Cheng, Jian; Xu, Zhiwei; Bambrick, Hilary; Su, Hong; Tong, Shilu; Hu, Wenbiao
2017-12-01
Unstable weather, such as intra- and inter-day temperature variability, can impair the health and shorten the survival time of population around the world. Climate change will cause Earth's surface temperature rise, but has unclear effects on temperature variability, making it urgent to understand the characteristics of the burden of temperature variability on mortality, regionally and nationally. This paper aims to quantify the mortality risk of exposure to short-term temperature variability, estimate the resulting death toll and explore how the strength of temperature variability effects will vary as a function of city-level characteristics. Ten-year (2000-2009) time-series data on temperature and mortality were collected for five largest Australia's cities (Sydney, Melbourne, Brisbane, Perth and Adelaide), collectively registering 708,751 deaths in different climates. Short-term temperature variability was captured and represented as the hourly temperature standard deviation within two days. Three-stage analyses were used to assess the burden of temperature variability on mortality. First, we modelled temperature variability-mortality relation and estimated the relative risk of death for each city, using a time-series quasi-Poisson regression model. Second, we used meta-analysis to pool the city-specific estimates, and meta-regression to explore if some city-level factors will modify the population vulnerability to temperature variability. Finally, we calculated the city-specific deaths attributable to temperature variability, and applied such estimates to the whole of Australia as a reflection of the nation-wide death burden associated with temperature variability. We found evidence of significant associations between temperature variability and mortality in all cities assessed. Deaths associated with each 1°C rise in temperature variability elevated by 0.28% (95% confidence interval (CI): 0.05%, 0.52%) in Melbourne to 1.00% (95%CI: 0.52%, 1.48%) in Brisbane, with a pooled estimate of 0.51% (95%CI: 0.33%, 0.69%) for Australia. Subtropical and temperate regions showed no apparent difference in temperature variability impacts. Meta-regression analyses indicated that the mortality risk could be influenced by city-specific factors: latitude, mean temperature, population density and the prevalence of several chronic diseases. Taking account of contributions from the entire time-series, temperature variability was estimated to account for 0.99% to 3.24% of deaths across cities, with a nation-wide attributable fraction of 1.67% (9.59 deaths per 100, 000 population per year). Hourly temperature variability may be an important risk factor of weather-related deaths and led to a sizeable mortality burden. This study underscores the need for developing specific and effective interventions in Australia to lessen the health consequences of temperature variability. Copyright © 2017. Published by Elsevier Ltd.
Time Scales and Sources of European Temperature Variability
NASA Astrophysics Data System (ADS)
Årthun, Marius; Kolstad, Erik W.; Eldevik, Tor; Keenlyside, Noel S.
2018-04-01
Skillful predictions of continental climate would be of great practical benefit for society and stakeholders. It nevertheless remains fundamentally unresolved to what extent climate is predictable, for what features, at what time scales, and by which mechanisms. Here we identify the dominant time scales and sources of European surface air temperature (SAT) variability during the cold season using a coupled climate reanalysis, and a statistical method that estimates SAT variability due to atmospheric circulation anomalies. We find that eastern Europe is dominated by subdecadal SAT variability associated with the North Atlantic Oscillation, whereas interdecadal and multidecadal SAT variability over northern and southern Europe are thermodynamically driven by ocean temperature anomalies. Our results provide evidence that temperature anomalies in the North Atlantic Ocean are advected over land by the mean westerly winds and, hence, provide a mechanism through which ocean temperature controls the variability and provides predictability of European SAT.
Kinetic Modeling of Corn Fermentation with S. cerevisiae Using a Variable Temperature Strategy.
Souza, Augusto C M; Mousaviraad, Mohammad; Mapoka, Kenneth O M; Rosentrater, Kurt A
2018-04-24
While fermentation is usually done at a fixed temperature, in this study, the effect of having a controlled variable temperature was analyzed. A nonlinear system was used to model batch ethanol fermentation, using corn as substrate and the yeast Saccharomyces cerevisiae , at five different fixed and controlled variable temperatures. The lower temperatures presented higher ethanol yields but took a longer time to reach equilibrium. Higher temperatures had higher initial growth rates, but the decay of yeast cells was faster compared to the lower temperatures. However, in a controlled variable temperature model, the temperature decreased with time with the initial value of 40 ∘ C. When analyzing a time window of 60 h, the ethanol production increased 20% compared to the batch with the highest temperature; however, the yield was still 12% lower compared to the 20 ∘ C batch. When the 24 h’ simulation was analyzed, the controlled model had a higher ethanol concentration compared to both fixed temperature batches.
The Oceanic Contribution to Atlantic Multi-Decadal Variability
NASA Astrophysics Data System (ADS)
Wills, R. C.; Armour, K.; Battisti, D. S.; Hartmann, D. L.
2017-12-01
Atlantic multi-decadal variability (AMV) is typically associated with variability in ocean heat transport (OHT) by the Atlantic Meridional Overturning Circulation (AMOC). However, recent work has cast doubt on this connection by showing that slab-ocean climate models, in which OHT cannot vary, exhibit similar variability. Here, we apply low-frequency component analysis to isolate the variability of Atlantic sea-surface temperatures (SSTs) that occurs on decadal and longer time scales. In observations and in pre-industrial control simulations of comprehensive climate models, we find that AMV is confined to the extratropics, with the strongest temperature anomalies in the North Atlantic subpolar gyre. We show that warm subpolar temperatures are associated with a strengthened AMOC, increased poleward OHT, and local heat fluxes from the ocean into the atmosphere. In contrast, the traditional index of AMV based on the basin-averaged SST anomaly shows warm temperatures preceded by heat fluxes from the atmosphere into the ocean, consistent with the atmosphere driving this variability, and shows a weak relationship with AMOC. The autocorrelation time of the basin-averaged SST index is 1 year compared to an autocorrelation time of 5 years for the variability of subpolar temperatures. This shows that multi-decadal variability of Atlantic SSTs is sustained by OHT variability associated with AMOC, while atmosphere-driven SST variability, such as exists in slab-ocean models, contributes primarily on interannual time scales.
Least-rattling feedback from strong time-scale separation
NASA Astrophysics Data System (ADS)
Chvykov, Pavel; England, Jeremy
2018-03-01
In most interacting many-body systems associated with some "emergent phenomena," we can identify subgroups of degrees of freedom that relax on dramatically different time scales. Time-scale separation of this kind is particularly helpful in nonequilibrium systems where only the fast variables are subjected to external driving; in such a case, it may be shown through elimination of fast variables that the slow coordinates effectively experience a thermal bath of spatially varying temperature. In this paper, we investigate how such a temperature landscape arises according to how the slow variables affect the character of the driven quasisteady state reached by the fast variables. Brownian motion in the presence of spatial temperature gradients is known to lead to the accumulation of probability density in low-temperature regions. Here, we focus on the implications of attraction to low effective temperature for the long-term evolution of slow variables. After quantitatively deriving the temperature landscape for a general class of overdamped systems using a path-integral technique, we then illustrate in a simple dynamical system how the attraction to low effective temperature has a fine-tuning effect on the slow variable, selecting configurations that bring about exceptionally low force fluctuation in the fast-variable steady state. We furthermore demonstrate that a particularly strong effect of this kind can take place when the slow variable is tuned to bring about orderly, integrable motion in the fast dynamics that avoids thermalizing energy absorbed from the drive. We thus point to a potentially general feedback mechanism in multi-time-scale active systems, that leads to the exploration of slow variable space, as if in search of fine tuning for a "least-rattling" response in the fast coordinates.
Effects of climate change and variability on population dynamics in a long-lived shorebird.
van de Pol, Martijn; Vindenes, Yngvild; Saether, Bernt-Erik; Engen, Steinar; Ens, Bruno J; Oosterbeek, Kees; Tinbergen, Joost M
2010-04-01
Climate change affects both the mean and variability of climatic variables, but their relative impact on the dynamics of populations is still largely unexplored. Based on a long-term study of the demography of a declining Eurasian Oystercatcher (Haematopus ostralegus) population, we quantify the effect of changes in mean and variance of winter temperature on different vital rates across the life cycle. Subsequently, we quantify, using stochastic stage-structured models, how changes in the mean and variance of this environmental variable affect important characteristics of the future population dynamics, such as the time to extinction. Local mean winter temperature is predicted to strongly increase, and we show that this is likely to increase the population's persistence time via its positive effects on adult survival that outweigh the negative effects that higher temperatures have on fecundity. Interannual variation in winter temperature is predicted to decrease, which is also likely to increase persistence time via its positive effects on adult survival that outweigh the negative effects that lower temperature variability has on fecundity. Overall, a 0.1 degrees C change in mean temperature is predicted to alter median time to extinction by 1.5 times as many years as would a 0.1 degrees C change in the standard deviation in temperature, suggesting that the dynamics of oystercatchers are more sensitive to changes in the mean than in the interannual variability of this climatic variable. Moreover, as climate models predict larger changes in the mean than in the standard deviation of local winter temperature, the effects of future climatic variability on this population's time to extinction are expected to be overwhelmed by the effects of changes in climatic means. We discuss the mechanisms by which climatic variability can either increase or decrease population viability and how this might depend both on species' life histories and on the vital rates affected. This study illustrates that, for making reliable inferences about population consequences in species in which life history changes with age or stage, it is crucial to investigate the impact of climate change on vital rates across the entire life cycle. Disturbingly, such data are unavailable for most species of conservation concern.
Sun, Shengzhi; Laden, Francine; Hart, Jaime E; Qiu, Hong; Wang, Yan; Wong, Chit Ming; Lee, Ruby Siu-Yin; Tian, Linwei
2018-04-05
Climate change increases global mean temperature and changes short-term (eg, diurnal) and long-term (eg, intraseasonal) temperature variability. Numerous studies have shown that mean temperature and short-term temperature variability are both associated with increased respiratory morbidity or mortality. However, data on the impact of long-term temperature variability are sparse. We aimed to assess the association of intraseasonal temperature variability with respiratory disease hospitalisations among elders. We ascertained the first occurrence of emergency hospital admissions for respiratory diseases in a prospective Chinese elderly cohort of 66 820 older people (≥65 years) with 10-13 years of follow-up. We used an ordinary kriging method based on 22 weather monitoring stations in Hong Kong to spatially interpolate daily ambient temperature for each participant's residential address. Seasonal temperature variability was defined as the SD of daily mean summer (June-August) or winter (December-February) temperatures. We applied Cox proportional hazards regression with time-varying exposure of seasonal temperature variability to respiratory admissions. During the follow-up time, we ascertained 12 689 cases of incident respiratory diseases, of which 6672 were pneumonia and 3075 were COPD. The HRs per 1°C increase in wintertime temperature variability were 1.20 (95% CI 1.08 to 1.32), 1.15 (1.01 to 1.31) and 1.41 (1.15 to 1.71) for total respiratory diseases, pneumonia and COPD, respectively. The associations were not statistically significant for summertime temperature variability. Wintertime temperature variability was associated with higher risk of incident respiratory diseases. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
NASA Astrophysics Data System (ADS)
Renner, M.; Bernhofer, C.
2011-01-01
The timing of the seasons strongly effects ecosystems and human activities. Recently, there is increasing evidence of changes in the timing of the seasons, such as earlier spring seasons detected in phenological records, advanced seasonal timing of surface temperature, earlier snow melt or streamflow timing. For water resources management there is a need to quantitatively describe the variability in the timing of hydrological regimes and to understand how climatic changes control the seasonal water budget of river basins on the regional scale. In this study, changes of the annual cycle of hydrological variables are analysed for 27 river basins in Saxony/Germany. Thereby monthly series of basin runoff ratios, the ratio of runoff and basin precipitation are investigated for changes and variability of their annual periodicity over the period 1930-2009. Approximating the annual cycle by the means of harmonic functions gave acceptable results, while only two parameters, phase and amplitude, are required. It has been found that the annual phase of runoff ratio, representing the timing of the hydrological regime, is subject to considerable year-to-year variability, being concurrent with basins in similar hydro-climatic conditions. Two distinct basin classes have been identified, whereby basin elevation has been found to be the delimiting factor. An increasing importance of snow on the basin water balance with elevation is apparent and mainly governs the temporal variability of the annual timing of hydrological regimes. Further there is evidence of coincident changes in trend direction (change points in 1971 and 1988) in snow melt influenced basins. In these basins the timing of the runoff ratio is significantly correlated with the timing of temperature, and effects on runoff by temperature phase changes are even amplified. Interestingly, temperature effects may explain the low frequent variability of the second change point until today. However, the first change point can not be explained by temperature alone and other causes have to be considered.
Crowder, Camerron M; Liang, Wei-Lo; Weis, Virginia M; Fan, Tung-Yung
2014-01-01
Reproductive timing in corals is associated with environmental variables including temperature, lunar periodicity, and seasonality. Although it is clear that these variables are interrelated, it remains unknown if one variable in particular acts as the proximate signaler for gamete and or larval release. Furthermore, in an era of global warming, the degree to which increases in ocean temperatures will disrupt normal reproductive patterns in corals remains unknown. Pocillopora damicornis, a brooding coral widely distributed in the Indo-Pacific, has been the subject of multiple reproductive ecology studies that show correlations between temperature, lunar periodicity, and reproductive timing. However, to date, no study has empirically measured changes in reproductive timing associated with increased seawater temperature. In this study, the effect of increased seawater temperature on the timing of planula release was examined during the lunar cycles of March and June 2012. Twelve brooding corals were removed from Hobihu reef in Nanwan Bay, southern Taiwan and placed in 23 and 28°C controlled temperature treatment tanks. For both seasons, the timing of planulation was found to be plastic, with the high temperature treatment resulting in significantly earlier peaks of planula release compared to the low temperature treatment. This suggests that temperature alone can influence the timing of larval release in Pocillopora damicornis in Nanwan Bay. Therefore, it is expected that continued increases in ocean temperature will result in earlier timing of reproductive events in corals, which may lead to either variations in reproductive success or phenotypic acclimatization.
Crowder, Camerron M.; Liang, Wei-Lo; Weis, Virginia M.; Fan, Tung-Yung
2014-01-01
Reproductive timing in corals is associated with environmental variables including temperature, lunar periodicity, and seasonality. Although it is clear that these variables are interrelated, it remains unknown if one variable in particular acts as the proximate signaler for gamete and or larval release. Furthermore, in an era of global warming, the degree to which increases in ocean temperatures will disrupt normal reproductive patterns in corals remains unknown. Pocillopora damicornis, a brooding coral widely distributed in the Indo-Pacific, has been the subject of multiple reproductive ecology studies that show correlations between temperature, lunar periodicity, and reproductive timing. However, to date, no study has empirically measured changes in reproductive timing associated with increased seawater temperature. In this study, the effect of increased seawater temperature on the timing of planula release was examined during the lunar cycles of March and June 2012. Twelve brooding corals were removed from Hobihu reef in Nanwan Bay, southern Taiwan and placed in 23 and 28°C controlled temperature treatment tanks. For both seasons, the timing of planulation was found to be plastic, with the high temperature treatment resulting in significantly earlier peaks of planula release compared to the low temperature treatment. This suggests that temperature alone can influence the timing of larval release in Pocillopora damicornis in Nanwan Bay. Therefore, it is expected that continued increases in ocean temperature will result in earlier timing of reproductive events in corals, which may lead to either variations in reproductive success or phenotypic acclimatization. PMID:25329546
Massaro, An N; Campbell, Heather E; Metzler, Marina; Al-Shargabi, Tareq; Wang, Yunfei; du Plessis, Adre; Govindan, Rathinaswamy B
2017-04-01
To determine whether measures of heart rate variability are related to changes in temperature during rewarming after therapeutic hypothermia for hypoxic-ischemic encephalopathy. Prospective observational study. Level 4 neonatal ICU in a free-standing academic children's hospital. Forty-four infants with moderate to severe hypoxic-ischemic encephalopathy treated with therapeutic hypothermia. Continuous electrocardiogram data from 2 hours prior to rewarming through 2 hours after completion of rewarming (up to 10 hr) were analyzed. Median beat-to-beat interval and measures of heart rate variability were quantified including beat-to-beat interval SD, low and high frequency relative spectral power, detrended fluctuation analysis short and long α exponents (αS and αL), and root mean square short and long time scales. The relationships between heart rate variability measures and esophageal/axillary temperatures were evaluated. Heart rate variability measures low frequency, αS, and root mean square short and long time scales were negatively associated, whereas αL was positively associated, with temperature (p < 0.01). These findings signify an overall decrease in heart rate variability as temperature increased toward normothermia. Measures of heart rate variability are temperature dependent in the range of therapeutic hypothermia to normothermia. Core body temperature needs to be considered when evaluating heart rate variability metrics as potential physiologic biomarkers of illness severity in hypoxic-ischemic encephalopathy infants undergoing therapeutic hypothermia.
Stratil, Peter; Wallmueller, Christian; Schober, Andreas; Stoeckl, Mathias; Hoerburger, David; Weiser, Christoph; Testori, Christoph; Krizanac, Danica; Spiel, Alexander; Uray, Thomas; Sterz, Fritz; Haugk, Moritz
2013-05-01
Mild therapeutic hypothermia is a major advance in post-resuscitation-care. Some questions remain unclear regarding the time to initiate cooling and the time to achieve target temperature below 34 °C. We examined whether seasonal variability of outside temperature influences the body temperature of cardiac arrest victims, and if this might have an effect on outcome. Patients with witnessed out-of-hospital cardiac arrests were enrolled retrospectively. Temperature variables from 4 climatic stations in Vienna were provided from the Central Institute for Meteorology and Geodynamics. Depending on the outside temperature at the scene the study participants were assigned to a seasonal group. To compare the seasonal groups a Student's t-test or Mann-Whitney U test was performed as appropriate. Of 134 patients, 61 suffered their cardiac arrest during winter, with an outside temperature below 10 °C; in 39 patients the event occurred during summer, with an outside temperature above 20 °C. Comparing the tympanic temperature recorded at hospital admission, the median of 36 °C (IQR 35.3-36.3) during summer differed significantly to winter with a median of 34.9 °C (IQR 34-35.6) (p<0.05). This seasonal alterations in core body temperature had no impact on the time-to-target-temperature, survival rate or neurologic recovery. The seasonal variability of outside temperature influences body temperature of out-of-hospital cardiac arrest victims. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Solar array model corrections from Mars Pathfinder lander data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ewell, R.C.; Burger, D.R.
1997-12-31
The MESUR solar array power model initially assumed values for input variables. After landing early surface variables such as array tilt and azimuth or early environmental variables such as array temperature can be corrected. Correction of later environmental variables such as tau versus time, spectral shift, dust deposition, and UV darkening is dependent upon time, on-board science instruments, and ability to separate effects of variables. Engineering estimates had to be made for additional shadow losses and Voc sensor temperature corrections. Some variations had not been expected such as tau versus time of day, and spectral shift versus time of day.more » Additions needed to the model are thermal mass of lander petal and correction between Voc sensor and temperature sensor. Conclusions are: the model works well; good battery predictions are difficult; inclusion of Isc and Voc sensors was valuable; and the IMP and MAE science experiments greatly assisted the data analysis and model correction.« less
Temporal changes in climatic variables and their impact on crop yields in southwestern China
NASA Astrophysics Data System (ADS)
Liu, Hong-Bin; Gou, Yu; Wang, Hong-Ye; Li, Hong-Mei; Wu, Wei
2014-08-01
Knowledge of variability in climatic variables changes and its impact on crop yields is important for farmers and policy makers, especially in southwestern China where rainfed agriculture is dominant. In the current study, six climatic parameters (mean temperature, rainfall, relative humidity, sunshine hours, temperature difference, and rainy days) and aggregated yields of three main crops (rice: Oryza sativa L., oilseed rape: Brassica napus L., and tobacco: Nicotiana tabacum L.) during 1985-2010 were collected and analyzed for Chongqing—a large agricultural municipality of China. Climatic variables changes were detected by Mann-Kendall test. Increased mean temperature and temperature difference and decreased relative humidity were found in annual and oilseed rape growth time series ( P < 0.05). Increased sunshine hours were observed during the oilseed rape growth period ( P < 0.05). Rainy days decreased slightly in annual and oilseed rape growth time series ( P < 0.10). Correlation analysis showed that yields of all three crops could benefit from changes in climatic variables in this region. Yield of rice increased with rainfall ( P < 0.10). Yield of oilseed rape increased with mean temperature and temperature difference but decreased with relative humidity ( P < 0.01). Tobacco yield increased with mean temperature ( P < 0.05). Path analysis provided additional information about the importance and contribution paths of climatic variables to crop yields. Temperature difference and sunshine hours had higher direct and indirect effects via other climatic variables on yields of rice and tobacco. Mean temperature, relative humidity, rainy days, and temperature difference had higher direct and indirect effects via others on yield of oilseed rape.
Temporal changes in climatic variables and their impact on crop yields in southwestern China.
Liu, Hong-Bin; Gou, Yu; Wang, Hong-Ye; Li, Hong-Mei; Wu, Wei
2014-08-01
Knowledge of variability in climatic variables changes and its impact on crop yields is important for farmers and policy makers, especially in southwestern China where rainfed agriculture is dominant. In the current study, six climatic parameters (mean temperature, rainfall, relative humidity, sunshine hours, temperature difference, and rainy days) and aggregated yields of three main crops (rice: Oryza sativa L., oilseed rape: Brassica napus L., and tobacco: Nicotiana tabacum L.) during 1985-2010 were collected and analyzed for Chongqing-a large agricultural municipality of China. Climatic variables changes were detected by Mann-Kendall test. Increased mean temperature and temperature difference and decreased relative humidity were found in annual and oilseed rape growth time series (P<0.05). Increased sunshine hours were observed during the oilseed rape growth period (P<0.05). Rainy days decreased slightly in annual and oilseed rape growth time series (P<0.10). Correlation analysis showed that yields of all three crops could benefit from changes in climatic variables in this region. Yield of rice increased with rainfall (P<0.10). Yield of oilseed rape increased with mean temperature and temperature difference but decreased with relative humidity (P<0.01). Tobacco yield increased with mean temperature (P<0.05). Path analysis provided additional information about the importance and contribution paths of climatic variables to crop yields. Temperature difference and sunshine hours had higher direct and indirect effects via other climatic variables on yields of rice and tobacco. Mean temperature, relative humidity, rainy days, and temperature difference had higher direct and indirect effects via others on yield of oilseed rape.
Disentangling Global Warming, Multidecadal Variability, and El Niño in Pacific Temperatures
NASA Astrophysics Data System (ADS)
Wills, Robert C.; Schneider, Tapio; Wallace, John M.; Battisti, David S.; Hartmann, Dennis L.
2018-03-01
A key challenge in climate science is to separate observed temperature changes into components due to internal variability and responses to external forcing. Extended integrations of forced and unforced climate models are often used for this purpose. Here we demonstrate a novel method to separate modes of internal variability from global warming based on differences in time scale and spatial pattern, without relying on climate models. We identify uncorrelated components of Pacific sea surface temperature variability due to global warming, the Pacific Decadal Oscillation (PDO), and the El Niño-Southern Oscillation (ENSO). Our results give statistical representations of PDO and ENSO that are consistent with their being separate processes, operating on different time scales, but are otherwise consistent with canonical definitions. We isolate the multidecadal variability of the PDO and find that it is confined to midlatitudes; tropical sea surface temperatures and their teleconnections mix in higher-frequency variability. This implies that midlatitude PDO anomalies are more persistent than previously thought.
NASA Astrophysics Data System (ADS)
Byakatonda, Jimmy; Parida, B. P.; Kenabatho, Piet K.; Moalafhi, D. B.
2018-03-01
Arid and semi-arid environments have been identified with locations prone to impacts of climate variability and change. Investigating long-term trends is one way of tracing climate change impacts. This study investigates variability through annual and seasonal meteorological time series. Possible inhomogeneities and years of intervention are analysed using four absolute homogeneity tests. Trends in the climatic variables were determined using Mann-Kendall and Sen's Slope estimator statistics. Association of El Niño Southern Oscillation (ENSO) with local climate is also investigated through multivariate analysis. Results from the study show that rainfall time series are fully homogeneous with 78.6 and 50% of the stations for maximum and minimum temperature, respectively, showing homogeneity. Trends also indicate a general decrease of 5.8, 7.4 and 18.1% in annual, summer and winter rainfall, respectively. Warming trends are observed in annual and winter temperature at 0.3 and 1.5% for maximum temperature and 1.7 and 6.5% for minimum temperature, respectively. Rainfall reported a positive correlation with Southern Oscillation Index (SOI) and at the same time negative association with Sea Surface Temperatures (SSTs). Strong relationships between SSTs and maximum temperature are observed during the El Niño and La Niña years. These study findings could facilitate planning and management of agricultural and water resources in Botswana.
Duret, Steven; Guillier, Laurent; Hoang, Hong-Minh; Flick, Denis; Laguerre, Onrawee
2014-06-16
Deterministic models describing heat transfer and microbial growth in the cold chain are widely studied. However, it is difficult to apply them in practice because of several variable parameters in the logistic supply chain (e.g., ambient temperature varying due to season and product residence time in refrigeration equipment), the product's characteristics (e.g., pH and water activity) and the microbial characteristics (e.g., initial microbial load and lag time). This variability can lead to different bacterial growth rates in food products and has to be considered to properly predict the consumer's exposure and identify the key parameters of the cold chain. This study proposes a new approach that combines deterministic (heat transfer) and stochastic (Monte Carlo) modeling to account for the variability in the logistic supply chain and the product's characteristics. The model generates a realistic time-temperature product history , contrary to existing modeling whose describe time-temperature profile Contrary to existing approaches that use directly a time-temperature profile, the proposed model predicts product temperature evolution from the thermostat setting and the ambient temperature. The developed methodology was applied to the cold chain of cooked ham including, the display cabinet, transport by the consumer and the domestic refrigerator, to predict the evolution of state variables, such as the temperature and the growth of Listeria monocytogenes. The impacts of the input factors were calculated and ranked. It was found that the product's time-temperature history and the initial contamination level are the main causes of consumers' exposure. Then, a refined analysis was applied, revealing the importance of consumer behaviors on Listeria monocytogenes exposure. Copyright © 2014. Published by Elsevier B.V.
Estallo, Elizabet L.; Ludueña-Almeida, Francisco F.; Introini, María V.; Zaidenberg, Mario; Almirón, Walter R.
2015-01-01
This study aims to develop a forecasting model by assessing the weather variability associated with seasonal fluctuation of Aedes aegypti oviposition dynamic at a city level in Orán, in northwestern Argentina. Oviposition dynamics were assessed by weekly monitoring of 90 ovitraps in the urban area during 2005-2007. Correlations were performed between the number of eggs collected weekly and weather variables (rainfall, photoperiod, vapor pressure of water, temperature, and relative humidity) with and without time lags (1 to 6 weeks). A stepwise multiple linear regression analysis was performed with the set of meteorological variables from the first year of study with the variables in the time lags that best correlated with the oviposition. Model validation was conducted using the data from the second year of study (October 2006- 2007). Minimum temperature and rainfall were the most important variables. No eggs were found at temperatures below 10°C. The most significant time lags were 3 weeks for minimum temperature and rains, 3 weeks for water vapor pressure, and 6 weeks for maximum temperature. Aedes aegypti could be expected in Orán three weeks after rains with adequate min temperatures. The best-fit forecasting model for the combined meteorological variables explained 70 % of the variance (adj. R2). The correlation between Ae. aegypti oviposition observed and estimated by the forecasting model resulted in rs = 0.80 (P < 0.05). The forecasting model developed would allow prediction of increases and decreases in the Ae. aegypti oviposition activity based on meteorological data for Orán city and, according to the meteorological variables, vector activity can be predicted three or four weeks in advance. PMID:25993415
Identify the dominant variables to predict stream water temperature
NASA Astrophysics Data System (ADS)
Chien, H.; Flagler, J.
2016-12-01
Stream water temperature is a critical variable controlling water quality and the health of aquatic ecosystems. Accurate prediction of water temperature and the assessment of the impacts of environmental variables on water temperature variation are critical for water resources management, particularly in the context of water quality and aquatic ecosystem sustainability. The objective of this study is to measure stream water temperature and air temperature and to examine the importance of streamflow on stream water temperature prediction. The measured stream water temperature and air temperature will be used to test two hypotheses: 1) streamflow is a relatively more important factor than air temperature in regulating water temperature, and 2) by combining air temperature and streamflow data stream water temperature can be more accurately estimated. Water and air temperature data loggers are placed at two USGS stream gauge stations #01362357and #01362370, located in the upper Esopus Creek watershed in Phonecia, NY. The ARIMA (autoregressive integrated moving average) time series model is used to analyze the measured water temperature data, identify the dominant environmental variables, and predict the water temperature with identified dominant variable. The preliminary results show that streamflow is not a significant variable in predicting stream water temperature at both USGS gauge stations. Daily mean air temperature is sufficient to predict stream water temperature at this site scale.
Sea Surface Temperature and Ocean Color Variability in the South China Sea
NASA Astrophysics Data System (ADS)
Conaty, A. P.
2001-12-01
The South China Sea is a marginal sea in the Southeast Asian region whose surface circulation is driven by monsoons and whose surface currents have complex seasonal patterns. Its rich natural resources and strategic location have made its small islands areas of political dispute among the neighboring nations. This study aims to show the seasonal and interannual variability of sea surface temperature and ocean color in South China Sea. It makes use of NOAA's Advanced Very High Resolution Radiometer (AVHRR) satellite data sets on sea surface temperature for the period 1981-2000 and NASA's Nimbus-7 Coastal Zone Color Scanner (CZCS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite data sets on pigment concentration (ocean color) for the period 1981-1996 and 1997-2000, respectively. Transect lines were drawn along several potential hotspot areas to show the variability in sea surface temperature and pigment concentration through time. In-situ data on sea surface temperature along South China Sea were likewise plotted to see the variability with time. Higher seasonal variability in sea surface temperature was seen at higher latitudes. Interannual variability was within 1-3 Kelvin. In most areas, pigment concentration was higher during northern hemisphere winter and autumn, after the monsoon rains, with a maximum of 30 milligrams per cubic meter.
Clark, M.R.; Gangopadhyay, S.; Hay, L.; Rajagopalan, B.; Wilby, R.
2004-01-01
A number of statistical methods that are used to provide local-scale ensemble forecasts of precipitation and temperature do not contain realistic spatial covariability between neighboring stations or realistic temporal persistence for subsequent forecast lead times. To demonstrate this point, output from a global-scale numerical weather prediction model is used in a stepwise multiple linear regression approach to downscale precipitation and temperature to individual stations located in and around four study basins in the United States. Output from the forecast model is downscaled for lead times up to 14 days. Residuals in the regression equation are modeled stochastically to provide 100 ensemble forecasts. The precipitation and temperature ensembles from this approach have a poor representation of the spatial variability and temporal persistence. The spatial correlations for downscaled output are considerably lower than observed spatial correlations at short forecast lead times (e.g., less than 5 days) when there is high accuracy in the forecasts. At longer forecast lead times, the downscaled spatial correlations are close to zero. Similarly, the observed temporal persistence is only partly present at short forecast lead times. A method is presented for reordering the ensemble output in order to recover the space-time variability in precipitation and temperature fields. In this approach, the ensemble members for a given forecast day are ranked and matched with the rank of precipitation and temperature data from days randomly selected from similar dates in the historical record. The ensembles are then reordered to correspond to the original order of the selection of historical data. Using this approach, the observed intersite correlations, intervariable correlations, and the observed temporal persistence are almost entirely recovered. This reordering methodology also has applications for recovering the space-time variability in modeled streamflow. ?? 2004 American Meteorological Society.
Electronic Thermometer Readings
NASA Technical Reports Server (NTRS)
2001-01-01
NASA Stennis' adaptive predictive algorithm for electronic thermometers uses sample readings during the initial rise in temperature and applies an algorithm that accurately and rapidly predicts the steady state temperature. The final steady state temperature of an object can be calculated based on the second-order logarithm of the temperature signals acquired by the sensor and predetermined variables from the sensor characteristics. These variables are calculated during tests of the sensor. Once the variables are determined, relatively little data acquisition and data processing time by the algorithm is required to provide a near-accurate approximation of the final temperature. This reduces the delay in the steady state response time of a temperature sensor. This advanced algorithm can be implemented in existing software or hardware with an erasable programmable read-only memory (EPROM). The capability for easy integration eliminates the expense of developing a whole new system that offers the benefits provided by NASA Stennis' technology.
Tana Wood; M. Detto; W.L. Silver
2013-01-01
Precipitation and temperature are important drivers of soil respiration. The role of moisture and temperature are generally explored at seasonal or inter-annual timescales; however, significant variability also occurs on hourly to daily time-scales. We used small (1.54 m2), throughfall exclusion shelters to evaluate the role soil moisture and temperature as temporal...
NASA Astrophysics Data System (ADS)
Hassanzadeh, S.; Hosseinibalam, F.; Omidvari, M.
2008-04-01
Data of seven meteorological variables (relative humidity, wet temperature, dry temperature, maximum temperature, minimum temperature, ground temperature and sun radiation time) and ozone values have been used for statistical analysis. Meteorological variables and ozone values were analyzed using both multiple linear regression and principal component methods. Data for the period 1999-2004 are analyzed jointly using both methods. For all periods, temperature dependent variables were highly correlated, but were all negatively correlated with relative humidity. Multiple regression analysis was used to fit the meteorological variables using the meteorological variables as predictors. A variable selection method based on high loading of varimax rotated principal components was used to obtain subsets of the predictor variables to be included in the linear regression model of the meteorological variables. In 1999, 2001 and 2002 one of the meteorological variables was weakly influenced predominantly by the ozone concentrations. However, the model did not predict that the meteorological variables for the year 2000 were not influenced predominantly by the ozone concentrations that point to variation in sun radiation. This could be due to other factors that were not explicitly considered in this study.
Davis, Robert E; Hondula, David M; Patel, Anjali P
2016-06-01
Extreme heat is a leading weather-related cause of mortality in the United States, but little guidance is available regarding how temperature variable selection impacts heat-mortality relationships. We examined how the strength of the relationship between daily heat-related mortality and temperature varies as a function of temperature observation time, lag, and calculation method. Long time series of daily mortality counts and hourly temperature for seven U.S. cities with different climates were examined using a generalized additive model. The temperature effect was modeled separately for each hour of the day (with up to 3-day lags) along with different methods of calculating daily maximum, minimum, and mean temperature. We estimated the temperature effect on mortality for each variable by comparing the 99th versus 85th temperature percentiles, as determined from the annual time series. In three northern cities (Boston, MA; Philadelphia, PA; and Seattle, WA) that appeared to have the greatest sensitivity to heat, hourly estimates were consistent with a diurnal pattern in the heat-mortality response, with strongest associations for afternoon or maximum temperature at lag 0 (day of death) or afternoon and evening of lag 1 (day before death). In warmer, southern cities, stronger associations were found with morning temperatures, but overall the relationships were weaker. The strongest temperature-mortality relationships were associated with maximum temperature, although mean temperature results were comparable. There were systematic and substantial differences in the association between temperature and mortality based on the time and type of temperature observation. Because the strongest hourly temperature-mortality relationships were not always found at times typically associated with daily maximum temperatures, temperature variables should be selected independently for each study location. In general, heat-mortality was more closely coupled to afternoon and maximum temperatures in most cities we examined, particularly those typically prone to heat-related mortality. Davis RE, Hondula DM, Patel AP. 2016. Temperature observation time and type influence estimates of heat-related mortality in seven U.S. cities. Environ Health Perspect 124:795-804; http://dx.doi.org/10.1289/ehp.1509946.
Navaee-Ardeh, S; Mohammadi-Rovshandeh, J; Pourjoozi, M
2004-03-01
A normalized design was used to examine the influence of independent variables (alcohol concentration, cooking time and temperature) in the catalytic soda-ethanol pulping of rice straw on various mechanical properties (breaking length, burst, tear index and folding endurance) of paper sheets obtained from each pulping process. An equation of each dependent variable as a function of cooking variables (independent variables) was obtained by multiple non-linear regression using the least square method by MATLAB software for developing of empirical models. The ranges of alcohol concentration, cooking time and temperature were 40-65% (w/w), 150-180 min and 195-210 degrees C, respectively. Three-dimensional graphs of dependent variables were also plotted versus independent variables. The optimum values of breaking length, burst and tear index and folding endurance were 4683.7 (m), 30.99 (kN/g), 376.93 (mN m2/g) and 27.31, respectively. However, short cooking time (150 min), high ethanol concentration (65%) and high temperature (210 degrees C) could be used to produce papers with suitable burst and tear index. However, for papers with best breaking length and folding endurance low temperature (195 degrees C) was desirable. Differences between optimum values of dependent variables obtained by normalized design and experimental data were less than 20%.
Shin, Hangsik
2016-12-01
Pulse rate variability (PRV) is a promising physiological and analytic technique used as a substitute for heart rate variability (HRV). PRV is measured by pulse wave from various devices including mobile and wearable devices but HRV is only measured by an electrocardiogram (ECG). The purpose of this study was to evaluate PRV and HRV at various ambient temperatures and elaborate on the interchangeability of PRV and HRV. Twenty-eight healthy young subjects were enrolled in the experiment. We prepared temperature-controlled rooms and recorded the ECG and photoplethysmography (PPG) under temperature-controlled, constant humidity conditions. The rooms were kept at 17, 25, and 38 °C as low, moderate, and high ambient temperature environments, respectively. HRV and PRV were derived from the synchronized ECG and PPG measures and they were studied in time and frequency domain analysis for PRV/HRV ratio and pulse transit time (PTT). Similarity and differences between HRV and PRV were determined by a statistical analysis. PRV/HRV ratio analysis revealed that there was a significant difference between HRV and PRV for a given ambient temperature; this was with short-term variability measures such as SDNN SDSD or RMSSD, and HF-based variables including HF, LF/HF and normalized HF. In our analysis the absolute value of PTT was not significantly influenced by temperature. Standard deviation of PTT, however, showed significant difference not only between low and moderate temperatures but also between low and high temperatures. Our results suggest that ambient temperature induces a significant difference in PRV compared to HRV and that the difference becomes greater at a higher ambient temperature.
Martínez-Martínez, Víctor; Baladrón, Carlos; Gomez-Gil, Jaime; Ruiz-Ruiz, Gonzalo; Navas-Gracia, Luis M; Aguiar, Javier M; Carro, Belén
2012-10-17
This paper presents a system based on an Artificial Neural Network (ANN) for estimating and predicting environmental variables related to tobacco drying processes. This system has been validated with temperature and relative humidity data obtained from a real tobacco dryer with a Wireless Sensor Network (WSN). A fitting ANN was used to estimate temperature and relative humidity in different locations inside the tobacco dryer and to predict them with different time horizons. An error under 2% can be achieved when estimating temperature as a function of temperature and relative humidity in other locations. Moreover, an error around 1.5 times lower than that obtained with an interpolation method can be achieved when predicting the temperature inside the tobacco mass as a function of its present and past values with time horizons over 150 minutes. These results show that the tobacco drying process can be improved taking into account the predicted future value of the monitored variables and the estimated actual value of other variables using a fitting ANN as proposed.
Martínez-Martínez, Víctor; Baladrón, Carlos; Gomez-Gil, Jaime; Ruiz-Ruiz, Gonzalo; Navas-Gracia, Luis M.; Aguiar, Javier M.; Carro, Belén
2012-01-01
This paper presents a system based on an Artificial Neural Network (ANN) for estimating and predicting environmental variables related to tobacco drying processes. This system has been validated with temperature and relative humidity data obtained from a real tobacco dryer with a Wireless Sensor Network (WSN). A fitting ANN was used to estimate temperature and relative humidity in different locations inside the tobacco dryer and to predict them with different time horizons. An error under 2% can be achieved when estimating temperature as a function of temperature and relative humidity in other locations. Moreover, an error around 1.5 times lower than that obtained with an interpolation method can be achieved when predicting the temperature inside the tobacco mass as a function of its present and past values with time horizons over 150 minutes. These results show that the tobacco drying process can be improved taking into account the predicted future value of the monitored variables and the estimated actual value of other variables using a fitting ANN as proposed. PMID:23202032
Atmospheric Teleconnection and Climate Variability: Affecting Rice Productivity of Bihar, India
NASA Astrophysics Data System (ADS)
Saini, A.
2017-12-01
Climate variability brought various negative results to the environment around us and area under rice crop in Bihar has also faced a lot of negative impacts due to variability in temperature and rainfall. Location of Bihar in Northern Plain of India automatically makes it prime location for agriculture and therefore variability in climatic variables brings highly sensitive results to the agricultural production (especially rice). In this study, rainfall and temperature variables are taken into consideration to investigate the impact on rice cultivated area. Change in climate variable with the passage of time is prevailing since the start of geological time scale, how the variability in climate variables has affected the major crops. Climate index of Pacific Ocean and Indian Ocean influences the seasonal weather in Bihar and therefore role of ENSO and IOD is an interesting point of inquiry. Does there exists direct relation between climate variability and area under agricultural crops? How many important variables directly signals towards the change in area under agriculture production? These entire questions are answered with respect to change in area under rice cultivation of Bihar State of India. Temperature, rainfall and ENSO are a good indicator with respect to rice cultivation in Indian subcontinent. Impact on the area under rice has been signaled through ONI, Niño3 and DMI. Increasing range of temperature in the rice productivity declining years is observed since 1990.
Davis, Robert E.; Hondula, David M.; Patel, Anjali P.
2015-01-01
Background: Extreme heat is a leading weather-related cause of mortality in the United States, but little guidance is available regarding how temperature variable selection impacts heat–mortality relationships. Objectives: We examined how the strength of the relationship between daily heat-related mortality and temperature varies as a function of temperature observation time, lag, and calculation method. Methods: Long time series of daily mortality counts and hourly temperature for seven U.S. cities with different climates were examined using a generalized additive model. The temperature effect was modeled separately for each hour of the day (with up to 3-day lags) along with different methods of calculating daily maximum, minimum, and mean temperature. We estimated the temperature effect on mortality for each variable by comparing the 99th versus 85th temperature percentiles, as determined from the annual time series. Results: In three northern cities (Boston, MA; Philadelphia, PA; and Seattle, WA) that appeared to have the greatest sensitivity to heat, hourly estimates were consistent with a diurnal pattern in the heat-mortality response, with strongest associations for afternoon or maximum temperature at lag 0 (day of death) or afternoon and evening of lag 1 (day before death). In warmer, southern cities, stronger associations were found with morning temperatures, but overall the relationships were weaker. The strongest temperature–mortality relationships were associated with maximum temperature, although mean temperature results were comparable. Conclusions: There were systematic and substantial differences in the association between temperature and mortality based on the time and type of temperature observation. Because the strongest hourly temperature–mortality relationships were not always found at times typically associated with daily maximum temperatures, temperature variables should be selected independently for each study location. In general, heat-mortality was more closely coupled to afternoon and maximum temperatures in most cities we examined, particularly those typically prone to heat-related mortality. Citation: Davis RE, Hondula DM, Patel AP. 2016. Temperature observation time and type influence estimates of heat-related mortality in seven U.S. cities. Environ Health Perspect 124:795–804; http://dx.doi.org/10.1289/ehp.1509946 PMID:26636734
Lamazza, Luca; Garreffa, Girolamo; Laurito, Domenica; Lollobrigida, Marco; Palmieri, Luigi; De Biase, Alberto
2016-01-01
Various parameters can influence temperature rise and detection during implant site preparation. The aim of this study is to investigate local temperature values in cortical and corticocancellous bovine bone during early stages of piezoelectric implant site preparation. 20 osteotomies were performed using a diamond tip (IM1s, Mectron Medical Technology, Carasco, Italy) on two different types of bovine bone samples, cortical and corticocancellous, respectively. A standardized protocol was designed to provide constant working conditions. Temperatures were measured in real time at a fixed position by a fiber optic thermometer. Significantly higher drilling time (154.90 sec versus 99.00 sec; p < 0.0001) and temperatures (39.26°C versus 34.73°C; p = 0.043) were observed in the cortical group compared to the corticocancellous group. A remarkable variability of results characterized the corticocancellous blocks as compared to the blocks of pure cortical bone. Bone samples can influence heat generation during in vitro implant site preparation. When compared to cortical bone, corticocancellous samples present more variability in temperature values. Even controlling most experimental factors, the impact of bone samples still remains one of the main causes of temperature variability.
Spatial and seasonal variability of forested headwater stream temperatures in western Oregon, USA
J. A. Leach; D. H. Olson; P. D. Anderson; B. N. I. Eskelson
2017-01-01
Thermal regimes of forested headwater streams control the growth and distribution of various aquatic organisms. In a western Oregon, USA, case study we examined: (1) forested headwater stream temperature variability in space and time; (2) relationships between stream temperature patterns and weather, above-stream canopy cover, and geomorphic attributes; and (3) the...
Dong, Shirley Xiaobi; Davies, Stuart J; Ashton, Peter S; Bunyavejchewin, Sarayudh; Supardi, M N Nur; Kassim, Abd Rahman; Tan, Sylvester; Moorcroft, Paul R
2012-10-07
The response of tropical forests to global climate variability and change remains poorly understood. Results from long-term studies of permanent forest plots have reported different, and in some cases opposing trends in tropical forest dynamics. In this study, we examined changes in tree growth rates at four long-term permanent tropical forest research plots in relation to variation in solar radiation, temperature and precipitation. Temporal variation in the stand-level growth rates measured at five-year intervals was found to be positively correlated with variation in incoming solar radiation and negatively related to temporal variation in night-time temperatures. Taken alone, neither solar radiation variability nor the effects of night-time temperatures can account for the observed temporal variation in tree growth rates across sites, but when considered together, these two climate variables account for most of the observed temporal variability in tree growth rates. Further analysis indicates that the stand-level response is primarily driven by the responses of smaller-sized trees (less than 20 cm in diameter). The combined temperature and radiation responses identified in this study provide a potential explanation for the conflicting patterns in tree growth rates found in previous studies.
NASA Astrophysics Data System (ADS)
Christianson, D. S.; Kaufman, C. G.; Kueppers, L. M.; Harte, J.
2013-12-01
Sampling limitations and current modeling capacity justify the common use of mean temperature values in summaries of historical climate and future projections. However, a monthly mean temperature representing a 1-km2 area on the landscape is often unable to capture the climate complexity driving organismal and ecological processes. Estimates of variability in addition to mean values are more biologically meaningful and have been shown to improve projections of range shifts for certain species. Historical analyses of variance and extreme events at coarse spatial scales, as well as coarse-scale projections, show increasing temporal variability in temperature with warmer means. Few studies have considered how spatial variance changes with warming, and analysis for both temporal and spatial variability across scales is lacking. It is unclear how the spatial variability of fine-scale conditions relevant to plant and animal individuals may change given warmer coarse-scale mean values. A change in spatial variability will affect the availability of suitable habitat on the landscape and thus, will influence future species ranges. By characterizing variability across both temporal and spatial scales, we can account for potential bias in species range projections that use coarse climate data and enable improvements to current models. In this study, we use temperature data at multiple spatial and temporal scales to characterize spatial and temporal variability under a warmer climate, i.e., increased mean temperatures. Observational data from the Sierra Nevada (California, USA), experimental climate manipulation data from the eastern and western slopes of the Rocky Mountains (Colorado, USA), projected CMIP5 data for California (USA) and observed PRISM data (USA) allow us to compare characteristics of a mean-variance relationship across spatial scales ranging from sub-meter2 to 10,000 km2 and across temporal scales ranging from hours to decades. Preliminary spatial analysis at fine-spatial scales (sub-meter to 10-meter) shows greater temperature variability with warmer mean temperatures. This is inconsistent with the inherent assumption made in current species distribution models that fine-scale variability is static, implying that current projections of future species ranges may be biased -- the direction and magnitude requiring further study. While we focus our findings on the cross-scaling characteristics of temporal and spatial variability, we also compare the mean-variance relationship between 1) experimental climate manipulations and observed conditions and 2) temporal versus spatial variance, i.e., variability in a time-series at one location vs. variability across a landscape at a single time. The former informs the rich debate concerning the ability to experimentally mimic a warmer future. The latter informs space-for-time study design and analyses, as well as species persistence via a combined spatiotemporal probability of suitable future habitat.
Teletchea, F; Gardeur, J-N; Kamler, E; Fontaine, P
2009-02-01
Based on the analysis of six egg variables and incubation temperature of 65 temperate freshwater fish species, the possible relationships between oocyte diameter, incubation time and incubation temperature were reassessed and compared to the results obtained from marine fishes. Most freshwater species have eggs (mean +/-s.d. 2.19 +/- 1.52 mm) larger than marine species, that are chiefly demersal and develop stuck to various substrata, such as plants or rocks. A strong negative relationship was found between incubation time (t, days) and incubation temperature (T, degrees C): t = 186.23e(-0.197T) (r(2)= 0.87). A strong dependence of incubation time on oocyte diameter (Ø, mm) and incubation temperature was also found and was defined as: log(10)t= 3.002 + 0.599 log(10)Ø - 1.91 log(10) (T + 2), which explained 92% of the variance of the data set. Five major groups of species were defined based on the principal component analysis (PCA) of four quantitative variables. There were two distinct groups of salmonids, displaying demersal and non-adhesive eggs with a long incubation time at low temperature, the eggs of which required a high number of degree-days. There was a large group of species possessing small, mostly demersal and adhesive eggs developing at high temperature during a short period of time, and requiring a low number of degree-days. Between these two extremes, there was a fourth group displaying intermediate values and a fifth group including three species with large, adhesive and demersal eggs incubating at high temperatures during a short period of time. The burbot Lota lota displayed an unusual combination of variables compared to the remaining species in the data set.
NASA Astrophysics Data System (ADS)
Sen, Asok K.; Ogrin, Darko
2016-02-01
Long instrumental records of meteorological variables such as temperature and precipitation are very useful for studying regional climate in the past, present, and future. They can also be useful for understanding the influence of large-scale atmospheric circulation processes on the regional climate. This paper investigates the monthly, winter, and annual temperature time series obtained from the instrumental records in Zagreb, Croatia, for the period 1864-2010. Using wavelet analysis, the dominant modes of variability in these temperature series are identified, and the time intervals over which these modes may persist are delineated. The results reveal that all three temperature records exhibit low-frequency variability with a dominant periodicity at around 7.7 years. The 7.7-year cycle has also been observed in the temperature data recorded at several other stations in Europe, especially in Northern and Western Europe, and may be linked to the North Atlantic Oscillation (NAO) and/or solar/geomagnetic activity.
Unger, Miriam; Ozaki, Yukihiro; Siesler, Heinz W
2014-01-01
In the present publication, the deuterium/hydrogen (D/H) exchange of liquid D2O exposed to water vapor of the surrounding atmosphere has been studied by variable-temperature Fourier transform near-infrared (FT-NIR) imaging spectroscopy. Apart from the visualization of the exchange process in the time-resolved FT-NIR images, kinetic parameters and the activation energy for this D/H exchange reaction have been derived from the Arrhenius plot of the variable-temperature spectroscopic data.
Recent Climate Variability in Antarctica from Satellite-derived Temperature Data
NASA Technical Reports Server (NTRS)
Schneider, David P.; Steig, Eric J.; Comiso, Josefino C.
2004-01-01
Recent Antarctic climate variability on month-to-month to interannual time scales is assessed through joint analysis of surface temperatures from satellite thermal infrared observations (T(sub IR)) and passive microwave brightness temperatures (T(sub B)). Although Tw data are limited to clear-sky conditions and T(sub B) data are a product of the temperature and emissivity of the upper approx. 1m of snow, the two data sets share significant covariance. This covariance is largely explained by three empirical modes, which illustrate the spatial and temporal variability of Antarctic surface temperatures. T(sub B) variations are damped compared to TIR variations, as determined by the period of the temperature forcing and the microwave emission depth; however, microwave emissivity does not vary significantly in time. Comparison of the temperature modes with Southern Hemisphere (SH) 500-hPa geopotential height anomalies demonstrates that Antarctic temperature anomalies are predominantly controlled by the principal patterns of SH atmospheric circulation. The leading surface temperature mode strongly correlates with the Southern Annular Mode (SAM) in geopotential height. The second temperature mode reflects the combined influences of the zonal wavenumber-3 and Pacific South American (PSA) patterns in 500-hPa height on month-to-month timescales. ENSO variability projects onto this mode on interannual timescales, but is not by itself a good predictor of Antarctic temperature anomalies. The third temperature mode explains winter warming trends, which may be caused by blocking events, over a large region of the East Antarctic plateau. These results help to place recent climate changes in the context of Antarctica's background climate variability and will aid in the interpretation of ice core paleoclimate records.
Drivers of River Water Temperature Space-time Variability in Northeast Greenland
NASA Astrophysics Data System (ADS)
Hannah, D. M.; Docherty, C.; Milner, A.
2015-12-01
Water temperature plays an important role in stream ecosystem functioning; however, water temperature dynamics in high Arctic environments have received relatively little attention. Given that global climate is predicted to change most at high latitudes, it is vital we broaden our knowledge of space-time variability in Arctic river temperature to understand controlling processes and potential consequences of climate change. To address this gap, our research aims: (1) to characterise seasonal and diel patterns of variability over three summer and two winter seasons with contrasting hydrometeorological conditions, (2) to unravel the key drivers influencing thermal regimes and (3) to place these results in the context of other snow/ glacier-melt dominated environments. Fieldwork was undertaken in July-September 2013, 2014 and 2015 close to the Zackenberg Research Station in Northeast Greenland - an area of continuous permafrost with a mean July air temperature of 6 °C. Five streams were chosen that drain different water source contributions (glacier melt, snow melt, groundwater). Data were collected at 30 minute intervals using micro-dataloggers. Air temperature data were collected within 7km by the Greenland Survey. Weather conditions were highly variable between field campaigns, with 2013 experiencing below average, and 2014 and 2015 above average, snowfall. Summer water temperatures appear to be high in comparison to some Arctic streams in Alaska and in Svalbard. Winter snowfall extent decreases stream water temperature; and water temperature increases with atmospheric exposure time (distance from source) - illustrating the intertwined controls of water and heat fluxes. These Greenland streams are most strongly influenced by snowmelt, but groundwater contributions could increase with a changing climate due to increased active layer thickness, which may result in increased river temperature with implications for aquatic biodiversity and ecosystem functioning.
Arismendi, Ivan; Johnson, Sherri; Dunham, Jason B.; Haggerty, Roy; Hockman-Wert, David
2012-01-01
Temperature is a fundamentally important driver of ecosystem processes in streams. Recent warming of terrestrial climates around the globe has motivated concern about consequent increases in stream temperature. More specifically, observed trends of increasing air temperature and declining stream flow are widely believed to result in corresponding increases in stream temperature. Here, we examined the evidence for this using long-term stream temperature data from minimally and highly human-impacted sites located across the Pacific continental United States. Based on hypothesized climate impacts, we predicted that we should find warming trends in the maximum, mean and minimum temperatures, as well as increasing variability over time. These predictions were not fully realized. Warming trends were most prevalent in a small subset of locations with longer time series beginning in the 1950s. More recent series of observations (1987-2009) exhibited fewer warming trends and more cooling trends in both minimally and highly human-influenced systems. Trends in variability were much less evident, regardless of the length of time series. Based on these findings, we conclude that our perspective of climate impacts on stream temperatures is clouded considerably by a lack of long-termdata on minimally impacted streams, and biased spatio-temporal representation of existing time series. Overall our results highlight the need to develop more mechanistic, process-based understanding of linkages between climate change, other human impacts and stream temperature, and to deploy sensor networks that will provide better information on trends in stream temperatures in the future.
Jones, G R; Brandon, C; Gill, D P
2017-07-01
Winter weather conditions may negatively influence participation of older adults in daily physical activity (PA). Assess the influence of winter meteorological variables, day-time peak ambient temperature, windchill, humidity, and snow accumulation on the ground to accelerometer measured PA values in older adults. 50 community-dwelling older adults (77.4±4.7yrs; range 71-89; 12 females) living in Southwestern Ontario (Latitude 42.9°N Longitude 81.2° W) Canada, wore a waist-borne accelerometer during active waking hours (12h) for 7 consecutive days between February and April 2007. Hourly temperature, windchill, humidity, and snowfall accumulation were obtained from meteorological records and time locked to hourly accelerometer PA values. Regression analysis revealed significant relationships between time of day, ambient daytime high temperature and a humidity for participation in PA. Windchill temperature added no additional influence over PA acclamation already influenced by ambient day-time temperature and the observed variability in PA patterns relative to snow accumulation over the study period was too great to warrant its inclusion in the model. Most PA was completed in the morning hours and increased as the winter month's transitioned to spring (February through April). An equation was developed to adjust for winter weather conditions using temperature, humidity and time of day. Accurate PA assessment during the winter months must account for the ambient daytime high temperatures, humidity, and time of day. These older adults were more physically active during the morning hours and became more active as the winter season transitioned to spring. Copyright © 2017 Elsevier B.V. All rights reserved.
Temperature Control of the Variability of Tropical Tropopause Layer Cirrus Clouds
NASA Astrophysics Data System (ADS)
Tseng, Hsiu-Hui; Fu, Qiang
2017-10-01
This study examines the temperature control of variability of tropical tropopause layer (TTL) cirrus clouds (i.e., clouds with bases higher than 14.5 km) by using 8 years (2006-2014) of observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC). It is found that the temporal variability of vertical structure of TTL cirrus cloud fraction averaged between 15°N and 15°S can be well explained by the vertical temperature gradient below 17.5 km but by the local temperature above for both seasonal and interannual time scales. It is also found that the TTL cirrus cloud fraction at a given altitude is best correlated with the temperature at a higher altitude and this vertical displacement increases with a decrease of the cirrus altitude. It is shown that the TTL cirrus cloud fractions at all altitudes are significantly correlated with tropical cold point tropopause (CPT) temperature. The plausible mechanisms that might be responsible for the observed relations between TTL cirrus fraction and temperature-based variables are discussed, which include ice particle sediments, cooling associated with wave propagations, change of atmospheric stability, and vertical gradient of water vapor mixing ratio. We further examine the spatial covariability of TTL total cirrus cloud fraction and CPT temperature for the interannual time scale. It is found that the El Niño-Southern Oscillation and quasi-biennial oscillation are the leading factors in controlling the spatial variability of the TTL cirrus clouds and temperatures.
Roldán, Mar; Antequera, Teresa; Martín, Alberto; Mayoral, Ana Isabel; Ruiz, Jorge
2013-03-01
Lamb loins were subjected to sous-vide cooking at different combinations of temperature (60, 70, and 80 °C) and time (6, 12, and 24 h). Different physicochemical, histological and structural parameters were studied. Increasing cooking temperatures led to higher weight losses and lower moisture contents, whereas the effect of cooking time on these variables was limited. Samples cooked at 60 °C showed the highest lightness and redness, while increasing cooking temperature and cooking time produced higher yellowness values. Most textural variables in a texture profile analysis showed a marked interaction between cooking temperature and time. Samples cooked for 24h showed significantly lower values for most of the studied textural parameters for all the temperatures considered. Connective tissue granulation at 60 °C and gelation at 70 °C were observed in the SEM micrographs. The sous-vide cooking of lamb loins dramatically reduced microbial population even with the less intense heat treatment studied (60 °C-6 h). Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hoppe, H.-G.; Giesenhagen, H. C.; Koppe, R.; Hansen, H.-P.; Gocke, K.
2012-12-01
Phytoplankton and bacteria are sensitive indicators of environmental change. The temporal development of these key organisms was monitored from 1988 to the end of 2007 at the time series station Boknis Eck in the Western Baltic Sea. This period was characterized by the adaption of the Baltic Sea ecosystem to changes in the environmental conditions caused by the collapse and conversion of the political system in the Southern and Eastern Border States, accompanied by the general effects of global climate change. Measured variables were chlorophyll, primary production, bacteria number, -biomass and -production, glucose turnover rate, macro-nutrients, pH, temperature and salinity. Negative trends with time were recorded for chlorophyll, the bacterial variables, nitrate, ammonia, phosphate, silicate, oxygen and salinity while temperature, pH, and the ratio between bacteria numbers and chlorophyll increased. The strongest reductions with time occurred for the annual maximum values, e.g. for chlorophyll during the spring bloom or for nitrate during winter, while the annual minimum values remained more stable. In deep water above sediment the negative trends of oxygen, nitrate, phosphate and bacterial variables as well as the positive trend of temperature were similar to those in the surface while the trends of salinity, ammonia and silicate were opposite to those in the surface. Decreasing oxygen even in the surface layer was of particular interest because it suggested enhanced recycling of nutrients from the deep hypoxic zones to the surface by vertical mixing. In the long run all variables correlated positively with temperature, except chlorophyll and salinity. Salinity correlated negatively with all bacterial variables as well as precipitation and positively with chlorophyll. Surprisingly, bacterial variables did not correlate with chlorophyll which may be inherent with the time lag between the peaks of phytoplankton and bacteria during spring. Compared to the 20-yr averages of the environmental and microbial variables, the strongest negative deviations of corresponding annual averages were measured about ten years after political change for nitrate and bacterial secondary production (~ -60%), followed by chlorophyll (-50%) and bacterial biomass (-40%). Considering the circulation of surface currents in the Baltic Sea we conclude that the improved management of water resources after 1989 together with the trends of the climate variables salinity and temperature were responsible for the observed patterns of the microbial variables at the Boknis Eck time series station.
Therapeutic Magnets Do Not Affect Tissue Temperatures
Sweeney, Kathleen B.; Ingersoll, Christopher D.; Swez, John A.
2001-01-01
Objective: Manufacturers of commercially available “therapeutic” magnets claim that these magnets cause physiologic thermal effects that promote tissue healing. We conducted this study to determine if skin or intramuscular temperatures differed among magnet, sham, and control treatments during 60 minutes of application to the quadriceps muscle. Design and Setting: A 3 × 3 mixed-model, factorial design with repeated measures on both independent variables was used. The first independent variable, application duration, had 3 random levels (20, 40, and 60 minutes). The second independent variable, treatment, had 3 fixed levels (magnet, sham, and control). The dependent variable was tissue temperature (°C). Measurement depth served as a control variable, with 2 levels: skin and 1 cm below the fat layer. Data were collected in a thermoneutral laboratory setting and analyzed using a repeated-measures analysis of variance. Subjects: The study included 13 healthy student volunteers (8 men, 5 women; age, 20.5 ± 0.9 years; height, 176.8 ± 10.4 cm; weight, 73.8 ± 11.8 kg; anterior thigh skinfold thickness, 16.9 ± 6.5 mm). Measurements: Temperatures were measured at 30-second intervals using surface and implantable thermocouples. Temperature data at 20, 40, and 60 minutes were used for analysis. Each subject received all 3 treatments on different days. Results: Neither skin nor intramuscular temperatures were different across the 3 treatments at any time. For both skin and intramuscular temperatures, a statistically significant but not clinically meaningful temperature increase (less than 1°C), was observed over time within treatments, but this increase was similar in all treatment groups. Conclusions: No meaningful thermal effect was observed with any treatment over time, and treatments did not differ from each other. We conclude that flexible therapeutic magnets were not effective for increasing skin or deep temperatures, contradicting one of the fundamental claims made by magnet distributors. PMID:12937511
TRUMP. Transient & S-State Temperature Distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elrod, D.C.; Turner, W.D.
1992-03-03
TRUMP solves a general nonlinear parabolic partial differential equation describing flow in various kinds of potential fields, such as fields of temperature, pressure, or electricity and magnetism; simultaneously, it will solve two additional equations representing, in thermal problems, heat production by decomposition of two reactants having rate constants with a general Arrhenius temperature dependence. Steady-state and transient flow in one, two, or three dimensions are considered in geometrical configurations having simple or complex shapes and structures. Problem parameters may vary with spatial position, time, or primary dependent variables, temperature, pressure, or field strength. Initial conditions may vary with spatial position,more » and among the criteria that may be specified for ending a problem are upper and lower limits on the size of the primary dependent variable, upper limits on the problem time or on the number of time-steps or on the computer time, and attainment of steady state.« less
Fracture Sustainability Pressure, Temperature, Differential Pressure, and Aperture Closure Data
Tim Kneafsey
2016-09-30
In these data sets, the experiment time, actual date and time, room temperature, sample temperature, upstream and downstream pressures (measured independently), corrected differential pressure (measured independently and corrected for offset and room temperature) indication of aperture closure by linear variable differential transformer are presented. An indication of the sample is in the file name and in the first line of data.
William T. Simpson
2006-01-01
Heat sterilization is used to kill insects and fungi in wood being traded internationally. Determining the time required to reach the kill temperature is difficult considering the many variables that can affect it, such as heating temperature, target center temperature, initial wood temperature, wood configuration dimensions, specific gravity, and moisture content. In...
NASA Astrophysics Data System (ADS)
Hoppe, H.-G.; Giesenhagen, H. C.; Koppe, R.; Hansen, H.-P.; Gocke, K.
2013-07-01
Phytoplankton and bacteria are sensitive indicators of environmental change. The temporal development of these key organisms was monitored from 1988 to the end of 2007 at the time series station Boknis Eck in the western Baltic Sea. This period was characterized by the adaption of the Baltic Sea ecosystem to changes in the environmental conditions caused by the conversion of the political system in the southern and eastern border states, accompanied by the general effects of global climate change. Measured variables were chlorophyll, primary production, bacteria number, -biomass and -production, glucose turnover rate, macro-nutrients, pH, temperature and salinity. Negative trends with time were recorded for chlorophyll, bacteria number, bacterial biomass and bacterial production, nitrate, ammonia, phosphate, silicate, oxygen and salinity while temperature, pH, and the ratio between bacteria numbers and chlorophyll increased. Strongest reductions with time occurred for the annual maximum values, e.g. for chlorophyll during the spring bloom or for nitrate during winter, while the annual minimum values remained more stable. In deep water above sediment the negative trends of oxygen, nitrate, phosphate and bacterial variables as well as the positive trend of temperature were similar to those in the surface while the trends of salinity, ammonia and silicate were opposite to those in the surface. Decreasing oxygen, even in the surface layer, was of particular interest because it suggested enhanced recycling of nutrients from the deep hypoxic zones to the surface by vertical mixing. The long-term seasonal patterns of all variables correlated positively with temperature, except chlorophyll and salinity. Salinity correlated negatively with all bacterial variables (as well as precipitation) and positively with chlorophyll. Surprisingly, bacterial variables did not correlate with chlorophyll, which may be inherent with the time lag between the peaks of phytoplankton and bacteria during spring. Compared to the 20-yr averages of the environmental and microbial variables, the strongest negative deviations of corresponding annual averages were measured about ten years after political change for nitrate and bacterial secondary production (~ -60%), followed by chlorophyll (-50%) and bacterial biomass (-40%). Considering the circulation of surface currents in the Baltic Sea we interpret the observed patterns of the microbial variables at the Boknis Eck time series station as a consequence of the improved management of water resources after 1989 and - to a minor extent - the trends of the climate variables salinity and temperature.
NASA Technical Reports Server (NTRS)
Stutte, G. W.; Chetirkin, P. V.; Mackowiak, C. L.; Fortson, R. E.
1993-01-01
Variability in the aerial and root environments of NASA's Breadboard Project's Biomass Production Chamber (BPC) was determined. Data from two lettuce and two potato growouts were utilized. One growout of each crop was conducted prior to separating the upper and lower chambers; the other was subsequent to separation. There were little or no differences in pH, EC, or solution temperature between the upper and lower chamber or within a chamber. Variation in the aerial environment within a chamber was two to three times greater than variation between chambers for air temperature, relative humidity, and PPF. High variability in air velocity, relative to tray position, was observed. Separating the BPC had no effect on PPF, air velocity, solution temperature, pH, or EC. Separation reduced the gradient in air temperature and relative humidity between the upper and lower chambers, but increased the variability within a chamber. Variation between upper and lower chambers was within 5 percent of environmental set-points and of little or no physiological significance. In contrast, the variability within a chamber limits the capability of the BPC to generate statistically reliable data from individual tray treatments at this time.
Kamra, Leena
2015-11-01
Continuous monitoring of radon along with meteorological parameters has been carried out in a seismically active area of Garhwal region, northwest Himalaya, within the frame work of earthquake precursory research. Radon measurements are carried out by using a gamma ray detector installed in the air column at a depth of 10m in a 68m deep borehole. The analysis of long time series for 2006-2012 shows strong seasonal variability masked by diurnal and multi-day variations. Isolation of a seasonal cycle by minimising short-time by 31 day running average shows a strong seasonal variation with unambiguous dependence on atmospheric temperature and pressure. The seasonal characteristics of radon concentrations are positively correlated to atmospheric temperature (R=0.95) and negatively correlated to atmospheric pressure (R=-0.82). The temperature and pressure variation in their annual progressions are negatively correlated. The calculations of partial correlation coefficient permit us to conclude that atmospheric temperature plays a dominant role in controlling the variability of radon in borehole, 71% of the variability in radon arises from the variation in atmospheric temperature and about 6% of the variability is contributed by atmospheric pressure. The influence of pressure variations in an annual cycle appears to be a pseudo-effect, resulting from the negative correlation between temperature and pressure variations. Incorporation of these results explains the varying and even contradictory claims regarding the influence of the pressure variability on radon changes in the published literature. Temperature dependence, facilitated by the temperature gradient in the borehole, controls the transportation of radon from the deep interior to the surface. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Scherllin-Pirscher, Barbara; Randel, William J.; Kim, Joowan
2017-04-01
We investigate sub-seasonal temperature variability in the tropical upper troposphere and lower stratosphere (UTLS) region using daily gridded fields of GPS radio occultation measurements. The unprecedented vertical resolution (from about 100 m in the troposphere to about 1.5 km in the stratosphere) and high accuracy and precision (0.7 K to 1 K between 8 km and 25 km) make these data ideal for characterizing temperature oscillations with short vertical wavelengths. Long-term behavior of sub-seasonal temperature variability is investigated using the entire RO record from January 2002 to December 2014 (13 years of data). Transient sub-seasonal waves including eastward-propagating Kelvin waves (isolated with space-time spectral analysis) dominate large-scale zonal temperature variability in the tropical tropopause region and in the lower stratosphere. Above 20 km, Kelvin waves are strongly modulated by the quasi-biennial oscillation (QBO). Enhanced wave activity can be found during the westerly shear phase of the QBO. In the tropical tropopause region, however, sub-seasonal waves are highly transient in time. Several peaks of Kelvin-wave activity coincide with short-term fluctuations in tropospheric deep convection, but other episodes are not evidently related. Also, there are no obvious relationships with zonal winds or stability fields near the tropical tropopause. Further investigations of convective forcing and atmospheric background conditions along the waves' trajectories are needed to better understand sub-seasonal temperature variability near the tropopause. For more details, see Scherllin-Pirscher, B., Randel, W. J., and Kim, J.: Tropical temperature variability and Kelvin-wave activity in the UTLS from GPS RO measurements, Atmos. Chem. Phys., 17, 793-806, doi:10.5194/acp-17-793-2017, 2017. http://www.atmos-chem-phys.net/17/793/2017/acp-17-793-2017.html
Sarker, Mohamed Zaidul Islam; Selamat, Jinap; Habib, Abu Sayem Md. Ahsan; Ferdosh, Sahena; Akanda, Mohamed Jahurul Haque; Jaffri, Juliana Mohamed
2012-01-01
Fish oil was extracted from the viscera of African Catfish using supercritical carbon dioxide (SC-CO2). A Central Composite Design of Response Surface methodology (RSM) was employed to optimize the SC-CO2 extraction parameters. The oil yield (Y) as response variable was executed against the four independent variables, namely pressure, temperature, flow rate and soaking time. The oil yield varied with the linear, quadratic and interaction of pressure, temperature, flow rate and soaking time. Optimum points were observed within the variables of temperature from 35 °C to 80 °C, pressure from 10 MPa to 40 MPa, flow rate from 1 mL/min to 3 mL/min and soaking time from 1 h to 4 h. However, the extraction parameters were found to be optimized at temperature 57.5 °C, pressure 40 MPa, flow rate 2.0 mL/min and soaking time 2.5 h. At this optimized condition, the highest oil yields were found to be 67.0% (g oil/100 g sample on dry basis) in the viscera of catfish which was reasonable to the yields of 78.0% extracted using the Soxhlet method. PMID:23109854
Wet-bulb, dew point, and air temperature trends in Spain
NASA Astrophysics Data System (ADS)
Moratiel, R.; Soriano, B.; Centeno, A.; Spano, D.; Snyder, R. L.
2017-10-01
This study analyses trends of mean ( T m), maximum ( T x), minimum ( T n), dew point ( T d), and wet-bulb temperatures ( T w) on an annual, seasonal, and monthly time scale over Spain during the period 1981-2010. The main purpose was to determine how temperature and humidity changes are impacting on T w, which is probably a better measure of climate change than temperature alone. In this study, 43 weather stations were used to detect data trends using the nonparametric Mann-Kendall test and the Sen method to estimate the slope of trends. Significant linear trends observed for T m, T x, and T n versus year were 56, 58, and 47 % of the weather stations, respectively, with temperature ranges between 0.2 and 0.4 °C per decade. The months with bigger trends were April, May, June, and July with the highest trend for T x. The spatial behaviour of T d and T w was variable, with various locations showing trends from -0.6 to +0.3 °C per decade for T d and from -0.4 to +0.5 °C per decade for T w. Both T d and T w showed negative trends for July, August, September, November, and December. Comparing the trends versus time of each variable versus each of the other variables exhibited poor relationships, which means you cannot predict the trend of one variable from the trend of another variable. The trend of T x was not related to the trend of T n. The trends of T x, T m, and T n versus time were unrelated to the trends versus time of either T d or T w. The trend of T w showed a high coefficient of determination with the trend of T d with an annual value of R 2 = 0.86. Therefore, the T w trend is more related to changes in humidity than temperature.
NASA Astrophysics Data System (ADS)
Reichstein, M.; Rey, A.; Freibauer, A.; Tenhunen, J.; Valentini, R.; Soil Respiration Synthesis Team
2003-04-01
Field-chamber measurements of soil respiration from 17 different forest and shrubland sites in Europe and North America were summarized and analyzed with the goal to develop a model describing seasonal, inter-annual and spatial variability of soil respiration as affected by water availability, temperature and site properties. The analysis was performed at a daily and at a monthly time step. With the daily time step, the relative soil water content in the upper soil layer expressed as a fraction of field capacity was a good predictor of soil respiration at all sites. Among the site variables tested, those related to site productivity (e.g. leaf area index) correlated significantly with soil respiration, while carbon pool variables like standing biomass or the litter and soil carbon stocks did not show a clear relationship with soil respiration. Furthermore, it was evidenced that the effect of precipitation on soil respiration stretched beyond its direct effect via soil moisture. A general statistical non-linear regression model was developed to describe soil respiration as dependent on soil temperature, soil water content and site-specific maximum leaf area index. The model explained nearly two thirds of the temporal and inter-site variability of soil respiration with a mean absolute error of 0.82 µmol m-2 s-1. The parameterised model exhibits the following principal properties: 1) At a relative amount of upper-layer soil water of 16% of field capacity half-maximal soil respiration rates are reached. 2) The apparent temperature sensitivity of soil respiration measured as Q10 varies between 1 and 5 depending on soil temperature and water content. 3) Soil respiration under reference moisture and temperature conditions is linearly related to maximum site leaf area index. At a monthly time-scale we employed the approach by Raich et al. (2002, Global Change Biol. 8, 800-812) that used monthly precipitation and air temperature to globally predict soil respiration (T&P-model). While this model was able to explain some of the month-to-month variability of soil respiration, it failed to capture the inter-site variability, regardless whether the original or a new optimized model parameterization was used. In both cases, the residuals were strongly related to maximum site leaf area index. Thus, for a monthly time scale we developed a simple T&P&LAI-model that includes leaf area index as an additional predictor of soil respiration. This extended but still simple model performed nearly as well as the more detailed time-step model and explained 50 % of the overall and 65% of the site-to-site variability. Consequently, better estimates of globally distributed soil respiration should be obtained with the new model driven by satellite estimates of leaf area index.
Spatiotemporal correlation structure of the Earth's surface temperature
NASA Astrophysics Data System (ADS)
Fredriksen, Hege-Beate; Rypdal, Kristoffer; Rypdal, Martin
2015-04-01
We investigate the spatiotemporal temperature variability for several gridded instrumental and climate model data sets. The temporal variability is analysed by estimating the power spectral density and studying the differences between local and global temperatures, land and sea, and among local temperature records at different locations. The spatiotemporal correlation structure is analysed through cross-spectra that allow us to compute frequency-dependent spatial autocorrelation functions (ACFs). Our results are then compared to theoretical spectra and frequency-dependent spatial ACFs derived from a fractional stochastic-diffusive energy balance model (FEBM). From the FEBM we expect both local and global temperatures to have a long-range persistent temporal behaviour, and the spectral exponent (β) is expected to increase by a factor of two when going from local to global scales. Our comparison of the average local spectrum and the global spectrum shows good agreement with this model, although the FEBM has so far only been studied for a pure land planet and a pure ocean planet, respectively, with no seasonal forcing. Hence it cannot capture the substantial variability among the local spectra, in particular between the spectra for land and sea, and for equatorial and non-equatorial temperatures. Both models and observation data show that land temperatures in general have a low persistence, while sea surface temperatures show a higher, and also more variable degree of persistence. Near the equator the spectra deviate from the power-law shape expected from the FEBM. Instead we observe large variability at time scales of a few years due to ENSO, and a flat spectrum at longer time scales, making the spectrum more reminiscent of that of a red noise process. From the frequency-dependent spatial ACFs we observe that the spatial correlation length increases with increasing time scale, which is also consistent with the FEBM. One consequence of this is that longer-lasting structures must also be wider in space. The spatial correlation length is also observed to be longer for land than for sea. The climate model simulations studied are mainly CMIP5 control runs of length 500-1000 yr. On time scales up to several centuries we do not observe that the difference between the local and global spectral exponents vanish. This also follows from the FEBM and shows that the dynamics is spatiotemporal (not just temporal) even on these time scales.
NASA Technical Reports Server (NTRS)
Mehta, Vikram M.; Delworth, Thomas
1995-01-01
Sea surface temperature (SST) variability was investigated in a 200-yr integration of a global model of the coupled oceanic and atmospheric general circulations developed at the Geophysical Fluid Dynamics Laboratory (GFDL). The second 100 yr of SST in the coupled model's tropical Atlantic region were analyzed with a variety of techniques. Analyses of SST time series, averaged over approximately the same subregions as the Global Ocean Surface Temperature Atlas (GOSTA) time series, showed that the GFDL SST anomalies also undergo pronounced quasi-oscillatory decadal and multidecadal variability but at somewhat shorter timescales than the GOSTA SST anomalies. Further analyses of the horizontal structures of the decadal timescale variability in the GFDL coupled model showed the existence of two types of variability in general agreement with results of the GOSTA SST time series analyses. One type, characterized by timescales between 8 and 11 yr, has high spatial coherence within each hemisphere but not between the two hemispheres of the tropical Atlantic. A second type, characterized by timescales between 12 and 20 yr, has high spatial coherence between the two hemispheres. The second type of variability is considerably weaker than the first. As in the GOSTA time series, the multidecadal variability in the GFDL SST time series has approximately opposite phases between the tropical North and South Atlantic Oceans. Empirical orthogonal function analyses of the tropical Atlantic SST anomalies revealed a north-south bipolar pattern as the dominant pattern of decadal variability. It is suggested that the bipolar pattern can be interpreted as decadal variability of the interhemispheric gradient of SST anomalies. The decadal and multidecadal timescale variability of the tropical Atlantic SST, both in the actual and in the GFDL model, stands out significantly above the background 'red noise' and is coherent within each of the time series, suggesting that specific sets of processes may be responsible for the choice of the decadal and multidecadal timescales. Finally, it must be emphasized that the GFDL coupled ocean-atmosphere model generates the decadal and multidecadal timescale variability without any externally applied force, solar or lunar, at those timescales.
Jonsson, J.E.; Afton, A.D.
2009-01-01
Body size affects foraging and forage intake rates directly via energetic processes and indirectly through interactions with social status and social behaviour. Ambient temperature has a relatively greater effect on the energetics of smaller species, which also generally are more vulnerable to predator attacks than are larger species. We examined variability in an index of intake rates and an index of alertness in Lesser Snow Geese Chen caerulescens caerulescens and Ross's Geese Chen rossii wintering in southwest Louisiana. Specifically we examined variation in these response variables that could be attributed to species, age, family size and ambient temperature. We hypothesized that the smaller Ross's Geese would spend relatively more time feeding, exhibit relatively higher peck rates, spend more time alert or raise their heads up from feeding more frequently, and would respond to declining temperatures by increasing their proportion of time spent feeding. As predicted, we found that Ross's Geese spent more time feeding than did Snow Geese and had slightly higher peck rates than Snow Geese in one of two winters. Ross's Geese spent more time alert than did Snow Geese in one winter, but alert rates differed by family size, independent of species, in contrast to our prediction. In one winter, time spent foraging and walking was inversely related to average daily temperature, but both varied independently of species. Effects of age and family size on time budgets were generally independent of species and in accordance with previous studies. We conclude that body size is a key variable influencing time spent feeding in Ross's Geese, which may require a high time spent feeding at the expense of other activities. ?? 2008 The Authors.
NASA Astrophysics Data System (ADS)
Palus, Milan; Jajcay, Nikola; Hlinka, Jaroslav; Kravtsov, Sergey; Tsonis, Anastasios
2016-04-01
Complexity of the climate system stems not only from the fact that it is variable over a huge range of spatial and temporal scales, but also from the nonlinear character of the climate system that leads to interactions of dynamics across scales. The dynamical processes on large time scales influence variability on shorter time scales. This nonlinear phenomenon of cross-scale causal interactions can be observed due to the recently introduced methodology [1] which starts with a wavelet decomposition of a multi-scale signal into quasi-oscillatory modes of a limited bandwidth, described using their instantaneous phases and amplitudes. Then their statistical associations are tested in order to search for interactions across time scales. An information-theoretic formulation of the generalized, nonlinear Granger causality [2] uncovers causal influence and information transfer from large-scale modes of climate variability with characteristic time scales from years to almost a decade to regional temperature variability on short time scales. In analyses of air temperature records from various European locations, a quasioscillatory phenomenon with the period around 7-8 years has been identified as the factor influencing variability of surface air temperature (SAT) on shorter time scales. Its influence on the amplitude of the SAT annual cycle was estimated in the range 0.7-1.4 °C and the effect on the overall variability of the SAT anomalies (SATA) leads to the changes 1.5-1.7 °C in the annual SATA means. The strongest effect of the 7-8 year cycle was observed in the winter SATA means where it reaches 4-5 °C in central European station and reanalysis data [3]. This study is supported by the Ministry of Education, Youth and Sports of the Czech Republic within the Program KONTAKT II, Project No. LH14001. [1] M. Palus, Phys. Rev. Lett. 112 078702 (2014) [2] M. Palus, M. Vejmelka, Phys. Rev. E 75, 056211 (2007) [3] N. Jajcay, J. Hlinka, S. Kravtsov, A. A. Tsonis, M. Palus, Time-scales of the European surface air temperature variability: The role of the 7-8 year cycle. Geophys. Res. Lett., in press, DOI: 10.1002/2015GL067325
Hot spot dynamics in carbon nanotube array devices.
