellite era makes coral-based climate reconstructions a key tool for extending the instrumental record back in time, thereby providing a much needed test for climate models and projections. We have generated a unique regional network consisting of five Porites coral δ18O time series from different locations in the Fijian archipelago. Our results indicate that using a minimum of three Porites coral δ18O records from Fiji is statistically sufficient to obtain a reliable signal for climate reconstruction, and that application of an approach used in tree ring studies is a suitable tool to determine this number. The coral δ18O composite indicates that while sea surface temperature (SST) variability is the primary driver of seasonal δ18O variability in these Fiji corals, annual average coral δ18O is more closely correlated to sea surface salinity (SSS) as previously reported. Our results highlight the importance of water mass advection in controlling Fiji coral δ18O and salinity variability at interannual and decadal time scales despite being located in the heavy rainfall region of the South Pacific Convergence Zone (SPCZ). The Fiji δ18O composite presents a secular freshening and warming trend since the 1850s coupled with changes in both interannual (IA) and decadal/interdecadal (D/I) variance. The changes in IA and D/I variance suggest a re-organization of climatic variability in the SPCZ region beginning in the late 1800s to period of a more dominant interannual variability, which could correspond to a southeast expansion of the SPCZ.

  6. Zooplankton time-series in the Balearic Sea (Western Mediterranean): Variability during the decade 1994 2003

    NASA Astrophysics Data System (ADS)

    Fernández de Puelles, Maria Luz; Alemany, Francisco; Jansá, Javier

    2007-08-01

    Studies of plankton time-series from the Balearic islands waters are presented for the past decade, with main emphasis on the variability of zooplankton and how it relates to the environment. The seasonal and interannual patterns of temperature, salinity, nutrients, chlorophyll concentration and zooplankton abundance are described with data obtained between 1994 and 2003. Samples were collected every 10 days at a monitoring station in the Mallorca channel, an area with marked hydrographic variability in the Western Mediterranean. Mesoscale variability was also assessed using data from monthly sampling survey carried out between 1994 and 1999 in a three station transect located in the same study area. The copepods were the most abundant group with three higher peaks (March, May and September) distinguished during the annual cycle and a clear coastal-offshore decreasing gradient. Analysis of the zooplankton community revealed two distinct periods: the mixing period during winter and early spring, where copepods, siphonophores and ostracods were most abundant and, the stratified period characterised by an increase of cladocerans and meroplankton abundances. Remarkable interannual zooplankton variability was observed in relation to hydrographic regime with higher abundances of main groups during cool years, when northern Mediterranean waters prevailed in the area. The warmer years showed the lowest zooplankton abundances, associated with the inflow of less saline and nutrient-depleted Atlantic Waters. Moreover, the correlation found between copepod abundance and large scale climatic factors (e.g., NAO) suggested that they act as main driver of the zooplankton variability. Therefore, the seasonal but particularly the interannual variation observed in plankton abundance and structure patterns of the Balearic Sea seems to be highly modulated by large-scale forcing and can be considered an ideal place where to investigate potential consequences of global climate change.

  7. The larvae of congeneric gastropods showed differential responses to the combined effects of ocean acidification, temperature and salinity.

    PubMed

    Zhang, Haoyu; Cheung, S G; Shin, Paul K S

    2014-02-15

    The tolerance and physiological responses of the larvae of two congeneric gastropods, the intertidal Nassarius festivus and subtidal Nassarius conoidalis, to the combined effects of ocean acidification (pCO2 at 380, 950, 1250 ppm), temperature (15, 30°C) and salinity (10, 30 psu) were compared. Results of three-way ANOVA on cumulative mortality after 72-h exposure showed significant interactive effects in which mortality increased with pCO2 and temperature, but reduced at higher salinity for both species, with higher mortality being obtained for N. conoidalis. Similarly, respiration rate of the larvae increased with temperature and pCO2 level for both species, with a larger percentage increase for N. conoidalis. Larval swimming speed increased with temperature and salinity for both species whereas higher pCO2 reduced swimming speed in N. conoidalis but not N. festivus. The present findings indicated that subtidal congeneric species are more sensitive than their intertidal counterparts to the combined effects of these stressors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Identifying meaningful trends in Atlantic water temperature from sparse in situ hydrographic observations from the periphery of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Fenty, I. G.; Willis, J. K.; Rignot, E. J.

    2016-12-01

    Motivated by the need to understand the connection between the warming North Atlantic Ocean and increasing ice mass loss from the Greenland Ice Sheet, in 2015 we initiated "Oceans Melting Greenland" (OMG), a 5-year NASA sub-orbital mission. One component of OMG is a once-yearly sampling of full-depth vertical profiles of ocean temperature and salinity around Greenland's continental shelf at 250 locations. These measurements have the potential to provide an unprecedented view of ocean properties around Greenland, especially the warm, salty subsurface Atlantic Waters that have been implicated in tidewater glacier retreat, acceleration, and thinning. However, OMG'S ocean measurements are essentially large-scale synoptic snapshots of an ocean state whose characteristic scales of temporal and spatial variability around Greenland are largely unknown. In this talk we discuss how high-resolution numerical ocean modelling is being employed to quantitatively estimate the region's natural hydrographic variability for the dual purposes of (1) informing our pan-Greenland ocean sampling strategy and (2) informing our interpretation of temperature trends in the data. OMG hydrographic shelf data collected in ship-based CTDs (2015, 2016) and Airborne eXpendable CTDs (2016) will be examined in the context of this estimated ocean variability.

  9. Managing water and salinity with desalination, conveyance, conservation, waste-water treatment and reuse to counteract climate variability in Gaza

    NASA Astrophysics Data System (ADS)

    Rosenberg, D. E.; Aljuaidi, A. E.; Kaluarachchi, J. J.

    2009-12-01

    We include demands for water of different salinity concentrations as input parameters and decision variables in a regional hydro-economic optimization model. This specification includes separate demand functions for saline water. We then use stochastic non-linear programming to jointly identify the benefit maximizing set of infrastructure expansions, operational allocations, and use of different water quality types under climate variability. We present a detailed application for the Gaza Strip. The application considers building desalination and waste-water treatment plants and conveyance pipelines, initiating water conservation and leak reduction programs, plus allocating and transferring water of different qualities among agricultural, industrial, and urban sectors and among districts. Results show how to integrate a mix of supply enhancement, conservation, water quality improvement, and water quality management actions into a portfolio that can economically and efficiently respond to changes and uncertainties in surface and groundwater availability due to climate variability. We also show how to put drawn-down and saline Gaza aquifer water to more sustainable and economical use.

  10. Salinity transfer in double diffusive convection bounded by two parallel plates

    NASA Astrophysics Data System (ADS)

    Yang, Yantao; van der Poel, Erwin P.; Ostilla-Monico, Rodolfo; Sun, Chao; Verzicco, Roberto; Grossmann, Siegfried; Lohse, Detlef

    2014-11-01

    The double diffusive convection (DDC) is the convection flow with the fluid density affected by two different components. In this study we numerically investigate DDC between two parallel plates with no-slip boundary conditions. The top plate has higher salinity and temperature than the lower one. Thus the flow is driven by the salinity difference and stabilised by the temperature difference. Our simulations are compared with the experiments by Hage and Tilgner (Phys. Fluids 22, 076603 (2010)) for several sets of parameters. Reasonable agreement is achieved for the salinity flux and its dependence on the salinity Rayleigh number. For all parameters considered, salt fingers emerge and extend through the entire domain height. The thermal Rayleigh number shows minor influence on the salinity flux although it does affect the Reynolds number. We apply the Grossmann-Lohse theory for Rayleigh-Bénard flow to the current problem without introducing any new coefficients. The theory successfully predicts the salinity flux with respect to the scaling for both the numerical and experimental results.

  11. (abstract) Variations in Polarimetric Backscatter of Saline Ice Grown Under Diurnal Thermal Cycling Condition

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Kwok, R.; Yueh, S. H.; Kong, J. A.; Hsu, C. C.; Ding, K. H.

    1995-01-01

    An experiment was carried out in January 1994 at the Geophysical Research Facility in the Cold Regions Research and Engineering Laboratory. To investigate effects on polarimetric scattering signatures of sea ice growth under diurnal temperature variations, an ice sheet was grown for 2.5 days for the thickness of 10 cm and a polarimetric radar operating at C-band was used to obtain backscattering data in conjunction with ice-characterization measurements. The ice sheet was grown in the late morning of January 19, 1994. The initial growth rate was slow due to high insolation and temperature. As the air temperature dropped during the night, the growth rate increased significantly. The air temperature changed drastically from about -10(deg)C to -35(deg)C between day and night. The temperature cycle was repeated during the next day and the growth rate varied in the same manner. The surface of the ice was partially covered by frost flowers and the areal coverage increased as the ice became thicker. Throughout the ice growth duration of 2.5 days, polarimetric backscatter data were collected at roughly every centimeter of ice growth. For each set of radar measurements of saline ice, a set of calibration measurements was carried out with trihedrial corner reflectors and a metallic sphere. Measured polarimetric backscattering coefficients of the ice sheet reveal a strong correlation between radar data and temperature variations. As the temperature increased (decreased), the backscatter increased (decreased) correspondingly. From the ice-characterization data, temperatures of the air, at the ice-air interface, and in the ice layer had the same variation trend. Another interesting experimental observation is that the salinity measured as a function of ice depth from a sample of 10-cm thich ice indicated that the salinity variations had a similar cycle as the temperature; i.e., the salinity profile recorded the history of the temperature variations. Characterization data of the ice sheet are used in a theoretical model for scattering from saline ice with frost cover to explain the observed polarimetric signatures.

  12. The influence of temperature and salinity on mortality of recently recruited blue crabs, Callinectes sapidus, naturally infected with Hematodinium perezi (Dinoflagellata).

    PubMed

    Huchin-Mian, Juan Pablo; Small, Hamish J; Shields, Jeffrey D

    2018-02-01

    The parasitic dinoflagellate Hematodinium perezi is highly prevalent in juvenile blue crabs, Callinectes sapidus, along the eastern seaboard of the USA. Although the parasite is known to kill adult crabs, the mortality rate of naturally infected juvenile crabs remains unknown. We analyzed the influence of temperature and salinity on the mortality of recently recruited blue crabs that were naturally infected with H. perezi. Over 492 juvenile crabs (infected, n = 282; uninfected controls, n = 210) were held individually in six-well plates and held at six temperatures (4, 10, 15, 20, 25, and 30 °C) or three salinities (5, 15, and 30 psu) for a maximum of 90 days. Mortality of infected crabs was 10 times higher at elevated temperatures (25 and 30 °C) and salinity (30 psu) compared to uninfected control treatments. By contrast, infected crabs exposed to mild temperatures (10, 15, and 20 °C) showed a high survival (>80%), no different than uninfected control treatments. Infected crabs at the lowest temperature (4 °C) exhibited a high mortality, but the intensity of infection was lower than in the other temperature treatments. In addition, this study revealed the optimal temperature (25 °C) and salinity (30 psu) for H. perezi to progress in its life cycle leading to sporulation in juvenile crabs; 31.6% (19/60) of crabs held under these conditions released dinospores of H. perezi after 10 days. Crabs held at other temperatures did not release dinospores over the time course of the experiment. Infected crabs were capable of molting and in most cases molted at the same frequency as uninfected crabs serving as controls. The mortality observed in this study indicates that early benthic juveniles will experience significant mortality due to H. perezi with increasing ocean temperatures and that this mortality may be a significant factor in the recruitment of blue crabs to high salinity regions. Copyright © 2018. Published by Elsevier Inc.

  13. Simulating Salt Movement using a Coupled Salinity Transport Model in a Variably Saturated Agricultural Groundwater System

    NASA Astrophysics Data System (ADS)

    Tavakoli Kivi, S.; Bailey, R. T.; Gates, T. K.

    2017-12-01

    Salinization is one of the major concerns in irrigated agricultural fields. Increasing salinity concentrations are due principally to a high water table that results from excessive irrigation, canal seepage, and a lack of efficient drainage systems, and lead to decreasing crop yield. High groundwater salinity loading to nearby river systems also impacts downstream areas, with saline river water diverted for application on irrigated fields. To assess the different strategies for salt remediation, we present a reactive transport model (UZF-RT3D) coupled with a salinity equilibrium chemistry module for simulating the fate and transport of salt ions in a variably-saturated agricultural groundwater system. The developed model accounts not for advection, dispersion, nitrogen and sulfur cycling, oxidation-reduction, sorption, complexation, ion exchange, and precipitation/dissolution of salt minerals. The model is applied to a 500 km2 region within the Lower Arkansas River Valley (LARV) in southeastern Colorado, an area acutely affected by salinization in the past few decades. The model is tested against salt ion concentrations in the saturated zone, total dissolved solid concentrations in the unsaturated zone, and salt groundwater loading to the Arkansas River. The model now can be used to investigate salinity remediation strategies.

  14. An Annotated Bibliography of Seagrasses with Emphasis on Planting and Propagation Techniques.

    DTIC Science & Technology

    1980-09-01

    34The Effect of Salinity on Widgeongrass, Ruppia maritima," Journal of Witdlife Management, Vol. 34, No. 3, July 1970, pp. 658-661. The effects of...the period from April to mid-June. The effects of salinity , temperature, and photo- period were studied in the laboratory and monitored in the bay. Of...the species on which most information has been collected. The adverse effects of dredging and filling, sewage, changing temperature, and salinity on

  15. Hydrodynamic measurements in Suisun Bay, California, 1992-93

    USGS Publications Warehouse

    Gartner, Jeffrey W.; Burau, Jon R.

    1999-01-01

    Sea level, velocity, temperature, and salinity (conductivity and temperature) data collected in Suisun Bay, California, from December 11, 1992, through May 31, 1993, by the U.S. Geological Survey are documented in this report. Sea-level data were collected at four locations and temperature and salinity data were collected at seven locations. Velocity data were collected at three locations using acoustic Doppler current profilers and at four other locations using point velocity meters. Sea-level and velocity data are presented in three forms (1) harmonic analysis results, (2) time-series plots (sea level, current speed, and current direction versus time), and (3) time-series plots of the low-pass filtered data. Temperature and salinity data are presented as plots of raw and low-pass filtered time series. The velocity and salinity data collected during this study document a period when the residual current patterns and salt field were significantly altered by large Delta outflow (three peaks in excess of 2,000 cubic meters per second). Residual current profiles were consistently seaward with magnitudes that fluctuated primarily in concert with Delta outflow and secondarily with the spring-neap tide cycle. The freshwater inputs advected salinity seaward of Suisun Bay for most of this study. Except for a 10-day period at the beginning of the study, dynamically significant salinities (>2) were seaward of Suisun Bay, which resulted in little or no gravitational circulation transport.

  16. Effects of salinity, pH and temperature on the re-establishment of bioluminescence and copper or SDS toxicity in the marine dinoflagellate Pyrocystis lunula using bioluminescence as an endpoint

    USGS Publications Warehouse

    Craig, J.M.; Klerks, P.L.; Heimann, K.; Waits, J.L.

