Sample records for variance component estimates

  1. Variance component and breeding value estimation for genetic heterogeneity of residual variance in Swedish Holstein dairy cattle.

    PubMed

    Rönnegård, L; Felleki, M; Fikse, W F; Mulder, H A; Strandberg, E

    2013-04-01

    Trait uniformity, or micro-environmental sensitivity, may be studied through individual differences in residual variance. These differences appear to be heritable, and the need exists, therefore, to fit models to predict breeding values explaining differences in residual variance. The aim of this paper is to estimate breeding values for micro-environmental sensitivity (vEBV) in milk yield and somatic cell score, and their associated variance components, on a large dairy cattle data set having more than 1.6 million records. Estimation of variance components, ordinary breeding values, and vEBV was performed using standard variance component estimation software (ASReml), applying the methodology for double hierarchical generalized linear models. Estimation using ASReml took less than 7 d on a Linux server. The genetic standard deviations for residual variance were 0.21 and 0.22 for somatic cell score and milk yield, respectively, which indicate moderate genetic variance for residual variance and imply that a standard deviation change in vEBV for one of these traits would alter the residual variance by 20%. This study shows that estimation of variance components, estimated breeding values and vEBV, is feasible for large dairy cattle data sets using standard variance component estimation software. The possibility to select for uniformity in Holstein dairy cattle based on these estimates is discussed. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Mixed model approaches for diallel analysis based on a bio-model.

    PubMed

    Zhu, J; Weir, B S

    1996-12-01

    A MINQUE(1) procedure, which is minimum norm quadratic unbiased estimation (MINQUE) method with 1 for all the prior values, is suggested for estimating variance and covariance components in a bio-model for diallel crosses. Unbiasedness and efficiency of estimation were compared for MINQUE(1), restricted maximum likelihood (REML) and MINQUE theta which has parameter values for the prior values. MINQUE(1) is almost as efficient as MINQUE theta for unbiased estimation of genetic variance and covariance components. The bio-model is efficient and robust for estimating variance and covariance components for maternal and paternal effects as well as for nuclear effects. A procedure of adjusted unbiased prediction (AUP) is proposed for predicting random genetic effects in the bio-model. The jack-knife procedure is suggested for estimation of sampling variances of estimated variance and covariance components and of predicted genetic effects. Worked examples are given for estimation of variance and covariance components and for prediction of genetic merits.

  3. Procedures for estimating confidence intervals for selected method performance parameters.

    PubMed

    McClure, F D; Lee, J K

    2001-01-01

    Procedures for estimating confidence intervals (CIs) for the repeatability variance (sigmar2), reproducibility variance (sigmaR2 = sigmaL2 + sigmar2), laboratory component (sigmaL2), and their corresponding standard deviations sigmar, sigmaR, and sigmaL, respectively, are presented. In addition, CIs for the ratio of the repeatability component to the reproducibility variance (sigmar2/sigmaR2) and the ratio of the laboratory component to the reproducibility variance (sigmaL2/sigmaR2) are also presented.

  4. Variance components estimation for continuous and discrete data, with emphasis on cross-classified sampling designs

    USGS Publications Warehouse

    Gray, Brian R.; Gitzen, Robert A.; Millspaugh, Joshua J.; Cooper, Andrew B.; Licht, Daniel S.

    2012-01-01

    Variance components may play multiple roles (cf. Cox and Solomon 2003). First, magnitudes and relative magnitudes of the variances of random factors may have important scientific and management value in their own right. For example, variation in levels of invasive vegetation among and within lakes may suggest causal agents that operate at both spatial scales – a finding that may be important for scientific and management reasons. Second, variance components may also be of interest when they affect precision of means and covariate coefficients. For example, variation in the effect of water depth on the probability of aquatic plant presence in a study of multiple lakes may vary by lake. This variation will affect the precision of the average depth-presence association. Third, variance component estimates may be used when designing studies, including monitoring programs. For example, to estimate the numbers of years and of samples per year required to meet long-term monitoring goals, investigators need estimates of within and among-year variances. Other chapters in this volume (Chapters 7, 8, and 10) as well as extensive external literature outline a framework for applying estimates of variance components to the design of monitoring efforts. For example, a series of papers with an ecological monitoring theme examined the relative importance of multiple sources of variation, including variation in means among sites, years, and site-years, for the purposes of temporal trend detection and estimation (Larsen et al. 2004, and references therein).

  5. Unbiased Estimates of Variance Components with Bootstrap Procedures

    ERIC Educational Resources Information Center

    Brennan, Robert L.

    2007-01-01

    This article provides general procedures for obtaining unbiased estimates of variance components for any random-model balanced design under any bootstrap sampling plan, with the focus on designs of the type typically used in generalizability theory. The results reported here are particularly helpful when the bootstrap is used to estimate standard…

  6. Technical Note: Introduction of variance component analysis to setup error analysis in radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuo, Yukinori, E-mail: ymatsuo@kuhp.kyoto-u.ac.

    Purpose: The purpose of this technical note is to introduce variance component analysis to the estimation of systematic and random components in setup error of radiotherapy. Methods: Balanced data according to the one-factor random effect model were assumed. Results: Analysis-of-variance (ANOVA)-based computation was applied to estimate the values and their confidence intervals (CIs) for systematic and random errors and the population mean of setup errors. The conventional method overestimates systematic error, especially in hypofractionated settings. The CI for systematic error becomes much wider than that for random error. The ANOVA-based estimation can be extended to a multifactor model considering multiplemore » causes of setup errors (e.g., interpatient, interfraction, and intrafraction). Conclusions: Variance component analysis may lead to novel applications to setup error analysis in radiotherapy.« less

  7. Statistical study of EBR-II fuel elements manufactured by the cold line at Argonne-West and by Atomics International

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harkness, A. L.

    1977-09-01

    Nine elements from each batch of fuel elements manufactured for the EBR-II reactor have been analyzed for /sup 235/U content by NDA methods. These values, together with those of the manufacturer, are used to estimate the product variance and the variances of the two measuring methods. These variances are compared with the variances computed from the stipulations of the contract. A method is derived for resolving the several variances into their within-batch and between-batch components. Some of these variance components have also been estimated by independent and more familiar conventional methods for comparison.

  8. Comparing estimates of genetic variance across different relationship models.

    PubMed

    Legarra, Andres

    2016-02-01

    Use of relationships between individuals to estimate genetic variances and heritabilities via mixed models is standard practice in human, plant and livestock genetics. Different models or information for relationships may give different estimates of genetic variances. However, comparing these estimates across different relationship models is not straightforward as the implied base populations differ between relationship models. In this work, I present a method to compare estimates of variance components across different relationship models. I suggest referring genetic variances obtained using different relationship models to the same reference population, usually a set of individuals in the population. Expected genetic variance of this population is the estimated variance component from the mixed model times a statistic, Dk, which is the average self-relationship minus the average (self- and across-) relationship. For most typical models of relationships, Dk is close to 1. However, this is not true for very deep pedigrees, for identity-by-state relationships, or for non-parametric kernels, which tend to overestimate the genetic variance and the heritability. Using mice data, I show that heritabilities from identity-by-state and kernel-based relationships are overestimated. Weighting these estimates by Dk scales them to a base comparable to genomic or pedigree relationships, avoiding wrong comparisons, for instance, "missing heritabilities". Copyright © 2015 Elsevier Inc. All rights reserved.

  9. An Analysis of Variance Approach for the Estimation of Response Time Distributions in Tests

    ERIC Educational Resources Information Center

    Attali, Yigal

    2010-01-01

    Generalizability theory and analysis of variance methods are employed, together with the concept of objective time pressure, to estimate response time distributions and the degree of time pressure in timed tests. By estimating response time variance components due to person, item, and their interaction, and fixed effects due to item types and…

  10. Proportion of general factor variance in a hierarchical multiple-component measuring instrument: a note on a confidence interval estimation procedure.

    PubMed

    Raykov, Tenko; Zinbarg, Richard E

    2011-05-01

    A confidence interval construction procedure for the proportion of explained variance by a hierarchical, general factor in a multi-component measuring instrument is outlined. The method provides point and interval estimates for the proportion of total scale score variance that is accounted for by the general factor, which could be viewed as common to all components. The approach may also be used for testing composite (one-tailed) or simple hypotheses about this proportion, and is illustrated with a pair of examples. ©2010 The British Psychological Society.

  11. Smooth empirical Bayes estimation of observation error variances in linear systems

    NASA Technical Reports Server (NTRS)

    Martz, H. F., Jr.; Lian, M. W.

    1972-01-01

    A smooth empirical Bayes estimator was developed for estimating the unknown random scale component of each of a set of observation error variances. It is shown that the estimator possesses a smaller average squared error loss than other estimators for a discrete time linear system.

  12. Use of a threshold animal model to estimate calving ease and stillbirth (co)variance components for US Holsteins

    USDA-ARS?s Scientific Manuscript database

    (Co)variance components for calving ease and stillbirth in US Holsteins were estimated using a single-trait threshold animal model and two different sets of data edits. Six sets of approximately 250,000 records each were created by randomly selecting herd codes without replacement from the data used...

  13. Heritability of physical activity traits in Brazilian families: the Baependi Heart Study

    PubMed Central

    2011-01-01

    Background It is commonly recognized that physical activity has familial aggregation; however, the genetic influences on physical activity phenotypes are not well characterized. This study aimed to (1) estimate the heritability of physical activity traits in Brazilian families; and (2) investigate whether genetic and environmental variance components contribute differently to the expression of these phenotypes in males and females. Methods The sample that constitutes the Baependi Heart Study is comprised of 1,693 individuals in 95 Brazilian families. The phenotypes were self-reported in a questionnaire based on the WHO-MONICA instrument. Variance component approaches, implemented in the SOLAR (Sequential Oligogenic Linkage Analysis Routines) computer package, were applied to estimate the heritability and to evaluate the heterogeneity of variance components by gender on the studied phenotypes. Results The heritability estimates were intermediate (35%) for weekly physical activity among non-sedentary subjects (weekly PA_NS), and low (9-14%) for sedentarism, weekly physical activity (weekly PA), and level of daily physical activity (daily PA). Significant evidence for heterogeneity in variance components by gender was observed for the sedentarism and weekly PA phenotypes. No significant gender differences in genetic or environmental variance components were observed for the weekly PA_NS trait. The daily PA phenotype was predominantly influenced by environmental factors, with larger effects in males than in females. Conclusions Heritability estimates for physical activity phenotypes in this sample of the Brazilian population were significant in both males and females, and varied from low to intermediate magnitude. Significant evidence for heterogeneity in variance components by gender was observed. These data add to the knowledge of the physical activity traits in the Brazilian study population, and are concordant with the notion of significant biological determination in active behavior. PMID:22126647

  14. Heritability of physical activity traits in Brazilian families: the Baependi Heart Study.

    PubMed

    Horimoto, Andréa R V R; Giolo, Suely R; Oliveira, Camila M; Alvim, Rafael O; Soler, Júlia P; de Andrade, Mariza; Krieger, José E; Pereira, Alexandre C

    2011-11-29

    It is commonly recognized that physical activity has familial aggregation; however, the genetic influences on physical activity phenotypes are not well characterized. This study aimed to (1) estimate the heritability of physical activity traits in Brazilian families; and (2) investigate whether genetic and environmental variance components contribute differently to the expression of these phenotypes in males and females. The sample that constitutes the Baependi Heart Study is comprised of 1,693 individuals in 95 Brazilian families. The phenotypes were self-reported in a questionnaire based on the WHO-MONICA instrument. Variance component approaches, implemented in the SOLAR (Sequential Oligogenic Linkage Analysis Routines) computer package, were applied to estimate the heritability and to evaluate the heterogeneity of variance components by gender on the studied phenotypes. The heritability estimates were intermediate (35%) for weekly physical activity among non-sedentary subjects (weekly PA_NS), and low (9-14%) for sedentarism, weekly physical activity (weekly PA), and level of daily physical activity (daily PA). Significant evidence for heterogeneity in variance components by gender was observed for the sedentarism and weekly PA phenotypes. No significant gender differences in genetic or environmental variance components were observed for the weekly PA_NS trait. The daily PA phenotype was predominantly influenced by environmental factors, with larger effects in males than in females. Heritability estimates for physical activity phenotypes in this sample of the Brazilian population were significant in both males and females, and varied from low to intermediate magnitude. Significant evidence for heterogeneity in variance components by gender was observed. These data add to the knowledge of the physical activity traits in the Brazilian study population, and are concordant with the notion of significant biological determination in active behavior.

  15. Removing an intersubject variance component in a general linear model improves multiway factoring of event-related spectral perturbations in group EEG studies.

    PubMed

    Spence, Jeffrey S; Brier, Matthew R; Hart, John; Ferree, Thomas C

    2013-03-01

    Linear statistical models are used very effectively to assess task-related differences in EEG power spectral analyses. Mixed models, in particular, accommodate more than one variance component in a multisubject study, where many trials of each condition of interest are measured on each subject. Generally, intra- and intersubject variances are both important to determine correct standard errors for inference on functions of model parameters, but it is often assumed that intersubject variance is the most important consideration in a group study. In this article, we show that, under common assumptions, estimates of some functions of model parameters, including estimates of task-related differences, are properly tested relative to the intrasubject variance component only. A substantial gain in statistical power can arise from the proper separation of variance components when there is more than one source of variability. We first develop this result analytically, then show how it benefits a multiway factoring of spectral, spatial, and temporal components from EEG data acquired in a group of healthy subjects performing a well-studied response inhibition task. Copyright © 2011 Wiley Periodicals, Inc.

  16. Analysis of conditional genetic effects and variance components in developmental genetics.

    PubMed

    Zhu, J

    1995-12-01

    A genetic model with additive-dominance effects and genotype x environment interactions is presented for quantitative traits with time-dependent measures. The genetic model for phenotypic means at time t conditional on phenotypic means measured at previous time (t-1) is defined. Statistical methods are proposed for analyzing conditional genetic effects and conditional genetic variance components. Conditional variances can be estimated by minimum norm quadratic unbiased estimation (MINQUE) method. An adjusted unbiased prediction (AUP) procedure is suggested for predicting conditional genetic effects. A worked example from cotton fruiting data is given for comparison of unconditional and conditional genetic variances and additive effects.

  17. Analysis of Conditional Genetic Effects and Variance Components in Developmental Genetics

    PubMed Central

    Zhu, J.

    1995-01-01

    A genetic model with additive-dominance effects and genotype X environment interactions is presented for quantitative traits with time-dependent measures. The genetic model for phenotypic means at time t conditional on phenotypic means measured at previous time (t - 1) is defined. Statistical methods are proposed for analyzing conditional genetic effects and conditional genetic variance components. Conditional variances can be estimated by minimum norm quadratic unbiased estimation (MINQUE) method. An adjusted unbiased prediction (AUP) procedure is suggested for predicting conditional genetic effects. A worked example from cotton fruiting data is given for comparison of unconditional and conditional genetic variances and additive effects. PMID:8601500

  18. Detection of mastitis in dairy cattle by use of mixture models for repeated somatic cell scores: a Bayesian approach via Gibbs sampling.

    PubMed

    Odegård, J; Jensen, J; Madsen, P; Gianola, D; Klemetsdal, G; Heringstad, B

    2003-11-01

    The distribution of somatic cell scores could be regarded as a mixture of at least two components depending on a cow's udder health status. A heteroscedastic two-component Bayesian normal mixture model with random effects was developed and implemented via Gibbs sampling. The model was evaluated using datasets consisting of simulated somatic cell score records. Somatic cell score was simulated as a mixture representing two alternative udder health statuses ("healthy" or "diseased"). Animals were assigned randomly to the two components according to the probability of group membership (Pm). Random effects (additive genetic and permanent environment), when included, had identical distributions across mixture components. Posterior probabilities of putative mastitis were estimated for all observations, and model adequacy was evaluated using measures of sensitivity, specificity, and posterior probability of misclassification. Fitting different residual variances in the two mixture components caused some bias in estimation of parameters. When the components were difficult to disentangle, so were their residual variances, causing bias in estimation of Pm and of location parameters of the two underlying distributions. When all variance components were identical across mixture components, the mixture model analyses returned parameter estimates essentially without bias and with a high degree of precision. Including random effects in the model increased the probability of correct classification substantially. No sizable differences in probability of correct classification were found between models in which a single cow effect (ignoring relationships) was fitted and models where this effect was split into genetic and permanent environmental components, utilizing relationship information. When genetic and permanent environmental effects were fitted, the between-replicate variance of estimates of posterior means was smaller because the model accounted for random genetic drift.

  19. Parameter estimation in 3D affine and similarity transformation: implementation of variance component estimation

    NASA Astrophysics Data System (ADS)

    Amiri-Simkooei, A. R.

    2018-01-01

    Three-dimensional (3D) coordinate transformations, generally consisting of origin shifts, axes rotations, scale changes, and skew parameters, are widely used in many geomatics applications. Although in some geodetic applications simplified transformation models are used based on the assumption of small transformation parameters, in other fields of applications such parameters are indeed large. The algorithms of two recent papers on the weighted total least-squares (WTLS) problem are used for the 3D coordinate transformation. The methodology can be applied to the case when the transformation parameters are generally large of which no approximate values of the parameters are required. Direct linearization of the rotation and scale parameters is thus not required. The WTLS formulation is employed to take into consideration errors in both the start and target systems on the estimation of the transformation parameters. Two of the well-known 3D transformation methods, namely affine (12, 9, and 8 parameters) and similarity (7 and 6 parameters) transformations, can be handled using the WTLS theory subject to hard constraints. Because the method can be formulated by the standard least-squares theory with constraints, the covariance matrix of the transformation parameters can directly be provided. The above characteristics of the 3D coordinate transformation are implemented in the presence of different variance components, which are estimated using the least squares variance component estimation. In particular, the estimability of the variance components is investigated. The efficacy of the proposed formulation is verified on two real data sets.

  20. Detection of gene-environment interaction in pedigree data using genome-wide genotypes.

    PubMed

    Nivard, Michel G; Middeldorp, Christel M; Lubke, Gitta; Hottenga, Jouke-Jan; Abdellaoui, Abdel; Boomsma, Dorret I; Dolan, Conor V

    2016-12-01

    Heritability may be estimated using phenotypic data collected in relatives or in distantly related individuals using genome-wide single nucleotide polymorphism (SNP) data. We combined these approaches by re-parameterizing the model proposed by Zaitlen et al and extended this model to include moderation of (total and SNP-based) genetic and environmental variance components by a measured moderator. By means of data simulation, we demonstrated that the type 1 error rates of the proposed test are correct and parameter estimates are accurate. As an application, we considered the moderation by age or year of birth of variance components associated with body mass index (BMI), height, attention problems (AP), and symptoms of anxiety and depression. The genetic variance of BMI was found to increase with age, but the environmental variance displayed a greater increase with age, resulting in a proportional decrease of the heritability of BMI. Environmental variance of height increased with year of birth. The environmental variance of AP increased with age. These results illustrate the assessment of moderation of environmental and genetic effects, when estimating heritability from combined SNP and family data. The assessment of moderation of genetic and environmental variance will enhance our understanding of the genetic architecture of complex traits.

  1. On the additive and dominant variance and covariance of individuals within the genomic selection scope.

    PubMed

    Vitezica, Zulma G; Varona, Luis; Legarra, Andres

    2013-12-01

    Genomic evaluation models can fit additive and dominant SNP effects. Under quantitative genetics theory, additive or "breeding" values of individuals are generated by substitution effects, which involve both "biological" additive and dominant effects of the markers. Dominance deviations include only a portion of the biological dominant effects of the markers. Additive variance includes variation due to the additive and dominant effects of the markers. We describe a matrix of dominant genomic relationships across individuals, D, which is similar to the G matrix used in genomic best linear unbiased prediction. This matrix can be used in a mixed-model context for genomic evaluations or to estimate dominant and additive variances in the population. From the "genotypic" value of individuals, an alternative parameterization defines additive and dominance as the parts attributable to the additive and dominant effect of the markers. This approach underestimates the additive genetic variance and overestimates the dominance variance. Transforming the variances from one model into the other is trivial if the distribution of allelic frequencies is known. We illustrate these results with mouse data (four traits, 1884 mice, and 10,946 markers) and simulated data (2100 individuals and 10,000 markers). Variance components were estimated correctly in the model, considering breeding values and dominance deviations. For the model considering genotypic values, the inclusion of dominant effects biased the estimate of additive variance. Genomic models were more accurate for the estimation of variance components than their pedigree-based counterparts.

  2. [Theory, method and application of method R on estimation of (co)variance components].

    PubMed

    Liu, Wen-Zhong

    2004-07-01

    Theory, method and application of Method R on estimation of (co)variance components were reviewed in order to make the method be reasonably used. Estimation requires R values,which are regressions of predicted random effects that are calculated using complete dataset on predicted random effects that are calculated using random subsets of the same data. By using multivariate iteration algorithm based on a transformation matrix,and combining with the preconditioned conjugate gradient to solve the mixed model equations, the computation efficiency of Method R is much improved. Method R is computationally inexpensive,and the sampling errors and approximate credible intervals of estimates can be obtained. Disadvantages of Method R include a larger sampling variance than other methods for the same data,and biased estimates in small datasets. As an alternative method, Method R can be used in larger datasets. It is necessary to study its theoretical properties and broaden its application range further.

  3. [Analytic methods for seed models with genotype x environment interactions].

    PubMed

    Zhu, J

    1996-01-01

    Genetic models with genotype effect (G) and genotype x environment interaction effect (GE) are proposed for analyzing generation means of seed quantitative traits in crops. The total genetic effect (G) is partitioned into seed direct genetic effect (G0), cytoplasm genetic of effect (C), and maternal plant genetic effect (Gm). Seed direct genetic effect (G0) can be further partitioned into direct additive (A) and direct dominance (D) genetic components. Maternal genetic effect (Gm) can also be partitioned into maternal additive (Am) and maternal dominance (Dm) genetic components. The total genotype x environment interaction effect (GE) can also be partitioned into direct genetic by environment interaction effect (G0E), cytoplasm genetic by environment interaction effect (CE), and maternal genetic by environment interaction effect (GmE). G0E can be partitioned into direct additive by environment interaction (AE) and direct dominance by environment interaction (DE) genetic components. GmE can also be partitioned into maternal additive by environment interaction (AmE) and maternal dominance by environment interaction (DmE) genetic components. Partitions of genetic components are listed for parent, F1, F2 and backcrosses. A set of parents, their reciprocal F1 and F2 seeds is applicable for efficient analysis of seed quantitative traits. MINQUE(0/1) method can be used for estimating variance and covariance components. Unbiased estimation for covariance components between two traits can also be obtained by the MINQUE(0/1) method. Random genetic effects in seed models are predictable by the Adjusted Unbiased Prediction (AUP) approach with MINQUE(0/1) method. The jackknife procedure is suggested for estimation of sampling variances of estimated variance and covariance components and of predicted genetic effects, which can be further used in a t-test for parameter. Unbiasedness and efficiency for estimating variance components and predicting genetic effects are tested by Monte Carlo simulations.

  4. Asymptotic Effect of Misspecification in the Random Part of the Multilevel Model

    ERIC Educational Resources Information Center

    Berkhof, Johannes; Kampen, Jarl Kennard

    2004-01-01

    The authors examine the asymptotic effect of omitting a random coefficient in the multilevel model and derive expressions for the change in (a) the variance components estimator and (b) the estimated variance of the fixed effects estimator. They apply the method of moments, which yields a closed form expression for the omission effect. In…

  5. Deletion Diagnostics for the Generalised Linear Mixed Model with independent random effects

    PubMed Central

    Ganguli, B.; Roy, S. Sen; Naskar, M.; Malloy, E. J.; Eisen, E. A.

    2015-01-01

    The Generalised Linear Mixed Model (GLMM) is widely used for modelling environmental data. However, such data are prone to influential observations which can distort the estimated exposure-response curve particularly in regions of high exposure. Deletion diagnostics for iterative estimation schemes commonly derive the deleted estimates based on a single iteration of the full system holding certain pivotal quantities such as the information matrix to be constant. In this paper, we present an approximate formula for the deleted estimates and Cook’s distance for the GLMM which does not assume that the estimates of variance parameters are unaffected by deletion. The procedure allows the user to calculate standardised DFBETAs for mean as well as variance parameters. In certain cases, such as when using the GLMM as a device for smoothing, such residuals for the variance parameters are interesting in their own right. In general, the procedure leads to deleted estimates of mean parameters which are corrected for the effect of deletion on variance components as estimation of the two sets of parameters is interdependent. The probabilistic behaviour of these residuals is investigated and a simulation based procedure suggested for their standardisation. The method is used to identify influential individuals in an occupational cohort exposed to silica. The results show that failure to conduct post model fitting diagnostics for variance components can lead to erroneous conclusions about the fitted curve and unstable confidence intervals. PMID:26626135

  6. Modeling additive and non-additive effects in a hybrid population using genome-wide genotyping: prediction accuracy implications

    PubMed Central

    Bouvet, J-M; Makouanzi, G; Cros, D; Vigneron, Ph

    2016-01-01

    Hybrids are broadly used in plant breeding and accurate estimation of variance components is crucial for optimizing genetic gain. Genome-wide information may be used to explore models designed to assess the extent of additive and non-additive variance and test their prediction accuracy for the genomic selection. Ten linear mixed models, involving pedigree- and marker-based relationship matrices among parents, were developed to estimate additive (A), dominance (D) and epistatic (AA, AD and DD) effects. Five complementary models, involving the gametic phase to estimate marker-based relationships among hybrid progenies, were developed to assess the same effects. The models were compared using tree height and 3303 single-nucleotide polymorphism markers from 1130 cloned individuals obtained via controlled crosses of 13 Eucalyptus urophylla females with 9 Eucalyptus grandis males. Akaike information criterion (AIC), variance ratios, asymptotic correlation matrices of estimates, goodness-of-fit, prediction accuracy and mean square error (MSE) were used for the comparisons. The variance components and variance ratios differed according to the model. Models with a parent marker-based relationship matrix performed better than those that were pedigree-based, that is, an absence of singularities, lower AIC, higher goodness-of-fit and accuracy and smaller MSE. However, AD and DD variances were estimated with high s.es. Using the same criteria, progeny gametic phase-based models performed better in fitting the observations and predicting genetic values. However, DD variance could not be separated from the dominance variance and null estimates were obtained for AA and AD effects. This study highlighted the advantages of progeny models using genome-wide information. PMID:26328760

  7. Sampling hazelnuts for aflatoxin: uncertainty associated with sampling, sample preparation, and analysis.

    PubMed

    Ozay, Guner; Seyhan, Ferda; Yilmaz, Aysun; Whitaker, Thomas B; Slate, Andrew B; Giesbrecht, Francis

    2006-01-01

    The variability associated with the aflatoxin test procedure used to estimate aflatoxin levels in bulk shipments of hazelnuts was investigated. Sixteen 10 kg samples of shelled hazelnuts were taken from each of 20 lots that were suspected of aflatoxin contamination. The total variance associated with testing shelled hazelnuts was estimated and partitioned into sampling, sample preparation, and analytical variance components. Each variance component increased as aflatoxin concentration (either B1 or total) increased. With the use of regression analysis, mathematical expressions were developed to model the relationship between aflatoxin concentration and the total, sampling, sample preparation, and analytical variances. The expressions for these relationships were used to estimate the variance for any sample size, subsample size, and number of analyses for a specific aflatoxin concentration. The sampling, sample preparation, and analytical variances associated with estimating aflatoxin in a hazelnut lot at a total aflatoxin level of 10 ng/g and using a 10 kg sample, a 50 g subsample, dry comminution with a Robot Coupe mill, and a high-performance liquid chromatographic analytical method are 174.40, 0.74, and 0.27, respectively. The sampling, sample preparation, and analytical steps of the aflatoxin test procedure accounted for 99.4, 0.4, and 0.2% of the total variability, respectively.

  8. Evaluation of three lidar scanning strategies for turbulence measurements

    NASA Astrophysics Data System (ADS)

    Newman, J. F.; Klein, P. M.; Wharton, S.; Sathe, A.; Bonin, T. A.; Chilson, P. B.; Muschinski, A.

    2015-11-01

    Several errors occur when a traditional Doppler-beam swinging (DBS) or velocity-azimuth display (VAD) strategy is used to measure turbulence with a lidar. To mitigate some of these errors, a scanning strategy was recently developed which employs six beam positions to independently estimate the u, v, and w velocity variances and covariances. In order to assess the ability of these different scanning techniques to measure turbulence, a Halo scanning lidar, WindCube v2 pulsed lidar and ZephIR continuous wave lidar were deployed at field sites in Oklahoma and Colorado with collocated sonic anemometers. Results indicate that the six-beam strategy mitigates some of the errors caused by VAD and DBS scans, but the strategy is strongly affected by errors in the variance measured at the different beam positions. The ZephIR and WindCube lidars overestimated horizontal variance values by over 60 % under unstable conditions as a result of variance contamination, where additional variance components contaminate the true value of the variance. A correction method was developed for the WindCube lidar that uses variance calculated from the vertical beam position to reduce variance contamination in the u and v variance components. The correction method reduced WindCube variance estimates by over 20 % at both the Oklahoma and Colorado sites under unstable conditions, when variance contamination is largest. This correction method can be easily applied to other lidars that contain a vertical beam position and is a promising method for accurately estimating turbulence with commercially available lidars.

  9. Evaluation of three lidar scanning strategies for turbulence measurements

    NASA Astrophysics Data System (ADS)

    Newman, Jennifer F.; Klein, Petra M.; Wharton, Sonia; Sathe, Ameya; Bonin, Timothy A.; Chilson, Phillip B.; Muschinski, Andreas

    2016-05-01

    Several errors occur when a traditional Doppler beam swinging (DBS) or velocity-azimuth display (VAD) strategy is used to measure turbulence with a lidar. To mitigate some of these errors, a scanning strategy was recently developed which employs six beam positions to independently estimate the u, v, and w velocity variances and covariances. In order to assess the ability of these different scanning techniques to measure turbulence, a Halo scanning lidar, WindCube v2 pulsed lidar, and ZephIR continuous wave lidar were deployed at field sites in Oklahoma and Colorado with collocated sonic anemometers.Results indicate that the six-beam strategy mitigates some of the errors caused by VAD and DBS scans, but the strategy is strongly affected by errors in the variance measured at the different beam positions. The ZephIR and WindCube lidars overestimated horizontal variance values by over 60 % under unstable conditions as a result of variance contamination, where additional variance components contaminate the true value of the variance. A correction method was developed for the WindCube lidar that uses variance calculated from the vertical beam position to reduce variance contamination in the u and v variance components. The correction method reduced WindCube variance estimates by over 20 % at both the Oklahoma and Colorado sites under unstable conditions, when variance contamination is largest. This correction method can be easily applied to other lidars that contain a vertical beam position and is a promising method for accurately estimating turbulence with commercially available lidars.

  10. Genetic and environmental contributions to body mass index: comparative analysis of monozygotic twins, dizygotic twins and same-age unrelated siblings.

    PubMed

    Segal, N L; Feng, R; McGuire, S A; Allison, D B; Miller, S

    2009-01-01

    Earlier studies have established that a substantial percentage of variance in obesity-related phenotypes is explained by genetic components. However, only one study has used both virtual twins (VTs) and biological twins and was able to simultaneously estimate additive genetic, non-additive genetic, shared environmental and unshared environmental components in body mass index (BMI). Our current goal was to re-estimate four components of variance in BMI, applying a more rigorous model to biological and virtual multiples with additional data. Virtual multiples share the same family environment, offering unique opportunities to estimate common environmental influence on phenotypes that cannot be separated from the non-additive genetic component using only biological multiples. Data included 929 individuals from 164 monozygotic twin pairs, 156 dizygotic twin pairs, five triplet sets, one quadruplet set, 128 VT pairs, two virtual triplet sets and two virtual quadruplet sets. Virtual multiples consist of one biological child (or twins or triplets) plus one same-aged adoptee who are all raised together since infancy. We estimated the additive genetic, non-additive genetic, shared environmental and unshared random components in BMI using a linear mixed model. The analysis was adjusted for age, age(2), age(3), height, height(2), height(3), gender and race. Both non-additive genetic and common environmental contributions were significant in our model (P-values<0.0001). No significant additive genetic contribution was found. In all, 63.6% (95% confidence interval (CI) 51.8-75.3%) of the total variance of BMI was explained by a non-additive genetic component, 25.7% (95% CI 13.8-37.5%) by a common environmental component and the remaining 10.7% by an unshared component. Our results suggest that genetic components play an essential role in BMI and that common environmental factors such as diet or exercise also affect BMI. This conclusion is consistent with our earlier study using a smaller sample and shows the utility of virtual multiples for separating non-additive genetic variance from common environmental variance.

  11. Systems Engineering Programmatic Estimation Using Technology Variance

    NASA Technical Reports Server (NTRS)

    Mog, Robert A.

    2000-01-01

    Unique and innovative system programmatic estimation is conducted using the variance of the packaged technologies. Covariance analysis is performed on the subsystems and components comprising the system of interest. Technological "return" and "variation" parameters are estimated. These parameters are combined with the model error to arrive at a measure of system development stability. The resulting estimates provide valuable information concerning the potential cost growth of the system under development.

  12. Heritability construction for provenance and family selection

    Treesearch

    Fan H. Kung; Calvin F. Bey

    1977-01-01

    Concepts and procedures for heritability estimations through the variance components and the unified F-statistics approach are described. The variance components approach is illustrated by five possible family selection schemes within a diallel mating test, while the unified F-statistics approach is demonstrated by a geographic variation study. In a balance design, the...

  13. Detection of gene–environment interaction in pedigree data using genome-wide genotypes

    PubMed Central

    Nivard, Michel G; Middeldorp, Christel M; Lubke, Gitta; Hottenga, Jouke-Jan; Abdellaoui, Abdel; Boomsma, Dorret I; Dolan, Conor V

    2016-01-01

    Heritability may be estimated using phenotypic data collected in relatives or in distantly related individuals using genome-wide single nucleotide polymorphism (SNP) data. We combined these approaches by re-parameterizing the model proposed by Zaitlen et al and extended this model to include moderation of (total and SNP-based) genetic and environmental variance components by a measured moderator. By means of data simulation, we demonstrated that the type 1 error rates of the proposed test are correct and parameter estimates are accurate. As an application, we considered the moderation by age or year of birth of variance components associated with body mass index (BMI), height, attention problems (AP), and symptoms of anxiety and depression. The genetic variance of BMI was found to increase with age, but the environmental variance displayed a greater increase with age, resulting in a proportional decrease of the heritability of BMI. Environmental variance of height increased with year of birth. The environmental variance of AP increased with age. These results illustrate the assessment of moderation of environmental and genetic effects, when estimating heritability from combined SNP and family data. The assessment of moderation of genetic and environmental variance will enhance our understanding of the genetic architecture of complex traits. PMID:27436263

  14. Age-specific survival of male golden-cheeked warblers on the Fort Hood Military Reservation, Texas

    USGS Publications Warehouse

    Duarte, Adam; Hines, James E.; Nichols, James D.; Hatfield, Jeffrey S.; Weckerly, Floyd W.

    2014-01-01

    Population models are essential components of large-scale conservation and management plans for the federally endangered Golden-cheeked Warbler (Setophaga chrysoparia; hereafter GCWA). However, existing models are based on vital rate estimates calculated using relatively small data sets that are now more than a decade old. We estimated more current, precise adult and juvenile apparent survival (Φ) probabilities and their associated variances for male GCWAs. In addition to providing estimates for use in population modeling, we tested hypotheses about spatial and temporal variation in Φ. We assessed whether a linear trend in Φ or a change in the overall mean Φ corresponded to an observed increase in GCWA abundance during 1992-2000 and if Φ varied among study plots. To accomplish these objectives, we analyzed long-term GCWA capture-resight data from 1992 through 2011, collected across seven study plots on the Fort Hood Military Reservation using a Cormack-Jolly-Seber model structure within program MARK. We also estimated Φ process and sampling variances using a variance-components approach. Our results did not provide evidence of site-specific variation in adult Φ on the installation. Because of a lack of data, we could not assess whether juvenile Φ varied spatially. We did not detect a strong temporal association between GCWA abundance and Φ. Mean estimates of Φ for adult and juvenile male GCWAs for all years analyzed were 0.47 with a process variance of 0.0120 and a sampling variance of 0.0113 and 0.28 with a process variance of 0.0076 and a sampling variance of 0.0149, respectively. Although juvenile Φ did not differ greatly from previous estimates, our adult Φ estimate suggests previous GCWA population models were overly optimistic with respect to adult survival. These updated Φ probabilities and their associated variances will be incorporated into new population models to assist with GCWA conservation decision making.

  15. Evaluation of three lidar scanning strategies for turbulence measurements

    DOE PAGES

    Newman, Jennifer F.; Klein, Petra M.; Wharton, Sonia; ...

    2016-05-03

    Several errors occur when a traditional Doppler beam swinging (DBS) or velocity–azimuth display (VAD) strategy is used to measure turbulence with a lidar. To mitigate some of these errors, a scanning strategy was recently developed which employs six beam positions to independently estimate the u, v, and w velocity variances and covariances. In order to assess the ability of these different scanning techniques to measure turbulence, a Halo scanning lidar, WindCube v2 pulsed lidar, and ZephIR continuous wave lidar were deployed at field sites in Oklahoma and Colorado with collocated sonic anemometers.Results indicate that the six-beam strategy mitigates some of the errors caused bymore » VAD and DBS scans, but the strategy is strongly affected by errors in the variance measured at the different beam positions. The ZephIR and WindCube lidars overestimated horizontal variance values by over 60 % under unstable conditions as a result of variance contamination, where additional variance components contaminate the true value of the variance. A correction method was developed for the WindCube lidar that uses variance calculated from the vertical beam position to reduce variance contamination in the u and v variance components. The correction method reduced WindCube variance estimates by over 20 % at both the Oklahoma and Colorado sites under unstable conditions, when variance contamination is largest. This correction method can be easily applied to other lidars that contain a vertical beam position and is a promising method for accurately estimating turbulence with commercially available lidars.« less

  16. Evaluation of three lidar scanning strategies for turbulence measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newman, Jennifer F.; Klein, Petra M.; Wharton, Sonia

    Several errors occur when a traditional Doppler beam swinging (DBS) or velocity–azimuth display (VAD) strategy is used to measure turbulence with a lidar. To mitigate some of these errors, a scanning strategy was recently developed which employs six beam positions to independently estimate the u, v, and w velocity variances and covariances. In order to assess the ability of these different scanning techniques to measure turbulence, a Halo scanning lidar, WindCube v2 pulsed lidar, and ZephIR continuous wave lidar were deployed at field sites in Oklahoma and Colorado with collocated sonic anemometers.Results indicate that the six-beam strategy mitigates some of the errors caused bymore » VAD and DBS scans, but the strategy is strongly affected by errors in the variance measured at the different beam positions. The ZephIR and WindCube lidars overestimated horizontal variance values by over 60 % under unstable conditions as a result of variance contamination, where additional variance components contaminate the true value of the variance. A correction method was developed for the WindCube lidar that uses variance calculated from the vertical beam position to reduce variance contamination in the u and v variance components. The correction method reduced WindCube variance estimates by over 20 % at both the Oklahoma and Colorado sites under unstable conditions, when variance contamination is largest. This correction method can be easily applied to other lidars that contain a vertical beam position and is a promising method for accurately estimating turbulence with commercially available lidars.« less

  17. Estimating multilevel logistic regression models when the number of clusters is low: a comparison of different statistical software procedures.

    PubMed

    Austin, Peter C

    2010-04-22

    Multilevel logistic regression models are increasingly being used to analyze clustered data in medical, public health, epidemiological, and educational research. Procedures for estimating the parameters of such models are available in many statistical software packages. There is currently little evidence on the minimum number of clusters necessary to reliably fit multilevel regression models. We conducted a Monte Carlo study to compare the performance of different statistical software procedures for estimating multilevel logistic regression models when the number of clusters was low. We examined procedures available in BUGS, HLM, R, SAS, and Stata. We found that there were qualitative differences in the performance of different software procedures for estimating multilevel logistic models when the number of clusters was low. Among the likelihood-based procedures, estimation methods based on adaptive Gauss-Hermite approximations to the likelihood (glmer in R and xtlogit in Stata) or adaptive Gaussian quadrature (Proc NLMIXED in SAS) tended to have superior performance for estimating variance components when the number of clusters was small, compared to software procedures based on penalized quasi-likelihood. However, only Bayesian estimation with BUGS allowed for accurate estimation of variance components when there were fewer than 10 clusters. For all statistical software procedures, estimation of variance components tended to be poor when there were only five subjects per cluster, regardless of the number of clusters.

  18. Genomic estimation of additive and dominance effects and impact of accounting for dominance on accuracy of genomic evaluation in sheep populations.

    PubMed

    Moghaddar, N; van der Werf, J H J

    2017-12-01

    The objectives of this study were to estimate the additive and dominance variance component of several weight and ultrasound scanned body composition traits in purebred and combined cross-bred sheep populations based on single nucleotide polymorphism (SNP) marker genotypes and then to investigate the effect of fitting additive and dominance effects on accuracy of genomic evaluation. Additive and dominance variance components were estimated in a mixed model equation based on "average information restricted maximum likelihood" using additive and dominance (co)variances between animals calculated from 48,599 SNP marker genotypes. Genomic prediction was based on genomic best linear unbiased prediction (GBLUP), and the accuracy of prediction was assessed based on a random 10-fold cross-validation. Across different weight and scanned body composition traits, dominance variance ranged from 0.0% to 7.3% of the phenotypic variance in the purebred population and from 7.1% to 19.2% in the combined cross-bred population. In the combined cross-bred population, the range of dominance variance decreased to 3.1% and 9.9% after accounting for heterosis effects. Accounting for dominance effects significantly improved the likelihood of the fitting model in the combined cross-bred population. This study showed a substantial dominance genetic variance for weight and ultrasound scanned body composition traits particularly in cross-bred population; however, improvement in the accuracy of genomic breeding values was small and statistically not significant. Dominance variance estimates in combined cross-bred population could be overestimated if heterosis is not fitted in the model. © 2017 Blackwell Verlag GmbH.

  19. Random Regression Models Using Legendre Polynomials to Estimate Genetic Parameters for Test-day Milk Protein Yields in Iranian Holstein Dairy Cattle.

    PubMed

    Naserkheil, Masoumeh; Miraie-Ashtiani, Seyed Reza; Nejati-Javaremi, Ardeshir; Son, Jihyun; Lee, Deukhwan

    2016-12-01

    The objective of this study was to estimate the genetic parameters of milk protein yields in Iranian Holstein dairy cattle. A total of 1,112,082 test-day milk protein yield records of 167,269 first lactation Holstein cows, calved from 1990 to 2010, were analyzed. Estimates of the variance components, heritability, and genetic correlations for milk protein yields were obtained using a random regression test-day model. Milking times, herd, age of recording, year, and month of recording were included as fixed effects in the model. Additive genetic and permanent environmental random effects for the lactation curve were taken into account by applying orthogonal Legendre polynomials of the fourth order in the model. The lowest and highest additive genetic variances were estimated at the beginning and end of lactation, respectively. Permanent environmental variance was higher at both extremes. Residual variance was lowest at the middle of the lactation and contrarily, heritability increased during this period. Maximum heritability was found during the 12th lactation stage (0.213±0.007). Genetic, permanent, and phenotypic correlations among test-days decreased as the interval between consecutive test-days increased. A relatively large data set was used in this study; therefore, the estimated (co)variance components for random regression coefficients could be used for national genetic evaluation of dairy cattle in Iran.

  20. Random Regression Models Using Legendre Polynomials to Estimate Genetic Parameters for Test-day Milk Protein Yields in Iranian Holstein Dairy Cattle

    PubMed Central

    Naserkheil, Masoumeh; Miraie-Ashtiani, Seyed Reza; Nejati-Javaremi, Ardeshir; Son, Jihyun; Lee, Deukhwan

    2016-01-01

    The objective of this study was to estimate the genetic parameters of milk protein yields in Iranian Holstein dairy cattle. A total of 1,112,082 test-day milk protein yield records of 167,269 first lactation Holstein cows, calved from 1990 to 2010, were analyzed. Estimates of the variance components, heritability, and genetic correlations for milk protein yields were obtained using a random regression test-day model. Milking times, herd, age of recording, year, and month of recording were included as fixed effects in the model. Additive genetic and permanent environmental random effects for the lactation curve were taken into account by applying orthogonal Legendre polynomials of the fourth order in the model. The lowest and highest additive genetic variances were estimated at the beginning and end of lactation, respectively. Permanent environmental variance was higher at both extremes. Residual variance was lowest at the middle of the lactation and contrarily, heritability increased during this period. Maximum heritability was found during the 12th lactation stage (0.213±0.007). Genetic, permanent, and phenotypic correlations among test-days decreased as the interval between consecutive test-days increased. A relatively large data set was used in this study; therefore, the estimated (co)variance components for random regression coefficients could be used for national genetic evaluation of dairy cattle in Iran. PMID:26954192

  1. Pixel-level multisensor image fusion based on matrix completion and robust principal component analysis

    NASA Astrophysics Data System (ADS)

    Wang, Zhuozheng; Deller, J. R.; Fleet, Blair D.

    2016-01-01

    Acquired digital images are often corrupted by a lack of camera focus, faulty illumination, or missing data. An algorithm is presented for fusion of multiple corrupted images of a scene using the lifting wavelet transform. The method employs adaptive fusion arithmetic based on matrix completion and self-adaptive regional variance estimation. Characteristics of the wavelet coefficients are used to adaptively select fusion rules. Robust principal component analysis is applied to low-frequency image components, and regional variance estimation is applied to high-frequency components. Experiments reveal that the method is effective for multifocus, visible-light, and infrared image fusion. Compared with traditional algorithms, the new algorithm not only increases the amount of preserved information and clarity but also improves robustness.

  2. The influence of SO4 and NO3 to the acidity (pH) of rainwater using minimum variance quadratic unbiased estimation (MIVQUE) and maximum likelihood methods

    NASA Astrophysics Data System (ADS)

    Dilla, Shintia Ulfa; Andriyana, Yudhie; Sudartianto

    2017-03-01

    Acid rain causes many bad effects in life. It is formed by two strong acids, sulfuric acid (H2SO4) and nitric acid (HNO3), where sulfuric acid is derived from SO2 and nitric acid from NOx {x=1,2}. The purpose of the research is to find out the influence of So4 and NO3 levels contained in the rain to the acidity (pH) of rainwater. The data are incomplete panel data with two-way error component model. The panel data is a collection of some of the observations that observed from time to time. It is said incomplete if each individual has a different amount of observation. The model used in this research is in the form of random effects model (REM). Minimum variance quadratic unbiased estimation (MIVQUE) is used to estimate the variance error components, while maximum likelihood estimation is used to estimate the parameters. As a result, we obtain the following model: Ŷ* = 0.41276446 - 0.00107302X1 + 0.00215470X2.

  3. Dimensionality and noise in energy selective x-ray imaging

    PubMed Central

    Alvarez, Robert E.

    2013-01-01

    Purpose: To develop and test a method to quantify the effect of dimensionality on the noise in energy selective x-ray imaging. Methods: The Cramèr-Rao lower bound (CRLB), a universal lower limit of the covariance of any unbiased estimator, is used to quantify the noise. It is shown that increasing dimensionality always increases, or at best leaves the same, the variance. An analytic formula for the increase in variance in an energy selective x-ray system is derived. The formula is used to gain insight into the dependence of the increase in variance on the properties of the additional basis functions, the measurement noise covariance, and the source spectrum. The formula is also used with computer simulations to quantify the dependence of the additional variance on these factors. Simulated images of an object with three materials are used to demonstrate the trade-off of increased information with dimensionality and noise. The images are computed from energy selective data with a maximum likelihood estimator. Results: The increase in variance depends most importantly on the dimension and on the properties of the additional basis functions. With the attenuation coefficients of cortical bone, soft tissue, and adipose tissue as the basis functions, the increase in variance of the bone component from two to three dimensions is 1.4 × 103. With the soft tissue component, it is 2.7 × 104. If the attenuation coefficient of a high atomic number contrast agent is used as the third basis function, there is only a slight increase in the variance from two to three basis functions, 1.03 and 7.4 for the bone and soft tissue components, respectively. The changes in spectrum shape with beam hardening also have a substantial effect. They increase the variance by a factor of approximately 200 for the bone component and 220 for the soft tissue component as the soft tissue object thickness increases from 1 to 30 cm. Decreasing the energy resolution of the detectors increases the variance of the bone component markedly with three dimension processing, approximately a factor of 25 as the resolution decreases from 100 to 3 bins. The increase with two dimension processing for adipose tissue is a factor of two and with the contrast agent as the third material for two or three dimensions is also a factor of two for both components. The simulated images show that a maximum likelihood estimator can be used to process energy selective x-ray data to produce images with noise close to the CRLB. Conclusions: The method presented can be used to compute the effects of the object attenuation coefficients and the x-ray system properties on the relationship of dimensionality and noise in energy selective x-ray imaging systems. PMID:24320442

  4. Some New Results on Grubbs’ Estimators.

    DTIC Science & Technology

    1983-06-01

    8217 ESTIMATORS DENNIS A. BRINDLEY AND RALPH A. BRADLEY* Consider a two-way classification with n rows and r columns and the usual model of analysis of variance...except that the error components of the model may have heterogeneous variances, by columns. -Grubbs provided unbiased estimators Q. of a . that depend...of observations yij, i = 1, ... , n, j 1, ... , r, and the model , Yij = Ili + ij + Ej, (1) when Vi represents the mean response of row i, . represents

  5. Variance components of short-term biomarkers of manganese exposure in an inception cohort of welding trainees.

    PubMed

    Baker, Marissa G; Simpson, Christopher D; Sheppard, Lianne; Stover, Bert; Morton, Jackie; Cocker, John; Seixas, Noah

    2015-01-01

    Various biomarkers of exposure have been explored as a way to quantitatively estimate an internal dose of manganese (Mn) exposure, but given the tight regulation of Mn in the body, inter-individual variability in baseline Mn levels, and variability in timing between exposure and uptake into various biological tissues, identification of a valuable and useful biomarker for Mn exposure has been elusive. Thus, a mixed model estimating variance components using restricted maximum likelihood was used to assess the within- and between-subject variance components in whole blood, plasma, and urine (MnB, MnP, and MnU, respectively) in a group of nine newly-exposed apprentice welders, on whom baseline and subsequent longitudinal samples were taken over a three month period. In MnB, the majority of variance was found to be between subjects (94%), while in MnP and MnU the majority of variance was found to be within subjects (79% and 99%, respectively), even when controlling for timing of sample. While blood seemed to exhibit a homeostatic control of Mn, plasma and urine, with the majority of the variance within subjects, did not. Results presented here demonstrate the importance of repeat measure or longitudinal study designs when assessing biomarkers of Mn, and the spurious associations that could result from cross-sectional analyses. Copyright © 2014 Elsevier GmbH. All rights reserved.

  6. Variance and covariance estimates for weaning weight of Senepol cattle.

    PubMed

    Wright, D W; Johnson, Z B; Brown, C J; Wildeus, S

    1991-10-01

    Variance and covariance components were estimated for weaning weight from Senepol field data for use in the reduced animal model for a maternally influenced trait. The 4,634 weaning records were used to evaluate 113 sires and 1,406 dams on the island of St. Croix. Estimates of direct additive genetic variance (sigma 2A), maternal additive genetic variance (sigma 2M), covariance between direct and maternal additive genetic effects (sigma AM), permanent maternal environmental variance (sigma 2PE), and residual variance (sigma 2 epsilon) were calculated by equating variances estimated from a sire-dam model and a sire-maternal grandsire model, with and without the inverse of the numerator relationship matrix (A-1), to their expectations. Estimates were sigma 2A, 139.05 and 138.14 kg2; sigma 2M, 307.04 and 288.90 kg2; sigma AM, -117.57 and -103.76 kg2; sigma 2PE, -258.35 and -243.40 kg2; and sigma 2 epsilon, 588.18 and 577.72 kg2 with and without A-1, respectively. Heritability estimates for direct additive (h2A) were .211 and .210 with and without A-1, respectively. Heritability estimates for maternal additive (h2M) were .47 and .44 with and without A-1, respectively. Correlations between direct and maternal (IAM) effects were -.57 and -.52 with and without A-1, respectively.

  7. Genomic scan as a tool for assessing the genetic component of phenotypic variance in wild populations.

    PubMed

    Herrera, Carlos M

    2012-01-01

    Methods for estimating quantitative trait heritability in wild populations have been developed in recent years which take advantage of the increased availability of genetic markers to reconstruct pedigrees or estimate relatedness between individuals, but their application to real-world data is not exempt from difficulties. This chapter describes a recent marker-based technique which, by adopting a genomic scan approach and focusing on the relationship between phenotypes and genotypes at the individual level, avoids the problems inherent to marker-based estimators of relatedness. This method allows the quantification of the genetic component of phenotypic variance ("degree of genetic determination" or "heritability in the broad sense") in wild populations and is applicable whenever phenotypic trait values and multilocus data for a large number of genetic markers (e.g., amplified fragment length polymorphisms, AFLPs) are simultaneously available for a sample of individuals from the same population. The method proceeds by first identifying those markers whose variation across individuals is significantly correlated with individual phenotypic differences ("adaptive loci"). The proportion of phenotypic variance in the sample that is statistically accounted for by individual differences in adaptive loci is then estimated by fitting a linear model to the data, with trait value as the dependent variable and scores of adaptive loci as independent ones. The method can be easily extended to accommodate quantitative or qualitative information on biologically relevant features of the environment experienced by each sampled individual, in which case estimates of the environmental and genotype × environment components of phenotypic variance can also be obtained.

  8. Enhancing target variance in personality impressions: highlighting the person in person perception.

    PubMed

    Paulhus, D L; Reynolds, S

    1995-12-01

    D. A. Kenny (1994) estimated the components of personality rating variance to be 15, 20, and 20% for target, rater, and relationship, respectively. To enhance trait variance and minimize rater variance, we designed a series of studies of personality perception in discussion groups (N = 79, 58, and 59). After completing a Big Five questionnaire, participants met 7 times in small groups. After Meetings 1 and 7, group members rated each other. By applying the Social Relations Model (D. A. Kenny and L. La Voie, 1984) to each Big Five dimension at each point in time, we were able to evaluate 6 rating effects as well as rating validity. Among the findings were that (a) target variance was the largest component (almost 30%), whereas rater variance was small (less than 11%); (b) rating validity improved significantly with acquaintance, although target variance did not; and (c) no reciprocity was found, but projection was significant for Agreeableness.

  9. Sampling in freshwater environments: suspended particle traps and variability in the final data.

    PubMed

    Barbizzi, Sabrina; Pati, Alessandra

    2008-11-01

    This paper reports one practical method to estimate the measurement uncertainty including sampling, derived by the approach implemented by Ramsey for soil investigations. The methodology has been applied to estimate the measurements uncertainty (sampling and analyses) of (137)Cs activity concentration (Bq kg(-1)) and total carbon content (%) in suspended particle sampling in a freshwater ecosystem. Uncertainty estimates for between locations, sampling and analysis components have been evaluated. For the considered measurands, the relative expanded measurement uncertainties are 12.3% for (137)Cs and 4.5% for total carbon. For (137)Cs, the measurement (sampling+analysis) variance gives the major contribution to the total variance, while for total carbon the spatial variance is the dominant contributor to the total variance. The limitations and advantages of this basic method are discussed.

  10. Statistics of some atmospheric turbulence records relevant to aircraft response calculations

    NASA Technical Reports Server (NTRS)

    Mark, W. D.; Fischer, R. W.

    1981-01-01

    Methods for characterizing atmospheric turbulence are described. The methods illustrated include maximum likelihood estimation of the integral scale and intensity of records obeying the von Karman transverse power spectral form, constrained least-squares estimation of the parameters of a parametric representation of autocorrelation functions, estimation of the power spectra density of the instantaneous variance of a record with temporally fluctuating variance, and estimation of the probability density functions of various turbulence components. Descriptions of the computer programs used in the computations are given, and a full listing of these programs is included.

  11. Intra-class correlation estimates for assessment of vitamin A intake in children.

    PubMed

    Agarwal, Girdhar G; Awasthi, Shally; Walter, Stephen D

    2005-03-01

    In many community-based surveys, multi-level sampling is inherent in the design. In the design of these studies, especially to calculate the appropriate sample size, investigators need good estimates of intra-class correlation coefficient (ICC), along with the cluster size, to adjust for variation inflation due to clustering at each level. The present study used data on the assessment of clinical vitamin A deficiency and intake of vitamin A-rich food in children in a district in India. For the survey, 16 households were sampled from 200 villages nested within eight randomly-selected blocks of the district. ICCs and components of variances were estimated from a three-level hierarchical random effects analysis of variance model. Estimates of ICCs and variance components were obtained at village and block levels. Between-cluster variation was evident at each level of clustering. In these estimates, ICCs were inversely related to cluster size, but the design effect could be substantial for large clusters. At the block level, most ICC estimates were below 0.07. At the village level, many ICC estimates ranged from 0.014 to 0.45. These estimates may provide useful information for the design of epidemiological studies in which the sampled (or allocated) units range in size from households to large administrative zones.

  12. Using variance components to estimate power in a hierarchically nested sampling design improving monitoring of larval Devils Hole pupfish

    USGS Publications Warehouse

    Dzul, Maria C.; Dixon, Philip M.; Quist, Michael C.; Dinsomore, Stephen J.; Bower, Michael R.; Wilson, Kevin P.; Gaines, D. Bailey

    2013-01-01

    We used variance components to assess allocation of sampling effort in a hierarchically nested sampling design for ongoing monitoring of early life history stages of the federally endangered Devils Hole pupfish (DHP) (Cyprinodon diabolis). Sampling design for larval DHP included surveys (5 days each spring 2007–2009), events, and plots. Each survey was comprised of three counting events, where DHP larvae on nine plots were counted plot by plot. Statistical analysis of larval abundance included three components: (1) evaluation of power from various sample size combinations, (2) comparison of power in fixed and random plot designs, and (3) assessment of yearly differences in the power of the survey. Results indicated that increasing the sample size at the lowest level of sampling represented the most realistic option to increase the survey's power, fixed plot designs had greater power than random plot designs, and the power of the larval survey varied by year. This study provides an example of how monitoring efforts may benefit from coupling variance components estimation with power analysis to assess sampling design.

  13. Minimum number of measurements for evaluating soursop (Annona muricata L.) yield.

    PubMed

    Sánchez, C F B; Teodoro, P E; Londoño, S; Silva, L A; Peixoto, L A; Bhering, L L

    2017-05-31

    Repeatability studies on fruit species are of great importance to identify the minimum number of measurements necessary to accurately select superior genotypes. This study aimed to identify the most efficient method to estimate the repeatability coefficient (r) and predict the minimum number of measurements needed for a more accurate evaluation of soursop (Annona muricata L.) genotypes based on fruit yield. Sixteen measurements of fruit yield from 71 soursop genotypes were carried out between 2000 and 2016. In order to estimate r with the best accuracy, four procedures were used: analysis of variance, principal component analysis based on the correlation matrix, principal component analysis based on the phenotypic variance and covariance matrix, and structural analysis based on the correlation matrix. The minimum number of measurements needed to predict the actual value of individuals was estimated. Principal component analysis using the phenotypic variance and covariance matrix provided the most accurate estimates of both r and the number of measurements required for accurate evaluation of fruit yield in soursop. Our results indicate that selection of soursop genotypes with high fruit yield can be performed based on the third and fourth measurements in the early years and/or based on the eighth and ninth measurements at more advanced stages.

  14. Repeatable source, site, and path effects on the standard deviation for empirical ground-motion prediction models

    USGS Publications Warehouse

    Lin, P.-S.; Chiou, B.; Abrahamson, N.; Walling, M.; Lee, C.-T.; Cheng, C.-T.

    2011-01-01

    In this study, we quantify the reduction in the standard deviation for empirical ground-motion prediction models by removing ergodic assumption.We partition the modeling error (residual) into five components, three of which represent the repeatable source-location-specific, site-specific, and path-specific deviations from the population mean. A variance estimation procedure of these error components is developed for use with a set of recordings from earthquakes not heavily clustered in space.With most source locations and propagation paths sampled only once, we opt to exploit the spatial correlation of residuals to estimate the variances associated with the path-specific and the source-location-specific deviations. The estimation procedure is applied to ground-motion amplitudes from 64 shallow earthquakes in Taiwan recorded at 285 sites with at least 10 recordings per site. The estimated variance components are used to quantify the reduction in aleatory variability that can be used in hazard analysis for a single site and for a single path. For peak ground acceleration and spectral accelerations at periods of 0.1, 0.3, 0.5, 1.0, and 3.0 s, we find that the singlesite standard deviations are 9%-14% smaller than the total standard deviation, whereas the single-path standard deviations are 39%-47% smaller.

  15. Estimation of genetic parameters for heat stress, including dominance gene effects, on milk yield in Thai Holstein dairy cattle.

    PubMed

    Boonkum, Wuttigrai; Duangjinda, Monchai

    2015-03-01

    Heat stress in tropical regions is a major cause that strongly negatively affects to milk production in dairy cattle. Genetic selection for dairy heat tolerance is powerful technique to improve genetic performance. Therefore, the current study aimed to estimate genetic parameters and investigate the threshold point of heat stress for milk yield. Data included 52 701 test-day milk yield records for the first parity from 6247 Thai Holstein dairy cattle, covering the period 1990 to 2007. The random regression test day model with EM-REML was used to estimate variance components, genetic parameters and milk production loss. A decline in milk production was found when temperature and humidity index (THI) exceeded a threshold of 74, also it was associated with the high percentage of Holstein genetics. All variance component estimates increased with THI. The estimate of heritability of test-day milk yield was 0.231. Dominance variance as a proportion to additive variance (0.035) indicated that non-additive effects might not be of concern for milk genetics studies in Thai Holstein cattle. Correlations between genetic and permanent environmental effects, for regular conditions and due to heat stress, were - 0.223 and - 0.521, respectively. The heritability and genetic correlations from this study show that simultaneous selection for milk production and heat tolerance is possible. © 2014 Japanese Society of Animal Science.

  16. Bias and robustness of uncertainty components estimates in transient climate projections

    NASA Astrophysics Data System (ADS)

    Hingray, Benoit; Blanchet, Juliette; Jean-Philippe, Vidal

    2016-04-01

    A critical issue in climate change studies is the estimation of uncertainties in projections along with the contribution of the different uncertainty sources, including scenario uncertainty, the different components of model uncertainty and internal variability. Quantifying the different uncertainty sources faces actually different problems. For instance and for the sake of simplicity, an estimate of model uncertainty is classically obtained from the empirical variance of the climate responses obtained for the different modeling chains. These estimates are however biased. Another difficulty arises from the limited number of members that are classically available for most modeling chains. In this case, the climate response of one given chain and the effect of its internal variability may be actually difficult if not impossible to separate. The estimate of scenario uncertainty, model uncertainty and internal variability components are thus likely to be not really robust. We explore the importance of the bias and the robustness of the estimates for two classical Analysis of Variance (ANOVA) approaches: a Single Time approach (STANOVA), based on the only data available for the considered projection lead time and a time series based approach (QEANOVA), which assumes quasi-ergodicity of climate outputs over the whole available climate simulation period (Hingray and Saïd, 2014). We explore both issues for a simple but classical configuration where uncertainties in projections are composed of two single sources: model uncertainty and internal climate variability. The bias in model uncertainty estimates is explored from theoretical expressions of unbiased estimators developed for both ANOVA approaches. The robustness of uncertainty estimates is explored for multiple synthetic ensembles of time series projections generated with MonteCarlo simulations. For both ANOVA approaches, when the empirical variance of climate responses is used to estimate model uncertainty, the bias is always positive. It can be especially high with STANOVA. In the most critical configurations, when the number of members available for each modeling chain is small (< 3) and when internal variability explains most of total uncertainty variance (75% or more), the overestimation is higher than 100% of the true model uncertainty variance. The bias can be considerably reduced with a time series ANOVA approach, owing to the multiple time steps accounted for. The longer the transient time period used for the analysis, the larger the reduction. When a quasi-ergodic ANOVA approach is applied to decadal data for the whole 1980-2100 period, the bias is reduced by a factor 2.5 to 20 depending on the projection lead time. In all cases, the bias is likely to be not negligible for a large number of climate impact studies resulting in a likely large overestimation of the contribution of model uncertainty to total variance. For both approaches, the robustness of all uncertainty estimates is higher when more members are available, when internal variability is smaller and/or the response-to-uncertainty ratio is higher. QEANOVA estimates are much more robust than STANOVA ones: QEANOVA simulated confidence intervals are roughly 3 to 5 times smaller than STANOVA ones. Excepted for STANOVA when less than 3 members is available, the robustness is rather high for total uncertainty and moderate for internal variability estimates. For model uncertainty or response-to-uncertainty ratio estimates, the robustness is conversely low for QEANOVA to very low for STANOVA. In the most critical configurations (small number of member, large internal variability), large over- or underestimation of uncertainty components is very thus likely. To propose relevant uncertainty analyses and avoid misleading interpretations, estimates of uncertainty components should be therefore bias corrected and ideally come with estimates of their robustness. This work is part of the COMPLEX Project (European Collaborative Project FP7-ENV-2012 number: 308601; http://www.complex.ac.uk/). Hingray, B., Saïd, M., 2014. Partitioning internal variability and model uncertainty components in a multimodel multireplicate ensemble of climate projections. J.Climate. doi:10.1175/JCLI-D-13-00629.1 Hingray, B., Blanchet, J. (revision) Unbiased estimators for uncertainty components in transient climate projections. J. Climate Hingray, B., Blanchet, J., Vidal, J.P. (revision) Robustness of uncertainty components estimates in climate projections. J.Climate

  17. Dimensionality and noise in energy selective x-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvarez, Robert E.

    Purpose: To develop and test a method to quantify the effect of dimensionality on the noise in energy selective x-ray imaging.Methods: The Cramèr-Rao lower bound (CRLB), a universal lower limit of the covariance of any unbiased estimator, is used to quantify the noise. It is shown that increasing dimensionality always increases, or at best leaves the same, the variance. An analytic formula for the increase in variance in an energy selective x-ray system is derived. The formula is used to gain insight into the dependence of the increase in variance on the properties of the additional basis functions, the measurementmore » noise covariance, and the source spectrum. The formula is also used with computer simulations to quantify the dependence of the additional variance on these factors. Simulated images of an object with three materials are used to demonstrate the trade-off of increased information with dimensionality and noise. The images are computed from energy selective data with a maximum likelihood estimator.Results: The increase in variance depends most importantly on the dimension and on the properties of the additional basis functions. With the attenuation coefficients of cortical bone, soft tissue, and adipose tissue as the basis functions, the increase in variance of the bone component from two to three dimensions is 1.4 × 10{sup 3}. With the soft tissue component, it is 2.7 × 10{sup 4}. If the attenuation coefficient of a high atomic number contrast agent is used as the third basis function, there is only a slight increase in the variance from two to three basis functions, 1.03 and 7.4 for the bone and soft tissue components, respectively. The changes in spectrum shape with beam hardening also have a substantial effect. They increase the variance by a factor of approximately 200 for the bone component and 220 for the soft tissue component as the soft tissue object thickness increases from 1 to 30 cm. Decreasing the energy resolution of the detectors increases the variance of the bone component markedly with three dimension processing, approximately a factor of 25 as the resolution decreases from 100 to 3 bins. The increase with two dimension processing for adipose tissue is a factor of two and with the contrast agent as the third material for two or three dimensions is also a factor of two for both components. The simulated images show that a maximum likelihood estimator can be used to process energy selective x-ray data to produce images with noise close to the CRLB.Conclusions: The method presented can be used to compute the effects of the object attenuation coefficients and the x-ray system properties on the relationship of dimensionality and noise in energy selective x-ray imaging systems.« less

  18. Bootstrap Estimates of Standard Errors in Generalizability Theory

    ERIC Educational Resources Information Center

    Tong, Ye; Brennan, Robert L.

    2007-01-01

    Estimating standard errors of estimated variance components has long been a challenging task in generalizability theory. Researchers have speculated about the potential applicability of the bootstrap for obtaining such estimates, but they have identified problems (especially bias) in using the bootstrap. Using Brennan's bias-correcting procedures…

  19. An Application of Semi-parametric Estimator with Weighted Matrix of Data Depth in Variance Component Estimation

    NASA Astrophysics Data System (ADS)

    Pan, X. G.; Wang, J. Q.; Zhou, H. Y.

    2013-05-01

    The variance component estimation (VCE) based on semi-parametric estimator with weighted matrix of data depth has been proposed, because the coupling system model error and gross error exist in the multi-source heterogeneous measurement data of space and ground combined TT&C (Telemetry, Tracking and Command) technology. The uncertain model error has been estimated with the semi-parametric estimator model, and the outlier has been restrained with the weighted matrix of data depth. On the basis of the restriction of the model error and outlier, the VCE can be improved and used to estimate weighted matrix for the observation data with uncertain model error or outlier. Simulation experiment has been carried out under the circumstance of space and ground combined TT&C. The results show that the new VCE based on the model error compensation can determine the rational weight of the multi-source heterogeneous data, and restrain the outlier data.

  20. Simultaneous estimation of cross-validation errors in least squares collocation applied for statistical testing and evaluation of the noise variance components

    NASA Astrophysics Data System (ADS)

    Behnabian, Behzad; Mashhadi Hossainali, Masoud; Malekzadeh, Ahad

    2018-02-01

    The cross-validation technique is a popular method to assess and improve the quality of prediction by least squares collocation (LSC). We present a formula for direct estimation of the vector of cross-validation errors (CVEs) in LSC which is much faster than element-wise CVE computation. We show that a quadratic form of CVEs follows Chi-squared distribution. Furthermore, a posteriori noise variance factor is derived by the quadratic form of CVEs. In order to detect blunders in the observations, estimated standardized CVE is proposed as the test statistic which can be applied when noise variances are known or unknown. We use LSC together with the methods proposed in this research for interpolation of crustal subsidence in the northern coast of the Gulf of Mexico. The results show that after detection and removing outliers, the root mean square (RMS) of CVEs and estimated noise standard deviation are reduced about 51 and 59%, respectively. In addition, RMS of LSC prediction error at data points and RMS of estimated noise of observations are decreased by 39 and 67%, respectively. However, RMS of LSC prediction error on a regular grid of interpolation points covering the area is only reduced about 4% which is a consequence of sparse distribution of data points for this case study. The influence of gross errors on LSC prediction results is also investigated by lower cutoff CVEs. It is indicated that after elimination of outliers, RMS of this type of errors is also reduced by 19.5% for a 5 km radius of vicinity. We propose a method using standardized CVEs for classification of dataset into three groups with presumed different noise variances. The noise variance components for each of the groups are estimated using restricted maximum-likelihood method via Fisher scoring technique. Finally, LSC assessment measures were computed for the estimated heterogeneous noise variance model and compared with those of the homogeneous model. The advantage of the proposed method is the reduction in estimated noise levels for those groups with the fewer number of noisy data points.

  1. Image informative maps for component-wise estimating parameters of signal-dependent noise

    NASA Astrophysics Data System (ADS)

    Uss, Mykhail L.; Vozel, Benoit; Lukin, Vladimir V.; Chehdi, Kacem

    2013-01-01

    We deal with the problem of blind parameter estimation of signal-dependent noise from mono-component image data. Multispectral or color images can be processed in a component-wise manner. The main results obtained rest on the assumption that the image texture and noise parameters estimation problems are interdependent. A two-dimensional fractal Brownian motion (fBm) model is used for locally describing image texture. A polynomial model is assumed for the purpose of describing the signal-dependent noise variance dependence on image intensity. Using the maximum likelihood approach, estimates of both fBm-model and noise parameters are obtained. It is demonstrated that Fisher information (FI) on noise parameters contained in an image is distributed nonuniformly over intensity coordinates (an image intensity range). It is also shown how to find the most informative intensities and the corresponding image areas for a given noisy image. The proposed estimator benefits from these detected areas to improve the estimation accuracy of signal-dependent noise parameters. Finally, the potential estimation accuracy (Cramér-Rao Lower Bound, or CRLB) of noise parameters is derived, providing confidence intervals of these estimates for a given image. In the experiment, the proposed and existing state-of-the-art noise variance estimators are compared for a large image database using CRLB-based statistical efficiency criteria.

  2. Genetic covariance between components of male reproductive success: within-pair vs. extra-pair paternity in song sparrows

    PubMed Central

    Reid, J M; Arcese, P; Losdat, S

    2014-01-01

    The evolutionary trajectories of reproductive systems, including both male and female multiple mating and hence polygyny and polyandry, are expected to depend on the additive genetic variances and covariances in and among components of male reproductive success achieved through different reproductive tactics. However, genetic covariances among key components of male reproductive success have not been estimated in wild populations. We used comprehensive paternity data from socially monogamous but genetically polygynandrous song sparrows (Melospiza melodia) to estimate additive genetic variance and covariance in the total number of offspring a male sired per year outside his social pairings (i.e. his total extra-pair reproductive success achieved through multiple mating) and his liability to sire offspring produced by his socially paired female (i.e. his success in defending within-pair paternity). Both components of male fitness showed nonzero additive genetic variance, and the estimated genetic covariance was positive, implying that males with high additive genetic value for extra-pair reproduction also have high additive genetic propensity to sire their socially paired female's offspring. There was consequently no evidence of a genetic or phenotypic trade-off between male within-pair paternity success and extra-pair reproductive success. Such positive genetic covariance might be expected to facilitate ongoing evolution of polygyny and could also shape the ongoing evolution of polyandry through indirect selection. PMID:25186454

  3. A constrained multinomial Probit route choice model in the metro network: Formulation, estimation and application

    PubMed Central

    Zhang, Yongsheng; Wei, Heng; Zheng, Kangning

    2017-01-01

    Considering that metro network expansion brings us with more alternative routes, it is attractive to integrate the impacts of routes set and the interdependency among alternative routes on route choice probability into route choice modeling. Therefore, the formulation, estimation and application of a constrained multinomial probit (CMNP) route choice model in the metro network are carried out in this paper. The utility function is formulated as three components: the compensatory component is a function of influencing factors; the non-compensatory component measures the impacts of routes set on utility; following a multivariate normal distribution, the covariance of error component is structured into three parts, representing the correlation among routes, the transfer variance of route, and the unobserved variance respectively. Considering multidimensional integrals of the multivariate normal probability density function, the CMNP model is rewritten as Hierarchical Bayes formula and M-H sampling algorithm based Monte Carlo Markov Chain approach is constructed to estimate all parameters. Based on Guangzhou Metro data, reliable estimation results are gained. Furthermore, the proposed CMNP model also shows a good forecasting performance for the route choice probabilities calculation and a good application performance for transfer flow volume prediction. PMID:28591188

  4. Optimizing occupational exposure measurement strategies when estimating the log-scale arithmetic mean value--an example from the reinforced plastics industry.

    PubMed

    Lampa, Erik G; Nilsson, Leif; Liljelind, Ingrid E; Bergdahl, Ingvar A

    2006-06-01

    When assessing occupational exposures, repeated measurements are in most cases required. Repeated measurements are more resource intensive than a single measurement, so careful planning of the measurement strategy is necessary to assure that resources are spent wisely. The optimal strategy depends on the objectives of the measurements. Here, two different models of random effects analysis of variance (ANOVA) are proposed for the optimization of measurement strategies by the minimization of the variance of the estimated log-transformed arithmetic mean value of a worker group, i.e. the strategies are optimized for precise estimation of that value. The first model is a one-way random effects ANOVA model. For that model it is shown that the best precision in the estimated mean value is always obtained by including as many workers as possible in the sample while restricting the number of replicates to two or at most three regardless of the size of the variance components. The second model introduces the 'shared temporal variation' which accounts for those random temporal fluctuations of the exposure that the workers have in common. It is shown for that model that the optimal sample allocation depends on the relative sizes of the between-worker component and the shared temporal component, so that if the between-worker component is larger than the shared temporal component more workers should be included in the sample and vice versa. The results are illustrated graphically with an example from the reinforced plastics industry. If there exists a shared temporal variation at a workplace, that variability needs to be accounted for in the sampling design and the more complex model is recommended.

  5. On the validity of within-nuclear-family genetic association analysis in samples of extended families.

    PubMed

    Bureau, Alexandre; Duchesne, Thierry

    2015-12-01

    Splitting extended families into their component nuclear families to apply a genetic association method designed for nuclear families is a widespread practice in familial genetic studies. Dependence among genotypes and phenotypes of nuclear families from the same extended family arises because of genetic linkage of the tested marker with a risk variant or because of familial specificity of genetic effects due to gene-environment interaction. This raises concerns about the validity of inference conducted under the assumption of independence of the nuclear families. We indeed prove theoretically that, in a conditional logistic regression analysis applicable to disease cases and their genotyped parents, the naive model-based estimator of the variance of the coefficient estimates underestimates the true variance. However, simulations with realistic effect sizes of risk variants and variation of this effect from family to family reveal that the underestimation is negligible. The simulations also show the greater efficiency of the model-based variance estimator compared to a robust empirical estimator. Our recommendation is therefore, to use the model-based estimator of variance for inference on effects of genetic variants.

  6. Corrected confidence bands for functional data using principal components.

    PubMed

    Goldsmith, J; Greven, S; Crainiceanu, C

    2013-03-01

    Functional principal components (FPC) analysis is widely used to decompose and express functional observations. Curve estimates implicitly condition on basis functions and other quantities derived from FPC decompositions; however these objects are unknown in practice. In this article, we propose a method for obtaining correct curve estimates by accounting for uncertainty in FPC decompositions. Additionally, pointwise and simultaneous confidence intervals that account for both model- and decomposition-based variability are constructed. Standard mixed model representations of functional expansions are used to construct curve estimates and variances conditional on a specific decomposition. Iterated expectation and variance formulas combine model-based conditional estimates across the distribution of decompositions. A bootstrap procedure is implemented to understand the uncertainty in principal component decomposition quantities. Our method compares favorably to competing approaches in simulation studies that include both densely and sparsely observed functions. We apply our method to sparse observations of CD4 cell counts and to dense white-matter tract profiles. Code for the analyses and simulations is publicly available, and our method is implemented in the R package refund on CRAN. Copyright © 2013, The International Biometric Society.