Engel, Michael; Steiner, Mathias; Seo, Jung-Woo T; Hersam, Mark C; Avouris, Phaedon
2015-03-11
We report on the dynamics of spatial temperature distributions in aligned semiconducting carbon nanotube array devices with submicrometer channel lengths. By using high-resolution optical microscopy in combination with electrical transport measurements, we observe under steady state bias conditions the emergence of time-variable, local temperature maxima with dimensions below 300 nm, and temperatures above 400 K. On the basis of time domain cross-correlation analysis, we investigate how the intensity fluctuations of the thermal radiation patterns are correlated with the overall device current. The analysis reveals the interdependence of electrical current fluctuations and time-variable hot spot formation that limits the overall device performance and, ultimately, may cause device degradation. The findings have implications for the future development of carbon nanotube-based technologies.
A model for evaluating stream temperature response to climate change scenarios in Wisconsin
Westenbroek, Stephen M.; Stewart, Jana S.; Buchwald, Cheryl A.; Mitro, Matthew G.; Lyons, John D.; Greb, Steven
2010-01-01
Global climate change is expected to alter temperature and flow regimes for streams in Wisconsin over the coming decades. Stream temperature will be influenced not only by the predicted increases in average air temperature, but also by changes in baseflow due to changes in precipitation patterns and amounts. In order to evaluate future stream temperature and flow regimes in Wisconsin, we have integrated two existing models in order to generate a water temperature time series at a regional scale for thousands of stream reaches where site-specific temperature observations do not exist. The approach uses the US Geological Survey (USGS) Soil-Water-Balance (SWB) model, along with a recalibrated version of an existing artificial neural network (ANN) stream temperature model. The ANN model simulates stream temperatures on the basis of landscape variables such as land use and soil type, and also includes climate variables such as air temperature and precipitation amounts. The existing ANN model includes a landscape variable called DARCY designed to reflect the potential for groundwater recharge in the contributing area for a stream segment. SWB tracks soil-moisture and potential recharge at a daily time step, providing a way to link changing climate patterns and precipitation amounts over time to baseflow volumes, and presumably to stream temperatures. The recalibrated ANN incorporates SWB-derived estimates of potential recharge to supplement the static estimates of groundwater flow potential derived from a topographically based model (DARCY). SWB and the recalibrated ANN will be supplied with climate drivers from a suite of general circulation models and emissions scenarios, enabling resource managers to evaluate possible changes in stream temperature regimes for Wisconsin.
Relationship between the Arctic oscillation and surface air temperature in multi-decadal time-scale
NASA Astrophysics Data System (ADS)
Tanaka, Hiroshi L.; Tamura, Mina
2016-09-01
In this study, a simple energy balance model (EBM) was integrated in time, considering a hypothetical long-term variability in ice-albedo feedback mimicking the observed multi-decadal temperature variability. A natural variability was superimposed on a linear warming trend due to the increasing radiative forcing of CO2. The result demonstrates that the superposition of the natural variability and the background linear trend can offset with each other to show the warming hiatus for some period. It is also stressed that the rapid warming during 1970-2000 can be explained by the superposition of the natural variability and the background linear trend at least within the simple model. The key process of the fluctuating planetary albedo in multi-decadal time scale is investigated using the JRA-55 reanalysis data. It is found that the planetary albedo increased for 1958-1970, decreased for 1970-2000, and increased for 2000-2012, as expected by the simple EBM experiments. The multi-decadal variability in the planetary albedo is compared with the time series of the AO mode and Barents Sea mode of surface air temperature. It is shown that the recent AO negative pattern showing warm Arctic and cold mid-latitudes is in good agreement with planetary albedo change indicating negative anomaly in high latitudes and positive anomaly in mid-latitudes. Moreover, the Barents Sea mode with the warm Barents Sea and cold mid-latitudes shows long-term variability similar to planetary albedo change. Although further studies are needed, the natural variabilities of both the AO mode and Barents Sea mode indicate some possible link to the planetary albedo as suggested by the simple EBM to cause the warming hiatus in recent years.
NASA Astrophysics Data System (ADS)
Zonneveld, Karin; Clotten, Caroline; Chen, Liang
2015-04-01
Sediments of a tephra-dated marine sediment core located at the distal part of the Po-river discharge plume (southern Italy) have been studied with a three annual resolution. Based on the variability in the dinoflagellate cyst content detailed reconstructions have been established of variability in precipitation related river discharge rates and local air temperature. Furthermore about the variability in distort water quality has been reconstructed. We show that both precipitation and temperature signals vary in tune with cyclic changes in solar insolation. On top of these cyclic changes, short term extremes in temperature and precipitation can be observed that can be interpreted to reflect periods of local weather extremes. Comparison of our reconstructions with historical information suggest that times of high temperatures and maximal precipitation corresponds to the period of maximal expansion of the Roman Empire. We have strong indications that at this time discharge waters might have contained higher nutrient concentrations compared to previous and later time intervals suggesting anthropogenic influence of the water quality. First pilot-results suggest that the decrease in temperature reconstructed just after the "Roman Optimum" corresponds to an increase in numbers of armored conflicts between the Roman and German cultures. Furthermore we observe a resemblance in timing of short-term intervals with cold weather spells during the early so called "Dark-Age-Period" to correspond to epidemic/pandemic events in Europe.
Temperature, routine activities, and domestic violence: a reanalysis.
Rotton, J; Cohn, E G
2001-04-01
It was hypothesized that base rate differences in the number of complaints made during daylight and nighttime hours were responsible for a previously reported, nonlinear relationship between temperature and domestic violence. This hypothesis was tested by subjecting calls for service in 1987 and 1988 in Minneapolis, to moderator-variable regression analyses with controls for time of day, day of the week, season, and their interactions as well as linear trend, major holidays, public school closings, the first day of the month, and other weather variables. Temporal variables explained 75% of the variance in calls for service. As hypothesized, the base rate artifact was responsible for an apparent downturn in violence at high temperatures: Fewer complaints were received during afternoon hours, because they happen to be the warmest time of the day. The results were interpreted in terms of routine activity theory.
Liu, Huiyu; Zhang, Mingyang; Lin, Zhenshan
2017-10-05
Climate changes are considered to significantly impact net primary productivity (NPP). However, there are few studies on how climate changes at multiple time scales impact NPP. With MODIS NPP product and station-based observations of sunshine duration, annual average temperature and annual precipitation, impacts of climate changes at different time scales on annual NPP, have been studied with EEMD (ensemble empirical mode decomposition) method in the Karst area of northwest Guangxi, China, during 2000-2013. Moreover, with partial least squares regression (PLSR) model, the relative importance of climatic variables for annual NPP has been explored. The results show that (1) only at quasi 3-year time scale do sunshine duration and temperature have significantly positive relations with NPP. (2) Annual precipitation has no significant relation to NPP by direct comparison, but significantly positive relation at 5-year time scale, which is because 5-year time scale is not the dominant scale of precipitation; (3) the changes of NPP may be dominated by inter-annual variabilities. (4) Multiple time scales analysis will greatly improve the performance of PLSR model for estimating NPP. The variable importance in projection (VIP) scores of sunshine duration and temperature at quasi 3-year time scale, and precipitation at quasi 5-year time scale are greater than 0.8, indicating important for NPP during 2000-2013. However, sunshine duration and temperature at quasi 3-year time scale are much more important. Our results underscore the importance of multiple time scales analysis for revealing the relations of NPP to changing climate.
Ultrafast demagnetization at high temperatures
NASA Astrophysics Data System (ADS)
Hoveyda, F.; Hohenstein, E.; Judge, R.; Smadici, S.
2018-05-01
Time-resolved pump-probe measurements were made at variable heat accumulation in Co/Pd superlattices. Heat accumulation increases the baseline temperature and decreases the equilibrium magnetization. Transient ultrafast demagnetization first develops with higher fluence in parallel with strong equilibrium thermal spin fluctuations. The ultrafast demagnetization is then gradually removed as the equilibrium temperature approaches the Curie temperature. The transient magnetization time-dependence is well fit with the spin-flip scattering model.
NASA Astrophysics Data System (ADS)
Soon, Willie W.-H.
2005-08-01
This letter offers new evidence motivating a more serious consideration of the potential Arctic temperature responses as a consequence of the decadal, multidecadal and longer-term persistent forcing by the ever-changing solar irradiance both in terms of total solar irradiance (TSI, i.e., integrated over all wavelengths) and the related UV irradiance. The support for such a solar modulator can be minimally derived from the large (>75%) explained variance for the decadally-smoothed Arctic surface air temperatures (SATs) by TSI and from the time-frequency structures of the TSI and Arctic SAT variability as examined by wavelet analyses. The reconstructed Arctic SAT time series based on the inverse wavelet transform, which includes decadal (5-15 years) and multidecadal (40-80 years) variations and a longer-term trend, contains nonstationary but persistent features that are highly correlated with the Sun's intrinsic magnetic variability especially on multidecadal time scales.
NASA Astrophysics Data System (ADS)
Hadiyanto, Suttrisnorhadi, Sutanto, Heri; Suzery, Meiny; Soetrisnanto, Danny; Azizah, Nur
2015-12-01
Microalgae Spirulina sp has been identified as source of protein and other high added value compounds. One of the compounds is phycocyanin as also known for antioxidant use. The extraction of this compound by using conventional method (soxhlet extraction) resulted low yield and longer processing time. This research was aimed to extract phycocyanin by using an extraction assisted by ultrasound irradiation. The extraction was performed by using variable of ultrasound frequency and extraction temperature and ethanol was used as a solvent. The result showed that yield of phycocyanin extracted by conventional method was 11.13% while the ultrasound irradiation could increase the yield up to 15.61% at constant frequency of 42 kHz, while the optimum temperature was obtained at 45°C. The analysis of variable interactions showed that both temperature and time has an interaction and temperature was the highest variable in increasing the yield. The conclusion of this research was the ultrasound could improve significantly the efficiency of extraction as well as activity of phycocyanin extracted from microalgae.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadiyanto,, E-mail: hadiyanto@live.undip.ac.id; Suttrisnorhadi,; Soetrisnanto, Danny
Microalgae Spirulina sp has been identified as source of protein and other high added value compounds. One of the compounds is phycocyanin as also known for antioxidant use. The extraction of this compound by using conventional method (soxhlet extraction) resulted low yield and longer processing time. This research was aimed to extract phycocyanin by using an extraction assisted by ultrasound irradiation. The extraction was performed by using variable of ultrasound frequency and extraction temperature and ethanol was used as a solvent. The result showed that yield of phycocyanin extracted by conventional method was 11.13% while the ultrasound irradiation could increasemore » the yield up to 15.61% at constant frequency of 42 kHz, while the optimum temperature was obtained at 45°C. The analysis of variable interactions showed that both temperature and time has an interaction and temperature was the highest variable in increasing the yield. The conclusion of this research was the ultrasound could improve significantly the efficiency of extraction as well as activity of phycocyanin extracted from microalgae.« less
NASA Technical Reports Server (NTRS)
Orton, Glenn S.; Friedson, A. James; Baines, Kevin H.; Martin, Terry Z.; West, Robert A.; Caldwell, John; Hammel, Heidi B.; Bergstralh, Jay T.; Malcolm, Michael E.
1991-01-01
The spatial organization and time dependence of Jupiter's stratospheric temperatures have been measured by observing thermal emission from the 7.8-micrometer CH4 band. These temperatures, observed through the greater part of a Jovian year, exhibit the influence of seasonal radiative forcing. Distinct bands of high temperature are located at the poles and midlatitudes, while the equator alternates between warm and cold with a period of approximately 4 years. Substantial longitudinal variability is often observed within the warm midlatitude bands, and occasionally elsewhere on the planet. This variability includes small, localized structures, as well as large-scale waves with wavelengths longer than about 30,000 kilometers. The amplitudes of the waves vary on a time scale of about 1 month; structures on a smaller scale may have lifetimes of only days. Waves observed in 1985, 1987, and 1988 propagated with group velocities less than + or - 30 meters/sec.
NASA Astrophysics Data System (ADS)
Wilhelmsen, Hallgeir; Ladstädter, Florian; Scherllin-Pirscher, Barbara; Steiner, Andrea K.
2018-03-01
We provide atmospheric temperature variability indices for the tropical troposphere and stratosphere based on global navigation satellite system (GNSS) radio occultation (RO) temperature measurements. By exploiting the high vertical resolution and the uniform distribution of the GNSS RO temperature soundings we introduce two approaches, both based on an empirical orthogonal function (EOF) analysis. The first method utilizes the whole vertical and horizontal RO temperature field from 30° S to 30° N and from 2 to 35 km altitude. The resulting indices, the leading principal components, resemble the well-known patterns of the Quasi-Biennial Oscillation (QBO) and the El Niño-Southern Oscillation (ENSO) in the tropics. They provide some information on the vertical structure; however, they are not vertically resolved. The second method applies the EOF analysis on each altitude level separately and the resulting indices contain information on the horizontal variability at each densely available altitude level. They capture more variability than the indices from the first method and present a mixture of all variability modes contributing at the respective altitude level, including the QBO and ENSO. Compared to commonly used variability indices from QBO winds or ENSO sea surface temperature, these new indices cover the vertical details of the atmospheric variability. Using them as proxies for temperature variability is also of advantage because there is no further need to account for response time lags. Atmospheric variability indices as novel products from RO are expected to be of great benefit for studies on atmospheric dynamics and variability, for climate trend analysis, as well as for climate model evaluation.
NASA Astrophysics Data System (ADS)
Visser, H.; Molenaar, J.
1995-05-01
The detection of trends in climatological data has become central to the discussion on climate change due to the enhanced greenhouse effect. To prove detection, a method is needed (i) to make inferences on significant rises or declines in trends, (ii) to take into account natural variability in climate series, and (iii) to compare output from GCMs with the trends in observed climate data. To meet these requirements, flexible mathematical tools are needed. A structural time series model is proposed with which a stochastic trend, a deterministic trend, and regression coefficients can be estimated simultaneously. The stochastic trend component is described using the class of ARIMA models. The regression component is assumed to be linear. However, the regression coefficients corresponding with the explanatory variables may be time dependent to validate this assumption. The mathematical technique used to estimate this trend-regression model is the Kaiman filter. The main features of the filter are discussed.Examples of trend estimation are given using annual mean temperatures at a single station in the Netherlands (1706-1990) and annual mean temperatures at Northern Hemisphere land stations (1851-1990). The inclusion of explanatory variables is shown by regressing the latter temperature series on four variables: Southern Oscillation index (SOI), volcanic dust index (VDI), sunspot numbers (SSN), and a simulated temperature signal, induced by increasing greenhouse gases (GHG). In all analyses, the influence of SSN on global temperatures is found to be negligible. The correlations between temperatures and SOI and VDI appear to be negative. For SOI, this correlation is significant, but for VDI it is not, probably because of a lack of volcanic eruptions during the sample period. The relation between temperatures and GHG is positive, which is in agreement with the hypothesis of a warming climate because of increasing levels of greenhouse gases. The prediction performance of the model is rather poor, and possible explanations are discussed.
Solar variability: Implications for global change
NASA Technical Reports Server (NTRS)
Lean, Judith; Rind, David
1994-01-01
Solar variability is examined in search of implications for global change. The topics covered include the following: solar variation modification of global surface temperature; the significance of solar variability with respect to future climate change; and methods of reducing the uncertainty of the potential amplitude of solar variability on longer time scales.
NASA Astrophysics Data System (ADS)
Fitriady, Muhammad Arifuddin; Sulaswatty, Anny; Agustian, Egi; Salahuddin, Aditama, Deska Prayoga Fauzi
2017-11-01
An experiment to observe the effect of temperature and time process in ginger rhizome-Supercritical Fluid Extraction (SFE) using CO2 as the solvent has been conducted. The ginger rhizome (Zingiber Officinale Var. Amarum) was washed, drained, sliced, sun-dried, and then stored in a sealed bag prior to usage. The temperature and time process variables are each 35, 40, 45°C and 2, 4, 6 hours respectively with the pressure variable are 3500, 4000, and 4500 psi. It is found that the highest yield (2.9%) was achieved using temperature of 40°C and pressure of 4500 psiwith the process time of 4 hours. However, using the curve-fitting method, it is suggested to use 42°C as the temperature and 5 hours, 7 minutes, and 30 seconds (5.125 Hours) as the time process to obtain the highest yield. The temperature changes will affect both solvent and vapor pressure of diluted compounds of the ginger which will influence the global yield and the composition of the extract. The three major components of the extract are curcumene, zingiberene, and β - sesquipellandrene,
Inter-annual Variability of Temperature and Extreme Heat Events during the Nairobi Warm Season
NASA Astrophysics Data System (ADS)
Scott, A.; Misiani, H. O.; Zaitchik, B. F.; Ouma, G. O.; Anyah, R. O.; Jordan, A.
2016-12-01
Extreme heat events significantly stress all organisms in the ecosystem, and are likely to be amplified in peri-urban and urban areas. Understanding the variability and drivers behind these events is key to generating early warnings, yet in Equatorial East Africa, this information is currently unavailable. This study uses daily maximum and minimum temperature records from weather stations within Nairobi and its surroundings to characterize variability in daily minimum temperatures and the number of extreme heat events. ERA-Interim reanalysis is applied to assess the drivers of these events at event and seasonal time scales. At seasonal time scales, high temperatures in Nairobi are a function of large scale climate variability associated with the Atlantic Multi-decadal Oscillation (AMO) and Global Mean Sea Surface Temperature (GMSST). Extreme heat events, however, are more strongly associated with the El Nino Southern Oscillation (ENSO). For instance, the persistence of AMO and ENSO, in particular, provide a basis for seasonal prediction of extreme heat events/days in Nairobi. It is also apparent that the temporal signal from extreme heat events in tropics differs from classic heat wave definitions developed in the mid-latitudes, which suggests that a new approach for defining these events is necessary for tropical regions.
Mars Thermospheric Temperature Sensitivity to Solar EUV Forcing from the MAVEN EUV Monitor
NASA Astrophysics Data System (ADS)
Thiemann, Ed; Eparvier, Francis; Andersson, Laila; Pilinski, Marcin; Chamberlin, Phillip; Fowler, Christopher; MAVEN Extreme Ultraviolet Monitor Team, MAVEN Langmuir Probe and Waves Team
2017-10-01
Solar extreme ultraviolet (EUV) radiation is the primary heat source for the Mars thermosphere, and the primary source of long-term temperature variability. The Mars obliquity, dust cycle, tides and waves also drive thermospheric temperature variability; and it is important to quantify the role of each in order to understand processes in the upper atmosphere today and, ultimately, the evolution of Mars climate over time. Although EUV radiation is the dominant heating mechanism, accurately measuring the thermospheric temperature sensitivity to EUV forcing has remained elusive, in part, because Mars thermospheric temperature varies dramatically with latitude and local time (LT), ranging from 150K on the nightside to 300K on the dayside. It follows that studies of thermospheric variability must control for location.Instruments onboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) orbiter have begun to characterize thermospheric temperature sensitivity to EUV forcing. Bougher et al. [2017] used measurements from the Imaging Ultraviolet Spectrograph (IUVS) and the Neutral Gas and Ion Mass Spectrometer (NGIMS) to characterize solar activity trends in the thermosphere with some success. However, aside from restricting measurements to solar zenith angles (SZAs) below 75 degrees, they were unable to control for latitude and LT because repeat-track observations from either instrument were limited or unavailable.The MAVEN EUV Monitor (EUVM) has recently demonstrated the capability to measure thermospheric density from 100 to 200 km with solar occultations of its 17-22 nm channel. These new density measurements are ideal for tracking the long-term thermospheric temperature variability because they are inherently constrained to either 06:00 or 18:00 LT, and the orbit has precessed to include a range of ecliptic latitudes, a number of which have been revisited multiple times over 2.5 years. In this study we present, for the first-time, measurements of thermospheric temperature sensitivity to EUV forcing derived from the EUVM measurements. These results include sensitives measured at the poles and near the equator for both terminators; therefore, we will also discuss the role of latitude on EUV temperature sensitivity.
Have the temperature time series a structural change after 1998?
NASA Astrophysics Data System (ADS)
Werner, Rolf; Valev, Dimitare; Danov, Dimitar
2012-07-01
The global and hemisphere temperature GISS and Hadcrut3 time series were analysed for structural changes. We postulate the continuity of the preceding temperature function depending from the time. The slopes are calculated for a sequence of segments limited by time thresholds. We used a standard method, the restricted linear regression with dummy variables. We performed the calculations and tests for different number of thresholds. The thresholds are searched continuously in determined time intervals. The F-statistic is used to obtain the time points of the structural changes.
Lejiang Yu; Shiyuan Zhong; Warren E. Heilman; Xindi Bian
2018-01-01
Many studies have shown the importance of anthropogenic greenhouse gas emissions in contributing to observed upward trends in the occurrences of temperature extremes over the U.S. However, few studies have investigated the contributions of internal variability in the climate system to these observed trends. Here we use daily maximum temperature time series from the...
Cooled variable nozzle radial turbine for rotor craft applications
NASA Technical Reports Server (NTRS)
Rogo, C.
1981-01-01
An advanced, small 2.27 kb/sec (5 lbs/sec), high temperature, variable area radial turbine was studied for a rotor craft application. Variable capacity cycles including single-shaft and free-turbine engine configurations were analyzed to define an optimum engine design configuration. Parametric optimizations were made on cooled and uncooled rotor configurations. A detailed structural and heat transfer analysis was conducted to provide a 4000-hour life HP turbine with material properties of the 1988 time frame. A pivoted vane and a moveable sidewall geometry were analyzed. Cooling and variable geometry penalties were included in the cycle analysis. A variable geometry free-turbine engine configuration with a design 1477K (2200 F) inlet temperature and a compressor pressure ratio of 16:1 was selected. An uncooled HP radial turbine rotor with a moveable sidewall nozzle showed the highest performance potential for a time weighted duty cycle.
NASA Technical Reports Server (NTRS)
Crowley, T. J.; Halberg, F.; Kripke, D. F.; Pegram, G. V.
1971-01-01
Investigation of circadian rhythms in a number of variables related to sleep, EEG, temperature, and motor activity in rhesus monkeys on an LD 12:12 schedule. Circadian rhythms were found to appear in each of 15 variables investigated. Statistical procedures assessed the variables for evidence of common regulation in these aspects of their circadian rhythms: acrophase (timing), amplitude (extent of change), and level (24-hr mean value). Patterns appearing in the data suggested that the circadian rhythms of certain variables are regulated in common. The circadian modulation of activity in the beta and sigma frequency bands of the EEG was correlated with statistical significance in acrophase, level, and amplitude. The delta frequency band appeared to be under circadian rhythm regulation distinct from that of the other bands. The circadian rhythm of REM stage sleep was like that of beta activity in level and amplitude. The data indicate that REM stage may share some common regulation of circadian timing with both stage 3-4 sleep and with temperature. Generally, however, the circadian rhythm of temperature appeared to bear little relation to the circadian rhythms of motor activity, EEG, or sleep.
Hu, Wenbiao; Tong, Shilu; Mengersen, Kerrie; Connell, Des
2007-09-01
Few studies have examined the relationship between weather variables and cryptosporidiosis in Australia. This paper examines the potential impact of weather variability on the transmission of cryptosporidiosis and explores the possibility of developing an empirical forecast system. Data on weather variables, notified cryptosporidiosis cases, and population size in Brisbane were supplied by the Australian Bureau of Meteorology, Queensland Department of Health, and Australian Bureau of Statistics for the period of January 1, 1996-December 31, 2004, respectively. Time series Poisson regression and seasonal auto-regression integrated moving average (SARIMA) models were performed to examine the potential impact of weather variability on the transmission of cryptosporidiosis. Both the time series Poisson regression and SARIMA models show that seasonal and monthly maximum temperature at a prior moving average of 1 and 3 months were significantly associated with cryptosporidiosis disease. It suggests that there may be 50 more cases a year for an increase of 1 degrees C maximum temperature on average in Brisbane. Model assessments indicated that the SARIMA model had better predictive ability than the Poisson regression model (SARIMA: root mean square error (RMSE): 0.40, Akaike information criterion (AIC): -12.53; Poisson regression: RMSE: 0.54, AIC: -2.84). Furthermore, the analysis of residuals shows that the time series Poisson regression appeared to violate a modeling assumption, in that residual autocorrelation persisted. The results of this study suggest that weather variability (particularly maximum temperature) may have played a significant role in the transmission of cryptosporidiosis. A SARIMA model may be a better predictive model than a Poisson regression model in the assessment of the relationship between weather variability and the incidence of cryptosporidiosis.
Whole season compared to growth-stage resolved temperature trends: implications for US maize yield
NASA Astrophysics Data System (ADS)
Butler, E. E.; Mueller, N. D.; Huybers, P. J.
2014-12-01
The effect of temperature on maize yield has generally been considered using a single value for the entire growing season. We compare the effect of temperature trends on yield between two distinct models: a single temperature sensitivity for the whole season and a variable sensitivity across four distinct agronomic development stages. The more resolved variable-sensitivity model indicates roughly a factor of two greater influence of temperature on yield than that implied by the single-sensitivity model. The largest discrepancies occur in silking, which is demonstrated to be the most sensitive stage in the variable-sensitivity model. For instance, whereas median yields are observed to be only 53% of typical values during the hottest 1% of silking-stage temperatures, the single-sensitivity model over predicts median yields of 68% whereas the variable-sensitivity model more correctly predicts median yields of 61%. That the variable sensitivity model is also not capable of capturing the full extent of yield losses suggests that further refinement to represent the non-linear response would be useful. Results from the variable sensitivity model also indicate that management decisions regarding planting times, which have generally shifted toward earlier dates, have led to greater yield benefit than that implied by the single-sensitivity model. Together, the variation of both temperature trends and yield variability within growing stages calls for closer attention to how changes in management interact with changes in climate to ultimately affect yields.
Effect of climatic variability on malaria trends in Baringo County, Kenya.
Kipruto, Edwin K; Ochieng, Alfred O; Anyona, Douglas N; Mbalanya, Macrae; Mutua, Edna N; Onguru, Daniel; Nyamongo, Isaac K; Estambale, Benson B A
2017-05-25
Malaria transmission in arid and semi-arid regions of Kenya such as Baringo County, is seasonal and often influenced by climatic factors. Unravelling the relationship between climate variables and malaria transmission dynamics is therefore instrumental in developing effective malaria control strategies. The main aim of this study was to describe the effects of variability of rainfall, maximum temperature and vegetation indices on seasonal trends of malaria in selected health facilities within Baringo County, Kenya. Climate variables sourced from the International Research Institute (IRI)/Lamont-Doherty Earth Observatory (LDEO) climate database and malaria cases reported in 10 health facilities spread across four ecological zones (riverine, lowland, mid-altitude and highland) between 2004 and 2014 were subjected to a time series analysis. A negative binomial regression model with lagged climate variables was used to model long-term monthly malaria cases. The seasonal Mann-Kendall trend test was then used to detect overall monotonic trends in malaria cases. Malaria cases increased significantly in the highland and midland zones over the study period. Changes in malaria prevalence corresponded to variations in rainfall and maximum temperature. Rainfall at a time lag of 2 months resulted in an increase in malaria transmission across the four zones while an increase in temperature at time lags of 0 and 1 month resulted in an increase in malaria cases in the riverine and highland zones, respectively. Given the existence of a time lag between climatic variables more so rainfall and peak malaria transmission, appropriate control measures can be initiated at the onset of short and after long rains seasons.
Effects of experiment start time and duration on measurement of standard physiological variables.
Page, Amanda J; Cooper, Christine E; Withers, Philip C
2011-07-01
Duration and start time of respirometry experiments have significant effects on the measurement of basal values for several commonly measured physiological variables (metabolic rate, evaporative water loss and body temperature). A longer measurement duration reduced values for all variables for all start times, and this was an effect of reduced animal activity rather than random sampling. However, there was also an effect of circadian rhythm on the timing of minimal physiological values. Experiment start time had a significant effect on time taken to reach minimal values for all variables, ranging from 0400 hours ± 38 min (body temperature, start time 2300 hours) to 0854 hours ± 52 min (evaporative water loss, start time 1700 hours). It also influenced the time of day that minimal values were obtained, ranging from 2224 hours ± 40 min (carbon dioxide production, start time 1500 hours) to 0600 hours ± 57 min (oxygen consumption, start time 2300 hours), and the minimum values measured. Consequently, both the measurement duration and the experiment start time should be considered in experimental design to account for both a handling and a circadian effect on the animal's physiology. We suggest that experiments to measure standard physiological variables for small diurnal birds should commence between 1700 and 2100 hours, and measurement duration should be at least 9 h.
NASA Astrophysics Data System (ADS)
Kurade, S. S.; Ramteke, A. A.
2018-05-01
In this work, we have investigated the rate of reaction by using ionic strength at different temperatures. The main goal of this experiment is to determine the relation between ionic strength with reaction rate, reaction time and rate constant with temperature. It is observed that the addition of positive salt indicate the increasing ionic strength with increase in run time at various temperatures. Thus the temperature affects the speed of reaction and mechanism by which chemical reaction occurs and time variable plays vital role in the progress of reaction at different temperatures.
Trends and variability in streamflow and snowmelt runoff timing in the southern Tianshan Mountains
NASA Astrophysics Data System (ADS)
Shen, Yan-Jun; Shen, Yanjun; Fink, Manfred; Kralisch, Sven; Chen, Yaning; Brenning, Alexander
2018-02-01
Streamflow and snowmelt runoff timing of mountain rivers are susceptible to climate change. Trends and variability in streamflow and snowmelt runoff timing in four mountain basins in the southern Tianshan were analyzed in this study. Streamflow trends were detected by Mann-Kendall tests and changes in snowmelt runoff timing were analyzed based on the winter/spring snowmelt runoff center time (WSCT). Pearson's correlation coefficient was further calculated to analyze the relationships between climate variables, streamflow and WSCT. Annual streamflow increased significantly in past decades in the southern Tianshan, especially in spring and winter months. However, the relations between streamflow and temperature/precipitation depend on the different streamflow generation processes. Annual precipitation plays a vital role in controlling recharge in the Toxkon basin, while the Kaidu and Huangshuigou basins are governed by both precipitation and temperature. Seasonally, temperature has a strong effect on streamflow in autumn and winter, while summer streamflow appears more sensitive to changes in precipitation. However, temperature is the dominant factor for streamflow in the glacierized Kunmalik basin at annual and seasonal scales. An uptrend in streamflow begins in the 1990s at both annual and seasonal scales, which is generally consistent with temperature and precipitation fluctuations. Average WSCT dates in the Kaidu and Huangshuigou basins are earlier than in the Toxkon and Kunmalik basins, and shifted towards earlier dates since the mid-1980s in all the basins. It is plausible that WSCT dates are more sensitive to warmer temperature in spring period compared to precipitation, except for the Huangshuigou basin. Taken together, these findings are useful for applications in flood risk regulation, future hydropower projects and integrated water resources management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elrod, D.C.; Turner, W.D.
TRUMP solves a general nonlinear parabolic partial differential equation describing flow in various kinds of potential fields, such as fields of temperature, pressure, or electricity and magnetism; simultaneously, it will solve two additional equations representing, in thermal problems, heat production by decomposition of two reactants having rate constants with a general Arrhenius temperature dependence. Steady-state and transient flow in one, two, or three dimensions are considered in geometrical configurations having simple or complex shapes and structures. Problem parameters may vary with spatial position, time, or primary dependent variables, temperature, pressure, or field strength. Initial conditions may vary with spatial position,more » and among the criteria that may be specified for ending a problem are upper and lower limits on the size of the primary dependent variable, upper limits on the problem time or on the number of time-steps or on the computer time, and attainment of steady state.« less
Merrill, Scott C; Peairs, Frank B
2017-02-01
Models describing the effects of climate change on arthropod pest ecology are needed to help mitigate and adapt to forthcoming changes. Challenges arise because climate data are at resolutions that do not readily synchronize with arthropod biology. Here we explain how multiple sources of climate and weather data can be synthesized to quantify the effects of climate change on pest phenology. Predictions of phenological events differ substantially between models that incorporate scale-appropriate temperature variability and models that do not. As an illustrative example, we predicted adult emergence of a pest of sunflower, the sunflower stem weevil Cylindrocopturus adspersus (LeConte). Predictions of the timing of phenological events differed by an average of 11 days between models with different temperature variability inputs. Moreover, as temperature variability increases, developmental rates accelerate. Our work details a phenological modeling approach intended to help develop tools to plan for and mitigate the effects of climate change. Results show that selection of scale-appropriate temperature data is of more importance than selecting a climate change emission scenario. Predictions derived without appropriate temperature variability inputs will likely result in substantial phenological event miscalculations. Additionally, results suggest that increased temperature instability will lead to accelerated pest development. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Cumming, William Frank Preston
Fine scale studies are rarely performed to address landscape level responses to microclimatic variability. Is it the timing, distribution, and magnitude of soil temperature and moisture that affects what species emerge each season and, in turn, their resilience to fluctuations in microclimate. For this dissertation research, I evaluated the response of vegetation change to microclimatic variability within two communities over a three year period (2009-2012) utilizing 25 meter transects at two locations along the Front Range of Colorado near Boulder, CO and Golden, CO respectively. To assess microclimatic variability, spatial and temporal autocorrelation analyses were performed with soil temperature and moisture. Species cover was assessed along several line transects and correlated with microclimatic variability. Spatial and temporal autocorrelograms are useful tools in identifying the degree of dependency of soil temperature and moisture on the distance and time between pairs of measurements. With this analysis I found that a meter spatial resolution and two-hour measurements are sufficient to capture the fine scale variability in soil properties throughout the year. By comparing this to in situ measurements of soil properties and species percent cover I found that there are several plant functional types and/or species origin in particular that are more sensitive to variations in temperature and moisture than others. When all seasons, locations, correlations, and regional climate are looked at, it is the month of March that stands out in terms of significance. Additionally, of all of the vegetation types represented at these two sites C4, C3, native, non-native, and forb species seem to be the most sensitive to fluctuations in soil temperature, moisture, and regional climate in the spring season. The steady decline in percent species cover the study period and subsequent decrease in percent species cover and size at both locations may indicate that certain are unable to respond to continually higher temperatures and lower moisture availability that is inevitable with future climatic variability.
NASA Astrophysics Data System (ADS)
Qin, Y.; Rana, A.; Moradkhani, H.
2014-12-01
The multi downscaled-scenario products allow us to better assess the uncertainty of the changes/variations of precipitation and temperature in the current and future periods. Joint Probability distribution functions (PDFs), of both the climatic variables, might help better understand the interdependence of the two, and thus in-turn help in accessing the future with confidence. Using the joint distribution of temperature and precipitation is also of significant importance in hydrological applications and climate change studies. In the present study, we have used multi-modelled statistically downscaled-scenario ensemble of precipitation and temperature variables using 2 different statistically downscaled climate dataset. The datasets used are, 10 Global Climate Models (GCMs) downscaled products from CMIP5 daily dataset, namely, those from the Bias Correction and Spatial Downscaling (BCSD) technique generated at Portland State University and from the Multivariate Adaptive Constructed Analogs (MACA) technique, generated at University of Idaho, leading to 2 ensemble time series from 20 GCM products. Thereafter the ensemble PDFs of both precipitation and temperature is evaluated for summer, winter, and yearly periods for all the 10 sub-basins across Columbia River Basin (CRB). Eventually, Copula is applied to establish the joint distribution of two variables enabling users to model the joint behavior of the variables with any level of correlation and dependency. Moreover, the probabilistic distribution helps remove the limitations on marginal distributions of variables in question. The joint distribution is then used to estimate the change trends of the joint precipitation and temperature in the current and future, along with estimation of the probabilities of the given change. Results have indicated towards varied change trends of the joint distribution of, summer, winter, and yearly time scale, respectively in all 10 sub-basins. Probabilities of changes, as estimated by the joint precipitation and temperature, will provide useful information/insights for hydrological and climate change predictions.
Temperature Variability Associated with the Middle Atmosphere Electrodynamics (MAE-1) Campaign
NASA Technical Reports Server (NTRS)
Schmidlin, F. J.
1999-01-01
Meteorological rockets launched during the Middle Atmosphere Electrodynamics (MAE-1) Campaign in October 1980 from Andoya Rocket Range (ARR), Norway, exhibited large and unexpected temperature variability. Temperatures were found to vary as much as 20 C within a few hours and demonstrated a similar type of variability from one day to the next. Following examination of the reduced rocketsonde profiles the question was raised whether the observed variability was due to natural atmospheric variability or instrument malfunction. Small-scale variability, as observed, may result from one or multiple sources, e.g., intense storms upstream from the observing site, orography such as mountain waves off of the Greenland Plateau, convective activity, gravity waves, etc. Arranging the observations spaced over time showed that the perturbations moved downward. Prior to MAE-1 very few small rocketsonde measurements had been launched from ARR, thus the quality of the initial measurements in early October caused concern when the large variability was noted. We discuss the errors of the rocketsonde measurements, graphically review the nature of the variability observed, compare the data with other measurements, and postulate a possible cause for the variability.
NASA Astrophysics Data System (ADS)
Yoo, Cheolhee; Im, Jungho; Park, Seonyoung; Quackenbush, Lindi J.
2018-03-01
Urban air temperature is considered a significant variable for a variety of urban issues, and analyzing the spatial patterns of air temperature is important for urban planning and management. However, insufficient weather stations limit accurate spatial representation of temperature within a heterogeneous city. This study used a random forest machine learning approach to estimate daily maximum and minimum air temperatures (Tmax and Tmin) for two megacities with different climate characteristics: Los Angeles, USA, and Seoul, South Korea. This study used eight time-series land surface temperature (LST) data from Moderate Resolution Imaging Spectroradiometer (MODIS), with seven auxiliary variables: elevation, solar radiation, normalized difference vegetation index, latitude, longitude, aspect, and the percentage of impervious area. We found different relationships between the eight time-series LSTs with Tmax/Tmin for the two cities, and designed eight schemes with different input LST variables. The schemes were evaluated using the coefficient of determination (R2) and Root Mean Square Error (RMSE) from 10-fold cross-validation. The best schemes produced R2 of 0.850 and 0.777 and RMSE of 1.7 °C and 1.2 °C for Tmax and Tmin in Los Angeles, and R2 of 0.728 and 0.767 and RMSE of 1.1 °C and 1.2 °C for Tmax and Tmin in Seoul, respectively. LSTs obtained the day before were crucial for estimating daily urban air temperature. Estimated air temperature patterns showed that Tmax was highly dependent on the geographic factors (e.g., sea breeze, mountains) of the two cities, while Tmin showed marginally distinct temperature differences between built-up and vegetated areas in the two cities.
Characteristic variations of sea surface temperature with multiple time scales in the North Pacific
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanimoto, Youichi; Hanawa, Kimio; Toba, Yoshiaki
1993-06-01
It is unclear whether the recent increases in global temperatures are really due to the increase of greenhouse gases or are a manifestation of natural variability. Temporal evolution and spectral structure of sea surface temperature (SST) anomalies in the North Pacific over the last 37 years are investigated on the three characteristic time scales: shorter than 24 months (HF), 24-60 months (ES), and longer than 60 months (DC). The leading empirical-orthogonal function (EOF) for the DC time scale is characterized by a zonally elongated monopole centered at around 40[degrees]N, 180[degrees]. The leading EOF for the HF time scale is somewhatmore » similar to that for the DC time scale, although there are two centers of action with the same polarity at the mid and western Pacific. The leading EOF for the ES time scale, however, exhibits a different pattern whose center of action at the mid Pacific is located farther southeastward. In the time evolution of the SST anomalies associated with the leading EOF of the DC time scale, several anomaly periods can be identified that last five years or longer. The transition from a persistent period to another with the opposite polarity is generally very brief, except for the one that lasts throughout the late 1960s. The EOF analysis was repeated separately on these persistent anomaly periods and the long transition period. The spatial structure of the leading EOF of the SST variability with the ES time scale is found to be sensitive to the polarity of the decadal anomaly. These results are suggestive of the possible influence of the decadal SST variability upon the spatial structure of the variability with shorter time scales. 31 refs., 8 figs.« less
Joint variability of global runoff and global sea surface temperatures
McCabe, G.J.; Wolock, D.M.
2008-01-01
Global land surface runoff and sea surface temperatures (SST) are analyzed to identify the primary modes of variability of these hydroclimatic data for the period 1905-2002. A monthly water-balance model first is used with global monthly temperature and precipitation data to compute time series of annual gridded runoff for the analysis period. The annual runoff time series data are combined with gridded annual sea surface temperature data, and the combined dataset is subjected to a principal components analysis (PCA) to identify the primary modes of variability. The first three components from the PCA explain 29% of the total variability in the combined runoff/SST dataset. The first component explains 15% of the total variance and primarily represents long-term trends in the data. The long-term trends in SSTs are evident as warming in all of the oceans. The associated long-term trends in runoff suggest increasing flows for parts of North America, South America, Eurasia, and Australia; decreasing runoff is most notable in western Africa. The second principal component explains 9% of the total variance and reflects variability of the El Ni??o-Southern Oscillation (ENSO) and its associated influence on global annual runoff patterns. The third component explains 5% of the total variance and indicates a response of global annual runoff to variability in North Aflantic SSTs. The association between runoff and North Atlantic SSTs may explain an apparent steplike change in runoff that occurred around 1970 for a number of continental regions.
NASA Astrophysics Data System (ADS)
Herring, T.; Cey, E. E.; Pidlisecky, A.
2017-12-01
Time-lapse electrical resistivity tomography (ERT) is used to image changes in subsurface electrical conductivity (EC), e.g. due to a saline contaminant plume. Temperature variation also produces an EC response, which interferes with the signal of interest. Temperature compensation requires the temperature distribution and the relationship between EC and temperature, but this relationship at subzero temperatures is not well defined. The goal of this study is to examine how uncertainty in the subzero EC/temperature relationship manifests in temperature corrected ERT images, especially with respect to relevant plume parameters (location, contaminant mass, etc.). First, a lab experiment was performed to determine the EC of fine-grained glass beads over a range of temperatures (-20° to 20° C) and saturations. The measured EC/temperature relationship was then used to add temperature effects to a hypothetical EC model of a conductive plume. Forward simulations yielded synthetic field data to which temperature corrections were applied. Varying the temperature/EC relationship used in the temperature correction and comparing the temperature corrected ERT results to the synthetic model enabled a quantitative analysis of the error of plume parameters associated with temperature variability. Modeling possible scenarios in this way helps to establish the feasibility of different time-lapse ERT applications by quantifying the uncertainty associated with parameter(s) of interest.
Estimation of the temperature spatial variability in confined spaces based on thermal imaging
NASA Astrophysics Data System (ADS)
Augustyn, Grzegorz; Jurasz, Jakub; Jurczyk, Krzysztof; Korbiel, Tomasz; Mikulik, Jerzy; Pawlik, Marcin; Rumin, Rafał
2017-11-01
In developed countries the salaries of office workers are several times higher than the total cost of maintaining and operating the building. Therefore even a small improvement in human work productivity and performance as a result of enhancing the quality of their work environment may lead to a meaningful economic benefits. The air temperature is the most commonly used indicator in assessing the indoor environment quality. What is more, it is well known that thermal comfort has the biggest impact on employees performance and their ability to work efficiently. In majority of office buildings, indoor temperature is managed by heating, ventilation and air conditioning (HVAC) appliances. However the way how they are currently managed and controlled leads to the nonhomogeneous distribution of temperature in certain space. An approach to determining the spatial variability of temperature in confined spaces was introduced based on thermal imaging temperature measurements. The conducted research and obtained results enabled positive verification of the method and creation of surface plot illustrating the temperature variability.
The Hot-Pressing of Hafnium Carbide (Melting Point, 7030 F)
NASA Technical Reports Server (NTRS)
Sanders, William A.; Grisaffe, Salvatore J.
1960-01-01
An investigation was undertaken to determine the effects of the hot-pressing variables (temperature, pressure, and time) on the density and grain size of hafnium carbide disks. The purpose was to provide information necessary for the production of high-density test shapes for the determination of physical and mechanical properties. Hot-pressing of -325 mesh hafnium carbide powder was accomplished with a hydraulic press and an inductively heated graphite die assembly. The ranges investigated for each variable were as follows: temperature, 3500 to 4870 F; pressure, 1000 to 6030 pounds per square inch; and time, 5 to 60 minutes. Hafnium carbide bodies of approximately 98 percent theoretical density can be produced under the following minimal conditions: 4230 F, 3500 pounds per square inch, and 15 minutes. Further increases in temperature and time resulted only in greater grain size.
Influence of environmental temperature on 40 km cycling time-trial performance.
Peiffer, Jeremiah J; Abbiss, Chris R
2011-06-01
The purpose of this study was to examine the effect of environmental temperature on variability in power output, self-selected pacing strategies, and performance during a prolonged cycling time trial. Nine trained male cyclists randomly completed four 40 km cycling time trials in an environmental chamber at 17°C, 22°C, 27°C, and 32°C (40% RH). During the time trials, heart rate, core body temperature, and power output were recorded. The variability in power output was assessed with the use of exposure variation analysis. Mean 40 km power output was significantly lower during 32°C (309 ± 35 W) compared with 17°C (329 ± 31 W), 22°C (324 ± 34 W), and 27°C (322 ± 32 W). In addition, greater variability in power production was observed at 32°C compared with 17°C, as evidenced by a lower (P = .03) standard deviation of the exposure variation matrix (2.9 ± 0.5 vs 3.5 ± 0.4 units, respectively). Core temperature was greater (P < .05) at 32°C compared with 17°C and 22°C from 30 to 40 km, and the rate of rise in core temperature throughout the 40 km time trial was greater (P < .05) at 32°C (0.06 ± 0.04°C·km-1) compared with 17°C (0.05 ± 0.05°C·km-1). This study showed that time-trial performance is reduced under hot environmental conditions, and is associated with a shift in the composition of power output. These finding provide insight into the control of pacing strategies during exercise in the heat.
Gruber, Andreas; Baumgartner, Daniel; Zimmermann, Jolanda; Oberhuber, Walter
2009-06-01
We determined the temporal dynamic of cambial activity and xylem development of stone pine (Pinus cembra L.) throughout the treeline ecotone. Repeated micro-sampling of the developing tree ring was carried out during the growing seasons 2006 and 2007 at the timberline (1950 m a.s.l.), treeline (2110 m a.s.l.) and within the krummholz belt (2180 m a.s.l.) and the influence of climate variables on intra-annual wood formation was determined.At the beginning of both growing seasons, highest numbers of cambial and enlarging cells were observed at the treeline. Soil temperatures at time of initiation of cambial activity were c. 1.5 °C higher at treeline (open canopy) compared to timberline (closed canopy), suggesting that a threshold root-zone temperature is involved in triggering onset of above ground stem growth.The rate of xylem cell production determined in two weekly intervals during June through August 2006-2007 was significantly correlated with air temperature (temperature sums expressed as degree-days and mean daily maximum temperature) at the timberline only. Lack of significant relationships between tracheid production and temperature variables at the treeline and within the krummholz belt support past dendroclimatological studies that more extreme environmental conditions (e.g., wind exposure, frost desiccation, late frost) increasingly control tree growth above timberline.Results of this study revealed that spatial and temporal (i.e. year-to-year) variability in timing and dynamic of wood formation of Pinus cembra is strongly influenced by local site factors within the treeline ecotone and the dynamics of seasonal temperature variation, respectively.
NASA Astrophysics Data System (ADS)
Levine, P. A.; Xu, M.; Chen, Y.; Randerson, J. T.; Hoffman, F. M.
2017-12-01
Interannual variability of climatic conditions in the Amazon rainforest is associated with El Niño-Southern Oscillation (ENSO) and ocean-atmosphere interactions in the North Atlantic. Sea surface temperature (SST) anomalies in these remote ocean regions drive teleconnections with Amazonian surface air temperature (T), precipitation (P), and net ecosystem production (NEP). While SST-driven NEP anomalies have been primarily linked to T anomalies, it is unclear how much the T anomalies result directly from SST forcing of atmospheric circulation, and how much result indirectly from decreases in precipitation that, in turn, influence surface energy fluxes. Interannual variability of P associated with SST anomalies lead to variability in soil moisture (SM), which would indirectly affect T via partitioning of turbulent heat fluxes between the land surface and the atmosphere. To separate the direct and indirect influence of the SST signal on T and NEP, we performed a mechanism-denial experiment to decouple SST and SM anomalies. We used the Accelerated Climate Modeling for Energy (ACMEv0.3), with version 5 of the Community Atmosphere Model and version 4.5 of the Community Land Model. We forced the model with observed SSTs from 1982-2016. We found that SST and SM variability both contribute to T and NEP anomalies in the Amazon, with relative contributions depending on lag time and location within the Amazon basin. SST anomalies associated with ENSO drive most of the T variability at shorter lag times, while the ENSO-driven SM anomalies contribute more to T variability at longer lag times. SM variability and the resulting influence on T anomalies are much stronger in the eastern Amazon than in the west. Comparing modeled T with observations demonstrate that SST alone is sufficient for simulating the correct timing of T variability, but SM anomalies are necessary for simulating the correct magnitude of the T variability. Modeled NEP indicated that variability in carbon fluxes results from both SST and SM anomalies. As with T, SM anomalies affect NEP at a much longer lag time than SST anomalies. These results highlight the role of land-atmosphere coupling in driving climate variability within the Amazon, and suggest that land atmospheric coupling may amplify and delay carbon cycle responses to ocean-atmosphere teleconnections.
NASA Astrophysics Data System (ADS)
Musabbikhah, Saptoadi, H.; Subarmono, Wibisono, M. A.
2016-03-01
Fossil fuel still dominates the needs of energy in Indonesia for the past few years. The increasing scarcity of oil and gas from non-renewable materials results in an energy crisis. This condition turns to be a serious problem for society which demands immediate solution. One effort which can be taken to overcome this problem is the utilization and processing of biomass as renewable energy by means of carbonization. Thus, it can be used as qualified raw material for production of briquette. In this research, coconut shell is used as carbonized waste. The research aims at improving the quality of coconut shell as the material for making briquettes as cheap and eco-friendly renewable energy. At the end, it is expected to decrease dependence on oil and gas. The research variables are drying temperature and time, carbonization time and temperature. The dependent variable is calorific value of the coconut shell. The method used in this research is Taguchi Method. The result of the research shows thus variables, have a significant contribution on the increase of coconut shell's calorific value. It is proven that the higher thus variables are higher calorific value. Before carbonization, the average calorific value of coconut shell reaches 4,667 call/g, and a significant increase is notable after the carbonization. The optimization is parameter setting of A2B3C3D3, which means that the drying temperature is 105 °C, the drying time is 24 hours, the carbonization temperature is 650 °C and carbonization time is 120 minutes. The average calorific value is approximately 7,744 cal/g. Therefore, the increase of the coconut shell's calorific value after the carbonization is 3,077 cal/g or approximately 60 %. The charcoal of carbonized coconut shell has met the requirement of SNI, thus it can be used as raw material in making briquette which can eventually be used as cheap and environmental friendly fuel.
Climate Exposure of US National Parks in a New Era of Change
Monahan, William B.; Fisichelli, Nicholas A.
2014-01-01
US national parks are challenged by climate and other forms of broad-scale environmental change that operate beyond administrative boundaries and in some instances are occurring at especially rapid rates. Here, we evaluate the climate change exposure of 289 natural resource parks administered by the US National Park Service (NPS), and ask which are presently (past 10 to 30 years) experiencing extreme (<5th percentile or >95th percentile) climates relative to their 1901–2012 historical range of variability (HRV). We consider parks in a landscape context (including surrounding 30 km) and evaluate both mean and inter-annual variation in 25 biologically relevant climate variables related to temperature, precipitation, frost and wet day frequencies, vapor pressure, cloud cover, and seasonality. We also consider sensitivity of findings to the moving time window of analysis (10, 20, and 30 year windows). Results show that parks are overwhelmingly at the extreme warm end of historical temperature distributions and this is true for several variables (e.g., annual mean temperature, minimum temperature of the coldest month, mean temperature of the warmest quarter). Precipitation and other moisture patterns are geographically more heterogeneous across parks and show greater variation among variables. Across climate variables, recent inter-annual variation is generally well within the range of variability observed since 1901. Moving window size has a measureable effect on these estimates, but parks with extreme climates also tend to exhibit low sensitivity to the time window of analysis. We highlight particular parks that illustrate different extremes and may facilitate understanding responses of park resources to ongoing climate change. We conclude with discussion of how results relate to anticipated future changes in climate, as well as how they can inform NPS and neighboring land management and planning in a new era of change. PMID:24988483
Nyamukondiwa, Casper; Chidawanyika, Frank; Machekano, Honest; Mutamiswa, Reyard; Sands, Bryony; Mgidiswa, Neludo; Wall, Richard
2018-01-01
While the impacts of extreme and rising mean temperatures are well documented, increased thermal variability associated with climate change may also threaten ectotherm fitness and survival, but remains poorly explored. Using three wild collected coprophagic species Copris elphenor, Metacatharsius opacus and Scarabaeus zambezianus, we explored the effects of thermal amplitude around the mean on thermal tolerance. Using standardized protocols, we measured traits of high- (critical thermal maxima [CTmax] and heat knockdown time [HKDT]) and -low temperature tolerance (critical thermal minima [CTmin], chill coma recovery time [CCRT] and supercooling points [SCPs]) following variable temperature pulses (δ0, δ3, δ6 and δ9°C) around the mean (27°C). Our results show that increased temperature variability may offset basal and plastic responses to temperature and differs across species and metrics tested. Furthermore, we also show differential effects of body mass, body water content (BWC) and body lipid content (BLC) on traits of thermal tolerance. For example, body mass significantly influenced C. elphenor and S. zambezianus CTmax and S. zambezianus HKDT but not CTmin and CCRT. BWC significantly affected M. opacus and C. elphenor CTmax and in only M. opacus HKDT, CTmin and CCRT. Similarly, BLC only had a significant effect for M opacus CTmin. These results suggest differential and species dependent effects of climate variability of thermal fitness traits. It is therefore likely that the ecological services provided by these species may be constrained in the face of climate change. This implies that, to develop more realistic predictions for the effects of climate change on insect biodiversity and ecosystem function, thermal variability is a significant determinant.
Climate exposure of US national parks in a new era of change.
Monahan, William B; Fisichelli, Nicholas A
2014-01-01
US national parks are challenged by climate and other forms of broad-scale environmental change that operate beyond administrative boundaries and in some instances are occurring at especially rapid rates. Here, we evaluate the climate change exposure of 289 natural resource parks administered by the US National Park Service (NPS), and ask which are presently (past 10 to 30 years) experiencing extreme (<5th percentile or >95th percentile) climates relative to their 1901-2012 historical range of variability (HRV). We consider parks in a landscape context (including surrounding 30 km) and evaluate both mean and inter-annual variation in 25 biologically relevant climate variables related to temperature, precipitation, frost and wet day frequencies, vapor pressure, cloud cover, and seasonality. We also consider sensitivity of findings to the moving time window of analysis (10, 20, and 30 year windows). Results show that parks are overwhelmingly at the extreme warm end of historical temperature distributions and this is true for several variables (e.g., annual mean temperature, minimum temperature of the coldest month, mean temperature of the warmest quarter). Precipitation and other moisture patterns are geographically more heterogeneous across parks and show greater variation among variables. Across climate variables, recent inter-annual variation is generally well within the range of variability observed since 1901. Moving window size has a measureable effect on these estimates, but parks with extreme climates also tend to exhibit low sensitivity to the time window of analysis. We highlight particular parks that illustrate different extremes and may facilitate understanding responses of park resources to ongoing climate change. We conclude with discussion of how results relate to anticipated future changes in climate, as well as how they can inform NPS and neighboring land management and planning in a new era of change.
NASA Technical Reports Server (NTRS)
Roberts, J. Brent; Clayson, Carol A.
2012-01-01
The Eastern tropical ocean basins are regions of significant atmosphere-ocean interaction and are important to variability across subseasonal to decadal time scales. The numerous physical processes at play in these areas strain the abilities of coupled general circulation models to accurately reproduce observed upper ocean variability. Furthermore, limitations in the observing system of important terms in the surface temperature balance (e.g., turbulent and radiative heat fluxes, advection) introduce uncertainty into the analyses of processes controlling sea surface temperature variability. This study presents recent efforts to close the surface temperature balance through estimation of the terms in the mixed layer temperature budget using state-of-the-art remotely sensed and model-reanalysis derived products. A set of twelve net heat flux estimates constructed using combinations of radiative and turbulent heat flux products - including GEWEX-SRB, ISCCP-SRF, OAFlux, SeaFlux, among several others - are used with estimates of oceanic advection, entrainment, and mixed layer depth variability to investigate the seasonal variability of ocean surface temperatures. Particular emphasis is placed on how well the upper ocean temperature balance is, or is not, closed on these scales using the current generation of observational and model reanalysis products. That is, the magnitudes and spatial variability of residual imbalances are addressed. These residuals are placed into context within the current uncertainties of the surface net heat fluxes and the role of the mixed layer depth variability in scaling the impact of those uncertainties, particularly in the shallow mixed layers of the Eastern tropical ocean basins.
Temperature dynamics of stormwater runoff in Australia and the USA.
Hathaway, J M; Winston, R J; Brown, R A; Hunt, W F; McCarthy, D T
2016-07-15
Thermal pollution of surface waters by urban stormwater runoff is an often overlooked by-product of urbanization. Elevated stream temperatures due to an influx of stormwater runoff can be detrimental to stream biota, in particular for cold water systems. However, few studies have examined temperature trends throughout storm events to determine how these thermal inputs are temporally distributed. In this study, six diverse catchments in two continents are evaluated for thermal dynamics. Summary statistics from the data showed larger catchments have lower maximum runoff temperatures, minimum runoff temperatures, and temperature variability. This reinforces the understanding that subsurface drainage infrastructure in urban catchments acts to moderate runoff temperatures. The catchments were also evaluated for the presence of a thermal first flush using two methodologies. Results showed the lack of a first flush under traditional assessment methodologies across all six catchments, supporting the results from a limited number of studies in literature. However, the time to peak temperature was not always coincident with the time to peak flow, highlighting the variability of thermal load over time. When a new first flush methodology was applied, significant differences in temperature were noted with increasing runoff depth for five of the six sites. This study is the first to identify a runoff temperature first flush, and highlights the need to carefully consider the appropriate methodology for such analyses. Copyright © 2016 Elsevier B.V. All rights reserved.
Near-surface temperature lapse rates in a mountainous catchment in the Chilean Andes
NASA Astrophysics Data System (ADS)
Ayala; Schauwecker, S.; Pellicciotti, F.; McPhee, J. P.
2011-12-01
In mountainous areas, and in the Chilean Andes in particular, the irregular and sparse distribution of recording stations resolves insufficiently the variability of climatic factors such as precipitation, temperature and relative humidity. Assumptions about air temperature variability in space and time have a strong effect on the performance of hydrologic models that represent snow processes such as accumulation and ablation. These processes have large diurnal variations, and assumptions that average over longer time periods (days, weeks or months) may reduce the predictive capacity of these models under different climatic conditions from those for which they were calibrated. They also introduce large uncertainties when such models are used to predict processes with strong subdiurnal variability such as snowmelt dynamics. In many applications and modeling exercises, temperature is assumed to decrease linearly with elevation, using the free-air moist adiabatic lapse rate (MALR: 0.0065°C/m). Little evidence is provided for this assumption, however, and recent studies have shown that use of lapse rates that are uniform in space and constant in time is not appropriate. To explore the validity of this approach, near-surface (2 m) lapse rates were calculated and analyzed at different temporal resolution, based on a new data set of spatially distributed temperature sensors setup in a high elevation catchment of the dry Andes of Central Chile (approx. 33°S). Five minutes temperature data were collected between January 2011 and April 2011 in the Ojos de Agua catchment, using two Automatic Weather Stations (AWSs) and 13 T-loggers (Hobo H8 Pro Temp with external data logger), ranging in altitude from 2230 to 3590 m.s.l.. The entire catchment was snow free during our experiment. We use this unique data set to understand the main controls over temperature variability in time and space, and test whether lapse rates can be used to describe the spatial variations of air temperature in a high elevation catchment. Our main result is that the assumption of a MALR is appropriate to describe the average variability of temperature over the entire measurement period (and possibly for daily scales), but that hourly near-surface lapse rates vary considerably and can deviate strongly from the MALR. This diurnal variability in lapse rates is associated with changes in wind direction and variations in wind velocity. Shallow lapse rates, in particular, occur during the morning, in correspondence to low wind speeds and change in wind direction from katabatic wind to valley wind and are associated with a weaker correlation between air temperature and elevation, while steeper lapse rates (meaning by this that temperature decreases more with elevation) closer to the MALR are typical of the afternoon hours from 13.00 on (and correspond to high wind speed), and are representative of a more linear dependency between air temperature and elevation. The steepest LRs, however, occur in the evening at 20.00-21.00, when wind velocity drops again and wind direction changes from valley wind to katabatic wind. It is clear that the wind regime is the main controls on LRs variability, and it is important to validate these findings with data sets from a second season.
NASA Astrophysics Data System (ADS)
Arora, B.. R.; Choubey, V. M.; Barbosa, S. M.
2009-04-01
Wadia Institute of Himalayan Geology (WIHG) has recently established the first Indian Multi-Parametric Geophysical Observatory (MPGO) at Ghuttu (30.53 N, 78.74 E) in Garhwal Himalayas (Uttarakhand), India to study the earthquake precursors in integrated manner. Given the rationale and significance of this inter-disciplinary approach, the paper with the help of recorded radon time series shall illustrate the complex time variability that needs to be quantified in terms of influencing environmental factors before residual field can be used to search anticipated earthquake precursory signals. Monitoring of 222radon (Rn) is carried out using a gamma ray radon monitoring probe based on 1.5" x 1.5" NaI scintillation. Measurement of radon concentration at 15 min interval has been done at 10m depth in air column above the variable water level in a 68m deep borehole together with simultaneous recordings of ground water level and environmental variables such as atmospheric pressure, temperature, rain fall etc. Apart from strong seasonal cycle in Rn concentration, with high values in summer (July to September) and low values in the winter months (January to March), the most obvious feature in the time series is the distinct nature of daily variation pattern. Four types of daily variations observed are a) positive peaks, b) negative peaks and c) sinusoidal peaks and d) long intervals when daily variations are conspicuously absent, particularly in winter and rainy season. Examination and correlation with environmental factors has revealed that when surface atmospheric temperature is well below the water temperature in borehole (later is constant around 19oC in all seasons) temperature gradients are not conducive to set up the convection currents for the emanation of radon to surface, thus explaining the absence of daily variation in radon concentration in winter. During the rainy season, following continuous rainfalls, once the soil/rocks are saturated with water radon concentrations show fair stability. Long pauses in rainfall give jerky variability during rainy season with no clear pattern of daily variation. During rest of the seasons when surface temperature are always higher that water temperature, the nature of observed pattern can be reconciled in terms of the form and amplitude of daily progression in temperature gradient. An accurate description of the effect of environmental variables is essential if we to wish decipher information related to stress/strain accumulation.
Intra- to Multi-Decadal Temperature Variability over the Continental United States: 1896-2012
USDA-ARS?s Scientific Manuscript database
The Optimal Ranking Regime (ORR) method was used to identify intra- to multi-decadal (IMD) time windows containing significant ranking sequences in U.S. climate division temperature data. The simplicity of the ORR procedure’s output – a time series’ most significant non-overlapping periods of high o...
USDA-ARS?s Scientific Manuscript database
The Optimal Ranking Regime (ORR) method was used to identify intra- to multi-decadal (IMD) time windows containing significant ranking sequences in U.S. climate division temperature data. The simplicity of the ORR procedure’s output – a time series’ most significant non-overlapping periods of high o...
NASA Astrophysics Data System (ADS)
Newcomb, D. E.; McKeen, R. G.
1983-12-01
This report documents over 2 years of research efforts to characterize asphalt-rubber mixtures to be used in Stress-Absorbing Membrane Interlayers (SAMI). The purpose of these SAMIs is to retard or prevent reflection cracking in asphalt-concrete overlays. Several laboratory experiments and one field trial were conducted to define significant test methods and parameters for incorporation into construction design and specification documents. Test methods used in this study included a modified softening point test, force-ductility, and Schweyer viscosity. Variables investigated included (1) Laboratory-mixing temperature; (2) Rubber type; (3) Laboratory storage time; (4) Laboratory storage condition; (5) Laboratory batch replication; (6) Laboratory mixing time; (7) Field mixing time; (8) Laboratory test temperature; (9) Force-Ductility elongation rates; and (10) Asphalt grade. It was found that mixing temperature, mixing time, rubber type, and asphalt grade all have significant effects upon the behavior of asphalt-rubber mixtures. Significant variability was also noticed in different laboratory batch replications. Varying laboratory test temperature and force-ductility elongation rate revealed further differences in asphalt-rubber mixtures.
Information transfer across the scales of climate data variability
NASA Astrophysics Data System (ADS)
Palus, Milan; Jajcay, Nikola; Hartman, David; Hlinka, Jaroslav
2015-04-01
Multitude of scales characteristic of the climate system variability requires innovative approaches in analysis of instrumental time series. We present a methodology which starts with a wavelet decomposition of a multi-scale signal into quasi-oscillatory modes of a limited band-with, described using their instantaneous phases and amplitudes. Then their statistical associations are tested in order to search for interactions across time scales. In particular, an information-theoretic formulation of the generalized, nonlinear Granger causality is applied together with surrogate data testing methods [1]. The method [2] uncovers causal influence (in the Granger sense) and information transfer from large-scale modes of climate variability with characteristic time scales from years to almost a decade to regional temperature variability on short time scales. In analyses of daily mean surface air temperature from various European locations an information transfer from larger to smaller scales has been observed as the influence of the phase of slow oscillatory phenomena with periods around 7-8 years on amplitudes of the variability characterized by smaller temporal scales from a few months to annual and quasi-biennial scales [3]. In sea surface temperature data from the tropical Pacific area an influence of quasi-oscillatory phenomena with periods around 4-6 years on the variability on and near the annual scale has been observed. This study is supported by the Ministry of Education, Youth and Sports of the Czech Republic within the Program KONTAKT II, Project No. LH14001. [1] M. Palus, M. Vejmelka, Phys. Rev. E 75, 056211 (2007) [2] M. Palus, Entropy 16(10), 5263-5289 (2014) [3] M. Palus, Phys. Rev. Lett. 112, 078702 (2014)
The influence of climate variables on dengue in Singapore.
Pinto, Edna; Coelho, Micheline; Oliver, Leuda; Massad, Eduardo
2011-12-01
In this work we correlated dengue cases with climatic variables for the city of Singapore. This was done through a Poisson Regression Model (PRM) that considers dengue cases as the dependent variable and the climatic variables (rainfall, maximum and minimum temperature and relative humidity) as independent variables. We also used Principal Components Analysis (PCA) to choose the variables that influence in the increase of the number of dengue cases in Singapore, where PC₁ (Principal component 1) is represented by temperature and rainfall and PC₂ (Principal component 2) is represented by relative humidity. We calculated the probability of occurrence of new cases of dengue and the relative risk of occurrence of dengue cases influenced by climatic variable. The months from July to September showed the highest probabilities of the occurrence of new cases of the disease throughout the year. This was based on an analysis of time series of maximum and minimum temperature. An interesting result was that for every 2-10°C of variation of the maximum temperature, there was an average increase of 22.2-184.6% in the number of dengue cases. For the minimum temperature, we observed that for the same variation, there was an average increase of 26.1-230.3% in the number of the dengue cases from April to August. The precipitation and the relative humidity, after analysis of correlation, were discarded in the use of Poisson Regression Model because they did not present good correlation with the dengue cases. Additionally, the relative risk of the occurrence of the cases of the disease under the influence of the variation of temperature was from 1.2-2.8 for maximum temperature and increased from 1.3-3.3 for minimum temperature. Therefore, the variable temperature (maximum and minimum) was the best predictor for the increased number of dengue cases in Singapore.
NASA Astrophysics Data System (ADS)
Bhaskar, Ankush; Ramesh, Durbha Sai; Vichare, Geeta; Koganti, Triven; Gurubaran, S.
2017-12-01
Identification and quantification of possible drivers of recent global temperature variability remains a challenging task. This important issue is addressed adopting a non-parametric information theory technique, the Transfer Entropy and its normalized variant. It distinctly quantifies actual information exchanged along with the directional flow of information between any two variables with no bearing on their common history or inputs, unlike correlation, mutual information etc. Measurements of greenhouse gases: CO2, CH4 and N2O; volcanic aerosols; solar activity: UV radiation, total solar irradiance ( TSI) and cosmic ray flux ( CR); El Niño Southern Oscillation ( ENSO) and Global Mean Temperature Anomaly ( GMTA) made during 1984-2005 are utilized to distinguish driving and responding signals of global temperature variability. Estimates of their relative contributions reveal that CO2 ({˜ } 24 %), CH4 ({˜ } 19 %) and volcanic aerosols ({˜ }23 %) are the primary contributors to the observed variations in GMTA. While, UV ({˜ } 9 %) and ENSO ({˜ } 12 %) act as secondary drivers of variations in the GMTA, the remaining play a marginal role in the observed recent global temperature variability. Interestingly, ENSO and GMTA mutually drive each other at varied time lags. This study assists future modelling efforts in climate science.
Fungistatic activity of heat-treated flaxseed determined by response surface methodology.
Xu, Y; Hall, C; Wolf-Hall, C
2008-08-01
The objective of this study was to evaluate the effect of heat treatment on the fungistatic activity of flaxseed (Linum usitatissimum) in potato dextrose agar (PDA) medium and a fresh noodle system. The radial growth of Penicilliumn chrysogenum, Aspergillus flavus, and a Penicillium sp. isolated from moldy noodles, as well as the mold count of fresh noodle enriched with heat treated flaxseed, were used to assess antifungal activity. A central composite design in the response surface methodology was used to predict the effect of heating temperature and time on antifungal activity of flaxseed flour (FF). Statistical analysis determined that the linear terms of both variables (that is, heating temperature and time) and the quadratic terms of the heating temperature had significant (P<0.05) effects on the radial growth of all 3 test fungi and the mold count log-cycle reduction of fresh noodle. The interactions between the temperature and time were significant for all dependent variables (P<0.05). Significant reductions in antifungal activities were found when FF was subjected to high temperatures, regardless of heating time. In contrast, prolonging the heating time did not substantially affect the antifungal activities of FF at low temperature. However, 60% of the antifungal activity was retained after FF was heated at 100 degrees C for 15 min, which suggests a potential use of FF as an antifungal additive in food products subjected to low to mild heat treatments.
A global perspective on Glacial- to Interglacial variability change
NASA Astrophysics Data System (ADS)
Rehfeld, Kira; Münch, Thomas; Ho, Sze Ling; Laepple, Thomas
2017-04-01
Changes in climate variability are more important for society than changes in the mean state alone. While we will be facing a large-scale shift of the mean climate in the future, its implications for climate variability are not well constrained. Here we quantify changes in temperature variability as climate shifted from the Last Glacial cold to the Holocene warm period. Greenland ice core oxygen isotope records provide evidence of this climatic shift, and are used as reference datasets in many palaeoclimate studies worldwide. A striking feature in these records is pronounced millennial variability in the Glacial, and a distinct reduction in variance in the Holocene. We present quantitative estimates of the change in variability on 500- to 1500-year timescales based on a global compilation of high-resolution proxy records for temperature which span both the Glacial and the Holocene. The estimates are derived based on power spectral analysis, and corrected using estimates of the proxy signal-to-noise ratios. We show that, on a global scale, variability at the Glacial maximum is five times higher than during the Holocene, with a possible range of 3-10 times. The spatial pattern of the variability change is latitude-dependent. While the tropics show no changes in variability, mid-latitude changes are higher. A slight overall reduction in variability in the centennial to millennial range is found in Antarctica. The variability decrease in the Greenland ice core oxygen isotope records is larger than in any other proxy dataset. These results therefore contradict the view of a globally quiescent Holocene following the instable Glacial, and imply that, in terms of centennial to millennial temperature variability, the two states may be more similar than previously thought.
Case study of psychophysiological diary: infradian rhythms.
Slover, G P; Morris, R W; Stroebel, C F; Patel, M K
1987-01-01
A 4-year case study was made of a 42-year-old white woman as seen through the psychophysiological diary. There was an awakening diary and a bedtime diary composed of 125 variables. The data are divided into two series: series I containing a manic episode, and series II as a control. Spectral analysis shows infradian rhythms in hypoglycemia and fear (11 days) and time to fall asleep (5 days). Depressed feelings showed a circatrigintan (28-day) rhythm, which was not correlated with menses. Mania had an annual rhythm (spring) but no circatrigintan or less rhythm. The following correlations have a P value less than or equal to 0.01: mania was directly correlated with number of sleeping pills, time to really wake up, need for rest, moodiness, and helplessness, and indirectly with expectations, pressure at work, sense of time, and emotional state. Interestingly, awakening pulse is directly correlated with awakening temperature, number of sleeping pills, bedtime pulse, tiredness at bedtime, hypoglycemia, and fear. Bedtime pulse is directly correlated with awakening pulse and awakening temperature. Both pulse and temperature at bedtime are directly correlated with negative variables such as tiredness, moodiness, helplessness, and depression, and inversely correlated with positive variables such as happiness, loving, performance at work, and thinking efficiency. This study demonstrates a significant correlation between physiological variables.
Estimating water temperatures in small streams in western Oregon using neural network models
Risley, John C.; Roehl, Edwin A.; Conrads, Paul
2003-01-01
Artificial neural network models were developed to estimate water temperatures in small streams using data collected at 148 sites throughout western Oregon from June to September 1999. The sites were located on 1st-, 2nd-, or 3rd-order streams having undisturbed or minimally disturbed conditions. Data collected at each site for model development included continuous hourly water temperature and description of riparian habitat. Additional data pertaining to the landscape characteristics of the basins upstream of the sites were assembled using geographic information system (GIS) techniques. Hourly meteorological time series data collected at 25 locations within the study region also were assembled. Clustering analysis was used to partition 142 sites into 3 groups. Separate models were developed for each group. The riparian habitat, basin characteristic, and meteorological time series data were independent variables and water temperature time series were dependent variables to the models, respectively. Approximately one-third of the data vectors were used for model training, and the remaining two-thirds were used for model testing. Critical input variables included riparian shade, site elevation, and percentage of forested area of the basin. Coefficient of determination and root mean square error for the models ranged from 0.88 to 0.99 and 0.05 to 0.59 oC, respectively. The models also were tested and validated using temperature time series, habitat, and basin landscape data from 6 sites that were separate from the 142 sites that were used to develop the models. The models are capable of estimating water temperatures at locations along 1st-, 2nd-, and 3rd-order streams in western Oregon. The model user must assemble riparian habitat and basin landscape characteristics data for a site of interest. These data, in addition to meteorological data, are model inputs. Output from the models include simulated hourly water temperatures for the June to September period. Adjustments can be made to the shade input data to simulate the effects of minimum or maximum shade on water temperatures.
Jung, Sang-Kyu; McDonald, Karen A; Dandekar, Abhaya M
2015-01-01
Agrobacterium tumefaciens-mediated transient expression is known to be highly dependent on incubation temperature. Compared with early studies that were conducted at constant temperature, we examined the effect of variable leaf incubation temperature on transient expression. As a model system, synthetic endoglucanase (E1) and endoxylanase (Xyn10A) genes were transiently expressed in detached whole sunflower leaves via vacuum infiltration for biofuel applications. We found that the kinetics of transient expression strongly depended on timing of the temperature change as well as leaf incubation temperature. Surprisingly, we found that high incubation temperature (27-30 °C) which is suboptimal for T-DNA transfer, significantly enhanced transient expression if the high temperature was applied during the late phase (Day 3-6) of leaf incubation whereas incubation temperature in a range of 20-25 °C for an early phase (Day 0-2) resulted in higher production. On the basis of these results, we propose that transient expression is governed by both T-DNA transfer and protein synthesis in plant cells that have different temperature dependent kinetics. Because the phases were separated in time and had different optimal temperatures, we were then able to develop a novel two phase optimization strategy for leaf incubation temperature. Applying the time-varying temperature profile, we were able to increase the protein accumulation by fivefold compared with the control at a constant temperature of 20 °C. From our knowledge, this is the first report illustrating the effect of variable temperature profiling for improved transient expression. © 2015 American Institute of Chemical Engineers.
NASA Astrophysics Data System (ADS)
Zhao, Desheng; Zhang, Xulai; Xu, Zhiwei; Cheng, Jian; Xie, Mingyu; Zhang, Heng; Wang, Shusi; Li, Kesheng; Yang, Huihui; Wen, Liying; Wang, Xu; Su, Hong
2017-04-01
Diurnal temperature range (DTR) and temperature change between neighboring days (TCN) are important meteorological indicators closely associated with global climate change. However, up to date, there have been no studies addressing the impacts of both DTR and TCN on emergency hospital admissions for schizophrenia. We conducted a time-series analysis to assess the relationship between temperature variability and daily schizophrenia onset in Hefei, an inland city in southeast China. Daily meteorological data and emergency hospital admissions for schizophrenia from 2005 to 2014 in Hefei were collected. After stratifying by season of birth, Poisson generalized linear regression combined with distributed lag nonlinear model (DLNM) was used to examine the relationship between temperature variability and schizophrenia, adjusting for long-term trend and seasonality, mean temperature, and relative humidity. Our analysis revealed that extreme temperature variability may increase the risk for schizophrenia onset among patients born in spring, while no such association was found in patients born in summer and autumn. In patients born in spring, the relative risks of extremely high DTR comparing the 95th and 99th percentiles with the reference (50th, 10 °C) at 3-day lag were 1.078 (95 % confidence interval (CI) 1.025-1.135) and 1.159 (95 % CI 1.050-1.279), respectively. For TCN effects, only comparing 99th percentile with reference (50th, 0.7 °C) was significantly associated with emergency hospital admissions for schizophrenia (relative risk (RR) 1.111, 95 % CI 1.002-1.231). This study suggested that exposure to extreme temperature variability in short-term may trigger later days of schizophrenia onset for patients born in spring, which may have important implications for developing intervention strategies to prevent large temperature variability exposure.
Zhao, Desheng; Zhang, Xulai; Xu, Zhiwei; Cheng, Jian; Xie, Mingyu; Zhang, Heng; Wang, Shusi; Li, Kesheng; Yang, Huihui; Wen, Liying; Wang, Xu; Su, Hong
2017-04-01
Diurnal temperature range (DTR) and temperature change between neighboring days (TCN) are important meteorological indicators closely associated with global climate change. However, up to date, there have been no studies addressing the impacts of both DTR and TCN on emergency hospital admissions for schizophrenia. We conducted a time-series analysis to assess the relationship between temperature variability and daily schizophrenia onset in Hefei, an inland city in southeast China. Daily meteorological data and emergency hospital admissions for schizophrenia from 2005 to 2014 in Hefei were collected. After stratifying by season of birth, Poisson generalized linear regression combined with distributed lag nonlinear model (DLNM) was used to examine the relationship between temperature variability and schizophrenia, adjusting for long-term trend and seasonality, mean temperature, and relative humidity. Our analysis revealed that extreme temperature variability may increase the risk for schizophrenia onset among patients born in spring, while no such association was found in patients born in summer and autumn. In patients born in spring, the relative risks of extremely high DTR comparing the 95th and 99th percentiles with the reference (50th, 10 °C) at 3-day lag were 1.078 (95 % confidence interval (CI) 1.025-1.135) and 1.159 (95 % CI 1.050-1.279), respectively. For TCN effects, only comparing 99th percentile with reference (50th, 0.7 °C) was significantly associated with emergency hospital admissions for schizophrenia (relative risk (RR) 1.111, 95 % CI 1.002-1.231). This study suggested that exposure to extreme temperature variability in short-term may trigger later days of schizophrenia onset for patients born in spring, which may have important implications for developing intervention strategies to prevent large temperature variability exposure.
Modarres, Reza; Ouarda, Taha B M J; Vanasse, Alain; Orzanco, Maria Gabriela; Gosselin, Pierre
2014-07-01
Changes in extreme meteorological variables and the demographic shift towards an older population have made it important to investigate the association of climate variables and hip fracture by advanced methods in order to determine the climate variables that most affect hip fracture incidence. The nonlinear autoregressive moving average with exogenous variable-generalized autoregressive conditional heteroscedasticity (ARMAX-GARCH) and multivariate GARCH (MGARCH) time series approaches were applied to investigate the nonlinear association between hip fracture rate in female and male patients aged 40-74 and 75+ years and climate variables in the period of 1993-2004, in Montreal, Canada. The models describe 50-56% of daily variation in hip fracture rate and identify snow depth, air temperature, day length and air pressure as the influencing variables on the time-varying mean and variance of the hip fracture rate. The conditional covariance between climate variables and hip fracture rate is increasing exponentially, showing that the effect of climate variables on hip fracture rate is most acute when rates are high and climate conditions are at their worst. In Montreal, climate variables, particularly snow depth and air temperature, appear to be important predictors of hip fracture incidence. The association of climate variables and hip fracture does not seem to change linearly with time, but increases exponentially under harsh climate conditions. The results of this study can be used to provide an adaptive climate-related public health program and ti guide allocation of services for avoiding hip fracture risk.
NASA Astrophysics Data System (ADS)
Modarres, Reza; Ouarda, Taha B. M. J.; Vanasse, Alain; Orzanco, Maria Gabriela; Gosselin, Pierre
2014-07-01
Changes in extreme meteorological variables and the demographic shift towards an older population have made it important to investigate the association of climate variables and hip fracture by advanced methods in order to determine the climate variables that most affect hip fracture incidence. The nonlinear autoregressive moving average with exogenous variable-generalized autoregressive conditional heteroscedasticity (ARMA X-GARCH) and multivariate GARCH (MGARCH) time series approaches were applied to investigate the nonlinear association between hip fracture rate in female and male patients aged 40-74 and 75+ years and climate variables in the period of 1993-2004, in Montreal, Canada. The models describe 50-56 % of daily variation in hip fracture rate and identify snow depth, air temperature, day length and air pressure as the influencing variables on the time-varying mean and variance of the hip fracture rate. The conditional covariance between climate variables and hip fracture rate is increasing exponentially, showing that the effect of climate variables on hip fracture rate is most acute when rates are high and climate conditions are at their worst. In Montreal, climate variables, particularly snow depth and air temperature, appear to be important predictors of hip fracture incidence. The association of climate variables and hip fracture does not seem to change linearly with time, but increases exponentially under harsh climate conditions. The results of this study can be used to provide an adaptive climate-related public health program and ti guide allocation of services for avoiding hip fracture risk.