    2003-01-01

    Pyrocystis lunula is a unicellular, marine, photoautotrophic, bioluminescent dinoflagellate. This organism is used in the Lumitox ?? bioassay with inhibition of bioluminescence re-establishment as the endpoint. Experiments determined if acute changes in pH, salinity, or temperature had an effect on the organisms' ability to re-establish bioluminescence, or on the bioassay's potential to detect sodium dodecyl sulfate (SDS) and copper toxicity. The re-establishment of bioluminescence itself was not very sensitive to changes in pH within the pH 6-10 range, though reducing pH from 8 to levels below 6 decreased this capacity. Increasing the pH had little effect on Cu or SDS toxicity, but decreasing the pH below 7 virtually eliminated the toxicity of either compound in the bioassay. Lowering the salinity from 33 to 27??? or less resulted in a substantial decrease in re-establishment of bioluminescence, while increasing the salinity to 43 or 48 ??? resulted in a small decline. Salinity had little influence on the bioassay's quantification of Cu toxicity, while the data showed a weak negative relationship between SDS toxicity and salinity. Re-establishment of bioluminescence showed a direct dependence on temperature, but only at 10??C did temperature have an obvious effect on the toxicity of Cu in this bioassay. ?? 2003 Elsevier Science Ltd. All rights reserved.

  17. Change in coccolith morphology by responding to temperature and salinity in coccolithophore Emiliania huxleyi (Haptophyta) isolated from the Bering and Chukchi Seas

    NASA Astrophysics Data System (ADS)

    Saruwatari, K.; Satoh, M.; Harada, N.; Suzuki, I.; Shiraiwa, Y.

    2015-11-01

    Strains of the coccolithophore Emiliania huxleyi (Haptophyta) collected from the subarctic North Pacific and Arctic Oceans during the R/V MIRAI cruise in 2010 (MR10-05) were established as clone cultures and have been maintained in the laboratory at 15 °C and 32 ‰ salinity. To study the physiological responses of coccolith formation to changes in temperature and salinity, growth experiments and morphometric investigations were performed on two strains of MR57N isolated from the northern Bering Sea (56°58' N, 167°11' W) and MR70N at the Chukchi Sea (69°99' N, 168° W). This is the first report of a detailed morphometric and morphological investigation of Arctic Ocean coccolithophore strains. The specific growth rates at the logarithmic growth phases in both strains markedly increased as temperature was elevated from 5 to 20 °C, although coccolith productivity (the percentage of calcified cells) was similar at 10-20 % at all temperatures. On the other hand, the specific growth rate of strain MR70N was affected less by changes in salinity in the range 26-35 ‰, but the proportion of calcified cells decreased at high and low salinities. According to scanning electron microscopy (SEM) observations, coccolith morphotypes can be categorized into Type B/C on the basis of their biometrical parameters, such as length of the distal shield (LDS), length of the inner central area (LICA), and the thickness of distal shield elements. The central area elements of coccoliths varied from grilled type to closed type when temperature was increased or salinity was decreased, and coccolith size decreased simultaneously. Coccolithophore cell size also decreased with increasing temperature, although the variation in cell size was slightly greater at the lower salinity level. This indicates that subarctic and arctic coccolithophore strains can survive in a wide range of seawater temperatures and at lower salinities due to their marked morphometric adaptation ability. Because all coccolith biometric parameters followed the scaling law, the decrease in coccolith size was caused simply by the reduced calcification. Taken together, our results suggest that calcification productivity may be used to predict future oceanic environmental conditions in the Polar Regions.

  18. Salinity and Temperature Constraints on Microbial Methanogenesis in the Lei-Gong-Huo Mud Volcano of Eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Sun, W.; Lin, L.; Wang, P.

    2012-12-01

    Terrestrial mud volcano is thought to be one of the most important natural sources of methane emission. Previous studies have shown that methane cycling in terrestrial mud volcanoes involves a complex reaction network driven by the interactions between subsurface and surface abiotic and microbial processes. In situ methanogenesis appears to produce methane at quantities exceeding those of deeply-sourced thermogenic methane and the capacities of anaerobic methanotrophy at shallow depth levels, thereby contributing significantly to the methane emission. Various degrees of evaporation at surface also lead to the enhancement of chloride concentrations in pore water, favoring the proliferation of halo-tolerant and/or halophilic methanogens. The goal of this study is to investigate the extent of methanogenesis in terrestrial mud volcanoes by incubating mud slurries with various precursors (H2/CO2, acetate, methanol, and methylamine) at different salinities (up to 2000 mM) and temperatures (up to 50 oC). Methane concentrations were monitored through time and molecular analyses were applied to investigate the changes of methanogenic communities. Methanogenesis was stimulated by any investigated precursor at room temperature. However, the methanogenic response to salinity varied. Of the investigated precursors, H2/CO2 and methyl-compounds (methanol and methylamine) stimulated methanogenesis at all investigated salinities. The rates and yields of hydrogen- and methyl-utilizing methanogenesis declined significantly at salinities greater than 1500 mM. Acetate-utilizing methanogenesis proceeded at salinities less than 700 mM. At 40 oC, methanogenesis was stimulated by all investigated precursors at the in situ salinity (~400 mM). At 50 oC, only H2-utilizing methanogenesis was stimulated. Analyses of terminal restriction fragment length polymorphism (TRFLP) for 16S rRNA genes revealed various patterns upon different precursors and salinities. The TRFLP results combined with clone library analyses indicated that major RFs recovered from incubations with methyl-compounds at room temperature and 40 oC were represented by sequences affiliated with Methanococcoides spp., Methanosarcina spp., and Methanolobus spp. In particular, only Methanosarcina- and Methanococcoides-related members were detected at salinities greater than 1000 mM or at 40 oC. RFs recovered from incubations with H2/CO2 at room temperature and 40 oC were represented by sequences related to different Methanococcus spp. Overall, methanogens utilizing H2/CO2 and methyl-compounds appear to be capable of actively producing methane at salinities greater than acetate-utilizing methanogens could tolerate. These methanogens might adapt better to the fluctuation of salinity or extremely high salinity induced by the surface evaporation in terrestrial mud volcanoes. When considering the overall methane emission from terrestrial mud volcanoes, these halo-tolerant methanogens become a significant factor. Key words: mud volcano, Methane, Methanogenesis, Salinity

  19. Sediment microbial taxonomic and functional diversity in a natural salinity gradient challenge Remane’s “species minimum” concept

    PubMed Central

    Kristoffersen, Jon B.; Oulas, Anastasis; De Troch, Marleen; Arvanitidis, Christos

    2017-01-01

    Several models have been developed for the description of diversity in estuaries and other brackish habitats, with the most recognized being Remane’s Artenminimum (“species minimum”) concept. It was developed for the Baltic Sea, one of the world’s largest semi-enclosed brackish water body with a unique permanent salinity gradient, and it argues that taxonomic diversity of macrobenthic organisms is lowest within the horohalinicum (5 to 8 psu). The aim of the present study was to investigate the relationship between salinity and sediment microbial diversity at a freshwater-marine transect in Amvrakikos Gulf (Ionian Sea, Western Greece) and assess whether species composition and community function follow a generalized concept such as Remane’s. DNA was extracted from sediment samples from six stations along the aforementioned transect and sequenced for the 16S rRNA gene using high-throughput sequencing. The metabolic functions of the OTUs were predicted and the most abundant metabolic pathways were extracted. Key abiotic variables, i.e., salinity, temperature, chlorophyll-a and oxygen concentration etc., were measured and their relation with diversity and functional patterns was explored. Microbial communities were found to differ in the three habitats examined (river, lagoon and sea) with certain taxonomic groups being more abundant in the freshwater and less in the marine environment, and vice versa. Salinity was the environmental factor with the highest correlation to the microbial community pattern, while oxygen concentration was highly correlated to the metabolic functional pattern. The total number of OTUs showed a negative relationship with increasing salinity, thus the sediment microbial OTUs in this study area do not follow Remane’s concept. PMID:29043106

  20. The influence of different electrical conductivity values in a simplified recirculating soilless system on inner and outer fruit quality characteristics of tomato.

    PubMed

    Krauss, Sandra; Schnitzler, Wilfried H; Grassmann, Johanna; Woitke, Markus

    2006-01-25

    Irrigation with saline water affects tomato fruit quality. While total fruit yield decreases with salinity, inner quality characterized by taste and health-promoting compounds can be improved. For a detailed description of this relationship, the influence of three different salt levels [electrical conductivity (EC) 3, 6.5, and 10] in hydroponically grown tomatoes was investigated. Rising salinity levels in the nutrient solution significantly increased vitamin C, lycopene, and beta-carotene in fresh fruits up to 35%. The phenol concentration was tendentiously enhanced, and the antioxidative capacity of phenols and carotenoids increased on a fresh weight basis. Additionally, the higher EC values caused an increase of total soluble solids and organic acids, parameters determining the taste of tomatoes. Total fruit yield, single fruit weight, and firmness significantly decreased with rising EC levels. Regression analyses revealed significant correlations between the EC level and the dependent variables single fruit weight, total soluble solids, titrable acids, lycopene, and antioxidative capacities of carotenoids and phenols, whereas vitamin C and phenols correlated best with truss number, and beta-carotene correlated best with temperature. Only pressure firmness showed no correlation with any of the measured parameters. As all desirable characteristics in the freshly produced tomato increased when exposed to salinity, salinity itself constitutes an alternative method of quality improvement. Moreover, it can compensate for the loss of yield by the higher inner quality due to changing demands by the market and the consumer. This investigation is to our knowledge the first comprehensive overview regarding parameters of outer quality (yield and firmness), taste (total soluble solids and acids), nutritional value (vitamin C, carotenoids, and phenolics), as well as antioxidative capacity in tomatoes grown under saline conditions.

  1. Ranking the Potential Yield of Salinity and Selenium from Subbasins in the Lower Gunnison River Basin Using Seasonal, Multi-parameter Regression Models

    NASA Astrophysics Data System (ADS)

    Linard, J.; Leib, K.; Colorado Water Science Center

    2010-12-01

    Elevated levels of salinity and dissolved selenium can detrimentally effect the quality of water where anthropogenic and natural uses are concerned. In areas, such as the lower Gunnison Basin of western Colorado, salinity and selenium are such a concern that control projects are implemented to limit their mobilization. To prioritize the locations in which control projects are implemented, multi-parameter regression models were developed to identify subbasins in the lower Gunnison River Basin that were most likely to have elevated salinity and dissolved selenium levels. The drainage area is about 5,900 mi2 and is underlain by Cretaceous marine shale, which is the most common source of salinity and dissolved selenium. To characterize the complex hydrologic and chemical processes governing constituent mobilization, geospatial variables representing 70 different environmental characteristics were correlated to mean seasonal (irrigation and nonirrigation seasons) salinity and selenium yields estimated at 154 sampling sites. The variables generally represented characteristics of the physical basin, precipitation, soil, geology, land use, and irrigation water delivery systems. Irrigation and nonirrigation seasons were selected due to documented effects of irrigation on constituent mobilization. Following a stepwise approach, combinations of the geospatial variables were used to develop four multi-parameter regression models. These models predicted salinity and selenium yield, within a 95 percent confidence range, at individual points in the Lower Gunnison Basin for irrigation and non-irrigation seasons. The corresponding subbasins were ranked according to their potential to yield salinity and selenium and rankings were used to prioritize areas that would most benefit from control projects.

  2. Centennial-scale links between Atlantic Ocean dynamics and hydroclimate over the last 4400 years: Insights from the northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Thirumalai, K.; Quinn, T. M.; Okumura, Y.; Richey, J. N.; Partin, J. W.; Poore, R. Z.

    2015-12-01

    Surface circulation in the Atlantic Ocean is an important mediator of global climate and yet its variability is poorly constrained on centennial timescales. Changes in the Atlantic meridional overturning circulation (AMOC) have been implicated in late Holocene climate variability in the Western Hemisphere, although the relationship between AMOC variability and hydroclimate is uncertain due to the lack of sufficiently highly resolved proxy records. Here we present a replicated reconstruction of sea-surface temperature (SST) and salinity (SSS) from the Garrison Basin in the northern Gulf of Mexico (NGOM) spanning the last 4,400 years to better constrain past sea-surface conditions. We generated time series of paired Mg/Ca (SST proxy) and δ18O (SST and SSS proxy) variations in planktic foraminifer Globigerinoides ruber (white variety) from three multi-cores collected in 2010. Using a Monte Carlo-based technique we produce a stacked record from the three multi-cores and constrain analytical, calibration, chronological, and sampling uncertainties. We apply this technique to existing paired Mg/Ca- δ18O studies in the Gulf of Mexico and Atlantic Ocean to facilitate comparison between time-uncertain proxy reconstructions. The Garrison Basin stack exhibits large centennial-scale variability (σSST~0.6°C; δ18Osw~0.17‰) and indicates a substantially cool (0.9±0.5°C) and fresh (0.26±0.1‰) Little Ice Age (LIA; 1450-1850 A.D.), corroborating extant records from the Gulf of Mexico. Focusing on the last millennium, we analyze a suite of oceanic and terrestrial proxy records to demonstrate a centennial-scale link between salt advection in the Atlantic Ocean, a diagnostic parameter of ocean circulation, and hydroclimate in the adjacent continents. The ensuing multiproxy relationships seem to be consistent with spatial field correlations of limited salinity and rainfall instrumental/reanalysis data, which suggest that NGOM salinity varies with large-scale Atlantic Ocean circulation and continental precipitation. Our results imply significant centennial-scale variability over the late Holocene and are consistent with limited observational analysis indicating a slowdown of AMOC during the LIA.

  3. Reconstructing medieval climate in the tropical North Atlantic with corals from Anegada, British Virgin Islands

    NASA Astrophysics Data System (ADS)

    Kilbourne, K. H.; Xu, Y. Y.

    2014-12-01

    Resolving the patterns of climate variability during the Medieval Climate Anomaly (MCA) is key for exploring forced versus unforced variability during the last 1000 years. Tropical Atlantic climate is currently not well resolved during the MCA despite it being an important source of heat and moisture to the climate system today. To fill this data gap, we collected cores from Diploria strigosa corals brought onto the low-lying island of Anegada, British Virgin Islands (18.7˚N, 64.3˚S) during an overwash event and use paired analysis of Sr/Ca and δ18O in the skeletal aragonite to explore climate in the tropical Atlantic at the end of the MCA. The three sub-fossil corals used in this analysis overlap temporally and together span the years 1256-1372 C.E. An assessment of three modern corals from the study site indicates that the most robust features of climate reconstructions using Sr/Ca and δ18O in this species are the seasonal cycle and inter-annual variability. The modern seasonal temperature range is 2.8 degrees Celsius and the similarity between the modern and sub-fossil coral Sr/Ca indicates a similar range during the MCA. Today seasonal salinity changes locally are driven in large part by the migration of a regional salinity front. The modern corals capture the related large seasonal seawater δ18O change, but the sub-fossil corals indicate stable seawater δ18O throughout the year, supporting the idea that this site remained on one side of the salinity front continuously throughout the year. Inter-annual variability in the region is influenced by the cross-equatorial SST gradient, the North Atlantic Oscillation and ENSO. Gridded instrumental SST from the area surrounding Anegada and coral geochemical records from nearby Puerto Rico demonstrate concentrations of variance in specific frequency bands associated with these phenomena. The sub-fossil coral shows no concentration of variance in the modern ENSO frequency band, consistent with reduced ENSO variability found in central Pacific corals growing at the same time.