  7. Corrected Confidence Bands for Functional Data Using Principal Components

    PubMed Central

    Goldsmith, J.; Greven, S.; Crainiceanu, C.

    2014-01-01

    Functional principal components (FPC) analysis is widely used to decompose and express functional observations. Curve estimates implicitly condition on basis functions and other quantities derived from FPC decompositions; however these objects are unknown in practice. In this article, we propose a method for obtaining correct curve estimates by accounting for uncertainty in FPC decompositions. Additionally, pointwise and simultaneous confidence intervals that account for both model- and decomposition-based variability are constructed. Standard mixed model representations of functional expansions are used to construct curve estimates and variances conditional on a specific decomposition. Iterated expectation and variance formulas combine model-based conditional estimates across the distribution of decompositions. A bootstrap procedure is implemented to understand the uncertainty in principal component decomposition quantities. Our method compares favorably to competing approaches in simulation studies that include both densely and sparsely observed functions. We apply our method to sparse observations of CD4 cell counts and to dense white-matter tract profiles. Code for the analyses and simulations is publicly available, and our method is implemented in the R package refund on CRAN. PMID:23003003

  8. A UNIFIED FRAMEWORK FOR VARIANCE COMPONENT ESTIMATION WITH SUMMARY STATISTICS IN GENOME-WIDE ASSOCIATION STUDIES.

    PubMed

    Zhou, Xiang

    2017-12-01

    Linear mixed models (LMMs) are among the most commonly used tools for genetic association studies. However, the standard method for estimating variance components in LMMs-the restricted maximum likelihood estimation method (REML)-suffers from several important drawbacks: REML requires individual-level genotypes and phenotypes from all samples in the study, is computationally slow, and produces downward-biased estimates in case control studies. To remedy these drawbacks, we present an alternative framework for variance component estimation, which we refer to as MQS. MQS is based on the method of moments (MoM) and the minimal norm quadratic unbiased estimation (MINQUE) criterion, and brings two seemingly unrelated methods-the renowned Haseman-Elston (HE) regression and the recent LD score regression (LDSC)-into the same unified statistical framework. With this new framework, we provide an alternative but mathematically equivalent form of HE that allows for the use of summary statistics. We provide an exact estimation form of LDSC to yield unbiased and statistically more efficient estimates. A key feature of our method is its ability to pair marginal z -scores computed using all samples with SNP correlation information computed using a small random subset of individuals (or individuals from a proper reference panel), while capable of producing estimates that can be almost as accurate as if both quantities are computed using the full data. As a result, our method produces unbiased and statistically efficient estimates, and makes use of summary statistics, while it is computationally efficient for large data sets. Using simulations and applications to 37 phenotypes from 8 real data sets, we illustrate the benefits of our method for estimating and partitioning SNP heritability in population studies as well as for heritability estimation in family studies. Our method is implemented in the GEMMA software package, freely available at www.xzlab.org/software.html.

  9. Genetic basis of between-individual and within-individual variance of docility.

    PubMed

    Martin, J G A; Pirotta, E; Petelle, M B; Blumstein, D T

    2017-04-01

    Between-individual variation in phenotypes within a population is the basis of evolution. However, evolutionary and behavioural ecologists have mainly focused on estimating between-individual variance in mean trait and neglected variation in within-individual variance, or predictability of a trait. In fact, an important assumption of mixed-effects models used to estimate between-individual variance in mean traits is that within-individual residual variance (predictability) is identical across individuals. Individual heterogeneity in the predictability of behaviours is a potentially important effect but rarely estimated and accounted for. We used 11 389 measures of docility behaviour from 1576 yellow-bellied marmots (Marmota flaviventris) to estimate between-individual variation in both mean docility and its predictability. We then implemented a double hierarchical animal model to decompose the variances of both mean trait and predictability into their environmental and genetic components. We found that individuals differed both in their docility and in their predictability of docility with a negative phenotypic covariance. We also found significant genetic variance for both mean docility and its predictability but no genetic covariance between the two. This analysis is one of the first to estimate the genetic basis of both mean trait and within-individual variance in a wild population. Our results indicate that equal within-individual variance should not be assumed. We demonstrate the evolutionary importance of the variation in the predictability of docility and illustrate potential bias in models ignoring variation in predictability. We conclude that the variability in the predictability of a trait should not be ignored, and present a coherent approach for its quantification. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  10. Thermospheric mass density model error variance as a function of time scale

    NASA Astrophysics Data System (ADS)

    Emmert, J. T.; Sutton, E. K.

    2017-12-01

    In the increasingly crowded low-Earth orbit environment, accurate estimation of orbit prediction uncertainties is essential for collision avoidance. Poor characterization of such uncertainty can result in unnecessary and costly avoidance maneuvers (false positives) or disregard of a collision risk (false negatives). Atmospheric drag is a major source of orbit prediction uncertainty, and is particularly challenging to account for because it exerts a cumulative influence on orbital trajectories and is therefore not amenable to representation by a single uncertainty parameter. To address this challenge, we examine the variance of measured accelerometer-derived and orbit-derived mass densities with respect to predictions by thermospheric empirical models, using the data-minus-model variance as a proxy for model uncertainty. Our analysis focuses mainly on the power spectrum of the residuals, and we construct an empirical model of the variance as a function of time scale (from 1 hour to 10 years), altitude, and solar activity. We find that the power spectral density approximately follows a power-law process but with an enhancement near the 27-day solar rotation period. The residual variance increases monotonically with altitude between 250 and 550 km. There are two components to the variance dependence on solar activity: one component is 180 degrees out of phase (largest variance at solar minimum), and the other component lags 2 years behind solar maximum (largest variance in the descending phase of the solar cycle).

  11. Estimation of genetic parameters for milk yield in Murrah buffaloes by Bayesian inference.

    PubMed

    Breda, F C; Albuquerque, L G; Euclydes, R F; Bignardi, A B; Baldi, F; Torres, R A; Barbosa, L; Tonhati, H

    2010-02-01

    Random regression models were used to estimate genetic parameters for test-day milk yield in Murrah buffaloes using Bayesian inference. Data comprised 17,935 test-day milk records from 1,433 buffaloes. Twelve models were tested using different combinations of third-, fourth-, fifth-, sixth-, and seventh-order orthogonal polynomials of weeks of lactation for additive genetic and permanent environmental effects. All models included the fixed effects of contemporary group, number of daily milkings and age of cow at calving as covariate (linear and quadratic effect). In addition, residual variances were considered to be heterogeneous with 6 classes of variance. Models were selected based on the residual mean square error, weighted average of residual variance estimates, and estimates of variance components, heritabilities, correlations, eigenvalues, and eigenfunctions. Results indicated that changes in the order of fit for additive genetic and permanent environmental random effects influenced the estimation of genetic parameters. Heritability estimates ranged from 0.19 to 0.31. Genetic correlation estimates were close to unity between adjacent test-day records, but decreased gradually as the interval between test-days increased. Results from mean squared error and weighted averages of residual variance estimates suggested that a model considering sixth- and seventh-order Legendre polynomials for additive and permanent environmental effects, respectively, and 6 classes for residual variances, provided the best fit. Nevertheless, this model presented the largest degree of complexity. A more parsimonious model, with fourth- and sixth-order polynomials, respectively, for these same effects, yielded very similar genetic parameter estimates. Therefore, this last model is recommended for routine applications. Copyright 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Pedigree-based estimation of covariance between dominance deviations and additive genetic effects in closed rabbit lines considering inbreeding and using a computationally simpler equivalent model.

    PubMed

    Fernández, E N; Legarra, A; Martínez, R; Sánchez, J P; Baselga, M

    2017-06-01

    Inbreeding generates covariances between additive and dominance effects (breeding values and dominance deviations). In this work, we developed and applied models for estimation of dominance and additive genetic variances and their covariance, a model that we call "full dominance," from pedigree and phenotypic data. Estimates with this model such as presented here are very scarce both in livestock and in wild genetics. First, we estimated pedigree-based condensed probabilities of identity using recursion. Second, we developed an equivalent linear model in which variance components can be estimated using closed-form algorithms such as REML or Gibbs sampling and existing software. Third, we present a new method to refer the estimated variance components to meaningful parameters in a particular population, i.e., final partially inbred generations as opposed to outbred base populations. We applied these developments to three closed rabbit lines (A, V and H) selected for number of weaned at the Polytechnic University of Valencia. Pedigree and phenotypes are complete and span 43, 39 and 14 generations, respectively. Estimates of broad-sense heritability are 0.07, 0.07 and 0.05 at the base versus 0.07, 0.07 and 0.09 in the final generations. Narrow-sense heritability estimates are 0.06, 0.06 and 0.02 at the base versus 0.04, 0.04 and 0.01 at the final generations. There is also a reduction in the genotypic variance due to the negative additive-dominance correlation. Thus, the contribution of dominance variation is fairly large and increases with inbreeding and (over)compensates for the loss in additive variation. In addition, estimates of the additive-dominance correlation are -0.37, -0.31 and 0.00, in agreement with the few published estimates and theoretical considerations. © 2017 Blackwell Verlag GmbH.

  13. A Filtering of Incomplete GNSS Position Time Series with Probabilistic Principal Component Analysis

    NASA Astrophysics Data System (ADS)

    Gruszczynski, Maciej; Klos, Anna; Bogusz, Janusz

    2018-04-01

    For the first time, we introduced the probabilistic principal component analysis (pPCA) regarding the spatio-temporal filtering of Global Navigation Satellite System (GNSS) position time series to estimate and remove Common Mode Error (CME) without the interpolation of missing values. We used data from the International GNSS Service (IGS) stations which contributed to the latest International Terrestrial Reference Frame (ITRF2014). The efficiency of the proposed algorithm was tested on the simulated incomplete time series, then CME was estimated for a set of 25 stations located in Central Europe. The newly applied pPCA was compared with previously used algorithms, which showed that this method is capable of resolving the problem of proper spatio-temporal filtering of GNSS time series characterized by different observation time span. We showed, that filtering can be carried out with pPCA method when there exist two time series in the dataset having less than 100 common epoch of observations. The 1st Principal Component (PC) explained more than 36% of the total variance represented by time series residuals' (series with deterministic model removed), what compared to the other PCs variances (less than 8%) means that common signals are significant in GNSS residuals. A clear improvement in the spectral indices of the power-law noise was noticed for the Up component, which is reflected by an average shift towards white noise from - 0.98 to - 0.67 (30%). We observed a significant average reduction in the accuracy of stations' velocity estimated for filtered residuals by 35, 28 and 69% for the North, East, and Up components, respectively. CME series were also subjected to analysis in the context of environmental mass loading influences of the filtering results. Subtraction of the environmental loading models from GNSS residuals provides to reduction of the estimated CME variance by 20 and 65% for horizontal and vertical components, respectively.

  14. Distribution of lod scores in oligogenic linkage analysis.

    PubMed

    Williams, J T; North, K E; Martin, L J; Comuzzie, A G; Göring, H H; Blangero, J

    2001-01-01

    In variance component oligogenic linkage analysis it can happen that the residual additive genetic variance bounds to zero when estimating the effect of the ith quantitative trait locus. Using quantitative trait Q1 from the Genetic Analysis Workshop 12 simulated general population data, we compare the observed lod scores from oligogenic linkage analysis with the empirical lod score distribution under a null model of no linkage. We find that zero residual additive genetic variance in the null model alters the usual distribution of the likelihood-ratio statistic.

  15. Comparing Bayesian estimates of genetic differentiation of molecular markers and quantitative traits: an application to Pinus sylvestris.

    PubMed

    Waldmann, P; García-Gil, M R; Sillanpää, M J

    2005-06-01

    Comparison of the level of differentiation at neutral molecular markers (estimated as F(ST) or G(ST)) with the level of differentiation at quantitative traits (estimated as Q(ST)) has become a standard tool for inferring that there is differential selection between populations. We estimated Q(ST) of timing of bud set from a latitudinal cline of Pinus sylvestris with a Bayesian hierarchical variance component method utilizing the information on the pre-estimated population structure from neutral molecular markers. Unfortunately, the between-family variances differed substantially between populations that resulted in a bimodal posterior of Q(ST) that could not be compared in any sensible way with the unimodal posterior of the microsatellite F(ST). In order to avoid publishing studies with flawed Q(ST) estimates, we recommend that future studies should present heritability estimates for each trait and population. Moreover, to detect variance heterogeneity in frequentist methods (ANOVA and REML), it is of essential importance to check also that the residuals are normally distributed and do not follow any systematically deviating trends.

  16. Self-esteem, social participation, and quality of life in patients with multiple sclerosis.

    PubMed

    Mikula, Pavol; Nagyova, Iveta; Krokavcova, Martina; Vitkova, Marianna; Rosenberger, Jaroslav; Szilasiova, Jarmila; Gdovinova, Zuzana; Stewart, Roy E; Groothoff, Johan W; van Dijk, Jitse P

    2017-07-01

    The aim of this study is to explore whether self-esteem and social participation are associated with the physical and mental quality of life (Physical Component Summary, Mental Component Summary) and whether self-esteem can mediate the association between these variables. We collected information from 118 consecutive multiple sclerosis patients. Age, gender, disease duration, disability status, and participation were significant predictors of Physical Component Summary, explaining 55.4 percent of the total variance. Self-esteem fully mediated the association between social participation and Mental Component Summary (estimate/standard error = -4.872; p < 0.001) and along with disability status explained 48.3 percent of the variance in Mental Component Summary. These results can be used in intervention and educational programs.

  17. Maximum Likelihood and Minimum Distance Applied to Univariate Mixture Distributions.

    ERIC Educational Resources Information Center

    Wang, Yuh-Yin Wu; Schafer, William D.

    This Monte-Carlo study compared modified Newton (NW), expectation-maximization algorithm (EM), and minimum Cramer-von Mises distance (MD), used to estimate parameters of univariate mixtures of two components. Data sets were fixed at size 160 and manipulated by mean separation, variance ratio, component proportion, and non-normality. Results…

  18. Cosmic Bulk Flow and the Local Motion from Cosmicflows-2

    NASA Astrophysics Data System (ADS)

    Courtois, Helene M.; Hoffman, Yehuda; Tully, R. Brent

    2015-08-01

    Full sky surveys of peculiar velocity are arguably the best way to map the large scale structure out to distances of a few times 100 Mpc/h.Using the largest and most accurate ever catalog of galaxy peculiar velocities Cosmicflows-2, the large scale structure has been reconstructed by means of the Wiener filter and constrained realizations assuming as a Bayesian prior model the LCDM standard model of cosmology. The present paper focuses on studying the bulk flow of the local flow field, defined as the mean velocity of top-hat spheres with radii ranging out to R=500 Mpc/h. Our main results is that the estimated bulk flow is consistent with the LCDM model with the WMAP inferred cosmological parameters. At R=50 (150)Mpc/h the estimated bulk velocity is 250 +/- 21 (239 +/- 38) km/s. The corresponding cosmic variance at these radii is 126 (60) km/s, which implies that these estimated bulk flows are dominated by the data and not by the assumed prior model. The estimated bulk velocity is dominated by the data out to R ˜200 Mpc/h, where the cosmic variance on the individual Supergalactic Cartesian components (of the r.m.s. values) exceeds the variance of the constrined realizations by at least a factor of 2. The SGX and SGY components of the CMB dipole velocity are recovered by the Wiener Filter velocity field down to a very few km/s. The SGZ component of the estimated velocity, the one that is most affected by the Zone of Avoidance, is off by 126km/s (an almost 2 sigma discrepancy).The bulk velocity analysis reported here is virtually unaffected by the Malmquist bias and very similar results are obtained for the data with and without the bias correction.

  19. Usual Dietary Intakes: SAS Macros for Fitting Multivariate Measurement Error Models & Estimating Multivariate Usual Intake Distributions

    Cancer.gov

    The following SAS macros can be used to create a multivariate usual intake distribution for multiple dietary components that are consumed nearly every day or episodically. A SAS macro for performing balanced repeated replication (BRR) variance estimation is also included.

  20. Estimating stochastic noise using in situ measurements from a linear wavefront slope sensor.

    PubMed

    Bharmal, Nazim Ali; Reeves, Andrew P

    2016-01-15

    It is shown how the solenoidal component of noise from the measurements of a wavefront slope sensor can be utilized to estimate the total noise: specifically, the ensemble noise variance. It is well known that solenoidal noise is orthogonal to the reconstruction of the wavefront under conditions of low scintillation (absence of wavefront vortices). Therefore, it can be retrieved even with a nonzero slope signal present. By explicitly estimating the solenoidal noise from an ensemble of slopes, it can be retrieved for any wavefront sensor configuration. Furthermore, the ensemble variance is demonstrated to be related to the total noise variance via a straightforward relationship. This relationship is revealed via the method of the explicit estimation: it consists of a small, heuristic set of four constants that do not depend on the underlying statistics of the incoming wavefront. These constants seem to apply to all situations-data from a laboratory experiment as well as many configurations of numerical simulation-so the method is concluded to be generic.

  1. Turbulence Variance Characteristics in the Unstable Atmospheric Boundary Layer above Flat Pine Forest

    NASA Astrophysics Data System (ADS)

    Asanuma, Jun

    Variances of the velocity components and scalars are important as indicators of the turbulence intensity. They also can be utilized to estimate surface fluxes in several types of "variance methods", and the estimated fluxes can be regional values if the variances from which they are calculated are regionally representative measurements. On these motivations, variances measured by an aircraft in the unstable ABL over a flat pine forest during HAPEX-Mobilhy were analyzed within the context of the similarity scaling arguments. The variances of temperature and vertical velocity within the atmospheric surface layer were found to follow closely the Monin-Obukhov similarity theory, and to yield reasonable estimates of the surface sensible heat fluxes when they are used in variance methods. This gives a validation to the variance methods with aircraft measurements. On the other hand, the specific humidity variances were influenced by the surface heterogeneity and clearly fail to obey MOS. A simple analysis based on the similarity law for free convection produced a comprehensible and quantitative picture regarding the effect of the surface flux heterogeneity on the statistical moments, and revealed that variances of the active and passive scalars become dissimilar because of their different roles in turbulence. The analysis also indicated that the mean quantities are also affected by the heterogeneity but to a less extent than the variances. The temperature variances in the mixed layer (ML) were examined by using a generalized top-down bottom-up diffusion model with some combinations of velocity scales and inversion flux models. The results showed that the surface shear stress exerts considerable influence on the lower ML. Also with the temperature and vertical velocity variances ML variance methods were tested, and their feasibility was investigated. Finally, the variances in the ML were analyzed in terms of the local similarity concept; the results confirmed the original hypothesis by Panofsky and McCormick that the local scaling in terms of the local buoyancy flux defines the lower bound of the moments.

  2. Genetic parameters of legendre polynomials for first parity lactation curves.

    PubMed

    Pool, M H; Janss, L L; Meuwissen, T H

    2000-11-01

    Variance components of the covariance function coefficients in a random regression test-day model were estimated by Legendre polynomials up to a fifth order for first-parity records of Dutch dairy cows using Gibbs sampling. Two Legendre polynomials of equal order were used to model the random part of the lactation curve, one for the genetic component and one for permanent environment. Test-day records from cows registered between 1990 to 1996 and collected by regular milk recording were available. For the data set, 23,700 complete lactations were selected from 475 herds sired by 262 sires. Because the application of a random regression model is limited by computing capacity, we investigated the minimum order needed to fit the variance structure in the data sufficiently. Predictions of genetic and permanent environmental variance structures were compared with bivariate estimates on 30-d intervals. A third-order or higher polynomial modeled the shape of variance curves over DIM with sufficient accuracy for the genetic and permanent environment part. Also, the genetic correlation structure was fitted with sufficient accuracy by a third-order polynomial, but, for the permanent environmental component, a fourth order was needed. Because equal orders are suggested in the literature, a fourth-order Legendre polynomial is recommended in this study. However, a rank of three for the genetic covariance matrix and of four for permanent environment allows a simpler covariance function with a reduced number of parameters based on the eigenvalues and eigenvectors.

  3. Genetic analysis of growth traits in Polled Nellore cattle raised on pasture in tropical region using Bayesian approaches.

    PubMed

    Lopes, Fernando Brito; Magnabosco, Cláudio Ulhôa; Paulini, Fernanda; da Silva, Marcelo Corrêa; Miyagi, Eliane Sayuri; Lôbo, Raysildo Barbosa

    2013-01-01

    Components of (co)variance and genetic parameters were estimated for adjusted weights at ages 120 (W120), 240 (W240), 365 (W365) and 450 (W450) days of Polled Nellore cattle raised on pasture and born between 1987 and 2010. Analyses were performed using an animal model, considering fixed effects: herd-year-season of birth and calf sex as contemporary groups and the age of cow as a covariate. Gibbs Samplers were used to estimate (co)variance components, genetic parameters and additive genetic effects, which accounted for great proportion of total variation in these traits. High direct heritability estimates for the growth traits were revealed and presented mean 0.43, 0.61, 0.72 and 0.67 for W120, W240, W365 and W450, respectively. Maternal heritabilities were 0.07 and 0.08 for W120 and W240, respectively. Direct additive genetic correlations between the weight at 120, 240, 365 and 450 days old were strong and positive. These estimates ranged from 0.68 to 0.98. Direct-maternal genetic correlations were negative for W120 and W240. The estimates ranged from -0.31 to -0.54. Estimates of maternal heritability ranged from 0.056 to 0.092 for W120 and from 0.064 to 0.096 for W240. This study showed that genetic progress is possible for the growth traits we studied, which is a novel and favorable indicator for an upcoming and promising Polled Zebu breed in Tropical regions. Maternal effects influenced the performance of weight at 120 and 240 days old. These effects should be taken into account in genetic analyses of growth traits by fitting them as a genetic or a permanent environmental effect, or even both. In general, due to a medium-high estimate of environmental (co)variance components, management and feeding conditions for Polled Nellore raised at pasture in tropical regions of Brazil needs improvement and growth performance can be enhanced.

  4. Improved Horvitz-Thompson Estimation of Model Parameters from Two-phase Stratified Samples: Applications in Epidemiology

    PubMed Central

    Breslow, Norman E.; Lumley, Thomas; Ballantyne, Christie M; Chambless, Lloyd E.; Kulich, Michal

    2009-01-01

    The case-cohort study involves two-phase sampling: simple random sampling from an infinite super-population at phase one and stratified random sampling from a finite cohort at phase two. Standard analyses of case-cohort data involve solution of inverse probability weighted (IPW) estimating equations, with weights determined by the known phase two sampling fractions. The variance of parameter estimates in (semi)parametric models, including the Cox model, is the sum of two terms: (i) the model based variance of the usual estimates that would be calculated if full data were available for the entire cohort; and (ii) the design based variance from IPW estimation of the unknown cohort total of the efficient influence function (IF) contributions. This second variance component may be reduced by adjusting the sampling weights, either by calibration to known cohort totals of auxiliary variables correlated with the IF contributions or by their estimation using these same auxiliary variables. Both adjustment methods are implemented in the R survey package. We derive the limit laws of coefficients estimated using adjusted weights. The asymptotic results suggest practical methods for construction of auxiliary variables that are evaluated by simulation of case-cohort samples from the National Wilms Tumor Study and by log-linear modeling of case-cohort data from the Atherosclerosis Risk in Communities Study. Although not semiparametric efficient, estimators based on adjusted weights may come close to achieving full efficiency within the class of augmented IPW estimators. PMID:20174455

  5. Comparison of Efficiency of Jackknife and Variance Component Estimators of Standard Errors. Program Statistics Research. Technical Report.

    ERIC Educational Resources Information Center

    Longford, Nicholas T.

    Large scale surveys usually employ a complex sampling design and as a consequence, no standard methods for estimation of the standard errors associated with the estimates of population means are available. Resampling methods, such as jackknife or bootstrap, are often used, with reference to their properties of robustness and reduction of bias. A…

  6. An analysis of indirect genetic effects on adult body weight of the Pacific white shrimp Litopenaeus vannamei at low rearing density.

    PubMed

    Luan, Sheng; Luo, Kun; Chai, Zhan; Cao, Baoxiang; Meng, Xianhong; Lu, Xia; Liu, Ning; Xu, Shengyu; Kong, Jie

    2015-12-14

    Our aim was to estimate the genetic parameters for the direct genetic effect (DGE) and indirect genetic effects (IGE) on adult body weight in the Pacific white shrimp. IGE is the heritable effect of an individual on the trait values of its group mates. To examine IGE on body weight, 4725 shrimp from 105 tagged families were tested in multiple small test groups (MSTG). Each family was separated into three groups (15 shrimp per group) that were randomly assigned to 105 concrete tanks with shrimp from two other families. To estimate breeding values, one large test group (OLTG) in a 300 m(2) circular concrete tank was used for the communal rearing of 8398 individuals from 105 families. Body weight was measured after a growth-test period of more than 200 days. Variance components for body weight in the MSTG programs were estimated using an animal model excluding or including IGE whereas variance components in the OLTG programs were estimated using a conventional animal model that included only DGE. The correlation of DGE between MSTG and OLTG programs was estimated by a two-trait animal model that included or excluded IGE. Heritability estimates for body weight from the conventional animal model in MSTG and OLTG programs were 0.26 ± 0.13 and 0.40 ± 0.06, respectively. The log likelihood ratio test revealed significant IGE on body weight. Total heritable variance was the sum of direct genetic variance (43.5%), direct-indirect genetic covariance (2.1%), and indirect genetic variance (54.4%). It represented 73% of the phenotypic variance and was more than two-fold greater than that (32%) obtained by using a classical heritability model for body weight. Correlations of DGE on body weight between MSTG and OLTG programs were intermediate regardless of whether IGE were included or not in the model. Our results suggest that social interactions contributed to a large part of the heritable variation in body weight. Small and non-significant direct-indirect genetic correlations implied that neutral or slightly cooperative heritable interactions, rather than competition, were dominant in this population but this may be due to the low rearing density.

  7. Using variance structure to quantify responses to perturbation in fish catches

    USGS Publications Warehouse

    Vidal, Tiffany E.; Irwin, Brian J.; Wagner, Tyler; Rudstam, Lars G.; Jackson, James R.; Bence, James R.

    2017-01-01

    We present a case study evaluation of gill-net catches of Walleye Sander vitreus to assess potential effects of large-scale changes in Oneida Lake, New York, including the disruption of trophic interactions by double-crested cormorants Phalacrocorax auritus and invasive dreissenid mussels. We used the empirical long-term gill-net time series and a negative binomial linear mixed model to partition the variability in catches into spatial and coherent temporal variance components, hypothesizing that variance partitioning can help quantify spatiotemporal variability and determine whether variance structure differs before and after large-scale perturbations. We found that the mean catch and the total variability of catches decreased following perturbation but that not all sampling locations responded in a consistent manner. There was also evidence of some spatial homogenization concurrent with a restructuring of the relative productivity of individual sites. Specifically, offshore sites generally became more productive following the estimated break point in the gill-net time series. These results provide support for the idea that variance structure is responsive to large-scale perturbations; therefore, variance components have potential utility as statistical indicators of response to a changing environment more broadly. The modeling approach described herein is flexible and would be transferable to other systems and metrics. For example, variance partitioning could be used to examine responses to alternative management regimes, to compare variability across physiographic regions, and to describe differences among climate zones. Understanding how individual variance components respond to perturbation may yield finer-scale insights into ecological shifts than focusing on patterns in the mean responses or total variability alone.

  8. Detecting Nonadditivity in Single-Facet Generalizability Theory Applications: Tukey's Test

    ERIC Educational Resources Information Center

    Lin, Chih-Kai; Zhang, Jinming

    2018-01-01

    Under the generalizability-theory (G-theory) framework, the estimation precision of variance components (VCs) is of significant importance in that they serve as the foundation of estimating reliability. Zhang and Lin advanced the discussion of nonadditivity in data from a theoretical perspective and showed the adverse effects of nonadditivity on…

  9. The Impact of Sample Size and Other Factors When Estimating Multilevel Logistic Models

    ERIC Educational Resources Information Center

    Schoeneberger, Jason A.

    2016-01-01

    The design of research studies utilizing binary multilevel models must necessarily incorporate knowledge of multiple factors, including estimation method, variance component size, or number of predictors, in addition to sample sizes. This Monte Carlo study examined the performance of random effect binary outcome multilevel models under varying…

  10. Estimates of direct and maternal (co)variance components as well as genetic parameters of growth traits in Nellore sheep.

    PubMed

    I, Satish Kumar; C, Vijaya Kumar; G, Gangaraju; Nath, Sapna; A K, Thiruvenkadan

    2017-10-01

    In the present study, (co)variance components and genetic parameters in Nellore sheep were obtained by restricted maximum likelihood (REML) method using six different animal models with various combinations of direct and maternal genetic effects for birth weight (BW), weaning weight (WW), 6-month weight (6MW), 9-month weight (9MW) and 12-month weight (YW). Evaluated records of 2075 lambs descended from 69 sires and 478 dams over a period of 8 years (2007-2014) were collected from the Livestock Research Station, Palamaner, India. Lambing year, sex of lamb, season of lambing and parity of dam were the fixed effects in the model, and ewe weight was used as a covariate. Best model for each trait was determined by log-likelihood ratio test. Direct heritability for BW, WW, 6MW, 9MW and YW were 0.08, 0.03, 0.12, 0.16 and 0.10, respectively, and their corresponding maternal heritabilities were 0.07, 0.10, 0.09, 0.08 and 0.11. The proportions of maternal permanent environment variance to phenotypic variance (Pe 2 ) were 0.07, 0.10, 0.07, 0.06 and 0.10 for BW, WW, 6MW, 9MW and YW, respectively. The estimates of direct genetic correlations among the growth traits were positive and ranged from 0.44(BW-WW) to 0.96(YW-9MW), and the estimates of phenotypic and environmental correlations were found to be lower than those of genetic correlations. Exclusion of maternal effects in the model resulted in biased estimates of genetic parameters in Nellore sheep. Hence, to implement optimum breeding strategies for improvement of traits in Nellore sheep, maternal effects should be considered.

  11. Covariate analysis of bivariate survival data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, L.E.

    1992-01-01

    The methods developed are used to analyze the effects of covariates on bivariate survival data when censoring and ties are present. The proposed method provides models for bivariate survival data that include differential covariate effects and censored observations. The proposed models are based on an extension of the univariate Buckley-James estimators which replace censored data points by their expected values, conditional on the censoring time and the covariates. For the bivariate situation, it is necessary to determine the expectation of the failure times for one component conditional on the failure or censoring time of the other component. Two different methodsmore » have been developed to estimate these expectations. In the semiparametric approach these expectations are determined from a modification of Burke's estimate of the bivariate empirical survival function. In the parametric approach censored data points are also replaced by their conditional expected values where the expected values are determined from a specified parametric distribution. The model estimation will be based on the revised data set, comprised of uncensored components and expected values for the censored components. The variance-covariance matrix for the estimated covariate parameters has also been derived for both the semiparametric and parametric methods. Data from the Demographic and Health Survey was analyzed by these methods. The two outcome variables are post-partum amenorrhea and breastfeeding; education and parity were used as the covariates. Both the covariate parameter estimates and the variance-covariance estimates for the semiparametric and parametric models will be compared. In addition, a multivariate test statistic was used in the semiparametric model to examine contrasts. The significance of the statistic was determined from a bootstrap distribution of the test statistic.« less

  12. A Bayesian Network Based Global Sensitivity Analysis Method for Identifying Dominant Processes in a Multi-physics Model

    NASA Astrophysics Data System (ADS)

    Dai, H.; Chen, X.; Ye, M.; Song, X.; Zachara, J. M.

    2016-12-01

    Sensitivity analysis has been an important tool in groundwater modeling to identify the influential parameters. Among various sensitivity analysis methods, the variance-based global sensitivity analysis has gained popularity for its model independence characteristic and capability of providing accurate sensitivity measurements. However, the conventional variance-based method only considers uncertainty contribution of single model parameters. In this research, we extended the variance-based method to consider more uncertainty sources and developed a new framework to allow flexible combinations of different uncertainty components. We decompose the uncertainty sources into a hierarchical three-layer structure: scenario, model and parametric. Furthermore, each layer of uncertainty source is capable of containing multiple components. An uncertainty and sensitivity analysis framework was then constructed following this three-layer structure using Bayesian network. Different uncertainty components are represented as uncertain nodes in this network. Through the framework, variance-based sensitivity analysis can be implemented with great flexibility of using different grouping strategies for uncertainty components. The variance-based sensitivity analysis thus is improved to be able to investigate the importance of an extended range of uncertainty sources: scenario, model, and other different combinations of uncertainty components which can represent certain key model system processes (e.g., groundwater recharge process, flow reactive transport process). For test and demonstration purposes, the developed methodology was implemented into a test case of real-world groundwater reactive transport modeling with various uncertainty sources. The results demonstrate that the new sensitivity analysis method is able to estimate accurate importance measurements for any uncertainty sources which were formed by different combinations of uncertainty components. The new methodology can provide useful information for environmental management and decision-makers to formulate policies and strategies.

  13. The dependability of medical students' performance ratings as documented on in-training evaluations.

    PubMed

    van Barneveld, Christina

    2005-03-01

    To demonstrate an approach to obtain an unbiased estimate of the dependability of students' performance ratings during training, when the data-collection design includes nesting of student in rater, unbalanced nest sizes, and dependent observations. In 2003, two variance components analyses of in-training evaluation (ITE) report data were conducted using urGENOVA software. In the first analysis, the dependability for the nested and unbalanced data-collection design was calculated. In the second analysis, an approach using multiple generalizability studies was used to obtain an unbiased estimate of the student variance component, resulting in an unbiased estimate of dependability. Results suggested that there is bias in estimates of the dependability of students' performance on ITEs that are attributable to the data-collection design. When the bias was corrected, the results indicated that the dependability of ratings of student performance was almost zero. The combination of the multiple generalizability studies method and the use of specialized software provides an unbiased estimate of the dependability of ratings of student performance on ITE scores for data-collection designs that include nesting of student in rater, unbalanced nest sizes, and dependent observations.

  14. Evaluation of genetic components in traits related to superovulation, in vitro fertilization, and embryo transfer in Holstein cattle

    USDA-ARS?s Scientific Manuscript database

    The objectives of this study were to estimate variance components and identify regions of the genome associated with traits related to embryo transfer in Holsteins. Reproductive technologies are used in the dairy industry to increase the reproductive rate of superior females. A drawback of these met...

  15. Adaptive multitaper time-frequency spectrum estimation

    NASA Astrophysics Data System (ADS)

    Pitton, James W.

    1999-11-01

    In earlier work, Thomson's adaptive multitaper spectrum estimation method was extended to the nonstationary case. This paper reviews the time-frequency multitaper method and the adaptive procedure, and explores some properties of the eigenvalues and eigenvectors. The variance of the adaptive estimator is used to construct an adaptive smoother, which is used to form a high resolution estimate. An F-test for detecting and removing sinusoidal components in the time-frequency spectrum is also given.

  16. Genetic variance in micro-environmental sensitivity for milk and milk quality in Walloon Holstein cattle.

    PubMed

    Vandenplas, J; Bastin, C; Gengler, N; Mulder, H A

    2013-09-01

    Animals that are robust to environmental changes are desirable in the current dairy industry. Genetic differences in micro-environmental sensitivity can be studied through heterogeneity of residual variance between animals. However, residual variance between animals is usually assumed to be homogeneous in traditional genetic evaluations. The aim of this study was to investigate genetic heterogeneity of residual variance by estimating variance components in residual variance for milk yield, somatic cell score, contents in milk (g/dL) of 2 groups of milk fatty acids (i.e., saturated and unsaturated fatty acids), and the content in milk of one individual fatty acid (i.e., oleic acid, C18:1 cis-9), for first-parity Holstein cows in the Walloon Region of Belgium. A total of 146,027 test-day records from 26,887 cows in 747 herds were available. All cows had at least 3 records and a known sire. These sires had at least 10 cows with records and each herd × test-day had at least 5 cows. The 5 traits were analyzed separately based on fixed lactation curve and random regression test-day models for the mean. Estimation of variance components was performed by running iteratively expectation maximization-REML algorithm by the implementation of double hierarchical generalized linear models. Based on fixed lactation curve test-day mean models, heritability for residual variances ranged between 1.01×10(-3) and 4.17×10(-3) for all traits. The genetic standard deviation in residual variance (i.e., approximately the genetic coefficient of variation of residual variance) ranged between 0.12 and 0.17. Therefore, some genetic variance in micro-environmental sensitivity existed in the Walloon Holstein dairy cattle for the 5 studied traits. The standard deviations due to herd × test-day and permanent environment in residual variance ranged between 0.36 and 0.45 for herd × test-day effect and between 0.55 and 0.97 for permanent environmental effect. Therefore, nongenetic effects also contributed substantially to micro-environmental sensitivity. Addition of random regressions to the mean model did not reduce heterogeneity in residual variance and that genetic heterogeneity of residual variance was not simply an effect of an incomplete mean model. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data.

    PubMed

    Excoffier, L; Smouse, P E; Quattro, J M

    1992-06-01

    We present here a framework for the study of molecular variation within a single species. Information on DNA haplotype divergence is incorporated into an analysis of variance format, derived from a matrix of squared-distances among all pairs of haplotypes. This analysis of molecular variance (AMOVA) produces estimates of variance components and F-statistic analogs, designated here as phi-statistics, reflecting the correlation of haplotypic diversity at different levels of hierarchical subdivision. The method is flexible enough to accommodate several alternative input matrices, corresponding to different types of molecular data, as well as different types of evolutionary assumptions, without modifying the basic structure of the analysis. The significance of the variance components and phi-statistics is tested using a permutational approach, eliminating the normality assumption that is conventional for analysis of variance but inappropriate for molecular data. Application of AMOVA to human mitochondrial DNA haplotype data shows that population subdivisions are better resolved when some measure of molecular differences among haplotypes is introduced into the analysis. At the intraspecific level, however, the additional information provided by knowing the exact phylogenetic relations among haplotypes or by a nonlinear translation of restriction-site change into nucleotide diversity does not significantly modify the inferred population genetic structure. Monte Carlo studies show that site sampling does not fundamentally affect the significance of the molecular variance components. The AMOVA treatment is easily extended in several different directions and it constitutes a coherent and flexible framework for the statistical analysis of molecular data.

  18. An evaluation of soil sampling for 137Cs using various field-sampling volumes.

    PubMed

    Nyhan, J W; White, G C; Schofield, T G; Trujillo, G

    1983-05-01

    The sediments from a liquid effluent receiving area at the Los Alamos National Laboratory and soils from an intensive study area in the fallout pathway of Trinity were sampled for 137Cs using 25-, 500-, 2500- and 12,500-cm3 field sampling volumes. A highly replicated sampling program was used to determine mean concentrations and inventories of 137Cs at each site, as well as estimates of spatial, aliquoting, and counting variance components of the radionuclide data. The sampling methods were also analyzed as a function of soil size fractions collected in each field sampling volume and of the total cost of the program for a given variation in the radionuclide survey results. Coefficients of variation (CV) of 137Cs inventory estimates ranged from 0.063 to 0.14 for Mortandad Canyon sediments, whereas CV values for Trinity soils were observed from 0.38 to 0.57. Spatial variance components of 137Cs concentration data were usually found to be larger than either the aliquoting or counting variance estimates and were inversely related to field sampling volume at the Trinity intensive site. Subsequent optimization studies of the sampling schemes demonstrated that each aliquot should be counted once, and that only 2-4 aliquots out of as many as 30 collected need be assayed for 137Cs. The optimization studies showed that as sample costs increased to 45 man-hours of labor per sample, the variance of the mean 137Cs concentration decreased dramatically, but decreased very little with additional labor.

  19. Gross regional domestic product estimation: Application of two-way unbalanced panel data models to economic growth in East Nusa Tenggara province

    NASA Astrophysics Data System (ADS)

    Wibowo, Wahyu; Sinu, Elisabeth B.; Setiawan

    2017-03-01

    The condition of East Nusa Tenggara Province which recently developed new districts can affect the number of information or data collected become unbalanced. One of the consequences of ignoring the data incompleteness is the estimator become not valid. Therefore, the analysis of unbalanced panel data is very crucial.The aim of this paper is to find the estimation of Gross Regional Domestic Product in East Nusa Tenggara Province using unbalanced panel data regression model for two-way error component which assume random effect model (REM). In this research, we employ Feasible Generalized Least Squares (FGLS) as regression coefficients estimation method. Since variance of the model is unknown, ANOVA method is considered to obtain the variance components in order to construct the variance-covariance matrix. The data used in this research is secondary data taken from Central Bureau of Statistics of East Nusa Tenggara Province in 21 districts period 2004-2013. The predictors are the number of labor over 15 years old (X1), electrification ratios (X2), and local revenues (X3) while Gross Regional Domestic Product based on constant price 2000 is the response (Y). The FGLS estimation result shows that the value of R2 is 80,539% and all the predictors chosen are significantly affect (α = 5%) the Gross Regional Domestic Product in all district of East Nusa Tenggara Province. Those variables are the number of labor over 15 years old (X1), electrification ratios (X2), and local revenues (X3) with 0,22986, 0,090476, and 0,14749 of elasticities, respectively.

  20. Biomarker Variance Component Estimation for Exposure Surrogate Selection and Toxicokinetic Inference

    EPA Science Inventory

    Biomarkers are useful exposure surrogates given their ability to integrate exposures through all routes and to reflect interindividual differences in toxicokinetic processes. Also, biomarker concentrations tend to vary less than corresponding environmental measurements, making th...

  1. Modelling temporal variance of component temperatures and directional anisotropy over vegetated canopy

    NASA Astrophysics Data System (ADS)

    Bian, Zunjian; du, yongming; li, hua

    2016-04-01

    Land surface temperature (LST) as a key variable plays an important role on hydrological, meteorology and climatological study. Thermal infrared directional anisotropy is one of essential factors to LST retrieval and application on longwave radiance estimation. Many approaches have been proposed to estimate directional brightness temperatures (DBT) over natural and urban surfaces. While less efforts focus on 3-D scene and the surface component temperatures used in DBT models are quiet difficult to acquire. Therefor a combined 3-D model of TRGM (Thermal-region Radiosity-Graphics combined Model) and energy balance method is proposed in the paper for the attempt of synchronously simulation of component temperatures and DBT in the row planted canopy. The surface thermodynamic equilibrium can be final determined by the iteration strategy of TRGM and energy balance method. The combined model was validated by the top-of-canopy DBTs using airborne observations. The results indicated that the proposed model performs well on the simulation of directional anisotropy, especially the hotspot effect. Though we find that the model overestimate the DBT with Bias of 1.2K, it can be an option as a data reference to study temporal variance of component temperatures and DBTs when field measurement is inaccessible

  2. Characterization, parameter estimation, and aircraft response statistics of atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Mark, W. D.

    1981-01-01

    A nonGaussian three component model of atmospheric turbulence is postulated that accounts for readily observable features of turbulence velocity records, their autocorrelation functions, and their spectra. Methods for computing probability density functions and mean exceedance rates of a generic aircraft response variable are developed using nonGaussian turbulence characterizations readily extracted from velocity recordings. A maximum likelihood method is developed for optimal estimation of the integral scale and intensity of records possessing von Karman transverse of longitudinal spectra. Formulas for the variances of such parameter estimates are developed. The maximum likelihood and least-square approaches are combined to yield a method for estimating the autocorrelation function parameters of a two component model for turbulence.

  3. Estimating contaminant loads in rivers: An application of adjusted maximum likelihood to type 1 censored data

    USGS Publications Warehouse

    Cohn, Timothy A.

    2005-01-01

    This paper presents an adjusted maximum likelihood estimator (AMLE) that can be used to estimate fluvial transport of contaminants, like phosphorus, that are subject to censoring because of analytical detection limits. The AMLE is a generalization of the widely accepted minimum variance unbiased estimator (MVUE), and Monte Carlo experiments confirm that it shares essentially all of the MVUE's desirable properties, including high efficiency and negligible bias. In particular, the AMLE exhibits substantially less bias than alternative censored‐data estimators such as the MLE (Tobit) or the MLE followed by a jackknife. As with the MLE and the MVUE the AMLE comes close to achieving the theoretical Frechet‐Cramér‐Rao bounds on its variance. This paper also presents a statistical framework, applicable to both censored and complete data, for understanding and estimating the components of uncertainty associated with load estimates. This can serve to lower the cost and improve the efficiency of both traditional and real‐time water quality monitoring.

  4. Improvement of Prediction Ability for Genomic Selection of Dairy Cattle by Including Dominance Effects

    PubMed Central

    Sun, Chuanyu; VanRaden, Paul M.; Cole, John B.; O'Connell, Jeffrey R.

    2014-01-01

    Dominance may be an important source of non-additive genetic variance for many traits of dairy cattle. However, nearly all prediction models for dairy cattle have included only additive effects because of the limited number of cows with both genotypes and phenotypes. The role of dominance in the Holstein and Jersey breeds was investigated for eight traits: milk, fat, and protein yields; productive life; daughter pregnancy rate; somatic cell score; fat percent and protein percent. Additive and dominance variance components were estimated and then used to estimate additive and dominance effects of single nucleotide polymorphisms (SNPs). The predictive abilities of three models with both additive and dominance effects and a model with additive effects only were assessed using ten-fold cross-validation. One procedure estimated dominance values, and another estimated dominance deviations; calculation of the dominance relationship matrix was different for the two methods. The third approach enlarged the dataset by including cows with genotype probabilities derived using genotyped ancestors. For yield traits, dominance variance accounted for 5 and 7% of total variance for Holsteins and Jerseys, respectively; using dominance deviations resulted in smaller dominance and larger additive variance estimates. For non-yield traits, dominance variances were very small for both breeds. For yield traits, including additive and dominance effects fit the data better than including only additive effects; average correlations between estimated genetic effects and phenotypes showed that prediction accuracy increased when both effects rather than just additive effects were included. No corresponding gains in prediction ability were found for non-yield traits. Including cows with derived genotype probabilities from genotyped ancestors did not improve prediction accuracy. The largest additive effects were located on chromosome 14 near DGAT1 for yield traits for both breeds; those SNPs also showed the largest dominance effects for fat yield (both breeds) as well as for Holstein milk yield. PMID:25084281

  5. Genetic Analysis of Growth Traits in Polled Nellore Cattle Raised on Pasture in Tropical Region Using Bayesian Approaches

    PubMed Central

    Lopes, Fernando Brito; Magnabosco, Cláudio Ulhôa; Paulini, Fernanda; da Silva, Marcelo Corrêa; Miyagi, Eliane Sayuri; Lôbo, Raysildo Barbosa

    2013-01-01

    Components of (co)variance and genetic parameters were estimated for adjusted weights at ages 120 (W120), 240 (W240), 365 (W365) and 450 (W450) days of Polled Nellore cattle raised on pasture and born between 1987 and 2010. Analyses were performed using an animal model, considering fixed effects: herd-year-season of birth and calf sex as contemporary groups and the age of cow as a covariate. Gibbs Samplers were used to estimate (co)variance components, genetic parameters and additive genetic effects, which accounted for great proportion of total variation in these traits. High direct heritability estimates for the growth traits were revealed and presented mean 0.43, 0.61, 0.72 and 0.67 for W120, W240, W365 and W450, respectively. Maternal heritabilities were 0.07 and 0.08 for W120 and W240, respectively. Direct additive genetic correlations between the weight at 120, 240, 365 and 450 days old were strong and positive. These estimates ranged from 0.68 to 0.98. Direct-maternal genetic correlations were negative for W120 and W240. The estimates ranged from −0.31 to −0.54. Estimates of maternal heritability ranged from 0.056 to 0.092 for W120 and from 0.064 to 0.096 for W240. This study showed that genetic progress is possible for the growth traits we studied, which is a novel and favorable indicator for an upcoming and promising Polled Zebu breed in Tropical regions. Maternal effects influenced the performance of weight at 120 and 240 days old. These effects should be taken into account in genetic analyses of growth traits by fitting them as a genetic or a permanent environmental effect, or even both. In general, due to a medium-high estimate of environmental (co)variance components, management and feeding conditions for Polled Nellore raised at pasture in tropical regions of Brazil needs improvement and growth performance can be enhanced. PMID:24040412

  6. Multi-allelic haplotype model based on genetic partition for genomic prediction and variance component estimation using SNP markers.

    PubMed

    Da, Yang

    2015-12-18

    The amount of functional genomic information has been growing rapidly but remains largely unused in genomic selection. Genomic prediction and estimation using haplotypes in genome regions with functional elements such as all genes of the genome can be an approach to integrate functional and structural genomic information for genomic selection. Towards this goal, this article develops a new haplotype approach for genomic prediction and estimation. A multi-allelic haplotype model treating each haplotype as an 'allele' was developed for genomic prediction and estimation based on the partition of a multi-allelic genotypic value into additive and dominance values. Each additive value is expressed as a function of h - 1 additive effects, where h = number of alleles or haplotypes, and each dominance value is expressed as a function of h(h - 1)/2 dominance effects. For a sample of q individuals, the limit number of effects is 2q - 1 for additive effects and is the number of heterozygous genotypes for dominance effects. Additive values are factorized as a product between the additive model matrix and the h - 1 additive effects, and dominance values are factorized as a product between the dominance model matrix and the h(h - 1)/2 dominance effects. Genomic additive relationship matrix is defined as a function of the haplotype model matrix for additive effects, and genomic dominance relationship matrix is defined as a function of the haplotype model matrix for dominance effects. Based on these results, a mixed model implementation for genomic prediction and variance component estimation that jointly use haplotypes and single markers is established, including two computing strategies for genomic prediction and variance component estimation with identical results. The multi-allelic genetic partition fills a theoretical gap in genetic partition by providing general formulations for partitioning multi-allelic genotypic values and provides a haplotype method based on the quantitative genetics model towards the utilization of functional and structural genomic information for genomic prediction and estimation.

  7. Analysis of half diallel mating designs I: a practical analysis procedure for ANOVA approximation.

    Treesearch

    G.R. Johnson; J.N. King

    1998-01-01

    Procedures to analyze half-diallel mating designs using the SAS statistical package are presented. The procedure requires two runs of PROC and VARCOMP and results in estimates of additive and non-additive genetic variation. The procedures described can be modified to work on most statistical software packages which can compute variance component estimates. The...

  8. Within-Tunnel Variations in Pressure Data for Three Transonic Wind Tunnels

    NASA Technical Reports Server (NTRS)

    DeLoach, Richard

    2014-01-01

    This paper compares the results of pressure measurements made on the same test article with the same test matrix in three transonic wind tunnels. A comparison is presented of the unexplained variance associated with polar replicates acquired in each tunnel. The impact of a significance component of systematic (not random) unexplained variance is reviewed, and the results of analyses of variance are presented to assess the degree of significant systematic error in these representative wind tunnel tests. Total uncertainty estimates are reported for 140 samples of pressure data, quantifying the effects of within-polar random errors and between-polar systematic bias errors.

  9. Multilevel modeling of single-case data: A comparison of maximum likelihood and Bayesian estimation.

    PubMed

    Moeyaert, Mariola; Rindskopf, David; Onghena, Patrick; Van den Noortgate, Wim

    2017-12-01

    The focus of this article is to describe Bayesian estimation, including construction of prior distributions, and to compare parameter recovery under the Bayesian framework (using weakly informative priors) and the maximum likelihood (ML) framework in the context of multilevel modeling of single-case experimental data. Bayesian estimation results were found similar to ML estimation results in terms of the treatment effect estimates, regardless of the functional form and degree of information included in the prior specification in the Bayesian framework. In terms of the variance component estimates, both the ML and Bayesian estimation procedures result in biased and less precise variance estimates when the number of participants is small (i.e., 3). By increasing the number of participants to 5 or 7, the relative bias is close to 5% and more precise estimates are obtained for all approaches, except for the inverse-Wishart prior using the identity matrix. When a more informative prior was added, more precise estimates for the fixed effects and random effects were obtained, even when only 3 participants were included. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  10. Estimation of test-day model (co)variance components across breeds using New Zealand dairy cattle data.

    PubMed

    Vanderick, S; Harris, B L; Pryce, J E; Gengler, N

    2009-03-01

    In New Zealand, a large proportion of cows are currently crossbreds, mostly Holstein-Friesians (HF) x Jersey (JE). The genetic evaluation system for milk yields is considering the same additive genetic effects for all breeds. The objective was to model different additive effects according to parental breeds to obtain first estimates of correlations among breed-specific effects and to study the usefulness of this type of random regression test-day model. Estimates of (co)variance components for purebred HF and JE cattle in purebred herds were computed by using a single-breed model. This analysis showed differences between the 2 breeds, with a greater variability in the HF breed. (Co)variance components for purebred HF and JE and crossbred HF x JE cattle were then estimated by using a complete multibreed model in which computations of complete across-breed (co)variances were simplified by correlating only eigenvectors for HF and JE random regressions of the same order as obtained from the single-breed analysis. Parameter estimates differed more strongly than expected between the single-breed and multibreed analyses, especially for JE. This could be due to differences between animals and management in purebred and non-purebred herds. In addition, the model used only partially accounted for heterosis. The multibreed analysis showed additive genetic differences between the HF and JE breeds, expressed as genetic correlations of additive effects in both breeds, especially in linear and quadratic Legendre polynomials (respectively, 0.807 and 0.604). The differences were small for overall milk production (0.926). Results showed that permanent environmental lactation curves were highly correlated across breeds; however, intraherd lactation curves were also affected by the breed-environment interaction. This result may indicate the existence of breed-specific competition effects that vary through the different lactation stages. In conclusion, a multibreed model similar to the one presented could optimally use the environmental and genetic parameters and provide breed-dependent additive breeding values. This model could also be a useful tool to evaluate crossbred dairy cattle populations like those in New Zealand. However, a routine evaluation would still require the development of an improved methodology. It would also be computationally very challenging because of the simultaneous presence of a large number of breeds.

  11. Automatic Estimation of the Radiological Inventory for the Dismantling of Nuclear Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Bermejo, R.; Felipe, A.; Gutierrez, S.

    The estimation of the radiological inventory of Nuclear Facilities to be dismantled is a process that included information related with the physical inventory of all the plant and radiological survey. Estimation of the radiological inventory for all the components and civil structure of the plant could be obtained with mathematical models with statistical approach. A computer application has been developed in order to obtain the radiological inventory in an automatic way. Results: A computer application that is able to estimate the radiological inventory from the radiological measurements or the characterization program has been developed. In this computer applications has beenmore » included the statistical functions needed for the estimation of the central tendency and variability, e.g. mean, median, variance, confidence intervals, variance coefficients, etc. This computer application is a necessary tool in order to be able to estimate the radiological inventory of a nuclear facility and it is a powerful tool for decision taken in future sampling surveys.« less

  12. Cosmic bulk flow and the local motion from Cosmicflows-2

    NASA Astrophysics Data System (ADS)

    Hoffman, Yehuda; Courtois, Hélène M.; Tully, R. Brent

    2015-06-01

    Full sky surveys of peculiar velocity are arguably the best way to map the large-scale structure (LSS) out to distances of a few × 100 h-1 Mpc. Using the largest and most accurate ever catalogue of galaxy peculiar velocities Cosmicflows-2, the LSS has been reconstructed by means of the Wiener filter (WF) and constrained realizations (CRs) assuming as a Bayesian prior model the Λ cold dark matter model with the WMAP inferred cosmological parameters. This paper focuses on studying the bulk flow of the local flow field, defined as the mean velocity of top-hat spheres with radii ranging out to R = 500 h-1 Mpc. The estimated LSS, in general, and the bulk flow, in particular, are determined by the tension between the observational data and the assumed prior model. A pre-requisite for such an analysis is the requirement that the estimated bulk flow is consistent with the prior model. Such a consistency is found here. At R = 50 (150) h-1 Mpc, the estimated bulk velocity is 250 ± 21 (239 ± 38) km s-1. The corresponding cosmic variance at these radii is 126 (60) km s-1, which implies that these estimated bulk flows are dominated by the data and not by the assumed prior model. The estimated bulk velocity is dominated by the data out to R ≈ 200 h-1 Mpc, where the cosmic variance on the individual supergalactic Cartesian components (of the rms values) exceeds the variance of the CRs by at least a factor of 2. The SGX and SGY components of the cosmic microwave background dipole velocity are recovered by the WF velocity field down to a very few km s-1. The SGZ component of the estimated velocity, the one that is most affected by the zone of avoidance, is off by 126 km s-1 (an almost 2σ discrepancy). The bulk velocity analysis reported here is virtually unaffected by the Malmquist bias and very similar results are obtained for the data with and without the bias correction.

  13. High-Dimensional Heteroscedastic Regression with an Application to eQTL Data Analysis

    PubMed Central

    Daye, Z. John; Chen, Jinbo; Li, Hongzhe

    2011-01-01

    Summary We consider the problem of high-dimensional regression under non-constant error variances. Despite being a common phenomenon in biological applications, heteroscedasticity has, so far, been largely ignored in high-dimensional analysis of genomic data sets. We propose a new methodology that allows non-constant error variances for high-dimensional estimation and model selection. Our method incorporates heteroscedasticity by simultaneously modeling both the mean and variance components via a novel doubly regularized approach. Extensive Monte Carlo simulations indicate that our proposed procedure can result in better estimation and variable selection than existing methods when heteroscedasticity arises from the presence of predictors explaining error variances and outliers. Further, we demonstrate the presence of heteroscedasticity in and apply our method to an expression quantitative trait loci (eQTLs) study of 112 yeast segregants. The new procedure can automatically account for heteroscedasticity in identifying the eQTLs that are associated with gene expression variations and lead to smaller prediction errors. These results demonstrate the importance of considering heteroscedasticity in eQTL data analysis. PMID:22547833

  14. Multilevel modelling of somatotype components: the Portuguese sibling study on growth, fitness, lifestyle and health.

    PubMed

    Pereira, Sara; Katzmarzyk, Peter T; Gomes, Thayse Natacha; Souza, Michele; Chaves, Raquel N; Santos, Fernanda K Dos; Santos, Daniel; Hedeker, Donald; Maia, José A R

    2017-06-01

    Somatotype is a complex trait influenced by different genetic and environmental factors as well as by other covariates whose effects are still unclear. To (1) estimate siblings' resemblance in their general somatotype; (2) identify sib-pair (brother-brother (BB), sister-sister (SS), brother-sister (BS)) similarities in individual somatotype components; (3) examine the degree to which between and within variances differ among sib-ships; and (4) investigate the effects of physical activity (PA) and family socioeconomic status (SES) on these relationships. The sample comprises 1058 Portuguese siblings (538 females) aged 9-20 years. Somatotype was calculated using the Health-Carter method, while PA and SES information was obtained by questionnaire. Multi-level modelling was done in SuperMix software. Older subjects showed the lowest values for endomorphy and mesomorphy, but the highest values for ectomorphy; and more physically active subjects showed the highest values for mesomorphy. In general, the familiality of somatotype was moderate (ρ = 0.35). Same-sex siblings had the strongest resemblance (endomorphy: ρ SS > ρ BB > ρ BS ; mesomorphy: ρ BB = ρ SS > ρ BS ; ectomorphy: ρ BB > ρ SS > ρ BS ). For the ectomorphy and mesomorphy components, BS pairs showed the highest between sib-ship variance, but the lowest within sib-ship variance; while for endomorphy BS showed the lowest between and within sib-ship variances. These results highlight the significant familial effects on somatotype and the complexity of the role of familial resemblance in explaining variance in somatotypes.

  15. The Genetic and Environmental Etiologies of the Relations between Cognitive Skills and Components of Reading Ability

    PubMed Central

    Christopher, Micaela E.; Keenan, Janice M.; Hulslander, Jacqueline; DeFries, John C.; Miyake, Akira; Wadsworth, Sally J.; Willcutt, Erik; Pennington, Bruce; Olson, Richard K.

    2016-01-01

    While previous research has shown cognitive skills to be important predictors of reading ability in children, the respective roles for genetic and environmental influences on these relations is an open question. The present study explored the genetic and environmental etiologies underlying the relations between selected executive functions and cognitive abilities (working memory, inhibition, processing speed, and naming speed) with three components of reading ability (word reading, reading comprehension, and listening comprehension). Twin pairs drawn from the Colorado Front Range (n = 676; 224 monozygotic pairs; 452 dizygotic pairs) between the ages of eight and 16 (M = 11.11) were assessed on multiple measures of each cognitive and reading-related skill. Each cognitive and reading-related skill was modeled as a latent variable, and behavioral genetic analyses estimated the portions of phenotypic variance on each latent variable due to genetic, shared environmental, and nonshared environmental influences. The covariance between the cognitive skills and reading-related skills was driven primarily by genetic influences. The cognitive skills also shared large amounts of genetic variance, as did the reading-related skills. The common cognitive genetic variance was highly correlated with the common reading genetic variance, suggesting that genetic influences involved in general cognitive processing are also important for reading ability. Skill-specific genetic variance in working memory and processing speed also predicted components of reading ability. Taken together, the present study supports a genetic association between children’s cognitive ability and reading ability. PMID:26974208

  16. The genetics of obesity.

    USDA-ARS?s Scientific Manuscript database

    All definitions of the metabolic syndrome include some form of obesity as one of the possible features. Body mass index (BMI) has a known genetic component, currently estimated to account for about 70% of the population variance in weight status for non-syndromal obesity. Much research effort has be...

  17. SLR precision analysis for LAGEOS I and II

    NASA Astrophysics Data System (ADS)

    Kizilsu, Gaye; Sahin, Muhammed

    2000-10-01

    This paper deals with the problem of properly weighting satellite observations which are non-uniform in quality. The technique, the variance component estimation method developed by Helmert, was first applied to the 1987 LAGEOS I SLR data by Sahin et al. (1992). This paper investigates the performance of the globally distributed SLR stations using the Helmert type variance component estimation. As well as LAGEOS I data, LAGEOS II data were analysed, in order to compare with the previously analysed 1987 LAGEOS I data. The LAGEOS I and II data used in this research were obtained from the NASA Crustal Dynamics Data Information System (CDDIS), which archives data acquired from stations operated by NASA and by other U.S. and international organizations. The data covers the years 1994, 1995 and 1996. The analysis is based on "full-rate" laser observations, which consist of hundreds to thousands of ranges per satellite pass. The software used is based on the SATAN package (SATellite ANalysis) developed at the Royal Greenwich Observatory in the UK.

  18. Implication of adaptive smoothness constraint and Helmert variance component estimation in seismic slip inversion

    NASA Astrophysics Data System (ADS)

    Fan, Qingbiao; Xu, Caijun; Yi, Lei; Liu, Yang; Wen, Yangmao; Yin, Zhi

    2017-10-01

    When ill-posed problems are inverted, the regularization process is equivalent to adding constraint equations or prior information from a Bayesian perspective. The veracity of the constraints (or the regularization matrix R) significantly affects the solution, and a smoothness constraint is usually added in seismic slip inversions. In this paper, an adaptive smoothness constraint (ASC) based on the classic Laplacian smoothness constraint (LSC) is proposed. The ASC not only improves the smoothness constraint, but also helps constrain the slip direction. A series of experiments are conducted in which different magnitudes of noise are imposed and different densities of observation are assumed, and the results indicated that the ASC was superior to the LSC. Using the proposed ASC, the Helmert variance component estimation method is highlighted as the best for selecting the regularization parameter compared with other methods, such as generalized cross-validation or the mean squared error criterion method. The ASC may also benefit other ill-posed problems in which a smoothness constraint is required.

  19. Estimation of genetic parameters and response to selection for a continuous trait subject to culling before testing.

    PubMed

    Arnason, T; Albertsdóttir, E; Fikse, W F; Eriksson, S; Sigurdsson, A

    2012-02-01

    The consequences of assuming a zero environmental covariance between a binary trait 'test-status' and a continuous trait on the estimates of genetic parameters by restricted maximum likelihood and Gibbs sampling and on response from genetic selection when the true environmental covariance deviates from zero were studied. Data were simulated for two traits (one that culling was based on and a continuous trait) using the following true parameters, on the underlying scale: h² = 0.4; r(A) = 0.5; r(E) = 0.5, 0.0 or -0.5. The selection on the continuous trait was applied to five subsequent generations where 25 sires and 500 dams produced 1500 offspring per generation. Mass selection was applied in the analysis of the effect on estimation of genetic parameters. Estimated breeding values were used in the study of the effect of genetic selection on response and accuracy. The culling frequency was either 0.5 or 0.8 within each generation. Each of 10 replicates included 7500 records on 'test-status' and 9600 animals in the pedigree file. Results from bivariate analysis showed unbiased estimates of variance components and genetic parameters when true r(E) = 0.0. For r(E) = 0.5, variance components (13-19% bias) and especially (50-80%) were underestimated for the continuous trait, while heritability estimates were unbiased. For r(E) = -0.5, heritability estimates of test-status were unbiased, while genetic variance and heritability of the continuous trait together with were overestimated (25-50%). The bias was larger for the higher culling frequency. Culling always reduced genetic progress from selection, but the genetic progress was found to be robust to the use of wrong parameter values of the true environmental correlation between test-status and the continuous trait. Use of a bivariate linear-linear model reduced bias in genetic evaluations, when data were subject to culling. © 2011 Blackwell Verlag GmbH.

  20. Unraveling additive from nonadditive effects using genomic relationship matrices.

    PubMed

    Muñoz, Patricio R; Resende, Marcio F R; Gezan, Salvador A; Resende, Marcos Deon Vilela; de Los Campos, Gustavo; Kirst, Matias; Huber, Dudley; Peter, Gary F

    2014-12-01

    The application of quantitative genetics in plant and animal breeding has largely focused on additive models, which may also capture dominance and epistatic effects. Partitioning genetic variance into its additive and nonadditive components using pedigree-based models (P-genomic best linear unbiased predictor) (P-BLUP) is difficult with most commonly available family structures. However, the availability of dense panels of molecular markers makes possible the use of additive- and dominance-realized genomic relationships for the estimation of variance components and the prediction of genetic values (G-BLUP). We evaluated height data from a multifamily population of the tree species Pinus taeda with a systematic series of models accounting for additive, dominance, and first-order epistatic interactions (additive by additive, dominance by dominance, and additive by dominance), using either pedigree- or marker-based information. We show that, compared with the pedigree, use of realized genomic relationships in marker-based models yields a substantially more precise separation of additive and nonadditive components of genetic variance. We conclude that the marker-based relationship matrices in a model including additive and nonadditive effects performed better, improving breeding value prediction. Moreover, our results suggest that, for tree height in this population, the additive and nonadditive components of genetic variance are similar in magnitude. This novel result improves our current understanding of the genetic control and architecture of a quantitative trait and should be considered when developing breeding strategies. Copyright © 2014 by the Genetics Society of America.

  1. Genetic Variance in Homophobia: Evidence from Self- and Peer Reports.

    PubMed

    Zapko-Willmes, Alexandra; Kandler, Christian

    2018-01-01

    The present twin study combined self- and peer assessments of twins' general homophobia targeting gay men in order to replicate previous behavior genetic findings across different rater perspectives and to disentangle self-rater-specific variance from common variance in self- and peer-reported homophobia (i.e., rater-consistent variance). We hypothesized rater-consistent variance in homophobia to be attributable to genetic and nonshared environmental effects, and self-rater-specific variance to be partially accounted for by genetic influences. A sample of 869 twins and 1329 peer raters completed a seven item scale containing cognitive, affective, and discriminatory homophobic tendencies. After correction for age and sex differences, we found most of the genetic contributions (62%) and significant nonshared environmental contributions (16%) to individual differences in self-reports on homophobia to be also reflected in peer-reported homophobia. A significant genetic component, however, was self-report-specific (38%), suggesting that self-assessments alone produce inflated heritability estimates to some degree. Different explanations are discussed.

  2. Genetic variation and co-variation for fitness between intra-population and inter-population backgrounds in the red flour beetle, Tribolium castaneum

    PubMed Central

    Drury, Douglas W.; Wade, Michael J.

    2010-01-01

    Hybrids from crosses between populations of the flour beetle, Tribolium castaneum, express varying degrees of inviability and morphological abnormalities. The proportion of allopatric population hybrids exhibiting these negative hybrid phenotypes varies widely, from 3% to 100%, depending upon the pair of populations crossed. We crossed three populations and measured two fitness components, fertility and adult offspring numbers from successful crosses, to determine how genes segregating within populations interact in inter-population hybrids to cause the negative phenotypes. With data from crosses of 40 sires from each of three populations to groups of 5 dams from their own and two divergent populations, we estimated the genetic variance and covariance for breeding value of fitness between the intra- and inter-population backgrounds and the sire × dam-population interaction variance. The latter component of the variance in breeding values estimates the change in genic effects between backgrounds owing to epistasis. Interacting genes with a positive effect, prior to fixation, in the sympatric background but a negative effect in the hybrid background cause reproductive incompatibility in the Dobzhansky-Muller speciation model. Thus, the sire × dam-population interaction provides a way to measure the progress toward speciation of genetically differentiating populations on a trait by trait basis using inter-population hybrids. PMID:21044199

  3. Separation of Trend and Chaotic Components of Time Series and Estimation of Their Characteristics by Linear Splines

    NASA Astrophysics Data System (ADS)

    Kryanev, A. V.; Ivanov, V. V.; Romanova, A. O.; Sevastyanov, L. A.; Udumyan, D. K.

    2018-03-01

    This paper considers the problem of separating the trend and the chaotic component of chaotic time series in the absence of information on the characteristics of the chaotic component. Such a problem arises in nuclear physics, biomedicine, and many other applied fields. The scheme has two stages. At the first stage, smoothing linear splines with different values of smoothing parameter are used to separate the "trend component." At the second stage, the method of least squares is used to find the unknown variance σ2 of the noise component.

  4. Minimum number of measurements for evaluating Bertholletia excelsa.

    PubMed

    Baldoni, A B; Tonini, H; Tardin, F D; Botelho, S C C; Teodoro, P E

    2017-09-27

    Repeatability studies on fruit species are of great importance to identify the minimum number of measurements necessary to accurately select superior genotypes. This study aimed to identify the most efficient method to estimate the repeatability coefficient (r) and predict the minimum number of measurements needed for a more accurate evaluation of Brazil nut tree (Bertholletia excelsa) genotypes based on fruit yield. For this, we assessed the number of fruits and dry mass of seeds of 75 Brazil nut genotypes, from native forest, located in the municipality of Itaúba, MT, for 5 years. To better estimate r, four procedures were used: analysis of variance (ANOVA), principal component analysis based on the correlation matrix (CPCOR), principal component analysis based on the phenotypic variance and covariance matrix (CPCOV), and structural analysis based on the correlation matrix (mean r - AECOR). There was a significant effect of genotypes and measurements, which reveals the need to study the minimum number of measurements for selecting superior Brazil nut genotypes for a production increase. Estimates of r by ANOVA were lower than those observed with the principal component methodology and close to AECOR. The CPCOV methodology provided the highest estimate of r, which resulted in a lower number of measurements needed to identify superior Brazil nut genotypes for the number of fruits and dry mass of seeds. Based on this methodology, three measurements are necessary to predict the true value of the Brazil nut genotypes with a minimum accuracy of 85%.

  5. Environmental rather than genetic factors determine the variation in the age of the infancy to childhood transition: a twins study.

    PubMed

    German, Alina; Livshits, Gregory; Peter, Inga; Malkin, Ida; Dubnov, Jonathan; Akons, Hannah; Shmoish, Michael; Hochberg, Ze'ev

    2015-03-01

    Using a twins study, we sought to assess the contribution of genetic against environmental factor as they affect the age at transition from infancy to childhood (ICT). The subjects were 56 pairs of monozygotic twins, 106 pairs of dizygotic twins, and 106 pairs of regular siblings (SBs), for a total of 536 children. Their ICT was determined, and a variance component analysis was implemented to estimate components of the familial variance, with simultaneous adjustment for potential covariates. We found substantial contribution of the common environment shared by all types of SBs that explained 27.7% of the total variance in ICT, whereas the common twin environment explained 9.2% of the variance, gestational age 3.5%, and birth weight 1.8%. In addition, 8.7% was attributable to sex difference, but we found no detectable contribution of genetic factors to inter-individual variation in ICT age. Developmental plasticity impacts much of human growth. Here we show that of the ∼50% of the variance provided to adult height by the ICT, 42.2% is attributable to adaptive cues represented by shared twin and SB environment, with no detectable genetic involvement. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Testing variance components by two jackknife methods

    USDA-ARS?s Scientific Manuscript database

    The jacknife method, a resampling technique, has been widely used for statistical tests for years. The pseudo value based jacknife method (defined as pseudo jackknife method) is commonly used to reduce the bias for an estimate; however, sometimes it could result in large variaion for an estmimate a...

  7. Genetic Correlations Between Carcass Traits And Molecular Breeding Values In Angus Cattle

    USDA-ARS?s Scientific Manuscript database

    This research elucidated genetic relationships between carcass traits, ultrasound indicator traits, and their respective molecular breeding values (MBV). Animals whose MBV data were used to estimate (co)variance components were not previously used in development of the MBV. Results are presented fo...

  8. Adaptive Kalman filter based on variance component estimation for the prediction of ionospheric delay in aiding the cycle slip repair of GNSS triple-frequency signals

    NASA Astrophysics Data System (ADS)

    Chang, Guobin; Xu, Tianhe; Yao, Yifei; Wang, Qianxin

    2018-01-01

    In order to incorporate the time smoothness of ionospheric delay to aid the cycle slip detection, an adaptive Kalman filter is developed based on variance component estimation. The correlations between measurements at neighboring epochs are fully considered in developing a filtering algorithm for colored measurement noise. Within this filtering framework, epoch-differenced ionospheric delays are predicted. Using this prediction, the potential cycle slips are repaired for triple-frequency signals of global navigation satellite systems. Cycle slips are repaired in a stepwise manner; i.e., for two extra wide lane combinations firstly and then for the third frequency. In the estimation for the third frequency, a stochastic model is followed in which the correlations between the ionospheric delay prediction errors and the errors in the epoch-differenced phase measurements are considered. The implementing details of the proposed method are tabulated. A real BeiDou Navigation Satellite System data set is used to check the performance of the proposed method. Most cycle slips, no matter trivial or nontrivial, can be estimated in float values with satisfactorily high accuracy and their integer values can hence be correctly obtained by simple rounding. To be more specific, all manually introduced nontrivial cycle slips are correctly repaired.

  9. Ethnic and socioeconomic differences in variability in nutritional biomarkers.

    PubMed

    Kant, Ashima K; Graubard, Barry I

    2008-05-01

    Several studies have reported ethnic, education, and income differentials in concentrations of selected nutritional biomarkers in the US population. Although biomarker measurements are not subject to biased self-reports, biologic variability due to individual characteristics and behaviors related to dietary exposures contributes to within-subject variability and measurement error. We aimed to establish whether the magnitude of components of variance for nutritional biomarkers also differs in these high-risk groups. We used data from 2 replicate measurements of serum concentrations of vitamins A, C, D, and E; folate; carotenoids; ferritin; and selenium in the third National Health and Nutrition Examination Survey second examination subsample (n = 948) to examine the within-subject and between-subject components of variance. We used multivariate regression methods with log-transformed analyte concentrations as outcomes to estimate the ratios of the within-subject to between-subject components of variance by categories of ethnicity, income, and education. In non-Hispanic blacks, the within-subject to between-subject variance ratio for beta-cryptoxanthin concentration was higher (0.23; 95% CI: 0.17, 0.29) relative to non-Hispanic whites (0.13; 0.11, 0.16) and Mexican Americans (0.11; 0.07, 0.14), and the lutein + zeaxanthin ratio was higher (0.29; 0.21, 0.38) relative to Mexican Americans (0.15; 0.10, 0.19). Higher income was associated with larger within-subject to between-subject variance ratios for serum vitamin C and red blood cell folate concentrations but smaller ratios for serum vitamin A. Overall, there were few consistent up- or down-trends in the direction of covariate-adjusted variability by ethnicity, income, or education. Population groups at high risk of adverse nutritional profiles did not have larger variance ratios for most of the examined biomarkers.

  10. Kriging with Unknown Variance Components for Regional Ionospheric Reconstruction.

    PubMed

    Huang, Ling; Zhang, Hongping; Xu, Peiliang; Geng, Jianghui; Wang, Cheng; Liu, Jingnan

    2017-02-27

    Ionospheric delay effect is a critical issue that limits the accuracy of precise Global Navigation Satellite System (GNSS) positioning and navigation for single-frequency users, especially in mid- and low-latitude regions where variations in the ionosphere are larger. Kriging spatial interpolation techniques have been recently introduced to model the spatial correlation and variability of ionosphere, which intrinsically assume that the ionosphere field is stochastically stationary but does not take the random observational errors into account. In this paper, by treating the spatial statistical information on ionosphere as prior knowledge and based on Total Electron Content (TEC) semivariogram analysis, we use Kriging techniques to spatially interpolate TEC values. By assuming that the stochastic models of both the ionospheric signals and measurement errors are only known up to some unknown factors, we propose a new Kriging spatial interpolation method with unknown variance components for both the signals of ionosphere and TEC measurements. Variance component estimation has been integrated with Kriging to reconstruct regional ionospheric delays. The method has been applied to data from the Crustal Movement Observation Network of China (CMONOC) and compared with the ordinary Kriging and polynomial interpolations with spherical cap harmonic functions, polynomial functions and low-degree spherical harmonic functions. The statistics of results indicate that the daily ionospheric variations during the experimental period characterized by the proposed approach have good agreement with the other methods, ranging from 10 to 80 TEC Unit (TECU, 1 TECU = 1 × 10 16 electrons/m²) with an overall mean of 28.2 TECU. The proposed method can produce more appropriate estimations whose general TEC level is as smooth as the ordinary Kriging but with a smaller standard deviation around 3 TECU than others. The residual results show that the interpolation precision of the new proposed method is better than the ordinary Kriging and polynomial interpolation by about 1.2 TECU and 0.7 TECU, respectively. The root mean squared error of the proposed new Kriging with variance components is within 1.5 TECU and is smaller than those from other methods under comparison by about 1 TECU. When compared with ionospheric grid points, the mean squared error of the proposed method is within 6 TECU and smaller than Kriging, indicating that the proposed method can produce more accurate ionospheric delays and better estimation accuracy over China regional area.