NASA Astrophysics Data System (ADS)
Massah, Mozhdeh; Kantz, Holger
2016-04-01
As we have one and only one earth and no replicas, climate characteristics are usually computed as time averages from a single time series. For understanding climate variability, it is essential to understand how close a single time average will typically be to an ensemble average. To answer this question, we study large deviation probabilities (LDP) of stochastic processes and characterize them by their dependence on the time window. In contrast to iid variables for which there exists an analytical expression for the rate function, the correlated variables such as auto-regressive (short memory) and auto-regressive fractionally integrated moving average (long memory) processes, have not an analytical LDP. We study LDP for these processes, in order to see how correlation affects this probability in comparison to iid data. Although short range correlations lead to a simple correction of sample size, long range correlations lead to a sub-exponential decay of LDP and hence to a very slow convergence of time averages. This effect is demonstrated for a 120 year long time series of daily temperature anomalies measured in Potsdam (Germany).
Effect of Cattaneo-Christov heat flux on Jeffrey fluid flow with variable thermal conductivity
NASA Astrophysics Data System (ADS)
Hayat, Tasawar; Javed, Mehwish; Imtiaz, Maria; Alsaedi, Ahmed
2018-03-01
This paper presents the study of Jeffrey fluid flow by a rotating disk with variable thickness. Energy equation is constructed by using Cattaneo-Christov heat flux model with variable thermal conductivity. A system of equations governing the model is obtained by applying boundary layer approximation. Resulting nonlinear partial differential system is transformed to ordinary differential system. Homotopy concept leads to the convergent solutions development. Graphical analysis for velocities and temperature is made to examine the influence of different involved parameters. Thermal relaxation time parameter signifies that temperature for Fourier's heat law is more than Cattaneo-Christov heat flux. A constitutional analysis is made for skin friction coefficient and heat transfer rate. Effects of Prandtl number on temperature distribution and heat transfer rate are scrutinized. It is observed that larger Reynolds number gives illustrious temperature distribution.
Lorenzon, S; Giulianini, P G; Martinis, M; Ferrero, E A
2007-05-01
Homarus americanus is an important commercial species that can survive 2-3 days out of water if kept cool and humid. Once caught for commercial purpose and shipped around the world, a lobster is likely to be subjected to a number of stressors, including emersion and air exposure, hypoxia, temperature changes and handling. This study focused on the effect of transport stress and specifically at different animal body temperature (6 and 15 degrees C) and air exposure during commercial transport and recovery process in water. Animals were monitored, by hemolymph bleeding, at different times: 0 h (arrival time at plant) 3 h, 12 h, 24 h and 96 h after immersion in the stocking tank with a water temperature of 6.5+/-1.5 degrees C. We analysed the effects by testing some physiological variables of the hemolymph: glucose, cHH, lactate, total protein, cholesterol, triglycerides, chloride and calcium concentration, pH and density. All these variables appeared to be influenced negatively by high temperature both in average of alteration from the physiological value and in recovering time. Blood glucose, lactate, total protein, cholesterol were significantly higher in the group with high body temperature compared to those with low temperature until 96 h after immersion in the recovery tank.
Impact of patient and environmental factors on capillary refill time in adults.
Anderson, Bronwyn; Kelly, Anne-Maree; Kerr, Debra; Clooney, Megan; Jolley, Damien
2008-01-01
Capillary refill time (CRT) has been taught as a rapid indicator of circulatory status. The aim of this study was to define normal CRT in the Australian context and the environmental, patient, and drug factors that influence it. This prospective observational study included healthy adults at hospital clinics, workplaces, universities, and community groups. Volunteer participants provided their age, sex, ethnic group, and use of hypertensive or cardiac medications. Capillary refill time, ambient temperature, and patient temperature were recorded in a standard manner. Data were analyzed using descriptive statistics and regression analyses. The 95th percentile was used to define the upper limit of normal. One thousand participants were included; 57% were women, 90% were white, and 21% were taking cardiac medications. The median CRT was 1.9 seconds (95th percentile, 3.5 seconds). The CRT increased 3.3% for each additional decade of age. The CRT was also on average 7% lower in men than in women. The CRT decreased by 1.2% per degree-Celsius rise of ambient temperature, independently of patient's temperature, and decreased by 5% for each degree-Celsius rise in patient temperature, independently of ambient temperature. On multivariant analysis, age, sex, ambient temperature, and patient temperature were statistically significant predictors of CRT, but together explain only 8% of the observed variability. Capillary refill time varies with environmental and patient factors, but these account for only a small proportion of the variability observed. Its suitability as a reliable clinical test is doubtful.
Liu, Yang; Lü, Yi-he; Zheng, Hai-feng; Chen, Li-ding
2010-05-01
Based on the 10-day SPOT VEGETATION NDVI data and the daily meteorological data from 1998 to 2007 in Yan' an City, the main meteorological variables affecting the annual and interannual variations of NDVI were determined by using regression tree. It was found that the effects of test meteorological variables on the variability of NDVI differed with seasons and time lags. Temperature and precipitation were the most important meteorological variables affecting the annual variation of NDVI, and the average highest temperature was the most important meteorological variable affecting the inter-annual variation of NDVI. Regression tree was very powerful in determining the key meteorological variables affecting NDVI variation, but could not build quantitative relations between NDVI and meteorological variables, which limited its further and wider application.
Gruber, Andreas; Baumgartner, Daniel; Zimmermann, Jolanda; Oberhuber, Walter
2011-01-01
We determined the temporal dynamic of cambial activity and xylem development of stone pine (Pinus cembra L.) throughout the treeline ecotone. Repeated micro-sampling of the developing tree ring was carried out during the growing seasons 2006 and 2007 at the timberline (1950 m a.s.l.), treeline (2110 m a.s.l.) and within the krummholz belt (2180 m a.s.l.) and the influence of climate variables on intra-annual wood formation was determined. At the beginning of both growing seasons, highest numbers of cambial and enlarging cells were observed at the treeline. Soil temperatures at time of initiation of cambial activity were c. 1.5 °C higher at treeline (open canopy) compared to timberline (closed canopy), suggesting that a threshold root-zone temperature is involved in triggering onset of above ground stem growth. The rate of xylem cell production determined in two weekly intervals during June through August 2006-2007 was significantly correlated with air temperature (temperature sums expressed as degree-days and mean daily maximum temperature) at the timberline only. Lack of significant relationships between tracheid production and temperature variables at the treeline and within the krummholz belt support past dendroclimatological studies that more extreme environmental conditions (e.g., wind exposure, frost desiccation, late frost) increasingly control tree growth above timberline. Results of this study revealed that spatial and temporal (i.e. year-to-year) variability in timing and dynamic of wood formation of Pinus cembra is strongly influenced by local site factors within the treeline ecotone and the dynamics of seasonal temperature variation, respectively. PMID:21509148
Detection, attribution, and sensitivity of trends toward earlier streamflow in the Sierra Nevada
Maurer, E.P.; Stewart, I.T.; Bonfils, Celine; Duffy, P.B.; Cayan, D.
2007-01-01
Observed changes in the timing of snowmelt dominated streamflow in the western United States are often linked to anthropogenic or other external causes. We assess whether observed streamflow timing changes can be statistically attributed to external forcing, or whether they still lie within the bounds of natural (internal) variability for four large Sierra Nevada (CA) basins, at inflow points to major reservoirs. Streamflow timing is measured by "center timing" (CT), the day when half the annual flow has passed a given point. We use a physically based hydrology model driven by meteorological input from a global climate model to quantify the natural variability in CT trends. Estimated 50-year trends in CT due to natural climate variability often exceed estimated actual CT trends from 1950 to 1999. Thus, although observed trends in CT to date may be statistically significant, they cannot yet be statistically attributed to external influences on climate. We estimate that projected CT changes at the four major reservoir inflows will, with 90% confidence, exceed those from natural variability within 1-4 decades or 4-8 decades, depending on rates of future greenhouse gas emissions. To identify areas most likely to exhibit CT changes in response to rising temperatures, we calculate changes in CT under temperature increases from 1 to 5??. We find that areas with average winter temperatures between -2??C and -4??C are most likely to respond with significant CT shifts. Correspondingly, elevations from 2000 to 2800 in are most sensitive to temperature increases, with CT changes exceeding 45 days (earlier) relative to 1961-1990. Copyright 2007 by the American Geophysical Union.
Poças, Maria F; Oliveira, Jorge C; Brandsch, Rainer; Hogg, Timothy
2010-07-01
The use of probabilistic approaches in exposure assessments of contaminants migrating from food packages is of increasing interest but the lack of concentration or migration data is often referred as a limitation. Data accounting for the variability and uncertainty that can be expected in migration, for example, due to heterogeneity in the packaging system, variation of the temperature along the distribution chain, and different time of consumption of each individual package, are required for probabilistic analysis. The objective of this work was to characterize quantitatively the uncertainty and variability in estimates of migration. A Monte Carlo simulation was applied to a typical solution of the Fick's law with given variability in the input parameters. The analysis was performed based on experimental data of a model system (migration of Irgafos 168 from polyethylene into isooctane) and illustrates how important sources of variability and uncertainty can be identified in order to refine analyses. For long migration times and controlled conditions of temperature the affinity of the migrant to the food can be the major factor determining the variability in the migration values (more than 70% of variance). In situations where both the time of consumption and temperature can vary, these factors can be responsible, respectively, for more than 60% and 20% of the variance in the migration estimates. The approach presented can be used with databases from consumption surveys to yield a true probabilistic estimate of exposure.
Solar radiation increases suicide rate after adjusting for other climate factors in South Korea.
Jee, Hee-Jung; Cho, Chul-Hyun; Lee, Yu Jin; Choi, Nari; An, Hyonggin; Lee, Heon-Jeong
2017-03-01
Previous studies have indicated that suicide rates have significant seasonal variations. There is seasonal discordance between temperature and solar radiation due to the monsoon season in South Korea. We investigated the seasonality of suicide and assessed its association with climate variables in South Korea. Suicide rates were obtained from the National Statistical Office of South Korea, and climatic data were obtained from the Korea Meteorological Administration for the period of 1992-2010. We conducted analyses using a generalized additive model (GAM). First, we explored the seasonality of suicide and climate variables such as mean temperature, daily temperature range, solar radiation, and relative humidity. Next, we identified confounding climate variables associated with suicide rate. To estimate the adjusted effect of solar radiation on the suicide rate, we investigated the confounding variables using a multivariable GAM. Suicide rate showed seasonality with a pattern similar to that of solar radiation. We found that the suicide rate increased 1.008 times when solar radiation increased by 1 MJ/m 2 after adjusting for other confounding climate factors (P < 0.001). Solar radiation has a significant linear relationship with suicide after adjusting for region, other climate variables, and time trends. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
The tropical Pacific as a key pacemaker of the variable rates of global warming
NASA Astrophysics Data System (ADS)
Kosaka, Yu; Xie, Shang-Ping
2016-09-01
Global mean surface temperature change over the past 120 years resembles a rising staircase: the overall warming trend was interrupted by the mid-twentieth-century big hiatus and the warming slowdown since about 1998. The Interdecadal Pacific Oscillation has been implicated in modulations of global mean surface temperatures, but which part of the mode drives the variability in warming rates is unclear. Here we present a successful simulation of the global warming staircase since 1900 with a global ocean-atmosphere coupled model where tropical Pacific sea surface temperatures are forced to follow the observed evolution. Without prescribed tropical Pacific variability, the same model, on average, produces a continual warming trend that accelerates after the 1960s. We identify four events where the tropical Pacific decadal cooling markedly slowed down the warming trend. Matching the observed spatial and seasonal fingerprints we identify the tropical Pacific as a key pacemaker of the warming staircase, with radiative forcing driving the overall warming trend. Specifically, tropical Pacific variability amplifies the first warming epoch of the 1910s-1940s and determines the timing when the big hiatus starts and ends. Our method of removing internal variability from the observed record can be used for real-time monitoring of anthropogenic warming.
NASA Astrophysics Data System (ADS)
Williams, J. W.; Blois, J.; Ferrier, S.; Manion, G.; Fitzpatrick, M.; Veloz, S.; He, F.; Liu, Z.; Otto-Bliesner, B. L.
2011-12-01
In Quaternary paleoecology and paleoclimatology, compositionally dissimilar fossil assemblages usually indicate dissimilar environments; this relationship underpins assemblage-level techniques for paleoenvironmental reconstruction such as mutual climatic ranges or the modern analog technique. However, there has been relatively little investigation into the form of the relationship between compositional dissimilarity and climatic dissimilarity. Here we apply generalized dissimilarity modeling (GDM; Ferrier et al. 2007) as a tool for modeling the expected non-linear relationships between compositional and climatic dissimilarity. We use the CCSM3.0 transient paleoclimatic simulations from the SynTrace working group (Liu et al. 2009) and a new generation of fossil pollen maps from eastern North America (Blois et al. 2011) to 1) assess the spatial relationships between compositional dissimilarity and climatic dissimilarity and 2) whether these spatial relationships change over time. We used a taxonomic list of 106 genus-level pollen types, six climatic variables (winter precipitation and mean temperature, summer precipitation and temperature, seasonality of precipitation, and seasonality of temperature) that were chosen to minimize collinearity, and a cross-referenced pollen and climate dataset mapped for time slices spaced 1000 years apart. When GDM was trained for one time slice, the correlation between predicted and observed spatial patterns of community dissimilarity for other times ranged between 0.3 and 0.73. The selection of climatic predictor variables changed over time, as did the form of the relationship between compositional turnover and climatic predictors. Summer temperature was the only variable selected for all time periods. These results thus suggest that the relationship between compositional dissimilarity in pollen assemblages (and, by implication, beta diversity in plant communities) and climatic dissimilarity can change over time, for reasons to be further studied.
NASA Astrophysics Data System (ADS)
Deng, Qimin; Nian, Da; Fu, Zuntao
2018-02-01
Previous studies in the literature show that the annual cycle of surface air temperature (SAT) is changing in both amplitude and phase, and the SAT departures from the annual cycle are long-term correlated. However, the classical definition of temperature anomalies is based on the assumption that the annual cycle is constant, which contradicts the fact of changing annual cycle. How to quantify the impact of the changing annual cycle on the long-term correlation of temperature anomaly variability still remains open. In this paper, a recently developed data adaptive analysis tool, the nonlinear mode decomposition (NMD), is used to extract and remove time-varying annual cycle to reach the new defined temperature anomalies in which time-dependent amplitude of annual cycle has been considered. By means of detrended fluctuation analysis, the impact induced by inter-annual variability from the time-dependent amplitude of annual cycle has been quantified on the estimation of long-term correlation of long historical temperature anomalies in Europe. The results show that the classical climatology annual cycle is supposed to lack inter-annual fluctuation which will lead to a maximum artificial deviation centering around 600 days. This maximum artificial deviation is crucial to defining the scaling range and estimating the long-term persistence exponent accurately. Selecting different scaling range could lead to an overestimation or underestimation of the long-term persistence exponent. By using NMD method to extract the inter-annual fluctuations of annual cycle, this artificial crossover can be weakened to extend a wider scaling range with fewer uncertainties.
Characterizing Air Temperature Changes in the Tarim Basin over 1960–2012
Peng, Dongmei; Wang, Xiujun; Zhao, Chenyi; Wu, Xingren; Jiang, Fengqing; Chen, Pengxiang
2014-01-01
There has been evidence of warming rate varying largely over space and between seasons. However, little has been done to evaluate the spatial and temporal variability of air temperature in the Tarim Basin, northwest China. In this study, we collected daily air temperature from 19 meteorological stations for the period of 1960–2012, and analyzed annual mean temperature (AMT), the annual minimum (Tmin) and maximum temperature (Tmax), and mean temperatures of all twelve months and four seasons and their anomalies. Trend analyses, standard deviation of the detrended anomaly (SDDA) and correlations were carried out to characterize the spatial and temporal variability of various mean air temperatures. Our data showed that increasing trend was much greater in the Tmin (0.55°C/10a) than in the AMT (0.25°C/10a) and Tmax (0.12°C/10a), and the fluctuation followed the same order. There were large spatial variations in the increasing trends of both AMT (from −0.09 to 0.43 °C/10a) and Tmin (from 0.15 to 1.12°C/10a). Correlation analyses indicated that AMT had a significantly linear relationship with Tmin and the mean temperatures of four seasons. There were also pronounced changes in the monthly air temperature from November to March at decadal time scale. The seasonality (i.e., summer and winter difference) of air temperature was stronger during the period of 1960–1979 than over the recent three decades. Our preliminary analyses indicated that local environmental conditions (such as elevation) might be partly responsible for the spatial variability, and large scale climate phenomena might have influences on the temporal variability of air temperature in the Tarim Basin. In particular, there was a significant correlation between index of El Niño-Southern Oscillation (ENSO) and air temperature of May (P = 0.004), and between the index of Pacific Decadal Oscillation (PDO) and air temperature of July (P = 0.026) over the interannual to decadal time scales. PMID:25375648
Reconstruction of Arctic surface temperature in past 100 years using DINEOF
NASA Astrophysics Data System (ADS)
Zhang, Qiyi; Huang, Jianbin; Luo, Yong
2015-04-01
Global annual mean surface temperature has not risen apparently since 1998, which is described as global warming hiatus in recent years. However, measuring of temperature variability in Arctic is difficult because of large gaps in coverage of Arctic region in most observed gridded datasets. Since Arctic has experienced a rapid temperature change in recent years that called polar amplification, and temperature risen in Arctic is faster than global mean, the unobserved temperature in central Arctic will result in cold bias in both global and Arctic temperature measurement compared with model simulations and reanalysis datasets. Moreover, some datasets that have complete coverage in Arctic but short temporal scale cannot show Arctic temperature variability for long time. Data Interpolating Empirical Orthogonal Function (DINEOF) were applied to fill the coverage gap of NASA's Goddard Institute for Space Studies Surface Temperature Analysis (GISTEMP 250km smooth) product in Arctic with IABP dataset which covers entire Arctic region between 1979 and 1998, and to reconstruct Arctic temperature in 1900-2012. This method provided temperature reconstruction in central Arctic and precise estimation of both global and Arctic temperature variability with a long temporal scale. Results have been verified by extra independent station records in Arctic by statistical analysis, such as variance and standard deviation. The result of reconstruction shows significant warming trend in Arctic in recent 30 years, as the temperature trend in Arctic since 1997 is 0.76°C per decade, compared with 0.48°C and 0.67°C per decade from 250km smooth and 1200km smooth of GISTEMP. And global temperature trend is two times greater after using DINEOF. The discrepancies above stress the importance of fully consideration of temperature variance in Arctic because gaps of coverage in Arctic cause apparent cold bias in temperature estimation. The result of global surface temperature also proves that global warming in recent years is not as slow as thought.
Lake Stability and Winter-Spring Transitions: Decoupled Ice Duration and Winter Stratification
NASA Astrophysics Data System (ADS)
Daly, J.; Dana, S.; Neal, B.
2016-12-01
Ice-out is an important historical record demonstrating the impact of warmer air temperatures on lake ice. To better understand regional differences in ice-out trends, to characterize the thermal dynamics of smaller mountain lakes, and to develop baseline data for Maine's high elevations landscapes, sub-hourly water temperatures have been collected in over a dozen of Maine's mountain lakes since 2010. Both surface water and hypolimnion temperature data are recorded year-round, facilitating the determination of ice-in, ice-out, and the duration of winter stratification. The multi-year record from sites across as 250 km transect allows us to compare spatial variability related to lake morphometry and location with inter-annual variability related to local weather. All of the study lakes are large enough to stratify during the summer and mix extensively during the fall. Most years, our data show that the onset of winter stratification is nearly synchronous across the study area and is associated with cold air temperatures. Winter stratification can begin days to weeks before ice-in; the timing of ice-in shows more variability, with both elevation and basin aspect influencing the timing. Ice-out shows both the anticipated spatial and interannual variability; some years there is strong coherence between locations while other years show high variability, possibly a function of differences in snowpack. Ice-out is not always immediately followed by the end of winter stratification, there is sometimes a lag of days to weeks before the lakes mix. If the warm temperatures that lead to ice-out are followed by calm days without significant wind, the surface of some lakes begins to warm quickly maintaining the density difference and prolonging winter stratification. The longer the lag time, the stronger the density difference becomes which may also result in a very brief period of mixing in the spring prior to set-up of summer stratification. This year's El Niño event resulted in very late ice-in, leading to an unusually short ice duration period at most sites. However, ice-out for these sites was within the range observed previous years and there may not be a significant impact on summer water temperatures.
Marteinson, Sarah C; Giroux, Jean-François; Hélie, Jean-François; Gentes, Marie-Line; Verreault, Jonathan
2015-01-01
Environmental and behavioral factors have long been assumed to affect variation in avian field metabolic rate (FMR). However, due to the difficulties in measuring continuous behavior of birds over prolonged periods of time, complete time-activity budgets have rarely been examined in relation to FMR. Our objective was to determine the effect of activity (measured by detailed time-activity budgets) and a series of extrinsic and intrinsic factors on FMR of the omnivorous ring-billed gull (Larus delawarensis). The experiment was conducted during the incubation period when both members of the pair alternate between attending the nest-site and leaving the colony to forage in aquatic and anthropogenic environments (city, agricultural). FMR was determined using the doubly labeled water method. Time-activity budgets were extrapolated from spatio-temporal data (2-5 days) obtained from bird-borne GPS data loggers. Gulls had low FMRs compared to those predicted by allometric equations based on recorded FMRs from several seabird species. Gulls proportioned their time mainly to nest-site attendance (71% of total tracking time), which reduced FMR/g body mass, and was the best variable explaining energy expenditure. The next best variable was the duration of foraging trips, which increased FMR/g; FMR/g was also elevated by the proportion of time spent foraging or flying (17% and 8% of tracking time respectively). Most environmental variables measured did not impact FMR/g, however, the percent of time birds were subjected to temperatures below their lower critical temperature increased FMR. Time-activity budgets varied between the sexes, and with temperature and capture date suggesting that these variables indirectly affected FMR/g. The gulls foraged preferentially in anthropogenic-related habitats, which may have contributed to their low FMR/g due to the high availability of protein- and lipid-rich foods. This study demonstrates that activities were the best predictors of FMR/g in ring-billed gulls, thus providing strong support for this long-standing theory in bioenergetics.
NASA Astrophysics Data System (ADS)
Phillips, Thomas J.; Gates, W. Lawrence; Arpe, Klaus
1992-12-01
The effects of sampling frequency on the first- and second-moment statistics of selected European Centre for Medium-Range Weather Forecasts (ECMWF) model variables are investigated in a simulation of "perpetual July" with a diurnal cycle included and with surface and atmospheric fields saved at hourly intervals. The shortest characteristic time scales (as determined by the e-folding time of lagged autocorrelation functions) are those of ground heat fluxes and temperatures, precipitation and runoff, convective processes, cloud properties, and atmospheric vertical motion, while the longest time scales are exhibited by soil temperature and moisture, surface pressure, and atmospheric specific humidity, temperature, and wind. The time scales of surface heat and momentum fluxes and of convective processes are substantially shorter over land than over oceans. An appropriate sampling frequency for each model variable is obtained by comparing the estimates of first- and second-moment statistics determined at intervals ranging from 2 to 24 hours with the "best" estimates obtained from hourly sampling. Relatively accurate estimation of first- and second-moment climate statistics (10% errors in means, 20% errors in variances) can be achieved by sampling a model variable at intervals that usually are longer than the bandwidth of its time series but that often are shorter than its characteristic time scale. For the surface variables, sampling at intervals that are nonintegral divisors of a 24-hour day yields relatively more accurate time-mean statistics because of a reduction in errors associated with aliasing of the diurnal cycle and higher-frequency harmonics. The superior estimates of first-moment statistics are accompanied by inferior estimates of the variance of the daily means due to the presence of systematic biases, but these probably can be avoided by defining a different measure of low-frequency variability. Estimates of the intradiurnal variance of accumulated precipitation and surface runoff also are strongly impacted by the length of the storage interval. In light of these results, several alternative strategies for storage of the EMWF model variables are recommended.
Gravitational biology and the mammalian circadian timing system
NASA Technical Reports Server (NTRS)
Fuller, Charles A.; Murakami, Dean M.; Sulzman, Frank M.
1989-01-01
Using published reports, this paper compares and contrasts results on the effects of altered gravitational fields on the regulation in mammals of several physiological and behavioral variables with the circadian regulation of the same variables. The variables considered include the temperature regulation, heart rate, activity, food intake, and calcium balance. It is shown that, in rats, the homeostatic regulation of the body temperature, heart rate, and activity becomes depressed following exposure to a 2 G hyperdynamic field, and recovers within 6 days of 1 G condition. In addition, the circadian rhythms of these variables exhibit a depression of the rhythm amplitude; a recovery of this condition requires a minimum of 7 days.
Magari, Robert T
2002-03-01
The effect of different lot-to-lot variability levels on the prediction of stability are studied based on two statistical models for estimating degradation in real time and accelerated stability tests. Lot-to-lot variability is considered as random in both models, and is attributed to two sources-variability at time zero, and variability of degradation rate. Real-time stability tests are modeled as a function of time while accelerated stability tests as a function of time and temperatures. Several data sets were simulated, and a maximum likelihood approach was used for estimation. The 95% confidence intervals for the degradation rate depend on the amount of lot-to-lot variability. When lot-to-lot degradation rate variability is relatively large (CV > or = 8%) the estimated confidence intervals do not represent the trend for individual lots. In such cases it is recommended to analyze each lot individually. Copyright 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 91: 893-899, 2002
Timing of climate variability and grassland productivity
Craine, Joseph M.; Nippert, Jesse B.; Elmore, Andrew J.; Skibbe, Adam M.; Hutchinson, Stacy L.; Brunsell, Nathaniel A.
2012-01-01
Future climates are forecast to include greater precipitation variability and more frequent heat waves, but the degree to which the timing of climate variability impacts ecosystems is uncertain. In a temperate, humid grassland, we examined the seasonal impacts of climate variability on 27 y of grass productivity. Drought and high-intensity precipitation reduced grass productivity only during a 110-d period, whereas high temperatures reduced productivity only during 25 d in July. The effects of drought and heat waves declined over the season and had no detectable impact on grass productivity in August. If these patterns are general across ecosystems, predictions of ecosystem response to climate change will have to account not only for the magnitude of climate variability but also for its timing. PMID:22331914
NASA Astrophysics Data System (ADS)
Brown, Patrick T.; Li, Wenhong; Jiang, Jonathan H.; Su, Hui
2016-12-01
Unforced variability in global mean surface air temperature can obscure or exaggerate global warming on interdecadal time scales; thus, understanding both the magnitude and generating mechanisms of such variability is of critical importance for both attribution studies as well as decadal climate prediction. Coupled atmosphere-ocean general circulation models (climate models) simulate a wide range of magnitudes of unforced interdecadal variability in global mean surface air temperature (UITglobal), hampering efforts to quantify the influence of UITglobal on contemporary global temperature trends. Recently, a preliminary consensus has emerged that unforced interdecadal variability in local surface temperatures (UITlocal) over the tropical Pacific Ocean is particularly influential on UITglobal. Therefore, a reasonable hypothesis might be that the large spread in the magnitude of UITglobal across climate models can be explained by the spread in the magnitude of simulated tropical Pacific UITlocal. Here we show that this hypothesis is mostly false. Instead, the spread in the magnitude of UITglobal is linked much more strongly to the spread in the magnitude of UITlocal over high-latitude regions characterized by significant variability in oceanic convection, sea ice concentration, and energy flux at both the surface and the top of the atmosphere. Thus, efforts to constrain the climate model produced range of UITglobal magnitude would be best served by focusing on the simulation of air-sea interaction at high latitudes.
Benjamin, Joseph R.; Heltzel, Jeannie; Dunham, Jason B.; Heck, Michael; Banish, Nolan P.
2016-01-01
The occurrence of fish species may be strongly influenced by a stream’s thermal regime (magnitude, frequency, variation, and timing). For instance, magnitude and frequency provide information about sublethal temperatures, variability in temperature can affect behavioral thermoregulation and bioenergetics, and timing of thermal events may cue life history events, such as spawning and migration. We explored the relationship between thermal regimes and the occurrences of native Bull Trout Salvelinus confluentus and nonnative Brook Trout Salvelinus fontinalis and Brown Trout Salmo trutta across 87 sites in the upper Klamath River basin, Oregon. Our objectives were to associate descriptors of the thermal regime with trout occurrence, predict the probability of Bull Trout occurrence, and estimate upper thermal tolerances of the trout species. We found that each species was associated with a different suite of thermal regime descriptors. Bull Trout were present at sites that were cooler, had fewer high-temperature events, had less variability, and took longer to warm. Brook Trout were also observed at cooler sites with fewer high-temperature events, but the sites were more variable and Brook Trout occurrence was not associated with a timing descriptor. In contrast, Brown Trout were present at sites that were warmer and reached higher temperatures faster, but they were not associated with frequency or variability descriptors. Among the descriptors considered, magnitude (specifically June degree-days) was the most important in predicting the probability of Bull Trout occurrence, and model predictions were strengthened by including Brook Trout occurrence. Last, all three trout species exhibited contrasting patterns of tolerating longer exposures to lower temperatures. Tolerance limits for Bull Trout were lower than those for Brook Trout and Brown Trout, with contrasts especially evident for thermal maxima. Our results confirm the value of exploring a suite of thermal regime descriptors for understanding the distribution and occurrence of fishes. Moreover, these descriptors and their relationships to fish should be considered with future changes in land use, water use, or climate.
Consequences of Part Temperature Variability in Electron Beam Melting of Ti-6Al-4V
NASA Astrophysics Data System (ADS)
Fisher, Brian A.; Mireles, Jorge; Ridwan, Shakerur; Wicker, Ryan B.; Beuth, Jack
2017-12-01
To facilitate adoption of Ti-6Al-4V (Ti64) parts produced via additive manufacturing (AM), the ability to ensure part quality is critical. Measuring temperatures is an important component of part quality monitoring in all direct metal AM processes. In this work, surface temperatures were monitored using a custom infrared camera system attached to an Arcam electron beam melting (EBM®) machine. These temperatures were analyzed to understand their possible effect on solidification microstructure based on solidification cooling rates extracted from finite element simulations. Complicated thermal histories were seen during part builds, and temperature changes occurring during typical Ti64 builds may be large enough to affect solidification microstructure. There is, however, enough time between fusion of individual layers for spatial temperature variations (i.e., hot spots) to dissipate. This means that an effective thermal control strategy for EBM® can be based on average measured surface temperatures, ignoring temperature variability.
The use of variable temperature and magic-angle sample spinning in studies of fulvic acids
Earl, W.L.; Wershaw, R. L.; Thorn, K.A.
1987-01-01
Intensity distortions and poor signal to noise in the cross-polarization magic-angle sample spinning NMR of fulvic acids were investigated and attributed to molecular mobility in these ostensibly "solid" materials. We have shown that inefficiencies in cross polarization can be overcome by lowering the sample temperature to about -60??C. These difficulties can be generalized to many other synthetic and natural products. The use of variable temperature and cross-polarization intensity as a function of contact time can yield valuable qualitative information which can aid in the characterization of many materials. ?? 1987.
Huang, Yong; Deng, Te; Yu, Shicheng; Gu, Jing; Huang, Cunrui; Xiao, Gexin; Hao, Yuantao
2013-03-13
Over the last decade, major outbreaks of hand, foot, and mouth disease (HFMD) have been reported in Asian countries, resulting in thousands of deaths among children. However, less is known regarding the effect of meteorological variables on the incidence of HFMD in children. This study aims at quantifying the relationship between meteorological variables and the incidence of HFMD among children in Guangzhou, China. The association between weekly HFMD cases in children aged <15 years and meteorological variables in Guangzhou from 2008 to 2011 were analyzed using the generalized additive model (GAM) and time-series method, after controlling for long-term trend and seasonality, holiday effects, influenza period and delayed effects. Temperature and relative humidity with one week lag were significantly associated with HFMD infection among children. We found that a 1°C increase in temperature led to an increase of 1.86% (95% CI: 0.92, 2.81%) in the weekly number of cases in the 0-14 years age group. A one percent increase in relative humidity may lead to an increase of 1.42% (95% CI: 0.97, 1.87%) in the weekly number of cases in the 0-14 years age group. This study provides quantitative evidence that the incidence of HFMD in children was associated with high average temperature and high relative humidity. The one-week delay in the effects of temperature and relative humidity on HFMD is consistent with the enterovirus incubation period and the potential time lag between onset of children's sickness and parental awareness and response.
Detection and Attribution of Temperature Trends in the Presence of Natural Variability
NASA Astrophysics Data System (ADS)
Wallace, J. M.
2014-12-01
The fingerprint of human-induced global warming stands out clearly above the noise In the time series of global-mean temperature, but not local temperature. At extratropical latitudes over land the standard error of 50-year linear temperature trends at a fixed point is as large as the cumulative rise in global-mean temperature over the past century. Much of the samping variability in local temperature trends is "dynamically-induced", i.e., attributable to the fact that the seasonally-varying mean circulation varies substantially from one year to the next and anomalous circulation patterns are generally accompanied by anomalous temperature patterns. In the presence of such large sampling variability it is virtually impossible to identify the spatial signature of greenhouse warming based on observational data or to partition observed local temperature trends into natural and human-induced components. It follows that previous IPCC assessments, which have focused on the deterministic signature of human-induced climate change, are inherently limited as to what they can tell us about the attribution of the past record of local temperature change or about how much the temperature at a particular place is likely to rise in the next few decades in response to global warming. To obtain more informative assessments of regional and local climate variability and change it will be necessary to take a probabilistic approach. Just as the use of the ensembles has contributed to more informative extended range weather predictions, large ensembles of climate model simulations can provide a statistical context for interpreting observed climate change and for framing projections of future climate. For some purposes, statistics relating to the interannual variability in the historical record can serve as a surrogate for statistics relating to the diversity of climate change scenarios in large ensembles.
Cyclic Activity of Mud Volcanoes: Evidences from Trinidad (SE Caribbean)
NASA Astrophysics Data System (ADS)
Deville, E.
2007-12-01
Fluid and solid transfer in mud volcanoes show different phases of activity, including catastrophic events followed by periods of relative quiescence characterized by moderate activity. This can be notably shown by historical data onshore Trinidad. Several authors have evoked a possible link between the frequencies of eruption of some mud volcanoes and seismic activity, but in Trinidad there is no direct correlation between mud eruptions and seisms. It appears that each eruptive mud volcano has its own period of catastrophic activity, and this period is highly variable from one volcano to another. The frequency of activity of mud volcanoes seems essentially controlled by local pressure regime within the sedimentary pile. At the most, a seism can, in some cases, activate an eruption close to its term. The dynamics of expulsion of the mud volcanoes during the quiescence phases has been studied notably from temperature measurements within the mud conduits. The mud temperature is concurrently controlled by, either, the gas flux (endothermic gas depressurizing induces a cooling effect), or by the mud flux (mud is a vector for convective heat transfer). Complex temperature distribution was observed in large conduits and pools. Indeed, especially in the bigger pools, the temperature distribution characterizes convective cells with an upward displacement of mud above the deep outlet, and ring-shaped rolls associated with the burial of the mud on the flanks of the pools. In simple, tube-like shaped, narrow conduits, the temperature is more regular, but we observed different types of profiles, with either downward increasing or decreasing temperatures. If the upward flow of mud would be regular, we should expect increasing temperatures and progressively decreasing gradient with depth within the conduits. However, the variable measured profiles from one place to another, as well as time-variable measured temperatures within the conduits and especially, at the base of the conduits, shows that the fluid flow expelled by the studied mud volcanoes is not constant but highly variable through short time-periods. We notably observed very short time-period cyclic variations with a frequency of about 10 minutes. These high frequencies temperature changes could be related to the dynamics of two-phase flows (gas and mud) through the mud volcano conduits. We also observed locally a significant daily changes of the temperature of the expelled mud which shows also that the mud flux is changing very rapidly from one day to another.
Vegetation Interaction Enhances Interdecadal Climate Variability in the Sahel
NASA Technical Reports Server (NTRS)
Zeng, Ning; Neelin, J. David; Lau, William K.-M.
1999-01-01
The role of naturally varying vegetation in influencing the climate variability in the Sahel is explored in a coupled atmosphere-land-vegetation model. The Sahel rainfall variability is influenced by sea surface temperature (SST) variations in the oceans. Land-surface feedback is found to increase this variability both on interannual and interdecadal time scales. Interactive vegetation enhances the interdecadal variation significantly, but can reduce year to year variability due to a phase lag introduced by the relatively slow vegetation adjustment time. Variations in vegetation accompany the changes in rainfall, in particular, the multi-decadal drying trend from the 1950s to the 80s.
Effect of climatological factors on respiratory syncytial virus epidemics
NOYOLA, D. E.; MANDEVILLE, P. B.
2008-01-01
SUMMARY Respiratory syncytial virus (RSV) presents as yearly epidemics in temperate climates. We analysed the association of atmospheric conditions to RSV epidemics in San Luis Potosí, S.L.P., Mexico. The weekly number of RSV detections between October 2002 and May 2006 were correlated to ambient temperature, barometric pressure, relative humidity, vapour tension, dew point, precipitation, and hours of light using time-series and regression analyses. Of the variation in RSV cases, 49·8% was explained by the study variables. Of the explained variation in RSV cases, 32·5% was explained by the study week and 17·3% was explained by meteorological variables (average daily temperature, maximum daily temperature, temperature at 08:00 hours, and relative humidity at 08:00 hours). We concluded that atmospheric conditions, particularly temperature, partly explain the year to year variability in RSV activity. Identification of additional factors that affect RSV seasonality may help develop a model to predict the onset of RSV epidemics. PMID:18177520
Qiu, Jingwen; Wang, Qing; Shen, Fei; Yang, Gang; Zhang, Yanzong; Deng, Shihuai; Zhang, Jing; Zeng, Yongmei; Song, Chun
2017-03-01
Wheat straw was pretreated by phosphoric acid plus hydrogen peroxide (PHP), in which temperature, time, and H 3 PO 4 proportion for pretreatment were investigated by using response surface method. Results indicated that hemicellulose and lignin removal positively responded to the increase of pretreatment temperature, H 3 PO 4 proportion, and time. H 3 PO 4 proportion was the most important variable to control cellulose recovery, followed by pretreatment temperature and time. Moreover, these three variables all negatively related to cellulose recovery. Increasing H 3 PO 4 proportion can improve enzymatic hydrolysis; however, reduction on cellulose recovery results in decrease of glucose yield. Extra high temperature or long time for pretreatment was not beneficial to enzymatic hydrolysis and glucose yield. Based on the criterion for minimizing H 3 PO 4 usage and maximizing glucose yield, the optimized pretreatment conditions was 40 °C, 2.0 h, and H 3 PO 4 proportion of 70.2 % (H 2 O 2 proportion of 5.2 %), by which glucose yielded 299 mg/g wheat straw (946.2 mg/g cellulose) after 72-h enzymatic hydrolysis.
NASA Astrophysics Data System (ADS)
Andriyani, R.; Kosasih, W.; Ningrum, D. R.; Pudjiraharti, S.
2017-03-01
Several parameters such as temperature, time of extraction, and size of simplicia play significant role in medicinal herb extraction. This study aimed to investigate the effect of those parameters on yield extract, flavonoid, and total phenolic content in water extract of Zingiber officinale. The temperatures used were 50, 70 and 90°C and the extraction times were 30, 60 and 90 min. Z. officinale in the form of powder and chips were used to study the effect of milling treatment. The correlation among those variables was analysed using ANOVA two-way factors without replication. The result showed that time and temperature did not influence the yield of extract of Powder simplicia. However, time of extraction influenced the extract of simplicia treated without milling process. On the other hand, flavonoid and total phenolic content were not influenced by temperature, time, and milling treatment.
The discrete and localized nature of the variable emission from active regions
NASA Technical Reports Server (NTRS)
Arndt, Martina Belz; Habbal, Shadia Rifai; Karovska, Margarita
1994-01-01
Using data from the Extreme Ultraviolet (EUV) Spectroheliometer on Skylab, we study the empirical characteristics of the variable emission in active regions. These simultaneous multi-wavelength observations clearly confirm that active regions consist of a complex of loops at different temperatures. The variable emission from this complex has very well-defined properties that can be quantitatively summarized as follows: (1) It is localized predominantly around the footpoints where it occurs at discrete locations. (2) The strongest variability does not necessarily coincide with the most intense emission. (3) The fraction of the area of the footpoints, (delta n)/N, that exhibits variable emission, varies by +/- 15% as a function of time, at any of the wavelengths measured. It also varies very little from footpoint to footpoint. (4) This fractional variation is temperature dependent with a maximum around 10(exp 5) K. (5) The ratio of the intensity of the variable to the average background emission, (delta I)/(bar-I), also changes with temperature. In addition, we find that these distinctive characteristics persist even when flares occur within the active region.
Using Multiple Metrics to Analyze Trends and Sensitivity of Climate Variability in New York City
NASA Astrophysics Data System (ADS)
Huang, J.; Towey, K.; Booth, J. F.; Baez, S. D.
2017-12-01
As the overall temperature of Earth continues to warm, changes in the Earth's climate are being observed through extreme weather events, such as heavy precipitation events and heat waves. This study examines the daily precipitation and temperature record of the greater New York City region during the 1979-2014 period. Daily station observations from three greater New York City airports: John F. Kennedy (JFK), LaGuardia (LGA) and Newark (EWR), are used in this study. Multiple statistical metrics are used in this study to analyze trends and variability in temperature and precipitation in the greater New York City region. The temperature climatology reveals a distinct seasonal cycle, while the precipitation climatology exhibits greater annual variability. Two types of thresholds are used to examine the variability of extreme events: extreme threshold and daily anomaly threshold. The extreme threshold indicates how the strength of the overall maximum is changing whereas the daily anomaly threshold indicates if the strength of the daily maximum is changing over time. We observed an increase in the frequency of anomalous daily precipitation events over the last 36 years, with the greatest frequency occurring in 2011. The most extreme precipitation events occur during the months of late summer through early fall, with approximately four expected extreme events occurring per year during the summer and fall. For temperature, the greatest frequency and variation in temperature anomalies occur during winter and spring. In addition, temperature variance is also analyzed to determine if there is greater day-to-day temperature variability today than in the past.
Spatiotemporal variation in heat-related out-of-hospital cardiac arrest during the summer in Japan.
Onozuka, Daisuke; Hagihara, Akihito
2017-04-01
Although several studies have reported the impacts of extremely high temperature on cardiovascular diseases, few studies have investigated the spatiotemporal variation in the incidence of out-of-hospital cardiac arrest (OHCA) due to extremely high temperature in Japan. Daily OHCA data from 2005 to 2014 were acquired from all 47 prefectures of Japan. We used time-series Poisson regression analysis combined with a distributed lag non-linear model to assess the temporal variability in the effects of extremely high temperature on OHCA incidence in each prefecture, adjusted for time trends. Spatial variability in the relationships between extremely high temperature and OHCA between prefectures was estimated using a multivariate random-effects meta-analysis. We analyzed 166,496 OHCA cases of presumed cardiac origin occurring during the summer (June to September) that met the inclusion criteria. The minimum morbidity percentile (MMP) was the 51st percentile of temperature during the summer in Japan. The overall cumulative relative risk at the 99th percentile vs. the MMP over lags 0-10days was 1.21 (95% CI: 1.12-1.31). There was also a strong low temperature effect during the summer periods. No substantial difference in spatial or temporal variability was observed over the study period. Our study demonstrated spatiotemporal homogeneity in the risk of OHCA during periods of extremely high temperature between 2005 and 2014 in Japan. Our findings suggest that public health strategies for OHCA due to extremely high temperatures should be finely adjusted and should particularly account for the unchanging risk during the summer. Copyright © 2017 Elsevier B.V. All rights reserved.
Crowder, Camerron M; Meyer, Eli; Fan, Tung-Yung; Weis, Virginia M
2017-08-01
Reproductive timing in brooding corals has been correlated to temperature and lunar irradiance, but the mechanisms by which corals transduce these environmental variables into molecular signals are unknown. To gain insight into these processes, global gene expression profiles in the coral Pocillopora damicornis were examined (via RNA-Seq) across lunar phases and between temperature treatments, during a monthly planulation cycle. The interaction of temperature and lunar day together had the largest influence on gene expression. Mean timing of planulation, which occurred at lunar days 7.4 and 12.5 for 28- and 23°C-treated corals, respectively, was associated with an upregulation of transcripts in individual temperature treatments. Expression profiles of planulation-associated genes were compared between temperature treatments, revealing that elevated temperatures disrupted expression profiles associated with planulation. Gene functions inferred from homologous matches to online databases suggest complex neuropeptide signalling, with calcium as a central mediator, acting through tyrosine kinase and G protein-coupled receptor pathways. This work contributes to our understanding of coral reproductive physiology and the impacts of environmental variables on coral reproductive pathways. © 2017 John Wiley & Sons Ltd.
Assimilation of Surface Temperature in Land Surface Models
NASA Technical Reports Server (NTRS)
Lakshmi, Venkataraman
1998-01-01
Hydrological models have been calibrated and validated using catchment streamflows. However, using a point measurement does not guarantee correct spatial distribution of model computed heat fluxes, soil moisture and surface temperatures. With the advent of satellites in the late 70s, surface temperature is being measured two to four times a day from various satellite sensors and different platforms. The purpose of this paper is to demonstrate use of satellite surface temperature in (a) validation of model computed surface temperatures and (b) assimilation of satellite surface temperatures into a hydrological model in order to improve the prediction accuracy of soil moistures and heat fluxes. The assimilation is carried out by comparing the satellite and the model produced surface temperatures and setting the "true"temperature midway between the two values. Based on this "true" surface temperature, the physical relationships of water and energy balance are used to reset the other variables. This is a case of nudging the water and energy balance variables so that they are consistent with each other and the true" surface temperature. The potential of this assimilation scheme is demonstrated in the form of various experiments that highlight the various aspects. This study is carried over the Red-Arkansas basin in the southern United States (a 5 deg X 10 deg area) over a time period of a year (August 1987 - July 1988). The land surface hydrological model is run on an hourly time step. The results show that satellite surface temperature assimilation improves the accuracy of the computed surface soil moisture remarkably.
Arismendi, Ivan; Johnson, Sherri L.; Dunham, Jason B.; Haggerty, Roy
2013-01-01
1. Temperature is a major driver of ecological processes in stream ecosystems, yet the dynamics of thermal regimes remain poorly described. Most work has focused on relatively simple descriptors that fail to capture the full range of conditions that characterise thermal regimes of streams across seasons or throughout the year. 2. To more completely describe thermal regimes, we developed several descriptors of magnitude, variability, frequency, duration and timing of thermal events throughout a year. We evaluated how these descriptors change over time using long-term (1979–2009), continuous temperature data from five relatively undisturbed cold-water streams in western Oregon, U.S.A. In addition to trends for each descriptor, we evaluated similarities among them, as well as patterns of spatial coherence, and temporal synchrony. 3. Using different groups of descriptors, we were able to more fully capture distinct aspects of the full range of variability in thermal regimes across space and time. A subset of descriptors showed both higher coherence and synchrony and, thus, an appropriate level of responsiveness to examine evidence of regional climatic influences on thermal regimes. Most notably, daily minimum values during winter–spring were the most responsive descriptors to potential climatic influences. 4. Overall, thermal regimes in streams we studied showed high frequency and low variability of cold temperatures during the cold-water period in winter and spring, and high frequency and high variability of warm temperatures during the warm-water period in summer and autumn. The cold and warm periods differed in the distribution of events with a higher frequency and longer duration of warm events in summer than cold events in winter. The cold period exhibited lower variability in the duration of events, but showed more variability in timing. 5. In conclusion, our results highlight the importance of a year-round perspective in identifying the most responsive characteristics or descriptors of thermal regimes in streams. The descriptors we provide herein can be applied across hydro-ecological regions to evaluate spatial and temporal patterns in thermal regimes. Evaluation of coherence and synchrony of different components of thermal regimes can facilitate identification of impacts of regional climate variability or local human or natural influences.
Keppel-Aleks, Gretchen; Wolf, Aaron S; Mu, Mingquan; Doney, Scott C; Morton, Douglas C; Kasibhatla, Prasad S; Miller, John B; Dlugokencky, Edward J; Randerson, James T
2014-01-01
The response of the carbon cycle in prognostic Earth system models (ESMs) contributes significant uncertainty to projections of global climate change. Quantifying contributions of known drivers of interannual variability in the growth rate of atmospheric carbon dioxide (CO2) is important for improving the representation of terrestrial ecosystem processes in these ESMs. Several recent studies have identified the temperature dependence of tropical net ecosystem exchange (NEE) as a primary driver of this variability by analyzing a single, globally averaged time series of CO2 anomalies. Here we examined how the temporal evolution of CO2 in different latitude bands may be used to separate contributions from temperature stress, drought stress, and fire emissions to CO2 variability. We developed atmospheric CO2 patterns from each of these mechanisms during 1997–2011 using an atmospheric transport model. NEE responses to temperature, NEE responses to drought, and fire emissions all contributed significantly to CO2 variability in each latitude band, suggesting that no single mechanism was the dominant driver. We found that the sum of drought and fire contributions to CO2 variability exceeded direct NEE responses to temperature in both the Northern and Southern Hemispheres. Additional sensitivity tests revealed that these contributions are masked by temporal and spatial smoothing of CO2 observations. Accounting for fires, the sensitivity of tropical NEE to temperature stress decreased by 25% to 2.9 ± 0.4 Pg C yr−1 K−1. These results underscore the need for accurate attribution of the drivers of CO2 variability prior to using contemporary observations to constrain long-term ESM responses. PMID:26074665
Keppel-Aleks, Gretchen; Wolf, Aaron S; Mu, Mingquan; Doney, Scott C; Morton, Douglas C; Kasibhatla, Prasad S; Miller, John B; Dlugokencky, Edward J; Randerson, James T
2014-11-01
The response of the carbon cycle in prognostic Earth system models (ESMs) contributes significant uncertainty to projections of global climate change. Quantifying contributions of known drivers of interannual variability in the growth rate of atmospheric carbon dioxide (CO 2 ) is important for improving the representation of terrestrial ecosystem processes in these ESMs. Several recent studies have identified the temperature dependence of tropical net ecosystem exchange (NEE) as a primary driver of this variability by analyzing a single, globally averaged time series of CO 2 anomalies. Here we examined how the temporal evolution of CO 2 in different latitude bands may be used to separate contributions from temperature stress, drought stress, and fire emissions to CO 2 variability. We developed atmospheric CO 2 patterns from each of these mechanisms during 1997-2011 using an atmospheric transport model. NEE responses to temperature, NEE responses to drought, and fire emissions all contributed significantly to CO 2 variability in each latitude band, suggesting that no single mechanism was the dominant driver. We found that the sum of drought and fire contributions to CO 2 variability exceeded direct NEE responses to temperature in both the Northern and Southern Hemispheres. Additional sensitivity tests revealed that these contributions are masked by temporal and spatial smoothing of CO 2 observations. Accounting for fires, the sensitivity of tropical NEE to temperature stress decreased by 25% to 2.9 ± 0.4 Pg C yr -1 K -1 . These results underscore the need for accurate attribution of the drivers of CO 2 variability prior to using contemporary observations to constrain long-term ESM responses.
The design of control system of livestock feeding processing
NASA Astrophysics Data System (ADS)
Sihombing, Juna; Napitupulu, Humala L.; Hidayati, Juliza
2018-03-01
PT. XYZ is a company that produces animal feed. One type of animal feed produced is 105 ISA P. In carrying out its production process, PT. XYZ faces the problem of rejected feed amounts during 2014 to June 2015 due to the amount of animal feed that exceeds the standard feed quality of 13% of moisture content and 3% for ash content. Therefore, the researchers analyzed the relationship between factors affecting the quality and extent of damage by using regression and correlation and determine the optimum value of each processing process. Analysis results found that variables affecting product quality are mixing time, steam conditioning temperature and cooling time. The most dominant variable affecting the product moisture content is mixing time with the correlation coefficient of (0.7959) and the most dominant variable affecting the ash content of the product during the processing is mixing time with the correlation coefficient of (0.8541). The design of the proposed product processing control is to run the product processing process with mixing time 235 seconds, steam conditioning temperature 87 0C and cooling time 192 seconds. Product quality 105 ISA P obtained by using this design is with 12.16% moisture content and ash content of 2.59%.
Khan, Jenna; Lieberman, Joshua A; Lockwood, Christina M
2017-05-01
microRNAs (miRNAs) hold promise as biomarkers for a variety of disease processes and for determining cell differentiation. These short RNA species are robust, survive harsh treatment and storage conditions and may be extracted from blood and tissue. Pre-analytical variables are critical confounders in the analysis of miRNAs: we elucidate these and identify best practices for minimizing sample variation in blood and tissue specimens. Pre-analytical variables addressed include patient-intrinsic variation, time and temperature from sample collection to storage or processing, processing methods, contamination by cells and blood components, RNA extraction method, normalization, and storage time/conditions. For circulating miRNAs, hemolysis and blood cell contamination significantly affect profiles; samples should be processed within 2 h of collection; ethylene diamine tetraacetic acid (EDTA) is preferred while heparin should be avoided; samples should be "double spun" or filtered; room temperature or 4 °C storage for up to 24 h is preferred; miRNAs are stable for at least 1 year at -20 °C or -80 °C. For tissue-based analysis, warm ischemic time should be <1 h; cold ischemic time (4 °C) <24 h; common fixative used for all specimens; formalin fix up to 72 h prior to processing; enrich for cells of interest; validate candidate biomarkers with in situ visualization. Most importantly, all specimen types should have standard and common workflows with careful documentation of relevant pre-analytical variables.
Detecting Non-Gaussian and Lognormal Characteristics of Temperature and Water Vapor Mixing Ratio
NASA Astrophysics Data System (ADS)
Kliewer, A.; Fletcher, S. J.; Jones, A. S.; Forsythe, J. M.
2017-12-01
Many operational data assimilation and retrieval systems assume that the errors and variables come from a Gaussian distribution. This study builds upon previous results that shows that positive definite variables, specifically water vapor mixing ratio and temperature, can follow a non-Gaussian distribution and moreover a lognormal distribution. Previously, statistical testing procedures which included the Jarque-Bera test, the Shapiro-Wilk test, the Chi-squared goodness-of-fit test, and a composite test which incorporated the results of the former tests were employed to determine locations and time spans where atmospheric variables assume a non-Gaussian distribution. These tests are now investigated in a "sliding window" fashion in order to extend the testing procedure to near real-time. The analyzed 1-degree resolution data comes from the National Oceanic and Atmospheric Administration (NOAA) Global Forecast System (GFS) six hour forecast from the 0Z analysis. These results indicate the necessity of a Data Assimilation (DA) system to be able to properly use the lognormally-distributed variables in an appropriate Bayesian analysis that does not assume the variables are Gaussian.
The role of the Atlantic Water in multidecadal ocean variability in the Nordic and Barents Seas
NASA Astrophysics Data System (ADS)
Yashayaev, Igor; Seidov, Dan
2015-03-01
The focus of this work is on the temporal and spatial variability of the Atlantic Water (AW). We analyze the existing historic hydrographic data from the World Ocean Database to document the long-term variability of the AW throughflow across the Norwegian Sea to the western Barents Sea. Interannual-to-multidecadal variability of water temperature, salinity and density are analyzed along six composite sections crossing the AW flow and coastal currents at six selected locations. The stations are lined up from southwest to northeast - from the northern North Sea (69°N) throughout the Norwegian Sea to the Kola Section in the Barents Sea (33°30‧E). The changing volume and characteristics of the AW throughflow dominate the hydrographic variability on decadal and longer time scales in the studied area. We examine the role of fluctuations of the volume of inflow versus the variable local factors, such as the air-sea interaction and mixing with the fresh coastal and cold Arctic waters, in controlling the long-term regional variability. It is shown that the volume of the AW, passing through the area and affecting the position of the outer edge of the warm and saline core, correlates well with temperature and salinity averaged over the central portions of the studied sections. The coastal flow (mostly associated with the Norwegian Coastal Current flowing over the continental shelf) is largely controlled by seasonal local heat and freshwater impacts. Temperature records at all six lines show a warming trend superimposed on a series of relatively warm and cold periods, which in most cases follow, with a delay of four to five years, the periods of relatively low and high North Atlantic Oscillation (NAO), and the periods of relatively high and low Atlantic Multidecadal Oscillation (AMO), respectively. In general, there is a relatively high correlation between the year-to-year changes of the NAO and AMO indices, which is to some extent reflected in the (delayed) AW temperature fluctuations. It takes about two years for freshening and salinification events and a much shorter time (of about a year or less) for cooling and warming episodes to propagate or spread across the region. This significant difference in the propagation rates of salinity and temperature anomalies is explained by the leading role of horizontal advection in the propagation of salinity anomalies, whereas temperature is also controlled by the competing air-sea interaction along the AW throughflow. Therefore, although a water parcel moves within the flow as a whole, the temperature, salinity and density anomalies split and propagate separately, with the temperature and density signals leading relative to the salinity signal. A new hydrographic index, coastal-to-offshore density step, is introduced to capture variability in the strength of the AW volume transport. This index shows the same cycles of variability as observed in temperature, NAO and AMO but without an obvious trend.
Simulations of Eurasian winter temperature trends in coupled and uncoupled CFSv2
NASA Astrophysics Data System (ADS)
Collow, Thomas W.; Wang, Wanqiu; Kumar, Arun
2018-01-01
Conflicting results have been presented regarding the link between Arctic sea-ice loss and midlatitude cooling, particularly over Eurasia. This study analyzes uncoupled (atmosphere-only) and coupled (ocean-atmosphere) simulations by the Climate Forecast System, version 2 (CFSv2), to examine this linkage during the Northern Hemisphere winter, focusing on the simulation of the observed surface cooling trend over Eurasia during the last three decades. The uncoupled simulations are Atmospheric Model Intercomparison Project (AMIP) runs forced with mean seasonal cycles of sea surface temperature (SST) and sea ice, using combinations of SST and sea ice from different time periods to assess the role that each plays individually, and to assess the role of atmospheric internal variability. Coupled runs are used to further investigate the role of internal variability via the analysis of initialized predictions and the evolution of the forecast with lead time. The AMIP simulations show a mean warming response over Eurasia due to SST changes, but little response to changes in sea ice. Individual runs simulate cooler periods over Eurasia, and this is shown to be concurrent with a stronger Siberian high and warming over Greenland. No substantial differences in the variability of Eurasian surface temperatures are found between the different model configurations. In the coupled runs, the region of significant warming over Eurasia is small at short leads, but increases at longer leads. It is concluded that, although the models have some capability in highlighting the temperature variability over Eurasia, the observed cooling may still be a consequence of internal variability.
Kinetics of browning, phenolics, and 5-hydroxymethylfurfural in commercial sparkling wines.
Serra-Cayuela, A; Jourdes, M; Riu-Aumatell, M; Buxaderas, S; Teissedre, P-L; López-Tamames, E
2014-02-05
We analyzed the degree of browning (absorbance at 420 nm), the phenolics, and the 5-hydroxymethylfurfural (5-HMF) content in six sparkling wines series kept at three temperatures (4, 16, and 20 °C) for over 2 years. Caffeic acid, trans-coutaric acid, p-coumaric acid, and 5-HMF were the compounds with the greatest correlation with browning and time. 5-HMF was the only compound that evolved linearly at all temperatures. We propose that 5-HMF is a better time-temperature marker than the A₄₂₀ parameter or phenolics, because it shows higher linearity with time at all temperatures, is more sensitive to temperature changes, and has lower variability. The kinetics of 5-HMF was studied showing a zero-order behavior. We propose mathematical models that wineries can use to predict the browning shelf life of their sparkling wines as a function of the storage time and temperature.
Twentieth century warming of the tropical Atlantic captured by Sr-U paleothermometry
NASA Astrophysics Data System (ADS)
Alpert, Alice E.; Cohen, Anne L.; Oppo, Delia W.; DeCarlo, Thomas M.; Gaetani, Glenn A.; Hernandez-Delgado, Edwin A.; Winter, Amos; Gonneea, Meagan E.
2017-02-01
Coral skeletons are valuable archives of past ocean conditions. However, interpretation of coral paleotemperature records is confounded by uncertainties associated with single-element ratio thermometers, including Sr/Ca. A new approach, Sr-U, uses U/Ca to constrain the influence of Rayleigh fractionation on Sr/Ca. Here we build on the initial Pacific Porites Sr-U calibration to include multiple Atlantic and Pacific coral genera from multiple coral reef locations spanning a temperature range of 23.15-30.12°C. Accounting for the wintertime growth cessation of one Bermuda coral, we show that Sr-U is strongly correlated with the average water temperature at each location (r2 = 0.91, P < 0.001, n = 19). We applied the multispecies spatial calibration between Sr-U and temperature to reconstruct a 96 year long temperature record at Mona Island, Puerto Rico, using a coral not included in the calibration. Average Sr-U derived temperature for the period 1900-1996 is within 0.12°C of the average instrumental temperature at this site and captures the twentieth century warming trend of 0.06°C per decade. Sr-U also captures the timing of multiyear variability but with higher amplitude than implied by the instrumental data. Mean Sr-U temperatures and patterns of multiyear variability were replicated in a second coral in the same grid box. Conversely, Sr/Ca records from the same two corals were inconsistent with each other and failed to capture absolute sea temperatures, timing of multiyear variability, or the twentieth century warming trend. Our results suggest that coral Sr-U paleothermometry is a promising new tool for reconstruction of past ocean temperatures.
Twentieth century warming of the tropical Atlantic captured by Sr-U paleothermometry
Alpert, Alice E.; Cohen, Anne L.; Oppo, Delia W.; DeCarlo, Thomas M.; Gaetani, Glenn A.; Hernandez-Delgado, Edwin A.; Winter, Amos; Gonneea, Meagan
2017-01-01
Coral skeletons are valuable archives of past ocean conditions. However, interpretation of coral paleotemperature records is confounded by uncertainties associated with single-element ratio thermometers, including Sr/Ca. A new approach, Sr-U, uses U/Ca to constrain the influence of Rayleigh fractionation on Sr/Ca. Here we build on the initial Pacific Porites Sr-U calibration to include multiple Atlantic and Pacific coral genera from multiple coral reef locations spanning a temperature range of 23.15–30.12°C. Accounting for the wintertime growth cessation of one Bermuda coral, we show that Sr-U is strongly correlated with the average water temperature at each location (r2 = 0.91, P < 0.001, n = 19). We applied the multispecies spatial calibration between Sr-U and temperature to reconstruct a 96 year long temperature record at Mona Island, Puerto Rico, using a coral not included in the calibration. Average Sr-U derived temperature for the period 1900–1996 is within 0.12°C of the average instrumental temperature at this site and captures the twentieth century warming trend of 0.06°C per decade. Sr-U also captures the timing of multiyear variability but with higher amplitude than implied by the instrumental data. Mean Sr-U temperatures and patterns of multiyear variability were replicated in a second coral in the same grid box. Conversely, Sr/Ca records from the same two corals were inconsistent with each other and failed to capture absolute sea temperatures, timing of multiyear variability, or the twentieth century warming trend. Our results suggest that coral Sr-U paleothermometry is a promising new tool for reconstruction of past ocean temperatures.
Optimization of Chitosan Drying Temperature on The Quality and Quantity of Edible Film
NASA Astrophysics Data System (ADS)
Sri Wahyuni, Endah; Arifan, Fahmi
2018-02-01
Edible film is a thin layer (biodegradable) used to coat food and can be eaten. In addition edible film serves as a vapor transfer inhibitor, inhibits gas exchange, prevents aroma loss, prevents fat transfer, improves physical characteristics, and as an additive carrier. Edible film made of cassava starch, glycerol and chitosan. Cassava starch is used as raw material because it contains 80% starch. Glycerol serves as a plasticizer and chitosan serves to form films and membranes well. The purpose of this research is to know the characteristic test of edible film by using ANOVA analysis, where the variable of drying of the oven is temperature (70°C, 80°C, 90°C) and time for 3 hours and variables change chitosan (2 gr, 3 gr, 4 gr). The result of this research was obtained the most optimum for water content and water resistance in temperature variable 80 °C and chitosan 4 gr. The best edible films and bubbles on temperature variables are 80 °C and chitosan 4 gr.
An assessment of precipitation and surface air temperature over China by regional climate models
NASA Astrophysics Data System (ADS)
Wang, Xueyuan; Tang, Jianping; Niu, Xiaorui; Wang, Shuyu
2016-12-01
An analysis of a 20-year summer time simulation of present-day climate (1989-2008) over China using four regional climate models coupled with different land surface models is carried out. The climatic means, interannual variability, linear trends, and extremes are examined, with focus on precipitation and near surface air temperature. The models are able to reproduce the basic features of the observed summer mean precipitation and temperature over China and the regional detail due to topographic forcing. Overall, the model performance is better for temperature than that of precipitation. The models reasonably grasp the major anomalies and standard deviations over China and the five subregions studied. The models generally reproduce the spatial pattern of high interannual variability over wet regions, and low variability over the dry regions. The models also capture well the variable temperature gradient increase to the north by latitude. Both the observed and simulated linear trend of precipitation shows a drying tendency over the Yangtze River Basin and wetting over South China. The models capture well the relatively small temperature trends in large areas of China. The models reasonably simulate the characteristics of extreme precipitation indices of heavy rain days and heavy precipitation fraction. Most of the models also performed well in capturing both the sign and magnitude of the daily maximum and minimum temperatures over China.
Gestro, Massimo; Condemi, Vincenzo; Bardi, Luisella; Fantino, Claudio; Solimene, Umberto
2017-10-01
AbstractOtitis media (OM) is a very common disease in children, which results in a significant economic burden to the healthcare system for hospital-based outpatient departments, emergency departments (EDs), unscheduled medical examinations, and antibiotic prescriptions. The aim of this retrospective observational study is to investigate the association between climate variables, air pollutants, and OM visits observed in the 2007-2010 period at the ED of Cuneo, Italy. Measures of meteorological parameters (temperature, humidity, atmospheric pressure, wind) and outdoor air pollutants (particulate matter, ozone, nitrous dioxide) were analyzed at two statistical stages and in several specific steps (crude and adjusted models) according to Poisson's regression. Response variables included daily examinations for age groups 0-3, 0-6, and 0-18. Control variables included upper respiratory infections (URI), flu (FLU), and several calendar factors. A statistical procedure was implemented to capture any delayed effects. Results show a moderate association for temperature (T), age 0-3, and 0-6 with P < 0.05, as well as nitrous dioxide (NO 2 ) with P < 0.005 at age 0-18. Results of subsequent models point out to URI as an important control variable. No statistical association was observed for other pollutants and meteorological variables. The dose-response models (DLNM-final stage) implemented separately on a daily and hourly basis point out to an association between temperature (daily model) and RR 1.44 at age 0-3, CI 1.11-1.88 (lag time 0-1 days) and RR 1.43, CI 1.05-1.94 (lag time 0-3 days). The hourly model confirms a specific dose-response effect for T with RR 1.20, CI 1.04-1.38 (lag time range from 0 to 11 to 0-15 h) and for NO 2 with RR 1.03, CI 1.01-1.05 (lag time range from 0 to 8 to 0-15 h). These results support the hypothesis that the clinical context of URI may be an important risk factor in the onset of OM diagnosed at ED level. The study highlights the relevance of URI as a control variable to be included in the statistical analysis in association with meteorological factors and air pollutants. The study also points out to a moderate association of OM with low temperatures and NO 2 , with specific risk factors for this variable early in life. Further studies are needed to confirm these findings, particularly with respect to air pollutants in larger urban environments.
NASA Astrophysics Data System (ADS)
Gestro, Massimo; Condemi, Vincenzo; Bardi, Luisella; Fantino, Claudio; Solimene, Umberto
2017-10-01
Abstract Otitis media (OM) is a very common disease in children, which results in a significant economic burden to the healthcare system for hospital-based outpatient departments, emergency departments (EDs), unscheduled medical examinations, and antibiotic prescriptions. The aim of this retrospective observational study is to investigate the association between climate variables, air pollutants, and OM visits observed in the 2007-2010 period at the ED of Cuneo, Italy. Measures of meteorological parameters (temperature, humidity, atmospheric pressure, wind) and outdoor air pollutants (particulate matter, ozone, nitrous dioxide) were analyzed at two statistical stages and in several specific steps (crude and adjusted models) according to Poisson's regression. Response variables included daily examinations for age groups 0-3, 0-6, and 0-18. Control variables included upper respiratory infections (URI), flu (FLU), and several calendar factors. A statistical procedure was implemented to capture any delayed effects. Results show a moderate association for temperature ( T), age 0-3, and 0-6 with P < 0.05, as well as nitrous dioxide (NO2) with P < 0.005 at age 0-18. Results of subsequent models point out to URI as an important control variable. No statistical association was observed for other pollutants and meteorological variables. The dose-response models (DLNM—final stage) implemented separately on a daily and hourly basis point out to an association between temperature (daily model) and RR 1.44 at age 0-3, CI 1.11-1.88 (lag time 0-1 days) and RR 1.43, CI 1.05-1.94 (lag time 0-3 days). The hourly model confirms a specific dose-response effect for T with RR 1.20, CI 1.04-1.38 (lag time range from 0 to 11 to 0-15 h) and for NO2 with RR 1.03, CI 1.01-1.05 (lag time range from 0 to 8 to 0-15 h). These results support the hypothesis that the clinical context of URI may be an important risk factor in the onset of OM diagnosed at ED level. The study highlights the relevance of URI as a control variable to be included in the statistical analysis in association with meteorological factors and air pollutants. The study also points out to a moderate association of OM with low temperatures and NO2, with specific risk factors for this variable early in life. Further studies are needed to confirm these findings, particularly with respect to air pollutants in larger urban environments.
NASA Astrophysics Data System (ADS)
Reichstein, Markus; Rey, Ana; Freibauer, Annette; Tenhunen, John; Valentini, Riccardo; Banza, Joao; Casals, Pere; Cheng, Yufu; Grünzweig, Jose M.; Irvine, James; Joffre, Richard; Law, Beverly E.; Loustau, Denis; Miglietta, Franco; Oechel, Walter; Ourcival, Jean-Marc; Pereira, Joao S.; Peressotti, Alessandro; Ponti, Francesca; Qi, Ye; Rambal, Serge; Rayment, Mark; Romanya, Joan; Rossi, Federica; Tedeschi, Vanessa; Tirone, Giampiero; Xu, Ming; Yakir, Dan
2003-12-01
Field-chamber measurements of soil respiration from 17 different forest and shrubland sites in Europe and North America were summarized and analyzed with the goal to develop a model describing seasonal, interannual and spatial variability of soil respiration as affected by water availability, temperature, and site properties. The analysis was performed at a daily and at a monthly time step. With the daily time step, the relative soil water content in the upper soil layer expressed as a fraction of field capacity was a good predictor of soil respiration at all sites. Among the site variables tested, those related to site productivity (e.g., leaf area index) correlated significantly with soil respiration, while carbon pool variables like standing biomass or the litter and soil carbon stocks did not show a clear relationship with soil respiration. Furthermore, it was evidenced that the effect of precipitation on soil respiration stretched beyond its direct effect via soil moisture. A general statistical nonlinear regression model was developed to describe soil respiration as dependent on soil temperature, soil water content, and site-specific maximum leaf area index. The model explained nearly two thirds of the temporal and intersite variability of soil respiration with a mean absolute error of 0.82 μmol m-2 s-1. The parameterized model exhibits the following principal properties: (1) At a relative amount of upper-layer soil water of 16% of field capacity, half-maximal soil respiration rates are reached. (2) The apparent temperature sensitivity of soil respiration measured as Q10 varies between 1 and 5 depending on soil temperature and water content. (3) Soil respiration under reference moisture and temperature conditions is linearly related to maximum site leaf area index. At a monthly timescale, we employed the approach by [2002] that used monthly precipitation and air temperature to globally predict soil respiration (T&P model). While this model was able to explain some of the month-to-month variability of soil respiration, it failed to capture the intersite variability, regardless of whether the original or a new optimized model parameterization was used. In both cases, the residuals were strongly related to maximum site leaf area index. Thus, for a monthly timescale, we developed a simple T&P&LAI model that includes leaf area index as an additional predictor of soil respiration. This extended but still simple model performed nearly as well as the more detailed time step model and explained 50% of the overall and 65% of the site-to-site variability. Consequently, better estimates of globally distributed soil respiration should be obtained with the new model driven by satellite estimates of leaf area index. Before application at the continental or global scale, this approach should be further tested in boreal, cold-temperate, and tropical biomes as well as for non-woody vegetation.
Linear response theory for annealing of radiation damage in semiconductor devices
NASA Technical Reports Server (NTRS)
Litovchenko, Vitaly
1988-01-01
A theoretical study of the radiation/annealing response of MOS ICs is described. Although many experiments have been performed in this field, no comprehensive theory dealing with radiation/annealing response has been proposed. Many attempts have been made to apply linear response theory, but no theoretical foundation has been presented. The linear response theory outlined here is capable of describing a broad area of radiation/annealing response phenomena in MOS ICs, in particular, both simultaneous irradiation and annealing, as well as short- and long-term annealing, including the case when annealing is nearing completion. For the first time, a simple procedure is devised to determine the response function from experimental radiation/annealing data. In addition, this procedure enables us to study the effect of variable temperature and dose rate, effects which are of interest in spaceflight. In the past, the shift in threshold potential due to radiation/annealing has usually been assumed to depend on one variable: the time lapse between an impulse dose and the time of observation. While such a suggestion of uniformity in time is certainly true for a broad range of radiation annealing phenomena, it may not hold for some ranges of the variables of interest (temperature, dose rate, etc.). A response function is projected which is dependent on two variables: the time of observation and the time of the impulse dose. This dependence on two variables allows us to extend the theory to the treatment of a variable dose rate. Finally, the linear theory is generalized to the case in which the response is nonlinear with impulse dose, but is proportional to some impulse function of dose. A method to determine both the impulse and response functions is presented.
NASA Astrophysics Data System (ADS)
Noll, Stefan
2016-07-01
Rotational temperatures derived from hydroxyl (OH) line emission are frequently used to study atmospheric temperatures at altitudes of about 87 km. While the measurement only requires intensities of a few bright lines of an OH band, the interpretation can be complicated. Ground-based temperatures are averages for the entire, typically 8 km wide emission layer. Variations in the rotational temperature are then caused by changes of the kinetic temperature and the OH emission profile. The latter can also be accompanied by differences in the layer-averaged efficiency of the thermalisation of the OH rotational level populations. Since this especially depends on the frequency of collisions with O_2, which is low at high altitudes, the non-local thermodynamic equilibrium (non-LTE) contribution to the measured temperatures can be significant and variable. In order to understand the impact of the different sources of OH rotational temperature variations from time scales of hours to a solar cycle, we have studied spectra from the astronomical echelle spectrographs X-shooter and UVES located at Cerro Paranal in Chile. While the X-shooter data spanning 3.5 years allowed us to measure temperatures for 25 OH and two O_2 bands, the UVES spectra cover no more than 10 OH bands simultaneously but a period of about 15 years. These data have been complemented by kinetic temperature and OH and O_2 emission profiles from the multi-channel radiometer SABER on the TIMED satellite. Taking the O_2 and SABER kinetic temperatures as reference and considering the different band-dependent emission profiles, we could evaluate the contribution of non-LTE effects to the measured OH rotational temperatures depending on line set, band, and time. Non-LTE contributions are significant for most bands and can exceed 10 K. The amplitudes of their average nocturnal and seasonal variation are of the order of 1 to 2 K.
What do foraging wasps optimize in a variable environment, energy investment or body temperature?
Kovac, Helmut; Stabentheiner, Anton; Brodschneider, Robert
2015-11-01
Vespine wasps (Vespula sp.) are endowed with a pronounced ability of endothermic heat production. To show how they balance energetics and thermoregulation under variable environmental conditions, we measured the body temperature and respiration of sucrose foragers (1.5 M, unlimited flow) under variable ambient temperature (T a = 20-35 °C) and solar radiation (20-570 W m(-2)). Results revealed a graduated balancing of metabolic efforts with thermoregulatory needs. The thoracic temperature in the shade depended on ambient temperature, increasing from ~37 to 39 °C. However, wasps used solar heat gain to regulate their thorax temperature at a rather high level at low T a (mean T thorax ~ 39 °C). Only at high T a they used solar heat to reduce their metabolic rate remarkably. A high body temperature accelerated the suction speed and shortened foraging time. As the costs of foraging strongly depended on duration, the efficiency could be significantly increased with a high body temperature. Heat gain from solar radiation enabled the wasps to enhance foraging efficiency at high ambient temperature (T a = 30 °C) by up to 63 %. The well-balanced change of economic strategies in response to environmental conditions minimized costs of foraging and optimized energetic efficiency.
Enayatifard, Reza; Mahjoob, Aiding; Ebrahimi, Pouneh; Ebrahimnejad, Pedram
2015-01-01
Objective(s): A Box-Behnken design was used for evaluation of Eudragit coated diclofenac pellets. The purpose of this work was to optimize diclofenac pellets to improve the physicochemical properties using experimental design. Materials and Methods: Diclofenac was loaded onto the non-pareil beads using conventional coating pan. Film coating of pellets was done at the same pan. The effect of plasticizer level, curing temperature and curing time was determined on the release of diclofenac from pellets coated with polymethacrylates. Results: Increasing the plasticizer in the coating formula led to decrease in drug release and increasing the curing temperature and time resulted in higher drug release. The optimization process generated an optimum of 35% drug release at 3 hr. The level of plasticizer concentration, curing temperature and time were 20% w/w, 55 °C and 24 hr, respectively. Conclusion: This study showed that by controllinig the physical variables optimum drug release were obtained. PMID:26351563
NASA Astrophysics Data System (ADS)
Sicart, J.; Essery, R.; Pomeroy, J.
2004-12-01
At high latitudes, long-wave radiation emitted by the atmosphere and solar radiation can provide similar amounts of energy for snowmelt due to the low solar elevation and the high albedo of snow. This paper investigates temporal and spatial variations of long-wave irradiance at the snow surface in an open sub-Arctic environment. Measurements were conducted in the Wolf Creek Research Basin, Yukon Territory, Canada (60°36'N, 134°57'W) during the springs of 2002, 2003 and 2004. The main causes of temporal variability are air temperature and cloud cover, especially in the beginning of the melting period when the atmosphere is still cold. Spatial variability was investigated through a sensitivity study to sky view factors and to temperatures of surrounding terrain. The formula of Brutsaert gives a useful estimation of the clear-sky irradiance at hourly time steps. Emission by clouds was parameterized at the daily time scale from the atmospheric attenuation of solar radiation. The inclusion of air temperature variability does not much improve the calculation of cloud emission.
Thermo-mechanical fatigue behavior of reduced activation ferrite/martensite stainless steels
NASA Astrophysics Data System (ADS)
Petersen, C.; Rodrian, D.
2002-12-01
The thermo-mechanical cycling fatigue (TMCF) behavior of reduced activation ferrite/martensite stainless steels is examined. The test rig consists of a stiff load frame, which is directly heated by the digitally controlled ohmic heating device. Cylindrical specimens are used with a wall thickness of 0.4 mm. Variable strain rates are applied at TMCF test mode, due to the constant heating rate of 5.8 K/s and variable temperature changes. TMCF results of as received EUROFER 97 in the temperature range between 100 and 500-600 °C show a reduction in life time (a factor of 2) compared to F82H mod. and OPTIFER IV. TMCF-experiments with hold times of 100 and 1000 s show dramatic reduction in life time for all three materials.
Spatial variability of heating profiles in windrowed poultry litter
USDA-ARS?s Scientific Manuscript database
In-house windrow composting of broiler litter has been suggested as a means to reduce microbial populations between flocks. Published time-temperature goals are used to determine the success of the composting process for microbial reductions. Spatial and temporal density of temperature measurement ...
Physical characterization of intertidal estuarine plant habitats over time may reveal distribution-limiting thresholds. Temperature data from loggers embedded in sediment in transects crossing Zostera marina and Z. japonica habitats in lower Yaquina Bay, Oregon display signific...
THE INFLUENCE OF THE SPATIAL DISTRIBUTION OF SNOW ON BASIN-AVERAGED SNOWMELT. (R824784)
Spatial variability in snow accumulation and melt owing to topographic effects on solar radiation, snow drifting, air temperature and precipitation is important in determining the timing of snowmelt releases. Precipitation and temperature effects related to topography affect snow...
2016-11-29
travel time between the seafloor and the sea surface; bottom pressure and temperature; and near-bottom horizontal currents hourly for up to 5 years...pressure and current sensors (CPIESs). CPIESs (Figure 1) are moored instruments that measure (1) the round-trip acoustic travel time between the...measurements of surface-to-bottom round-trip acoustic- travel time (’c), bottom pressure and temperature, and near-bottom horizontal currents
2016-11-29
travel time between the seafloor and the sea surface; bottom pressure and temperature; and near-bottom horizontal currents hourly for up to 5 years...pressure and current sensors (CPIESs). CPIESs (Figure 1) are moored instruments that measure (1) the round-trip acoustic travel time between the...measurements of surface-to-bottom round-trip acoustic- travel time (’c), bottom pressure and temperature, and near-bottom horizontal currents
Performance of the STIS CCD Dark Rate Temperature Correction
NASA Astrophysics Data System (ADS)
Branton, Doug; STScI STIS Team
2018-06-01
Since July 2001, the Space Telescope Imaging Spectrograph (STIS) onboard Hubble has operated on its Side-2 electronics due to a failure in the primary Side-1 electronics. While nearly identical, Side-2 lacks a functioning temperature sensor for the CCD, introducing a variability in the CCD operating temperature. Previous analysis utilized the CCD housing temperature telemetry to characterize the relationship between the housing temperature and the dark rate. It was found that a first-order 7%/°C uniform dark correction demonstrated a considerable improvement in the quality of dark subtraction on Side-2 era CCD data, and that value has been used on all Side-2 CCD darks since. In this report, we show how this temperature correction has performed historically. We compare the current 7%/°C value against the ideal first-order correction at a given time (which can vary between ~6%/°C and ~10%/°C) as well as against a more complex second-order correction that applies a unique slope to each pixel as a function of dark rate and time. At worst, the current correction has performed ~1% worse than the second-order correction. Additionally, we present initial evidence suggesting that the variability in pixel temperature-sensitivity is significant enough to warrant a temperature correction that considers pixels individually rather than correcting them uniformly.