  4. On the relative roles of hydrology, salinity, temperature, and root productivity in controlling soil respiration from coastal swamps (freshwater)

    USGS Publications Warehouse

    Krauss, Ken W.; Whitbeck, Julie L.; Howard, Rebecca J.

    2012-01-01

    Background and aims Soil CO2 emissions can dominate gaseous carbon losses from forested wetlands (swamps), especially those positioned in coastal environments. Understanding the varied roles of hydroperiod, salinity, temperature, and root productivity on soil respiration is important in discerning how carbon balances may shift as freshwater swamps retreat inland with sea-level rise and salinity incursion, and convert to mixed communities with marsh plants. Methods We exposed soil mesocosms to combinations of permanent flooding, tide, and salinity, and tracked soil respiration over 2 1/2 growing seasons. We also related these measurements to rates from field sites along the lower Savannah River, Georgia, USA. Soil temperature and root productivity were assessed simultaneously for both experiments. Results Soil respiration from mesocosms (22.7-1678.2 mg CO2 m-2 h-1) differed significantly among treatments during four of the seven sampling intervals, where permanently flooded treatments contributed to low rates of soil respiration and tidally flooded treatments sometimes contributed to higher rates. Permanent flooding reduced the overall capacity for soil respiration as soils warmed. Salinity did reduce soil respiration at times in tidal treatments, indicating that salinity may affect the amount of CO2 respired with tide more strongly than under permanent flooding. However, soil respiration related greatest to root biomass (mesocosm) and standing root length (field); any stress reducing root productivity (incl. salinity and permanent flooding) therefore reduces soil respiration. Conclusions Overall, we hypothesized a stronger, direct role for salinity on soil respiration, and found that salinity effects were being masked by varied capacities for increases in respiration with soil warming as dictated by hydrology, and the indirect influence that salinity can have on plant productivity.

  5. Assessment of lidar remote sensing capability of Raman water temperature from laboratory and field experiments (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Josset, Damien B.; Hou, Weilin W.; Goode, Wesley; Matt, Silvia C.; Hu, Yongxiang

    2017-05-01

    Lidar remote sensing based on visible wavelength is one of the only way to penetrate the water surface and to obtain range resolved information of the ocean surface mixed layer at the synoptic scale. Accurate measurement of the mixed layer properties is important for ocean weather forecast and to assist the optimal deployment of military assets. Turbulence within the mixed layer also plays an important role in climate variability as it also influences ocean heat storage and algae photosynthesis (Sverdrup 1953, Behrenfeld 2010). As of today, mixed layer depth changes are represented in the models through various parameterizations constrained mostly by surface properties like wind speed, surface salinity and sea surface temperature. However, cooling by wind and rain can create strong gradients (0.5C) of temperature between the submillimeter surface layer and the subsurface layer (Soloviev and Lukas, 1997) which will manifest itself as a low temperature bias in the observations. Temperature and salinity profiles are typically used to characterize the mixed layer variability (de Boyer Montégut et al. 2004) and are both key components of turbulence characterization (Hou 2009). Recently, several research groups have been investigating ocean temperature profiling with laser remote sensing based either on Brillouin (Fry 2012, Rudolf and Walther 2014) or Raman scattering (Artlett and Pask 2015, Lednev et al. 2016). It is the continuity of promising research that started decades ago (Leonard et al. 1979, Guagliardo and Dufilho 1980, Hirschberg et al. 1984) and can benefit from the current state of laser and detector technology. One aspect of this research that has not been overlooked (Artlett and Pask 2012) but has yet to be revisited is the impact of temperature on vibrational Raman polarization (Chang and Young, 1972). The TURBulence Ocean Lidar is an experimental system, aimed at characterizing underwater turbulence by examining various Stokes parameters. Its multispectral capability in both emission (based on an optical parametric oscillator) and detection (optical filters) provide flexibility to measure the polarization signature of both elastic and inelastic scattering. We will present the characteristics of TURBOL and several results from our laboratory and field experiments with an emphasis on temperature profiling capabilities based on vibrational Raman polarization. We will also present other directions of research related to this activity.

  6. Erratum to ;Coastal water column ammonium and nitrite oxidation are decoupled in summer;

    NASA Astrophysics Data System (ADS)

    Heiss, Elise M.; Fulweiler, Robinson W.

    2017-07-01

    Water column nitrification is a key process in the nitrogen cycle as it links reduced and oxidized forms of nitrogen and also provides the substrate (nitrate) needed for reactive nitrogen removal by denitrification. We measured potential water column ammonium and nitrite oxidation rates at four sites along an estuary to continental shelf gradient over two summers. In most cases, nitrite oxidation rates outpaced ammonium oxidation rates. Overall, ammonium and nitrite oxidation rates were higher outside of the estuary, and this trend was primarily driven by higher oxidation rates in deeper waters. Additionally, both ammonium and nitrite oxidation rates were impacted by different in situ variables. Ammonium oxidation rates throughout the water column as a whole were most positively correlated to depth and salinity and negatively correlated to dissolved oxygen, light, and temperature. In contrast, nitrite oxidation rates throughout the water column were negatively correlated with temperature, light and pH. Multivariate regression analysis revealed that surface (<20 m) ammonium oxidation rates were most strongly predicted by substrate (NH4+), salinity, and light, while deep (>20 m) rates were regulated by temperature, light, and [H+] (i.e. pH). In addition, surface (<20 m) nitrite oxidation rates were best explained by [H+] alone, while [H+], temperature, and dissolved oxygen all played a role in predicting deep (>20 m) nitrite oxidation rates. These results support the growing body of evidence that ammonium oxidation and nitrite oxidation are not always coupled, should be measured separately, and are influenced by different environmental conditions.

  7. Iceland-Scotland Overflow Water transport variability through the Charlie-Gibbs Fracture Zone and the impact of the North Atlantic Current

    NASA Astrophysics Data System (ADS)

    Bower, Amy; Furey, Heather

    2017-09-01

    The Charlie-Gibbs Fracture Zone (CGFZ), a deep and wide gap in the Mid-Atlantic Ridge near 52°N, is a gateway between the eastern and western subpolar regions for the Atlantic Meridional Overturning Circulation (AMOC). In 2010-2012, an eight-mooring array of current meters and temperature/salinity sensors was installed across the CGFZ between 500 m and the sea floor to measure the mean transport of westward-flowing Iceland-Scotland Overflow Water (ISOW) and investigate the impact of the eastward-flowing North Atlantic Current (NAC) on ISOW transport variability. The 22 month record mean ISOW transport through the CGFZ, -1.7 ± 0.5 Sv (95% confidence interval), is 30% lower than the previously published estimate based on 13 months of current-only measurements, -2.4 ± 1.2 Sv. The latter mean estimate may have been biased high due to the lack of continuous salinity measurements, although the two estimates are not statistically different due to strong mesoscale variability in both data sets. Empirical Orthogonal Function analysis and maps of satellite-derived absolute dynamic topography show that weak westward ISOW transport events and eastward reversals are caused by northward meanders of the NAC, with its deep-reaching eastward velocities. These results add to growing evidence that a significant fraction of ISOW exits the Iceland Basin by routes other than the CGFZ.

  8. Ocean Surface Emissivity at L-band (1.4 GHz): The Dependence on Salinity and Roughness

    NASA Technical Reports Server (NTRS)

    LeVine, D. M.; Lang, R.; Wentz, F.; Messiner, T.

    2012-01-01

    A characterization of the emissivity of sea water at L-band is important for the remote sensing of sea surface salinity. Measurements of salinity are currently being made in the radio astronomy band at 1.413 GHz by ESA's Soil Moisture and Ocean Salinity (SMOS) mission and NASA's Aquarius instrument aboard the Aquarius/SAC-D observatory. The goal of both missions is accuracy on the order of 0.1 psu. This requires accurate knowledge of the dielectric constant of sea water as a function of salinity and temperature and also the effect of waves (roughness). The former determines the emissivity of an ideal (i.e. flat) surface and the later is the major source of error from predictions based on a flat surface. These two aspects of the problem of characterizing the emissivity are being addressed in the context of the Aquarius mission. First, laboratory measurements are being made of the dielectric constant of sea water. This is being done at the George Washington University using a resonant cavity. In this technique, sea water of known salinity and temperature is fed into the cavity along its axis through a narrow tube. The sea water changes the resonant frequency and Q of the cavity which, if the sample is small enough, can be related to the dielectric constant of the sample. An extensive set of measurements have been conducted at 1.413 GHz to develop a model for the real and imaginary part of the dielectric constant as a function of salinity and temperature. The results are compared to the predictions of models based on parameterization of the Debye resonance of the water molecule. The models and measurements are close; however, the differences are significant for remote sensing of salinity. This is especially true at low temperatures where the sensitivity to salinity is lowest.

  9. Regional variability of sea level change using a global ocean model.

    NASA Astrophysics Data System (ADS)

    Lombard, A.; Garric, G.; Cazenave, A.; Penduff, T.; Molines, J.

    2007-12-01

    We analyse different runs of a global eddy-permitting (1/4 degree) ocean model driven by atmospheric forcing to evaluate regional variability of sea level change over 1993-2001, 1998-2006 and over the long period 1958-2004. No data assimilation is performed in the model, contrarily to previous similar studies (Carton et al., 2005; Wunsch et al., 2007; Koehl and Stammer, 2007). We compare the model-based regional sea level trend patterns with the one deduced from satellite altimetry data. We examine respective contributions of steric and bottom pressure changes to total regional sea level changes. For the steric component, we analyze separately the contributions of temperature and salinity changes as well as upper and lower ocean contributions.

  10. High salinity events in the northern Arabian Sea and Sea of Oman

    NASA Astrophysics Data System (ADS)

    Wang, Zhankun; DiMarco, Steven F.; Jochens, Ann E.; Ingle, Stephanie

    2013-04-01

    Moored observations in the northern Arabian Sea (NAS) show substantial velocity, temperature and dissolved oxygen fluctuations, accompanied by episodic high salinity intrusions with maximum values≥37.3 on time scales of 2-10 days after the passage of Cyclone Gonu in 2007. These events are characterized by a rapid increase in temperature, salinity and dissolved oxygen followed by an abrupt decline. The mechanisms behind these high salinity events are investigated using a comprehensive dataset of temperature and salinity profiles from ARGO floats and sea surface height anomaly maps. The spatial and temporal distribution of the Persian/Arabian Gulf outflow to the Sea of Oman is also studied using ARGO profiles. Persian Gulf water (PGW) is mainly measured close to the Strait of Hormuz or along the Oman coast on the continental slope in the Sea of Oman. Both mooring and ARGO data show that high salinity PGW can be advected off the slope and into the interior. More high salinity water is measured in the interior of the Sea of Oman within three months after the Gonu passage in summer 2007, which is caused by the combination effect of the oceanic responses to Cyclone Gonu and a clockwise eddy circulation located at northern Ras al Hadd. At other times, the high salinity water appears more in isolated patches and rare in the interior. This study provides a first look at the high salinity events appearing after Gonu and the properties and dynamics of the PGW in the northern Arabian Sea and Sea of Oman.

  11. An Analysis of the Energy, Water, and Salt Balance of a Saline Lake in the Sandhills Region of Semi-Arid Western Nebraska (USA)

    NASA Astrophysics Data System (ADS)

    Ong, J.; Lenters, J. D.; Zlotnik, V. A.; Jones, S.

    2009-12-01

    The Sandhills region of western Nebraska comprises the largest stabilized dune field in the western hemisphere. Although situated in a semi-arid climate, the sandy soils allow a significant fraction of the ambient precipitation to drain through and recharge the underlying Ogallala aquifer. As part of the larger High Plains aquifer that extends from South Dakota down to Texas, the Sandhills region provides an abundant groundwater resource for the surrounding area and is heavily utilized for irrigation. Located within a semi-arid climate, fluctuations in groundwater recharge in the Sandhills are likely to be highly sensitive to changes in climate and the regional water balance. Important to this water balance are the numerous seepage lakes which exist throughout the region. Where present, however, these lakes evaporate rapidly as a result of the warm, dry, sunny, and windy conditions. Many of the lakes are highly saline and often support a diverse wetland ecosystem. A field study of one of these lakes was initiated in 2007 to examine the effects of climate variability on the energy and water balance of the lake. In particular, we measured incoming and outgoing solar and longwave radiation over the surface of the lake, as well as lake and sediment temperatures, salinity, water levels, and ancillary meteorological variables. The lake is shallow, with a depth of roughly 30 cm, but is observed to undergo significant variations in water level relative to its mean depth and is almost completely drying up during some periods. Salinity values undergo similarly large variations and are found to respond relatively rapidly to precipitation and evaporation “events.” Energy balance estimates of lake evaporation yield values that are well in excess of the ambient precipitation, suggesting significant inputs from groundwater. These evaporation measurements correspond closely with mass-transfer estimates, except during periods when the lake becomes dry enough to elevate surface temperatures, causing the mass transfer formulation to break down. Finally, we find that interannual variations in the energy, water, and salt balance of the lake are significant, suggesting that long-term monitoring of lakes in the Sandhills (and similar semi-arid regions) is required in order to establish a “representative” record.

  12. Teasing Apart Regional Climate and Meltwater Influences on Florida Straits Sea Surface Temperature and Salinity over the past 40 kyr

    NASA Astrophysics Data System (ADS)

    Schmidt, M. W.; Lynch-Stieglitz, J.

    2008-12-01

    Recent reconstructions of North Atlantic salinity variability over the last glacial cycle show that abrupt climate events are linked to major reorganizations in the low-latitude hydrologic cycle, affecting large-scale changes in evaporation minus precipitation (E-P) patterns. Although there is general agreement that the Intertropical Convergence Zone (ITCZ) migrates southward during cold stadials, it remains unclear how this shift affects the net E-P budget in the North Atlantic. In order to reconstruct a high resolution record of past sea surface temperature (SST) and salinity (SSS) in the Florida Straits across abrupt climate events of the last 40 kyr, we combine Mg/Ca paleothermometry and δ18O measurements in shells from the surface-dwelling foraminifera Globigerinoides ruber in cores KNR166-2-JPC29 (24°17'N, 83°16'W; 648 m depth; 8-20 cm/kyr sed. rate) and JPC26 (24°19.61'N, 83°15.14'W; 546 m depth; 18-240 cm/kyr sed. rate) and calculate δ18OSEAWATER (δ18OSW) variability. Removal of the δ18OSW signal due to continental ice volume variation results in the ice volume-free (IVF) δ18OSW record (a proxy for SSS variability). Although most waters flowing through the Florida Straits today originate in the tropical western Atlantic, major meltwater discharges from the Mississippi River across the last deglacial period also influenced SST and SSS in the Florida Straits. To constrain periods of increased meltwater discharge, we measured Ba/Ca ratios in G. ruber from select intervals. Because riverine waters have a much higher dissolved Ba+2 concentration relative to seawater, foraminifera Ba/Ca ratios can be used as an additional proxy to constrain periods of increase riverine discharge. Initial results suggest the hydrographic history of the Florida Straits is influenced by both meltwater discharge and regional climate variability linked to the high-latitude North Atlantic. Both the IVF- δ18OSW and Ba/Ca records reveal a prolonged period from 16.0-13.0 kyr when elevated meltwater discharge was the dominant influence on surface water conditions in the Florida Straits. It is likely that SSS in the Florida Straits was significantly fresher than today during this interval. In contrast, periods of minimal meltwater influence (such as the Younger Dryas and across D-O cycles of MIS 3) are characterized by abrupt SST and SSS shifts that covary with the NGRIP δ18Oice record. SSTs in the Florida Straits cool by 1.5-2.0 °C and regional salinity increases (IVF-δ18OSW increase of 0.5-0.7‰) at the initiation of cold stadial events as the ITCZ shifts south. The most likely explanation for these rapid shifts in IVF-δ18OSW values is that moisture transport out of the North Atlantic increases when the North Atlantic cools and the ITCZ shifts southward.