  11. Kriging with Unknown Variance Components for Regional Ionospheric Reconstruction

    PubMed Central

    Huang, Ling; Zhang, Hongping; Xu, Peiliang; Geng, Jianghui; Wang, Cheng; Liu, Jingnan

    2017-01-01

    Ionospheric delay effect is a critical issue that limits the accuracy of precise Global Navigation Satellite System (GNSS) positioning and navigation for single-frequency users, especially in mid- and low-latitude regions where variations in the ionosphere are larger. Kriging spatial interpolation techniques have been recently introduced to model the spatial correlation and variability of ionosphere, which intrinsically assume that the ionosphere field is stochastically stationary but does not take the random observational errors into account. In this paper, by treating the spatial statistical information on ionosphere as prior knowledge and based on Total Electron Content (TEC) semivariogram analysis, we use Kriging techniques to spatially interpolate TEC values. By assuming that the stochastic models of both the ionospheric signals and measurement errors are only known up to some unknown factors, we propose a new Kriging spatial interpolation method with unknown variance components for both the signals of ionosphere and TEC measurements. Variance component estimation has been integrated with Kriging to reconstruct regional ionospheric delays. The method has been applied to data from the Crustal Movement Observation Network of China (CMONOC) and compared with the ordinary Kriging and polynomial interpolations with spherical cap harmonic functions, polynomial functions and low-degree spherical harmonic functions. The statistics of results indicate that the daily ionospheric variations during the experimental period characterized by the proposed approach have good agreement with the other methods, ranging from 10 to 80 TEC Unit (TECU, 1 TECU = 1 × 1016 electrons/m2) with an overall mean of 28.2 TECU. The proposed method can produce more appropriate estimations whose general TEC level is as smooth as the ordinary Kriging but with a smaller standard deviation around 3 TECU than others. The residual results show that the interpolation precision of the new proposed method is better than the ordinary Kriging and polynomial interpolation by about 1.2 TECU and 0.7 TECU, respectively. The root mean squared error of the proposed new Kriging with variance components is within 1.5 TECU and is smaller than those from other methods under comparison by about 1 TECU. When compared with ionospheric grid points, the mean squared error of the proposed method is within 6 TECU and smaller than Kriging, indicating that the proposed method can produce more accurate ionospheric delays and better estimation accuracy over China regional area. PMID:28264424

  12. Effect of Body Composition Methodology on Heritability Estimation of Body Fatness

    PubMed Central

    Elder, Sonya J.; Roberts, Susan B.; McCrory, Megan A.; Das, Sai Krupa; Fuss, Paul J.; Pittas, Anastassios G.; Greenberg, Andrew S.; Heymsfield, Steven B.; Dawson-Hughes, Bess; Bouchard, Thomas J.; Saltzman, Edward; Neale, Michael C.

    2014-01-01

    Heritability estimates of human body fatness vary widely and the contribution of body composition methodology to this variability is unknown. The effect of body composition methodology on estimations of genetic and environmental contributions to body fatness variation was examined in 78 adult male and female monozygotic twin pairs reared apart or together. Body composition was assessed by six methods – body mass index (BMI), dual energy x-ray absorptiometry (DXA), underwater weighing (UWW), total body water (TBW), bioelectric impedance (BIA), and skinfold thickness. Body fatness was expressed as percent body fat, fat mass, and fat mass/height2 to assess the effect of body fatness expression on heritability estimates. Model-fitting multivariate analyses were used to assess the genetic and environmental components of variance. Mean BMI was 24.5 kg/m2 (range of 17.8–43.4 kg/m2). There was a significant effect of body composition methodology (p<0.001) on heritability estimates, with UWW giving the highest estimate (69%) and BIA giving the lowest estimate (47%) for fat mass/height2. Expression of body fatness as percent body fat resulted in significantly higher heritability estimates (on average 10.3% higher) compared to expression as fat mass/height2 (p=0.015). DXA and TBW methods expressing body fatness as fat mass/height2 gave the least biased heritability assessments, based on the small contribution of specific genetic factors to their genetic variance. A model combining DXA and TBW methods resulted in a relatively low FM/ht2 heritability estimate of 60%, and significant contributions of common and unique environmental factors (22% and 18%, respectively). The body fatness heritability estimate of 60% indicates a smaller contribution of genetic variance to total variance than many previous studies using less powerful research designs have indicated. The results also highlight the importance of environmental factors and possibly genotype by environmental interactions in the etiology of weight gain and the obesity epidemic. PMID:25067962

  13. A note on variance estimation in random effects meta-regression.

    PubMed

    Sidik, Kurex; Jonkman, Jeffrey N

    2005-01-01

    For random effects meta-regression inference, variance estimation for the parameter estimates is discussed. Because estimated weights are used for meta-regression analysis in practice, the assumed or estimated covariance matrix used in meta-regression is not strictly correct, due to possible errors in estimating the weights. Therefore, this note investigates the use of a robust variance estimation approach for obtaining variances of the parameter estimates in random effects meta-regression inference. This method treats the assumed covariance matrix of the effect measure variables as a working covariance matrix. Using an example of meta-analysis data from clinical trials of a vaccine, the robust variance estimation approach is illustrated in comparison with two other methods of variance estimation. A simulation study is presented, comparing the three methods of variance estimation in terms of bias and coverage probability. We find that, despite the seeming suitability of the robust estimator for random effects meta-regression, the improved variance estimator of Knapp and Hartung (2003) yields the best performance among the three estimators, and thus may provide the best protection against errors in the estimated weights.

  14. A Late Pleistocene sea level stack

    NASA Astrophysics Data System (ADS)

    Spratt, Rachel M.; Lisiecki, Lorraine E.

    2016-04-01

    Late Pleistocene sea level has been reconstructed from ocean sediment core data using a wide variety of proxies and models. However, the accuracy of individual reconstructions is limited by measurement error, local variations in salinity and temperature, and assumptions particular to each technique. Here we present a sea level stack (average) which increases the signal-to-noise ratio of individual reconstructions. Specifically, we perform principal component analysis (PCA) on seven records from 0 to 430 ka and five records from 0 to 798 ka. The first principal component, which we use as the stack, describes ˜ 80 % of the variance in the data and is similar using either five or seven records. After scaling the stack based on Holocene and Last Glacial Maximum (LGM) sea level estimates, the stack agrees to within 5 m with isostatically adjusted coral sea level estimates for Marine Isotope Stages 5e and 11 (125 and 400 ka, respectively). Bootstrapping and random sampling yield mean uncertainty estimates of 9-12 m (1σ) for the scaled stack. Sea level change accounts for about 45 % of the total orbital-band variance in benthic δ18O, compared to a 65 % contribution during the LGM-to-Holocene transition. Additionally, the second and third principal components of our analyses reflect differences between proxy records associated with spatial variations in the δ18O of seawater.

  15. Statistical aspects of quantitative real-time PCR experiment design.

    PubMed

    Kitchen, Robert R; Kubista, Mikael; Tichopad, Ales

    2010-04-01

    Experiments using quantitative real-time PCR to test hypotheses are limited by technical and biological variability; we seek to minimise sources of confounding variability through optimum use of biological and technical replicates. The quality of an experiment design is commonly assessed by calculating its prospective power. Such calculations rely on knowledge of the expected variances of the measurements of each group of samples and the magnitude of the treatment effect; the estimation of which is often uninformed and unreliable. Here we introduce a method that exploits a small pilot study to estimate the biological and technical variances in order to improve the design of a subsequent large experiment. We measure the variance contributions at several 'levels' of the experiment design and provide a means of using this information to predict both the total variance and the prospective power of the assay. A validation of the method is provided through a variance analysis of representative genes in several bovine tissue-types. We also discuss the effect of normalisation to a reference gene in terms of the measured variance components of the gene of interest. Finally, we describe a software implementation of these methods, powerNest, that gives the user the opportunity to input data from a pilot study and interactively modify the design of the assay. The software automatically calculates expected variances, statistical power, and optimal design of the larger experiment. powerNest enables the researcher to minimise the total confounding variance and maximise prospective power for a specified maximum cost for the large study. Copyright 2010 Elsevier Inc. All rights reserved.

  16. The effects of heat stress in Italian Holstein dairy cattle.

    PubMed

    Bernabucci, U; Biffani, S; Buggiotti, L; Vitali, A; Lacetera, N; Nardone, A

    2014-01-01

    The data set for this study comprised 1,488,474 test-day records for milk, fat, and protein yields and fat and protein percentages from 191,012 first-, second-, and third-parity Holstein cows from 484 farms. Data were collected from 2001 through 2007 and merged with meteorological data from 35 weather stations. A linear model (M1) was used to estimate the effects of the temperature-humidity index (THI) on production traits. Least squares means from M1 were used to detect the THI thresholds for milk production in all parities by using a 2-phase linear regression procedure (M2). A multiple-trait repeatability test-model (M3) was used to estimate variance components for all traits and a dummy regression variable (t) was defined to estimate the production decline caused by heat stress. Additionally, the estimated variance components and M3 were used to estimate traditional and heat-tolerance breeding values (estimated breeding values, EBV) for milk yield and protein percentages at parity 1. An analysis of data (M2) indicated that the daily THI at which milk production started to decline for the 3 parities and traits ranged from 65 to 76. These THI values can be achieved with different temperature/humidity combinations with a range of temperatures from 21 to 36°C and relative humidity values from 5 to 95%. The highest negative effect of THI was observed 4 d before test day over the 3 parities for all traits. The negative effect of THI on production traits indicates that first-parity cows are less sensitive to heat stress than multiparous cows. Over the parities, the general additive genetic variance decreased for protein content and increased for milk yield and fat and protein yield. Additive genetic variance for heat tolerance showed an increase from the first to third parity for milk, protein, and fat yield, and for protein percentage. Genetic correlations between general and heat stress effects were all unfavorable (from -0.24 to -0.56). Three EBV per trait were calculated for each cow and bull (traditional EBV, traditional EBV estimated with the inclusion of THI covariate effect, and heat tolerance EBV) and the rankings of EBV for 283 bulls born after 1985 with at least 50 daughters were compared. When THI was included in the model, the ranking for 17 and 32 bulls changed for milk yield and protein percentage, respectively. The heat tolerance genetic component is not negligible, suggesting that heat tolerance selection should be included in the selection objectives. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Logistics for Working Together to Facilitate Genomic/Quantitative Genetic Prediction

    USDA-ARS?s Scientific Manuscript database

    The incorporation of DNA tests into the national cattle evaluation system will require estimation of variances of and covariances among the additive genetic components of the DNA tests and the phenotypic traits they are intended to predict. Populations with both DNA test results and phenotypes will ...

  18. Factors associated with feed intake of Angus steers

    USDA-ARS?s Scientific Manuscript database

    Estimates of variance components were obtained from 475 records of average (AFI) and residual feed intake (RFI). Covariates in various (8) models included average daily gain (G), age (A) and weight (W) on test, and slaughter (S) and ultrasound (U) carcass measures (fat thickness, ribeye area and ma...

  19. Statistically Self-Consistent and Accurate Errors for SuperDARN Data

    NASA Astrophysics Data System (ADS)

    Reimer, A. S.; Hussey, G. C.; McWilliams, K. A.

    2018-01-01

    The Super Dual Auroral Radar Network (SuperDARN)-fitted data products (e.g., spectral width and velocity) are produced using weighted least squares fitting. We present a new First-Principles Fitting Methodology (FPFM) that utilizes the first-principles approach of Reimer et al. (2016) to estimate the variance of the real and imaginary components of the mean autocorrelation functions (ACFs) lags. SuperDARN ACFs fitted by the FPFM do not use ad hoc or empirical criteria. Currently, the weighting used to fit the ACF lags is derived from ad hoc estimates of the ACF lag variance. Additionally, an overcautious lag filtering criterion is used that sometimes discards data that contains useful information. In low signal-to-noise (SNR) and/or low signal-to-clutter regimes the ad hoc variance and empirical criterion lead to underestimated errors for the fitted parameter because the relative contributions of signal, noise, and clutter to the ACF variance is not taken into consideration. The FPFM variance expressions include contributions of signal, noise, and clutter. The clutter is estimated using the maximal power-based self-clutter estimator derived by Reimer and Hussey (2015). The FPFM was successfully implemented and tested using synthetic ACFs generated with the radar data simulator of Ribeiro, Ponomarenko, et al. (2013). The fitted parameters and the fitted-parameter errors produced by the FPFM are compared with the current SuperDARN fitting software, FITACF. Using self-consistent statistical analysis, the FPFM produces reliable or trustworthy quantitative measures of the errors of the fitted parameters. For an SNR in excess of 3 dB and velocity error below 100 m/s, the FPFM produces 52% more data points than FITACF.

  20. Estimates of genetic and environmental (co)variances for first lactation on milk yield, survival, and calving interval.

    PubMed

    Dong, M C; van Vleck, L D

    1989-03-01

    Variance and covariance components for milk yield, survival to second freshening, calving interval in first lactation were estimated by REML with the expectation and maximization algorithm for an animal model which included herd-year-season effects. Cows without calving interval but with milk yield were included. Each of the four data sets of 15 herds included about 3000 Holstein cows. Relationships across herds were ignored to enable inversion of the coefficient matrix of mixed model equations. Quadratics and their expectations were accumulated herd by herd. Heritability of milk yield (.32) agrees with reports by same methods. Heritabilities of survival (.11) and calving interval(.15) are slightly larger and genetic correlations smaller than results from different methods of estimation. Genetic correlation between milk yield and calving interval (.09) indicates genetic ability to produce more milk is lightly associated with decreased fertility.

  1. Dominance Genetic Variance for Traits Under Directional Selection in Drosophila serrata

    PubMed Central

    Sztepanacz, Jacqueline L.; Blows, Mark W.

    2015-01-01

    In contrast to our growing understanding of patterns of additive genetic variance in single- and multi-trait combinations, the relative contribution of nonadditive genetic variance, particularly dominance variance, to multivariate phenotypes is largely unknown. While mechanisms for the evolution of dominance genetic variance have been, and to some degree remain, subject to debate, the pervasiveness of dominance is widely recognized and may play a key role in several evolutionary processes. Theoretical and empirical evidence suggests that the contribution of dominance variance to phenotypic variance may increase with the correlation between a trait and fitness; however, direct tests of this hypothesis are few. Using a multigenerational breeding design in an unmanipulated population of Drosophila serrata, we estimated additive and dominance genetic covariance matrices for multivariate wing-shape phenotypes, together with a comprehensive measure of fitness, to determine whether there is an association between directional selection and dominance variance. Fitness, a trait unequivocally under directional selection, had no detectable additive genetic variance, but significant dominance genetic variance contributing 32% of the phenotypic variance. For single and multivariate morphological traits, however, no relationship was observed between trait–fitness correlations and dominance variance. A similar proportion of additive and dominance variance was found to contribute to phenotypic variance for single traits, and double the amount of additive compared to dominance variance was found for the multivariate trait combination under directional selection. These data suggest that for many fitness components a positive association between directional selection and dominance genetic variance may not be expected. PMID:25783700

  2. Approaches to Capture Variance Differences in Rest fMRI Networks in the Spatial Geometric Features: Application to Schizophrenia.

    PubMed

    Gopal, Shruti; Miller, Robyn L; Baum, Stefi A; Calhoun, Vince D

    2016-01-01

    Identification of functionally connected regions while at rest has been at the forefront of research focusing on understanding interactions between different brain regions. Studies have utilized a variety of approaches including seed based as well as data-driven approaches to identifying such networks. Most such techniques involve differentiating groups based on group mean measures. There has been little work focused on differences in spatial characteristics of resting fMRI data. We present a method to identify between group differences in the variability in the cluster characteristics of network regions within components estimated via independent vector analysis (IVA). IVA is a blind source separation approach shown to perform well in capturing individual subject variability within a group model. We evaluate performance of the approach using simulations and then apply to a relatively large schizophrenia data set (82 schizophrenia patients and 89 healthy controls). We postulate, that group differences in the intra-network distributional characteristics of resting state network voxel intensities might indirectly capture important distinctions between the brain function of healthy and clinical populations. Results demonstrate that specific areas of the brain, superior, and middle temporal gyrus that are involved in language and recognition of emotions, show greater component level variance in amplitude weights for schizophrenia patients than healthy controls. Statistically significant correlation between component level spatial variance and component volume was observed in 19 of the 27 non-artifactual components implying an evident relationship between the two parameters. Additionally, the greater spread in the distance of the cluster peak of a component from the centroid in schizophrenia patients compared to healthy controls was observed for seven components. These results indicate that there is hidden potential in exploring variance and possibly higher-order measures in resting state networks to better understand diseases such as schizophrenia. It furthers comprehension of how spatial characteristics can highlight previously unexplored differences between populations such as schizophrenia patients and healthy controls.

  3. Genetic influences on the difference in variability of height, weight and body mass index between Caucasian and East Asian adolescent twins.

    PubMed

    Hur, Y-M; Kaprio, J; Iacono, W G; Boomsma, D I; McGue, M; Silventoinen, K; Martin, N G; Luciano, M; Visscher, P M; Rose, R J; He, M; Ando, J; Ooki, S; Nonaka, K; Lin, C C H; Lajunen, H R; Cornes, B K; Bartels, M; van Beijsterveldt, C E M; Cherny, S S; Mitchell, K

    2008-10-01

    Twin studies are useful for investigating the causes of trait variation between as well as within a population. The goals of the present study were two-fold: First, we aimed to compare the total phenotypic, genetic and environmental variances of height, weight and BMI between Caucasians and East Asians using twins. Secondly, we intended to estimate the extent to which genetic and environmental factors contribute to differences in variability of height, weight and BMI between Caucasians and East Asians. Height and weight data from 3735 Caucasian and 1584 East Asian twin pairs (age: 13-15 years) from Australia, China, Finland, Japan, the Netherlands, South Korea, Taiwan and the United States were used for analyses. Maximum likelihood twin correlations and variance components model-fitting analyses were conducted to fulfill the goals of the present study. The absolute genetic variances for height, weight and BMI were consistently greater in Caucasians than in East Asians with corresponding differences in total variances for all three body measures. In all 80 to 100% of the differences in total variances of height, weight and BMI between the two population groups were associated with genetic differences. Height, weight and BMI were more variable in Caucasian than in East Asian adolescents. Genetic variances for these three body measures were also larger in Caucasians than in East Asians. Variance components model-fitting analyses indicated that genetic factors contributed to the difference in variability of height, weight and BMI between the two population groups. Association studies for these body measures should take account of our findings of differences in genetic variances between the two population groups.

  4. Genetic influences on the difference in variability of height, weight and body mass index between Caucasian and East Asian adolescent twins

    PubMed Central

    Hur, Y-M; Kaprio, J; Iacono, WG; Boomsma, DI; McGue, M; Silventoinen, K; Martin, NG; Luciano, M; Visscher, PM; Rose, RJ; He, M; Ando, J; Ooki, S; Nonaka, K; Lin, CCH; Lajunen, HR; Cornes, BK; Bartels, M; van Beijsterveldt, CEM; Cherny, SS; Mitchell, K

    2008-01-01

    Objective Twin studies are useful for investigating the causes of trait variation between as well as within a population. The goals of the present study were two-fold: First, we aimed to compare the total phenotypic, genetic and environmental variances of height, weight and BMI between Caucasians and East Asians using twins. Secondly, we intended to estimate the extent to which genetic and environmental factors contribute to differences in variability of height, weight and BMI between Caucasians and East Asians. Design Height and weight data from 3735 Caucasian and 1584 East Asian twin pairs (age: 13–15 years) from Australia, China, Finland, Japan, the Netherlands, South Korea, Taiwan and the United States were used for analyses. Maximum likelihood twin correlations and variance components model-fitting analyses were conducted to fulfill the goals of the present study. Results The absolute genetic variances for height, weight and BMI were consistently greater in Caucasians than in East Asians with corresponding differences in total variances for all three body measures. In all 80 to 100% of the differences in total variances of height, weight and BMI between the two population groups were associated with genetic differences. Conclusion Height, weight and BMI were more variable in Caucasian than in East Asian adolescents. Genetic variances for these three body measures were also larger in Caucasians than in East Asians. Variance components model-fitting analyses indicated that genetic factors contributed to the difference in variability of height, weight and BMI between the two population groups. Association studies for these body measures should take account of our findings of differences in genetic variances between the two population groups. PMID:18779828

  5. Network Structure and Biased Variance Estimation in Respondent Driven Sampling

    PubMed Central

    Verdery, Ashton M.; Mouw, Ted; Bauldry, Shawn; Mucha, Peter J.

    2015-01-01

    This paper explores bias in the estimation of sampling variance in Respondent Driven Sampling (RDS). Prior methodological work on RDS has focused on its problematic assumptions and the biases and inefficiencies of its estimators of the population mean. Nonetheless, researchers have given only slight attention to the topic of estimating sampling variance in RDS, despite the importance of variance estimation for the construction of confidence intervals and hypothesis tests. In this paper, we show that the estimators of RDS sampling variance rely on a critical assumption that the network is First Order Markov (FOM) with respect to the dependent variable of interest. We demonstrate, through intuitive examples, mathematical generalizations, and computational experiments that current RDS variance estimators will always underestimate the population sampling variance of RDS in empirical networks that do not conform to the FOM assumption. Analysis of 215 observed university and school networks from Facebook and Add Health indicates that the FOM assumption is violated in every empirical network we analyze, and that these violations lead to substantially biased RDS estimators of sampling variance. We propose and test two alternative variance estimators that show some promise for reducing biases, but which also illustrate the limits of estimating sampling variance with only partial information on the underlying population social network. PMID:26679927

  6. A Bias and Variance Analysis for Multistep-Ahead Time Series Forecasting.

    PubMed

    Ben Taieb, Souhaib; Atiya, Amir F

    2016-01-01

    Multistep-ahead forecasts can either be produced recursively by iterating a one-step-ahead time series model or directly by estimating a separate model for each forecast horizon. In addition, there are other strategies; some of them combine aspects of both aforementioned concepts. In this paper, we present a comprehensive investigation into the bias and variance behavior of multistep-ahead forecasting strategies. We provide a detailed review of the different multistep-ahead strategies. Subsequently, we perform a theoretical study that derives the bias and variance for a number of forecasting strategies. Finally, we conduct a Monte Carlo experimental study that compares and evaluates the bias and variance performance of the different strategies. From the theoretical and the simulation studies, we analyze the effect of different factors, such as the forecast horizon and the time series length, on the bias and variance components, and on the different multistep-ahead strategies. Several lessons are learned, and recommendations are given concerning the advantages, disadvantages, and best conditions of use of each strategy.

  7. A classical regression framework for mediation analysis: fitting one model to estimate mediation effects.

    PubMed

    Saunders, Christina T; Blume, Jeffrey D

    2017-10-26

    Mediation analysis explores the degree to which an exposure's effect on an outcome is diverted through a mediating variable. We describe a classical regression framework for conducting mediation analyses in which estimates of causal mediation effects and their variance are obtained from the fit of a single regression model. The vector of changes in exposure pathway coefficients, which we named the essential mediation components (EMCs), is used to estimate standard causal mediation effects. Because these effects are often simple functions of the EMCs, an analytical expression for their model-based variance follows directly. Given this formula, it is instructive to revisit the performance of routinely used variance approximations (e.g., delta method and resampling methods). Requiring the fit of only one model reduces the computation time required for complex mediation analyses and permits the use of a rich suite of regression tools that are not easily implemented on a system of three equations, as would be required in the Baron-Kenny framework. Using data from the BRAIN-ICU study, we provide examples to illustrate the advantages of this framework and compare it with the existing approaches. © The Author 2017. Published by Oxford University Press.

  8. A comparison of correlation-length estimation methods for the objective analysis of surface pollutants at Environment and Climate Change Canada.

    PubMed

    Ménard, Richard; Deshaies-Jacques, Martin; Gasset, Nicolas

    2016-09-01

    An objective analysis is one of the main components of data assimilation. By combining observations with the output of a predictive model we combine the best features of each source of information: the complete spatial and temporal coverage provided by models, with a close representation of the truth provided by observations. The process of combining observations with a model output is called an analysis. To produce an analysis requires the knowledge of observation and model errors, as well as its spatial correlation. This paper is devoted to the development of methods of estimation of these error variances and the characteristic length-scale of the model error correlation for its operational use in the Canadian objective analysis system. We first argue in favor of using compact support correlation functions, and then introduce three estimation methods: the Hollingsworth-Lönnberg (HL) method in local and global form, the maximum likelihood method (ML), and the [Formula: see text] diagnostic method. We perform one-dimensional (1D) simulation studies where the error variance and true correlation length are known, and perform an estimation of both error variances and correlation length where both are non-uniform. We show that a local version of the HL method can capture accurately the error variances and correlation length at each observation site, provided that spatial variability is not too strong. However, the operational objective analysis requires only a single and globally valid correlation length. We examine whether any statistics of the local HL correlation lengths could be a useful estimate, or whether other global estimation methods such as by the global HL, ML, or [Formula: see text] should be used. We found in both 1D simulation and using real data that the ML method is able to capture physically significant aspects of the correlation length, while most other estimates give unphysical and larger length-scale values. This paper describes a proposed improvement of the objective analysis of surface pollutants at Environment and Climate Change Canada (formerly known as Environment Canada). Objective analyses are essentially surface maps of air pollutants that are obtained by combining observations with an air quality model output, and are thought to provide a complete and more accurate representation of the air quality. The highlight of this study is an analysis of methods to estimate the model (or background) error correlation length-scale. The error statistics are an important and critical component to the analysis scheme.

  9. A weighted least squares estimation of the polynomial regression model on paddy production in the area of Kedah and Perlis

    NASA Astrophysics Data System (ADS)

    Musa, Rosliza; Ali, Zalila; Baharum, Adam; Nor, Norlida Mohd

    2017-08-01

    The linear regression model assumes that all random error components are identically and independently distributed with constant variance. Hence, each data point provides equally precise information about the deterministic part of the total variation. In other words, the standard deviations of the error terms are constant over all values of the predictor variables. When the assumption of constant variance is violated, the ordinary least squares estimator of regression coefficient lost its property of minimum variance in the class of linear and unbiased estimators. Weighted least squares estimation are often used to maximize the efficiency of parameter estimation. A procedure that treats all of the data equally would give less precisely measured points more influence than they should have and would give highly precise points too little influence. Optimizing the weighted fitting criterion to find the parameter estimates allows the weights to determine the contribution of each observation to the final parameter estimates. This study used polynomial model with weighted least squares estimation to investigate paddy production of different paddy lots based on paddy cultivation characteristics and environmental characteristics in the area of Kedah and Perlis. The results indicated that factors affecting paddy production are mixture fertilizer application cycle, average temperature, the squared effect of average rainfall, the squared effect of pest and disease, the interaction between acreage with amount of mixture fertilizer, the interaction between paddy variety and NPK fertilizer application cycle and the interaction between pest and disease and NPK fertilizer application cycle.

  10. College Influence on Student Intentions toward International Competence. ASHE Annual Meeting Paper.

    ERIC Educational Resources Information Center

    English, Susan Lewis

    This study attempted to test the concept of international competence as a construct and to estimate the extent to which college experience predicts variance on student intentions toward international competence. Relying on Lambert's model of global competence, the study tested five components of international competence for validity and…

  11. Generalizability of Scaling Gradients on Direct Behavior Ratings

    ERIC Educational Resources Information Center

    Chafouleas, Sandra M.; Christ, Theodore J.; Riley-Tillman, T. Chris

    2009-01-01

    Generalizability theory is used to examine the impact of scaling gradients on a single-item Direct Behavior Rating (DBR). A DBR refers to a type of rating scale used to efficiently record target behavior(s) following an observation occasion. Variance components associated with scale gradients are estimated using a random effects design for persons…

  12. Theoretical and simulated performance for a novel frequency estimation technique

    NASA Technical Reports Server (NTRS)

    Crozier, Stewart N.

    1993-01-01

    A low complexity, open-loop, discrete-time, delay-multiply-average (DMA) technique for estimating the frequency offset for digitally modulated MPSK signals is investigated. A nonlinearity is used to remove the MPSK modulation and generate the carrier component to be extracted. Theoretical and simulated performance results are presented and compared to the Cramer-Rao lower bound (CRLB) for the variance of the frequency estimation error. For all signal-to-noise ratios (SNR's) above threshold, it is shown that the CRLB can essentially be achieved with linear complexity.

  13. HIGH DIMENSIONAL COVARIANCE MATRIX ESTIMATION IN APPROXIMATE FACTOR MODELS.

    PubMed

    Fan, Jianqing; Liao, Yuan; Mincheva, Martina

    2011-01-01

    The variance covariance matrix plays a central role in the inferential theories of high dimensional factor models in finance and economics. Popular regularization methods of directly exploiting sparsity are not directly applicable to many financial problems. Classical methods of estimating the covariance matrices are based on the strict factor models, assuming independent idiosyncratic components. This assumption, however, is restrictive in practical applications. By assuming sparse error covariance matrix, we allow the presence of the cross-sectional correlation even after taking out common factors, and it enables us to combine the merits of both methods. We estimate the sparse covariance using the adaptive thresholding technique as in Cai and Liu (2011), taking into account the fact that direct observations of the idiosyncratic components are unavailable. The impact of high dimensionality on the covariance matrix estimation based on the factor structure is then studied.

  14. Theory-Based Parameterization of Semiotics for Measuring Pre-literacy Development

    NASA Astrophysics Data System (ADS)

    Bezruczko, N.

    2013-09-01

    A probabilistic model was applied to problem of measuring pre-literacy in young children. First, semiotic philosophy and contemporary cognition research were conceptually integrated to establish theoretical foundations for rating 14 characteristics of children's drawings and narratives (N = 120). Then ratings were transformed with a Rasch model, which estimated linear item parameter values that accounted for 79 percent of rater variance. Principle Components Analysis of item residual matrix confirmed variance remaining after item calibration was largely unsystematic. Validation analyses found positive correlations between semiotic measures and preschool literacy outcomes. Practical implications of a semiotics dimension for preschool practice were discussed.

  15. Estimating the periodic components of a biomedical signal through inverse problem modelling and Bayesian inference with sparsity enforcing prior

    NASA Astrophysics Data System (ADS)

    Dumitru, Mircea; Djafari, Ali-Mohammad

    2015-01-01

    The recent developments in chronobiology need a periodic components variation analysis for the signals expressing the biological rhythms. A precise estimation of the periodic components vector is required. The classical approaches, based on FFT methods, are inefficient considering the particularities of the data (short length). In this paper we propose a new method, using the sparsity prior information (reduced number of non-zero values components). The considered law is the Student-t distribution, viewed as a marginal distribution of a Infinite Gaussian Scale Mixture (IGSM) defined via a hidden variable representing the inverse variances and modelled as a Gamma Distribution. The hyperparameters are modelled using the conjugate priors, i.e. using Inverse Gamma Distributions. The expression of the joint posterior law of the unknown periodic components vector, hidden variables and hyperparameters is obtained and then the unknowns are estimated via Joint Maximum A Posteriori (JMAP) and Posterior Mean (PM). For the PM estimator, the expression of the posterior law is approximated by a separable one, via the Bayesian Variational Approximation (BVA), using the Kullback-Leibler (KL) divergence. Finally we show the results on synthetic data in cancer treatment applications.

  16. Estimation of hyper-parameters for a hierarchical model of combined cortical and extra-brain current sources in the MEG inverse problem.

    PubMed

    Morishige, Ken-ichi; Yoshioka, Taku; Kawawaki, Dai; Hiroe, Nobuo; Sato, Masa-aki; Kawato, Mitsuo

    2014-11-01

    One of the major obstacles in estimating cortical currents from MEG signals is the disturbance caused by magnetic artifacts derived from extra-cortical current sources such as heartbeats and eye movements. To remove the effect of such extra-brain sources, we improved the hybrid hierarchical variational Bayesian method (hyVBED) proposed by Fujiwara et al. (NeuroImage, 2009). hyVBED simultaneously estimates cortical and extra-brain source currents by placing dipoles on cortical surfaces as well as extra-brain sources. This method requires EOG data for an EOG forward model that describes the relationship between eye dipoles and electric potentials. In contrast, our improved approach requires no EOG and less a priori knowledge about the current variance of extra-brain sources. We propose a new method, "extra-dipole," that optimally selects hyper-parameter values regarding current variances of the cortical surface and extra-brain source dipoles. With the selected parameter values, the cortical and extra-brain dipole currents were accurately estimated from the simulated MEG data. The performance of this method was demonstrated to be better than conventional approaches, such as principal component analysis and independent component analysis, which use only statistical properties of MEG signals. Furthermore, we applied our proposed method to measured MEG data during covert pursuit of a smoothly moving target and confirmed its effectiveness. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Estimating the encounter rate variance in distance sampling

    USGS Publications Warehouse

    Fewster, R.M.; Buckland, S.T.; Burnham, K.P.; Borchers, D.L.; Jupp, P.E.; Laake, J.L.; Thomas, L.

    2009-01-01

    The dominant source of variance in line transect sampling is usually the encounter rate variance. Systematic survey designs are often used to reduce the true variability among different realizations of the design, but estimating the variance is difficult and estimators typically approximate the variance by treating the design as a simple random sample of lines. We explore the properties of different encounter rate variance estimators under random and systematic designs. We show that a design-based variance estimator improves upon the model-based estimator of Buckland et al. (2001, Introduction to Distance Sampling. Oxford: Oxford University Press, p. 79) when transects are positioned at random. However, if populations exhibit strong spatial trends, both estimators can have substantial positive bias under systematic designs. We show that poststratification is effective in reducing this bias. ?? 2008, The International Biometric Society.

  18. Two biased estimation techniques in linear regression: Application to aircraft

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav

    1988-01-01

    Several ways for detection and assessment of collinearity in measured data are discussed. Because data collinearity usually results in poor least squares estimates, two estimation techniques which can limit a damaging effect of collinearity are presented. These two techniques, the principal components regression and mixed estimation, belong to a class of biased estimation techniques. Detection and assessment of data collinearity and the two biased estimation techniques are demonstrated in two examples using flight test data from longitudinal maneuvers of an experimental aircraft. The eigensystem analysis and parameter variance decomposition appeared to be a promising tool for collinearity evaluation. The biased estimators had far better accuracy than the results from the ordinary least squares technique.

  19. A Late Pleistocene sea level stack

    NASA Astrophysics Data System (ADS)

    Spratt, R. M.; Lisiecki, L. E.

    2015-08-01

    Late Pleistocene sea level has been reconstructed from ocean sediment core data using a wide variety of proxies and models. However, the accuracy of individual reconstructions is limited by measurement error, local variations in salinity and temperature, and assumptions particular to each technique. Here we present a sea level stack (average) which increases the signal-to-noise ratio of individual reconstructions. Specifically, we perform principal component analysis (PCA) on seven records from 0-430 ka and five records from 0-798 ka. The first principal component, which we use as the stack, describes ~80 % of the variance in the data and is similar using either five or seven records. After scaling the stack based on Holocene and Last Glacial Maximum (LGM) sea level estimates, the stack agrees to within 5 m with isostatically adjusted coral sea level estimates for Marine Isotope Stages 5e and 11 (125 and 400 ka, respectively). When we compare the sea level stack with the δ18O of benthic foraminifera, we find that sea level change accounts for about ~40 % of the total orbital-band variance in benthic δ18O, compared to a 65 % contribution during the LGM-to-Holocene transition. Additionally, the second and third principal components of our analyses reflect differences between proxy records associated with spatial variations in the δ18O of seawater.

  20. Dominance genetic variance for traits under directional selection in Drosophila serrata.

    PubMed

    Sztepanacz, Jacqueline L; Blows, Mark W

    2015-05-01

    In contrast to our growing understanding of patterns of additive genetic variance in single- and multi-trait combinations, the relative contribution of nonadditive genetic variance, particularly dominance variance, to multivariate phenotypes is largely unknown. While mechanisms for the evolution of dominance genetic variance have been, and to some degree remain, subject to debate, the pervasiveness of dominance is widely recognized and may play a key role in several evolutionary processes. Theoretical and empirical evidence suggests that the contribution of dominance variance to phenotypic variance may increase with the correlation between a trait and fitness; however, direct tests of this hypothesis are few. Using a multigenerational breeding design in an unmanipulated population of Drosophila serrata, we estimated additive and dominance genetic covariance matrices for multivariate wing-shape phenotypes, together with a comprehensive measure of fitness, to determine whether there is an association between directional selection and dominance variance. Fitness, a trait unequivocally under directional selection, had no detectable additive genetic variance, but significant dominance genetic variance contributing 32% of the phenotypic variance. For single and multivariate morphological traits, however, no relationship was observed between trait-fitness correlations and dominance variance. A similar proportion of additive and dominance variance was found to contribute to phenotypic variance for single traits, and double the amount of additive compared to dominance variance was found for the multivariate trait combination under directional selection. These data suggest that for many fitness components a positive association between directional selection and dominance genetic variance may not be expected. Copyright © 2015 by the Genetics Society of America.

  1. The Pregnant Women with HIV Attitude Scale: development and initial psychometric evaluation.

    PubMed

    Tyer-Viola, Lynda A; Duffy, Mary E

    2010-08-01

    This paper is a report of the development and initial psychometric evaluation of the Pregnant Women with HIV Attitude Scale. Previous research has identified that attitudes toward persons with HIV/AIDS have been judgmental and could affect clinical care and outcomes. Stigma towards persons with HIV has persisted as a barrier to nursing care globally. Women are more vulnerable during pregnancy. An instrument to specifically measure obstetric care provider's attitudes toward this population is needed to target identified gaps in providing respectful care. Existing literature and instruments were analysed and two existing measures, the Attitudes about People with HIV Scale and the Attitudes toward Women with HIV Scale, were combined to create an initial item pool to address attitudes toward HIV-positive pregnant women. The data were collected in 2003 with obstetric nurses attending a national conference in the United States of America (N = 210). Content validity was used for item pool development and principal component analysis and analysis of variance were used to determine construct validity. Reliability was analysed using Cronbach's Alpha. The new measure demonstrated high internal consistency (alpha estimates = 0.89). Principal component analysis yielded a two-component structure that accounted for 45% of the total variance: Mothering-Choice (alpha estimates = 0.89) and Sympathy-Rights (alpha estimates = 0.72). These data provided initial evidence of the psychometric properties of the Pregnant Women with HIV Attitude Scale. Further analysis is required of the validity of the constructs of this scale and its reliability with various obstetric care providers.

  2. Efficiently estimating salmon escapement uncertainty using systematically sampled data

    USGS Publications Warehouse

    Reynolds, Joel H.; Woody, Carol Ann; Gove, Nancy E.; Fair, Lowell F.

    2007-01-01

    Fish escapement is generally monitored using nonreplicated systematic sampling designs (e.g., via visual counts from towers or hydroacoustic counts). These sampling designs support a variety of methods for estimating the variance of the total escapement. Unfortunately, all the methods give biased results, with the magnitude of the bias being determined by the underlying process patterns. Fish escapement commonly exhibits positive autocorrelation and nonlinear patterns, such as diurnal and seasonal patterns. For these patterns, poor choice of variance estimator can needlessly increase the uncertainty managers have to deal with in sustaining fish populations. We illustrate the effect of sampling design and variance estimator choice on variance estimates of total escapement for anadromous salmonids from systematic samples of fish passage. Using simulated tower counts of sockeye salmon Oncorhynchus nerka escapement on the Kvichak River, Alaska, five variance estimators for nonreplicated systematic samples were compared to determine the least biased. Using the least biased variance estimator, four confidence interval estimators were compared for expected coverage and mean interval width. Finally, five systematic sampling designs were compared to determine the design giving the smallest average variance estimate for total annual escapement. For nonreplicated systematic samples of fish escapement, all variance estimators were positively biased. Compared to the other estimators, the least biased estimator reduced bias by, on average, from 12% to 98%. All confidence intervals gave effectively identical results. Replicated systematic sampling designs consistently provided the smallest average estimated variance among those compared.

  3. Applying Rasch model analysis in the development of the cantonese tone identification test (CANTIT).

    PubMed

    Lee, Kathy Y S; Lam, Joffee H S; Chan, Kit T Y; van Hasselt, Charles Andrew; Tong, Michael C F

    2017-01-01

    Applying Rasch analysis to evaluate the internal structure of a lexical tone perception test known as the Cantonese Tone Identification Test (CANTIT). A 75-item pool (CANTIT-75) with pictures and sound tracks was developed. Respondents were required to make a four-alternative forced choice on each item. A short version of 30 items (CANTIT-30) was developed based on fit statistics, difficulty estimates, and content evaluation. Internal structure was evaluated by fit statistics and Rasch Factor Analysis (RFA). 200 children with normal hearing and 141 children with hearing impairment were recruited. For CANTIT-75, all infit and 97% of outfit values were < 2.0. RFA revealed 40.1% of total variance was explained by the Rasch measure. The first residual component explained 2.5% of total variance in an eigenvalue of 3.1. For CANTIT-30, all infit and outfit values were < 2.0. The Rasch measure explained 38.8% of total variance, the first residual component explained 3.9% of total variance in an eigenvalue of 1.9. The Rasch model provides excellent guidance for the development of short forms. Both CANTIT-75 and CANTIT-30 possess satisfactory internal structure as a construct validity evidence in measuring the lexical tone identification ability of the Cantonese speakers.

  4. Robust versus consistent variance estimators in marginal structural Cox models.

    PubMed

    Enders, Dirk; Engel, Susanne; Linder, Roland; Pigeot, Iris

    2018-06-11

    In survival analyses, inverse-probability-of-treatment (IPT) and inverse-probability-of-censoring (IPC) weighted estimators of parameters in marginal structural Cox models are often used to estimate treatment effects in the presence of time-dependent confounding and censoring. In most applications, a robust variance estimator of the IPT and IPC weighted estimator is calculated leading to conservative confidence intervals. This estimator assumes that the weights are known rather than estimated from the data. Although a consistent estimator of the asymptotic variance of the IPT and IPC weighted estimator is generally available, applications and thus information on the performance of the consistent estimator are lacking. Reasons might be a cumbersome implementation in statistical software, which is further complicated by missing details on the variance formula. In this paper, we therefore provide a detailed derivation of the variance of the asymptotic distribution of the IPT and IPC weighted estimator and explicitly state the necessary terms to calculate a consistent estimator of this variance. We compare the performance of the robust and consistent variance estimators in an application based on routine health care data and in a simulation study. The simulation reveals no substantial differences between the 2 estimators in medium and large data sets with no unmeasured confounding, but the consistent variance estimator performs poorly in small samples or under unmeasured confounding, if the number of confounders is large. We thus conclude that the robust estimator is more appropriate for all practical purposes. Copyright © 2018 John Wiley & Sons, Ltd.

  5. Genetic evaluation of rapid height growth in pot- and nursery-grown Scotch pine

    Treesearch

    Maurice E., Jr. Demeritt; Henry D. Gerhold; Henry D. Gerhold

    1985-01-01

    Genetic and environmental components of variance for 2-year pot and nursery heights of offspring from inter- and intraprovenance matings in Scotch pine were studied to determine which provenances and selection methods should be used in an ornamental and Christmas tree improvement program. Nursery evaluation was preferred to pot evaluation because heritability estimates...

  6. SIMREL: Software for Coefficient Alpha and Its Confidence Intervals with Monte Carlo Studies

    ERIC Educational Resources Information Center

    Yurdugul, Halil

    2009-01-01

    This article describes SIMREL, a software program designed for the simulation of alpha coefficients and the estimation of its confidence intervals. SIMREL runs on two alternatives. In the first one, if SIMREL is run for a single data file, it performs descriptive statistics, principal components analysis, and variance analysis of the item scores…

  7. Missing Data Treatments at the Second Level of Hierarchical Linear Models

    ERIC Educational Resources Information Center

    St. Clair, Suzanne W.

    2011-01-01

    The current study evaluated the performance of traditional versus modern MDTs in the estimation of fixed-effects and variance components for data missing at the second level of an hierarchical linear model (HLM) model across 24 different study conditions. Variables manipulated in the analysis included, (a) number of Level-2 variables with missing…

  8. Development of genomic evaluations for direct measures of health in U.S. Holsteins and their correlations with fitness traits

    USDA-ARS?s Scientific Manuscript database

    The objectives of this research were to estimate variance components for 6 common health events recorded by producers on U.S. dairy farms, as well as investigate correlations with fitness traits currently used for selection. Producer-recorded health event data were available from Dairy Records Manag...

  9. Soil moisture sensitivity of autotrophic and heterotrophic forest floor respiration in boreal xeric pine and mesic spruce forests

    NASA Astrophysics Data System (ADS)

    Ťupek, Boris; Launiainen, Samuli; Peltoniemi, Mikko; Heikkinen, Jukka; Lehtonen, Aleksi

    2016-04-01

    Litter decomposition rates of the most process based soil carbon models affected by environmental conditions are linked with soil heterotrophic CO2 emissions and serve for estimating soil carbon sequestration; thus due to the mass balance equation the variation in measured litter inputs and measured heterotrophic soil CO2 effluxes should indicate soil carbon stock changes, needed by soil carbon management for mitigation of anthropogenic CO2 emissions, if sensitivity functions of the applied model suit to the environmental conditions e.g. soil temperature and moisture. We evaluated the response forms of autotrophic and heterotrophic forest floor respiration to soil temperature and moisture in four boreal forest sites of the International Cooperative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) by a soil trenching experiment during year 2015 in southern Finland. As expected both autotrophic and heterotrophic forest floor respiration components were primarily controlled by soil temperature and exponential regression models generally explained more than 90% of the variance. Soil moisture regression models on average explained less than 10% of the variance and the response forms varied between Gaussian for the autotrophic forest floor respiration component and linear for the heterotrophic forest floor respiration component. Although the percentage of explained variance of soil heterotrophic respiration by the soil moisture was small, the observed reduction of CO2 emissions with higher moisture levels suggested that soil moisture response of soil carbon models not accounting for the reduction due to excessive moisture should be re-evaluated in order to estimate right levels of soil carbon stock changes. Our further study will include evaluation of process based soil carbon models by the annual heterotrophic respiration and soil carbon stocks.

  10. Estimating variation in stomatal frequency at intra-individual, intra-site, and inter-taxonomic levels in populations of the Leonardoxa africana (Fabaceae) complex over environmental gradients in Cameroon

    NASA Astrophysics Data System (ADS)

    Finsinger, Walter; Dos Santos, Thibaut; McKey, Doyle

    2013-07-01

    Variation of stomatal frequency (stomatal density and stomatal index) includes genetically-based, potentially-adaptive variation, and variation due to phenotypic plasticity, the degree of which may be fundamental to the ability to maintain high water-use efficiency and thus to deal with environmental change. We analysed stomatal frequency and morphology (pore length, pore width) in leaves from several individuals from nine populations of four sub-species of the Leonardoxa africana complex. The dataset represents a hierarchical sampling wherein factors are nested within each level (leaves in individuals, individuals in sites, etc.), allowing estimation of the contribution of different levels to overall variation, using variance-component analysis. SI showed significant variation among sites ("site" is largely confounded with "sub-species"), being highest in the sub-species localized in the highest-elevation site. However, most of the observed variance was accounted for at intra-site and intra-individual levels. This variance could reflect great phenotypic plasticity, presumably in response to highly local variation in micro-environmental conditions.

  11. EGSIEM combination service: combination of GRACE monthly K-band solutions on normal equation level

    NASA Astrophysics Data System (ADS)

    Meyer, Ulrich; Jean, Yoomin; Arnold, Daniel; Jäggi, Adrian

    2017-04-01

    The European Gravity Service for Improved Emergency Management (EGSIEM) project offers a scientific combination service, combining for the first time monthly GRACE gravity fields of different analysis centers (ACs) on normal equation (NEQ) level and thus taking all correlations between the gravity field coefficients and pre-eliminated orbit and instrument parameters correctly into account. Optimal weights for the individual NEQs are commonly derived by variance component estimation (VCE), as is the case for the products of the International VLBI Service (IVS) or the DTRF2008 reference frame realisation that are also derived by combination on NEQ-level. But variance factors are based on post-fit residuals and strongly depend on observation sampling and noise modeling, which both are very diverse in case of the individual EGSIEM ACs. These variance factors do not necessarily represent the true error levels of the estimated gravity field parameters that are still governed by analysis noise. We present a combination approach where weights are derived on solution level, thereby taking the analysis noise into account.

  12. Dense Velocity Field of Turkey

    NASA Astrophysics Data System (ADS)

    Ozener, H.; Aktug, B.; Dogru, A.; Tasci, L.

    2017-12-01

    While the GNSS-based crustal deformation studies in Turkey date back to early 1990s, a homogenous velocity field utilizing all the available data is still missing. Regional studies employing different site distributions, observation plans, processing software and methodology not only create reference frame variations but also heterogeneous stochastic models. While the reference frame effect between different velocity fields could easily be removed by estimating a set of rotations, the homogenization of the stochastic models of the individual velocity fields requires a more detailed analysis. Using a rigorous Variance Component Estimation (VCE) methodology, we estimated the variance factors for each of the contributing velocity fields and combined them into a single homogenous velocity field covering whole Turkey. Results show that variance factors between velocity fields including the survey mode and continuous observations can vary a few orders of magnitude. In this study, we present the most complete velocity field in Turkey rigorously combined from 20 individual velocity fields including the 146 station CORS network and totally 1072 stations. In addition, three GPS campaigns were performed along the North Anatolian Fault and Aegean Region to fill the gap between existing velocity fields. The homogenously combined new velocity field is nearly complete in terms of geographic coverage, and will serve as the basis for further analyses such as the estimation of the deformation rates and the determination of the slip rates across main fault zones.

  13. A Variance Distribution Model of Surface EMG Signals Based on Inverse Gamma Distribution.

    PubMed

    Hayashi, Hideaki; Furui, Akira; Kurita, Yuichi; Tsuji, Toshio

    2017-11-01

    Objective: This paper describes the formulation of a surface electromyogram (EMG) model capable of representing the variance distribution of EMG signals. Methods: In the model, EMG signals are handled based on a Gaussian white noise process with a mean of zero for each variance value. EMG signal variance is taken as a random variable that follows inverse gamma distribution, allowing the representation of noise superimposed onto this variance. Variance distribution estimation based on marginal likelihood maximization is also outlined in this paper. The procedure can be approximated using rectified and smoothed EMG signals, thereby allowing the determination of distribution parameters in real time at low computational cost. Results: A simulation experiment was performed to evaluate the accuracy of distribution estimation using artificially generated EMG signals, with results demonstrating that the proposed model's accuracy is higher than that of maximum-likelihood-based estimation. Analysis of variance distribution using real EMG data also suggested a relationship between variance distribution and signal-dependent noise. Conclusion: The study reported here was conducted to examine the performance of a proposed surface EMG model capable of representing variance distribution and a related distribution parameter estimation method. Experiments using artificial and real EMG data demonstrated the validity of the model. Significance: Variance distribution estimated using the proposed model exhibits potential in the estimation of muscle force. Objective: This paper describes the formulation of a surface electromyogram (EMG) model capable of representing the variance distribution of EMG signals. Methods: In the model, EMG signals are handled based on a Gaussian white noise process with a mean of zero for each variance value. EMG signal variance is taken as a random variable that follows inverse gamma distribution, allowing the representation of noise superimposed onto this variance. Variance distribution estimation based on marginal likelihood maximization is also outlined in this paper. The procedure can be approximated using rectified and smoothed EMG signals, thereby allowing the determination of distribution parameters in real time at low computational cost. Results: A simulation experiment was performed to evaluate the accuracy of distribution estimation using artificially generated EMG signals, with results demonstrating that the proposed model's accuracy is higher than that of maximum-likelihood-based estimation. Analysis of variance distribution using real EMG data also suggested a relationship between variance distribution and signal-dependent noise. Conclusion: The study reported here was conducted to examine the performance of a proposed surface EMG model capable of representing variance distribution and a related distribution parameter estimation method. Experiments using artificial and real EMG data demonstrated the validity of the model. Significance: Variance distribution estimated using the proposed model exhibits potential in the estimation of muscle force.

  14. Rank estimation and the multivariate analysis of in vivo fast-scan cyclic voltammetric data

    PubMed Central

    Keithley, Richard B.; Carelli, Regina M.; Wightman, R. Mark

    2010-01-01

    Principal component regression has been used in the past to separate current contributions from different neuromodulators measured with in vivo fast-scan cyclic voltammetry. Traditionally, a percent cumulative variance approach has been used to determine the rank of the training set voltammetric matrix during model development, however this approach suffers from several disadvantages including the use of arbitrary percentages and the requirement of extreme precision of training sets. Here we propose that Malinowski’s F-test, a method based on a statistical analysis of the variance contained within the training set, can be used to improve factor selection for the analysis of in vivo fast-scan cyclic voltammetric data. These two methods of rank estimation were compared at all steps in the calibration protocol including the number of principal components retained, overall noise levels, model validation as determined using a residual analysis procedure, and predicted concentration information. By analyzing 119 training sets from two different laboratories amassed over several years, we were able to gain insight into the heterogeneity of in vivo fast-scan cyclic voltammetric data and study how differences in factor selection propagate throughout the entire principal component regression analysis procedure. Visualizing cyclic voltammetric representations of the data contained in the retained and discarded principal components showed that using Malinowski’s F-test for rank estimation of in vivo training sets allowed for noise to be more accurately removed. Malinowski’s F-test also improved the robustness of our criterion for judging multivariate model validity, even though signal-to-noise ratios of the data varied. In addition, pH change was the majority noise carrier of in vivo training sets while dopamine prediction was more sensitive to noise. PMID:20527815

  15. Modelling heterogeneity variances in multiple treatment comparison meta-analysis--are informative priors the better solution?

    PubMed

    Thorlund, Kristian; Thabane, Lehana; Mills, Edward J

    2013-01-11

    Multiple treatment comparison (MTC) meta-analyses are commonly modeled in a Bayesian framework, and weakly informative priors are typically preferred to mirror familiar data driven frequentist approaches. Random-effects MTCs have commonly modeled heterogeneity under the assumption that the between-trial variance for all involved treatment comparisons are equal (i.e., the 'common variance' assumption). This approach 'borrows strength' for heterogeneity estimation across treatment comparisons, and thus, ads valuable precision when data is sparse. The homogeneous variance assumption, however, is unrealistic and can severely bias variance estimates. Consequently 95% credible intervals may not retain nominal coverage, and treatment rank probabilities may become distorted. Relaxing the homogeneous variance assumption may be equally problematic due to reduced precision. To regain good precision, moderately informative variance priors or additional mathematical assumptions may be necessary. In this paper we describe four novel approaches to modeling heterogeneity variance - two novel model structures, and two approaches for use of moderately informative variance priors. We examine the relative performance of all approaches in two illustrative MTC data sets. We particularly compare between-study heterogeneity estimates and model fits, treatment effect estimates and 95% credible intervals, and treatment rank probabilities. In both data sets, use of moderately informative variance priors constructed from the pair wise meta-analysis data yielded the best model fit and narrower credible intervals. Imposing consistency equations on variance estimates, assuming variances to be exchangeable, or using empirically informed variance priors also yielded good model fits and narrow credible intervals. The homogeneous variance model yielded high precision at all times, but overall inadequate estimates of between-trial variances. Lastly, treatment rankings were similar among the novel approaches, but considerably different when compared with the homogenous variance approach. MTC models using a homogenous variance structure appear to perform sub-optimally when between-trial variances vary between comparisons. Using informative variance priors, assuming exchangeability or imposing consistency between heterogeneity variances can all ensure sufficiently reliable and realistic heterogeneity estimation, and thus more reliable MTC inferences. All four approaches should be viable candidates for replacing or supplementing the conventional homogeneous variance MTC model, which is currently the most widely used in practice.

  16. HIGH DIMENSIONAL COVARIANCE MATRIX ESTIMATION IN APPROXIMATE FACTOR MODELS

    PubMed Central

    Fan, Jianqing; Liao, Yuan; Mincheva, Martina

    2012-01-01

    The variance covariance matrix plays a central role in the inferential theories of high dimensional factor models in finance and economics. Popular regularization methods of directly exploiting sparsity are not directly applicable to many financial problems. Classical methods of estimating the covariance matrices are based on the strict factor models, assuming independent idiosyncratic components. This assumption, however, is restrictive in practical applications. By assuming sparse error covariance matrix, we allow the presence of the cross-sectional correlation even after taking out common factors, and it enables us to combine the merits of both methods. We estimate the sparse covariance using the adaptive thresholding technique as in Cai and Liu (2011), taking into account the fact that direct observations of the idiosyncratic components are unavailable. The impact of high dimensionality on the covariance matrix estimation based on the factor structure is then studied. PMID:22661790

  17. Differential contribution of genomic regions to marked genetic variation and prediction of quantitative traits in broiler chickens.

    PubMed

    Abdollahi-Arpanahi, Rostam; Morota, Gota; Valente, Bruno D; Kranis, Andreas; Rosa, Guilherme J M; Gianola, Daniel

    2016-02-03

    Genome-wide association studies in humans have found enrichment of trait-associated single nucleotide polymorphisms (SNPs) in coding regions of the genome and depletion of these in intergenic regions. However, a recent release of the ENCyclopedia of DNA elements showed that ~80 % of the human genome has a biochemical function. Similar studies on the chicken genome are lacking, thus assessing the relative contribution of its genic and non-genic regions to variation is relevant for biological studies and genetic improvement of chicken populations. A dataset including 1351 birds that were genotyped with the 600K Affymetrix platform was used. We partitioned SNPs according to genome annotation data into six classes to characterize the relative contribution of genic and non-genic regions to genetic variation as well as their predictive power using all available quality-filtered SNPs. Target traits were body weight, ultrasound measurement of breast muscle and hen house egg production in broiler chickens. Six genomic regions were considered: intergenic regions, introns, missense, synonymous, 5' and 3' untranslated regions, and regions that are located 5 kb upstream and downstream of coding genes. Genomic relationship matrices were constructed for each genomic region and fitted in the models, separately or simultaneously. Kernel-based ridge regression was used to estimate variance components and assess predictive ability. Contribution of each class of genomic regions to dominance variance was also considered. Variance component estimates indicated that all genomic regions contributed to marked additive genetic variation and that the class of synonymous regions tended to have the greatest contribution. The marked dominance genetic variation explained by each class of genomic regions was similar and negligible (~0.05). In terms of prediction mean-square error, the whole-genome approach showed the best predictive ability. All genic and non-genic regions contributed to phenotypic variation for the three traits studied. Overall, the contribution of additive genetic variance to the total genetic variance was much greater than that of dominance variance. Our results show that all genomic regions are important for the prediction of the targeted traits, and the whole-genome approach was reaffirmed as the best tool for genome-enabled prediction of quantitative traits.

  18. Analytic variance estimates of Swank and Fano factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutierrez, Benjamin; Badano, Aldo; Samuelson, Frank, E-mail: frank.samuelson@fda.hhs.gov

    Purpose: Variance estimates for detector energy resolution metrics can be used as stopping criteria in Monte Carlo simulations for the purpose of ensuring a small uncertainty of those metrics and for the design of variance reduction techniques. Methods: The authors derive an estimate for the variance of two energy resolution metrics, the Swank factor and the Fano factor, in terms of statistical moments that can be accumulated without significant computational overhead. The authors examine the accuracy of these two estimators and demonstrate how the estimates of the coefficient of variation of the Swank and Fano factors behave with data frommore » a Monte Carlo simulation of an indirect x-ray imaging detector. Results: The authors' analyses suggest that the accuracy of their variance estimators is appropriate for estimating the actual variances of the Swank and Fano factors for a variety of distributions of detector outputs. Conclusions: The variance estimators derived in this work provide a computationally convenient way to estimate the error or coefficient of variation of the Swank and Fano factors during Monte Carlo simulations of radiation imaging systems.« less

  19. Validation of anthropometry and foot-to-foot bioelectrical resistance against a three-component model to assess total body fat in children: the IDEFICS study.

    PubMed

    Bammann, K; Huybrechts, I; Vicente-Rodriguez, G; Easton, C; De Vriendt, T; Marild, S; Mesana, M I; Peeters, M W; Reilly, J J; Sioen, I; Tubic, B; Wawro, N; Wells, J C; Westerterp, K; Pitsiladis, Y; Moreno, L A

    2013-04-01

    To compare different field methods for estimating body fat mass with a reference value derived by a three-component (3C) model in pre-school and school children across Europe. Multicentre validation study. Seventy-eight preschool/school children aged 4-10 years from four different European countries. A standard measurement protocol was carried out in all children by trained field workers. A 3C model was used as the reference method. The field methods included height and weight measurement, circumferences measured at four sites, skinfold measured at two-six sites and foot-to-foot bioelectrical resistance (BIA) via TANITA scales. With the exception of height and neck circumference, all single measurements were able to explain at least 74% of the fat-mass variance in the sample. In combination, circumference models were superior to skinfold models and height-weight models. The best predictions were given by trunk models (combining skinfold and circumference measurements) that explained 91% of the observed fat-mass variance. The optimal data-driven model for our sample includes hip circumference, triceps skinfold and total body mass minus resistance index, and explains 94% of the fat-mass variance with 2.44 kg fat mass limits of agreement. In all investigated models, prediction errors were associated with fat mass, although to a lesser degree in the investigated skinfold models, arm models and the data-driven models. When studying total body fat in childhood populations, anthropometric measurements will give biased estimations as compared to gold standard measurements. Nevertheless, our study shows that when combining circumference and skinfold measurements, estimations of fat mass can be obtained with a limit of agreement of 1.91 kg in normal weight children and of 2.94 kg in overweight or obese children.

  20. Bayesian segregation analysis of production traits in two strains of laying chickens.

    PubMed

    Szydłowski, M; Szwaczkowski, T

    2001-02-01

    A bayesian marker-free segregation analysis was applied to search for evidence of segregating genes affecting production traits in two strains of laying hens under long-term selection. The study used data from 6 generations of Leghorn (H77) and New Hampshire (N88) breeding nuclei. Estimation of marginal posterior means of variance components and parameters of a single autosomal locus was performed by use of the Gibbs sampler. The results showed evidence for a mixed major gene: -polygenic inheritance of BW and age at sexual maturity (ASM) in both strains. Single genes affecting BW and ASM explained one-third of the genetic variance. For ASM large overdominance effect at single locus was estimated. Initial egg production (IEP) and average egg weight (EW) showed a polygenic model of inheritance. The polygenic heritability estimates for BW, ASM, IEP, and EW were 0.32, 0.25, 0.23, and 0.08 in Strain H77 and 0.25, 0.24, 0.11, and 0.38 in Strain N88, respectively.

  1. Analysis of the variation in OCT measurements of a structural bottle neck for eye-brain transfer of visual information from 3D-volumes of the optic nerve head, PIMD-Average [02π

    NASA Astrophysics Data System (ADS)

    Söderberg, Per G.; Malmberg, Filip; Sandberg-Melin, Camilla

    2016-03-01

    The present study aimed to analyze the clinical usefulness of the thinnest cross section of the nerve fibers in the optic nerve head averaged over the circumference of the optic nerve head. 3D volumes of the optic nerve head of the same eye was captured at two different visits spaced in time by 1-4 weeks, in 13 subjects diagnosed with early to moderate glaucoma. At each visit 3 volumes containing the optic nerve head were captured independently with a Topcon OCT- 2000 system. In each volume, the average shortest distance between the inner surface of the retina and the central limit of the pigment epithelium around the optic nerve head circumference, PIMD-Average [02π], was determined semiautomatically. The measurements were analyzed with an analysis of variance for estimation of the variance components for subjects, visits, volumes and semi-automatic measurements of PIMD-Average [0;2π]. It was found that the variance for subjects was on the order of five times the variance for visits, and the variance for visits was on the order of 5 times higher than the variance for volumes. The variance for semi-automatic measurements of PIMD-Average [02π] was 3 orders of magnitude lower than the variance for volumes. A 95 % confidence interval for mean PIMD-Average [02π] was estimated to 1.00 +/-0.13 mm (D.f. = 12). The variance estimates indicate that PIMD-Average [02π] is not suitable for comparison between a onetime estimate in a subject and a population reference interval. Cross-sectional independent group comparisons of PIMD-Average [02π] averaged over subjects will require inconveniently large sample sizes. However, cross-sectional independent group comparison of averages of within subject difference between baseline and follow-up can be made with reasonable sample sizes. Assuming a loss rate of 0.1 PIMD-Average [02π] per year and 4 visits per year it was found that approximately 18 months follow up is required before a significant change of PIMDAverage [02π] can be observed with a power of 0.8. This is shorter than what has been observed both for HRT measurements and automated perimetry measurements with a similar observation rate. It is concluded that PIMDAverage [02π] has the potential to detect deterioration of glaucoma quicker than currently available primary diagnostic instruments. To increase the efficiency of PIMD-Average [02π] further, the variation among visits within subject has to be reduced.

  2. Estimating the intensity of a cyclic Poisson process in the presence of additive and multiplicative linear trend

    NASA Astrophysics Data System (ADS)

    Wayan Mangku, I.

    2017-10-01

    In this paper we survey some results on estimation of the intensity function of a cyclic Poisson process in the presence of additive and multiplicative linear trend. We do not assume any parametric form for the cyclic component of the intensity function, except that it is periodic. Moreover, we consider the case when there is only a single realization of the Poisson process is observed in a bounded interval. The considered estimators are weakly and strongly consistent when the size of the observation interval indefinitely expands. Asymptotic approximations to the bias and variance of those estimators are presented.

  3. Estimating integrated variance in the presence of microstructure noise using linear regression

    NASA Astrophysics Data System (ADS)

    Holý, Vladimír

    2017-07-01

    Using financial high-frequency data for estimation of integrated variance of asset prices is beneficial but with increasing number of observations so-called microstructure noise occurs. This noise can significantly bias the realized variance estimator. We propose a method for estimation of the integrated variance robust to microstructure noise as well as for testing the presence of the noise. Our method utilizes linear regression in which realized variances estimated from different data subsamples act as dependent variable while the number of observations act as explanatory variable. We compare proposed estimator with other methods on simulated data for several microstructure noise structures.

  4. Finite mixture model: A maximum likelihood estimation approach on time series data

    NASA Astrophysics Data System (ADS)

    Yen, Phoong Seuk; Ismail, Mohd Tahir; Hamzah, Firdaus Mohamad

    2014-09-01

    Recently, statistician emphasized on the fitting of finite mixture model by using maximum likelihood estimation as it provides asymptotic properties. In addition, it shows consistency properties as the sample sizes increases to infinity. This illustrated that maximum likelihood estimation is an unbiased estimator. Moreover, the estimate parameters obtained from the application of maximum likelihood estimation have smallest variance as compared to others statistical method as the sample sizes increases. Thus, maximum likelihood estimation is adopted in this paper to fit the two-component mixture model in order to explore the relationship between rubber price and exchange rate for Malaysia, Thailand, Philippines and Indonesia. Results described that there is a negative effect among rubber price and exchange rate for all selected countries.

  5. Comparing Mapped Plot Estimators

    Treesearch

    Paul C. Van Deusen

    2006-01-01

    Two alternative derivations of estimators for mean and variance from mapped plots are compared by considering the models that support the estimators and by simulation. It turns out that both models lead to the same estimator for the mean but lead to very different variance estimators. The variance estimators based on the least valid model assumptions are shown to...

  6. Heritability of Performance Deficit Accumulation During Acute Sleep Deprivation in Twins

    PubMed Central

    Kuna, Samuel T.; Maislin, Greg; Pack, Frances M.; Staley, Bethany; Hachadoorian, Robert; Coccaro, Emil F.; Pack, Allan I.

    2012-01-01

    Study Objectives: To determine if the large and highly reproducible interindividual differences in rates of performance deficit accumulation during sleep deprivation, as determined by the number of lapses on a sustained reaction time test, the Psychomotor Vigilance Task (PVT), arise from a heritable trait. Design: Prospective, observational cohort study. Setting: Academic medical center. Participants: There were 59 monozygotic (mean age 29.2 ± 6.8 [SD] yr; 15 male and 44 female pairs) and 41 dizygotic (mean age 26.6 ± 7.6 yr; 15 male and 26 female pairs) same-sex twin pairs with a normal polysomnogram. Interventions: Thirty-eight hr of monitored, continuous sleep deprivation. Measurements and Results: Patients performed the 10-min PVT every 2 hr during the sleep deprivation protocol. The primary outcome was change from baseline in square root transformed total lapses (response time ≥ 500 ms) per trial. Patient-specific linear rates of performance deficit accumulation were separated from circadian effects using multiple linear regression. Using the classic approach to assess heritability, the intraclass correlation coefficients for accumulating deficits resulted in a broad sense heritability (h2) estimate of 0.834. The mean within-pair and among-pair heritability estimates determined by analysis of variance-based methods was 0.715. When variance components of mixed-effect multilevel models were estimated by maximum likelihood estimation and used to determine the proportions of phenotypic variance explained by genetic and nongenetic factors, 51.1% (standard error = 8.4%, P < 0.0001) of twin variance was attributed to combined additive and dominance genetic effects. Conclusion: Genetic factors explain a large fraction of interindividual variance among rates of performance deficit accumulations on PVT during sleep deprivation. Citation: Kuna ST; Maislin G; Pack FM; Staley B; Hachadoorian R; Coccaro EF; Pack AI. Heritability of performance deficit accumulation during acute sleep deprivation in twins. SLEEP 2012;35(9):1223-1233. PMID:22942500

  7. Denoising Medical Images using Calculus of Variations

    PubMed Central

    Kohan, Mahdi Nakhaie; Behnam, Hamid

    2011-01-01

    We propose a method for medical image denoising using calculus of variations and local variance estimation by shaped windows. This method reduces any additive noise and preserves small patterns and edges of images. A pyramid structure-texture decomposition of images is used to separate noise and texture components based on local variance measures. The experimental results show that the proposed method has visual improvement as well as a better SNR, RMSE and PSNR than common medical image denoising methods. Experimental results in denoising a sample Magnetic Resonance image show that SNR, PSNR and RMSE have been improved by 19, 9 and 21 percents respectively. PMID:22606674

  8. Performance of some biotic indices in the real variable world: a case study at different spatial scales in North-Western Mediterranean Sea.

    PubMed

    Tataranni, Mariella; Lardicci, Claudio

    2010-01-01

    The aim of this study was to analyse the variability of four different benthic biotic indices (AMBI, BENTIX, H', M-AMBI) in two marine coastal areas of the North-Western Mediterranean Sea. In each coastal area, 36 replicates were randomly selected according to a hierarchical sampling design, which allowed estimating the variance components of the indices associated with four different spatial scales (ranging from metres to kilometres). All the analyses were performed at two different sampling periods in order to evaluate if the observed trends were consistent over the time. The variance components of the four indices revealed complex trends and different patterns in the two sampling periods. These results highlighted that independently from the employed index, a rigorous and appropriate sampling design taking into account different scales should always be used in order to avoid erroneous classifications and to develop effective monitoring programs.

  9. Comparison of random regression models with Legendre polynomials and linear splines for production traits and somatic cell score of Canadian Holstein cows.

    PubMed

    Bohmanova, J; Miglior, F; Jamrozik, J; Misztal, I; Sullivan, P G

    2008-09-01

    A random regression model with both random and fixed regressions fitted by Legendre polynomials of order 4 was compared with 3 alternative models fitting linear splines with 4, 5, or 6 knots. The effects common for all models were a herd-test-date effect, fixed regressions on days in milk (DIM) nested within region-age-season of calving class, and random regressions for additive genetic and permanent environmental effects. Data were test-day milk, fat and protein yields, and SCS recorded from 5 to 365 DIM during the first 3 lactations of Canadian Holstein cows. A random sample of 50 herds consisting of 96,756 test-day records was generated to estimate variance components within a Bayesian framework via Gibbs sampling. Two sets of genetic evaluations were subsequently carried out to investigate performance of the 4 models. Models were compared by graphical inspection of variance functions, goodness of fit, error of prediction of breeding values, and stability of estimated breeding values. Models with splines gave lower estimates of variances at extremes of lactations than the model with Legendre polynomials. Differences among models in goodness of fit measured by percentages of squared bias, correlations between predicted and observed records, and residual variances were small. The deviance information criterion favored the spline model with 6 knots. Smaller error of prediction and higher stability of estimated breeding values were achieved by using spline models with 5 and 6 knots compared with the model with Legendre polynomials. In general, the spline model with 6 knots had the best overall performance based upon the considered model comparison criteria.

  10. Genome-Enabled Estimates of Additive and Nonadditive Genetic Variances and Prediction of Apple Phenotypes Across Environments

    PubMed Central

    Kumar, Satish; Molloy, Claire; Muñoz, Patricio; Daetwyler, Hans; Chagné, David; Volz, Richard

    2015-01-01

    The nonadditive genetic effects may have an important contribution to total genetic variation of phenotypes, so estimates of both the additive and nonadditive effects are desirable for breeding and selection purposes. Our main objectives were to: estimate additive, dominance and epistatic variances of apple (Malus × domestica Borkh.) phenotypes using relationship matrices constructed from genome-wide dense single nucleotide polymorphism (SNP) markers; and compare the accuracy of genomic predictions using genomic best linear unbiased prediction models with or without including nonadditive genetic effects. A set of 247 clonally replicated individuals was assessed for six fruit quality traits at two sites, and also genotyped using an Illumina 8K SNP array. Across several fruit quality traits, the additive, dominance, and epistatic effects contributed about 30%, 16%, and 19%, respectively, to the total phenotypic variance. Models ignoring nonadditive components yielded upwardly biased estimates of additive variance (heritability) for all traits in this study. The accuracy of genomic predicted genetic values (GEGV) varied from about 0.15 to 0.35 for various traits, and these were almost identical for models with or without including nonadditive effects. However, models including nonadditive genetic effects further reduced the bias of GEGV. Between-site genotypic correlations were high (>0.85) for all traits, and genotype-site interaction accounted for <10% of the phenotypic variability. The accuracy of prediction, when the validation set was present only at one site, was generally similar for both sites, and varied from about 0.50 to 0.85. The prediction accuracies were strongly influenced by trait heritability, and genetic relatedness between the training and validation families. PMID:26497141

  11. A fully-stochasticized, age-structured population model for population viability analysis of fish: Lower Missouri River endangered pallid sturgeon example

    USGS Publications Warehouse

    Wildhaber, Mark L.; Albers, Janice; Green, Nicholas; Moran, Edward H.

    2017-01-01

    We develop a fully-stochasticized, age-structured population model suitable for population viability analysis (PVA) of fish and demonstrate its use with the endangered pallid sturgeon (Scaphirhynchus albus) of the Lower Missouri River as an example. The model incorporates three levels of variance: parameter variance (uncertainty about the value of a parameter itself) applied at the iteration level, temporal variance (uncertainty caused by random environmental fluctuations over time) applied at the time-step level, and implicit individual variance (uncertainty caused by differences between individuals) applied within the time-step level. We found that population dynamics were most sensitive to survival rates, particularly age-2+ survival, and to fecundity-at-length. The inclusion of variance (unpartitioned or partitioned), stocking, or both generally decreased the influence of individual parameters on population growth rate. The partitioning of variance into parameter and temporal components had a strong influence on the importance of individual parameters, uncertainty of model predictions, and quasiextinction risk (i.e., pallid sturgeon population size falling below 50 age-1+ individuals). Our findings show that appropriately applying variance in PVA is important when evaluating the relative importance of parameters, and reinforce the need for better and more precise estimates of crucial life-history parameters for pallid sturgeon.

  12. Variance-Stable R-Estimators.

    DTIC Science & Technology

    1984-05-01

    By means of the concept of change-of variance function we investigate the stability properties of the asymptotic variance of R-estimators. This allows us to construct the optimal V-robust R-estimator that minimizes the asymptotic variance at the model, under the side condition of a bounded change-of variance function. Finally, we discuss the connection between this function and an influence function for two-sample rank tests introduced by Eplett (1980). (Author)

  13. Variance components for direct and maternal effects on body weights of Katahdin lambs

    USDA-ARS?s Scientific Manuscript database

    The aim of this study was to estimate genetic parameters for BW in Katahdin lambs. Six animal models were used to study direct and maternal effects on birth (BWT), weaning (WWT) and postweaning (PWWT) weights using 41,066 BWT, 33,980 WWT, and 22,793 PWWT records collected over 17 yr in 100 flocks. F...

  14. Multifactorial inheritance with cultural transmission and assortative mating. II. a general model of combined polygenic and cultural inheritance.

    PubMed Central

    Cloninger, C R; Rice, J; Reich, T

    1979-01-01

    A general linear model of combined polygenic-cultural inheritance is described. The model allows for phenotypic assortative mating, common environment, maternal and paternal effects, and genic-cultural correlation. General formulae for phenotypic correlation between family members in extended pedigrees are given for both primary and secondary assortative mating. A FORTRAN program BETA, available upon request, is used to provide maximum likelihood estimates of the parameters from reported correlations. American data about IQ and Burks' culture index are analyzed. Both cultural and genetic components of phenotypic variance are observed to make significant and substantial contributions to familial resemblance in IQ. The correlation between the environments of DZ twins is found to equal that of singleton sibs, not that of MZ twins. Burks' culture index is found to be an imperfect measure of midparent IQ rather than an index of home environment as previously assumed. Conditions under which the parameters of the model may be uniquely and precisely estimated are discussed. Interpretation of variance components in the presence of assortative mating and genic-cultural covariance is reviewed. A conservative, but robust, approach to the use of environmental indices is described. PMID:453202

  15. Removing the thermal component from heart rate provides an accurate VO2 estimation in forest work.

    PubMed

    Dubé, Philippe-Antoine; Imbeau, Daniel; Dubeau, Denise; Lebel, Luc; Kolus, Ahmet

    2016-05-01

    Heart rate (HR) was monitored continuously in 41 forest workers performing brushcutting or tree planting work. 10-min seated rest periods were imposed during the workday to estimate the HR thermal component (ΔHRT) per Vogt et al. (1970, 1973). VO2 was measured using a portable gas analyzer during a morning submaximal step-test conducted at the work site, during a work bout over the course of the day (range: 9-74 min), and during an ensuing 10-min rest pause taken at the worksite. The VO2 estimated, from measured HR and from corrected HR (thermal component removed), were compared to VO2 measured during work and rest. Varied levels of HR thermal component (ΔHRTavg range: 0-38 bpm) originating from a wide range of ambient thermal conditions, thermal clothing insulation worn, and physical load exerted during work were observed. Using raw HR significantly overestimated measured work VO2 by 30% on average (range: 1%-64%). 74% of VO2 prediction error variance was explained by the HR thermal component. VO2 estimated from corrected HR, was not statistically different from measured VO2. Work VO2 can be estimated accurately in the presence of thermal stress using Vogt et al.'s method, which can be implemented easily by the practitioner with inexpensive instruments. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  16. Isolating the cow-specific part of residual energy intake in lactating dairy cows using random regressions.