Century-scale variability in global annual runoff examined using a water balance model
McCabe, G.J.; Wolock, D.M.
2011-01-01
A monthly water balance model (WB model) is used with CRUTS2.1 monthly temperature and precipitation data to generate time series of monthly runoff for all land areas of the globe for the period 1905 through 2002. Even though annual precipitation accounts for most of the temporal and spatial variability in annual runoff, increases in temperature have had an increasingly negative effect on annual runoff after 1980. Although the effects of increasing temperature on runoff became more apparent after 1980, the relative magnitude of these effects are small compared to the effects of precipitation on global runoff. ?? 2010 Royal Meteorological Society.
The cross wavelet analysis of dengue fever variability influenced by meteorological conditions
NASA Astrophysics Data System (ADS)
Lin, Yuan-Chien; Yu, Hwa-Lung; Lee, Chieh-Han
2015-04-01
The multiyear variation of meteorological conditions induced by climate change causes the changing diffusion pattern of infectious disease and serious epidemic situation. Among them, dengue fever is one of the most serious vector-borne diseases distributed in tropical and sub-tropical regions. Dengue virus is transmitted by several species of mosquito and causing lots amount of human deaths every year around the world. The objective of this study is to investigate the impact of meteorological variables to the temporal variation of dengue fever epidemic in southern Taiwan. Several extreme and average indices of meteorological variables, i.e. temperature and humidity, were used for this analysis, including averaged, maximum and minimum temperature, and average rainfall, maximum 1-hr rainfall, and maximum 24-hr rainfall. This study plans to identify and quantify the nonlinear relationship of meteorological variables and dengue fever epidemic, finding the non-stationary time-frequency relationship and phase lag effects of those time series from 1998-2011 by using cross wavelet method. Results show that meteorological variables all have a significant time-frequency correlation region to dengue fever epidemic in frequency about one year (52 weeks). The associated phases can range from 0 to 90 degrees (0-13 weeks lag from meteorological factors to dengue incidences). Keywords: dengue fever, cross wavelet analysis, meteorological factor
Year-class formation of upper St. Lawrence River northern pike
Smith, B.M.; Farrell, J.M.; Underwood, H.B.; Smith, S.J.
2007-01-01
Variables associated with year-class formation in upper St. Lawrence River northern pike Esox lucius were examined to explore population trends. A partial least-squares (PLS) regression model (PLS 1) was used to relate a year-class strength index (YCSI; 1974-1997) to explanatory variables associated with spawning and nursery areas (seasonal water level and temperature and their variability, number of ice days, and last day of ice presence). A second model (PLS 2) incorporated four additional ecological variables: potential predators (abundance of double-crested cormorants Phalacrocorax auritus and yellow perch Perca flavescens), female northern pike biomass (as a measure of stock-recruitment effects), and total phosphorus (productivity). Trends in adult northern pike catch revealed a decline (1981-2005), and year-class strength was positively related to catch per unit effort (CPUE; R2 = 0.58). The YCSI exceeded the 23-year mean in only 2 of the last 10 years. Cyclic patterns in the YCSI time series (along with strong year-classes every 4-6 years) were apparent, as was a dampening effect of amplitude beginning around 1990. The PLS 1 model explained over 50% of variation in both explanatory variables and the dependent variable, YCSI first-order moving-average residuals. Variables retained (N = 10; Wold's statistic ??? 0.8) included negative YCSI associations with high summer water levels, high variability in spring and fall water levels, and variability in fall water temperature. The YCSI exhibited positive associations with high spring, summer, and fall water temperature, variability in spring temperature, and high winter and spring water level. The PLS 2 model led to positive YCSI associations with phosphorus and yellow perch CPUE and a negative correlation with double-crested cormorant abundance. Environmental variables (water level and temperature) are hypothesized to regulate northern pike YCSI cycles, and dampening in YCSI magnitude may be related to a combination of factors, including wetland habitat changes, reduced nutrient loading, and increased predation by double-crested cormorants. ?? Copyright by the American Fisheries Society 2007.
ARIMA representation for daily solar irradiance and surface air temperature time series
NASA Astrophysics Data System (ADS)
Kärner, Olavi
2009-06-01
Autoregressive integrated moving average (ARIMA) models are used to compare long-range temporal variability of the total solar irradiance (TSI) at the top of the atmosphere (TOA) and surface air temperature series. The comparison shows that one and the same type of the model is applicable to represent the TSI and air temperature series. In terms of the model type surface air temperature imitates closely that for the TSI. This may mean that currently no other forcing to the climate system is capable to change the random walk type variability established by the varying activity of the rotating Sun. The result should inspire more detailed examination of the dependence of various climate series on short-range fluctuations of TSI.
Hierarchical Hopping through Localized States in a Random Potential
NASA Astrophysics Data System (ADS)
Rajan, Harihar; Srivastava, Vipin
2003-03-01
Generalisation of Mott's idea on (low - temperature, large-time), Variable-range-hopping is considered to include hopping at some what higher temperature(that do not kill localization). These transitions complement the variable- range-hopping in that they do not conserve energy and occur at relatively lower time scales. The hopper picks the next state in a hierarchical fashion in accordance with certain conditions. The results are found to tie up nicely with an interesting property pertaining to the energy dependence of localized states. Acknowlwdgements: One of us(VS) would like to thank Association of Commonwealth Universities and Leverhulme Trust for financial help and to Sir Sam Edwards for hospitality at Cavendish Laboratory,Cambridge CB3 0HE.
ERIC Educational Resources Information Center
Charnock, H.
1980-01-01
Described is physical oceanography as analyzed by seven dependent variables, (three components of velocity, the pressure, density, temperature and salinity) as a function of three space variables and time. Topics discussed include the heat balance of the earth, current patterns in the ocean, heat transport, the air-sea interaction, and prospects…
Emergence of the significant local warming of Korea in CMIP5 projections
NASA Astrophysics Data System (ADS)
Boo, Kyung-On; Shim, Sungbo; Kim, Jee-Eun
2016-04-01
According to IPCC AR5, anthropogenic influence on warming is obvious in local scales, especially in some tropical regions. Detection of significant local warming is important for adaptation to climate change of society and ecosystem. Recently much attention has focused on the time of emergence (ToE) for the signal of anthropogenic climate change against the natural climate variability. Motivated from the previous studies, this study analyzes ToE of regional surface air temperature over Korea. Simulations of CMIP5 15 models are used for RCP 2.6, 4.5 and 8.5. For each year, JJA and DJF temperature anomalies are calculated for the time period 1900-1929. For noise of interannual variability, natural-only historical simulations of CMIP5 12 models are used and the standard deviation of the time series is obtained. For signal of warming, we examine the year when the signal above 2 standard deviations is detected in 80% of the models using 30-year smoothed time series. According to our results, interannual variability is larger in land than ocean. Seasonally, it is larger in winter than in summer. Accordingly, ToE of summertime temperature is earlier than that in winter and is expected to appear in 2030s from three RCPs. The seasonal difference is consistent with previous studies. Wintertime ToE appears in 2040s for RCP85 and 2060s for RCP4.5. The different emergence time between RCP8.5 and RCP4.5 reflects the influence of mitigation. In a similar way, daily maximum and minimum temperatures are analyzed. ToE of Tmin appears earlier than that of Tmax and difference is small. Acknowledgements. This study is supported by the National Institute of Meteorological Sciences, Korea Meteorological Administration (NIMR-2012-B-2).
Remote monitoring of parental incubation conditions in the greater sandhill crane
Gee, G.F.; Hatfield, J.; Howey, P.J.
1995-01-01
To monitor incubation conditions in nests of greater sandhill cranes, a radiotransmitting egg was built using six temperature sensors, a position sensor, and a light sensor. Sensor readings were received, along with time of observations, and stored in a computer. The egg was used to monitor incubation in nests of six pairs of cranes during 1987 and 1988. Ambient temperature was also measured. Analysis of covariance (ANCOVA) was used to relate highest egg temperature, core egg temperature, and lowest egg temperature to ambient temperature, time since the egg was last turned, and time since the beginning of incubation. Ambient temperature had the greatest effect on egg temperature (P 0.0001), followed by the time since the beginning of incubation and time since the egg was last turned. Pair effect, the class variable in the ANCOVA. was also very significant (P < 0.0001). A nine-term Fourier series was used to estimate the average core egg temperature versus time of day and was found to fit the data well (r2 = 0.94). The Fourier series will be used to run a mechanical incubator to simulate natural incubation conditions for cranes.
Katz, Erin M; Scott, Ruth M; Thomson, Christopher B; Mesa, Eileen; Evans, Richard; Conzemius, Michael G
2017-11-01
Objective To determine if environmental variables affect the average daily activity counts (AC) of dogs with osteoarthritis (OA) and/or owners' perception of their dog's clinical signs or quality of life. Methods The AC and Canine Brief Pain Inventory (CBPI) owner questionnaires of 62 dogs with OA were compared with daily environmental variables including the following: average temperature (°C), high temperature (°C), low temperature (°C), relative humidity (%), total precipitation (mm), average barometric pressure (hPa) and total daylight hours. Results Daily AC significantly correlated with average temperature and total daylight hours, but average temperature and total daylight hours accounted for less than 1% of variation in AC. No other significant relationships were found between daily AC and daily high temperature, low temperature, relative humidity, total precipitation or average barometric pressure. No statistical relationship was found between daily AC and the CBPI, nor between environmental variables and the CBPI. Canine Brief Pain Inventory scores for pain severity and pain interference decreased significantly over the test period. Clinical Significance The relationship between daily AC and average temperature and total daylight hours was significant, but unlikely to be clinically significant. Thus, environmental variables do not appear to have a clinically relevant bias on AC or owner CBPI questionnaires. The decrease over time in CBPI pain severity and pain interference values suggests owners completing the CBPI in this study were influenced by a caregiver placebo effect. Schattauer GmbH Stuttgart.
NASA Astrophysics Data System (ADS)
Juillet-Leclerc, A.; Reynaud, S.
2009-04-01
Oxygen isotopic ratio from coral skeleton is regarded for a long time as promising climate archives at seasonal scale. Although in isotopic disequilibrium relative to seawater, it is supposed to obey to the isotope thermometer. Indeed, coral oxygen isotopic records are strongly temperature dependent, but d18O-temperature calibrations derived from different corals are highly variable. The isotope thermometer assumption does not take into account vital effects due to biogenic origin of the mineral. Corals are animals living in symbiosis with algae (zooxanthellae). Interactions between symbiont photosynthesis and coral skeleton carbonation have been abundantly observed but they remain poorly understood and the effects of photosynthesis on coral growth and skeleton oxygen ratio are ignored. Coral cultured under two light conditions enabled to relate metabolic parameters and oxygen isotopic variability with photosynthetic activity. By examining responses provided by each colony they revealed that photosynthesis significantly affected d18O, by an opposite sense compared with the sole temperature influence. Since temperature and light changes are associated during seasonal variations, this complicates the interpretation of seasonal record. Additionally, this complexity is amplified because photosynthetic activity is also directly impacted by temperature variability. Thus, the annual isotopic amplitude due to the "physical" temperature influence is partly compensated through photosynthesis. Similar opposite effect is also shown by extension rate of the cultured colonies. First, we will examine and quantify consequences of photosynthesis on growth rate and oxygen isotopic signature, from cultured corals. Second, we will consider the consequences of this vital effect on data series, at seasonal and interannual time scales.
Godfrey, S; Watkins, J; Toop, K; Francis, C
2006-01-01
This report compares the enterococci count on samples obtained with Azide NutriDisk (AND) (sterile, dehydrated culture medium) and Slanetz and Bartley (SB) medium when exposed to a variable in incubation time and temperature. Three experiments were performed to examine the recovery of enterococci on AND and SB media using membrane filtration with respect to: (a) incubation time; (b) incubation temperature; and (c) a combination of the two. Presumptive counts were observed at 37, 41, 46 and 47 degrees C and at 20, 24, 28 and 48 h. These were compared to AWWA standard method 9230 C (44 degrees C, 44 h). Samples were confirmed using Kanamycin Aesculin Azide (KAA) agar. Friedman's ANOVA and Students t-test analysis indicated higher enumeration of enterococci when grown on AND (p = 0.45) than SB (p = < 0.001) at all temperatures with a survival threshold at 47 degrees C. Significant results for AND medium were noted at 20 h (p = 0.021), 24 h (p = 0.278) and 28 h (p = 0.543). The study concluded that the accuracy of the AND medium at a greater time and temperature range provided flexibility in incubator technology making it an appropriate alternative to SB medium for monitoring drinking water using field testing kits in developing countries.
NASA Astrophysics Data System (ADS)
Doering, K.; Steinschneider, S.
2017-12-01
The variability of renewable energy supply and drivers of demand across space and time largely determines the energy balance within power systems with a high penetration of renewable technologies. This study examines the joint spatiotemporal variability of summertime climate linked to renewable energy production (precipitation, wind speeds, insolation) and energy demand (temperature) across the contiguous United States (CONUS) between 1948 and 2015. Canonical correlation analysis is used to identify the major modes of joint variability between summer wind speeds and precipitation and related patterns of insolation and temperature. Canonical variates are then related to circulation anomalies to identify common drivers of the joint modes of climate variability. Results show that the first two modes of joint variability between summer wind speeds and precipitation exhibit pan-US dipole patterns with centers of action located in the eastern and central CONUS. Temperature and insolation also exhibit related US-wide dipoles. The relationship between canonical variates and lower-tropospheric geopotential height indicates that these modes are related to variability in the North Atlantic subtropical high (NASH). This insight can inform optimal strategies for siting renewables in an interconnected electric grid, and has implications for the impacts of climate variability and change on renewable energy systems.
Associations of multi-decadal sea-surface temperature variability with US drought
McCabe, G.J.; Betancourt, J.L.; Gray, S.T.; Palecki, M.A.; Hidalgo, H.G.
2008-01-01
Recent research suggests a link between drought occurrence in the conterminous United States (US) and sea surface temperature (SST) variability in both the tropical Pacific and North Atlantic Oceans on decadal to multidecadal (D2M) time scales. Results show that the Atlantic Multidecadal Oscillation (AMO) is the most consistent indicator of D2M drought variability in the conterminous US during the 20th century, but during the 19th century the tropical Pacific is a more consistent indicator of D2 M drought. The interaction between El Nin??o-Southern Oscillation (ENSO) and the AMO explain a large part of the D2M drought variability in the conterminous US. More modeling studies are needed to reveal possible mechanisms linking low-frequency ENSO variability and the AMO with drought in the conterminous US. ?? 2007 Elsevier Ltd and INQUA.
Variability of the Martian thermospheric temperatures during the last 7 Martian Years
NASA Astrophysics Data System (ADS)
Gonzalez-Galindo, Francisco; Lopez-Valverde, Miguel Angel; Millour, Ehouarn; Forget, François
2014-05-01
The temperatures and densities in the Martian upper atmosphere have a significant influence over the different processes producing atmospheric escape. A good knowledge of the thermosphere and its variability is thus necessary in order to better understand and quantify the atmospheric loss to space and the evolution of the planet. Different global models have been used to study the seasonal and interannual variability of the Martian thermosphere, usually considering three solar scenarios (solar minimum, solar medium and solar maximum conditions) to take into account the solar cycle variability. However, the variability of the solar activity within the simulated period of time is not usually considered in these models. We have improved the description of the UV solar flux included on the General Circulation Model for Mars developed at the Laboratoire de Météorologie Dynamique (LMD-MGCM) in order to include its observed day-to-day variability. We have used the model to simulate the thermospheric variability during Martian Years 24 to 30, using realistic UV solar fluxes and dust opacities. The model predicts and interannual variability of the temperatures in the upper thermosphere that ranges from about 50 K during the aphelion to up to 150 K during perihelion. The seasonal variability of temperatures due to the eccentricity of the Martian orbit is modified by the variability of the solar flux within a given Martian year. The solar rotation cycle produces temperature oscillations of up to 30 K. We have also studied the response of the modeled thermosphere to the global dust storms in Martian Year 25 and Martian Year 28. The atmospheric dynamics are significantly modified by the global dust storms, which induces significant changes in the thermospheric temperatures. The response of the model to the presence of both global dust storms is in good agreement with previous modeling results (Medvedev et al., Journal of Geophysical Research, 2013). As expected, the simulated ionosphere is also sensitive to the variability of the solar activity. Acknowledgemnt: Francisco González-Galindo is funded by a CSIC JAE-Doc contract financed by the European Social Fund
Olyphant, Greg A.; Whitman, Richard L.
2004-01-01
Data on hydrometeorological conditions and E. coli concentration were simultaneously collected on 57 occasions during the summer of 2000 at 63rd Street Beach, Chicago, Illinois. The data were used to identify and calibrate a statistical regression model aimed at predicting when the bacterial concentration of the beach water was above or below the level considered safe for full body contact. A wide range of hydrological, meteorological, and water quality variables were evaluated as possible predictive variables. These included wind speed and direction, incoming solar radiation (insolation), various time frames of rainfall, air temperature, lake stage and wave height, and water temperature, specific conductance, dissolved oxygen, pH, and turbidity. The best-fit model combined real-time measurements of wind direction and speed (onshore component of resultant wind vector), rainfall, insolation, lake stage, water temperature and turbidity to predict the geometric mean E.coliconcentration in the swimming zone of the beach. The model, which contained both additive and multiplicative (interaction) terms, accounted for 71% of the observed variability in the log E. coliconcentrations. A comparison between model predictions of when the beach should be closed and when the actualbacterial concentrations were above or below the 235 cfu 100 ml-1 threshold value, indicated that the model accurately predicted openingsversus closures 88% of the time.
Variability of the Denmark Strait overflow: Moored time series from 1996-2011
NASA Astrophysics Data System (ADS)
Jochumsen, Kerstin; Quadfasel, Detlef; Valdimarsson, Heã°Inn; Jónsson, SteingríMur
2012-12-01
The Denmark Strait overflow provides about half of the total dense water overflow from the Nordic Seas into the North Atlantic Ocean. The velocity of the overflow has been monitored in the Strait with two moored Acoustic Doppler Current Profilers since 1996 with several interruptions due to mooring losses or instrument failure. So far, overflow transports were only calculated when data from both moorings were available. In this work, we introduce a linear model to fill gaps in the time series when data from only one instrument is available. The mean overflow transport is 3.4 Sv and exhibits a variance of 2.0 Sv2. No significant trend was detected in the time series. The highest variability in the transport is associated with the passage of mesoscale eddies with time scales of 2-10 days (associated with a variance of 1.5 Sv2). Seasonal variability is weak and explains less than 5% of the variance in all time series, which is in contrast to the strong seasonal cycle found in high resolution model simulations. Interannual variability is on the order of 10% of the mean. A relation to atmospheric forcing such as the local wind stress curl, as well as to larger scale phenomena, e.g. the North Atlantic Oscillation, is not detected. Since 2005 data from moored temperature, conductivity and pressure recorders have been available as well, monitoring the hydrographic variability at the bottom of Denmark Strait. In recent years the temperature time series of the Denmark Strait overflow revealed a cooling, while the salinity stayed nearly constant.
Denawaka, Chamila J; Fowlis, Ian A; Dean, John R
2014-04-18
An evaluation of static headspace-multicapillary column-gas chromatography-ion mobility spectrometry (SHS-MCC-GC-IMS) has been undertaken to assess its applicability for the determination of 32 volatile compounds (VCs). The key experimental variables of sample incubation time and temperature have been evaluated alongside the MCC-GC variables of column polarity, syringe temperature, injection temperature, injection volume, column temperature and carrier gas flow rate coupled with the IMS variables of temperature and drift gas flow rate. This evaluation resulted in six sets of experimental variables being required to separate the 32 VCs. The optimum experimental variables for SHS-MCC-GC-IMS, the retention time and drift time operating parameters were determined; to normalise the operating parameters, the relative drift time and normalised reduced ion mobility for each VC were determined. In addition, a full theoretical explanation is provided on the formation of the monomer, dimer and trimer of a VC. The optimum operating condition for each VC calibration data was obtained alongside limit of detection (LOD) and limit of quantitation (LOQ) values. Typical detection limits ranged from 0.1ng bis(methylthio)methane, ethylbutanoate and (E)-2-nonenal to 472ng isovaleric acid with correlation coefficient (R(2)) data ranging from 0.9793 (for the dimer of octanal) through to 0.9990 (for isobutyric acid). Finally, the developed protocols were applied to the analysis of malodour in sock samples. Initial work involved spiking an inert matrix and sock samples with appropriate concentrations of eight VCs. The average recovery from the inert matrix was 101±18% (n=8), while recoveries from the sock samples were lower, that is, 54±30% (n=8) for sock type 1 and 78±24% (n=6) for sock type 2. Finally, SHS-MCC-GC-IMS was applied to sock malodour in a field trial based on 11 volunteers (mixed gender) over a 3-week period. By applying the SHS-MCC-GC-IMS database, four VCs were identified and quantified: ammonia, dimethyl disulphide, dimethyl trisulphide and butyric acid. A link was identified between the presence of high ammonia and dimethyl disulphide concentrations and a high malodour odour grading, that is, ≥ 6. Statistical analysis did not find any correlation between the occurrence of dimethyl disulphide and participant gender. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Evaluation of the heat balance constituents of the upper mixed layer in the North Atlantic
NASA Astrophysics Data System (ADS)
Polonsky, A. B.; Sukhonos, P. A.
2016-11-01
Different physical mechanisms which cause interannual and interdecadal temperature anomalies in the upper mixed layer (UML) of the North Atlantic are investigated using the data of ORA-S3 reanalysis for the period of 1959-2011. It is shown that the annual mean heat budget in UML is mainly caused by the balance between advective heat transfer and horizontal turbulent mixing (estimated as a residual term in the equation of thermal balance). The local UML temperature change and contribution from the heat fluxes on the lower boundary of the UML to the heat budget of the upper layer are insignificant for the time scale under consideration. The contribution of the heat fluxes on the upper UML boundary to the low-frequency variability of the upper layer temperature in the whole North Atlantic area is substantially less than 30%. Areas like the northwestern part of the Northern Subtropical Anticyclonic Gyre (NSAG), where their contribution exceeds 30-60%, are exceptions. The typical time scales of advective heat transfer variability are revealed. In the NSAG area, an interannual variability associated with the North Atlantic Oscillation dominates, while in the North Atlantic subpolar gyre, an interdecadal variability of advective transfers with periods of more than 30 years prevails.
Advanced Ceramic Technology for Space Applications at NASA MSFC
NASA Technical Reports Server (NTRS)
Alim, Mohammad A.
2003-01-01
The ceramic processing technology using conventional methods is applied to the making of the state-of-the-art ceramics known as smart ceramics or intelligent ceramics or electroceramics. The sol-gel and wet chemical processing routes are excluded in this investigation considering economic aspect and proportionate benefit of the resulting product. The use of ceramic ingredients in making coatings or devices employing vacuum coating unit is also excluded in this investigation. Based on the present information it is anticipated that the conventional processing methods provide identical performing ceramics when compared to that processed by the chemical routes. This is possible when sintering temperature, heating and cooling ramps, peak temperature (sintering temperature), soak-time (hold-time), etc. are considered as variable parameters. In addition, optional calcination step prior to the sintering operation remains as a vital variable parameter. These variable parameters constitute a sintering profile to obtain a sintered product. Also it is possible to obtain identical products for more than one sintering profile attributing to the calcination step in conjunction with the variables of the sintering profile. Overall, the state-of-the-art ceramic technology is evaluated for potential thermal and electrical insulation coatings, microelectronics and integrated circuits, discrete and integrated devices, etc. applications in the space program.
Effects of the 7-8-year cycle in daily mean air temperature as a cross-scale information transfer
NASA Astrophysics Data System (ADS)
Jajcay, Nikola; Hlinka, Jaroslav; Paluš, Milan
2015-04-01
Using a novel nonlinear time-series analysis method, an information transfer from larger to smaller scales of the air temperature variability has been observed in daily mean surface air temperature (SAT) data from European stations as the influence of the phase of slow oscillatory phenomena with periods around 6-11 years on amplitudes of the variability characterized by smaller temporal scales from a few months to 4-5 years [1]. The strongest effect is exerted by an oscillatory mode with the period close to 8 years and its influence can be seen in 1-2 °C differences of the conditional SAT means taken conditionally on the phase of the 8-year cycle. The size of this effect, however, changes in space and time. The changes in time are studied using sliding window technique, showing that the effect evolves in time, and during the last decades the effect is stronger and significant. Sliding window technique was used along with seasonal division of the data, and it has been found that the cycle is most pronounced in the winter season. Different types of surrogate data are applied in order to establish statistical significance and distinguish the effect of the 7-8-yr cycle from climate variability on shorter time scales. [1] M. Palus, Phys. Rev. Lett. 112 078702 (2014) This study is supported by the Ministry of Education, Youth and Sports of the Czech Republic within the Program KONTAKT II, Project No. LH14001.
Rugged Metropolis sampling with simultaneous updating of two dynamical variables
NASA Astrophysics Data System (ADS)
Berg, Bernd A.; Zhou, Huan-Xiang
2005-07-01
The rugged Metropolis (RM) algorithm is a biased updating scheme which aims at directly hitting the most likely configurations in a rugged free-energy landscape. Details of the one-variable (RM1) implementation of this algorithm are presented. This is followed by an extension to simultaneous updating of two dynamical variables (RM2) . In a test with the brain peptide Met-Enkephalin in vacuum RM2 improves conventional Metropolis simulations by a factor of about 4. Correlations between three or more dihedral angles appear to prevent larger improvements at low temperatures. We also investigate a multihit Metropolis scheme, which spends more CPU time on variables with large autocorrelation times.
Variable sensitivity of US maize yield to high temperatures across developmental stages
NASA Astrophysics Data System (ADS)
Butler, E. E.; Huybers, P. J.
2013-12-01
The sensitivity of maize to high temperatures has been widely demonstrated. Furthermore, field work has indicated that reproductive development stages are particularly sensitive to stress, but this relationship has not been quantified across a wide geographic region. Here, the relationship between maize yield and temperature variations is examined as a function of developmental stage. US state-level data from the National Agriculture Statistics Service provide dates for six growing stages: planting, silking, doughing, dented, mature, and harvested. Temperatures that correspond to each developmental stage are then inferred from a network of weather station observations interpolated to the county level, and a multiple linear regression technique is employed to estimate the sensitivity of county yield outcomes to variations in growing-degree days and an analogous measure of high temperatures referred to as killing-degree days. Uncertainties in the transition times between county-level growth stages are accounted for. Results indicate that the silking and dented stages are generally the most sensitive to killing degree days, with silking the most sensitive stage in the US South and dented the most sensitive in the US North. These variable patterns of sensitivity aid in interpreting which weather events are of greatest significance to maize yields and provide some insight into how shifts in planting time or changes in developmental timing would influence the risks associated with exposure to high temperatures.
NASA Astrophysics Data System (ADS)
Matter, Margaret A.; Garcia, Luis A.; Fontane, Darrell G.; Bledsoe, Brian
2010-01-01
SummaryMountain snowpack is the main source of water in the semi-arid Colorado River Basin (CRB), and while the demands for water are increasing, competing and often conflicting, the supply is limited and has become increasingly variable over the 20th Century. Greater variability is believed to contribute to lower accuracy in water supply forecasts, plus greater variability violates the assumption of stationarity, a fundamental assumption of many methods used in water resources engineering planning, design and management. Thus, it is essential to understand the underpinnings of hydroclimatic variability in order to accurately predict effects of climate changes and effectively meet future water supply challenges. A new methodology was applied to characterized time series of temperature, precipitation, and streamflow (i.e., historic and reconstructed undepleted flows) according to the three climate regimes that occurred in CRB during the 20th Century. Results for two tributaries in the Upper CRB show that hydroclimatic variability is more deterministic than previously thought because it entails complementary temperature and precipitation patterns associated with wetter or drier conditions on climate regime and annual scales. Complementary temperature and precipitation patterns characterize climate regime type (e.g., cool/wet and warm/dry), and the patterns entail increasing or decreasing temperatures and changes in magnitude and timing of precipitation according to the climate regime type. Accompanying each climate regime on annual scales are complementary temperature ( T) and precipitation ( P) patterns that are associated with upcoming precipitation and annual basin yield (i.e., total annual flow volume at a streamflow gauge). Annual complementary T and P patterns establish by fall, are detectable as early as September, persist to early spring, are related to the relative magnitude of upcoming precipitation and annual basin yield, are unique to climate regime type, and are specific to each river basin. Thus, while most of the water supply in the Upper CRB originates from winter snowpack, statistically significant indictors of relative magnitude of upcoming precipitation and runoff are evident in the fall, well before appreciable snow accumulation. Results of this study suggest strategies that may integrated into existing forecast methods to potentially improve forecast accuracy and advance lead time by as much as six months (i.e., from April 1 to October 1 of the previous year). These techniques also have applications in downscaling climate models and in river restoration and management.
Forest thinning and soil respiration in a ponderosa pine plantation in the Sierra Nevada.
Tang, Jianwu; Qi, Ye; Xu, Ming; Misson, Laurent; Goldstein, Allen H
2005-01-01
Soil respiration is controlled by soil temperature, soil water, fine roots, microbial activity, and soil physical and chemical properties. Forest thinning changes soil temperature, soil water content, and root density and activity, and thus changes soil respiration. We measured soil respiration monthly and soil temperature and volumetric soil water continuously in a young ponderosa pine (Pinus ponderosa Dougl. ex P. Laws. & C. Laws.) plantation in the Sierra Nevada Mountains in California from June 1998 to May 2000 (before a thinning that removed 30% of the biomass), and from May to December 2001 (after thinning). Thinning increased the spatial homogeneity of soil temperature and respiration. We conducted a multivariate analysis with two independent variables of soil temperature and water and a categorical variable representing the thinning event to simulate soil respiration and assess the effect of thinning. Thinning did not change the sensitivity of soil respiration to temperature or to water, but decreased total soil respiration by 13% at a given temperature and water content. This decrease in soil respiration was likely associated with the decrease in root density after thinning. With a model driven by continuous soil temperature and water time series, we estimated that total soil respiration was 948, 949 and 831 g C m(-2) year(-1) in the years 1999, 2000 and 2001, respectively. Although thinning reduced soil respiration at a given temperature and water content, because of natural climate variability and the thinning effect on soil temperature and water, actual cumulative soil respiration showed no clear trend following thinning. We conclude that the effect of forest thinning on soil respiration is the combined result of a decrease in root respiration, an increase in soil organic matter, and changes in soil temperature and water due to both thinning and interannual climate variability.
Measuring Skin Temperatures with the IASI Hyperspectral Mission
NASA Astrophysics Data System (ADS)
Safieddine, S.; George, M.; Clarisse, L.; Clerbaux, C.
2017-12-01
Although the role of satellites in observing the variability of the Earth system has increased in recent decades, remote-sensing observations are still underexploited to accurately assess climate change fingerprints, in particular temperature variations. The IASI - Flux and Temperature (IASI-FT) project aims at providing new benchmarks for temperature observations using the calibrated radiances measured twice a day at any location by the IASI thermal infrared instrument on the suite of MetOp satellites (2006-2025). The main challenge is to achieve the accuracy and stability needed for climate studies, particularly that required for climate trends. Time series for land and sea skin surface temperatures are derived and compared with in situ measurements and atmospheric reanalysis. The observed trends are analyzed at seasonal and regional scales in order to disentangle natural (weather/dynamical) variability and human-induced climate forcings.
Mesopause region temperature variability and its trend in southern Brazil
NASA Astrophysics Data System (ADS)
Venturini, Mateus S.; Bageston, José V.; Caetano, Nattan R.; Peres, Lucas V.; Bencherif, Hassan; Schuch, Nelson J.
2018-03-01
Nowadays, the study of the upper atmosphere is increasing, mostly because of the need to understand the patterns of Earth's atmosphere. Since studies on global warming have become very important for the development of new technologies, understanding all regions of the atmosphere becomes an unavoidable task. In this paper, we aim to analyze the temperature variability and its trend in the mesosphere and lower thermosphere (MLT) region during a period of 12 years (from 2003 to 2014). For this purpose, three different heights, i.e., 85, 90 and 95 km, were focused on in order to investigate the upper atmosphere, and a geographic region different to other studies was chosen, in the southern region of Brazil, centered in the city of Santa Maria, RS (29°41'02'' S; 53°48'25'' W). In order to reach the objectives of this work, temperature data from the SABER instrument (Sounding of the Atmosphere using Broadband Emission Radiometry), aboard NASA's Thermosphere Ionosphere Mesosphere Energetics Dynamics (TIMED) satellite, were used. Finally, two cases were studied related to distinct grids of latitude/longitude used to obtain the mean temperature profiles. The first case considered a grid of 20° × 20° lat/long, centered in Santa Maria, RS, Brazil. In the second case, the region was reduced to a size of 15° × 15° in order to compare the results and discuss the two cases in terms of differences or similarities in temperature trends. Observations show that the size of the geographical area used for the average temperature profiles can influence the results of variability and trend of the temperature. In addition, reducing the time duration of analyses from 24 to 12 h a day also influences the trend significantly. For the smaller geographical region (15° × 15°) and the 12 h daily time window (09:00-21:00 UT) it was found that the main contributions for the temperature variability at the three heights were the annual and semi-annual cycles and the solar flux influence. A smaller trend (-0.02 ± 0.16 % decade-1) was found at 90 km height and small positive trends (0.58 ± 0.26 % and 0.41 ± 0.19 % decade-1) were found at altitudes of 85 and 95 km, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elrod, D.C.; Turner, W.D.
TRUMP solves a general nonlinear parabolic partial differential equation describing flow in various kinds of potential fields, such as fields of temperature, pressure, or electricity and magnetism; simultaneously, it will solve two additional equations representing, in thermal problems, heat production by decomposition of two reactants having rate constants with a general Arrhenius temperature dependence. Steady-state and transient flow in one, two, or three dimensions are considered in geometrical configurations having simple or complex shapes and structures. Problem parameters may vary with spatial position, time, or primary dependent variables--temperature, pressure, or field strength. Initial conditions may vary with spatial position, andmore » among the criteria that may be specified for ending a problem are upper and lower limits on the size of the primary dependent variable, upper limits on the problem time or on the number of time-steps or on the computer time, and attainment of steady state.IBM360,370;CDC7600; FORTRAN IV (95%) and BAL (5%) (IBM); FORTRAN IV (CDC); OS/360 (IBM360), OS/370 (IBM370), SCOPE 2.1.5 (CDC7600); As dimensioned, the program requires 400K bytes of storage on an IBM370 and 145,100 (octal) words on a CDC7600.« less
Marcilio, Izabel; Hajat, Shakoor; Gouveia, Nelson
2013-08-01
This study aimed to develop different models to forecast the daily number of patients seeking emergency department (ED) care in a general hospital according to calendar variables and ambient temperature readings and to compare the models in terms of forecasting accuracy. The authors developed and tested six different models of ED patient visits using total daily counts of patient visits to an ED in Sao Paulo, Brazil, from January 1, 2008, to December 31, 2010. The first 33 months of the data set were used to develop the ED patient visits forecasting models (the training set), leaving the last 3 months to measure each model's forecasting accuracy by the mean absolute percentage error (MAPE). Forecasting models were developed using three different time-series analysis methods: generalized linear models (GLM), generalized estimating equations (GEE), and seasonal autoregressive integrated moving average (SARIMA). For each method, models were explored with and without the effect of mean daily temperature as a predictive variable. The daily mean number of ED visits was 389, ranging from 166 to 613. Data showed a weekly seasonal distribution, with highest patient volumes on Mondays and lowest patient volumes on weekends. There was little variation in daily visits by month. GLM and GEE models showed better forecasting accuracy than SARIMA models. For instance, the MAPEs from GLM models and GEE models at the first month of forecasting (October 2012) were 11.5 and 10.8% (models with and without control for the temperature effect, respectively), while the MAPEs from SARIMA models were 12.8 and 11.7%. For all models, controlling for the effect of temperature resulted in worse or similar forecasting ability than models with calendar variables alone, and forecasting accuracy was better for the short-term horizon (7 days in advance) than for the longer term (30 days in advance). This study indicates that time-series models can be developed to provide forecasts of daily ED patient visits, and forecasting ability was dependent on the type of model employed and the length of the time horizon being predicted. In this setting, GLM and GEE models showed better accuracy than SARIMA models. Including information about ambient temperature in the models did not improve forecasting accuracy. Forecasting models based on calendar variables alone did in general detect patterns of daily variability in ED volume and thus could be used for developing an automated system for better planning of personnel resources. © 2013 by the Society for Academic Emergency Medicine.
Seasonal and spatial variation in broadleaf forest model parameters
NASA Astrophysics Data System (ADS)
Groenendijk, M.; van der Molen, M. K.; Dolman, A. J.
2009-04-01
Process based, coupled ecosystem carbon, energy and water cycle models are used with the ultimate goal to project the effect of future climate change on the terrestrial carbon cycle. A typical dilemma in such exercises is how much detail the model must be given to describe the observations reasonably realistic while also be general. We use a simple vegetation model (5PM) with five model parameters to study the variability of the parameters. These parameters are derived from the observed carbon and water fluxes from the FLUXNET database. For 15 broadleaf forests the model parameters were derived for different time resolutions. It appears that in general for all forests, the correlation coefficient between observed and simulated carbon and water fluxes improves with a higher parameter time resolution. The quality of the simulations is thus always better when a higher time resolution is used. These results show that annual parameters are not capable of properly describing weather effects on ecosystem fluxes, and that two day time resolution yields the best results. A first indication of the climate constraints can be found by the seasonal variation of the covariance between Jm, which describes the maximum electron transport for photosynthesis, and climate variables. A general seasonality we found is that during winter the covariance with all climate variables is zero. Jm increases rapidly after initial spring warming, resulting in a large covariance with air temperature and global radiation. During summer Jm is less variable, but co-varies negatively with air temperature and vapour pressure deficit and positively with soil water content. A temperature response appears during spring and autumn for broadleaf forests. This shows that an annual model parameter cannot be representative for the entire year. And relations with mean annual temperature are not possible. During summer the photosynthesis parameters are constrained by water availability, soil water content and vapour pressure deficit.
Cockle, Diane Lyn; Bell, Lynne S
2017-03-01
Little is known about the nature and trajectory of human decomposition in Canada. This study involved the examination of 96 retrospective police death investigation cases selected using the Canadian ViCLAS (Violent Crime Linkage Analysis System) and sudden death police databases. A classification system was designed and applied based on the latest visible stages of autolysis (stages 1-2), putrefaction (3-5) and skeletonisation (6-8) observed. The analysis of the progression of decomposition using time (Post Mortem Interval (PMI) in days) and temperature accumulated-degree-days (ADD) score found considerable variability during the putrefaction and skeletonisation phases, with poor predictability noted after stage 5 (post bloat). The visible progression of decomposition outdoors was characterized by a brown to black discolouration at stage 5 and remnant desiccated black tissue at stage 7. No bodies were totally skeletonised in under one year. Mummification of tissue was rare with earlier onset in winter as opposed to summer, considered likely due to lower seasonal humidity. It was found that neither ADD nor the PMI were significant dependent variables for the decomposition score with correlations of 53% for temperature and 41% for time. It took almost twice as much time and 1.5 times more temperature (ADD) for the set of cases exposed to cold and freezing temperatures (4°C or less) to reach putrefaction compared to the warm group. The amount of precipitation and/or clothing had a negligible impact on the advancement of decomposition, whereas the lack of sun exposure (full shade) had a small positive effect. This study found that the poor predictability of onset and the duration of late stage decomposition, combined with our limited understanding of the full range of variables which influence the speed of decomposition, makes PMI estimations for exposed terrestrial cases in Canada unreliable, but also calls in question PMI estimations elsewhere. Copyright © 2016 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.
Salgado, Diana; Torres, J Antonio; Welti-Chanes, Jorge; Velazquez, Gonzalo
2011-08-01
Consumer demand for food safety and quality improvements, combined with new regulations, requires determining the processor's confidence level that processes lowering safety risks while retaining quality will meet consumer expectations and regulatory requirements. Monte Carlo calculation procedures incorporate input data variability to obtain the statistical distribution of the output of prediction models. This advantage was used to analyze the survival risk of Mycobacterium avium subspecies paratuberculosis (M. paratuberculosis) and Clostridium botulinum spores in high-temperature short-time (HTST) milk and canned mushrooms, respectively. The results showed an estimated 68.4% probability that the 15 sec HTST process would not achieve at least 5 decimal reductions in M. paratuberculosis counts. Although estimates of the raw milk load of this pathogen are not available to estimate the probability of finding it in pasteurized milk, the wide range of the estimated decimal reductions, reflecting the variability of the experimental data available, should be a concern to dairy processors. Knowledge of the C. botulinum initial load and decimal thermal time variability was used to estimate an 8.5 min thermal process time at 110 °C for canned mushrooms reducing the risk to 10⁻⁹ spores/container with a 95% confidence. This value was substantially higher than the one estimated using average values (6.0 min) with an unacceptable 68.6% probability of missing the desired processing objective. Finally, the benefit of reducing the variability in initial load and decimal thermal time was confirmed, achieving a 26.3% reduction in processing time when standard deviation values were lowered by 90%. In spite of novel technologies, commercialized or under development, thermal processing continues to be the most reliable and cost-effective alternative to deliver safe foods. However, the severity of the process should be assessed to avoid under- and over-processing and determine opportunities for improvement. This should include a systematic approach to consider variability in the parameters for the models used by food process engineers when designing a thermal process. The Monte Carlo procedure here presented is a tool to facilitate this task for the determination of process time at a constant lethal temperature. © 2011 Institute of Food Technologists®
Jensen, Dane A; Macinga, David R; Shumaker, David J; Bellino, Roberto; Arbogast, James W; Schaffner, Donald W
2017-06-01
The literature on hand washing, while extensive, often contains conflicting data, and key variables are only superficially studied or not studied at all. Some hand washing recommendations are made without scientific support, and agreement between recommendations is limited. The influence of key variables such as soap volume, lather time, water temperature, and product formulation on hand washing efficacy was investigated in the present study. Baseline conditions were 1 mL of a bland (nonantimicrobial) soap, a 5-s lather time, and 38°C (100°F) water temperature. A nonpathogenic strain of Escherichia coli (ATCC 11229) was the challenge microorganism. Twenty volunteers (10 men and 10 women) participated in the study, and each test condition had 20 replicates. An antimicrobial soap formulation (1% chloroxylenol) was not significantly more effective than the bland soap for removing E. coli under a variety of test conditions. Overall, the mean reduction was 1.94 log CFU (range, 1.83 to 2.10 log CFU) with the antimicrobial soap and 2.22 log CFU (range, 1.91 to 2.54 log CFU) with the bland soap. Overall, lather time significantly influenced efficacy in one scenario, in which a 0.5-log greater reduction was observed after 20 s with bland soap compared with the baseline wash (P = 0.020). Water temperature as high as 38°C (100°F) and as low as 15°C (60°F) did not have a significant effect on the reduction of bacteria during hand washing; however, the energy usage differed between these temperatures. No significant differences were observed in mean log reductions experienced by men and women (both 2.08 log CFU; P = 0.988). A large part of the variability in the data was associated with the behaviors of the volunteers. Understanding what behaviors and human factors most influence hand washing may help researchers find techniques to optimize the effectiveness of hand washing.
Continental-Scale Temperature Reconstructions from the PAGES 2k Network
NASA Astrophysics Data System (ADS)
Kaufman, D. S.
2012-12-01
We present a major new synthesis of seven regional temperature reconstructions to elucidate the global pattern of variations and their association with climate-forcing mechanisms over the past two millennia. To coordinate the integration of new and existing data of all proxy types, the Past Global Changes (PAGES) project developed the 2k Network. It comprises nine working groups representing eight continental-scale regions and the oceans. The PAGES 2k Consortium, authoring this paper, presently includes 79 representatives from 25 countries. For this synthesis, each of the PAGES 2k working groups identified the proxy climate records for reconstructing past temperature and associated uncertainty using the data and methodologies that they deemed most appropriate for their region. The datasets are from 973 sites where tree rings, pollen, corals, lake and marine sediment, glacier ice, speleothems, and historical documents record changes in biologically and physically mediated processes that are sensitive to temperature change, among other climatic factors. The proxy records used for this synthesis are available through the NOAA World Data Center for Paleoclimatology. On long time scales, the temperature reconstructions display similarities among regions, and a large part of this common behavior can be explained by known climate forcings. Reconstructed temperatures in all regions show an overall long-term cooling trend until around 1900 C.E., followed by strong warming during the 20th century. On the multi-decadal time scale, we assessed the variability among the temperature reconstructions using principal component (PC) analysis of the standardized decadal mean temperatures over the period of overlap among the reconstructions (1200 to 1980 C.E.). PC1 explains 35% of the total variability and is strongly correlated with temperature reconstructions from the four Northern Hemisphere regions, and with the sum of external forcings including solar, volcanic, and greenhouse gases. PC2 captures 18% of the variability and is correlated most strongly with the Southern Hemisphere regions of Australasia and South America. PC3 captures 15% of the variability in the temperature reconstructions with a predominant loading from Antarctica. The timing of extremely warm and cold decades (10th percentiles) in each region were analyzed and compared with climate forcings. Only 22% of the regionally coldest decades can be ascribed to extreme minima in solar forcing, and 17% to volcanic forcing. The association between extremely warm regional temperatures and solar maxima is weaker than for cold temperatures and their corresponding solar minima. Spatially, volcanic forcing moderately increased the frequency of extremely cold decades in the Northern Hemisphere reconstructions, but had no significant effect in the Southern Hemisphere. Solar and volcanic impacts do not induce globally consistent decadal temperature shifts, but they increase the probability of cooling or warming at the continental scale. The majority of cold and warm decades identified here cannot be explained by changes in the records of volcanic activity or solar forcing. This indicates that at this timescale, prior to the anthropogenic buildup of greenhouse gases, unforced internal variability in the coupled ocean/atmosphere system was the dominant control on temperature variation.
Scutellà, Bernadette; Trelea, Ioan Cristian; Bourlès, Erwan; Fonseca, Fernanda; Passot, Stephanie
2018-07-01
During the primary drying step of the freeze-drying process, mass transfer resistance strongly affects the product temperature, and consequently the final product quality. The main objective of this study was to evaluate the variability of the mass transfer resistance resulting from the dried product layer (R p ) in a manufacturing batch of vials, and its potential effect on the product temperature, from data obtained in a pilot scale freeze-dryer. Sublimation experiments were run at -25 °C and 10 Pa using two different freezing protocols: with spontaneous or controlled ice nucleation. Five repetitions of each condition were performed. Global (pressure rise test) and local (gravimetric) methods were applied as complementary approaches to estimate R p . The global method allowed to assess variability of the evolution of R p with the dried layer thickness between different experiments whereas the local method informed about R p variability at a fixed time within the vial batch. A product temperature variability of approximately ±4.4 °C was defined for a product dried layer thickness of 5 mm. The present approach can be used to estimate the risk of failure of the process due to mass transfer variability when designing freeze-drying cycle. Copyright © 2018 Elsevier B.V. All rights reserved.
Hot-wire calibration in subsonic/transonic flow regimes
NASA Technical Reports Server (NTRS)
Nagabushana, K. A.; Ash, Robert L.
1995-01-01
A different approach for calibrating hot-wires, which simplifies the calibration procedure and reduces the tunnel run-time by an order of magnitude was sought. In general, it is accepted that the directly measurable quantities in any flow are velocity, density, and total temperature. Very few facilities have the capability of varying the total temperature over an adequate range. However, if the overheat temperature parameter, a(sub w), is used to calibrate the hot-wire then the directly measurable quantity, voltage, will be a function of the flow variables and the overheat parameter i.e., E = f(u,p,a(sub w), T(sub w)) where a(sub w) will contain the needed total temperature information. In this report, various methods of evaluating sensitivities with different dependent and independent variables to calibrate a 3-Wire hot-wire probe using a constant temperature anemometer (CTA) in subsonic/transonic flow regimes is presented. The advantage of using a(sub w) as the independent variable instead of total temperature, t(sub o), or overheat temperature parameter, tau, is that while running a calibration test it is not necessary to know the recovery factor, the coefficients in a wire resistance to temperature relationship for a given probe. It was deduced that the method employing the relationship E = f (u,p,a(sub w)) should result in the most accurate calibration of hot wire probes. Any other method would require additional measurements. Also this method will allow calibration and determination of accurate temperature fluctuation information even in atmospheric wind tunnels where there is no ability to obtain any temperature sensitivity information at present. This technique greatly simplifies the calibration process for hot-wires, provides the required calibration information needed in obtaining temperature fluctuations, and reduces both the tunnel run-time and the test matrix required to calibrate hotwires. Some of the results using the above techniques are presented in an appendix.
Chao, Lu-men; Sun, Jian-xin
2009-12-01
Temporal changes in air temperature and urban heat island (UHI) effects during 1956-1998 were compared between a coastal city, Ji' nan, and an inland city, Xi' an, which were similar in latitude, size and development. During 1956-1978, except that the annual mean minimum temperature in Ji' nan increased by 0.37 degrees C x 10 a(-1), the temperature variables in the two cities did not display any apparent trend. During 1979-1998, all temperature variables of the two cities showed an increasing trend. Comparing with that in Ji' nan, the increasing rate of annual mean maximum temperature and annual mean temperature in Xi' an was greater, but that of annual mean minimum temperature was smaller. In the two cities, heat island effect occurred during 1956-1978 but without any apparent trend, whereas during 1979-1998, this effect increased with time, especially in Xi' an where the annual mean minimum temperature and annual mean temperature increased by 0.22 degrees C x 10 a(-1) and 0.32 degrees C x 10 a(-1), respectively. Both the level and the inter-annual variation of the heat island effect were much greater in Ji' nan than in Xi' an, but the increasing rate of this effect was greater in Xi' an than in Ji' nan. Obvious differences were observed in the increasing rate of annual mean maximum air temperature, annual mean air temperature, and annual mean minimum temperature as well as the heat island effect in Ji' nan, whereas negligible differences were found in Xi' an. Among the three temperature variables, annual mean minimum temperature displayed the most obvious increasing trend and was most affected by heat island effect, while annual mean maximum temperature was most variable inter-annually. Geographical location not only affected the magnitude of urban warming, but also affected the mode of urban warming and the strength of heat island effect.
A real-time Global Warming Index.
Haustein, K; Allen, M R; Forster, P M; Otto, F E L; Mitchell, D M; Matthews, H D; Frame, D J
2017-11-13
We propose a simple real-time index of global human-induced warming and assess its robustness to uncertainties in climate forcing and short-term climate fluctuations. This index provides improved scientific context for temperature stabilisation targets and has the potential to decrease the volatility of climate policy. We quantify uncertainties arising from temperature observations, climate radiative forcings, internal variability and the model response. Our index and the associated rate of human-induced warming is compatible with a range of other more sophisticated methods to estimate the human contribution to observed global temperature change.
NASA Astrophysics Data System (ADS)
Cheruy, Frederique; Dufresne, Jean-Louis; Ait Mesbah, Sonia; Grandpeix, Jean-Yves; Wang, Fuxing
2017-04-01
A simple model based on the surface energy budget at equilibrium is developed to compute the sensitivity of the climatological mean daily temperature and diurnal amplitude to the soil thermal inertia. It gives a conceptual framework to quantity the role of the atmospheric and land surface processes in the surface temperature variability and relies on the diurnal amplitude of the net surface radiation, the sensitivity of the turbulent fluxes to the surface temperature and the thermal inertia. The performances of the model are first evaluated with 3D numerical simulations performed with the atmospheric (LMDZ) and land surface (ORCHIDEE) modules of the Institut Pierre Simon Laplace (IPSL) climate model. A nudging approach is adopted, it prevents from using time-consuming long-term simulations required to account for the natural variability of the climate and allow to draw conclusion based on short-term (several years) simulations. In the moist regions the diurnal amplitude and the mean surface temperature are controlled by the latent heat flux. In the dry areas, the relevant role of the stability of the boundary layer and of the soil thermal inertia is demonstrated. In these regions, the sensitivity of the surface temperature to the thermal inertia is high, due to the high contribution of the thermal flux to the energy budget. At high latitudes, when the sensitivity of turbulent fluxes is dominated by the day-time sensitivity of the sensible heat flux to the surface temperature and when this later is comparable to the thermal inertia term of the sensitivity equation, the surface temperature is also partially controlled by the thermal inertia which can rely on the snow properties; In the regions where the latent heat flux exhibits a high day-to-day variability, such as transition regions, the thermal inertia has also significant impact on the surface temperature variability . In these not too wet (energy limited) and not too dry (moisture-limited) soil moisture (SM) ''hot spots'', it is generally admitted that the variability of the surface temperature is explained by the soil moisture trough its control on the evaporation. This work suggests that the impact of the soil moisture on the temperature through its impact on the thermal inertia can be as important as its direct impact on the evaporation. Contrarily to the evaporation related soil-moisture temperature negative feedback, the thermal inertia soil-moisture related feedback newly identified by this work is a positive feedback which limits the cooling when the soil moisture increases. These results suggest that uncertainties in the representation of the soil and snow thermal properties can be responsible of significant biases in numerical simulations and emphasize the need to carefully document and evaluate these quantities in the Land Surface Modules implemented in the climate models.
Roccato, Anna; Uyttendaele, Mieke; Membré, Jeanne-Marie
2017-06-01
In the framework of food safety, when mimicking the consumer phase, the storage time and temperature used are mainly considered as single point estimates instead of probability distributions. This singlepoint approach does not take into account the variability within a population and could lead to an overestimation of the parameters. Therefore, the aim of this study was to analyse data on domestic refrigerator temperatures and storage times of chilled food in European countries in order to draw general rules which could be used either in shelf-life testing or risk assessment. In relation to domestic refrigerator temperatures, 15 studies provided pertinent data. Twelve studies presented normal distributions, according to the authors or from the data fitted into distributions. Analysis of temperature distributions revealed that the countries were separated into two groups: northern European countries and southern European countries. The overall variability of European domestic refrigerators is described by a normal distribution: N (7.0, 2.7)°C for southern countries, and, N (6.1, 2.8)°C for the northern countries. Concerning storage times, seven papers were pertinent. Analysis indicated that the storage time was likely to end in the first days or weeks (depending on the product use-by-date) after purchase. Data fitting showed the exponential distribution was the most appropriate distribution to describe the time that food spent at consumer's place. The storage time was described by an exponential distribution corresponding to the use-by date period divided by 4. In conclusion, knowing that collecting data is time and money consuming, in the absence of data, and at least for the European market and for refrigerated products, building a domestic refrigerator temperature distribution using a Normal law and a time-to-consumption distribution using an Exponential law would be appropriate. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, X.; Voisin, N.; Cheng, Y.; Niemeyer, R. J.; Nijssen, B.; Yearsley, J. R.; Zhou, T.
2017-12-01
In many areas, climate change is expected to alter the flow regime and increase stream temperature, especially during summer low flow periods. During these low flow periods, water management increases flows in order to sustain human activities such as water for irrigation and hydroelectric power generation. Water extraction from rivers during warm season can increase stream temperature while reservoir regulation may cool downstream river temperatures by releasing cool water from deep layers. Thus, it is reasonable to hypothesize that water management changes the sensitivity of the stream temperature regime to climate change when compared to unmanaged resources. The time of emergence of change refers to the point in time when observations, or model simulations, show statistically significant changes from a given baseline period, i.e. above natural variability. Here we aim to address two questions by investigating the time of emergence of changes in stream temperature in the southeastern United States: what is the sensitivity of stream temperature under regulated flow conditions to climate change and what is the contribution of water management in increasing or decreasing stream temperature sensitivity to climate change. We simulate regulated flow by using runoff from the Variable Infiltration Capacity (VIC) macroscale hydrological model as input into a large scale river routing and reservoir model MOSART-WM. The River Basin Model (RBM), a distributed stream temperature model, includes a two-layer thermal stratification module to simulate stream temperature in regulated river systems. We evaluate the timing of emergence of changes in flow and stream temperature based on climate projections from two representative concentration pathways (RCPs; RCP4.5 and RCP8.5) from the Coupled Model Intercomparison Project Phase 5 (CMIP5). We analyze the difference in emergence of change between natural and regulated streamflow. Insights will be provided toward applications for multiple sectors of activities including electrical resources adequacy studies over the southeastern U.S.
Kelly, Gregory S
2007-03-01
This is the second of a two-part review on body temperature variability. Part 1 discussed historical and modern findings on average body temperatures. It also discussed endogenous sources of temperature variability, including variations caused by site of measurement; circadian, menstrual, and annual biological rhythms; fitness; and aging. Part 2 reviews the effects of exogenous masking agents - external factors in the environment, diet, or lifestyle that can be a significant source of body temperature variability. Body temperature variability findings in disease states are also reviewed.
Effect of variable parboiling on crystallinity of rice samples.
USDA-ARS?s Scientific Manuscript database
Rice parboiled at various combinations of cooking time and temperature, were analyzed by differential scanning calorimetry and X-Ray diffraction. Generally, gelatinization enthalpy decreased as the soaking temperature increased from 30ºC through 50ºC, and 70ºC to 90ºC, and gelatinization enthalpy d...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-10
.... Incomplete Cycling 6. Mechanical Temperature Controls 7. Ambient Temperature Gradient 8. Definitions.... at 29846-29847. A broad group of stakeholders \\1\\ submitted a joint comment supporting DOE's proposal... for variable defrost control (a control type in which the time interval between successive defrost...
Mesocosm experiments have been used to evaluate the impacts of nutrient loading on estuarine plant communities in order to develop nutrient response relationships. Mesocosm eutrophication studies tend to focus on long residence time systems. In the Pacific Northwest, many estuari...
Titan's Upper Atmosphere from Cassini/UVIS Solar Occultations
NASA Astrophysics Data System (ADS)
Capalbo, Fernando J.; Bénilan, Yves; Yelle, Roger V.; Koskinen, Tommi T.
2015-12-01
Titan’s atmosphere is composed mainly of molecular nitrogen, methane being the principal trace gas. From the analysis of 8 solar occultations measured by the Extreme Ultraviolet channel of the Ultraviolet Imaging Spectrograph (UVIS) on board Cassini, we derived vertical profiles of N2 in the range 1100-1600 km and vertical profiles of CH4 in the range 850-1300 km. The correction of instrument effects and observational effects applied to the data are described. We present CH4 mole fractions, and average temperatures for the upper atmosphere obtained from the N2 profiles. The occultations correspond to different times and locations, and an analysis of variability of density and temperature is presented. The temperatures were analyzed as a function of geographical and temporal variables, without finding a clear correlation with any of them, although a trend of decreasing temperature toward the north pole was observed. The globally averaged temperature obtained is (150 ± 1) K. We compared our results from solar occultations with those derived from other UVIS observations, as well as studies performed with other instruments. The observational data we present confirm the atmospheric variability previously observed, add new information to the global picture of Titan’s upper atmosphere composition, variability, and dynamics, and provide new constraints to photochemical models.
NASA Astrophysics Data System (ADS)
Smith, K. L.; Polvani, L. M.
2015-12-01
The recent annually averaged warming of the Antarctic Peninsula, and of West Antarctica, stands in stark contrast to very small and weakly negative trends over East Antarctica. This asymmetry arises primarily from a highly significant warming of West Antarctica in austral spring and a strong cooling of East Antarctic in austral autumn. Here we examine whether this East-West asymmetry is a response to anthropogenic climate forcings or a manifestation of natural climate variability. We compare the observed Antarctic surface air temperature (SAT) trends from five temperature reconstructions over two distinct time periods (1979-2005 and 1960-2005), and with those simulated by 40 coupled models participating in Phase 5 of the Coupled Model Intercomparison Project. We find that the observed East-West asymmetry differs substantially over the two time periods and, furthermore, is completely absent from the CMIP5 multi-model mean (from which all natural variability is eliminated by the averaging). We compare the CMIP5 SAT trends to those of 29 historical atmosphere-only simulations with prescribed sea surface temperatures (SSTs) and sea ice and find that these simulations are in better agreement with the observations. This suggests that natural multi-decadal variability associated with SSTs and sea ice and not external forcings is the primary driver of Antarctic SAT trends. We confirm this by showing that the observed trends lie within the distribution of multi-decadal trends from the CMIP5 pre-industrial integrations. These results, therefore, offer new evidence which points to natural climate variability as the more likely cause of the recent warming of West Antarctica and of the Peninsula.
Estimating trends in the global mean temperature record
NASA Astrophysics Data System (ADS)
Poppick, Andrew; Moyer, Elisabeth J.; Stein, Michael L.
2017-06-01
Given uncertainties in physical theory and numerical climate simulations, the historical temperature record is often used as a source of empirical information about climate change. Many historical trend analyses appear to de-emphasize physical and statistical assumptions: examples include regression models that treat time rather than radiative forcing as the relevant covariate, and time series methods that account for internal variability in nonparametric rather than parametric ways. However, given a limited data record and the presence of internal variability, estimating radiatively forced temperature trends in the historical record necessarily requires some assumptions. Ostensibly empirical methods can also involve an inherent conflict in assumptions: they require data records that are short enough for naive trend models to be applicable, but long enough for long-timescale internal variability to be accounted for. In the context of global mean temperatures, empirical methods that appear to de-emphasize assumptions can therefore produce misleading inferences, because the trend over the twentieth century is complex and the scale of temporal correlation is long relative to the length of the data record. We illustrate here how a simple but physically motivated trend model can provide better-fitting and more broadly applicable trend estimates and can allow for a wider array of questions to be addressed. In particular, the model allows one to distinguish, within a single statistical framework, between uncertainties in the shorter-term vs. longer-term response to radiative forcing, with implications not only on historical trends but also on uncertainties in future projections. We also investigate the consequence on inferred uncertainties of the choice of a statistical description of internal variability. While nonparametric methods may seem to avoid making explicit assumptions, we demonstrate how even misspecified parametric statistical methods, if attuned to the important characteristics of internal variability, can result in more accurate uncertainty statements about trends.
Ghafoor, Kashif; Choi, Yong Hee; Jeon, Ju Yeong; Jo, In Hee
2009-06-10
Important functional components from Campbell Early grape seed were extracted by ultrasound-assisted extraction (UAE) technology. The experiments were carried out according to a five level, three variable central composite rotatable design (CCRD). The best possible combinations of ethanol concentration, extraction temperature, and extraction time with the application of ultrasound were obtained for the maximum extraction of phenolic compounds, antioxidant activities, and anthocyanins from grape seed by using response surface methodology (RSM). Process variables had significant effect on the extraction of functional components with extraction time being highly significant for the extraction of phenolics and antioxidants. The optimal conditions obtained by RSM for UAE from grape seed include 53.15% ethanol, 56.03 degrees C temperature, and 29.03 min time for the maximum total phenolic compounds (5.44 mg GAE/100 mL); 53.06% ethanol, 60.65 degrees C temperature, and 30.58 min time for the maximum antioxidant activity (12.31 mg/mL); and 52.35% ethanol, 55.13 degrees C temperature, and 29.49 min time for the maximum total anthocyanins (2.28 mg/mL). Under the above-mentioned conditions, the experimental total phenolics were 5.41 mg GAE/100 mL, antioxidant activity was 12.28 mg/mL, and total anthocyanins were 2.29 mg/mL of the grape seed extract, which is well matched with the predicted values.
Adjustment of sleep and the circadian temperature rhythm after flights across nine time zones
NASA Technical Reports Server (NTRS)
Gander, Philippa H.; Myhre, Grete; Graeber, R. Curtis; Lauber, John K.; Andersen, Harald T.
1989-01-01
The adjustment of sleep-wake patterns and the circadian temperature rhythm was monitored in nine Royal Norwegian Airforce volunteers operating P-3 aircraft during a westward training deployment across nine time zones. Subjects recorded all sleep and nap times, rated nightly sleep quality, and completed personality inventories. Rectal temperature, heart rate, and wrist activity were continuously monitored. Adjustment was slower after the return eastward flight than after the outbound westward flight. The eastward flight produced slower readjustment of sleep timing to local time and greater interindividual variability in the patterns of adjustment of sleep and temperature. One subject apparently exhibited resynchronization by partition, with the temperature rhythm undergoing the reciprocal 15-h delay. In contrast, average heart rates during sleep were significantly elevated only after westward flight. Interindividual differences in adjustment of the temperature rhythm were correlated with some of the personality measures. Larger phase delays in the overall temperature waveform (as measured on the 5th day after westward flight) were exhibited by extraverts, and less consistently by evening types.
Bayesian network representing system dynamics in risk analysis of nuclear systems
NASA Astrophysics Data System (ADS)
Varuttamaseni, Athi
2011-12-01
A dynamic Bayesian network (DBN) model is used in conjunction with the alternating conditional expectation (ACE) regression method to analyze the risk associated with the loss of feedwater accident coupled with a subsequent initiation of the feed and bleed operation in the Zion-1 nuclear power plant. The use of the DBN allows the joint probability distribution to be factorized, enabling the analysis to be done on many simpler network structures rather than on one complicated structure. The construction of the DBN model assumes conditional independence relations among certain key reactor parameters. The choice of parameter to model is based on considerations of the macroscopic balance statements governing the behavior of the reactor under a quasi-static assumption. The DBN is used to relate the peak clad temperature to a set of independent variables that are known to be important in determining the success of the feed and bleed operation. A simple linear relationship is then used to relate the clad temperature to the core damage probability. To obtain a quantitative relationship among different nodes in the DBN, surrogates of the RELAP5 reactor transient analysis code are used. These surrogates are generated by applying the ACE algorithm to output data obtained from about 50 RELAP5 cases covering a wide range of the selected independent variables. These surrogates allow important safety parameters such as the fuel clad temperature to be expressed as a function of key reactor parameters such as the coolant temperature and pressure together with important independent variables such as the scram delay time. The time-dependent core damage probability is calculated by sampling the independent variables from their probability distributions and propagate the information up through the Bayesian network to give the clad temperature. With the knowledge of the clad temperature and the assumption that the core damage probability has a one-to-one relationship to it, we have calculated the core damage probably as a function of transient time. The use of the DBN model in combination with ACE allows risk analysis to be performed with much less effort than if the analysis were done using the standard techniques.
Developing Real-Time Emissions Estimates for Enhanced Air Quality Forecasting
Exploring the relationship between ambient temperature, energy demand, and electric generating unit point source emissions and potential techniques for incorporating real-time information on the modulating effects of these variables using the Mid-Atlantic/Northeast Visibility Uni...
Hwang, Jing-Shiang; Nadziejko, Christine; Chen, Lung Chi
2005-04-01
Normal mice (C57) and mice prone to develop atherosclerosis (ApoE-/-) were implanted with electrocardiograph (EKG), core body temperature, and motion transmitters were exposed daily for 6 h to Tuxedo, NY, concentrated ambient particles (CAPs) for 5 day/wk during the spring and summer of 2003. The series of 5-min EKG monitoring and body-temperature measurements were obtained for each animal in the CAPs and filtered air sham exposure groups. Our hypothesis was that chronic exposure could cause cumulative health effects. We used our recently developed nonparametric method to estimate the daily time periods that mean heart rates (HR), body temperature, and physical activity differed significantly between the CAPs and sham exposed group. CAPs exposure most affected heart rate between 1:30 a.m. and 4:30 a.m. With the response variables being the average heart rate, body temperature, and physical activity, we adopted a two-stage modeling approach to obtain the estimates of chronic and acute effects on the changes of these three response variables. In the first stage, a time-varying model estimated daily crude effects. In the second stage, the true means of the estimated crude effects were modeled with a polynominal function of time for chronic effects, a linear term of daily CAPs exposure concentrations for acute effects, and a random component for unknown noise. A Bayesian framework combined these two stages. There were significant decreasing patterns of HR, body temperature, and physical activity for the ApoE-/- mice over the 5 mo of CAPs exposure, with smaller and nonsignificant changes for the C57 mice. The chronic effect changes of the three response variables for ApoE-/- mice were maximal in the last few weeks. There was also a significant relationship between CAPs exposure concentration and short-term changes of heart rate in ApoE-/- mice during exposure. Response variables were also defined for examining fluctuations of 5-min heart rates within long (i.e., 3-6 h) and short time periods (i.e., approximately 15 min). The results for the ApoE-/- mice showed that heart-rate fluctuation within the longer periods increased to 1.35-fold by the end of exposure experiment, while the heart-rate fluctuation within 15 min decreased to 0.7-fold.
Hirata, Akimasa; Asano, Takayuki; Fujiwara, Osamu
2007-08-21
This study investigated the relationship between the specific absorption rate and temperature elevation in an anatomically-based model named NORMAN for exposure to radio-frequency far fields in the ICNIRP guidelines (1998 Health Phys. 74 494-522). The finite-difference time-domain method is used for analyzing the electromagnetic absorption and temperature elevation in NORMAN. In order to consider the variability of human thermoregulation, parameters for sweating are derived and incorporated into a conventional sweating formula. First, we investigated the effect of blood temperature variation modeling on body-core temperature. The computational results show that the modeling of blood temperature variation was the dominant factor influencing the body-core temperature. This is because the temperature in the inner tissues is elevated via the circulation of blood whose temperature was elevated due to EM absorption. Even at different frequencies, the body-core temperature elevation at an identical whole-body average specific absorption rate (SAR) was almost the same, suggesting the effectiveness of the whole-body average SAR as a measure in the ICNIRP guidelines. Next, we discussed the effect of sweating on the temperature elevation and thermal time constant of blood. The variability of temperature elevation caused by the sweating rate was found to be 30%. The blood temperature elevation at the basic restriction in the ICNIRP guidelines of 0.4 W kg(-1) is 0.25 degrees C even for a low sweating rate. The thermal time constant of blood temperature elevation was 23 min and 52 min for a man with a lower and a higher sweating rate, respectively, which is longer than the average time of the SAR in the ICNIRP guidelines. Thus, the whole-body average SAR required for blood temperature elevation of 1 degrees C was 4.5 W kg(-1) in the model of a human with the lower sweating coefficients for 60 min exposure. From a comparison of this value with the basic restriction in the ICNIRP guidelines of 0.4 W kg(-1), the safety factor was 11.
Guadayol, Òscar; Silbiger, Nyssa J.; Donahue, Megan J.; Thomas, Florence I. M.
2014-01-01
Spatial and temporal environmental variability are important drivers of ecological processes at all scales. As new tools allow the in situ exploration of individual responses to fluctuations, ecologically meaningful ways of characterizing environmental variability at organism scales are needed. We investigated the fine-scale spatial heterogeneity of high-frequency temporal variability in temperature, dissolved oxygen concentration, and pH experienced by benthic organisms in a shallow coastal coral reef. We used a spatio-temporal sampling design, consisting of 21 short-term time-series located along a reef flat-to-reef slope transect, coupled to a long-term station monitoring water column changes. Spectral analyses revealed sharp gradients in variance decomposed by frequency, as well as differences between physically-driven and biologically-reactive parameters. These results highlight the importance of environmental variance at organismal scales and present a new sampling scheme for exploring this variability in situ. PMID:24416364
NASA Astrophysics Data System (ADS)
Stone, H. B.; Banas, N. S.; Hickey, B. M.; MacCready, P.
2016-02-01
The Pacific Northwest coast is an unusually productive area with a strong river influence and highly variable upwelling-favorable and downwelling-favorable winds, but recent trends in hypoxia and ocean acidification in this region are troubling to both scientists and the general public. A new ROMS hindcast model of this region makes possible a study of interannual variability. This study of the interannual temperature and salinity variability on the Pacific Northwest coast is conducted using a coastal hindcast model (43°N - 50°N) spanning 2002-2009 from the University of Washington Coastal Modeling Group, with a resolution of 1.5 km over the shelf and slope. Analysis of hindcast model results was used to assess the relative importance of source water variability, including the poleward California Undercurrent, local and remote wind forcing, winter wind-driven mixing, and river influence in explaining the interannual variations in the shelf bottom layer (40 - 80 m depth, 10 m thick) and over the slope (150 - 250 m depth, <100 km from shelf break) at each latitude within the model domain. Characterized through tracking of the fraction of Pacific Equatorial Water (PEW) relative to Pacific Subarctic Upper Water (PSUW) present on the slope, slope water properties at all latitudes varied little throughout the time series, with the largest variability due to patterns of large north-south advection of water masses over the slope. Over the time series, the standard deviation of slope temperature was 0.09 ˚C, while slope salinity standard deviation was 0.02 psu. Results suggest that shelf bottom water interannual variability is not driven primarily by interannual variability in slope water as shelf bottom water temperature and salinity vary nearly 10 times more than those over the slope. Instead, interannual variability in shelf bottom water properties is likely driven by other processes, such as local and remote wind forcing, and winter wind-driven mixing. The relative contributions of these processes to interannual variability in shelf bottom water properties will be addressed. Overall, these results highlight the importance of shelf processes relative to large-scale influences on the interannual timescale in particular. Implications for variability in hypoxia and ocean acidification impacts will be discussed.
On the sensitivity of annual streamflow to air temperature
Milly, Paul C.D.; Kam, Jonghun; Dunne, Krista A.
2018-01-01
Although interannual streamflow variability is primarily a result of precipitation variability, temperature also plays a role. The relative weakness of the temperature effect at the annual time scale hinders understanding, but may belie substantial importance on climatic time scales. Here we develop and evaluate a simple theory relating variations of streamflow and evapotranspiration (E) to those of precipitation (P) and temperature. The theory is based on extensions of the Budyko water‐balance hypothesis, the Priestley‐Taylor theory for potential evapotranspiration ( ), and a linear model of interannual basin storage. The theory implies that the temperature affects streamflow by modifying evapotranspiration through a Clausius‐Clapeyron‐like relation and through the sensitivity of net radiation to temperature. We apply and test (1) a previously introduced “strong” extension of the Budyko hypothesis, which requires that the function linking temporal variations of the evapotranspiration ratio (E/P) and the index of dryness ( /P) at an annual time scale is identical to that linking interbasin variations of the corresponding long‐term means, and (2) a “weak” extension, which requires only that the annual evapotranspiration ratio depends uniquely on the annual index of dryness, and that the form of that dependence need not be known a priori nor be identical across basins. In application of the weak extension, the readily observed sensitivity of streamflow to precipitation contains crucial information about the sensitivity to potential evapotranspiration and, thence, to temperature. Implementation of the strong extension is problematic, whereas the weak extension appears to capture essential controls of the temperature effect efficiently.
Vecchia, Aldo V.; Crawford, Charles G.
2006-01-01
A time-series model was developed to simulate daily pesticide concentrations for streams in the coterminous United States. The model was based on readily available information on pesticide use, climatic variability, and watershed charac-teristics and was used to simulate concentrations for four herbicides [atrazine, ethyldipropylthiocarbamate (EPTC), metolachlor, and trifluralin] and three insecticides (carbofuran, ethoprop, and fonofos) that represent a range of physical and chemical properties, application methods, national application amounts, and areas of use in the United States. The time-series model approximates the probability distributions, seasonal variability, and serial correlation characteristics in daily pesticide concentration data from a national network of monitoring stations. The probability distribution of concentrations for a particular pesticide and station was estimated using the Watershed Regressions for Pesticides (WARP) model. The WARP model, which was developed in previous studies to estimate the probability distribution, was based on selected nationally available watershed-characteristics data, such as pesticide use and soil characteristics. Normality transformations were used to ensure that the annual percentiles for the simulated concentrations agree closely with the percentiles estimated from the WARP model. Seasonal variability in the transformed concentrations was maintained by relating the transformed concentration to precipitation and temperature data from the United States Historical Climatology Network. The monthly precipitation and temperature values were estimated for the centroids of each watershed. Highly significant relations existed between the transformed concentrations, concurrent monthly precipitation, and concurrent and lagged monthly temperature. The relations were consistent among the different pesticides and indicated the transformed concentrations generally increased as precipitation increased but the rate of increase depended on a temperature-dependent growing-season effect. Residual variability of the transformed concentrations, after removal of the effects of precipitation and temperature, was partitioned into a signal (systematic variability that is related from one day to the next) and noise (random variability that is not related from one day to the next). Variograms were used to evaluate measurement error, seasonal variability, and serial correlation of the historical data. The variogram analysis indicated substantial noise resulted, at least in part, from measurement errors (the differences between the actual concen-trations and the laboratory concentrations). The variogram analysis also indicated the presence of a strongly correlated signal, with an exponentially decaying serial correlation function and a correlation time scale (the time required for the correlation to decay to e-1 equals 0.37) that ranged from about 18 to 66 days, depending on the pesticide type. Simulated daily pesticide concentrations from the time-series model indicated the simulated concentrations for the stations located in the northeastern quadrant of the United States where most of the monitoring stations are located generally were in good agreement with the data. The model neither consistently overestimated or underestimated concentrations for streams that are located in this quadrant and the magnitude and timing of high or low concentrations generally coincided reasonably well with the data. However, further data collection and model development may be necessary to determine whether the model should be used for areas for which few historical data are available.
NASA Technical Reports Server (NTRS)
Idso, S. B.; Jackson, R. D.; Reginato, R. J.
1976-01-01
A procedure is developed for removing data scatter in the thermal-inertia approach to remote sensing of soil moisture which arises from environmental variability in time and space. It entails the utilization of nearby National Weather Service air temperature measurements to normalize measured diurnal surface temperature variations to what they would have been for a day of standard diurnal air temperature variation, arbitrarily assigned to be 18 C. Tests of the procedure's basic premise on a bare loam soil and a crop of alfalfa indicate it to be conceptually sound. It is possible that the technique could also be useful in other thermal-inertia applications, such as lithographic mapping.
Roopa, N; Chauhan, O P; Raju, P S; Das Gupta, D K; Singh, R K R; Bawa, A S
2014-10-01
An osmotic-dehydration process protocol for Carambola (Averrhoacarambola L.,), an exotic star shaped tropical fruit, was developed. The process was optimized using Response Surface Methodology (RSM) following Central Composite Rotatable Design (CCRD). The experimental variables selected for the optimization were soak solution concentration (°Brix), soaking temperature (°C) and soaking time (min) with 6 experiments at central point. The effect of process variables was studied on solid gain and water loss during osmotic dehydration process. The data obtained were analyzed employing multiple regression technique to generate suitable mathematical models. Quadratic models were found to fit well (R(2), 95.58 - 98.64 %) in describing the effect of variables on the responses studied. The optimized levels of the process variables were achieved at 70°Brix, 48 °C and 144 min for soak solution concentration, soaking temperature and soaking time, respectively. The predicted and experimental results at optimized levels of variables showed high correlation. The osmo-dehydrated product prepared at optimized conditions showed a shelf-life of 10, 8 and 6 months at 5 °C, ambient (30 ± 2 °C) and 37 °C, respectively.
Seasonal precipitation forecasting for the Melbourne region using a Self-Organizing Maps approach
NASA Astrophysics Data System (ADS)
Pidoto, Ross; Wallner, Markus; Haberlandt, Uwe
2017-04-01
The Melbourne region experiences highly variable inter-annual rainfall. For close to a decade during the 2000s, below average rainfall seriously affected the environment, water supplies and agriculture. A seasonal rainfall forecasting model for the Melbourne region based on the novel approach of a Self-Organizing Map has been developed and tested for its prediction performance. Predictor variables at varying lead times were first assessed for inclusion within the model by calculating their importance via Random Forests. Predictor variables tested include the climate indices SOI, DMI and N3.4, in addition to gridded global sea surface temperature data. Five forecasting models were developed: an annual model and four seasonal models, each individually optimized for performance through Pearson's correlation r and the Nash-Sutcliffe Efficiency. The annual model showed a prediction performance of r = 0.54 and NSE = 0.14. The best seasonal model was for spring, with r = 0.61 and NSE = 0.31. Autumn was the worst performing seasonal model. The sea surface temperature data contributed fewer predictor variables compared to climate indices. Most predictor variables were supplied at a minimum lead, however some predictors were found at lead times of up to a year.
NASA Astrophysics Data System (ADS)
Fang, Xiuqin; Zhu, Qiuan; Chen, Huai; Ma, Zhihai; Wang, Weifeng; Song, Xinzhang; Zhao, Pengxiang; Peng, Changhui
2014-01-01
Using time series of moderate-resolution imaging spectroradiometer (MODIS) normalized difference vegetation index (NDVI) data from 2000 to 2009, we assessed decadal vegetation dynamics across Canada and examined the relationship between NDVI and climatic variables (precipitation and temperature). The Palmer drought severity index and vapor pressure difference (VPD) were used to relate the vegetation changes to the climate, especially in cases of drought. Results indicated that MODIS NDVI measurements provided a dynamic picture of interannual variation in Canadian vegetation patterns. Greenness declined in 2000, 2002, and 2009 and increased in 2005, 2006, and 2008. Vegetation dynamics varied across regions during the period. Most forest land shows little change, while vegetation in the ecozone of Pacific Maritime, Prairies, and Taiga Shield shows more dynamics than in the others. Significant correlations were found between NDVI and the climatic variables. The variation of NDVI resulting from climatic variability was more highly correlated to temperature than to precipitation in most ecozones. Vegetation grows better with higher precipitation and temperature in almost all ecozones. However, vegetation grows worse under higher temperature in the Prairies ecozone. The annual changes in NDVI corresponded well with the change in VPD in most ecozones.
Trends and Variability in Temperature Sensitivity of Lilac Flowering Phenology
NASA Astrophysics Data System (ADS)
Wang, Huanjiong; Dai, Junhu; Rutishauser, This; Gonsamo, Alemu; Wu, Chaoyang; Ge, Quansheng
2018-03-01
The responses of plant phenology to temperature variability have many consequences for ecological processes, agriculture, forestry, and human health. Temperature sensitivity (ST) of phenology could measure how and to what degree plant could phenologically track climate change. The long-term trends and spatial patterns in ST have been well studied for vegetative phenology such as leaf unfolding, but trends to be expected for reproductive phenology in the future remain unknown. Here we investigate trends and factors driving the temporal variation of ST of first bloom date (FBD). Using the long-term FBD records during 1963-2013 for common lilac (Syringa vulgaris) from 613 stations in Europe, we compared changes in ST from the beginning to the end of the study period. The Spearman partial correlations were used to assess the importance of four influencing factors. The results showed that the temporal changes in ST of FBD varied considerably among time scales. Mean ST decreased significantly by 0.92 days °C-1 from 1963-1972 to 2004-2013 (P < 0.01), but remained stable from 1963-1987 to 1989-2013. The strength of FBD and temperature relationship, the spring temperature variance, and winter chill all impact ST in an expected way at most stations. No consistent responses of ST on photoperiod were found. Our results imply that the trends and variability in ST of flowering phenology are driving by multiple factors and impacted by time scales. Continued efforts are still needed to further examine the flowering-temperature relationship for other plant species in other climates and environments using similar methods to our study.