  13. Forcing functions governing salt transport processes in coastal navigation canals and connectivity to surrounding marshes in South Louisiana using Houma Navigation Canal as a surrogate

    USGS Publications Warehouse

    Snedden, Gregg

    2014-01-01

    Understanding how circulation and mixing processes in coastal navigation canals influence the exchange of salt between marshes and coastal ocean, and how those processes are modulated by external physical processes, is critical to anticipating effects of future actions and circumstance. Examples of such circumstances include deepening the channel, placement of locks in the channel, changes in freshwater discharge down the channel, changes in outer continental shelf (OCS) vessel traffic volume, and sea level rise. The study builds on previous BOEM-funded studies by investigating salt flux variability through the Houma Navigation Canal (HNC). It examines how external physical factors, such as buoyancy forcing and mixing from tidal stirring and OCS vessel wakes, influence dispersive and advective fluxes through the HNC and the impact of this salt flux on salinity in nearby marshes. This study quantifies salt transport processes and salinity variability in the HNC and surrounding Terrebonne marshes. Data collected for this study include time-series data of salinity and velocity in the HNC, monthly salinity-depth profiles along the length of the channel, hourly vertical profiles of velocity and salinity over multiple tidal cycles, and salinity time series data at three locations in the surrounding marshes along a transect of increasing distance from the HNC. Two modes of vertical current structure were identified. The first mode, making up 90% of the total flow field variability, strongly resembled a barotropic current structure and was coherent with alongshelf wind stress over the coastal Gulf of Mexico. The second mode was indicative of gravitational circulation and was linked to variability in tidal stirring and the longitudinal salinity gradients along the channel’s length. Diffusive process were dominant drivers of upestuary salt transport, except during periods of minimal tidal stirring when gravitational circulation became more important. Salinity in the surrounding marshes was much more responsive to salinity variations in the HNC than it was to variations in the lower Terrebonne marshes, suggesting that the HNC is the primary conduit for saltwater intrusion to the middle Terrebonne marshes. Finally, salt transport to the middle Terrebonne marshes directly associated with vessel wakes was negligible.

  14. Bacterial responses to fluctuations and extremes in temperature and brine salinity at the surface of Arctic winter sea ice.

    PubMed

    Ewert, Marcela; Deming, Jody W

    2014-08-01

    Wintertime measurements near Barrow, Alaska, showed that bacteria near the surface of first-year sea ice and in overlying saline snow experience more extreme temperatures and salinities, and wider fluctuations in both parameters, than bacteria deeper in the ice. To examine impacts of such conditions on bacterial survival, two Arctic isolates with different environmental tolerances were subjected to winter-freezing conditions, with and without the presence of organic solutes involved in osmoprotection: proline, choline, or glycine betaine. Obligate psychrophile Colwellia psychrerythraea strain 34H suffered cell losses under all treatments, with maximal loss after 15-day exposure to temperatures fluctuating between -7 and -25 °C. Osmoprotectants significantly reduced the losses, implying that salinity rather than temperature extremes presents the greater stress for this organism. In contrast, psychrotolerant Psychrobacter sp. strain 7E underwent miniaturization and fragmentation under both fluctuating and stable-freezing conditions, with cell numbers increasing in most cases, implying a different survival strategy that may include enhanced dispersal. Thus, the composition and abundance of the bacterial community that survives in winter sea ice may depend on the extent to which overlying snow buffers against extreme temperature and salinity conditions and on the availability of solutes that mitigate osmotic shock, especially during melting. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  15. Salinity surveys using an airborne microwave radiometer

    NASA Technical Reports Server (NTRS)

    Paris, J. F.; Droppleman, J. D.; Evans, D. E.

    1972-01-01

    The Barnes PRT-5 infrared radiometer and L-band channel of the multifrequency microwave radiometer are used to survey the distribution of surface water temperature and salinity. These remote sensors were flown repetitively in November 1971 over the outflow of the Mississippi River into the Gulf of Mexico. Data reduction parameters were determined through the use of flight data obtained over a known water area. With these parameters, the measured infrared and microwave radiances were analyzed in terms of the surface temperature and salinity.

  16. A reanalysis dataset of the South China Sea.

    PubMed

    Zeng, Xuezhi; Peng, Shiqiu; Li, Zhijin; Qi, Yiquan; Chen, Rongyu

    2014-01-01

    Ocean reanalysis provides a temporally continuous and spatially gridded four-dimensional estimate of the ocean state for a better understanding of the ocean dynamics and its spatial/temporal variability. Here we present a 19-year (1992-2010) high-resolution ocean reanalysis dataset of the upper ocean in the South China Sea (SCS) produced from an ocean data assimilation system. A wide variety of observations, including in-situ temperature/salinity profiles, ship-measured and satellite-derived sea surface temperatures, and sea surface height anomalies from satellite altimetry, are assimilated into the outputs of an ocean general circulation model using a multi-scale incremental three-dimensional variational data assimilation scheme, yielding a daily high-resolution reanalysis dataset of the SCS. Comparisons between the reanalysis and independent observations support the reliability of the dataset. The presented dataset provides the research community of the SCS an important data source for studying the thermodynamic processes of the ocean circulation and meso-scale features in the SCS, including their spatial and temporal variability.

  17. Multimodel inference to quantify the relative importance of abiotic factors in the population dynamics of marine zooplankton

    NASA Astrophysics Data System (ADS)

    Everaert, Gert; Deschutter, Yana; De Troch, Marleen; Janssen, Colin R.; De Schamphelaere, Karel

    2018-05-01

    The effect of multiple stressors on marine ecosystems remains poorly understood and most of the knowledge available is related to phytoplankton. To partly address this knowledge gap, we tested if combining multimodel inference with generalized additive modelling could quantify the relative contribution of environmental variables on the population dynamics of a zooplankton species in the Belgian part of the North Sea. Hence, we have quantified the relative contribution of oceanographic variables (e.g. water temperature, salinity, nutrient concentrations, and chlorophyll a concentrations) and anthropogenic chemicals (i.e. polychlorinated biphenyls) to the density of Acartia clausi. We found that models with water temperature and chlorophyll a concentration explained ca. 73% of the population density of the marine copepod. Multimodel inference in combination with regression-based models are a generic way to disentangle and quantify multiple stressor-induced changes in marine ecosystems. Future-oriented simulations of copepod densities suggested increased copepod densities under predicted environmental changes.

  18. A reanalysis dataset of the South China Sea

    PubMed Central

    Zeng, Xuezhi; Peng, Shiqiu; Li, Zhijin; Qi, Yiquan; Chen, Rongyu

    2014-01-01

    Ocean reanalysis provides a temporally continuous and spatially gridded four-dimensional estimate of the ocean state for a better understanding of the ocean dynamics and its spatial/temporal variability. Here we present a 19-year (1992–2010) high-resolution ocean reanalysis dataset of the upper ocean in the South China Sea (SCS) produced from an ocean data assimilation system. A wide variety of observations, including in-situ temperature/salinity profiles, ship-measured and satellite-derived sea surface temperatures, and sea surface height anomalies from satellite altimetry, are assimilated into the outputs of an ocean general circulation model using a multi-scale incremental three-dimensional variational data assimilation scheme, yielding a daily high-resolution reanalysis dataset of the SCS. Comparisons between the reanalysis and independent observations support the reliability of the dataset. The presented dataset provides the research community of the SCS an important data source for studying the thermodynamic processes of the ocean circulation and meso-scale features in the SCS, including their spatial and temporal variability. PMID:25977803

  19. A variant of the anomaly initialisation approach for global climate forecast models

    NASA Astrophysics Data System (ADS)

    Volpi, Danila; Guemas, Virginie; Doblas-Reyes, Francisco; Hawkins, Ed; Nichols, Nancy; Carrassi, Alberto

    2014-05-01

    This work presents a refined method of anomaly initialisation (AI) applied to the ocean and sea ice components of the global climate forecast model EC-Earth, with the following particularities: - the use of a weight to the anomalies, in order to avoid the risk of introducing too big anomalies recorded in the observed state, whose amplitude does not fit the range of the internal variability generated by the model. - the AI of the temperature and density ocean state variables instead of the temperature and salinity. Results show that the use of such refinements improve the skill over the Arctic region, part of the North and South Atlantic, part of the North and South Pacific and the Mediterranean Sea. In the Tropical Pacific the full field initialised experiment performs better. This is probably due to a displacement of the observed anomalies caused by the use of the AI technique. Furthermore, preliminary results of an anomaly nudging experiment are discussed.

  20. Interannual and Decadal Changes in Salinity in the Oceanic Subtropical Gyres

    NASA Astrophysics Data System (ADS)

    Bulusu, Subrahmanyam

    2017-04-01

    There is evidence that the global water cycle has been undergoing an intensification over several decades as a response to increasing atmospheric temperatures, particularly in regions with skewed evaporation - precipitation (E-P) patterns such as the oceanic subtropical gyres. Moreover, observational data (rain gauges, etc.) are quite sparse over such areas due to the inaccessibility of open ocean regions. In this work, a comparison of observational and model simulations are conducted to highlight the potential applications of satellite derived salinity from NASA Aquarius Salinity mission, NASA Soil Moisture and Ocean Salinity (SMOS), and ESA's Soil Moisture Active Passive (SMAP). We explored spatial and temporal salinity changes (and trends) in surface and subsurface in the oceanic subtropical gyres using Argo floats salinity data, Simple Ocean Data Assimilation (SODA) reanalysis, Estimating the Circulations & Climate of the Ocean GECCO (German ECCO) model simulations, and Hybrid Coordinate Ocean Model (HYCOM). Our results based on SODA reanalysis reveals that a positive rising trend in sea surface salinity in the subtropical gyres emphasizing evidence for decadal intensification in the surface forcing in these regions. Zonal drift in the location of the salinity maximum of the south Pacific, north Atlantic, and south Indian regions implies a change in the mean near-surface currents responsible for advecting high salinity waters into the region. Also we found out that an overall salinity increase within the mixed layer, and a subsurface salinity decrease at depths greater than 200m in the global subtropical gyres over 61 years. We determine that freshwater fluxes at the air-sea interface are the primary drivers of the sea surface salinity (SSS) signature over these open ocean regions by quantifying the advective contribution within the surface layer. This was demonstrated through a mixed layer salinity budget in each subtropical gyre based on the vertically integrated advection and entrainment of salt. Our analysis of decadal variability of fluxes into and out of the gyres reveals little change in the strength of the mean currents through this region despite an increase in the annual export of salt in all subtropical gyres, with the meridional component dominating the zonal. This study reveals that the salt content of E-P maximum waters advected into the subtropical gyres is increasing over time. A combination of increasing direct evaporation over the regions with increasing remote evaporation over nearby E-P maxima is believed to be the main driver in increasing salinity of the subtropical oceans, suggesting an intensification of the global water cycle over decadal timescales.

  1. Cryoelectrolysis—electrolytic processes in a frozen physiological saline medium

    PubMed Central

    Lugnani, Franco; Macchioro, Matteo

    2017-01-01

    Background Cryoelectrolysis is a new minimally invasive tissue ablation surgical technique that combines the ablation techniques of electrolytic ablation with cryosurgery. The goal of this study is to examine the hypothesis that electrolysis can take place in a frozen aqueous saline solution. Method To examine the hypothesis we performed a cryoelectrolytic ablation protocol in which electrolysis and cryosurgery are delivered simultaneously in a tissue simulant made of physiological saline gel with a pH dye. We measured current flow, voltage and extents of freezing and pH dye staining. Results Using optical measurements and measurements of currents, we have shown that electrolysis can occur in frozen physiological saline, at high subzero freezing temperatures, above the eutectic temperature of the frozen salt solution. It was observed that electrolysis occurs when the tissue resides at high subzero temperatures during the freezing stage and essentially throughout the entire thawing stage. We also found that during thawing, the frozen lesion temperature raises rapidly to high subfreezing values and remains at those values throughout the thawing stage. Substantial electrolysis occurs during the thawing stage. Another interesting finding is that electro-osmotic flows affect the process of cryoelectrolysis at the anode and cathode, in different ways. Discussion The results showing that electrical current flow and electrolysis occur in frozen saline solutions imply a mechanism involving ionic movement in the fluid concentrated saline solution channels between ice crystals, at high subfreezing temperatures. Temperatures higher than the eutectic are required for the brine to be fluid. The particular pattern of temperature and electrical currents during the thawing stage of frozen tissue, can be explained by the large amounts of energy that must be removed at the outer edge of the frozen lesion because of the solid/liquid phase transformation on that interface. Conclusion Electrolysis can occur in a frozen domain at high subfreezing temperature, probably above the eutectic. It appears that the most effective period for delivering electrolytic currents in cryoelectrolysis is during the high subzero temperatures stage while freezing and immediately after cooling has stopped, throughout the thawing stage. PMID:28123904

  2. Cryoelectrolysis-electrolytic processes in a frozen physiological saline medium.

    PubMed

    Lugnani, Franco; Macchioro, Matteo; Rubinsky, Boris

    2017-01-01

    Cryoelectrolysis is a new minimally invasive tissue ablation surgical technique that combines the ablation techniques of electrolytic ablation with cryosurgery. The goal of this study is to examine the hypothesis that electrolysis can take place in a frozen aqueous saline solution. To examine the hypothesis we performed a cryoelectrolytic ablation protocol in which electrolysis and cryosurgery are delivered simultaneously in a tissue simulant made of physiological saline gel with a pH dye. We measured current flow, voltage and extents of freezing and pH dye staining. Using optical measurements and measurements of currents, we have shown that electrolysis can occur in frozen physiological saline, at high subzero freezing temperatures, above the eutectic temperature of the frozen salt solution. It was observed that electrolysis occurs when the tissue resides at high subzero temperatures during the freezing stage and essentially throughout the entire thawing stage. We also found that during thawing, the frozen lesion temperature raises rapidly to high subfreezing values and remains at those values throughout the thawing stage. Substantial electrolysis occurs during the thawing stage. Another interesting finding is that electro-osmotic flows affect the process of cryoelectrolysis at the anode and cathode, in different ways. The results showing that electrical current flow and electrolysis occur in frozen saline solutions imply a mechanism involving ionic movement in the fluid concentrated saline solution channels between ice crystals, at high subfreezing temperatures. Temperatures higher than the eutectic are required for the brine to be fluid. The particular pattern of temperature and electrical currents during the thawing stage of frozen tissue, can be explained by the large amounts of energy that must be removed at the outer edge of the frozen lesion because of the solid/liquid phase transformation on that interface. Electrolysis can occur in a frozen domain at high subfreezing temperature, probably above the eutectic. It appears that the most effective period for delivering electrolytic currents in cryoelectrolysis is during the high subzero temperatures stage while freezing and immediately after cooling has stopped, throughout the thawing stage.