    PubMed

    Fischer, A; Friggens, N C; Berry, D P; Faverdin, P

    2018-07-01

    The ability to properly assess and accurately phenotype true differences in feed efficiency among dairy cows is key to the development of breeding programs for improving feed efficiency. The variability among individuals in feed efficiency is commonly characterised by the residual intake approach. Residual feed intake is represented by the residuals of a linear regression of intake on the corresponding quantities of the biological functions that consume (or release) energy. However, the residuals include both, model fitting and measurement errors as well as any variability in cow efficiency. The objective of this study was to isolate the individual animal variability in feed efficiency from the residual component. Two separate models were fitted, in one the standard residual energy intake (REI) was calculated as the residual of a multiple linear regression of lactation average net energy intake (NEI) on lactation average milk energy output, average metabolic BW, as well as lactation loss and gain of body condition score. In the other, a linear mixed model was used to simultaneously fit fixed linear regressions and random cow levels on the biological traits and intercept using fortnight repeated measures for the variables. This method split the predicted NEI in two parts: one quantifying the population mean intercept and coefficients, and one quantifying cow-specific deviations in the intercept and coefficients. The cow-specific part of predicted NEI was assumed to isolate true differences in feed efficiency among cows. NEI and associated energy expenditure phenotypes were available for the first 17 fortnights of lactation from 119 Holstein cows; all fed a constant energy-rich diet. Mixed models fitting cow-specific intercept and coefficients to different combinations of the aforementioned energy expenditure traits, calculated on a fortnightly basis, were compared. The variance of REI estimated with the lactation average model represented only 8% of the variance of measured NEI. Among all compared mixed models, the variance of the cow-specific part of predicted NEI represented between 53% and 59% of the variance of REI estimated from the lactation average model or between 4% and 5% of the variance of measured NEI. The remaining 41% to 47% of the variance of REI estimated with the lactation average model may therefore reflect model fitting errors or measurement errors. In conclusion, the use of a mixed model framework with cow-specific random regressions seems to be a promising method to isolate the cow-specific component of REI in dairy cows.

  17. Estimation des paramètres d'un modèle hydrologique mixte appliqué à la région du haut plateau Bolivien

    NASA Astrophysics Data System (ADS)

    Gárfias, Jaime; Verrette, Jean-Louis; Antigüedad, Iñaki; André, Cécile

    1996-03-01

    This paper discusses the development and application of a technique which permits the analysis and improvement of hydrological models for the management of water resources of complex systems. Considering that such models are intended for practical application, the model was applied to the conditions of the Bolivian highlands. The model consisted of a deterministic part (HEC-1 model) linked to a stochastic component. The experience acquired indicated the possibility of adapting a more general procedure to compensate for the lack of rigour in the homoscedastic and independence hypothesis of the residuals. Use of this concept improved the estimation accuracy of the parameters and provided independent residuals with constant variance. A Box-Cox transformation was used to stabilize error variance and an autoregressive model was used to remove autocorrelation in the residuals.

  18. Vestibular schwannomas: Accuracy of tumor volume estimated by ice cream cone formula using thin-sliced MR images.

    PubMed

    Ho, Hsing-Hao; Li, Ya-Hui; Lee, Jih-Chin; Wang, Chih-Wei; Yu, Yi-Lin; Hueng, Dueng-Yuan; Ma, Hsin-I; Hsu, Hsian-He; Juan, Chun-Jung

    2018-01-01

    We estimated the volume of vestibular schwannomas by an ice cream cone formula using thin-sliced magnetic resonance images (MRI) and compared the estimation accuracy among different estimating formulas and between different models. The study was approved by a local institutional review board. A total of 100 patients with vestibular schwannomas examined by MRI between January 2011 and November 2015 were enrolled retrospectively. Informed consent was waived. Volumes of vestibular schwannomas were estimated by cuboidal, ellipsoidal, and spherical formulas based on a one-component model, and cuboidal, ellipsoidal, Linskey's, and ice cream cone formulas based on a two-component model. The estimated volumes were compared to the volumes measured by planimetry. Intraobserver reproducibility and interobserver agreement was tested. Estimation error, including absolute percentage error (APE) and percentage error (PE), was calculated. Statistical analysis included intraclass correlation coefficient (ICC), linear regression analysis, one-way analysis of variance, and paired t-tests with P < 0.05 considered statistically significant. Overall tumor size was 4.80 ± 6.8 mL (mean ±standard deviation). All ICCs were no less than 0.992, suggestive of high intraobserver reproducibility and high interobserver agreement. Cuboidal formulas significantly overestimated the tumor volume by a factor of 1.9 to 2.4 (P ≤ 0.001). The one-component ellipsoidal and spherical formulas overestimated the tumor volume with an APE of 20.3% and 29.2%, respectively. The two-component ice cream cone method, and ellipsoidal and Linskey's formulas significantly reduced the APE to 11.0%, 10.1%, and 12.5%, respectively (all P < 0.001). The ice cream cone method and other two-component formulas including the ellipsoidal and Linskey's formulas allow for estimation of vestibular schwannoma volume more accurately than all one-component formulas.

  19. Modelling heterogeneity variances in multiple treatment comparison meta-analysis – Are informative priors the better solution?

    PubMed Central

    2013-01-01

    Background Multiple treatment comparison (MTC) meta-analyses are commonly modeled in a Bayesian framework, and weakly informative priors are typically preferred to mirror familiar data driven frequentist approaches. Random-effects MTCs have commonly modeled heterogeneity under the assumption that the between-trial variance for all involved treatment comparisons are equal (i.e., the ‘common variance’ assumption). This approach ‘borrows strength’ for heterogeneity estimation across treatment comparisons, and thus, ads valuable precision when data is sparse. The homogeneous variance assumption, however, is unrealistic and can severely bias variance estimates. Consequently 95% credible intervals may not retain nominal coverage, and treatment rank probabilities may become distorted. Relaxing the homogeneous variance assumption may be equally problematic due to reduced precision. To regain good precision, moderately informative variance priors or additional mathematical assumptions may be necessary. Methods In this paper we describe four novel approaches to modeling heterogeneity variance - two novel model structures, and two approaches for use of moderately informative variance priors. We examine the relative performance of all approaches in two illustrative MTC data sets. We particularly compare between-study heterogeneity estimates and model fits, treatment effect estimates and 95% credible intervals, and treatment rank probabilities. Results In both data sets, use of moderately informative variance priors constructed from the pair wise meta-analysis data yielded the best model fit and narrower credible intervals. Imposing consistency equations on variance estimates, assuming variances to be exchangeable, or using empirically informed variance priors also yielded good model fits and narrow credible intervals. The homogeneous variance model yielded high precision at all times, but overall inadequate estimates of between-trial variances. Lastly, treatment rankings were similar among the novel approaches, but considerably different when compared with the homogenous variance approach. Conclusions MTC models using a homogenous variance structure appear to perform sub-optimally when between-trial variances vary between comparisons. Using informative variance priors, assuming exchangeability or imposing consistency between heterogeneity variances can all ensure sufficiently reliable and realistic heterogeneity estimation, and thus more reliable MTC inferences. All four approaches should be viable candidates for replacing or supplementing the conventional homogeneous variance MTC model, which is currently the most widely used in practice. PMID:23311298

  20. Genomic BLUP including additive and dominant variation in purebreds and F1 crossbreds, with an application in pigs.

    PubMed

    Vitezica, Zulma G; Varona, Luis; Elsen, Jean-Michel; Misztal, Ignacy; Herring, William; Legarra, Andrès

    2016-01-29

    Most developments in quantitative genetics theory focus on the study of intra-breed/line concepts. With the availability of massive genomic information, it becomes necessary to revisit the theory for crossbred populations. We propose methods to construct genomic covariances with additive and non-additive (dominance) inheritance in the case of pure lines and crossbred populations. We describe substitution effects and dominant deviations across two pure parental populations and the crossbred population. Gene effects are assumed to be independent of the origin of alleles and allelic frequencies can differ between parental populations. Based on these assumptions, the theoretical variance components (additive and dominant) are obtained as a function of marker effects and allelic frequencies. The additive genetic variance in the crossbred population includes the biological additive and dominant effects of a gene and a covariance term. Dominance variance in the crossbred population is proportional to the product of the heterozygosity coefficients of both parental populations. A genomic BLUP (best linear unbiased prediction) equivalent model is presented. We illustrate this approach by using pig data (two pure lines and their cross, including 8265 phenotyped and genotyped sows). For the total number of piglets born, the dominance variance in the crossbred population represented about 13 % of the total genetic variance. Dominance variation is only marginally important for litter size in the crossbred population. We present a coherent marker-based model that includes purebred and crossbred data and additive and dominant actions. Using this model, it is possible to estimate breeding values, dominant deviations and variance components in a dataset that comprises data on purebred and crossbred individuals. These methods can be exploited to plan assortative mating in pig, maize or other species, in order to generate superior crossbred individuals in terms of performance.

  1. Genetic and environmental transmission of body mass index fluctuation.

    PubMed

    Bergin, Jocilyn E; Neale, Michael C; Eaves, Lindon J; Martin, Nicholas G; Heath, Andrew C; Maes, Hermine H

    2012-11-01

    This study sought to determine the relationship between body mass index (BMI) fluctuation and cardiovascular disease phenotypes, diabetes, and depression and the role of genetic and environmental factors in individual differences in BMI fluctuation using the extended twin-family model (ETFM). This study included 14,763 twins and their relatives. Health and Lifestyle Questionnaires were obtained from 28,492 individuals from the Virginia 30,000 dataset including twins, parents, siblings, spouses, and children of twins. Self-report cardiovascular disease, diabetes, and depression data were available. From self-reported height and weight, BMI fluctuation was calculated as the difference between highest and lowest BMI after age 18, for individuals 18-80 years. Logistic regression analyses were used to determine the relationship between BMI fluctuation and disease status. The ETFM was used to estimate the significance and contribution of genetic and environmental factors, cultural transmission, and assortative mating components to BMI fluctuation, while controlling for age. We tested sex differences in additive and dominant genetic effects, parental, non-parental, twin, and unique environmental effects. BMI fluctuation was highly associated with disease status, independent of BMI. Genetic effects accounted for ~34 % of variance in BMI fluctuation in males and ~43 % of variance in females. The majority of the variance was accounted for by environmental factors, about a third of which were shared among twins. Assortative mating, and cultural transmission accounted for only a small proportion of variance in this phenotype. Since there are substantial health risks associated with BMI fluctuation and environmental components of BMI fluctuation account for over 60 % of variance in males and over 50 % of variance in females, environmental risk factors may be appropriate targets to reduce BMI fluctuation.

  2. Breeding maize as biogas substrate in Central Europe: I. Quantitative-genetic parameters for testcross performance.

    PubMed

    Grieder, Christoph; Dhillon, Baldev S; Schipprack, Wolfgang; Melchinger, Albrecht E

    2012-04-01

    Biofuels have gained importance recently and the use of maize biomass as substrate in biogas plants for production of methane has increased tremendously in Germany. The objectives of our research were to (1) estimate variance components and heritability for different traits relevant to biogas production in testcrosses (TCs) of maize, (2) study correlations among traits, and (3) discuss strategies to breed maize as a substrate for biogas fermenters. We evaluated 570 TCs of 285 diverse dent maize lines crossed with two flint single-cross testers in six environments. Data were recorded on agronomic and quality traits, including dry matter yield (DMY), methane fermentation yield (MFY), and methane yield (MY), the product of DMY and MFY, as the main target trait. Estimates of variance components showed general combining ability (GCA) to be the major source of variation. Estimates of heritability exceeded 0.67 for all traits and were even much greater in most instances. Methane yield was perfectly correlated with DMY but not with MFY, indicating that variation in MY is primarily determined by DMY. Further, DMY had a larger heritability and coefficient of genetic variation than MFY. Hence, for improving MY, selection should primarily focus on DMY rather than MFY. Further, maize breeding for biogas production may diverge from that for forage production because in the former case, quality traits seem to be of much lower importance.

  3. Direct and indirect genetic and fine-scale location effects on breeding date in song sparrows.

    PubMed

    Germain, Ryan R; Wolak, Matthew E; Arcese, Peter; Losdat, Sylvain; Reid, Jane M

    2016-11-01

    Quantifying direct and indirect genetic effects of interacting females and males on variation in jointly expressed life-history traits is central to predicting microevolutionary dynamics. However, accurately estimating sex-specific additive genetic variances in such traits remains difficult in wild populations, especially if related individuals inhabit similar fine-scale environments. Breeding date is a key life-history trait that responds to environmental phenology and mediates individual and population responses to environmental change. However, no studies have estimated female (direct) and male (indirect) additive genetic and inbreeding effects on breeding date, and estimated the cross-sex genetic correlation, while simultaneously accounting for fine-scale environmental effects of breeding locations, impeding prediction of microevolutionary dynamics. We fitted animal models to 38 years of song sparrow (Melospiza melodia) phenology and pedigree data to estimate sex-specific additive genetic variances in breeding date, and the cross-sex genetic correlation, thereby estimating the total additive genetic variance while simultaneously estimating sex-specific inbreeding depression. We further fitted three forms of spatial animal model to explicitly estimate variance in breeding date attributable to breeding location, overlap among breeding locations and spatial autocorrelation. We thereby quantified fine-scale location variances in breeding date and quantified the degree to which estimating such variances affected the estimated additive genetic variances. The non-spatial animal model estimated nonzero female and male additive genetic variances in breeding date (sex-specific heritabilities: 0·07 and 0·02, respectively) and a strong, positive cross-sex genetic correlation (0·99), creating substantial total additive genetic variance (0·18). Breeding date varied with female, but not male inbreeding coefficient, revealing direct, but not indirect, inbreeding depression. All three spatial animal models estimated small location variance in breeding date, but because relatedness and breeding location were virtually uncorrelated, modelling location variance did not alter the estimated additive genetic variances. Our results show that sex-specific additive genetic effects on breeding date can be strongly positively correlated, which would affect any predicted rates of microevolutionary change in response to sexually antagonistic or congruent selection. Further, we show that inbreeding effects on breeding date can also be sex specific and that genetic effects can exceed phenotypic variation stemming from fine-scale location-based variation within a wild population. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  4. Improved estimation of subject-level functional connectivity using full and partial correlation with empirical Bayes shrinkage.

    PubMed

    Mejia, Amanda F; Nebel, Mary Beth; Barber, Anita D; Choe, Ann S; Pekar, James J; Caffo, Brian S; Lindquist, Martin A

    2018-05-15

    Reliability of subject-level resting-state functional connectivity (FC) is determined in part by the statistical techniques employed in its estimation. Methods that pool information across subjects to inform estimation of subject-level effects (e.g., Bayesian approaches) have been shown to enhance reliability of subject-level FC. However, fully Bayesian approaches are computationally demanding, while empirical Bayesian approaches typically rely on using repeated measures to estimate the variance components in the model. Here, we avoid the need for repeated measures by proposing a novel measurement error model for FC describing the different sources of variance and error, which we use to perform empirical Bayes shrinkage of subject-level FC towards the group average. In addition, since the traditional intra-class correlation coefficient (ICC) is inappropriate for biased estimates, we propose a new reliability measure denoted the mean squared error intra-class correlation coefficient (ICC MSE ) to properly assess the reliability of the resulting (biased) estimates. We apply the proposed techniques to test-retest resting-state fMRI data on 461 subjects from the Human Connectome Project to estimate connectivity between 100 regions identified through independent components analysis (ICA). We consider both correlation and partial correlation as the measure of FC and assess the benefit of shrinkage for each measure, as well as the effects of scan duration. We find that shrinkage estimates of subject-level FC exhibit substantially greater reliability than traditional estimates across various scan durations, even for the most reliable connections and regardless of connectivity measure. Additionally, we find partial correlation reliability to be highly sensitive to the choice of penalty term, and to be generally worse than that of full correlations except for certain connections and a narrow range of penalty values. This suggests that the penalty needs to be chosen carefully when using partial correlations. Copyright © 2018. Published by Elsevier Inc.

  5. Jackknife Estimation of Sampling Variance of Ratio Estimators in Complex Samples: Bias and the Coefficient of Variation. Research Report. ETS RR-06-19

    ERIC Educational Resources Information Center

    Oranje, Andreas

    2006-01-01

    A multitude of methods has been proposed to estimate the sampling variance of ratio estimates in complex samples (Wolter, 1985). Hansen and Tepping (1985) studied some of those variance estimators and found that a high coefficient of variation (CV) of the denominator of a ratio estimate is indicative of a biased estimate of the standard error of a…

  6. Analyzing the cosmic variance limit of remote dipole measurements of the cosmic microwave background using the large-scale kinetic Sunyaev Zel'dovich effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terrana, Alexandra; Johnson, Matthew C.; Harris, Mary-Jean, E-mail: aterrana@perimeterinstitute.ca, E-mail: mharris8@perimeterinstitute.ca, E-mail: mjohnson@perimeterinstitute.ca

    Due to cosmic variance we cannot learn any more about large-scale inhomogeneities from the primary cosmic microwave background (CMB) alone. More information on large scales is essential for resolving large angular scale anomalies in the CMB. Here we consider cross correlating the large-scale kinetic Sunyaev Zel'dovich (kSZ) effect and probes of large-scale structure, a technique known as kSZ tomography. The statistically anisotropic component of the cross correlation encodes the CMB dipole as seen by free electrons throughout the observable Universe, providing information about long wavelength inhomogeneities. We compute the large angular scale power asymmetry, constructing the appropriate transfer functions, andmore » estimate the cosmic variance limited signal to noise for a variety of redshift bin configurations. The signal to noise is significant over a large range of power multipoles and numbers of bins. We present a simple mode counting argument indicating that kSZ tomography can be used to estimate more modes than the primary CMB on comparable scales. A basic forecast indicates that a first detection could be made with next-generation CMB experiments and galaxy surveys. This paper motivates a more systematic investigation of how close to the cosmic variance limit it will be possible to get with future observations.« less

  7. Estimation of genetic parameters and their sampling variances of quantitative traits in the type 2 modified augmented design

    USDA-ARS?s Scientific Manuscript database

    We proposed a method to estimate the error variance among non-replicated genotypes, thus to estimate the genetic parameters by using replicated controls. We derived formulas to estimate sampling variances of the genetic parameters. Computer simulation indicated that the proposed methods of estimatin...

  8. Robust variance estimation with dependent effect sizes: practical considerations including a software tutorial in Stata and spss.

    PubMed

    Tanner-Smith, Emily E; Tipton, Elizabeth

    2014-03-01

    Methodologists have recently proposed robust variance estimation as one way to handle dependent effect sizes in meta-analysis. Software macros for robust variance estimation in meta-analysis are currently available for Stata (StataCorp LP, College Station, TX, USA) and spss (IBM, Armonk, NY, USA), yet there is little guidance for authors regarding the practical application and implementation of those macros. This paper provides a brief tutorial on the implementation of the Stata and spss macros and discusses practical issues meta-analysts should consider when estimating meta-regression models with robust variance estimates. Two example databases are used in the tutorial to illustrate the use of meta-analysis with robust variance estimates. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Variance estimation when using inverse probability of treatment weighting (IPTW) with survival analysis.

    PubMed

    Austin, Peter C

    2016-12-30

    Propensity score methods are used to reduce the effects of observed confounding when using observational data to estimate the effects of treatments or exposures. A popular method of using the propensity score is inverse probability of treatment weighting (IPTW). When using this method, a weight is calculated for each subject that is equal to the inverse of the probability of receiving the treatment that was actually received. These weights are then incorporated into the analyses to minimize the effects of observed confounding. Previous research has found that these methods result in unbiased estimation when estimating the effect of treatment on survival outcomes. However, conventional methods of variance estimation were shown to result in biased estimates of standard error. In this study, we conducted an extensive set of Monte Carlo simulations to examine different methods of variance estimation when using a weighted Cox proportional hazards model to estimate the effect of treatment. We considered three variance estimation methods: (i) a naïve model-based variance estimator; (ii) a robust sandwich-type variance estimator; and (iii) a bootstrap variance estimator. We considered estimation of both the average treatment effect and the average treatment effect in the treated. We found that the use of a bootstrap estimator resulted in approximately correct estimates of standard errors and confidence intervals with the correct coverage rates. The other estimators resulted in biased estimates of standard errors and confidence intervals with incorrect coverage rates. Our simulations were informed by a case study examining the effect of statin prescribing on mortality. © 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. © 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.

  10. Understanding and comparisons of different sampling approaches for the Fourier Amplitudes Sensitivity Test (FAST)

    PubMed Central

    Xu, Chonggang; Gertner, George

    2013-01-01

    Fourier Amplitude Sensitivity Test (FAST) is one of the most popular uncertainty and sensitivity analysis techniques. It uses a periodic sampling approach and a Fourier transformation to decompose the variance of a model output into partial variances contributed by different model parameters. Until now, the FAST analysis is mainly confined to the estimation of partial variances contributed by the main effects of model parameters, but does not allow for those contributed by specific interactions among parameters. In this paper, we theoretically show that FAST analysis can be used to estimate partial variances contributed by both main effects and interaction effects of model parameters using different sampling approaches (i.e., traditional search-curve based sampling, simple random sampling and random balance design sampling). We also analytically calculate the potential errors and biases in the estimation of partial variances. Hypothesis tests are constructed to reduce the effect of sampling errors on the estimation of partial variances. Our results show that compared to simple random sampling and random balance design sampling, sensitivity indices (ratios of partial variances to variance of a specific model output) estimated by search-curve based sampling generally have higher precision but larger underestimations. Compared to simple random sampling, random balance design sampling generally provides higher estimation precision for partial variances contributed by the main effects of parameters. The theoretical derivation of partial variances contributed by higher-order interactions and the calculation of their corresponding estimation errors in different sampling schemes can help us better understand the FAST method and provide a fundamental basis for FAST applications and further improvements. PMID:24143037

  11. Understanding and comparisons of different sampling approaches for the Fourier Amplitudes Sensitivity Test (FAST).

    PubMed

    Xu, Chonggang; Gertner, George

    2011-01-01

    Fourier Amplitude Sensitivity Test (FAST) is one of the most popular uncertainty and sensitivity analysis techniques. It uses a periodic sampling approach and a Fourier transformation to decompose the variance of a model output into partial variances contributed by different model parameters. Until now, the FAST analysis is mainly confined to the estimation of partial variances contributed by the main effects of model parameters, but does not allow for those contributed by specific interactions among parameters. In this paper, we theoretically show that FAST analysis can be used to estimate partial variances contributed by both main effects and interaction effects of model parameters using different sampling approaches (i.e., traditional search-curve based sampling, simple random sampling and random balance design sampling). We also analytically calculate the potential errors and biases in the estimation of partial variances. Hypothesis tests are constructed to reduce the effect of sampling errors on the estimation of partial variances. Our results show that compared to simple random sampling and random balance design sampling, sensitivity indices (ratios of partial variances to variance of a specific model output) estimated by search-curve based sampling generally have higher precision but larger underestimations. Compared to simple random sampling, random balance design sampling generally provides higher estimation precision for partial variances contributed by the main effects of parameters. The theoretical derivation of partial variances contributed by higher-order interactions and the calculation of their corresponding estimation errors in different sampling schemes can help us better understand the FAST method and provide a fundamental basis for FAST applications and further improvements.

  12. Diallel analysis for sex-linked and maternal effects.

    PubMed

    Zhu, J; Weir, B S

    1996-01-01

    Genetic models including sex-linked and maternal effects as well as autosomal gene effects are described. Monte Carlo simulations were conducted to compare efficiencies of estimation by minimum norm quadratic unbiased estimation (MINQUE) and restricted maximum likelihood (REML) methods. MINQUE(1), which has 1 for all prior values, has a similar efficiency to MINQUE(θ), which requires prior estimates of parameter values. MINQUE(1) has the advantage over REML of unbiased estimation and convenient computation. An adjusted unbiased prediction (AUP) method is developed for predicting random genetic effects. AUP is desirable for its easy computation and unbiasedness of both mean and variance of predictors. The jackknife procedure is appropriate for estimating the sampling variances of estimated variances (or covariances) and of predicted genetic effects. A t-test based on jackknife variances is applicable for detecting significance of variation. Worked examples from mice and silkworm data are given in order to demonstrate variance and covariance estimation and genetic effect prediction.

  13. Genome-Assisted Prediction of Quantitative Traits Using the R Package sommer.

    PubMed

    Covarrubias-Pazaran, Giovanny

    2016-01-01

    Most traits of agronomic importance are quantitative in nature, and genetic markers have been used for decades to dissect such traits. Recently, genomic selection has earned attention as next generation sequencing technologies became feasible for major and minor crops. Mixed models have become a key tool for fitting genomic selection models, but most current genomic selection software can only include a single variance component other than the error, making hybrid prediction using additive, dominance and epistatic effects unfeasible for species displaying heterotic effects. Moreover, Likelihood-based software for fitting mixed models with multiple random effects that allows the user to specify the variance-covariance structure of random effects has not been fully exploited. A new open-source R package called sommer is presented to facilitate the use of mixed models for genomic selection and hybrid prediction purposes using more than one variance component and allowing specification of covariance structures. The use of sommer for genomic prediction is demonstrated through several examples using maize and wheat genotypic and phenotypic data. At its core, the program contains three algorithms for estimating variance components: Average information (AI), Expectation-Maximization (EM) and Efficient Mixed Model Association (EMMA). Kernels for calculating the additive, dominance and epistatic relationship matrices are included, along with other useful functions for genomic analysis. Results from sommer were comparable to other software, but the analysis was faster than Bayesian counterparts in the magnitude of hours to days. In addition, ability to deal with missing data, combined with greater flexibility and speed than other REML-based software was achieved by putting together some of the most efficient algorithms to fit models in a gentle environment such as R.

  14. Variance adaptation in navigational decision making

    NASA Astrophysics Data System (ADS)

    Gershow, Marc; Gepner, Ruben; Wolk, Jason; Wadekar, Digvijay

    Drosophila larvae navigate their environments using a biased random walk strategy. A key component of this strategy is the decision to initiate a turn (change direction) in response to declining conditions. We modeled this decision as the output of a Linear-Nonlinear-Poisson cascade and used reverse correlation with visual and fictive olfactory stimuli to find the parameters of this model. Because the larva responds to changes in stimulus intensity, we used stimuli with uncorrelated normally distributed intensity derivatives, i.e. Brownian processes, and took the stimulus derivative as the input to our LNP cascade. In this way, we were able to present stimuli with 0 mean and controlled variance. We found that the nonlinear rate function depended on the variance in the stimulus input, allowing larvae to respond more strongly to small changes in low-noise compared to high-noise environments. We measured the rate at which the larva adapted its behavior following changes in stimulus variance, and found that larvae adapted more quickly to increases in variance than to decreases, consistent with the behavior of an optimal Bayes estimator. Supported by NIH Grant 1DP2EB022359 and NSF Grant PHY-1455015.

  15. A Generalized DIF Effect Variance Estimator for Measuring Unsigned Differential Test Functioning in Mixed Format Tests

    ERIC Educational Resources Information Center

    Penfield, Randall D.; Algina, James

    2006-01-01

    One approach to measuring unsigned differential test functioning is to estimate the variance of the differential item functioning (DIF) effect across the items of the test. This article proposes two estimators of the DIF effect variance for tests containing dichotomous and polytomous items. The proposed estimators are direct extensions of the…

  16. Analysis of Wind Tunnel Polar Replicates Using the Modern Design of Experiments

    NASA Technical Reports Server (NTRS)

    Deloach, Richard; Micol, John R.

    2010-01-01

    The role of variance in a Modern Design of Experiments analysis of wind tunnel data is reviewed, with distinctions made between explained and unexplained variance. The partitioning of unexplained variance into systematic and random components is illustrated, with examples of the elusive systematic component provided for various types of real-world tests. The importance of detecting and defending against systematic unexplained variance in wind tunnel testing is discussed, and the random and systematic components of unexplained variance are examined for a representative wind tunnel data set acquired in a test in which a missile is used as a test article. The adverse impact of correlated (non-independent) experimental errors is described, and recommendations are offered for replication strategies that facilitate the quantification of random and systematic unexplained variance.

  17. Methods to estimate the between‐study variance and its uncertainty in meta‐analysis†

    PubMed Central

    Jackson, Dan; Viechtbauer, Wolfgang; Bender, Ralf; Bowden, Jack; Knapp, Guido; Kuss, Oliver; Higgins, Julian PT; Langan, Dean; Salanti, Georgia

    2015-01-01

    Meta‐analyses are typically used to estimate the overall/mean of an outcome of interest. However, inference about between‐study variability, which is typically modelled using a between‐study variance parameter, is usually an additional aim. The DerSimonian and Laird method, currently widely used by default to estimate the between‐study variance, has been long challenged. Our aim is to identify known methods for estimation of the between‐study variance and its corresponding uncertainty, and to summarise the simulation and empirical evidence that compares them. We identified 16 estimators for the between‐study variance, seven methods to calculate confidence intervals, and several comparative studies. Simulation studies suggest that for both dichotomous and continuous data the estimator proposed by Paule and Mandel and for continuous data the restricted maximum likelihood estimator are better alternatives to estimate the between‐study variance. Based on the scenarios and results presented in the published studies, we recommend the Q‐profile method and the alternative approach based on a ‘generalised Cochran between‐study variance statistic’ to compute corresponding confidence intervals around the resulting estimates. Our recommendations are based on a qualitative evaluation of the existing literature and expert consensus. Evidence‐based recommendations require an extensive simulation study where all methods would be compared under the same scenarios. © 2015 The Authors. Research Synthesis Methods published by John Wiley & Sons Ltd. PMID:26332144

  18. Development and Validation of a Lifecycle-based Prognostics Architecture with Test Bed Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hines, J. Wesley; Upadhyaya, Belle; Sharp, Michael

    On-line monitoring and tracking of nuclear plant system and component degradation is being investigated as a method for improving the safety, reliability, and maintainability of aging nuclear power plants. Accurate prediction of the current degradation state of system components and structures is important for accurate estimates of their remaining useful life (RUL). The correct quantification and propagation of both the measurement uncertainty and model uncertainty is necessary for quantifying the uncertainty of the RUL prediction. This research project developed and validated methods to perform RUL estimation throughout the lifecycle of plant components. Prognostic methods should seamlessly operate from beginning ofmore » component life (BOL) to end of component life (EOL). We term this "Lifecycle Prognostics." When a component is put into use, the only information available may be past failure times of similar components used in similar conditions, and the predicted failure distribution can be estimated with reliability methods such as Weibull Analysis (Type I Prognostics). As the component operates, it begins to degrade and consume its available life. This life consumption may be a function of system stresses, and the failure distribution should be updated to account for the system operational stress levels (Type II Prognostics). When degradation becomes apparent, this information can be used to again improve the RUL estimate (Type III Prognostics). This research focused on developing prognostics algorithms for the three types of prognostics, developing uncertainty quantification methods for each of the algorithms, and, most importantly, developing a framework using Bayesian methods to transition between prognostic model types and update failure distribution estimates as new information becomes available. The developed methods were then validated on a range of accelerated degradation test beds. The ultimate goal of prognostics is to provide an accurate assessment for RUL predictions, with as little uncertainty as possible. From a reliability and maintenance standpoint, there would be improved safety by avoiding all failures. Calculated risk would decrease, saving money by avoiding unnecessary maintenance. One major bottleneck for data-driven prognostics is the availability of run-to-failure degradation data. Without enough degradation data leading to failure, prognostic models can yield RUL distributions with large uncertainty or mathematically unsound predictions. To address these issues a "Lifecycle Prognostics" method was developed to create RUL distributions from Beginning of Life (BOL) to End of Life (EOL). This employs established Type I, II, and III prognostic methods, and Bayesian transitioning between each Type. Bayesian methods, as opposed to classical frequency statistics, show how an expected value, a priori, changes with new data to form a posterior distribution. For example, when you purchase a component you have a prior belief, or estimation, of how long it will operate before failing. As you operate it, you may collect information related to its condition that will allow you to update your estimated failure time. Bayesian methods are best used when limited data are available. The use of a prior also means that information is conserved when new data are available. The weightings of the prior belief and information contained in the sampled data are dependent on the variance (uncertainty) of the prior, the variance (uncertainty) of the data, and the amount of measured data (number of samples). If the variance of the prior is small compared to the uncertainty of the data, the prior will be weighed more heavily. However, as more data are collected, the data will be weighted more heavily and will eventually swamp out the prior in calculating the posterior distribution of model parameters. Fundamentally Bayesian analysis updates a prior belief with new data to get a posterior belief. The general approach to applying the Bayesian method to lifecycle prognostics consisted of identifying the prior, which is the RUL estimate and uncertainty from the previous prognostics type, and combining it with observational data related to the newer prognostics type. The resulting lifecycle prognostics algorithm uses all available information throughout the component lifecycle.« less

  19. Blinded sample size re-estimation in three-arm trials with 'gold standard' design.

    PubMed

    Mütze, Tobias; Friede, Tim

    2017-10-15

    In this article, we study blinded sample size re-estimation in the 'gold standard' design with internal pilot study for normally distributed outcomes. The 'gold standard' design is a three-arm clinical trial design that includes an active and a placebo control in addition to an experimental treatment. We focus on the absolute margin approach to hypothesis testing in three-arm trials at which the non-inferiority of the experimental treatment and the assay sensitivity are assessed by pairwise comparisons. We compare several blinded sample size re-estimation procedures in a simulation study assessing operating characteristics including power and type I error. We find that sample size re-estimation based on the popular one-sample variance estimator results in overpowered trials. Moreover, sample size re-estimation based on unbiased variance estimators such as the Xing-Ganju variance estimator results in underpowered trials, as it is expected because an overestimation of the variance and thus the sample size is in general required for the re-estimation procedure to eventually meet the target power. To overcome this problem, we propose an inflation factor for the sample size re-estimation with the Xing-Ganju variance estimator and show that this approach results in adequately powered trials. Because of favorable features of the Xing-Ganju variance estimator such as unbiasedness and a distribution independent of the group means, the inflation factor does not depend on the nuisance parameter and, therefore, can be calculated prior to a trial. Moreover, we prove that the sample size re-estimation based on the Xing-Ganju variance estimator does not bias the effect estimate. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Planning additional drilling campaign using two-space genetic algorithm: A game theoretical approach

    NASA Astrophysics Data System (ADS)

    Kumral, Mustafa; Ozer, Umit

    2013-03-01

    Grade and tonnage are the most important technical uncertainties in mining ventures because of the use of estimations/simulations, which are mostly generated from drill data. Open pit mines are planned and designed on the basis of the blocks representing the entire orebody. Each block has different estimation/simulation variance reflecting uncertainty to some extent. The estimation/simulation realizations are submitted to mine production scheduling process. However, the use of a block model with varying estimation/simulation variances will lead to serious risk in the scheduling. In the medium of multiple simulations, the dispersion variances of blocks can be thought to regard technical uncertainties. However, the dispersion variance cannot handle uncertainty associated with varying estimation/simulation variances of blocks. This paper proposes an approach that generates the configuration of the best additional drilling campaign to generate more homogenous estimation/simulation variances of blocks. In other words, the objective is to find the best drilling configuration in such a way as to minimize grade uncertainty under budget constraint. Uncertainty measure of the optimization process in this paper is interpolation variance, which considers data locations and grades. The problem is expressed as a minmax problem, which focuses on finding the best worst-case performance i.e., minimizing interpolation variance of the block generating maximum interpolation variance. Since the optimization model requires computing the interpolation variances of blocks being simulated/estimated in each iteration, the problem cannot be solved by standard optimization tools. This motivates to use two-space genetic algorithm (GA) approach to solve the problem. The technique has two spaces: feasible drill hole configuration with minimization of interpolation variance and drill hole simulations with maximization of interpolation variance. Two-space interacts to find a minmax solution iteratively. A case study was conducted to demonstrate the performance of approach. The findings showed that the approach could be used to plan a new drilling campaign.

  1. Human Facial Shape and Size Heritability and Genetic Correlations.

    PubMed

    Cole, Joanne B; Manyama, Mange; Larson, Jacinda R; Liberton, Denise K; Ferrara, Tracey M; Riccardi, Sheri L; Li, Mao; Mio, Washington; Klein, Ophir D; Santorico, Stephanie A; Hallgrímsson, Benedikt; Spritz, Richard A

    2017-02-01

    The human face is an array of variable physical features that together make each of us unique and distinguishable. Striking familial facial similarities underscore a genetic component, but little is known of the genes that underlie facial shape differences. Numerous studies have estimated facial shape heritability using various methods. Here, we used advanced three-dimensional imaging technology and quantitative human genetics analysis to estimate narrow-sense heritability, heritability explained by common genetic variation, and pairwise genetic correlations of 38 measures of facial shape and size in normal African Bantu children from Tanzania. Specifically, we fit a linear mixed model of genetic relatedness between close and distant relatives to jointly estimate variance components that correspond to heritability explained by genome-wide common genetic variation and variance explained by uncaptured genetic variation, the sum representing total narrow-sense heritability. Our significant estimates for narrow-sense heritability of specific facial traits range from 28 to 67%, with horizontal measures being slightly more heritable than vertical or depth measures. Furthermore, for over half of facial traits, >90% of narrow-sense heritability can be explained by common genetic variation. We also find high absolute genetic correlation between most traits, indicating large overlap in underlying genetic loci. Not surprisingly, traits measured in the same physical orientation (i.e., both horizontal or both vertical) have high positive genetic correlations, whereas traits in opposite orientations have high negative correlations. The complex genetic architecture of facial shape informs our understanding of the intricate relationships among different facial features as well as overall facial development. Copyright © 2017 by the Genetics Society of America.

  2. Genetic analysis of Holstein cattle populations in Brazil and the United States.

    PubMed

    Costa, C N; Blake, R W; Pollak, E J; Oltenacu, P A; Quaas, R L; Searle, S R

    2000-12-01

    Genetic relationships between Brazilian and US Holstein cattle populations were studied using first-lactation records of 305-d mature equivalent (ME) yields of milk and fat of daughters of 705 sires in Brazil and 701 sires in the United States, 358 of which had progeny in both countries. Components of(co)variance and genetic parameters were estimated from all data and from within herd-year standard deviation for milk (HYSD) data files using bivariate and multivariate sire models and DFREML procedures distinguishing the two countries. Sire (residual) variances from all data for milk yield were 51 to 59% (58 to 101%) as large in Brazil as those obtained from half-sisters in the average US herd. Corresponding proportions of the US variance in fat yield that were found in Brazil were 30 to 41% for the sire component of variance and 48 to 80% for the residual. Heritabilities for milk and fat yields from multivariate analysis of all the data were 0.25 and 0.22 in Brazil, and 0.34 and 0.35 in the United States. Genetic correlations between milk and fat were 0.79 in Brazil and 0.62 in the United States. Genetic correlations between countries were 0.85 for milk, 0.88 for fat, 0.55 for milk in Brazil and fat in the US, and 0.67 for fat in Brazil and milk in the United States. Correlated responses in Brazil from sire selection based on the US information increased with average HYSD in Brazil. Largest daughter yield response was predicted from information from half-sisters in low HYSD US herds (0.75 kg/kg for milk; 0.63 kg/kg for fat), which was 14% to 17% greater than estimates from all US herds because the scaling effects were less severe from heterogeneous variances. Unequal daughter response from unequal genetic (co)variances under restrictive Brazilian conditions is evidence for the interaction of genotype and environment. The smaller and variable yield expectations of daughters of US sires in Brazilian environments suggest the need for specific genetic improvement strategies in Brazilian Holstein herds. A US data file restricting daughter information to low HYSD US environments would be a wise choice for across-country evaluation. Procedures to incorporate such foreign evaluations should be explored to improve the accuracy of genetic evaluations for the Brazilian Holstein population.

  3. Methods to Estimate the Variance of Some Indices of the Signal Detection Theory: A Simulation Study

    ERIC Educational Resources Information Center

    Suero, Manuel; Privado, Jesús; Botella, Juan

    2017-01-01

    A simulation study is presented to evaluate and compare three methods to estimate the variance of the estimates of the parameters d and "C" of the signal detection theory (SDT). Several methods have been proposed to calculate the variance of their estimators, "d'" and "c." Those methods have been mostly assessed by…

  4. Variance computations for functional of absolute risk estimates.

    PubMed

    Pfeiffer, R M; Petracci, E

    2011-07-01

    We present a simple influence function based approach to compute the variances of estimates of absolute risk and functions of absolute risk. We apply this approach to criteria that assess the impact of changes in the risk factor distribution on absolute risk for an individual and at the population level. As an illustration we use an absolute risk prediction model for breast cancer that includes modifiable risk factors in addition to standard breast cancer risk factors. Influence function based variance estimates for absolute risk and the criteria are compared to bootstrap variance estimates.

  5. Variance computations for functional of absolute risk estimates

    PubMed Central

    Pfeiffer, R.M.; Petracci, E.

    2011-01-01

    We present a simple influence function based approach to compute the variances of estimates of absolute risk and functions of absolute risk. We apply this approach to criteria that assess the impact of changes in the risk factor distribution on absolute risk for an individual and at the population level. As an illustration we use an absolute risk prediction model for breast cancer that includes modifiable risk factors in addition to standard breast cancer risk factors. Influence function based variance estimates for absolute risk and the criteria are compared to bootstrap variance estimates. PMID:21643476

  6. Precision of systematic and random sampling in clustered populations: habitat patches and aggregating organisms.

    PubMed

    McGarvey, Richard; Burch, Paul; Matthews, Janet M

    2016-01-01

    Natural populations of plants and animals spatially cluster because (1) suitable habitat is patchy, and (2) within suitable habitat, individuals aggregate further into clusters of higher density. We compare the precision of random and systematic field sampling survey designs under these two processes of species clustering. Second, we evaluate the performance of 13 estimators for the variance of the sample mean from a systematic survey. Replicated simulated surveys, as counts from 100 transects, allocated either randomly or systematically within the study region, were used to estimate population density in six spatial point populations including habitat patches and Matérn circular clustered aggregations of organisms, together and in combination. The standard one-start aligned systematic survey design, a uniform 10 x 10 grid of transects, was much more precise. Variances of the 10 000 replicated systematic survey mean densities were one-third to one-fifth of those from randomly allocated transects, implying transect sample sizes giving equivalent precision by random survey would need to be three to five times larger. Organisms being restricted to patches of habitat was alone sufficient to yield this precision advantage for the systematic design. But this improved precision for systematic sampling in clustered populations is underestimated by standard variance estimators used to compute confidence intervals. True variance for the survey sample mean was computed from the variance of 10 000 simulated survey mean estimates. Testing 10 published and three newly proposed variance estimators, the two variance estimators (v) that corrected for inter-transect correlation (ν₈ and ν(W)) were the most accurate and also the most precise in clustered populations. These greatly outperformed the two "post-stratification" variance estimators (ν₂ and ν₃) that are now more commonly applied in systematic surveys. Similar variance estimator performance rankings were found with a second differently generated set of spatial point populations, ν₈ and ν(W) again being the best performers in the longer-range autocorrelated populations. However, no systematic variance estimators tested were free from bias. On balance, systematic designs bring more narrow confidence intervals in clustered populations, while random designs permit unbiased estimates of (often wider) confidence interval. The search continues for better estimators of sampling variance for the systematic survey mean.

  7. Stochastic Analysis and Probabilistic Downscaling of Soil Moisture

    NASA Astrophysics Data System (ADS)

    Deshon, J. P.; Niemann, J. D.; Green, T. R.; Jones, A. S.

    2017-12-01

    Soil moisture is a key variable for rainfall-runoff response estimation, ecological and biogeochemical flux estimation, and biodiversity characterization, each of which is useful for watershed condition assessment. These applications require not only accurate, fine-resolution soil-moisture estimates but also confidence limits on those estimates and soil-moisture patterns that exhibit realistic statistical properties (e.g., variance and spatial correlation structure). The Equilibrium Moisture from Topography, Vegetation, and Soil (EMT+VS) model downscales coarse-resolution (9-40 km) soil moisture from satellite remote sensing or land-surface models to produce fine-resolution (10-30 m) estimates. The model was designed to produce accurate deterministic soil-moisture estimates at multiple points, but the resulting patterns do not reproduce the variance or spatial correlation of observed soil-moisture patterns. The primary objective of this research is to generalize the EMT+VS model to produce a probability density function (pdf) for soil moisture at each fine-resolution location and time. Each pdf has a mean that is equal to the deterministic soil-moisture estimate, and the pdf can be used to quantify the uncertainty in the soil-moisture estimates and to simulate soil-moisture patterns. Different versions of the generalized model are hypothesized based on how uncertainty enters the model, whether the uncertainty is additive or multiplicative, and which distributions describe the uncertainty. These versions are then tested by application to four catchments with detailed soil-moisture observations (Tarrawarra, Satellite Station, Cache la Poudre, and Nerrigundah). The performance of the generalized models is evaluated by comparing the statistical properties of the simulated soil-moisture patterns to those of the observations and the deterministic EMT+VS model. The versions of the generalized EMT+VS model with normally distributed stochastic components produce soil-moisture patterns with more realistic statistical properties than the deterministic model. Additionally, the results suggest that the variance and spatial correlation of the stochastic soil-moisture variations do not vary consistently with the spatial-average soil moisture.

  8. Contemporary group estimates adjusted for climatic effects provide a finer definition of the unknown environmental challenges experienced by growing pigs.

    PubMed

    Guy, S Z Y; Li, L; Thomson, P C; Hermesch, S

    2017-12-01

    Environmental descriptors derived from mean performances of contemporary groups (CGs) are assumed to capture any known and unknown environmental challenges. The objective of this paper was to obtain a finer definition of the unknown challenges, by adjusting CG estimates for the known climatic effects of monthly maximum air temperature (MaxT), minimum air temperature (MinT) and monthly rainfall (Rain). As the unknown component could include infection challenges, these refined descriptors may help to better model varying responses of sire progeny to environmental infection challenges for the definition of disease resilience. Data were recorded from 1999 to 2013 at a piggery in south-east Queensland, Australia (n = 31,230). Firstly, CG estimates of average daily gain (ADG) and backfat (BF) were adjusted for MaxT, MinT and Rain, which were fitted as splines. In the models used to derive CG estimates for ADG, MaxT and MinT were significant variables. The models that contained these significant climatic variables had CG estimates with a lower variance compared to models without significant climatic variables. Variance component estimates were similar across all models, suggesting that these significant climatic variables accounted for some known environmental variation captured in CG estimates. No climatic variables were significant in the models used to derive the CG estimates for BF. These CG estimates were used to categorize environments. There was no observable sire by environment interaction (Sire×E) for ADG when using the environmental descriptors based on CG estimates on BF. For the environmental descriptors based on CG estimates of ADG, there was significant Sire×E only when MinT was included in the model (p = .01). Therefore, this new definition of the environment, preadjusted by MinT, increased the ability to detect Sire×E. While the unknown challenges captured in refined CG estimates need verification for infection challenges, this may provide a practical approach for the genetic improvement of disease resilience. © 2017 Blackwell Verlag GmbH.

  9. Multilevel Models for Intensive Longitudinal Data with Heterogeneous Autoregressive Errors: The Effect of Misspecification and Correction with Cholesky Transformation

    PubMed Central

    Jahng, Seungmin; Wood, Phillip K.

    2017-01-01

    Intensive longitudinal studies, such as ecological momentary assessment studies using electronic diaries, are gaining popularity across many areas of psychology. Multilevel models (MLMs) are most widely used analytical tools for intensive longitudinal data (ILD). Although ILD often have individually distinct patterns of serial correlation of measures over time, inferences of the fixed effects, and random components in MLMs are made under the assumption that all variance and autocovariance components are homogenous across individuals. In the present study, we introduced a multilevel model with Cholesky transformation to model ILD with individually heterogeneous covariance structure. In addition, the performance of the transformation method and the effects of misspecification of heterogeneous covariance structure were investigated through a Monte Carlo simulation. We found that, if individually heterogeneous covariances are incorrectly assumed as homogenous independent or homogenous autoregressive, MLMs produce highly biased estimates of the variance of random intercepts and the standard errors of the fixed intercept and the fixed effect of a level 2 covariate when the average autocorrelation is high. For intensive longitudinal data with individual specific residual covariance, the suggested transformation method showed lower bias in those estimates than the misspecified models when the number of repeated observations within individuals is 50 or more. PMID:28286490

  10. Multiple Damage Progression Paths in Model-Based Prognostics

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Goebel, Kai Frank

    2011-01-01

    Model-based prognostics approaches employ domain knowledge about a system, its components, and how they fail through the use of physics-based models. Component wear is driven by several different degradation phenomena, each resulting in their own damage progression path, overlapping to contribute to the overall degradation of the component. We develop a model-based prognostics methodology using particle filters, in which the problem of characterizing multiple damage progression paths is cast as a joint state-parameter estimation problem. The estimate is represented as a probability distribution, allowing the prediction of end of life and remaining useful life within a probabilistic framework that supports uncertainty management. We also develop a novel variance control mechanism that maintains an uncertainty bound around the hidden parameters to limit the amount of estimation uncertainty and, consequently, reduce prediction uncertainty. We construct a detailed physics-based model of a centrifugal pump, to which we apply our model-based prognostics algorithms. We illustrate the operation of the prognostic solution with a number of simulation-based experiments and demonstrate the performance of the chosen approach when multiple damage mechanisms are active

  11. The Diesel Exhaust in Miners Study: V. Evaluation of the Exposure Assessment Methods

    PubMed Central

    Stewart, Patricia A.; Vermeulen, Roel; Coble, Joseph B.; Blair, Aaron; Schleiff, Patricia; Lubin, Jay H.; Attfield, Mike; Silverman, Debra T.

    2012-01-01

    Exposure to respirable elemental carbon (REC), a component of diesel exhaust (DE), was assessed for an epidemiologic study investigating the association between DE and mortality, particularly from lung cancer, among miners at eight mining facilities from the date of dieselization (1947–1967) through 1997. To provide insight into the quality of the estimates for use in the epidemiologic analyses, several approaches were taken to evaluate the exposure assessment process and the quality of the estimates. An analysis of variance was conducted to evaluate the variability of 1998–2001 REC measurements within and between exposure groups of underground jobs. Estimates for the surface exposure groups were evaluated to determine if the arithmetic means (AMs) of the REC measurements increased with increased proximity to, or use of, diesel-powered equipment, which was the basis on which the surface groups were formed. Estimates of carbon monoxide (CO) (another component of DE) air concentrations in 1976–1977, derived from models developed to predict estimated historical exposures, were compared to 1976–1977 CO measurement data that had not been used in the model development. Alternative sets of estimates were developed to investigate the robustness of various model assumptions. These estimates were based on prediction models using: (i) REC medians rather AMs, (ii) a different CO:REC proportionality than a 1:1 relation, and (iii) 5-year averages of historical CO measurements rather than modeled historical CO measurements and DE-related determinants. The analysis of variance found that in three of the facilities, most of the between-group variability in the underground measurements was explained by the use of job titles. There was relatively little between-group variability in the other facilities. The estimated REC AMs for the surface exposure groups rose overall from 1 to 5 μg m−3 as proximity to, and use of, diesel equipment increased. The alternative estimates overall were highly correlated (∼0.9) with the primary set of estimates. The median of the relative differences between the 1976–1977 CO measurement means and the 1976–1977 estimates for six facilities was 29%. Comparison of estimated CO air concentrations from the facility-specific prediction models with historical CO measurement data found an overall agreement similar to that observed in other epidemiologic studies. Other evaluations of components of the exposure assessment process found moderate to excellent agreement. Thus, the overall evidence suggests that the estimates were likely accurate representations of historical personal exposure levels to DE and are useful for epidemiologic analyses. PMID:22383674

  12. Stratum variance estimation for sample allocation in crop surveys. [Great Plains Corridor

    NASA Technical Reports Server (NTRS)

    Perry, C. R., Jr.; Chhikara, R. S. (Principal Investigator)

    1980-01-01

    The problem of determining stratum variances needed in achieving an optimum sample allocation for crop surveys by remote sensing is investigated by considering an approach based on the concept of stratum variance as a function of the sampling unit size. A methodology using the existing and easily available information of historical crop statistics is developed for obtaining initial estimates of tratum variances. The procedure is applied to estimate stratum variances for wheat in the U.S. Great Plains and is evaluated based on the numerical results thus obtained. It is shown that the proposed technique is viable and performs satisfactorily, with the use of a conservative value for the field size and the crop statistics from the small political subdivision level, when the estimated stratum variances were compared to those obtained using the LANDSAT data.

  13. A simulation study of Large Area Crop Inventory Experiment (LACIE) technology

    NASA Technical Reports Server (NTRS)

    Ziegler, L. (Principal Investigator); Potter, J.

    1979-01-01

    The author has identified the following significant results. The LACIE performance predictor (LPP) was used to replicate LACIE phase 2 for a 15 year period, using accuracy assessment results for phase 2 error components. Results indicated that the (LPP) simulated the LACIE phase 2 procedures reasonably well. For the 15 year simulation, only 7 of the 15 production estimates were within 10 percent of the true production. The simulations indicated that the acreage estimator, based on CAMS phase 2 procedures, has a negative bias. This bias was too large to support the 90/90 criterion with the CV observed and simulated for the phase 2 production estimator. Results of this simulation study validate the theory that the acreage variance estimator in LACIE was conservative.

  14. Multi-population Genomic Relationships for Estimating Current Genetic Variances Within and Genetic Correlations Between Populations.

    PubMed

    Wientjes, Yvonne C J; Bijma, Piter; Vandenplas, Jérémie; Calus, Mario P L

    2017-10-01

    Different methods are available to calculate multi-population genomic relationship matrices. Since those matrices differ in base population, it is anticipated that the method used to calculate genomic relationships affects the estimate of genetic variances, covariances, and correlations. The aim of this article is to define the multi-population genomic relationship matrix to estimate current genetic variances within and genetic correlations between populations. The genomic relationship matrix containing two populations consists of four blocks, one block for population 1, one block for population 2, and two blocks for relationships between the populations. It is known, based on literature, that by using current allele frequencies to calculate genomic relationships within a population, current genetic variances are estimated. In this article, we theoretically derived the properties of the genomic relationship matrix to estimate genetic correlations between populations and validated it using simulations. When the scaling factor of across-population genomic relationships is equal to the product of the square roots of the scaling factors for within-population genomic relationships, the genetic correlation is estimated unbiasedly even though estimated genetic variances do not necessarily refer to the current population. When this property is not met, the correlation based on estimated variances should be multiplied by a correction factor based on the scaling factors. In this study, we present a genomic relationship matrix which directly estimates current genetic variances as well as genetic correlations between populations. Copyright © 2017 by the Genetics Society of America.

  15. Variance Difference between Maximum Likelihood Estimation Method and Expected A Posteriori Estimation Method Viewed from Number of Test Items

    ERIC Educational Resources Information Center

    Mahmud, Jumailiyah; Sutikno, Muzayanah; Naga, Dali S.

    2016-01-01

    The aim of this study is to determine variance difference between maximum likelihood and expected A posteriori estimation methods viewed from number of test items of aptitude test. The variance presents an accuracy generated by both maximum likelihood and Bayes estimation methods. The test consists of three subtests, each with 40 multiple-choice…

  16. Statistical power for detecting trends with applications to seabird monitoring

    USGS Publications Warehouse

    Hatch, Shyla A.

    2003-01-01

    Power analysis is helpful in defining goals for ecological monitoring and evaluating the performance of ongoing efforts. I examined detection standards proposed for population monitoring of seabirds using two programs (MONITOR and TRENDS) specially designed for power analysis of trend data. Neither program models within- and among-years components of variance explicitly and independently, thus an error term that incorporates both components is an essential input. Residual variation in seabird counts consisted of day-to-day variation within years and unexplained variation among years in approximately equal parts. The appropriate measure of error for power analysis is the standard error of estimation (S.E.est) from a regression of annual means against year. Replicate counts within years are helpful in minimizing S.E.est but should not be treated as independent samples for estimating power to detect trends. Other issues include a choice of assumptions about variance structure and selection of an exponential or linear model of population change. Seabird count data are characterized by strong correlations between S.D. and mean, thus a constant CV model is appropriate for power calculations. Time series were fit about equally well with exponential or linear models, but log transformation ensures equal variances over time, a basic assumption of regression analysis. Using sample data from seabird monitoring in Alaska, I computed the number of years required (with annual censusing) to detect trends of -1.4% per year (50% decline in 50 years) and -2.7% per year (50% decline in 25 years). At ??=0.05 and a desired power of 0.9, estimated study intervals ranged from 11 to 69 years depending on species, trend, software, and study design. Power to detect a negative trend of 6.7% per year (50% decline in 10 years) is suggested as an alternative standard for seabird monitoring that achieves a reasonable match between statistical and biological significance.

  17. Ex Post Facto Monte Carlo Variance Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booth, Thomas E.

    The variance in Monte Carlo particle transport calculations is often dominated by a few particles whose importance increases manyfold on a single transport step. This paper describes a novel variance reduction method that uses a large importance change as a trigger to resample the offending transport step. That is, the method is employed only after (ex post facto) a random walk attempts a transport step that would otherwise introduce a large variance in the calculation.Improvements in two Monte Carlo transport calculations are demonstrated empirically using an ex post facto method. First, the method is shown to reduce the variance inmore » a penetration problem with a cross-section window. Second, the method empirically appears to modify a point detector estimator from an infinite variance estimator to a finite variance estimator.« less

  18. Survival estimation and the effects of dependency among animals

    USGS Publications Warehouse

    Schmutz, Joel A.; Ward, David H.; Sedinger, James S.; Rexstad, Eric A.

    1995-01-01

    Survival models assume that fates of individuals are independent, yet the robustness of this assumption has been poorly quantified. We examine how empirically derived estimates of the variance of survival rates are affected by dependency in survival probability among individuals. We used Monte Carlo simulations to generate known amounts of dependency among pairs of individuals and analyzed these data with Kaplan-Meier and Cormack-Jolly-Seber models. Dependency significantly increased these empirical variances as compared to theoretically derived estimates of variance from the same populations. Using resighting data from 168 pairs of black brant, we used a resampling procedure and program RELEASE to estimate empirical and mean theoretical variances. We estimated that the relationship between paired individuals caused the empirical variance of the survival rate to be 155% larger than the empirical variance for unpaired individuals. Monte Carlo simulations and use of this resampling strategy can provide investigators with information on how robust their data are to this common assumption of independent survival probabilities.

  19. Estimated long-term outdoor air pollution concentrations in a cohort study

    NASA Astrophysics Data System (ADS)

    Beelen, Rob; Hoek, Gerard; Fischer, Paul; Brandt, Piet A. van den; Brunekreef, Bert

    Several recent studies associated long-term exposure to air pollution with increased mortality. An ongoing cohort study, the Netherlands Cohort Study on Diet and Cancer (NLCS), was used to study the association between long-term exposure to traffic-related air pollution and mortality. Following on a previous exposure assessment study in the NLCS, we improved the exposure assessment methods. Long-term exposure to nitrogen dioxide (NO 2), nitrogen oxide (NO), black smoke (BS), and sulphur dioxide (SO 2) was estimated. Exposure at each home address ( N=21 868) was considered as a function of a regional, an urban and a local component. The regional component was estimated using inverse distance weighed interpolation of measurement data from regional background sites in a national monitoring network. Regression models with urban concentrations as dependent variables, and number of inhabitants in different buffers and land use variables, derived with a Geographic Information System (GIS), as predictor variables were used to estimate the urban component. The local component was assessed using a GIS and a digital road network with linked traffic intensities. Traffic intensity on the nearest road and on the nearest major road, and the sum of traffic intensity in a buffer of 100 m around each home address were assessed. Further, a quantitative estimate of the local component was estimated. The regression models to estimate the urban component explained 67%, 46%, 49% and 35% of the variances of NO 2, NO, BS, and SO 2 concentrations, respectively. Overall regression models which incorporated the regional, urban and local component explained 84%, 44%, 59% and 56% of the variability in concentrations for NO 2, NO, BS and SO 2, respectively. We were able to develop an exposure assessment model using GIS methods and traffic intensities that explained a large part of the variations in outdoor air pollution concentrations.

  20. Estimating Additive and Non-Additive Genetic Variances and Predicting Genetic Merits Using Genome-Wide Dense Single Nucleotide Polymorphism Markers

    PubMed Central

    Su, Guosheng; Christensen, Ole F.; Ostersen, Tage; Henryon, Mark; Lund, Mogens S.

    2012-01-01

    Non-additive genetic variation is usually ignored when genome-wide markers are used to study the genetic architecture and genomic prediction of complex traits in human, wild life, model organisms or farm animals. However, non-additive genetic effects may have an important contribution to total genetic variation of complex traits. This study presented a genomic BLUP model including additive and non-additive genetic effects, in which additive and non-additive genetic relation matrices were constructed from information of genome-wide dense single nucleotide polymorphism (SNP) markers. In addition, this study for the first time proposed a method to construct dominance relationship matrix using SNP markers and demonstrated it in detail. The proposed model was implemented to investigate the amounts of additive genetic, dominance and epistatic variations, and assessed the accuracy and unbiasedness of genomic predictions for daily gain in pigs. In the analysis of daily gain, four linear models were used: 1) a simple additive genetic model (MA), 2) a model including both additive and additive by additive epistatic genetic effects (MAE), 3) a model including both additive and dominance genetic effects (MAD), and 4) a full model including all three genetic components (MAED). Estimates of narrow-sense heritability were 0.397, 0.373, 0.379 and 0.357 for models MA, MAE, MAD and MAED, respectively. Estimated dominance variance and additive by additive epistatic variance accounted for 5.6% and 9.5% of the total phenotypic variance, respectively. Based on model MAED, the estimate of broad-sense heritability was 0.506. Reliabilities of genomic predicted breeding values for the animals without performance records were 28.5%, 28.8%, 29.2% and 29.5% for models MA, MAE, MAD and MAED, respectively. In addition, models including non-additive genetic effects improved unbiasedness of genomic predictions. PMID:23028912

  1. Sex-specific genetic variance and the evolution of sexual dimorphism: a systematic review of cross-sex genetic correlations.

    PubMed

    Poissant, Jocelyn; Wilson, Alastair J; Coltman, David W

    2010-01-01

    The independent evolution of the sexes may often be constrained if male and female homologous traits share a similar genetic architecture. Thus, cross-sex genetic covariance is assumed to play a key role in the evolution of sexual dimorphism (SD) with consequent impacts on sexual selection, population dynamics, and speciation processes. We compiled cross-sex genetic correlations (r(MF)) estimates from 114 sources to assess the extent to which the evolution of SD is typically constrained and test several specific hypotheses. First, we tested if r(MF) differed among trait types and especially between fitness components and other traits. We also tested the theoretical prediction of a negative relationship between r(MF) and SD based on the expectation that increases in SD should be facilitated by sex-specific genetic variance. We show that r(MF) is usually large and positive but that it is typically smaller for fitness components. This demonstrates that the evolution of SD is typically genetically constrained and that sex-specific selection coefficients may often be opposite in sign due to sub-optimal levels of SD. Most importantly, we confirm that sex-specific genetic variance is an important contributor to the evolution of SD by validating the prediction of a negative correlation between r(MF) and SD.

  2. Mapping the nonstationary internal tide with satellite altimetry

    NASA Astrophysics Data System (ADS)

    Zaron, Edward D.

    2017-01-01

    Temporal variability of the internal tide has been inferred from the 23 year long combined records of the TOPEX/Poseidon, Jason-1, and Jason-2 satellite altimeters by combining harmonic analysis with an analysis of along-track wavenumber spectra of sea-surface height (SSH). Conventional harmonic analysis is first applied to estimate and remove the stationary components of the tide at each point along the reference ground tracks. The wavenumber spectrum of the residual SSH is then computed, and the variance in a neighborhood around the wavenumber of the mode-1 baroclinic M2 tide is interpreted as the sum of noise, broadband nontidal processes, and the nonstationary tide. At many sites a bump in the spectrum associated with the internal tide is noted, and an empirical model for the noise and nontidal processes is used to estimate the nonstationary semidiurnal tidal variance. The results indicate a spatially inhomogeneous pattern of tidal variability. Nonstationary tides are larger than stationary tides throughout much of the equatorial Pacific and Indian Oceans.

  3. Effects of stage of pregnancy on variance components, daily milk yields and 305-day milk yield in Holstein cows, as estimated by using a test-day model.

    PubMed

    Yamazaki, T; Hagiya, K; Takeda, H; Osawa, T; Yamaguchi, S; Nagamine, Y

    2016-08-01

    Pregnancy and calving are elements indispensable for dairy production, but the daily milk yield of cows decline as pregnancy progresses, especially during the late stages. Therefore, the effect of stage of pregnancy on daily milk yield must be clarified to accurately estimate the breeding values and lifetime productivity of cows. To improve the genetic evaluation model for daily milk yield and determine the effect of the timing of pregnancy on productivity, we used a test-day model to assess the effects of stage of pregnancy on variance component estimates, daily milk yields and 305-day milk yield during the first three lactations of Holstein cows. Data were 10 646 333 test-day records for the first lactation; 8 222 661 records for the second; and 5 513 039 records for the third. The data were analyzed within each lactation by using three single-trait random regression animal models: one model that did not account for the stage of pregnancy effect and two models that did. The effect of stage of pregnancy on test-day milk yield was included in the model by applying a regression on days pregnant or fitting a separate lactation curve for each days open (days from calving to pregnancy) class (eight levels). Stage of pregnancy did not affect the heritability estimates of daily milk yield, although the additive genetic and permanent environmental variances in late lactation were decreased by accounting for the stage of pregnancy effect. The effects of days pregnant on daily milk yield during late lactation were larger in the second and third lactations than in the first lactation. The rates of reduction of the 305-day milk yield of cows that conceived fewer than 90 days after the second or third calving were significantly (P<0.05) greater than that after the first calving. Therefore, we conclude that differences between the negative effects of early pregnancy in the first, compared with later, lactations should be included when determining the optimal number of days open to maximize lifetime productivity in dairy cows.

  4. Statistical methods for biodosimetry in the presence of both Berkson and classical measurement error

    NASA Astrophysics Data System (ADS)

    Miller, Austin

    In radiation epidemiology, the true dose received by those exposed cannot be assessed directly. Physical dosimetry uses a deterministic function of the source term, distance and shielding to estimate dose. For the atomic bomb survivors, the physical dosimetry system is well established. The classical measurement errors plaguing the location and shielding inputs to the physical dosimetry system are well known. Adjusting for the associated biases requires an estimate for the classical measurement error variance, for which no data-driven estimate exists. In this case, an instrumental variable solution is the most viable option to overcome the classical measurement error indeterminacy. Biological indicators of dose may serve as instrumental variables. Specification of the biodosimeter dose-response model requires identification of the radiosensitivity variables, for which we develop statistical definitions and variables. More recently, researchers have recognized Berkson error in the dose estimates, introduced by averaging assumptions for many components in the physical dosimetry system. We show that Berkson error induces a bias in the instrumental variable estimate of the dose-response coefficient, and then address the estimation problem. This model is specified by developing an instrumental variable mixed measurement error likelihood function, which is then maximized using a Monte Carlo EM Algorithm. These methods produce dose estimates that incorporate information from both physical and biological indicators of dose, as well as the first instrumental variable based data-driven estimate for the classical measurement error variance.

  5. Measuring self-rated productivity: factor structure and variance component analysis of the Health and Work Questionnaire.

    PubMed

    von Thiele Schwarz, Ulrica; Sjöberg, Anders; Hasson, Henna; Tafvelin, Susanne

    2014-12-01

    To test the factor structure and variance components of the productivity subscales of the Health and Work Questionnaire (HWQ). A total of 272 individuals from one company answered the HWQ scale, including three dimensions (efficiency, quality, and quantity) that the respondent rated from three perspectives: their own, their supervisor's, and their coworkers'. A confirmatory factor analysis was performed, and common and unique variance components evaluated. A common factor explained 81% of the variance (reliability 0.95). All dimensions and rater perspectives contributed with unique variance. The final model provided a perfect fit to the data. Efficiency, quality, and quantity and three rater perspectives are valid parts of the self-rated productivity measurement model, but with a large common factor. Thus, the HWQ can be analyzed either as one factor or by extracting the unique variance for each subdimension.

  6. Impact of multicollinearity on small sample hydrologic regression models

    NASA Astrophysics Data System (ADS)

    Kroll, Charles N.; Song, Peter

    2013-06-01

    Often hydrologic regression models are developed with ordinary least squares (OLS) procedures. The use of OLS with highly correlated explanatory variables produces multicollinearity, which creates highly sensitive parameter estimators with inflated variances and improper model selection. It is not clear how to best address multicollinearity in hydrologic regression models. Here a Monte Carlo simulation is developed to compare four techniques to address multicollinearity: OLS, OLS with variance inflation factor screening (VIF), principal component regression (PCR), and partial least squares regression (PLS). The performance of these four techniques was observed for varying sample sizes, correlation coefficients between the explanatory variables, and model error variances consistent with hydrologic regional regression models. The negative effects of multicollinearity are magnified at smaller sample sizes, higher correlations between the variables, and larger model error variances (smaller R2). The Monte Carlo simulation indicates that if the true model is known, multicollinearity is present, and the estimation and statistical testing of regression parameters are of interest, then PCR or PLS should be employed. If the model is unknown, or if the interest is solely on model predictions, is it recommended that OLS be employed since using more complicated techniques did not produce any improvement in model performance. A leave-one-out cross-validation case study was also performed using low-streamflow data sets from the eastern United States. Results indicate that OLS with stepwise selection generally produces models across study regions with varying levels of multicollinearity that are as good as biased regression techniques such as PCR and PLS.

  7. Reaction norm of fertility traits adjusted for protein and fat production level across lactations in Holstein cattle.

    PubMed

    Menendez-Buxadera, A; Carabaño, M J; Gonzalez-Recio, O; Cue, R I; Ugarte, E; Alenda, R

    2013-07-01

    A total of 304,001 artificial insemination outcomes in up to 7 lactations from 142,389 Holstein cows, daughters of 5,349 sires and 101,433 dams, calving between January 1995 and December 2007 in 1,347 herds were studied by a reaction norm model. The (co)variance components for days to first service (DFS), days open, nonreturn rate in the first service (NRFS), and number of services per conception were estimated by 6 models: 3 Legendre polynomial degrees for the genetic effects and adjustment or not for the level of fat plus protein (FP) production recorded at day closest to DFS. For all traits and type of FP adjustment, a second degree polynomial showed the best fit. The use of the adjusted FP model did not increase the level of genetic (co)variance components except for DFS. The heritability for each of the traits was low in general (0.03-0.10) and increased from the first to fourth calving; nevertheless, very important variability was found for the estimated breeding value (EBV) of the sires. The genetic correlations (rg) were close to unity between adjacent calvings, but decreased for most distant parities, ranging from rg=0.36 (for DFS) to rg=0.63 (for NRFS), confirming the existence of heterogeneous genetic (co)variance components and EBV across lactations. The results of the eigen decomposition of rg shows that the first eigenvalue explained between 82 to 92% and the second between 8 to 14% of the genetic variance for all traits; therefore, a deformation of the overall mean trajectory for reproductive performance across the trajectory of the different calving could be expected if selection favored these eigenfunctions. The results of EBV for the 50 best sires showed a substantial reranking and variation in the shape of response across lactations. The more important aspect to highlight, however, is the difference between the EBV of the same sires in different calvings, a characteristic known as plasticity, which is particularly important for DFS and NRFS. This component of fertility adds another dimension to selection for fertility that can be used to change the negative genetic progress of reproductive performance presented in this population of Holstein cows. The use of a reaction norm model should allow producers to obtain more robust cows for maintenance of fertility levels along the whole productive life of the cows. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Cross-bispectrum computation and variance estimation

    NASA Technical Reports Server (NTRS)

    Lii, K. S.; Helland, K. N.

    1981-01-01

    A method for the estimation of cross-bispectra of discrete real time series is developed. The asymptotic variance properties of the bispectrum are reviewed, and a method for the direct estimation of bispectral variance is given. The symmetry properties are described which minimize the computations necessary to obtain a complete estimate of the cross-bispectrum in the right-half-plane. A procedure is given for computing the cross-bispectrum by subdividing the domain into rectangular averaging regions which help reduce the variance of the estimates and allow easy application of the symmetry relationships to minimize the computational effort. As an example of the procedure, the cross-bispectrum of a numerically generated, exponentially distributed time series is computed and compared with theory.

  9. Vestibular schwannomas: Accuracy of tumor volume estimated by ice cream cone formula using thin-sliced MR images

    PubMed Central

    Ho, Hsing-Hao; Li, Ya-Hui; Lee, Jih-Chin; Wang, Chih-Wei; Yu, Yi-Lin; Hueng, Dueng-Yuan; Hsu, Hsian-He

    2018-01-01

    Purpose We estimated the volume of vestibular schwannomas by an ice cream cone formula using thin-sliced magnetic resonance images (MRI) and compared the estimation accuracy among different estimating formulas and between different models. Methods The study was approved by a local institutional review board. A total of 100 patients with vestibular schwannomas examined by MRI between January 2011 and November 2015 were enrolled retrospectively. Informed consent was waived. Volumes of vestibular schwannomas were estimated by cuboidal, ellipsoidal, and spherical formulas based on a one-component model, and cuboidal, ellipsoidal, Linskey’s, and ice cream cone formulas based on a two-component model. The estimated volumes were compared to the volumes measured by planimetry. Intraobserver reproducibility and interobserver agreement was tested. Estimation error, including absolute percentage error (APE) and percentage error (PE), was calculated. Statistical analysis included intraclass correlation coefficient (ICC), linear regression analysis, one-way analysis of variance, and paired t-tests with P < 0.05 considered statistically significant. Results Overall tumor size was 4.80 ± 6.8 mL (mean ±standard deviation). All ICCs were no less than 0.992, suggestive of high intraobserver reproducibility and high interobserver agreement. Cuboidal formulas significantly overestimated the tumor volume by a factor of 1.9 to 2.4 (P ≤ 0.001). The one-component ellipsoidal and spherical formulas overestimated the tumor volume with an APE of 20.3% and 29.2%, respectively. The two-component ice cream cone method, and ellipsoidal and Linskey’s formulas significantly reduced the APE to 11.0%, 10.1%, and 12.5%, respectively (all P < 0.001). Conclusion The ice cream cone method and other two-component formulas including the ellipsoidal and Linskey’s formulas allow for estimation of vestibular schwannoma volume more accurately than all one-component formulas. PMID:29438424

  10. Long-term variation in a central California pelagic forage assemblage

    NASA Astrophysics Data System (ADS)

    Ralston, Stephen; Field, John C.; Sakuma, Keith M.

    2015-06-01

    A continuous 23 year midwater trawl survey (1990-2012) of the epipelagic forage assemblage off the coast of central California (lat. 36°30‧-38°20‧ N) is described and analyzed. Twenty taxa occurred in ≥ 10% of the 2037 trawls that were completed at 40 distinct station locations. The dominant taxa sampled by the 9.5 mm mesh net included a suite of young-of-the-year (YOY) groundfish, including rockfish (Sebastes spp.) and Pacific hake (Merluccius productus), two clupeoids (Engraulis mordax and Sardinops sagax), krill (Euphausiacea), cephalopods (Doryteuthis opalescens and Octopus sp.), and a variety of mesopelagic species, i.e., Diaphus theta, Tarltonbeania crenularis, "other" lanternfish (Myctophidae), deep-sea smelts (Bathylagidae), and sergestid shrimp. Annual abundance estimates of the 20 taxa were obtained from analysis of variance models, which included year and station as main effects. Principal components analysis of the abundance estimates revealed that 61% of assemblage variance was explained by the first three components. The first component revealed a strong contrast in the abundance of: (a) YOY groundfish, market squid (D. opalescens), and krill with (b) mesopelagics and clupeoids; the second component was associated with long-term trends in abundance. An evaluation of 10 different published oceanographic data sets and CTD data collected during the survey indicated that seawater properties encountered each year were significantly correlated with abundance patterns, as were annual sea-level anomalies obtained from an analysis of AVISO satellite information. A comparison of our findings with several other recent studies of biological communities occurring in the California Current revealed a consistent structuring of forage assemblages, which we conjecture is primarily attributable to large-scale advection patterns in the California Current ecosystem.

  11. Methods to Estimate the Between-Study Variance and Its Uncertainty in Meta-Analysis

    ERIC Educational Resources Information Center

    Veroniki, Areti Angeliki; Jackson, Dan; Viechtbauer, Wolfgang; Bender, Ralf; Bowden, Jack; Knapp, Guido; Kuss, Oliver; Higgins, Julian P. T.; Langan, Dean; Salanti, Georgia

    2016-01-01

    Meta-analyses are typically used to estimate the overall/mean of an outcome of interest. However, inference about between-study variability, which is typically modelled using a between-study variance parameter, is usually an additional aim. The DerSimonian and Laird method, currently widely used by default to estimate the between-study variance,…

  12. One-shot estimate of MRMC variance: AUC.

    PubMed

    Gallas, Brandon D

    2006-03-01

    One popular study design for estimating the area under the receiver operating characteristic curve (AUC) is the one in which a set of readers reads a set of cases: a fully crossed design in which every reader reads every case. The variability of the subsequent reader-averaged AUC has two sources: the multiple readers and the multiple cases (MRMC). In this article, we present a nonparametric estimate for the variance of the reader-averaged AUC that is unbiased and does not use resampling tools. The one-shot estimate is based on the MRMC variance derived by the mechanistic approach of Barrett et al. (2005), as well as the nonparametric variance of a single-reader AUC derived in the literature on U statistics. We investigate the bias and variance properties of the one-shot estimate through a set of Monte Carlo simulations with simulated model observers and images. The different simulation configurations vary numbers of readers and cases, amounts of image noise and internal noise, as well as how the readers are constructed. We compare the one-shot estimate to a method that uses the jackknife resampling technique with an analysis of variance model at its foundation (Dorfman et al. 1992). The name one-shot highlights that resampling is not used. The one-shot and jackknife estimators behave similarly, with the one-shot being marginally more efficient when the number of cases is small. We have derived a one-shot estimate of the MRMC variance of AUC that is based on a probabilistic foundation with limited assumptions, is unbiased, and compares favorably to an established estimate.