Impact of detergent systems on bacterial survival on laundered fabrics.
Jaska, J M; Fredell, D L
1980-01-01
The survival of Staphylococcus aureus was determined from inoculated swatches laundered in either a phosphate or a phosphate-substitute detergent. In a Plackett-Burman design study, the independent variables of detergent type, concentration, and variation, wash water temperature, soil load, cycle time, and water hardness were assigned high and low values. Wash water temperatures of 27, 38, 49, and 60 degrees C were employed. Viable bacteria were recovered from macerated swatches. Statistical analysis disclosed that there was no practical difference in the ability of phosphate or phosphate-substitute detergents to reduce the level of S. aureus on the laundered swatches in this controlled design. Analysis did reveal that water temperature was the most significant independent variables. The remaining variables did not appear to have any practical significance upon bacterial reduction. This bacteriological study did not evaluate other essential detergent properties. PMID:7377775
A temperature rise reduces trial-to-trial variability of locust auditory neuron responses.
Eberhard, Monika J B; Schleimer, Jan-Hendrik; Schreiber, Susanne; Ronacher, Bernhard
2015-09-01
The neurophysiology of ectothermic animals, such as insects, is affected by environmental temperature, as their body temperature fluctuates with ambient conditions. Changes in temperature alter properties of neurons and, consequently, have an impact on the processing of information. Nevertheless, nervous system function is often maintained over a broad temperature range, exhibiting a surprising robustness to variations in temperature. A special problem arises for acoustically communicating insects, as in these animals mate recognition and mate localization typically rely on the decoding of fast amplitude modulations in calling and courtship songs. In the auditory periphery, however, temporal resolution is constrained by intrinsic neuronal noise. Such noise predominantly arises from the stochasticity of ion channel gating and potentially impairs the processing of sensory signals. On the basis of intracellular recordings of locust auditory neurons, we show that intrinsic neuronal variability on the level of spikes is reduced with increasing temperature. We use a detailed mathematical model including stochastic ion channel gating to shed light on the underlying biophysical mechanisms in auditory receptor neurons: because of a redistribution of channel-induced current noise toward higher frequencies and specifics of the temperature dependence of the membrane impedance, membrane potential noise is indeed reduced at higher temperatures. This finding holds under generic conditions and physiologically plausible assumptions on the temperature dependence of the channels' kinetics and peak conductances. We demonstrate that the identified mechanism also can explain the experimentally observed reduction of spike timing variability at higher temperatures. Copyright © 2015 the American Physiological Society.
A temperature rise reduces trial-to-trial variability of locust auditory neuron responses
Schleimer, Jan-Hendrik; Schreiber, Susanne; Ronacher, Bernhard
2015-01-01
The neurophysiology of ectothermic animals, such as insects, is affected by environmental temperature, as their body temperature fluctuates with ambient conditions. Changes in temperature alter properties of neurons and, consequently, have an impact on the processing of information. Nevertheless, nervous system function is often maintained over a broad temperature range, exhibiting a surprising robustness to variations in temperature. A special problem arises for acoustically communicating insects, as in these animals mate recognition and mate localization typically rely on the decoding of fast amplitude modulations in calling and courtship songs. In the auditory periphery, however, temporal resolution is constrained by intrinsic neuronal noise. Such noise predominantly arises from the stochasticity of ion channel gating and potentially impairs the processing of sensory signals. On the basis of intracellular recordings of locust auditory neurons, we show that intrinsic neuronal variability on the level of spikes is reduced with increasing temperature. We use a detailed mathematical model including stochastic ion channel gating to shed light on the underlying biophysical mechanisms in auditory receptor neurons: because of a redistribution of channel-induced current noise toward higher frequencies and specifics of the temperature dependence of the membrane impedance, membrane potential noise is indeed reduced at higher temperatures. This finding holds under generic conditions and physiologically plausible assumptions on the temperature dependence of the channels' kinetics and peak conductances. We demonstrate that the identified mechanism also can explain the experimentally observed reduction of spike timing variability at higher temperatures. PMID:26041833
Hydrologic and temperature variability at Lake Titicaca over the past 50,000 years
NASA Astrophysics Data System (ADS)
Fornace, K.; Shanahan, T. M.; Sylva, S.; Ossolinski, J.; Baker, P. A.; Fritz, S. C.; Hughen, K. A.
2011-12-01
The Bolivian Altiplano has been the focus of many paleoclimate studies due to the important role it plays in the South American climate system. Although the timing of climate shifts in this region is relatively well known, the magnitudes of hydrologic versus temperature changes remain poorly quantified. Here we apply hydrogen isotope analysis (δD) of terrestrial leaf waxes and the TEX86 temperature proxy in sediments from Lake Titicaca to reconstruct hydrologic and temperature variability over the past 50,000 years. Our record reveals that the Altiplano underwent a major climate shift during the last deglaciation, reflected in a ~70-80% enrichment in leaf wax δD at the onset of the Holocene. Using the global isotope-temperature relationship for meteoric water, only 25-40% of this enrichment can be explained by the 4-5°C deglacial warming shown by the TEX86 proxy, indicating that precipitation was significantly reduced (and evaporation/evapotranspiration increased) during the Holocene. Further, the timing of these hydrologic and temperature changes was asynchronous during the transition from a cold and wet glacial state to a warm and dry Holocene. The major hydrologic shift recorded by leaf wax δD occurred around ~11-12 ka, consistent with Northern Hemisphere deglacial patterns, whereas TEX86 data indicate that rapid warming began much earlier, more typical of a Southern Hemisphere deglacial pattern. Within the late glacial and Holocene mean climate states, however, there is evidence of synchronous hydrologic and temperature variability on millennial timescales. This study demonstrates that climate on the Altiplano was controlled by the interaction of local and remote forcing on a range of timescales.
Temperature, traffic-related air pollution, and heart rate variability in a panel of healthy adults.
Wu, Shaowei; Deng, Furong; Liu, Youcheng; Shima, Masayuki; Niu, Jie; Huang, Qinsheng; Guo, Xinbiao
2013-01-01
Both ambient temperature and air pollution have been associated with alterations in cardiac autonomic function, but the responsive patterns associated with temperature exposure and the interactive effects of temperature and air pollution remain largely unclear. We investigated the associations between personal temperature exposure and cardiac autonomic function as reflected by heart rate variability (HRV) in a panel of 14 healthy taxi drivers in the context of traffic-related air pollution. We collected real-time data on study subjects' in-car exposures to temperature and traffic-related air pollutants including particulate matter with an aerodynamic diameter ≤2.5 μm (PM(2.5)) and carbon monoxide (CO) and HRV indices during work time (8:30-21:00) on 48 sampling days in the warm season (May-September) and cold season (October-March). We applied mixed-effects models and loess models adjusting for potential confounders to examine the associations between temperature and HRV indices. We found nonlinear relationships between temperature and HRV indices in both the warm and cold seasons. Linear regression stratified by temperature levels showed that increasing temperature levels were associated with declines in standard deviation of normal-to-normal intervals over different temperature strata and increases in low-frequency power and low-frequency:high-frequency ratio in higher temperature range (>25 °C). PM(2.5) and CO modified these associations to various extents. Temperature was associated with alterations in cardiac autonomic function in healthy adults in the context of traffic-related air pollution. Copyright © 2012 Elsevier Inc. All rights reserved.
Groen, Thomas A; L'Ambert, Gregory; Bellini, Romeo; Chaskopoulou, Alexandra; Petric, Dusan; Zgomba, Marija; Marrama, Laurence; Bicout, Dominique J
2017-10-26
Culex pipiens is the major vector of West Nile virus in Europe, and is causing frequent outbreaks throughout the southern part of the continent. Proper empirical modelling of the population dynamics of this species can help in understanding West Nile virus epidemiology, optimizing vector surveillance and mosquito control efforts. But modelling results may differ from place to place. In this study we look at which type of models and weather variables can be consistently used across different locations. Weekly mosquito trap collections from eight functional units located in France, Greece, Italy and Serbia for several years were combined. Additionally, rainfall, relative humidity and temperature were recorded. Correlations between lagged weather conditions and Cx. pipiens dynamics were analysed. Also seasonal autoregressive integrated moving-average (SARIMA) models were fitted to describe the temporal dynamics of Cx. pipiens and to check whether the weather variables could improve these models. Correlations were strongest between mean temperatures at short time lags, followed by relative humidity, most likely due to collinearity. Precipitation alone had weak correlations and inconsistent patterns across sites. SARIMA models could also make reasonable predictions, especially when longer time series of Cx. pipiens observations are available. Average temperature was a consistently good predictor across sites. When only short time series (~ < 4 years) of observations are available, average temperature can therefore be used to model Cx. pipiens dynamics. When longer time series (~ > 4 years) are available, SARIMAs can provide better statistical descriptions of Cx. pipiens dynamics, without the need for further weather variables. This suggests that density dependence is also an important determinant of Cx. pipiens dynamics.
Time-division multiplexer uses digital gates
NASA Technical Reports Server (NTRS)
Myers, C. E.; Vreeland, A. E.
1977-01-01
Device eliminates errors caused by analog gates in multiplexing a large number of channels at high frequency. System was designed for use in aerospace work to multiplex signals for monitoring such variables as fuel consumption, pressure, temperature, strain, and stress. Circuit may be useful in monitoring variables in process control and medicine as well.
NASA Astrophysics Data System (ADS)
Moiroux, Joffrey; Abram, Paul K.; Louâpre, Philippe; Barrette, Maryse; Brodeur, Jacques; Boivin, Guy
2016-04-01
Patch time allocation has received much attention in the context of optimal foraging theory, including the effect of environmental variables. We investigated the direct role of temperature on patch time allocation by parasitoids through physiological and behavioural mechanisms and its indirect role via changes in sex allocation and behavioural defences of the hosts. We compared the influence of foraging temperature on patch residence time between an egg parasitoid, Trichogramma euproctidis, and an aphid parasitoid, Aphidius ervi. The latter attacks hosts that are able to actively defend themselves, and may thus indirectly influence patch time allocation of the parasitoid. Patch residence time decreased with an increase in temperature in both species. The increased activity levels with warming, as evidenced by the increase in walking speed, partially explained these variations, but other mechanisms were involved. In T. euproctidis, the ability to externally discriminate parasitised hosts decreased at low temperature, resulting in a longer patch residence time. Changes in sex allocation with temperature did not explain changes in patch time allocation in this species. For A. ervi, we observed that aphids frequently escaped at intermediate temperature and defended themselves aggressively at high temperature, but displayed few defence mechanisms at low temperature. These defensive behaviours resulted in a decreased patch residence time for the parasitoid and partly explained the fact that A. ervi remained for a shorter time at the intermediate and high temperatures than at the lowest temperature. Our results suggest that global warming may affect host-parasitoid interactions through complex mechanisms including both direct and indirect effects on parasitoid patch time allocation.
Berryman, E. M.; Barnard, H. R.; Adams, H. R.; ...
2015-02-10
Forest soil respiration is a major carbon (C) flux that is characterized by significant variability in space and time. In this paper, we quantified growing season soil respiration during both a drought year and a nondrought year across a complex landscape to identify how landscape and climate interact to control soil respiration. We asked the following questions: (1) How does soil respiration vary across the catchments due to terrain-induced variability in moisture availability and temperature? (2) Does the relative importance of moisture versus temperature limitation of respiration vary across space and time? And (3) what terrain elements are important formore » dictating the pattern of soil respiration and its controls? Moisture superseded temperature in explaining watershed respiration patterns, with wetter yet cooler areas higher up and on north facing slopes yielding greater soil respiration than lower and south facing areas. Wetter subalpine forests had reduced moisture limitation in favor of greater seasonal temperature limitation, and the reverse was true for low-elevation semiarid forests. Coincident climate poorly predicted soil respiration in the montane transition zone; however, antecedent precipitation from the prior 10 days provided additional explanatory power. A seasonal trend in respiration remained after accounting for microclimate effects, suggesting that local climate alone may not adequately predict seasonal variability in soil respiration in montane forests. Finally, soil respiration climate controls were more strongly related to topography during the drought year highlighting the importance of landscape complexity in ecosystem response to drought.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berryman, E. M.; Barnard, H. R.; Adams, H. R.
Forest soil respiration is a major carbon (C) flux that is characterized by significant variability in space and time. In this paper, we quantified growing season soil respiration during both a drought year and a nondrought year across a complex landscape to identify how landscape and climate interact to control soil respiration. We asked the following questions: (1) How does soil respiration vary across the catchments due to terrain-induced variability in moisture availability and temperature? (2) Does the relative importance of moisture versus temperature limitation of respiration vary across space and time? And (3) what terrain elements are important formore » dictating the pattern of soil respiration and its controls? Moisture superseded temperature in explaining watershed respiration patterns, with wetter yet cooler areas higher up and on north facing slopes yielding greater soil respiration than lower and south facing areas. Wetter subalpine forests had reduced moisture limitation in favor of greater seasonal temperature limitation, and the reverse was true for low-elevation semiarid forests. Coincident climate poorly predicted soil respiration in the montane transition zone; however, antecedent precipitation from the prior 10 days provided additional explanatory power. A seasonal trend in respiration remained after accounting for microclimate effects, suggesting that local climate alone may not adequately predict seasonal variability in soil respiration in montane forests. Finally, soil respiration climate controls were more strongly related to topography during the drought year highlighting the importance of landscape complexity in ecosystem response to drought.« less
Berryman, Erin Michele; Barnard, H.R.; Adams, H.R.; Burns, M.A.; Gallo, E.; Brooks, P.D.
2015-01-01
Forest soil respiration is a major carbon (C) flux that is characterized by significant variability in space and time. We quantified growing season soil respiration during both a drought year and a nondrought year across a complex landscape to identify how landscape and climate interact to control soil respiration. We asked the following questions: (1) How does soil respiration vary across the catchments due to terrain-induced variability in moisture availability and temperature? (2) Does the relative importance of moisture versus temperature limitation of respiration vary across space and time? And (3) what terrain elements are important for dictating the pattern of soil respiration and its controls? Moisture superseded temperature in explaining watershed respiration patterns, with wetter yet cooler areas higher up and on north facing slopes yielding greater soil respiration than lower and south facing areas. Wetter subalpine forests had reduced moisture limitation in favor of greater seasonal temperature limitation, and the reverse was true for low-elevation semiarid forests. Coincident climate poorly predicted soil respiration in the montane transition zone; however, antecedent precipitation from the prior 10 days provided additional explanatory power. A seasonal trend in respiration remained after accounting for microclimate effects, suggesting that local climate alone may not adequately predict seasonal variability in soil respiration in montane forests. Soil respiration climate controls were more strongly related to topography during the drought year highlighting the importance of landscape complexity in ecosystem response to drought.
Describing temporal variability of the mean Estonian precipitation series in climate time scale
NASA Astrophysics Data System (ADS)
Post, P.; Kärner, O.
2009-04-01
Applicability of the random walk type models to represent the temporal variability of various atmospheric temperature series has been successfully demonstrated recently (e.g. Kärner, 2002). Main problem in the temperature modeling is connected to the scale break in the generally self similar air temperature anomaly series (Kärner, 2005). The break separates short-range strong non-stationarity from nearly stationary longer range variability region. This is an indication of the fact that several geophysical time series show a short-range non-stationary behaviour and a stationary behaviour in longer range (Davis et al., 1996). In order to model series like that the choice of time step appears to be crucial. To characterize the long-range variability we can neglect the short-range non-stationary fluctuations, provided that we are able to model properly the long-range tendencies. The structure function (Monin and Yaglom, 1975) was used to determine an approximate segregation line between the short and the long scale in terms of modeling. The longer scale can be called climate one, because such models are applicable in scales over some decades. In order to get rid of the short-range fluctuations in daily series the variability can be examined using sufficiently long time step. In the present paper, we show that the same philosophy is useful to find a model to represent a climate-scale temporal variability of the Estonian daily mean precipitation amount series over 45 years (1961-2005). Temporal variability of the obtained daily time series is examined by means of an autoregressive and integrated moving average (ARIMA) family model of the type (0,1,1). This model is applicable for daily precipitation simulating if to select an appropriate time step that enables us to neglet the short-range non-stationary fluctuations. A considerably longer time step than one day (30 days) is used in the current paper to model the precipitation time series variability. Each ARIMA (0,1,1) model can be interpreted to be consisting of random walk in a noisy environment (Box and Jenkins, 1976). The fitted model appears to be weakly non-stationary, that gives us the possibility to use stationary approximation if only the noise component from that sum of white noise and random walk is exploited. We get a convenient routine to generate a stationary precipitation climatology with a reasonable accuracy, since the noise component variance is much larger than the dispersion of the random walk generator. This interpretation emphasizes dominating role of a random component in the precipitation series. The result is understandable due to a small territory of Estonia that is situated in the mid-latitude cyclone track. References Box, J.E.P. and G. Jenkins 1976: Time Series Analysis, Forecasting and Control (revised edn.), Holden Day San Francisco, CA, 575 pp. Davis, A., Marshak, A., Wiscombe, W. and R. Cahalan 1996: Multifractal characterizations of intermittency in nonstationary geophysical signals and fields.in G. Trevino et al. (eds) Current Topics in Nonsstationarity Analysis. World-Scientific, Singapore, 97-158. Kärner, O. 2002: On nonstationarity and antipersistency in global temperature series. J. Geophys. Res. D107; doi:10.1029/2001JD002024. Kärner, O. 2005: Some examples on negative feedback in the Earth climate system. Centr. European J. Phys. 3; 190-208. Monin, A.S. and A.M. Yaglom 1975: Statistical Fluid Mechanics, Vol 2. Mechanics of Turbulence , MIT Press Boston Mass, 886 pp.
NASA Astrophysics Data System (ADS)
Anwar, Faizan; Bárdossy, András; Seidel, Jochen
2017-04-01
Estimating missing values in a time series of a hydrological variable is an everyday task for a hydrologist. Existing methods such as inverse distance weighting, multivariate regression, and kriging, though simple to apply, provide no indication of the quality of the estimated value and depend mainly on the values of neighboring stations at a given step in the time series. Copulas have the advantage of representing the pure dependence structure between two or more variables (given the relationship between them is monotonic). They rid us of questions such as transforming the data before use or calculating functions that model the relationship between the considered variables. A copula-based approach is suggested to infill discharge, precipitation, and temperature data. As a first step the normal copula is used, subsequently, the necessity to use non-normal / non-symmetrical dependence is investigated. Discharge and temperature are treated as regular continuous variables and can be used without processing for infilling and quality checking. Due to the mixed distribution of precipitation values, it has to be treated differently. This is done by assigning a discrete probability to the zeros and treating the rest as a continuous distribution. Building on the work of others, along with infilling, the normal copula is also utilized to identify values in a time series that might be erroneous. This is done by treating the available value as missing, infilling it using the normal copula and checking if it lies within a confidence band (5 to 95% in our case) of the obtained conditional distribution. Hydrological data from two catchments Upper Neckar River (Germany) and Santa River (Peru) are used to demonstrate the application for datasets with different data quality. The Python code used here is also made available on GitHub. The required input is the time series of a given variable at different stations.
Folkard, S; Minors, D S; Waterhouse, J M
1984-01-01
Three groups of four healthy volunteers lived in an isolation unit for 24 days. During this time they lived by a clock which, unknown to themselves, ran progressively faster so that, by real time, the 'day' decreased from 24.0 to 22.0 h in length. Throughout this protocol, the subjects lived a regular regimen of sleep, waking and meals based upon their 'local' time clock. They collected regular urine samples that were analysed for a variety of constituents. Rectal temperature was also recorded automatically throughout. The effects of such a protocol upon circadian rhythmicity in these variables were investigated by a variety of techniques including cosinor analysis. The results showed that the temperature rhythm was less able to adjust to a shortening 'day' than were the urinary variables, with the possible exception of potassium; that is, the protocol forced an internal desynchronization to exist between different variables. These results are discussed in terms of both the possibility that more than one internal circadian clock might exist and the direct effect that sleep exerts upon the expression of circadian rhythms. PMID:6512693
NASA Astrophysics Data System (ADS)
Di Piazza, A.; Cordano, E.; Eccel, E.
2012-04-01
The issue of climate change detection is considered a major challenge. In particular, high temporal resolution climate change scenarios are required in the evaluation of the effects of climate change on agricultural management (crop suitability, yields, risk assessment, etc.) energy production and water management. In this work, a "Weather Generator" technique was used for downscaling climate change scenarios for temperature. An R package (RMAWGEN, Cordano and Eccel, 2011 - available on http://cran.r-project.org) was developed aiming to generate synthetic daily weather conditions by using the theory of vectorial auto-regressive models (VAR). The VAR model was chosen for its ability in maintaining the temporal and spatial correlations among variables. In particular, observed time series of daily maximum and minimum temperature are transformed into "new" normally-distributed variable time series which are used to calibrate the parameters of a VAR model by using ordinary least square methods. Therefore the implemented algorithm, applied to monthly mean climatic values downscaled by Global Climate Model predictions, can generate several stochastic daily scenarios where the statistical consistency among series is saved. Further details are present in RMAWGEN documentation. An application is presented here by using a dataset with daily temperature time series recorded in 41 different sites of Trentino region for the period 1958-2010. Temperature time series were pre-processed to fill missing values (by a site-specific calibrated Inverse Distance Weighting algorithm, corrected with elevation) and to remove inhomogeneities. Several climatic indices were taken into account, useful for several impact assessment applications, and their time trends within the time series were analyzed. The indices go from the more classical ones, as annual mean temperatures, seasonal mean temperatures and their anomalies (from the reference period 1961-1990) to the climate change indices selected from the list recommended by the World Meteorological Organization Commission for Climatology (WMO-CCL) and the Research Programme on Climate Variability and Predictability (CLIVAR) project's Expert Team on Climate Change Detection, Monitoring and Indices (ETCCDMI). Each index was applied to both observed (and processed) data and to synthetic time series produced by the Weather Generator, over the thirty year reference period 1981-2010, in order to validate the procedure. Climate projections were statistically downscaled for a selection of sites for the two 30-year periods 2021-2050 and 2071-2099 of the European project "Ensembles" multi-model output (scenario A1B). The use of several climatic indices strengthens the trend analysis of both the generated synthetic series and future climate projections.
Microphysical Timescales in Clouds and their Application in Cloud-Resolving Modeling
NASA Technical Reports Server (NTRS)
Zeng, Xiping; Tao, Wei-Kuo; Simpson, Joanne
2007-01-01
Independent prognostic variables in cloud-resolving modeling are chosen on the basis of the analysis of microphysical timescales in clouds versus a time step for numerical integration. Two of them are the moist entropy and the total mixing ratio of airborne water with no contributions from precipitating particles. As a result, temperature can be diagnosed easily from those prognostic variables, and cloud microphysics be separated (or modularized) from moist thermodynamics. Numerical comparison experiments show that those prognostic variables can work well while a large time step (e.g., 10 s) is used for numerical integration.
NASA Technical Reports Server (NTRS)
Mckay, C. P.
1985-01-01
To investigate the occurrence of low temperatures and the formation of noctilucent clouds in the summer mesosphere, a one-dimensional time-dependent photochemical-thermal numerical model of the atmosphere between 50 and 120 km has been constructed. The model self-consistently solves the coupled photochemical and thermal equations as perturbation equations from a reference state assumed to be in equilibrium and is used to consider the effect of variability in water vapor in the lower mesosphere on the temperature in the region of noctilucent cloud formation. It is found that change in water vapor from an equilibrium value of 5 ppm at 50 km to a value of 10 ppm, a variation consistent with observations, can produce a roughly 15 K drop in temperature at 82 km. It is suggested that this process may produce weeks of cold temperatures and influence noctilucent cloud formation.
The effect of forging history on the strength and microstructure of TDNiCr /Ni-20Cr-2ThO2/
NASA Technical Reports Server (NTRS)
Filippi, A. M.
1975-01-01
Forging variables were evaluated to determine their influence on the elevated temperature strength and microstructure of TDNiCr. Grain size was the principal microstructural feature related to elevated temperature strength and was controlled primarily by the thermomechanical variables of forging temperature and final annealing condition. Tests at 1366 K revealed a factor of eight increase in tensile strength as grain size increased from 1 to 150 microns, while stress-rupture strength improved by three to five times as grain size increased from 15 to 150 microns. Forged material of grain size greater than or equal to about 150 microns displayed a level of elevated temperature strength comparable to that of optimized TDNiCr sheet. The presence of a preponderance of small twins and a strong preferred orientation may have also been factors contributing to the excellent high temperature strength of large grain forged material.
NASA Astrophysics Data System (ADS)
Katselis, George; Koukou, Katerina; Dimitriou, Evagelos; Koutsikopoulos, Constantin
2007-07-01
In the present study we analysed the daily seaward migratory behaviour of four dominant euryhaline fish species (Mugilidae: Liza saliens, Liza aurata, Mugil cephalus and Sparidae: Sparus aurata) in the Messolonghi Etoliko lagoon system (Western Greek coast) based on the daily landings' time series of barrier traps and assessed the relationship between their migratory behaviour and various climatic variables (air temperature and atmospheric pressure) and the lunar cycle. A 2-year time series of daily fish landings (1993 and 1994), a long time series of daily air temperature and daily temperature range (1991 1998) as well as a 4-year time series of the daily atmospheric pressure (1994 1997) and daily pressure range were used. Harmonic models (HM) consisting of annual and lunar cycle harmonic components explained most (R2 > 0.80) of the mean daily species landings and temperature variations, while a rather low part of the variation (0.18 < R2 < 0.27) was explained for pressure, daily pressure range and daily temperature range. In all the time series sets the amplitude of the annual component was highest. The model values of all species revealed two important migration periods (summer and winter) corresponding to the spawning and refuge migrations. The lunar cycle effect on species' daily migration rates and the short-term fluctuation of daily migration rates were rather low. However, the short-term fluctuation of some species' daily migration rates during winter was greater than during summer. In all species, the main migration was the spawning migration. The model lunar components of the species landings showed a monthly oscillation synchronous to the full moon (S. aurata and M. cephalus) or a semi-monthly oscillation synchronous to the new and full moon (L. aurata and L. saliens). Bispectral analysis of the model values and the model residuals' time series revealed that the species daily migration were correlated (coherencies > 0.6) to the daily fluctuations of the climatic variables at seasonal, mid and short-term scales.
Calibration and temperature correction of heat dissipation matric potential sensors
Flint, A.L.; Campbell, G.S.; Ellett, K.M.; Calissendorff, C.
2002-01-01
This paper describes how heat dissipation sensors, used to measure soil water matric potential, were analyzed to develop a normalized calibration equation and a temperature correction method. Inference of soil matric potential depends on a correlation between the variable thermal conductance of the sensor's porous ceramic and matric poten-tial. Although this correlation varies among sensors, we demonstrate a normalizing procedure that produces a single calibration relationship. Using sensors from three sources and different calibration methods, the normalized calibration resulted in a mean absolute error of 23% over a matric potential range of -0.01 to -35 MPa. Because the thermal conductivity of variably saturated porous media is temperature dependent, a temperature correction is required for application of heat dissipation sensors in field soils. A temperature correction procedure is outlined that reduces temperature dependent errors by 10 times, which reduces the matric potential measurement errors by more than 30%. The temperature dependence is well described by a thermal conductivity model that allows for the correction of measurements at any temperature to measurements at the calibration temperature.
NASA Astrophysics Data System (ADS)
Djenadic, Ruzica; Winterer, Markus
2017-02-01
The influence of the time-temperature history on the characteristics of nanoparticles such as size, degree of agglomeration, or crystallinity is investigated for chemical vapor synthesis (CVS). A simple reaction-coagulation-sintering model is used to describe the CVS process, and the results of the model are compared to experimental data. Nanocrystalline titania is used as model material. Titania nanoparticles are generated from titanium-tetraisopropoxide (TTIP) in a hot-wall reactor. Pure anatase particles and mixtures of anatase, rutile (up to 11 vol.%), and brookite (up to 29 vol.%) with primary particle sizes from 1.7 nm to 10.5 nm and agglomerate particle sizes from 24.3 nm to 55.6 nm are formed depending on the particle time-temperature history. An inductively heated furnace with variable inductor geometry is used as a novel system to control the time-temperature profile in the reactor externally covering a large wall temperature range from 873 K to 2023 K. An appropriate choice of inductor geometry, i.e. time-temperature profile, can significantly reduce the degree of agglomeration. Other particle characteristics such as crystallinity are also substantially influenced by the time-temperature profile.
Dagnas, Stéphane; Gougouli, Maria; Onno, Bernard; Koutsoumanis, Konstantinos P; Membré, Jeanne-Marie
2017-01-02
The inhibitory effect of water activity (a w ) and storage temperature on single spore lag times of Aspergillus niger, Eurotium repens (Aspergillus pseudoglaucus) and Penicillium corylophilum strains isolated from spoiled bakery products, was quantified. A full factorial design was set up for each strain. Data were collected at levels of a w varying from 0.80 to 0.98 and temperature from 15 to 35°C. Experiments were performed on malt agar, at pH5.5. When growth was observed, ca 20 individual growth kinetics per condition were recorded up to 35days. Radius of the colony vs time was then fitted with the Buchanan primary model. For each experimental condition, a lag time variability was observed, it was characterized by its mean, standard deviation (sd) and 5 th percentile, after a Normal distribution fit. As the environmental conditions became stressful (e.g. storage temperature and a w lower), mean and sd of single spore lag time distribution increased, indicating longer lag times and higher variability. The relationship between mean and sd followed a monotonous but not linear pattern, identical whatever the species. Next, secondary models were deployed to estimate the cardinal values (minimal, optimal and maximal temperatures, minimal water activity where no growth is observed anymore) for the three species. That enabled to confirm the observation made based on raw data analysis: concerning the temperature effect, A. niger behaviour was significantly different from E. repens and P. corylophilum: T opt of 37.4°C (standard deviation 1.4°C) instead of 27.1°C (1.4°C) and 25.2°C (1.2°C), respectively. Concerning the a w effect, from the three mould species, E. repens was the species able to grow at the lowest a w (aw min estimated to 0.74 (0.02)). Finally, results obtained with single spores were compared to findings from a previous study carried out at the population level (Dagnas et al., 2014). For short lag times (≤5days), there was no difference between lag time of the population (ca 2000 spores inoculated in one spot) and mean (nor 5 th percentile) of single spore lag time distribution. In contrast, when lag time was longer, i.e. under more stressful conditions, there was a discrepancy between individual and population lag times (population lag times shorter than 5 th percentiles of single spore lag time distribution), confirming a stochastic process. Finally, the temperature cardinal values estimated with single spores were found to be similar to those obtained at the population level, whatever the species. All these findings will be used to describe better mould spore lag time variability and then to predict more accurately bakery product shelf-life. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Starkey, D.; Gehrels, Cornelis; Horne, Keith; Fausnaugh, M. M.; Peterson, B. M.; Bentz, M. C.; Kochanek, C. S.; Denney, K. D.; Edelson, R.; Goad, M. R.;
2017-01-01
We conduct a multi-wavelength continuum variability study of the Seyfert 1 galaxy NGC 5548 to investigate the temperature structure of its accretion disk. The 19 overlapping continuum light curves (1158 Angstrom to 9157 Angstrom) combine simultaneous Hubble Space Telescope, Swift, and ground-based observations over a 180 day period from 2014 January to July. Light-curve variability is interpreted as the reverberation response of the accretion disk to irradiation by a central time-varying point source. Our model yields the disk inclination i = 36deg +/- 10deg, temperature T(sub 1) = (44+/-6) times 10 (exp 3)K at 1 light day from the black hole, and a temperature radius slope (T proportional to r (exp -alpha)) of alpha = 0.99 +/- 0.03. We also infer the driving light curve and find that it correlates poorly with both the hard and soft X-ray light curves, suggesting that the X-rays alone may not drive the ultraviolet and optical variability over the observing period. We also decompose the light curves into bright, faint, and mean accretion-disk spectra. These spectra lie below that expected for a standard blackbody accretion disk accreting at L/L(sub Edd) = 0.1.
NASA Astrophysics Data System (ADS)
Rehfeld, Kira; Trachsel, Mathias; Telford, Richard J.; Laepple, Thomas
2016-12-01
Reconstructions of summer, winter or annual mean temperatures based on the species composition of bio-indicators such as pollen, foraminifera or chironomids are routinely used in climate model-proxy data comparison studies. Most reconstruction algorithms exploit the joint distribution of modern spatial climate and species distribution for the development of the reconstructions. They rely on the space-for-time substitution and the specific assumption that environmental variables other than those reconstructed are not important or that their relationship with the reconstructed variable(s) should be the same in the past as in the modern spatial calibration dataset. Here we test the implications of this "correlative uniformitarianism" assumption on climate reconstructions in an ideal model world, in which climate and vegetation are known at all times. The alternate reality is a climate simulation of the last 6000 years with dynamic vegetation. Transient changes of plant functional types are considered as surrogate pollen counts and allow us to establish, apply and evaluate transfer functions in the modeled world. We find that in our model experiments the transfer function cross validation r2 is of limited use to identify reconstructible climate variables, as it only relies on the modern spatial climate-vegetation relationship. However, ordination approaches that assess the amount of fossil vegetation variance explained by the reconstructions are promising. We furthermore show that correlations between climate variables in the modern climate-vegetation relationship are systematically extended into the reconstructions. Summer temperatures, the most prominent driving variable for modeled vegetation change in the Northern Hemisphere, are accurately reconstructed. However, the amplitude of the model winter and mean annual temperature cooling between the mid-Holocene and present day is overestimated and similar to the summer trend in magnitude. This effect occurs because temporal changes of a dominant climate variable, such as summer temperatures in the model's Arctic, are imprinted on a less important variable, leading to reconstructions biased towards the dominant variable's trends. Our results, although based on a model vegetation that is inevitably simpler than reality, indicate that reconstructions of multiple climate variables based on modern spatial bio-indicator datasets should be treated with caution. Expert knowledge on the ecophysiological drivers of the proxies, as well as statistical methods that go beyond the cross validation on modern calibration datasets, are crucial to avoid misinterpretation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Ming; Deng, Yi
2015-02-06
El Niño-Southern Oscillation (ENSO) and Annular Modes (AMs) represent respectively the most important modes of low frequency variability in the tropical and extratropical circulations. The future projection of the ENSO and AM variability, however, remains highly uncertain with the state-of-the-art coupled general circulation models. A comprehensive understanding of the factors responsible for the inter-model discrepancies in projecting future changes in the ENSO and AM variability, in terms of multiple feedback processes involved, has yet to be achieved. The proposed research aims to identify sources of such uncertainty and establish a set of process-resolving quantitative evaluations of the existing predictions ofmore » the future ENSO and AM variability. The proposed process-resolving evaluations are based on a feedback analysis method formulated in Lu and Cai (2009), which is capable of partitioning 3D temperature anomalies/perturbations into components linked to 1) radiation-related thermodynamic processes such as cloud and water vapor feedbacks, 2) local dynamical processes including convection and turbulent/diffusive energy transfer and 3) non-local dynamical processes such as the horizontal energy transport in the oceans and atmosphere. Taking advantage of the high-resolution, multi-model ensemble products from the Coupled Model Intercomparison Project Phase 5 (CMIP5) soon to be available at the Lawrence Livermore National Lab, we will conduct a process-resolving decomposition of the global three-dimensional (3D) temperature (including SST) response to the ENSO and AM variability in the preindustrial, historical and future climate simulated by these models. Specific research tasks include 1) identifying the model-observation discrepancies in the global temperature response to ENSO and AM variability and attributing such discrepancies to specific feedback processes, 2) delineating the influence of anthropogenic radiative forcing on the key feedback processes operating on ENSO and AM variability and quantifying their relative contributions to the changes in the temperature anomalies associated with different phases of ENSO and AMs, and 3) investigating the linkages between model feedback processes that lead to inter-model differences in time-mean temperature projection and model feedback processes that cause inter-model differences in the simulated ENSO and AM temperature response. Through a thorough model-observation and inter-model comparison of the multiple energetic processes associated with ENSO and AM variability, the proposed research serves to identify key uncertainties in model representation of ENSO and AM variability, and investigate how the model uncertainty in predicting time-mean response is related to the uncertainty in predicting response of the low-frequency modes. The proposal is thus a direct response to the first topical area of the solicitation: Interaction of Climate Change and Low Frequency Modes of Natural Climate Variability. It ultimately supports the accomplishment of the BER climate science activity Long Term Measure (LTM): "Deliver improved scientific data and models about the potential response of the Earth's climate and terrestrial biosphere to increased greenhouse gas levels for policy makers to determine safe levels of greenhouse gases in the atmosphere."« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Childs, K.W.
1991-07-01
HEATING is a FORTRAN program designed to solve steady-state and/or transient heat conduction problems in one-, two-, or three- dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heating generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- and position-dependent. The boundary conditions, which maymore » be surface-to-boundary or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General graybody radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING is variably dimensioned and utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution (for one-dimensional or two-dimensional problems), and conjugate gradient. Transient problems may be solved using one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method (which for some circumstances allows a time step greater than the CEP stability criterion). The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.« less
Impact of Subsurface Temperature Variability on Meteorological Variability: An AGCM Study
NASA Astrophysics Data System (ADS)
Mahanama, S. P.; Koster, R. D.; Liu, P.
2006-05-01
Anomalous atmospheric conditions can lead to surface temperature anomalies, which in turn can lead to temperature anomalies deep in the soil. The deep soil temperature (and the associated ground heat content) has significant memory -- the dissipation of a temperature anomaly may take weeks to months -- and thus deep soil temperature may contribute to the low frequency variability of energy and water variables elsewhere in the system. The memory may even provide some skill to subseasonal and seasonal forecasts. This study uses two long-term AGCM experiments to isolate the contribution of deep soil temperature variability to variability elsewhere in the climate system. The first experiment consists of a standard ensemble of AMIP-type simulations, simulations in which the deep soil temperature variable is allowed to interact with the rest of the system. In the second experiment, the coupling of the deep soil temperature to the rest of the climate system is disabled -- at each grid cell, the local climatological seasonal cycle of deep soil temperature (as determined from the first experiment) is prescribed. By comparing the variability of various atmospheric quantities as generated in the two experiments, we isolate the contribution of interactive deep soil temperature to that variability. The results show that interactive deep soil temperature contributes significantly to surface temperature variability. Interactive deep soil temperature, however, reduces the variability of the hydrological cycle (evaporation and precipitation), largely because it allows for a negative feedback between evaporation and temperature.
Casanova, I; Diaz, A; Pinto, S; de Carvalho, M
2014-04-01
The technique of threshold tracking to test axonal excitability gives information about nodal and internodal ion channel function. We aimed to investigate variability of the motor excitability measurements in healthy controls, taking into account age, gender, body mass index (BMI) and small changes in skin temperature. We examined the left median nerve of 47 healthy controls using the automated threshold-tacking program, QTRAC. Statistical multiple regression analysis was applied to test relationship between nerve excitability measurements and subject variables. Comparisons between genders did not find any significant difference (P>0.2 for all comparisons). Multiple regression analysis showed that motor amplitude decreases with age and temperature, stimulus-response slope decreases with age and BMI, and that accommodation half-time decrease with age and temperature. The changes related to demographic features on TRONDE protocol parameters are small and less important than in conventional nerve conduction studies. Nonetheless, our results underscore the relevance of careful temperature control, and indicate that interpretation of stimulus-response slope and accommodation half-time should take into account age and BMI. In contrast, gender is not of major relevance to axonal threshold findings in motor nerves. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Lotfy, Kh.
2017-07-01
The dual-phase-lag (DPL) model with two different time translations and Lord-Shulman (LS) theory with one relaxation time are applied to study the effect of hydrostatic initial stress on medium under the influence of two temperature parameter(a new model will be introduced using two temperature theory) and photothermal theory. We solved the thermal loading at the free surface in the semi-infinite semiconducting medium-coupled plasma waves with the effect of mechanical force during a photothermal process. The exact expressions of the considered variables are obtained using normal mode analysis also the two temperature coefficient ratios were obtained analytically. Numerical results for the field quantities are given in the physical domain and illustrated graphically under the effects of several parameters. Comparisons are made between the results of the two different models with and without two temperature parameter, and for two different values of the hydrostatic initial stress. A comparison is carried out between the considered variables as calculated from the generalized thermoelasticity based on the DPL model and the LS theory in the absence and presence of the thermoelastic and thermoelectric coupling parameters.
Spatial and Seasonal Variability of Temperature in CO2 Emission from Mars' Mesosphere
NASA Astrophysics Data System (ADS)
Livengood, Timothy A.; Kostiuk, Theodor; Hewagama, Tilak; Kolasinski, John R.; Henning, Wade; Fast, Kelly Elizabeth; Sonnabend, Guido; Sornig, Manuela
2017-10-01
We have observed non-local thermodynamic equilibrium (non-LTE) emission of carbon dioxide that probes Mars’ mesosphere in 2001, 2003, 2007, 2012, 2014, and 2016. These measurements were conducted at 10.6 μm wavelength using the Goddard Space Flight Center Heterodyne Instrument for Planetary Winds and Composition (HIPWAC) from the NASA Infrared Telescope Facility (IRTF) at resolving power (1-33)×106. The Maxwellian broadening of the emission line can be measured at this resolution, providing a direct determination of temperature in the mesosphere. The nonLTE line appears as a narrow emission core within a broad absorption formed by tropospheric CO2, which provides temperature information reaching down to the martian surface, while the mesospheric line probes temperature at about 60-80 km altitude. We will report on the spatial distribution of temperature and emission line strength with local solar time on Mars, with latitude, as well as long-term variability including seasonal effects that modify the overall thermal structure of the atmosphere. These remote measurements complement results from orbital spacecraft through access to a broad range of local solar time on each occasion.This work has been supported by the NASA Planetary Astronomy and Solar Systems Observations Programs
The Nature and Cause of Spectral Variability in LMC X-1
NASA Technical Reports Server (NTRS)
Ruhlen, L.; Smith, D. M.; Scank, J. H.
2011-01-01
We present the results of a long-term observation campaign of the extragalactic wind-accreting black-hole X-ray binary LMC X-1, using the Proportional Counter Array on the Rossi X-Ray Timing Explorer (RXTE). The observations show that LMC X-1's accretion disk exhibits an anomalous temperature-luminosity relation. We use deep archival RXTE observations to show that large movements across the temperature-luminosity space occupied by the system can take place on time scales as short as half an hour. These changes cannot be adequately explained by perturbations that propagate from the outer disk on a viscous timescale. We propose instead that the apparent disk variations reflect rapid fluctuations within the Compton up-scattering coronal material, which occults the inner parts of the disk. The expected relationship between the observed disk luminosity and apparent disk temperature derived from the variable occultation model is quantitatively shown to be in good agreement with the observations. Two other observations support this picture: an inverse correlation between the flux in the power-law spectral component and the fitted inner disk temperature, and a near-constant total photon flux, suggesting that the inner disk is not ejected when a lower temperature is observed.
Rakita, Slađana; Pojić, Milica; Tomić, Jelena; Torbica, Aleksandra
2014-05-01
The aim of the present study was to determine the characteristics of an analytical method for determination of free sulphydryl (SH) groups of wheat gluten performed with previous gluten incubation for variable times (45, 90 and 135min) at variable temperatures (30 and 37°C), in order to determine its fitness-for-purpose. It was observed that the increase in temperature and gluten incubation time caused the increase in the amount of free SH groups, with more dynamic changes at 37°C. The method characteristics identified as relevant were: linearity, limit of detection, limit of quantification, precision (repeatability and reproducibility) and measurement uncertainty, which were checked within the validation protocol, while the method performance was monitored by X- and R-control charts. Identified method characteristics demonstrated its acceptable fitness-for-purpose, when assay included previous gluten incubation at 30°C. Although the method repeatability at 37°C was acceptable, the corresponding reproducibility did not meet the performance criterion on the basis of HORRAT value (HORRAT<2). Copyright © 2013 Elsevier Ltd. All rights reserved.
Gabriel, Alonzo A; Cayabyab, Jochelle Elysse C; Tan, Athalie Kaye L; Corook, Mark Lester F; Ables, Errol John O; Tiangson-Bayaga, Cecile Leah P
2015-06-15
A predictive response surface model for the influences of product (soluble solids and titratable acidity) and process (temperature and heating time) parameters on the degradation of ascorbic acid (AA) in heated simulated fruit juices (SFJs) was established. Physicochemical property ranges of freshly squeezed and processed juices, and a previously established decimal reduction times of Escherichiacoli O157:H7 at different heating temperatures were used in establishing a Central Composite Design of Experiment that determined the combinations of product and process variable used in the model building. Only the individual linear effects of temperature and heating time significantly (P<0.05) affected AA reduction (%AAr). Validating systems either over- or underestimated actual %AAr with bias factors 0.80-1.20. However, all validating systems still resulted in acceptable predictive efficacy, with accuracy factor 1.00-1.26. The model may be useful in establishing unique process schedules for specific products, for the simultaneous control and improvement of food safety and quality. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nazir, Sadaf; Wani, Idrees Ahmed; Masoodi, Farooq Ahmad
2017-05-01
Aqueous extraction of basil seed mucilage was optimized using response surface methodology. A Central Composite Rotatable Design (CCRD) for modeling of three independent variables: temperature (40-91 °C); extraction time (1.6-3.3 h) and water/seed ratio (18:1-77:1) was used to study the response for yield. Experimental values for extraction yield ranged from 7.86 to 20.5 g/100 g. Extraction yield was significantly ( P < 0.05) affected by all the variables. Temperature and water/seed ratio were found to have pronounced effect while the extraction time was found to have minor possible effects. Graphical optimization determined the optimal conditions for the extraction of mucilage. The optimal condition predicted an extraction yield of 20.49 g/100 g at 56.7 °C, 1.6 h, and a water/seed ratio of 66.84:1. Optimal conditions were determined to obtain highest extraction yield. Results indicated that water/seed ratio was the most significant parameter, followed by temperature and time.
Chamorro, Daniel; Luna, Belén; Moreno, José M
2017-01-01
Species differ in their temperature germination niche. Populations of a species may similarly differ across the distribution range of the species. Anticipating the impacts of climate variability and change requires understanding the differential sensitivity to germination temperature among and within species. Here we studied the germination responses of four hard-seeded Cistaceae seeders to a range of current and future temperatures. Seeds were collected at sites across the Iberian Peninsula and exposed or not exposed to a heat shock to break dormancy, then set to germinate under four temperature regimes. Temperatures were varied daily and seasonally, simulating the temperature range across the gradient, plus an increased temperature simulating future climate. Time to germination onset and cumulative germination at the end of each season were analyzed for the effects of temperature treatments, seasons, and local climate (temperature of the germination period, T gp ) at each site. T gp was a significant covariate of germination in all species but Cistus populifolius. Temperature treatments significantly affected Cistus ladanifer, C. salviifolius, and Halimium ocymoides. Germination occurred in simulated autumn conditions, with little germination occurring at later seasons, except in unheated seeds of H. ocymoides. Exposure to a heat shock changed the sensitivity to temperature treatments and the relationships with T gp . Germination responses to temperature differ not only among species but also within species across their latitudinal range. The responses were idiosyncratic and related to the local climate of the population. This germination variability complicates generalizing the impacts of climate variability and climate change. © 2017 Botanical Society of America.
On the origin of multi-decadal to centennial Greenland temperature anomalies over the past 800 yr
NASA Astrophysics Data System (ADS)
Kobashi, T.; Shindell, D. T.; Kodera, K.; Box, J. E.; Nakaegawa, T.; Kawamura, K.
2012-11-01
The surface temperature of the Greenland ice sheet is among the most important climate variables for assessing how climate change may impact human societies associated with accelerating sea level rise. However, the causes of multi-decadal-to-centennial temperature changes in Greenland are not well understood, largely owing to short observational records. To examine the causes of the Greenland temperature variability, we calculated the Greenland temperature anomalies (GTA(G-NH)) over the past 800 yr by subtracting the standardised NH temperature from the standardised Greenland temperature. It decomposes the Greenland temperature variation into background climate (NH); Polar amplification; and Regional variability (GTA(G-NH)). The Central Greenland polar amplification factor as expressed by the variance ratio = Greenland/NH is 2.6 over the past 161 yr, and 3.3-4.2 over the past 800 yr. The GTA explains 31-35% of the variation of Greenland temperature in the multi-decadal-to-centennial time scale over the past 800 yr. Another orthogonal component of the Greenland and NH temperatures, GTP(G+NH) (Greenland temperature plus = standardized Greenland temperature + standardized NH temperature) exhibited the multi-decadal variations that were likely induced by large volcanic eruptions, increasing greenhouse gasses, and internal variation of climate. We found that the GTA(G-NH) has been influenced by solar-induced changes in atmospheric circulation patterns such as those produced by North Atlantic Oscillation/Arctic Oscillation (NAO/AO). Climate modelling indicates that the anomaly is also likely linked to solar-paced changes in the Atlantic meridional overturning circulation (AMOC) and to associated changes in northward oceanic heat transport.
NASA Astrophysics Data System (ADS)
Ahmad, Norhidayah; Yong, Sing Hung; Ibrahim, Naimah; Ali, Umi Fazara Md; Ridwan, Fahmi Muhammad; Ahmad, Razi
2018-03-01
Oil palm empty fruit bunch (EFB) was successfully modified with phosphoric acid hydration followed by impregnation with copper oxide (CuO) to synthesize CuO modified catalytic carbon (CuO/EFBC) for low-temperature removal of nitric oxide (NO) from gas streams. CuO impregnation was optimised through response surface methodology (RSM) using Box-Behnken Design (BBD) in terms of metal loading (5-20%), sintering temperature (200-800˚C) and sintering time (2-6 hours). The model response for the variables was NO adsorption capacity, which was obtained from an up-flow column adsorption experiment with 100 mL/min flow of 500 ppm NO/He at different operating conditions. The optimum operating variables suggested by the model were 20% metal loading, 200˚C sintering temperature and 6 hours sintering time. A good agreement (R2 = 0.9625) was achieved between the experimental data and model prediction. ANOVA analysis indicated that the model terms (metal loading and sintering temperature) are significant (Prob.>F less than 0.05).
Yuksel, Ferhat; Karaman, Safa; Kayacier, Ahmed
2014-02-15
In the present study, wheat chips enriched with flaxseed flour were produced and response surface methodology was used for the studying the simultaneous effects of flaxseed level (10-20%), frying temperature (160-180 °C) and frying time (40-60 s) on some physicochemical, textural and sensorial properties and fatty acid composition of wheat chips. Ridge analysis was conducted to determine the optimum levels of processing variables. Predictive regression equations with adequate coefficients of determination (R² ≥ 0.705) to explain the effect of processing variables were constructed. Addition of flaxseed flour increased the dry matter and protein content of samples and increase of frying temperature decreased the hardness values of wheat chips samples. Increment in flaxseed level provided an increase in unsaturated fatty acid content namely omega-3 fatty acids of wheat chips samples. Overall acceptability of chips increased with the increase of frying temperature. Ridge analysis showed that maximum taste score would be at flaxseed level = 10%, frying temperature = 180 °C and frying time = 50 s. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Nicholson, Stephen; Moore, Joan G.; Moore, John
1987-01-01
A method was developed which calculates two-dimensional, transonic, viscous flow in ducts. The finite volume, time-marching formulation is used to obtain steady flow solutions of the Reynolds-averaged form of the Navier-Stokes equations. The entire calculation is performed in the physical domain. This paper investigates the introduction of a new formulation of the energy equation which gives improved transient behavior as the calculation converges. The effect of variable Prandtl number on the temperature distribution through the boundary layer is also investigated. A turbulent boundary layer in an adverse pressure gradient (M = 0.55) is used to demonstrate the improved transient temperature distribution obtained when the new formulation of the energy equation is used. A flat plate turbulent boundary layer with a supersonic free-stream Mach number of 2.8 is used to investigate the effect of Prandtl number on the distribution of properties through the boundary layer. The computed total temperature distribution and recovery factor agree well with the measurements when a variable Prandtl number is used through the boundary layer.
NASA Technical Reports Server (NTRS)
Nicholson, Stephen; Moore, Joan G.; Moore, John
1986-01-01
A method was developed which calculates two-dimensional, transonic, viscous flow in ducts. The finite volume, time-marching formulation is used to obtain steady flow solutions of the Reynolds-averaged form of the Navier-Stokes equations. The entire calculation is performed in the physical domain. This paper investigates the introduction of a new formulation of the energy equation which gives improved transient behavior as the calculation converges. The effect of variable Prandtl number on the temperature distribution through the boundary layer is also investigated. A turbulent boundary layer in an adverse pressure gradient (M = 0.55) is used to demonstrate the improved transient temperature distribution obtained when the new formulation of the energy equation is used. A flat plate turbulent boundary layer with a supersonic free-stream Mach number of 2.8 is used to investigate the effect of Prandtl number on the distribution of properties through the boundary layer. The computed total temperature distribution and recovery factor agree well with the measurements when a variable Prandtl number is used through the boundary layer.
NASA Astrophysics Data System (ADS)
Anchukaitis, Kevin J.; Wilson, Rob; Briffa, Keith R.; Büntgen, Ulf; Cook, Edward R.; D'Arrigo, Rosanne; Davi, Nicole; Esper, Jan; Frank, David; Gunnarson, Björn E.; Hegerl, Gabi; Helama, Samuli; Klesse, Stefan; Krusic, Paul J.; Linderholm, Hans W.; Myglan, Vladimir; Osborn, Timothy J.; Zhang, Peng; Rydval, Milos; Schneider, Lea; Schurer, Andrew; Wiles, Greg; Zorita, Eduardo
2017-05-01
Climate field reconstructions from networks of tree-ring proxy data can be used to characterize regional-scale climate changes, reveal spatial anomaly patterns associated with atmospheric circulation changes, radiative forcing, and large-scale modes of ocean-atmosphere variability, and provide spatiotemporal targets for climate model comparison and evaluation. Here we use a multiproxy network of tree-ring chronologies to reconstruct spatially resolved warm season (May-August) mean temperatures across the extratropical Northern Hemisphere (40-90°N) using Point-by-Point Regression (PPR). The resulting annual maps of temperature anomalies (750-1988 CE) reveal a consistent imprint of volcanism, with 96% of reconstructed grid points experiencing colder conditions following eruptions. Solar influences are detected at the bicentennial (de Vries) frequency, although at other time scales the influence of insolation variability is weak. Approximately 90% of reconstructed grid points show warmer temperatures during the Medieval Climate Anomaly when compared to the Little Ice Age, although the magnitude varies spatially across the hemisphere. Estimates of field reconstruction skill through time and over space can guide future temporal extension and spatial expansion of the proxy network.
Gamma-radiation monitoring in post-tectonic biotitic granites at Celorico da Beira
NASA Astrophysics Data System (ADS)
Domingos, Filipa; Barbosa, Susana; Pereira, Alcides; Neves, Luís
2017-04-01
Despite its obvious relevance, the effect of meteorological variables such as temperature, pressure, wind, rainfall and particularly humidity on the temporal variability of natural radiation is complex and still not fully understood. Moreover, the nature of their influence with increasing depth is also poorly understood. Thereby, two boreholes were set 3 m apart in the region of Celorico da Beira within post-tectonic biotitic granites of the Beiras Batolith. Continuous measurements were obtained with identical gamma-ray scintillometers deployed at depths of 1 and 6 m during a 6 month period in the years of 2014 and 2015. Temperature, relative humidity, pressure, rainfall, wind speed and direction were measured at the site, as well as temperature and relative humidity inside the boreholes, with the aim of assessing the influence of meteorological parameters on the temporal variability of gamma radiation at two distinct depths. Both time series display a complex temporal structure including multiyear, seasonal and daily variability. At 1 m depth, a daily periodicity on the gamma ray counts time series was noticed with daily maxima occurring most frequently from 8 to 12 p.m. and daily minima between 8 and 12 a.m.. At 6 m depth, maximum and minimum daily means occurred with approximately a 10 h lag from the above. Gamma radiation data exhibited fairly strong correlations with temperature and relative humidity, however, varying with depth. Gamma radiation counts increased with increasing temperature and decreasing relative humidity at 1 m depth, while at a 6 m depth the opposite was recorded, with counts increasing with relative humidity and decreasing with temperature. Wind speed was shown to be inversely related with counts at 6 m depth, while positively correlated at 1 m depth. Pressure and rainfall had minor effects on both short-term and long-term gamma radiation counts.
Arrhenius Rate: constant volume burn
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menikoff, Ralph
A constant volume burn occurs for an idealized initial state in which a large volume of reactants at rest is suddenly raised to a high temperature and begins to burn. Due to the uniform spatial state, there is no fluid motion and no heat conduction. This reduces the time evolu tion to an ODE for the reaction progress variable. With an Arrhenius reaction rate, two characteristics of thermal ignition are illustrated: induction time and thermal runaway. The Frank-Kamenetskii approximation then leads to a simple expression for the adiabatic induction time. For a first order reaction, the analytic solution is derivedmore » and used to illustrate the effect of varying the activation temperature; in particular, on the induction time. In general, the ODE can be solved numerically. This is used to illustrate the effect of varying the reaction order. We note that for a first order reaction, the time evolution of the reaction progress variable has an exponential tail. In contrast, for a reaction order less than one, the reaction completes in a nite time. The reaction order also affects the induction time.« less
NASA Astrophysics Data System (ADS)
Lautz, Laura K.
2012-09-01
SummaryRates of water exchange between surface water and groundwater (SW-GW) can be highly variable over time due to temporal changes in streambed hydraulic conductivity, storm events, and oscillation of stage due to natural and regulated river flow. There are few effective field methods available to make continuous measurements of SW-GW exchange rates with the temporal resolution required in many field applications. Here, controlled laboratory experiments were used to explore the accuracy of analytical solutions to the one-dimensional heat transport model for capturing temporal variability of flux through porous media from propagation of a periodic temperature signal to depth. Column experiments were used to generate one-dimensional flow of water and heat through saturated sand with a quasi-sinusoidal temperature oscillation at the upstream boundary. Measured flux rates through the column were compared to modeled flux rates derived using the computer model VFLUX and the amplitude ratio between filtered temperature records from two depths in the column. Imposed temporal changes in water flux through the column were designed to replicate observed patterns of flux in the field, derived using the same methodology. Field observations of temporal changes in flux were made over multiple days during a large-scale storm event and diurnally during seasonal baseflow recession. Temporal changes in flux that occur gradually over days, sub-daily, and instantaneously in time can be accurately measured using the one-dimensional heat transport model, although those temporal changes may be slightly smoothed over time. Filtering methods effectively isolate the time-variable amplitude and phase of the periodic temperature signal, effectively eliminating artificial temporal flux patterns otherwise imposed by perturbations of the temperature signal, which result from typical weather patterns during field investigations. Although previous studies have indicated that sub-cycle information from the heat transport model is not reliable, this laboratory experiment shows that the sub-cycle information is real and sub-cycle changes in flux can be observed using heat transport modeling. One-dimensional heat transport modeling provides an easy-to-implement, cost effective, reliable field tool for making continuous observations of SW-GW exchange through time, which may be particularly useful for monitoring exchange rates during storms and other conditions that create temporal change in hydraulic gradient across the streambed interface or change in streambed hydraulic conductivity.
Long-Term Time Variability of Thermal Emission in Jupiter
NASA Astrophysics Data System (ADS)
Orton, Glenn; Fletcher, Leigh; Fisher, Brendan; Yanamandra-Fisher, Padma; Greathouse, Thomas; Sinclair, James; Greco, Jennifer; Boydstun, Kimberly; Wakefield, Laura; Kim, Sonia; Fujiyoshi, Takuya
2015-04-01
Mid-infrared images of Jupiter's thermal emission in discrete filters between 4.8 and 24.5 μm from 1996 to the present day, spanning over a Jovian year, enable time-domain studies of its temperature field, minor-constituent distribution and cloud properties. The behavior of stratospheric (~10-mbar) and upper-tropospheric (~100-400 mbar) temperatures is generally consistent with predictions of seasonal variability. There also appear to be long-term periodicities of tropospheric temperatures, with meridionally dependent amplitudes, phases and periods. Temperatures near and south of the equator vary the least. During the 'global upheaval' or the corresponding 'revival' events that have produced dramatic changes in Jupiter's visible appearance and cloud cover, there were few large-scale variations of zonal mean temperatures in the stratosphere or troposphere, although there are colder discrete regions associated with the updraft events that marked the early stages of revivals. Changes in visible albedo during the upheavals are accompanied by increases in cloudiness at 700 mbar and higher pressures, along with increases in the ammonia-gas mixing ratio. In contrast to all these changes, the meridional distribution of the 240-mbar para-hydrogen fraction appears to be time-invariant. Jupiter also exhibits prominent temperature waves in both the upper troposphere and stratosphere that move slowly westward in System III. J. Sinclair is supported by a NASA Postdoctoral Program fellowship; J. Greco, K. Boydstun, L. Wakefield and S. Kim were supported by Caltech Summer Undergraduate Research Fellowships while resident at JPL.
NASA Astrophysics Data System (ADS)
Nogueira, Miguel
2018-02-01
Spectral analysis of global-mean precipitation, P, evaporation, E, precipitable water, W, and surface temperature, Ts, revealed significant variability from sub-daily to multi-decadal time-scales, superposed on high-amplitude diurnal and yearly peaks. Two distinct regimes emerged from a transition in the spectral exponents, β. The weather regime covering time-scales < 10 days with β ≥ 1; and the macroweather regime extending from a few months to a few decades with 0 <β <1. Additionally, the spectra showed a generally good statistical agreement amongst several different model- and satellite-based datasets. Detrended cross-correlation analysis (DCCA) revealed three important results which are robust across all datasets: (1) Clausius-Clapeyron (C-C) relationship is the dominant mechanism of W non-periodic variability at multi-year time-scales; (2) C-C is not the dominant control of W, P or E non-periodic variability at time-scales below about 6 months, where the weather regime is approached and other mechanisms become important; (3) C-C is not a dominant control for P or E over land throughout the entire time-scale range considered. Furthermore, it is suggested that the atmosphere and oceans start to act as a single coupled system at time-scales > 1-2 years, while at time-scales < 6 months they are not the dominant drivers of each other. For global-ocean and full-globe averages, ρDCCA showed large spread of the C-C importance for P and E variability amongst different datasets at multi-year time-scales, ranging from negligible (< 0.3) to high ( 0.6-0.8) values. Hence, state-of-the-art climate datasets have significant uncertainties in the representation of macroweather precipitation and evaporation variability and its governing mechanisms.
NASA Astrophysics Data System (ADS)
Bacheler, Nathan M.; Ciannelli, Lorenzo; Bailey, Kevin M.; Bartolino, Valerio
2012-06-01
Environmental variability is increasingly recognized as a primary determinant of year-class strength of marine fishes by directly or indirectly influencing egg and larval development, growth, and survival. Here we examined the role of annual water temperature variability in determining when and where walleye pollock (Theragra chalcogramma) spawn in the eastern Bering Sea. Walleye pollock spawning was examined using both long-term ichthyoplankton data (N=19 years), as well as with historical spatially explicit, foreign-reported, commercial catch data occurring during the primary walleye pollock spawning season (February-May) each year (N=22 years in total). We constructed variable-coefficient generalized additive models (GAMs) to relate the spatially explicit egg or adult catch-per-unit-effort (CPUE) to predictor variables including spawning stock biomass, season, position, and water temperature. The adjusted R2 value was 63.1% for the egg CPUE model and 35.5% for the adult CPUE model. Both egg and adult GAMs suggest that spawning progresses seasonally from Bogoslof Island in February and March to Outer Domain waters between the Pribilof and Unimak Islands by May. Most importantly, walleye pollock egg and adult CPUE was predicted to generally increase throughout the study area as mean annual water temperature increased. These results suggest low interannual variability in the spatial and temporal dynamics of walleye pollock spawning regardless of changes in environmental conditions, at least at the spatial scale examined in this study and within the time frame of decades.
Orifici, Stefania C; Capitani, Marianela I; Tomás, Mabel C; Nolasco, Susana M
2018-02-25
Chia mucilage has potential application as a functional ingredient; advances on maximizing its extraction yield could represent a significant technological and economic impact for the food industry. Thus, first, the effect of mechanical agitation time (1-3 h) on the exudation of chia mucilage was analyzed. Then, response surface methodology was used to determine the optimal combination of the independent variables temperature (15-85 °C) and seed: water ratio (1: 12-1: 40.8 w/v) for the 2 h exudation that give maximum chia mucilage yield. Experiments were designed according to central composite rotatable design. A second-order polynomial model predicted the variation in extraction mucilage yield with the variables temperature and seed: water ratio. The optimal operating conditions were found to be temperature 85 °C and a seed: water ratio of 1: 31 (w/v), reaching an experimental extraction yield of 116 ± 0.21 g kg -1 (dry basis). The mucilage obtained exhibited good functional properties, mainly in terms of water-holding capacity, emulsifying activity, and emulsion stability. The results obtained show that temperature, seed: water ratio, and exudation time are important variables of the process that affect the extraction yield and the quality of the chia mucilage, determined according to its physicochemical and functional properties. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Marine heatwaves off eastern Tasmania: Trends, interannual variability, and predictability
NASA Astrophysics Data System (ADS)
Oliver, Eric C. J.; Lago, Véronique; Hobday, Alistair J.; Holbrook, Neil J.; Ling, Scott D.; Mundy, Craig N.
2018-02-01
Surface waters off eastern Tasmania are a global warming hotspot. Here, mean temperatures have been rising over several decades at nearly four times the global average rate, with concomitant changes in extreme temperatures - marine heatwaves. These changes have recently caused the marine biodiversity, fisheries and aquaculture industries off Tasmania's east coast to come under stress. In this study we quantify the long-term trends, variability and predictability of marine heatwaves off eastern Tasmania. We use a high-resolution ocean model for Tasmania's eastern continental shelf. The ocean state over the 1993-2015 period is hindcast, providing daily estimates of the three-dimensional temperature and circulation fields. Marine heatwaves are identified at the surface and subsurface from ocean temperature time series using a consistent definition. Trends in marine heatwave frequency are positive nearly everywhere and annual marine heatwave days and penetration depths indicate significant positive changes, particularly off southeastern Tasmania. A decomposition into modes of variability indicates that the East Australian Current is the dominant driver of marine heatwaves across the domain. Self-organising maps are used to identify 12 marine heatwave types, each with its own regionality, seasonality, and associated large-scale oceanic and atmospheric circulation patterns. The implications of this work for marine ecosystems and their management were revealed through review of past impacts and stakeholder discussions regarding use of these data.
NASA Astrophysics Data System (ADS)
Botsford, L. W.; Moloney, C. L.; Hastings, A.; Largier, J. L.; Powell, T. M.; Higgins, K.; Quinn, J. F.
We synthesize the results of several modelling studies that address the influence of variability in larval transport and survival on the dynamics of marine metapopulations distributed along a coast. Two important benthic invertebrates in the California Current System (CCS), the Dungeness crab and the red sea urchin, are used as examples of the way in which physical oceanographic conditions can influence stability, synchrony and persistence of meroplanktonic metapopulations. We first explore population dynamics of subpopulations and metapopulations. Even without environmental forcing, isolated local subpopulations with density-dependence can vary on time scales roughly twice the generation time at high adult survival, shifting to annual time scales at low survivals. The high frequency behavior is not seen in models of the Dungeness crab, because of their high adult survival rates. Metapopulations with density-dependent recruitment and deterministic larval dispersal fluctuate in an asynchronous fashion. Along the coast, abundance varies on spatial scales which increase with dispersal distance. Coastwide, synchronous, random environmental variability tends to synchronize these metapopulations. Climate change could cause a long-term increase or decrease in mean larval survival, which in this model leads to greater synchrony or extinction respectively. Spatially managed metapopulations of red sea urchins go extinct when distances between harvest refugia become greater than the scale of larval dispersal. All assessments of population dynamics indicate that metapopulation behavior in general dependes critically on the temporal and spatial nature of larval dispersal, which is largely determined by physical oceanographic conditions. We therfore explore physical influences on larval dispersal patterns. Observed trends in temperature and salinity applied to laboratory-determined responses indicate that natural variability in temperature and salinity can lead to variability in larval development period on interannual (50%), intra-annual (20%) and latitudinal (200%) scales. Variability in development period significantly influences larval survival and, thus, net transport. Larval drifters that undertake diel vertical migration in a primitive equation model of coastal circulation (SPEM) demonstrate the importance of vertical migration in determining horizontal transport. Empirically derived estimates of the effects of wind forcing on larval transport of vertically migrating larvae (wind drift when near the surface and Ekman transport below the surface) match cross-shelf distributions in 4 years of existing larval data. We use a one-dimensional advection-diffusion model, which includes intra-annual timing of cross-shelf flows in the CCS, to explore the combined effects on settlement: (1) temperature- and salinity-dependent development and survival rates and (2) possible horizontal transport due to vertical migration of crab larvae. Natural variability in temperature, wind forcing, and the timing of the spring transition can cause the observed variability in recruitment. We conclude that understanding the dynamics of coastally distributed metapopulations in response to physically-induced variability in larval dispersal will be a critical step in assessing the effects of climate change on marine populations.
Optimization of a thermal hydrolysis process for sludge pre-treatment.
Sapkaite, I; Barrado, E; Fdz-Polanco, F; Pérez-Elvira, S I
2017-05-01
At industrial scale, thermal hydrolysis is the most used process to enhance biodegradability of the sludge produced in wastewater treatment plants. Through statistically guided Box-Behnken experimental design, the present study analyses the effect of TH as pre-treatment applied to activated sludge. The selected process variables were temperature (130-180 °C), time (5-50 min) and decompression mode (slow or steam-explosion effect), and the parameters evaluated were sludge solubilisation and methane production by anaerobic digestion. A quadratic polynomial model was generated to compare the process performance for the 15 different combinations of operation conditions by modifying the process variables evaluated. The statistical analysis performed exhibited that methane production and solubility were significantly affected by pre-treatment time and temperature. During high intensity pre-treatment (high temperature and long times), the solubility increased sharply while the methane production exhibited the opposite behaviour, indicating the formation of some soluble but non-biodegradable materials. Therefore, solubilisation is not a reliable parameter to quantify the efficiency of a thermal hydrolysis pre-treatment, since it is not directly related to methane production. Based on the operational parameters optimization, the estimated optimal thermal hydrolysis conditions to enhance of sewage sludge digestion were: 140-170 °C heating temperature, 5-35min residence time, and one sudden decompression. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lanfredi, M.; Simoniello, T.; Cuomo, V.; Macchiato, M.
2009-02-01
This study originated from recent results reported in literature, which support the existence of long-range (power-law) persistence in atmospheric temperature fluctuations on monthly and inter-annual scales. We investigated the results of Detrended Fluctuation Analysis (DFA) carried out on twenty-two historical daily time series recorded in Europe in order to evaluate the reliability of such findings in depth. More detailed inspections emphasized systematic deviations from power-law and high statistical confidence for functional form misspecification. Rigorous analyses did not support scale-free correlation as an operative concept for Climate modelling, as instead suggested in literature. In order to understand the physical implications of our results better, we designed a bivariate Markov process, parameterised on the basis of the atmospheric observational data by introducing a slow dummy variable. The time series generated by this model, analysed both in time and frequency domains, tallied with the real ones very well. They accounted for both the deceptive scaling found in literature and the correlation details enhanced by our analysis. Our results seem to evidence the presence of slow fluctuations from another climatic sub-system such as ocean, which inflates temperature variance up to several months. They advise more precise re-analyses of temperature time series before suggesting dynamical paradigms useful for Climate modelling and for the assessment of Climate Change.
NASA Astrophysics Data System (ADS)
Lanfredi, M.; Simoniello, T.; Cuomo, V.; Macchiato, M.
2009-07-01
This study originated from recent results reported in literature, which support the existence of long-range (power-law) persistence in atmospheric temperature fluctuations on monthly and inter-annual scales. We investigated the results of Detrended Fluctuation Analysis (DFA) carried out on twenty-two historical daily time series recorded in Europe in order to evaluate the reliability of such findings in depth. More detailed inspections emphasized systematic deviations from power-law and high statistical confidence for functional form misspecification. Rigorous analyses did not support scale-free correlation as an operative concept for Climate modelling, as instead suggested in literature. In order to understand the physical implications of our results better, we designed a bivariate Markov process, parameterised on the basis of the atmospheric observational data by introducing a slow dummy variable. The time series generated by this model, analysed both in time and frequency domains, tallied with the real ones very well. They accounted for both the deceptive scaling found in literature and the correlation details enhanced by our analysis. Our results seem to evidence the presence of slow fluctuations from another climatic sub-system such as ocean, which inflates temperature variance up to several months. They advise more precise re-analyses of temperature time series before suggesting dynamical paradigms useful for Climate modelling and for the assessment of Climate Change.
Romarís-Hortas, Vanessa; Moreda-Piñeiro, Antonio; Bermejo-Barrera, Pilar
2009-08-15
The feasibility of microwave energy to assist the solubilisation of edible seaweed samples by tetramethylammonium hydroxide (TMAH) has been investigated to extract iodine and bromine. Inductively coupled plasma-mass spectrometry (ICP-MS) has been used as a multi-element detector. Variables affecting the microwave assisted extraction/solubilisation (temperature, TMAH volume, ramp time and hold time) were firstly screened by applying a fractional factorial design (2(5-1)+2), resolution V and 2 centre points. When extracting both halogens, results showed statistical significance (confidence interval of 95%) for TMAH volume and temperature, and also for the two order interaction between both variables. Therefore, these two variables were finally optimized by a 2(2)+star orthogonal central composite design with 5 centre points and 2 replicates, and optimum values of 200 degrees C and 10 mL for temperature and TMAH volume, respectively, were found. The extraction time (ramp and hold times) was found statistically non-significant, and values of 10 and 5 min were chosen for the ramp time and the hold time, respectively. This means a fast microwave heating cycle. Repeatability of the over-all procedure has been found to be 6% for both elements, while iodine and bromine concentrations of 24.6 and 19.9 ng g(-1), respectively, were established for the limit of detection. Accuracy of the method was assessed by analyzing the NIES-09 (Sargasso, Sargassum fulvellum) certified reference material (CRM) and the iodine and bromine concentrations found have been in good agreement with the indicative values for this CRM. Finally, the method was applied to several edible dried and canned seaweed samples.
Local Versus Remote Contributions of Soil Moisture to Near-Surface Temperature Variability
NASA Technical Reports Server (NTRS)
Koster, R.; Schubert, S.; Wang, H.; Chang, Y.
2018-01-01
Soil moisture variations have a straightforward impact on overlying air temperatures, wetter soils can induce higher evaporative cooling of the soil and thus, locally, cooler temperatures overall. Not known, however, is the degree to which soil moisture variations can affect remote air temperatures through their impact on the atmospheric circulation. In this talk we describe a two-pronged analysis that addresses this question. In the first segment, an extensive ensemble of NASA/GSFC GEOS-5 atmospheric model simulations is analyzed statistically to isolate and quantify the contributions of various soil moisture states, both local and remote, to the variability of air temperature at a given local site. In the second segment, the relevance of the derived statistical relationships is evaluated by applying them to observations-based data. Results from the second segment suggest that the GEOS-5-based relationships do, at least to first order, hold in nature and thus may provide some skill to forecasts of air temperature at subseasonal time scales, at least in certain regions.
NASA Astrophysics Data System (ADS)
Chen, Xi; Li, Ning; Zhang, Zhengtao; Feng, Jieling; Wang, Ye
2018-05-01
Adaption for temperature should be suitable to local conditions for regional differences in temperature change features. This paper proposed to utilize nine temperature modes that joint the trend (increasing/decreasing/unchanged) with variability (intensifying/weakening/unchanged) to investigate features of temperature change in mainland China. Monthly temperature data over the period 1960-2013 were obtained from 522 national basic and reference meteorological stations. Here, temperature trend (TT) was reflected by the trend of mean annual temperature (MAT) and the uptrend (downtrend) of inter-monthly sliding standard deviation (SSD) series with a sliding length of 29 years (348 months) was used for representing the intensification (weakening) of temperature variability (TV). The Mann-Kendall method and the least squares method were applied to assess the significance and quantify the magnitude of trend in MAT and SSD time series, respectively. The results show that there is a consistent warming trend throughout the country except for only three stations in which a cooling trend is identified. Moreover, the overall increasing rate in the north of 35° N is the highest, over 0.4 °C/decade for most stations. TV is weakened for almost 98% of the stations, indicating the low instability of temperature at a national scale. Finally, temperature mode (TM), for more than 90% of the stations, is the combination of an increasing TT with a weakened TV (mode 8). So, it is more important for people to adapt to the increasing temperature in these regions. Compared to using annual temperature data to calculate SSD, monthly data can accurately reflect the inter-monthly change of temperature and reserve more initial characteristics of temperature.
NASA Astrophysics Data System (ADS)
Lovino, Miguel A.; Müller, Omar V.; Müller, Gabriela V.; Sgroi, Leandro C.; Baethgen, Walter E.
2018-06-01
This study examines the joint variability of precipitation, river streamflow and temperature over northeastern Argentina; advances the understanding of their links with global SST forcing; and discusses their impacts on water resources, agriculture and human settlements. The leading patterns of variability, and their nonlinear trends and cycles are identified by means of a principal component analysis (PCA) complemented with a singular spectrum analysis (SSA). Interannual hydroclimatic variability centers on two broad frequency bands: one of 2.5-6.5 years corresponding to El Niño Southern Oscillation (ENSO) periodicities and the second of about 9 years. The higher frequencies of the precipitation variability (2.5-4 years) favored extreme events after 2000, even during moderate extreme phases of the ENSO. Minimum temperature is correlated with ENSO with a main frequency close to 3 years. Maximum temperature time series correlate well with SST variability over the South Atlantic, Indian and Pacific oceans with a 9-year frequency. Interdecadal variability is characterized by low-frequency trends and multidecadal oscillations that have induced a transition from dryer and cooler climate to wetter and warmer decades starting in the mid-twentieth century. The Paraná River streamflow is influenced by North and South Atlantic SSTs with bidecadal periodicities. The hydroclimate variability at all timescales had significant sectoral impacts. Frequent wet events between 1970 and 2005 favored floods that affected agricultural and livestock productivity and forced population displacements. On the other hand, agricultural droughts resulted in soil moisture deficits that affected crops at critical growth stages. Hydrological droughts affected surface water resources, causing water and food scarcity and stressing the capacity for hydropower generation. Lastly, increases in minimum temperature reduced wheat and barley yields.
Overwintering temperature and body condition shift emergence dates of spring-emerging solitary bees.
Schenk, Mariela; Mitesser, Oliver; Hovestadt, Thomas; Holzschuh, Andrea
2018-01-01
Solitary bees in seasonal environments must align their life-cycles with favorable environmental conditions and resources; the timing of their emergence is highly fitness relevant. In several bee species, overwintering temperature influences both emergence date and body weight at emergence. High variability in emergence dates among specimens overwintering at the same temperatures suggests that the timing of emergence also depends on individual body conditions. However, possible causes for this variability, such as individual differences in body size or weight, have been rarely studied. In a climate chamber experiment using two spring-emerging mason bees ( Osmia cornuta and O. bicornis ), we investigated the relationship between temperature, emergence date, body weight, and body size, the last of which is not affected by overwintering temperature. Our study showed that body weight declined during hibernation more strongly in warm than in cold overwintering temperatures. Although bees emerged earlier in warm than in cold overwintering temperatures, at the time of emergence, bees in warm overwintering temperatures had lower body weights than bees in cold overwintering temperatures (exception of male O. cornuta ). Among specimens that experienced the same overwintering temperatures, small and light bees emerged later than their larger and heavier conspecifics. Using a simple mechanistic model we demonstrated that spring-emerging solitary bees use a strategic approach and emerge at a date that is most promising for their individual fitness expectations. Our results suggest that warmer overwintering temperatures reduce bee fitness by causing a decrease in body weight at emergence. We showed furthermore that in order to adjust their emergence dates, bees use not only temperature but also their individual body condition as triggers. This may explain differing responses to climate warming within and among bee populations and may have consequences for bee-plant interactions as well as for the persistence of bee populations under climate change.
Dong, Chao; Ma, Yuanchun; Zheng, Dan; Wisniewski, Michael; Cheng, Zong-Ming
2018-01-01
Dehydration-responsive element binding proteins are transcription factors that play a critical role in plant response to temperature stress. Over-expression of DREB genes has been demonstrated to enhance temperature stress tolerance. A series of physiological and biochemical modifications occur in a complex and integrated way when plants respond to temperature stress, which makes it difficult to assess the mechanism underlying the DREB enhancement of stress tolerance. A meta-analysis was conducted of the effect of DREB overexpression on temperature stress tolerance and the various parameters modulated by overexpression that were statistically quantified in 75 published articles. The meta-analysis was conducted to identify the overall influence of DREB on stress-related parameters in transgenic plants, and to determine how different experimental variables affect the impact of DREB overexpression. Viewed across all the examined studies, 7 of the 8 measured plant parameters were significantly (p ≤ 0.05) modulated in DREB-transgenic plants when they were subjected to temperature stress, while 2 of the 8 parameters were significantly affected in non-stressed control plants. The measured parameters were modulated by 32% or more by various experimental variables. The modulating variables included, acclimated or non-acclimated, type of promoter, stress time and severity, source of the donor gene, and whether the donor and recipient were the same genus. These variables all had a significant effect on the observed impact of DREB overexpression. Further studies should be conducted under field conditions to better understand the role of DREB transcription factors in enhancing plant tolerance to temperature stress. PMID:29896212
Managing fish habitat for flow and temperature extremes ...
Summer low flows and stream temperature maxima are key drivers affecting the sustainability of fish populations. Thus, it is critical to understand both the natural templates of spatiotemporal variability, how these are shifting due to anthropogenic influences of development and climate change, and how these impacts can be moderated by natural and constructed green infrastructure. Low flow statistics of New England streams have been characterized using a combination of regression equations to describe long-term averages as a function of indicators of hydrologic regime (rain- versus snow-dominated), precipitation, evapotranspiration or temperature, surface water storage, baseflow recession rates, and impervious cover. Difference equations have been constructed to describe interannual variation in low flow as a function of changing air temperature, precipitation, and ocean-atmospheric teleconnection indices. Spatial statistical network models have been applied to explore fine-scale variability of thermal regimes along stream networks in New England as a function of variables describing natural and altered energy inputs, groundwater contributions, and retention time. Low flows exacerbate temperature impacts by reducing thermal inertia of streams to energy inputs. Based on these models, we can construct scenarios of fish habitat suitability using current and projected future climate and the potential for preservation and restoration of historic habitat regimes th
Marine assemblages respond rapidly to winter climate variability.