  3. High tolerance to temperature and salinity change should enable scleractinian coral Platygyra acuta from marginal environments to persist under future climate change.

    PubMed

    Chui, Apple Pui Yi; Ang, Put

    2017-01-01

    With projected changes in the marine environment under global climate change, the effects of single stressors on corals have been relatively well studied. However, more focus should be placed on the interactive effects of multiple stressors if their impacts upon corals are to be assessed more realistically. Elevation of sea surface temperature is projected under global climate change, and future increases in precipitation extremes related to the monsoon are also expected. Thus, the lowering of salinity could become a more common phenomenon and its impact on corals could be significant as extreme precipitation usually occurs during the coral spawning season. Here, we investigated the interactive effects of temperature [24, 27 (ambient), 30, 32°C] and salinity [33 psu (ambient), 30, 26, 22, 18, 14 psu] on larval settlement, post-settlement survival and early growth of the dominant coral Platygyra acuta from Hong Kong, a marginal environment for coral growth. The results indicate that elevated temperatures (+3°C and +5°C above ambient) did not have any significant effects on larval settlement success and post-settlement survival for up to 56 days of prolonged exposure. Such thermal tolerance was markedly higher than that reported in the literature for other coral species. Moreover, there was a positive effect of these elevated temperatures in reducing the negative effects of lowered salinity (26 psu) on settlement success. The enhanced settlement success brought about by elevated temperatures, together with the high post-settlement survival recorded up to 44 and 8 days of exposure under +3°C and +5°C ambient respectively, resulted in the overall positive effects of elevated temperatures on recruitment success. These results suggest that projected elevation in temperature over the next century should not pose any major problem for the recruitment success of P. acuta. The combined effects of higher temperatures and lowered salinity (26 psu) could even be beneficial. Therefore, corals that are currently present in marginal environments like Hong Kong, as exemplified by the dominant P. acuta, are likely to persist in a warmer and intermittently less saline, future ocean.

  4. High tolerance to temperature and salinity change should enable scleractinian coral Platygyra acuta from marginal environments to persist under future climate change

    PubMed Central

    Chui, Apple Pui Yi; Ang, Put

    2017-01-01

    With projected changes in the marine environment under global climate change, the effects of single stressors on corals have been relatively well studied. However, more focus should be placed on the interactive effects of multiple stressors if their impacts upon corals are to be assessed more realistically. Elevation of sea surface temperature is projected under global climate change, and future increases in precipitation extremes related to the monsoon are also expected. Thus, the lowering of salinity could become a more common phenomenon and its impact on corals could be significant as extreme precipitation usually occurs during the coral spawning season. Here, we investigated the interactive effects of temperature [24, 27 (ambient), 30, 32°C] and salinity [33 psu (ambient), 30, 26, 22, 18, 14 psu] on larval settlement, post-settlement survival and early growth of the dominant coral Platygyra acuta from Hong Kong, a marginal environment for coral growth. The results indicate that elevated temperatures (+3°C and +5°C above ambient) did not have any significant effects on larval settlement success and post-settlement survival for up to 56 days of prolonged exposure. Such thermal tolerance was markedly higher than that reported in the literature for other coral species. Moreover, there was a positive effect of these elevated temperatures in reducing the negative effects of lowered salinity (26 psu) on settlement success. The enhanced settlement success brought about by elevated temperatures, together with the high post-settlement survival recorded up to 44 and 8 days of exposure under +3°C and +5°C ambient respectively, resulted in the overall positive effects of elevated temperatures on recruitment success. These results suggest that projected elevation in temperature over the next century should not pose any major problem for the recruitment success of P. acuta. The combined effects of higher temperatures and lowered salinity (26 psu) could even be beneficial. Therefore, corals that are currently present in marginal environments like Hong Kong, as exemplified by the dominant P. acuta, are likely to persist in a warmer and intermittently less saline, future ocean. PMID:28622371

  5. Use of intertidal areas by shrimps (Decapoda) in a Brazilian Amazon estuary.

    PubMed

    Sampaio, Hebert A; Martinelli-Lemos, Jussara M

    2014-03-01

    The present work investigated the occupation and the correlation of the shrimp abundance in relation to environmental variables in different habitats (mangroves, salt marshes and rocky outcrops) in an Amazon estuary. The collections were made in August and November 2009, at low syzygy tide on Areuá Beach, situated in the Extractive Reserve of Mãe Grande de Curuçá, Pará, Brazil totaling 20 pools. In each environment, we recorded the physical-chemical factors (pH, salinity, and temperature) and measured the area (m2) and volume (m3) of every pool through bathymetry. The average pH, salinity, temperature, area and volume of tide pools were 8.75 (± 0.8 standard deviation), 35.45 (± 3), 29.49 °C (± 2.32), 27.41 m2 (± 41.18), and 5.19 m3 (± 8.01), respectively. We caught a total of 4,871 shrimps, distributed in three families and four species: Farfantepenaeus subtilis (98.36%) (marine) followed by Alpheus pontederiae (0.76%) (estuarine), Macrobrachium surinamicum (0.45%) and Macrobrachium amazonicum (0.43%) predominantly freshwater. The species F. subtilis and A. pontederiae occurred in the three habitats, whereas M. surinamicum occurred in salt marsh and rocky outcrop and M. amazonicum only in marisma. Temperature and pH were the most important environmental descriptors that significantly affected the density and biomass of shrimps.

  6. GROWTH RATES AND ELEMENTAL COMPOSITION OF ALEXANDRIUM MONILATUM, A REDTIDE DINOFLAGELLATE

    EPA Science Inventory

    The combined effects of temperature and salinity on growth of Alexandrium monilatum were studied in laboratory cultures. This toxic, red-tide dinoflagellate grew faster with higher temperatures, up to a maximum of approximately 1 division d-1 at 31 C. Salinities above 15 psu had ...

  7. Laser measure of sea salinity, temperature and turbidity in depth

    NASA Technical Reports Server (NTRS)

    Hirschberg, J. G.; Wouters, A. W.; Byrne, J. D.

    1974-01-01

    A method is described in which a pulsed laser is used to probe the sea. Backscattered light is analyzed in time, intensity and wavelength. Tyndall, Raman and Brillouin scattering are used to obtain the backscatter turbidity, sound velocity, salinity, and the temperature as a function of depth.

  8. PHYSIOLOGICAL STUDIES ON 'CANCER IRRORATUS' LARVAE. II. EFFECTS OF TEMPERATURE AND SALINITY ON PHYSIOLOGICAL PERFORMANCE

    EPA Science Inventory

    Larvae of the rock crab Cancer irroratus were cultured under specific environmental regimes to examine the influence of temperature and salinity on respiration and excretion rates during development. In addition, the type of biochemical substrate used for energy production was de...

  9. Spatial variability of sugarcane yields in relation to soil salinity in Louisiana

    USDA-ARS?s Scientific Manuscript database

    High soil salinity levels have been documented to negatively impact sugarcane yields. Tests were conducted in commercial sugarcane fields in South Louisiana in 2009-2010 to determine if elevated soil salinity levels resulting from salt water intrusion from several recent hurricanes was having a neg...

  10. A Trip Through the Virtual Ocean: Understanding Basic Oceanic Process Using Real Data and Collaborative Learning

    NASA Astrophysics Data System (ADS)

    Hastings, D. W.

    2012-12-01

    How can we effectively teach undergraduates the fundamentals of physical, chemical and biological processes in the ocean? Understanding physical circulation and biogeochemical processes is essential, yet it can be difficult for an undergraduate to easily grasp important concepts such as using temperature and salinity as conservative tracers, nutrient distribution, ageing of water masses, and thermocline variability. Like many other topics, it is best learned not in a lecture setting, but working with real data: plotting values, making predictions, and making mistakes. Part I: Using temperature and salinity values from any location in the world ocean (World Ocean Atlas), combined with an excellent user interface (http://ferret.pmel.noaa.gov), students are asked to answer a series of specific questions related to ocean circulation. Using established temperature and salinity values to characterize different water masses, students are able to identify various water masses and gain insight to physical circulation processes. Questions related to ocean circulation include: How far south and at what depth does NADW extend into the S. Atlantic? Is deep water formed in the North Pacific? How and why does the depth of the thermocline vary with latitude in the Atlantic Ocean? How deep does the Mediterranean Water descend as it leaves the Straits of Gibraltar? How far into the Atlantic can you see the influence of the Amazon River? Is there any Antarctic Bottom Water in the North Pacific? Collaborating with another student typically leads to increased engagement. Especially in large lecture settings, where one teacher is not able to address student questions or concerns, working in pairs or in groups of three is best. Part II: Using the same web-based viewer and data set students are subsequently assigned one oceanic property (phosphate, nitrate, silicate, O2, or AOU) and asked to construct three different plots: 1) vertical depth profile at one location; 2) latitude vs. depth at 20°W; and 3) a latitude vs. longitude at 4,000 m depth in the entire ocean. Students do this work at home, and come to class prepared with hypotheses that explain variations of their variable observed in their figures. Nutrients, for example, are typically depleted in the surface ocean, increase at intermediate depths, and then typically decrease in deep water. How do oceanic processes drive these variations? In the context of the other variables, and with the help of other group members, they typically develop an understanding of surface productivity, respiration of organic matter in deeper waters, upwelling of deeper water, ocean circulation, insolation, evaporation, precipitation, and temperature dependence of gas solubility. Students then prepare a written explanation to accompany the plots. Cartoon-like depictions of nutrient profiles typically presented in introductory texts have their place, but they lack the complexity inherent in real data. The objective is to mimic the excitement of discovery and the challenge of developing a hypothesis to explain existing data. The ability to develop viable hypotheses to explain real data with real variability are what motivate and inspire many scientists. How can we expect to motivate and inspire students with lackluster descriptions of ocean processes?

  11. Decline of the world's saline lakes

    NASA Astrophysics Data System (ADS)

    Wurtsbaugh, Wayne A.; Miller, Craig; Null, Sarah E.; Derose, R. Justin; Wilcock, Peter; Hahnenberger, Maura; Howe, Frank; Moore, Johnnie

    2017-11-01

    Many of the world's saline lakes are shrinking at alarming rates, reducing waterbird habitat and economic benefits while threatening human health. Saline lakes are long-term basin-wide integrators of climatic conditions that shrink and grow with natural climatic variation. In contrast, water withdrawals for human use exert a sustained reduction in lake inflows and levels. Quantifying the relative contributions of natural variability and human impacts to lake inflows is needed to preserve these lakes. With a credible water balance, causes of lake decline from water diversions or climate variability can be identified and the inflow needed to maintain lake health can be defined. Without a water balance, natural variability can be an excuse for inaction. Here we describe the decline of several of the world's large saline lakes and use a water balance for Great Salt Lake (USA) to demonstrate that consumptive water use rather than long-term climate change has greatly reduced its size. The inflow needed to maintain bird habitat, support lake-related industries and prevent dust storms that threaten human health and agriculture can be identified and provides the information to evaluate the difficult tradeoffs between direct benefits of consumptive water use and ecosystem services provided by saline lakes.

  12. Eye temperature and heart rate variability of calves disbudded with or without local anaesthetic.

    PubMed

    Stewart, M; Stafford, K J; Dowling, S K; Schaefer, A L; Webster, J R

    2008-03-18

    The possibility that pain can be detected from changes in eye temperature and heart rate variability (HRV) during disbudding was examined in thirty calves, randomly assigned to four treatments: 1) sham handling (control), 2) local anaesthetic (LA, cornual nerve injection) and sham disbudded, 3) sham LA and disbudded, 4) LA and disbudded. During a 40 min sampling period, maximum eye temperature, behavior and HRV parameters were recorded continuously. One week later, twelve disbudded calves were injected with adrenocorticotrophic hormone (ACTH) or saline and maximum eye temperature was recorded. There was a rapid drop in eye temperature during the 5 min following disbudding without LA (P<0.05). Eye temperature then increased and was higher than baseline over the remaining sampling period following both disbudding procedures (P<0.001), a response which could not be explained by increased physical activity LA increased eye temperature prior to disbudding (P<0.001). Heart rate increased (P<0.001) during the 5 min following disbudding with and without LA, however, LF/HF ratio only increased during this time (P<0.01) following disbudding without LA. Eye temperature did not change following ACTH, suggesting that hypothalamus-pituitary-adrenal axis (HPA) activity is not responsible for the changes in eye temperature following disbudding. The increase in LF/HF ratio following disbudding without LA suggests an acute sympathetic response to pain, which could be responsible for the drop in eye temperature via vasoconstriction. HRV and eye temperature together may be a useful non-invasive and more immediate index of pain than HPA activity alone.

  13. Estimation of the Barrier Layer Thickness in the Indian Ocean Using Aquarius Salinity

    DTIC Science & Technology

    2014-07-08

    number of temperature and salinity measurements in ocean basins . In 2005, buoy coverage in the Indian Ocean began meeting Argo program sampling...distribution of salinity in the Indian Ocean is unique when compared to the other basins with higher salinity in the western contrasted Journal of...eastern regions of the basin (Figure 2). In the Arabian Sea, evaporation (E) greatly exceeds precipitation (P) resulting in high salinity (>36 PSU

  14. The GEOS-iODAS: Description and Evaluation

    NASA Technical Reports Server (NTRS)

    Vernieres, Guillaume; Rienecker, Michele M.; Kovach, Robin; Keppenne, Christian L.

    2012-01-01

    This report documents the GMAO's Goddard Earth Observing System sea ice and ocean data assimilation systems (GEOS iODAS) and their evolution from the first reanalysis test, through the implementation that was used to initialize the GMAO decadal forecasts, and to the current system that is used to initialize the GMAO seasonal forecasts. The iODAS assimilates a wide range of observations into the ocean and sea ice components: in-situ temperature and salinity profiles, sea level anomalies from satellite altimetry, analyzed SST, and sea-ice concentration. The climatological sea surface salinity is used to constrain the surface salinity prior to the Argo years. Climatological temperature and salinity gridded data sets from the 2009 version of the World Ocean Atlas (WOA09) are used to help constrain the analysis in data sparse areas. The latest analysis, GEOS ODAS5.2, is diagnosed through detailed studies of the statistics of the innovations and analysis departures, comparisons with independent data, and integrated values such as volume transport. Finally, the climatologies of temperature and salinity fields from the Argo era, 2002-2011, are presented and compared with the WOA09.