  13. Possibility of modifying the growth trajectory in Raeini Cashmere goat.

    PubMed

    Ghiasi, Heydar; Mokhtari, M S

    2018-03-27

    The objective of this study was to investigate the possibility of modifying the growth trajectory in Raeini Cashmere goat breed. In total, 13,193 records on live body weight collected from 4788 Raeini Cashmere goats were used. According to Akanke's information criterion (AIC), the sing-trait random regression model included fourth-order Legendre polynomial for direct and maternal genetic effect; maternal and individual permanent environmental effect was the best model for estimating (co)variance components. The matrices of eigenvectors for (co)variances between random regression coefficients of direct additive genetic were used to calculate eigenfunctions, and different eigenvector indices were also constructed. The obtained results showed that the first eigenvalue explained 79.90% of total genetic variance. Therefore, changing the body weights applying the first eigenfunction will be obtained rapidly. Selection based on the first eigenvector will cause favorable positive genetic gains for all body weight considered from birth to 12 months of age. For modifying the growth trajectory in Raeini Cashmere goat, the selection should be based on the second eigenfunction. The second eigenvalue accounted for 14.41% of total genetic variance for body weights that is low in comparison with genetic variance explained by the first eigenvalue. The complex patterns of genetic change in growth trajectory observed under the third and fourth eigenfunction and low amount of genetic variance explained by the third and fourth eigenvalues.

  14. Trait and State Variance in Oppositional Defiant Disorder Symptoms: A Multi-Source Investigation with Spanish Children

    PubMed Central

    Preszler, Jonathan; Burns, G. Leonard; Litson, Kaylee; Geiser, Christian; Servera, Mateu

    2016-01-01

    The objective was to determine and compare the trait and state components of oppositional defiant disorder (ODD) symptom reports across multiple informants. Mothers, fathers, primary teachers, and secondary teachers rated the occurrence of the ODD symptoms in 810 Spanish children (55% boys) on two occasions (end first and second grades). Single source latent state-trait (LST) analyses revealed that ODD symptom ratings from all four sources showed more trait (M = 63%) than state residual (M = 37%) variance. A multiple source LST analysis revealed substantial convergent validity of mothers’ and fathers’ trait variance components (M = 68%) and modest convergent validity of state residual variance components (M = 35%). In contrast, primary and secondary teachers showed low convergent validity relative to mothers for trait variance (Ms = 31%, 32%, respectively) and essentially zero convergent validity relative to mothers for state residual variance (Ms = 1%, 3%, respectively). Although ODD symptom ratings reflected slightly more trait- than state-like constructs within each of the four sources separately across occasions, strong convergent validity for the trait variance only occurred within settings (i.e., mothers with fathers; primary with secondary teachers) with the convergent validity of the trait and state residual variance components being low to non-existent across settings. These results suggest that ODD symptom reports are trait-like across time for individual sources with this trait variance, however, only having convergent validity within settings. Implications for assessment of ODD are discussed. PMID:27148784

  15. A general unified framework to assess the sampling variance of heritability estimates using pedigree or marker-based relationships.

    PubMed

    Visscher, Peter M; Goddard, Michael E

    2015-01-01

    Heritability is a population parameter of importance in evolution, plant and animal breeding, and human medical genetics. It can be estimated using pedigree designs and, more recently, using relationships estimated from markers. We derive the sampling variance of the estimate of heritability for a wide range of experimental designs, assuming that estimation is by maximum likelihood and that the resemblance between relatives is solely due to additive genetic variation. We show that well-known results for balanced designs are special cases of a more general unified framework. For pedigree designs, the sampling variance is inversely proportional to the variance of relationship in the pedigree and it is proportional to 1/N, whereas for population samples it is approximately proportional to 1/N(2), where N is the sample size. Variation in relatedness is a key parameter in the quantification of the sampling variance of heritability. Consequently, the sampling variance is high for populations with large recent effective population size (e.g., humans) because this causes low variation in relationship. However, even using human population samples, low sampling variance is possible with high N. Copyright © 2015 by the Genetics Society of America.

  16. Genetic and environmental influences on Diagnostic and Statistical Manual of Mental Disorders-Fifth Edition (DSM-5) maladaptive personality traits and their connections with normative personality traits.

    PubMed

    Wright, Zara E; Pahlen, Shandell; Krueger, Robert F

    2017-05-01

    The Diagnostic and Statistical Manual for Mental Disorders-Fifth Edition (DSM-5) proposes an alternative model for personality disorders, which includes maladaptive-level personality traits. These traits can be operationalized by the Personality Inventory for the DSM-5 (PID-5). Although there has been extensive research on genetic and environmental influences on normative level personality, the heritability of the DSM-5 traits remains understudied. The present study addresses this gap in the literature by assessing traits indexed by the PID-5 and the International Personality Item Pool NEO (IPIP-NEO) in adult twins (N = 1,812 individuals). Research aims include (a) replicating past findings of the heritability of normative level personality as measured by the IPIP-NEO as a benchmark for studying maladaptive level traits, (b) ascertaining univariate heritability estimates of maladaptive level traits as measured by the PID-5, (c) establishing how much variation in personality pathology can be attributed to the same genetic components affecting variation in normative level personality, and (d) determining residual variance in personality pathology domains after variance attributable to genetic and environmental components of general personality has been removed. Results revealed that PID-5 traits reflect similar levels of heritability to that of IPIP-NEO traits. Further, maladaptive and normative level traits that correlate at the phenotypic level also correlate at the genotypic level, indicating overlapping genetic components contribute to variance in both. Nevertheless, we also found evidence for genetic and environmental components unique to maladaptive level personality traits, not shared with normative level traits. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  17. Genetic and environmental factors affecting perinatal and preweaning survival of D'man lambs.

    PubMed

    Boujenane, Ismaïl; Chikhi, Abdelkader; Lakcher, Oumaïma; Ibnelbachyr, Mustapha

    2013-08-01

    This study examined the viability of 4,554 D'man lambs born alive at Errachidia research station in south-eastern Morocco between 1988 and 2009. Lamb survival to 1, 10, 30 and 90 days old was 0.95, 0.93, 0.93 and 0.92, respectively. The majority of deaths (85.7%) occurred before 10 days of age. Type and period of birth both had a significant effect on lamb survival traits, whereas age of dam and sex of lamb did not. The study revealed a curvilinear relationship between lamb's birth weight and survival traits from birth to 90 days, with optimal birth weights for maximal perinatal and preweaning survival varying according to type of birth from 2.6 to 3.5 kg. Estimation of variance components, using an animal model including direct and maternal genetic effects, the permanent maternal environment as well as fixed effects, showed that direct and maternal heritability estimates for survival traits between birth and 90 days were mostly low and varied from 0.01 to 0.10; however, direct heritability for survival at 1 day from birth was estimated at 0.63. Genetic correlations between survival traits and birth weight were positive and low to moderate. It was concluded that survival traits of D'man lambs between birth and 90 days could be improved through selection, but genetic progress would be low. However, the high proportion of the residual variance to total variance reinforces the need to improve management and lambing conditions.

  18. Sex-specific genetic effects in physical activity: results from a quantitative genetic analysis.

    PubMed

    Diego, Vincent P; de Chaves, Raquel Nichele; Blangero, John; de Souza, Michele Caroline; Santos, Daniel; Gomes, Thayse Natacha; dos Santos, Fernanda Karina; Garganta, Rui; Katzmarzyk, Peter T; Maia, José A R

    2015-08-01

    The objective of this study is to present a model to estimate sex-specific genetic effects on physical activity (PA) levels and sedentary behaviour (SB) using three generation families. The sample consisted of 100 families covering three generations from Portugal. PA and SB were assessed via the International Physical Activity Questionnaire short form (IPAQ-SF). Sex-specific effects were assessed by genotype-by-sex interaction (GSI) models and sex-specific heritabilities. GSI effects and heterogeneity were tested in the residual environmental variance. SPSS 17 and SOLAR v. 4.1 were used in all computations. The genetic component for PA and SB domains varied from low to moderate (11% to 46%), when analyzing both genders combined. We found GSI effects for vigorous PA (p = 0.02) and time spent watching television (WT) (p < 0.001) that showed significantly higher additive genetic variance estimates in males. The heterogeneity in the residual environmental variance was significant for moderate PA (p = 0.02), vigorous PA (p = 0.006) and total PA (p = 0.001). Sex-specific heritability estimates were significantly higher in males only for WT, with a male-to-female difference in heritability of 42.5 (95% confidence interval: 6.4, 70.4). Low to moderate genetic effects on PA and SB traits were found. Results from the GSI model show that there are sex-specific effects in two phenotypes, VPA and WT with a stronger genetic influence in males.

  19. Heritability of female extra-pair paternity rate in song sparrows (Melospiza melodia)

    PubMed Central

    Reid, Jane M.; Arcese, Peter; Sardell, Rebecca J.; Keller, Lukas F.

    2011-01-01

    The forces driving the evolution of extra-pair reproduction in socially monogamous animals remain widely debated and unresolved. One key hypothesis is that female extra-pair reproduction evolves through indirect genetic benefits, reflecting increased additive genetic value of extra-pair offspring. Such evolution requires that a female's propensity to produce offspring that are sired by an extra-pair male is heritable. However, additive genetic variance and heritability in female extra-pair paternity (EPP) rate have not been quantified, precluding accurate estimation of the force of indirect selection. Sixteen years of comprehensive paternity and pedigree data from socially monogamous but genetically polygynandrous song sparrows (Melospiza melodia) showed significant additive genetic variance and heritability in the proportion of a female's offspring that was sired by an extra-pair male, constituting major components of the genetic architecture required for extra-pair reproduction to evolve through indirect additive genetic benefits. However, estimated heritabilities were moderately small (0.12 and 0.18 on the observed and underlying latent scales, respectively). The force of selection on extra-pair reproduction through indirect additive genetic benefits may consequently be relatively weak. However, the additive genetic variance and non-zero heritability observed in female EPP rate allow for multiple further genetic mechanisms to drive and constrain mating system evolution. PMID:20980302

  20. Determination of the optimal level for combining area and yield estimates

    NASA Technical Reports Server (NTRS)

    Bauer, M. E. (Principal Investigator); Hixson, M. M.; Jobusch, C. D.

    1981-01-01

    Several levels of obtaining both area and yield estimates of corn and soybeans in Iowa were considered: county, refined strata, refined/split strata, crop reporting district, and state. Using the CCEA model form and smoothed weather data, regression coefficients at each level were derived to compute yield and its variance. Variances were also computed with stratum level. The variance of the yield estimates was largest at the state and smallest at the county level for both crops. The refined strata had somewhat larger variances than those associated with the refined/split strata and CRD. For production estimates, the difference in standard deviations among levels was not large for corn, but for soybeans the standard deviation at the state level was more than 50% greater than for the other levels. The refined strata had the smallest standard deviations. The county level was not considered in evaluation of production estimates due to lack of county area variances.

  1. A clinical economics workstation for risk-adjusted health care cost management.

    PubMed Central

    Eisenstein, E. L.; Hales, J. W.

    1995-01-01

    This paper describes a healthcare cost accounting system which is under development at Duke University Medical Center. Our approach differs from current practice in that this system will dynamically adjust its resource usage estimates to compensate for variations in patient risk levels. This adjustment is made possible by introducing a new cost accounting concept, Risk-Adjusted Quantity (RQ). RQ divides case-level resource usage variances into their risk-based component (resource consumption differences attributable to differences in patient risk levels) and their non-risk-based component (resource consumption differences which cannot be attributed to differences in patient risk levels). Because patient risk level is a factor in estimating resource usage, this system is able to simultaneously address the financial and quality dimensions of case cost management. In effect, cost-effectiveness analysis is incorporated into health care cost management. PMID:8563361

  2. Large Area Crop Inventory Experiment (LACIE). Phase 1: Evaluation report

    NASA Technical Reports Server (NTRS)

    1976-01-01

    It appears that the Large Area Crop Inventory Experiment over the Great Plains, can with a reasonable expectation, be a satisfactory component of a 90/90 production estimator. The area estimator produced more accurate area estimates for the total winter wheat region than for the mixed spring and winter wheat region of the northern Great Plains. The accuracy does appear to degrade somewhat in regions of marginal agriculture where there are small fields and abundant confusion crops. However, it would appear that these regions tend also to be marginal with respect to wheat production and thus increased area estimation errors do not greatly influence the overall production estimation accuracy in the United States. The loss of segments resulting from cloud cover appears to be a random phenomenon that introduces no significant bias into the estimates. This loss does increase the variance of the estimates.

  3. On the design of classifiers for crop inventories

    NASA Technical Reports Server (NTRS)

    Heydorn, R. P.; Takacs, H. C.

    1986-01-01

    Crop proportion estimators that use classifications of satellite data to correct, in an additive way, a given estimate acquired from ground observations are discussed. A linear version of these estimators is optimal, in terms of minimum variance, when the regression of the ground observations onto the satellite observations in linear. When this regression is not linear, but the reverse regression (satellite observations onto ground observations) is linear, the estimator is suboptimal but still has certain appealing variance properties. In this paper expressions are derived for those regressions which relate the intercepts and slopes to conditional classification probabilities. These expressions are then used to discuss the question of classifier designs that can lead to low-variance crop proportion estimates. Variance expressions for these estimates in terms of classifier omission and commission errors are also derived.

  4. Estimation of genetic variance for macro- and micro-environmental sensitivity using double hierarchical generalized linear models.

    PubMed

    Mulder, Han A; Rönnegård, Lars; Fikse, W Freddy; Veerkamp, Roel F; Strandberg, Erling

    2013-07-04

    Genetic variation for environmental sensitivity indicates that animals are genetically different in their response to environmental factors. Environmental factors are either identifiable (e.g. temperature) and called macro-environmental or unknown and called micro-environmental. The objectives of this study were to develop a statistical method to estimate genetic parameters for macro- and micro-environmental sensitivities simultaneously, to investigate bias and precision of resulting estimates of genetic parameters and to develop and evaluate use of Akaike's information criterion using h-likelihood to select the best fitting model. We assumed that genetic variation in macro- and micro-environmental sensitivities is expressed as genetic variance in the slope of a linear reaction norm and environmental variance, respectively. A reaction norm model to estimate genetic variance for macro-environmental sensitivity was combined with a structural model for residual variance to estimate genetic variance for micro-environmental sensitivity using a double hierarchical generalized linear model in ASReml. Akaike's information criterion was constructed as model selection criterion using approximated h-likelihood. Populations of sires with large half-sib offspring groups were simulated to investigate bias and precision of estimated genetic parameters. Designs with 100 sires, each with at least 100 offspring, are required to have standard deviations of estimated variances lower than 50% of the true value. When the number of offspring increased, standard deviations of estimates across replicates decreased substantially, especially for genetic variances of macro- and micro-environmental sensitivities. Standard deviations of estimated genetic correlations across replicates were quite large (between 0.1 and 0.4), especially when sires had few offspring. Practically, no bias was observed for estimates of any of the parameters. Using Akaike's information criterion the true genetic model was selected as the best statistical model in at least 90% of 100 replicates when the number of offspring per sire was 100. Application of the model to lactation milk yield in dairy cattle showed that genetic variance for micro- and macro-environmental sensitivities existed. The algorithm and model selection criterion presented here can contribute to better understand genetic control of macro- and micro-environmental sensitivities. Designs or datasets should have at least 100 sires each with 100 offspring.

  5. Structured penalties for functional linear models-partially empirical eigenvectors for regression.

    PubMed

    Randolph, Timothy W; Harezlak, Jaroslaw; Feng, Ziding

    2012-01-01

    One of the challenges with functional data is incorporating geometric structure, or local correlation, into the analysis. This structure is inherent in the output from an increasing number of biomedical technologies, and a functional linear model is often used to estimate the relationship between the predictor functions and scalar responses. Common approaches to the problem of estimating a coefficient function typically involve two stages: regularization and estimation. Regularization is usually done via dimension reduction, projecting onto a predefined span of basis functions or a reduced set of eigenvectors (principal components). In contrast, we present a unified approach that directly incorporates geometric structure into the estimation process by exploiting the joint eigenproperties of the predictors and a linear penalty operator. In this sense, the components in the regression are 'partially empirical' and the framework is provided by the generalized singular value decomposition (GSVD). The form of the penalized estimation is not new, but the GSVD clarifies the process and informs the choice of penalty by making explicit the joint influence of the penalty and predictors on the bias, variance and performance of the estimated coefficient function. Laboratory spectroscopy data and simulations are used to illustrate the concepts.

  6. Analysis of longitudinal data of beef cattle raised on pasture from northern Brazil using nonlinear models.

    PubMed

    Lopes, Fernando B; da Silva, Marcelo C; Marques, Ednira G; McManus, Concepta M

    2012-12-01

    This study was undertaken to aim of estimating the genetic parameters and trends for asymptotic weight (A) and maturity rate (k) of Nellore cattle from northern Brazil. The data set was made available by the Brazilian Association of Zebu Breeders and collected between the years of 1997 and 2007. The Von Bertalanffy, Brody, Gompertz, and logistic nonlinear models were fitted by the Gauss-Newton method to weight-age data of 45,895 animals collected quarterly of the birth to 750 days old. The curve parameters were analyzed using the procedures GLM and CORR. The estimation of (co)variance components and genetic parameters was obtained using the MTDFREML software. The estimated heritability coefficients were 0.21 ± 0.013 and 0.25 ± 0.014 for asymptotic weight and maturity rate, respectively. This indicates that selection for any trait shall results in genetic progress in the herd. The genetic correlation between A and k was negative (-0.57 ± 0.03) and indicated that animals selected for high maturity rate shall result in low asymptotic weight. The Von Bertalanffy function is adequate to establish the mean growth patterns and to predict the adult weight of Nellore cattle. This model is more accurate in predicting the birth weight of these animals and has better overall fit. The prediction of adult weight using nonlinear functions can be accurate when growth curve parameters and their (co)variance components are estimated jointly. The model used in this study can be applied to the prediction of mature weight in herds where a portion of the animals are culled before they reach the adult age.

  7. Genetic analysis of oocyte and embryo production traits in Guzerá breed donors and their associations with age at first calving.

    PubMed

    Perez, B C; Peixoto, M G C D; Bruneli, F T; Ramos, P V B; Balieiro, J C C

    2016-04-26

    The objective of this study was to estimate variance components for oocyte and embryo production traits in Guzerá breed female donors, and investigate their associations with age at first calving (AFC). The traits analyzed were the number of viable oocytes (NOV), the number of grade I oocytes (NGI), the number of cleaved embryos (NCLV), and viable embryos produced (NEMB), and the percentages of viable oocytes (POV), grade I oocytes (PGI), cleaved embryos (PCLV), and viable embryos (PEMB). Data were obtained from 5173 ovary puncture and in vitro fertilization (IVF) sessions using 1080 Guzerá female donors of different ages, occurred from March 2005 to July 2013. Variables were log-transformed (logeX+1) prior to analysis. (Co)variance components were estimated by restricted maximum likelihood (REML), using one- and two-trait animal models. Permanent environment and IVF sire (father of the embryos) random effects were included. Estimated heritabilities for NOV, NGI, NCLV, NEMB, POV, PGI, PCLV, and PEMB were 0.19, 0.08, 0.16, 0.14, 0.04, 0.03, 0.01, and 0.07, respectively. Repeatabilities for count traits (NOV, NGI, NCLV, and NEMB) varied from 0.14 and 0.32, higher than estimated for percentage traits (POV, PGI, PCLV, and PEMB), which varied from 0.01 to 0.08. Selection for NOV may be more appropriate in breeding programs than selection for NEMB, because of its strong genetic correlation (0.68) with NEMB and its greater time- and cost-effectiveness. AFC was only weakly associated with the oocyte and embryo production traits, which indicates that there would be no effect on AFC when selecting for these traits.

  8. Improving the precision of lake ecosystem metabolism estimates by identifying predictors of model uncertainty

    USGS Publications Warehouse

    Rose, Kevin C.; Winslow, Luke A.; Read, Jordan S.; Read, Emily K.; Solomon, Christopher T.; Adrian, Rita; Hanson, Paul C.

    2014-01-01

    Diel changes in dissolved oxygen are often used to estimate gross primary production (GPP) and ecosystem respiration (ER) in aquatic ecosystems. Despite the widespread use of this approach to understand ecosystem metabolism, we are only beginning to understand the degree and underlying causes of uncertainty for metabolism model parameter estimates. Here, we present a novel approach to improve the precision and accuracy of ecosystem metabolism estimates by identifying physical metrics that indicate when metabolism estimates are highly uncertain. Using datasets from seventeen instrumented GLEON (Global Lake Ecological Observatory Network) lakes, we discovered that many physical characteristics correlated with uncertainty, including PAR (photosynthetically active radiation, 400-700 nm), daily variance in Schmidt stability, and wind speed. Low PAR was a consistent predictor of high variance in GPP model parameters, but also corresponded with low ER model parameter variance. We identified a threshold (30% of clear sky PAR) below which GPP parameter variance increased rapidly and was significantly greater in nearly all lakes compared with variance on days with PAR levels above this threshold. The relationship between daily variance in Schmidt stability and GPP model parameter variance depended on trophic status, whereas daily variance in Schmidt stability was consistently positively related to ER model parameter variance. Wind speeds in the range of ~0.8-3 m s–1 were consistent predictors of high variance for both GPP and ER model parameters, with greater uncertainty in eutrophic lakes. Our findings can be used to reduce ecosystem metabolism model parameter uncertainty and identify potential sources of that uncertainty.

  9. Robust Variance Estimation with Dependent Effect Sizes: Practical Considerations Including a Software Tutorial in Stata and SPSS

    ERIC Educational Resources Information Center

    Tanner-Smith, Emily E.; Tipton, Elizabeth

    2014-01-01

    Methodologists have recently proposed robust variance estimation as one way to handle dependent effect sizes in meta-analysis. Software macros for robust variance estimation in meta-analysis are currently available for Stata (StataCorp LP, College Station, TX, USA) and SPSS (IBM, Armonk, NY, USA), yet there is little guidance for authors regarding…

  10. Correcting for Systematic Bias in Sample Estimates of Population Variances: Why Do We Divide by n-1?

    ERIC Educational Resources Information Center

    Mittag, Kathleen Cage

    An important topic presented in introductory statistics courses is the estimation of population parameters using samples. Students learn that when estimating population variances using sample data, we always get an underestimate of the population variance if we divide by n rather than n-1. One implication of this correction is that the degree of…

  11. A nonparametric mean-variance smoothing method to assess Arabidopsis cold stress transcriptional regulator CBF2 overexpression microarray data.

    PubMed

    Hu, Pingsha; Maiti, Tapabrata

    2011-01-01

    Microarray is a powerful tool for genome-wide gene expression analysis. In microarray expression data, often mean and variance have certain relationships. We present a non-parametric mean-variance smoothing method (NPMVS) to analyze differentially expressed genes. In this method, a nonlinear smoothing curve is fitted to estimate the relationship between mean and variance. Inference is then made upon shrinkage estimation of posterior means assuming variances are known. Different methods have been applied to simulated datasets, in which a variety of mean and variance relationships were imposed. The simulation study showed that NPMVS outperformed the other two popular shrinkage estimation methods in some mean-variance relationships; and NPMVS was competitive with the two methods in other relationships. A real biological dataset, in which a cold stress transcription factor gene, CBF2, was overexpressed, has also been analyzed with the three methods. Gene ontology and cis-element analysis showed that NPMVS identified more cold and stress responsive genes than the other two methods did. The good performance of NPMVS is mainly due to its shrinkage estimation for both means and variances. In addition, NPMVS exploits a non-parametric regression between mean and variance, instead of assuming a specific parametric relationship between mean and variance. The source code written in R is available from the authors on request.

  12. A Nonparametric Mean-Variance Smoothing Method to Assess Arabidopsis Cold Stress Transcriptional Regulator CBF2 Overexpression Microarray Data

    PubMed Central

    Hu, Pingsha; Maiti, Tapabrata

    2011-01-01

    Microarray is a powerful tool for genome-wide gene expression analysis. In microarray expression data, often mean and variance have certain relationships. We present a non-parametric mean-variance smoothing method (NPMVS) to analyze differentially expressed genes. In this method, a nonlinear smoothing curve is fitted to estimate the relationship between mean and variance. Inference is then made upon shrinkage estimation of posterior means assuming variances are known. Different methods have been applied to simulated datasets, in which a variety of mean and variance relationships were imposed. The simulation study showed that NPMVS outperformed the other two popular shrinkage estimation methods in some mean-variance relationships; and NPMVS was competitive with the two methods in other relationships. A real biological dataset, in which a cold stress transcription factor gene, CBF2, was overexpressed, has also been analyzed with the three methods. Gene ontology and cis-element analysis showed that NPMVS identified more cold and stress responsive genes than the other two methods did. The good performance of NPMVS is mainly due to its shrinkage estimation for both means and variances. In addition, NPMVS exploits a non-parametric regression between mean and variance, instead of assuming a specific parametric relationship between mean and variance. The source code written in R is available from the authors on request. PMID:21611181

  13. Online Estimation of Allan Variance Coefficients Based on a Neural-Extended Kalman Filter

    PubMed Central

    Miao, Zhiyong; Shen, Feng; Xu, Dingjie; He, Kunpeng; Tian, Chunmiao

    2015-01-01

    As a noise analysis method for inertial sensors, the traditional Allan variance method requires the storage of a large amount of data and manual analysis for an Allan variance graph. Although the existing online estimation methods avoid the storage of data and the painful procedure of drawing slope lines for estimation, they require complex transformations and even cause errors during the modeling of dynamic Allan variance. To solve these problems, first, a new state-space model that directly models the stochastic errors to obtain a nonlinear state-space model was established for inertial sensors. Then, a neural-extended Kalman filter algorithm was used to estimate the Allan variance coefficients. The real noises of an ADIS16405 IMU and fiber optic gyro-sensors were analyzed by the proposed method and traditional methods. The experimental results show that the proposed method is more suitable to estimate the Allan variance coefficients than the traditional methods. Moreover, the proposed method effectively avoids the storage of data and can be easily implemented using an online processor. PMID:25625903

  14. Techniques to improve the accuracy of noise power spectrum measurements in digital x-ray imaging based on background trends removal.

    PubMed

    Zhou, Zhongxing; Gao, Feng; Zhao, Huijuan; Zhang, Lixin

    2011-03-01

    Noise characterization through estimation of the noise power spectrum (NPS) is a central component of the evaluation of digital x-ray systems. Extensive works have been conducted to achieve accurate and precise measurement of NPS. One approach to improve the accuracy of the NPS measurement is to reduce the statistical variance of the NPS results by involving more data samples. However, this method is based on the assumption that the noise in a radiographic image is arising from stochastic processes. In the practical data, the artifactuals always superimpose on the stochastic noise as low-frequency background trends and prevent us from achieving accurate NPS. The purpose of this study was to investigate an appropriate background detrending technique to improve the accuracy of NPS estimation for digital x-ray systems. In order to achieve the optimal background detrending technique for NPS estimate, four methods for artifactuals removal were quantitatively studied and compared: (1) Subtraction of a low-pass-filtered version of the image, (2) subtraction of a 2-D first-order fit to the image, (3) subtraction of a 2-D second-order polynomial fit to the image, and (4) subtracting two uniform exposure images. In addition, background trend removal was separately applied within original region of interest or its partitioned sub-blocks for all four methods. The performance of background detrending techniques was compared according to the statistical variance of the NPS results and low-frequency systematic rise suppression. Among four methods, subtraction of a 2-D second-order polynomial fit to the image was most effective in low-frequency systematic rise suppression and variances reduction for NPS estimate according to the authors' digital x-ray system. Subtraction of a low-pass-filtered version of the image led to NPS variance increment above low-frequency components because of the side lobe effects of frequency response of the boxcar filtering function. Subtracting two uniform exposure images obtained the worst result on the smoothness of NPS curve, although it was effective in low-frequency systematic rise suppression. Subtraction of a 2-D first-order fit to the image was also identified effective for background detrending, but it was worse than subtraction of a 2-D second-order polynomial fit to the image according to the authors' digital x-ray system. As a result of this study, the authors verified that it is necessary and feasible to get better NPS estimate by appropriate background trend removal. Subtraction of a 2-D second-order polynomial fit to the image was the most appropriate technique for background detrending without consideration of processing time.

  15. Joint Adaptive Mean-Variance Regularization and Variance Stabilization of High Dimensional Data.

    PubMed

    Dazard, Jean-Eudes; Rao, J Sunil

    2012-07-01

    The paper addresses a common problem in the analysis of high-dimensional high-throughput "omics" data, which is parameter estimation across multiple variables in a set of data where the number of variables is much larger than the sample size. Among the problems posed by this type of data are that variable-specific estimators of variances are not reliable and variable-wise tests statistics have low power, both due to a lack of degrees of freedom. In addition, it has been observed in this type of data that the variance increases as a function of the mean. We introduce a non-parametric adaptive regularization procedure that is innovative in that : (i) it employs a novel "similarity statistic"-based clustering technique to generate local-pooled or regularized shrinkage estimators of population parameters, (ii) the regularization is done jointly on population moments, benefiting from C. Stein's result on inadmissibility, which implies that usual sample variance estimator is improved by a shrinkage estimator using information contained in the sample mean. From these joint regularized shrinkage estimators, we derived regularized t-like statistics and show in simulation studies that they offer more statistical power in hypothesis testing than their standard sample counterparts, or regular common value-shrinkage estimators, or when the information contained in the sample mean is simply ignored. Finally, we show that these estimators feature interesting properties of variance stabilization and normalization that can be used for preprocessing high-dimensional multivariate data. The method is available as an R package, called 'MVR' ('Mean-Variance Regularization'), downloadable from the CRAN website.

  16. Joint Adaptive Mean-Variance Regularization and Variance Stabilization of High Dimensional Data

    PubMed Central

    Dazard, Jean-Eudes; Rao, J. Sunil

    2012-01-01

    The paper addresses a common problem in the analysis of high-dimensional high-throughput “omics” data, which is parameter estimation across multiple variables in a set of data where the number of variables is much larger than the sample size. Among the problems posed by this type of data are that variable-specific estimators of variances are not reliable and variable-wise tests statistics have low power, both due to a lack of degrees of freedom. In addition, it has been observed in this type of data that the variance increases as a function of the mean. We introduce a non-parametric adaptive regularization procedure that is innovative in that : (i) it employs a novel “similarity statistic”-based clustering technique to generate local-pooled or regularized shrinkage estimators of population parameters, (ii) the regularization is done jointly on population moments, benefiting from C. Stein's result on inadmissibility, which implies that usual sample variance estimator is improved by a shrinkage estimator using information contained in the sample mean. From these joint regularized shrinkage estimators, we derived regularized t-like statistics and show in simulation studies that they offer more statistical power in hypothesis testing than their standard sample counterparts, or regular common value-shrinkage estimators, or when the information contained in the sample mean is simply ignored. Finally, we show that these estimators feature interesting properties of variance stabilization and normalization that can be used for preprocessing high-dimensional multivariate data. The method is available as an R package, called ‘MVR’ (‘Mean-Variance Regularization’), downloadable from the CRAN website. PMID:22711950

  17. Rapid Communication: Large exploitable genetic variability exists to shorten age at slaughter in cattle.

    PubMed

    Berry, D P; Cromie, A R; Judge, M M

    2017-10-01

    Apprehension among consumers is mounting on the efficiency by which cattle convert feedstuffs into human edible protein and energy as well as the consequential effects on the environment. Most (genetic) studies that attempt to address these issues have generally focused on efficiency metrics defined over a certain time period of an animal's life cycle, predominantly the period representing the linear phase of growth. The age at which an animal reaches the carcass specifications for slaughter, however, is also known to vary between breeds; less is known on the extent of the within-breed variability in age at slaughter. Therefore, the objective of the present study was to quantify the phenotypic and genetic variability in the age at which cattle reach a predefined carcass weight and subcutaneous fat cover. A novel trait, labeled here as the deviation in age at slaughter (DAGE), was represented by the unexplained variability from a statistical model, with age at slaughter as the dependent variable and with the fixed effects, among others, of carcass weight and fat score (scale 1 to 15 scored by video image analysis of the carcass at slaughter). Variance components for DAGE were estimated using either a 2-step approach (i.e., the DAGE phenotype derived first and then variance components estimated) or a 1-step approach (i.e., variance components for age at slaughter estimated directly in a mixed model that included the fixed effects of, among others, carcass weight and carcass fat score as well as a random direct additive genetic effect). The raw phenotypic SD in DAGE was 44.2 d. The genetic SD and heritability for DAGE estimated using the 1-step or 2-step models varied from 14.2 to 15.1 d and from 0.23 to 0.26 (SE 0.02), respectively. Assuming the (genetic) variability in the number of days from birth to reaching a desired carcass specifications can be exploited without any associated unfavorable repercussions, considerable potential exists to improve not only the (feed) efficiency of the animal and farm system but also the environmental footprint of the system. The beauty of the approach proposed, relative to strategies that select directly for the feed intake complex and enteric methane emissions, is that data on age at slaughter are generally readily available. Of course, faster gains may potentially be achieved if a dual objective of improving animal efficiency per day coupled with reduced days to slaughter was embarked on.

  18. Mathematical Ability and Socio-Economic Background: IRT Modeling to Estimate Genotype by Environment Interaction.

    PubMed

    Schwabe, Inga; Boomsma, Dorret I; van den Berg, Stéphanie M

    2017-12-01

    Genotype by environment interaction in behavioral traits may be assessed by estimating the proportion of variance that is explained by genetic and environmental influences conditional on a measured moderating variable, such as a known environmental exposure. Behavioral traits of interest are often measured by questionnaires and analyzed as sum scores on the items. However, statistical results on genotype by environment interaction based on sum scores can be biased due to the properties of a scale. This article presents a method that makes it possible to analyze the actually observed (phenotypic) item data rather than a sum score by simultaneously estimating the genetic model and an item response theory (IRT) model. In the proposed model, the estimation of genotype by environment interaction is based on an alternative parametrization that is uniquely identified and therefore to be preferred over standard parametrizations. A simulation study shows good performance of our method compared to analyzing sum scores in terms of bias. Next, we analyzed data of 2,110 12-year-old Dutch twin pairs on mathematical ability. Genetic models were evaluated and genetic and environmental variance components estimated as a function of a family's socio-economic status (SES). Results suggested that common environmental influences are less important in creating individual differences in mathematical ability in families with a high SES than in creating individual differences in mathematical ability in twin pairs with a low or average SES.

  19. Estimating means and variances: The comparative efficiency of composite and grab samples.

    PubMed

    Brumelle, S; Nemetz, P; Casey, D

    1984-03-01

    This paper compares the efficiencies of two sampling techniques for estimating a population mean and variance. One procedure, called grab sampling, consists of collecting and analyzing one sample per period. The second procedure, called composite sampling, collectsn samples per period which are then pooled and analyzed as a single sample. We review the well known fact that composite sampling provides a superior estimate of the mean. However, it is somewhat surprising that composite sampling does not always generate a more efficient estimate of the variance. For populations with platykurtic distributions, grab sampling gives a more efficient estimate of the variance, whereas composite sampling is better for leptokurtic distributions. These conditions on kurtosis can be related to peakedness and skewness. For example, a necessary condition for composite sampling to provide a more efficient estimate of the variance is that the population density function evaluated at the mean (i.e.f(μ)) be greater than[Formula: see text]. If[Formula: see text], then a grab sample is more efficient. In spite of this result, however, composite sampling does provide a smaller estimate of standard error than does grab sampling in the context of estimating population means.

  20. Estimating spatial and temporal components of variation in count data using negative binomial mixed models

    USGS Publications Warehouse

    Irwin, Brian J.; Wagner, Tyler; Bence, James R.; Kepler, Megan V.; Liu, Weihai; Hayes, Daniel B.

    2013-01-01

    Partitioning total variability into its component temporal and spatial sources is a powerful way to better understand time series and elucidate trends. The data available for such analyses of fish and other populations are usually nonnegative integer counts of the number of organisms, often dominated by many low values with few observations of relatively high abundance. These characteristics are not well approximated by the Gaussian distribution. We present a detailed description of a negative binomial mixed-model framework that can be used to model count data and quantify temporal and spatial variability. We applied these models to data from four fishery-independent surveys of Walleyes Sander vitreus across the Great Lakes basin. Specifically, we fitted models to gill-net catches from Wisconsin waters of Lake Superior; Oneida Lake, New York; Saginaw Bay in Lake Huron, Michigan; and Ohio waters of Lake Erie. These long-term monitoring surveys varied in overall sampling intensity, the total catch of Walleyes, and the proportion of zero catches. Parameter estimation included the negative binomial scaling parameter, and we quantified the random effects as the variations among gill-net sampling sites, the variations among sampled years, and site × year interactions. This framework (i.e., the application of a mixed model appropriate for count data in a variance-partitioning context) represents a flexible approach that has implications for monitoring programs (e.g., trend detection) and for examining the potential of individual variance components to serve as response metrics to large-scale anthropogenic perturbations or ecological changes.

  1. Detecting epistasis with the marginal epistasis test in genetic mapping studies of quantitative traits

    PubMed Central

    Zeng, Ping; Mukherjee, Sayan; Zhou, Xiang

    2017-01-01

    Epistasis, commonly defined as the interaction between multiple genes, is an important genetic component underlying phenotypic variation. Many statistical methods have been developed to model and identify epistatic interactions between genetic variants. However, because of the large combinatorial search space of interactions, most epistasis mapping methods face enormous computational challenges and often suffer from low statistical power due to multiple test correction. Here, we present a novel, alternative strategy for mapping epistasis: instead of directly identifying individual pairwise or higher-order interactions, we focus on mapping variants that have non-zero marginal epistatic effects—the combined pairwise interaction effects between a given variant and all other variants. By testing marginal epistatic effects, we can identify candidate variants that are involved in epistasis without the need to identify the exact partners with which the variants interact, thus potentially alleviating much of the statistical and computational burden associated with standard epistatic mapping procedures. Our method is based on a variance component model, and relies on a recently developed variance component estimation method for efficient parameter inference and p-value computation. We refer to our method as the “MArginal ePIstasis Test”, or MAPIT. With simulations, we show how MAPIT can be used to estimate and test marginal epistatic effects, produce calibrated test statistics under the null, and facilitate the detection of pairwise epistatic interactions. We further illustrate the benefits of MAPIT in a QTL mapping study by analyzing the gene expression data of over 400 individuals from the GEUVADIS consortium. PMID:28746338

  2. Using Robust Variance Estimation to Combine Multiple Regression Estimates with Meta-Analysis

    ERIC Educational Resources Information Center

    Williams, Ryan

    2013-01-01

    The purpose of this study was to explore the use of robust variance estimation for combining commonly specified multiple regression models and for combining sample-dependent focal slope estimates from diversely specified models. The proposed estimator obviates traditionally required information about the covariance structure of the dependent…

  3. Validity Evidence and Scoring Guidelines for Standardized Patient Encounters and Patient Notes From a Multisite Study of Clinical Performance Examinations in Seven Medical Schools.

    PubMed

    Park, Yoon Soo; Hyderi, Abbas; Heine, Nancy; May, Win; Nevins, Andrew; Lee, Ming; Bordage, Georges; Yudkowsky, Rachel

    2017-11-01

    To examine validity evidence of local graduation competency examination scores from seven medical schools using shared cases and to provide rater training protocols and guidelines for scoring patient notes (PNs). Between May and August 2016, clinical cases were developed, shared, and administered across seven medical schools (990 students participated). Raters were calibrated using training protocols, and guidelines were developed collaboratively across sites to standardize scoring. Data included scores from standardized patient encounters for history taking, physical examination, and PNs. Descriptive statistics were used to examine scores from the different assessment components. Generalizability studies (G-studies) using variance components were conducted to estimate reliability for composite scores. Validity evidence was collected for response process (rater perception), internal structure (variance components, reliability), relations to other variables (interassessment correlations), and consequences (composite score). Student performance varied by case and task. In the PNs, justification of differential diagnosis was the most discriminating task. G-studies showed that schools accounted for less than 1% of total variance; however, for the PNs, there were differences in scores for varying cases and tasks across schools, indicating a school effect. Composite score reliability was maximized when the PN was weighted between 30% and 40%. Raters preferred using case-specific scoring guidelines with clear point-scoring systems. This multisite study presents validity evidence for PN scores based on scoring rubric and case-specific scoring guidelines that offer rigor and feedback for learners. Variability in PN scores across participating sites may signal different approaches to teaching clinical reasoning among medical schools.

  4. Estimation of genetic connectedness diagnostics based on prediction errors without the prediction error variance-covariance matrix.

    PubMed

    Holmes, John B; Dodds, Ken G; Lee, Michael A

    2017-03-02

    An important issue in genetic evaluation is the comparability of random effects (breeding values), particularly between pairs of animals in different contemporary groups. This is usually referred to as genetic connectedness. While various measures of connectedness have been proposed in the literature, there is general agreement that the most appropriate measure is some function of the prediction error variance-covariance matrix. However, obtaining the prediction error variance-covariance matrix is computationally demanding for large-scale genetic evaluations. Many alternative statistics have been proposed that avoid the computational cost of obtaining the prediction error variance-covariance matrix, such as counts of genetic links between contemporary groups, gene flow matrices, and functions of the variance-covariance matrix of estimated contemporary group fixed effects. In this paper, we show that a correction to the variance-covariance matrix of estimated contemporary group fixed effects will produce the exact prediction error variance-covariance matrix averaged by contemporary group for univariate models in the presence of single or multiple fixed effects and one random effect. We demonstrate the correction for a series of models and show that approximations to the prediction error matrix based solely on the variance-covariance matrix of estimated contemporary group fixed effects are inappropriate in certain circumstances. Our method allows for the calculation of a connectedness measure based on the prediction error variance-covariance matrix by calculating only the variance-covariance matrix of estimated fixed effects. Since the number of fixed effects in genetic evaluation is usually orders of magnitudes smaller than the number of random effect levels, the computational requirements for our method should be reduced.

  5. Modeling genetic and environmental factors to increase heritability and ease the identification of candidate genes for birth weight: a twin study.

    PubMed

    Gielen, M; Lindsey, P J; Derom, C; Smeets, H J M; Souren, N Y; Paulussen, A D C; Derom, R; Nijhuis, J G

    2008-01-01

    Heritability estimates of birth weight have been inconsistent. Possible explanations are heritability changes during gestational age or the influence of covariates (e.g. chorionicity). The aim of this study was to model birth weights of twins across gestational age and to quantify the genetic and environmental components. We intended to reduce the common environmental variance to increase heritability and thereby the chance of identifying candidate genes influencing the genetic variance of birth weight. Perinatal data were obtained from 4232 live-born twin pairs from the East Flanders Prospective Twin Survey, Belgium. Heritability of birth weights across gestational ages was estimated using a non-linear multivariate Gaussian regression with covariates in the means model and in covariance structure. Maternal, twin-specific, and placental factors were considered as covariates. Heritability of birth weight decreased during gestation from 25 to 42 weeks. However, adjusting for covariates increased the heritability over this time period, with the highest heritability for first-born twins of multipara with separate placentas, who were staying alive (from 52% at 25 weeks to 30% at 42 weeks). Twin-specific factors revealed latent genetic components, whereas placental factors explained common and unique environmental factors. The number of placentas and site of the insertion of the umbilical cord masked the effect of chorionicity. Modeling genetic and environmental factors leads to a better estimate of their role in growth during gestation. For birth weight, mainly environmental factors were explained, resulting in an increase of the heritability and thereby the chance of finding genes influencing birth weight in linkage and association studies.

  6. Increased efficacy for in-house validation of real-time PCR GMO detection methods.

    PubMed

    Scholtens, I M J; Kok, E J; Hougs, L; Molenaar, B; Thissen, J T N M; van der Voet, H

    2010-03-01

    To improve the efficacy of the in-house validation of GMO detection methods (DNA isolation and real-time PCR, polymerase chain reaction), a study was performed to gain insight in the contribution of the different steps of the GMO detection method to the repeatability and in-house reproducibility. In the present study, 19 methods for (GM) soy, maize canola and potato were validated in-house of which 14 on the basis of an 8-day validation scheme using eight different samples and five on the basis of a more concise validation protocol. In this way, data was obtained with respect to the detection limit, accuracy and precision. Also, decision limits were calculated for declaring non-conformance (>0.9%) with 95% reliability. In order to estimate the contribution of the different steps in the GMO analysis to the total variation variance components were estimated using REML (residual maximum likelihood method). From these components, relative standard deviations for repeatability and reproducibility (RSD(r) and RSD(R)) were calculated. The results showed that not only the PCR reaction but also the factors 'DNA isolation' and 'PCR day' are important factors for the total variance and should therefore be included in the in-house validation. It is proposed to use a statistical model to estimate these factors from a large dataset of initial validations so that for similar GMO methods in the future, only the PCR step needs to be validated. The resulting data are discussed in the light of agreed European criteria for qualified GMO detection methods.

  7. Integrating Nonadditive Genomic Relationship Matrices into the Study of Genetic Architecture of Complex Traits.

    PubMed

    Nazarian, Alireza; Gezan, Salvador A

    2016-03-01

    The study of genetic architecture of complex traits has been dramatically influenced by implementing genome-wide analytical approaches during recent years. Of particular interest are genomic prediction strategies which make use of genomic information for predicting phenotypic responses instead of detecting trait-associated loci. In this work, we present the results of a simulation study to improve our understanding of the statistical properties of estimation of genetic variance components of complex traits, and of additive, dominance, and genetic effects through best linear unbiased prediction methodology. Simulated dense marker information was used to construct genomic additive and dominance matrices, and multiple alternative pedigree- and marker-based models were compared to determine if including a dominance term into the analysis may improve the genetic analysis of complex traits. Our results showed that a model containing a pedigree- or marker-based additive relationship matrix along with a pedigree-based dominance matrix provided the best partitioning of genetic variance into its components, especially when some degree of true dominance effects was expected to exist. Also, we noted that the use of a marker-based additive relationship matrix along with a pedigree-based dominance matrix had the best performance in terms of accuracy of correlations between true and estimated additive, dominance, and genetic effects. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. [Toward exploration of morphological diversity of measurable traits of mammalian skull. 2. Scalar and vector parameters of the forms of group variation].

    PubMed

    Lisovskiĭ, A A; Pavlinov, I Ia

    2008-01-01

    Any morphospace is partitioned by the forms of group variation, its structure is described by a set of scalar (range, overlap) and vector (direction) characteristics. They are analyzed quantitatively for the sex and age variations in the sample of 200 skulls of the pine marten described by 14 measurable traits. Standard dispersion and variance components analyses are employed, accompanied with several resampling methods (randomization and bootstrep); effects of changes in the analysis design on results of the above methods are also considered. Maximum likelihood algorithm of variance components analysis is shown to give an adequate estimates of portions of particular forms of group variation within the overall disparity. It is quite stable in respect to changes of the analysis design and therefore could be used in the explorations of the real data with variously unbalanced designs. A new algorithm of estimation of co-directionality of particular forms of group variation within the overall disparity is elaborated, which includes angle measures between eigenvectors of covariation matrices of effects of group variations calculated by dispersion analysis. A null hypothesis of random portion of a given group variation could be tested by means of randomization of the respective grouping variable. A null hypothesis of equality of both portions and directionalities of different forms of group variation could be tested by means of the bootstrep procedure.

  9. Processing of Antenna-Array Signals on the Basis of the Interference Model Including a Rank-Deficient Correlation Matrix

    NASA Astrophysics Data System (ADS)

    Rodionov, A. A.; Turchin, V. I.

    2017-06-01

    We propose a new method of signal processing in antenna arrays, which is called the Maximum-Likelihood Signal Classification. The proposed method is based on the model in which interference includes a component with a rank-deficient correlation matrix. Using numerical simulation, we show that the proposed method allows one to ensure variance of the estimated arrival angle of the plane wave, which is close to the Cramer-Rao lower boundary and more efficient than the best-known MUSIC method. It is also shown that the proposed technique can be efficiently used for estimating the time dependence of the useful signal.

  10. Estimating the number of pure chemical components in a mixture by X-ray absorption spectroscopy.

    PubMed

    Manceau, Alain; Marcus, Matthew; Lenoir, Thomas

    2014-09-01

    Principal component analysis (PCA) is a multivariate data analysis approach commonly used in X-ray absorption spectroscopy to estimate the number of pure compounds in multicomponent mixtures. This approach seeks to describe a large number of multicomponent spectra as weighted sums of a smaller number of component spectra. These component spectra are in turn considered to be linear combinations of the spectra from the actual species present in the system from which the experimental spectra were taken. The dimension of the experimental dataset is given by the number of meaningful abstract components, as estimated by the cascade or variance of the eigenvalues (EVs), the factor indicator function (IND), or the F-test on reduced EVs. It is shown on synthetic and real spectral mixtures that the performance of the IND and F-test critically depends on the amount of noise in the data, and may result in considerable underestimation or overestimation of the number of components even for a signal-to-noise (s/n) ratio of the order of 80 (σ = 20) in a XANES dataset. For a given s/n ratio, the accuracy of the component recovery from a random mixture depends on the size of the dataset and number of components, which is not known in advance, and deteriorates for larger datasets because the analysis picks up more noise components. The scree plot of the EVs for the components yields one or two values close to the significant number of components, but the result can be ambiguous and its uncertainty is unknown. A new estimator, NSS-stat, which includes the experimental error to XANES data analysis, is introduced and tested. It is shown that NSS-stat produces superior results compared with the three traditional forms of PCA-based component-number estimation. A graphical user-friendly interface for the calculation of EVs, IND, F-test and NSS-stat from a XANES dataset has been developed under LabVIEW for Windows and is supplied in the supporting information. Its possible application to EXAFS data is discussed, and several XANES and EXAFS datasets are also included for download.

  11. Influence function based variance estimation and missing data issues in case-cohort studies.

    PubMed

    Mark, S D; Katki, H

    2001-12-01

    Recognizing that the efficiency in relative risk estimation for the Cox proportional hazards model is largely constrained by the total number of cases, Prentice (1986) proposed the case-cohort design in which covariates are measured on all cases and on a random sample of the cohort. Subsequent to Prentice, other methods of estimation and sampling have been proposed for these designs. We formalize an approach to variance estimation suggested by Barlow (1994), and derive a robust variance estimator based on the influence function. We consider the applicability of the variance estimator to all the proposed case-cohort estimators, and derive the influence function when known sampling probabilities in the estimators are replaced by observed sampling fractions. We discuss the modifications required when cases are missing covariate information. The missingness may occur by chance, and be completely at random; or may occur as part of the sampling design, and depend upon other observed covariates. We provide an adaptation of S-plus code that allows estimating influence function variances in the presence of such missing covariates. Using examples from our current case-cohort studies on esophageal and gastric cancer, we illustrate how our results our useful in solving design and analytic issues that arise in practice.

  12. Comment on Hoffman and Rovine (2007): SPSS MIXED can estimate models with heterogeneous variances.

    PubMed

    Weaver, Bruce; Black, Ryan A

    2015-06-01

    Hoffman and Rovine (Behavior Research Methods, 39:101-117, 2007) have provided a very nice overview of how multilevel models can be useful to experimental psychologists. They included two illustrative examples and provided both SAS and SPSS commands for estimating the models they reported. However, upon examining the SPSS syntax for the models reported in their Table 3, we found no syntax for models 2B and 3B, both of which have heterogeneous error variances. Instead, there is syntax that estimates similar models with homogeneous error variances and a comment stating that SPSS does not allow heterogeneous errors. But that is not correct. We provide SPSS MIXED commands to estimate models 2B and 3B with heterogeneous error variances and obtain results nearly identical to those reported by Hoffman and Rovine in their Table 3. Therefore, contrary to the comment in Hoffman and Rovine's syntax file, SPSS MIXED can estimate models with heterogeneous error variances.

  13. Comparison of factor-analytic and reduced rank models for test-day milk yield in Gyr dairy cattle (Bos indicus).

    PubMed

    Pereira, R J; Ayres, D R; El Faro, L; Verneque, R S; Vercesi Filho, A E; Albuquerque, L G

    2013-09-27

    We analyzed 46,161 monthly test-day records of milk production from 7453 first lactations of crossbred dairy Gyr (Bos indicus) x Holstein cows. The following seven models were compared: standard multivariate model (M10), three reduced rank models fitting the first 2, 3, or 4 genetic principal components, and three models considering a 2-, 3-, or 4-factor structure for the genetic covariance matrix. Full rank residual covariance matrices were considered for all models. The model fitting the first two principal components (PC2) was the best according to the model selection criteria. Similar phenotypic, genetic, and residual variances were obtained with models M10 and PC2. The heritability estimates ranged from 0.14 to 0.21 and from 0.13 to 0.21 for models M10 and PC2, respectively. The genetic correlations obtained with model PC2 were slightly higher than those estimated with model M10. PC2 markedly reduced the number of parameters estimated and the time spent to reach convergence. We concluded that two principal components are sufficient to model the structure of genetic covariances between test-day milk yields.

  14. Gaussian statistics for palaeomagnetic vectors

    USGS Publications Warehouse

    Love, J.J.; Constable, C.G.

    2003-01-01

    With the aim of treating the statistics of palaeomagnetic directions and intensities jointly and consistently, we represent the mean and the variance of palaeomagnetic vectors, at a particular site and of a particular polarity, by a probability density function in a Cartesian three-space of orthogonal magnetic-field components consisting of a single (unimoda) non-zero mean, spherically-symmetrical (isotropic) Gaussian function. For palaeomagnetic data of mixed polarities, we consider a bimodal distribution consisting of a pair of such symmetrical Gaussian functions, with equal, but opposite, means and equal variances. For both the Gaussian and bi-Gaussian distributions, and in the spherical three-space of intensity, inclination, and declination, we obtain analytical expressions for the marginal density functions, the cumulative distributions, and the expected values and variances for each spherical coordinate (including the angle with respect to the axis of symmetry of the distributions). The mathematical expressions for the intensity and off-axis angle are closed-form and especially manageable, with the intensity distribution being Rayleigh-Rician. In the limit of small relative vectorial dispersion, the Gaussian (bi-Gaussian) directional distribution approaches a Fisher (Bingham) distribution and the intensity distribution approaches a normal distribution. In the opposite limit of large relative vectorial dispersion, the directional distributions approach a spherically-uniform distribution and the intensity distribution approaches a Maxwell distribution. We quantify biases in estimating the properties of the vector field resulting from the use of simple arithmetic averages, such as estimates of the intensity or the inclination of the mean vector, or the variances of these quantities. With the statistical framework developed here and using the maximum-likelihood method, which gives unbiased estimates in the limit of large data numbers, we demonstrate how to formulate the inverse problem, and how to estimate the mean and variance of the magnetic vector field, even when the data consist of mixed combinations of directions and intensities. We examine palaeomagnetic secular-variation data from Hawaii and Re??union, and although these two sites are on almost opposite latitudes, we find significant differences in the mean vector and differences in the local vectorial variances, with the Hawaiian data being particularly anisotropic. These observations are inconsistent with a description of the mean field as being a simple geocentric axial dipole and with secular variation being statistically symmetrical with respect to reflection through the equatorial plane. Finally, our analysis of palaeomagnetic acquisition data from the 1960 Kilauea flow in Hawaii and the Holocene Xitle flow in Mexico, is consistent with the widely held suspicion that directional data are more accurate than intensity data.

  15. Gaussian statistics for palaeomagnetic vectors

    NASA Astrophysics Data System (ADS)

    Love, J. J.; Constable, C. G.

    2003-03-01

    With the aim of treating the statistics of palaeomagnetic directions and intensities jointly and consistently, we represent the mean and the variance of palaeomagnetic vectors, at a particular site and of a particular polarity, by a probability density function in a Cartesian three-space of orthogonal magnetic-field components consisting of a single (unimodal) non-zero mean, spherically-symmetrical (isotropic) Gaussian function. For palaeomagnetic data of mixed polarities, we consider a bimodal distribution consisting of a pair of such symmetrical Gaussian functions, with equal, but opposite, means and equal variances. For both the Gaussian and bi-Gaussian distributions, and in the spherical three-space of intensity, inclination, and declination, we obtain analytical expressions for the marginal density functions, the cumulative distributions, and the expected values and variances for each spherical coordinate (including the angle with respect to the axis of symmetry of the distributions). The mathematical expressions for the intensity and off-axis angle are closed-form and especially manageable, with the intensity distribution being Rayleigh-Rician. In the limit of small relative vectorial dispersion, the Gaussian (bi-Gaussian) directional distribution approaches a Fisher (Bingham) distribution and the intensity distribution approaches a normal distribution. In the opposite limit of large relative vectorial dispersion, the directional distributions approach a spherically-uniform distribution and the intensity distribution approaches a Maxwell distribution. We quantify biases in estimating the properties of the vector field resulting from the use of simple arithmetic averages, such as estimates of the intensity or the inclination of the mean vector, or the variances of these quantities. With the statistical framework developed here and using the maximum-likelihood method, which gives unbiased estimates in the limit of large data numbers, we demonstrate how to formulate the inverse problem, and how to estimate the mean and variance of the magnetic vector field, even when the data consist of mixed combinations of directions and intensities. We examine palaeomagnetic secular-variation data from Hawaii and Réunion, and although these two sites are on almost opposite latitudes, we find significant differences in the mean vector and differences in the local vectorial variances, with the Hawaiian data being particularly anisotropic. These observations are inconsistent with a description of the mean field as being a simple geocentric axial dipole and with secular variation being statistically symmetrical with respect to reflection through the equatorial plane. Finally, our analysis of palaeomagnetic acquisition data from the 1960 Kilauea flow in Hawaii and the Holocene Xitle flow in Mexico, is consistent with the widely held suspicion that directional data are more accurate than intensity data.

  16. Kalman filter for statistical monitoring of forest cover across sub-continental regions [Symposium

    Treesearch

    Raymond L. Czaplewski

    1991-01-01

    The Kalman filter is a generalization of the composite estimator. The univariate composite estimate combines 2 prior estimates of population parameter with a weighted average where the scalar weight is inversely proportional to the variances. The composite estimator is a minimum variance estimator that requires no distributional assumptions other than estimates of the...

  17. A de-noising method using the improved wavelet threshold function based on noise variance estimation

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Wang, Weida; Xiang, Changle; Han, Lijin; Nie, Haizhao

    2018-01-01

    The precise and efficient noise variance estimation is very important for the processing of all kinds of signals while using the wavelet transform to analyze signals and extract signal features. In view of the problem that the accuracy of traditional noise variance estimation is greatly affected by the fluctuation of noise values, this study puts forward the strategy of using the two-state Gaussian mixture model to classify the high-frequency wavelet coefficients in the minimum scale, which takes both the efficiency and accuracy into account. According to the noise variance estimation, a novel improved wavelet threshold function is proposed by combining the advantages of hard and soft threshold functions, and on the basis of the noise variance estimation algorithm and the improved wavelet threshold function, the research puts forth a novel wavelet threshold de-noising method. The method is tested and validated using random signals and bench test data of an electro-mechanical transmission system. The test results indicate that the wavelet threshold de-noising method based on the noise variance estimation shows preferable performance in processing the testing signals of the electro-mechanical transmission system: it can effectively eliminate the interference of transient signals including voltage, current, and oil pressure and maintain the dynamic characteristics of the signals favorably.

  18. Performance of time-varying predictors in multilevel models under an assumption of fixed or random effects.

    PubMed

    Baird, Rachel; Maxwell, Scott E

    2016-06-01

    Time-varying predictors in multilevel models are a useful tool for longitudinal research, whether they are the research variable of interest or they are controlling for variance to allow greater power for other variables. However, standard recommendations to fix the effect of time-varying predictors may make an assumption that is unlikely to hold in reality and may influence results. A simulation study illustrates that treating the time-varying predictor as fixed may allow analyses to converge, but the analyses have poor coverage of the true fixed effect when the time-varying predictor has a random effect in reality. A second simulation study shows that treating the time-varying predictor as random may have poor convergence, except when allowing negative variance estimates. Although negative variance estimates are uninterpretable, results of the simulation show that estimates of the fixed effect of the time-varying predictor are as accurate for these cases as for cases with positive variance estimates, and that treating the time-varying predictor as random and allowing negative variance estimates performs well whether the time-varying predictor is fixed or random in reality. Because of the difficulty of interpreting negative variance estimates, 2 procedures are suggested for selection between fixed-effect and random-effect models: comparing between fixed-effect and constrained random-effect models with a likelihood ratio test or fitting a fixed-effect model when an unconstrained random-effect model produces negative variance estimates. The performance of these 2 procedures is compared. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  19. Linkage disequilibrium and association mapping.

    PubMed

    Weir, B S

    2008-01-01

    Linkage disequilibrium refers to the association between alleles at different loci. The standard definition applies to two alleles in the same gamete, and it can be regarded as the covariance of indicator variables for the states of those two alleles. The corresponding correlation coefficient rho is the parameter that arises naturally in discussions of tests of association between markers and genetic diseases. A general treatment of association tests makes use of the additive and nonadditive components of variance for the disease gene. In almost all expressions that describe the behavior of association tests, additive variance components are modified by the squared correlation coefficient rho2 and the nonadditive variance components by rho4, suggesting that nonadditive components have less influence than additive components on association tests.

  20. Bootstrap Estimation and Testing for Variance Equality.

    ERIC Educational Resources Information Center

    Olejnik, Stephen; Algina, James

    The purpose of this study was to develop a single procedure for comparing population variances which could be used for distribution forms. Bootstrap methodology was used to estimate the variability of the sample variance statistic when the population distribution was normal, platykurtic and leptokurtic. The data for the study were generated and…

  1. Random regression models using Legendre orthogonal polynomials to evaluate the milk production of Alpine goats.

    PubMed

    Silva, F G; Torres, R A; Brito, L F; Euclydes, R F; Melo, A L P; Souza, N O; Ribeiro, J I; Rodrigues, M T

    2013-12-11

    The objective of this study was to identify the best random regression model using Legendre orthogonal polynomials to evaluate Alpine goats genetically and to estimate the parameters for test day milk yield. On the test day, we analyzed 20,710 records of milk yield of 667 goats from the Goat Sector of the Universidade Federal de Viçosa. The evaluated models had combinations of distinct fitting orders for polynomials (2-5), random genetic (1-7), and permanent environmental (1-7) fixed curves and a number of classes for residual variance (2, 4, 5, and 6). WOMBAT software was used for all genetic analyses. A random regression model using the best Legendre orthogonal polynomial for genetic evaluation of milk yield on the test day of Alpine goats considered a fixed curve of order 4, curve of genetic additive effects of order 2, curve of permanent environmental effects of order 7, and a minimum of 5 classes of residual variance because it was the most economical model among those that were equivalent to the complete model by the likelihood ratio test. Phenotypic variance and heritability were higher at the end of the lactation period, indicating that the length of lactation has more genetic components in relation to the production peak and persistence. It is very important that the evaluation utilizes the best combination of fixed, genetic additive and permanent environmental regressions, and number of classes of heterogeneous residual variance for genetic evaluation using random regression models, thereby enhancing the precision and accuracy of the estimates of parameters and prediction of genetic values.

  2. Estimation of genetic variance for macro- and micro-environmental sensitivity using double hierarchical generalized linear models

    PubMed Central

    2013-01-01

    Background Genetic variation for environmental sensitivity indicates that animals are genetically different in their response to environmental factors. Environmental factors are either identifiable (e.g. temperature) and called macro-environmental or unknown and called micro-environmental. The objectives of this study were to develop a statistical method to estimate genetic parameters for macro- and micro-environmental sensitivities simultaneously, to investigate bias and precision of resulting estimates of genetic parameters and to develop and evaluate use of Akaike’s information criterion using h-likelihood to select the best fitting model. Methods We assumed that genetic variation in macro- and micro-environmental sensitivities is expressed as genetic variance in the slope of a linear reaction norm and environmental variance, respectively. A reaction norm model to estimate genetic variance for macro-environmental sensitivity was combined with a structural model for residual variance to estimate genetic variance for micro-environmental sensitivity using a double hierarchical generalized linear model in ASReml. Akaike’s information criterion was constructed as model selection criterion using approximated h-likelihood. Populations of sires with large half-sib offspring groups were simulated to investigate bias and precision of estimated genetic parameters. Results Designs with 100 sires, each with at least 100 offspring, are required to have standard deviations of estimated variances lower than 50% of the true value. When the number of offspring increased, standard deviations of estimates across replicates decreased substantially, especially for genetic variances of macro- and micro-environmental sensitivities. Standard deviations of estimated genetic correlations across replicates were quite large (between 0.1 and 0.4), especially when sires had few offspring. Practically, no bias was observed for estimates of any of the parameters. Using Akaike’s information criterion the true genetic model was selected as the best statistical model in at least 90% of 100 replicates when the number of offspring per sire was 100. Application of the model to lactation milk yield in dairy cattle showed that genetic variance for micro- and macro-environmental sensitivities existed. Conclusion The algorithm and model selection criterion presented here can contribute to better understand genetic control of macro- and micro-environmental sensitivities. Designs or datasets should have at least 100 sires each with 100 offspring. PMID:23827014

  3. Empirical Bayes estimation of undercount in the decennial census.

    PubMed

    Cressie, N

    1989-12-01

    Empirical Bayes methods are used to estimate the extent of the undercount at the local level in the 1980 U.S. census. "Grouping of like subareas from areas such as states, counties, and so on into strata is a useful way of reducing the variance of undercount estimators. By modeling the subareas within a stratum to have a common mean and variances inversely proportional to their census counts, and by taking into account sampling of the areas (e.g., by dual-system estimation), empirical Bayes estimators that compromise between the (weighted) stratum average and the sample value can be constructed. The amount of compromise is shown to depend on the relative importance of stratum variance to sampling variance. These estimators are evaluated at the state level (51 states, including Washington, D.C.) and stratified on race/ethnicity (3 strata) using data from the 1980 postenumeration survey (PEP 3-8, for the noninstitutional population)." excerpt

  4. Estimation of population size using open capture-recapture models

    USGS Publications Warehouse

    McDonald, T.L.; Amstrup, Steven C.

    2001-01-01

    One of the most important needs for wildlife managers is an accurate estimate of population size. Yet, for many species, including most marine species and large mammals, accurate and precise estimation of numbers is one of the most difficult of all research challenges. Open-population capture-recapture models have proven useful in many situations to estimate survival probabilities but typically have not been used to estimate population size. We show that open-population models can be used to estimate population size by developing a Horvitz-Thompson-type estimate of population size and an estimator of its variance. Our population size estimate keys on the probability of capture at each trap occasion and therefore is quite general and can be made a function of external covariates measured during the study. Here we define the estimator and investigate its bias, variance, and variance estimator via computer simulation. Computer simulations make extensive use of real data taken from a study of polar bears (Ursus maritimus) in the Beaufort Sea. The population size estimator is shown to be useful because it was negligibly biased in all situations studied. The variance estimator is shown to be useful in all situations, but caution is warranted in cases of extreme capture heterogeneity.

  5. Multivariate analysis of variance of designed chromatographic data. A case study involving fermentation of rooibos tea.

    PubMed

    Marini, Federico; de Beer, Dalene; Walters, Nico A; de Villiers, André; Joubert, Elizabeth; Walczak, Beata

    2017-03-17

    An ultimate goal of investigations of rooibos plant material subjected to different stages of fermentation is to identify the chemical changes taking place in the phenolic composition, using an untargeted approach and chromatographic fingerprints. Realization of this goal requires, among others, identification of the main components of the plant material involved in chemical reactions during the fermentation process. Quantitative chromatographic data for the compounds for extracts of green, semi-fermented and fermented rooibos form the basis of preliminary study following a targeted approach. The aim is to estimate whether treatment has a significant effect based on all quantified compounds and to identify the compounds, which contribute significantly to it. Analysis of variance is performed using modern multivariate methods such as ANOVA-Simultaneous Component Analysis, ANOVA - Target Projection and regularized MANOVA. This study is the first one in which all three approaches are compared and evaluated. For the data studied, all tree methods reveal the same significance of the fermentation effect on the extract compositions, but they lead to its different interpretation. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Precipitation estimation in mountainous terrain using multivariate geostatistics. Part II: isohyetal maps

    USGS Publications Warehouse

    Hevesi, Joseph A.; Flint, Alan L.; Istok, Jonathan D.

    1992-01-01

    Values of average annual precipitation (AAP) may be important for hydrologic characterization of a potential high-level nuclear-waste repository site at Yucca Mountain, Nevada. Reliable measurements of AAP are sparse in the vicinity of Yucca Mountain, and estimates of AAP were needed for an isohyetal mapping over a 2600-square-mile watershed containing Yucca Mountain. Estimates were obtained with a multivariate geostatistical model developed using AAP and elevation data from a network of 42 precipitation stations in southern Nevada and southeastern California. An additional 1531 elevations were obtained to improve estimation accuracy. Isohyets representing estimates obtained using univariate geostatistics (kriging) defined a smooth and continuous surface. Isohyets representing estimates obtained using multivariate geostatistics (cokriging) defined an irregular surface that more accurately represented expected local orographic influences on AAP. Cokriging results included a maximum estimate within the study area of 335 mm at an elevation of 7400 ft, an average estimate of 157 mm for the study area, and an average estimate of 172 mm at eight locations in the vicinity of the potential repository site. Kriging estimates tended to be lower in comparison because the increased AAP expected for remote mountainous topography was not adequately represented by the available sample. Regression results between cokriging estimates and elevation were similar to regression results between measured AAP and elevation. The position of the cokriging 250-mm isohyet relative to the boundaries of pinyon pine and juniper woodlands provided indirect evidence of improved estimation accuracy because the cokriging result agreed well with investigations by others concerning the relationship between elevation, vegetation, and climate in the Great Basin. Calculated estimation variances were also mapped and compared to evaluate improvements in estimation accuracy. Cokriging estimation variances were reduced by an average of 54% relative to kriging variances within the study area. Cokriging reduced estimation variances at the potential repository site by 55% relative to kriging. The usefulness of an existing network of stations for measuring AAP within the study area was evaluated using cokriging variances, and twenty additional stations were located for the purpose of improving the accuracy of future isohyetal mappings. Using the expanded network of stations, the maximum cokriging estimation variance within the study area was reduced by 78% relative to the existing network, and the average estimation variance was reduced by 52%.

  7. A method to estimate the contribution of regional genetic associations to complex traits from summary association statistics.

    PubMed

    Pare, Guillaume; Mao, Shihong; Deng, Wei Q

    2016-06-08

    Despite considerable efforts, known genetic associations only explain a small fraction of predicted heritability. Regional associations combine information from multiple contiguous genetic variants and can improve variance explained at established association loci. However, regional associations are not easily amenable to estimation using summary association statistics because of sensitivity to linkage disequilibrium (LD). We now propose a novel method, LD Adjusted Regional Genetic Variance (LARGV), to estimate phenotypic variance explained by regional associations using summary statistics while accounting for LD. Our method is asymptotically equivalent to a multiple linear regression model when no interaction or haplotype effects are present. It has several applications, such as ranking of genetic regions according to variance explained or comparison of variance explained by two or more regions. Using height and BMI data from the Health Retirement Study (N = 7,776), we show that most genetic variance lies in a small proportion of the genome and that previously identified linkage peaks have higher than expected regional variance.

  8. Impact of an equality constraint on the class-specific residual variances in regression mixtures: A Monte Carlo simulation study

    PubMed Central

    Kim, Minjung; Lamont, Andrea E.; Jaki, Thomas; Feaster, Daniel; Howe, George; Van Horn, M. Lee

    2015-01-01

    Regression mixture models are a novel approach for modeling heterogeneous effects of predictors on an outcome. In the model building process residual variances are often disregarded and simplifying assumptions made without thorough examination of the consequences. This simulation study investigated the impact of an equality constraint on the residual variances across latent classes. We examine the consequence of constraining the residual variances on class enumeration (finding the true number of latent classes) and parameter estimates under a number of different simulation conditions meant to reflect the type of heterogeneity likely to exist in applied analyses. Results showed that bias in class enumeration increased as the difference in residual variances between the classes increased. Also, an inappropriate equality constraint on the residual variances greatly impacted estimated class sizes and showed the potential to greatly impact parameter estimates in each class. Results suggest that it is important to make assumptions about residual variances with care and to carefully report what assumptions were made. PMID:26139512

  9. A method to estimate the contribution of regional genetic associations to complex traits from summary association statistics

    PubMed Central

    Pare, Guillaume; Mao, Shihong; Deng, Wei Q.

    2016-01-01

    Despite considerable efforts, known genetic associations only explain a small fraction of predicted heritability. Regional associations combine information from multiple contiguous genetic variants and can improve variance explained at established association loci. However, regional associations are not easily amenable to estimation using summary association statistics because of sensitivity to linkage disequilibrium (LD). We now propose a novel method, LD Adjusted Regional Genetic Variance (LARGV), to estimate phenotypic variance explained by regional associations using summary statistics while accounting for LD. Our method is asymptotically equivalent to a multiple linear regression model when no interaction or haplotype effects are present. It has several applications, such as ranking of genetic regions according to variance explained or comparison of variance explained by two or more regions. Using height and BMI data from the Health Retirement Study (N = 7,776), we show that most genetic variance lies in a small proportion of the genome and that previously identified linkage peaks have higher than expected regional variance. PMID:27273519

  10. Unique relation between surface-limited evaporation and relative humidity profiles holds in both field data and climate model simulations

    NASA Astrophysics Data System (ADS)

    Salvucci, G.; Rigden, A. J.; Gentine, P.; Lintner, B. R.

    2013-12-01

    A new method was recently proposed for estimating evapotranspiration (ET) from weather station data without requiring measurements of surface limiting factors (e.g. soil moisture, leaf area, canopy conductance) [Salvucci and Gentine, 2013, PNAS, 110(16): 6287-6291]. Required measurements include diurnal air temperature, specific humidity, wind speed, net shortwave radiation, and either measured or estimated incoming longwave radiation and ground heat flux. The approach is built around the idea that the key, rate-limiting, parameter of typical ET models, the land-surface resistance to water vapor transport, can be estimated from an emergent relationship between the diurnal cycle of the relative humidity profile and ET. The emergent relation is that the vertical variance of the relative humidity profile is less than what would occur for increased or decreased evaporation rates, suggesting that land-atmosphere feedback processes minimize this variance. This relation was found to hold over a wide range of climate conditions (arid to humid) and limiting factors (soil moisture, leaf area, energy) at a set of Ameriflux field sites. While the field tests in Salvucci and Gentine (2013) supported the minimum variance hypothesis, the analysis did not reveal the mechanisms responsible for the behavior. Instead the paper suggested, heuristically, that the results were due to an equilibration of the relative humidity between the land surface and the surface layer of the boundary layer. Here we apply this method using surface meteorological fields simulated by a global climate model (GCM), and compare the predicted ET to that simulated by the climate model. Similar to the field tests, the GCM simulated ET is in agreement with that predicted by minimizing the profile relative humidity variance. A reasonable interpretation of these results is that the feedbacks responsible for the minimization of the profile relative humidity variance in nature are represented in the climate model. The climate model components, in particular the land surface model and boundary layer representation, can thus be analyzed in controlled numerical experiments to discern the specific processes leading to the observed behavior. Results of this analysis will be presented.

  11. Characterization of turbulence stability through the identification of multifractional Brownian motions

    NASA Astrophysics Data System (ADS)

    Lee, K. C.

    2013-02-01

    Multifractional Brownian motions have become popular as flexible models in describing real-life signals of high-frequency features in geoscience, microeconomics, and turbulence, to name a few. The time-changing Hurst exponent, which describes regularity levels depending on time measurements, and variance, which relates to an energy level, are two parameters that characterize multifractional Brownian motions. This research suggests a combined method of estimating the time-changing Hurst exponent and variance using the local variation of sampled paths of signals. The method consists of two phases: initially estimating global variance and then accurately estimating the time-changing Hurst exponent. A simulation study shows its performance in estimation of the parameters. The proposed method is applied to characterization of atmospheric stability in which descriptive statistics from the estimated time-changing Hurst exponent and variance classify stable atmosphere flows from unstable ones.

  12. Optimal design criteria - prediction vs. parameter estimation

    NASA Astrophysics Data System (ADS)

    Waldl, Helmut

    2014-05-01

    G-optimality is a popular design criterion for optimal prediction, it tries to minimize the kriging variance over the whole design region. A G-optimal design minimizes the maximum variance of all predicted values. If we use kriging methods for prediction it is self-evident to use the kriging variance as a measure of uncertainty for the estimates. Though the computation of the kriging variance and even more the computation of the empirical kriging variance is computationally very costly and finding the maximum kriging variance in high-dimensional regions can be time demanding such that we cannot really find the G-optimal design with nowadays available computer equipment in practice. We cannot always avoid this problem by using space-filling designs because small designs that minimize the empirical kriging variance are often non-space-filling. D-optimality is the design criterion related to parameter estimation. A D-optimal design maximizes the determinant of the information matrix of the estimates. D-optimality in terms of trend parameter estimation and D-optimality in terms of covariance parameter estimation yield basically different designs. The Pareto frontier of these two competing determinant criteria corresponds with designs that perform well under both criteria. Under certain conditions searching the G-optimal design on the above Pareto frontier yields almost as good results as searching the G-optimal design in the whole design region. In doing so the maximum of the empirical kriging variance has to be computed only a few times though. The method is demonstrated by means of a computer simulation experiment based on data provided by the Belgian institute Management Unit of the North Sea Mathematical Models (MUMM) that describe the evolution of inorganic and organic carbon and nutrients, phytoplankton, bacteria and zooplankton in the Southern Bight of the North Sea.