Morley, James W; Batt, Ryan D; Pinsky, Malin L
2017-07-01
Even species within the same assemblage have varied responses to climate change, and there is a poor understanding for why some taxa are more sensitive to climate than others. In addition, multiple mechanisms can drive species' responses, and responses may be specific to certain life stages or times of year. To test how marine species respond to climate variability, we analyzed 73 diverse taxa off the southeast US coast in 26 years of scientific trawl survey data and determined how changes in distribution and biomass relate to temperature. We found that winter temperatures were particularly useful for explaining interannual variation in species' distribution and biomass, although the direction and magnitude of the response varied among species from strongly negative, to little response, to strongly positive. Across species, the response to winter temperature varied greatly, with much of this variation being explained by thermal preference. A separate analysis of annual commercial fishery landings revealed that winter temperatures may also impact several important fisheries in the southeast United States. Based on the life stages of the species surveyed, winter temperature appears to act through overwinter mortality of juveniles or as a cue for migration timing. We predict that this assemblage will be responsive to projected increases in temperature and that winter temperature may be broadly important for species relationships with climate on a global scale. © The Authors Global Change Biology Published by John Wiley & Sons Ltd.
Al-Haidary, Ahmed A; Abdoun, Khalid A; Samara, Emad M; Okab, Aly B; Sani, Mamane; Refinetti, Roberto
2016-08-01
Camels are well adapted to hot arid environments and can contribute significantly to the economy of developing countries in arid regions of the world. Full understanding of the physiology of camels requires understanding of the internal temporal order of the body, as reflected in daily or circadian rhythms. In the current study, we investigated the daily rhythmicity of 20 physiological variables in camels exposed to natural oscillations of ambient temperature in a desert environment and compared the daily temporal courses of the variables. We also studied the rhythm of core body temperature under experimental conditions with constant ambient temperature in the presence and absence of a light-dark cycle. The obtained results indicated that different physiological variables exhibit different degrees of daily rhythmicity and reach their daily peaks at different times of the day, starting with plasma cholesterol, which peaks 24min after midnight, and ending with plasma calcium, which peaks 3h before midnight. Furthermore, the rhythm of core body temperature persisted in the absence of environmental rhythmicity, thus confirming its endogenous nature. The observed delay in the acrophase of core body temperature rhythm under constant conditions suggests that the circadian period is longer than 24h. Further studies with more refined experimental manipulation of different variables are needed to fully elucidate the causal network of circadian rhythms in dromedary camels. Copyright © 2016 Elsevier Ltd. All rights reserved.
TITAN’S UPPER ATMOSPHERE FROM CASSINI/UVIS SOLAR OCCULTATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capalbo, Fernando J.; Bénilan, Yves; Yelle, Roger V.
2015-12-01
Titan’s atmosphere is composed mainly of molecular nitrogen, methane being the principal trace gas. From the analysis of 8 solar occultations measured by the Extreme Ultraviolet channel of the Ultraviolet Imaging Spectrograph (UVIS) on board Cassini, we derived vertical profiles of N{sub 2} in the range 1100–1600 km and vertical profiles of CH{sub 4} in the range 850–1300 km. The correction of instrument effects and observational effects applied to the data are described. We present CH{sub 4} mole fractions, and average temperatures for the upper atmosphere obtained from the N{sub 2} profiles. The occultations correspond to different times and locations,more » and an analysis of variability of density and temperature is presented. The temperatures were analyzed as a function of geographical and temporal variables, without finding a clear correlation with any of them, although a trend of decreasing temperature toward the north pole was observed. The globally averaged temperature obtained is (150 ± 1) K. We compared our results from solar occultations with those derived from other UVIS observations, as well as studies performed with other instruments. The observational data we present confirm the atmospheric variability previously observed, add new information to the global picture of Titan’s upper atmosphere composition, variability, and dynamics, and provide new constraints to photochemical models.« less
Some factors affecting tannase production by Aspergillus niger Van Tieghem
Aboubakr, Hamada A.; El-Sahn, Malak A.; El-Banna, Amr A.
2013-01-01
One variable at a time procedure was used to evaluate the effect of qualitative variables on the production of tannase from Aspergillus niger Van Tieghem. These variables including: fermentation technique, agitation condition, tannins source, adding carbohydrates incorporation with tannic acid, nitrogen source type and divalent cations. Submerged fermentation under intermittent shaking gave the highest total tannase activity. Maximum extracellular tannase activity (305 units/50 mL) was attained in medium containing tannic acid as tannins source and sodium nitrate as nitrogen source at 30 °C for 96 h. All added carbohydrates showed significant adverse effects on the production of tannase. All tested divalent cations significantly decreased tannase production. Moreover, split plot design was carried out to study the effect of fermentation temperature and fermentation time on tannase production. The results indicated maximum tannase production (312.7 units/50 mL) at 35 °C for 96 h. In other words, increasing fermentation temperature from 30 °C to 35 °C resulted in increasing tannase production. PMID:24294255
Some factors affecting tannase production by Aspergillus niger Van Tieghem.
Aboubakr, Hamada A; El-Sahn, Malak A; El-Banna, Amr A
2013-01-01
One variable at a time procedure was used to evaluate the effect of qualitative variables on the production of tannase from Aspergillus niger Van Tieghem. These variables including: fermentation technique, agitation condition, tannins source, adding carbohydrates incorporation with tannic acid, nitrogen source type and divalent cations. Submerged fermentation under intermittent shaking gave the highest total tannase activity. Maximum extracellular tannase activity (305 units/50 mL) was attained in medium containing tannic acid as tannins source and sodium nitrate as nitrogen source at 30 °C for 96 h. All added carbohydrates showed significant adverse effects on the production of tannase. All tested divalent cations significantly decreased tannase production. Moreover, split plot design was carried out to study the effect of fermentation temperature and fermentation time on tannase production. The results indicated maximum tannase production (312.7 units/50 mL) at 35 °C for 96 h. In other words, increasing fermentation temperature from 30 °C to 35 °C resulted in increasing tannase production.
Samavati, Vahid; Adeli, Mostafa
2014-01-30
The present work is focused on the optimization of hydrophobic compounds extraction process from the carbohydrate matrix of Iranian Pistacia atlantica seed at laboratory level using ultrasonic-assisted extraction. Response surface methodology (RSM) was used to optimize oil seed extraction yield. Independent variables were extraction temperature (30, 45, 60, 75 and 90°C), extraction time (10, 15, 20, 25, 30 and 35 min) and power of ultrasonic (20, 40, 60, 80 and 100 W). A second order polynomial equation was used to express the oil extraction yield as a function of independent variables. The responses and variables were fitted well to each other by multiple regressions. The optimum extraction conditions were as follows: extraction temperature of 75°C, extraction time of 25 min, and power of ultrasonic of 80 W. A comparison between seed oil composition extracted by ultrasonic waves under the optimum operating conditions determined by RSM for oil yield and by organic solvent was reported. Copyright © 2013 Elsevier Ltd. All rights reserved.
Lower-Stratospheric Control of the Frequency of Sudden Stratospheric Warming Events
NASA Astrophysics Data System (ADS)
Martineau, Patrick; Chen, Gang; Son, Seok-Woo; Kim, Joowan
2018-03-01
The sensitivity of stratospheric polar vortex variability to the basic-state stratospheric temperature profile is investigated by performing a parameter sweep experiment with a dry dynamical core general circulation model where the equilibrium temperature profiles in the polar lower and upper stratosphere are systematically varied. It is found that stratospheric variability is more sensitive to the temperature distribution in the lower stratosphere than in the upper stratosphere. In particular, a cold lower stratosphere favors a strong time-mean polar vortex with a large daily variability, promoting frequent sudden stratospheric warming events in the model runs forced with both wavenumber-1 and wavenumber-2 topographies. This sensitivity is explained by the control exerted by the lower-stratospheric basic state onto fluxes of planetary-scale wave activity from the troposphere to the stratosphere, confirming that the lower stratosphere can act like a valve for the upward propagation of wave activity. It is further shown that with optimal model parameters, stratospheric polar vortex climatology and variability mimicking Southern and Northern Hemisphere conditions are obtained with both wavenumber-1 and wavenumber-2 topographies.
Sensitivity of crop cover to climate variability: insights from two Indian agro-ecoregions.
Mondal, Pinki; Jain, Meha; DeFries, Ruth S; Galford, Gillian L; Small, Christopher
2015-01-15
Crop productivity in India varies greatly with inter-annual climate variability and is highly dependent on monsoon rainfall and temperature. The sensitivity of yields to future climate variability varies with crop type, access to irrigation and other biophysical and socio-economic factors. To better understand sensitivities to future climate, this study focuses on agro-ecological subregions in Central and Western India that span a range of crops, irrigation, biophysical conditions and socioeconomic characteristics. Climate variability is derived from remotely-sensed data products, Tropical Rainfall Measuring Mission (TRMM - precipitation) and Moderate Resolution Imaging Spectroradiometer (MODIS - temperature). We examined green-leaf phenologies as proxy for crop productivity using the MODIS Enhanced Vegetation Index (EVI) from 2000 to 2012. Using both monsoon and winter growing seasons, we assessed phenological sensitivity to inter-annual variability in precipitation and temperature patterns. Inter-annual EVI phenology anomalies ranged from -25% to 25%, with some highly anomalous values up to 200%. Monsoon crop phenology in the Central India site is highly sensitive to climate, especially the timing of the start and end of the monsoon and intensity of precipitation. In the Western India site, monsoon crop phenology is less sensitive to precipitation variability, yet shows considerable fluctuations in monsoon crop productivity across the years. Temperature is critically important for winter productivity across a range of crop and management types, such that irrigation might not provide a sufficient buffer against projected temperature increases. Better access to weather information and usage of climate-resilient crop types would play pivotal role in maintaining future productivity. Effective strategies to adapt to projected climate changes in the coming decades would also need to be tailored to regional biophysical and socio-economic conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Boyer, T.; Sun, L.; Locarnini, R. A.; Mishonov, A. V.; Hall, N.; Ouellet, M.
2016-02-01
The World Ocean Database (WOD) contains systematically quality controlled historical and recent ocean profile data (temperature, salinity, oxygen, nutrients, carbon cycle variables, biological variables) ranging from Captain Cooks second voyage (1773) to this year's Argo floats. The US National Centers for Environmental Information (NCEI) also hosts the Global Temperature and Salinity Profile Program (GTSPP) Continuously Managed Database (CMD) which provides quality controlled near-real time ocean profile data and higher level quality controlled temperature and salinity profiles from 1990 to present. Both databases are used extensively for ocean and climate studies. Synchronization of these two databases will allow easier access and use of comprehensive regional and global ocean profile data sets for ocean and climate studies. Synchronizing consists of two distinct phases: 1) a retrospective comparison of data in WOD and GTSPP to ensure that the most comprehensive and highest quality data set is available to researchers without the need to individually combine and contrast the two datasets and 2) web services to allow the constantly accruing near-real time data in the GTSPP CMD and the continuous addition and quality control of historical data in WOD to be made available to researchers together, seamlessly.
Novel burn device for rapid, reproducible burn wound generation.
Kim, J Y; Dunham, D M; Supp, D M; Sen, C K; Powell, H M
2016-03-01
Scarring following full thickness burns leads to significant reductions in range of motion and quality of life for burn patients. To effectively study scar development and the efficacy of anti-scarring treatments in a large animal model (female red Duroc pigs), reproducible, uniform, full-thickness, burn wounds are needed to reduce variability in observed results that occur with burn depth. Prior studies have proposed that initial temperature of the burner, contact time with skin, thermal capacity of burner material, and the amount of pressure applied to the skin need to be strictly controlled to ensure reproducibility. The purpose of this study was to develop a new burner that enables temperature and pressure to be digitally controlled and monitored in real-time throughout burn wound creation and compare it to a standard burn device. A custom burn device was manufactured with an electrically heated burn stylus and a temperature control feedback loop via an electronic microstat. Pressure monitoring was controlled by incorporation of a digital scale into the device, which measured downward force. The standard device was comprised of a heat resistant handle with a long rod connected to the burn stylus, which was heated using a hot plate. To quantify skin surface temperature and internal stylus temperature as a function of contact time, the burners were heated to the target temperature (200±5°C) and pressed into the skin for 40s to create the thermal injuries. Time to reach target temperature and elapsed time between burns were recorded. In addition, each unit was evaluated for reproducibility within and across three independent users by generating burn wounds at contact times spanning from 5 to 40s at a constant pressure and at pressures of 1 or 3lbs with a constant contact time of 40s. Biopsies were collected for histological analysis and burn depth quantification using digital image analysis (ImageJ). The custom burn device maintained both its internal temperature and the skin surface temperature near target temperature throughout contact time. In contrast, the standard burner required more than 20s of contact time to raise the skin surface temperature to target due to its quickly decreasing internal temperature. The custom burner was able to create four consecutive burns in less than half the time of the standard burner. Average burn depth scaled positively with time and pressure in both burn units. However, the distribution of burn depth within each time-pressure combination in the custom device was significantly smaller than with the standard device and independent of user. The custom burn device's ability to continually heat the burn stylus and actively control pressure and temperature allowed for more rapid and reproducible burn wounds. Burns of tailored and repeatable depths, independent of user, provide a platform for the study of anti-scar and other wound healing therapies without the added variable of non-uniform starting injury. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.
Novel burn device for rapid, reproducible burn wound generation
Kim, J.Y.; Dunham, D.M.; Supp, D.M.; Sen, C.K.; Powell, H.M.
2016-01-01
Introduction Scarring following full thickness burns leads to significant reductions in range of motion and quality of life for burn patients. To effectively study scar development and the efficacy of anti-scarring treatments in a large animal model (female red Duroc pigs), reproducible, uniform, full-thickness, burn wounds are needed to reduce variability in observed results that occur with burn depth. Prior studies have proposed that initial temperature of the burner, contact time with skin, thermal capacity of burner material, and the amount of pressure applied to the skin need to be strictly controlled to ensure reproducibility. The purpose of this study was to develop a new burner that enables temperature and pressure to be digitally controlled and monitored in real-time throughout burn wound creation and compare it to a standard burn device. Methods A custom burn device was manufactured with an electrically heated burn stylus and a temperature control feedback loop via an electronic microstat. Pressure monitoring was controlled by incorporation of a digital scale into the device, which measured downward force. The standard device was comprised of a heat resistant handle with a long rod connected to the burn stylus, which was heated using a hot plate. To quantify skin surface temperature and internal stylus temperature as a function of contact time, the burners were heated to the target temperature (200 ± 5 °C) and pressed into the skin for 40 s to create the thermal injuries. Time to reach target temperature and elapsed time between burns were recorded. In addition, each unit was evaluated for reproducibility within and across three independent users by generating burn wounds at contact times spanning from 5 to 40 s at a constant pressure and at pressures of 1 or 3 lbs with a constant contact time of 40 s. Biopsies were collected for histological analysis and burn depth quantification using digital image analysis (ImageJ). Results The custom burn device maintained both its internal temperature and the skin surface temperature near target temperature throughout contact time. In contrast, the standard burner required more than 20 s of contact time to raise the skin surface temperature to target due to its quickly decreasing internal temperature. The custom burner was able to create four consecutive burns in less than half the time of the standard burner. Average burn depth scaled positively with time and pressure in both burn units. However, the distribution of burn depth within each time-pressure combination in the custom device was significantly smaller than with the standard device and independent of user. Conclusions The custom burn device's ability to continually heat the burn stylus and actively control pressure and temperature allowed for more rapid and reproducible burn wounds. Burns of tailored and repeatable depths, independent of user, provide a platform for the study of anti-scar and other wound healing therapies without the added variable of non-uniform starting injury. PMID:26803369
Unabated global surface temperature warming: evaluating the evidence
NASA Astrophysics Data System (ADS)
Karl, T. R.; Arguez, A.
2015-12-01
New insights related to time-dependent bias corrections in global surface temperatures have led to higher rates of warming over the past few decades than previously reported in the IPCC Fifth Assessment Report (2014). Record high global temperatures in the past few years have also contributed to larger trends. The combination of these factors and new analyses of the rate of temperature change show unabated global warming since at least the mid-Twentieth Century. New time-dependent bias corrections account for: (1) differences in temperatures measured from ships and drifting buoys; (2) improved corrections to ship measured temperatures; and (3) the larger rates of warming in polar regions (particularly the Arctic). Since 1951, the period over which IPCC (2014) attributes over half of the observed global warming to human causes, it is shown that there has been a remarkably robust and sustained warming, punctuated with inter-annual and decadal variability. This finding is confirmed through simple trend analysis and Empirical Mode Decomposition (EMD). Trend analysis however, especially for decadal trends, is sensitive to selection bias of beginning and ending dates. EMD has no selection bias. Additionally, it can highlight both short- and long-term processes affecting the global temperature times series since it addresses both non-linear and non-stationary processes. For the new NOAA global temperature data set, our analyses do not support the notion of a hiatus or slowing of long-term global warming. However, sub-decadal periods of little (or no warming) and rapid warming can also be found, clearly showing the impact of inter-annual and decadal variability that previously has been attributed to both natural and human-induced non-greenhouse forcings.
NASA Astrophysics Data System (ADS)
Idrees, M.; Rehman, Sajid; Shah, Rehan Ali; Ullah, M.; Abbas, Tariq
2018-03-01
An analysis is performed for the fluid dynamics incorporating the variation of viscosity and thermal conductivity on an unsteady two-dimensional free surface flow of a viscous incompressible conducting fluid taking into account the effect of a magnetic field. Surface tension quadratically vary with temperature while fluid viscosity and thermal conductivity are assumed to vary as a linear function of temperature. The boundary layer partial differential equations in cartesian coordinates are transformed into a system of nonlinear ordinary differential equations (ODEs) by similarity transformation. The developed nonlinear equations are solved analytically by Homotopy Analysis Method (HAM) while numerically by using the shooting method. The Effects of natural parameters such as the variable viscosity parameter A, variable thermal conductivity parameter N, Hartmann number Ma, film Thickness, unsteadiness parameter S, Thermocapillary number M and Prandtl number Pr on the velocity and temperature profiles are investigated. The results for the surface skin friction coefficient f″ (0) , Nusselt number (heat flux) -θ‧ (0) and free surface temperature θ (1) are presented graphically and in tabular form.
Observed modes of sea surface temperature variability in the South Pacific region
NASA Astrophysics Data System (ADS)
Saurral, Ramiro I.; Doblas-Reyes, Francisco J.; García-Serrano, Javier
2018-02-01
The South Pacific (SP) region exerts large control on the climate of the Southern Hemisphere at many times scales. This paper identifies the main modes of interannual sea surface temperature (SST) variability in the SP which consist of a tropical-driven mode related to a horseshoe structure of positive/negative SST anomalies within midlatitudes and highly correlated to ENSO and Interdecadal Pacific Oscillation (IPO) variability, and another mode mostly confined to extratropical latitudes which is characterized by zonal propagation of SST anomalies within the South Pacific Gyre. Both modes are associated with temperature and rainfall anomalies over the continental regions of the Southern Hemisphere. Besides the leading mode which is related to well known warmer/cooler and drier/moister conditions due to its relationship with ENSO and the IPO, an inspection of the extratropical mode indicates that it is associated with distinct patterns of sea level pressure and surface temperature advection. These relationships are used here as plausible and partial explanations to the observed warming trend observed within the Southern Hemisphere during the last decades.
The evolution of flowering strategies in US weedy rice
USDA-ARS?s Scientific Manuscript database
Local adaptation in plants often involves changes in flowering time in response to day length and temperature differences. Many crop varieties have been selected for uniformity in flowering time. In contrast, variable flowering may be important for increased competitiveness in weed species invading ...
Fluxes all of the time? A primer on the temporal representativeness of FLUXNET
NASA Astrophysics Data System (ADS)
Chu, Housen; Baldocchi, Dennis D.; John, Ranjeet; Wolf, Sebastian; Reichstein, Markus
2017-02-01
FLUXNET, the global network of eddy covariance flux towers, provides the largest synthesized data set of CO2, H2O, and energy fluxes. To achieve the ultimate goal of providing flux information "everywhere and all of the time," studies have attempted to address the representativeness issue, i.e., whether measurements taken in a set of given locations and measurement periods can be extrapolated to a space- and time-explicit extent (e.g., terrestrial globe, 1982-2013 climatological baseline). This study focuses on the temporal representativeness of FLUXNET and tests whether site-specific measurement periods are sufficient to capture the natural variability of climatological and biological conditions. FLUXNET is unevenly representative across sites in terms of the measurement lengths and potentials of extrapolation in time. Similarity of driver conditions among years generally enables the extrapolation of flux information beyond measurement periods. Yet such extrapolation potentials are further constrained by site-specific variability of driver conditions. Several driver variables such as air temperature, diurnal temperature range, potential evapotranspiration, and normalized difference vegetation index had detectable trends and/or breakpoints within the baseline period, and flux measurements generally covered similar and biased conditions in those drivers. About 38% and 60% of FLUXNET sites adequately sampled the mean conditions and interannual variability of all driver conditions, respectively. For long-record sites (≥15 years) the percentages increased to 59% and 69%, respectively. However, the justification of temporal representativeness should not rely solely on the lengths of measurements. Whenever possible, site-specific consideration (e.g., trend, breakpoint, and interannual variability in drivers) should be taken into account.
NASA Astrophysics Data System (ADS)
Rahmani, Elham; Friederichs, Petra; Keller, Jan; Hense, Andreas
2016-05-01
The main purpose of this study is to develop an easy-to-use weather generator (WG) for the downscaling of gridded data to point measurements at regional scale. The WG is applied to daily averaged temperatures and annual growing degree days (GDD) of wheat. This particular choice of variables is motivated by future investigations on temperature impacts as the most important climate variable for wheat cultivation under irrigation in Iran. The proposed statistical downscaling relates large-scale ERA-40 reanalysis to local daily temperature and annual GDD. Long-term local observations in Iran are used at 16 synoptic stations from 1961 to 2001, which is the common period with ERA-40 data. We perform downscaling using two approaches: the first is a linear regression model that uses the ERA-40 fingerprints (FP) defined by the squared correlation with local variability, and the second employs a linear multiple regression (MR) analysis to relate the large-scale information at the neighboring grid points to the station data. Extending the usual downscaling, we implement a WG providing uncertainty information and realizations of the local temperatures and GDD by adding a Gaussian random noise. ERA-40 reanalysis well represents the local daily temperature as well as the annual GDD variability. For 2-m temperature, the FPs are more localized during the warm compared with the cold season. While MR is slightly superior for daily temperature time series, FP seems to perform best for annual GDD. We further assess the quality of the WGs applying probabilistic verification scores like the continuous ranked probability score (CRPS) and the respective skill score. They clearly demonstrate the superiority of WGs compared with a deterministic downscaling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, C.H.; Lee, K.H.
2007-08-15
Emissions remain a critical issue affecting engine design and operation, while energy conservation is becoming increasingly important. One approach to favorably address these issues is to achieve homogeneous charge combustion and stratified charge combustion at lower peak temperatures with a variable compression ratio, a variable intake temperature and a trapped rate of the EGR using NVO (negative valve overlap). This experiment was attempted to investigate the origins of these lower temperature auto-ignition phenomena with SCCI and CAI using gasoline fuel. In case of SCCI, the combustion and emission characteristics of gasoline-fueled stratified-charge compression ignition (SCCI) engine according to intake temperaturemore » and compression ratio was examined. We investigated the effects of air-fuel ratio, residual EGR rate and injection timing on the CAI combustion area. In addition, the effect of injection timing on combustion factors such as the start of combustion, its duration and its heat release rate was also investigated. (author)« less
Multidecadal Variability in Surface Albedo Feedback Across CMIP5 Models
NASA Astrophysics Data System (ADS)
Schneider, Adam; Flanner, Mark; Perket, Justin
2018-02-01
Previous studies quantify surface albedo feedback (SAF) in climate change, but few assess its variability on decadal time scales. Using the Coupled Model Intercomparison Project Version 5 (CMIP5) multimodel ensemble data set, we calculate time evolving SAF in multiple decades from surface albedo and temperature linear regressions. Results are meaningful when temperature change exceeds 0.5 K. Decadal-scale SAF is strongly correlated with century-scale SAF during the 21st century. Throughout the 21st century, multimodel ensemble mean SAF increases from 0.37 to 0.42 W m-2 K-1. These results suggest that models' mean decadal-scale SAFs are good estimates of their century-scale SAFs if there is at least 0.5 K temperature change. Persistent SAF into the late 21st century indicates ongoing capacity for Arctic albedo decline despite there being less sea ice. If the CMIP5 multimodel ensemble results are representative of the Earth, we cannot expect decreasing Arctic sea ice extent to suppress SAF in the 21st century.
NASA Technical Reports Server (NTRS)
Epperson, David L.; Davis, Jerry M.; Bloomfield, Peter; Karl, Thomas R.; Mcnab, Alan L.; Gallo, Kevin P.
1995-01-01
Multiple regression techniques were used to predict surface shelter temperatures based on the time period 1986-89 using upper-air data from the European Centre for Medium-Range Weather Forecasts (ECMWF) to represent the background climate and site-specific data to represent the local landscape. Global monthly mean temperature models were developed using data from over 5000 stations available in the Global Historical Climate Network (GHCN). Monthly maximum, mean, and minimum temperature models for the United States were also developed using data from over 1000 stations available in the U.S. Cooperative (COOP) Network and comparative monthly mean temperature models were developed using over 1150 U.S. stations in the GHCN. Three-, six-, and full-variable models were developed for comparative purposes. Inferences about the variables selected for the various models were easier for the GHCN models, which displayed month-to-month consistency in which variables were selected, than for the COOP models, which were assigned a different list of variables for nearly every month. These and other results suggest that global calibration is preferred because data from the global spectrum of physical processes that control surface temperatures are incorporated in a global model. All of the models that were developed in this study validated relatively well, especially the global models. Recalibration of the models with validation data resulted in only slightly poorer regression statistics, indicating that the calibration list of variables was valid. Predictions using data from the validation dataset in the calibrated equation were better for the GHCN models, and the globally calibrated GHCN models generally provided better U.S. predictions than the U.S.-calibrated COOP models. Overall, the GHCN and COOP models explained approximately 64%-95% of the total variance of surface shelter temperatures, depending on the month and the number of model variables. In addition, root-mean-square errors (rmse's) were over 3 C for GHCN models and over 2 C for COOP models for winter months, and near 2 C for GHCN models and near 1.5 C for COOP models for summer months.
Moeckel, Claudia; Macleod, Matthew; Hungerbühler, Konrad; Jones, Kevin C
2008-05-01
Short-term variability of concentrations of polybrominated diphenyl ethers (PBDEs) and chlordanes in air at a semirural site in England over a 5 day period is reported. Four-hour air samples were collected during a period dominated by a high pressure system that produced stable diel (24-h) patterns of meteorological conditions such as temperature and atmospheric boundary layer height. PBDE and chlordane concentrations showed clear diel variability with concentrations in the afternoon and evening being 1.9 - 2.7 times higher than in the early morning. The measurements are interpreted using a multimedia mass balance model parametrized with forcing functions representing local temperature, atmospheric boundary layer height, wind speed and hydroxyl radical concentrations. Model results indicate that reversible, temperature-controlled air-surface exchange is the primary driver of the diel concentration pattern observed for chlordanes and PBDE 28. For higher brominated PBDE congeners (47, 99 and 100), the effect of variable atmospheric mixing height in combination with irreversible deposition on aerosol particles is dominant and explains the diel patterns almost entirely. Higher concentrations of chlordanes and PBDEs in air observed at the end of the study period could be related to likely source areas using back trajectory analysis. This is the first study to clearly document diel variability in concentrations of PBDEs in air over a period of several days. Our model analysis indicates that high daytime and low nighttime concentrations of semivolatile organic chemicals can arise from different underlying driving processes, and are not necessarily evidence of reversible air-surface exchange on a 24-h time scale.
NASA Astrophysics Data System (ADS)
Creech, John B.; Baker, Joel A.; Hollis, Christopher J.; Morgans, Hugh E. G.; Smith, Euan G. C.
2010-11-01
We have used laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to measure elemental (Mg/Ca, Al/Ca, Mn/Ca, Zn/Ca, Sr/Ca, and Ba/Ca) ratios of 13 species of variably preserved early to middle Eocene planktonic and benthic foraminifera from New Zealand. The foraminifera were obtained from Ashley Mudstone, mid-Waipara River, South Island, which was deposited at bathyal depth ( ca. 1000 m) on the northern margin of the east-facing Canterbury Basin at a paleo-latitude of ca. 55°S. LA-ICP-MS data yield trace element depth profiles through foraminifera test walls that can be used to identify and exclude zones of surficial contamination and infilling material resulting from diagenetic coatings, mineralisation and detrital sediment. Screened Mg/Ca ratios from 5 species of foraminifera are used to calculate sea temperatures from late Early to early Middle Eocene ( ca. 51 to 46.5 Ma), a time interval that spans the termination of the Early Eocene Climatic Optimum (EECO). During this time, sea surface temperatures (SST) varied from 30 to 24 °C, and bottom water temperatures (BWT) from 21 to 14 °C. Comparison of Mg/Ca sea temperatures with published δ 18O and TEX 86 temperature data from the same samples (Hollis et al., 2009) shows close correspondence, indicating that LA-ICP-MS can provide reliable Mg/Ca sea temperatures even where foraminiferal test preservation is variable. Agreement between the three proxies also implies that Mg/Ca-temperature calibrations for modern planktonic and benthic foraminifera can generally be applied to Eocene species, although some species (e.g., V. marshalli) show significant calibration differences. The Mg/Ca ratio of the Eocene ocean is constrained by our data to be 35-50% lower than the modern ocean depending on which TEX 86 - temperature calibration (Kim et al., 2008; Liu et al., 2009) - is used to compare with the Mg/Ca sea temperatures. Sea temperatures derived from δ 18O analysis of foraminifera from Waipara show amplified variability relative to the Mg/Ca and TEX 86 proxies. This amplified variability is probably a diagenetic effect although it is possible that this Eocene δ 18O record contains an ice volume component — the amplification signalling that temperature changes may have been accompanied by growth and collapse of ephemeral polar ice sheets on timescales of ca. 0.5 Myr.
Upper-Ocean Variability in the Arctic’s Amundsen and Nansen Basins
2017-05-01
collect vertical profiles of ocean temperature, salinity and horizontal velocity at few- hour interval as well as sample for specified time periods...deployed for the MIZ program - specifically, vertical temperature, salinity and velocity profiles were collected every 3 hours in the upper 250m of the...the system), this ITP-V returned 5+ months of upper ocean temperature, salinity , velocity and turbulence data from the Makarov Basin, a region of
USDA-ARS?s Scientific Manuscript database
The ability to survive episodes of subfreezing temperature is essential to winter wheat. Fully cold-acclimated plants of six lines of winter wheat were exposed to -12, -14, -16 or -18° C, four 1-5 hours. Electrolyte leakage and plant survival were used to assess damage to the plants. Plants exposed ...
Does the weather influence public opinion about climate change?
NASA Astrophysics Data System (ADS)
Donner, S. D.; McDaniel, J.
2010-12-01
Public opinion in North America about the science of anthropogenic climate change and the motivation for policy action has been variable over the past twenty years. The trends in public opinion over time have been attributed the general lack of pressing public concern about climate change to a range of political, economic and psychological factors. One driving force behind the variability in polling data from year to year may be the weather itself. The difference between what we “expect” - the climate - and what we “get” - the weather - can be a major source of confusion and obfuscation in the public discourse about climate change. For example, reaction to moderate global temperatures in 2007 and 2008 may have helped prompt the spread of a “global cooling” meme in the public and the news media. At the same time, a decrease in the belief in the science of climate change and the need for action has been noted in opinion polls. This study analyzes the relationship between public opinion about climate change and the weather in the U.S. since the mid-1980s using historical polling data from several major organizations (e.g. Gallup, Pew, Harris Interactive, ABC News), historical monthly air temperature (NCDC) and a survey of opinion articles from major U.S. newspapers (Washington Post, New York Times, Wall Street Journal, Houston Chronicle, USA Today). Seasonal and annual monthly temperature anomalies for the northeastern U.S and the continental U.S are compared with available national opinion data for three general categories of questions: i) Is the climate warming?, ii) Is the observed warming due to human activity?, and iii) Are you concerned about climate change? The variability in temperature and public opinion over time is also compared with the variability in the fraction of opinion articles in the newspapers (n ~ 7000) which express general agreement or disagreement with IPCC Summary for Policymakers consensus statements on climate change (“most of the observed increase in global average temperature is very likely to be due to the observed increase in anthropogenic greenhouse gas concentrations”). The results reveal a possible link between opinion leaders, particularly in the northeastern U.S, public confusion about the difference between weather and climate, and the evolution of U.S. public opinion about climate change.
An analysis of surface air temperature trends and variability along the Andes
NASA Astrophysics Data System (ADS)
Franquist, Eric S.
Climate change is difficult to study in mountainous regions such as the Andes since steep changes in elevation cannot always be resolved by climate models. However, it is important to examine temperature trends in this region as rises in surface air temperature are leading to the melting of tropical glaciers. Local communities rely on the glacier-fed streamflow to get their water for drinking, irrigation, and livestock. Moreover, communities also rely on the tourism of hikers who come to the region to view the glaciers. As the temperatures increase, these glaciers are no longer in equilibrium with their current climate and are receding rapidly and decreasing the streamflow. This thesis examines surface air temperature from 858 weather stations across Ecuador, Peru, and Chile in order to analyze changes in trends and variability. Three time periods were studied: 1961--1990, 1971--2000, and 1981--2010. The greatest warming occurred during the period of 1971--2000 with 92% of the stations experiencing positive trends with a mean of 0.24°C/decade. There was a clear shift toward cooler temperatures at all latitudes and below elevations of 500 m during the most recent time period studied (1981--2010). Station temperatures were more strongly correlated with the El Nino Southern Oscillation (ENSO), than the Pacific Decadal Oscillation (PDO), and the Southern Annular Mode (SAM). A principal component analysis confirmed ENSO as the main contributor of variability with the most influence in the lower latitudes. There were clear multidecadal changes in correlation strength for the PDO. The PDO contributed the most to the increases in station temperature trends during the 1961--1990 period, consistent with the PDO shift to the positive phase in the middle of this period. There were many strong positive trends at individual stations during the 1971--2000 period; however, these trends could not fully be attributed to ENSO, PDO, or SAM, indicating anthropogenic effects of greenhouse gas emissions as the most likely cause.
NASA Astrophysics Data System (ADS)
Shanahan, T. M.; Hughen, K. A.; Fornace, K.; Baker, P. A.; Fritz, S. C.
2010-12-01
As one of the main centers of tropical convection, the South American Altiplano plays a crucial role in the long-term climate variability of South America. However, both the timing and the drivers of climate variability on orbital to millennial timescales remain poorly understood for this region. New data from molecular fossil (e.g., TEX86) and compound specific hydrogen isotope (D/H) analyses provide new insights into the climate evolution of this region over the last ~50 kyr. TEX86 temperature reconstructions suggest that the Altiplano warmed as early as 19- 21 kyr ago and proceeded rapidly, consistent with published evidence for an early retreat of LGM glaciers at this time at some locations. The early warming signal observed at Lake Titicaca also appears to be synchronous with continental temperature reconstructions at some sites in tropical Africa, but leads tropical SST changes by several thousands of years. Although the initiation of warming coincided with the peak in southern hemisphere summer insolation, subsequent temperature increases were accompanied by decreases in southern hemisphere insolation, suggesting a northern hemisphere driver for temperature changes in tropical South America. Preliminary D/H ratios from leaf waxes appear to support existing data suggesting that wet conditions prevailed until the late glacial/early Holocene and are broadly consistent with local southern hemisphere summer insolation forcing of the summer monsoon. These data suggest that temperature and precipitation changes during the last deglaciation were decoupled and that both local and extratropical drivers are important for controlling climate change in this region on orbital timescales.
Skilful multi-year predictions of tropical trans-basin climate variability
Chikamoto, Yoshimitsu; Timmermann, Axel; Luo, Jing-Jia; Mochizuki, Takashi; Kimoto, Masahide; Watanabe, Masahiro; Ishii, Masayoshi; Xie, Shang-Ping; Jin, Fei-Fei
2015-01-01
Tropical Pacific sea surface temperature anomalies influence the atmospheric circulation, impacting climate far beyond the tropics. The predictability of the corresponding atmospheric signals is typically limited to less than 1 year lead time. Here we present observational and modelling evidence for multi-year predictability of coherent trans-basin climate variations that are characterized by a zonal seesaw in tropical sea surface temperature and sea-level pressure between the Pacific and the other two ocean basins. State-of-the-art climate model forecasts initialized from a realistic ocean state show that the low-frequency trans-basin climate variability, which explains part of the El Niño Southern Oscillation flavours, can be predicted up to 3 years ahead, thus exceeding the predictive skill of current tropical climate forecasts for natural variability. This low-frequency variability emerges from the synchronization of ocean anomalies in all basins via global reorganizations of the atmospheric Walker Circulation. PMID:25897996
Middle Pliocene sea surface temperature variability
Dowsett, H.J.; Chandler, M.A.; Cronin, T. M.; Dwyer, Gary S.
2005-01-01
Estimates of sea surface temperature (SST) based upon foraminifer, diatom, and ostracod assemblages from ocean cores reveal a warm phase of the Pliocene between about 3.3 and 3.0 Ma. Pollen records and plant megafossils, although not as well dated, show evidence for a warmer climate at about the same time. Increased greenhouse forcing and altered ocean heat transport are the leading candidates for the underlying cause of Pliocene global warmth. Despite being a period of global warmth, this interval encompasses considerable variability. Two new SST reconstructions are presented that are designed to provide a climatological error bar for warm peak phases of the Pliocene and to document the spatial distribution and magnitude of SST variability within the mid-Pliocene warm period. These data suggest long-term stability of low-latitude SST and document greater variability in regions of maximum warming. Copyright 2005 by the American Geophysical Union.
Skilful multi-year predictions of tropical trans-basin climate variability.
Chikamoto, Yoshimitsu; Timmermann, Axel; Luo, Jing-Jia; Mochizuki, Takashi; Kimoto, Masahide; Watanabe, Masahiro; Ishii, Masayoshi; Xie, Shang-Ping; Jin, Fei-Fei
2015-04-21
Tropical Pacific sea surface temperature anomalies influence the atmospheric circulation, impacting climate far beyond the tropics. The predictability of the corresponding atmospheric signals is typically limited to less than 1 year lead time. Here we present observational and modelling evidence for multi-year predictability of coherent trans-basin climate variations that are characterized by a zonal seesaw in tropical sea surface temperature and sea-level pressure between the Pacific and the other two ocean basins. State-of-the-art climate model forecasts initialized from a realistic ocean state show that the low-frequency trans-basin climate variability, which explains part of the El Niño Southern Oscillation flavours, can be predicted up to 3 years ahead, thus exceeding the predictive skill of current tropical climate forecasts for natural variability. This low-frequency variability emerges from the synchronization of ocean anomalies in all basins via global reorganizations of the atmospheric Walker Circulation.
NASA Astrophysics Data System (ADS)
Trachsel, M.; Rehfeld, K.; Telford, R.; Laepple, T.
2017-12-01
Reconstructions of summer, winter or annual mean temperatures based on the species composition of bio-indicators such as pollen are routinely used in climate model-proxy data comparison studies. Most reconstruction algorithms exploit the joint distribution of modern spatial climate and species distribution for the development of the reconstructions. They rely on the space-for-time substitution and the specific assumption that environmental variables other than those reconstructed are not important or that their relationship with the reconstructed variable(s) should be the same in the past as in the modern spatial calibration dataset. Here we test the implications of this "correlative uniformitarianism" assumption on climate reconstructions in an ideal model world, in which climate and vegetation are known at all times. The alternate reality is a climate simulation of the last 6000 years with dynamic vegetation. Transient changes of plant functional types are considered as surrogate pollen counts and allow us to establish, apply and evaluate transfer functions in the modeled world. We find that the transfer function cross validation r2 is of limited use to identify reconstructible climate variables, as it only relies on the modern spatial climate-vegetation relationship. However, ordination approaches that assess the amount of fossil vegetation variance explained by the reconstructions are promising. We show that correlations between climate variables in the modern climate-vegetation relationship are systematically extended into the reconstructions. Summer temperatures, the most prominent driving variable for modeled vegetation change in the Northern Hemisphere, are accurately reconstructed. However, the amplitude of the model winter and mean annual temperature cooling between the mid-Holocene and present day is overestimated and similar to the summer trend in magnitude. This effect occurs because temporal changes of a dominant climate variable are imprinted on a less important variable, leading to reconstructions biased towards the dominant variable's trends. Our results, although based on a model vegetation that is inevitably simpler than reality, indicate that reconstructions of multiple climate variables based on modern spatial bio-indicator datasets should be treated with caution.
Lin, Yong; Franzke, Christian L E
2015-08-11
Studies of the global mean surface temperature trend are typically conducted at a single (usually annual or decadal) time scale. The used scale does not necessarily correspond to the intrinsic scales of the natural temperature variability. This scale mismatch complicates the separation of externally forced temperature trends from natural temperature fluctuations. The hiatus of global warming since 1999 has been claimed to show that human activities play only a minor role in global warming. Most likely this claim is wrong due to the inadequate consideration of the scale-dependency in the global surface temperature (GST) evolution. Here we show that the variability and trend of the global mean surface temperature anomalies (GSTA) from January 1850 to December 2013, which incorporate both land and sea surface data, is scale-dependent and that the recent hiatus of global warming is mainly related to natural long-term oscillations. These results provide a possible explanation of the recent hiatus of global warming and suggest that the hiatus is only temporary.
NASA Astrophysics Data System (ADS)
Forsythe, N.; Fowler, H. J.; Blenkinsop, S.; Burton, A.; Kilsby, C. G.; Archer, D. R.; Harpham, C.; Hashmi, M. Z.
2014-09-01
Assessing local climate change impacts requires downscaling from Global Climate Model simulations. Here, a stochastic rainfall model (RainSim) combined with a rainfall conditioned weather generator (CRU WG) have been successfully applied in a semi-arid mountain climate, for part of the Upper Indus Basin (UIB), for point stations at a daily time-step to explore climate change impacts. Validation of the simulated time-series against observations (1961-1990) demonstrated the models' skill in reproducing climatological means of core variables with monthly RMSE of <2.0 mm for precipitation and ⩽0.4 °C for mean temperature and daily temperature range. This level of performance is impressive given complexity of climate processes operating in this mountainous context at the boundary between monsoonal and mid-latitude (westerly) weather systems. Of equal importance the model captures well the observed interannual variability as quantified by the first and last decile of 30-year climatic periods. Differences between a control (1961-1990) and future (2071-2100) regional climate model (RCM) time-slice experiment were then used to provide change factors which could be applied within the rainfall and weather models to produce perturbed ‘future' weather time-series. These project year-round increases in precipitation (maximum seasonal mean change:+27%, annual mean change: +18%) with increased intensity in the wettest months (February, March, April) and year-round increases in mean temperature (annual mean +4.8 °C). Climatic constraints on the productivity of natural resource-dependent systems were also assessed using relevant indices from the European Climate Assessment (ECA) and indicate potential future risk to water resources and local agriculture. However, the uniformity of projected temperature increases is in stark contrast to recent seasonally asymmetrical trends in observations, so an alternative scenario of extrapolated trends was also explored. We conclude that interannual variability in climate will continue to have the dominant impact on water resources management whichever trajectory is followed. This demonstrates the need for sophisticated downscaling methods which can evaluate changes in variability and sequencing of events to explore climate change impacts in this region.
NASA Astrophysics Data System (ADS)
Soniat, Thomas M.; Hofmann, Eileen E.; Klinck, John M.; Powell, Eric N.
2009-02-01
The eastern oyster ( Crassostrea virginica) is affected by two protozoan parasites, Perkinsus marinus which causes Dermo disease and Haplosporidium nelsoni which causes MSX (Multinucleated Sphere Unknown) disease. Both diseases are largely controlled by water temperature and salinity and thus are potentially sensitive to climate variations resulting from the El Niño-Southern Oscillation (ENSO), which influences climate along the Gulf of Mexico coast, and the North Atlantic Oscillation (NAO), which influences climate along the Atlantic coast of the United States. In this study, a 10-year time series of temperature and salinity and P. marinus infection intensity for a site in Louisiana on the Gulf of Mexico coast and a 52-year time series of air temperature and freshwater inflow and oyster mortality from Delaware Bay on the Atlantic coast of the United States were analyzed to determine patterns in disease and disease-induced mortality in C. virginica populations that resulted from ENSO and NAO climate variations. Wavelet analysis was used to decompose the environmental, disease infection intensity and oyster mortality time series into a time-frequency space to determine the dominant modes of variability and the time variability of the modes. For the Louisiana site, salinity and Dermo disease infection intensity are correlated at a periodicity of 4 years, which corresponds to ENSO. The influence of ENSO on Dermo disease along the Gulf of Mexico is through its effect on salinity, with high salinity, which occurs during the La Niña phase of ENSO at this location, favoring parasite proliferation. For the Delaware Bay site, the primary correlation was between temperature and oyster mortality, with a periodicity of 8 years, which corresponds to the NAO. Warmer temperatures, which occur during the positive phase of the NAO, favor the parasites causing increased oyster mortality. Thus, disease prevalence and intensity in C. virginica populations along the Gulf of Mexico coast is primarily regulated by salinity, whereas temperature regulates the disease process along the United States east coast. These results show that the response of an organism to climate variability in a region is not indicative of the response that will occur over the entire range of a particular species. This has important implications for management of marine resources, especially those that are commercially harvested.
Verrot, Lucile; Destouni, Georgia
2015-01-01
Soil moisture influences and is influenced by water, climate, and ecosystem conditions, affecting associated ecosystem services in the landscape. This paper couples snow storage-melting dynamics with an analytical modeling approach to screening basin-scale, long-term soil moisture variability and change in a changing climate. This coupling enables assessment of both spatial differences and temporal changes across a wide range of hydro-climatic conditions. Model application is exemplified for two major Swedish hydrological basins, Norrström and Piteälven. These are located along a steep temperature gradient and have experienced different hydro-climatic changes over the time period of study, 1950-2009. Spatially, average intra-annual variability of soil moisture differs considerably between the basins due to their temperature-related differences in snow dynamics. With regard to temporal change, the long-term average state and intra-annual variability of soil moisture have not changed much, while inter-annual variability has changed considerably in response to hydro-climatic changes experienced so far in each basin.
Hutchings, Jeffrey A
2015-01-01
Abstract The level of phenotypic plasticity displayed within a population (i.e. the slope of the reaction norm) reflects the short-term response of a population to environmental change, while variation in reaction norm slopes among populations reflects spatial variation in these responses. Thus far, studies of thermal reaction norm variation have focused on geographically driven adaptation among different latitudes, altitudes or habitats. Yet, thermal variability is a function of both space and time. For organisms that reproduce at different times of year, such variation has the potential to promote adaptive variability in thermal responses for critical early life stages. Using common-garden experiments, we examined the spatial scale of genetic variation in thermal plasticity for early life-history traits among five populations of endangered Atlantic cod (Gadus morhua) that spawn at different times of year. Patterns of plasticity for larval growth and survival suggest that population responses to climate change will differ substantially, with increasing water temperatures posing a considerably greater threat to autumn-spawning cod than to those that spawn in winter or spring. Adaptation to seasonal cooling or warming experienced during the larval stage is suggested as a possible cause. Furthermore, populations that experience relatively cold temperatures during early life might be more sensitive to changes in temperature. Substantial divergence in adaptive traits was evident at a smaller spatial scale than has previously been shown for a marine fish with no apparent physical barriers to gene flow (∼200 km). Our findings highlight the need to consider the impact of intraspecific variation in reproductive timing on thermal adaptation when forecasting the effects of climate change on animal populations. PMID:27293712
Oomen, Rebekah A; Hutchings, Jeffrey A
2015-01-01
The level of phenotypic plasticity displayed within a population (i.e. the slope of the reaction norm) reflects the short-term response of a population to environmental change, while variation in reaction norm slopes among populations reflects spatial variation in these responses. Thus far, studies of thermal reaction norm variation have focused on geographically driven adaptation among different latitudes, altitudes or habitats. Yet, thermal variability is a function of both space and time. For organisms that reproduce at different times of year, such variation has the potential to promote adaptive variability in thermal responses for critical early life stages. Using common-garden experiments, we examined the spatial scale of genetic variation in thermal plasticity for early life-history traits among five populations of endangered Atlantic cod (Gadus morhua) that spawn at different times of year. Patterns of plasticity for larval growth and survival suggest that population responses to climate change will differ substantially, with increasing water temperatures posing a considerably greater threat to autumn-spawning cod than to those that spawn in winter or spring. Adaptation to seasonal cooling or warming experienced during the larval stage is suggested as a possible cause. Furthermore, populations that experience relatively cold temperatures during early life might be more sensitive to changes in temperature. Substantial divergence in adaptive traits was evident at a smaller spatial scale than has previously been shown for a marine fish with no apparent physical barriers to gene flow (∼200 km). Our findings highlight the need to consider the impact of intraspecific variation in reproductive timing on thermal adaptation when forecasting the effects of climate change on animal populations.
Wenlong Wang; Douglas J. Gardner; Melissa G. D. Baumann
1999-01-01
Three types of adhesives, urea-formaldehyde (UF) resin, phenol-formaldehyde (PF) resin, and polymeric methylene bis(phenyl isocyanate) (pMDI), were used for investigating the effect of pressing variables on volatile organic compound (VOC) emissions. The variables examined included press temperature and time, mat moisture content and resin content, and board density....
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fei, Yiyan; Landry, James P.; Zhu, X. D., E-mail: xdzhu@physics.ucdavis.edu
A biological state is equilibrium of multiple concurrent biomolecular reactions. The relative importance of these reactions depends on physiological temperature typically between 10 °C and 50 °C. Experimentally the temperature dependence of binding reaction constants reveals thermodynamics and thus details of these biomolecular processes. We developed a variable-temperature opto-fluidic system for real-time measurement of multiple (400–10 000) biomolecular binding reactions on solid supports from 10 °C to 60 °C within ±0.1 °C. We illustrate the performance of this system with investigation of binding reactions of plant lectins (carbohydrate-binding proteins) with 24 synthetic glycans (i.e., carbohydrates). We found that the lectin-glycan reactions in general can be enthalpy-driven,more » entropy-driven, or both, and water molecules play critical roles in the thermodynamics of these reactions.« less
Thermal Management in Friction-Stir Welding of Precipitation-Hardening Aluminum Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhyay, Piyush; Reynolds, Anthony
2015-05-25
Process design and implementation in FSW is mostly dependent on empirical information gathered through experience. Basic science of friction stir welding and processing can only be complete when fundamental interrelationships between process control parameters and response variables and resulting weld microstructure and properties are established to a reasonable extent. It is known that primary process control parameters like tool rotation and translation rate and forge axis force have complicated and interactive relationships to the process response variables such as peak temperature, time at temperature etc. Of primary influence to the other process response parameters are temperature and its gradient atmore » the deformation and heat affected zones. Through review of pertinent works in the literature and some experimental results from boundary condition work performed in precipitation hardening aluminum alloys this paper will partially elucidate the nature and effects of temperature transients caused by variation of thermal boundaries in Friction Stir Welding.« less
Thermal Management in Friction-Stir Welding of Precipitation-Hardened Aluminum Alloys
NASA Astrophysics Data System (ADS)
Upadhyay, Piyush; Reynolds, Anthony P.
2015-05-01
Process design and implementation in friction-stir welding (FSW) is mostly dependent on empirical information. Basic science of FSW and processing can only be complete when fundamental interrelationships between the process control parameters and response variables and the resulting weld microstructure and properties are established to a reasonable extent. It is known that primary process control parameters such as tool rotation, translation rates, and forge axis force have complicated and interactive relationships to process-response variables such as peak temperature and time at temperature. Of primary influence on the other process-response parameters are temperature and its gradient in the deformation and heat-affected zones. Through a review of pertinent works in the literature and results from boundary condition experiments performed in precipitation-hardening aluminum alloys, this article partially elucidates the nature and effects of temperature transients caused by variation of thermal boundaries in FSW.
Transient characteristics of a grooved water heat pipe with variable heat load
NASA Technical Reports Server (NTRS)
Jang, Jong Hoon
1990-01-01
The transient characteristics of a grooved water heat pipe were studied by using variable heat load. First, the effects of the property variations of the working fluid with temperature were investigated by operating the water heat pipe at several different temperatures. The experimental results show that, even for the same heat input profile and heat pipe configuration, the heat pipe transports more heat at higher temperature within the tested temperature range. Adequate liquid return to the evaporator due to decreasing viscosity of the working fluid permits continuous vaporization of water without dry-out. Second, rewetting of the evaporator was studied after the evaporator had experienced dry-out. To rewet the evaporator, the elevation of the condenser end was the most effective way. Without elevating the condenser end, rewetting is not straight-forward even with power turned off unless the heat pipe is kept at isothermal condition for sufficiently long time.
NASA Astrophysics Data System (ADS)
Fei, Yiyan; Landry, James P.; Li, Yanhong; Yu, Hai; Lau, Kam; Huang, Shengshu; Chokhawala, Harshal A.; Chen, Xi; Zhu, X. D.
2013-11-01
A biological state is equilibrium of multiple concurrent biomolecular reactions. The relative importance of these reactions depends on physiological temperature typically between 10 °C and 50 °C. Experimentally the temperature dependence of binding reaction constants reveals thermodynamics and thus details of these biomolecular processes. We developed a variable-temperature opto-fluidic system for real-time measurement of multiple (400-10 000) biomolecular binding reactions on solid supports from 10 °C to 60 °C within ±0.1 °C. We illustrate the performance of this system with investigation of binding reactions of plant lectins (carbohydrate-binding proteins) with 24 synthetic glycans (i.e., carbohydrates). We found that the lectin-glycan reactions in general can be enthalpy-driven, entropy-driven, or both, and water molecules play critical roles in the thermodynamics of these reactions.
Valorisation of waste tyre by pyrolysis in a moving bed reactor.
Aylón, E; Fernández-Colino, A; Murillo, R; Navarro, M V; García, T; Mastral, A M
2010-07-01
The aim of this work is to assess the behaviour of a moving bed reactor, based on a screw transporter design, in waste tyre pyrolysis under several experimental conditions. Waste tyre represents a significant problem in developed countries and it is necessary to develop new technology that could easily process big amounts of this potentially raw material. In this work, the influence of the main pyrolysis process variables (temperature, solid residence time, mass flow rate and inert gas flow) has been studied by a thorough analysis of product yields and properties. It has been found that regardless the process operational parameters, a total waste tyre devolatilisation is achieved, producing a pyrolytic carbon black with a volatile matter content under 5 wt.%. In addition, it has been proven that, in the range studied, the most influencing process variables are temperature and solid mass flow rate, mainly because both variables modify the gas residence time inside the reactor. In addition, it has been found that the modification of these variables affects to the chemical properties of the products. This fact is mainly associated to the different cracking reaction of the primary pyrolysis products. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Valorisation of waste tyre by pyrolysis in a moving bed reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aylon, E.; Fernandez-Colino, A.; Murillo, R., E-mail: ramonm@icb.csic.e
2010-07-15
The aim of this work is to assess the behaviour of a moving bed reactor, based on a screw transporter design, in waste tyre pyrolysis under several experimental conditions. Waste tyre represents a significant problem in developed countries and it is necessary to develop new technology that could easily process big amounts of this potentially raw material. In this work, the influence of the main pyrolysis process variables (temperature, solid residence time, mass flow rate and inert gas flow) has been studied by a thorough analysis of product yields and properties. It has been found that regardless the process operationalmore » parameters, a total waste tyre devolatilisation is achieved, producing a pyrolytic carbon black with a volatile matter content under 5 wt.%. In addition, it has been proven that, in the range studied, the most influencing process variables are temperature and solid mass flow rate, mainly because both variables modify the gas residence time inside the reactor. In addition, it has been found that the modification of these variables affects to the chemical properties of the products. This fact is mainly associated to the different cracking reaction of the primary pyrolysis products.« less
NASA Astrophysics Data System (ADS)
Cortesi, Nicola; Peña-Angulo, Dhais; Simolo, Claudia; Stepanek, Peter; Brunetti, Michele; Gonzalez-Hidalgo, José Carlos
2014-05-01
One of the key point in the develop of the MOTEDAS dataset (see Poster 1 MOTEDAS) in the framework of the HIDROCAES Project (Impactos Hidrológicos del Calentamiento Global en España, Spanish Ministery of Research CGL2011-27574-C02-01) is the reference series for which no generalized metadata exist. In this poster we present an analysis of spatial variability of monthly minimum and maximum temperatures in the conterminous land of Spain (Iberian Peninsula, IP), by using the Correlation Decay Distance function (CDD), with the aim of evaluating, at sub-regional level, the optimal threshold distance between neighbouring stations for producing the set of reference series used in the quality control (see MOTEDAS Poster 1) and the reconstruction (see MOREDAS Poster 3). The CDD analysis for Tmax and Tmin was performed calculating a correlation matrix at monthly scale between 1981-2010 among monthly mean values of maximum (Tmax) and minimum (Tmin) temperature series (with at least 90% of data), free of anomalous data and homogenized (see MOTEDAS Poster 1), obtained from AEMEt archives (National Spanish Meteorological Agency). Monthly anomalies (difference between data and mean 1981-2010) were used to prevent the dominant effect of annual cycle in the CDD annual estimation. For each station, and time scale, the common variance r2 (using the square of Pearson's correlation coefficient) was calculated between all neighbouring temperature series and the relation between r2 and distance was modelled according to the following equation (1): Log (r2ij) = b*°dij (1) being Log(rij2) the common variance between target (i) and neighbouring series (j), dij the distance between them and b the slope of the ordinary least-squares linear regression model applied taking into account only the surrounding stations within a starting radius of 50 km and with a minimum of 5 stations required. Finally, monthly, seasonal and annual CDD values were interpolated using the Ordinary Kriging with a spherical variogram over conterminous land of Spain, and converted on a regular 10 km2 grid (resolution similar to the mean distance between stations) to map the results. In the conterminous land of Spain the distance at which couples of stations have a common variance in temperature (both maximum Tmax, and minimum Tmin) above the selected threshold (50%, r Pearson ~0.70) on average does not exceed 400 km, with relevant spatial and temporal differences. The spatial distribution of the CDD shows a clear coastland-to-inland gradient at annual, seasonal and monthly scale, with highest spatial variability along the coastland areas and lower variability inland. The highest spatial variability coincide particularly with coastland areas surrounded by mountain chains and suggests that the orography is one of the most driving factor causing higher interstation variability. Moreover, there are some differences between the behaviour of Tmax and Tmin, being Tmin spatially more homogeneous than Tmax, but its lower CDD values indicate that night-time temperature is more variable than diurnal one. The results suggest that in general local factors affects the spatial variability of monthly Tmin more than Tmax and then higher network density would be necessary to capture the higher spatial variability highlighted for Tmin respect to Tmax. The results suggest that in general local factors affects the spatial variability of Tmin more than Tmax and then higher network density would be necessary to capture the higher spatial variability highlighted for minimum temperature respect to maximum temperature. A conservative distance for reference series could be evaluated in 200 km, that we propose for continental land of Spain and use in the development of MOTEDAS.
Alfaro, Eric J.; Gershunov, Alexander; Cayan, Daniel R.
2006-01-01
A statistical model based on canonical correlation analysis (CCA) was used to explore climatic associations and predictability of June–August (JJA) maximum and minimum surface air temperatures (Tmax and Tmin) as well as the frequency of Tmax daily extremes (Tmax90) in the central and western United States (west of 90°W). Explanatory variables are monthly and seasonal Pacific Ocean SST (PSST) and the Climate Division Palmer Drought Severity Index (PDSI) during 1950–2001. Although there is a positive correlation between Tmax and Tmin, the two variables exhibit somewhat different patterns and dynamics. Both exhibit their lowest levels of variability in summer, but that of Tmax is greater than Tmin. The predictability of Tmax is mainly associated with local effects related to previous soil moisture conditions at short range (one month to one season), with PSST providing a secondary influence. Predictability of Tmin is more strongly influenced by large-scale (PSST) patterns, with PDSI acting as a short-range predictive influence. For both predictand variables (Tmax and Tmin), the PDSI influence falls off markedly at time leads beyond a few months, but a PSST influence remains for at least two seasons. The maximum predictive skill for JJA Tmin, Tmax, and Tmax90 is from May PSST and PDSI. Importantly, skills evaluated for various seasons and time leads undergo a seasonal cycle that has maximum levels in summer. At the seasonal time frame, summer Tmax prediction skills are greatest in the Midwest, northern and central California, Arizona, and Utah. Similar results were found for Tmax90. In contrast, Tmin skill is spread over most of the western region, except for clusters of low skill in the northern Midwest and southern Montana, Idaho, and northern Arizona.
NASA Astrophysics Data System (ADS)
Ortland, David A.
2017-04-01
Satellites provide a global view of the structure in the fields that they measure. In the mesosphere and lower thermosphere, the dominant features in these fields at low zonal wave number are contained in the zonal mean, quasi-stationary planetary waves, and tide components. Due to the nature of the satellite sampling pattern, stationary, diurnal, and semidiurnal components are aliased and spectral methods are typically unable to separate the aliased waves over short time periods. This paper presents a data processing scheme that is able to recover the daily structure of these waves and the zonal mean state. The method is validated by using simulated data constructed from a mechanistic model, and then applied to Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) temperature measurements. The migrating diurnal tide extracted from SABER temperatures for 2009 has a seasonal variability with peak amplitude (20 K at 95 km) in February and March and minimum amplitude (less than 5 K at 95 km) in early June and early December. Higher frequency variability includes a change in vertical structure and amplitude during the major stratospheric warming in January. The migrating semidiurnal tide extracted from SABER has variability on a monthly time scale during January through March, minimum amplitude in April, and largest steady amplitudes from May through September. Modeling experiments were performed that show that much of the variability on seasonal time scales in the migrating tides is due to changes in the mean flow structure and the superposition of the tidal responses to water vapor heating in the troposphere and ozone heating in the stratosphere and lower mesosphere.
Pérez-Hoyos, S; Sáez Zafra, M; Barceló, M A; Cambra, C; Figueiras Guzmán, A; Ordóñez, J M; Guillén Grima, F; Ocaña, R; Bellido, J; Cirera Suárez, L; López, A A; Rodríguez, V; Alcalá Nalvaiz, T; Ballester Díez, F
1999-01-01
The aim of this study is to Mortality show the protocol of analysis which was set out as part of the EMECAM Project, illustrating the application thereof to the effect of pollution has on the mortality in the city of Valencia. The response variables considered will be the daily deaths rate resulting from all causes, except external ones. The explicative variables are the daily series of different pollutants (black smoke, SO2, NO2, CO, O3). As possible confusion variables, weather factors, structural factors and weekly cases of flu are taken into account. A Poisson regression model is built up for each one of the four deaths series in two stages. In the first stage, a baseline model is fitted using the possible confusion variables. In the second stage, the pollution variables or the time legs thereof are included, controlling the residual autocorrelation by including mortality time lags. The process of fitting the baseline model is as follows: 1) Include the significant sinusoidal terms up to the sixth order. 2) Include the significant temperature or temperature squared terms with the time lags thereof up to the 7th order. 3) Repeat this process with the relative humidity. 4) Add in the significant terms of calendar years, daily tendency and tendency squared. 5) The days of the week as dummy variables are always included in the model. 6) Include the holidays and the significant time lags of up to two weeks of flu. Following the reassessment of the model, each one of the pollutants and the time lags thereof up to the fifth order are proven out. The impact is analyzed by six-month periods, including interaction terms.
NASA Technical Reports Server (NTRS)
Porter, Trevor J.; Pisaric, Michael F. J.; Field, Robert D.; Kokelj, Steven V.; Edwards, Thomas W. D.; deMontigny, Peter; Healy, Richard; LeGrande, Allegra N.
2013-01-01
High-latitude delta(exp 18)O archives deriving from meteoric water (e.g., tree-rings and ice-cores) can provide valuable information on past temperature variability, but stationarity of temperature signals in these archives depends on the stability of moisture source/trajectory and precipitation seasonality, both of which can be affected by atmospheric circulation changes. A tree-ring delta(exp 18)O record (AD 1780-2003) from the Mackenzie Delta is evaluated as a temperature proxy based on linear regression diagnostics. The primary source of moisture for this region is the North Pacific and, thus, North Pacific atmospheric circulation variability could potentially affect the tree-ring delta(exp 18)O-temperature signal. Over the instrumental period (AD 1892-2003), tree-ring delta(exp 18)O explained 29% of interannual variability in April-July minimum temperatures, and the explained variability increases substantially at lower-frequencies. A split-period calibration/verification analysis found the delta(exp 18)O-temperature relation was time-stable, which supported a temperature reconstruction back to AD 1780. The stability of the delta(exp 18)O-temperature signal indirectly implies the study region is insensitive to North Pacific circulation effects, since North Pacific circulation was not constant over the calibration period. Simulations from the NASA-GISS ModelE isotope-enabled general circulation model confirm that meteoric delta(exp 18)O and precipitation seasonality in the study region are likely insensitive to North Pacific circulation effects, highlighting the paleoclimatic value of tree-ring and possibly other delta(exp 18)O records from this region. Our delta(exp 18)O-based temperature reconstruction is the first of its kind in northwestern North America, and one of few worldwide, and provides a long-term context for evaluating recent climate warming in the Mackenzie Delta region.
Hoell, Andrew; Funk, Christopher C.; Mathew Barlow,
2015-01-01
Southwestern Asia, defined here as the domain bounded by 20°–40°N and 40°–70°E, which includes the nations of Iraq, Iran, Afghanistan, and Pakistan, is a water-stressed and semiarid region that receives roughly 75% of its annual rainfall during November–April. The November–April climate of southwestern Asia is strongly influenced by tropical Indo-Pacific variability on intraseasonal and interannual time scales, much of which can be attributed to sea surface temperature (SST) variations. The influences of lower-frequency SST variability on southwestern Asia climate during November–April Pacific decadal SST (PDSST) variability and the long-term trend in SST (LTSST) is examined. The U.S. Climate Variability and Predictability Program (CLIVAR) Drought Working Group forced global atmospheric climate models with PDSST and LTSST patterns, identified using empirical orthogonal functions, to show the steady atmospheric response to these modes of decadal to multidecadal SST variability. During November–April, LTSST forces an anticyclone over southwestern Asia, which results in reduced precipitation and increases in surface temperature. The precipitation and tropospheric circulation influences of LTSST are corroborated by independent observed precipitation and circulation datasets during 1901–2004. The decadal variations of southwestern Asia precipitation may be forced by PDSST variability, with two of the three models indicating that the cold phase of PDSST forces an anticyclone and precipitation reductions. However, there are intermodel circulation variations to PDSST that influence subregional precipitation patterns over the Middle East, southwestern Asia, and subtropical Asia. Changes in wintertime temperature and precipitation over southwestern Asia forced by LTSST and PDSST imply important changes to the land surface hydrology during the spring and summer.
a Steady Thermal State for the Earth's Interior
NASA Astrophysics Data System (ADS)
Andrault, D.; Monteux, J.; Le Bars, M.; Samuel, H.
2015-12-01
Large amounts of heat are permanently lost at the surface yielding the classic view of the Earth continuously cooling down. Contrary to this conventional depiction, we propose that the temperature profile in the deep Earth has remained almost constant for the last ~3 billion years (Ga) or more. The core-mantle boundary (CMB) temperature reached the mantle solidus of 4100 (+/-300) K after complete crystallization of the magma ocean not more than 1 Ga after the Moon-forming impact. The CMB remains at a similar temperature today; seismological evidences of ultra-low velocity zones suggest partial melting in the D"-layer and, therefore, a current temperature at, or just below, the mantle solidus. Such a steady thermal state of the CMB temperature excludes thermal buoyancy and compositional convection from being the predominant mechanisms to power the geodynamo over geological time. An alternative mechanism to produce motion in the outer core is mechanical forcing by tidal distortion and planetary precession. The conversion of gravitational and rotational energies of the Earth-Moon-Sun system to core motions could have supplied the lowermost mantle with a variable intensity heat source through geological time, due to the regime of core instabilities and/or changes in the astronomical forces. This variable heat source could explain the dramatic volcanic events that occurred in the Earth's history.
Tannase production by Paecilomyces variotii.
Battestin, Vania; Macedo, Gabriela Alves
2007-07-01
Surface response methodology was applied to the optimization of the laboratory scale production of tannase using a lineage of Paecilomyces variotii. A preliminary study was conducted to evaluate the effects of variables, including temperature ( degrees C), residue (%) (coffee husk:wheat bran), tannic acid (%) and salt solutions (%) on the production of tannase during 3, 5 and 7 days of fermentation. Among these variables, temperature, residues and tannic acid had significant effects on tannase production. The variables were optimized using surface response methodology. The best conditions for tannase production were: temperature (29-34 degrees C); tannic acid (8.5-14%); % residue (coffee husk:wheat bran 50:50) and incubation time of 5 days. The supplementation of external nitrogen and carbon sources at 0.4%, 0.8% and 1.2% concentration on tannase production were studied in the optimized medium. Three different nitrogen sources included yeast extract, ammonia nitrate and sodium nitrate along with carbon source (starch) were studied. Only ammonia nitrate showed a significant effect on tannase production. After the optimization process, the tannase activity increased 8.6-fold.
Nájera, S; Gil-Martínez, M; Zambrano, J A
2015-01-01
The aim of this paper is to establish and quantify different operational goals and control strategies in autothermal thermophilic aerobic digestion (ATAD). This technology appears as an alternative to conventional sludge digestion systems. During the batch-mode reaction, high temperatures promote sludge stabilization and pasteurization. The digester temperature is usually the only online, robust, measurable variable. The average temperature can be regulated by manipulating both the air injection and the sludge retention time. An improved performance of diverse biochemical variables can be achieved through proper manipulation of these inputs. However, a better quality of treated sludge usually implies major operating costs or a lower production rate. Thus, quality, production and cost indices are defined to quantify the outcomes of the treatment. Based on these, tradeoff control strategies are proposed and illustrated through some examples. This paper's results are relevant to guide plant operators, to design automatic control systems and to compare or evaluate the control performance on ATAD systems.
Prediction of Layer Thickness in Molten Borax Bath with Genetic Evolutionary Programming
NASA Astrophysics Data System (ADS)
Taylan, Fatih
2011-04-01
In this study, the vanadium carbide coating in molten borax bath process is modeled by evolutionary genetic programming (GEP) with bath composition (borax percentage, ferro vanadium (Fe-V) percentage, boric acid percentage), bath temperature, immersion time, and layer thickness data. Five inputs and one output data exist in the model. The percentage of borax, Fe-V, and boric acid, temperature, and immersion time parameters are used as input data and the layer thickness value is used as output data. For selected bath components, immersion time, and temperature variables, the layer thicknesses are derived from the mathematical expression. The results of the mathematical expressions are compared to that of experimental data; it is determined that the derived mathematical expression has an accuracy of 89%.
NASA Astrophysics Data System (ADS)
Roy, Priyom; Guha, Arindam; Kumar, K. Vinod
2015-07-01
Radiant temperature images from thermal remote sensing sensors are used to delineate surface coal fires, by deriving a cut-off temperature to separate coal-fire from non-fire pixels. Temperature contrast of coal fire and background elements (rocks and vegetation etc.) controls this cut-off temperature. This contrast varies across the coal field, as it is influenced by variability of associated rock types, proportion of vegetation cover and intensity of coal fires etc. We have delineated coal fires from background, based on separation in data clusters in maximum v/s mean radiant temperature (13th band of ASTER and 10th band of Landsat-8) scatter-plot, derived using randomly distributed homogeneous pixel-blocks (9 × 9 pixels for ASTER and 27 × 27 pixels for Landsat-8), covering the entire coal bearing geological formation. It is seen that, for both the datasets, overall temperature variability of background and fires can be addressed using this regional cut-off. However, the summer time ASTER data could not delineate fire pixels for one specific mine (Bhulanbararee) as opposed to the winter time Landsat-8 data. The contrast of radiant temperature of fire and background terrain elements, specific to this mine, is different from the regional contrast of fire and background, during summer. This is due to the higher solar heating of background rocky outcrops, thus, reducing their temperature contrast with fire. The specific cut-off temperature determined for this mine, to extract this fire, differs from the regional cut-off. This is derived by reducing the pixel-block size of the temperature data. It is seen that, summer-time ASTER image is useful for fire detection but required additional processing to determine a local threshold, along with the regional threshold to capture all the fires. However, the winter Landsat-8 data was better for fire detection with a regional threshold.
Depino, Amaicha Mara; Gross, Cornelius
2007-02-27
In humans, anxiety is accompanied by changes in autonomic nervous system function, including increased heart rate, body temperature, and blood pressure, and decreased heart rate variability. In rodents, anxiety is inferred by examining anxiety-related behavioral responses such as avoidance and freezing, and more infrequently by assessing autonomic responses to anxiogenic stimuli. However, few studies have simultaneously measured behavioral and autonomic responses to aversive stimuli in rodents and it remains unclear whether autonomic measures are reliable correlates of anxiety-related behavior in these animal models. Here we recorded for the first time heart rate and body temperature in freely moving BALB/c and C57BL/6 mice during exposure to an unfamiliar environment. Our data show that upon exposure to a novel open field, BALB/c mice showed increased anxiety-related behavior, reduced heart rate and higher heart rate variability (HRV) when compared with C57BL/6 mice. Regression analysis revealed a significant correlation between both heart rate and long-term HRV measures and locomotor activity and time spent in the center of the open field, but no correlation between body temperature and any behavioral variables. In the free exploration test, in which animals were allowed direct access to a novel environment from a familiar environment without experimenter handling, significant correlations were found only between heart rate and total locomotor activity, but not time spent in the unfamiliar chamber despite increased anxiety-related behavior in BALB/c mice. These findings demonstrate that increased anxiety-related behavior in BALB/c mice is not associated with specific changes in heart rate, HRV, or body temperature.
NASA Astrophysics Data System (ADS)
Sebok, E.; Karan, S.; Engesgaard, P. K.; Duque, C.
2013-12-01
Due to its large spatial and temporal variability, groundwater discharge to streams is difficult to quantify. Methods using vertical streambed temperature profiles to estimate vertical fluxes are often of coarse vertical spatial resolution and neglect to account for the natural heterogeneity in thermal conductivity of streambed sediments. Here we report on a field investigation in a stream, where air, stream water and streambed sediment temperatures were measured by Distributed Temperature Sensing (DTS) with high spatial resolution to; (i) detect spatial and temporal variability in groundwater discharge based on vertical streambed temperature profiles, (ii) study the thermal regime of streambed sediments exposed to different solar radiation influence, (iii) describe the effect of solar radiation on the measured streambed temperatures. The study was carried out at a field site located along Holtum stream, in Western Denmark. The 3 m wide stream has a sandy streambed with a cobbled armour layer, a mean discharge of 200 l/s and a mean depth of 0.3 m. Streambed temperatures were measured with a high-resolution DTS system (HR-DTS). By helically wrapping the fiber optic cable around two PVC pipes of 0.05 m and 0.075 m outer diameter over 1.5 m length, temperature measurements were recorded with 5.7 mm and 3.8 mm vertical spacing, respectively. The HR-DTS systems were installed 0.7 m deep in the streambed sediments, crossing both the sediment-water and the water-air interface, thus yielding high resolution water and air temperature data as well. One of the HR-DTS systems was installed in the open stream channel with only topographical shading, while the other HR-DTS system was placed 7 m upstream, under the canopy of a tree, thus representing the shaded conditions with reduced influence of solar radiation. Temperature measurements were taken with 30 min intervals between 16 April and 25 June 2013. The thermal conductivity of streambed sediments was calibrated in a 1D flow and heat transport model (HydroGeoSphere). Subsequently, time series of vertical groundwater fluxes were computed based on the high-resolution vertical streambed sediment temperature profiles by coupling the model with PEST. The calculated vertical flux time series show spatial differences in discharge between the two HR-DTS sites. A similar temporal variability in vertical fluxes at the two test sites can also be observed, most likely linked to rainfall-runoff processes. The effect of solar radiation as streambed conduction is visible both at the exposed and shaded test site in form of increased diel temperature oscillations up to 14 cm depth from the streambed surface, with the test site exposed to solar radiation showing larger diel temperature oscillations.
NASA Technical Reports Server (NTRS)
Gary, Bruce L. (Inventor)
2001-01-01
The apparatus and method employ remote sensing to measure the air temperature a sufficient distance ahead of the aircraft to allow time for a variable inlet/engine assembly to be reconfigured in response to the measured temperature, to avoid inlet unstart and/or engine compressor stall. In one embodiment, the apparatus of the invention has a remote sensor for measuring at least one air temperature ahead of the vehicle and an inlet control system for varying the inlet. The remote sensor determines a change in temperature value using at least one temperature measurement and prior temperature measurements corresponding to the location of the aircraft. The control system uses the change in air temperature value to vary the inlet configuration to maintain the position of the shock wave during the arrival of the measured air in the inlet. In one embodiment, the method of the invention includes measuring at least one air temperature ahead of the vehicle, determining an air temperature at the vehicle from prior air temperature measurements, determining a change in temperature value using the air temperature at the vehicle and the at least one air temperature measurement ahead of the vehicle, and using the change in temperature value to-reposition the airflow inlet, to cause the shock wave to maintain substantially the same position within the inlet as the airflow temperature changes within the inlet.
Satellite Analysis of Ocean Biogeochemistry and Mesoscale Variability in the Sargasso Sea
NASA Technical Reports Server (NTRS)
Siegel, D. A.; Micheals, A. F.; Nelson, N. B.
1997-01-01
The objective of this study was to analyze the impact of spatial variability on the time-series of biogeochemical measurements made at the U.S. JGOFS Bermuda Atlantic Time-series Study (BATS) site. Originally the study was planned to use SeaWiFS as well as AVHRR high-resolution data. Despite the SeaWiFS delays we were able to make progress on the following fronts: (1) Operational acquisition, processing, and archive of HRPT data from a ground station located in Bermuda; (2) Validation of AVHRR SST data using BATS time-series and spatial validation cruise CTD data; (3) Use of AVHRR sea surface temperature imagery and ancillary data to assess the impact of mesoscale spatial variability on P(CO2) and carbon flux in the Sargasso Sea; (4) Spatial and temporal extent of tropical cyclone induced surface modifications; and (5) Assessment of eddy variability using TOPEX/Poseidon data.
A STATE-VARIABLE APPROACH FOR PREDICTING THE TIME REQUIRED FOR 50% RECRYSTALLIZATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. STOUT; ET AL
2000-08-01
It is important to be able to model the recrystallization kinetics in aluminum alloys during hot deformation. The industrial relevant process of hot rolling is an example of where the knowledge of whether or not a material recrystallizes is critical to making a product with the correct properties. Classically, the equations that describe the kinetics of recrystallization predict the time to 50% recrystallization. These equations are largely empirical; they are based on the free energy for recrystallization, a Zener-Holloman parameter, and have several adjustable exponents to fit the equation to engineering data. We have modified this form of classical theorymore » replacing the Zener-Hollomon parameter with a deformation energy increment, a free energy available to drive recrystallization. The advantage of this formulation is that the deformation energy increment is calculated based on the previously determined temperature and strain-rate sensitivity of the constitutive response. We modeled the constitutive response of the AA5182 aluminum using a state variable approach, the value of the state variable is a function of the temperature and strain-rate history of deformation. Thus, the recrystallization kinetics is a function of only the state variable and free energy for recrystallization. There are no adjustable exponents as in classical theory. Using this approach combined with engineering recrystallization data we have been able to predict the kinetics of recrystallization in AA5182 as a function of deformation strain rate and temperature.« less
Yan, Long; Wang, Hong; Zhang, Xuan; Li, Ming-Yue; He, Juan
2017-01-01
Influence of meteorological variables on the transmission of bacillary dysentery (BD) is under investigated topic and effective forecasting models as public health tool are lacking. This paper aimed to quantify the relationship between meteorological variables and BD cases in Beijing and to establish an effective forecasting model. A time series analysis was conducted in the Beijing area based upon monthly data on weather variables (i.e. temperature, rainfall, relative humidity, vapor pressure, and wind speed) and on the number of BD cases during the period 1970-2012. Autoregressive integrated moving average models with explanatory variables (ARIMAX) were built based on the data from 1970 to 2004. Prediction of monthly BD cases from 2005 to 2012 was made using the established models. The prediction accuracy was evaluated by the mean square error (MSE). Firstly, temperature with 2-month and 7-month lags and rainfall with 12-month lag were found positively correlated with the number of BD cases in Beijing. Secondly, ARIMAX model with covariates of temperature with 7-month lag (β = 0.021, 95% confidence interval(CI): 0.004-0.038) and rainfall with 12-month lag (β = 0.023, 95% CI: 0.009-0.037) displayed the highest prediction accuracy. The ARIMAX model developed in this study showed an accurate goodness of fit and precise prediction accuracy in the short term, which would be beneficial for government departments to take early public health measures to prevent and control possible BD popularity.
NASA Astrophysics Data System (ADS)
Sesti, Erika L.; Alaniva, Nicholas; Rand, Peter W.; Choi, Eric J.; Albert, Brice J.; Saliba, Edward P.; Scott, Faith J.; Barnes, Alexander B.
2018-01-01
We report magic angle spinning (MAS) up to 8.5 kHz with a sample temperature below 6 K using liquid helium as a variable temperature fluid. Cross polarization 13C NMR spectra exhibit exquisite sensitivity with a single transient. Remarkably, 1H saturation recovery experiments show a 1H T1 of 21 s with MAS below 6 K in the presence of trityl radicals in a glassy matrix. Leveraging the thermal spin polarization available at 4.2 K versus 298 K should result in 71 times higher signal intensity. Taking the 1H longitudinal relaxation into account, signal averaging times are therefore predicted to be expedited by a factor of >500. Computer assisted design (CAD) and finite element analysis were employed in both the design and diagnostic stages of this cryogenic MAS technology development. Computational fluid dynamics (CFD) models describing temperature gradients and fluid flow are presented. The CFD models bearing and drive gas maintained at 100 K, while a colder helium variable temperature fluid stream cools the center of a zirconia rotor. Results from the CFD were used to optimize the helium exhaust path and determine the sample temperature. This novel cryogenic experimental platform will be integrated with pulsed dynamic nuclear polarization and electron decoupling to interrogate biomolecular structure within intact human cells.
NASA Astrophysics Data System (ADS)
Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.