  15. Stable near-surface ocean salinity stratifications due to evaporation observed during STRASSE

    NASA Astrophysics Data System (ADS)

    Asher, William E.; Jessup, Andrew T.; Clark, Dan

    2014-05-01

    Under conditions with a large solar flux and low wind speed, a stably stratified warm layer forms at the ocean surface. Evaporation can then lead to an increase in salinity in the warm layer. A large temperature gradient will decrease density enough to counter the density increase caused by the salinity increase, forming a stable positive salinity anomaly at the surface. If these positive salinity anomalies are large in terms of the change in salinity from surface to the base of the gradient, if their areal coverage is a significant fraction of the satellite footprint, and if they persist long enough to be in the satellite field of view, they could be relevant for calibration and validation of L-band microwave salinity measurements. A towed, surface-following profiler was deployed from the N/O Thalassa during the Subtropical Atlantic Surface Salinity Experiment (STRASSE). The profiler measured temperature and conductivity in the surface ocean at depths of 10, 50, and 100 cm. The measurements show that positive salinity anomalies are common at the ocean surface for wind speeds less than 4 m s-1 when the average daily insolation is >300 W m-2 and the sea-to-air latent heat flux is greater than zero. A semiempirical model predicts the observed dependence of measured anomalies on environmental conditions. However, the model results and the field data suggest that these ocean surface salinity anomalies are not large enough in terms of the salinity difference to significantly affect microwave radiometric measurements of salinity.

  16. Observations of the southern East Madagascar Current and undercurrent and countercurrent system

    NASA Astrophysics Data System (ADS)

    Nauw, J. J.; van Aken, H. M.; Webb, A.; Lutjeharms, J. R. E.; de Ruijter, W. P. M.

    2008-08-01

    In April 2001 four hydrographic sections perpendicular to the southern East Madagascar Current were surveyed as part of the Agulhas Current Sources Experiment. Observations with a vessel mounted and a lowered ADCP produced information on the current field while temperature, salinity, oxygen and nutrient data obtained with a CTD-Rosette system, gave information on the water mass structure of the currents southeast of Madagascar. The peak velocity in the pole-ward East Madagascar Current through these four sections had a typical magnitude of ˜110 cm/s, while the width of this current was of the order of 120 km. The mean pole-ward volume transport rate of this current during the survey above the 5°C isotherm was estimated to be 37 ± 10 Sv. On all four sections an undercurrent was observed at intermediate depths below the East Madagascar Current. Its equator-ward transport rate amounted to 2.8 ± 1.4 Sv. Offshore of the East Madagascar Current the shallow South Indian Ocean Countercurrent was observed. This eastward frontal jet coincided with the barotropic and thermohaline front that separates the saline Subtropical Surface Water from the fresher Tropical Surface Water in the East Madagascar Current. The near-surface geostrophic flow of the East Madagascar Current, derived from satellite altimetry data from 1992 to 2005, suggests a strong variability of this transport due to eddy variability and interannual changes. The long-term pole-ward mean transport of the East Madagascar Current, roughly estimated from those altimetry data amounts to 32 Sv. The upper-ocean water mass of the East Madagascar Current was very saline in 2001, compared to WOCE surveys from 1995. Comparison of our undercurrent data with those of the WOCE surveys in 1995 confirms that the undercurrent is a recurrent feature. Its water mass properties are relatively saline, due to the presence of water originating from the Red Sea outflow at intermediate levels. The saline water was advected from the Mozambique Channel to the eastern slope of Madagascar.

  17. The Impact of Salinity on the Seasonal and Interannual Variability of the Upper Ocean Structure and Air/Sea Interaction in the South Eastern Tropical Indian Ocean

    NASA Astrophysics Data System (ADS)

    Soares, S. M.; Richards, K. J.; Annamalai, H.; Natarov, A.

    2016-02-01

    The Seychelles-Chagos thermocline ridge (SCRT) in the south-eastern tropical Indian Ocean is believed to play an important role on air/sea interactions at monsoonal and intraseasonal timescales. Large gains in predictability of monsoon and intraseasonal variability may result from studying the mechanisms of ocean feedback to the atmosphere in the SCRT region. ARGO data from 2005-2014 show a marked salinity and temperature annual cycle, where mixed layer waters are freshest and warmest around February-March and saltiest and coldest around July-August in the eastern side of the SCRT. An analysis of the mixed-layer salt budget using a mix of observational gridded products and a coupled model shows that: i) surface freshwater fluxes do not play a significant role on the SCRT salinity annual cycle, ii) the freshening during austral Spring is primarily driven by zonal advection of the large pool of less saline waters off the coast of southeast Asia and bay of Bengal, while meridional advection accounts for a large fraction of the salting during Fall. The largest interannual anomalies in the ARGO salinity record occur in the aftermath of the negative Indian Ocean Dipole events of 2005 and 2010, when February mixed layer freshening was much reduced. The appearance of the fresher waters were evident in the DYNAMO/CINDY data collected in the area during Spring 2011 following the passage of a downwelling Rossby wave. Lagrangian parcel tracking indicates a variety of sources for these fresher waters, but generally agrees with the ARGO results above. The fresh surface layer had a significant impact on the measured turbulence and mixing and may have impacted the development of Madden-Julien Oscillation events observed during DYNAMO/CINDY. Given these findings, we examine in detail the suite of DYNAMO observations, combining them with numerical modeling experiments to determine the role of eddy fluxes and vertical processes on the formation of these freshwater layers, as well as their influence on the surface heat budget and possible feedbacks on air-sea interactions.

  18. Interactive effects of ocean acidification, elevated temperature, and reduced salinity on early-life stages of the pacific oyster.

    PubMed

    Ko, Ginger W K; Dineshram, R; Campanati, Camilla; Chan, Vera B S; Havenhand, Jon; Thiyagarajan, Vengatesen

    2014-09-02

    Ocean acidification (OA) effects on larvae are partially attributed for the rapidly declining oyster production in the Pacific Northwest region of the United States. This OA effect is a serious concern in SE Asia, which produces >80% of the world's oysters. Because climate-related stressors rarely act alone, we need to consider OA effects on oysters in combination with warming and reduced salinity. Here, the interactive effects of these three climate-related stressors on the larval growth of the Pacific oyster, Crassostrea gigas, were examined. Larvae were cultured in combinations of temperature (24 and 30 °C), pH (8.1 and 7.4), and salinity (15 psu and 25 psu) for 58 days to the early juvenile stage. Decreased pH (pH 7.4), elevated temperature (30 °C), and reduced salinity (15 psu) significantly delayed pre- and post-settlement growth. Elevated temperature lowered the larval lipid index, a proxy for physiological quality, and negated the negative effects of decreased pH on attachment and metamorphosis only in a salinity of 25 psu. The negative effects of multiple stressors on larval metamorphosis were not due to reduced size or depleted lipid reserves at the time of metamorphosis. Our results supported the hypothesis that the C. gigas larvae are vulnerable to the interactions of OA with reduced salinity and warming in Yellow Sea coastal waters now and in the future.

  19. Predictability and environmental drivers of chlorophyll fluctuations vary across different time scales and regions of the North Sea

    NASA Astrophysics Data System (ADS)

    Blauw, Anouk N.; Benincà, Elisa; Laane, Remi W. P. M.; Greenwood, Naomi; Huisman, Jef

    2018-02-01

    Phytoplankton concentrations display strong temporal variability at different time scales. Recent advances in automated moorings enable detailed investigation of this variability. In this study, we analyzed phytoplankton fluctuations at four automated mooring stations in the North Sea, which measured phytoplankton abundance (chlorophyll) and several environmental variables at a temporal resolution of 12-30 min for two to nine years. The stations differed in tidal range, water depth and freshwater influence. This allowed comparison of the predictability and environmental drivers of phytoplankton variability across different time scales and geographical regions. We analyzed the time series using wavelet analysis, cross correlations and generalized additive models to quantify the response of chlorophyll fluorescence to various environmental variables (tidal and meteorological variables, salinity, suspended particulate matter, nitrate and sea surface temperature). Hour-to-hour and day-to-day fluctuations in chlorophyll fluorescence were substantial, and mainly driven by sinking and vertical mixing of phytoplankton cells, horizontal transport of different water masses, and non-photochemical quenching of the fluorescence signal. At the macro-tidal stations, these short-term phytoplankton fluctuations were strongly driven by the tides. Along the Dutch coast, variation in salinity associated with the freshwater influence of the river Rhine played an important role, while in the central North Sea variation in weather conditions was a major determinant of phytoplankton variability. At time scales of weeks to months, solar irradiance, nutrient conditions and thermal stratification were the dominant drivers of changes in chlorophyll concentrations. These results show that the dominant drivers of phytoplankton fluctuations differ across marine environments and time scales. Moreover, our findings show that phytoplankton variability on hourly to daily time scales should not be dismissed as environmental noise, but is related to vertical and horizontal particle transport driven by winds and tides. Quantification of these transport processes contributes to an improved predictability of marine phytoplankton concentrations.

  20. Influence of predicted climage change elements on Z. ...

    EPA Pesticide Factsheets

    Global climate change (GCC) is expected to have pronounced impacts on estuarine and marine habitats including sea level rise, increased storm intensity, increased air and water temperatures, changes in upwelling dynamics and ocean acidification. All of these elements are likely to impact the growth and potential distribution of the non-indigenous seagrass Zostera japonica both within the State of Washington and within the region. Understanding how Z. japonica will respond to GCC requires a thorough understanding of plant physiology and predictions of GCC effects. Furthermore, Washington State is proposing to list Z. japonica as a “noxious weed” which will allow the state to use herbicide controls for management. We present data from manipulative experiments designed to better understand how Z. japonica photosynthetic physiology responds to temperature, salinity and light. We found that Z. japonica is well adapted to moderate temperatures and salinity with maximum photosynthesis of salinity of 20. The Coos Bay population had greater Pmax and saturation irradiance (Ik) than the Padilla bay population (p < 0.001) and tolerates daily exposure to both freshwater and marine water, suggesting that this population tolerates fairly extreme environmental fluctuations. Extreme temperatures (35 °C) were generally lethal to Z. japonica populations from Padilla, Coos and Yaquina Bays. High salinity (35) had lower mortality than either salinity of 5 or 20 (p = 0.0

  1. Formulation Development of High Strength Gel System and Evaluation on Profile Control Performance for High Salinity and Low Permeability Fractured Reservoir

    PubMed Central

    Zhang, Chengli; Qu, Guodong

    2017-01-01

    For the large pores and cracks of reservoirs with low temperatures, high salinity, and low permeability, a new type of high strength gel ABP system is developed in this paper. The defects of conventional gels such as weak gel strength, no gelling, and easy dehydration are overcome under the conditions of low temperature and high salinity. The temperature and salt resistance, plugging characteristics, and EOR of the gel system are studied. Under the condition of 32°C and 29500 mg/L salinity, the ABP system formulation is for 0.3% crosslinking agent A + 0.09% coagulant B + 3500 mg/L polymer solution P. The results show that when the temperature was increased, the delayed crosslinking time of the system was shortened and the gel strength was increased. The good plugging characteristics of the ABP system were reached, and the plugging rate was greater than 99% in cores with different permeability. A good profile control performance was achieved, and the recovery rate was improved by 19.27% on the basis of water flooding. In the practical application of the gel system, the salinity of formation water and the permeability of fractures are necessary to determine the appropriate formulation. PMID:28592971

  2. Parallel structure among environmental gradients and three trophic levels in a subarctic estuary

    USGS Publications Warehouse

    Speckman, Suzann G.; Piatt, John F.; Minte-Vera, C. V.; Parrish, Julia K.

    2005-01-01

    We assessed spatial and temporal variability in the physical environment of a subarctic estuary, and examined concurrent patterns of chlorophyll α abundance (fluorescence), and zooplankton and forage fish community structure. Surveys were conducted in lower Cook Inlet, Alaska, during late July and early August from 1997 through 1999. Principle components analysis (PCA) revealed that spatial heterogeneity in the physical oceanographic environment of lower Cook Inlet could be modeled as three marine-estuarine gradients characterized by temperature, salinity, bottom depth, and turbidity. The gradients persisted from 1997 through 1999, and PCA explained 68% to 92% of the variance in physical oceanography for each gradient-year combination. Correlations between chlorophyll α abundance and distribution and the PCA axes were weak. Chlorophyll was reduced by turbidity, and low levels occurred in areas with high levels of suspended sediments. Detrended correspondence analysis (DCA) was used to order the sample sites based on species composition and to order the zooplankton and forage fish taxa based on similarities among sample sites for each gradient-year. Correlations between the structure of the physical environment (PCA axis 1) and zooplankton community structure (DCA axis 1) were strong (r = 0.43-0.86) in all years for the three marine-estuarine gradients, suggesting that zooplankton community composition was structured by the physical environment. The physical environment (PCA) and forage fish community structure (DCA) were weakly correlated in all years along Gradient 2, defined by halocline intensity and surface temperature and salinity, even though these physical variables were more important for defining zooplankton habitats. However, the physical environment (PCA) and forage fish community structure (DCA) were strongly correlated along the primary marine-estuarine gradient (#1) in 1997 (r = 0.87) and 1998 (r = 0.82). The correlation was poor (r = 0.32) in 1999, when fish community structure changed markedly in lower Cook Inlet. Capelin (Mallotus villosus), walleye pollock (Theragra chalcogramma), and arrowtooth flounder (Atheresthes stomias) were caught farther north than in previous years. Waters were significantly colder and more saline in 1999, a La Nina year, than in other years of the study. Interannual fluctuations in environmental conditions in lower Cook Inlet did not have substantial effects on zooplankton community structure, although abundance of individual taxa varied significantly. The abundance and distribution of chlorophyll α, zooplankton and forage fish were affected much more by spatial variability in physical oceanography than by interannual variability. Our examination of physical-biological linkages in lower Cook Inlet supports the concept of "bottom-up control," i.e., that variability in the physical environment structures higher trophic-level communities by influencing their distribution and abundance across space.

  3. Parallel structure among environmental gradients and three trophic levels in a subarctic estuary

    NASA Astrophysics Data System (ADS)

    Speckman, Suzann G.; Piatt, John F.; Minte-Vera, Carolina V.; Parrish, Julia K.

    2005-07-01

    We assessed spatial and temporal variability in the physical environment of a subarctic estuary, and examined concurrent patterns of chlorophyll α abundance (fluorescence), and zooplankton and forage fish community structure. Surveys were conducted in lower Cook Inlet, Alaska, during late July and early August from 1997 through 1999. Principle components analysis (PCA) revealed that spatial heterogeneity in the physical oceanographic environment of lower Cook Inlet could be modeled as three marine-estuarine gradients characterized by temperature, salinity, bottom depth, and turbidity. The gradients persisted from 1997 through 1999, and PCA explained 68% to 92% of the variance in physical oceanography for each gradient-year combination. Correlations between chlorophyll α abundance and distribution and the PCA axes were weak. Chlorophyll was reduced by turbidity, and low levels occurred in areas with high levels of suspended sediments. Detrended correspondence analysis (DCA) was used to order the sample sites based on species composition and to order the zooplankton and forage fish taxa based on similarities among sample sites for each gradient-year. Correlations between the structure of the physical environment (PCA axis 1) and zooplankton community structure (DCA axis 1) were strong ( r = 0.43-0.86) in all years for the three marine-estuarine gradients, suggesting that zooplankton community composition was structured by the physical environment. The physical environment (PCA) and forage fish community structure (DCA) were weakly correlated in all years along Gradient 2, defined by halocline intensity and surface temperature and salinity, even though these physical variables were more important for defining zooplankton habitats. However, the physical environment (PCA) and forage fish community structure (DCA) were strongly correlated along the primary marine-estuarine gradient (#1) in 1997 ( r = 0.87) and 1998 ( r = 0.82). The correlation was poor ( r = 0.32) in 1999, when fish community structure changed markedly in lower Cook Inlet. Capelin ( Mallotus villosus), walleye pollock ( Theragra chalcogramma), and arrowtooth flounder ( Atheresthes stomias) were caught farther north than in previous years. Waters were significantly colder and more saline in 1999, a La Niña year, than in other years of the study. Interannual fluctuations in environmental conditions in lower Cook Inlet did not have substantial effects on zooplankton community structure, although abundance of individual taxa varied significantly. The abundance and distribution of chlorophyll α, zooplankton and forage fish were affected much more by spatial variability in physical oceanography than by interannual variability. Our examination of physical-biological linkages in lower Cook Inlet supports the concept of “bottom-up control,” i.e., that variability in the physical environment structures higher trophic-level communities by influencing their distribution and abundance across space.