  13. Development of a technique for estimating noise covariances using multiple observers

    NASA Technical Reports Server (NTRS)

    Bundick, W. Thomas

    1988-01-01

    Friedland's technique for estimating the unknown noise variances of a linear system using multiple observers has been extended by developing a general solution for the estimates of the variances, developing the statistics (mean and standard deviation) of these estimates, and demonstrating the solution on two examples.

  14. Validation of the Maslach Burnout Inventory-Human Services Survey for Estimating Burnout in Dental Students.

    PubMed

    Montiel-Company, José María; Subirats-Roig, Cristian; Flores-Martí, Pau; Bellot-Arcís, Carlos; Almerich-Silla, José Manuel

    2016-11-01

    The aim of this study was to examine the validity and reliability of the Maslach Burnout Inventory-Human Services Survey (MBI-HSS) as a tool for assessing the prevalence and level of burnout in dental students in Spanish universities. The survey was adapted from English to Spanish. A sample of 533 dental students from 15 Spanish universities and a control group of 188 medical students self-administered the survey online, using the Google Drive service. The test-retest reliability or reproducibility showed an Intraclass Correlation Coefficient of 0.95. The internal consistency of the survey was 0.922. Testing the construct validity showed two components with an eigenvalue greater than 1.5, which explained 51.2% of the total variance. Factor I (36.6% of the variance) comprised the items that estimated emotional exhaustion and depersonalization. Factor II (14.6% of the variance) contained the items that estimated personal accomplishment. The cut-off point for the existence of burnout achieved a sensitivity of 92.2%, a specificity of 92.1%, and an area under the curve of 0.96. Comparison of the total dental students sample and the control group of medical students showed significantly higher burnout levels for the dental students (50.3% vs. 40.4%). In this study, the MBI-HSS was found to be viable, valid, and reliable for measuring burnout in dental students. Since the study also found that the dental students suffered from high levels of this syndrome, these results suggest the need for preventive burnout control programs.

  15. A robust pseudo-inverse spectral filter applied to the Earth Radiation Budget Experiment (ERBE) scanning channels

    NASA Technical Reports Server (NTRS)

    Avis, L. M.; Green, R. N.; Suttles, J. T.; Gupta, S. K.

    1984-01-01

    Computer simulations of a least squares estimator operating on the ERBE scanning channels are discussed. The estimator is designed to minimize the errors produced by nonideal spectral response to spectrally varying and uncertain radiant input. The three ERBE scanning channels cover a shortwave band a longwave band and a ""total'' band from which the pseudo inverse spectral filter estimates the radiance components in the shortwave band and a longwave band. The radiance estimator draws on instantaneous field of view (IFOV) scene type information supplied by another algorithm of the ERBE software, and on a priori probabilistic models of the responses of the scanning channels to the IFOV scene types for given Sun scene spacecraft geometry. It is found that the pseudoinverse spectral filter is stable, tolerant of errors in scene identification and in channel response modeling, and, in the absence of such errors, yields minimum variance and essentially unbiased radiance estimates.

  16. Genotype by environment (climate) interaction improves genomic prediction for production traits in US Holstein cattle.

    PubMed

    Tiezzi, F; de Los Campos, G; Parker Gaddis, K L; Maltecca, C

    2017-03-01

    Genotype by environment interaction (G × E) in dairy cattle productive traits has been shown to exist, but current genetic evaluation methods do not take this component into account. As several environmental descriptors (e.g., climate, farming system) are known to vary within the United States, not accounting for the G × E could lead to reranking of bulls and loss in genetic gain. Using test-day records on milk yield, somatic cell score, fat, and protein percentage from all over the United States, we computed within herd-year-season daughter yield deviations for 1,087 Holstein bulls and regressed them on genetic and environmental information to estimate variance components and to assess prediction accuracy. Genomic information was obtained from a 50k SNP marker panel. Environmental effect inputs included herd (160 levels), geographical region (7 levels), geographical location (2 variables), climate information (7 variables), and management conditions of the herds (16 total variables divided in 4 subgroups). For each set of environmental descriptors, environmental, genomic, and G × E components were sequentially fitted. Variance components estimates confirmed the presence of G × E on milk yield, with its effect being larger than main genetic effect and the environmental effect for some models. Conversely, G × E was moderate for somatic cell score and small for milk composition. Genotype by environment interaction, when included, partially eroded the genomic effect (as compared with the models where G × E was not included), suggesting that the genomic variance could at least in part be attributed to G × E not appropriately accounted for. Model predictive ability was assessed using 3 cross-validation schemes (new bulls, incomplete progeny test, and new environmental conditions), and performance was compared with a reference model including only the main genomic effect. In each scenario, at least 1 of the models including G × E was able to perform better than the reference model, although it was not possible to find the overall best-performing model that included the same set of environmental descriptors. In general, the methodology used is promising in accounting for G × E in genomic predictions, but challenges exist in identifying a unique set of covariates capable of describing the entire variety of environments. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Consistent Small-Sample Variances for Six Gamma-Family Measures of Ordinal Association

    ERIC Educational Resources Information Center

    Woods, Carol M.

    2009-01-01

    Gamma-family measures are bivariate ordinal correlation measures that form a family because they all reduce to Goodman and Kruskal's gamma in the absence of ties (1954). For several gamma-family indices, more than one variance estimator has been introduced. In previous research, the "consistent" variance estimator described by Cliff and…

  18. Estimating the Reliability of Single-Item Life Satisfaction Measures: Results from Four National Panel Studies

    ERIC Educational Resources Information Center

    Lucas, Richard E.; Donnellan, M. Brent

    2012-01-01

    Life satisfaction is often assessed using single-item measures. However, estimating the reliability of these measures can be difficult because internal consistency coefficients cannot be calculated. Existing approaches use longitudinal data to isolate occasion-specific variance from variance that is either completely stable or variance that…

  19. Estimation of Variance in the Case of Complex Samples.

    ERIC Educational Resources Information Center

    Groenewald, A. C.; Stoker, D. J.

    In a complex sampling scheme it is desirable to select the primary sampling units (PSUs) without replacement to prevent duplications in the sample. Since the estimation of the sampling variances is more complicated when the PSUs are selected without replacement, L. Kish (1965) recommends that the variance be calculated using the formulas…

  20. Cross-frequency and band-averaged response variance prediction in the hybrid deterministic-statistical energy analysis method

    NASA Astrophysics Data System (ADS)

    Reynders, Edwin P. B.; Langley, Robin S.

    2018-08-01

    The hybrid deterministic-statistical energy analysis method has proven to be a versatile framework for modeling built-up vibro-acoustic systems. The stiff system components are modeled deterministically, e.g., using the finite element method, while the wave fields in the flexible components are modeled as diffuse. In the present paper, the hybrid method is extended such that not only the ensemble mean and variance of the harmonic system response can be computed, but also of the band-averaged system response. This variance represents the uncertainty that is due to the assumption of a diffuse field in the flexible components of the hybrid system. The developments start with a cross-frequency generalization of the reciprocity relationship between the total energy in a diffuse field and the cross spectrum of the blocked reverberant loading at the boundaries of that field. By making extensive use of this generalization in a first-order perturbation analysis, explicit expressions are derived for the cross-frequency and band-averaged variance of the vibrational energies in the diffuse components and for the cross-frequency and band-averaged variance of the cross spectrum of the vibro-acoustic field response of the deterministic components. These expressions are extensively validated against detailed Monte Carlo analyses of coupled plate systems in which diffuse fields are simulated by randomly distributing small point masses across the flexible components, and good agreement is found.

  1. Heritability of somatotype components from early adolescence into young adulthood: a multivariate analysis on a longitudinal twin study.

    PubMed

    Peeters, M W; Thomis, M A; Claessens, A L; Loos, R J F; Maes, H H M; Lysens, R; Vanden Eynde, B; Vlietinck, R; Beunen, G

    2003-01-01

    Several studies with different designs have attempted to estimate the heritability of somatotype components. However they often ignore the covariation between the three components as well as possible sex and age effects. Shared environmental factors are not always controlled for. This study explores the pattern of genetic and environmental determination of the variation in Heath-Carter somatotype components from early adolescence into young adulthood. Data from the Leuven Longitudinal Twin Study, a longitudinal sample of Belgian same-aged twins followed from 10 to 18 years (n = 105 pairs, equally divided over five zygosity groups), is entered into a multivariate path analysis. Thus the covariation between the somatotype components is taken into account, gender heterogeneity can be tested, common environmental influences can be distinguished from genetic effects and age effects are controlled for. Heritability estimates from 10 to 18 years range from 0.21 to 0.88, 0.46 to 0.76 and 0.16 to 0.73 for endomorphy, mesomorphy and ectomorphy in boys. In girls, heritability estimates range from 0.76 to 0.89, 0.36 to 0.57 and 0.57 to 0.76 for the respective somatotype components. Sex differences are significant from 14 years onwards. More than half of the variance in all somatotype components for both sexes at all time points is explained by factors the three components have in common. The finding of substantial genetic influence on the variability of somatotype components is further supported. The need to consider somatotype as a whole is stressed as well as the need for sex- and perhaps age-specific analyses. Further multivariate analyses are needed to confirm the present findings.

  2. Influence of mom and dad: quantitative genetic models for maternal effects and genomic imprinting.

    PubMed

    Santure, Anna W; Spencer, Hamish G

    2006-08-01

    The expression of an imprinted gene is dependent on the sex of the parent it was inherited from, and as a result reciprocal heterozygotes may display different phenotypes. In contrast, maternal genetic terms arise when the phenotype of an offspring is influenced by the phenotype of its mother beyond the direct inheritance of alleles. Both maternal effects and imprinting may contribute to resemblance between offspring of the same mother. We demonstrate that two standard quantitative genetic models for deriving breeding values, population variances and covariances between relatives, are not equivalent when maternal genetic effects and imprinting are acting. Maternal and imprinting effects introduce both sex-dependent and generation-dependent effects that result in differences in the way additive and dominance effects are defined for the two approaches. We use a simple example to demonstrate that both imprinting and maternal genetic effects add extra terms to covariances between relatives and that model misspecification may over- or underestimate true covariances or lead to extremely variable parameter estimation. Thus, an understanding of various forms of parental effects is essential in correctly estimating quantitative genetic variance components.

  3. Experimental Effects and Individual Differences in Linear Mixed Models: Estimating the Relationship between Spatial, Object, and Attraction Effects in Visual Attention

    PubMed Central

    Kliegl, Reinhold; Wei, Ping; Dambacher, Michael; Yan, Ming; Zhou, Xiaolin

    2011-01-01

    Linear mixed models (LMMs) provide a still underused methodological perspective on combining experimental and individual-differences research. Here we illustrate this approach with two-rectangle cueing in visual attention (Egly et al., 1994). We replicated previous experimental cue-validity effects relating to a spatial shift of attention within an object (spatial effect), to attention switch between objects (object effect), and to the attraction of attention toward the display centroid (attraction effect), also taking into account the design-inherent imbalance of valid and other trials. We simultaneously estimated variance/covariance components of subject-related random effects for these spatial, object, and attraction effects in addition to their mean reaction times (RTs). The spatial effect showed a strong positive correlation with mean RT and a strong negative correlation with the attraction effect. The analysis of individual differences suggests that slow subjects engage attention more strongly at the cued location than fast subjects. We compare this joint LMM analysis of experimental effects and associated subject-related variances and correlations with two frequently used alternative statistical procedures. PMID:21833292

  4. Design tradeoffs for trend assessment in aquatic biological monitoring programs

    USGS Publications Warehouse

    Gurtz, Martin E.; Van Sickle, John; Carlisle, Daren M.; Paulsen, Steven G.

    2013-01-01

    Assessments of long-term (multiyear) temporal trends in biological monitoring programs are generally undertaken without an adequate understanding of the temporal variability of biological communities. When the sources and levels of variability are unknown, managers cannot make informed choices in sampling design to achieve monitoring goals in a cost-effective manner. We evaluated different trend sampling designs by estimating components of both short- and long-term variability in biological indicators of water quality in streams. Invertebrate samples were collected from 32 sites—9 urban, 6 agricultural, and 17 relatively undisturbed (reference) streams—distributed throughout the United States. Between 5 and 12 yearly samples were collected at each site during the period 1993–2008, plus 2 samples within a 10-week index period during either 2007 or 2008. These data allowed calculation of four sources of variance for invertebrate indicators: among sites, among years within sites, interaction among sites and years (site-specific annual variation), and among samples collected within an index period at a site (residual). When estimates of these variance components are known, changes to sampling design can be made to improve trend detection. Design modifications that result in the ability to detect the smallest trend with the fewest samples are, from most to least effective: (1) increasing the number of years in the sampling period (duration of the monitoring program), (2) decreasing the interval between samples, and (3) increasing the number of repeat-visit samples per year (within an index period). This order of improvement in trend detection, which achieves the greatest gain for the fewest samples, is the same whether trends are assessed at an individual site or an average trend of multiple sites. In multiple-site surveys, increasing the number of sites has an effect similar to that of decreasing the sampling interval; the benefit of adding sites is greater when a new set of different sites is selected for each sampling effort than when the same sites are sampled each time. Understanding variance components of the ecological attributes of interest can lead to more cost-effective monitoring designs to detect trends.

  5. Spatial correlation of probabilistic earthquake ground motion and loss

    USGS Publications Warehouse

    Wesson, R.L.; Perkins, D.M.

    2001-01-01

    Spatial correlation of annual earthquake ground motions and losses can be used to estimate the variance of annual losses to a portfolio of properties exposed to earthquakes A direct method is described for the calculations of the spatial correlation of earthquake ground motions and losses. Calculations for the direct method can be carried out using either numerical quadrature or a discrete, matrix-based approach. Numerical results for this method are compared with those calculated from a simple Monte Carlo simulation. Spatial correlation of ground motion and loss is induced by the systematic attenuation of ground motion with distance from the source, by common site conditions, and by the finite length of fault ruptures. Spatial correlation is also strongly dependent on the partitioning of the variability, given an event, into interevent and intraevent components. Intraevent variability reduces the spatial correlation of losses. Interevent variability increases spatial correlation of losses. The higher the spatial correlation, the larger the variance in losses to a port-folio, and the more likely extreme values become. This result underscores the importance of accurately determining the relative magnitudes of intraevent and interevent variability in ground-motion studies, because of the strong impact in estimating earthquake losses to a portfolio. The direct method offers an alternative to simulation for calculating the variance of losses to a portfolio, which may reduce the amount of calculation required.

  6. Genetic influences of sports participation in Portuguese families.

    PubMed

    Seabra, André F; Mendonça, Denisa M; Göring, Harald H H; Thomis, Martine A; Maia, José A

    2014-01-01

    To estimate familial aggregation and quantify the genetic and environmental contribution to the phenotypic variation on sports participation (SP) among Portuguese families. The sample consisted of 2375 nuclear families (parents and two offspring each) from different regions of Portugal with a total of 9500 subjects. SP assessment was based on a psychometrically established questionnaire. Phenotypes used were based on the participation in sports (yes/no), intensity of sport, weekly amount of time in SP and the proportion of the year in which a sport was regularly played. Familial correlations were calculated using family correlations (FCOR) in the SAGE software. Heritability was estimated using variance-components methods implemented in Sequential Oligogenic Linkage Analysis Routines (SOLAR) software. Subjects of the same generation tend to be more similar in their SP habits than the subjects of different generations. In all SP phenotypes studied, adjusted for the effects of multiple covariates, the proportion of phenotypic variance due to additive genetic factors ranged between 40% and 50%. The proportion of variance attributable to environmental factors ranged from 50% for the participation in sports to 60% for intensity of sport. In this large population-based family study, there was significant familial aggregation on SP. These results highlight that the variation on SP phenotypes have a significant genetic contribution although environmental factors are also important in the familial resemblance of SP.

  7. Chemistry Experiments

    NASA Technical Reports Server (NTRS)

    Brasseur, Guy; Remsberg, Ellis; Purcell, Patrick; Bhatt, Praful; Sage, Karen H.; Brown, Donald E.; Scott, Courtney J.; Ko, Malcolm K. W.; Tie, Xue-Xi; Huang, Theresa

    1999-01-01

    The purpose of the chemistry component of the model comparison is to assess to what extent differences in the formulation of chemical processes explain the variance between model results. Observed concentrations of chemical compounds are used to estimate to what degree the various models represent realistic situations. For readability, the materials for the chemistry experiment are reported in three separate sections. This section discussed the data used to evaluate the models in their simulation of the source gases and the Nitrogen compounds (NO(y)) and Chlorine compounds (Cl(y)) species.

  8. It Depends on the Partner: Person-Related Sources of Efficacy Beliefs and Performance for Athlete Pairs.

    PubMed

    Habeeb, Christine M; Eklund, Robert C; Coffee, Pete

    2017-06-01

    This study explored person-related sources of variance in athletes' efficacy beliefs and performances when performing in pairs with distinguishable roles differing in partner dependence. College cheerleaders (n = 102) performed their role in repeated performance trials of two low- and two high-difficulty paired-stunt tasks with three different partners. Data were obtained on self-, other-, and collective efficacy beliefs and subjective performances, and objective performance assessments were obtained from digital recordings. Using the social relations model framework, total variance in each belief/assessment was partitioned, for each role, into numerical components of person-related variance relative to the self, the other, and the collective. Variance component by performance role by task-difficulty repeated-measures analysis of variances revealed that the largest person-related variance component differed by athlete role and increased in size in high-difficulty tasks. Results suggest that the extent the athlete's performance depends on a partner relates to the extent the partner is a source of self-, other-, and collective efficacy beliefs.

  9. Neuroticism explains unwanted variance in Implicit Association Tests of personality: possible evidence for an affective valence confound.

    PubMed

    Fleischhauer, Monika; Enge, Sören; Miller, Robert; Strobel, Alexander; Strobel, Anja

    2013-01-01

    Meta-analytic data highlight the value of the Implicit Association Test (IAT) as an indirect measure of personality. Based on evidence suggesting that confounding factors such as cognitive abilities contribute to the IAT effect, this study provides a first investigation of whether basic personality traits explain unwanted variance in the IAT. In a gender-balanced sample of 204 volunteers, the Big-Five dimensions were assessed via self-report, peer-report, and IAT. By means of structural equation modeling (SEM), latent Big-Five personality factors (based on self- and peer-report) were estimated and their predictive value for unwanted variance in the IAT was examined. In a first analysis, unwanted variance was defined in the sense of method-specific variance which may result from differences in task demands between the two IAT block conditions and which can be mirrored by the absolute size of the IAT effects. In a second analysis, unwanted variance was examined in a broader sense defined as those systematic variance components in the raw IAT scores that are not explained by the latent implicit personality factors. In contrast to the absolute IAT scores, this also considers biases associated with the direction of IAT effects (i.e., whether they are positive or negative in sign), biases that might result, for example, from the IAT's stimulus or category features. None of the explicit Big-Five factors was predictive for method-specific variance in the IATs (first analysis). However, when considering unwanted variance that goes beyond pure method-specific variance (second analysis), a substantial effect of neuroticism occurred that may have been driven by the affective valence of IAT attribute categories and the facilitated processing of negative stimuli, typically associated with neuroticism. The findings thus point to the necessity of using attribute category labels and stimuli of similar affective valence in personality IATs to avoid confounding due to recoding.

  10. Mapping carcass and meat quality QTL on Sus Scrofa chromosome 2 in commercial finishing pigs

    PubMed Central

    Heuven, Henri CM; van Wijk, Rik HJ; Dibbits, Bert; van Kampen, Tony A; Knol, Egbert F; Bovenhuis, Henk

    2009-01-01

    Quantitative trait loci (QTL) affecting carcass and meat quality located on SSC2 were identified using variance component methods. A large number of traits involved in meat and carcass quality was detected in a commercial crossbred population: 1855 pigs sired by 17 boars from a synthetic line, which where homozygous (A/A) for IGF2. Using combined linkage and linkage disequilibrium mapping (LDLA), several QTL significantly affecting loin muscle mass, ham weight and ham muscles (outer ham and knuckle ham) and meat quality traits, such as Minolta-L* and -b*, ultimate pH and Japanese colour score were detected. These results agreed well with previous QTL-studies involving SSC2. Since our study is carried out on crossbreds, different QTL may be segregating in the parental lines. To address this question, we compared models with a single QTL-variance component with models allowing for separate sire and dam QTL-variance components. The same QTL were identified using a single QTL variance component model compared to a model allowing for separate variances with minor differences with respect to QTL location. However, the variance component method made it possible to detect QTL segregating in the paternal line (e.g. HAMB), the maternal lines (e.g. Ham) or in both (e.g. pHu). Combining association and linkage information among haplotypes improved slightly the significance of the QTL compared to an analysis using linkage information only. PMID:19284675

  11. Nonparametric estimation of plant density by the distance method

    USGS Publications Warehouse

    Patil, S.A.; Burnham, K.P.; Kovner, J.L.

    1979-01-01

    A relation between the plant density and the probability density function of the nearest neighbor distance (squared) from a random point is established under fairly broad conditions. Based upon this relationship, a nonparametric estimator for the plant density is developed and presented in terms of order statistics. Consistency and asymptotic normality of the estimator are discussed. An interval estimator for the density is obtained. The modifications of this estimator and its variance are given when the distribution is truncated. Simulation results are presented for regular, random and aggregated populations to illustrate the nonparametric estimator and its variance. A numerical example from field data is given. Merits and deficiencies of the estimator are discussed with regard to its robustness and variance.

  12. Genetic analysis of milk production traits of Tunisian Holsteins using random regression test-day model with Legendre polynomials

    PubMed Central

    2018-01-01

    Objective The objective of this study was to estimate genetic parameters of milk, fat, and protein yields within and across lactations in Tunisian Holsteins using a random regression test-day (TD) model. Methods A random regression multiple trait multiple lactation TD model was used to estimate genetic parameters in the Tunisian dairy cattle population. Data were TD yields of milk, fat, and protein from the first three lactations. Random regressions were modeled with third-order Legendre polynomials for the additive genetic, and permanent environment effects. Heritabilities, and genetic correlations were estimated by Bayesian techniques using the Gibbs sampler. Results All variance components tended to be high in the beginning and the end of lactations. Additive genetic variances for milk, fat, and protein yields were the lowest and were the least variable compared to permanent variances. Heritability values tended to increase with parity. Estimates of heritabilities for 305-d yield-traits were low to moderate, 0.14 to 0.2, 0.12 to 0.17, and 0.13 to 0.18 for milk, fat, and protein yields, respectively. Within-parity, genetic correlations among traits were up to 0.74. Genetic correlations among lactations for the yield traits were relatively high and ranged from 0.78±0.01 to 0.82±0.03, between the first and second parities, from 0.73±0.03 to 0.8±0.04 between the first and third parities, and from 0.82±0.02 to 0.84±0.04 between the second and third parities. Conclusion These results are comparable to previously reported estimates on the same population, indicating that the adoption of a random regression TD model as the official genetic evaluation for production traits in Tunisia, as developed by most Interbull countries, is possible in the Tunisian Holsteins. PMID:28823122

  13. Genetic analysis of milk production traits of Tunisian Holsteins using random regression test-day model with Legendre polynomials.

    PubMed

    Ben Zaabza, Hafedh; Ben Gara, Abderrahmen; Rekik, Boulbaba

    2018-05-01

    The objective of this study was to estimate genetic parameters of milk, fat, and protein yields within and across lactations in Tunisian Holsteins using a random regression test-day (TD) model. A random regression multiple trait multiple lactation TD model was used to estimate genetic parameters in the Tunisian dairy cattle population. Data were TD yields of milk, fat, and protein from the first three lactations. Random regressions were modeled with third-order Legendre polynomials for the additive genetic, and permanent environment effects. Heritabilities, and genetic correlations were estimated by Bayesian techniques using the Gibbs sampler. All variance components tended to be high in the beginning and the end of lactations. Additive genetic variances for milk, fat, and protein yields were the lowest and were the least variable compared to permanent variances. Heritability values tended to increase with parity. Estimates of heritabilities for 305-d yield-traits were low to moderate, 0.14 to 0.2, 0.12 to 0.17, and 0.13 to 0.18 for milk, fat, and protein yields, respectively. Within-parity, genetic correlations among traits were up to 0.74. Genetic correlations among lactations for the yield traits were relatively high and ranged from 0.78±0.01 to 0.82±0.03, between the first and second parities, from 0.73±0.03 to 0.8±0.04 between the first and third parities, and from 0.82±0.02 to 0.84±0.04 between the second and third parities. These results are comparable to previously reported estimates on the same population, indicating that the adoption of a random regression TD model as the official genetic evaluation for production traits in Tunisia, as developed by most Interbull countries, is possible in the Tunisian Holsteins.

  14. Can Family Planning Service Statistics Be Used to Track Population-Level Outcomes?

    PubMed

    Magnani, Robert J; Ross, John; Williamson, Jessica; Weinberger, Michelle

    2018-03-21

    The need for annual family planning program tracking data under the Family Planning 2020 (FP2020) initiative has contributed to renewed interest in family planning service statistics as a potential data source for annual estimates of the modern contraceptive prevalence rate (mCPR). We sought to assess (1) how well a set of commonly recorded data elements in routine service statistics systems could, with some fairly simple adjustments, track key population-level outcome indicators, and (2) whether some data elements performed better than others. We used data from 22 countries in Africa and Asia to analyze 3 data elements collected from service statistics: (1) number of contraceptive commodities distributed to clients, (2) number of family planning service visits, and (3) number of current contraceptive users. Data quality was assessed via analysis of mean square errors, using the United Nations Population Division World Contraceptive Use annual mCPR estimates as the "gold standard." We also examined the magnitude of several components of measurement error: (1) variance, (2) level bias, and (3) slope (or trend) bias. Our results indicate modest levels of tracking error for data on commodities to clients (7%) and service visits (10%), and somewhat higher error rates for data on current users (19%). Variance and slope bias were relatively small for all data elements. Level bias was by far the largest contributor to tracking error. Paired comparisons of data elements in countries that collected at least 2 of the 3 data elements indicated a modest advantage of data on commodities to clients. None of the data elements considered was sufficiently accurate to be used to produce reliable stand-alone annual estimates of mCPR. However, the relatively low levels of variance and slope bias indicate that trends calculated from these 3 data elements can be productively used in conjunction with the Family Planning Estimation Tool (FPET) currently used to produce annual mCPR tracking estimates for FP2020. © Magnani et al.

  15. Empirical single sample quantification of bias and variance in Q-ball imaging.

    PubMed

    Hainline, Allison E; Nath, Vishwesh; Parvathaneni, Prasanna; Blaber, Justin A; Schilling, Kurt G; Anderson, Adam W; Kang, Hakmook; Landman, Bennett A

    2018-02-06

    The bias and variance of high angular resolution diffusion imaging methods have not been thoroughly explored in the literature and may benefit from the simulation extrapolation (SIMEX) and bootstrap techniques to estimate bias and variance of high angular resolution diffusion imaging metrics. The SIMEX approach is well established in the statistics literature and uses simulation of increasingly noisy data to extrapolate back to a hypothetical case with no noise. The bias of calculated metrics can then be computed by subtracting the SIMEX estimate from the original pointwise measurement. The SIMEX technique has been studied in the context of diffusion imaging to accurately capture the bias in fractional anisotropy measurements in DTI. Herein, we extend the application of SIMEX and bootstrap approaches to characterize bias and variance in metrics obtained from a Q-ball imaging reconstruction of high angular resolution diffusion imaging data. The results demonstrate that SIMEX and bootstrap approaches provide consistent estimates of the bias and variance of generalized fractional anisotropy, respectively. The RMSE for the generalized fractional anisotropy estimates shows a 7% decrease in white matter and an 8% decrease in gray matter when compared with the observed generalized fractional anisotropy estimates. On average, the bootstrap technique results in SD estimates that are approximately 97% of the true variation in white matter, and 86% in gray matter. Both SIMEX and bootstrap methods are flexible, estimate population characteristics based on single scans, and may be extended for bias and variance estimation on a variety of high angular resolution diffusion imaging metrics. © 2018 International Society for Magnetic Resonance in Medicine.

  16. Combining Study Outcome Measures Using Dominance Adjusted Weights

    ERIC Educational Resources Information Center

    Makambi, Kepher H.; Lu, Wenxin

    2013-01-01

    Weighting of studies in meta-analysis is usually implemented by using the estimated inverse variances of treatment effect estimates. However, there is a possibility of one study dominating other studies in the estimation process by taking on a weight that is above some upper limit. We implement an estimator of the heterogeneity variance that takes…

  17. Heritability estimates of the Big Five personality traits based on common genetic variants.

    PubMed

    Power, R A; Pluess, M

    2015-07-14

    According to twin studies, the Big Five personality traits have substantial heritable components explaining 40-60% of the variance, but identification of associated genetic variants has remained elusive. Consequently, knowledge regarding the molecular genetic architecture of personality and to what extent it is shared across the different personality traits is limited. Using genomic-relatedness-matrix residual maximum likelihood analysis (GREML), we here estimated the heritability of the Big Five personality factors (extraversion, agreeableness, conscientiousness, neuroticism and openness for experience) in a sample of 5011 European adults from 527,469 single-nucleotide polymorphisms across the genome. We tested for the heritability of each personality trait, as well as for the genetic overlap between the personality factors. We found significant and substantial heritability estimates for neuroticism (15%, s.e. = 0.08, P = 0.04) and openness (21%, s.e. = 0.08, P < 0.01), but not for extraversion, agreeableness and conscientiousness. The bivariate analyses showed that the variance explained by common variants entirely overlapped between neuroticism and openness (rG = 1.00, P < 0.001), despite low phenotypic correlation (r = - 0.09, P < 0.001), suggesting that the remaining unique heritability may be determined by rare or structural variants. As far as we are aware of, this is the first study estimating the shared and unique heritability of all Big Five personality traits using the GREML approach. Findings should be considered exploratory and suggest that detectable heritability estimates based on common variants is shared between neuroticism and openness to experiences.

  18. An Empirical Temperature Variance Source Model in Heated Jets

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Bridges, James

    2012-01-01

    An acoustic analogy approach is implemented that models the sources of jet noise in heated jets. The equivalent sources of turbulent mixing noise are recognized as the differences between the fluctuating and Favre-averaged Reynolds stresses and enthalpy fluxes. While in a conventional acoustic analogy only Reynolds stress components are scrutinized for their noise generation properties, it is now accepted that a comprehensive source model should include the additional entropy source term. Following Goldstein s generalized acoustic analogy, the set of Euler equations are divided into two sets of equations that govern a non-radiating base flow plus its residual components. When the base flow is considered as a locally parallel mean flow, the residual equations may be rearranged to form an inhomogeneous third-order wave equation. A general solution is written subsequently using a Green s function method while all non-linear terms are treated as the equivalent sources of aerodynamic sound and are modeled accordingly. In a previous study, a specialized Reynolds-averaged Navier-Stokes (RANS) solver was implemented to compute the variance of thermal fluctuations that determine the enthalpy flux source strength. The main objective here is to present an empirical model capable of providing a reasonable estimate of the stagnation temperature variance in a jet. Such a model is parameterized as a function of the mean stagnation temperature gradient in the jet, and is evaluated using commonly available RANS solvers. The ensuing thermal source distribution is compared with measurements as well as computational result from a dedicated RANS solver that employs an enthalpy variance and dissipation rate model. Turbulent mixing noise predictions are presented for a wide range of jet temperature ratios from 1.0 to 3.20.

  19. Synoptic volumetric variations and flushing of the Tampa Bay estuary

    NASA Astrophysics Data System (ADS)

    Wilson, M.; Meyers, S. D.; Luther, M. E.

    2014-03-01

    Two types of analyses are used to investigate the synoptic wind-driven flushing of Tampa Bay in response to the El Niño-Southern Oscillation (ENSO) cycle from 1950 to 2007. Hourly sea level elevations from the St. Petersburg tide gauge, and wind speed and direction from three different sites around Tampa Bay are used for the study. The zonal (u) and meridional (v) wind components are rotated clockwise by 40° to obtain axial and co-axial components according to the layout of the bay. First, we use the subtidal observed water level as a proxy for mean tidal height to estimate the rate of volumetric bay outflow. Second, we use wavelet analysis to bandpass sea level and wind data in the time-frequency domain to isolate the synoptic sea level and surface wind variance. For both analyses the long-term monthly climatology is removed and we focus on the volumetric and wavelet variance anomalies. The overall correlation between the Oceanic Niño Index and volumetric analysis is small due to the seasonal dependence of the ENSO response. The mean monthly climatology between the synoptic wavelet variance of elevation and axial winds are in close agreement. During the winter, El Niño (La Niña) increases (decreases) the synoptic variability, but decreases (increases) it during the summer. The difference in winter El Niño/La Niña wavelet variances is about 20 % of the climatological value, meaning that ENSO can swing the synoptic flushing of the bay by 0.22 bay volumes per month. These changes in circulation associated with synoptic variability have the potential to impact mixing and transport within the bay.

  20. Methodological Considerations in Estimation of Phenotype Heritability Using Genome-Wide SNP Data, Illustrated by an Analysis of the Heritability of Height in a Large Sample of African Ancestry Adults

    PubMed Central

    Chen, Fang; He, Jing; Zhang, Jianqi; Chen, Gary K.; Thomas, Venetta; Ambrosone, Christine B.; Bandera, Elisa V.; Berndt, Sonja I.; Bernstein, Leslie; Blot, William J.; Cai, Qiuyin; Carpten, John; Casey, Graham; Chanock, Stephen J.; Cheng, Iona; Chu, Lisa; Deming, Sandra L.; Driver, W. Ryan; Goodman, Phyllis; Hayes, Richard B.; Hennis, Anselm J. M.; Hsing, Ann W.; Hu, Jennifer J.; Ingles, Sue A.; John, Esther M.; Kittles, Rick A.; Kolb, Suzanne; Leske, M. Cristina; Monroe, Kristine R.; Murphy, Adam; Nemesure, Barbara; Neslund-Dudas, Christine; Nyante, Sarah; Ostrander, Elaine A; Press, Michael F.; Rodriguez-Gil, Jorge L.; Rybicki, Ben A.; Schumacher, Fredrick; Stanford, Janet L.; Signorello, Lisa B.; Strom, Sara S.; Stevens, Victoria; Van Den Berg, David; Wang, Zhaoming; Witte, John S.; Wu, Suh-Yuh; Yamamura, Yuko; Zheng, Wei; Ziegler, Regina G.; Stram, Alexander H.; Kolonel, Laurence N.; Marchand, Loïc Le; Henderson, Brian E.; Haiman, Christopher A.; Stram, Daniel O.

    2015-01-01

    Height has an extremely polygenic pattern of inheritance. Genome-wide association studies (GWAS) have revealed hundreds of common variants that are associated with human height at genome-wide levels of significance. However, only a small fraction of phenotypic variation can be explained by the aggregate of these common variants. In a large study of African-American men and women (n = 14,419), we genotyped and analyzed 966,578 autosomal SNPs across the entire genome using a linear mixed model variance components approach implemented in the program GCTA (Yang et al Nat Genet 2010), and estimated an additive heritability of 44.7% (se: 3.7%) for this phenotype in a sample of evidently unrelated individuals. While this estimated value is similar to that given by Yang et al in their analyses, we remain concerned about two related issues: (1) whether in the complete absence of hidden relatedness, variance components methods have adequate power to estimate heritability when a very large number of SNPs are used in the analysis; and (2) whether estimation of heritability may be biased, in real studies, by low levels of residual hidden relatedness. We addressed the first question in a semi-analytic fashion by directly simulating the distribution of the score statistic for a test of zero heritability with and without low levels of relatedness. The second question was addressed by a very careful comparison of the behavior of estimated heritability for both observed (self-reported) height and simulated phenotypes compared to imputation R2 as a function of the number of SNPs used in the analysis. These simulations help to address the important question about whether today's GWAS SNPs will remain useful for imputing causal variants that are discovered using very large sample sizes in future studies of height, or whether the causal variants themselves will need to be genotyped de novo in order to build a prediction model that ultimately captures a large fraction of the variability of height, and by implication other complex phenotypes. Our overall conclusions are that when study sizes are quite large (5,000 or so) the additive heritability estimate for height is not apparently biased upwards using the linear mixed model; however there is evidence in our simulation that a very large number of causal variants (many thousands) each with very small effect on phenotypic variance will need to be discovered to fill the gap between the heritability explained by known versus unknown causal variants. We conclude that today's GWAS data will remain useful in the future for causal variant prediction, but that finding the causal variants that need to be predicted may be extremely laborious. PMID:26125186

  1. Methodological Considerations in Estimation of Phenotype Heritability Using Genome-Wide SNP Data, Illustrated by an Analysis of the Heritability of Height in a Large Sample of African Ancestry Adults.

    PubMed

    Chen, Fang; He, Jing; Zhang, Jianqi; Chen, Gary K; Thomas, Venetta; Ambrosone, Christine B; Bandera, Elisa V; Berndt, Sonja I; Bernstein, Leslie; Blot, William J; Cai, Qiuyin; Carpten, John; Casey, Graham; Chanock, Stephen J; Cheng, Iona; Chu, Lisa; Deming, Sandra L; Driver, W Ryan; Goodman, Phyllis; Hayes, Richard B; Hennis, Anselm J M; Hsing, Ann W; Hu, Jennifer J; Ingles, Sue A; John, Esther M; Kittles, Rick A; Kolb, Suzanne; Leske, M Cristina; Millikan, Robert C; Monroe, Kristine R; Murphy, Adam; Nemesure, Barbara; Neslund-Dudas, Christine; Nyante, Sarah; Ostrander, Elaine A; Press, Michael F; Rodriguez-Gil, Jorge L; Rybicki, Ben A; Schumacher, Fredrick; Stanford, Janet L; Signorello, Lisa B; Strom, Sara S; Stevens, Victoria; Van Den Berg, David; Wang, Zhaoming; Witte, John S; Wu, Suh-Yuh; Yamamura, Yuko; Zheng, Wei; Ziegler, Regina G; Stram, Alexander H; Kolonel, Laurence N; Le Marchand, Loïc; Henderson, Brian E; Haiman, Christopher A; Stram, Daniel O

    2015-01-01

    Height has an extremely polygenic pattern of inheritance. Genome-wide association studies (GWAS) have revealed hundreds of common variants that are associated with human height at genome-wide levels of significance. However, only a small fraction of phenotypic variation can be explained by the aggregate of these common variants. In a large study of African-American men and women (n = 14,419), we genotyped and analyzed 966,578 autosomal SNPs across the entire genome using a linear mixed model variance components approach implemented in the program GCTA (Yang et al Nat Genet 2010), and estimated an additive heritability of 44.7% (se: 3.7%) for this phenotype in a sample of evidently unrelated individuals. While this estimated value is similar to that given by Yang et al in their analyses, we remain concerned about two related issues: (1) whether in the complete absence of hidden relatedness, variance components methods have adequate power to estimate heritability when a very large number of SNPs are used in the analysis; and (2) whether estimation of heritability may be biased, in real studies, by low levels of residual hidden relatedness. We addressed the first question in a semi-analytic fashion by directly simulating the distribution of the score statistic for a test of zero heritability with and without low levels of relatedness. The second question was addressed by a very careful comparison of the behavior of estimated heritability for both observed (self-reported) height and simulated phenotypes compared to imputation R2 as a function of the number of SNPs used in the analysis. These simulations help to address the important question about whether today's GWAS SNPs will remain useful for imputing causal variants that are discovered using very large sample sizes in future studies of height, or whether the causal variants themselves will need to be genotyped de novo in order to build a prediction model that ultimately captures a large fraction of the variability of height, and by implication other complex phenotypes. Our overall conclusions are that when study sizes are quite large (5,000 or so) the additive heritability estimate for height is not apparently biased upwards using the linear mixed model; however there is evidence in our simulation that a very large number of causal variants (many thousands) each with very small effect on phenotypic variance will need to be discovered to fill the gap between the heritability explained by known versus unknown causal variants. We conclude that today's GWAS data will remain useful in the future for causal variant prediction, but that finding the causal variants that need to be predicted may be extremely laborious.

  2. Kappa statistic for clustered matched-pair data.

    PubMed

    Yang, Zhao; Zhou, Ming

    2014-07-10

    Kappa statistic is widely used to assess the agreement between two procedures in the independent matched-pair data. For matched-pair data collected in clusters, on the basis of the delta method and sampling techniques, we propose a nonparametric variance estimator for the kappa statistic without within-cluster correlation structure or distributional assumptions. The results of an extensive Monte Carlo simulation study demonstrate that the proposed kappa statistic provides consistent estimation and the proposed variance estimator behaves reasonably well for at least a moderately large number of clusters (e.g., K ≥50). Compared with the variance estimator ignoring dependence within a cluster, the proposed variance estimator performs better in maintaining the nominal coverage probability when the intra-cluster correlation is fair (ρ ≥0.3), with more pronounced improvement when ρ is further increased. To illustrate the practical application of the proposed estimator, we analyze two real data examples of clustered matched-pair data. Copyright © 2014 John Wiley & Sons, Ltd.

  3. On the error in crop acreage estimation using satellite (LANDSAT) data

    NASA Technical Reports Server (NTRS)

    Chhikara, R. (Principal Investigator)

    1983-01-01

    The problem of crop acreage estimation using satellite data is discussed. Bias and variance of a crop proportion estimate in an area segment obtained from the classification of its multispectral sensor data are derived as functions of the means, variances, and covariance of error rates. The linear discriminant analysis and the class proportion estimation for the two class case are extended to include a third class of measurement units, where these units are mixed on ground. Special attention is given to the investigation of mislabeling in training samples and its effect on crop proportion estimation. It is shown that the bias and variance of the estimate of a specific crop acreage proportion increase as the disparity in mislabeling rates between two classes increases. Some interaction is shown to take place, causing the bias and the variance to decrease at first and then to increase, as the mixed unit class varies in size from 0 to 50 percent of the total area segment.

  4. Short communication: Principal components and factor analytic models for test-day milk yield in Brazilian Holstein cattle.

    PubMed

    Bignardi, A B; El Faro, L; Rosa, G J M; Cardoso, V L; Machado, P F; Albuquerque, L G

    2012-04-01

    A total of 46,089 individual monthly test-day (TD) milk yields (10 test-days), from 7,331 complete first lactations of Holstein cattle were analyzed. A standard multivariate analysis (MV), reduced rank analyses fitting the first 2, 3, and 4 genetic principal components (PC2, PC3, PC4), and analyses that fitted a factor analytic structure considering 2, 3, and 4 factors (FAS2, FAS3, FAS4), were carried out. The models included the random animal genetic effect and fixed effects of the contemporary groups (herd-year-month of test-day), age of cow (linear and quadratic effects), and days in milk (linear effect). The residual covariance matrix was assumed to have full rank. Moreover, 2 random regression models were applied. Variance components were estimated by restricted maximum likelihood method. The heritability estimates ranged from 0.11 to 0.24. The genetic correlation estimates between TD obtained with the PC2 model were higher than those obtained with the MV model, especially on adjacent test-days at the end of lactation close to unity. The results indicate that for the data considered in this study, only 2 principal components are required to summarize the bulk of genetic variation among the 10 traits. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Optimized Kernel Entropy Components.

    PubMed

    Izquierdo-Verdiguier, Emma; Laparra, Valero; Jenssen, Robert; Gomez-Chova, Luis; Camps-Valls, Gustau

    2017-06-01

    This brief addresses two main issues of the standard kernel entropy component analysis (KECA) algorithm: the optimization of the kernel decomposition and the optimization of the Gaussian kernel parameter. KECA roughly reduces to a sorting of the importance of kernel eigenvectors by entropy instead of variance, as in the kernel principal components analysis. In this brief, we propose an extension of the KECA method, named optimized KECA (OKECA), that directly extracts the optimal features retaining most of the data entropy by means of compacting the information in very few features (often in just one or two). The proposed method produces features which have higher expressive power. In particular, it is based on the independent component analysis framework, and introduces an extra rotation to the eigen decomposition, which is optimized via gradient-ascent search. This maximum entropy preservation suggests that OKECA features are more efficient than KECA features for density estimation. In addition, a critical issue in both the methods is the selection of the kernel parameter, since it critically affects the resulting performance. Here, we analyze the most common kernel length-scale selection criteria. The results of both the methods are illustrated in different synthetic and real problems. Results show that OKECA returns projections with more expressive power than KECA, the most successful rule for estimating the kernel parameter is based on maximum likelihood, and OKECA is more robust to the selection of the length-scale parameter in kernel density estimation.

  6. Errors in the estimation of the variance: implications for multiple-probability fluctuation analysis.

    PubMed

    Saviane, Chiara; Silver, R Angus

    2006-06-15

    Synapses play a crucial role in information processing in the brain. Amplitude fluctuations of synaptic responses can be used to extract information about the mechanisms underlying synaptic transmission and its modulation. In particular, multiple-probability fluctuation analysis can be used to estimate the number of functional release sites, the mean probability of release and the amplitude of the mean quantal response from fits of the relationship between the variance and mean amplitude of postsynaptic responses, recorded at different probabilities. To determine these quantal parameters, calculate their uncertainties and the goodness-of-fit of the model, it is important to weight the contribution of each data point in the fitting procedure. We therefore investigated the errors associated with measuring the variance by determining the best estimators of the variance of the variance and have used simulations of synaptic transmission to test their accuracy and reliability under different experimental conditions. For central synapses, which generally have a low number of release sites, the amplitude distribution of synaptic responses is not normal, thus the use of a theoretical variance of the variance based on the normal assumption is not a good approximation. However, appropriate estimators can be derived for the population and for limited sample sizes using a more general expression that involves higher moments and introducing unbiased estimators based on the h-statistics. Our results are likely to be relevant for various applications of fluctuation analysis when few channels or release sites are present.

  7. Impact of an equality constraint on the class-specific residual variances in regression mixtures: A Monte Carlo simulation study.

    PubMed

    Kim, Minjung; Lamont, Andrea E; Jaki, Thomas; Feaster, Daniel; Howe, George; Van Horn, M Lee

    2016-06-01

    Regression mixture models are a novel approach to modeling the heterogeneous effects of predictors on an outcome. In the model-building process, often residual variances are disregarded and simplifying assumptions are made without thorough examination of the consequences. In this simulation study, we investigated the impact of an equality constraint on the residual variances across latent classes. We examined the consequences of constraining the residual variances on class enumeration (finding the true number of latent classes) and on the parameter estimates, under a number of different simulation conditions meant to reflect the types of heterogeneity likely to exist in applied analyses. The results showed that bias in class enumeration increased as the difference in residual variances between the classes increased. Also, an inappropriate equality constraint on the residual variances greatly impacted on the estimated class sizes and showed the potential to greatly affect the parameter estimates in each class. These results suggest that it is important to make assumptions about residual variances with care and to carefully report what assumptions are made.

  8. Short communication: Effect of heat stress on nonreturn rate of Italian Holstein cows.

    PubMed

    Biffani, S; Bernabucci, U; Vitali, A; Lacetera, N; Nardone, A

    2016-07-01

    The data set consisted of 1,016,856 inseminations of 191,012 first, second, and third parity Holstein cows from 484 farms. Data were collected from year 2001 through 2007 and included meteorological data from 35 weather stations. Nonreturn rate at 56 d after first insemination (NR56) was considered. A logit model was used to estimate the effect of temperature-humidity index (THI) on reproduction across parities. Then, least squares means were used to detect the THI breakpoints using a 2-phase linear regression procedure. Finally, a multiple-trait threshold model was used to estimate variance components for NR56 in first and second parity cows. A dummy regression variable (t) was used to estimate NR56 decline due to heat stress. The NR56, both for first and second parity cows, was significantly (unfavorable) affected by THI from 4 d before 5 d after the insemination date. Additive genetic variances for NR56 increased from first to second parity both for general and heat stress effect. Genetic correlations between general and heat stress effects were -0.31 for first parity and -0.45 for second parity cows. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Late language emergence in 24-month-old twins: heritable and increased risk for late language emergence in twins.

    PubMed

    Rice, Mabel L; Zubrick, Stephen R; Taylor, Catherine L; Gayán, Javier; Bontempo, Daniel E

    2014-06-01

    This study investigated the etiology of late language emergence (LLE) in 24-month-old twins, considering possible twinning, zygosity, gender, and heritability effects for vocabulary and grammar phenotypes. A population-based sample of 473 twin pairs participated. Multilevel modeling estimated means and variances of vocabulary and grammar phenotypes, controlling for familiality. Heritability was estimated with DeFries-Fulker regression and variance components models to determine effects of heritability, shared environment, and nonshared environment. Twins had lower average language scores than norms for single-born children, with lower average performance for monozygotic than dizygotic twins and for boys than girls, although gender and zygosity did not interact. Gender did not predict LLE. Significant heritability was detected for vocabulary (0.26) and grammar phenotypes (0.52 and 0.43 for boys and girls, respectively) in the full sample and in the sample selected for LLE (0.42 and 0.44). LLE and the appearance of Word Combinations were also significantly heritable (0.22-0.23). The findings revealed an increased likelihood of LLE in twin toddlers compared with single-born children that is modulated by zygosity and gender differences. Heritability estimates are consistent with previous research for vocabulary and add further suggestion of heritable differences in early grammar acquisition.

  10. Population connectivity of the plating coral Agaricia lamarcki from southwest Puerto Rico

    NASA Astrophysics Data System (ADS)

    Hammerman, Nicholas M.; Rivera-Vicens, Ramon E.; Galaska, Matthew P.; Weil, Ernesto; Appledoorn, Richard S.; Alfaro, Monica; Schizas, Nikolaos V.

    2018-03-01

    Identifying genetic connectivity and discrete population boundaries is an important objective for management of declining Caribbean reef-building corals. A double digest restriction-associated DNA sequencing protocol was utilized to generate 321 single nucleotide polymorphisms to estimate patterns of horizontal and vertical gene flow in the brooding Caribbean plate coral, Agaricia lamarcki. Individual colonies ( n = 59) were sampled from eight locations throughout southwestern Puerto Rico from six shallow ( 10-20 m) and two mesophotic habitats ( 30-40 m). Descriptive summary statistics (fixation index, F ST), analysis of molecular variance, and analysis through landscape and ecological associations and discriminant analysis of principal components estimated high population connectivity with subtle subpopulation structure among all sampling localities.

  11. Statistical modelling of thermal annealing of fission tracks in apatite

    NASA Astrophysics Data System (ADS)

    Laslett, G. M.; Galbraith, R. F.

    1996-12-01

    We develop an improved methodology for modelling the relationship between mean track length, temperature, and time in fission track annealing experiments. We consider "fanning Arrhenius" models, in which contours of constant mean length on an Arrhenius plot are straight lines meeting at a common point. Features of our approach are explicit use of subject matter knowledge, treating mean length as the response variable, modelling of the mean-variance relationship with two components of variance, improved modelling of the control sample, and using information from experiments in which no tracks are seen. This approach overcomes several weaknesses in previous models and provides a robust six parameter model that is widely applicable. Estimation is via direct maximum likelihood which can be implemented using a standard numerical optimisation package. Because the model is highly nonlinear, some reparameterisations are needed to achieve stable estimation and calculation of precisions. Experience suggests that precisions are more convincingly estimated from profile log-likelihood functions than from the information matrix. We apply our method to the B-5 and Sr fluorapatite data of Crowley et al. (1991) and obtain well-fitting models in both cases. For the B-5 fluorapatite, our model exhibits less fanning than that of Crowley et al. (1991), although fitted mean values above 12 μm are fairly similar. However, predictions can be different, particularly for heavy annealing at geological time scales, where our model is less retentive. In addition, the refined error structure of our model results in tighter prediction errors, and has components of error that are easier to verify or modify. For the Sr fluorapatite, our fitted model for mean lengths does not differ greatly from that of Crowley et al. (1991), but our error structure is quite different.

  12. Modeling Heterogeneous Variance-Covariance Components in Two-Level Models

    ERIC Educational Resources Information Center

    Leckie, George; French, Robert; Charlton, Chris; Browne, William

    2014-01-01

    Applications of multilevel models to continuous outcomes nearly always assume constant residual variance and constant random effects variances and covariances. However, modeling heterogeneity of variance can prove a useful indicator of model misspecification, and in some educational and behavioral studies, it may even be of direct substantive…

  13. Approximate Confidence Intervals for Moment-Based Estimators of the Between-Study Variance in Random Effects Meta-Analysis

    ERIC Educational Resources Information Center

    Jackson, Dan; Bowden, Jack; Baker, Rose

    2015-01-01

    Moment-based estimators of the between-study variance are very popular when performing random effects meta-analyses. This type of estimation has many advantages including computational and conceptual simplicity. Furthermore, by using these estimators in large samples, valid meta-analyses can be performed without the assumption that the treatment…

  14. Trends in Elevated Triglyceride in Adults: United States, 2001-2012

    MedlinePlus

    ... All variance estimates accounted for the complex survey design using Taylor series linearization ( 10 ). Percentage estimates for the total adult ... al. National Health and Nutrition Examination Survey: Sample design, 2007–2010. ... KM. Taylor series methods. In: Introduction to variance estimation. 2nd ed. ...

  15. Humidity profiles over the ocean

    NASA Technical Reports Server (NTRS)

    Liu, W. T.; Tang, Wenqing; Niiler, Pearn P.

    1991-01-01

    The variabilities of atmospheric humidity profile over oceans from daily to interannual time scales were examined using 9 years of daily and semidaily radiosonde soundings at island stations extending from the Arctic to the South Pacific. The relative humidity profiles were found to have considerable temporal and geographic variabilities, contrary to the prevalent assumption. Principal component analysis on the profiles of specific humidity were used to examine the applicability of a relation between the surface-level humidity and the integrated water vapor; this relation has been used to estimate large-scale evaporation from satellite data. The first principal component was found to correlate almost perfectly with the integrated water vapor. The fractional variance represented by this mode increases with increasing period. It reaches approximately 90 percent at two weeks and decreases sharply, below one week, down to approximately 60 percent at the daily period. At low frequencies, the integrated water vapor appeared to be an adequate estimator of the humidity profile and the surface-level humidity. At periods shorter than a week, more than one independent estimator is needed.

  16. Estimating acreage by double sampling using LANDSAT data

    NASA Technical Reports Server (NTRS)

    Pont, F.; Horwitz, H.; Kauth, R. (Principal Investigator)

    1982-01-01

    Double sampling techniques employing LANDSAT data for estimating the acreage of corn and soybeans was investigated and evaluated. The evaluation was based on estimated costs and correlations between two existing procedures having differing cost/variance characteristics, and included consideration of their individual merits when coupled with a fictional 'perfect' procedure of zero bias and variance. Two features of the analysis are: (1) the simultaneous estimation of two or more crops; and (2) the imposition of linear cost constraints among two or more types of resource. A reasonably realistic operational scenario was postulated. The costs were estimated from current experience with the measurement procedures involved, and the correlations were estimated from a set of 39 LACIE-type sample segments located in the U.S. Corn Belt. For a fixed variance of the estimate, double sampling with the two existing LANDSAT measurement procedures can result in a 25% or 50% cost reduction. Double sampling which included the fictional perfect procedure results in a more cost effective combination when it is used with the lower cost/higher variance representative of the existing procedures.

  17. Modeling Multiplicative Error Variance: An Example Predicting Tree Diameter from Stump Dimensions in Baldcypress

    Treesearch

    Bernard R. Parresol

    1993-01-01

    In the context of forest modeling, it is often reasonable to assume a multiplicative heteroscedastic error structure to the data. Under such circumstances ordinary least squares no longer provides minimum variance estimates of the model parameters. Through study of the error structure, a suitable error variance model can be specified and its parameters estimated. This...

  18. Examining age-related shared variance between face cognition, vision, and self-reported physical health: a test of the common cause hypothesis for social cognition

    PubMed Central

    Olderbak, Sally; Hildebrandt, Andrea; Wilhelm, Oliver

    2015-01-01

    The shared decline in cognitive abilities, sensory functions (e.g., vision and hearing), and physical health with increasing age is well documented with some research attributing this shared age-related decline to a single common cause (e.g., aging brain). We evaluate the extent to which the common cause hypothesis predicts associations between vision and physical health with social cognition abilities specifically face perception and face memory. Based on a sample of 443 adults (17–88 years old), we test a series of structural equation models, including Multiple Indicator Multiple Cause (MIMIC) models, and estimate the extent to which vision and self-reported physical health are related to face perception and face memory through a common factor, before and after controlling for their fluid cognitive component and the linear effects of age. Results suggest significant shared variance amongst these constructs, with a common factor explaining some, but not all, of the shared age-related variance. Also, we found that the relations of face perception, but not face memory, with vision and physical health could be completely explained by fluid cognition. Overall, results suggest that a single common cause explains most, but not all age-related shared variance with domain specific aging mechanisms evident. PMID:26321998

  19. Reliability of reflectance measures in passive filters

    NASA Astrophysics Data System (ADS)

    Saldiva de André, Carmen Diva; Afonso de André, Paulo; Rocha, Francisco Marcelo; Saldiva, Paulo Hilário Nascimento; Carvalho de Oliveira, Regiani; Singer, Julio M.

    2014-08-01

    Measurements of optical reflectance in passive filters impregnated with a reactive chemical solution may be transformed to ozone concentrations via a calibration curve and constitute a low cost alternative for environmental monitoring, mainly to estimate human exposure. Given the possibility of errors caused by exposure bias, it is common to consider sets of m filters exposed during a certain period to estimate the latent reflectance on n different sample occasions at a certain location. Mixed models with sample occasions as random effects are useful to analyze data obtained under such setups. The intra-class correlation coefficient of the mean of the m measurements is an indicator of the reliability of the latent reflectance estimates. Our objective is to determine m in order to obtain a pre-specified reliability of the estimates, taking possible outliers into account. To illustrate the procedure, we consider an experiment conducted at the Laboratory of Experimental Air Pollution, University of São Paulo, Brazil (LPAE/FMUSP), where sets of m = 3 filters were exposed during 7 days on n = 9 different occasions at a certain location. The results show that the reliability of the latent reflectance estimates for each occasion obtained under homoskedasticity is km = 0.74. A residual analysis suggests that the within-occasion variance for two of the occasions should be different from the others. A refined model with two within-occasion variance components was considered, yielding km = 0.56 for these occasions and km = 0.87 for the remaining ones. To guarantee that all estimates have a reliability of at least 80% we require measurements on m = 10 filters on each occasion.

  20. REML/BLUP and sequential path analysis in estimating genotypic values and interrelationships among simple maize grain yield-related traits.

    PubMed

    Olivoto, T; Nardino, M; Carvalho, I R; Follmann, D N; Ferrari, M; Szareski, V J; de Pelegrin, A J; de Souza, V Q

    2017-03-22

    Methodologies using restricted maximum likelihood/best linear unbiased prediction (REML/BLUP) in combination with sequential path analysis in maize are still limited in the literature. Therefore, the aims of this study were: i) to use REML/BLUP-based procedures in order to estimate variance components, genetic parameters, and genotypic values of simple maize hybrids, and ii) to fit stepwise regressions considering genotypic values to form a path diagram with multi-order predictors and minimum multicollinearity that explains the relationships of cause and effect among grain yield-related traits. Fifteen commercial simple maize hybrids were evaluated in multi-environment trials in a randomized complete block design with four replications. The environmental variance (78.80%) and genotype-vs-environment variance (20.83%) accounted for more than 99% of the phenotypic variance of grain yield, which difficult the direct selection of breeders for this trait. The sequential path analysis model allowed the selection of traits with high explanatory power and minimum multicollinearity, resulting in models with elevated fit (R 2 > 0.9 and ε < 0.3). The number of kernels per ear (NKE) and thousand-kernel weight (TKW) are the traits with the largest direct effects on grain yield (r = 0.66 and 0.73, respectively). The high accuracy of selection (0.86 and 0.89) associated with the high heritability of the average (0.732 and 0.794) for NKE and TKW, respectively, indicated good reliability and prospects of success in the indirect selection of hybrids with high-yield potential through these traits. The negative direct effect of NKE on TKW (r = -0.856), however, must be considered. The joint use of mixed models and sequential path analysis is effective in the evaluation of maize-breeding trials.

  1. Alternate methods for FAAT S-curve generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaufman, A.M.

    The FAAT (Foreign Asset Assessment Team) assessment methodology attempts to derive a probability of effect as a function of incident field strength. The probability of effect is the likelihood that the stress put on a system exceeds its strength. In the FAAT methodology, both the stress and strength are random variables whose statistical properties are estimated by experts. Each random variable has two components of uncertainty: systematic and random. The systematic uncertainty drives the confidence bounds in the FAAT assessment. Its variance can be reduced by improved information. The variance of the random uncertainty is not reducible. The FAAT methodologymore » uses an assessment code called ARES to generate probability of effect curves (S-curves) at various confidence levels. ARES assumes log normal distributions for all random variables. The S-curves themselves are log normal cumulants associated with the random portion of the uncertainty. The placement of the S-curves depends on confidence bounds. The systematic uncertainty in both stress and strength is usually described by a mode and an upper and lower variance. Such a description is not consistent with the log normal assumption of ARES and an unsatisfactory work around solution is used to obtain the required placement of the S-curves at each confidence level. We have looked into this situation and have found that significant errors are introduced by this work around. These errors are at least several dB-W/cm{sup 2} at all confidence levels, but they are especially bad in the estimate of the median. In this paper, we suggest two alternate solutions for the placement of S-curves. To compare these calculational methods, we have tabulated the common combinations of upper and lower variances and generated the relevant S-curves offsets from the mode difference of stress and strength.« less

  2. Estimating Sampling Selection Bias in Human Genetics: A Phenomenological Approach

    PubMed Central

    Risso, Davide; Taglioli, Luca; De Iasio, Sergio; Gueresi, Paola; Alfani, Guido; Nelli, Sergio; Rossi, Paolo; Paoli, Giorgio; Tofanelli, Sergio

    2015-01-01

    This research is the first empirical attempt to calculate the various components of the hidden bias associated with the sampling strategies routinely-used in human genetics, with special reference to surname-based strategies. We reconstructed surname distributions of 26 Italian communities with different demographic features across the last six centuries (years 1447–2001). The degree of overlapping between "reference founding core" distributions and the distributions obtained from sampling the present day communities by probabilistic and selective methods was quantified under different conditions and models. When taking into account only one individual per surname (low kinship model), the average discrepancy was 59.5%, with a peak of 84% by random sampling. When multiple individuals per surname were considered (high kinship model), the discrepancy decreased by 8–30% at the cost of a larger variance. Criteria aimed at maximizing locally-spread patrilineages and long-term residency appeared to be affected by recent gene flows much more than expected. Selection of the more frequent family names following low kinship criteria proved to be a suitable approach only for historically stable communities. In any other case true random sampling, despite its high variance, did not return more biased estimates than other selective methods. Our results indicate that the sampling of individuals bearing historically documented surnames (founders' method) should be applied, especially when studying the male-specific genome, to prevent an over-stratification of ancient and recent genetic components that heavily biases inferences and statistics. PMID:26452043

  3. Estimating Sampling Selection Bias in Human Genetics: A Phenomenological Approach.

    PubMed

    Risso, Davide; Taglioli, Luca; De Iasio, Sergio; Gueresi, Paola; Alfani, Guido; Nelli, Sergio; Rossi, Paolo; Paoli, Giorgio; Tofanelli, Sergio

    2015-01-01

    This research is the first empirical attempt to calculate the various components of the hidden bias associated with the sampling strategies routinely-used in human genetics, with special reference to surname-based strategies. We reconstructed surname distributions of 26 Italian communities with different demographic features across the last six centuries (years 1447-2001). The degree of overlapping between "reference founding core" distributions and the distributions obtained from sampling the present day communities by probabilistic and selective methods was quantified under different conditions and models. When taking into account only one individual per surname (low kinship model), the average discrepancy was 59.5%, with a peak of 84% by random sampling. When multiple individuals per surname were considered (high kinship model), the discrepancy decreased by 8-30% at the cost of a larger variance. Criteria aimed at maximizing locally-spread patrilineages and long-term residency appeared to be affected by recent gene flows much more than expected. Selection of the more frequent family names following low kinship criteria proved to be a suitable approach only for historically stable communities. In any other case true random sampling, despite its high variance, did not return more biased estimates than other selective methods. Our results indicate that the sampling of individuals bearing historically documented surnames (founders' method) should be applied, especially when studying the male-specific genome, to prevent an over-stratification of ancient and recent genetic components that heavily biases inferences and statistics.

  4. Comparison of turbulence estimation for four- and five-beam ADCP configurations

    NASA Astrophysics Data System (ADS)

    Togneri, Michael; Masters, Ian; Jones, Dale

    2017-04-01

    Turbulence is a vital consideration for tidal power generation, as the resulting fluctuating loads greatly impact the fatigue life of tidal turbines and their components. Acoustic Doppler current profilers (ADCPs) are one of the most common tools for measurement of currents in tidal power applications, and although most often used for assessment of mean current properties they are also capable of measuring turbulence parameters. Conventional ADCPs use four diverging beams in a so-called 'Janus' configuration, but more recent models employ an additional vertical beam. In this paper we explore the improvements to turbulence measurements that are made possible by the addition of the fifth beam, with a focus on estimation of turbulent kinetic energy (TKE) density. The standard approach for estimating TKE density from ADCP measurements is the variance method. As each of the diverging beams measures a single velocity component at spatially-separated points, it is not possible to find the TKE density by a straightforward combination of beam measurements. Instead, we must assume that the statistical properties of the turbulence are uniform across the spatial extent of the beams; it is then possible to express the TKE density as a linear combination of the velocity variance as measured by each beam. In the four-beam configuration, an additional assumption regarding the magnitude of the turbulent anisotropy: a parameter ξ is introduced that characterises the proportion of TKE in the vertical fluctuations. With the five-beam configuration, direct measurements of the vertical component are available and this assumption is no longer required. In this paper, turbulence measurements from a five-beam ADCP deployed off the coast of Anglesey in 2014 are analysed. We compare turbulence estimates using all five beams to estimates obtained using only the conventional four-beam setup by discarding the vertical beam data. This allows us to quantify the error in the standard value of ξ. We find that it is on average within 3.4% of the real value, although there are times for which it is much greater. We also discuss the Doppler noise correction in the five-beam case, which is more complex than the four-beam case due to the different noise properties of the vertical beam.

  5. Management Accounting in School Food Service.

    ERIC Educational Resources Information Center

    Bryan, E. Lewis; Friedlob, G. Thomas

    1982-01-01

    Describes a model for establishing control of school food services through analysis of the aggregate variances of quantity, collection, and price, and of their separate components. The separable component variances are identified, measured, and compared monthly to help supervisors identify exactly where plans and operations vary. (Author/MLF)

  6. Control Variate Estimators of Survivor Growth from Point Samples

    Treesearch

    Francis A. Roesch; Paul C. van Deusen

    1993-01-01

    Two estimators of the control variate type for survivor growth from remeasured point samples are proposed and compared with more familiar estimators. The large reductionsin variance, observed in many cases forestimators constructed with control variates, arealso realized in thisapplication. A simulation study yielded consistent reductions in variance which were often...

  7. Analysis of components of variance in multiple-reader studies of computer-aided diagnosis with different tasks

    NASA Astrophysics Data System (ADS)

    Beiden, Sergey V.; Wagner, Robert F.; Campbell, Gregory; Metz, Charles E.; Chan, Heang-Ping; Nishikawa, Robert M.; Schnall, Mitchell D.; Jiang, Yulei

    2001-06-01

    In recent years, the multiple-reader, multiple-case (MRMC) study paradigm has become widespread for receiver operating characteristic (ROC) assessment of systems for diagnostic imaging and computer-aided diagnosis. We review how MRMC data can be analyzed in terms of the multiple components of the variance (case, reader, interactions) observed in those studies. Such information is useful for the design of pivotal studies from results of a pilot study and also for studying the effects of reader training. Recently, several of the present authors have demonstrated methods to generalize the analysis of multiple variance components to the case where unaided readers of diagnostic images are compared with readers who receive the benefit of a computer assist (CAD). For this case it is necessary to model the possibility that several of the components of variance might be reduced when readers incorporate the computer assist, compared to the unaided reading condition. We review results of this kind of analysis on three previously published MRMC studies, two of which were applications of CAD to diagnostic mammography and one was an application of CAD to screening mammography. The results for the three cases are seen to differ, depending on the reader population sampled and the task of interest. Thus, it is not possible to generalize a particular analysis of variance components beyond the tasks and populations actually investigated.

  8. Psychometric properties of the Interpersonal Relationship Inventory-Short Form for active duty female service members.

    PubMed

    Nayback-Beebe, Ann M; Yoder, Linda H

    2011-06-01

    The Interpersonal Relationship Inventory-Short Form (IPRI-SF) has demonstrated psychometric consistency across several demographic and clinical populations; however, it has not been psychometrically tested in a military population. The purpose of this study was to psychometrically evaluate the reliability and component structure of the IPRI-SF in active duty United States Army female service members (FSMs). The reliability estimates were .93 for the social support subscale and .91 for the conflict subscale. Principal component analysis demonstrated an obliquely rotated three-component solution that accounted for 58.9% of the variance. The results of this study support the reliability and validity of the IPRI-SF for use in FSMs; however, a three-factor structure emerged in this sample of FSMs post-deployment that represents "cultural context." Copyright © 2011 Wiley Periodicals, Inc.

  9. MSE-impact of PPP-RTK ZTD estimation strategies

    NASA Astrophysics Data System (ADS)

    Wang, K.; Khodabandeh, A.; Teunissen, P. J. G.

    2018-06-01

    In PPP-RTK network processing, the wet component of the zenith tropospheric delay (ZTD) cannot be precisely modelled and thus remains unknown in the observation equations. For small networks, the tropospheric mapping functions of different stations to a given satellite are almost equal to each other, thereby causing a near rank-deficiency between the ZTDs and satellite clocks. The stated near rank-deficiency can be solved by estimating the wet ZTD components relatively to that of the reference receiver, while the wet ZTD component of the reference receiver is constrained to zero. However, by increasing network scale and humidity around the reference receiver, enlarged mismodelled effects could bias the network and the user solutions. To consider both the influences of the noise and the biases, the mean-squared errors (MSEs) of different network and user parameters are studied analytically employing both the ZTD estimation strategies. We conclude that for a certain set of parameters, the difference in their MSE structures using both strategies is only driven by the square of the reference wet ZTD component and the formal variance of its solution. Depending on the network scale and the humidity condition around the reference receiver, the ZTD estimation strategy that delivers more accurate solutions might be different. Simulations are performed to illustrate the conclusions made by analytical studies. We find that estimating the ZTDs relatively in large networks and humid regions (for the reference receiver) could significantly degrade the network ambiguity success rates. Using ambiguity-fixed network-derived PPP-RTK corrections, for networks with an inter-station distance within 100 km, the choices of the ZTD estimation strategy is not crucial for single-epoch ambiguity-fixed user positioning. Using ambiguity-float network corrections, for networks with inter-station distances of 100, 300 and 500 km in humid regions (for the reference receiver), the root-mean-squared errors (RMSEs) of the estimated user coordinates using relative ZTD estimation could be higher than those under the absolute case with differences up to millimetres, centimetres and decimetres, respectively.

  10. Sleep reactivity and insomnia: genetic and environmental influences.

    PubMed

    Drake, Christopher L; Friedman, Naomi P; Wright, Kenneth P; Roth, Thomas

    2011-09-01

    Determine the genetic and environmental contributions to sleep reactivity and insomnia. Population-based twin cohort. 1782 individual twins (988 monozygotic or MZ; 1,086 dizygotic or DZ), including 744 complete twin pairs (377 MZ and 367 DZ). Mean age was 22.5 ± 2.8 years; gender distribution was 59% women. Sleep reactivity was measured using the Ford Insomnia Response to Stress Test (FIRST). The criterion for insomnia was having difficulty falling asleep, staying asleep, or nonrefreshing sleep "usually or always" for ≥ 1 month, with at least "somewhat" interference with daily functioning. The prevalence of insomnia was 21%. Heritability estimates for sleep reactivity were 29% for females and 43% for males. The environmental variance for sleep reactivity was greater for females and entirely due to nonshared effects. Insomnia was 43% to 55% heritable for males and females, respectively; the sex difference was not significant. The genetic variances in insomnia and FIRST scores were correlated (r = 0.54 in females, r = 0.64 in males), as were the environmental variances (r = 0.32 in females, r = 0.37 in males). In terms of individual insomnia symptoms, difficulty staying asleep (25% to 35%) and nonrefreshing sleep (34% to 35%) showed relatively more genetic influences than difficulty falling asleep (0%). Sleep reactivity to stress has a substantial genetic component, as well as an environmental component. The finding that FIRST scores and insomnia symptoms share genetic influences is consistent with the hypothesis that sleep reactivity may be a genetic vulnerability for developing insomnia.

  11. The effects of r- and K-selection on components of variance for two quantitative traits.

    PubMed

    Long, T; Long, G

    1974-03-01

    The genetic and environmental components of variance for two quantitative characters were measured in the descendants of Drosophila melanogaster populations which had been grown for several generations at densities of 100, 200, 300, and 400 eggs per vial. Populations subject to intermediate densities had a greater proportion of phenotypic variance available for selection than populations from either extreme. Selection on either character would be least effective under pure r-selection, a frequent attribute of selection programs.

  12. On the estimation variance for the specific Euler-Poincaré characteristic of random networks.

    PubMed

    Tscheschel, A; Stoyan, D

    2003-07-01

    The specific Euler number is an important topological characteristic in many applications. It is considered here for the case of random networks, which may appear in microscopy either as primary objects of investigation or as secondary objects describing in an approximate way other structures such as, for example, porous media. For random networks there is a simple and natural estimator of the specific Euler number. For its estimation variance, a simple Poisson approximation is given. It is based on the general exact formula for the estimation variance. In two examples of quite different nature and topology application of the formulas is demonstrated.

  13. An empirical analysis of the distribution of overshoots in a stationary Gaussian stochastic process

    NASA Technical Reports Server (NTRS)

    Carter, M. C.; Madison, M. W.

    1973-01-01

    The frequency distribution of overshoots in a stationary Gaussian stochastic process is analyzed. The primary processes involved in this analysis are computer simulation and statistical estimation. Computer simulation is used to simulate stationary Gaussian stochastic processes that have selected autocorrelation functions. An analysis of the simulation results reveals a frequency distribution for overshoots with a functional dependence on the mean and variance of the process. Statistical estimation is then used to estimate the mean and variance of a process. It is shown that for an autocorrelation function, the mean and the variance for the number of overshoots, a frequency distribution for overshoots can be estimated.

  14. Estimating unconsolidated sediment cover thickness by using the horizontal distance to a bedrock outcrop as secondary information

    NASA Astrophysics Data System (ADS)

    Kitterød, Nils-Otto

    2017-08-01

    Unconsolidated sediment cover thickness (D) above bedrock was estimated by using a publicly available well database from Norway, GRANADA. General challenges associated with such databases typically involve clustering and bias. However, if information about the horizontal distance to the nearest bedrock outcrop (L) is included, does the spatial estimation of D improve? This idea was tested by comparing two cross-validation results: ordinary kriging (OK) where L was disregarded; and co-kriging (CK) where cross-covariance between D and L was included. The analysis showed only minor differences between OK and CK with respect to differences between estimation and true values. However, the CK results gave in general less estimation variance compared to the OK results. All observations were declustered and transformed to standard normal probability density functions before estimation and back-transformed for the cross-validation analysis. The semivariogram analysis gave correlation lengths for D and L of approx. 10 and 6 km. These correlations reduce the estimation variance in the cross-validation analysis because more than 50 % of the data material had two or more observations within a radius of 5 km. The small-scale variance of D, however, was about 50 % of the total variance, which gave an accuracy of less than 60 % for most of the cross-validation cases. Despite the noisy character of the observations, the analysis demonstrated that L can be used as secondary information to reduce the estimation variance of D.

  15. Genetic control of residual variance of yearling weight in Nellore beef cattle.

    PubMed

    Iung, L H S; Neves, H H R; Mulder, H A; Carvalheiro, R

    2017-04-01

    There is evidence for genetic variability in residual variance of livestock traits, which offers the potential for selection for increased uniformity of production. Different statistical approaches have been employed to study this topic; however, little is known about the concordance between them. The aim of our study was to investigate the genetic heterogeneity of residual variance on yearling weight (YW; 291.15 ± 46.67) in a Nellore beef cattle population; to compare the results of the statistical approaches, the two-step approach and the double hierarchical generalized linear model (DHGLM); and to evaluate the effectiveness of power transformation to accommodate scale differences. The comparison was based on genetic parameters, accuracy of EBV for residual variance, and cross-validation to assess predictive performance of both approaches. A total of 194,628 yearling weight records from 625 sires were used in the analysis. The results supported the hypothesis of genetic heterogeneity of residual variance on YW in Nellore beef cattle and the opportunity of selection, measured through the genetic coefficient of variation of residual variance (0.10 to 0.12 for the two-step approach and 0.17 for DHGLM, using an untransformed data set). However, low estimates of genetic variance associated with positive genetic correlations between mean and residual variance (about 0.20 for two-step and 0.76 for DHGLM for an untransformed data set) limit the genetic response to selection for uniformity of production while simultaneously increasing YW itself. Moreover, large sire families are needed to obtain accurate estimates of genetic merit for residual variance, as indicated by the low heritability estimates (<0.007). Box-Cox transformation was able to decrease the dependence of the variance on the mean and decreased the estimates of genetic parameters for residual variance. The transformation reduced but did not eliminate all the genetic heterogeneity of residual variance, highlighting its presence beyond the scale effect. The DHGLM showed higher predictive ability of EBV for residual variance and therefore should be preferred over the two-step approach.