2013-12-01
Semi-volatile compounds, including particle-bound water, comprise a large part of aerosol mass and have a significant influence on aerosol lifecycle and its optical properties. Understanding the properties of semi-volatile compounds, especially those pertaining to gas/aerosol partitioning, is of critical importance for our ability to predict concentrations and properties of ambient aerosol. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of temperature and relative humidity on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). In parallel to these measurements, a long residence time temperature-stepping thermodenuder and a variable residence time constant temperature thermodenuder in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. It was found that both temperature and relative humidity have a strong effect on aerosol optical properties. The variable residence time thermodenuder data suggest that aerosol equilibrated fairly quickly, within 2 s, in contrast to other ambient observations. Preliminary analysis show that approximately 50% and 90% of total aerosol mass evaporated at temperatures of 100 C and 180C, respectively. Evaporation varied substantially with ambient aerosol loading and composition and meteorology. During course of this study, T50 (temperatures at which 50% aerosol mass evaporates) varied from 60 C to more than 120 C.
Diaconescu, Bogdan; Nenchev, Georgi; de la Figuera, Juan; Pohl, Karsten
2007-10-01
We describe the design and performance of a fast-scanning, variable temperature scanning tunneling microscope (STM) operating from 80 to 700 K in ultrahigh vacuum (UHV), which routinely achieves large scale atomically resolved imaging of compact metallic surfaces. An efficient in-vacuum vibration isolation and cryogenic system allows for no external vibration isolation of the UHV chamber. The design of the sample holder and STM head permits imaging of the same nanometer-size area of the sample before and after sample preparation outside the STM base. Refractory metal samples are frequently annealed up to 2000 K and their cooldown time from room temperature to 80 K is 15 min. The vertical resolution of the instrument was found to be about 2 pm at room temperature. The coarse motor design allows both translation and rotation of the scanner tube. The total scanning area is about 8 x 8 microm(2). The sample temperature can be adjusted by a few tens of degrees while scanning over the same sample area.
NASA Astrophysics Data System (ADS)
Khandu; Awange, Joseph L.; Forootan, Ehsan
2016-04-01
Poor reliability of radiosonde records across South Asia imposes serious challenges in understanding the structure of upper-tropospheric and lower-stratospheric (UTLS) region. The Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) mission launched in April 2006 has overcome many observational limitations inherent in conventional atmospheric sounding instruments. This study examines the interannual variability of UTLS temperature over the Ganges-Brahmaputra-Meghna (GBM) river basin in South Asia using monthly averaged COSMIC radio occultation (RO) data, together with two global reanalyses. Comparisons between August 2006 and December 2013 indicate that MERRA (Modern-Era Retrospective Analysis for Research Application) and ERA-Interim (European Centre for Medium-Range Weather Forecasts reanalysis) are warmer than COSMIC RO data by 2 °C between 200 and 50 hPa levels. These warm biases with respect to COSMIC RO data are found to be consistent over time. The UTLS temperature show considerable interannual variability from 2006 to 2013 in addition to warming (cooling) trends in the troposphere (stratosphere). The cold (warm) anomalies in the upper troposphere (tropopause region) are found to be associated with warm ENSO (El Niño-Southern Oscillation) phase, while quasi-biennial oscillation (QBO) is negatively (positively) correlated with temperature anomalies at 70 hPa (50 hPa) level. PCA (principal component analysis) decomposition of tropopause temperatures and heights over the basin indicate that ENSO accounts for 73 % of the interannual (non-seasonal) variability with a correlation of 0.77 with Niño3.4 index whereas the QBO explains about 10 % of the variability. The largest tropopause anomaly associated with ENSO occurs during the winter, when ENSO reaches its peak. The tropopause temperature (height) increased (decreased) by about 1.5 °C (300 m) during the last major El Niño event of 2009/2010. In general, we find decreasing (increasing) trend in tropopause temperature (height) between 2006 and 2013.
A multi-site stochastic weather generator of daily precipitation and temperature
USDA-ARS?s Scientific Manuscript database
Stochastic weather generators are used to generate time series of climate variables that have statistical properties similar to those of observed data. Most stochastic weather generators work for a single site, and can only generate climate data at a single point, or independent time series at sever...
NASA Astrophysics Data System (ADS)
Moll, Andreas; Stegert, Christoph
2007-01-01
This paper outlines an approach to couple a structured zooplankton population model with state variables for eggs, nauplii, two copepodites stages and adults adapted to Pseudocalanus elongatus into the complex marine ecosystem model ECOHAM2 with 13 state variables resolving the carbon and nitrogen cycle. Different temperature and food scenarios derived from laboratory culture studies were examined to improve the process parameterisation for copepod stage dependent development processes. To study annual cycles under realistic weather and hydrographic conditions, the coupled ecosystem-zooplankton model is applied to a water column in the northern North Sea. The main ecosystem state variables were validated against observed monthly mean values. Then vertical profiles of selected state variables were compared to the physical forcing to study differences between zooplankton as one biomass state variable or partitioned into five population state variables. Simulated generation times are more affected by temperature than food conditions except during the spring phytoplankton bloom. Up to six generations within the annual cycle can be discerned in the simulation.
Global patterns of declining temperature variability from the Last Glacial Maximum to the Holocene
NASA Astrophysics Data System (ADS)
Rehfeld, Kira; Münch, Thomas; Ho, Sze Ling; Laepple, Thomas
2018-02-01
Changes in climate variability are as important for society to address as are changes in mean climate. Contrasting temperature variability during the Last Glacial Maximum and the Holocene can provide insights into the relationship between the mean state of the climate and its variability. However, although glacial-interglacial changes in variability have been quantified for Greenland, a global view remains elusive. Here we use a network of marine and terrestrial temperature proxies to show that temperature variability decreased globally by a factor of four as the climate warmed by 3-8 degrees Celsius from the Last Glacial Maximum (around 21,000 years ago) to the Holocene epoch (the past 11,500 years). This decrease had a clear zonal pattern, with little change in the tropics (by a factor of only 1.6-2.8) and greater change in the mid-latitudes of both hemispheres (by a factor of 3.3-14). By contrast, Greenland ice-core records show a reduction in temperature variability by a factor of 73, suggesting influences beyond local temperature or a decoupling of atmospheric and global surface temperature variability for Greenland. The overall pattern of reduced variability can be explained by changes in the meridional temperature gradient, a mechanism that points to further decreases in temperature variability in a warmer future.
Global patterns of declining temperature variability from the Last Glacial Maximum to the Holocene.
Rehfeld, Kira; Münch, Thomas; Ho, Sze Ling; Laepple, Thomas
2018-02-15
Changes in climate variability are as important for society to address as are changes in mean climate. Contrasting temperature variability during the Last Glacial Maximum and the Holocene can provide insights into the relationship between the mean state of the climate and its variability. However, although glacial-interglacial changes in variability have been quantified for Greenland, a global view remains elusive. Here we use a network of marine and terrestrial temperature proxies to show that temperature variability decreased globally by a factor of four as the climate warmed by 3-8 degrees Celsius from the Last Glacial Maximum (around 21,000 years ago) to the Holocene epoch (the past 11,500 years). This decrease had a clear zonal pattern, with little change in the tropics (by a factor of only 1.6-2.8) and greater change in the mid-latitudes of both hemispheres (by a factor of 3.3-14). By contrast, Greenland ice-core records show a reduction in temperature variability by a factor of 73, suggesting influences beyond local temperature or a decoupling of atmospheric and global surface temperature variability for Greenland. The overall pattern of reduced variability can be explained by changes in the meridional temperature gradient, a mechanism that points to further decreases in temperature variability in a warmer future.
NASA Astrophysics Data System (ADS)
Perrimond, B.; Bigot, S.; Quénol, H.; Spielgelberger, T.; Baudry, J.
2012-04-01
Climate and vegetation are linked all over the world. In this study, we work on a seasonal weather classification based on air temperature and precipitation to deduce a link with different phenological stage (greening up, senescence, ...) over a 12 year period (1998-2009) for two different domains in France (Alps and Brittany). In temperate land, the main climatic variable with a potential effect on vegetation is the mean temperature followed by the rainfall deficit. A better understanding in season and their climatic characteristic is need to establish link between climate and phenology; so a weather classification is proposed based on empirical orthogonal functions and ascending hierarchical classification on atmospheric variables. This classification allows us to exhibit the inter-annual and intra-seasonal climatic spatiotemporal variability for both experimental site. Relationships between climate and phenology consist in a comparison between advance and delay in phenological stage and weather type issue from the classification. Experiment field are two french Long Term Ecological Research (LTER). The first one (LTER 'Alps' ) have mountain characteristics about 1000 to 4780 m ASL, ~65% of forest occupation ; the second one (LTER Armorique) is an Atlantic coastal landscape, 0-360 m ASL, ~70% of agricultural field. Climatic data are SAFRAN-France reanalysis which are developed to run SVAT model and come from the French meteorological service 'Météo-France'. All atmospheric variable needed to run a hydrological model are available (air temperature, rainfall/snowfall, wind speed, relative humidity, incoming/outcoming radiation) at a 8-8 km2 space resolution and with a daily time resolution. The phenological data are extracted from SPOT-VGT product 1-1 km2 space resolution and 10 days time resolution) by time series analysis process. Such of study is particularly important to understand relationships between environmental and ecological variables and it will allow to better predict ecological reaction under climate change constraint.
Alonso-Torres, Beatriz; Hernández-Pérez, José Alfredo; Sierra-Espinoza, Fernando; Schenker, Stefan; Yeretzian, Chahan
2013-01-01
Heat and mass transfer in individual coffee beans during roasting were simulated using computational fluid dynamics (CFD). Numerical equations for heat and mass transfer inside the coffee bean were solved using the finite volume technique in the commercial CFD code Fluent; the software was complemented with specific user-defined functions (UDFs). To experimentally validate the numerical model, a single coffee bean was placed in a cylindrical glass tube and roasted by a hot air flow, using the identical geometrical 3D configuration and hot air flow conditions as the ones used for numerical simulations. Temperature and humidity calculations obtained with the model were compared with experimental data. The model predicts the actual process quite accurately and represents a useful approach to monitor the coffee roasting process in real time. It provides valuable information on time-resolved process variables that are otherwise difficult to obtain experimentally, but critical to a better understanding of the coffee roasting process at the individual bean level. This includes variables such as time-resolved 3D profiles of bean temperature and moisture content, and temperature profiles of the roasting air in the vicinity of the coffee bean.
Stochastic investigation of temperature process for climatic variability identification
NASA Astrophysics Data System (ADS)
Lerias, Eleutherios; Kalamioti, Anna; Dimitriadis, Panayiotis; Markonis, Yannis; Iliopoulou, Theano; Koutsoyiannis, Demetris
2016-04-01
The temperature process is considered as the most characteristic hydrometeorological process and has been thoroughly examined in the climate-change framework. We use a dataset comprising hourly temperature and dew point records to identify statistical variability with emphasis on the last period. Specifically, we investigate the occurrence of mean, maximum and minimum values and we estimate statistical properties such as marginal probability distribution function and the type of decay of the climacogram (i.e., mean process variance vs. scale) for various time periods. Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students in the Assembly.
Drought variability and change across the Iberian Peninsula
NASA Astrophysics Data System (ADS)
Coll, J. R.; Aguilar, E.; Ashcroft, L.
2017-11-01
Drought variability and change was assessed across the Iberian Peninsula over more than 100 years expanding through the twentieth century and the first decade of the twenty-first century. Daily temperature and precipitation data from 24 Iberian time series were quality controlled and homogenized to create the Monthly Iberian Temperature and Precipitation Series (MITPS) for the period 1906-2010. The Standardized Precipitation Index (SPI), driven only by precipitation, and the Standardized Precipitation Evapotranspiration Index (SPEI), based on the difference between the precipitation and the reference evapotranspiration (ET0), were computed at annual and seasonal scale to describe the evolution of droughts across time. The results confirmed that a clear temperature increase has occurred over the entire Iberian Peninsula at the annual and seasonal scale, but no significant changes in precipitation accumulated amounts were found. Similar drought variability was provided by the SPI and SPEI, although the SPEI showed greater drought severity and larger surface area affected by drought than SPI from 1980s to 2010 due to the increase in atmospheric evaporative demand caused by increased temperatures. Moreover, a clear drying trend was found by the SPEI for most of the Iberian Peninsula at annual scale and also for spring and summer, although the SPI did not experience significant changes in drought conditions. From the drying trend identified for most of the Iberian Peninsula along the twentieth century, an increase in drought conditions can also be expected for this region in the twenty-first century according to future climate change projections and scenarios.
Soil Water and Temperature Explain Canopy Phenology and Onset of Spring in a Semiarid Steppe
Lynn M. Moore; William K. Lauenroth; David M. Bell; Daniel R. Schlaepfer
2015-01-01
It is well known that the timing of growth and development influences critical life stages of all organisms. ÂThe seasonal dynamics of ecosystems are usually well explained by photoperiod and temperature. However, phenological patterns in water-limited ecosystems are rarely studied and insufficiently explained by these two variables. We tested how onset (i.e.,...
USDA-ARS?s Scientific Manuscript database
Retail broiler meat undergoes variable freezing and refrigeration temperatures during storage, transportation, display in retail outlets and in consumers’ refrigerators. Due to the relatively high prevalence of Campylobacter found in retail broilers and the low infective dose required to cause human...
Middle Atmosphere Program. Handbook for MAP, Volume 5
NASA Technical Reports Server (NTRS)
Sechrist, C. F., Jr. (Editor)
1982-01-01
The variability of the stratosphere during the winter in the Northern Hemisphere is considered. Long term monthly mean 30-mbar maps are presented that include geopotential heights, temperatures, and standard deviations of 15 year averages. Latitudinal profiles of mean zonal winds and temperatures are given along with meridional time sections of derived quantities for the winters 1965/66 to 1980/81.
Variable temperature sensitivity of soil organic carbon in North American forests
Cinzia Fissore; Christian P. Giardina; Christopher W. Swanston; Gary M. King; Randall K. Kolka
2009-01-01
We investigated mean residence time (MRT) for soil organic carbon (SOC) sampled from paired hardwood and pine forests located along a 22 °C mean annual temperature (MAT) gradient in North America. We used acid hydrolysis fractionation, radiocarbon analyses, long-term laboratory incubations (525-d), and a three-pool model to describe the size and kinetics of...
Confirming Variability in the Secondary Eclipse Depth of the Super-Earth 55 Cancri e
NASA Astrophysics Data System (ADS)
Tamburo, P.; Mandell, A.; Deming, D.; Garhart, E.
2018-05-01
We present a reanalysis of five transit and eight eclipse observations of the ultrashort-period super-Earth 55 Cancri e observed using the Spitzer Space Telescope during 2011–2013. We use pixel-level decorrelation to derive accurate transit and eclipse depths from the Spitzer data, and we perform an extensive error analysis. We focus on determining possible variability in the eclipse data, as was reported in Demory et al. From the transit data, we determine updated orbital parameters, yielding T 0 = 2,455,733.0037 ± 0.0002, P = 0.7365454 ± 0.0000003 days, i = 83.5 ± 1.°3, and R p = 1.89 ± 0.05 R ⊕. Our transit results are consistent with a constant depth, and we conclude that they are not variable. We find a significant amount of variability between the eight eclipse observations and confirm agreement with Demory et al. through a correlation analysis. We convert the eclipse measurements to brightness temperatures, and generate and discuss several heuristic models that explain the evolution of the planet’s eclipse depth versus time. The eclipses are best modeled by a year-to-year variability model, but variability on shorter timescales cannot be ruled out. The derived range of brightness temperatures can be achieved by a dark planet with inefficient heat redistribution intermittently covered over a large fraction of the substellar hemisphere by reflective grains, possibly indicating volcanic activity or cloud variability. This time-variable system should be observable with future space missions, both planned (JWST) and proposed (i.e., ARIEL).
Trends and associated uncertainty in the global mean temperature record
NASA Astrophysics Data System (ADS)
Poppick, A. N.; Moyer, E. J.; Stein, M.
2016-12-01
Physical models suggest that the Earth's mean temperature warms in response to changing CO2 concentrations (and hence increased radiative forcing); given physical uncertainties in this relationship, the historical temperature record is a source of empirical information about global warming. A persistent thread in many analyses of the historical temperature record, however, is the reliance on methods that appear to deemphasize both physical and statistical assumptions. Examples include regression models that treat time rather than radiative forcing as the relevant covariate, and time series methods that account for natural variability in nonparametric rather than parametric ways. We show here that methods that deemphasize assumptions can limit the scope of analysis and can lead to misleading inferences, particularly in the setting considered where the data record is relatively short and the scale of temporal correlation is relatively long. A proposed model that is simple but physically informed provides a more reliable estimate of trends and allows a broader array of questions to be addressed. In accounting for uncertainty, we also illustrate how parametric statistical models that are attuned to the important characteristics of natural variability can be more reliable than ostensibly more flexible approaches.
Optimization of Bread Enriched with Garcinia mangostana Pericarp Powder
NASA Astrophysics Data System (ADS)
Ibrahim, U. K.; Salleh, R. Mohd; Maqsood-ul-Hague, S. N. S.; Hashib, S. Abd; Karim, S. F. Abd
2018-05-01
The aim of present work is to optimize the formulation of bread enhanced with Garcinia mangostana pericarp powder with the combination of baking process conditions. The independent variables used were baking time (15 - 30 minutes), baking temperature (180 - 220°C) and pericarp powder concentration (0.5 - 2.0%). The physical and chemical properties of bread sample such as antioxidant activity, phenolic content, moisture analysis and colour parameters were studied. Bread dough without fortification of pericarp powder was used as control. Data obtained were analyzed by multiple regressions and the significant model such as linear and quadratic with variables interactions were used. As a conclusion, the optimum baking conditions were found at 213°C baking temperature with 23 minutes baking time and addition of 0.87% for Garcinia mangostana pericarp powder to the bread formulation.
Climate impact on suicide rates in Finland from 1971 to 2003
NASA Astrophysics Data System (ADS)
Ruuhela, Reija; Hiltunen, Laura; Venäläinen, Ari; Pirinen, Pentti; Partonen, Timo
2009-03-01
Seasonal patterns of death from suicide are well-documented and have been attributed to climatic factors such as solar radiation and ambient temperature. However, studies on the impact of weather and climate on suicide are not consistent, and conflicting data have been reported. In this study, we performed a correlation analysis between nationwide suicide rates and weather variables in Finland during the period 1971-2003. The weather parameters studied were global solar radiation, temperature and precipitation, and a range of time spans from 1 month to 1 year were used in order to elucidate the dose-response relationship, if any, between weather variables and suicide. Single and multiple linear regression models show weak associations using 1-month and 3-month time spans, but robust associations using a 12-month time span. Cumulative global solar radiation had the best explanatory power, while average temperature and cumulative precipitation had only a minor impact on suicide rates. Our results demonstrate that winters with low global radiation may increase the risk of suicide. The best correlation found was for the 5-month period from November to March; the inter-annual variability in the cumulative global radiation for that period explained 40 % of the variation in the male suicide rate and 14 % of the variation in the female suicide rate, both at a statistically significant level. Long-term variations in global radiation may also explain, in part, the observed increasing trend in the suicide rate until 1990 and the decreasing trend since then in Finland.
Mechanisms Controlling Global Mean Sea Surface Temperature Determined From a State Estimate
NASA Astrophysics Data System (ADS)
Ponte, R. M.; Piecuch, C. G.
2018-04-01
Global mean sea surface temperature (T¯) is a variable of primary interest in studies of climate variability and change. The temporal evolution of T¯ can be influenced by surface heat fluxes (F¯) and by diffusion (D¯) and advection (A¯) processes internal to the ocean, but quantifying the contribution of these different factors from data alone is prone to substantial uncertainties. Here we derive a closed T¯ budget for the period 1993-2015 based on a global ocean state estimate, which is an exact solution of a general circulation model constrained to most extant ocean observations through advanced optimization methods. The estimated average temperature of the top (10-m thick) level in the model, taken to represent T¯, shows relatively small variability at most time scales compared to F¯, D¯, or A¯, reflecting the tendency for largely balancing effects from all the latter terms. The seasonal cycle in T¯ is mostly determined by small imbalances between F¯ and D¯, with negligible contributions from A¯. While D¯ seems to simply damp F¯ at the annual period, a different dynamical role for D¯ at semiannual period is suggested by it being larger than F¯. At periods longer than annual, A¯ contributes importantly to T¯ variability, pointing to the direct influence of the variable ocean circulation on T¯ and mean surface climate.
800,000 Years of Arctic Climate Variability: Insights from Lake El'gygytgyn, Far East Russia
NASA Astrophysics Data System (ADS)
Castañeda, I. S.; Habicht, H.; Patterson, M. O.; Burns, S. J.; Deconto, R. M.; Brigham-Grette, J.
2017-12-01
The regional response of the high Arctic to past climate variability is little known prior to 100,000 years ago. In 2009, a 3.6 Ma sediment core was recovered from Lake El'gygytgyn (Russia), the largest and oldest unglaciated Arctic lake basin. These sediments offer a unique opportunity to examine Plio-Pleistocene high-latitude continental climate variability. Determining the magnitude of past Arctic temperature and precipitation variability is especially relevant to understanding the mechanisms and feedbacks contributing to arctic amplification. Here we present results of ongoing organic geochemical analyses of Lake El'gygytgyn sediments focusing on the past 800,000 years. We use the methylation and cyclization index of branched tetraethers (MBT'/CBT) to reconstruct past temperature (Weijers et al., 2007; Peterse et al., 2012; De Jonge et al., 2014) and ratios of plant leaf waxes to examine vegetation variability within the lake catchment. In addition, algal biomarkers and bulk carbon isotopes provide insights into past changes in primary productivity. Trends noted in the MBT'/CBT record are in close agreement with pollen-based temperature estimates throughout the entire core and reveal a strong response to interglacial-glacial variability as well as local summer insolation. Our temperature reconstructions indicate the terrestrial Arctic experienced both warm interglacials and mild glacial periods during the Mid-Pleistocene but transitioned to more extreme temperature fluctuations in the more recent part of the record. Plant leaf wax average chain lengths suggest that glacial intervals were marked by increased aridity, while interglacial periods were wetter at Lake El'gygytgyn. Time-series analysis of the organic geochemical temperature and vegetation reconstructions records revealed variability at precession and obliquity frequencies, respectively. We also find a signal of the Mid-Brunhes Event (MBE) recorded in numerous Lake El'gygytgyn proxy records. Pre- and post-MBE differences are likely attributed to shifts in atmospheric circulation due to the stratification and warming in the North Pacific associated with changes in AABW production, thus providing further support for teleconnections between the high northern and southern latitudes.
Bedford, Jennifer L; Prior, Jerilynn C; Hitchcock, Christine L; Barr, Susan I
2009-09-01
To assess computerised least-squares analysis of quantitative basal temperature (LS-BT) against urinary pregnanediol glucuronide (PdG) as an indirect measure of ovulation, and to evaluate the stability of LS-QBT to wake-time variation. Cross-sectional study of 40 healthy, normal-weight, regularly menstruating women aged 19-34. Participants recorded basal temperature and collected first void urine daily for one complete menstrual cycle. Evidence of luteal activity (ELA), an indirect ovulation indicator, was assessed using Kassam's PdG algorithm, which identifies a sustained 3-day PdG rise, and the LS-QBT algorithm, by determining whether the temperature curve is significantly biphasic. Cycles were classified as ELA(+) or ELA(-). We explored the need to pre-screen for wake-time variations by repeating the analysis using: (A) all recorded temperatures, (B) wake-time adjusted temperatures, (C) temperatures within 2h of average wake-time, and (D) expert reviewed temperatures. Relative to PdG, classification of cycles as ELA(+) was 35 of 36 for LS-QBT methods A and B, 33 of 34 (method C) and 30 of 31 (method D). Classification of cycles as ELA(-) was 1 of 4 (methods A and B) and 0 of 3 (methods C and D). Positive predictive value was 92% for methods A-C and 91% for method D. Negative predictive value was 50% for methods A and B and 0% for methods C and D. Overall accuracy was 90% for methods A and B, 89% for method C and 88% for method D. The day of a significant temperature increase by LS-QBT and the first day of a sustained PdG rise were correlated (r=0.803, 0.741, 0.651, 0.747 for methods A-D, respectively, all p<0.001). LS-QBT showed excellent detection of ELA(+) cycles (sensitivity, positive predictive value) but poor detection of ELA(-) cycles (specificity, negative predictive value) relative to urinary PdG. Correlations between the methods and overall accuracy were good and similar for all analyses. Findings suggest that LS-QBT is robust to wake-time variability and that expert interpretation is unnecessary. This method shows promise for use as an epidemiological tool to document cyclic progesterone increase. Further validation relative to daily transvaginal ultrasound is required.
NASA Astrophysics Data System (ADS)
Gawuć, Lech
2017-04-01
Urban Heat Island (UHI) is a direct consequence of altered energy balance in urban areas (Oke 1982). There has been a significant effort put into an understanding of air temperature variability in urban areas and underlying mechanisms (Arnfield 2003, Grimmond 2006, Stewart 2011, Barlow 2014). However, studies that are concerned on surface temperature are less frequent. Therefore, Voogt & Oke (2003) proposed term "Surface Urban Heat Island (SUHI)", which is analogical to UHI and it is defined as a difference in land surface temperature (LST) between urban and rural areas. SUHI is a phenomenon that is not only concerned with high spatial variability, but also with high temporal variability (Weng and Fu 2014). In spite of the fact that satellite remote sensing techniques give a full spatial pattern over a vast area, such measurements are strictly limited to cloudless conditions during a satellite overpass (Sobrino et al., 2012). This significantly reduces the availability and applicability of satellite LST observations, especially over areas and seasons with high cloudiness occurrence. Also, the surface temperature is influenced by synoptic conditions (e.g., wind and humidity) (Gawuc & Struzewska 2016). Hence, utilising single observations is not sufficient to obtain a full image of spatiotemporal variability of urban LST and SUHI intensity (Gawuc & Struzewska 2016). One of the possible solutions would be a utilisation of time-series of LST data, which could be useful to monitor the UHI growth of individual cities and thus, to reveal the impact of urbanisation on local climate (Tran et al., 2006). The relationship between UHI and synoptic conditions have been summarised by Arnfield (2003). However, similar analyses conducted for urban LST and SUHI are lacking. We will present analyses of the relationship between time series of remotely-sensed LST and SUHI intensity and in-situ meteorological observations collected by road weather stations network, namely: road surface kinetic temperature, wind speed, air temperature, soil temperature at a depth of 30 cm, road surface condition, relative humidity. Also, as there are wind speed and temperature observations at different heights available, we will calculate sensible heat flux in order to relate it to the intensity of SUHI.
Multiple GISS AGCM Hindcasts and MSU Versions of 1979-1998
NASA Technical Reports Server (NTRS)
Shah, Kathryn Pierce; Rind, David; Druyan, Leonard; Lonergan, Patrick; Chandler, Mark
1998-01-01
Multiple realizations of the 1979-1998 time period have been simulated by the Goddard Institute for Space Studies Atmospheric General Circulation Model (GISS AGCM) to explore its responsiveness to accumulated forcings, particularly over sensitive agricultural regions. A microwave radiative transfer postprocessor has produced the AGCM's lower tropospheric, tropospheric and lower stratospheric brightness temperature (Tb) time series for correlations with the various Microwave Sounding Unit (MSU) time series available. MSU maps of monthly means and anomalies were also used to assess the AGCM's mean annual cycle and regional variability. Seven realizations by the AGCM were forced by observed sea surface temperatures (sst) through 1992 to gather rough standard deviations associated with internal model variability. Subsequent runs hindcast January 1979 through April 1998 with an accumulation of forcings: observed ssts, greenhouse gases, stratospheric volcanic aerosols. stratospheric and tropospheric ozone and tropospheric sulfate and black carbon aerosols. The goal of narrowing gaps between AGCM and MSU time series was complicated by MSU time series, by Tb simulation concerns and by unforced climatic variability in the AGCM and in the real world. Lower stratospheric Tb correlations between the AGCM and MSU for 1979-1998 reached as high as 0.91 +/-0.16 globally with sst, greenhouse gases, volcanic aerosol, stratospheric ozone forcings and tropospheric aerosols. Mid-tropospheric Tb correlations reached as high as 0.66 +/-.04 globally and 0.84 +/-.02 in the tropics. Oceanic lower tropospheric Tb correlations similarly reached 0.61 +/-.06 globally and 0.79 +/-.02 in the tropics. Of the sensitive agricultural areas considered, Nordeste in northeastern Brazil was simulated best with mid-tropospheric Tb correlations up to 0.75 +/- .03. The two other agricultural regions, in Africa and in the northern mid-latitudes, suffered from higher levels of non-sst variability. Zimbabwe had a maximum mid-tropospheric correlation of 0.54 +/- 0.11 while the U.S. Cornbelt had only 0.25 +/- .10. Precipitation and surface temperature performance are also examined over these regions. Correlations of MSU and AGCM time series mostly improved with addition of explicit atmospheric forcings in zonal bands but not in agricultural regional bins each encompassing only six AGCM gridcells.
Characterisation of indomethacin and nifedipine using variable-temperature solid-state NMR.
Apperley, David C; Forster, Angus H; Fournier, Romain; Harris, Robin K; Hodgkinson, Paul; Lancaster, Robert W; Rades, Thomas
2005-11-01
We have characterised the stable polymorphic forms of two drug molecules, indomethacin (1) and nifedipine (2) by 13C CPMAS NMR and the resonances have been assigned. The signal for the C-Cl carbon of indomethacin has been studied as a function of applied magnetic field, and the observed bandshapes have been simulated. Variable-temperature 1H relaxation measurements of static samples have revealed a T1rho minimum for indomethacin at 17.8 degrees C. The associated activation energy is 38 kJ mol(-1). The relevant motion is probably an internal rotation and it is suggested that this involves the C-OCH3 group. Since the two drug compounds are potential candidates for formulation in the amorphous state, we have examined quench-cooled melts in detail by variable-temperature 13C and 1H NMR. There is a change in slope for T1H and T1rhoH at the glass transition temperature (Tg) for indomethacin, but this occurs a few degrees below Tg for nifedipine, which is perhaps relevant to the lower real-time stability of the amorphous form for the latter compound. Comparison of relaxation time data for the crystalline and amorphous forms of each compound reveals a greater difference for nifedipine than for indomethacin, which again probably relates to real-time stabilities. Recrystallisation of the two drugs has been followed by proton bandshape measurements at higher temperatures. It is shown that, under the conditions of the experiments, recrystallisation of nifedipine can be detected already at 70 degrees C, whereas this does not occur until 110 degrees C for indomethacin. The effect of crushing the amorphous samples has been studied by 13C NMR; nifedipine recrystallises but indomethacin does not. The results were supported by DSC, powder XRD, FTIR and solution-state NMR measurements. Copyright (c) 2005 John Wiley & Sons, Ltd.
A closer look at temperature changes with remote sensing
NASA Astrophysics Data System (ADS)
Metz, Markus; Rocchini, Duccio; Neteler, Markus
2014-05-01
Temperature is a main driver for important ecological processes. Time series temperature data provide key environmental indicators for various applications and research fields. High spatial and temporal resolution is crucial in order to perform detailed analyses in various fields of research. While meteorological station data are commonly used, they often lack completeness or are not distributed in a representative way. Remotely sensed thermal images from polar orbiting satellites are considered to be a good alternative to the scarce meteorological data as they offer almost continuous coverage of the Earth with very high temporal resolution. A drawback of temperature data obtained by satellites is the occurrence of gaps (due to clouds, aerosols) that must be filled. We have reconstructed a seamless and gap-free time series for land surface temperature (LST) at continental scale for Europe from MODIS LST products (Moderate Resolution Imaging Sensor instruments onboard the Terra and Aqua satellites), keeping the temporal resolution of four records per day and enhancing the spatial resolution from 1 km to 250 m. Here we present a new procedure to reconstruct MODIS LST time series with unprecedented detail in space and time, at the same time providing continental coverage. Our method constitutes a unique new combination of weighted temporal averaging with statistical modeling and spatial interpolation. We selected as auxiliary variables datasets which are globally available in order to propose a worldwide reproducible method. Compared to existing similar datasets, the substantial quantitative difference translates to a qualitative difference in applications and results. We consider both our dataset and the new procedure for its creation to be of utmost interest to a broad interdisciplinary audience. Moreover, we provide examples for its implications and applications, such as disease risk assessment, epidemiology, environmental monitoring, and temperature anomalies. In the near future, aggregated derivatives of our dataset (following the BIOCLIM variable scheme) will be freely made online available for direct usage in GIS based applications.
2015-01-01
By integrating silicon nanowires (∼150 nm diameter, 20 μm length) with an Ω-shaped plasmonic nanocavity, we are able to generate broadband visible luminescence, which is induced by high order hybrid nanocavity-surface plasmon modes. The nature of this super bandgap emission is explored via photoluminescence spectroscopy studies performed with variable laser excitation energies (1.959 to 2.708 eV) and finite difference time domain simulations. Furthermore, temperature-dependent photoluminescence spectroscopy shows that the observed emission corresponds to radiative recombination of unthermalized (hot) carriers as opposed to a resonant Raman process. PMID:25120156
Characterization and evaluation of an aeolian-photovoltaic system in operation
NASA Astrophysics Data System (ADS)
Bonfatti, F.; Calzolari, P. U.; Cardinali, G. C.; Vivanti, G.; Zani, A.
Data management, analysis techniques and results of performance monitoring of a prototype combined photovoltaic (PV)-wind turbine farm power plant in northern Italy are reported. Emphasis is placed on the PV I-V characteristics and irradiance and cell temperatures. Automated instrumentation monitors and records meteorological data and generator variables such as voltages, currents, output, battery electrolyte temperature, etc. Analysis proceeds by automated selection of I-V data for specific intervals of the year when other variables can be treated as constants. The technique permits characterization of generator performance, adjusting the power plant set points for optimal output, and tracking performance degradation over time.
NASA Astrophysics Data System (ADS)
Zhang, Haina; Li, Decai; Wang, Qinglei; Zhang, Zhili
2013-07-01
The existing researches of the magnetic liquid rotation seal have been mainly oriented to the seal at normal temperature and the seal with the smaller shaft diameter less than 100 mm. However, the large-diameter magnetic liquid rotation seal at low temperature has not been reported both in theory and in application up to now. A key factor restricting the application of the large-diameter magnetic liquid rotation seal at low temperature is the high breakaway torque. In this paper, the factors that influence the breakaway torque including the number of seal stages, the injected quantity of magnetic liquid and the standing time at normal temperature are studied. Two kinds of magnetic liquid with variable content of large particles are prepared first, and a seal feedthrough with 140 mm shaft diameter is used in the experiments. All experiments are carried out in a low temperature chamber with a temperature range from 200°C to -100°C. Different numbers of seal stages are tested under the same condition to study the relation between the breakaway torque and the number of seal stages. Variable quantity of magnetic liquid is injected in the seal gap to get the relation curve of the breakaway torque and the injecting quantity of magnetic liquid. In the experiment for studying the relation between the breakaway torque and the standing time at the normal temperature, the seal feedtrough is laid at normal temperature for different period of time before it is put in the low temperature chamber. The experimental results show that the breakaway torque is proportional to the number of seal stages, the injected quantity of magnetic liquid and the standing time at the normal temperature. Meanwhile, the experimental results are analyzed and the torque formula of magnetic liquid rotation seal at low temperature is deduced from the Navier-Stokes equation on the base of the model of magnetic liquid rotation seal. The presented research can make wider application of the magnetic liquid seal in general. And the large-diameter magnetic liquid rotation seal at low temperature designed by using present research results are to be used in some special fields, such as the military field, etc.
Sparks, Morgan M; Westley, Peter A H; Falke, Jeffrey A; Quinn, Thomas P
2017-12-01
An important unresolved question is how populations of coldwater-dependent fishes will respond to rapidly warming water temperatures. For example, the culturally and economically important group, Pacific salmon (Oncorhynchus spp.), experience site-specific thermal regimes during early development that could be disrupted by warming. To test for thermal local adaptation and heritable phenotypic plasticity in Pacific salmon embryos, we measured the developmental rate, survival, and body size at hatching in two populations of sockeye salmon (Oncorhynchus nerka) that overlap in timing of spawning but incubate in contrasting natural thermal regimes. Using a split half-sibling design, we exposed embryos of 10 families from each of two populations to variable and constant thermal regimes. These represented both experienced temperatures by each population, and predicted temperatures under plausible future conditions based on a warming scenario from the downscaled global climate model (MIROC A1B scenario). We did not find evidence of thermal local adaptation during the embryonic stage for developmental rate or survival. Within treatments, populations hatched within 1 day of each other, on average, and among treatments, did not differ in survival in response to temperature. We did detect plasticity to temperature; embryos developed 2.5 times longer (189 days) in the coolest regime compared to the warmest regime (74 days). We also detected variation in developmental rates among families within and among temperature regimes, indicating heritable plasticity. Families exhibited a strong positive relationship between thermal variability and phenotypic variability in developmental rate but body length and mass at hatching were largely insensitive to temperature. Overall, our results indicated a lack of thermal local adaptation, but a presence of plasticity in populations experiencing contrasting conditions, as well as family-specific heritable plasticity that could facilitate adaptive change. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
Sparks, Morgan M.; Westley, Peter A. H.; Falke, Jeffrey A.; Quinn, Thomas P.
2017-01-01
An important unresolved question is how populations of coldwater-dependent fishes will respond to rapidly warming water temperatures. For example, the culturally and economically important group, Pacific salmon (Oncorhynchus spp.), experience site-specific thermal regimes during early development that could be disrupted by warming. To test for thermal local adaptation and heritable phenotypic plasticity in Pacific salmon embryos, we measured the developmental rate, survival, and body size at hatching in two populations of sockeye salmon (Oncorhynchus nerka) that overlap in timing of spawning but incubate in contrasting natural thermal regimes. Using a split half-sibling design, we exposed embryos of 10 families from each of two populations to variable and constant thermal regimes. These represented both experienced temperatures by each population, and predicted temperatures under plausible future conditions based on a warming scenario from the downscaled global climate model (MIROC A1B scenario). We did not find evidence of thermal local adaptation during the embryonic stage for developmental rate or survival. Within treatments, populations hatched within 1 day of each other, on average, and amongtreatments, did not differ in survival in response to temperature. We did detect plasticity to temperature; embryos developed 2.5 times longer (189 days) in the coolest regime compared to the warmest regime (74 days). We also detected variation in developmental rates among families within and among temperature regimes, indicating heritable plasticity. Families exhibited a strong positive relationship between thermal variability and phenotypic variability in developmental rate but body length and mass at hatching were largely insensitive to temperature. Overall, our results indicated a lack of thermal local adaptation, but a presence of plasticity in populations experiencing contrasting conditions, as well as family-specific heritable plasticity that could facilitate adaptive change.
Schmidt, Matthew W; Chang, Ping; Parker, Andrew O; Ji, Link; He, Feng
2017-11-13
Multiple lines of evidence show that cold stadials in the North Atlantic were accompanied by both reductions in Atlantic Meridional Overturning Circulation (AMOC) and collapses of the West African Monsoon (WAM). Although records of terrestrial change identify abrupt WAM variability across the deglaciation, few studies show how ocean temperatures evolved across the deglaciation. To identify the mechanism linking AMOC to the WAM, we generated a new record of subsurface temperature variability over the last 21 kyr based on Mg/Ca ratios in a sub-thermocline dwelling planktonic foraminifera in an Eastern Equatorial Atlantic (EEA) sediment core from the Niger Delta. Our subsurface temperature record shows abrupt subsurface warming during both the Younger Dryas (YD) and Heinrich Event 1. We also conducted a new transient coupled ocean-atmosphere model simulation across the YD that better resolves the western boundary current dynamics and find a strong negative correlation between AMOC strength and EEA subsurface temperatures caused by changes in ocean circulation and rainfall responses that are consistent with the observed WAM change. Our combined proxy and modeling results provide the first evidence that an oceanic teleconnection between AMOC strength and subsurface temperature in the EEA impacted the intensity of the WAM on millennial time scales.
Environmental physiology of a small marsupial inhabiting arid floodplains.
Warnecke, L; Cooper, C E; Geiser, F; Withers, P C
2010-09-01
Giles' planigale (Planigale gilesi) is among the smallest extant marsupials and inhabits deep soil cracks in arid floodplains. We examined whether its physiology shows specific adaptations to its extreme habitat. Metabolic rate, body temperature, evaporative water loss and thermal conductance were measured for eight planigales (average mass 9 g) exposed to four different ambient temperatures ranging from 10 degrees C to 32 degrees C. Water economy and respiratory variables were measured for the first time in this species. All of these standard physiological variables conformed to allometrically-predicted values for a marsupial. All variables were significantly affected by ambient temperature, except tidal volume and dry thermal conductance. Metabolic rate increased substantially at low ambient temperatures, as required to maintain a relatively constant body temperature of about 32-34 degrees C. This increased oxygen demand was accommodated by increased ventilation rather than increased oxygen extraction. Planigales had a comparatively high point of relative water economy of 19.1 degrees C, consistent with their small body size and arid habitat. Torpor reduced energy expenditure by 79% and evaporative water loss by 62%. Our study suggests that torpor use, along with behavioural adaptations, suffice for P. gilesi to live underground in arid habitats without further physiological adaptations. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Urban heat island impacts on plant phenology: intra-urban variability and response to land cover
NASA Astrophysics Data System (ADS)
Zipper, Samuel C.; Schatz, Jason; Singh, Aditya; Kucharik, Christopher J.; Townsend, Philip A.; Loheide, Steven P., II
2016-05-01
Despite documented intra-urban heterogeneity in the urban heat island (UHI) effect, little is known about spatial or temporal variability in plant response to the UHI. Using an automated temperature sensor network in conjunction with Landsat-derived remotely sensed estimates of start/end of the growing season, we investigate the impacts of the UHI on plant phenology in the city of Madison WI (USA) for the 2012-2014 growing seasons. Median urban growing season length (GSL) estimated from temperature sensors is ˜5 d longer than surrounding rural areas, and UHI impacts on GSL are relatively consistent from year-to-year. Parks within urban areas experience a subdued expression of GSL lengthening resulting from interactions between the UHI and a park cool island effect. Across all growing seasons, impervious cover in the area surrounding each temperature sensor explains >50% of observed variability in phenology. Comparisons between long-term estimates of annual mean phenological timing, derived from remote sensing, and temperature-based estimates of individual growing seasons show no relationship at the individual sensor level. The magnitude of disagreement between temperature-based and remotely sensed phenology is a function of impervious and grass cover surrounding the sensor, suggesting that realized GSL is controlled by both local land cover and micrometeorological conditions.
NASA Astrophysics Data System (ADS)
Sinaga, M. S.; Fauzi, R.; Turnip, J. R.
2017-03-01
Methyl Ester (methyl ester) is generally made by trans esterification using heterogeneous base catalyst. To simplify the separation, the heterogeneous catalyst is used, such as CaO, which in this case was isolated from chicken bones made by softening chicken bones and do calcination process. Some other important variables other than the selection of the catalyst is the catalyst dosage, molar ratio of ethanol to the CPO and the reaction temperature. The best result from this observe is at the molar ratio of ethanol to the CPO is 17: 1, the reaction temperature is 70 ° C and 7% catalyst (w.t) with reaction time for 7 hours at 500 rpm as a constant variable, got 90,052 % purity, so that this result does not get the standard requirements of biodiesel, because of the purity of the biodiesel standard temporary must be achieve > 96.5 %. This study aims to produce methyl ester yield with the influence of the reaction temperature, percent of catalyst and molar ratio of ethanol and CPO. The most influential variable is the temperature of the reaction that gives a significant yield difference of methyl ester produced. It’s been proven by the increasing temperature used will also significantly increase the yield of methyl ester.
NASA Astrophysics Data System (ADS)
Kumari, K.; Oberheide, J.
2017-12-01
Nonmigrating tidal diagnostics of SABER temperature observations in the ionospheric dynamo region reveal a large amount of variability on time-scales of a few days to weeks. In this paper, we discuss the physical reasons for the observed short-term tidal variability using a novel approach based on Information theory and Bayesian statistics. We diagnose short-term tidal variability as a function of season, QBO, ENSO, and solar cycle and other drivers using time dependent probability density functions, Shannon entropy and Kullback-Leibler divergence. The statistical significance of the approach and its predictive capability is exemplified using SABER tidal diagnostics with emphasis on the responses to the QBO and solar cycle. Implications for F-region plasma density will be discussed.
Kim, Siyeon; Lee, Joo-Young
2016-04-01
The aim of this study was to investigate stable and valid measurement sites of skin temperatures as a non-invasive variable to predict deep-body temperature while wearing firefighters' personal protective equipment (PPE) during air temperature changes. Eight male firefighters participated in an experiment which consisted of 60-min exercise and 10-min recovery while wearing PPE without self-contained breathing apparatus (7.75 kg in total PPE mass). Air temperature was periodically fluctuated from 29.5 to 35.5 °C with an amplitude of 6 °C. Rectal temperature was chosen as a deep-body temperature, and 12 skin temperatures were recorded. The results showed that the forehead and chest were identified as the most valid sites to predict rectal temperature (R(2) = 0.826 and 0.824, respectively) in an environment with periodically fluctuated air temperatures. This study suggests that particular skin temperatures are valid as a non-invasive variable when predicting rectal temperature of an individual wearing PPE in changing ambient temperatures. Practitioner Summary: This study should offer assistance for developing a more reliable indirect indicating system of individual heat strain for firefighters in real time, which can be used practically as a precaution of firefighters' heat-related illness and utilised along with physiological monitoring.
Bitner-Mathé, Blanche Christine; David, Jean Robert
2015-08-01
Thermal phenotypic plasticity of 5 metric thoracic traits (3 related to size and 2 to pigmentation) was investigated in Zaprionus indianus with an isofemale line design. Three of these traits are investigated for the first time in a drosophilid, i.e. thorax width and width of pigmented longitudinal white and black stripes. The reaction norms of white and black stripes were completely different: white stripes were insensitive to growth temperature while the black stripes exhibited a strong linear decrease with increasing temperatures. Thorax width exhibited a concave reaction norm, analogous but not identical to those of wing length and thorax length: the temperatures of maximum value were different, the highest being for thorax width. All traits exhibited a significant heritable variability and a low evolvability. Sexual dimorphism was very variable among traits, being nil for white stripes and thorax width, and around 1.13 for black stripes. The ratio thorax length to thorax width (an elongation index) was always >1, showing that males have a more rounded thorax at all temperatures. Black stripes revealed a significant increase of sexual dimorphism with increasing temperature. Shape indices, i.e. ratios between size traits all exhibited a linear decrease with temperature, the least sensitive being the elongation index. All these results illustrate the complexity of developmental processes but also the analytical strength of biometrical plasticity studies in an eco-devo perspective.
NASA Astrophysics Data System (ADS)
Good, Elizabeth J.; Ghent, Darren J.; Bulgin, Claire E.; Remedios, John J.
2017-09-01
The relationship between satellite land surface temperature (LST) and ground-based observations of 2 m air temperature (
Individualized estimation of human core body temperature using noninvasive measurements.
Laxminarayan, Srinivas; Rakesh, Vineet; Oyama, Tatsuya; Kazman, Josh B; Yanovich, Ran; Ketko, Itay; Epstein, Yoram; Morrison, Shawnda; Reifman, Jaques
2018-06-01
A rising core body temperature (T c ) during strenuous physical activity is a leading indicator of heat-injury risk. Hence, a system that can estimate T c in real time and provide early warning of an impending temperature rise may enable proactive interventions to reduce the risk of heat injuries. However, real-time field assessment of T c requires impractical invasive technologies. To address this problem, we developed a mathematical model that describes the relationships between T c and noninvasive measurements of an individual's physical activity, heart rate, and skin temperature, and two environmental variables (ambient temperature and relative humidity). A Kalman filter adapts the model parameters to each individual and provides real-time personalized T c estimates. Using data from three distinct studies, comprising 166 subjects who performed treadmill and cycle ergometer tasks under different experimental conditions, we assessed model performance via the root mean squared error (RMSE). The individualized model yielded an overall average RMSE of 0.33 (SD = 0.18)°C, allowing us to reach the same conclusions in each study as those obtained using the T c measurements. Furthermore, for 22 unique subjects whose T c exceeded 38.5°C, a potential lower T c limit of clinical relevance, the average RMSE decreased to 0.25 (SD = 0.20)°C. Importantly, these results remained robust in the presence of simulated real-world operational conditions, yielding no more than 16% worse RMSEs when measurements were missing (40%) or laden with added noise. Hence, the individualized model provides a practical means to develop an early warning system for reducing heat-injury risk. NEW & NOTEWORTHY A model that uses an individual's noninvasive measurements and environmental variables can continually "learn" the individual's heat-stress response by automatically adapting the model parameters on the fly to provide real-time individualized core body temperature estimates. This individualized model can replace impractical invasive sensors, serving as a practical and effective surrogate for core temperature monitoring.
NASA Technical Reports Server (NTRS)
Solomon, S.; Portmann, R. W.; Garcia, R. R.; Randel, W.; Wu, F.; Nagatani, R.; Gleason, J.; Thomason, L.; Poole, L. R.; McCormick, M. P.
1998-01-01
Satellite observations of total ozone at 40-60 deg N are presented from a variety of instruments over the time period 1979-1997. These reveal record low values in 1992-3 (after Pinatubo) followed by partial but incomplete recovery. The largest post-Pinatubo reductions and longer-term trends occur in spring, providing a critical test for chemical theories of ozone depletion. The observations are shown to be consistent with current understanding of the chemistry of ozone depletion when changes in reactive chlorine and stratospheric aerosol abundances are considered along with estimates of wave-driven fluctuations in stratospheric temperatures derived from global temperature analyses. Temperature fluctuations are shown to make significant contributions to model calculated northern mid-latitude ozone depletion due to heterogeneous chlorine activation on liquid sulfate aerosols at temperatures near 200-210 K (depending upon water vapor pressure), particularly after major volcanic eruptions. Future mid-latitude ozone recovery will hence depend not only on chlorine recovery but also on temperature trends and/or variability, volcanic activity, and any trends in stratospheric sulfate aerosol.
Liang, Kun; Yang, Cailan; Peng, Li; Zhou, Bo
2017-02-01
In uncooled long-wave IR camera systems, the temperature of a focal plane array (FPA) is variable along with the environmental temperature as well as the operating time. The spatial nonuniformity of the FPA, which is partly affected by the FPA temperature, obviously changes as well, resulting in reduced image quality. This study presents a real-time nonuniformity correction algorithm based on FPA temperature to compensate for nonuniformity caused by FPA temperature fluctuation. First, gain coefficients are calculated using a two-point correction technique. Then offset parameters at different FPA temperatures are obtained and stored in tables. When the camera operates, the offset tables are called to update the current offset parameters via a temperature-dependent interpolation. Finally, the gain coefficients and offset parameters are used to correct the output of the IR camera in real time. The proposed algorithm is evaluated and compared with two representative shutterless algorithms [minimizing the sum of the squares of errors algorithm (MSSE), template-based solution algorithm (TBS)] using IR images captured by a 384×288 pixel uncooled IR camera with a 17 μm pitch. Experimental results show that this method can quickly trace the response drift of the detector units when the FPA temperature changes. The quality of the proposed algorithm is as good as MSSE, while the processing time is as short as TBS, which means the proposed algorithm is good for real-time control and at the same time has a high correction effect.
Evaluation of climatic changes in South-Asia
NASA Astrophysics Data System (ADS)
Kjellstrom, Erik; Rana, Arun; Grigory, Nikulin; Renate, Wilcke; Hansson, Ulf; Kolax, Michael
2016-04-01
Literature has sufficient evidences of climate change impact all over the world and its impact on various sectors. In light of new advancements made in climate modeling, availability of several climate downscaling approaches, the more robust bias correction methods with varying complexities and strengths, in the present study we performed a systematic evaluation of climate change impact over South-Asia region. We have used different Regional Climate Models (RCMs) (from CORDEX domain), (Global Climate Models GCMs) and gridded observations for the study area to evaluate the models in historical/control period (1980-2010) and changes in future period (2010-2099). Firstly, GCMs and RCMs are evaluated against the Gridded observational datasets in the area using precipitation and temperature as indicative variables. Observational dataset are also evaluated against the reliable set of observational dataset, as pointed in literature. Bias, Correlation, and changes (among other statistical measures) are calculated for the entire region and both the variables. Eventually, the region was sub-divided into various smaller domains based on homogenous precipitation zones to evaluate the average changes over time period. Spatial and temporal changes for the region are then finally calculated to evaluate the future changes in the region. Future changes are calculated for 2 Representative Concentration Pathways (RCPs), the middle emission (RCP4.5) and high emission (RCP8.5) and for both climatic variables, precipitation and temperature. Lastly, Evaluation of Extremes is performed based on precipitation and temperature based indices for whole region in future dataset. Results have indicated that the whole study region is under extreme stress in future climate scenarios for both climatic variables i.e. precipitation and temperature. Precipitation variability is dependent on the location in the area leading to droughts and floods in various regions in future. Temperature is hinting towards a constant increase throughout the region regardless of location.
Jiménez, L; Pérez, I; López, F; Ariza, J; Rodríguez, A
2002-06-01
The influence of independent variables in the pulping of wheat straw by use of an ethanol-acetone-water mixture [processing temperature and time, ethanol/(ethanol + acetone) value and (ethanol + acetone)/(ethanol + acetone + water) value] and of the number of PFI beating revolutions to which the pulp was subjected, on the properties of the resulting pulp (yield and Shopper-Riegler index) and of the paper sheets obtained from it (breaking length, stretch, burst index and tear index) was examined. By using a central composite factor design and the BMDP software suite, equations that relate each dependent variable to the different independent variables were obtained that reproduced the experimental results for the dependent variables with errors less than 30% at temperatures, times, ethanol/(ethanol + acetone) value, (ethanol + acetone)/(ethanol + acetone + water) value and numbers of PFI beating revolutions in the ranges 140-180 degrees C, 60-120 min, 25-75%, 35-75% and 0-1750, respectively. Using values of the independent variables over the variation ranges considered provided the following optimum values of the dependent variables: 78.17% (yield), 15.21 degrees SR (Shopper-Riegler index), 5265 m (breaking length), 1.94% (stretch), 2.53 kN/g (burst index) and 4.26 mN m2/g (tear index). Obtaining reasonably good paper sheets (with properties that differed by less than 15% from their optimum values except for the burst index, which was 28% lower) entailed using a temperature of 180 degrees C, an ethanol/(ethanol + acetone) value of 50%, an (ethanol + acetone)/(ethanol + acetone + water) value of 75%, a processing time of 60 min and a number of PFI beating revolutions of 1750. The yield was 32% lower under these conditions, however. A comparison of the results provided by ethanol, acetone and ethanol-acetone pulping revealed that the second and third process-which provided an increased yield were the best choices. On the other hand, if the pulp is to be refined, ethanol pulping is the process of choice.
NASA Astrophysics Data System (ADS)
Deswal, Sunita; Kalkal, Kapil Kumar; Sheoran, Sandeep Singh
2016-09-01
A mathematical model of fractional order two-temperature generalized thermoelasticity with diffusion and initial stress is proposed to analyze the transient wave phenomenon in an infinite thermoelastic half-space. The governing equations are derived in cylindrical coordinates for a two dimensional axi-symmetric problem. The analytical solution is procured by employing the Laplace and Hankel transforms for time and space variables respectively. The solutions are investigated in detail for a time dependent heat source. By using numerical inversion method of integral transforms, we obtain the solutions for displacement, stress, temperature and diffusion fields in physical domain. Computations are carried out for copper material and displayed graphically. The effect of fractional order parameter, two-temperature parameter, diffusion, initial stress and time on the different thermoelastic and diffusion fields is analyzed on the basis of analytical and numerical results. Some special cases have also been deduced from the present investigation.
Decadal variability on the Northwest European continental shelf
NASA Astrophysics Data System (ADS)
Jones, Sam; Cottier, Finlo; Inall, Mark; Griffiths, Colin
2018-02-01
Decadal scale time series of the shelf seas are important for understanding both climate and process studies. Despite numerous investigations of long-term temperature variability in the shelf seas, studies of salinity variability are few. Salt is a more conservative tracer than temperature in shallow seas, and it can reveal changes in local hydrographic conditions as well as transmitted basin-scale changes. Here, new inter-annual salinity time series on the northwest European shelf are developed and a 13 year high resolution salinity record from a coastal mooring in western Scotland is presented and analysed. We find strong temporal variability in coastal salinity on timescales ranging from tidal to inter-annual, with the magnitude of variability greatest during winter months. There is little seasonality and no significant decadal trend in the coastal time series of salinity. We propose 4 hydrographic states to explain salinity variance in the shelf area west of Scotland based on the interaction between a baroclinic coastal current and wind-forced barotropic flow: while wind forcing is important, we find that changes in the buoyancy-driven flow are more likely to influence long-term salinity observations. We calculate that during prevailing westerly wind conditions, surface waters in the Sea of the Hebrides receive a mix of 62% Atlantic origin water to 38% coastal sources. This contrasts with easterly wind conditions, during which the mix is 6% Atlantic to 94% coastal sources on average. This 'switching' between hydrographic states is expected to impact nutrient transport and therefore modify the level of primary productivity on the shelf. This strong local variability in salinity is roughly an order of magnitude greater than changes in the adjacent ocean basin, and we infer from this that Scottish coastal waters are likely to be resilient to decadal changes in ocean climate.
NASA Astrophysics Data System (ADS)
Fortiz, V.; Thirumalai, K.; Richey, J. N.; Quinn, T. M.
2014-12-01
We present a replicated record of paired foraminiferal δ18O and Mg/Ca variations in multi-cores collected from the Garrison Basin (26º43'N, 93º55'W) in the northern Gulf of Mexico (GOM). Using δ18O (sea surface temperature, SST; sea surface salinity, SSS proxy) and Mg/Ca (SST proxy) variations in non-encrusted planktic foraminifer Globorotalia truncatulinoides we produce time series spanning the last two millennia that is characterized by centennial-scale climate variability. We interpret geochemical variations in G. truncatulinoides to reflect winter climate variability because data from a sediment trap, located ~350 km east of the core site, reveal that annual flux of G. truncatulinoides is heavily weighted towards winter (peak production in January-February; Spear et al., 2011). Similar centennial-scale variability is also observed in the foraminiferal geochemistry of Globigerinoides ruber in the same multi-cores, which likely reflect mean annual climate variations. Our replicated results and comparisons to other SST reconstructions from the region lend confidence that the northern GOM surface ocean underwent large, centennial-scale variability, most likely dominated by changes in winter climate. This variability occurred in a time period where climate forcing is small and background conditions are similar to pre-industrial times. References: Spear, J.W.; Poore, R.Z., and Quinn, T.M., 2011, Globorotalia truncatulinoides (dextral) Mg/Ca as a proxy for Gulf of Mexico winter mixed-layer temperature: Evidence from a sediment trap in the northern Gulf of Mexico. Marine Micropaleontology, 80, 53-61.
The tropopause cold trap in the Australian Monsoon during STEP/AMEX 1987
NASA Technical Reports Server (NTRS)
Selkirk, Henry B.
1993-01-01
The relationship between deep convection and tropopause cold trap conditions is examined for the tropical northern Australia region during the 1986-87 summer monsoon season, emphasizing the Australia Monsoon Experiment (AMEX) period when the NASA Stratosphere-Troposphere Exchange Project (STEP) was being conducted. The factors related to the spatial and temporal variability of the cold point potential temperature (CPPT) are investigated. A framework is developed for describing the relationships among surface average equivalent potential temperature in the surface layer (AEPTSL) the height of deep convection, and stratosphere-troposphere exchange. The time-mean pattern of convection, large-scale circulation, and surface AEPTSL in the Australian monsoon and the evolution of the convective environment during the monsoon period and the extended transition season which preceded it are described. The time-mean fields of cold point level variables are examined and the statistical relationships between mean CPPT, surface AEPTSL, and deep convection are described. Day-to-day variations of CPPT are examined in terms of these time mean relationships.
Evaluation of stream flow effects on smolt survival in the Yakima River basin, Washington
Courter,; Garrison,; Kock, Tobias J.; Perry, Russell W.
2012-01-01
Yearling Chinook smolt survival and travel time estimates from 2012 suggest that migration rates and survival rates in the Roza Reach may be associated with stream flow, water temperature, release timing (i.e. migratory disposition), and fish size, but the extent to which each variable influenced survival is yet to be determined. The lowest survival rate (61%) and longest travel time (median 2.26 days) was observed in Release Group 1, which had the smallest size distribution and experienced the lowest flows, lowest temperatures, and earliest release date among the three groups. Release Groups 2 and 3 survived at 96% and 98% respectively and traveled through the Roza Reach in less than eight hours. The primary focus of years two and three of this study will be to collect data that minimizes the effect of confounding explanatory variables, so that flow effects on emigration survival can be quantified independent of these other influential factors.
NASA Astrophysics Data System (ADS)
Zobel, Zachary; Wang, Jiali; Wuebbles, Donald J.; Kotamarthi, V. Rao
2017-12-01
The aim of this study is to examine projections of extreme temperatures over the continental United States (CONUS) for the 21st century using an ensemble of high spatial resolution dynamically downscaled model simulations with different boundary conditions. The downscaling uses the Weather Research and Forecast model at a spatial resolution of 12 km along with outputs from three different Coupled Model Intercomparison Project Phase 5 global climate models that provide boundary conditions under two different future greenhouse gas (GHG) concentration trajectories. The results from two decadal-length time slices (2045-2054 and 2085-2094) are compared with a historical decade (1995-2004). Probability density functions of daily maximum/minimum temperatures are analyzed over seven climatologically cohesive regions of the CONUS. The impacts of different boundary conditions as well as future GHG concentrations on extreme events such as heat waves and days with temperature higher than 95°F are also investigated. The results show that the intensity of extreme warm temperature in future summer is significantly increased, while the frequency of extreme cold temperature in future winter decreases. The distribution of summer daily maximum temperature experiences a significant warm-side shift and increased variability, while the distribution of winter daily minimum temperature is projected to have a less significant warm-side shift with decreased variability. Using "business-as-usual" scenario, 5-day heat waves are projected to occur at least 5-10 times per year in most CONUS and ≥95°F days will increase by 1-2 months by the end of the century.
Rojas, José M; Castillo, Simón B; Folguera, Guillermo; Abades, Sebastián; Bozinovic, Francisco
2014-01-01
Global climate change poses one of the greatest threats to species persistence. Most analyses of the potential biological impacts have focused on changes in mean temperature, but changes in thermal variance will also impact organisms and populations. We assessed the effects of acclimation to daily variance of temperature on dispersal and exploratory behavior in the terrestrial isopod Porcellio laevis in an open field. Acclimation treatments were 24 ± 0, 24 ± 4 and 24 ± 8 °C. Because the performance of ectotherms relates nonlinearly to temperature, we predicted that animals acclimated to a higher daily thermal variation should minimize the time exposed in the centre of open field, --i.e. increase the linearity of displacements. Consistent with our prediction, isopods acclimated to a thermally variable environment reduce their exploratory behaviour, hypothetically to minimize their exposure to adverse environmental conditions. This scenario as well as the long latency of animals after releases acclimated to variable environments is consistent with this idea. We suggested that to develop more realistic predictions about the biological impacts of climate change, one must consider the interactions between the mean and variance of environmental temperature on animals' performance.
Rojas, José M.; Castillo, Simón B.; Folguera, Guillermo; Abades, Sebastián; Bozinovic, Francisco
2014-01-01
Global climate change poses one of the greatest threats to species persistence. Most analyses of the potential biological impacts have focused on changes in mean temperature, but changes in thermal variance will also impact organisms and populations. We assessed the effects of acclimation to daily variance of temperature on dispersal and exploratory behavior in the terrestrial isopod Porcellio laevis in an open field. Acclimation treatments were 24±0, 24±4 and 24±8°C. Because the performance of ectotherms relates nonlinearly to temperature, we predicted that animals acclimated to a higher daily thermal variation should minimize the time exposed in the centre of open field, – i.e. increase the linearity of displacements. Consistent with our prediction, isopods acclimated to a thermally variable environment reduce their exploratory behaviour, hypothetically to minimize their exposure to adverse environmental conditions. This scenario as well as the long latency of animals after releases acclimated to variable environments is consistent with this idea. We suggested that to develop more realistic predictions about the biological impacts of climate change, one must consider the interactions between the mean and variance of environmental temperature on animals' performance. PMID:25207653
Climate influence on dengue epidemics in Puerto Rico.
Jury, Mark R
2008-10-01
The variability of the insect-borne disease dengue in Puerto Rico was studied in relation to climatic variables in the period 1979-2005. Annual and monthly reported dengue cases were compared with precipitation and temperature data. Results show that the incidence of dengue in Puerto Rico was relatively constant over time despite global warming, possibly due to the offsetting effects of declining rainfall, improving health care and little change in population. Seasonal fluctuations of dengue were driven by rainfall increases from May to November. Year-to-year variability in dengue cases was positively related to temperature, but only weakly associated with local rainfall and an index of El Nino Southern Oscillation (ENSO). Climatic conditions were mapped with respect to dengue cases and patterns in high and low years were compared. During epidemics, a low pressure system east of Florida draws warm humid air over the northwestern Caribbean. Long-term trends in past observed and future projected rainfall and temperatures were studied. Rainfall has declined slowly, but temperatures in the Caribbean are rising with the influence of global warming. Thus, dengue may increase in the future, and it will be necessary to anticipate dengue epidemics using climate forecasts, to reduce adverse health impacts.
Using collective variables to drive molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Fiorin, Giacomo; Klein, Michael L.; Hénin, Jérôme
2013-12-01
A software framework is introduced that facilitates the application of biasing algorithms to collective variables of the type commonly employed to drive massively parallel molecular dynamics (MD) simulations. The modular framework that is presented enables one to combine existing collective variables into new ones, and combine any chosen collective variable with available biasing methods. The latter include the classic time-dependent biases referred to as steered MD and targeted MD, the temperature-accelerated MD algorithm, as well as the adaptive free-energy biases called metadynamics and adaptive biasing force. The present modular software is extensible, and portable between commonly used MD simulation engines.
NASA Astrophysics Data System (ADS)
Zhou, Xiong; Huang, Guohe; Wang, Xiuquan; Cheng, Guanhui
2018-02-01
In this study, dynamically-downscaled temperature and precipitation changes over Saskatchewan are developed through the Providing Regional Climates for Impacts Studies (PRECIS) model. It can resolve detailed features within GCM grids such as topography, clouds, and land use in Saskatchewan. The PRECIS model is employed to carry out ensemble simulations for projections of temperature and precipitation changes over Saskatchewan. Temperature and precipitation variables at 14 weather stations for the baseline period are first extracted from each model run. Ranges of simulated temperature and precipitation variables are then obtained through combination of maximum and minimum values calculated from the five ensemble runs. The performance of PRECIS ensemble simulations can be evaluated through checking if observations of current temperature at each weather station are within the simulated range. Future climate projections are analyzed over three time slices (i.e., the 2030s, 2050s, and 2080s) to help understand the plausible changes in temperature and precipitation over Saskatchewan in response to global warming. The evaluation results show that the PRECIS ensemble simulations perform very well in terms of capturing the spatial patterns of temperature and precipitation variables. The results of future climate projections over three time slices indicate that there will be an obvious warming trend from the 2030s, to the 2050s, and the 2080s over Saskatchewan. The projected changes of mean temperature over the whole Saskatchewan area is [0, 2] °C in the 2030s at 10th percentile, [2, 5.5] °C in the 2050s at 50th percentile, and [3, 10] °C in the 2090s at 90th percentile. There are no significant changes in the spatial patterns of the projected total precipitation from the 2030s to the end of this century. The minimum change of the projected total precipitation over the whole Province of Saskatchewan is most likely to be -1.3% in the 2030s, and -0.2% in the 2050s, while the minimum value would be -2.1% to the end of this century at 50th percentile.
Ramírez, Jorge Andrés; Ignacio del Valle, Jorge
2011-09-01
There is great concern about the effect of climate change in arid and subarid areas of the tropics. Climate change combined with other anthropogenic activities such as deforestation, fires and over-grazing can accelerate their degradation and, consequently, the increases in losses of biological and economic productivity. Climate models, both local and global, predict that rainfall in the arid Peninsula of La Guajira in the Colombian Caribbean would be reduced and temperature would be increased as a result of climate change. However, as there are only suitable climate records since 1972, it is not possible to verify if, indeed, this is happening. To try to verify the hypothesis of reducing rainfall and rising temperatures we developed a growth ring chronology of Capparis odoratissima in the Middle Peninsula of La Guajira with 17 trees and 45 series which attain 48 years back. We use standard dendrochronological methods that showed statistically significant linear relationship with local climatic variables such as air temperature, sea surface temperature (SST), annual precipitation and wind speed; we also reach to successful relationship of the chronology with global climatic variables as the indices SOI and MEI of the ENSO phenomenon. The transfer functions estimated with the time series (1955 and 2003) do not showed statistically significant trends, indicating that during this period of time the annual precipitation or temperatures have not changed. The annual nature of C. odoratissima growth rings, the possibility of cross-dated among the samples of this species, and the high correlation with local and global climatic variables indicate a high potential of this species for dendrochronological studies in this part of the American continent.
Liquid Jets in Crossflow at Elevated Temperatures and Pressures
NASA Astrophysics Data System (ADS)
Amighi, Amirreza
An experimental study on the characterization of liquid jets injected into subsonic air crossflows is conducted. The aim of the study is to relate the droplet size and other attributes of the spray, such as breakup length, position, plume width, and time to flow parameters, including jet and air velocities, pressure and temperature as well as non-dimensional variables. Furthermore, multiple expressions are defined that would summarize the general behavior of the spray. For this purpose, an experimental setup is developed, which could withstand high temperatures and pressures to simulate conditions close to those experienced inside gas turbine engines. Images are captured using a laser based shadowgraphy system similar to a 2D PIV system. Image processing is extensively used to measure droplet size and boundaries of the spray. In total 209 different conditions are tested and over 72,000 images are captured and processed. The crossflow air temperatures are 25°C, 200°C, and 300°C; absolute crossflow air pressures are 2.1, 3.8, and 5.2 bars. Various liquid and gas velocities are tested for each given temperature and pressure in order to study the breakup mechanisms and regimes. Effects of dimensional and non-dimensional variables on droplet size are presented in detail. Several correlations for the mean droplet size, which are generated in this process, are presented. In addition, the influence of non-dimensional variables on the breakup length, time, plume area, angle, width and mean jet surface thickness are discussed and individual correlations are provided for each parameter. The influence of each individual parameter on the droplet sizes is discussed for a better understanding of the fragmentation process. Finally, new correlations for the centerline, windward and leeward trajectories are presented and compared to the previously reported correlations.
Coutinho, Paulo Eduardo Guzzo; Candido, Luiz Antonio; Tadei, Wanderli Pedro; da Silva Junior, Urbano Lopes; Correa, Honorly Katia Mestre
2018-04-26
A study was conducted at three sampling regions along the Rio Negro and surrounding Puraquequara Lake, Amazonas, Brazil. The aim was to determine the influence of the local effects of climatic and hydrological variables on new malaria cases. Data was gathered on the river level, precipitation, air temperature, and the number of new cases of autochthonous malaria between January 2003 and December 2013. Monthly averages, time series decompositions, cross-correlations, and multiple regressions revealed different relationships at each location. The sampling region in the upper Rio Negro indicated no statistically significant results. However, monthly averages suggest that precipitation and air temperature correlate positively with the occurrence of new cases of malaria. In the mid Rio Negro and Puraquequara Lake, the river level positively correlated, and temperature negatively correlated with new transmissions, while precipitation correlated negatively in the mid Rio Negro and positively on the lake. Overall, the river level is a key variable affecting the formation of breeding sites, while precipitation may either develop or damage them. A negative temperature correlation is associated with the occurrence of new annual post-peak cases of malaria, when the monthly average exceeds 28.5 °C. This suggests that several factors contribute to the occurrence of new malaria cases as higher temperatures are reached at the same time as precipitation and the river levels are lowest. Differences between signals and correlation lags indicate that local characteristics have an impact on how different variables influence the disease vector's life cycle, pathogens, and consequently, new cases of malaria.
Characterizing Climate Controls on Vegetation Seasonality in the North American Southwest
NASA Astrophysics Data System (ADS)
Fish, M. A.; Cook, B.; Smerdon, J. E.; Seager, R.; Williams, P.
2014-12-01
The North American Southwest, which extends from Colorado to southern Mexico and California to eastern Texas, encompasses a diversity of climates, elevations, and ecosystems. This region is expected to experience significant climatic change, and associated impacts, in the coming decades. To better understand the spatiotemporal variability of vegetation in the Southwest and the expected climatic controls on timing and spatial extend of vegetation growth, we compared GIMMS normalized difference vegetation index (NDVI, 1981-2011) against temperature and precipitation data. Spatial variations in vegetation seasonality and the timing of peak NDVI are linked to spatial variability in the precipitation regimes across the Southwest. Regions with spring NDVI peaks are dominated by winter precipitation, while late summer and fall peaks are in regions with significant summer precipitation driven by the North American Monsoon. Inter-annual variability in peak NDVI is positively correlated with precipitation and negatively correlated with temperature, with the largest correlation coefficients at one-month lags. The only significant long-term trends in NDVI are for northern Mexico, where agricultural productivity has been increasing over the last 30 years.
Atmospheric mold spore counts in relation to meteorological parameters
NASA Astrophysics Data System (ADS)
Katial, R. K.; Zhang, Yiming; Jones, Richard H.; Dyer, Philip D.
Fungal spore counts of Cladosporium, Alternaria, and Epicoccum were studied during 8 years in Denver, Colorado. Fungal spore counts were obtained daily during the pollinating season by a Rotorod sampler. Weather data were obtained from the National Climatic Data Center. Daily averages of temperature, relative humidity, daily precipitation, barometric pressure, and wind speed were studied. A time series analysis was performed on the data to mathematically model the spore counts in relation to weather parameters. Using SAS PROC ARIMA software, a regression analysis was performed, regressing the spore counts on the weather variables assuming an autoregressive moving average (ARMA) error structure. Cladosporium was found to be positively correlated (P<0.02) with average daily temperature, relative humidity, and negatively correlated with precipitation. Alternaria and Epicoccum did not show increased predictability with weather variables. A mathematical model was derived for Cladosporium spore counts using the annual seasonal cycle and significant weather variables. The model for Alternaria and Epicoccum incorporated the annual seasonal cycle. Fungal spore counts can be modeled by time series analysis and related to meteorological parameters controlling for seasonallity; this modeling can provide estimates of exposure to fungal aeroallergens.
Raut, Sangeeta; Raut, Smita; Sharma, Manisha; Srivastav, Chaitanya; Adhikari, Basudam; Sen, Sudip Kumar
2015-09-01
In the present study, artificial neural network (ANN) modelling coupled with particle swarm optimization (PSO) algorithm was used to optimize the process variables for enhanced low density polyethylene (LDPE) degradation by Curvularia lunata SG1. In the non-linear ANN model, temperature, pH, contact time and agitation were used as input variables and polyethylene bio-degradation as the output variable. Further, on application of PSO to the ANN model, the optimum values of the process parameters were as follows: pH = 7.6, temperature = 37.97 °C, agitation rate = 190.48 rpm and incubation time = 261.95 days. A comparison between the model results and experimental data gave a high correlation coefficient ([Formula: see text]). Significant enhancement of LDPE bio-degradation using C. lunata SG1by about 48 % was achieved under optimum conditions. Thus, the novelty of the work lies in the application of combination of ANN-PSO as optimization strategy to enhance the bio-degradation of LDPE.
NASA Astrophysics Data System (ADS)
Lippert, Ross A.; Predescu, Cristian; Ierardi, Douglas J.; Mackenzie, Kenneth M.; Eastwood, Michael P.; Dror, Ron O.; Shaw, David E.
2013-10-01
In molecular dynamics simulations, control over temperature and pressure is typically achieved by augmenting the original system with additional dynamical variables to create a thermostat and a barostat, respectively. These variables generally evolve on timescales much longer than those of particle motion, but typical integrator implementations update the additional variables along with the particle positions and momenta at each time step. We present a framework that replaces the traditional integration procedure with separate barostat, thermostat, and Newtonian particle motion updates, allowing thermostat and barostat updates to be applied infrequently. Such infrequent updates provide a particularly substantial performance advantage for simulations parallelized across many computer processors, because thermostat and barostat updates typically require communication among all processors. Infrequent updates can also improve accuracy by alleviating certain sources of error associated with limited-precision arithmetic. In addition, separating the barostat, thermostat, and particle motion update steps reduces certain truncation errors, bringing the time-average pressure closer to its target value. Finally, this framework, which we have implemented on both general-purpose and special-purpose hardware, reduces software complexity and improves software modularity.
Thomas, Ellen M; Chapman, Benjamin; Jaykus, Lee-Ann; Phister, Trevor
2014-09-01
Contaminated fresh produce has been increasingly identified as a cause of foodborne illnesses. Because of concerns about pathogen growth on these food items at retail, the 2009 U.S. Food and Drug Administration Food Code established that cut leafy greens (lettuce, spinach, spring mix, cabbage, arugula, and kale) must have time and temperature controls for safety and hence should be kept at refrigerated temperatures (5°C or lower). The purpose of this study was to determine the temperature profiles of cut leafy greens in single-serving clamshell containers provided as part of the North Carolina School Lunch Program and to compare the two policies that North Carolina has in place to control the temperature of these products (the 3-day rule and time in lieu of temperature). Temperatures were recorded with data loggers in 24 schools during a 3-day period. In all cases, substantial temperature variability was found for these products, including temperatures above 5°C for at least 1 h on each of the 3 days. In some cases, temperatures reached above 5°C for more than 3 h throughout the serving time. The results demonstrate the importance of developing a protocol for continuous temperature monitoring of leafy greens served in school lunch programs.
NASA Astrophysics Data System (ADS)
Smith, Karen L.; Polvani, Lorenzo M.
2017-04-01
The recent annually averaged warming of the Antarctic Peninsula, and of West Antarctica, stands in stark contrast to very small trends over East Antarctica. This asymmetry arises primarily from a highly significant warming of West Antarctica in austral spring and a cooling of East Antarctica in austral autumn. Here we examine whether this East-West asymmetry is a response to anthropogenic climate forcings or a manifestation of natural climate variability. We compare the observed Antarctic surface air temperature trends over two distinct time periods (1960-2005 and 1979-2005), and with those simulated by 40 models participating in Phase 5 of the Coupled Model Intercomparison Project (CMIP5). We find that the observed East-West asymmetry differs substantially between the two periods and, furthermore, that it is completely absent from the forced response seen in the CMIP5 multi-model mean, from which all natural variability is eliminated by the averaging. We also examine the relationship between the Southern Annular mode (SAM) and Antarctic temperature trends, in both models and reanalyses, and again conclude that there is little evidence of anthropogenic SAM-induced driving of the recent temperature trends. These results offer new, compelling evidence pointing to natural climate variability as a key contributor to the recent warming of West Antarctica and of the Peninsula.
Challenges in Melt Furnace Tests
NASA Astrophysics Data System (ADS)
Belt, Cynthia
2014-09-01
Measurement is a critical part of running a cast house. Key performance indicators such as energy intensity, production (or melt rate), downtime (or OEE), and melt loss must all be understood and monitored on a weekly or monthly basis. Continuous process variables such as bath temperature, flue temperature, and furnace pressure should be used to control the furnace systems along with storing the values in databases for later analysis. While using measurement to track furnace performance over time is important, there is also a time and place for short-term tests.
Mazumder, Sonal; Pavurala, Naresh; Manda, Prashanth; Xu, Xiaoming; Cruz, Celia N; Krishnaiah, Yellela S R
2017-07-15
The present investigation was carried out to understand the impact of formulation and process variables on the quality of oral disintegrating films (ODF) using Quality by Design (QbD) approach. Lamotrigine (LMT) was used as a model drug. Formulation variable was plasticizer to film former ratio and process variables were drying temperature, air flow rate in the drying chamber, drying time and wet coat thickness of the film. A Definitive Screening Design of Experiments (DoE) was used to identify and classify the critical formulation and process variables impacting critical quality attributes (CQA). A total of 14 laboratory-scale DoE formulations were prepared and evaluated for mechanical properties (%elongation at break, yield stress, Young's modulus, folding endurance) and other CQA (dry thickness, disintegration time, dissolution rate, moisture content, moisture uptake, drug assay and drug content uniformity). The main factors affecting mechanical properties were plasticizer to film former ratio and drying temperature. Dissolution rate was found to be sensitive to air flow rate during drying and plasticizer to film former ratio. Data were analyzed for elucidating interactions between different variables, rank ordering the critical materials attributes (CMA) and critical process parameters (CPP), and for providing a predictive model for the process. Results suggested that plasticizer to film former ratio and process controls on drying are critical to manufacture LMT ODF with the desired CQA. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Alshawaf, Fadwa; Dick, Galina; Heise, Stefan; Balidakis, Kyriakos; Schmidt, Torsten; Wickert, Jens
2017-04-01
Ground-based GNSS (Global Navigation Satellite Systems) have efficiently been used since the 1990s as a meteorological observing system. Recently scientists used GNSS time series of precipitable water vapor (PWV) for climate research although they may not be sufficiently long. In this work, we compare the trend estimated from GNSS time series with that estimated from European Center for Medium-RangeWeather Forecasts Reanalysis (ERA-Interim) data and meteorological measurements.We aim at evaluating climate evolution in Central Europe by monitoring different atmospheric variables such as temperature and PWV. PWV time series were obtained by three methods: 1) estimated from ground-based GNSS observations using the method of precise point positioning, 2) inferred from ERA-Interim data, and 3) determined based on daily surface measurements of temperature and relative humidity. The other variables are available from surface meteorological stations or received from ERA-Interim. The PWV trend component estimated from GNSS data strongly correlates (>70%) with that estimated from the other data sets. The linear trend is estimated by straight line fitting over 30 years of seasonally-adjusted PWV time series obtained using the meteorological measurements. The results show a positive trend in the PWV time series with an increase of 0.2-0.7 mm/decade with a mean standard deviations of 0.016 mm/decade. In this paper, we present the results at three GNSS stations. The temporal increment of the PWV correlates with the temporal increase in the temperature levels.
Tyralis, Hristos; Karakatsanis, Georgios; Tzouka, Katerina; Mamassis, Nikos
2017-08-01
We present data and code for visualizing the electrical energy data and weather-, climate-related and socioeconomic variables in the time domain in Greece. The electrical energy data include hourly demand, weekly-ahead forecasted values of the demand provided by the Greek Independent Power Transmission Operator and pricing values in Greece. We also present the daily temperature in Athens and the Gross Domestic Product of Greece. The code combines the data to a single report, which includes all visualizations with combinations of all variables in multiple time scales. The data and code were used in Tyralis et al. (2017) [1].