  4. Impact of topography on groundwater salinization due to ocean surge inundation

    NASA Astrophysics Data System (ADS)

    Yu, Xuan; Yang, Jie; Graf, Thomas; Koneshloo, Mohammad; O'Neal, Michael A.; Michael, Holly A.

    2016-08-01

    Sea-level rise and increases in the frequency and intensity of ocean surges caused by climate change are likely to exacerbate adverse effects on low-lying coastal areas. The landward flow of water during ocean surges introduces salt to surficial coastal aquifers and threatens groundwater resources. Coastal topographic features (e.g., ponds, dunes, barrier islands, and channels) likely have a strong impact on overwash and salinization processes, but are generally highly simplified in modeling studies. To understand topographic impacts on groundwater salinization, we modeled a theoretical overwash event and variable-density groundwater flow and salt transport in 3-D using the fully coupled surface and subsurface numerical simulator, HydroGeoSphere. The model simulates the coastal aquifer as an integrated system considering overland flow, coupled surface and subsurface exchange, variably saturated flow, and variable-density groundwater flow. To represent various coastal landscape types, we simulated both synthetic fields and real-world coastal topography from Delaware, USA. The groundwater salinization assessment suggested that the topographic connectivity promoting overland flow controls the volume of aquifer that is salinized. In contrast, the amount of water that can be stored in surface depressions determines the amount of seawater that infiltrates the subsurface and the time for seawater to flush from the aquifer. Our study suggests that topography has a significant impact on groundwater salinization due to ocean surge overwash, with important implications for coastal land management and groundwater vulnerability assessment.

  5. Interannual to Decadal Variability of Atlantic Water in the Nordic and Adjacent Seas

    NASA Technical Reports Server (NTRS)

    Carton, James A.; Chepurin, Gennady A.; Reagan, James; Haekkinen, Sirpa

    2011-01-01

    Warm salty Atlantic Water is the main source water for the Arctic Ocean and thus plays an important role in the mass and heat budget of the Arctic. This study explores interannual to decadal variability of Atlantic Water properties in the Nordic Seas area where Atlantic Water enters the Arctic, based on a reexamination of the historical hydrographic record for the years 1950-2009, obtained by combining multiple data sets. The analysis shows a succession of four multi-year warm events where temperature anomalies at 100m depth exceed 0.4oC, and three cold events. Three of the four warm events lasted 3-4 years, while the fourth began in 1999 and persists at least through 2009. This most recent warm event is anomalous in other ways as well, being the strongest, having the broadest geographic extent, being surface-intensified, and occurring under exceptional meteorological conditions. Three of the four warm events were accompanied by elevated salinities consistent with enhanced ocean transport into the Nordic Seas, with the exception of the event spanning July 1989-July 1993. Of the three cold events, two lasted for four years, while the third lasted for nearly 14 years. Two of the three cold events are associated with reduced salinities, but the cold event of the 1960s had elevated salinities. The relationship of these events to meteorological conditions is examined. The results show that local surface heat flux variations act in some cases to reinforce the anomalies, but are too weak to be the sole cause.

  6. Tracer Sampling In The Arctic From The Nuclear Submarine USS L. Mendel Rivers During SCICEX 2000: Evidence Of Eddies

    NASA Astrophysics Data System (ADS)

    Kadko, D. C.; Aagaard, K.

    2006-12-01

    Observations suggest that the central Arctic Ocean is surprisingly energetic and variable, given the weak mean flow and the very strong halocline, which isolates the surface from the deeper ocean. One source of variability is numerous, generally anticyclonic eddies, many of which are centered in the halocline and likely generated within the boundary current. These and other eddies may be an important means of transporting properties in regions of weak mean flow, since they are found far from their origin, show anomalous water properties, and have a life time of years, mixing only slowly with ambient waters. Tracers additional to temperature and salinity will likely prove useful in identifying eddy sources and ages. Here we report radium isotope, temperature, and salinity data obtained from the USS L. Mendel Rivers - PACSUBICEX 3-00 SCICEX Accommodation cruise in October, 2000. The radium activity ratios are linked to shelf sources, and provide estimates of time elapsed since the waters left the shelf. The generally decreasing 228Ra/226Ra ratio in the halocline observed across the Canada Basin from Barrow to the North Pole is consistent with distance from Pacific shelf sources. Additionally, isolated anomalously high 228Ra/226Ra ratios within both the Canada and Eurasian basins suggest water parcels that have been rapidly (relative to the 5.77 year 228Ra half-life) transported from the shelves into the interior. The density field indicates that eddies are the means of this efficient transport of shelf properties into the central Arctic Ocean.

  7. A time-dependent, three-dimensional model of the Delaware Bay and River system. Part 2: Three-dimensional flow fields and residual circulation

    NASA Astrophysics Data System (ADS)

    Galperin, Boris; Mellor, George L.

    1990-09-01

    The three-dimensional model of Delaware Bay, River and adjacent continental shelf was described in Part 1. Here, Part 2 of this two-part paper demonstrates that the model is capable of realistic simulation of current and salinity distributions, tidal cycle variability, events of strong mixing caused by high winds and rapid salinity changes due to high river runoff. The 25-h average subtidal circulation strongly depends on the wind forcing. Monthly residual currents and salinity distributions demonstrate a classical two-layer estuarine circulation wherein relatively low salinity water flows out at the surface and compensating high salinity water from the shelf flows at the bottom. The salinity intrusion is most vigorous along deep channels in the Bay. Winds can generate salinity fronts inside and outside the Bay and enhance or weaken the two-layer circulation pattern. Since the portion of the continental shelf included in the model is limited, the model shelf circulation is locally wind-driven and excludes such effects as coastally trapped waves and interaction with Gulf Stream rings; nevertheless, a significant portion of the coastal elevation variability is hindcast by the model. Also, inclusion of the shelf improves simulation of salinity inside the Bay compared with simulations where the salinity boundary condition is specified at the mouth of the Bay.

  8. Effects of salinity and temperature on in vitro cell cycle and proliferation of Perkinsus marinus from Brazil.

    PubMed

    Queiroga, Fernando Ramos; Marques-Santos, Luis Fernando; De Medeiros, Isac Almeida; Da Silva, Patrícia Mirella

    2016-04-01

    Field and in vitro studies have shown that high salinities and temperatures promote the proliferation and dissemination of Perkinsus marinus in several environments. In Brazil, the parasite infects native oysters Crassostrea gasar and Crassostrea rhizophorae in the Northeast (NE), where the temperature is high throughout the year. Despite the high prevalence of Perkinsus spp. infection in oysters from the NE of Brazil, no mortality events were reported by oyster farmers to date. The present study evaluated the effects of salinity (5, 20 and 35 psu) and temperature (15, 25 and 35 °C) on in vitro proliferation of P. marinus isolated from a host (C. rhizophorae) in Brazil, for a period of up to 15 days and after the return to the control conditions (22 days; recovery). Different cellular parameters (changes of cell phase's composition, cell density, viability and production of reactive oxygen species) were analysed using flow cytometry. The results indicate that the P. marinus isolate was sensitive to the extreme salinities and temperatures analysed. Only the highest temperature caused lasting cell damage under prolonged exposure, impairing P. marinus recovery, which is likely to be associated with oxidative stress. These findings will contribute to the understanding of the dynamics of perkinsiosis in tropical regions.

  9. Alkenone temperature and salinity: An evaluation of long chain C37 alkenone in Lake Qinghai, China

    NASA Astrophysics Data System (ADS)

    Liu, W.; Liu, Z.; Fu, M.; An, Z.

    2007-12-01

    In recently years, the alkenone unsaturation index (Uk'37=C37:.2/(C37:2+ C37:3)) has been used to reconstructed paleo-temperature for lacustrine sediments. However, few studies have addressed whether the relative abundance of the C37:4 alkenone to the total C37 production (C37:4 percent) can reflect surface salinity changes in lake systems. Here we present the distribution of C37 long chain alkenone of modern lake sediments in Qinghai Lake, Qing-Tibet Plateau, to evaluate significance of abundance change of long chain C37 alkenone as an indicator of lake paleo-enviromental evolution. A group of surface sediments from different locations in the lake have been analyzed in this study. The results of long chain C37 alkenone from 28 surface sediments analyses shown relative abundance of C37:4 alkenone to total C37 production (C37:4 percent) change from 14.5 to 48.6 percent and the abundance of C37:4 alkenone is increasing with decreasing salinity of lake water. For the salinity lake in land, we suggested the relative abundance of C37:4 alkenone in lake sediments may be a indicator of paleo-silinity; We have also found that Uk'37 values are weakly correlated with salinity and C37:4 percent changes, implying that potential minor contributions of temperature and salinity effects to C37:4 percent and Uk'37 respectively cannot be excluded in this study. However, since these contributions are weak, we suggest that the C37:4 percent proxy can be used to reconstruct paleo-salinity changes at a regional scale, especially in lake systems, while Uk'37 remains as a powerful tool for reconstructions of paleo-temperature changes in the lake systems.

  10. Effects of low and high salinity regimes on seasonal gametogenesis of the ribbed mussel Geukensia granosissima in coastal Louisiana, USA

    USGS Publications Warehouse

    Honig, Aaron; LaPeyre, Megan K.; Supan, John

    2014-01-01

    Benthic intertidal bivalves play an essential role in estuarine ecosystems by contributing to habitat provision, water filtration, and host vegetation productivity. As such, ecosystem level changes that impact population distributions and persistence of local bivalve populations may have large ecosystem level consequences, making it important to better understand the population ecology of native bivalves. In order to determine potential impacts of shifting salinity and temperature regimes along the northern Gulf of Mexico, the seasonal timing of gametogenesis in the Gulf estuarine ribbed mussel, Geukensia granossisima, was examined across a salinity gradient in southeastern Louisiana, from July 2011 through October 2012. Ten mussels were randomly sampled monthly from low (~ 5) and high (~25) salinity marsh sites in southeastern Louisiana, and histologically processed to determine the seasonal progression of gametogenesis. Peak ripeness occurred at both sites between April and September, was positively correlated with temperature, and coincided with seasonal shifts in salinity. Mussels located in lower salinity waters demonstrated a shorter period of gametogenesis, and lower rates of ripeness indicating that changes in salinity regimes may impact long-term population dynamics.

  11. Decalcification and survival of benthic foraminifera under the combined impacts of varying pH and salinity.

    PubMed

    Charrieau, Laurie M; Filipsson, Helena L; Nagai, Yukiko; Kawada, Sachiko; Ljung, Karl; Kritzberg, Emma; Toyofuku, Takashi

    2018-07-01

    Coastal areas display natural large environmental variability such as frequent changes in salinity, pH, and carbonate chemistry. Anthropogenic impacts - especially ocean acidification - increase this variability, which may affect the living conditions of coastal species, particularly, calcifiers. We performed culture experiments on living benthic foraminifera to study the combined effects of lowered pH and salinity on the calcification abilities and survival of the coastal, calcitic species Ammonia sp. and Elphidium crispum. We found that in open ocean conditions (salinity ∼35) and lower pH than usual values for these species, the specimens displayed resistance to shell (test) dissolution for a longer time than in brackish conditions (salinity ∼5 to 20). However, the response was species specific as Ammonia sp. specimens survived longer than E. crispum specimens when placed in the same conditions of salinity and pH. Living, decalcified juveniles of Ammonia sp. were observed and we show that desalination is one cause for the decalcification. Finally, we highlight the ability of foraminifera to survive under Ω calc  < 1, and that high salinity and [Ca 2+ ] as building blocks are crucial for the foraminiferal calcification process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Pilot-scale studies on biological treatment of hypersaline wastewater at low temperature.

    PubMed

    Peng, Y Z; Zhu, G B; Wang, S Y; Yu, D S; Cui, Y W; Meng, X S

    2005-01-01

    In order to investigate the feasibility of biological treatment of hypersaline wastewater produced from toilet flushing with seawater at low temperature, pilot-scale studies were established with plug-flow activated sludge process at low temperature (5-9 degrees C) based on bench-scale experiments. The critical salinity concentration of 30 g/L, which resulted from the cooperation results of the non-halophilic bacteria and the halophilic bacteria, was drawn in bench-scale experiments. Pilot-scale studies showed that high COD removal efficiency, higher than 80%, was obtained at low temperature when 30 percent seawater was introduced. The salinity improved the settleability of activated sludge, and average sludge value dropped down from 38% to 22.5% after adding seawater. Seawater salinity had a strong negative effect on notronomonas and nitrobacter growth, but much more on the nitrobacter. The nitrification action was mainly accomplished by nitrosomonas. Bench-scale experiments using two SBRs were carried out for further investigation under different conditions of salinities, ammonia loadings and temperatures. Biological nitrogen removal via nitrite pathway from wastewater containing 30 percent seawater was achieved, but the ammonia removal efficiency was strongly related not only to the influent ammonia loading at different salinities but also to temperature. When the ratio of seawater to wastewater was 30 percent, and the ammonia loading was below the critical value of 0.15 kgNH4+-N/(kgMLSS.d), the ammonia removal efficiency via nitrite pathway was above 90%. The critical level of ammonia loading was 0.15, 0.08 and 0.03 kgNH4+-N/(kgMLSS.d) respectively at the different temperature 30 degrees C, 25 degrees C and 20 degrees C when the influent ammonia concentration was 60-80 mg/L and pH was 7.5-8.0.

  13. The Bairendaba silver polymetallic deposit in Inner Mongolia, China: characteristics of ore-forming fluid and genetic type of ore deposit

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Xie, Yuling; Wu, Haoran

    2018-02-01

    Bairendaba silver-polymetallic deposit is located in the middle south of the Xing Meng orogenic belt, and in the silver-polymetallic metallogenic belt on the west slope of the southern of Great Xing’an Range. Based on studying of the fluid inclusion, we discuss the characteristics of ore-forming fluid and the metallic genesis of the Bairendaba silver-polymetallic deposit. By means of the analysis of the fluid inclusions, homogenization temperature, salinity and composition were studied in quartz and fluorite. The result is as the follows: with homogenization temperatures of fluid inclusions in quartz veins being 196∼312 °C, the average 244.52 °C, and fluid salinity 2.90∼9.08 wt%NaCl; with homogenization temperatures of fluid inclusions in fluorite being 127∼306 °C, the average 196.92 °C, and fluid salinity 2.90∼9.34 wt% NaCl. The ore-forming fluid is mainly composed of water and the gas. The results of laser Raman analysis show that the gas phase is mainly CH4. It shows that the ore-forming fluid is characterized by medium-low temperature and low-salinity system. The temperature of ore-forming fluid is from high to low, and the salinity from high to low, and the meteoric water or metamorphic water is added during deposit. According to the geological characteristics of the mining area, it is considered that the genetic type of the ore deposit should be the fault-controlled and the medium-low temperature hydrothermal deposit related to magmatic hydrothermal activities.