  16. Common genetic variation and novel loci associated with volumetric mammographic density.

    PubMed

    Brand, Judith S; Humphreys, Keith; Li, Jingmei; Karlsson, Robert; Hall, Per; Czene, Kamila

    2018-04-17

    Mammographic density (MD) is a strong and heritable intermediate phenotype of breast cancer, but much of its genetic variation remains unexplained. We conducted a genetic association study of volumetric MD in a Swedish mammography screening cohort (n = 9498) to identify novel MD loci. Associations with volumetric MD phenotypes (percent dense volume, absolute dense volume, and absolute nondense volume) were estimated using linear regression adjusting for age, body mass index, menopausal status, and six principal components. We also estimated the proportion of MD variance explained by additive contributions from single-nucleotide polymorphisms (SNP-based heritability [h 2 SNP ]) in 4948 participants of the cohort. In total, three novel MD loci were identified (at P < 5 × 10 - 8 ): one for percent dense volume (HABP2) and two for the absolute dense volume (INHBB, LINC01483). INHBB is an established locus for ER-negative breast cancer, and HABP2 and LINC01483 represent putative new breast cancer susceptibility loci, because both loci were associated with breast cancer in available meta-analysis data including 122,977 breast cancer cases and 105,974 control subjects (P < 0.05). h 2 SNP (SE) estimates for percent dense, absolute dense, and nondense volume were 0.29 (0.07), 0.31 (0.07), and 0.25 (0.07), respectively. Corresponding ratios of h 2 SNP to previously observed narrow-sense h 2 estimates in the same cohort were 0.46, 0.72, and 0.41, respectively. These findings provide new insights into the genetic basis of MD and biological mechanisms linking MD to breast cancer risk. Apart from identifying three novel loci, we demonstrate that at least 25% of the MD variance is explained by common genetic variation with h 2 SNP /h 2 ratios varying between dense and nondense MD components.

  17. Can metamorphosis survival during larval development in spiny lobster Sagmariasus verreauxi be improved through quantitative genetic inheritance?

    PubMed

    Nguyen, Nguyen H; Fitzgibbon, Quinn P; Quinn, Jane; Smith, Greg; Battaglene, Stephen; Knibb, Wayne

    2018-05-04

    One of the major impediments to spiny lobster aquaculture is the high cost of hatchery production due to the long and complex larval cycle and poor survival during the many moult stages, especially at metamorphosis. We examined if the key trait of larval survival can be improved through selection by determining if genetic variance exists for this trait. Specifically, we report, for the first time, genetic parameters (heritability and correlations) for early survival rates recorded at five larval phases; early-phyllosoma stages (instars 1-6; S1), mid-phyllosoma stages (instars; 7-12; S2), late-phyllosoma stages (instars 13-17; S3), metamorphosis (S4) and puerulus stage (S5) in hatchery-reared spiny lobster Sagmariasus verreauxi. The data were collected from a total of 235,060 larvae produced from 18 sires and 30 dams over nine years (2006 to 2014). Parentage of the offspring and full-sib families was verified using ten microsatellite markers. Analysis of variance components showed that the estimates of heritability for all the five phases of larval survival obtained from linear mixed model were generally similar to those obtained from threshold logistic generalised models (0.03-0.47 vs. 0.01-0.50). The heritability estimates for survival traits recorded in the early larval phases (S1 and S2) were higher than those estimated in later phases (S3, S4 and S5). The existence of the additive genetic component in larval survival traits indicate that they could be improved through selection. Both phenotypic and genetic correlations among the five survival measures studied were moderate to high and positive. The genetic associations between successive rearing periods were stronger than those that are further apart. Our estimates of heritability and genetic correlations reported here in a spiny lobster species indicate that improvement in the early survival especially during metamorphosis can be achieved through genetic selection in this highly economic value species.

  18. Optimal distribution of integration time for intensity measurements in Stokes polarimetry.

    PubMed

    Li, Xiaobo; Liu, Tiegen; Huang, Bingjing; Song, Zhanjie; Hu, Haofeng

    2015-10-19

    We consider the typical Stokes polarimetry system, which performs four intensity measurements to estimate a Stokes vector. We show that if the total integration time of intensity measurements is fixed, the variance of the Stokes vector estimator depends on the distribution of the integration time at four intensity measurements. Therefore, by optimizing the distribution of integration time, the variance of the Stokes vector estimator can be decreased. In this paper, we obtain the closed-form solution of the optimal distribution of integration time by employing Lagrange multiplier method. According to the theoretical analysis and real-world experiment, it is shown that the total variance of the Stokes vector estimator can be significantly decreased about 40% in the case discussed in this paper. The method proposed in this paper can effectively decrease the measurement variance and thus statistically improves the measurement accuracy of the polarimetric system.

  19. Optimal distribution of integration time for intensity measurements in degree of linear polarization polarimetry.

    PubMed

    Li, Xiaobo; Hu, Haofeng; Liu, Tiegen; Huang, Bingjing; Song, Zhanjie

    2016-04-04

    We consider the degree of linear polarization (DOLP) polarimetry system, which performs two intensity measurements at orthogonal polarization states to estimate DOLP. We show that if the total integration time of intensity measurements is fixed, the variance of the DOLP estimator depends on the distribution of integration time for two intensity measurements. Therefore, by optimizing the distribution of integration time, the variance of the DOLP estimator can be decreased. In this paper, we obtain the closed-form solution of the optimal distribution of integration time in an approximate way by employing Delta method and Lagrange multiplier method. According to the theoretical analyses and real-world experiments, it is shown that the variance of the DOLP estimator can be decreased for any value of DOLP. The method proposed in this paper can effectively decrease the measurement variance and thus statistically improve the measurement accuracy of the polarimetry system.

  20. A comparison of maximum likelihood and other estimators of eigenvalues from several correlated Monte Carlo samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beer, M.

    1980-12-01

    The maximum likelihood method for the multivariate normal distribution is applied to the case of several individual eigenvalues. Correlated Monte Carlo estimates of the eigenvalue are assumed to follow this prescription and aspects of the assumption are examined. Monte Carlo cell calculations using the SAM-CE and VIM codes for the TRX-1 and TRX-2 benchmark reactors, and SAM-CE full core results are analyzed with this method. Variance reductions of a few percent to a factor of 2 are obtained from maximum likelihood estimation as compared with the simple average and the minimum variance individual eigenvalue. The numerical results verify that themore » use of sample variances and correlation coefficients in place of the corresponding population statistics still leads to nearly minimum variance estimation for a sufficient number of histories and aggregates.« less

  1. Estimation variance bounds of importance sampling simulations in digital communication systems

    NASA Technical Reports Server (NTRS)

    Lu, D.; Yao, K.

    1991-01-01

    In practical applications of importance sampling (IS) simulation, two basic problems are encountered, that of determining the estimation variance and that of evaluating the proper IS parameters needed in the simulations. The authors derive new upper and lower bounds on the estimation variance which are applicable to IS techniques. The upper bound is simple to evaluate and may be minimized by the proper selection of the IS parameter. Thus, lower and upper bounds on the improvement ratio of various IS techniques relative to the direct Monte Carlo simulation are also available. These bounds are shown to be useful and computationally simple to obtain. Based on the proposed technique, one can readily find practical suboptimum IS parameters. Numerical results indicate that these bounding techniques are useful for IS simulations of linear and nonlinear communication systems with intersymbol interference in which bit error rate and IS estimation variances cannot be obtained readily using prior techniques.

  2. Calibrating SALT: a sampling scheme to improve estimates of suspended sediment yield

    Treesearch

    Robert B. Thomas

    1986-01-01

    Abstract - SALT (Selection At List Time) is a variable probability sampling scheme that provides unbiased estimates of suspended sediment yield and its variance. SALT performs better than standard schemes which are estimate variance. Sampling probabilities are based on a sediment rating function which promotes greater sampling intensity during periods of high...

  3. A two step Bayesian approach for genomic prediction of breeding values.

    PubMed

    Shariati, Mohammad M; Sørensen, Peter; Janss, Luc

    2012-05-21

    In genomic models that assign an individual variance to each marker, the contribution of one marker to the posterior distribution of the marker variance is only one degree of freedom (df), which introduces many variance parameters with only little information per variance parameter. A better alternative could be to form clusters of markers with similar effects where markers in a cluster have a common variance. Therefore, the influence of each marker group of size p on the posterior distribution of the marker variances will be p df. The simulated data from the 15th QTL-MAS workshop were analyzed such that SNP markers were ranked based on their effects and markers with similar estimated effects were grouped together. In step 1, all markers with minor allele frequency more than 0.01 were included in a SNP-BLUP prediction model. In step 2, markers were ranked based on their estimated variance on the trait in step 1 and each 150 markers were assigned to one group with a common variance. In further analyses, subsets of 1500 and 450 markers with largest effects in step 2 were kept in the prediction model. Grouping markers outperformed SNP-BLUP model in terms of accuracy of predicted breeding values. However, the accuracies of predicted breeding values were lower than Bayesian methods with marker specific variances. Grouping markers is less flexible than allowing each marker to have a specific marker variance but, by grouping, the power to estimate marker variances increases. A prior knowledge of the genetic architecture of the trait is necessary for clustering markers and appropriate prior parameterization.

  4. Monthly hydroclimatology of the continental United States

    NASA Astrophysics Data System (ADS)

    Petersen, Thomas; Devineni, Naresh; Sankarasubramanian, A.

    2018-04-01

    Physical/semi-empirical models that do not require any calibration are of paramount need for estimating hydrological fluxes for ungauged sites. We develop semi-empirical models for estimating the mean and variance of the monthly streamflow based on Taylor Series approximation of a lumped physically based water balance model. The proposed models require mean and variance of monthly precipitation and potential evapotranspiration, co-variability of precipitation and potential evapotranspiration and regionally calibrated catchment retention sensitivity, atmospheric moisture uptake sensitivity, groundwater-partitioning factor, and the maximum soil moisture holding capacity parameters. Estimates of mean and variance of monthly streamflow using the semi-empirical equations are compared with the observed estimates for 1373 catchments in the continental United States. Analyses show that the proposed models explain the spatial variability in monthly moments for basins in lower elevations. A regionalization of parameters for each water resources region show good agreement between observed moments and model estimated moments during January, February, March and April for mean and all months except May and June for variance. Thus, the proposed relationships could be employed for understanding and estimating the monthly hydroclimatology of ungauged basins using regional parameters.

  5. Sensitivity of spectral reflectance values to different burn and vegetation ratios: A multi-scale approach applied in a fire affected area

    NASA Astrophysics Data System (ADS)

    Pleniou, Magdalini; Koutsias, Nikos

    2013-05-01

    The aim of our study was to explore the spectral properties of fire-scorched (burned) and non fire-scorched (vegetation) areas, as well as areas with different burn/vegetation ratios, using a multisource multiresolution satellite data set. A case study was undertaken following a very destructive wildfire that occurred in Parnitha, Greece, July 2007, for which we acquired satellite images from LANDSAT, ASTER, and IKONOS. Additionally, we created spatially degraded satellite data over a range of coarser resolutions using resampling techniques. The panchromatic (1 m) and multispectral component (4 m) of IKONOS were merged using the Gram-Schmidt spectral sharpening method. This very high-resolution imagery served as the basis to estimate the cover percentage of burned areas, bare land and vegetation at pixel level, by applying the maximum likelihood classification algorithm. Finally, multiple linear regression models were fit to estimate each land-cover fraction as a function of surface reflectance values of the original and the spatially degraded satellite images. The main findings of our research were: (a) the Near Infrared (NIR) and Short-wave Infrared (SWIR) are the most important channels to estimate the percentage of burned area, whereas the NIR and red channels are the most important to estimate the percentage of vegetation in fire-affected areas; (b) when the bi-spectral space consists only of NIR and SWIR, then the NIR ground reflectance value plays a more significant role in estimating the percent of burned areas, and the SWIR appears to be more important in estimating the percent of vegetation; and (c) semi-burned areas comprising 45-55% burned area and 45-55% vegetation are spectrally closer to burned areas in the NIR channel, whereas those areas are spectrally closer to vegetation in the SWIR channel. These findings, at least partially, are attributed to the fact that: (i) completely burned pixels present low variance in the NIR and high variance in the SWIR, whereas the opposite is observed in completely vegetated areas where higher variance is observed in the NIR and lower variance in the SWIR, and (ii) bare land modifies the spectral signal of burned areas more than the spectral signal of vegetated areas in the NIR, while the opposite is observed in SWIR region of the spectrum where the bare land modifies the spectral signal of vegetation more than the burned areas because the bare land and the vegetation are spectrally more similar in the NIR, and the bare land and burned areas are spectrally more similar in the SWIR.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Church, J; Slaughter, D; Norman, E

    Error rates in a cargo screening system such as the Nuclear Car Wash [1-7] depend on the standard deviation of the background radiation count rate. Because the Nuclear Car Wash is an active interrogation technique, the radiation signal for fissile material must be detected above a background count rate consisting of cosmic, ambient, and neutron-activated radiations. It was suggested previously [1,6] that the Corresponding negative repercussions for the sensitivity of the system were shown. Therefore, to assure the most accurate estimation of the variation, experiments have been performed to quantify components of the actual variance in the background count rate,more » including variations in generator power, irradiation time, and container contents. The background variance is determined by these experiments to be a factor of 2 smaller than values assumed in previous analyses, resulting in substantially improved projections of system performance for the Nuclear Car Wash.« less

  7. Depressive symptoms in institutionalized older adults

    PubMed Central

    Santiago, Lívia Maria; Mattos, Inês Echenique

    2014-01-01

    OBJECTIVE To estimate the prevalence of depressive symptoms among institutionalized elderly individuals and to analyze factors associated with this condition. METHODS This was a cross-sectional study involving 462 individuals aged 60 or older, residents in long stay institutions in four Brazilian municipalities. The dependent variable was assessed using the 15-item Geriatric Depression Scale. Poisson’s regression was used to evaluate associations with co-variables. We investigated which variables were most relevant in terms of presence of depressive symptoms within the studied context through factor analysis. RESULTS Prevalence of depressive symptoms was 48.7%. The variables associated with depressive symptoms were: regular/bad/very bad self-rated health; comorbidities; hospitalizations; and lack of friends in the institution. Five components accounted for 49.2% of total variance of the sample: functioning, social support, sensory deficiency, institutionalization and health conditions. In the factor analysis, functionality and social support were the components which explained a large part of observed variance. CONCLUSIONS A high prevalence of depressive symptoms, with significant variation in distribution, was observed. Such results emphasize the importance of health conditions and functioning for institutionalized older individuals developing depression. They also point to the importance of providing opportunities for interaction among institutionalized individuals. PMID:24897042

  8. Whole-animal metabolic rate is a repeatable trait: a meta-analysis.

    PubMed

    Nespolo, Roberto F; Franco, Marcela

    2007-06-01

    Repeatability studies are gaining considerable interest among physiological ecologists, particularly in traits affected by high environmental/residual variance, such as whole-animal metabolic rate (MR). The original definition of repeatability, known as the intraclass correlation coefficient, is computed from the components of variance obtained in a one-way ANOVA on several individuals from which two or more measurements are performed. An alternative estimation of repeatability, popular among physiological ecologists, is the Pearson product-moment correlation between two consecutive measurements. However, despite the more than 30 studies reporting repeatability of MR, so far there is not a definite synthesis indicating: (1) whether repeatability changes in different types of animals; (2) whether some kinds of metabolism are more repeatable than others; and most important, (3) whether metabolic rate is significantly repeatable. We performed a meta-analysis to address these questions, as well as to explore the historical trend in repeatability studies. Our results show that metabolic rate is significantly repeatable and its effect size is not statistically affected by any of the mentioned factors (i.e. repeatability of MR does not change in different species, type of metabolism, time between measurements, and number of individuals). The cumulative meta-analysis revealed that repeatability studies in MR have already reached an asymptotical effect size with no further change either in its magnitude and/or variance (i.e. additional studies will not contribute significantly to the estimator). There was no evidence of strong publication bias.

  9. Evaluation of non-additive genetic variation in feed-related traits of broiler chickens.

    PubMed

    Li, Y; Hawken, R; Sapp, R; George, A; Lehnert, S A; Henshall, J M; Reverter, A

    2017-03-01

    Genome-wide association mapping and genomic predictions of phenotype of individuals in livestock are predominately based on the detection and estimation of additive genetic effects. Non-additive genetic effects are largely ignored. Studies in animals, plants, and humans to assess the impact of non-additive genetic effects in genetic analyses have led to differing conclusions. In this paper, we examined the consequences of including non-additive genetic effects in genome-wide association mapping and genomic prediction of total genetic values in a commercial population of 5,658 broiler chickens genotyped for 45,176 single nucleotide polymorphism (SNP) markers. We employed mixed-model equations and restricted maximum likelihood to analyze 7 feed related traits (TRT1 - TRT7). Dominance variance accounted for a significant proportion of the total genetic variance in all 7 traits, ranging from 29.5% for TRT1 to 58.4% for TRT7. Using a 5-fold cross-validation schema, we found that in spite of the large dominance component, including the estimated dominance effects in the prediction of total genetic values did not improve the accuracy of the predictions for any of the phenotypes. We offer some possible explanations for this counter-intuitive result including the possible confounding of dominance deviations with common environmental effects such as hatch, different directional effects of SNP additive and dominance variations, and the gene-gene interactions' failure to contribute to the level of variance. © 2016 Poultry Science Association Inc.

  10. On testing an unspecified function through a linear mixed effects model with multiple variance components

    PubMed Central

    Wang, Yuanjia; Chen, Huaihou

    2012-01-01

    Summary We examine a generalized F-test of a nonparametric function through penalized splines and a linear mixed effects model representation. With a mixed effects model representation of penalized splines, we imbed the test of an unspecified function into a test of some fixed effects and a variance component in a linear mixed effects model with nuisance variance components under the null. The procedure can be used to test a nonparametric function or varying-coefficient with clustered data, compare two spline functions, test the significance of an unspecified function in an additive model with multiple components, and test a row or a column effect in a two-way analysis of variance model. Through a spectral decomposition of the residual sum of squares, we provide a fast algorithm for computing the null distribution of the test, which significantly improves the computational efficiency over bootstrap. The spectral representation reveals a connection between the likelihood ratio test (LRT) in a multiple variance components model and a single component model. We examine our methods through simulations, where we show that the power of the generalized F-test may be higher than the LRT, depending on the hypothesis of interest and the true model under the alternative. We apply these methods to compute the genome-wide critical value and p-value of a genetic association test in a genome-wide association study (GWAS), where the usual bootstrap is computationally intensive (up to 108 simulations) and asymptotic approximation may be unreliable and conservative. PMID:23020801

  11. On testing an unspecified function through a linear mixed effects model with multiple variance components.

    PubMed

    Wang, Yuanjia; Chen, Huaihou

    2012-12-01

    We examine a generalized F-test of a nonparametric function through penalized splines and a linear mixed effects model representation. With a mixed effects model representation of penalized splines, we imbed the test of an unspecified function into a test of some fixed effects and a variance component in a linear mixed effects model with nuisance variance components under the null. The procedure can be used to test a nonparametric function or varying-coefficient with clustered data, compare two spline functions, test the significance of an unspecified function in an additive model with multiple components, and test a row or a column effect in a two-way analysis of variance model. Through a spectral decomposition of the residual sum of squares, we provide a fast algorithm for computing the null distribution of the test, which significantly improves the computational efficiency over bootstrap. The spectral representation reveals a connection between the likelihood ratio test (LRT) in a multiple variance components model and a single component model. We examine our methods through simulations, where we show that the power of the generalized F-test may be higher than the LRT, depending on the hypothesis of interest and the true model under the alternative. We apply these methods to compute the genome-wide critical value and p-value of a genetic association test in a genome-wide association study (GWAS), where the usual bootstrap is computationally intensive (up to 10(8) simulations) and asymptotic approximation may be unreliable and conservative. © 2012, The International Biometric Society.

  12. Unbalanced and Minimal Point Equivalent Estimation Second-Order Split-Plot Designs

    NASA Technical Reports Server (NTRS)

    Parker, Peter A.; Kowalski, Scott M.; Vining, G. Geoffrey

    2007-01-01

    Restricting the randomization of hard-to-change factors in industrial experiments is often performed by employing a split-plot design structure. From an economic perspective, these designs minimize the experimental cost by reducing the number of resets of the hard-to- change factors. In this paper, unbalanced designs are considered for cases where the subplots are relatively expensive and the experimental apparatus accommodates an unequal number of runs per whole-plot. We provide construction methods for unbalanced second-order split- plot designs that possess the equivalence estimation optimality property, providing best linear unbiased estimates of the parameters; independent of the variance components. Unbalanced versions of the central composite and Box-Behnken designs are developed. For cases where the subplot cost approaches the whole-plot cost, minimal point designs are proposed and illustrated with a split-plot Notz design.

  13. On the multiple imputation variance estimator for control-based and delta-adjusted pattern mixture models.

    PubMed

    Tang, Yongqiang

    2017-12-01

    Control-based pattern mixture models (PMM) and delta-adjusted PMMs are commonly used as sensitivity analyses in clinical trials with non-ignorable dropout. These PMMs assume that the statistical behavior of outcomes varies by pattern in the experimental arm in the imputation procedure, but the imputed data are typically analyzed by a standard method such as the primary analysis model. In the multiple imputation (MI) inference, Rubin's variance estimator is generally biased when the imputation and analysis models are uncongenial. One objective of the article is to quantify the bias of Rubin's variance estimator in the control-based and delta-adjusted PMMs for longitudinal continuous outcomes. These PMMs assume the same observed data distribution as the mixed effects model for repeated measures (MMRM). We derive analytic expressions for the MI treatment effect estimator and the associated Rubin's variance in these PMMs and MMRM as functions of the maximum likelihood estimator from the MMRM analysis and the observed proportion of subjects in each dropout pattern when the number of imputations is infinite. The asymptotic bias is generally small or negligible in the delta-adjusted PMM, but can be sizable in the control-based PMM. This indicates that the inference based on Rubin's rule is approximately valid in the delta-adjusted PMM. A simple variance estimator is proposed to ensure asymptotically valid MI inferences in these PMMs, and compared with the bootstrap variance. The proposed method is illustrated by the analysis of an antidepressant trial, and its performance is further evaluated via a simulation study. © 2017, The International Biometric Society.

  14. A Comparative Analysis of the Cost Estimating Error Risk Associated with Flyaway Costs Versus Individual Components of Aircraft

    DTIC Science & Technology

    2003-03-01

    test returns a p-value greater than 0.05. Similarly, the assumption of constant variance can be confirmed using the Breusch - Pagan test ...megaphone effect. To test this visual observation, the Breusch - Pagan test is applied. .515 6 3.919 31     2 5.371= The p-value returned from this...The data points have a relatively even spread, but a potential megaphone pattern is present. An application of the more robust Breusch - Pagan test

  15. Recovering Wood and McCarthy's ERP-prototypes by means of ERP-specific procrustes-rotation.

    PubMed

    Beauducel, André

    2018-02-01

    The misallocation of treatment-variance on the wrong component has been discussed in the context of temporal principal component analysis of event-related potentials. There is, until now, no rotation-method that can perfectly recover Wood and McCarthy's prototypes without making use of additional information on treatment-effects. In order to close this gap, two new methods: for component rotation were proposed. After Varimax-prerotation, the first method identifies very small slopes of successive loadings. The corresponding loadings are set to zero in a target-matrix for event-related orthogonal partial Procrustes- (EPP-) rotation. The second method generates Gaussian normal distributions around the peaks of the Varimax-loadings and performs orthogonal Procrustes-rotation towards these Gaussian distributions. Oblique versions of this Gaussian event-related Procrustes- (GEP) rotation and of EPP-rotation are based on Promax-rotation. A simulation study revealed that the new orthogonal rotations recover Wood and McCarthy's prototypes and eliminate misallocation of treatment-variance. In an additional simulation study with a more pronounced overlap of the prototypes GEP Promax-rotation reduced the variance misallocation slightly more than EPP Promax-rotation. Comparison with Existing Method(s): Varimax- and conventional Promax-rotations resulted in substantial misallocations of variance in simulation studies when components had temporal overlap. A substantially reduced misallocation of variance occurred with the EPP-, EPP Promax-, GEP-, and GEP Promax-rotations. Misallocation of variance can be minimized by means of the new rotation methods: Making use of information on the temporal order of the loadings may allow for improvements of the rotation of temporal PCA components. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. What is the danger of the anomaly zone for empirical phylogenetics?

    PubMed

    Huang, Huateng; Knowles, L Lacey

    2009-10-01

    The increasing number of observations of gene trees with discordant topologies in phylogenetic studies has raised awareness about the problems of incongruence between species trees and gene trees. Moreover, theoretical treatments focusing on the impact of coalescent variance on phylogenetic study have also identified situations where the most probable gene trees are ones that do not match the underlying species tree (i.e., anomalous gene trees [AGTs]). However, although the theoretical proof of the existence of AGTs is alarming, the actual risk that AGTs pose to empirical phylogenetic study is far from clear. Establishing the conditions (i.e., the branch lengths in a species tree) for which AGTs are possible does not address the critical issue of how prevalent they might be. Furthermore, theoretical characterization of the species trees for which AGTs may pose a problem (i.e., the anomaly zone or the species histories for which AGTs are theoretically possible) is based on consideration of just one source of variance that contributes to species tree and gene tree discord-gene lineage coalescence. Yet, empirical data contain another important stochastic component-mutational variance. Estimated gene trees will differ from the underlying gene trees (i.e., the actual genealogy) because of the random process of mutation. Here, we take a simulation approach to investigate the prevalence of AGTs, among estimated gene trees, thereby characterizing the boundaries of the anomaly zone taking into account both coalescent and mutational variances. We also determine the frequency of realized AGTs, which is critical to putting the theoretical work on AGTs into a realistic biological context. Two salient results emerge from this investigation. First, our results show that mutational variance can indeed expand the parameter space (i.e., the relative branch lengths in a species tree) where AGTs might be observed in empirical data. By exploring the underlying cause for the expanded anomaly zone, we identify aspects of empirical data relevant to avoiding the problems that AGTs pose for species tree inference from multilocus data. Second, for the empirical species histories where AGTs are possible, unresolved trees-not AGTs-predominate the pool of estimated gene trees. This result suggests that the risk of AGTs, while they exist in theory, may rarely be realized in practice. By considering the biological realities of both mutational and coalescent variances, the study has refined, and redefined, what the actual challenges are for empirical phylogenetic study of recently diverged taxa that have speciated rapidly-AGTs themselves are unlikely to pose a significant danger to empirical phylogenetic study.

  17. Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Brian M.; Ebeida, Mohamed Salah; Eldred, Michael S.

    The Dakota (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a exible and extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quanti cation with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components requiredmore » for iterative systems analyses, the Dakota toolkit provides a exible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a user's manual for the Dakota software and provides capability overviews and procedures for software execution, as well as a variety of example studies.« less

  18. Uncertainty importance analysis using parametric moment ratio functions.

    PubMed

    Wei, Pengfei; Lu, Zhenzhou; Song, Jingwen

    2014-02-01

    This article presents a new importance analysis framework, called parametric moment ratio function, for measuring the reduction of model output uncertainty when the distribution parameters of inputs are changed, and the emphasis is put on the mean and variance ratio functions with respect to the variances of model inputs. The proposed concepts efficiently guide the analyst to achieve a targeted reduction on the model output mean and variance by operating on the variances of model inputs. The unbiased and progressive unbiased Monte Carlo estimators are also derived for the parametric mean and variance ratio functions, respectively. Only a set of samples is needed for implementing the proposed importance analysis by the proposed estimators, thus the computational cost is free of input dimensionality. An analytical test example with highly nonlinear behavior is introduced for illustrating the engineering significance of the proposed importance analysis technique and verifying the efficiency and convergence of the derived Monte Carlo estimators. Finally, the moment ratio function is applied to a planar 10-bar structure for achieving a targeted 50% reduction of the model output variance. © 2013 Society for Risk Analysis.

  19. A Multilevel AR(1) Model: Allowing for Inter-Individual Differences in Trait-Scores, Inertia, and Innovation Variance.

    PubMed

    Jongerling, Joran; Laurenceau, Jean-Philippe; Hamaker, Ellen L

    2015-01-01

    In this article we consider a multilevel first-order autoregressive [AR(1)] model with random intercepts, random autoregression, and random innovation variance (i.e., the level 1 residual variance). Including random innovation variance is an important extension of the multilevel AR(1) model for two reasons. First, between-person differences in innovation variance are important from a substantive point of view, in that they capture differences in sensitivity and/or exposure to unmeasured internal and external factors that influence the process. Second, using simulation methods we show that modeling the innovation variance as fixed across individuals, when it should be modeled as a random effect, leads to biased parameter estimates. Additionally, we use simulation methods to compare maximum likelihood estimation to Bayesian estimation of the multilevel AR(1) model and investigate the trade-off between the number of individuals and the number of time points. We provide an empirical illustration by applying the extended multilevel AR(1) model to daily positive affect ratings from 89 married women over the course of 42 consecutive days.

  20. Heritability of myopia and ocular biometrics in Koreans: the healthy twin study.

    PubMed

    Kim, Myung Hun; Zhao, Di; Kim, Woori; Lim, Dong-Hui; Song, Yun-Mi; Guallar, Eliseo; Cho, Juhee; Sung, Joohon; Chung, Eui-Sang; Chung, Tae-Young

    2013-05-01

    To estimate the heritabilities of myopia and ocular biometrics among different family types among a Korean population. We studied 1508 adults in the Healthy Twin Study. Spherical equivalent, axial length, anterior chamber depth, and corneal astigmatism were measured by refraction, corneal topography, and A-scan ultrasonography. To see the degree of resemblance among different types of family relationships, intraclass correlation coefficients (ICC) were calculated. Variance-component methods were applied to estimate the genetic contributions to eye phenotypes as heritability based on the maximum likelihood estimation. Narrow sense heritability was calculated as the proportion of the total phenotypic variance explained by additive genetic effects, and linear and nonlinear effects of age, sex, and interactions between age and sex were adjusted. A total of 240 monozygotic twin pairs, 45 dizygotic twin pairs, and 938 singleton adult family members who were first-degree relatives of twins in 345 families were included in the study. ICCs for spherical equivalent from monozygotic twins, pooled first-degree pairs, and spouse pairs were 0.83, 0.34, and 0.20, respectively. The ICCs of other ocular biometrics were also significantly higher in monozygotic twins compared with other relative pairs, with greater consistency and conformity. The estimated narrow sense heritability (95% confidence interval) was 0.78 (0.71-0.84) for spherical equivalent; 0.86 (0.82-0.90) for axial length; 0.83 (0.76-0.91) for anterior chamber depth; and 0.70 (0.63-0.77) for corneal astigmatism. The estimated heritability of spherical equivalent and ocular biometrics in the Korean population suggests the compelling evidence that all traits are highly heritable.

  1. Sex-specific genetic variances in life-history and morphological traits of the seed beetle Callosobruchus maculatus.

    PubMed

    Hallsson, Lára R; Björklund, Mats

    2012-01-01

    Knowledge of heritability and genetic correlations are of central importance in the study of adaptive trait evolution and genetic constraints. We use a paternal half-sib-full-sib breeding design to investigate the genetic architecture of three life-history and morphological traits in the seed beetle, Callosobruchus maculatus. Heritability was significant for all traits under observation and genetic correlations between traits (r(A)) were low. Interestingly, we found substantial sex-specific genetic effects and low genetic correlations between sexes (r(MF)) in traits that are only moderately (weight at emergence) to slightly (longevity) sexually dimorphic. Furthermore, we found an increased sire ([Formula: see text]) compared to dam ([Formula: see text]) variance component within trait and sex. Our results highlight that the genetic architecture even of the same trait should not be assumed to be the same for males and females. Furthermore, it raises the issue of the presence of unnoticed environmental effects that may inflate estimates of heritability. Overall, our study stresses the fact that estimates of quantitative genetic parameters are not only population, time, environment, but also sex specific. Thus, extrapolation between sexes and studies should be treated with caution.

  2. Sex-specific genetic variances in life-history and morphological traits of the seed beetle Callosobruchus maculatus

    PubMed Central

    Hallsson, Lára R; Björklund, Mats

    2012-01-01

    Knowledge of heritability and genetic correlations are of central importance in the study of adaptive trait evolution and genetic constraints. We use a paternal half-sib-full-sib breeding design to investigate the genetic architecture of three life-history and morphological traits in the seed beetle, Callosobruchus maculatus. Heritability was significant for all traits under observation and genetic correlations between traits (rA) were low. Interestingly, we found substantial sex-specific genetic effects and low genetic correlations between sexes (rMF) in traits that are only moderately (weight at emergence) to slightly (longevity) sexually dimorphic. Furthermore, we found an increased sire () compared to dam () variance component within trait and sex. Our results highlight that the genetic architecture even of the same trait should not be assumed to be the same for males and females. Furthermore, it raises the issue of the presence of unnoticed environmental effects that may inflate estimates of heritability. Overall, our study stresses the fact that estimates of quantitative genetic parameters are not only population, time, environment, but also sex specific. Thus, extrapolation between sexes and studies should be treated with caution. PMID:22408731

  3. Between-Batch Pharmacokinetic Variability Inflates Type I Error Rate in Conventional Bioequivalence Trials: A Randomized Advair Diskus Clinical Trial.

    PubMed

    Burmeister Getz, E; Carroll, K J; Mielke, J; Benet, L Z; Jones, B

    2017-03-01

    We previously demonstrated pharmacokinetic differences among manufacturing batches of a US Food and Drug Administration (FDA)-approved dry powder inhalation product (Advair Diskus 100/50) large enough to establish between-batch bio-inequivalence. Here, we provide independent confirmation of pharmacokinetic bio-inequivalence among Advair Diskus 100/50 batches, and quantify residual and between-batch variance component magnitudes. These variance estimates are used to consider the type I error rate of the FDA's current two-way crossover design recommendation. When between-batch pharmacokinetic variability is substantial, the conventional two-way crossover design cannot accomplish the objectives of FDA's statistical bioequivalence test (i.e., cannot accurately estimate the test/reference ratio and associated confidence interval). The two-way crossover, which ignores between-batch pharmacokinetic variability, yields an artificially narrow confidence interval on the product comparison. The unavoidable consequence is type I error rate inflation, to ∼25%, when between-batch pharmacokinetic variability is nonzero. This risk of a false bioequivalence conclusion is substantially higher than asserted by regulators as acceptable consumer risk (5%). © 2016 The Authors Clinical Pharmacology & Therapeutics published by Wiley Periodicals, Inc. on behalf of The American Society for Clinical Pharmacology and Therapeutics.

  4. Heat and solute tracers: how do they compare in heterogeneous aquifers?

    PubMed

    Irvine, Dylan J; Simmons, Craig T; Werner, Adrian D; Graf, Thomas

    2015-04-01

    A comparison of groundwater velocity in heterogeneous aquifers estimated from hydraulic methods, heat and solute tracers was made using numerical simulations. Aquifer heterogeneity was described by geostatistical properties of the Borden, Cape Cod, North Bay, and MADE aquifers. Both heat and solute tracers displayed little systematic under- or over-estimation in velocity relative to a hydraulic control. The worst cases were under-estimates of 6.63% for solute and 2.13% for the heat tracer. Both under- and over-estimation of velocity from the heat tracer relative to the solute tracer occurred. Differences between the estimates from the tracer methods increased as the mean velocity decreased, owing to differences in rates of molecular diffusion and thermal conduction. The variance in estimated velocity using all methods increased as the variance in log-hydraulic conductivity (K) and correlation length scales increased. The variance in velocity for each scenario was remarkably small when compared to σ2 ln(K) for all methods tested. The largest variability identified was for the solute tracer where 95% of velocity estimates ranged by a factor of 19 in simulations where 95% of the K values varied by almost four orders of magnitude. For the same K-fields, this range was a factor of 11 for the heat tracer. The variance in estimated velocity was always lowest when using heat as a tracer. The study results suggest that a solute tracer will provide more understanding about the variance in velocity caused by aquifer heterogeneity and a heat tracer provides a better approximation of the mean velocity. © 2013, National Ground Water Association.

  5. Easy and accurate variance estimation of the nonparametric estimator of the partial area under the ROC curve and its application.

    PubMed

    Yu, Jihnhee; Yang, Luge; Vexler, Albert; Hutson, Alan D

    2016-06-15

    The receiver operating characteristic (ROC) curve is a popular technique with applications, for example, investigating an accuracy of a biomarker to delineate between disease and non-disease groups. A common measure of accuracy of a given diagnostic marker is the area under the ROC curve (AUC). In contrast with the AUC, the partial area under the ROC curve (pAUC) looks into the area with certain specificities (i.e., true negative rate) only, and it can be often clinically more relevant than examining the entire ROC curve. The pAUC is commonly estimated based on a U-statistic with the plug-in sample quantile, making the estimator a non-traditional U-statistic. In this article, we propose an accurate and easy method to obtain the variance of the nonparametric pAUC estimator. The proposed method is easy to implement for both one biomarker test and the comparison of two correlated biomarkers because it simply adapts the existing variance estimator of U-statistics. In this article, we show accuracy and other advantages of the proposed variance estimation method by broadly comparing it with previously existing methods. Further, we develop an empirical likelihood inference method based on the proposed variance estimator through a simple implementation. In an application, we demonstrate that, depending on the inferences by either the AUC or pAUC, we can make a different decision on a prognostic ability of a same set of biomarkers. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Estimation of Additive, Dominance, and Imprinting Genetic Variance Using Genomic Data

    PubMed Central

    Lopes, Marcos S.; Bastiaansen, John W. M.; Janss, Luc; Knol, Egbert F.; Bovenhuis, Henk

    2015-01-01

    Traditionally, exploration of genetic variance in humans, plants, and livestock species has been limited mostly to the use of additive effects estimated using pedigree data. However, with the development of dense panels of single-nucleotide polymorphisms (SNPs), the exploration of genetic variation of complex traits is moving from quantifying the resemblance between family members to the dissection of genetic variation at individual loci. With SNPs, we were able to quantify the contribution of additive, dominance, and imprinting variance to the total genetic variance by using a SNP regression method. The method was validated in simulated data and applied to three traits (number of teats, backfat, and lifetime daily gain) in three purebred pig populations. In simulated data, the estimates of additive, dominance, and imprinting variance were very close to the simulated values. In real data, dominance effects account for a substantial proportion of the total genetic variance (up to 44%) for these traits in these populations. The contribution of imprinting to the total phenotypic variance of the evaluated traits was relatively small (1–3%). Our results indicate a strong relationship between additive variance explained per chromosome and chromosome length, which has been described previously for other traits in other species. We also show that a similar linear relationship exists for dominance and imprinting variance. These novel results improve our understanding of the genetic architecture of the evaluated traits and shows promise to apply the SNP regression method to other traits and species, including human diseases. PMID:26438289

  7. Concerns about a variance approach to X-ray diffractometric estimation of microfibril angle in wood

    Treesearch

    Steve P. Verrill; David E. Kretschmann; Victoria L. Herian; Michael C. Wiemann; Harry A. Alden

    2011-01-01

    In this article, we raise three technical concerns about Evans’ 1999 Appita Journal “variance approach” to estimating microfibril angle (MFA). The first concern is associated with the approximation of the variance of an X-ray intensity half-profile by a function of the MFA and the natural variability of the MFA. The second concern is associated with the approximation...

  8. Concerns about a variance approach to the X-ray diffractometric estimation of microfibril angle in wood

    Treesearch

    Steve P. Verrill; David E. Kretschmann; Victoria L. Herian; Michael Wiemann; Harry A. Alden

    2010-01-01

    In this paper we raise three technical concerns about Evans’s 1999 Appita Journal “variance approach” to estimating microfibril angle. The first concern is associated with the approximation of the variance of an X-ray intensity half-profile by a function of the microfibril angle and the natural variability of the microfibril angle, S2...

  9. Wellbeing in Urban Greenery: The Role of Naturalness and Place Identity.

    PubMed

    Knez, Igor; Ode Sang, Åsa; Gunnarsson, Bengt; Hedblom, Marcus

    2018-01-01

    The aim was to investigate effects of urban greenery (high vs. low naturalness) on place identity and wellbeing, and the links between place identity and wellbeing. It was shown that participants (Gothenburg, Sweden, N = 1347) estimated a stronger attachment/closeness/belonging (emotional component of place-identity), and more remembrance and thinking about and mental travel (cognitive component of place-identity) in relation to high vs. low perceived naturalness. High naturalness was also reported to generate higher wellbeing in participants than low naturalness. Furthermore, place identity was shown to predict participants' wellbeing in urban greenery, accounting for 35% of variance explained by the regression. However, there was a stronger relationship between the emotional vs. the cognitive component of place identity and wellbeing. Finally, a significant role of place identity in mediating the naturalness-wellbeing relationship was shown, indicating that the naturalness-wellbeing connection can be partly accounted for by the psychological mechanisms of people-place bonding.

  10. Improved variance estimation of classification performance via reduction of bias caused by small sample size.

    PubMed

    Wickenberg-Bolin, Ulrika; Göransson, Hanna; Fryknäs, Mårten; Gustafsson, Mats G; Isaksson, Anders

    2006-03-13

    Supervised learning for classification of cancer employs a set of design examples to learn how to discriminate between tumors. In practice it is crucial to confirm that the classifier is robust with good generalization performance to new examples, or at least that it performs better than random guessing. A suggested alternative is to obtain a confidence interval of the error rate using repeated design and test sets selected from available examples. However, it is known that even in the ideal situation of repeated designs and tests with completely novel samples in each cycle, a small test set size leads to a large bias in the estimate of the true variance between design sets. Therefore different methods for small sample performance estimation such as a recently proposed procedure called Repeated Random Sampling (RSS) is also expected to result in heavily biased estimates, which in turn translates into biased confidence intervals. Here we explore such biases and develop a refined algorithm called Repeated Independent Design and Test (RIDT). Our simulations reveal that repeated designs and tests based on resampling in a fixed bag of samples yield a biased variance estimate. We also demonstrate that it is possible to obtain an improved variance estimate by means of a procedure that explicitly models how this bias depends on the number of samples used for testing. For the special case of repeated designs and tests using new samples for each design and test, we present an exact analytical expression for how the expected value of the bias decreases with the size of the test set. We show that via modeling and subsequent reduction of the small sample bias, it is possible to obtain an improved estimate of the variance of classifier performance between design sets. However, the uncertainty of the variance estimate is large in the simulations performed indicating that the method in its present form cannot be directly applied to small data sets.

  11. Shared Genetics and Couple-Associated Environment Are Major Contributors to the Risk of Both Clinical and Self-Declared Depression.

    PubMed

    Zeng, Yanni; Navarro, Pau; Xia, Charley; Amador, Carmen; Fernandez-Pujals, Ana M; Thomson, Pippa A; Campbell, Archie; Nagy, Reka; Clarke, Toni-Kim; Hafferty, Jonathan D; Smith, Blair H; Hocking, Lynne J; Padmanabhan, Sandosh; Hayward, Caroline; MacIntyre, Donald J; Porteous, David J; Haley, Chris S; McIntosh, Andrew M

    2016-12-01

    Both genetic and environmental factors contribute to risk of depression, but estimates of their relative contributions are limited. Commonalities between clinically-assessed major depressive disorder (MDD) and self-declared depression (SDD) are also unclear. Using data from a large Scottish family-based cohort (GS:SFHS, N=19,994), we estimated the genetic and environmental variance components for MDD and SDD. The components representing the genetic effect associated with genome-wide common genetic variants (SNP heritability), the additional pedigree-associated genetic effect and non-genetic effects associated with common environments were estimated in a linear mixed model (LMM). Both MDD and SDD had significant contributions from components representing the effect from common genetic variants, the additional genetic effect associated with the pedigree and the common environmental effect shared by couples. The estimate of correlation between SDD and MDD was high (r=1.00, se=0.20) for common-variant-associated genetic effect and lower for the additional genetic effect from the pedigree (r=0.57, se=0.08) and the couple-shared environmental effect (r=0.53, se=0.22). Both genetics and couple-shared environmental effects were major factors influencing liability to depression. SDD may provide a scalable alternative to MDD in studies seeking to identify common risk variants. Rarer variants and environmental effects may however differ substantially according to different definitions of depression. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Smoothed Spectra, Ogives, and Error Estimates for Atmospheric Turbulence Data

    NASA Astrophysics Data System (ADS)

    Dias, Nelson Luís

    2018-01-01

    A systematic evaluation is conducted of the smoothed spectrum, which is a spectral estimate obtained by averaging over a window of contiguous frequencies. The technique is extended to the ogive, as well as to the cross-spectrum. It is shown that, combined with existing variance estimates for the periodogram, the variance—and therefore the random error—associated with these estimates can be calculated in a straightforward way. The smoothed spectra and ogives are biased estimates; with simple power-law analytical models, correction procedures are devised, as well as a global constraint that enforces Parseval's identity. Several new results are thus obtained: (1) The analytical variance estimates compare well with the sample variance calculated for the Bartlett spectrum and the variance of the inertial subrange of the cospectrum is shown to be relatively much larger than that of the spectrum. (2) Ogives and spectra estimates with reduced bias are calculated. (3) The bias of the smoothed spectrum and ogive is shown to be negligible at the higher frequencies. (4) The ogives and spectra thus calculated have better frequency resolution than the Bartlett spectrum, with (5) gradually increasing variance and relative error towards the low frequencies. (6) Power-law identification and extraction of the rate of dissipation of turbulence kinetic energy are possible directly from the ogive. (7) The smoothed cross-spectrum is a valid inner product and therefore an acceptable candidate for coherence and spectral correlation coefficient estimation by means of the Cauchy-Schwarz inequality. The quadrature, phase function, coherence function and spectral correlation function obtained from the smoothed spectral estimates compare well with the classical ones derived from the Bartlett spectrum.

  13. Gravity Wave Variances and Propagation Derived from AIRS Radiances

    NASA Technical Reports Server (NTRS)

    Gong, Jie; Wu, Dong L.; Eckermann, S. D.

    2012-01-01

    As the first gravity wave (GW) climatology study using nadir-viewing infrared sounders, 50 Atmospheric Infrared Sounder (AIRS) radiance channels are selected to estimate GW variances at pressure levels between 2-100 hPa. The GW variance for each scan in the cross-track direction is derived from radiance perturbations in the scan, independently of adjacent scans along the orbit. Since the scanning swaths are perpendicular to the satellite orbits, which are inclined meridionally at most latitudes, the zonal component of GW propagation can be inferred by differencing the variances derived between the westmost and the eastmost viewing angles. Consistent with previous GW studies using various satellite instruments, monthly mean AIRS variance shows large enhancements over meridionally oriented mountain ranges as well as some islands at winter hemisphere high latitudes. Enhanced wave activities are also found above tropical deep convective regions. GWs prefer to propagate westward above mountain ranges, and eastward above deep convection. AIRS 90 field-of-views (FOVs), ranging from +48 deg. to -48 deg. off nadir, can detect large-amplitude GWs with a phase velocity propagating preferentially at steep angles (e.g., those from orographic and convective sources). The annual cycle dominates the GW variances and the preferred propagation directions for all latitudes. Indication of a weak two-year variation in the tropics is found, which is presumably related to the Quasi-biennial oscillation (QBO). AIRS geometry makes its out-tracks capable of detecting GWs with vertical wavelengths substantially shorter than the thickness of instrument weighting functions. The novel discovery of AIRS capability of observing shallow inertia GWs will expand the potential of satellite GW remote sensing and provide further constraints on the GW drag parameterization schemes in the general circulation models (GCMs).

  14. Minimum variance geographic sampling

    NASA Technical Reports Server (NTRS)

    Terrell, G. R. (Principal Investigator)

    1980-01-01

    Resource inventories require samples with geographical scatter, sometimes not as widely spaced as would be hoped. A simple model of correlation over distances is used to create a minimum variance unbiased estimate population means. The fitting procedure is illustrated from data used to estimate Missouri corn acreage.

  15. 3D joint inversion of gravity-gradient and borehole gravity data

    NASA Astrophysics Data System (ADS)

    Geng, Meixia; Yang, Qingjie; Huang, Danian

    2017-12-01

    Borehole gravity is increasingly used in mineral exploration due to the advent of slim-hole gravimeters. Given the full-tensor gradiometry data available nowadays, joint inversion of surface and borehole data is a logical next step. Here, we base our inversions on cokriging, which is a geostatistical method of estimation where the error variance is minimised by applying cross-correlation between several variables. In this study, the density estimates are derived using gravity-gradient data, borehole gravity and known densities along the borehole as a secondary variable and the density as the primary variable. Cokriging is non-iterative and therefore is computationally efficient. In addition, cokriging inversion provides estimates of the error variance for each model, which allows direct assessment of the inverse model. Examples are shown involving data from a single borehole, from multiple boreholes, and combinations of borehole gravity and gravity-gradient data. The results clearly show that the depth resolution of gravity-gradient inversion can be improved significantly by including borehole data in addition to gravity-gradient data. However, the resolution of borehole data falls off rapidly as the distance between the borehole and the feature of interest increases. In the case where the borehole is far away from the target of interest, the inverted result can be improved by incorporating gravity-gradient data, especially all five independent components for inversion.

  16. A rapid generalized least squares model for a genome-wide quantitative trait association analysis in families.

    PubMed

    Li, Xiang; Basu, Saonli; Miller, Michael B; Iacono, William G; McGue, Matt

    2011-01-01

    Genome-wide association studies (GWAS) using family data involve association analyses between hundreds of thousands of markers and a trait for a large number of related individuals. The correlations among relatives bring statistical and computational challenges when performing these large-scale association analyses. Recently, several rapid methods accounting for both within- and between-family variation have been proposed. However, these techniques mostly model the phenotypic similarities in terms of genetic relatedness. The familial resemblances in many family-based studies such as twin studies are not only due to the genetic relatedness, but also derive from shared environmental effects and assortative mating. In this paper, we propose 2 generalized least squares (GLS) models for rapid association analysis of family-based GWAS, which accommodate both genetic and environmental contributions to familial resemblance. In our first model, we estimated the joint genetic and environmental variations. In our second model, we estimated the genetic and environmental components separately. Through simulation studies, we demonstrated that our proposed approaches are more powerful and computationally efficient than a number of existing methods are. We show that estimating the residual variance-covariance matrix in the GLS models without SNP effects does not lead to an appreciable bias in the p values as long as the SNP effect is small (i.e. accounting for no more than 1% of trait variance). Copyright © 2011 S. Karger AG, Basel.

  17. Evaluation of response variables in computer-simulated virtual cataract surgery

    NASA Astrophysics Data System (ADS)

    Söderberg, Per G.; Laurell, Carl-Gustaf; Simawi, Wamidh; Nordqvist, Per; Skarman, Eva; Nordh, Leif

    2006-02-01

    We have developed a virtual reality (VR) simulator for phacoemulsification (phaco) surgery. The current work aimed at evaluating the precision in the estimation of response variables identified for measurement of the performance of VR phaco surgery. We identified 31 response variables measuring; the overall procedure, the foot pedal technique, the phacoemulsification technique, erroneous manipulation, and damage to ocular structures. Totally, 8 medical or optometry students with a good knowledge of ocular anatomy and physiology but naive to cataract surgery performed three sessions each of VR Phaco surgery. For measurement, the surgical procedure was divided into a sculpting phase and an evacuation phase. The 31 response variables were measured for each phase in all three sessions. The variance components for individuals and iterations of sessions within individuals were estimated with an analysis of variance assuming a hierarchal model. The consequences of estimated variabilities for sample size requirements were determined. It was found that generally there was more variability for iterated sessions within individuals for measurements of the sculpting phase than for measurements of the evacuation phase. This resulted in larger required sample sizes for detection of difference between independent groups or change within group, for the sculpting phase as compared to for the evacuation phase. It is concluded that several of the identified response variables can be measured with sufficient precision for evaluation of VR phaco surgery.

  18. Sample size calculation for stepped wedge and other longitudinal cluster randomised trials.

    PubMed

    Hooper, Richard; Teerenstra, Steven; de Hoop, Esther; Eldridge, Sandra

    2016-11-20

    The sample size required for a cluster randomised trial is inflated compared with an individually randomised trial because outcomes of participants from the same cluster are correlated. Sample size calculations for longitudinal cluster randomised trials (including stepped wedge trials) need to take account of at least two levels of clustering: the clusters themselves and times within clusters. We derive formulae for sample size for repeated cross-section and closed cohort cluster randomised trials with normally distributed outcome measures, under a multilevel model allowing for variation between clusters and between times within clusters. Our formulae agree with those previously described for special cases such as crossover and analysis of covariance designs, although simulation suggests that the formulae could underestimate required sample size when the number of clusters is small. Whether using a formula or simulation, a sample size calculation requires estimates of nuisance parameters, which in our model include the intracluster correlation, cluster autocorrelation, and individual autocorrelation. A cluster autocorrelation less than 1 reflects a situation where individuals sampled from the same cluster at different times have less correlated outcomes than individuals sampled from the same cluster at the same time. Nuisance parameters could be estimated from time series obtained in similarly clustered settings with the same outcome measure, using analysis of variance to estimate variance components. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Statistical modeling to determine sources of variability in exposures to welding fumes.

    PubMed

    Liu, Sa; Hammond, S Katharine; Rappaport, Stephen M

    2011-04-01

    Exposures to total particulate matter (TP) and manganese (Mn) received by workers during welding and allied hot processes were analyzed to assess the sources and magnitudes of variability. Compilation of data from several countries identified 2065 TP and 697 Mn measurements for analysis. Linear mixed models were used to determine fixed effects due to different countries, industries and trades, process characteristics, and the sampling regimen, and to estimate components of variance within workers (both intraday and interday), between workers (within worksites), and across worksites. The fixed effects explained 55 and 49% of variation in TP and Mn exposures, respectively. The country, industry/trade, type of ventilation, and type of work/welding process were the major factors affecting exposures to both agents. Measurements in the USA were generally higher than those in other countries. Exposure to TP was 67% higher in enclosed spaces and 43% lower with local exhaust ventilation (LEV), was higher among boilermakers and was higher when either a mild-steel base metal or a flux cored consumable was used. Exposure to Mn was 750% higher in enclosed spaces and 67% lower when LEV was present. Air concentrations of Mn were significantly affected by the welding consumables but not by the base metal. Resistance welding produced significantly lower TP and Mn exposures compared to other welding processes. Interestingly, exposures to TP had not changed over the 40 years of observation, while those of Mn showed (non-significant) reductions of 3.6% year(-1). After controlling for fixed effects, variance components between worksites and between-individual workers within a worksite were reduced by 89 and 57% for TP and 75 and 63% for Mn, respectively. The within-worker variation (sum of intraday and interday variance components) of Mn exposure was three times higher than that of TP exposure. The estimated probabilities of exceeding occupational exposure limits were very high (generally much >10%) for both agents. Welding exposures to TP and Mn vary considerably across the world and across occupational groups. Exposures to both contaminants have been and continue to be unacceptably high in most sectors of industry. Because exposures to the two agents have different sources and characteristics, separate control strategies should be considered to reduce welders' exposures to TP and Mn.

  20. Behavior of sensitivities in the one-dimensional advection-dispersion equation: Implications for parameter estimation and sampling design

    USGS Publications Warehouse

    Knopman, Debra S.; Voss, Clifford I.

    1987-01-01

    The spatial and temporal variability of sensitivities has a significant impact on parameter estimation and sampling design for studies of solute transport in porous media. Physical insight into the behavior of sensitivities is offered through an analysis of analytically derived sensitivities for the one-dimensional form of the advection-dispersion equation. When parameters are estimated in regression models of one-dimensional transport, the spatial and temporal variability in sensitivities influences variance and covariance of parameter estimates. Several principles account for the observed influence of sensitivities on parameter uncertainty. (1) Information about a physical parameter may be most accurately gained at points in space and time with a high sensitivity to the parameter. (2) As the distance of observation points from the upstream boundary increases, maximum sensitivity to velocity during passage of the solute front increases and the consequent estimate of velocity tends to have lower variance. (3) The frequency of sampling must be “in phase” with the S shape of the dispersion sensitivity curve to yield the most information on dispersion. (4) The sensitivity to the dispersion coefficient is usually at least an order of magnitude less than the sensitivity to velocity. (5) The assumed probability distribution of random error in observations of solute concentration determines the form of the sensitivities. (6) If variance in random error in observations is large, trends in sensitivities of observation points may be obscured by noise and thus have limited value in predicting variance in parameter estimates among designs. (7) Designs that minimize the variance of one parameter may not necessarily minimize the variance of other parameters. (8) The time and space interval over which an observation point is sensitive to a given parameter depends on the actual values of the parameters in the underlying physical system.

  1. An improved method for bivariate meta-analysis when within-study correlations are unknown.

    PubMed

    Hong, Chuan; D Riley, Richard; Chen, Yong

    2018-03-01

    Multivariate meta-analysis, which jointly analyzes multiple and possibly correlated outcomes in a single analysis, is becoming increasingly popular in recent years. An attractive feature of the multivariate meta-analysis is its ability to account for the dependence between multiple estimates from the same study. However, standard inference procedures for multivariate meta-analysis require the knowledge of within-study correlations, which are usually unavailable. This limits standard inference approaches in practice. Riley et al proposed a working model and an overall synthesis correlation parameter to account for the marginal correlation between outcomes, where the only data needed are those required for a separate univariate random-effects meta-analysis. As within-study correlations are not required, the Riley method is applicable to a wide variety of evidence synthesis situations. However, the standard variance estimator of the Riley method is not entirely correct under many important settings. As a consequence, the coverage of a function of pooled estimates may not reach the nominal level even when the number of studies in the multivariate meta-analysis is large. In this paper, we improve the Riley method by proposing a robust variance estimator, which is asymptotically correct even when the model is misspecified (ie, when the likelihood function is incorrect). Simulation studies of a bivariate meta-analysis, in a variety of settings, show a function of pooled estimates has improved performance when using the proposed robust variance estimator. In terms of individual pooled estimates themselves, the standard variance estimator and robust variance estimator give similar results to the original method, with appropriate coverage. The proposed robust variance estimator performs well when the number of studies is relatively large. Therefore, we recommend the use of the robust method for meta-analyses with a relatively large number of studies (eg, m≥50). When the sample size is relatively small, we recommend the use of the robust method under the working independence assumption. We illustrate the proposed method through 2 meta-analyses. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Projections of Southern Hemisphere atmospheric circulation interannual variability

    NASA Astrophysics Data System (ADS)

    Grainger, Simon; Frederiksen, Carsten S.; Zheng, Xiaogu

    2017-02-01

    An analysis is made of the coherent patterns, or modes, of interannual variability of Southern Hemisphere 500 hPa geopotential height field under current and projected climate change scenarios. Using three separate multi-model ensembles (MMEs) of coupled model intercomparison project phase 5 (CMIP5) models, the interannual variability of the seasonal mean is separated into components related to (1) intraseasonal processes; (2) slowly-varying internal dynamics; and (3) the slowly-varying response to external changes in radiative forcing. In the CMIP5 RCP8.5 and RCP4.5 experiments, there is very little change in the twenty-first century in the intraseasonal component modes, related to the Southern annular mode (SAM) and mid-latitude wave processes. The leading three slowly-varying internal component modes are related to SAM, the El Niño-Southern oscillation (ENSO), and the South Pacific wave (SPW). Structural changes in the slow-internal SAM and ENSO modes do not exceed a qualitative estimate of the spatial sampling error, but there is a consistent increase in the ENSO-related variance. Changes in the SPW mode exceed the sampling error threshold, but cannot be further attributed. Changes in the dominant slowly-varying external mode are related to projected changes in radiative forcing. They reflect thermal expansion of the tropical troposphere and associated changes in the Hadley Cell circulation. Changes in the externally-forced associated variance in the RCP8.5 experiment are an order of magnitude greater than for the internal components, indicating that the SH seasonal mean circulation will be even more dominated by a SAM-like annular structure. Across the three MMEs, there is convergence in the projected response in the slow-external component.

  3. Resolving Isotropic Components from Regional Waves using Grid Search and Moment Tensor Inversion Methods

    NASA Astrophysics Data System (ADS)

    Ichinose, G. A.; Saikia, C. K.

    2007-12-01

    We applied the moment tensor (MT) analysis scheme to identify seismic sources using regional seismograms based on the representation theorem for the elastic wave displacement field. This method is applied to estimate the isotropic (ISO) and deviatoric MT components of earthquake, volcanic, and isotropic sources within the Basin and Range Province (BRP) and western US. The ISO components from Hoya, Bexar, Montello and Junction were compared to recently well recorded recent earthquakes near Little Skull Mountain, Scotty's Junction, Eureka Valley, and Fish Lake Valley within southern Nevada. We also examined "dilatational" sources near Mammoth Lakes Caldera and two mine collapses including the August 2007 event in Utah recorded by US Array. Using our formulation we have first implemented the full MT inversion method on long period filtered regional data. We also applied a grid-search technique to solve for the percent deviatoric and %ISO moments. By using the grid-search technique, high-frequency waveforms are used with calibrated velocity models. We modeled the ISO and deviatoric components (spall and tectonic release) as separate events delayed in time or offset in space. Calibrated velocity models helped the resolution of the ISO components and decrease the variance over the average, initial or background velocity models. The centroid location and time shifts are velocity model dependent. Models can be improved as was done in previously published work in which we used an iterative waveform inversion method with regional seismograms from four well recorded and constrained earthquakes. The resulting velocity models reduced the variance between predicted synthetics by about 50 to 80% for frequencies up to 0.5 Hz. Tests indicate that the individual path-specific models perform better at recovering the earthquake MT solutions even after using a sparser distribution of stations than the average or initial models.

  4. A comparison of selection at list time and time-stratified sampling for estimating suspended sediment loads

    Treesearch

    Robert B. Thomas; Jack Lewis

    1993-01-01

    Time-stratified sampling of sediment for estimating suspended load is introduced and compared to selection at list time (SALT) sampling. Both methods provide unbiased estimates of load and variance. The magnitude of the variance of the two methods is compared using five storm populations of suspended sediment flux derived from turbidity data. Under like conditions,...

  5. Estimation of the biserial correlation and its sampling variance for use in meta-analysis.

    PubMed

    Jacobs, Perke; Viechtbauer, Wolfgang

    2017-06-01

    Meta-analyses are often used to synthesize the findings of studies examining the correlational relationship between two continuous variables. When only dichotomous measurements are available for one of the two variables, the biserial correlation coefficient can be used to estimate the product-moment correlation between the two underlying continuous variables. Unlike the point-biserial correlation coefficient, biserial correlation coefficients can therefore be integrated with product-moment correlation coefficients in the same meta-analysis. The present article describes the estimation of the biserial correlation coefficient for meta-analytic purposes and reports simulation results comparing different methods for estimating the coefficient's sampling variance. The findings indicate that commonly employed methods yield inconsistent estimates of the sampling variance across a broad range of research situations. In contrast, consistent estimates can be obtained using two methods that appear to be unknown in the meta-analytic literature. A variance-stabilizing transformation for the biserial correlation coefficient is described that allows for the construction of confidence intervals for individual coefficients with close to nominal coverage probabilities in most of the examined conditions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Genetical Analysis of Chromosomal Interaction Effects on the Activities of the Glucose 6-Phosphate and 6-Phosphogluconate Dehydrogenases in DROSOPHILA MELANOGASTER

    PubMed Central

    Miyashita, Naohiko; Laurie-Ahlberg, C. C.

    1984-01-01

    By combining ten second and ten third chromosomes, we investigated chromosomal interaction with respect to the action of the modifier factors on G6PD and 6PGD activities in Drosophila melanogaster. Analysis of variance revealed that highly significant chromosomal interaction exists for both enzyme activities. From the estimated variance components, it was concluded that the variation in enzyme activity attributed to the interaction is as great as the variation attributed to the second chromosome but less than attributed to the third chromosome. The interaction is not explained by the variation of body size (live weight). The interaction is generated from both the lack of correlation of second chromosomes for third chromosome backgrounds and the heterogeneous variance of second chromosomes for different third chromosome backgrounds. Large and constant correlation between G6PD and 6PGD activities were found for third chromosomes with any second chromosome background, whereas the correlations for second chromosomes were much smaller and varied considerably with the third chromosome background. This result suggests that the activity modifiers on the second chromosome are under the influence of third chromosome factors. PMID:6425115

  7. Correlational structure of ‘frontal’ tests and intelligence tests indicates two components with asymmetrical neurostructural correlates in old age

    PubMed Central

    Cox, Simon R.; MacPherson, Sarah E.; Ferguson, Karen J.; Nissan, Jack; Royle, Natalie A.; MacLullich, Alasdair M.J.; Wardlaw, Joanna M.; Deary, Ian J.

    2014-01-01

    Both general fluid intelligence (gf) and performance on some ‘frontal tests’ of cognition decline with age. Both types of ability are at least partially dependent on the integrity of the frontal lobes, which also deteriorate with age. Overlap between these two methods of assessing complex cognition in older age remains unclear. Such overlap could be investigated using inter-test correlations alone, as in previous studies, but this would be enhanced by ascertaining whether frontal test performance and gf share neurobiological variance. To this end, we examined relationships between gf and 6 frontal tests (Tower, Self-Ordered Pointing, Simon, Moral Dilemmas, Reversal Learning and Faux Pas tests) in 90 healthy males, aged ~ 73 years. We interpreted their correlational structure using principal component analysis, and in relation to MRI-derived regional frontal lobe volumes (relative to maximal healthy brain size). gf correlated significantly and positively (.24 ≤ r ≤ .53) with the majority of frontal test scores. Some frontal test scores also exhibited shared variance after controlling for gf. Principal component analysis of test scores identified units of gf-common and gf-independent variance. The former was associated with variance in the left dorsolateral (DL) and anterior cingulate (AC) regions, and the latter with variance in the right DL and AC regions. Thus, we identify two biologically-meaningful components of variance in complex cognitive performance in older age and suggest that age-related changes to DL and AC have the greatest cognitive impact. PMID:25278641

  8. Correlational structure of 'frontal' tests and intelligence tests indicates two components with asymmetrical neurostructural correlates in old age.

    PubMed

    Cox, Simon R; MacPherson, Sarah E; Ferguson, Karen J; Nissan, Jack; Royle, Natalie A; MacLullich, Alasdair M J; Wardlaw, Joanna M; Deary, Ian J

    2014-09-01

    Both general fluid intelligence ( g f ) and performance on some 'frontal tests' of cognition decline with age. Both types of ability are at least partially dependent on the integrity of the frontal lobes, which also deteriorate with age. Overlap between these two methods of assessing complex cognition in older age remains unclear. Such overlap could be investigated using inter-test correlations alone, as in previous studies, but this would be enhanced by ascertaining whether frontal test performance and g f share neurobiological variance. To this end, we examined relationships between g f and 6 frontal tests (Tower, Self-Ordered Pointing, Simon, Moral Dilemmas, Reversal Learning and Faux Pas tests) in 90 healthy males, aged ~ 73 years. We interpreted their correlational structure using principal component analysis, and in relation to MRI-derived regional frontal lobe volumes (relative to maximal healthy brain size). g f correlated significantly and positively (.24 ≤  r  ≤ .53) with the majority of frontal test scores. Some frontal test scores also exhibited shared variance after controlling for g f . Principal component analysis of test scores identified units of g f -common and g f -independent variance. The former was associated with variance in the left dorsolateral (DL) and anterior cingulate (AC) regions, and the latter with variance in the right DL and AC regions. Thus, we identify two biologically-meaningful components of variance in complex cognitive performance in older age and suggest that age-related changes to DL and AC have the greatest cognitive impact.

  9. A Model of Compound Heterozygous, Loss-of-Function Alleles Is Broadly Consistent with Observations from Complex-Disease GWAS Datasets

    PubMed Central

    Sanjak, Jaleal S.; Long, Anthony D.; Thornton, Kevin R.

    2017-01-01

    The genetic component of complex disease risk in humans remains largely unexplained. A corollary is that the allelic spectrum of genetic variants contributing to complex disease risk is unknown. Theoretical models that relate population genetic processes to the maintenance of genetic variation for quantitative traits may suggest profitable avenues for future experimental design. Here we use forward simulation to model a genomic region evolving under a balance between recurrent deleterious mutation and Gaussian stabilizing selection. We consider multiple genetic and demographic models, and several different methods for identifying genomic regions harboring variants associated with complex disease risk. We demonstrate that the model of gene action, relating genotype to phenotype, has a qualitative effect on several relevant aspects of the population genetic architecture of a complex trait. In particular, the genetic model impacts genetic variance component partitioning across the allele frequency spectrum and the power of statistical tests. Models with partial recessivity closely match the minor allele frequency distribution of significant hits from empirical genome-wide association studies without requiring homozygous effect sizes to be small. We highlight a particular gene-based model of incomplete recessivity that is appealing from first principles. Under that model, deleterious mutations in a genomic region partially fail to complement one another. This model of gene-based recessivity predicts the empirically observed inconsistency between twin and SNP based estimated of dominance heritability. Furthermore, this model predicts considerable levels of unexplained variance associated with intralocus epistasis. Our results suggest a need for improved statistical tools for region based genetic association and heritability estimation. PMID:28103232

  10. Publication Bias in Meta-Analysis: Confidence Intervals for Rosenthal's Fail-Safe Number.

    PubMed

    Fragkos, Konstantinos C; Tsagris, Michail; Frangos, Christos C

    2014-01-01

    The purpose of the present paper is to assess the efficacy of confidence intervals for Rosenthal's fail-safe number. Although Rosenthal's estimator is highly used by researchers, its statistical properties are largely unexplored. First of all, we developed statistical theory which allowed us to produce confidence intervals for Rosenthal's fail-safe number. This was produced by discerning whether the number of studies analysed in a meta-analysis is fixed or random. Each case produces different variance estimators. For a given number of studies and a given distribution, we provided five variance estimators. Confidence intervals are examined with a normal approximation and a nonparametric bootstrap. The accuracy of the different confidence interval estimates was then tested by methods of simulation under different distributional assumptions. The half normal distribution variance estimator has the best probability coverage. Finally, we provide a table of lower confidence intervals for Rosenthal's estimator.

  11. Publication Bias in Meta-Analysis: Confidence Intervals for Rosenthal's Fail-Safe Number

    PubMed Central

    Fragkos, Konstantinos C.; Tsagris, Michail; Frangos, Christos C.

    2014-01-01

    The purpose of the present paper is to assess the efficacy of confidence intervals for Rosenthal's fail-safe number. Although Rosenthal's estimator is highly used by researchers, its statistical properties are largely unexplored. First of all, we developed statistical theory which allowed us to produce confidence intervals for Rosenthal's fail-safe number. This was produced by discerning whether the number of studies analysed in a meta-analysis is fixed or random. Each case produces different variance estimators. For a given number of studies and a given distribution, we provided five variance estimators. Confidence intervals are examined with a normal approximation and a nonparametric bootstrap. The accuracy of the different confidence interval estimates was then tested by methods of simulation under different distributional assumptions. The half normal distribution variance estimator has the best probability coverage. Finally, we provide a table of lower confidence intervals for Rosenthal's estimator. PMID:27437470

  12. Computationally efficient confidence intervals for cross-validated area under the ROC curve estimates.

    PubMed

    LeDell, Erin; Petersen, Maya; van der Laan, Mark

    In binary classification problems, the area under the ROC curve (AUC) is commonly used to evaluate the performance of a prediction model. Often, it is combined with cross-validation in order to assess how the results will generalize to an independent data set. In order to evaluate the quality of an estimate for cross-validated AUC, we obtain an estimate of its variance. For massive data sets, the process of generating a single performance estimate can be computationally expensive. Additionally, when using a complex prediction method, the process of cross-validating a predictive model on even a relatively small data set can still require a large amount of computation time. Thus, in many practical settings, the bootstrap is a computationally intractable approach to variance estimation. As an alternative to the bootstrap, we demonstrate a computationally efficient influence curve based approach to obtaining a variance estimate for cross-validated AUC.

  13. Computationally efficient confidence intervals for cross-validated area under the ROC curve estimates

    PubMed Central

    Petersen, Maya; van der Laan, Mark

    2015-01-01

    In binary classification problems, the area under the ROC curve (AUC) is commonly used to evaluate the performance of a prediction model. Often, it is combined with cross-validation in order to assess how the results will generalize to an independent data set. In order to evaluate the quality of an estimate for cross-validated AUC, we obtain an estimate of its variance. For massive data sets, the process of generating a single performance estimate can be computationally expensive. Additionally, when using a complex prediction method, the process of cross-validating a predictive model on even a relatively small data set can still require a large amount of computation time. Thus, in many practical settings, the bootstrap is a computationally intractable approach to variance estimation. As an alternative to the bootstrap, we demonstrate a computationally efficient influence curve based approach to obtaining a variance estimate for cross-validated AUC. PMID:26279737

  14. Effect of inclusion or non-inclusion of short lactations and cow and/or dam genetic group on genetic evaluation of Girolando dairy cattle.

    PubMed

    Canaza-Cayo, A W; Silva, M V G B; Cobuci, J A; Martins, M F; Lopes, P S

    2016-04-04

    The objective of this study was to evaluate the effects of inclusion or non-inclusion of short lactations and cow (CGG) and/or dam (DGG) genetic group on the genetic evaluation of 305-day milk yield (MY305), age at first calving (AFC), and first calving interval (FCI) of Girolando cows. Covariance components were estimated by the restricted maximum likelihood method in an animal model of single trait analyses. The heritability estimates for MY305, AFC, and FCI ranged from 0.23 to 0.29, 0.40 to 0.44, and 0.13 to 0.14, respectively, when short lactations were not included, and from 0.23 to 0.28, 0.39 to 0.43, and 0.13 to 0.14, respectively, when short lactations were included. The inclusion of short lactations caused little variation in the variance components and heritability estimates of traits, but their non-inclusion resulted in the re-ranking of animals. Models with CGG or DGG fixed effects had higher heritability estimates for all traits compared with models that consider these two effects simultaneously. We recommend using the model with fixed effects of CGG and inclusion of short lactations for the genetic evaluation of Girolando cattle.

  15. Predictors of burnout among correctional mental health professionals.

    PubMed

    Gallavan, Deanna B; Newman, Jody L

    2013-02-01

    This study focused on the experience of burnout among a sample of correctional mental health professionals. We examined the relationship of a linear combination of optimism, work family conflict, and attitudes toward prisoners with two dimensions derived from the Maslach Burnout Inventory and the Professional Quality of Life Scale. Initially, three subscales from the Maslach Burnout Inventory and two subscales from the Professional Quality of Life Scale were subjected to principal components analysis with oblimin rotation in order to identify underlying dimensions among the subscales. This procedure resulted in two components accounting for approximately 75% of the variance (r = -.27). The first component was labeled Negative Experience of Work because it seemed to tap the experience of being emotionally spent, detached, and socially avoidant. The second component was labeled Positive Experience of Work and seemed to tap a sense of competence, success, and satisfaction in one's work. Two multiple regression analyses were subsequently conducted, in which Negative Experience of Work and Positive Experience of Work, respectively, were predicted from a linear combination of optimism, work family conflict, and attitudes toward prisoners. In the first analysis, 44% of the variance in Negative Experience of Work was accounted for, with work family conflict and optimism accounting for the most variance. In the second analysis, 24% of the variance in Positive Experience of Work was accounted for, with optimism and attitudes toward prisoners accounting for the most variance.

  16. Overlap between treatment and control distributions as an effect size measure in experiments.

    PubMed

    Hedges, Larry V; Olkin, Ingram

    2016-03-01

    The proportion π of treatment group observations that exceed the control group mean has been proposed as an effect size measure for experiments that randomly assign independent units into 2 groups. We give the exact distribution of a simple estimator of π based on the standardized mean difference and use it to study the small sample bias of this estimator. We also give the minimum variance unbiased estimator of π under 2 models, one in which the variance of the mean difference is known and one in which the variance is unknown. We show how to use the relation between the standardized mean difference and the overlap measure to compute confidence intervals for π and show that these results can be used to obtain unbiased estimators, large sample variances, and confidence intervals for 3 related effect size measures based on the overlap. Finally, we show how the effect size π can be used in a meta-analysis. (c) 2016 APA, all rights reserved).

  17. THE NANOGRAV NINE-YEAR DATA SET: EXCESS NOISE IN MILLISECOND PULSAR ARRIVAL TIMES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, M. T.; Jones, M. L.; McLaughlin, M. A.