Jennifer D. Knoepp; Craig R. See; James M. Vose; Chelcy F. Miniat; James S. Clark
2018-01-01
The interactions of terrestrial C pools and fluxes with spatial and temporal variation in climate are not well understood. We conducted this study in the southern Appalachian Mountains where complex topography provides variability in temperature, precipitation, and forest communities. In 1990, we established five large plots across an elevation gradient...
Sohns, Carl W.; Nodine, Robert N.; Wallace, Steven Allen
1999-01-01
A load sensing system inexpensively monitors the weight and temperature of stored nuclear material for long periods of time in widely variable environments. The system can include an electrostatic load cell that encodes weight and temperature into a digital signal which is sent to a remote monitor via a coaxial cable. The same cable is used to supply the load cell with power. When multiple load cells are used, vast
NASA Astrophysics Data System (ADS)
Abdussalam, Auwal; Monaghan, Andrew; Dukic, Vanja; Hayden, Mary; Hopson, Thomas; Leckebusch, Gregor
2013-04-01
Northwest Nigeria is a region with high risk of bacterial meningitis. Since the first documented epidemic of meningitis in Nigeria in 1905, the disease has been endemic in the northern part of the country, with epidemics occurring regularly. In this study we examine the influence of climate on the interannual variability of meningitis incidence and epidemics. Monthly aggregate counts of clinically confirmed hospital-reported cases of meningitis were collected in northwest Nigeria for the 22-year period spanning 1990-2011. Several generalized linear statistical models were fit to the monthly meningitis counts, including generalized additive models. Explanatory variables included monthly records of temperatures, humidity, rainfall, wind speed, sunshine and dustiness from weather stations nearest to the hospitals, and a time series of polysaccharide vaccination efficacy. The effects of other confounding factors -- i.e., mainly non-climatic factors for which records were not available -- were estimated as a smooth, monthly-varying function of time in the generalized additive models. Results reveal that the most important explanatory climatic variables are mean maximum monthly temperature, relative humidity and dustiness. Accounting for confounding factors (e.g., social processes) in the generalized additive models explains more of the year-to-year variation of meningococcal disease compared to those generalized linear models that do not account for such factors. Promising results from several models that included only explanatory variables that preceded the meningitis case data by 1-month suggest there may be potential for prediction of meningitis in northwest Nigeria to aid decision makers on this time scale.
Changes in the timing of snowmelt and streamflow in Colorado: A response to recent warming
Clow, David W.
2010-01-01
Trends in the timing of snowmelt and associated runoff in Colorado were evaluated for the 1978-2007 water years using the regional Kendall test (RKT) on daily snow-water equivalent (SWE) data from snowpack telemetry (SNOTEL) sites and daily streamflow data from headwater streams. The RKT is a robust, nonparametric test that provides an increased power of trend detection by grouping data from multiple sites within a given geographic region. The RKT analyses indicated strong, pervasive trends in snowmelt and streamflow timing, which have shifted toward earlier in the year by a median of 2-3 weeks over the 29-yr study period. In contrast, relatively few statistically significant trends were detected using simple linear regression. RKT analyses also indicated that November-May air temperatures increased by a median of 0.9 degrees C decade-1, while 1 April SWE and maximum SWE declined by a median of 4.1 and 3.6 cm decade-1, respectively. Multiple linear regression models were created, using monthly air temperatures, snowfall, latitude, and elevation as explanatory variables to identify major controlling factors on snowmelt timing. The models accounted for 45% of the variance in snowmelt onset, and 78% of the variance in the snowmelt center of mass (when half the snowpack had melted). Variations in springtime air temperature and SWE explained most of the interannual variability in snowmelt timing. Regression coefficients for air temperature were negative, indicating that warm temperatures promote early melt. Regression coefficients for SWE, latitude, and elevation were positive, indicating that abundant snowfall tends to delay snowmelt, and snowmelt tends to occur later at northern latitudes and high elevations. Results from this study indicate that even the mountains of Colorado, with their high elevations and cold snowpacks, are experiencing substantial shifts in the timing of snowmelt and snowmelt runoff toward earlier in the year.
NASA Astrophysics Data System (ADS)
Kajiwara, Itsuro; Furuya, Keiichiro; Ishizuka, Shinichi
2018-07-01
Model-based controllers with adaptive design variables are often used to control an object with time-dependent characteristics. However, the controller's performance is influenced by many factors such as modeling accuracy and fluctuations in the object's characteristics. One method to overcome these negative factors is to tune model-based controllers. Herein we propose an online tuning method to maintain control performance for an object that exhibits time-dependent variations. The proposed method employs the poles of the controller as design variables because the poles significantly impact performance. Specifically, we use the simultaneous perturbation stochastic approximation (SPSA) to optimize a model-based controller with multiple design variables. Moreover, a vibration control experiment of an object with time-dependent characteristics as the temperature is varied demonstrates that the proposed method allows adaptive control and stably maintains the closed-loop characteristics.
Variability at the edge: highly accreting objects in Taurus
NASA Astrophysics Data System (ADS)
Abraham, Peter; Kospal, Agnes; Szabo, Robert
2017-04-01
In Kepler K2, Campaign 13, we will obtain 80-days-long optical light curves of seven highly accreting T Tauri stars in the benchmark Taurus star forming region. Here we propose to monitor our sample simultaneously with Kepler and Spitzer, to be able to separate variability patterns related to different physical processes. Monitoring our targets with Spitzer during the final 11 days of the K2 campaign, we will clean the light curves from non-accretion effects (rotating stellar spots, dips due to passing dust structures), and construct, for the first time, a variability curve which reflects the time-dependent accretion only. We will then study and understand how time-dependent mass accretion affects the density and temperature structure of the protoplanetary disk, which sets the initial conditions for planet formation. The proposed work cannot be done without the unparalleled precision of Kepler and Spitzer. This unique and one-time opportunity motivated our DDT proposal.
Response of wheat restricted-tillering and vigorous growth traits to variables of climate change.
Dias de Oliveira, Eduardo A; Siddique, Kadambot H M; Bramley, Helen; Stefanova, Katia; Palta, Jairo A
2015-02-01
The response of wheat to the variables of climate change includes elevated CO2, high temperature, and drought which vary according to the levels of each variable and genotype. Independently, elevated CO2, high temperature, and terminal drought affect wheat biomass and grain yield, but the interactive effects of these three variables are not well known. The aim of this study was to determine the effects of elevated CO2 when combined with high temperature and terminal drought on the high-yielding traits of restricted-tillering and vigorous growth. It was hypothesized that elevated CO2 alone, rather than combined with high temperature, ameliorates the effects of terminal drought on wheat biomass and grain yield. It was also hypothesized that wheat genotypes with more sink capacity (e.g. high-tillering capacity and leaf area) have more grain yield under combined elevated CO2, high temperature, and terminal drought. Two pairs of sister lines with contrasting tillering and vigorous growth were grown in poly-tunnels in a four-factor completely randomized split-plot design with elevated CO2 (700 µL L(-1)), high day time temperature (3 °C above ambient), and drought (induced from anthesis) in all combinations to test whether elevated CO2 ameliorates the effects of high temperature and terminal drought on biomass accumulation and grain yield. For biomass and grain yield, only main effects for climate change variables were significant. Elevated CO2 significantly increased grain yield by 24-35% in all four lines and terminal drought significantly reduced grain yield by 16-17% in all four lines, while high temperature (3 °C above the ambient) had no significant effect. A trade-off between yield components limited grain yield in lines with greater sink capacity (free-tillering lines). This response suggests that any positive response to predicted changes in climate will not overcome the limitations imposed by the trade-off in yield components. © 2014 Commonwealth of Australia. Global Change Biology © 2014 John Wiley & Sons Ltd.
Jorge, Aguirre Joya; Heliodoro, De La Garza Toledo; Alejandro, Zugasti Cruz; Ruth, Belmares Cerda; Noé, Aguilar Cristóbal
2013-06-01
To extract, quantify, and evaluate the phenolic content in Opuntia ficus-indica skin for their antioxidant capacity with three different methods (ABTS, DPPH, and lipid oxidation) and to optimize the extraction conditions (time, temperature and ethanol concentration) in a reflux system. The extraction process was done using a reflux system. A San Cristobal II experimental design with three variables and three levels was used. The variables evaluated were time of extraction (h), concentration of ethanol (%, v/v) and temperature (°C). The extraction process was optimized using a response surface methodology. It was observed that at higher temperature more phenolic compounds were extracted, but the antioxidant capacity was decreased. The optimum conditions for phenolic compounds extraction and antioxidant capacity mixing the three methods were as follows: 45% of ethanol, 80 °C and 2 hours of extraction. Values obtained in our results are little higher that other previously reported. It can be concluded the by-products of Opuntia ficus-indica represent a good source of natural antioxidants with possible applications in food, cosmetics or drugs industries.
Variability of the Brunt-Väisälä frequency at the OH* layer height
NASA Astrophysics Data System (ADS)
Wüst, Sabine; Bittner, Michael; Yee, Jeng-Hwa; Mlynczak, Martin G.; Russell, James M., III
2017-12-01
In and near the Alpine region, the most dense subnetwork of identical NDMC (Network for the Detection of Mesospheric Change, https://www.wdc.dlr.de/ndmc/) instruments can be found: five stations are equipped with OH* spectrometers which deliver a time series of mesopause temperature for each cloudless or only partially cloudy night. These measurements are suitable for the derivation of the density of gravity wave potential energy, provided that the Brunt-Väisälä frequency is known. However, OH* spectrometers do not deliver vertically resolved temperature information, which is necessary for the calculation of the Brunt-Väisälä frequency. Co-located measurements or climatological values are needed. We use 14 years of satellite-based temperature data (TIMED-SABER, 2002-2015) to investigate the inter- and intra-annual variability of the Brunt-Väisälä frequency at the OH* layer height between 43.93-48.09° N and 5.71-12.95° E and provide a climatology.
Hovdenes, Jan; Røysland, Kjetil; Nielsen, Niklas; Kjaergaard, Jesper; Wanscher, Michael; Hassager, Christian; Wetterslev, Jørn; Cronberg, Tobias; Erlinge, David; Friberg, Hans; Gasche, Yvan; Horn, Janneke; Kuiper, Michael; Pellis, Tommaso; Stammet, Pascal; Wise, Matthew P; Åneman, Anders; Bugge, Jan Frederik
2016-10-01
To investigate the association of temperature on arrival to hospital after out-of-hospital-cardiac arrest (OHCA) with the primary outcome of mortality, in the targeted temperature management (TTM) trial. The TTM trial randomized 939 patients to TTM at 33 or 36°C for 24h. Patients were categorized according to their recorded body temperature on arrival and also categorized to groups of patients being actively cooled or passively rewarmed. OHCA patients having a temperature ≤34.0°C on arrival at hospital had a significantly higher mortality compared to the OHCA patients with a higher temperature on arrival. A low body temperature on arrival was associated with a longer time to return of spontaneous circulation (ROSC) and duration of transport time to hospital. Patients who were actively cooled or passively rewarmed during the first 4h had similar mortality. In a multivariate logistic regression model mortality was significantly related to time from OHCA to ROSC, time from OHCA to advanced life support (ALS), age, sex and first registered rhythm. None of the temperature related variables (included the TTM-groups) were significantly related to mortality. OHCA patients with a temperature ≤34.0°C on arrival have a higher mortality than patients with a temperature ≥34.1°C on arrival. A low temperature on arrival is associated with a long time to ROSC. Temperature changes and TTM-groups were not associated with mortality in a regression model. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Changes in temperature and precipitation extremes observed in Modena, Italy
NASA Astrophysics Data System (ADS)
Boccolari, M.; Malmusi, S.
2013-03-01
Climate changes has become one of the most analysed subjects from researchers community, mainly because of the numerous extreme events that hit the globe. To have a better view of climate changes and trends, long observations time series are needed. During last decade a lot of Italian time series, concerning several surface meteorological variables, have been analysed and published. No one of them includes one of the longest record in Italy, the time series of the Geophysical Observatory of the University of Modena and Reggio Emilia. Measurements, collected since early 19th century, always in the same position, except for some months during the second world war, embrace daily temperature, precipitation amount, relative humidity, pressure, cloudiness and other variables. In this work we concentrated on the analysis of yearly and seasonal trends and climate extremes of temperature, both minimum and maximum, and precipitation time series, for the periods 1861-2010 and 1831-2010 respectively, in which continuous measurements are available. In general, our results confirm quite well those reported by IPCC and in many other studies over Mediterranean area. In particular, we found that minimum temperature has a non significant positive trend of + 0.1 °C per decade considering all the period, the value increases to 0.9 °C per decade for 1981-2010. For maximum temperature we observed a non significant + 0.1 °C trend for all the period, while + 0.8 °C for the last thirty years. On the other hand precipitation is decreasing, -6.3 mm per decade, considering all the analysed period, while the last thirty years are characterised by a great increment of 74.8 mm per decade. For both variables several climate indices have been analysed and they confirm what has been found for minimum and maximum temperatures and precipitation. In particular, during last 30 years frost days and ice days are decreasing, whereas summer days are increasing. During the last 30-year tropical nights and warm spell duration indices are characterised by a particular strong increment, if compared to the ones of the entire period. Finally, a cursory comparison between winter precipitation and NAO index was done, showing a high anti-correlation, especially since the second half of 20th century.
Multivariable analysis of anesthetic factors associated with time to extubation in dogs.
Kleine, Stephanie; Hofmeister, Erik; Egan, Katrina
2014-12-01
The purpose of this study was to identify factors that prolong the time to extubation in dogs. Anesthetic records of 900 dogs at a university teaching hospital were searched. Multiple linear regression was used to compare independent predictors (patient demographics, anesthetic and intraoperative variables) with the dependent variable (time to extubation). Induction with propofol (P < 0.025) was associated with a shorter time to extubation, while premedication with acepromazine (P = 0.000) was associated with a longer time to extubation. Time to extubation was increased by 0.311 minutes for every kilogram increase in body weight (P = 0.000), 5.924 minutes for every 1 °C loss in body temperature (P = 0.0000), and by 0.096 minutes for every 1 minute increase in anesthetic duration (P = 0.000). Anesthetic variables, which can be manipulated by the anesthetist, include choice of premedication and induction drugs, hypothermia, and duration of anesthesia. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Bonitz, F. G. W.; Andersson Dahl, C.; Trofimova, T.
2016-12-01
In this study, we investigate the climate variability in the North Atlantic during the last 350 years by applying sclerochronological methods. The inflow of North Atlantic water masses into the Arctic and the Norwegian Sea is important for the climate in these regions. A better understanding of the climate variability on highly resolved time scales is needed to obtain a better fundament for climate predictions for these areas. However, highly resolved paleoclimate records are sparse in the North Atlantic and instrumental data cover only the last 50 - 150 years. Bivalve shells provide highly resolved climate archives, especially the shells of the long-lived bivalve species Arctica islandica. This widely occurring species forms annual growth increments, which can be analyzed similarly to tree rings. Climatic and oceanographic changes are recorded population-wide in the shell`s growth rate and in the isotopic composition of the shell. Hence, multi-centennial absolutely dated chronologies can be built by cross-matching live-collected and sub-fossil specimens. Our chronology building effort has led to the first multi-centennial absolutely dated chronology from the Faroese Shelf covering the time period from AD 1642 - 2013. The growth indices of the chronology anti-correlate with April - September sea surface temperatures (SST) for the last 100 years indicating favorable conditions for growth when temperatures are lower. This also suggests that the main growing season of A. islandica around the Faroe Islands occurs in this time period; a hypothesis supported by δ18O-based temperature reconstructions from growth increments representing the years 2001 - 2013. The RBAR, which is an indicator for the signal strength throughout the chronology shows an inverse relationship with Atlantic Multi-decadal Oscillation (AMO) data indicating that periods of higher AMO indexes result in a weakened signal strength in the chronology for the same time period. In conclusion, our results suggest that a combination of the growth increment variability and δ18O measurements of the growth increments can provide a tool to obtain information about the year-to-year SST variability beyond instrumental observations and the signal strength throughout the chronology may provide information about the timing of major AMO shifts.
Exhaled nitric oxide in mylar balloons: influence of storage time, humidity and temperature.
Bodini, Alessandro; Pijnenburg, Mariëlle W H; Boner, Atillio L; de Jongste, Johan C
2003-01-01
BACKGROUND: Mylar balloons are used to collect exhaled air for analysis of fractional nitric oxide concentration (FENO). AIM: We studied the effect of storage conditions on the stability of nitric oxide (NO) in mylar balloons. METHODS: Exhaled air samples and calibration gases were stored in mylar balloons at 4, 21 and 37 degrees C, with or without silica gel. NO was measured after 0, 6, 9, 24 and 48 h. Scheffe F-tests were used to compare NO values. RESULTS: NO remained stable in balloons for 9 h at all temperatures, without silica gel. NO increased between 9 and 48 h, but only with low initial FENO. Silica gel increased variability. CONCLUSIONS: FENO in mylar balloons is stable for at least 9 h. The storage temperature is not critical, but silica gel increases variability. PMID:12745548
Optimal weighting of data to detect climatic change - Application to the carbon dioxide problem
NASA Technical Reports Server (NTRS)
Bell, T. L.
1982-01-01
It is suggested that a weighting of surface temperature data, using information about the expected level of warming in different seasons and geographical regions and statistical information about the amount of natural variability in surface temperature, can improve the chances of early detection of carbon dioxide concentration-induced climatic warming. A preliminary analysis of the optimal weighting method presented suggests that it is 25 per cent more effective in revealing surface warming than the conventional method, in virtue of the fact that 25 per cent more data must conventionally be analyzed in order to arrive at a similar probability of detection. An approximate calculation suggests that the warming ought to have already been detected, if the only sources of significant surface temperature variability had time scales of less than one year.
Diode laser-based thermometry using two-line atomic fluorescence of indium and gallium
NASA Astrophysics Data System (ADS)
Borggren, Jesper; Weng, Wubin; Hosseinnia, Ali; Bengtsson, Per-Erik; Aldén, Marcus; Li, Zhongshan
2017-12-01
A robust and relatively compact calibration-free thermometric technique using diode lasers two-line atomic fluorescence (TLAF) for reactive flows at atmospheric pressures is investigated. TLAF temperature measurements were conducted using indium and, for the first time, gallium atoms as temperature markers. The temperature was measured in a multi-jet burner running methane/air flames providing variable temperatures ranging from 1600 to 2000 K. Indium and gallium were found to provide a similar accuracy of 2.7% and precision of 1% over the measured temperature range. The reliability of the TLAF thermometry was further tested by performing simultaneous rotational CARS measurements in the same experiments.
Greer, Rebecca J; Cohn, Leah A; Dodam, John R; Wagner-Mann, Colette C; Mann, F A
2007-06-15
To assess the reliability and accuracy of a predictive rectal thermometer, an infrared auricular thermometer designed for veterinary use, and a subcutaneous temperature-sensing microchip for measurement of core body temperature over various temperature conditions in dogs. Prospective study. 8 purpose-bred dogs. A minimum of 7 days prior to study commencement, a subcutaneous temperature-sensing microchip was implanted in 1 of 3 locations (interscapular, lateral aspect of shoulder, or sacral region) in each dog. For comparison with temperatures measured via rectal thermometer, infrared auricular thermometer, and microchip, core body temperature was measured via a thermistor-tipped pulmonary artery (TTPA) catheter. Hypothermia was induced during anesthesia at the time of TTPA catheter placement; on 3 occasions after placement of the catheter, hyperthermia was induced via administration of a low dose of endotoxin. Near-simultaneous duplicate temperature measurements were recorded from the TTPA catheter, the rectal thermometer, auricular thermometer, and subcutaneous microchips during hypothermia, euthermia, and hyperthermia. Reliability (variability) of temperature measurement for each device and agreement between each device measurement and core body temperature were assessed. Variability between duplicate near-simultaneous temperature measurements was greatest for the auricular thermometer and least for the TTPA catheter. Measurements obtained by use of the rectal thermometer were in closest agreement with core body temperature; for all other devices, temperature readings typically underestimated core body temperature. Among the 3 methods of temperature measurement, rectal thermometry provided the most accurate estimation of core body temperature in dogs.
Mazaheri, Hossein; Lee, Keat Teong; Bhatia, Subhash; Mohamed, Abdul Rahman
2010-12-01
Thermal decomposition of oil palm fruit press fiber (FPF) into a liquid product (LP) was achieved using subcritical water treatment in the presence of sodium hydroxide in a high pressure batch reactor. This study uses experimental design and process optimisation tools to maximise the LP yield using response surface methodology (RSM) with central composite rotatable design (CCRD). The independent variables were temperature, residence time, particle size, specimen loading, and additive loading. The mathematical model that was developed fit the experimental results well for all of the response variables that were studied. The optimal conditions were found to be a temperature of 551 K, a residence time of 40 min, a particle size of 710-1000 microm, a specimen loading of 5 g, and a additive loading of 9 wt.% to achieve a LP yield of 76.16%. 2010 Elsevier Ltd. All rights reserved.
Gangopadhyay, Subhrendu; McCabe, Gregory J.; Woodhouse, Connie A.
2015-01-01
In this paper, we present a methodology to use annual tree-ring chronologies and a monthly water balance model to generate annual reconstructions of water balance variables (e.g., potential evapotrans- piration (PET), actual evapotranspiration (AET), snow water equivalent (SWE), soil moisture storage (SMS), and runoff (R)). The method involves resampling monthly temperature and precipitation from the instrumental record directed by variability indicated by the paleoclimate record. The generated time series of monthly temperature and precipitation are subsequently used as inputs to a monthly water balance model. The methodology is applied to the Upper Colorado River Basin, and results indicate that the methodology reliably simulates water-year runoff, maximum snow water equivalent, and seasonal soil moisture storage for the instrumental period. As a final application, the methodology is used to produce time series of PET, AET, SWE, SMS, and R for the 1404–1905 period for the Upper Colorado River Basin.
Long-Term Trends in Migration Timing Based on Thermal Response of a Temperate Forage Fish
NASA Astrophysics Data System (ADS)
Palamara, L. J.; Manderson, J.; Kohut, J. T.; Snow, A.
2016-02-01
The physiology of many marine animals is tightly coupled to their surrounding fluid environment. Several habitat features, most notably temperature, determine these animals' fitness by affecting their growth, survival, and reproductive success. In temperate regions, many species are mobile and able to track the specific temperatures encompassed by their thermal niches as the regional temperature distribution changes. Butterfish (Peprilus triacanthus), which demonstrate very strong seasonal and temperature-dependent migration patterns in the Mid-Atlantic Bight (MAB), a region exhibiting some of the highest seasonal and interannual temperature variability in the world, is an excellent example of this phenomenon. We developed a thermal niche model for butterfish based on the statistical relationship between catches and measured temperatures from spring and fall NMFS and NEAMAP surveys and several state inshore surveys, and fit parameters to the Boltzmann-Arrhenius function, a simple yet explanatory model of temperature dependence, so that the resulting curve closely matched the statistical relationship. This thermal relationship was coupled to over 30 years of daily shallow-water OI SST (optimal interpolation sea surface temperature) measured by satellite and various in situ platforms, and daily bottom temperatures estimated by a hydrodynamic hindcast ROMS (Regional Ocean Modeling System) model to examine long-term trends in thermal migration triggers into shallow inshore waters in the spring, and out of them to deep offshore wintering habitat in the fall. In many parts of the MAB, the "thermal fall" migration trigger was delayed during later decades of the time series compared to earlier decades. This suggests potential changes in butterfish productivity and life history stages, as well as potential changes in NMFS survey bias, as the ships are unable to tow in shallow waters and will catch most butterfish in deeper waters after the variable migration trigger.
Exceptional Arctic warmth of early winter 2016 and attribution to global warming
NASA Astrophysics Data System (ADS)
van Oldenborgh, Geert Jan; Macias-Fauria, Marc; King, Andrew; Uhe, Peter; Philip, Sjoukje; Kew, Sarah; Karoly, David; Otto, Friederike; Allen, Myles; Cullen, Heidi
2017-04-01
The dark polar winters usually sport the coldest extremes on Earth, however this winter, the North Pole and the surrounding Arctic region have experienced record high temperatures in November and December, with daily means reaching 15 °C (27 °F) above normal and a November monthly mean that was 13 °C (23 °F) above normal on the pole. November also saw a brief retreat of sea-ice that was virtually unprecedented in nearly 40 years of satellite records, followed by a record low in November sea ice area since 1850. Unlike the Antarctic, Arctic lands are inhabited and their socio-economic systems are greatly affected by the impacts of extreme and unprecedented sea ice dynamics and temperatures, such as for example, the timing of marine mammal migrations, and refreezing rain on snow that prevents reindeer from feeding. Here we report on our multi-method rapid attribution analysis of North Pole November-December temperatures. To quantify the rarity of the event, we computed the November-December averaged temperature around the North Pole (80-90 °N) in the (short but North-pole covering) ERA-interim reanalysis. To put the event in context of natural variability, we use a longer and closely related time series based on the northern most meteorological observations on land (70-80 °N). This allows for a reconstruction of Arctic temperatures back to about 1900. We also perform a multi-method analysis of North Pole temperatures with two sets of climate models: the CMIP5 multi-model ensemble, and a large ensemble of model runs in the so-called Weather@Home project. Physical mechanisms that are responsible for temperature and sea ice variability in the North Pole region are also discussed. The observations and the bias-corrected CMIP5 ensemble point to a return period of about 50 to 200 years in the present climate, i.e., the probability of such an extreme is about 0.5% to 2% every year, with a large uncertainty. The observations show that November-December temperatures have risen on the North Pole, modulated by decadal North Atlantic variability. For all phases of this variability, a warm event like the one of this winter would have been extremely unlikely in the climate of a century ago. Both sets of models also give very comparable results and show that the bulk of the arctic temperature increase is due to anthropogenic emissions. This also holds for the warm extremes caused by the type of circulation present in the early winter of 2016.
NASA Astrophysics Data System (ADS)
Lam, Holly Ching-yu; Chan, Emily Ying-yang; Goggins, William Bernard
2018-05-01
Pneumonia and chronic obstructive pulmonary diseases (COPD) are the commonest causes of respiratory hospitalization among older adults. Both diseases have been reported to be associated with ambient temperature, but the associations have not been compared between the diseases. Their associations with other meteorological variables have also not been well studied. This study aimed to evaluate the associations between meteorological variables, pneumonia, and COPD hospitalization among adults over 60 and to compare these associations between the diseases. Daily cause-specific hospitalization counts in Hong Kong during 2004-2011 were regressed on daily meteorological variables using distributed lag nonlinear models. Associations were compared between diseases by ratio of relative risks. Analyses were stratified by season and age group (60-74 vs. ≥ 75). In hot season, high temperature (> 28 °C) and high relative humidity (> 82%) were statistically significantly associated with more pneumonia in lagged 0-2 and lagged 0-10 days, respectively. Pneumonia hospitalizations among the elderly (≥ 75) also increased with high solar radiation and high wind speed. During the cold season, consistent hockey-stick associations with temperature and relative humidity were found for both admissions and both age groups. The minimum morbidity temperature and relative humidity were at about 21-22 °C and 82%. The lagged effects of low temperature were comparable for both diseases (lagged 0-20 days). The low-temperature-admissions associations with COPD were stronger and were strongest among the elderly. This study found elevated pneumonia and COPD admissions risks among adults ≥ 60 during periods of extreme weather conditions, and the associations varied by season and age group. Vulnerable groups should be advised to avoid exposures, such as staying indoor and maintaining satisfactory indoor conditions, to minimize risks.
NASA Astrophysics Data System (ADS)
Häusler, K.; Hagan, M. E.; Forbes, J. M.; Zhang, X.; Doornbos, E.; Bruinsma, S.; Lu, G.
2015-01-01
In this paper, we provide insights into limitations imposed by current satellite-based strategies to delineate tidal variability in the thermosphere, as well as the ability of a state-of-the-art model to replicate thermospheric tidal determinations. Toward this end, we conducted a year-long thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM) simulation for 2009, which is characterized by low solar and geomagnetic activity. In order to account for tropospheric waves and tides propagating upward into the ˜30-400 km model domain, we used 3-hourly MERRA (Modern-Era Retrospective Analysis for Research and Application) reanalysis data. We focus on exospheric tidal temperatures, which are also compared with 72 day mean determinations from combined Challenging Minisatellite Payload (CHAMP) and Gravity Recovery and Climate Experiment (GRACE) satellite observations to assess the model's capability to capture the observed tidal signatures and to quantify the uncertainties associated with the satellite exospheric temperature determination technique. We found strong day-to-day tidal variability in TIME-GCM that is smoothed out when averaged over as few as ten days. TIME-GCM notably overestimates the 72 day mean eastward propagating tides observed by CHAMP/GRACE, while capturing many of the salient features of other tidal components. However, the CHAMP/GRACE tidal determination technique only provides a gross climatological representation, underestimates the majority of the tidal components in the climatological spectrum, and moreover fails to characterize the extreme variability that drives the dynamics and electrodynamics of the ionosphere-thermosphere system. A multisatellite mission that samples at least six local times simultaneously is needed to provide this quantification.
Advances in satellite remote sensing of environmental variables for epidemiological applications.
Goetz, S J; Prince, S D; Small, J
2000-01-01
Earth-observing satellites have provided an unprecedented view of the land surface but have been exploited relatively little for the measurement of environmental variables of particular relevance to epidemiology. Recent advances in techniques to recover continuous fields of air temperature, humidity, and vapour pressure deficit from remotely sensed observations have significant potential for disease vector monitoring and related epidemiological applications. We report on the development of techniques to map environmental variables with relevance to the prediction of the relative abundance of disease vectors and intermediate hosts. Improvements to current methods of obtaining information on vegetation properties, canopy and surface temperature and soil moisture over large areas are also discussed. Algorithms used to measure these variables incorporate visible, near-infrared and thermal infrared radiation observations derived from time series of satellite-based sensors, focused here primarily but not exclusively on the Advanced Very High Resolution Radiometer (AVHRR) instruments. The variables compare favourably with surface measurements over a broad array of conditions at several study sites, and maps of retrieved variables captured patterns of spatial variability comparable to, and locally more accurate than, spatially interpolated meteorological observations. Application of multi-temporal maps of these variables are discussed in relation to current epidemiological research on the distribution and abundance of some common disease vectors.
Real-Time Alpine Measurement System Using Wireless Sensor Networks
2017-01-01
Monitoring the snow pack is crucial for many stakeholders, whether for hydro-power optimization, water management or flood control. Traditional forecasting relies on regression methods, which often results in snow melt runoff predictions of low accuracy in non-average years. Existing ground-based real-time measurement systems do not cover enough physiographic variability and are mostly installed at low elevations. We present the hardware and software design of a state-of-the-art distributed Wireless Sensor Network (WSN)-based autonomous measurement system with real-time remote data transmission that gathers data of snow depth, air temperature, air relative humidity, soil moisture, soil temperature, and solar radiation in physiographically representative locations. Elevation, aspect, slope and vegetation are used to select network locations, and distribute sensors throughout a given network location, since they govern snow pack variability at various scales. Three WSNs were installed in the Sierra Nevada of Northern California throughout the North Fork of the Feather River, upstream of the Oroville dam and multiple powerhouses along the river. The WSNs gathered hydrologic variables and network health statistics throughout the 2017 water year, one of northern Sierra’s wettest years on record. These networks leverage an ultra-low-power wireless technology to interconnect their components and offer recovery features, resilience to data loss due to weather and wildlife disturbances and real-time topological visualizations of the network health. Data show considerable spatial variability of snow depth, even within a 1 km2 network location. Combined with existing systems, these WSNs can better detect precipitation timing and phase in, monitor sub-daily dynamics of infiltration and surface runoff during precipitation or snow melt, and inform hydro power managers about actual ablation and end-of-season date across the landscape. PMID:29120376
Structural Time Series Model for El Niño Prediction
NASA Astrophysics Data System (ADS)
Petrova, Desislava; Koopman, Siem Jan; Ballester, Joan; Rodo, Xavier
2015-04-01
ENSO is a dominant feature of climate variability on inter-annual time scales destabilizing weather patterns throughout the globe, and having far-reaching socio-economic consequences. It does not only lead to extensive rainfall and flooding in some regions of the world, and anomalous droughts in others, thus ruining local agriculture, but also substantially affects the marine ecosystems and the sustained exploitation of marine resources in particular coastal zones, especially the Pacific South American coast. As a result, forecasting of ENSO and especially of the warm phase of the oscillation (El Niño/EN) has long been a subject of intense research and improvement. Thus, the present study explores a novel method for the prediction of the Niño 3.4 index. In the state-of-the-art the advantageous statistical modeling approach of Structural Time Series Analysis has not been applied. Therefore, we have developed such a model using a State Space approach for the unobserved components of the time series. Its distinguishing feature is that observations consist of various components - level, seasonality, cycle, disturbance, and regression variables incorporated as explanatory covariates. These components are aimed at capturing the various modes of variability of the N3.4 time series. They are modeled separately, then combined in a single model for analysis and forecasting. Customary statistical ENSO prediction models essentially use SST, SLP and wind stress in the equatorial Pacific. We introduce new regression variables - subsurface ocean temperature in the western equatorial Pacific, motivated by recent (Ramesh and Murtugudde, 2012) and classical research (Jin, 1997), (Wyrtki, 1985), showing that subsurface processes and heat accumulation there are fundamental for initiation of an El Niño event; and a southern Pacific temperature-difference tracer, the Rossbell dipole, leading EN by about nine months (Ballester, 2011).
Real-Time Alpine Measurement System Using Wireless Sensor Networks.
Malek, Sami A; Avanzi, Francesco; Brun-Laguna, Keoma; Maurer, Tessa; Oroza, Carlos A; Hartsough, Peter C; Watteyne, Thomas; Glaser, Steven D
2017-11-09
Monitoring the snow pack is crucial for many stakeholders, whether for hydro-power optimization, water management or flood control. Traditional forecasting relies on regression methods, which often results in snow melt runoff predictions of low accuracy in non-average years. Existing ground-based real-time measurement systems do not cover enough physiographic variability and are mostly installed at low elevations. We present the hardware and software design of a state-of-the-art distributed Wireless Sensor Network (WSN)-based autonomous measurement system with real-time remote data transmission that gathers data of snow depth, air temperature, air relative humidity, soil moisture, soil temperature, and solar radiation in physiographically representative locations. Elevation, aspect, slope and vegetation are used to select network locations, and distribute sensors throughout a given network location, since they govern snow pack variability at various scales. Three WSNs were installed in the Sierra Nevada of Northern California throughout the North Fork of the Feather River, upstream of the Oroville dam and multiple powerhouses along the river. The WSNs gathered hydrologic variables and network health statistics throughout the 2017 water year, one of northern Sierra's wettest years on record. These networks leverage an ultra-low-power wireless technology to interconnect their components and offer recovery features, resilience to data loss due to weather and wildlife disturbances and real-time topological visualizations of the network health. Data show considerable spatial variability of snow depth, even within a 1 km 2 network location. Combined with existing systems, these WSNs can better detect precipitation timing and phase in, monitor sub-daily dynamics of infiltration and surface runoff during precipitation or snow melt, and inform hydro power managers about actual ablation and end-of-season date across the landscape.
Boussaa, Samia; Kahime, Kholoud; Samy, Abdallah M; Salem, Abdelkrim Ben; Boumezzough, Ali
2016-02-02
Cutaneous Leishmaniasis (CL) is one of the most neglected tropical diseases in Morocco. Leishmania major and L. tropica are the main culprits identified in all endemic foci across the country. These two etiological agents are transmitted by Phlebotomus papatasi and P. sergenti, the two most prevalent sand fly species in Morocco. Previous studies reflected gaps of knowledge regarding the environmental fingerprints that affect the distribution of these two potential vectors across Morocco. The sand flies were collected from 48 districts across Morocco using sticky paper traps. Collected specimens were preserved in 70% ethanol for further processing and identification. Male and female densities were calculated in each site to examine their relations to the environmental conditions across these sites. The study used 19 environmental variables including precipitation, aridity, elevation, soil variables and a composite representing maximum, minimum and mean of day- and night-time Land Surface Temperature (LST), and Normalized Difference Vegetation Index (NDVI). A total of 11,717 specimens were collected during this entomological survey. These specimens represented 11 species of two genera; Phlebotomus and Sergentomyia. Correlations of the sand fly densities with the environmental variables were estimated to identify the variables which influence the distribution of the two potential vectors, Phlebotomus papatasi and P. sergenti, associated with all CL endemic foci across the country. The density of P. papatasi was most affected by temperature changes. The study showed a significant positive correlation between the densities of both sexes of P. papatasi and night-time temperatures. Both P. papatasi and P. sergenti showed a negative correlation with aridity, but, such correlation was only significant in case of P. papatasi. NDVI showed a positive correlation only with densities of P. sergenti, while, soil PH and soil water stress were negatively correlated with the densities of both males and females of only P. papatasi. Our results identified the sand fly species across all CL endemic sites and underlined the influences of night-time temperature, soil water stress and NDVI as the most important variables affecting the sand fly distribution in all sampled sites. This preliminary study considered the importance of these covariates to anticipate the potential distribution of P. papatasi and P. sergenti in Morocco.
Estuary-ocean connectivity: Fast physics, slow biology
Raimonet, Mélanie; Cloern, James E.
2017-01-01
Estuaries are connected to both land and ocean so their physical, chemical, and biological dynamics are influenced by climate patterns over watersheds and ocean basins. We explored climate-driven oceanic variability as a source of estuarine variability by comparing monthly time series of temperature and chlorophyll-a inside San Francisco Bay with those in adjacent shelf waters of the California Current System (CCS) that are strongly responsive to wind-driven upwelling. Monthly temperature fluctuations inside and outside the Bay were synchronous, but their correlations weakened with distance from the ocean. These results illustrate how variability of coastal water temperature (and associated properties such as nitrate and oxygen) propagates into estuaries through fast water exchanges that dissipate along the estuary. Unexpectedly, there was no correlation between monthly chlorophyll-a variability inside and outside the Bay. However, at the annual scale Bay chlorophyll-a was significantly correlated with the Spring Transition Index (STI) that sets biological production supporting fish recruitment in the CCS. Wind forcing of the CCS shifted in the late 1990s when the STI advanced 40 days. This shift was followed, with lags of 1–3 years, by 3- to 19-fold increased abundances of five ocean-produced demersal fish and crustaceans and 2.5-fold increase of summer chlorophyll-a in the Bay. These changes reflect a slow biological process of estuary–ocean connectivity operating through the immigration of fish and crustaceans that prey on bivalves, reduce their grazing pressure, and allow phytoplankton biomass to build. We identified clear signals of climate-mediated oceanic variability in this estuary and discovered that the response patterns vary with the process of connectivity and the timescale of ocean variability. This result has important implications for managing nutrient inputs to estuaries connected to upwelling systems, and for assessing their responses to changing patterns of upwelling timing and intensity as the planet continues to warm.
Mortier, Séverine Thérèse F C; Van Bockstal, Pieter-Jan; Corver, Jos; Nopens, Ingmar; Gernaey, Krist V; De Beer, Thomas
2016-06-01
Large molecules, such as biopharmaceuticals, are considered the key driver of growth for the pharmaceutical industry. Freeze-drying is the preferred way to stabilise these products when needed. However, it is an expensive, inefficient, time- and energy-consuming process. During freeze-drying, there are only two main process variables to be set, i.e. the shelf temperature and the chamber pressure, however preferably in a dynamic way. This manuscript focuses on the essential use of uncertainty analysis for the determination and experimental verification of the dynamic primary drying Design Space for pharmaceutical freeze-drying. Traditionally, the chamber pressure and shelf temperature are kept constant during primary drying, leading to less optimal process conditions. In this paper it is demonstrated how a mechanistic model of the primary drying step gives the opportunity to determine the optimal dynamic values for both process variables during processing, resulting in a dynamic Design Space with a well-known risk of failure. This allows running the primary drying process step as time efficient as possible, hereby guaranteeing that the temperature at the sublimation front does not exceed the collapse temperature. The Design Space is the multidimensional combination and interaction of input variables and process parameters leading to the expected product specifications with a controlled (i.e., high) probability. Therefore, inclusion of parameter uncertainty is an essential part in the definition of the Design Space, although it is often neglected. To quantitatively assess the inherent uncertainty on the parameters of the mechanistic model, an uncertainty analysis was performed to establish the borders of the dynamic Design Space, i.e. a time-varying shelf temperature and chamber pressure, associated with a specific risk of failure. A risk of failure acceptance level of 0.01%, i.e. a 'zero-failure' situation, results in an increased primary drying process time compared to the deterministic dynamic Design Space; however, the risk of failure is under control. Experimental verification revealed that only a risk of failure acceptance level of 0.01% yielded a guaranteed zero-defect quality end-product. The computed process settings with a risk of failure acceptance level of 0.01% resulted in a decrease of more than half of the primary drying time in comparison with a regular, conservative cycle with fixed settings. Copyright © 2016. Published by Elsevier B.V.
An Observationally-Centred Method to Quantify the Changing Shape of Local Temperature Distributions
NASA Astrophysics Data System (ADS)
Chapman, S. C.; Stainforth, D. A.; Watkins, N. W.
2014-12-01
For climate sensitive decisions and adaptation planning, guidance on how local climate is changing is needed at the specific thresholds relevant to particular impacts or policy endeavours. This requires the quantification of how the distributions of variables, such as daily temperature, are changing at specific quantiles. These temperature distributions are non-normal and vary both geographically and in time. We present a method[1,2] for analysing local climatic time series data to assess which quantiles of the local climatic distribution show the greatest and most robust changes. We have demonstrated this approach using the E-OBS gridded dataset[3] which consists of time series of local daily temperature across Europe over the last 60 years. Our method extracts the changing cumulative distribution function over time and uses a simple mathematical deconstruction of how the difference between two observations from two different time periods can be assigned to the combination of natural statistical variability and/or the consequences of secular climate change. The change in temperature can be tracked at a temperature threshold, at a likelihood, or at a given return time, independently for each geographical location. Geographical correlations are thus an output of our method and reflect both climatic properties (local and synoptic), and spatial correlations inherent in the observation methodology. We find as an output many regionally consistent patterns of response of potential value in adaptation planning. For instance, in a band from Northern France to Denmark the hottest days in the summer temperature distribution have seen changes of at least 2°C over a 43 year period; over four times the global mean change over the same period. We discuss methods to quantify the robustness of these observed sensitivities and their statistical likelihood. This approach also quantifies the level of detail at which one might wish to see agreement between climate models and observations if such models are to be used directly as tools to assess climate change impacts at local scales. [1] S C Chapman, D A Stainforth, N W Watkins, 2013, Phil. Trans. R. Soc. A, 371 20120287. [2] D A Stainforth, S C Chapman, N W Watkins, 2013, Environ. Res. Lett. 8, 034031 [3] Haylock, M.R. et al., 2008, J. Geophys. Res (Atmospheres), 113, D20119
Eide, Ingvar; Westad, Frank
2018-01-01
A pilot study demonstrating real-time environmental monitoring with automated multivariate analysis of multi-sensor data submitted online has been performed at the cabled LoVe Ocean Observatory located at 258 m depth 20 km off the coast of Lofoten-Vesterålen, Norway. The major purpose was efficient monitoring of many variables simultaneously and early detection of changes and time-trends in the overall response pattern before changes were evident in individual variables. The pilot study was performed with 12 sensors from May 16 to August 31, 2015. The sensors provided data for chlorophyll, turbidity, conductivity, temperature (three sensors), salinity (calculated from temperature and conductivity), biomass at three different depth intervals (5-50, 50-120, 120-250 m), and current speed measured in two directions (east and north) using two sensors covering different depths with overlap. A total of 88 variables were monitored, 78 from the two current speed sensors. The time-resolution varied, thus the data had to be aligned to a common time resolution. After alignment, the data were interpreted using principal component analysis (PCA). Initially, a calibration model was established using data from May 16 to July 31. The data on current speed from two sensors were subject to two separate PCA models and the score vectors from these two models were combined with the other 10 variables in a multi-block PCA model. The observations from August were projected on the calibration model consecutively one at a time and the result was visualized in a score plot. Automated PCA of multi-sensor data submitted online is illustrated with an attached time-lapse video covering the relative short time period used in the pilot study. Methods for statistical validation, and warning and alarm limits are described. Redundant sensors enable sensor diagnostics and quality assurance. In a future perspective, the concept may be used in integrated environmental monitoring.
Jha, Pankaj; Das, Arup Jyoti; Deka, Sankar Chandra
2017-11-01
Phenolic compounds were extracted from the husk of milled black rice (cv. Poireton) by using a combination of ultrasound assisted extraction and microwave assisted extraction. Extraction parameters were optimized by response surface methodology according to a three levels, five variables Box-Behnken design. The appropriate process variables (extraction temperature and extraction time) to maximize the ethanolic extraction of total phenolic compounds, flavonoids, anthocyanins and antioxidant activity of the extracts were obtained. Extraction of functional components with varying ethanol concentration and microwave time were significantly affected by the process variables. The best possible conditions obtained by RSM for all the factors included 10.02 min sonication time, 49.46 °C sonication temperature, 1:40.79 (w/v) solute solvent ratio, 67.34% ethanol concentration, and 31.11 s microwave time. Under the given solutions, the maximum extraction of phenolics (1.65 mg/g GAE), flavonoids (3.04 mg/100 g), anthocyanins (3.39 mg/100 g) and antioxidants (100%) were predicted, while the experimental values included 1.72 mg/g GAE of total phenolics, 3.01 mg/100 g of flavonoids, 3.36 mg/100 g of anthocyanins and 100% antioxidant activity. The overall results indicated positive impact of co-application of microwave and ultrasound assisted extractions of phenolic compounds from black rice husk.
NASA Astrophysics Data System (ADS)
Vincze, E.; Hunkár, M.; Dunkel, Z.
2012-04-01
Phenological observations in Hungary started in 1871. The observation system collapsed and revived time by time. The aim of the observations as well as the locations, the methods and observed plants have been changed many times, therefore data series for a given plant species derived from the same place are rare. If we want to study the responses of biosphere to climate variability we need long time data series from the same places, especially phenological data of native plants. Phenological observations organized by the Hungarian Meteorological Service between 1983- 1999 contain valuable data for lilac (Syringa vulgaris) and elderberry (Sambucus nigra). Those perennial native plants are good indicators of spring warming therefore it is worth to study their phenological development concerning to climate variability. Eight locations in Hungary were selected where the site of the observations remaind the same year by year. Observed phenological phases were: Sprouting of leaves (SL, BBCH:11); Begin of Flowers (BF, BBCH:61); Fall of leaves (FO, BBCH:95). Spatial and temporal trends and variability of phenophases will be presented. The effect of meteorological conditions is studied to build up phenological model controlled by the temperature. Growing degree days above the base temperature was involved together with the duration and severeness of the chilling period. The study is supported by the National Scientific Foundation (OTKA-81979).
Elmendorf, Sarah C; Henry, Gregory H R; Hollister, Robert D; Fosaa, Anna Maria; Gould, William A; Hermanutz, Luise; Hofgaard, Annika; Jónsdóttir, Ingibjörg S; Jónsdóttir, Ingibjörg I; Jorgenson, Janet C; Lévesque, Esther; Magnusson, Borgþór; Molau, Ulf; Myers-Smith, Isla H; Oberbauer, Steven F; Rixen, Christian; Tweedie, Craig E; Walker, Marilyn D; Walker, Marilyn
2015-01-13
Inference about future climate change impacts typically relies on one of three approaches: manipulative experiments, historical comparisons (broadly defined to include monitoring the response to ambient climate fluctuations using repeat sampling of plots, dendroecology, and paleoecology techniques), and space-for-time substitutions derived from sampling along environmental gradients. Potential limitations of all three approaches are recognized. Here we address the congruence among these three main approaches by comparing the degree to which tundra plant community composition changes (i) in response to in situ experimental warming, (ii) with interannual variability in summer temperature within sites, and (iii) over spatial gradients in summer temperature. We analyzed changes in plant community composition from repeat sampling (85 plant communities in 28 regions) and experimental warming studies (28 experiments in 14 regions) throughout arctic and alpine North America and Europe. Increases in the relative abundance of species with a warmer thermal niche were observed in response to warmer summer temperatures using all three methods; however, effect sizes were greater over broad-scale spatial gradients relative to either temporal variability in summer temperature within a site or summer temperature increases induced by experimental warming. The effect sizes for change over time within a site and with experimental warming were nearly identical. These results support the view that inferences based on space-for-time substitution overestimate the magnitude of responses to contemporary climate warming, because spatial gradients reflect long-term processes. In contrast, in situ experimental warming and monitoring approaches yield consistent estimates of the magnitude of response of plant communities to climate warming.
NASA Astrophysics Data System (ADS)
Min, Young-Mi; Kryjov, Vladimir N.; Oh, Sang Myeong; Lee, Hyun-Ju
2017-12-01
This paper assesses the real-time 1-month lead forecasts of 3-month (seasonal) mean temperature and precipitation on a monthly basis issued by the Asia-Pacific Economic Cooperation Climate Center (APCC) for 2008-2015 (8 years, 96 forecasts). It shows the current level of the APCC operational multi-model prediction system performance. The skill of the APCC forecasts strongly depends on seasons and regions that it is higher for the tropics and boreal winter than for the extratropics and boreal summer due to direct effects and remote teleconnections from boundary forcings. There is a negative relationship between the forecast skill and its interseasonal variability for both variables and the forecast skill for precipitation is more seasonally and regionally dependent than that for temperature. The APCC operational probabilistic forecasts during this period show a cold bias (underforecasting of above-normal temperature and overforecasting of below-normal temperature) underestimating a long-term warming trend. A wet bias is evident for precipitation, particularly in the extratropical regions. The skill of both temperature and precipitation forecasts strongly depends upon the ENSO strength. Particularly, the highest forecast skill noted in 2015/2016 boreal winter is associated with the strong forcing of an extreme El Nino event. Meanwhile, the relatively low skill is associated with the transition and/or continuous ENSO-neutral phases of 2012-2014. As a result the skill of real-time forecast for boreal winter season is higher than that of hindcast. However, on average, the level of forecast skill during the period 2008-2015 is similar to that of hindcast.
NASA Astrophysics Data System (ADS)
Orton, G.; Feuchtgruber, H.; Fletcher, L.; Lellouch, E.; Moreno, R.; Billebaud, F.; Cavalie, T.; Decin, L.; Dobreijecvic, M.; Encrenaz, T.; Hartogh, P.; Jarchow, C.; Lara, L. M.; Liu, J.
2012-04-01
The power of high-resolution submillimeter spectroscopy of Uranus and Neptune was put to use to survey the rotational variability of stratospheric and tropospheric constituents of their atmospheres. These observations were motivated by the surprising discovery of as much as 12% rotational variability of emission from stratospheric constituents in the atmosphere of Uranus by the Spitzer Infrared Spectrometer and the detection of spatial variability in thermal images of Neptune's stratospheric emission (Orton et al. 2007, Astron. & Astrophys 473, L3). Our observing program consisted of three separate sequences of observations to look at the strongest lines of H2O in the high-resolution PACS spectra of both planets, whose upwelling radiance emerges from the same vertical region as the Spitzer IRS observations of Uranus and ground-based images of Neptune, and the strongest line of CH4 in the PACS spectrum of Neptune. We omitted measurements of CH4 lines in Uranus, which are almost non-detectable. We added the strongest HD line in Uranus to measure variability of tropospheric temperatures that could modulate stratospheric CH4 abundances through local cold-trapping and the strongest two HD lines in Neptune (Lellouch et al. 2010, Astron. & Astrophys. 518, L152) that determine both the tropopause temperature to limit local cold-trapping efficacy and the lower stratospheric temperature, to help differentiate between longitudinal variability of stratospheric H2O and CH4 abundances vs. temperatures. These were repeated over the 17-hour interval that is common to the equatorial rotation periods of both Uranus and Neptune. Although these lines had already been observed in Uranus and Neptune by PACS, no repeat measurements had ever been made to determine longitudinal variability. The observations were consistent with previous measurements, but no significant rotational variability was detected. It is possible that the absence of rotational variability in the HD and CH4 lines is because variability is confined to very low pressures, e.g. much lower than a microbar. However, the absence of variable emission from high-altitude exogenic H2O vapor is harder to explain, unless the variability seen in Uranus by Spitzer and in Neptune from the VLT, is not the result of variations in temperature by in the hydrocarbon abundances. Alternatively, the stratospheres of both planets are variable in time. The cause of such variability is unknown, but spatially confined outbursts have been detected in the visible and near infrared, and they may have as much influence on the stratosphere of Uranus as the great springtime storm in Saturn's northern hemisphere, creating a strong, localized "beacon" of thermal radiation (cf. Fletcher et al. 2011, Science, 332,1413) that could dominate the emission observed over the hemisphere.
Nobile, Leda; Lamanna, Irene; Fontana, Vito; Donadello, Katia; Dell'anna, Antonio Maria; Creteur, Jacques; Vincent, Jean-Louis; Pappalardo, Federico; Taccone, Fabio Silvio
2015-11-01
Spontaneous alterations in temperature homeostasis after cardiac arrest (CA) are associated with worse outcome. However, it remains unclear the prognostic role of temperature variability (TV) during cooling procedures. We hypothesized that low TV during targeted temperature management (TTM) would be associated with a favourable neurological outcome after CA. We reviewed data from all comatose patients after in-hospital or out-of-hospital CA admitted to our Department of Intensive Care between December 2006 and January 2014 who underwent TTM (32-34°C) and survived at least 24h. We collected demographic data, CA characteristics, intensive care unit (ICU) survival and neurological outcome at three months (favourable neurological outcome was defined as cerebral performance category 1-2). TV was expressed using the standard deviation (SD) of all temperature measurements during hypothermia; high TV was defined as an SD >1°C. Of the 301 patients admitted over the study period, 72 patients were excluded and a total of 229 patients were studied; 88 had a favourable neurological outcome. The median temperature on ICU admission was 35.8 [34.9-36.9]°C and the median time to hypothermia (body temperature <34°C), was 4 [3-7] h. Median TV was 0.9 [0.6-1.0]°C and 57 patients (25%) had high TV. In multivariable logistic regression, witnessed CA, ventricular fibrillation/tachycardia and previous neurological disease were independent risk factors for high TV. Younger age, bystander cardiopulmonary resuscitation, shorter time to return of spontaneous circulation, cardiac origin of arrest, shockable rhythm and longer time to target temperature were independent predictors of favourable neurological outcome, but TV was not. Among comatose survivors treated with TTM after CA, 25% of patients had high TV; however, this was not associated with a worse neurologic outcome. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bohleber, Pascal; Erhardt, Tobias; Spaulding, Nicole; Hoffmann, Helene; Fischer, Hubertus; Mayewski, Paul
2018-01-01
Among ice core drilling sites in the European Alps, Colle Gnifetti (CG) is the only non-temperate glacier to offer climate records dating back at least 1000 years. This unique long-term archive is the result of an exceptionally low net accumulation driven by wind erosion and rapid annual layer thinning. However, the full exploitation of the CG time series has been hampered by considerable dating uncertainties and the seasonal summer bias in snow preservation. Using a new core drilled in 2013 we extend annual layer counting, for the first time at CG, over the last 1000 years and add additional constraints to the resulting age scale from radiocarbon dating. Based on this improved age scale, and using a multi-core approach with a neighbouring ice core, we explore the time series of stable water isotopes and the mineral dust proxies Ca2+ and insoluble particles. Also in our latest ice core we face the already known limitation to the quantitative use of the stable isotope variability based on a high and potentially non-stationary isotope/temperature sensitivity at CG. Decadal trends in Ca2+ reveal substantial agreement with instrumental temperature and are explored here as a potential site-specific supplement to the isotope-based temperature reconstruction. The observed coupling between temperature and Ca2+ trends likely results from snow preservation effects and the advection of dust-rich air masses coinciding with warm temperatures. We find that if calibrated against instrumental data, the Ca2+-based temperature reconstruction is in robust agreement with the latest proxy-based summer temperature reconstruction, including a Little Ice Age
cold period as well as a medieval climate anomaly. Part of the medieval climate period around AD 1100-1200 clearly stands out through an increased occurrence of dust events, potentially resulting from a relative increase in meridional flow and/or dry conditions over the Mediterranean.
Effects of temperature on embryonic development of lake herring (Coregonus artedii)
Colby, Peter J.; Brooke, L.T.
1973-01-01
Embryonic development of lake herring (Coregonus artedii) was observed in the laboratory at 13 constant temperatures from 0.0 to 12.1 C and in Pickerel Lake (Washtenaw County, Michigan) at natural temperature regimes. Rate of development during incubation was based on progression of the embryos through 20 identifiable stages. An equation was derived to predict development stage at constant temperatures, on the general assumption that development stage (DS) is a function of time (days, D) and temperature (T). The equation should also be useful in interpreting estimates from future regressions that include other environmental variables that affect egg development. A second regression model, derived primarily for fluctuating temperatures, related development rate for stage j (DRj), expressed as the reciprocal of time, to temperature (x). The generalized equation for a development stage is: DRj = abx cx2 dx3. In general, time required for embryos to reach each stage of development in Pickerel Lake agreed closely with the time predicted from this equation, derived from our laboratory observations. Hatching time was predicted within 1 day in 1969 and within 2 days in 1970. We used the equations derived with the second model to predict the effect of the superimposition of temperature increases of 1 and 2 C on the measured temperatures in Pickerel Lake. Conceivably, hatching dates could be affected sufficiently to jeopardize the first feeding of lake herring through loss of harmony between hatching date and seasonal food availability.
Exploring the Linkage of Sea Surface Temperature Variability on Three Spatial Scales
NASA Astrophysics Data System (ADS)
Luo, L.; Capone, D. G.; Hutchins, D.; Kiefer, D.
2011-12-01
As part of a project examining climate change in the Southern California Bight at the University of Southern California, we studied the linkage of the variability of sea surface temperature across three nested spatial scales, the north Pacific Basin, the West Coast of North American, and the Southern California Bight. Specifically, we analyzed daily GHRSST images between September 1981 and July 2009. In order to remove seasonal changes in temperature and focus upon differences between years, we calculate weekly mean temperature for each pixel from the time series, and then subjected the anomalies for the 3 spatial scales to empirical orthogonal function (EOF) analysis. The corresponding temporal expansion coefficients and spatial components (eigenvector) for each EOF mode were then generated to examine the temporal and spatial patterns of SST change. The results showed that the El Nino Southern Oscillation (ENSO) has a clear influence on the SST variability across all the three spatial scales, especially the 1st EOF mode which represents the largest variance. The comparison between the time coefficients of the 1st EOF mode and the Oceanic Nino Index (ONI) suggested that the EOF mode 1 of the Pacific Basin region matched well with almost all the El Nino and La Nina signals while the West Coast of North American captured only the strong signals and the Southern California Bight captures still fewer of the signals. This clearly indicated that the Southern California Bight is relatively insensitive to ENSO signal relative to other locations along the West Coast. The 1st EOF Mode for the West Coast of North American was also clearly influenced by upwelling. The cross correlation coefficient between each pair of the EOF mode 1 temporal expansion coefficients for the three spatial scales suggested that they were significantly correlated to each other. The effect of the Pacific Decadal Oscillation (PDO) on the SST change was also demonstrated by the temporal variability of the temporal expansion coefficients of the 2nd EOF mode. However, the correlations of 2nd EOF mode time coefficients between the three scales appeared relatively low compared the 1st EOF mode. In summary sea surface temperature in the Southern California Bight behaves like a node that is relatively insensitive to ENSO, PDO, and upwelling signals.
NASA Technical Reports Server (NTRS)
Parinussa, Robert M.; de Jeu, Richard A. M.; van Der Schalie, Robin; Crow, Wade T.; Lei, Fangni; Holmes, Thomas R. H.
2016-01-01
Passive microwave observations from various spaceborne sensors have been linked to the soil moisture of the Earth's surface layer. A new generation of passive microwave sensors are dedicated to retrieving this variable and make observations in the single theoretically optimal L-band frequency (1-2 GHz). Previous generations of passive microwave sensors made observations in a range of higher frequencies, allowing for simultaneous estimation of additional variables required for solving the radiative transfer equation. One of these additional variables is land surface temperature, which plays a unique role in the radiative transfer equation and has an influence on the final quality of retrieved soil moisture anomalies. This study presents an optimization procedure for soil moisture retrievals through a quasi-global precipitation-based verification technique, the so-called Rvalue metric. Various land surface temperature scenarios were evaluated in which biases were added to an existing linear regression, specifically focusing on improving the skills to capture the temporal variability of soil moisture. We focus on the relative quality of the day-time (01:30 pm) observations from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E), as these are theoretically most challenging due to the thermal equilibrium theory, and existing studies indicate that larger improvements are possible for these observations compared to their night-time (01:30 am) equivalent. Soil moisture data used in this study were retrieved through the Land Parameter Retrieval Model (LPRM), and in line with theory, both satellite paths show a unique and distinct degradation as a function of vegetation density. Both the ascending (01:30 pm) and descending (01:30 am) paths of the publicly available and widely used AMSR-E LPRM soil moisture products were used for benchmarking purposes. Several scenarios were employed in which the land surface temperature input for the radiative transfer was varied by imposing a bias on an existing regression. These scenarios were evaluated through the Rvalue technique, resulting in optimal bias values on top of this regression. In a next step, these optimal bias values were incorporated in order to re-calibrate the existing linear regression, resulting in a quasi-global uniform LST relation for day-time observations. In a final step, day-time soil moisture retrievals using the re-calibrated land surface temperature relation were again validated through the Rvalue technique. Results indicate an average increasing Rvalue of 16.5%, which indicates a better performance obtained through the re-calibration. This number was confirmed through an independent Triple Collocation verification over the same domain, demonstrating an average root mean square error reduction of 15.3%. Furthermore, a comparison against an extensive in situ database (679 stations) also indicates a generally higher quality for the re-calibrated dataset. Besides the improved day-time dataset, this study furthermore provides insights on the relative quality of soil moisture retrieved from AMSR-E's day- and night-time observations.
Submesoscale CO2 variability across an upwelling front off Peru
NASA Astrophysics Data System (ADS)
Köhn, Eike E.; Thomsen, Sören; Arévalo-Martínez, Damian L.; Kanzow, Torsten
2017-12-01
As a major source for atmospheric CO2, the Peruvian upwelling region exhibits strong variability in surface fCO2 on short spatial and temporal scales. Understanding the physical processes driving the strong variability is of fundamental importance for constraining the effect of marine emissions from upwelling regions on the global CO2 budget. In this study, a frontal decay on length scales of 𝒪(10 km) was observed off the Peruvian coast following a pronounced decrease in down-frontal (equatorward) wind speed with a time lag of 9 h. Simultaneously, the sea-to-air flux of CO2 on the inshore (cold) side of the front dropped from up to 80 to 10 mmol m-2 day-1, while the offshore (warm) side of the front was constantly outgassing at a rate of 10-20 mmol m-2 day-1. Based on repeated ship transects the decay of the front was observed to occur in two phases. The first phase was characterized by a development of coherent surface temperature anomalies which gained in amplitude over 6-9 h. The second phase was characterized by a disappearance of the surface temperature front within 6 h. Submesoscale mixed-layer instabilities were present but seem too slow to completely remove the temperature gradient in this short time period. Dynamics such as a pressure-driven gravity current appear to be a likely mechanism behind the evolution of the front.
Increased in Variability in Climatological Means and Extremes in the Great Plains
NASA Astrophysics Data System (ADS)
Basara, J. B.; Flanagan, P. X.; Christian, J.; Christian, K.
2016-12-01
The Great Plains (GP) of North America is characterized by orthogonal gradients of temperature and precipitation extending from the Gulf of Mexico in the south to the coniferous forests of Canada to the north and are bordered on the west by the Rocky Mountains and then spread east approximately 1000 km into the interior regions of North America. As a result, significant biodiversity exists across relatively short distances within the region. However, because the gradient of precipitation is large across the GP, multiple environmental factors can lead to significant variability in temperature and precipitation at periods spanning seasonal, to interannual, to decadal scales. In addition, the GP region has shown significant coupling between the surface and the atmosphere, especially during the warm season. As a result, the GP often experiences significant hydrometeorological and hydroclimatological extremes across varying spatial and temporal scales including long-term drought, flash drought, flash flooding, and long-term pluvial periods with significant impacts to ecosystem function. Results into analyses of drought to pluvial dipole events in the GP noted that on average, over twice as many dipoles existed in the latter half of the dataset (1955-2013) relative to the first half (1896-1954). In addition an Asynchronous Difference Index (ADI) computed by determining the difference between the dates of precipitation and temperature maxima revealed two physically distinct regimes of ADI (positive and negative), with comparable shifts in the timing of both the maximum of precipitation and temperature within the GP. Time series analysis of decadal average ADI yielded moderate shifts in ADI with increased variability occurring over much of the GP region.
Modeling olive-crop forecasting in Tunisia
NASA Astrophysics Data System (ADS)
Ben Dhiab, Ali; Ben Mimoun, Mehdi; Oteros, Jose; Garcia-Mozo, Herminia; Domínguez-Vilches, Eugenio; Galán, Carmen; Abichou, Mounir; Msallem, Monji
2017-05-01
Tunisia is the world's second largest olive oil-producing region after the European Union. This paper reports on the use of models to forecast local olive crops, using data for Tunisia's five main olive-producing areas: Mornag, Jemmel, Menzel Mhiri, Chaal, and Zarzis. Airborne pollen counts were monitored over the period 1993-2011 using a Cour trap. Forecasting models were constructed using agricultural data (harvest size in tonnes of fruit/year) and data for several weather-related and phenoclimatic variables (rainfall, humidity, temperature, Growing Degree Days, and Chilling). Analysis of these data revealed that the amount of airborne pollen emitted over the pollen season as a whole (i.e., the Pollen Index) was the variable most influencing harvest size. Findings for all local models also indicated that the amount, timing, and distribution of rainfall (except during blooming) had a positive impact on final olive harvests. Air temperature also influenced final crop yield in three study provinces (Menzel Mhiri, Chaal, and Zarzis), but with varying consequences: in the model constructed for Chaal, cumulative maximum temperature from budbreak to start of flowering contributed positively to yield; in the Menzel Mhiri model, cumulative average temperatures during fruit development had a positive impact on output; in Zarzis, by contrast, cumulative maximum temperature during the period prior to flowering negatively influenced final crop yield. Data for agricultural and phenoclimatic variables can be used to construct valid models to predict annual variability in local olive-crop yields; here, models displayed an accuracy of 98, 93, 92, 91, and 88 % for Zarzis, Mornag, Jemmel, Chaal, and Menzel Mhiri, respectively.
Deep Bering Sea Circulation and Variability, 2001-2016, From Argo Data
NASA Astrophysics Data System (ADS)
Johnson, Gregory C.; Stabeno, Phyllis J.
2017-12-01
The mean structure, seasonal cycle, and interannual variability of temperature and salinity are analyzed in the deep Bering Sea basin using Argo profile data collected from 2001 to 2016. Gyre transports are estimated using geostrophic stream function maps of Argo profile data referenced to a 1,000 dbar nondivergent absolute velocity stream function mapped from Argo parking pressure displacement data. Relatively warm and salty water from the North Pacific enters the basin through the Near Strait and passages between Aleutian Islands to the east. This water then flows in a cyclonic (counterclockwise) direction around the region, cooling (and freshening) along its path. Aleutian North Slope Current transports from 0 to 1,890 dbar are estimated at 3-6 Sverdrups (1 Sv = 106 m3 s-1) eastward, feeding into the northwestward Bering Slope Current with transports of mostly 5-6 Sv. The Kamchatka Current has transports of ˜6 Sv north of Shirshov Ridge, increasing to 14-16 Sv south of the ridge, where it is augmented by westward flow from Near Strait. Temperature exhibits strong interannual variations in the upper ocean, with warm periods in 2004-2005 and 2015-2016, and cold periods around 2009 and 2012. In contrast, upper ocean salinity generally decreases from 2001 to 2016. As a result of this salinity decrease, the density of the subsurface temperature minimum decreased over this time period, despite more interannual variability in the minimum temperature value. The subsurface temperature maximum also exhibits interannual variability, but with values generally warmer than those previously reported for the 1970s and 1980s.
Evaluation and inter-comparison of modern day reanalysis datasets over Africa and the Middle East
NASA Astrophysics Data System (ADS)
Shukla, S.; Arsenault, K. R.; Hobbins, M.; Peters-Lidard, C. D.; Verdin, J. P.
2015-12-01
Reanalysis datasets are potentially very valuable for otherwise data-sparse regions such as Africa and the Middle East. They are potentially useful for long-term climate and hydrologic analyses and, given their availability in real-time, they are particularity attractive for real-time hydrologic monitoring purposes (e.g. to monitor flood and drought events). Generally in data-sparse regions, reanalysis variables such as precipitation, temperature, radiation and humidity are used in conjunction with in-situ and/or satellite-based datasets to generate long-term gridded atmospheric forcing datasets. These atmospheric forcing datasets are used to drive offline land surface models and simulate soil moisture and runoff, which are natural indicators of hydrologic conditions. Therefore, any uncertainty or bias in the reanalysis datasets contributes to uncertainties in hydrologic monitoring estimates. In this presentation, we report on a comprehensive analysis that evaluates several modern-day reanalysis products (such as NASA's MERRA-1 and -2, ECMWF's ERA-Interim and NCEP's CFS Reanalysis) over Africa and the Middle East region. We compare the precipitation and temperature from the reanalysis products with other independent gridded datasets such as GPCC, CRU, and USGS/UCSB's CHIRPS precipitation datasets, and CRU's temperature datasets. The evaluations are conducted at a monthly time scale, since some of these independent datasets are only available at this temporal resolution. The evaluations range from the comparison of the monthly mean climatology to inter-annual variability and long-term changes. Finally, we also present the results of inter-comparisons of radiation and humidity variables from the different reanalysis datasets.
Walther, B D; Elsdon, T S; Gillanders, B M
2010-06-01
A laboratory experiment was conducted to determine the interactive effects of temperature and diet on condition indices of juvenile black bream Acanthopagrus butcheri, reared for time periods ranging from 2 to 42 days. After fish were reared for varying periods, growth, morphometric (Fulton's K) and biochemical [RNA:DNA (R:D) ratios] indices were measured. Fulton's K responded primarily to temperature, with progressive decrease in condition over time for fish reared at high temperatures. In contrast, R:D ratios were primarily affected by diet composition, with the highest values observed for fish reared on fish-based diets as opposed to vegetable-based diets. Significant effects of rearing time were also observed for Fulton's K and R:D ratios, as were some interactive treatment effects. In addition, Fulton's K and R:D ratios were not significantly correlated, perhaps due to the different periods of time integrated by each index or their relative sensitivity to lipid and protein deposition. These results highlight the complex responses of these condition indices to environmental variables and nutritional status.
NASA Technical Reports Server (NTRS)
Graves, M. E.; King, R. L.; Brown, S. C.
1973-01-01
Extreme values, median values, and nine percentile values are tabulated for eight meteorological variables at Cape Kennedy, Florida and at Vandenberg Air Force Base, California. The variables are temperature, relative humidity, station pressure, water vapor pressure, water vapor mixing ratio, density, and enthalpy. For each month eight hours are tabulated, namely, 0100, 0400, 0700, 1000, 1300, 1600, 1900, and 2200 local time. These statistics are intended for general use for the space shuttle design trade-off analysis and are not to be used for specific design values.
NASA Astrophysics Data System (ADS)
Zeri, Marcelo; Oliveira-Júnior, José Francisco; Lyra, Gustavo Bastos
2011-09-01
Time series of pollutants and weather variables measured at four sites in the city of Rio de Janeiro, Brazil, between 2002 and 2004, were used to characterize temporal and spatial relationships of air pollution. Concentrations of particulate matter (PM10), sulfur dioxide (SO2) and carbon monoxide (CO) were compared to national and international standards. The annual median concentration of PM10 was higher than the standard set by the World Health Organization (WHO) on all sites and the 24 h means exceeded the standards on several occasions on two sites. SO2 and CO did not exceed the limits, but the daily maximum of CO in one of the stations was 27% higher on weekends compared to weekdays, due to increased activity in a nearby Convention Center. Air temperature and vapor pressure deficit have both presented the highest correlations with pollutant's concentrations. The concentrations of SO2 and CO were not correlated between sites, suggesting that local sources are more important to those pollutants compared to PM10. The time series of pollutants and air temperature were decomposed in time and frequency by wavelet analysis. The results revealed that the common variability of air temperature and PM10 is dominated by temporal scales of 1-8 days, time scales that are associated with the passage of weather events, such as cold fronts.
NASA Astrophysics Data System (ADS)
van den Besselaar, E. J. M.; Sanchez-Lorenzo, A.; Wild, M.; Klein Tank, A. M. G.
2012-04-01
The surface solar radiation (SSR) is the fundamental source of energy in the climate system, and consequently the source of life on our planet, due to its central role in the surface energy balance. Therefore, a significant impact on temperatures is expected due to the widespread dimming/brightening phenomenon observed since the second half of the 20th century (Wild, 2009). Previous studies pointed out the effects of SSR trends in temperatures series over Europe (Makowski et al., 2009; Philipona et al., 2009), although the lack of long-term SSR series limits these results. This work describes an updated sunshine duration (SS) dataset compiled by the European Climate Assessment and Dataset (ECA&D) project based on around 300 daily time series over Europe covering the 1961-2010 period. The relationship between the SS and temperature series is analysed based on four temperature variables: maximum (TX), minimum (TN) and mean temperature (TG), as well as the diurnal temperature range (DTR). Regional and pan-European mean series of SS and temperatures are constructed. The analyses are performed on annual and seasonal scale, and focusing on the interannual and decadal agreement between the variables. The results show strong positive correlations on interannual scales between SS and temperatures over Europe, especially for the DTR and TX during the summer period and regions in Central Europe. Interestingly, the SS and temperatures series show a tendency towards higher correlations in the smoothed series, both for different regions and temperature variables. These results confirm the relationship between temperature and SS trends over Europe since the second half of the 20th century, which has been speculated to partially decrease (increase) temperatures during the dimming (brightening) period (Makowski et al., 2009; Wild, 2009). Further research is needed to confirm this cause-effect relationship currently found only using correlation analysis.
Guida, Leonardo; Walker, Terence I; Reina, Richard D
2016-01-01
Many factors influence the physiological stress response to fisheries capture in elasmobranchs. However, the influence of sea surface temperatures (SST) and behaviour are unknown and crucial considering global fishing pressures. We investigated the effect of SST and behaviour on the physiological stress response to capture of the gummy shark, Mustelus antarcticus, and compared our results to a laboratory study using similar conditions to test whether stress responses of in situ capture are consistent with those from laboratory simulations. Capture time for 23 M. antarcticus ranged 32-241 min as measured by hook timers or time depth recorders (TDR) in SSTs ranging 12-20°C. TDR data from 13 M. antarcticus were analysed to quantify capture behaviour as the percentage of time spent moving during capture. Several physiological variables measured from blood samples obtained immediately upon the animals' landing indicated that although warmer SSTs increased metabolic rate, the stress response to capture was not exacerbated by capture duration. During capture movement occurred for an average of 10% of the time and since M. antarcticus can respire whilst stationary, restricted movement probably mitigated potential influences of increased SSTs and capture duration on the stress response. Previous laboratory findings were also shown to be indicative of in situ conditions and we thus advise that studies control for water temperature given the influence it has on variables (e.g. lactate) used to measure capture stress in elasmobranchs. We highlight the importance of seasonal water temperatures and capture behaviour when assessing the resilience to fisheries capture and the implementation of appropriate fisheries management strategies.
NASA Astrophysics Data System (ADS)
Barnhart, B. L.; Eichinger, W. E.; Prueger, J. H.
2010-12-01
Hilbert-Huang transform (HHT) is a relatively new data analysis tool which is used to analyze nonstationary and nonlinear time series data. It consists of an algorithm, called empirical mode decomposition (EMD), which extracts the cyclic components embedded within time series data, as well as Hilbert spectral analysis (HSA) which displays the time and frequency dependent energy contributions from each component in the form of a spectrogram. The method can be considered a generalized form of Fourier analysis which can describe the intrinsic cycles of data with basis functions whose amplitudes and phases may vary with time. The HHT will be introduced and compared to current spectral analysis tools such as Fourier analysis, short-time Fourier analysis, wavelet analysis and Wigner-Ville distributions. A number of applications are also presented which demonstrate the strengths and limitations of the tool, including analyzing sunspot number variability and total solar irradiance proxies as well as global averaged temperature and carbon dioxide concentration. Also, near-surface atmospheric quantities such as temperature and wind velocity are analyzed to demonstrate the nonstationarity of the atmosphere.
Rivas, Açucena Veleh; Defante, Renata; Delai, Robson Michael; Rios, Jean Avemir; Britto, André da Silva; Leandro, André de Souza; Gonçalves, Daniela Dib
2018-01-01
the Building Infestation Index (BII) uses the Rapid Assay of the Larval Index for Aedes aegypti (LIRAa) to express the relationship between positive and surveyed properties. We evaluated LIRAa and the relationship between the BII and climate variables for dengue cases in Foz do Iguaçu municipality, Paraná. Spearman's correlations for mean precipitation, mean temperature, BII, and dengue cases (time lag). positive correlations between BII and cases, and mean temperature and cases at two months. Weak correlation between precipitation and cases at three months. LIRAa and climate variables correlate with dengue cases.
2011-01-01
Background The continuing spread of the Asian tiger mosquito Aedes albopictus in Europe is of increasing public health concern due to the potential risk of new outbreaks of exotic vector-borne diseases that this species can transmit as competent vector. We predicted the most favorable areas for a short term invasion of Ae. albopictus in north-eastern Italy using reconstructed daily satellite data time series (MODIS Land Surface Temperature maps, LST). We reconstructed more than 11,000 daily MODIS LST maps for the period 2001-09 (i.e. performed spatial and temporal gap-filling) in an Open Source GIS framework. We aggregated these LST maps over time and identified the potential distribution areas of Ae. albopictus by adapting published temperature threshold values using three variables as predictors (0°C for mean January temperatures, 11°C for annual mean temperatures and 1350 growing degree days filtered for areas with autumnal mean temperatures > 11°C). The resulting maps were integrated into the final potential distribution map and this was compared with the known current distribution of Ae. albopictus in north-eastern Italy. Results LST maps show the microclimatic characteristics peculiar to complex terrains, which would not be visible in maps commonly derived from interpolated meteorological station data. The patterns of the three indicator variables partially differ from each other, while winter temperature is the determining limiting factor for the distribution of Ae. albopictus. All three variables show a similar spatial pattern with some local differences, in particular in the northern part of the study area (upper Adige valley). Conclusions Reconstructed daily land surface temperature data from satellites can be used to predict areas of short term invasion of the tiger mosquito with sufficient accuracy (200 m pixel resolution size). Furthermore, they may be applied to other species of arthropod of medical interest for which temperature is a relevant limiting factor. The results indicate that, during the next few years, the tiger mosquito will probably spread toward northern latitudes and higher altitudes in north-eastern Italy, which will considerably expand the range of the current distribution of this species. PMID:21812983
Modeling sea-surface temperature and its variability
NASA Technical Reports Server (NTRS)
Sarachik, E. S.
1985-01-01
A brief review is presented of the temporal scales of sea surface temperature variability. Progress in modeling sea surface temperature, and remaining obstacles to the understanding of the variability is discussed.
Satellite Ocean Color: Present Status, Future Challenges
NASA Technical Reports Server (NTRS)
Gregg, Watson W.; McClain, Charles R.; Zukor, Dorothy J. (Technical Monitor)
2001-01-01
We are midway into our 5th consecutive year of nearly continuous, high quality ocean color observations from space. The Ocean Color and Temperature Scanner/Polarization and Directionality of the Earth's Reflectances (OCTS/POLDER: Nov. 1996 - Jun. 1997), the Sea-viewing Wide Field-of-view Sensor (SeaWiFS: Sep. 1997 - present), and now the Moderate Resolution Imaging Spectrometer (MODIS: Sep. 2000 - present) have and are providing unprecedented views of chlorophyll dynamics on global scales. Global synoptic views of ocean chlorophyll were once a fantasy for ocean color scientists. It took nearly the entire 8-year lifetime of limited Coastal Zone Color Scanner (CZCS) observations to compile seasonal climatologies. Now SeaWIFS produces comparably complete fields in about 8 days. For the first time, scientists may observe spatial and temporal variability never before seen in a synoptic context. Even more exciting, we are beginning to plausibly ask questions of interannual variability. We stand at the beginning of long-time time series of ocean color, from which we may begin to ask questions of interdecadal variability and climate change. These are the scientific questions being addressed by users of the 18-year Advanced Very High Resolution Radiometer time series with respect to terrestrial processes and ocean temperatures. The nearly 5-year time series of ocean color observations now being constructed, with possibilities of continued observations, can put us at comparable standing with our terrestrial and physical oceanographic colleagues, and enable us to understand how ocean biological processes contribute to, and are affected by global climate change.
Edwards, Tara D; Bain, Erich D; Cole, Shawn T; Freeney, Reygan M; Halls, Virginia A; Ivancik, Juliana; Lenhart, Joseph L; Napadensky, Eugene; Yu, Jian H; Zheng, James Q; Mrozek, Randy A
2018-04-01
This paper describes a new witness material for quantifying the back face deformation (BFD) resulting from high rate impact of ballistic protective equipment. Accurate BFD quantification is critical for the assessment and certification of personal protective equipment, such as body armor and helmets, and ballistic evaluation. A common witness material is ballistic clay, specifically, Roma Plastilina No. 1 (RP1). RP1 must be heated to nearly 38°C to pass calibration, and used within a limited time frame to remain in calibration. RP1 also exhibits lot-to-lot variability and is sensitive to time, temperature, and handling procedures, which limits the BFD accuracy and reproducibility. A new silicone composite backing material (SCBM) was developed and tested side-by-side with heated RP1 using quasi-static indentation and compression, low velocity impact, spherical projectile penetration, and both soft and hard armor ballistic BFD measurements to compare their response over a broad range of strain rates and temperatures. The results demonstrate that SCBM mimics the heated RP1 response at room temperature and exhibits minimal temperature sensitivity. With additional optimization of the composition and processing, SCBM could be a drop-in replacement for RP1 that is used at room temperature during BFD quantification with minimal changes to the current RP1 handling protocols and infrastructure. It is anticipated that removing the heating requirement, and temperature-dependence, associated with RP1 will reduce test variability, simplify testing logistics, and enhance test range productivity. Published by Elsevier B.V.