  14. Temperature effect on high salinity depuration of Vibrio vulnificus and V. parahaemolyticus from the Eastern oyster (Crassostrea virginica).

    PubMed

    Larsen, A M; Rikard, F S; Walton, W C; Arias, C R

    2015-01-02

    Vibrio vulnificus (Vv) and Vibrio parahaemolyticus (Vp) are opportunistic human pathogens naturally associated with the Eastern oyster Crassostrea virginica. The abundances of both pathogens in oysters are positively correlated with temperature, thus ingestion of raw oysters during the warm summer months is a risk factor for contracting illness from these bacteria. Current post-harvest processing (PHP) methods for elimination of these pathogens are expensive and kill the oyster, changing their organoleptic properties and making them less appealing to some consumers. High salinity has proven effective in reducing Vv numbers in the wild and our research aims at developing an indoor recirculating system to reduce pathogenic Vibrios while maintaining the taste and texture of live oysters. The goal of this study was to determine the influence of temperature on the efficacy of high salinity depuration. Vv was enumerated as most probable number (MPN) per gram of oyster tissue using the FDA-approved modified cellobiose polymyxin colistin (mCPC) protocol and with an alternative Vibrio specific media CHROMagar™ Vibrio (CaV). CaV was also used to quantify Vp. Oysters were held at 35 psu for 10 days at three temperatures: low (20°C), mid (22.5°C) and high (25°C). There was no difference in MPN/g of Vv between media; however more Vv isolates were obtained from mCPC than CaV. There was no significant effect of temperature on reduction of Vv or Vp throughout depuration but there was a tendency for low temperatures to be less effective than the higher ones. High salinity resulted in a significant decrease in Vv by day 3 and again by day 10, and a decrease in Vp by day 3. Oyster condition indices were maintained throughout depuration and mortality was low (4% across three trials). Overall these results support the use of mCPC for Vv enumeration and demonstrate the promise of high salinity depuration for PHP of the Eastern oyster. The trend for lower temperatures to be less effective is surprising and indicates a potential interaction between salinity and temperature that should be further investigated. Copyright © 2014. Published by Elsevier B.V.

  15. The feasibility of inducing mild therapeutic hypothermia after cardiac resuscitation using iced saline infusion via an intraosseous needle.

    PubMed

    Mader, Timothy J; Walterscheid, Joshua K; Kellogg, Adam R; Lodding, Cynthia C

    2010-01-01

    This study was done, using a swine model of prolonged ventricular fibrillation out-of-hospital cardiac arrest, to determine the feasibility of inducing therapeutic hypothermia after successful resuscitation by giving an intraosseous infusion of iced saline. This study was IACUC approved. Liter bags of normal saline, after being refrigerated for at least 24h, were placed in an ice filled cooler. Female Yorkshire swine weighing between 27 and 35 kg were sedated and instrumented under general anesthesia. A temperature probe was inserted 10 cm into the esophagus. Ventricular fibrillation was electrically induced and allowed to continue untreated for 10 min. Animals were randomized to one of two resuscitation schemes for the primary study (N=53). One group had central intravenous access for drug delivery and the other had an intraosseous needle inserted into the proximal tibia for drug administration. Animals in which spontaneous circulation was restored were immediately cooled, for this secondary study, by means of a rapid, pump-assisted infusion of 1L of iced saline either through the intraosseous needle (n=8), the central access (n=6), or a peripheral intravenous catheter (n=7) in a systematic, non-randomized fashion. Room, animal, and saline temperatures were recorded at initiation and upon completion of infusion. The data were analyzed descriptively using Stata SE v8.1 for Macintosh. The baseline characteristics of all three groups were mathematically the same. The average ambient room temperature during the experimental sessions was 25.5 degrees C (SD=1.3 degrees C). There were no statistically significant differences between the three groups with regard to saline temperature, rate of infusion, or decrease in core body temperature. The decrease in core temperature for the intraosseous group was 2.8 degrees C (95% CI=1.8, 3.8) over the infusion period. Mild therapeutic hypothermia can be effectively induced in swine after successful resuscitation of prolonged ventricular fibrillation by infusion of iced saline through an IO needle. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  16. Myofibril Changes in the Copepod Pseudodiaptomus marinus Exposed to Haline and Thermal Stresses.

    PubMed

    Ibrahim, Ali; Souissi, Anissa; Leray, Aymeric; Héliot, Laurent; Vandenbunder, Bernard; Souissi, Sami

    2016-01-01

    Copepods are small crustaceans capable to survive in various aquatic environments. Their responses to changes in different external factors such as salinity and temperature can be observed at different integration levels from copepod genes to copepod communities. Until now, no thorough observation of the temperature or salinity effect stresses on copepods has been done by optical microscopy. In this study, we used autofluorescence to visualize these effects on the morphology of the calanoid copepod Pseudodiaptomus marinus maintained during several generations in the laboratory at favorable and stable conditions of salinity (30 psu) and temperature (18°C). Four different stress experiments were conducted: at a sharp decrease in temperature (18 to 4°C), a moderate decrease in salinity (from 30 to 15 psu), a major decrease in salinity (from 30 to 0 psu), and finally a combined stress with a decrease in both temperature and salinity (from 18°C and 30 psu to 4°C and 0 psu). After these stresses, images acquired by confocal laser scanning microscopy (CLSM) revealed changes in copepod cuticle and muscle structure. Low salinity and/or temperature stresses affected both the detection of fluorescence emitted by muscle sarcomeres and the distance between them. In the remaining paper we will use the term sarcomeres to describe the elements located within sarcomeres and emitted autofluorescence signals. Quantitative study showed an increase in the average distance between two consecutive sarcomeres from 2.06 +/- 0.11 μm to 2.44 +/- 0.42 μm and 2.88 +/- 0.45μm after the exposure to major haline stress (18°C, 0 psu) and the combined stress (4°C, 0 psu), respectively. These stresses also caused cuticle cracks which often occurred at the same location, suggesting the cuticle as a sensitive area for osmoregulation. Our results suggest the use of cuticular and muscle autofluorescence as new biomarkers of stress detectable in formalin-preserved P. marinus individuals. Our label-free method can be easily applied to a large number of other copepod species or invertebrates with striated musculature.

  17. The low salinity effect at high temperatures

    DOE PAGES

    Xie, Quan; Brady, Patrick V.; Pooryousefy, Ehsan; ...

    2017-04-05

    The mechanism(s) of low salinity water flooding (LSWF) must be better understood at high temperatures and pressures if the method is to be applied in high T/P kaolinite-bearing sandstone reservoirs. We measured contact angles between a sandstone and an oil (acid number, AN = 3.98 mg KOH/g, base number, BN = 1.3 mg KOH/g) from a reservoir in the Tarim Field in western China in the presence of various water chemistries. We examined the effect of aqueous ionic solutions (formation brine, 100X diluted formation brine, and softened water), temperature (60, 100 and 140 °C) and pressure (20, 30, 40, andmore » 50 MPa) on the contact angle. We also measured the zeta potential of the oil/water and water/rock interfaces to calculate oil/brine/rock disjoining pressures. A surface complexation model was developed to interpret contact angle measurements and compared with DLVO theory predictions. Contact angles were greatest in formation water, followed by the softened water, and low salinity water at the same pressure and temperature. Contact angles increased slightly with temperature, whereas pressure had little effect. DLVO and surface complexation modelling predicted similar wettability trends and allow reasonably accurate interpretation of core-flood results. Water chemistry has a much larger impact on LSWF than reservoir temperature and pressure. As a result, low salinity water flooding should work in high temperature and high pressure kaolinite-bearing sandstone reservoirs.« less

  18. The low salinity effect at high temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Quan; Brady, Patrick V.; Pooryousefy, Ehsan

    The mechanism(s) of low salinity water flooding (LSWF) must be better understood at high temperatures and pressures if the method is to be applied in high T/P kaolinite-bearing sandstone reservoirs. We measured contact angles between a sandstone and an oil (acid number, AN = 3.98 mg KOH/g, base number, BN = 1.3 mg KOH/g) from a reservoir in the Tarim Field in western China in the presence of various water chemistries. We examined the effect of aqueous ionic solutions (formation brine, 100X diluted formation brine, and softened water), temperature (60, 100 and 140 °C) and pressure (20, 30, 40, andmore » 50 MPa) on the contact angle. We also measured the zeta potential of the oil/water and water/rock interfaces to calculate oil/brine/rock disjoining pressures. A surface complexation model was developed to interpret contact angle measurements and compared with DLVO theory predictions. Contact angles were greatest in formation water, followed by the softened water, and low salinity water at the same pressure and temperature. Contact angles increased slightly with temperature, whereas pressure had little effect. DLVO and surface complexation modelling predicted similar wettability trends and allow reasonably accurate interpretation of core-flood results. Water chemistry has a much larger impact on LSWF than reservoir temperature and pressure. As a result, low salinity water flooding should work in high temperature and high pressure kaolinite-bearing sandstone reservoirs.« less

  19. Sea surface temperature and salinity from French research vessels, 2001–2013

    PubMed Central

    Gaillard, Fabienne; Diverres, Denis; Jacquin, Stéphane; Gouriou, Yves; Grelet, Jacques; Le Menn, Marc; Tassel, Joelle; Reverdin, Gilles

    2015-01-01

    French Research vessels have been collecting thermo-salinometer (TSG) data since 1999 to contribute to the Global Ocean Surface Underway Data (GOSUD) programme. The instruments are regularly calibrated and continuously monitored. Water samples are taken on a daily basis by the crew and later analysed in the laboratory. We present here the delayed mode processing of the 2001–2013 dataset and an overview of the resulting quality. Salinity measurement error was a few hundredths of a unit or less on the practical salinity scale (PSS), due to careful calibration and instrument maintenance, complemented with a rigorous adjustment on water samples. In a global comparison, these data show excellent agreement with an ARGO-based salinity gridded product. The Sea Surface Salinity and Temperature from French REsearch SHips (SSST-FRESH) dataset is very valuable for the ‘calibration and validation’ of the new satellite observations delivered by the Soil Moisture and Ocean Salinity (SMOS) and Aquarius missions. PMID:26504523

  20. Towards an estimation of water masses formation areas from SMOS-based TS diagrams

    NASA Astrophysics Data System (ADS)

    Klockmann, Marlene; Sabia, Roberto; Fernandez-Prieto, Diego; Donlon, Craig; Font, Jordi

    2014-05-01

    Temperature-Salinity (TS) diagrams emphasize the mutual variability of ocean temperature and salinity values, relating them to the corresponding density. Canonically used in oceanography, they provide a means to characterize and trace ocean water masses. In [1], a first attempt to estimate surface-layer TS diagrams based on satellite measurements has been performed, profiting from the recent availability of spaceborne salinity data. In fact, the Soil Moisture and Ocean Salinity (SMOS, [2]) and the Aquarius/SAC-D [3] satellite missions allow to study the dynamical patterns of Sea Surface Salinity (SSS) for the first time on a global scale. In [4], given SMOS and Aquarius salinity estimates, and by also using Sea Surface Temperature (SST) from the Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA, [5]) effort, experimental satellite-based TS diagrams have been routinely derived for the year 2011. They have been compared with those computed from ARGO-buoys interpolated fields, referring to a customised partition of the global ocean into seven regions, according to the water masses classification of [6]. In [7], moreover, besides using TS diagrams as a diagnostic tool to evaluate the temporal variation of SST and SSS (and their corresponding density) as estimated by satellite measurements, the emphasis was on the interpretation of the geographical deviations with respect to the ARGO baseline (aiming at distinguishing between the SSS retrieval errors and the additional information contained in the satellite data with respect to ARGO). In order to relate these mismatches to identifiable oceanographic structures and processes, additional satellite datasets of ocean currents, evaporation/precipitation fluxes, and wind speed have been super-imposed. Currently, the main focus of the study deals with the exploitation of these TS diagrams as a prognostic tool to derive water masses formation areas. Firstly, following the approach described in [8], the surface density flux (i.e., the change in density induced by surface heat and freshwater fluxes) is computed, characterizing how the buoyancy of a water parcel is being transformed, by increasing or decreasing its density. Afterwards, integrating over a certain time/space and deriving with respect to density, the formation (in Sv) of water masses themselves can be computed, pinpointing the range of SST and SSS in the TS diagrams where a specific water mass is formed. A geographical representation of these points, ultimately, allows to provide a relevant temporal series of the spatial extent of the water masses formation areas (in the specific test zones chosen). This can be then extended over challenging ocean regions, also evaluating the sensitivity of the performances to the datasets used. With this approach, known water masses can be identified and their formation traced in time and space. Longer time series will give further insights by helping to identify inter-annual water mass formation variability and trends in the TS/geographical domains. Future work aims at exploring additional datasets and at connecting the surface information to the vertical structure and to buoyancy-driven ocean circulation processes. References [1] Sabia, R., J. Ballabrera, G. Lagerloef, E. Bayler, M. Talone, Y. Chao, C. Donlon, D. Fernández-Prieto, J. Font, "Derivation of an Experimental Satellite-based T-S Diagram", In Proceedings of IGARSS '12 , Munich, Germany, pp. 5760-5763, 2012. [2] Font, J., A. Camps, A. Borges, M. Martín-Neira, J. Boutin, N. Reul, Y. H. Kerr, A. Hahne, and S. Mecklenburg, "SMOS: The challenging sea surface salinity measurement from space," Proceedings of the IEEE, vol. 98, pp. 649-665, 2010. [3] Le Vine, D.M.; Lagerloef, G.S.E.; Torrusio, S.E.; "Aquarius and Remote Sensing of Sea Surface Salinity from Space," Proceedings of the IEEE , vol.98, no.5, pp.688-703, May 2010, doi: 10.1109/JPROC.2010.2040550. [4] Sabia, R., M. Klockmann, D. Fernández-Prieto, C. Donlon, E. Bayler, J. Font, G. Lagerloef, "Satellite-based T/S Diagrams and Surface Ocean Water Masses", SMOS-Aquarius Science Workshop, Brest, France, April 2013. [5] Donlon, C. J., M. Martin, J. D. Stark, J. Roberts-Jones, E. Fiedler and W. Wimmer, "The Operational Sea Surface Temperature and Sea Ice analysis (OSTIA)", Remote Sensing of the Environment. doi: 10.1016/j.rse.2010.10.017 2011. [6] Emery, W. J., "Water Types and Water Masses", Ocean Circulation, Elsevier science, pp 1556-1567, 2003. [7] Sabia, R., M. Klockmann, C. Donlon, D. Fernández-Prieto, M. Talone, J. Ballabrera, "Satellite-based T-S Diagrams: a prospective diagnostic tool to trace ocean water masses", Living Planet Symposium 2013, Edinburgh, UK, September 2013. [8] Speer, K., E. Tzipermann, "Rates of Water Mass Transformation in the North Atlantic", Journal of Physical Oceanography, 22, 93 - 104, 1992.

Top