    Gravitational wave (GW) astronomy using a pulsar timing array requires high-quality millisecond pulsars (MSPs), correctable interstellar propagation delays, and high-precision measurements of pulse times of arrival. Here we identify noise in timing residuals that exceeds that predicted for arrival time estimation for MSPs observed by the North American Nanohertz Observatory for Gravitational Waves. We characterize the excess noise using variance and structure function analyses. We find that 26 out of 37 pulsars show inconsistencies with a white-noise-only model based on the short timescale analysis of each pulsar, and we demonstrate that the excess noise has a red power spectrum formore » 15 pulsars. We also decompose the excess noise into chromatic (radio-frequency-dependent) and achromatic components. Associating the achromatic red-noise component with spin noise and including additional power-spectrum-based estimates from the literature, we estimate a scaling law in terms of spin parameters (frequency and frequency derivative) and data-span length and compare it to the scaling law of Shannon and Cordes. We briefly discuss our results in terms of detection of GWs at nanohertz frequencies.« less

  18. Improved uncertainty quantification in nondestructive assay for nonproliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burr, Tom; Croft, Stephen; Jarman, Ken

    2016-12-01

    This paper illustrates methods to improve uncertainty quantification (UQ) for non-destructive assay (NDA) measurements used in nuclear nonproliferation. First, it is shown that current bottom-up UQ applied to calibration data is not always adequate, for three main reasons: (1) Because there are errors in both the predictors and the response, calibration involves a ratio of random quantities, and calibration data sets in NDA usually consist of only a modest number of samples (3–10); therefore, asymptotic approximations involving quantities needed for UQ such as means and variances are often not sufficiently accurate; (2) Common practice overlooks that calibration implies a partitioningmore » of total error into random and systematic error, and (3) In many NDA applications, test items exhibit non-negligible departures in physical properties from calibration items, so model-based adjustments are used, but item-specific bias remains in some data. Therefore, improved bottom-up UQ using calibration data should predict the typical magnitude of item-specific bias, and the suggestion is to do so by including sources of item-specific bias in synthetic calibration data that is generated using a combination of modeling and real calibration data. Second, for measurements of the same nuclear material item by both the facility operator and international inspectors, current empirical (top-down) UQ is described for estimating operator and inspector systematic and random error variance components. A Bayesian alternative is introduced that easily accommodates constraints on variance components, and is more robust than current top-down methods to the underlying measurement error distributions.« less

  19. Incorporating Love- and Rayleigh-wave magnitudes, unequal earthquake and explosion variance assumptions and interstation complexity for improved event screening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Dale N; Bonner, Jessie L; Stroujkova, Anastasia

    Our objective is to improve seismic event screening using the properties of surface waves, We are accomplishing this through (1) the development of a Love-wave magnitude formula that is complementary to the Russell (2006) formula for Rayleigh waves and (2) quantifying differences in complexities and magnitude variances for earthquake and explosion-generated surface waves. We have applied the M{sub s} (VMAX) analysis (Bonner et al., 2006) using both Love and Rayleigh waves to events in the Middle East and Korean Peninsula, For the Middle East dataset consisting of approximately 100 events, the Love M{sub s} (VMAX) is greater than the Rayleighmore » M{sub s} (VMAX) estimated for individual stations for the majority of the events and azimuths, with the exception of the measurements for the smaller events from European stations to the northeast. It is unclear whether these smaller events suffer from magnitude bias for the Love waves or whether the paths, which include the Caspian and Mediterranean, have variable attenuation for Love and Rayleigh waves. For the Korean Peninsula, we have estimated Rayleigh- and Love-wave magnitudes for 31 earthquakes and two nuclear explosions, including the 25 May 2009 event. For 25 of the earthquakes, the network-averaged Love-wave magnitude is larger than the Rayleigh-wave estimate. For the 2009 nuclear explosion, the Love-wave M{sub s} (VMAX) was 3.1 while the Rayleigh-wave magnitude was 3.6. We are also utilizing the potential of observed variances in M{sub s} estimates that differ significantly in earthquake and explosion populations. We have considered two possible methods for incorporating unequal variances into the discrimination problem and compared the performance of various approaches on a population of 73 western United States earthquakes and 131 Nevada Test Site explosions. The approach proposes replacing the M{sub s} component by M{sub s} + a* {sigma}, where {sigma} denotes the interstation standard deviation obtained from the stations in the sample that produced the M{sub s} value. We replace the usual linear discriminant a* M{sub s}+b*{sub m{sub b}} with a* M{sub s}+b*{sub m{sub b}} + C*{sigma}. In the second approach, we estimate the optimum hybrid linear-quadratic discriminant function resulting from the unequal variance assumption. We observed slight improvement for the discriminant functions resulting from the theoretical interpretations of the unequal variance function. We have also studied the complexity of the ''magnitude spectra'' at each station. Our hypothesis is that explosion spectra should have fewer focal mechanism-produced complexities in the magnitude spectra than earthquakes. We have developed an intrastation ''complexity'' metric {Delta}M{sub s}, where {Delta}M{sub s} = M{sub s}(i)-M{sub s}(i+1) at periods, i, which are between 9 and 25 seconds. The complexity by itself has discriminating power but does not add substantially to the conditional hybrid discriminant that incorporates the differing spreads of the earthquake and explosion standard deviations.« less

  20. Multistep estimators of the between-study variance: The relationship with the Paule-Mandel estimator.

    PubMed

    van Aert, Robbie C M; Jackson, Dan

    2018-04-26

    A wide variety of estimators of the between-study variance are available in random-effects meta-analysis. Many, but not all, of these estimators are based on the method of moments. The DerSimonian-Laird estimator is widely used in applications, but the Paule-Mandel estimator is an alternative that is now recommended. Recently, DerSimonian and Kacker have developed two-step moment-based estimators of the between-study variance. We extend these two-step estimators so that multiple (more than two) steps are used. We establish the surprising result that the multistep estimator tends towards the Paule-Mandel estimator as the number of steps becomes large. Hence, the iterative scheme underlying our new multistep estimator provides a hitherto unknown relationship between two-step estimators and Paule-Mandel estimator. Our analysis suggests that two-step estimators are not necessarily distinct estimators in their own right; instead, they are quantities that are closely related to the usual iterative scheme that is used to calculate the Paule-Mandel estimate. The relationship that we establish between the multistep and Paule-Mandel estimator is another justification for the use of the latter estimator. Two-step and multistep estimators are perhaps best conceptualized as approximate Paule-Mandel estimators. © 2018 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.

  1. Applications of GARCH models to energy commodities

    NASA Astrophysics Data System (ADS)

    Humphreys, H. Brett

    This thesis uses GARCH methods to examine different aspects of the energy markets. The first part of the thesis examines seasonality in the variance. This study modifies the standard univariate GARCH models to test for seasonal components in both the constant and the persistence in natural gas, heating oil and soybeans. These commodities exhibit seasonal price movements and, therefore, may exhibit seasonal variances. In addition, the heating oil model is tested for a structural change in variance during the Gulf War. The results indicate the presence of an annual seasonal component in the persistence for all commodities. Out-of-sample volatility forecasting for natural gas outperforms standard forecasts. The second part of this thesis uses a multivariate GARCH model to examine volatility spillovers within the crude oil forward curve and between the London and New York crude oil futures markets. Using these results the effect of spillovers on dynamic hedging is examined. In addition, this research examines cointegration within the oil markets using investable returns rather than fixed prices. The results indicate the presence of strong volatility spillovers between both markets, weak spillovers from the front of the forward curve to the rest of the curve, and cointegration between the long term oil price on the two markets. The spillover dynamic hedge models lead to a marginal benefit in terms of variance reduction, but a substantial decrease in the variability of the dynamic hedge; thereby decreasing the transactions costs associated with the hedge. The final portion of the thesis uses portfolio theory to demonstrate how the energy mix consumed in the United States could be chosen given a national goal to reduce the risks to the domestic macroeconomy of unanticipated energy price shocks. An efficient portfolio frontier of U.S. energy consumption is constructed using a covariance matrix estimated with GARCH models. The results indicate that while the electric utility industry is operating close to the minimum variance position, a shift towards coal consumption would reduce price volatility for overall U.S. energy consumption. With the inclusion of potential externality costs, the shift remains away from oil but towards natural gas instead of coal.

  2. Broad-Band Analysis of Polar Motion Excitations

    NASA Astrophysics Data System (ADS)

    Chen, J.

    2016-12-01

    Earth rotational changes, i.e. polar motion and length-of-day (LOD), are driven by two types of geophysical excitations: 1) mass redistribution within the Earth system, and 2) angular momentum exchange between the solid Earth (more precisely the crust) and other components of the Earth system. Accurate quantification of Earth rotational excitations has been difficult, due to the lack of global-scale observations of mass redistribution and angular momentum exchange. The over 14-years time-variable gravity measurements from the Gravity Recovery and Climate Experiment (GRACE) have provided a unique means for quantifying Earth rotational excitations from mass redistribution in different components of the climate system. Comparisons between observed Earth rotational changes and geophysical excitations estimated from GRACE, satellite laser ranging (SLR) and climate models show that GRACE-derived excitations agree remarkably well with polar motion observations over a broad-band of frequencies. GRACE estimates also suggest that accelerated polar region ice melting in recent years and corresponding sea level rise have played an important role in driving long-term polar motion as well. With several estimates of polar motion excitations, it is possible to estimate broad-band noise variance and noise power spectra in each, given reasonable assumptions about noise independence. Results based on GRACE CSR RL05 solutions clearly outperform other estimates with the lowest noise levels over a broad band of frequencies.

  3. Parameter estimation for stiff deterministic dynamical systems via ensemble Kalman filter

    NASA Astrophysics Data System (ADS)

    Arnold, Andrea; Calvetti, Daniela; Somersalo, Erkki

    2014-10-01

    A commonly encountered problem in numerous areas of applications is to estimate the unknown coefficients of a dynamical system from direct or indirect observations at discrete times of some of the components of the state vector. A related problem is to estimate unobserved components of the state. An egregious example of such a problem is provided by metabolic models, in which the numerous model parameters and the concentrations of the metabolites in tissue are to be estimated from concentration data in the blood. A popular method for addressing similar questions in stochastic and turbulent dynamics is the ensemble Kalman filter (EnKF), a particle-based filtering method that generalizes classical Kalman filtering. In this work, we adapt the EnKF algorithm for deterministic systems in which the numerical approximation error is interpreted as a stochastic drift with variance based on classical error estimates of numerical integrators. This approach, which is particularly suitable for stiff systems where the stiffness may depend on the parameters, allows us to effectively exploit the parallel nature of particle methods. Moreover, we demonstrate how spatial prior information about the state vector, which helps the stability of the computed solution, can be incorporated into the filter. The viability of the approach is shown by computed examples, including a metabolic system modeling an ischemic episode in skeletal muscle, with a high number of unknown parameters.

  4. Magnetopause surface fluctuations observed by Voyager 1

    NASA Technical Reports Server (NTRS)

    Lepping, R. P.; Burlaga, L. F.

    1979-01-01

    Moving out of the dawnside of the earth's magnetosphere, Voyager 1 crossed the magnetopause apparently seven times, despite the high spacecraft speed of 11 km/sec. Normals to the magnetopause and their associated error cones were estimated for each of the crossings using a minimum variance analysis of the internal magnetic field. The oscillating nature of the ecliptic plane component of these normals indicates that most of the multiple crossings were due to a wave-like surface disturbance moving tailward along the magnetopause. The wave, which was aperiodic, was modeled as a sequence of sine waves. The amplitude, wavelength, and speed were determined for two pairs of intervals from the measured slopes, occurrence times, and relative positions of six magnetopause crossings. The magnetopause thickness was estimated to lie in the range 300 to 700 km with higher values possible. The estimated amplitude of these waves was obviously small compared to their wavelengths.

  5. Multicollinearity in hierarchical linear models.

    PubMed

    Yu, Han; Jiang, Shanhe; Land, Kenneth C

    2015-09-01

    This study investigates an ill-posed problem (multicollinearity) in Hierarchical Linear Models from both the data and the model perspectives. We propose an intuitive, effective approach to diagnosing the presence of multicollinearity and its remedies in this class of models. A simulation study demonstrates the impacts of multicollinearity on coefficient estimates, associated standard errors, and variance components at various levels of multicollinearity for finite sample sizes typical in social science studies. We further investigate the role multicollinearity plays at each level for estimation of coefficient parameters in terms of shrinkage. Based on these analyses, we recommend a top-down method for assessing multicollinearity in HLMs that first examines the contextual predictors (Level-2 in a two-level model) and then the individual predictors (Level-1) and uses the results for data collection, research problem redefinition, model re-specification, variable selection and estimation of a final model. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. The experimental design approach to eluotropic strength of 20 solvents in thin-layer chromatography on silica gel.

    PubMed

    Komsta, Łukasz; Stępkowska, Barbara; Skibiński, Robert

    2017-02-03

    The eluotropic strength on thin-layer silica plates was investigated for 20 chromatographic grade solvents available in current market. 35 model compounds were used as test subjects in the investigation. The use of modern mixture screening design allowed to estimate each solvent as a separate elution coefficient with an acceptable error of estimation (0.0913 of R M value). Additional bootstrapping technique was used to check the distribution and uncertainty of eluotropic estimates, proving very similar confidence intervals to linear regression. Principal component analysis proved that the only one parameter (mean eluotropic strength) is satisfactory to describe the solvent property, as it explains almost 90% of variance of retention. The obtained eluotropic data can be good appendix to earlier published results and their values can be interpreted in context of R M differences. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The experimental design approach to eluotropic strength of 20 solvents in thin-layer chromatography on silica gel.

    PubMed

    Komsta, Łukasz; Stępkowska, Barbara; Skibiński, Robert

    2017-01-04

    The eluotropic strength on thin-layer silica plates was investigated for 20 chromatographic grade solvents available in current market. 35 model compounds were used as test subjects in the investigation. The use of modern mixture screening design allowed to estimate each solvent as a separate elution coefficient with an acceptable error of estimation (0.0913 of R M value). Additional bootstrapping technique was used to check the distribution and uncertainty of eluotropic estimates, proving very similar confidence intervals to linear regression. Principal component analysis proved that the only one parameter (mean eluotropic strength) is satisfactory to describe the solvent property, as it explains almost 90% of variance of retention. The obtained eluotropic data can be good appendix to earlier published results and their values can be interpreted in context of R M differences. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Coevolution of Glauber-like Ising dynamics and topology

    NASA Astrophysics Data System (ADS)

    Mandrà, Salvatore; Fortunato, Santo; Castellano, Claudio

    2009-11-01

    We study the coevolution of a generalized Glauber dynamics for Ising spins with tunable threshold and of the graph topology where the dynamics takes place. This simple coevolution dynamics generates a rich phase diagram in the space of the two parameters of the model, the threshold and the rewiring probability. The diagram displays phase transitions of different types: spin ordering, percolation, and connectedness. At variance with traditional coevolution models, in which all spins of each connected component of the graph have equal value in the stationary state, we find that, for suitable choices of the parameters, the system may converge to a state in which spins of opposite sign coexist in the same component organized in compact clusters of like-signed spins. Mean field calculations enable one to estimate some features of the phase diagram.

  9. Estimators for Two Measures of Association for Set Correlation.

    ERIC Educational Resources Information Center

    Cohen, Jacob; Nee, John C. M.

    1984-01-01

    Two measures of association between sets of variables have been proposed for set correlation: the proportion of generalized variance, and the proportion of additionive variance. Because these measures are strongly positively biased, approximate expected values and estimators of these measures are derived and checked. (Author/BW)

  10. Additive-dominance genetic model analyses for late-maturity alpha-amylase activity in a bread wheat factorial crossing population.

    PubMed

    Rasul, Golam; Glover, Karl D; Krishnan, Padmanaban G; Wu, Jixiang; Berzonsky, William A; Ibrahim, Amir M H

    2015-12-01

    Elevated level of late maturity α-amylase activity (LMAA) can result in low falling number scores, reduced grain quality, and downgrade of wheat (Triticum aestivum L.) class. A mating population was developed by crossing parents with different levels of LMAA. The F2 and F3 hybrids and their parents were evaluated for LMAA, and data were analyzed using the R software package 'qgtools' integrated with an additive-dominance genetic model and a mixed linear model approach. Simulated results showed high testing powers for additive and additive × environment variances, and comparatively low powers for dominance and dominance × environment variances. All variance components and their proportions to the phenotypic variance for the parents and hybrids were significant except for the dominance × environment variance. The estimated narrow-sense heritability and broad-sense heritability for LMAA were 14 and 54%, respectively. High significant negative additive effects for parents suggest that spring wheat cultivars 'Lancer' and 'Chester' can serve as good general combiners, and that 'Kinsman' and 'Seri-82' had negative specific combining ability in some hybrids despite of their own significant positive additive effects, suggesting they can be used as parents to reduce LMAA levels. Seri-82 showed very good general combining ability effect when used as a male parent, indicating the importance of reciprocal effects. High significant negative dominance effects and high-parent heterosis for hybrids demonstrated that the specific hybrid combinations; Chester × Kinsman, 'Lerma52' × Lancer, Lerma52 × 'LoSprout' and 'Janz' × Seri-82 could be generated to produce cultivars with significantly reduced LMAA level.

  11. Estimation of within-stratum variance for sample allocation: Foreign commodity production forecasting

    NASA Technical Reports Server (NTRS)

    Chhikara, R. S.; Perry, C. R., Jr. (Principal Investigator)

    1980-01-01

    The problem of determining the stratum variances required for an optimum sample allocation for remotely sensed crop surveys is investigated with emphasis on an approach based on the concept of stratum variance as a function of the sampling unit size. A methodology using the existing and easily available information of historical statistics is developed for obtaining initial estimates of stratum variances. The procedure is applied to variance for wheat in the U.S. Great Plains and is evaluated based on the numerical results obtained. It is shown that the proposed technique is viable and performs satisfactorily with the use of a conservative value (smaller than the expected value) for the field size and with the use of crop statistics from the small political division level.

  12. Advanced Communication Processing Techniques Held in Ruidoso, New Mexico on 14-17 May 1989

    DTIC Science & Technology

    1990-01-01

    Criteria: * Prob. of Detection and False Alarm * Variances of Parameter Estimators * Prob. of Correct Classiflcsation and Rejection 0 2 In the exposure...couple of criteria. The tell? [LAUGHTER] If it was anybody else, I standard Neyman-Pearson approach for de- wouldn’t say .... tection, variances for... VARIANCE AISJ11T UPPER AND0 LOWER PMIOUIESOES FEATUE---OELET!U FETUA1E----WW-4A140 TIME SEOLIENTIAL CORRELATION FEATUE -$-ESTIMATED INA FEATURE-ID--LOW

  13. Minimum mean squared error (MSE) adjustment and the optimal Tykhonov-Phillips regularization parameter via reproducing best invariant quadratic uniformly unbiased estimates (repro-BIQUUE)

    NASA Astrophysics Data System (ADS)

    Schaffrin, Burkhard

    2008-02-01

    In a linear Gauss-Markov model, the parameter estimates from BLUUE (Best Linear Uniformly Unbiased Estimate) are not robust against possible outliers in the observations. Moreover, by giving up the unbiasedness constraint, the mean squared error (MSE) risk may be further reduced, in particular when the problem is ill-posed. In this paper, the α-weighted S-homBLE (Best homogeneously Linear Estimate) is derived via formulas originally used for variance component estimation on the basis of the repro-BIQUUE (reproducing Best Invariant Quadratic Uniformly Unbiased Estimate) principle in a model with stochastic prior information. In the present model, however, such prior information is not included, which allows the comparison of the stochastic approach (α-weighted S-homBLE) with the well-established algebraic approach of Tykhonov-Phillips regularization, also known as R-HAPS (Hybrid APproximation Solution), whenever the inverse of the “substitute matrix” S exists and is chosen as the R matrix that defines the relative impact of the regularizing term on the final result.

  14. Robust LOD scores for variance component-based linkage analysis.

    PubMed

    Blangero, J; Williams, J T; Almasy, L

    2000-01-01

    The variance component method is now widely used for linkage analysis of quantitative traits. Although this approach offers many advantages, the importance of the underlying assumption of multivariate normality of the trait distribution within pedigrees has not been studied extensively. Simulation studies have shown that traits with leptokurtic distributions yield linkage test statistics that exhibit excessive Type I error when analyzed naively. We derive analytical formulae relating the deviation from the expected asymptotic distribution of the lod score to the kurtosis and total heritability of the quantitative trait. A simple correction constant yields a robust lod score for any deviation from normality and for any pedigree structure, and effectively eliminates the problem of inflated Type I error due to misspecification of the underlying probability model in variance component-based linkage analysis.

  15. A Simple Method for Deriving the Confidence Regions for the Penalized Cox’s Model via the Minimand Perturbation†

    PubMed Central

    Lin, Chen-Yen; Halabi, Susan

    2017-01-01

    We propose a minimand perturbation method to derive the confidence regions for the regularized estimators for the Cox’s proportional hazards model. Although the regularized estimation procedure produces a more stable point estimate, it remains challenging to provide an interval estimator or an analytic variance estimator for the associated point estimate. Based on the sandwich formula, the current variance estimator provides a simple approximation, but its finite sample performance is not entirely satisfactory. Besides, the sandwich formula can only provide variance estimates for the non-zero coefficients. In this article, we present a generic description for the perturbation method and then introduce a computation algorithm using the adaptive least absolute shrinkage and selection operator (LASSO) penalty. Through simulation studies, we demonstrate that our method can better approximate the limiting distribution of the adaptive LASSO estimator and produces more accurate inference compared with the sandwich formula. The simulation results also indicate the possibility of extending the applications to the adaptive elastic-net penalty. We further demonstrate our method using data from a phase III clinical trial in prostate cancer. PMID:29326496

  16. A Simple Method for Deriving the Confidence Regions for the Penalized Cox's Model via the Minimand Perturbation.

    PubMed

    Lin, Chen-Yen; Halabi, Susan

    2017-01-01

    We propose a minimand perturbation method to derive the confidence regions for the regularized estimators for the Cox's proportional hazards model. Although the regularized estimation procedure produces a more stable point estimate, it remains challenging to provide an interval estimator or an analytic variance estimator for the associated point estimate. Based on the sandwich formula, the current variance estimator provides a simple approximation, but its finite sample performance is not entirely satisfactory. Besides, the sandwich formula can only provide variance estimates for the non-zero coefficients. In this article, we present a generic description for the perturbation method and then introduce a computation algorithm using the adaptive least absolute shrinkage and selection operator (LASSO) penalty. Through simulation studies, we demonstrate that our method can better approximate the limiting distribution of the adaptive LASSO estimator and produces more accurate inference compared with the sandwich formula. The simulation results also indicate the possibility of extending the applications to the adaptive elastic-net penalty. We further demonstrate our method using data from a phase III clinical trial in prostate cancer.

  17. Genetic Characterization of Dog Personality Traits.

    PubMed

    Ilska, Joanna; Haskell, Marie J; Blott, Sarah C; Sánchez-Molano, Enrique; Polgar, Zita; Lofgren, Sarah E; Clements, Dylan N; Wiener, Pamela

    2017-06-01

    The genetic architecture of behavioral traits in dogs is of great interest to owners, breeders, and professionals involved in animal welfare, as well as to scientists studying the genetics of animal (including human) behavior. The genetic component of dog behavior is supported by between-breed differences and some evidence of within-breed variation. However, it is a challenge to gather sufficiently large datasets to dissect the genetic basis of complex traits such as behavior, which are both time-consuming and logistically difficult to measure, and known to be influenced by nongenetic factors. In this study, we exploited the knowledge that owners have of their dogs to generate a large dataset of personality traits in Labrador Retrievers. While accounting for key environmental factors, we demonstrate that genetic variance can be detected for dog personality traits assessed using questionnaire data. We identified substantial genetic variance for several traits, including fetching tendency and fear of loud noises, while other traits revealed negligibly small heritabilities. Genetic correlations were also estimated between traits; however, due to fairly large SEs, only a handful of trait pairs yielded statistically significant estimates. Genomic analyses indicated that these traits are mainly polygenic, such that individual genomic regions have small effects, and suggested chromosomal associations for six of the traits. The polygenic nature of these traits is consistent with previous behavioral genetics studies in other species, for example in mouse, and confirms that large datasets are required to quantify the genetic variance and to identify the individual genes that influence behavioral traits. Copyright © 2017 by the Genetics Society of America.

  18. Variance Estimation Using Replication Methods in Structural Equation Modeling with Complex Sample Data

    ERIC Educational Resources Information Center

    Stapleton, Laura M.

    2008-01-01

    This article discusses replication sampling variance estimation techniques that are often applied in analyses using data from complex sampling designs: jackknife repeated replication, balanced repeated replication, and bootstrapping. These techniques are used with traditional analyses such as regression, but are currently not used with structural…

  19. Hierarchical Bayesian modeling of heterogeneous variances in average daily weight gain of commercial feedlot cattle.

    PubMed

    Cernicchiaro, N; Renter, D G; Xiang, S; White, B J; Bello, N M

    2013-06-01

    Variability in ADG of feedlot cattle can affect profits, thus making overall returns more unstable. Hence, knowledge of the factors that contribute to heterogeneity of variances in animal performance can help feedlot managers evaluate risks and minimize profit volatility when making managerial and economic decisions in commercial feedlots. The objectives of the present study were to evaluate heteroskedasticity, defined as heterogeneity of variances, in ADG of cohorts of commercial feedlot cattle, and to identify cattle demographic factors at feedlot arrival as potential sources of variance heterogeneity, accounting for cohort- and feedlot-level information in the data structure. An operational dataset compiled from 24,050 cohorts from 25 U. S. commercial feedlots in 2005 and 2006 was used for this study. Inference was based on a hierarchical Bayesian model implemented with Markov chain Monte Carlo, whereby cohorts were modeled at the residual level and feedlot-year clusters were modeled as random effects. Forward model selection based on deviance information criteria was used to screen potentially important explanatory variables for heteroskedasticity at cohort- and feedlot-year levels. The Bayesian modeling framework was preferred as it naturally accommodates the inherently hierarchical structure of feedlot data whereby cohorts are nested within feedlot-year clusters. Evidence for heterogeneity of variance components of ADG was substantial and primarily concentrated at the cohort level. Feedlot-year specific effects were, by far, the greatest contributors to ADG heteroskedasticity among cohorts, with an estimated ∼12-fold change in dispersion between most and least extreme feedlot-year clusters. In addition, identifiable demographic factors associated with greater heterogeneity of cohort-level variance included smaller cohort sizes, fewer days on feed, and greater arrival BW, as well as feedlot arrival during summer months. These results support that heterogeneity of variances in ADG is prevalent in feedlot performance and indicate potential sources of heteroskedasticity. Further investigation of factors associated with heteroskedasticity in feedlot performance is warranted to increase consistency and uniformity in commercial beef cattle production and subsequent profitability.

  20. Population-based absolute risk estimation with survey data

    PubMed Central

    Kovalchik, Stephanie A.; Pfeiffer, Ruth M.

    2013-01-01

    Absolute risk is the probability that a cause-specific event occurs in a given time interval in the presence of competing events. We present methods to estimate population-based absolute risk from a complex survey cohort that can accommodate multiple exposure-specific competing risks. The hazard function for each event type consists of an individualized relative risk multiplied by a baseline hazard function, which is modeled nonparametrically or parametrically with a piecewise exponential model. An influence method is used to derive a Taylor-linearized variance estimate for the absolute risk estimates. We introduce novel measures of the cause-specific influences that can guide modeling choices for the competing event components of the model. To illustrate our methodology, we build and validate cause-specific absolute risk models for cardiovascular and cancer deaths using data from the National Health and Nutrition Examination Survey. Our applications demonstrate the usefulness of survey-based risk prediction models for predicting health outcomes and quantifying the potential impact of disease prevention programs at the population level. PMID:23686614

  1. Assessing differential gene expression with small sample sizes in oligonucleotide arrays using a mean-variance model.

    PubMed

    Hu, Jianhua; Wright, Fred A

    2007-03-01

    The identification of the genes that are differentially expressed in two-sample microarray experiments remains a difficult problem when the number of arrays is very small. We discuss the implications of using ordinary t-statistics and examine other commonly used variants. For oligonucleotide arrays with multiple probes per gene, we introduce a simple model relating the mean and variance of expression, possibly with gene-specific random effects. Parameter estimates from the model have natural shrinkage properties that guard against inappropriately small variance estimates, and the model is used to obtain a differential expression statistic. A limiting value to the positive false discovery rate (pFDR) for ordinary t-tests provides motivation for our use of the data structure to improve variance estimates. Our approach performs well compared to other proposed approaches in terms of the false discovery rate.

  2. Logistic regression of family data from retrospective study designs.

    PubMed

    Whittemore, Alice S; Halpern, Jerry

    2003-11-01

    We wish to study the effects of genetic and environmental factors on disease risk, using data from families ascertained because they contain multiple cases of the disease. To do so, we must account for the way participants were ascertained, and for within-family correlations in both disease occurrences and covariates. We model the joint probability distribution of the covariates of ascertained family members, given family disease occurrence and pedigree structure. We describe two such covariate models: the random effects model and the marginal model. Both models assume a logistic form for the distribution of one person's covariates that involves a vector beta of regression parameters. The components of beta in the two models have different interpretations, and they differ in magnitude when the covariates are correlated within families. We describe ascertainment assumptions needed to estimate consistently the parameters beta(RE) in the random effects model and the parameters beta(M) in the marginal model. Under the ascertainment assumptions for the random effects model, we show that conditional logistic regression (CLR) of matched family data gives a consistent estimate beta(RE) for beta(RE) and a consistent estimate for the covariance matrix of beta(RE). Under the ascertainment assumptions for the marginal model, we show that unconditional logistic regression (ULR) gives a consistent estimate for beta(M), and we give a consistent estimator for its covariance matrix. The random effects/CLR approach is simple to use and to interpret, but it can use data only from families containing both affected and unaffected members. The marginal/ULR approach uses data from all individuals, but its variance estimates require special computations. A C program to compute these variance estimates is available at http://www.stanford.edu/dept/HRP/epidemiology. We illustrate these pros and cons by application to data on the effects of parity on ovarian cancer risk in mother/daughter pairs, and use simulations to study the performance of the estimates. Copyright 2003 Wiley-Liss, Inc.

  3. Least Squares Solution of Small Sample Multiple-Master PSInSAR System

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Ding, Xiao Li; Lu, Zhong

    2010-03-01

    In this paper we propose a least squares based approach for multi-temporal SAR interferometry that allows to estimate the deformation rate with no need of phase unwrapping. The approach utilizes a series of multi-master wrapped differential interferograms with short baselines and only focuses on the arcs constructed by two nearby points at which there are no phase ambiguities. During the estimation an outlier detector is used to identify and remove the arcs with phase ambiguities, and pseudoinverse of priori variance component matrix is taken as the weight of correlated observations in the model. The parameters at points can be obtained by an indirect adjustment model with constraints when several reference points are available. The proposed approach is verified by a set of simulated data.

  4. Estimating riparian understory vegetation cover with beta regression and copula models

    USGS Publications Warehouse

    Eskelson, Bianca N.I.; Madsen, Lisa; Hagar, Joan C.; Temesgen, Hailemariam

    2011-01-01

    Understory vegetation communities are critical components of forest ecosystems. As a result, the importance of modeling understory vegetation characteristics in forested landscapes has become more apparent. Abundance measures such as shrub cover are bounded between 0 and 1, exhibit heteroscedastic error variance, and are often subject to spatial dependence. These distributional features tend to be ignored when shrub cover data are analyzed. The beta distribution has been used successfully to describe the frequency distribution of vegetation cover. Beta regression models ignoring spatial dependence (BR) and accounting for spatial dependence (BRdep) were used to estimate percent shrub cover as a function of topographic conditions and overstory vegetation structure in riparian zones in western Oregon. The BR models showed poor explanatory power (pseudo-R2 ≤ 0.34) but outperformed ordinary least-squares (OLS) and generalized least-squares (GLS) regression models with logit-transformed response in terms of mean square prediction error and absolute bias. We introduce a copula (COP) model that is based on the beta distribution and accounts for spatial dependence. A simulation study was designed to illustrate the effects of incorrectly assuming normality, equal variance, and spatial independence. It showed that BR, BRdep, and COP models provide unbiased parameter estimates, whereas OLS and GLS models result in slightly biased estimates for two of the three parameters. On the basis of the simulation study, 93–97% of the GLS, BRdep, and COP confidence intervals covered the true parameters, whereas OLS and BR only resulted in 84–88% coverage, which demonstrated the superiority of GLS, BRdep, and COP over OLS and BR models in providing standard errors for the parameter estimates in the presence of spatial dependence.

  5. Genetic variation of the weaning weight of beef cattle as a function of accumulated heat stress.

    PubMed

    Santana, M L; Bignardi, A B; Eler, J P; Ferraz, J B S

    2016-04-01

    The objective of this study was to identify the genetic variation in the weaning weight (WW) of beef cattle as a function of heat stress. The WWs were recorded at approximately 205 days of age in three Brazilian beef cattle populations: Nelore (93,616), Brangus (18,906) and Tropical Composite (62,679). In view of the cumulative nature of WW, the effect of heat stress was considered as the accumulation of temperature and humidity index units (ACTHI) from the animal's birth to weaning. A reaction norm model was used to estimate the (co)variance components of WW across the ACTHI scale. The accumulation of THI units from birth to weaning negatively affected the WW. The definition of accumulated THI units as an environmental descriptor permitted to identify important genetic variation in the WW as a function of heat stress. As evidence of genotype by environment interaction, substantial heterogeneity was observed in the (co)variance components for WW across the environmental gradient. In this respect, the best animals in less stressful environments are not necessarily the best animals in more stressful environments. Furthermore, the response to selection for WW is expected to be lower in more stressful environments. © 2015 Blackwell Verlag GmbH.

  6. The amplitude of decadal to multidecadal variability in precipitation simulated by state-of-the-art climate models

    NASA Astrophysics Data System (ADS)

    Ault, T. R.; Cole, J. E.; St. George, S.

    2012-11-01

    We assess the magnitude of decadal to multidecadal (D2M) variability in Climate Model Intercomparison Project 5 (CMIP5) simulations that will be used to understand, and plan for, climate change as part of the Intergovernmental Panel on Climate Change's 5th Assessment Report. Model performance on D2M timescales is evaluated using metrics designed to characterize the relative and absolute magnitude of variability at these frequencies. In observational data, we find that between 10% and 35% of the total variance occurs on D2M timescales. Regions characterized by the high end of this range include Africa, Australia, western North America, and the Amazon region of South America. In these areas D2M fluctuations are especially prominent and linked to prolonged drought. D2M fluctuations account for considerably less of the total variance (between 5% and 15%) in the CMIP5 archive of historical (1850-2005) simulations. The discrepancy between observation and model based estimates of D2M prominence reflects two features of the CMIP5 archive. First, interannual components of variability are generally too energetic. Second, decadal components are too weak in several key regions. Our findings imply that projections of the future lack sufficient decadal variability, presenting a limited view of prolonged drought and pluvial risk.

  7. Comparison of Grouping Schemes for Exposure to Total Dust in Cement Factories in Korea.

    PubMed

    Koh, Dong-Hee; Kim, Tae-Woo; Jang, Seung Hee; Ryu, Hyang-Woo; Park, Donguk

    2015-08-01

    The purpose of this study was to evaluate grouping schemes for exposure to total dust in cement industry workers using non-repeated measurement data. In total, 2370 total dust measurements taken from nine Portland cement factories in 1995-2009 were analyzed. Various grouping schemes were generated based on work process, job, factory, or average exposure. To characterize variance components of each grouping scheme, we developed mixed-effects models with a B-spline time trend incorporated as fixed effects and a grouping variable incorporated as a random effect. Using the estimated variance components, elasticity was calculated. To compare the prediction performances of different grouping schemes, 10-fold cross-validation tests were conducted, and root mean squared errors and pooled correlation coefficients were calculated for each grouping scheme. The five exposure groups created a posteriori by ranking job and factory combinations according to average dust exposure showed the best prediction performance and highest elasticity among various grouping schemes. Our findings suggest a grouping method based on ranking of job, and factory combinations would be the optimal choice in this population. Our grouping method may aid exposure assessment efforts in similar occupational settings, minimizing the misclassification of exposures. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  8. On the Performance of Maximum Likelihood versus Means and Variance Adjusted Weighted Least Squares Estimation in CFA

    ERIC Educational Resources Information Center

    Beauducel, Andre; Herzberg, Philipp Yorck

    2006-01-01

    This simulation study compared maximum likelihood (ML) estimation with weighted least squares means and variance adjusted (WLSMV) estimation. The study was based on confirmatory factor analyses with 1, 2, 4, and 8 factors, based on 250, 500, 750, and 1,000 cases, and on 5, 10, 20, and 40 variables with 2, 3, 4, 5, and 6 categories. There was no…

  9. Estimation and Simulation of Slow Crack Growth Parameters from Constant Stress Rate Data

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Weaver, Aaron S.

    2003-01-01

    Closed form, approximate functions for estimating the variances and degrees-of-freedom associated with the slow crack growth parameters n, D, B, and A(sup *) as measured using constant stress rate ('dynamic fatigue') testing were derived by using propagation of errors. Estimates made with the resulting functions and slow crack growth data for a sapphire window were compared to the results of Monte Carlo simulations. The functions for estimation of the variances of the parameters were derived both with and without logarithmic transformation of the initial slow crack growth equations. The transformation was performed to make the functions both more linear and more normal. Comparison of the Monte Carlo results and the closed form expressions derived with propagation of errors indicated that linearization is not required for good estimates of the variances of parameters n and D by the propagation of errors method. However, good estimates variances of the parameters B and A(sup *) could only be made when the starting slow crack growth equation was transformed and the coefficients of variation of the input parameters were not too large. This was partially a result of the skewered distributions of B and A(sup *). Parametric variation of the input parameters was used to determine an acceptable range for using closed form approximate equations derived from propagation of errors.

  10. A Probabilistic Mass Estimation Algorithm for a Novel 7- Channel Capacitive Sample Verification Sensor

    NASA Technical Reports Server (NTRS)

    Wolf, Michael

    2012-01-01

    A document describes an algorithm created to estimate the mass placed on a sample verification sensor (SVS) designed for lunar or planetary robotic sample return missions. A novel SVS measures the capacitance between a rigid bottom plate and an elastic top membrane in seven locations. As additional sample material (soil and/or small rocks) is placed on the top membrane, the deformation of the membrane increases the capacitance. The mass estimation algorithm addresses both the calibration of each SVS channel, and also addresses how to combine the capacitances read from each of the seven channels into a single mass estimate. The probabilistic approach combines the channels according to the variance observed during the training phase, and provides not only the mass estimate, but also a value for the certainty of the estimate. SVS capacitance data is collected for known masses under a wide variety of possible loading scenarios, though in all cases, the distribution of sample within the canister is expected to be approximately uniform. A capacitance-vs-mass curve is fitted to this data, and is subsequently used to determine the mass estimate for the single channel s capacitance reading during the measurement phase. This results in seven different mass estimates, one for each SVS channel. Moreover, the variance of the calibration data is used to place a Gaussian probability distribution function (pdf) around this mass estimate. To blend these seven estimates, the seven pdfs are combined into a single Gaussian distribution function, providing the final mean and variance of the estimate. This blending technique essentially takes the final estimate as an average of the estimates of the seven channels, weighted by the inverse of the channel s variance.

  11. An apparent contradiction: increasing variability to achieve greater precision?

    PubMed

    Rosenblatt, Noah J; Hurt, Christopher P; Latash, Mark L; Grabiner, Mark D

    2014-02-01

    To understand the relationship between variability of foot placement in the frontal plane and stability of gait patterns, we explored how constraining mediolateral foot placement during walking affects the structure of kinematic variance in the lower-limb configuration space during the swing phase of gait. Ten young subjects walked under three conditions: (1) unconstrained (normal walking), (2) constrained (walking overground with visual guides for foot placement to achieve the measured unconstrained step width) and, (3) beam (walking on elevated beams spaced to achieve the measured unconstrained step width). The uncontrolled manifold analysis of the joint configuration variance was used to quantify two variance components, one that did not affect the mediolateral trajectory of the foot in the frontal plane ("good variance") and one that affected this trajectory ("bad variance"). Based on recent studies, we hypothesized that across conditions (1) the index of the synergy stabilizing the mediolateral trajectory of the foot (the normalized difference between the "good variance" and "bad variance") would systematically increase and (2) the changes in the synergy index would be associated with a disproportionate increase in the "good variance." Both hypotheses were confirmed. We conclude that an increase in the "good variance" component of the joint configuration variance may be an effective method of ensuring high stability of gait patterns during conditions requiring increased control of foot placement, particularly if a postural threat is present. Ultimately, designing interventions that encourage a larger amount of "good variance" may be a promising method of improving stability of gait patterns in populations such as older adults and neurological patients.

  12. Accounting for nonsampling error in estimates of HIV epidemic trends from antenatal clinic sentinel surveillance

    PubMed Central

    Eaton, Jeffrey W.; Bao, Le

    2017-01-01

    Objectives The aim of the study was to propose and demonstrate an approach to allow additional nonsampling uncertainty about HIV prevalence measured at antenatal clinic sentinel surveillance (ANC-SS) in model-based inferences about trends in HIV incidence and prevalence. Design Mathematical model fitted to surveillance data with Bayesian inference. Methods We introduce a variance inflation parameter σinfl2 that accounts for the uncertainty of nonsampling errors in ANC-SS prevalence. It is additive to the sampling error variance. Three approaches are tested for estimating σinfl2 using ANC-SS and household survey data from 40 subnational regions in nine countries in sub-Saharan, as defined in UNAIDS 2016 estimates. Methods were compared using in-sample fit and out-of-sample prediction of ANC-SS data, fit to household survey prevalence data, and the computational implications. Results Introducing the additional variance parameter σinfl2 increased the error variance around ANC-SS prevalence observations by a median of 2.7 times (interquartile range 1.9–3.8). Using only sampling error in ANC-SS prevalence ( σinfl2=0), coverage of 95% prediction intervals was 69% in out-of-sample prediction tests. This increased to 90% after introducing the additional variance parameter σinfl2. The revised probabilistic model improved model fit to household survey prevalence and increased epidemic uncertainty intervals most during the early epidemic period before 2005. Estimating σinfl2 did not increase the computational cost of model fitting. Conclusions: We recommend estimating nonsampling error in ANC-SS as an additional parameter in Bayesian inference using the Estimation and Projection Package model. This approach may prove useful for incorporating other data sources such as routine prevalence from Prevention of mother-to-child transmission testing into future epidemic estimates. PMID:28296801

  13. Characterizing nonconstant instrumental variance in emerging miniaturized analytical techniques.

    PubMed

    Noblitt, Scott D; Berg, Kathleen E; Cate, David M; Henry, Charles S

    2016-04-07

    Measurement variance is a crucial aspect of quantitative chemical analysis. Variance directly affects important analytical figures of merit, including detection limit, quantitation limit, and confidence intervals. Most reported analyses for emerging analytical techniques implicitly assume constant variance (homoskedasticity) by using unweighted regression calibrations. Despite the assumption of constant variance, it is known that most instruments exhibit heteroskedasticity, where variance changes with signal intensity. Ignoring nonconstant variance results in suboptimal calibrations, invalid uncertainty estimates, and incorrect detection limits. Three techniques where homoskedasticity is often assumed were covered in this work to evaluate if heteroskedasticity had a significant quantitative impact-naked-eye, distance-based detection using paper-based analytical devices (PADs), cathodic stripping voltammetry (CSV) with disposable carbon-ink electrode devices, and microchip electrophoresis (MCE) with conductivity detection. Despite these techniques representing a wide range of chemistries and precision, heteroskedastic behavior was confirmed for each. The general variance forms were analyzed, and recommendations for accounting for nonconstant variance discussed. Monte Carlo simulations of instrument responses were performed to quantify the benefits of weighted regression, and the sensitivity to uncertainty in the variance function was tested. Results show that heteroskedasticity should be considered during development of new techniques; even moderate uncertainty (30%) in the variance function still results in weighted regression outperforming unweighted regressions. We recommend utilizing the power model of variance because it is easy to apply, requires little additional experimentation, and produces higher-precision results and more reliable uncertainty estimates than assuming homoskedasticity. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. A proposed selection index for feedlot profitability based on estimated breeding values.

    PubMed

    van der Westhuizen, R R; van der Westhuizen, J

    2009-04-22

    It is generally accepted that feed intake and growth (gain) are the most important economic components when calculating profitability in a growth test or feedlot. We developed a single post-weaning growth (feedlot) index based on the economic values of different components. Variance components, heritabilities and genetic correlations for and between initial weight (IW), final weight (FW), feed intake (FI), and shoulder height (SHD) were estimated by multitrait restricted maximum likelihood procedures. The estimated breeding values (EBVs) and the economic values for IW, FW and FI were used in a selection index to estimate a post-weaning or feedlot profitability value. Heritabilities for IW, FW, FI, and SHD were 0.41, 0.40, 0.33, and 0.51, respectively. The highest genetic correlations were 0.78 (between IW and FW) and 0.70 (between FI and FW). EBVs were used in a selection index to calculate a single economical value for each animal. This economic value is an indication of the gross profitability value or the gross test value (GTV) of the animal in a post-weaning growth test. GTVs varied between -R192.17 and R231.38 with an average of R9.31 and a standard deviation of R39.96. The Pearson correlations between EBVs (for production and efficiency traits) and GTV ranged from -0.51 to 0.68. The lowest correlation (closest to zero) was 0.26 between the Kleiber ratio and GTV. Correlations of 0.68 and -0.51 were estimated between average daily gain and GTV and feed conversion ratio and GTV, respectively. These results showed that it is possible to select for GTV. The selection index can benefit feedlotting in selecting offspring of bulls with high GTVs to maximize profitability.

  15. Impact of the Fano Factor on Position and Energy Estimation in Scintillation Detectors.

    PubMed

    Bora, Vaibhav; Barrett, Harrison H; Jha, Abhinav K; Clarkson, Eric

    2015-02-01

    The Fano factor for an integer-valued random variable is defined as the ratio of its variance to its mean. Light from various scintillation crystals have been reported to have Fano factors from sub-Poisson (Fano factor < 1) to super-Poisson (Fano factor > 1). For a given mean, a smaller Fano factor implies a smaller variance and thus less noise. We investigated if lower noise in the scintillation light will result in better spatial and energy resolutions. The impact of Fano factor on the estimation of position of interaction and energy deposited in simple gamma-camera geometries is estimated by two methods - calculating the Cramér-Rao bound and estimating the variance of a maximum likelihood estimator. The methods are consistent with each other and indicate that when estimating the position of interaction and energy deposited by a gamma-ray photon, the Fano factor of a scintillator does not affect the spatial resolution. A smaller Fano factor results in a better energy resolution.

  16. Robust geostatistical analysis of spatial data

    NASA Astrophysics Data System (ADS)

    Papritz, Andreas; Künsch, Hans Rudolf; Schwierz, Cornelia; Stahel, Werner A.

    2013-04-01

    Most of the geostatistical software tools rely on non-robust algorithms. This is unfortunate, because outlying observations are rather the rule than the exception, in particular in environmental data sets. Outliers affect the modelling of the large-scale spatial trend, the estimation of the spatial dependence of the residual variation and the predictions by kriging. Identifying outliers manually is cumbersome and requires expertise because one needs parameter estimates to decide which observation is a potential outlier. Moreover, inference after the rejection of some observations is problematic. A better approach is to use robust algorithms that prevent automatically that outlying observations have undue influence. Former studies on robust geostatistics focused on robust estimation of the sample variogram and ordinary kriging without external drift. Furthermore, Richardson and Welsh (1995) proposed a robustified version of (restricted) maximum likelihood ([RE]ML) estimation for the variance components of a linear mixed model, which was later used by Marchant and Lark (2007) for robust REML estimation of the variogram. We propose here a novel method for robust REML estimation of the variogram of a Gaussian random field that is possibly contaminated by independent errors from a long-tailed distribution. It is based on robustification of estimating equations for the Gaussian REML estimation (Welsh and Richardson, 1997). Besides robust estimates of the parameters of the external drift and of the variogram, the method also provides standard errors for the estimated parameters, robustified kriging predictions at both sampled and non-sampled locations and kriging variances. Apart from presenting our modelling framework, we shall present selected simulation results by which we explored the properties of the new method. This will be complemented by an analysis a data set on heavy metal contamination of the soil in the vicinity of a metal smelter. Marchant, B.P. and Lark, R.M. 2007. Robust estimation of the variogram by residual maximum likelihood. Geoderma 140: 62-72. Richardson, A.M. and Welsh, A.H. 1995. Robust restricted maximum likelihood in mixed linear models. Biometrics 51: 1429-1439. Welsh, A.H. and Richardson, A.M. 1997. Approaches to the robust estimation of mixed models. In: Handbook of Statistics Vol. 15, Elsevier, pp. 343-384.

  17. Analysis of categorical moderators in mixed-effects meta-analysis: Consequences of using pooled versus separate estimates of the residual between-studies variances.

    PubMed

    Rubio-Aparicio, María; Sánchez-Meca, Julio; López-López, José Antonio; Botella, Juan; Marín-Martínez, Fulgencio

    2017-11-01

    Subgroup analyses allow us to examine the influence of a categorical moderator on the effect size in meta-analysis. We conducted a simulation study using a dichotomous moderator, and compared the impact of pooled versus separate estimates of the residual between-studies variance on the statistical performance of the Q B (P) and Q B (S) tests for subgroup analyses assuming a mixed-effects model. Our results suggested that similar performance can be expected as long as there are at least 20 studies and these are approximately balanced across categories. Conversely, when subgroups were unbalanced, the practical consequences of having heterogeneous residual between-studies variances were more evident, with both tests leading to the wrong statistical conclusion more often than in the conditions with balanced subgroups. A pooled estimate should be preferred for most scenarios, unless the residual between-studies variances are clearly different and there are enough studies in each category to obtain precise separate estimates. © 2017 The British Psychological Society.

  18. Estimating variance components and breeding values for number of oocytes and number of embryos in dairy cattle using a single-step genomic evaluation.

    PubMed

    Cornelissen, M A M C; Mullaart, E; Van der Linde, C; Mulder, H A

    2017-06-01

    Reproductive technologies such as multiple ovulation and embryo transfer (MOET) and ovum pick-up (OPU) accelerate genetic improvement in dairy breeding schemes. To enhance the efficiency of embryo production, breeding values for traits such as number of oocytes (NoO) and number of MOET embryos (NoM) can help in selection of donors with high MOET or OPU efficiency. The aim of this study was therefore to estimate variance components and (genomic) breeding values for NoO and NoM based on Dutch Holstein data. Furthermore, a 10-fold cross-validation was carried out to assess the accuracy of pedigree and genomic breeding values for NoO and NoM. For NoO, 40,734 OPU sessions between 1993 and 2015 were analyzed. These OPU sessions originated from 2,543 donors, from which 1,144 were genotyped. For NoM, 35,695 sessions between 1994 and 2015 were analyzed. These MOET sessions originated from 13,868 donors, from which 3,716 were genotyped. Analyses were done using only pedigree information and using a single-step genomic BLUP (ssGBLUP) approach combining genomic information and pedigree information. Heritabilities were very similar based on pedigree information or based on ssGBLUP [i.e., 0.32 (standard error = 0.03) for NoO and 0.21 (standard error = 0.01) for NoM with pedigree, 0.31 (standard error = 0.03) for NoO, and 0.22 (standard error = 0.01) for NoM with ssGBLUP]. For animals without their own information as mimicked in the cross-validation, the accuracy of pedigree-based breeding values was 0.46 for NoO and NoM. The accuracies of genomic breeding values from ssGBLUP were 0.54 for NoO and 0.52 for NoM. These results show that including genomic information increases the accuracies. These moderate accuracies in combination with a large genetic variance show good opportunities for selection of potential bull dams. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Improved estimation of parametric images of cerebral glucose metabolic rate from dynamic FDG-PET using volume-wise principle component analysis

    NASA Astrophysics Data System (ADS)

    Dai, Xiaoqian; Tian, Jie; Chen, Zhe

    2010-03-01

    Parametric images can represent both spatial distribution and quantification of the biological and physiological parameters of tracer kinetics. The linear least square (LLS) method is a well-estimated linear regression method for generating parametric images by fitting compartment models with good computational efficiency. However, bias exists in LLS-based parameter estimates, owing to the noise present in tissue time activity curves (TTACs) that propagates as correlated error in the LLS linearized equations. To address this problem, a volume-wise principal component analysis (PCA) based method is proposed. In this method, firstly dynamic PET data are properly pre-transformed to standardize noise variance as PCA is a data driven technique and can not itself separate signals from noise. Secondly, the volume-wise PCA is applied on PET data. The signals can be mostly represented by the first few principle components (PC) and the noise is left in the subsequent PCs. Then the noise-reduced data are obtained using the first few PCs by applying 'inverse PCA'. It should also be transformed back according to the pre-transformation method used in the first step to maintain the scale of the original data set. Finally, the obtained new data set is used to generate parametric images using the linear least squares (LLS) estimation method. Compared with other noise-removal method, the proposed method can achieve high statistical reliability in the generated parametric images. The effectiveness of the method is demonstrated both with computer simulation and with clinical dynamic FDG PET study.

  20. Analysis of mitochondrial genetic diversity of Ustilago maydis in Mexico.

    PubMed

    Jiménez-Becerril, María F; Hernández-Delgado, Sanjuana; Solís-Oba, Myrna; González Prieto, Juan M

    2018-01-01

    The current understanding of the genetic diversity of the phytopathogenic fungus Ustilago maydis is limited. To determine the genetic diversity and structure of U. maydis, 48 fungal isolates were analyzed using mitochondrial simple sequence repeats (SSRs). Tumours (corn smut or 'huitlacoche') were collected from different Mexican states with diverse environmental conditions. Using bioinformatic tools, five microsatellites were identified within intergenic regions of the U. maydis mitochondrial genome. SSRMUM4 was the most polymorphic marker. The most common repeats were hexanucleotides. A total of 12 allelic variants were identified, with a mean of 2.4 alleles per locus. An estimate of the genetic diversity using analysis of molecular variance (AMOVA) revealed that the highest variance component is within states (84%), with moderate genetic differentiation between states (16%) (F ST  = 0.158). A dendrogram generated using the unweighted paired-grouping method with arithmetic averages (UPGMA) and the Bayesian analysis of population structure grouped the U. maydis isolates into two subgroups (K = 2) based on their shared SSRs.

  1. Where do all the maternal effects go? Variation in offspring body size through ontogeny in the live-bearing fish Poecilia parae.

    PubMed

    Lindholm, Anna K; Hunt, John; Brooks, Robert

    2006-12-22

    Maternal effects are an important source of adaptive variation, but little is known about how they vary throughout ontogeny. We estimate the contribution of maternal effects, sire genetic and environmental variation to offspring body size from birth until 1 year of age in the live-bearing fish Poecilia parae. In both the sexes, maternal effects on body size were initially high in juveniles, and then declined to zero at sexual maturity. In sons, this was accompanied by a sharp rise in sire genetic variance, consistent with the expression of Y-linked loci affecting male size. In daughters, all variance components decreased with time, consistent with compensatory growth. There were significant negative among-dam correlations between early body size and the timing of sexual maturity in both sons and daughters. However, there was no relationship between early life maternal effects and adult longevity, suggesting that maternal effects, although important early in life, may not always influence late life-history traits.

  2. Effect of correlated observation error on parameters, predictions, and uncertainty

    USGS Publications Warehouse

    Tiedeman, Claire; Green, Christopher T.

    2013-01-01

    Correlations among observation errors are typically omitted when calculating observation weights for model calibration by inverse methods. We explore the effects of omitting these correlations on estimates of parameters, predictions, and uncertainties. First, we develop a new analytical expression for the difference in parameter variance estimated with and without error correlations for a simple one-parameter two-observation inverse model. Results indicate that omitting error correlations from both the weight matrix and the variance calculation can either increase or decrease the parameter variance, depending on the values of error correlation (ρ) and the ratio of dimensionless scaled sensitivities (rdss). For small ρ, the difference in variance is always small, but for large ρ, the difference varies widely depending on the sign and magnitude of rdss. Next, we consider a groundwater reactive transport model of denitrification with four parameters and correlated geochemical observation errors that are computed by an error-propagation approach that is new for hydrogeologic studies. We compare parameter estimates, predictions, and uncertainties obtained with and without the error correlations. Omitting the correlations modestly to substantially changes parameter estimates, and causes both increases and decreases of parameter variances, consistent with the analytical expression. Differences in predictions for the models calibrated with and without error correlations can be greater than parameter differences when both are considered relative to their respective confidence intervals. These results indicate that including observation error correlations in weighting for nonlinear regression can have important effects on parameter estimates, predictions, and their respective uncertainties.

  3. Estimating Variances of Horizontal Wind Fluctuations in Stable Conditions

    NASA Astrophysics Data System (ADS)

    Luhar, Ashok K.

    2010-05-01

    Information concerning the average wind speed and the variances of lateral and longitudinal wind velocity fluctuations is required by dispersion models to characterise turbulence in the atmospheric boundary layer. When the winds are weak, the scalar average wind speed and the vector average wind speed need to be clearly distinguished and both lateral and longitudinal wind velocity fluctuations assume equal importance in dispersion calculations. We examine commonly-used methods of estimating these variances from wind-speed and wind-direction statistics measured separately, for example, by a cup anemometer and a wind vane, and evaluate the implied relationship between the scalar and vector wind speeds, using measurements taken under low-wind stable conditions. We highlight several inconsistencies inherent in the existing formulations and show that the widely-used assumption that the lateral velocity variance is equal to the longitudinal velocity variance is not necessarily true. We derive improved relations for the two variances, and although data under stable stratification are considered for comparison, our analysis is applicable more generally.

  4. Study on individual stochastic model of GNSS observations for precise kinematic applications

    NASA Astrophysics Data System (ADS)

    Próchniewicz, Dominik; Szpunar, Ryszard

    2015-04-01

    The proper definition of mathematical positioning model, which is defined by functional and stochastic models, is a prerequisite to obtain the optimal estimation of unknown parameters. Especially important in this definition is realistic modelling of stochastic properties of observations, which are more receiver-dependent and time-varying than deterministic relationships. This is particularly true with respect to precise kinematic applications which are characterized by weakening model strength. In this case, incorrect or simplified definition of stochastic model causes that the performance of ambiguity resolution and accuracy of position estimation can be limited. In this study we investigate the methods of describing the measurement noise of GNSS observations and its impact to derive precise kinematic positioning model. In particular stochastic modelling of individual components of the variance-covariance matrix of observation noise performed using observations from a very short baseline and laboratory GNSS signal generator, is analyzed. Experimental test results indicate that the utilizing the individual stochastic model of observations including elevation dependency and cross-correlation instead of assumption that raw measurements are independent with the same variance improves the performance of ambiguity resolution as well as rover positioning accuracy. This shows that the proposed stochastic assessment method could be a important part in complex calibration procedure of GNSS equipment.

  5. Neurology objective structured clinical examination reliability using generalizability theory

    PubMed Central

    Park, Yoon Soo; Lukas, Rimas V.; Brorson, James R.

    2015-01-01

    Objectives: This study examines factors affecting reliability, or consistency of assessment scores, from an objective structured clinical examination (OSCE) in neurology through generalizability theory (G theory). Methods: Data include assessments from a multistation OSCE taken by 194 medical students at the completion of a neurology clerkship. Facets evaluated in this study include cases, domains, and items. Domains refer to areas of skill (or constructs) that the OSCE measures. G theory is used to estimate variance components associated with each facet, derive reliability, and project the number of cases required to obtain a reliable (consistent, precise) score. Results: Reliability using G theory is moderate (Φ coefficient = 0.61, G coefficient = 0.64). Performance is similar across cases but differs by the particular domain, such that the majority of variance is attributed to the domain. Projections in reliability estimates reveal that students need to participate in 3 OSCE cases in order to increase reliability beyond the 0.70 threshold. Conclusions: This novel use of G theory in evaluating an OSCE in neurology provides meaningful measurement characteristics of the assessment. Differing from prior work in other medical specialties, the cases students were randomly assigned did not influence their OSCE score; rather, scores varied in expected fashion by domain assessed. PMID:26432851

  6. A perspective on interaction effects in genetic association studies

    PubMed Central

    2016-01-01

    ABSTRACT The identification of gene–gene and gene–environment interaction in human traits and diseases is an active area of research that generates high expectation, and most often lead to high disappointment. This is partly explained by a misunderstanding of the inherent characteristics of standard regression‐based interaction analyses. Here, I revisit and untangle major theoretical aspects of interaction tests in the special case of linear regression; in particular, I discuss variables coding scheme, interpretation of effect estimate, statistical power, and estimation of variance explained in regard of various hypothetical interaction patterns. Linking this components it appears first that the simplest biological interaction models—in which the magnitude of a genetic effect depends on a common exposure—are among the most difficult to identify. Second, I highlight the demerit of the current strategy to evaluate the contribution of interaction effects to the variance of quantitative outcomes and argue for the use of new approaches to overcome this issue. Finally, I explore the advantages and limitations of multivariate interaction models, when testing for interaction between multiple SNPs and/or multiple exposures, over univariate approaches. Together, these new insights can be leveraged for future method development and to improve our understanding of the genetic architecture of multifactorial traits. PMID:27390122

  7. Genome-Wide Association Studies with a Genomic Relationship Matrix: A Case Study with Wheat and Arabidopsis

    PubMed Central

    Gianola, Daniel; Fariello, Maria I.; Naya, Hugo; Schön, Chris-Carolin

    2016-01-01

    Standard genome-wide association studies (GWAS) scan for relationships between each of p molecular markers and a continuously distributed target trait. Typically, a marker-based matrix of genomic similarities among individuals (G) is constructed, to account more properly for the covariance structure in the linear regression model used. We show that the generalized least-squares estimator of the regression of phenotype on one or on m markers is invariant with respect to whether or not the marker(s) tested is(are) used for building G, provided variance components are unaffected by exclusion of such marker(s) from G. The result is arrived at by using a matrix expression such that one can find many inverses of genomic relationship, or of phenotypic covariance matrices, stemming from removing markers tested as fixed, but carrying out a single inversion. When eigenvectors of the genomic relationship matrix are used as regressors with fixed regression coefficients, e.g., to account for population stratification, their removal from G does matter. Removal of eigenvectors from G can have a noticeable effect on estimates of genomic and residual variances, so caution is needed. Concepts were illustrated using genomic data on 599 wheat inbred lines, with grain yield as target trait, and on close to 200 Arabidopsis thaliana accessions. PMID:27520956

  8. Neurology objective structured clinical examination reliability using generalizability theory.

    PubMed

    Blood, Angela D; Park, Yoon Soo; Lukas, Rimas V; Brorson, James R

    2015-11-03

    This study examines factors affecting reliability, or consistency of assessment scores, from an objective structured clinical examination (OSCE) in neurology through generalizability theory (G theory). Data include assessments from a multistation OSCE taken by 194 medical students at the completion of a neurology clerkship. Facets evaluated in this study include cases, domains, and items. Domains refer to areas of skill (or constructs) that the OSCE measures. G theory is used to estimate variance components associated with each facet, derive reliability, and project the number of cases required to obtain a reliable (consistent, precise) score. Reliability using G theory is moderate (Φ coefficient = 0.61, G coefficient = 0.64). Performance is similar across cases but differs by the particular domain, such that the majority of variance is attributed to the domain. Projections in reliability estimates reveal that students need to participate in 3 OSCE cases in order to increase reliability beyond the 0.70 threshold. This novel use of G theory in evaluating an OSCE in neurology provides meaningful measurement characteristics of the assessment. Differing from prior work in other medical specialties, the cases students were randomly assigned did not influence their OSCE score; rather, scores varied in expected fashion by domain assessed. © 2015 American Academy of Neurology.

  9. On the impact of a refined stochastic model for airborne LiDAR measurements

    NASA Astrophysics Data System (ADS)

    Bolkas, Dimitrios; Fotopoulos, Georgia; Glennie, Craig

    2016-09-01

    Accurate topographic information is critical for a number of applications in science and engineering. In recent years, airborne light detection and ranging (LiDAR) has become a standard tool for acquiring high quality topographic information. The assessment of airborne LiDAR derived DEMs is typically based on (i) independent ground control points and (ii) forward error propagation utilizing the LiDAR geo-referencing equation. The latter approach is dependent on the stochastic model information of the LiDAR observation components. In this paper, the well-known statistical tool of variance component estimation (VCE) is implemented for a dataset in Houston, Texas, in order to refine the initial stochastic information. Simulations demonstrate the impact of stochastic-model refinement for two practical applications, namely coastal inundation mapping and surface displacement estimation. Results highlight scenarios where erroneous stochastic information is detrimental. Furthermore, the refined stochastic information provides insights on the effect of each LiDAR measurement in the airborne LiDAR error budget. The latter is important for targeting future advancements in order to improve point cloud accuracy.

  10. Save money by understanding variance and tolerancing.

    PubMed

    Stuart, K

    2007-01-01

    Manufacturing processes are inherently variable, which results in component and assembly variance. Unless process capability, variance and tolerancing are fully understood, incorrect design tolerances may be applied, which will lead to more expensive tooling, inflated production costs, high reject rates, product recalls and excessive warranty costs. A methodology is described for correctly allocating tolerances and performing appropriate analyses.

  11. Environmental Influences on Well-Being: A Dyadic Latent Panel Analysis of Spousal Similarity

    ERIC Educational Resources Information Center

    Schimmack, Ulrich; Lucas, Richard E.

    2010-01-01

    This article uses dyadic latent panel analysis (DLPA) to examine environmental influences on well-being. DLPA requires longitudinal dyadic data. It decomposes the observed variance of both members of a dyad into a trait, state, and an error component. Furthermore, state variance is decomposed into initial and new state variance. Total observed…

  12. The a priori SDR Estimation Techniques with Reduced Speech Distortion for Acoustic Echo and Noise Suppression

    NASA Astrophysics Data System (ADS)

    Thoonsaengngam, Rattapol; Tangsangiumvisai, Nisachon

    This paper proposes an enhanced method for estimating the a priori Signal-to-Disturbance Ratio (SDR) to be employed in the Acoustic Echo and Noise Suppression (AENS) system for full-duplex hands-free communications. The proposed a priori SDR estimation technique is modified based upon the Two-Step Noise Reduction (TSNR) algorithm to suppress the background noise while preserving speech spectral components. In addition, a practical approach to determine accurately the Echo Spectrum Variance (ESV) is presented based upon the linear relationship assumption between the power spectrum of far-end speech and acoustic echo signals. The ESV estimation technique is then employed to alleviate the acoustic echo problem. The performance of the AENS system that employs these two proposed estimation techniques is evaluated through the Echo Attenuation (EA), Noise Attenuation (NA), and two speech distortion measures. Simulation results based upon real speech signals guarantee that our improved AENS system is able to mitigate efficiently the problem of acoustic echo and background noise, while preserving the speech quality and speech intelligibility.

  13. Genetic effects of heat stress on milk yield of Thai Holstein crossbreds.

    PubMed

    Boonkum, W; Misztal, I; Duangjinda, M; Pattarajinda, V; Tumwasorn, S; Sanpote, J

    2011-01-01

    The threshold for heat stress on milk yield of Holstein crossbreds under climatic conditions in Thailand was investigated, and genetic effects of heat stress on milk yield were estimated. Data included 400,738 test-day milk yield records for the first 3 parities from 25,609 Thai crossbred Holsteins between 1990 and 2008. Mean test-day milk yield ranged from 12.6 kg for cows with <87.5% Holstein genetics to 14.4 kg for cows with ≥93.7% Holstein genetics. Daily temperature and humidity data from 26 provincial weather stations were used to calculate a temperature-humidity index (THI). Test-day milk yield varied little with THI for first parity except above a THI of 82 for cows with ≥93.7% Holstein genetics. For third parity, test-day milk yield started to decline after a THI of 74 for cows with ≥87.5% Holstein genetics and declined more rapidly after a THI of 82. A repeatability test-day model with parities as correlated traits was used to estimate heat stress parameters; fixed effects included herd-test month-test year and breed groups, days in milk, calving age, and parity; random effects included 2 additive genetic effects, regular and heat stress, and 2 permanent environment, regular and heat stress. The threshold for effect of heat stress on test-day milk yield was set to a THI of 80. All variance component estimates increased with parity; the largest increases were found for effects associated with heat stress. In particular, genetic variance associated with heat stress quadrupled from first to third parity, whereas permanent environmental variance only doubled. However, permanent environmental variance for heat stress was at least 10 times larger than genetic variance. Genetic correlations among parities for additive effects without heat stress considered ranged from 0.88 to 0.96. Genetic correlations among parities for additive effects of heat stress ranged from 0.08 to 0.22, and genetic correlations between effects regular and heat stress effects ranged from -0.21 to -0.33 for individual parities. Effect of heat stress on Thai Holstein crossbreds increased greatly with parity and was especially large after a THI of 80 for cows with a high percentage of Holstein genetics (≥93.7%). Individual sensitivity to heat stress was more environmental than genetic for Thai Holstein crossbreds. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Gene, environment and cognitive function: a Chinese twin ageing study.

    PubMed

    Xu, Chunsheng; Sun, Jianping; Duan, Haiping; Ji, Fuling; Tian, Xiaocao; Zhai, Yaoming; Wang, Shaojie; Pang, Zengchang; Zhang, Dongfeng; Zhao, Zhongtang; Li, Shuxia; Gue, Matt Mc; Hjelmborg, Jacob V B; Christensen, Kaare; Tan, Qihua

    2015-05-01

    the genetic and environmental contributions to cognitive function in the old people have been well addressed for the Western populations using twin modelling showing moderate to high heritability. No similar study has been conducted in the world largest and rapidly ageing Chinese population living under distinct environmental condition as the Western populations. this study aims to explore the genetic and environmental impact on normal cognitive ageing in the Chinese twins. cognitive function was measured on 384 complete twin pairs with median age of 50 years for seven cognitive measurements including visuospatial, linguistic skills, naming, memory, attention, abstraction and orientation abilities. Data were analysed by fitting univariate and bivariate twin models to estimate the genetic and environmental components in the variance and co-variance of the cognitive assessments. intra-pair correlation on cognitive measurements was low to moderate in monozygotic twins (0.23-0.41, overall 0.42) and low in dizygotic twins (0.05-0.30, overall 0.31) with the former higher than the latter for each item. Estimate for heritability was moderate for overall cognitive function (0.44, 95% CI: 0.34-0.53) and low to moderate for visuospatial, naming, attention and orientation abilities ranging from 0.28 to 0.38. No genetic contribution was estimated to linguistic skill, abstraction and memory which instead were under low to moderate control by shared environmental factors accounting for 23-33% of the total variances. In contrast, all cognitive performances showed moderate to high influences by the unique environmental factors. genetic factor and common family environment have a limited contribution to cognitive function in the Chinese adults. Individual unique environment is likely to play a major role in determining the levels of cognitive performance. © The Author 2015. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Evaluation of the impact of observations on blended sea surface winds in a two-dimensional variational scheme using degrees of freedom

    NASA Astrophysics Data System (ADS)

    Wang, Ting; Xiang, Jie; Fei, Jianfang; Wang, Yi; Liu, Chunxia; Li, Yuanxiang

    2017-12-01

    This paper presents an evaluation of the observational impacts on blended sea surface winds from a two-dimensional variational data assimilation (2D-Var) scheme. We begin by briefly introducing the analysis sensitivity with respect to observations in variational data assimilation systems and its relationship with the degrees of freedom for signal (DFS), and then the DFS concept is applied to the 2D-Var sea surface wind blending scheme. Two methods, a priori and a posteriori, are used to estimate the DFS of the zonal ( u) and meridional ( v) components of winds in the 2D-Var blending scheme. The a posteriori method can obtain almost the same results as the a priori method. Because only by-products of the blending scheme are used for the a posteriori method, the computation time is reduced significantly. The magnitude of the DFS is critically related to the observational and background error statistics. Changing the observational and background error variances can affect the DFS value. Because the observation error variances are assumed to be uniform, the observational influence at each observational location is related to the background error variance, and the observations located at the place where there are larger background error variances have larger influences. The average observational influence of u and v with respect to the analysis is about 40%, implying that the background influence with respect to the analysis is about 60%.

  16. Multiple-trait random regression models for the estimation of genetic parameters for milk, fat, and protein yield in buffaloes.

    PubMed

    Borquis, Rusbel Raul Aspilcueta; Neto, Francisco Ribeiro de Araujo; Baldi, Fernando; Hurtado-Lugo, Naudin; de Camargo, Gregório M F; Muñoz-Berrocal, Milthon; Tonhati, Humberto

    2013-09-01

    In this study, genetic parameters for test-day milk, fat, and protein yield were estimated for the first lactation. The data analyzed consisted of 1,433 first lactations of Murrah buffaloes, daughters of 113 sires from 12 herds in the state of São Paulo, Brazil, with calvings from 1985 to 2007. Ten-month classes of lactation days were considered for the test-day yields. The (co)variance components for the 3 traits were estimated using the regression analyses by Bayesian inference applying an animal model by Gibbs sampling. The contemporary groups were defined as herd-year-month of the test day. In the model, the random effects were additive genetic, permanent environment, and residual. The fixed effects were contemporary group and number of milkings (1 or 2), the linear and quadratic effects of the covariable age of the buffalo at calving, as well as the mean lactation curve of the population, which was modeled by orthogonal Legendre polynomials of fourth order. The random effects for the traits studied were modeled by Legendre polynomials of third and fourth order for additive genetic and permanent environment, respectively, the residual variances were modeled considering 4 residual classes. The heritability estimates for the traits were moderate (from 0.21-0.38), with higher estimates in the intermediate lactation phase. The genetic correlation estimates within and among the traits varied from 0.05 to 0.99. The results indicate that the selection for any trait test day will result in an indirect genetic gain for milk, fat, and protein yield in all periods of the lactation curve. The accuracy associated with estimated breeding values obtained using multi-trait random regression was slightly higher (around 8%) compared with single-trait random regression. This difference may be because to the greater amount of information available per animal. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Integration of manatee life-history data and population modeling

    USGS Publications Warehouse

    Eberhardt, L.L.; O'Shea, Thomas J.; O'Shea, Thomas J.; Ackerman, B.B.; Percival, H. Franklin

    1995-01-01

    Aerial counts and the number of deaths have been a major focus of attention in attempts to understand the population status of the Florida manatee (Trichechus manatus latirostris). Uncertainties associated with these data have made interpretation difficult. However, knowledge of manatee life-history attributes increased and now permits the development of a population model. We describe a provisional model based on the classical approach of Lotka. Parameters in the model are based on data from'other papers in this volume and draw primarily on observations from the Crystal River, Blue Spring, and Adantic Coast areas. The model estimates X (the finite rate ofincrease) at each study area, and application ofthe delta method provides estimates of variance components and partial derivatives ofX with respectto key input parameters (reproduction, adult survival, and early survival). In some study areas, only approximations of some parameters are available. Estimates of X and coefficients of variation (in parentheses) of manatees were 1.07 (0.009) in the Crystal River, 1.06 (0.012) at Blue Spring, and 1.01 (0.012) on the Atlantic Coast. Changing adult survival has a major effect on X. Early-age survival has the smallest effect. Bootstrap comparisons of population growth estimates from trend counts in the Crystal River and at Blue Spring and the reproduction and survival data suggest that the higher, observed rates from counts are probably not due to chance. Bootstrapping for variance estimates based on reproduction and survival data from manatees at Blue Spring and in the Crystal River provided estimates of X, adult survival, and rates of reproduction that were similar to those obtained by other methods. Our estimates are preliminary and suggestimprovements for future data collection and analysis. However, results support efforts to reduce mortality as the most effective means to promote the increased growth necessary for the eventual recovery of the Florida manatee population.

  18. Diversity among elephant grass genotypes using Bayesian multi-trait model.

    PubMed

    Rossi, D A; Daher, R F; Barbé, T C; Lima, R S N; Costa, A F; Ribeiro, L P; Teodoro, P E; Bhering, L L

    2017-09-27

    Elephant grass is a perennial tropical grass with great potential for energy generation from biomass. The objective of this study was to estimate the genetic diversity among elephant grass accessions based on morpho-agronomic and biomass quality traits and to identify promising genotypes for obtaining hybrids with high energetic biomass production capacity. The experiment was installed at experimental area of the State Agricultural College Antônio Sarlo, in Campos dos Goytacazes. Fifty-two elephant grass genotypes were evaluated in a randomized block design with two replicates. Components of variance and the genotypic means were obtained using a Bayesian multi-trait model. We considered 350,000 iterations in the Gibbs sampler algorithm for each parameter adopted, with a warm-up period (burn-in) of 50,000 Iterations. For obtaining an uncorrelated sample, we considered five iterations (thinning) as a spacing between sampled points, which resulted in a final sample size 60,000. Subsequently, the Mahalanobis distance between each pair of genotypes was estimated. Estimates of genotypic variance indicated a favorable condition for gains in all traits. Elephant grass accessions presented greater variability for biomass quality traits, for which three groups were formed, while for the agronomic traits, two groups were formed. Crosses between Mercker Pinda México x Mercker 86-México, Mercker Pinda México x Turrialba, and Mercker 86-México x Taiwan A-25 can be carried out for obtaining elephant grass hybrids for energy purposes.

  19. Spatial analysis of sunshine duration by combination of satellite and station data

    NASA Astrophysics Data System (ADS)

    Frei, C.; Stöckli, R.; Dürr, B.

    2009-09-01

    Sunshine duration can exhibit rich fine scale patterns associated with special meteorological phenomena, such as fog layers and topographically triggered clouds. Networks of climate stations are mostly too coarse and poorly representative to resolve these patterns explicitly. We present a method which combines station observations with satellite-derived cloud-cover data to produce km-scale fields of sunshine duration. The method is not relying on contemporous satellite information, hence it can be applied over climatological time scales. We apply and evaluate the combination method over the territory of Switzerland. The combination method is based on Universal Kriging. First, the satellite data (a Heliosat clear sky index from MSG, extending over a 5 year preiod) is subjected to a S-mode Principal Component (PC) Analysis. Second, a set of leading PC loadings (seasonally stratified) is introduced as external drift covariates and their optimal linear combination is estimated from the station data (70 stations). Finally, the stochastic component is an autocorrelated field with an exponential variogram, estimated climatologically for each calendar month. For Switzerland the leading PCs of the clear sky index depict familiar patterns of cloud variability which are inhereted in the combination process. The resulting sunshine duration fields exhibit fine-scale structures that are physically plausible, linked to the topography and characteristic of the regional climate. These patterns could not be inferred from station data and/or topographic predictors alone. A cross-validation reveals that the combination method explains between 80-90% of the spatial variance in winter and autumn months. In spring and summer the relative performance is lower (60-75% explained spatial variance) but absolute errors are smaller. Our presentation will also discuss some results from a climatology of the derived sunshine duration fields.

  20. The genetic basis of female multiple mating in a polyandrous livebearing fish

    PubMed Central

    Evans, Jonathan P; Gasparini, Clelia

    2013-01-01

    The widespread occurrence of female multiple mating (FMM) demands evolutionary explanation, particularly in the light of the costs of mating. One explanation encapsulated by “good sperm” and “sexy-sperm” (GS-SS) theoretical models is that FMM facilitates sperm competition, thus ensuring paternity by males that pass on genes for elevated sperm competitiveness to their male offspring. While support for this component of GS-SS theory is accumulating, a second but poorly tested assumption of these models is that there should be corresponding heritable genetic variation in FMM – the proposed mechanism of postcopulatory preferences underlying GS-SS models. Here, we conduct quantitative genetic analyses on paternal half-siblings to test this component of GS-SS theory in the guppy (Poecilia reticulata), a freshwater fish with some of the highest known rates of FMM in vertebrates. As with most previous quantitative genetic analyses of FMM in other species, our results reveal high levels of phenotypic variation in this trait and a correspondingly low narrow-sense heritability (h2 = 0.11). Furthermore, although our analysis of additive genetic variance in FMM was not statistically significant (probably owing to limited statistical power), the ensuing estimate of mean-standardized additive genetic variance (IA = 0.7) was nevertheless relatively low compared with estimates published for life-history traits across a broad range of taxa. Our results therefore add to a growing body of evidence that FMM is characterized by relatively low additive genetic variation, thus apparently contradicting GS-SS theory. However, we qualify this conclusion by drawing attention to potential deficiencies in most designs (including ours) that have tested for genetic variation in FMM, particularly those that fail to account for intersexual interactions that underlie FMM in many systems. PMID:23403856

Top